Contents

What’s New in SAS 9.4 Graph Template Language ... vii

PART 1 Fundamentals 1

Chapter 1 • Overview ... 3
Graph Template Language (GTL) ... 3
Basic Anatomy of an ODS Graph ... 7
Graphical Layouts ... 8
Plots .. 10
Axes .. 10
Legends ... 11
Flexible Templates ... 12
Output ... 15
About the Examples in This Documentation 17
Examples and Resources on the Web 18

PART 2 Graph Block 19

Chapter 2 • BEGINGRAPH Statement .. 21
Dictionary ... 21

PART 3 Layout Statements 39

Chapter 3 • Summary of Layout Statements 41
Overview ... 41
Single-cell Layouts .. 42
Multi-cell Layouts ... 43
Data-driven Layouts ... 43
Legend Layout ... 44

Chapter 4 • Layout Statements .. 45
Dictionary ... 45

PART 4 Plot Statements 173

Chapter 5 • Key Concepts for Using Plots 175
Minimum Requirements to Generate a Plot 175
ODS Graphics Environment ... 176
Display Attributes .. 177
Location and Position of Curve Labels 185
What’s New in SAS 9.4 Graph Template Language

Overview

New and enhanced statements for the Graph Template Language (GTL) extend the versatility of the language and introduce new plot types. The following changes are included in this release:

• new plot statements
• new features for general use
• enhancements to SAS 9.3 statements

Possible Changes Required for Your Existing SAS GTL Programs

There are changes in GTL for SAS 9.4 and subsequent maintenance releases that might require you to modify your existing SAS GTL programs. These changes can impact SAS GTL programs that use the DENSITYPLOT or BARCHART statements. Review this section carefully to determine whether you need to modify your existing SAS GTL programs for SAS 9.4.

Programs That Use the BARCHART Statement

In SAS 9.4, the BARCHART statement STAT=PCT option now displays percentages in the range 0–100 in order to be consistent with other GTL statements. In prior releases, STAT=PCT displays proportional values in the range 0–1. To restore the proportional values in SAS 9.4 and later releases, change STAT=PCT to STAT=PROPORTION.

In the third maintenance release of SAS 9.4, the COLORSTAT= option is added to the BARCHART statement. It is enabled by the COLORRESPONSE= option. The COLORSTAT= option specifies the statistic to be calculated for the data range of the bar-color gradient. The default is SUM. For existing SAS programs that use the BARCHART statement, if STAT= is used with COLORRESPONSE= in the BARCHART statement and STAT= specifies a statistic other than SUM, then the bar-chart colors and color statistic might change from those of previous releases. In that case, to restore the original colors and color statistic, set COLORSTAT= in the BARCHART statement to the same statistic that is specified in STAT=.

See BARCHART in “Plot Statement Enhancements” on page xiv.
Programs That Use the DENSITYPLOT Statement

In SAS 9.4, the WEIGHT= option of the KERNEL() distribution option in the DENSITYPLOT statement is changed to WEIGHTFUNCTION=. This change enables the addition of the WEIGHT= option in the DENSITYPLOT statement. Starting with SAS 9.4, the WEIGHT= option is not valid in the KERNEL() distribution option and results in a syntax error. If your existing SAS programs specify the WEIGHT= option in the KERNEL() distribution option, then you must change it to WEIGHTFUNCTION=. See DENSITYPLOT in “Plot Statement Enhancements” on page xiv.

Programs That Use the HEATMAPPARM Statement

In the third maintenance release of SAS 9.4, the DISCRETEX= and DISCRETEY= options are added to the HEATMAPPARM statement. These options specify whether the X or Y axis is discrete. The default is FALSE. For existing SAS programs that use the HEATMAPPARM statement, if the X axis is discrete, the DISCRETEX=True option must be specified in the HEATMAPPARM statement. Likewise, if the Y axis is discrete, the DISCRETEY=True option must be specified in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn.

Programs That Use the WATERFALLCHART Statement

In the third maintenance release of SAS 9.4, the COLORSTAT= option is added to the WATERFALLCHART statement. It is enabled by the COLORRESPONSE= option. The COLORSTAT= option specifies the statistic to be calculated for the data range of the color gradient. The default is SUM. For existing SAS programs that use the WATERFALLCHART statement, if STAT= is used with COLORRESPONSE= in the WATERFALLCHART statement and STAT= specifies a statistic other than SUM, then the chart colors and color statistic might change from those of previous releases. In that case, to restore the original colors and color statistic, set COLORSTAT= in the WATERFALLCHART statement to the same statistic that is specified in STAT=. See WATERFALLCHART in “Plot Statement Enhancements” on page xiv.

New Plot Statements

The following plot statements are new:

• ANNOTATE draws annotations from annotation instructions that are stored in a SAS data set. It can draw all of the annotations in the data set or a subset only.

• AXISTABLE draws textual values (character or numeric) on the graph at locations that are aligned with the X or Y axis.

• LINECHART creates a summarized line chart that is computed from input data.

In the first maintenance release of SAS 9.4, the following statement is new:

• POLYGONPLOT draws one or more polygons from data that is stored in a SAS data set.

In the second maintenance release of SAS 9.4, the following statement is new:
• TEXTPLOT displays text values at specific X and Y locations in the graph. For information about subsequent enhancements to this statement, see “Plot Statement Enhancements” on page xiv.

In the third maintenance release of SAS 9.4, the following statement is new:

• HEATMAP creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

New Legend Statement

In the third maintenance release of SAS 9.4, the LEGENDTEXTITEMS statement is new. This statement creates the definition for data-driven text items that can be included in a discrete legend. The items and optional labels are stored in the plot data set.

New Marker Definition Statements

In the first maintenance release of SAS 9.4, the following statements are new:

• SYMBOLCHAR defines a marker symbol from a Unicode character value.
• SYMBOLIMAGE defines a marker symbol from a GIF, JPG, or PNG image that is stored in a file.

You can use these statements to define custom marker symbols for your graphs. For information about subsequent enhancements to these statements, see “Marker Definition Statement Enhancements” on page xxxvii.

New Function

In the first maintenance release of SAS 9.4, the TYPEOF function is new. This function returns the type (numeric or character) of a specified column at run time. You can use the TYPEOF function to take specific actions in your template at run time based on the input data type.

New Features for General Use

Color-Priority Graph Data Attribute Rotation

The GTL now supports a color-priority rotation pattern for cycling graph data attributes. In the default rotation pattern, graph data attributes rotate as they are defined in the GraphData1–GraphDataN style elements. The new color-priority rotation pattern first cycles through all of the colors while holding the marker symbol, line pattern, or fill
pattern constant. When all of the colors have been used, it increments to the next marker symbol, line pattern, or fill pattern, and then repeats the colors.

Color-priority rotation is enabled in one of the following ways:

- the currently active style sets the Graph:attrPriority attribute to COLOR
- the ATTRPRIORITY=COLOR option is specified in the ODS GRAPHICS statement, which overrides the Graph:attrPriority style attribute
- the ATTRPRIORITY=COLOR option is specified in the BEGINGRAPH statement of the template, which overrides the ODS GRAPHICS ATTRPRIORITY= option for all plots in that template

When none of these conditions are true, the default rotation pattern is used. For more information, see “BEGINGRAPH Statement Enhancements” on page xi.

Template-Level Graph Data Attribute Overrides

The GTL provides new options that enable you to override GraphData1–GraphDataN style attributes for all of the plots within a template. They provide an easy way to modify group attributes without having to create a custom ODS style. These options are used in the BEGINGRAPH statement of a template. By using these options, you can override attributes in the GraphData1–GraphDataN style elements by specifying one or more of the following lists for all of the plots within a template:

- a list of colors that replace the graph data colors (fill) in the current style
- a list of contrast colors that replace the graph data contrast colors in the current style
- a list of marker symbols that replace the graph data marker symbols in the current style
- a list of line patterns that replace the graph data line patterns in the current style

In addition, you can specify a priority for the group value attribute cycling. For more information, see “BEGINGRAPH Statement Enhancements” on page xi.

Outer Padding

The GTL provides a new OUTERPAD= option that enables you to control the padding around the outside of layouts, legends, titles, footnotes, and text entries. You can use this option to modify the outer padding when the default padding is not sufficient. You can specify a single padding value for all four sides, or you can specify different values for each side.

Unicode Values in User-Defined Formats

Starting with the third maintenance release of SAS 9.4, ODS Graphics supports Unicode values in user-defined formats. The Unicode value must be escaped with the (*ESC*) escape sequence, as shown in the following example.

"(*ESC*){unicode beta}"

ODS Graphics does not support the use of a user-defined ODS escape character to escape Unicode values in user-defined formats.
General Enhancements Supported by Many of the Plots

The following new features that are supported by many of the plot statements are worth highlighting. The individual plot statements that support these features are identified in “Plot Statement Enhancements” on page xiv.

- The algorithm that is used to place data labels has been improved to more effectively position the data labels in the vicinity of their data markers while avoiding label collisions.
- In certain cases, you can rotate or split data labels, curve labels, and discrete-axis tick values in order to fit them in the available space.
- Subpixel rendering is now supported, which produces smoother curves and more precise bar spacing in plots.
- You can now suppress tips and URLs from individual plots.

Enhancements to SAS 9.4 Statements

BEGINGRAPH Statement Enhancements

- ATTRPRIORITY= specifies a priority for cycling of the attributes for group attributes.
- DATACOLORS= specifies the list of fill colors that replaces the graph data colors from the GraphData1–GraphDataN style elements.
- DATACONTRASTCOLORS= specifies the list of contrast colors that replaces the graph data contrast colors from the GraphData1–GraphDataN style elements.
- DATALINEPATTERNS= specifies the list of line patterns that replaces the graph data line patterns from the GraphData1–GraphDataN style elements.
- DATASKIN= enhances the visual appearance of all plots in the template that support data skins.
- DATASYMBOLS= specifies the list of marker symbols that replaces the graph data marker symbols from the marker symbols that are defined in the GraphData1–GraphDataN style elements.
- SUBPIXEL= specifies whether subpixel rendering is used for drawing smooth curved lines or for spacing bars more precisely.
- Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 - AXISBREAKSYMBOL= specifies a symbol to use on the axis lines to indicate a break in the axis.
 - AXISBREAKTYPE= specifies whether the axis break is indicated in the full display or only on the axis line.
 - AXISLINEEXTENT= specifies the extent of the axis line for all axes.
• DISCRETEAXISOFFSETPAD= specifies whether additional padding is added to the minimum and maximum axis offsets for discrete axes.
• OPAQUE= specifies whether the graph background is opaque or transparent.

Layout Statement Enhancements

LAYOUT DATALATTICE and **LAYOUT DATAPANEL**:

- For cell insets, match-merging is now supported for merging the inset and analysis data. The DATASCHEME= suboption of the INSETOPTS= option specifies whether one-to-one merging or match merging was used to merge the data.
- HEADERLABELDISPLAY= now supports NONE, which suppresses the row and column headings, or the cell headings.
- SORTORDER= specifies the order of the cells along the columns and rows.
- LAYOUT DATALATTICE only:
 - COLUMNDATARANGE=, ROWDATARANGE=, COLUMN2DATARANGE=, and ROW2DATARANGE= now support AUTO, which selects the range automatically, based on the column weight or row weight, and the axis type.
 - COLUMNWEIGHT= specifies how to assign weights to the columns widths.
 - ROWWEIGHT= specifies how to assign weights to the row heights.
- Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:
 - HEADERPACK= specifies whether the values listed in the cell headers are displayed as a delimited list in a single header cell in order to save space.
 - HEADERSEPARATOR= specifies a separator to place between each value in the cell header.
 - HEADERSPLITCOUNT= specifies the number of class variables in the cell header after which the cell header wraps to a separate line.
- Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 - For the INSETOPTS= option:
 - CONTENTDISPLAY= specifies whether the variable information displayed in the inset includes the column label and value, or the column value only.
 - SEPARATOR= specifies a new separator for the column label and value.
- Starting with the third maintenance release of SAS 9.4, HEADERBORDER= specifies whether a border is drawn around the header cells.

LAYOUT GLOBALLEGEND:

- Starting with the first maintenance release of SAS 9.4, the default padding between the global legend and the plot area (including the axes) is 10 pixels. The OUTERPAD= option can be used to adjust the padding if necessary.

LAYOUT OVERLAY:

- INNERMARGIN statement:
 - ALIGN= now supports LEFT and RIGHT in addition to TOP and BOTTOM.
 - BACKGROUND COLOR= specifies the color of the inner margin background.
• OPAQUE= specifies whether the inner margin's background is opaque.

Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:
 • SEPARATOR= specifies whether a separating line is drawn between the inner margin and the rest of the layout content.
 • SEPARATORATTRS= specifies the attributes of the inner margin separating line.

Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 • GUTTER= specifies the gap between stacked items in the inner margin.
 • PAD= specifies the amount of extra space that is added inside the inner margin border.

LAYOUT OVERLAYEQUATED:
 • The HEATMAPPARM statement is now supported.
 • EQUATETYPE= now supports SQUAREDATA, which specifies that both the X and Y axes have the same range, but can have different tick values.

LAYOUT PROTOTYPE:
 • The HEATMAPPARM statement is now supported.
 • Starting with the first maintenance release of SAS 9.4, the INNERMARGIN statement is now supported in a LAYOUT PROTOTYPE block.

Legend Statement Enhancements

AXISLEGEND:
 • Starting with the second maintenance release of SAS 9.4, the BORDER= option defaults to style reference GraphLegendBackground:FrameBorder.

DISCRETELEGEND:
 • Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:
 • The default padding between the legend and the plot area (including the axes) is 10 pixels, depending on the context. You can use the OUTERPAD= option to adjust the padding if necessary.
 • ITEMSIZE= specifies the size of specific types of items in a discrete legend.
 • Starting with the second maintenance release of SAS 9.4, the BORDER= option defaults to style reference GraphLegendBackground:FrameBorder.
 • Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 • FILLITEMOUTLINE= specifies whether the fill swatches are outlined only when enabled by the contributing statements or are always outlined.
 • The ITEMSIZE= option now supports the following suboptions:
 • FILLASPECTRATIO= specifies the aspect ratio for the fill swatches.
 • FILLHEIGHT= specifies the height of the fill swatches.
• HEIGHTSCALE= specifies a scaling factor that is to be applied to the fill swatch height.
• SORTBY= specifies whether text legend items are sorted by label or by text.

CONTINUOUSLEGEND:
• EXTRACTSCALE= specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width.
• EXTRACTSCALETYPE= specifies whether to extract a named scale or a scientific-notation scale.
• Starting with the second maintenance release of SAS 9.4, the BORDER= option defaults to style reference GraphLegendBackground:FrameBorder.
• Starting with the third maintenance release of SAS 9.4, INTEGER= specifies whether only integer tick values are used in the continuous legend.

LEGENDITEM:
• FILLEDOUTLINEDMARKERS= specifies whether markers are drawn with both fills and outlines.
• Starting with the third maintenance release of SAS 9.4, FILLDISPLAY= specifies whether the fill swatch for this legend item displays fill only or displays fill and outline.

MERGEDLEGEND:
• Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:
 • ADDITIONALNAMES= specifies the name of one or more sources for legend items that are to be added to the merged legend after merging takes place.
 • ITEMSIZE= specifies the size of specific types of items in a merged legend.
• Starting with the second maintenance release of SAS 9.4, the BORDER= option defaults to style reference GraphLegendBackground:FrameBorder.

Plot Statement Enhancements

AXISTABLE:
• Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 • CLASSDISPLAY= specifies how the class values are displayed.
 • CLASSORDER= specifies the order in which the class values are displayed.
 • CLUSTERWIDTH= specifies the width of the group clusters as a fraction of the midpoint spacing.
 • DISPLAY= now supports VALUES, which displays the table values.
 • DROPONMISSING= specifies whether the entire axis table is dropped when all of the VALUE= column values are missing.
 • GUTTER= specifies the gap between rows when a class variable is used.
 • INCLUDEMISSINGCLASS= specifies whether missing class values are represented in the table.
 • LABEL= specifies the text for the table label.
• LABELHALIGN= specifies the horizontal alignment of the column labels relative to the column width in a Y-axis table.
• LABELJUSTIFY= specifies the justification of the column label, when displayed.
• PAD= specifies the amount of extra space that is added inside the table border.
• SHOWMISSING= specifies whether missing values are represented in the table.
• TITLE= specifies the text for the table title.
• TITLEATTRS= specifies the color and font attributes of the table title.
• TITLEHALIGN= specifies the horizontal alignment of the axis table header label relative to the table width for a Y-axis table.
• TITLEJUSTIFY= specifies the justification of the title string.
• VALUEFORMAT= specifies a SAS format or a user-defined format for the table values.
• VALUEHALIGN= specifies the horizontal alignment of the column values relative to the column width in a Y-axis table.
• VALUEJUSTIFY= specifies the justification of the values in the axis table.
• The following options are replaced and considered deprecated:
 • HEADERLABEL= is replaced with TITLE=.
 • HEADERLABELATTRS= is replaced with TITLEATTRS=.

 The deprecated options are still honored, but the new options are the preferred options.

 • Starting with the third maintenance release of SAS 9.4, TITLEHALIGN= specifies the horizontal alignment of the axis table header label relative to the table width for Y-axis tables and X-axis tables.

BANDPLOT:
• TIP= now supports NONE, which suppressed data tips from the plot.
• Starting with the second maintenance release of SAS 9.4:
 • ANTIALIAS= specifies whether anti-aliasing is turned off for a band plot.

BARCHART:
• X= is changed to CATEGORY= in order to be consistent with the other GTL plot statements. The X= option is still valid for backward compatibility. However, you should change the X= option to CATEGORY= in your BARCHART statements.

 Note: If you specify X as a data tip role when you change X= to CATEGORY=, then you must also change X to CATEGORY in your data tip options.

• Y= is changed to RESPONSE= in order to be consistent with the other GTL plot statements. The Y= option is still valid for backward compatibility. However, you should change the Y= option to RESPONSE= in your BARCHART statements.

 Note: If you specify Y as a data tip role when you change Y= to RESPONSE=, then you must also change Y to RESPONSE in your data tip options.

• BARLABELFITPOLICY= specifies a policy for avoiding collisions among the bar labels when bar labels are displayed.
• BASELINEATTRS= specifies the appearance of the baseline.
• The baseline is now drawn by default. To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

• DATALABELFITPOLICY= specifies a policy for avoiding collisions among the bar labels when bar labels are displayed.

• STAT= now supports PROPORTION, which displays proportions in the range 0–1.

• STAT=PCT now displays percentages in the range 0–100 in order to be consistent with other GTL statements.

 Note: In prior SAS releases, the BARCHART statement STAT=PCT option displays proportional values in the range 0–1. To restore the original STAT=PCT results in SAS 9.4 and later releases, specify STAT=PROPORTION in your BARCHART statements instead.

• TIP= now supports NONE, which suppressed data tips and URLs from the plot.

• Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 • GROUPORDER= supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.
 • FILLTYPE= specifies whether the fill color is solid or is a gradient that transitions from fully opaque to fully transparent.
 • SEGMENTLABEL= specifies whether a label is displayed inside each bar segment.
 • SEGMENTLABELATTRS= specifies the text properties of the bar segment label text.
 • SEGMENTLABELFITPOLICY= specifies a policy for fitting the bar segment labels within the bar segments.
 • SEGMENTLABELFORMAT= specifies the text format used to display the bar segment labels.

• Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 • The BARCHART statement now supports a linear category axis or a time category axis.
 • COLORBYFREQ= specifies whether the bar colors are based on the frequency of the category variable.
 • COLOORMODEL= specifies a color ramp that is to be used with the COLORRESPONSE= option or the COLORBYFREQ= option.
 • COLORRESPONSE= specifies the column or range attribute variable that is used to map the bar colors.
 • COLORSTAT= specifies the statistic to use for computing the response colors.
 • DISPLAYZEROLENGTHBAR= specifies whether zero-length bars are drawn.
 • GROUP100= displays the computed response values (FREQ, SUM, or MEAN), normalized to 100%.
 • INTERVALBARWIDTH= specifies the width of the bars in an interval bar chart as a ratio of the interval width.

BARCHARTParm:
• X= is changed to CATEGORY= in order to be consistent with the other GTL plot statements. The X= option is still valid for backward compatibility. However, you should change the X= option to CATEGORY= in your BARCHARTPARM statements.

• Y= is changed to RESPONSE= in order to be consistent with the other GTL plot statements. The Y= option is still valid for backward compatibility. However, you should change the Y= option to RESPONSE= in your BARCHARTPARM statements.

• BASELINEATTRS= specifies the appearance of the baseline.
 The baseline is now drawn by default. To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

• DATALABELFITPOLICY= specifies a policy for avoiding collisions among the bar labels when bar labels are displayed.

• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.

• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.

• ERRORBARCAPSHAPE= specifies whether the error bars have a serif cap. Starting with the second maintenance release of SAS 9.4, this option defaults to style reference GraphError:CapStyle.

• TIP= now supports NONE, which suppressed data tips and URLs from the plot.

• Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 • DATALABELTYPE= specifies whether the data labels display the RESPONSE values or the values of the column specified by the DATALABEL= option.
 • FILLTYPE= specifies whether the fill color is solid or is a gradient that transitions from fully opaque to fully transparent.
 • GROUPORDER= supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.
 • SEGMENTLABELATTRS= specifies the text properties of the bar segment label text.
 • SEGMENTLABELFITPOLICY= specifies a policy for fitting the bar segment labels within the bar segments.
 • SEGMENTLABELFORMAT= specifies the text format used to display the bar segment labels.
 • SEGMENTLABELTYPE= specifies whether a label is displayed inside each bar segment.

• Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 • The BARCHARTPARM statement now supports a linear category axis or a time category axis.
 • COLORMODEL= specifies a color ramp that is to be used with the COLORRESPONSE= option.
 • COLORRESPONSE= specifies the column or range attribute variable that is used to map the bar colors.
• DISPLAYZEROLENGTHBAR= specifies whether zero-length bars are drawn.
• GROUP100= displays the computed values normalized to 100%.
• INTERVALBARWIDTH= specifies the width of the bars as a ratio of the interval width.

BLOCKPLOT:
• BLOCKLABEL= specifies alternative text to display for the internal block text values.
• VALUEFITPOLICY= now supports the SPLIT, SPLITALWAYS, and NONE policies.
• VALUESPLITCHAR= specifies one or more characters on which the values can be split if needed.
• VALUESPLITCHARDROP= specifies whether the split characters are included in the displayed values.

BOXPLOT:
• CAPSHAPE= now supports NONE, which specifies that no shape is displayed at the ends of the box whiskers.
• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.
• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.
• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.
• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.
• DATASKIN= enhances the visual appearance of the filled boxes.
• DISPLAYSTATS= specifies the statistics that are displayed for each box.
• TIP= now supports NONE, which suppressed data tips from the plot.
• WEIGHT= specifies a column that contains a statistics calculation a priori weight for each observation of the input data object.
• Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:
 • WHISKERPERCENTILE= specifies the whisker length in percentile units.
 • DISPLAYSTATS= now displays the DATAMAX, DATAMIN, and SUMWGT statistics.
 • LEGENDLABEL= now defaults to the Y= column label or name.
• Starting with the second maintenance release of SAS 9.4, the GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.
• Starting with the third maintenance release of SAS 9.4, when DISPLAY= includes MEAN, the BOXPLOT statement contributes its mean markers to a discrete legend when TYPE=MARKER is specified in the DISCRETELEGEND statement.

BOXPLOTTPARM:
• CAPSHAPE= now supports NONE, which specifies that no shape is displayed at the ends of the box whiskers.

• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.

• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.

• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.

• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.

• DATASKIN= enhances the visual appearance of the filled boxes.

• TIP= now supports NONE, which suppresses data tips from the plot.

Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:

• DISPLAYSTATS= now displays the DATAMAX, DATAMIN, and SUMWGT statistics.

• LEGENDLABEL= now defaults to the Y= column label or name.

• URL= specifies an HTML page that is displayed when a box or an outlier marker is selected.

Starting with the second maintenance release of SAS 9.4, the GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.

Starting with the third maintenance release of SAS 9.4, when DISPLAY= includes MEAN, the BOXPLOTPARM statement contributes its mean markers to a discrete legend when TYPE=MARKER is specified in the DISCRETELEGEND statement.

BUBBLEPLOT:

• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.

• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.

• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.

• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.

• TIP= now supports NONE, which suppresses data tips and URLs from the plot.

Starting with the third maintenance release of SAS 9.4, DRAWORDER= specifies whether the bubbles are drawn according to bubble size or according to data order.

CONTOURPLOTPARM:

• LEVELS= specifies a list of contour level values.

DENDROGRAM:

• TIP= now supports NONE, which suppresses data tips and URLs from the plot.

DENSITYPLOT:
• CURVELABELSPLIT= specifies whether to split the curve label at the specified split characters.
• CURVELABELSPLITCHAR= specifies one or more characters on which the curve label can be split if needed.
• CURVELABELSPLITCHARDROP= specifies whether the split characters are included in the curve label text.
• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are inside the curve label block.
• WEIGHT= specifies a column that contains a density-curve calculation a priori weight for each observation of the input data object.

The KERNEL() distribution option WEIGHT= is changed to WEIGHTFUNCTION=. This change enables the addition of the WEIGHT= option in the DENSITYPLOT statement.

Note: The WEIGHT= option is not valid in the KERNEL() distribution option in SAS 9.4. If you used the WEIGHT= option in the KERNEL() distribution option in prior SAS releases, then you must change it to WEIGHTFUNCTION= in SAS 9.4 and later releases.

• Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 • GROUP= creates a separate density curve for each unique group value of the specified column.
 • INCLUDEMISSINGGROUP= specifies whether missing values of the group variable are included in the plot.

DROPLINE:
• DATASKIN= enhances the appearance of the drop line.

Starting with the first maintenance release of SAS 9.4, DROPTO= now supports BOTH, which draws one or more drop lines to both the X and Y axes.

ELLIPSE:
Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
• GROUP= creates a separate ellipse for each unique group value of the specified column.
• INCLUDEMISSINGGROUP= specifies whether missing values of the group variable are included in the plot.

FRINGE PLOT:
• GROUP= creates a distinct set of lines for each unique group value in the specified column.
• INCLUDEMISSINGGROUP= specifies whether missing values in the group column are included in the plot.
• INDEX= specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.
• TIP= now supports NONE, which suppresses data tips from the plot.

HEATMAP PARM:
• URL= specifies an HTML page to display when a rectangle is selected.
• TIP= now supports NONE, which suppresses data tips from the plot.

• Starting with the second maintenance release of SAS 9.4, the INCLUDEMISSINGCOLOR= option specifies whether missing values of the color-group variable or the color-response variable are included in the plot.

• Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 • DISCRETEX= specifies whether the X axis is discrete when X= specifies a numeric column.
 • DISCRETEY= specifies whether the Y axis is discrete when Y= specifies a numeric column.

HIGHLOWPLOT:
• CLIPCAP= specifies whether a special clip cap is displayed to indicate where clipping occurred.
• CLIPCAPSHAPE= specifies the shape of the arrowhead on the clipped end of a line.
• DATASKIN= enhances the visual appearance of the high-low chart filled bars or lines.
• ENDCAPDISPLAYPOLICY= specifies the policy for displaying end caps when end caps are present.
• TIP= now supports NONE, which suppresses data tips from the plot.

• Starting with the second maintenance release of SAS 9.4, the GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.

• Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 • COLORMODEL= specifies a color ramp that is used with the COLORRESPONSE= option.
 • COLORRESPONSE= specifies the column or range attribute variable that is used to map the bar or line colors.

HISTOGRAM:
• DATALABELTYPE= specifies the statistic to display at the end of each bar.
• DATASKIN= enhances the visual appearance of the filled bars.
• WEIGHT= specifies a column that contains a bin-width calculation a priori weight for each observation of the input data object.

• Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:
 • The number of bins is limited to approximately 10,000. When the limit is exceeded, SAS automatically adjusts the NBINS= or BINWIDTH= value to set the number of bins to about 10,000.
 • DISPLAY= now supports FILLPATTERN.
• FILLPATTERNATTRS= specifies the appearance of the pattern-filled bar area.

• Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:
 • FILLTYPE= specifies whether the fill color is solid or is a gradient that transitions from fully opaque to fully transparent.
GROUP= creates a separate bar segment or bar for each unique group value of
the specified column.

INCLUDEMISSINGGROUP= specifies whether missing values of the group
variable are included in the plot.

The OUTLINEATTRS= option defaults are now consistent with that of
BARCHART.

HISTOGRAMPARM:

• DATALABELFITPOLICY= specifies a policy for avoiding collisions among the bin
labels when bin labels are displayed.

• DATALABELSPLITCHAR= specifies one or more characters on which the data
labels can be split if needed.

• DATALABELSPLITCHARDROP= specifies whether the split characters are
included in the data labels.

• DATASKIN= enhances the visual appearance of the filled bars.

• TIP= now supports NONE, which suppresses data tips from the plot.

Starting with the first maintenance release of SAS 9.4, the following enhancements
are valid:

• DISPLAY= now supports FILLPATTERN.

• FILLPATTERNATTRS= specifies the appearance of the pattern-filled bar area.

Starting with the second maintenance release of SAS 9.4, the FILLTYPE= option
specifies whether the fill color is solid or is a gradient that transitions from fully
opaque to fully transparent.

LINECHART:

• Starting with the second maintenance release of SAS 9.4, the GROUPORDER=
option supports REVERSEDATA, which orders the groups within a category in the
reverse group-column data order.

• Starting with the third maintenance release of SAS 9.4, the following enhancements
are valid:

• COLORMODEL= specifies a color ramp that is used with the
COLORRESPONSE= option.

• COLORRESPONSE= specifies the column or range attribute variable that is
used to map the line, marker, and fill colors.

LINEPARM:

• CURVELABELSPLIT= specifies whether to split the line label at the specified split
characters.

• CURVELABELSPLITCHAR= specifies one or more characters on which the line
label can be split if needed.

• CURVELABELSPLITCHARDROP= specifies whether the split characters are
included in the line label text.

• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are
inside the line label block.

LOESSPLOT:

• CURVELABELSPLIT= specifies whether to split the curve label at the specified
split characters.
• CURVELABELSPLITCHAR= specifies one or more characters on which the curve label can be split if needed.

• CURVELABELSPLITCHARDROP= specifies whether the split characters are included in the curve label text.

• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are inside the curve label block.

MODELBAND:

• Starting with the second maintenance release of SAS 9.4:
 • ANTIALIAS= specifies whether anti-aliasing is turned off for a model band plot.
 • A confidence band that depicts confidence limits for individual predicted values (CLI) for a weighted spline plot or regression plot is now displayed as a high-low chart instead of a band.

NEEDLEPLOT:

• BASELINEATTRS= specifies the appearance of the baseline. This option enables you to suppress the baseline by setting the line thickness to 0.

• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.

• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.

• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.

• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.

• DATASKIN= enhances the appearance of the needle plot lines.

• MARKERATTRS= now supports transparency.

• TIP= now supports NONE, which suppresses data tips and URLs from the plot.

• Starting with the second maintenance release of SAS 9.4, the GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.

PBSPLINEPLOT:

• CURVELABELSPLIT= specifies whether to split the curve label at the specified split characters.

• CURVELABELSPLITCHAR= specifies one or more characters on which the curve label can be split if needed.

• CURVELABELSPLITCHARDROP= specifies whether the split characters are included in the curve label text.

• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are inside the curve label block.

• Starting with the second maintenance release of SAS 9.4, the DEGREE= PBSPLINE regression option range is 0–10 instead of 0–174.

PIECHART:

• TIP= now supports NONE, which suppresses data tips and URLs from the plot.
• Starting with the first maintenance release of SAS 9.4, CENTERFIRSTSLICE= specifies whether the first pie slice is centered on the starting angle or starts on it.

• Starting with the third maintenance release of SAS 9.4, suboption TRANSPARENCY= in the PIECHART statement FILLATTRS= option sets the transparency of the other slice unless transparency is specified in the OTHERSLICEOPTS= option.

POLYGONPLOT:
• Starting with the second maintenance release of SAS 9.4:
 • ANTIALIAS= specifies whether anti-aliasing is turned off for a polygon plot.
 • BACKLIGHT= specifies a back-light effect for the polygon label text.

REFERENCELINE:
• CURVELABELSPLIT= specifies whether to split the reference line label at the specified split characters.
• CURVELABELSPLITCHAR= specifies one or more characters on which the reference line label can be split if needed.
• CURVELABELSPLITCHARDROP= specifies whether the split characters are included in the reference line label text.
• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are inside the reference line label block.
• DATASKIN= enhances the visual appearance of the reference line.

REGRESSIONPLOT:
• CURVELABELSPLIT= specifies whether to split the regression line label at the specified split characters.
• CURVELABELSPLITCHAR= specifies one or more characters on which the regression line label can be split if needed.
• CURVELABELSPLITCHARDROP= specifies whether the split characters are included in the regression line label text.
• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are inside the regression line label block.
• Starting with the second maintenance release of SAS 9.4, the DEGREE= regression option range is 1–10 instead of 0–174.

SCATTERPLOT:
• CLUSTERAXIS= specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.
• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.
• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.
• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.
• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.
• ERRORBARCAPSHAPE= specifies whether the error bars have a serif cap. Starting with the second maintenance release of SAS 9.4, this option defaults to style reference GraphError:CapStyle.

• FILLEDOUTLINEDMARKERS= specifies whether markers are drawn with both fills and outlines.

• JITTER= specifies whether to jitter data markers.

• JITTEROPTS= specifies options for managing jittering.

• LABELSTRIP= specifies whether leading and trailing blanks are stripped from marker characters or fixed-position data labels before they are displayed in the plot.

• MARKERATTRS= now supports transparency.

• MARKERCHARACTERPOSITION= specifies the justification of the marker characters.

• MARKERFILLATTRS= specifies the appearance of the filled markers.

• MARKEROUTLINEATTRS= specifies the appearance of the marker outlines.

• TIP= now supports NONE, which suppresses data tips and URLs from the plot.

• Starting with the first maintenance release of SAS 9.4, OUTLINEDMARKERCHARACTERS= specifies whether backlighting or a drop shadow is applied to the characters that are used as marker symbols in order to enhance their appearance in the graph.

• Starting with the second maintenance release of SAS 9.4:
 • CONTRIBUTEOFFSETS= specifies whether the plot's space requirements contribute to the calculation of the axis offsets.
 • The GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.
 • The following options are replaced and considered deprecated:
 • MARKERCOLORGRADIENT= is replaced with COLORRESPONSE=.
 • MARKERSIZERESPONSE= is replaced with SIZERESPONSE=.
 • MARKERSIZEMAX= is replaced with SIZEMAX=.
 • MARKERSIZEMIN= is replaced with SIZEMIN=.
 The new options are functionally the same as the deprecated options and are more consistent with the other plot statements. The deprecated options are still honored, but the new options are the preferred options.
 • The OUTLINEDMARKERCHARACTERS= option is deprecated. It is still honored, but the TEXTPLOT statement is now the preferred method for creating scatter plots using text markers.
 • Starting with the third maintenance release of SAS 9.4, SUBPIXEL= specifies whether subpixel rendering is used for image output when the scatter plot is rendered.

SCATTERPLOTMATRIX:

• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.

• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.
• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.
• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.
• DATASKIN= enhances the visual appearance of the plot markers.
• ELLIPSE= now supports the CLIP= option, which specifies whether clipped confidence ellipses are included in the plot.
• LABELSTRIP= specifies whether leading and trailing blanks are stripped from marker characters or fixed-position data labels before they are displayed in the plot.
• MARKERATTRS= now supports transparency.
• MARKERCHARACTERPOSITION= specifies the justification of the marker characters.
• MATRIXYPE= specifies whether to display the full matrix, or just the upper or lower triangle of the matrix.
• TIP= now supports NONE, which suppresses data tips from the plot.

Starting with the second maintenance release of SAS 9.4, the MARKERCOLORGRADIENT= option is replaced with the COLORRESPONSE= option and is considered deprecated. The new option is more consistent with the other plot statements. The MARKERCOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is the preferred option.

Starting with the third maintenance release of SAS 9.4, SUBPIXEL= specifies whether subpixel rendering is used for image output when the scatter plots are rendered.

SERIESPLOT:
• CLUSTERAXIS= specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.
• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.
• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.
• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.
• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.
• CURVELABELSPLIT= specifies whether to split the series line label at the specified split characters.
• CURVELABELSPLITCHAR= specifies one or more characters on which the series line label can be split if needed.
• CURVELABELSPLITCHARDROP= specifies whether the split characters are included in the series line label text.
• CURVELABELSPLITJUSTIFY= specifies the justification of the strings that are inside the series line label block.
• DATASKIN= enhances the visual appearance of the series plot lines.
• FILLEDOUTLINEDMARKERS= specifies whether markers are drawn with both fills and outlines.
• MARKERATTRS= now supports transparency.
• MARKERFILLATTRS= specifies the appearance of the filled markers.
• MARKEROUTLINEATTRS= specifies the appearance of the marker outlines.
• TIP= now supports NONE, which suppresses data tips and URLs from the plot.

Starting with the second maintenance release of SAS 9.4, the following enhancements are valid:

• The GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.
• LINECOLORGROUP= specifies a column that determines the line colors for a grouped plot independently of the GROUP= column.
• LINEPATTERNGROUP= specifies a column that determines the line patterns for a grouped plot independently of the GROUP= column.
• MARKERCOLORGROUP= specifies a column that determines the marker colors for a grouped plot independently of the GROUP= column.
• MARKERSYMBOLGROUP= specifies a column that determines the marker symbols for a grouped plot independently of the GROUP= column.

Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:

• ARROWHEADPOSITION= specifies a position for arrowheads.
• ARROWHEADSCALE= specifies an arrowhead scale factor based on the thickness of the arrow line.
• ARROWHEADSHAPE= specifies a shape for arrowheads.
• COLORMODEL= specifies a color ramp that is to be used with the COLORRESPONSE= option.
• COLORRESPONSE= specifies the column or range attribute variable that is used to map the line and marker colors.
• LINETHICKNESSMAX= specifies the maximum line thickness when a response variable is used to determine the line thickness.
• LINETHICKNESSMAXRESPONSE= specifies the response value that corresponds to the maximum line thickness.
• LINETHICKNESSMIN= specifies the minimum line thickness when a response variable is used to determine the line thickness.
• LINETHICKNESSRESPONSE= specifies a response column or range attribute variable that is used to map a line thickness to each group value.
• SPLINEPOINTS= specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.
• SPLINETYPE= specifies the type of spline interpolation that is used to draw the series line.
• The LINECOLORGROUP=, LINEPATTERNGROUP=, MARKERCOLORGROUP=, and MARKERSYMBOLGROUP= options now support a discrete attribute map variable.

STEPPLOT:

• CLUSTERAXIS= specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.
- `DATALABELSPLIT=` specifies whether to split the data labels at specified split characters.
- `DATALABELSPLITCHAR=` specifies one or more characters on which the data labels can be split if needed.
- `DATALABELSPLITCHARDROP=` specifies whether the split characters are included in the data labels.
- `DATALABELSPLITJUSTIFY=` specifies the justification of the strings that are inside the data label blocks.
- `DATASKIN=` enhances the appearance of the step plot lines.
- `ERRORBARCAPSHAPE=` specifies whether the error bars have a serif cap. Starting with the second maintenance release of SAS 9.4, this option defaults to style reference `GraphError:CapStyle`.
- `CURVELABELSPLIT=` specifies whether to split the step line label at the specified split characters.
- `CURVELABELSPLITCHAR=` specifies one or more characters on which the step line label can be split if needed.
- `CURVELABELSPLITCHARDROP=` specifies whether the split characters are included in the step line label text.
- `CURVELABELSPLITJUSTIFY=` specifies the justification of the strings that are inside the step line label block.
- `FILLEDOUTLINEDMARKERS=` specifies whether markers are drawn with both fills and outlines.
- `MARKERATTRS=` now supports transparency.
- `MARKERFILLATTRS=` specifies the appearance of the filled markers.
- `MARKEROUTLINEATTRS=` specifies the appearance of the marker outlines.
- `TIP=` now supports NONE, which suppresses data tips and URLs from the plot.
- Starting with the second maintenance release of SAS 9.4, the `GROUPORDER=` option supports REVERSEDATA, which orders the groups within a category in the reverse group-column data order.
- Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
 - `ARROWHEADPOSITION=` specifies a position for arrowheads.
 - `ARROWHEADSCALE=` specifies an arrowhead scale factor based on the thickness of the arrow line.
 - `ARROWHEADSHAPE=` specifies a shape for arrowheads.
 - `LINETHICKNESSMAX=` specifies the maximum line thickness when a response variable is used to determine the line thickness.
 - `LINETHICKNESSMAXRESPONSE=` specifies the response value that corresponds to the maximum line thickness.
 - `LINETHICKNESSMIN=` specifies the minimum line thickness when a response variable is used to determine the line thickness.
 - `LINETHICKNESSRESPONSE=` specifies a response column or range attribute variable that is used to map a line thickness to each group value.

SURFACEPLOTPARM:
• Starting with the second maintenance release of SAS 9.4, the SURFACECOLORGRADIENT= option is replaced with the COLORRESPONSE= option and is considered deprecated. The new option is more consistent with the other plot statements. The SURFACECOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is the preferred option.

TEXTPLOT:

Starting with the third maintenance release of SAS 9.4, the following experimental options are available:

• OUTFILE= specifies a file for storing information about the text bounding-box for each text value in the column specified in the OUTID= option.

• OUTID= specifies a column that contains text values to write to the file specified in the OUTFILE= option.

VECTORPLOT:

• DATALABELSPLIT= specifies whether to split the data labels at specified split characters.

• DATALABELSPLITCHAR= specifies one or more characters on which the data labels can be split if needed.

• DATALABELSPLITCHARDROP= specifies whether the split characters are included in the data labels.

• DATALABELSPLITJUSTIFY= specifies the justification of the strings that are inside the data label blocks.

• DATASKIN= enhances the appearance of the vector plot lines.

• TIP= now supports NONE, which suppresses data tips from the plot.

Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:

• COLORMODEL= specifies a color ramp that is used with the COLORRESPONSE= option.

• COLORRESPONSE= specifies the column or range attribute variable that is used to map the line colors.

• LINETHICKNESSMAX= specifies the maximum line thickness when a response variable is used to determine the line thickness.

• LINETHICKNESSMAXRESPONSE= specifies the response value that corresponds to the maximum line thickness.

• LINETHICKNESSMIN= specifies the minimum line thickness when a response variable is used to determine the line thickness.

• LINETHICKNESSRESPONSE= specifies a response column or range attribute variable that is used to map a line thickness to each group value.

WATERFALLCHART:

• BARLABELFITPOLICY= specifies a policy for avoiding collisions among the bar labels when bar labels are displayed.

• BASELINEATTRS= specifies the appearance of the baseline. This option enables you to suppress the baseline by setting the line thickness to 0.

• TIP= now supports NONE, which suppresses data tips and URLs from the plot.
Starting with the third maintenance release of SAS 9.4, COLORSTAT= specifies the statistic to use for computing the response colors.

Text Statement Enhancements

ENTRY:
- Starting with the first maintenance release of SAS 9.4, the 512-character limit on the length of the entry text is removed.

ENTRYFOOTNOTE:
- HALIGNCENTER= specifies whether the footnote is centered automatically by the system or is always centered in the graph area.
- Starting with the first maintenance release of SAS 9.4, the 512-character limit on the length of the footnote text is removed.

ENTRYTITLE:
- HALIGNCENTER= specifies whether the title is centered automatically by the system or is always centered in the graph area.
- Starting with the first maintenance release of SAS 9.4, the 512-character limit on the length of the title text is removed.

Draw Statement Enhancements

Starting with the first maintenance release of SAS 9.4, for the BEGINPOLYGON, BEGINPOLYLINE, DRAWTEXT, DRAWLINE, DRAWARROW, DRAWRECTANGLE, DRAWIMAGE, and DRAWOVAL statements, URL= specifies an HTML page that is displayed when the output of this draw statement is selected.

Axis Statement Enhancements

LAYOUT OVERLAY:
- LABELFITPOLICY= specifies a policy for fitting axis labels in the available space.
- LABELPOSITION= specifies the position of the axis label.
- LABELSPLITCHAR= specifies one or more characters on which the axis labels can be split if needed.
- LABELSPLITCHARDROP= specifies whether the split characters are included in the axis labels.
- LABELSPLITJUSTIFY= specifies the justification of the strings that are inside the axis label blocks.
- TICKVALUEHALIGN= specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.
- TICKVALUEVALIGN= specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.
- Starting with the third maintenance release of SAS 9.4, LINEEXTENT= specifies the extent of the axis line.
- DISCRETEOPTS= supports the following new features for discrete axes:
• TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.

• TICKVALUEFITPOLICY= supports new fit policies: ROTATE, ROTATEALWAYS, ROTATEWAYSDROP, SPLIT, SPLITWAYSTHIN, SPLITTHIN, and SPLITROTATE.

• TICKVALUELIST= specifies the list of tick values that are displayed on the axis.

• TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.

• TICKVALUESPLITCHAR= specifies a list of characters on which the tick values can be split if needed.

• TICKVALUESPLITJUSTIFY= specifies justification of the strings that are inside the tick value block.

• TICKVALUESPLITCHARDROP= specifies whether the split characters are included in the displayed tick values.

• Starting with the third maintenance release of SAS 9.4, TICKVALUEFORMAT= specifies how to format the values for major tick marks.

• LINEAROPTS= supports the following new features for linear axes:
 • MINORGRID= specifies whether grid lines are displayed at the minor tick values.
 • MINORGRIDATTRS= specifies the attributes of the minor grid lines.
 • MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.
 • MINORTICKS= specifies whether the minor tick marks are displayed on the axis.
 • TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.
 • TICKVALUEFITPOLICY= now supports policies NONE and ROTATEALWAYS.
 • TICKVALUEFORMAT= now supports EXTRACTSCALETYPE=, which enables you to specify the type of scale that you want to extract.
 • TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.

• Starting with the first maintenance release of SAS 9.4, INCLUDERANGES= specifies the ranges for a broken axis.

• Starting with the second maintenance release of SAS 9.4:
 • The MINORGRID= option defaults to style reference GraphMinorGridLines:DisplayOpts.
 • The MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.
 • The MINORTICKCOUNT= option for linear axes defaults to one minor tick and two intervals.

• LOGOPTS= supports the following new features for log axes:
• MINORGRID= specifies whether grid lines are displayed at the minor tick values.
• MINORGRIDATTRS= specifies the attributes of the minor grid lines.
• MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.
• TICKVALUELIST= specifies the tick values for a log axis as a space-separated list.
• TICKVALUEPRIORITY= specifies whether the TICKVALUELIST= specification can extend the axis data range.
• VALUETYPES= specifies how the VIEWMIN=, VIEWMAX=, and TICKVALUELIST= option values are interpreted.

Starting with the second maintenance release of SAS 9.4:
• The MINORGRID= option defaults to style reference GraphMinorGridLines:DisplayOpts.
• The MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.

Starting with the third maintenance release of SAS 9.4, TICKVALUEFORMAT= specifies how to format the values for major tick marks.

TIMEOPTS= supports the following new features for time axes:
• MINORGRID= specifies whether grid lines are displayed at the minor tick values.
• MINORGRIDATTRS= specifies the attributes of the minor grid lines.
• MINORTICKINTERVAL= specifies the time interval between minor ticks.
• TICKVALUEFITPOLICY= now supports policies NONE and ROTATEALWAYS.
• TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.

Starting with the first maintenance release of SAS 9.4, INCLUDERANGES= specifies the ranges for a broken axis.

Starting with the second maintenance release of SAS 9.4:
• The MINORGRID= option defaults to style reference GraphMinorGridLines:DisplayOpts.
• The MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.

Starting with the third maintenance release of SAS 9.4, INTERVALMULTIPLIER= specifies a multiplier to apply to the time interval that is in effect for the axis.

LAYOUT OVERLAY3D:
• LINEAROPTS= supports the following new features for linear axes:
 • MINORGRID= specifies whether grid lines are displayed at the minor tick values.
 • MINORGRIDATTRS= specifies the attributes of the minor grid lines.
• MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.

• MINORTICKS= specifies whether the minor tick marks are displayed on the axis.

• TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.

• TICKVALUEFORMAT= now supports EXTRACTSCALETYPE=, which enables you to specify the type of scale that you want to extract.

• TICKVALUEPRIORITY= specifies whether the TICKVALUELIST= specification can extend the axis data range.

• Starting with the second maintenance release of SAS 9.4, the MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.

• TIMEOPTS= supports the following new features for time axes:
 • MINORGRID= specifies whether grid lines are displayed at the minor tick values.
 • MINORGRIDATTRS= specifies the attributes of the minor grid lines.
 • MINORTICKINTERVAL= specifies the time interval between minor ticks.
 • Starting with the second maintenance release of SAS 9.4, the MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.
 • Starting with the third maintenance release of SAS 9.4, INTERVALMULTIPLIER= specifies a multiplier to apply to the time interval that is in effect for the axis.

LAYOUT OVERLAYEQUATED:
• MINORGRID= specifies whether grid lines are displayed at the minor tick values.
• MINORGRIDATTRS= specifies the attributes of the minor grid lines.
• MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.
• MINORTICKS= specifies whether the minor tick marks are displayed on the axis.
• TICKVALUEFITPOLICY= now supports policies NONE and ROTATEALWAYS.
• TICKVALUEFORMAT= now supports EXTRACTSCALETYPE=, which enables you to specify the type of scale that you want to extract.
• VIEWMAX= specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).
• VIEWMIN= specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).
• Starting with the third maintenance release of SAS 9.4, LINEEXTENT= specifies the extent of the axis lines.

LAYOUT LATTICE:
• LABELFITPOLICY= specifies a policy for fitting axis labels in the available space.
• LABELPOSITION= specifies the position of the axis label.
• LABELSPLITCHAR= specifies one or more characters on which the axis labels can be split if needed.

• LABELSPLITCHARDROP= specifies whether the split characters are included in the axis labels.

• LABELSPLITJUSTIFY= specifies the justification of the strings that are inside the axis label blocks.

• TICKVALUEHALIGN= specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.

• TICKVALUEVALIGN= specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.

• DISCRETEOPTS= supports the following new features for discrete axes:
 • TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.
 • TICKVALUEFITPOLICY= supports new fit policies: ROTATE, ROTATEALWAYS, ROTATEALWAYSDROP, SPLIT, SPLITALWAYS, SPLITALWAYSTHIN, and SPLITTHIN.
 • TICKVALUELIST= specifies the list of tick values that are displayed on the axis.
 • TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.
 • TICKVALUESPLITCHAR= specifies a list of characters on which the tick values can be split if needed.
 • TICKVALUESPLITJUSTIFY= specifies justification of the strings that are inside the tick value block.
 • TICKVALUESPLITCHARDROP= specifies whether the split characters are included in the displayed tick values.
 • Starting with the third maintenance release of SAS 9.4, TICKVALUEFORMAT= specifies how to format the values for major tick marks.

• LINEAROPTS= supports the following new features for linear axes:
 • MINORGRID= specifies whether grid lines are displayed at the minor tick values.
 • MINORGRIDATTRS= specifies the attributes of the minor grid lines.
 • MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.
 • MINORTICKS= specifies whether the minor tick marks are displayed on the axis.
 • TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.
 • TICKVALUEFITPOLICY= now supports policies NONE and ROTATEALWAYS.
 • TICKVALUEFORMAT= now supports EXTRACTSCALETYPE=, which enables you to specify the type of scale that you want to extract.
 • TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.
Starting with the third maintenance release of SAS 9.4, `TICKVALUEFORMAT=` specifies how to format the values for major tick marks.

LOGOPTS= supports the following new features for log axes:
- `MINORGRID=` specifies whether grid lines are displayed at the minor tick values.
- `MINORGRIDATTRS=` specifies the attributes of the minor grid lines.
- `MINORTICKCOUNT=` specifies the number of minor ticks that are displayed on the axis.
- `TICKVALUELIST=` specifies the tick values for a log axis as a space-separated list.
- `TICKVALUEPRIORITY=` specifies whether the `TICKVALUELIST=` specification can extend the axis data range.
- `VALUETYPE=` specifies how the `VIEWMIN=`, `VIEWMAX=`, and `TICKVALUELIST=` option values are interpreted.

Starting with the third maintenance release of SAS 9.4, `TICKVALUEFORMAT=` specifies how to format the values for major tick marks.

TIMEOPTS= supports the following new features for time axes:
- `MINORGRID=` specifies whether grid lines are displayed at the minor tick values.
- `MINORGRIDATTRS=` specifies the attributes of the minor grid lines.
- `MINORTICKINTERVAL=` specifies the time interval between minor ticks.
- `TICKVALUEFITPOLICY=` now supports policies NONE and ROTATEALWAYS.
- `TICKVALUEROTATION=` specifies how the tick values are rotated on the X and X2 axes.

Starting with the third maintenance release of SAS 9.4:
- `TICKVALUEFORMAT=` specifies how to format the values for major tick marks.
- `INTERVALMULTIPLIER=` specifies a multiplier to apply to the time interval that is in effect for the axis.

LAYOUT DATALATTICE and LAYOUT DATAPANEL:
- `LABELFITPOLICY=` specifies a policy for fitting axis labels in the available space.
- `LABELPOSITION=` specifies the position of the axis label.
- `LABELSPLITCHAR=` specifies one or more characters on which the axis labels can be split if needed.
- `LABELSPLITCHARDROP=` specifies whether the split characters are included in the displayed axis labels.
- `LABELSPLITJUSTIFY=` specifies the justification of the strings that are inside the axis label blocks.
- `TICKVALUEHALIGN=` specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.
- `TICKVALUEVALIGN=` specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.
DISCRETEOPTS= supports the following new features for discrete axes:

- TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.
- TICKVALUEFITPOLICY= supports new fit policies: ROTATE, ROTATEALWAYS, ROTATEALWAYSDROP, SPLIT, SPLITALWAYS, SPLITALWAYSTHIN, and SPLITTHIN.
- TICKVALUELIST= specifies the list of tick values that are displayed on the axis.
- TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.
- TICKVALUESPLITCHAR= specifies a list of characters on which the tick values can be split if needed.
- TICKVALUESPLITJUSTIFY= specifies justification of the strings that are inside the tick value block.
- TICKVALUESPLITCHARDROP= specifies whether the split characters are included in the displayed tick values.
- Starting with the third maintenance release of SAS 9.4, TICKVALUEFORMAT= specifies how to format the values for major tick marks.

LINEAROPTS= supports the following new features for linear axes:

- MINORGRID= specifies whether grid lines are displayed at the minor tick values.
- MINORGRIDATTRS= specifies the attributes of the minor grid lines.
- MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.
- MINORTICKS= specifies whether the minor tick marks are displayed on the axis.
- TICKDISPLAYLIST= specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.
- TICKVALUEFITPOLICY= now supports policies NONE and ROTATEALWAYS.
- TICKVALUEFORMAT= now supports EXTRACTSCALETYPE=, which enables you to specify the type of scale that you want to extract.
- TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.
- Starting with the second maintenance release of SAS 9.4, the MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.

LOGOPTS= supports the following new features for log axes:

- MINORGRID= specifies whether grid lines are displayed at the minor tick values.
- MINORGRIDATTRS= specifies the attributes of the minor grid lines.
- MINORTICKCOUNT= specifies the number of minor ticks that are displayed on the axis.
• TICKVALUELIST= specifies the tick values for a log axis as a space-separated list.
• TICKVALUEPRIORITY= specifies whether the TICKVALUELIST= specification can extend the axis data range.
• VALUETYPES= specifies how the VIEWMIN=, VIEWMAX=, and TICKVALUELIST= option values are interpreted.
• Starting with the second maintenance release of SAS 9.4, the MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.
• Starting with the third maintenance release of SAS 9.4, TICKVALUEFORMAT= specifies how to format the values for major tick marks.
• TIMEOPTS= supports the following new features for time axes:
 • MINORGRID= specifies whether grid lines are displayed at the minor tick values.
 • MINORGRIDATTRS= specifies the attributes of the minor grid lines.
 • MINORTICKINTERVAL= specifies the time interval between minor ticks.
 • TICKVALUEFITPOLICY= now supports policies NONE and ROTATEALWAYS.
 • TICKVALUEROTATION= specifies how the tick values are rotated on the X and X2 axes.
 • Starting with the second maintenance release of SAS 9.4, the MINORGRIDATTRS= option defaults to style element GraphMinorGridLines in order to visually contrast the major and minor grid lines.
 • Starting with the third maintenance release of SAS 9.4, INTERVALMULTIPLIER= specifies a multiplier to apply to the time interval that is in effect for the axis.

Marker Definition Statement Enhancements

SYMBOLCHAR:
Starting with the third maintenance release of SAS 9.4, the following enhancements are valid:
• HOFFSET= and VOFFSET= now move the marker character within the marker character bounding box. The bounding box position remains centered on the data point.
• Offsets applied to the marker character with HOFFSET= and VOFFSET= are also applied to the marker character that is displayed in the legend.

Discrete Attribute Map Enhancements

The following enhancements have been made to discrete attribute maps:
VALUE statement:
• TEXTATTRS= specifies the text attributes to use when an attribute map is applied to text in a plot.
Starting with the first maintenance release of SAS 9.4, the following enhancements are valid:

- You can now specify the attribute mapping information for a discrete attribute map in a SAS data set. You now have an alternative to coding your mapping information in a DISCRETEATTRMAP block in your template. For more information, see *SAS ODS Graphics: Procedures Guide*.

- **DISCRETEATTRMAP statement**:
 - DISCRETELEGENDENTRYPOLICY= specifies whether the items that the associated plot contributes to a discrete legend are items that appear only in the data or items that are defined only in the attribute map.

- **DISCRETEATTRVAR statement**:
 - ATTRMAP= now accepts a name that is specified in the ID column in a discrete attribute map data set. This feature enables you to create a discrete attribute map variable for a discrete attribute map that is defined in a SAS data set. To resolve the attribute map name in that case, you must specify the name of the attribute map data set in the DATTRMAP= option in the SGRENDER statement that renders the graph. For information about discrete attribute map data sets and the SGRENDER statement DATTRMAP= option, see *SAS ODS Graphics: Procedures Guide*.

- **VALUE statement**:
 - FILLATTRS= now supports the TRANSPARENCY= fill option.
 - LINEATTRS= now supports the THICKNESS= line option.
 - MARKERATTRS= now supports the SIZE=, TRANSPARENCY=, and WEIGHT= marker options.

Documentation Enhancements

In the second maintenance release of SAS 9.4, *SAS Graph Template Language: User's Guide* is reorganized to make it easier to find information about how to use the Graph Template Language.
Part 1

Fundamentals

Chapter 1

Overview ... 3
Chapter 1
Overview

Graph Template Language (GTL) ... 3
GTL and the Output Delivery System (ODS) 3
A Quick Example .. 4
Template Compilation ... 5
Run-Time Actions ... 6

Basic Anatomy of an ODS Graph ... 7
Graphical Layouts ... 8
Plots .. 10
Aaxes .. 10
Legends .. 11
Flexible Templates ... 12
Expressions and Functions .. 12
Dynamics and Macro Variables ... 13
Conditional Logic ... 14

Output .. 15
ODS GRAPHICS Statement .. 15
ODS Styles .. 16

About the Examples in This Documentation 17
Examples and Resources on the Web 18

Graph Template Language (GTL)

GTL and the Output Delivery System (ODS)

The SAS Graph Template Language (GTL) is an extension to the Output Delivery System (ODS) that enables you to create sophisticated graphics. For example, using the GTL, you can generate Model-Fit plots, Distribution Plots, Comparative plots, Prediction Plots, and more.

The graphics produced by the GTL are generated by template definitions that control the graph format and appearance and specify the variable roles to represent in the graph display. The graph can then be rendered by associating the templates with a data source.
• The GTL templates are defined with PROC TEMPLATE. The GTL includes conditional statements that can be used to determine what graph features are rendered. It also includes layout statements that specify the arrangement of graph features, plot statements that request specific plot types (such as histograms and scatter plots), and text and legend statements that specify titles, footnotes, legends, and other text-based graph elements.

• The GTL templates are rendered using the SGRENDER procedure, which specifies a data source that contains appropriate data values and the template to use for rendering the graph.

• You can also modify predefined GTL templates that the SAS System delivers for use on the SAS statistical procedures. For information about modifying existing templates, refer to SAS/STAT user’s guide.

This manual provides a complete reference to the Graph Template Language. For detailed usage information, consult the SAS/STAT user’s guide.

Note: If you are also a SAS/GRAPH user, then you might want to consult the SAS Graph Template Language: User's Guide to learn about some of the distinctions between ODS Graphics and SAS/GRAPH.

A Quick Example

The data set Sashelp.Class is delivered with the SAS System. It includes data columns named Height and Weight, which store height and weight measures for a small sample of subjects. The Graph Template Language can be used to generate a histogram that shows the distribution of weight recorded in that data set:

The following SAS program produces the graph:

```sas
proc template;
define statgraph histogram;
begingraph;
layout overlay;
```
• The DEFINE STATGRAPH statement on PROC TEMPLATE opens a definition block for defining a graphics template named HISTOGRAM. The HISTOGRAM template is stored in the template folder (also called the “template store,” by default located in Sasuser.Templat).

• The template definition for HISTOGRAM specifies two GTL statements within a BEGINGRAPH/ENDGRAPH block: LAYOUT OVERLAY and HISTOGRAM.

• The LAYOUT OVERLAY statement is one of the most fundamental layout statements. It can overlay the results of one or more plot statements, each of which shares the same plot area, axes, and legends. The layout in this example specifies only a single element: a HISTOGRAM with bars showing the distribution of observations of the data column named Weight.

• The ENDLAYOUT statement ends the layout block, the ENDGRAPH statement ends the graph definition, and the END statement ends the template definition.

• The ODS GRAPHICS statement uses the WIDTH= option to set a width for the output graph. Because the HEIGHT= option is not specified, GTL manages the graph’s aspect ratio and set an appropriate height.

• The DATA= option on PROC SGRENDER specifies Sashelp.Class as the data source for the graph. TEMPLATE= specifies HISTOGRAM as the template definition to use for rendering the graph.

Template Compilation

A GTL template describes the structure and appearance of a graph to be produced, similar to how a TABLE template describes the organization and content of a table.

All templates are stored, compiled programs. The following source program produces a simple GTL template named SCATTER:

```
proc template;
  define statgraph scatter;
  begingraph;
    layout overlay;
      scatterplot x=height y=weight;
    endlayout;
  endgraph;
end;
run;
```

When this code is submitted, the statement keywords and options are parsed, just as with any other procedure. If no syntax error is detected, then an output template named SCATTER is created and stored in the default template folder Sasuser.Templat. No graph is produced. Note the following:
• Any required arguments in the template must be specified. In this example, X= and Y= in the SCATTERPLOT statement must specify variables for the analysis, but no checking for the existence of these variables is done at compile time. (Unlike other SAS procedures, PROC TEMPLATE does not perform a compile and then run sequence, which includes variable validation.)

• No reference to an input data set appears in the template.

Run-Time Actions

To produce a graph, a GTL template must be bound to a data source using the SGRENDER procedure. The following example uses SGRENDER to bind the SCATTER template to the SAS data set Sashelp.Class, which is delivered with the SAS system:

```sas
proc sgrender data=sashelp.class
   template=scatter;
run;
```

Generally, an ODS data object is constructed by comparing the template references to column names with columns that exist in the current data set. In the current example, Sashelp.Class contains columns named Height and Weight. Because these column names match the columns that are named in template SCATTER, columns Height and Weight are added to the data object. The other columns in Sashelp.Class are ignored. (It is possible for a template to define new computed columns based on existing columns.)

After all the observations have been read, the data object and template definition are passed to a graph renderer, which produces the graph image. The image is then automatically integrated into the ODS destination. The visual properties of the graph are determined by the ODS style that is in effect.

Note: Template SCATTER is a restrictive definition: it can create a plot only with columns named Height and Weight. A GTL template can be made more flexible by introducing dynamics or macro variables that supply variables and other information at run time. For more information, see “Flexible Templates” on page 12.
Basic Anatomy of an ODS Graph

The GTL is flexible and able to produce many different types of graphs with varying layout features. The following figure shows the basic anatomy of an ODS graph:

Graph
the output produced from all of the statements that are nested in a BEGINGRAPH statement block. The graph comprises all of the graphics elements in the template definition.

Title Area
area for one or more titles. This area is always displayed above all cells in the graph.

Footnote Area
area for one or more footnotes. This area is always displayed below all cells in the graph.

Cell
refers collectively to the area containing the plot areas. In this diagram, there are two cells, each of which contains two axes for the plot area. A cell can also contain descriptive text and legends. Graphs are often described as single-cell or multi-cell.

Plot Area
the display area for plot-statement results. This area is bounded by the axes (when present) and can also contain data labels and other text that annotates the graph.

Axis
refers collectively to the axis line, the major and minor tick marks, the major tick values, and the axis label.
Plots
refers collectively to all plot statements that can be overlaid in the plot area. This includes graphical items such as fit lines, scatter plots, reference lines, and many others.

Legend
refers collectively to one or more legend entries, each made up of a graphical value and a text label. The legend can also have a title and border. Legends can also display a color ramp corresponding to a continuous response range.

Graphical Layouts

One of most powerful features of the GTL is the syntax built around hierarchical statement blocks called “layouts.” The outermost layout block determines

• The overall organization of the graph—whether it uses a single-cell or a multi-cell display.

• What statements are allowed in the block. Generally, layout blocks can contain plots, lines of text, a legend, or even another layout.

• How the contained statements interact.

<table>
<thead>
<tr>
<th>Table 1.1 Outermost Layouts in GTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
</tr>
<tr>
<td>OVERLAY</td>
</tr>
<tr>
<td>OVERLAY3D</td>
</tr>
<tr>
<td>OVERLAYEQUATED</td>
</tr>
<tr>
<td>REGION</td>
</tr>
<tr>
<td>GRIDDED</td>
</tr>
<tr>
<td>LATTICE</td>
</tr>
<tr>
<td>DATALATTICE</td>
</tr>
<tr>
<td>DATAPANEL</td>
</tr>
<tr>
<td>GLOBALLEGEND</td>
</tr>
</tbody>
</table>

For example, the following graph is a two-cell graph produced using the LAYOUT LATTICE statement as the outermost template in the layout.
The LAYOUT LATTICE statement is typically used to create a multi-cell layout of plots that are aligned across columns and rows. In the following template, which produced the graph, plot statements are specified within nested LAYOUT OVERLAY statements. Thus, the LATTICE automatically aligns the plot areas and tick display areas in the plots. The LATTICE layout is a good layout to choose when you want to compare the results of related plots.

```
proc template;
  define statgraph lattice;
  begingraph;
    entrytitle "Car Performance Profile";
    layout lattice / border=true pad=10 opaque=true
      rows=1 columns=2 columngutter=3;
    layout overlay;
      scatterplot x=horsepower y=mpg_city /
        group=origin name="cars";
      regressionPlot x=horsepower y=mpg_city / degree=2;
    endlayout;
    layout overlay;
      scatterplot x=weight y=mpg_city / group=origin;
      regressionPlot x=weight y=mpg_city / degree=2;
    endlayout;
  sidebar;
    discretelegend "cars";
  endsidebar;
  endlayout;
  endgraph;
end;
run;
```

For detailed information about each layout, see the chapter for that layout type.
Plots

The plots in the GTL are classified in different ways, depending on the context of the discussion. Within layout blocks, plots are often classified according to graphical dimension: whether they are projected in two or three visual dimensions. Thus, plots in the GTL are often referred to as 2-D or 3-D plots, based on their graphical dimensions, not their data dimensions.

Relative to their input data, plots are classified according to the statements that calculate summary statistics from raw input data, and those that use calculated statistics as input parameters on the plot statement. Thus, many GTL plot statements have two versions: BARCHART and BARCHARTPARM, HISTOGRAM and HISTOGRAMPARM, and so on. The main distinction between such plots is the nature of the input data that they accept:

- The “non-parm” version (for example, BARCHART) computes its values from raw, unsummarized data. For example, a BARCHART computes the summary values it needs for the bars in the chart. Such plots are often referred to as “computed plots.”

- The “parm” version (for example, BARCHARTPARM) does not summarize or compute values from the input data but instead simply renders the input data it is given. Thus, the input data must be pre-summarized, perhaps by a SAS procedure. The “parm” version of plots, often referred to as “parameterized plots,” produce the same result as the non-parm version. However, they do not perform the calculations or data summarizations needed to achieve the result.

Chapter 5, “Key Concepts for Using Plots,” on page 175 discusses general concepts that apply across plot types. For detailed information about a particular plot, see the chapter for that plot.

Axes

The GTL uses various criteria to determine the displayed axis features for a graph. Generally, axis features are based on the layout type, the order of plot statements in the layout and the options specified on those statements, the use of “primary” and “secondary” axes on the plots (when secondary axes are supported), the plot type, the column(s) of data that contribute to defining the axis range, and the data formats for the contributing data columns.

Depending on the layout type, 2-D plots can have up to four independent axes that can be displayed: X, Y, X2, and Y2. The X and Y axes are considered the primary axes, and the X2 and Y2 axes are considered the secondary axes. By default, the X2 and Y2 axes are not displayed. When requested, the secondary axes can be displayed as copies of the primary axes, or data can be mapped separately to them. The following figure identifies the X, Y, X2, and Y2 axes.
All 3-D plots display the standard X, Y, and Z axes.

For more information about axis features in GTL, see Chapter 7, “Axis Features in Layouts,” on page 875.

Legends

Many plot statements support a GROUP= option that partitions the data into unique values, performs separate analysis, if necessary, and automatically assigns distinct visual properties to each group value. The visual properties of group values are defined by the style in effect.

Legends are not automatically displayed for plots with group values. Rather, an appropriate legend statement must be added to the template to generate the desired legend. In the following example, a legend is added to display markers and line patterns that show the association between the group values from a scatter plot and corresponding linear regression lines. The example shows the mechanism that GTL uses to associate a legend with its corresponding plot(s): a name is assigned to each plot that must be represented in the legend, and these names are then used as arguments for the legend statement (in this case, MERGEDLEGEND).

```
proc template;
  define statgraph scatterfit;
  begingraph;
```
Flexible Templates

Several features in the GTL can make template definitions less restrictive on input data and more general in nature. These features enable a single compiled template to produce many output variations.

Expressions and Functions

In the GTL, expressions can be used to compute constants and data columns. The expressions must be enclosed in an EVAL construct. Within the expression, you can use DATA step functions, arithmetic operators, and other special functions supported by the GTL.

Expressions are also useful in text statements like ENTRY and ENTRYTITLE. Both of these statements support rich text and have special text commands such as {SUP}, {SUB}, and {UNICODE}, which enable subscripting, superscripting, and Unicode characters.

The following template shows how the ± symbol is included in the title line using its hexadecimal Unicode value. Also, new data columns are computed for the upper and lower error bars of the scatter plot, based on the input columns MeanWeight and STDERR.

```sas
proc template;
  define statgraph expression;
  begingraph;
  entrytitle "Errorbars show " {unicode "00B1"x} "2 SE";
```
Dynamics and Macro Variables

An extremely useful technique for generalizing templates is to define dynamics, macro variables, or both. The dynamics and macro variables resolve when the template is executed. The following PROC TEMPLATE statements can be used in a DEFINE STATGRAPH block:

<table>
<thead>
<tr>
<th>Template Statement</th>
<th>Purpose</th>
<th>Value supplied by...</th>
</tr>
</thead>
</table>
| DYNAMIC | defines one or more dynamic variables | either of the following:
| | | • DYNAMIC= suboption of ODS= option of FILE PRINT
| | | • DYNAMIC statement of PROC SGRENDER |
| MVAR | defines one or more macro variables | %LET or CALL SYMPUT() |
| NMVAR | defines one or more macro variables that resolve to a number or numbers | %LET or CALL SYMPUT() |
| NOTES | provides information about the graph definition | user-supplied text |

The following example defines a template named DYNAMICS that can create a histogram and density plot for any variable. It defines both macro variables and dynamics for run-time substitution. No data-dependent information is hard coded in the template.

Note: You can initialize macro variables with %LET statements and dynamics with SGRENDER’s DYNAMIC statement.

```sas
proc template;
define statgraph dynamics;
mvar SYSDATE9 SCALE;
mnvar BINS;
dynamic VAR VARLABEL;
begingraph;
  entrytitle "Histogram of " VAR;
```
Conditional Logic

Using conditional logic, you can create templates that have multiple visual results or output representations, depending on existing conditions. The evaluation of a logical expression must generate one or more complete statements (not portions of statements). All conditional logic uses one of the following constructs:

```
if (condition)
  statement(s);
endif;
```

```
if (condition)
  statement(s);
else
  statement(s);
endif;
```

In the IF statement, `condition` must be enclosed in parentheses. The condition can be any standard SAS expression involving arithmetic, logical operators, comparison operators, Boolean operators, or concatenation operators. The expression can also use SAS DATA step functions. The expression resolves to a single numeric value, which is `true` or `false`.

For more information about using dynamics and macro variables, see Chapter 20, “Dynamics and Macro Variables,” on page 1313.
In the following example, a histogram is conditionally overlaid with a normal distribution curve, a Kernel Density Estimate distribution curve, both, or neither:

```sas
proc template;
    define statgraph conditional;
        dynamic VAR VARLABEL BINS CURVE;
    begingraph;
        entrytitle "Histogram of " VAR;
        layout overlay / xaxisopts=(label=VARLABEL);
            histogram VAR / nbins=BINS;
            if (upcase(CURVE) in ("ALL" "KERNEL"))
                densityplot VAR / kernel() name="k"
                    legendlabel="Kernel"
                    lineattrs=(pattern=dash);
            endif;
            if (upcase(CURVE) in ("ALL" "NORMAL"))
                densityplot VAR / normal() name="n"
                    legendlabel="Normal";
            endif;
        discretelegend "n" "k";
    endlayout;
    endgraph;
end;
run;
```

Note that the legend syntax does not have to be made conditional. At run time, each plot name in the legend is checked. If the plot does not exist, then its name is removed from the legend name list. If no names appear in the DISCRETELEGEND statement, then the legend “drops out” and the histogram size is adjusted to fill the remaining space.

For more information about using conditional logic, see Chapter 23, “Conditional Logic,” on page 1333.

Output

When using the GTL, you focus primarily on defining template definitions that produce specific graphs and generate a particular output layout. Ultimately, you must also customize the graphical environment to get the exact output that you desire. The ODS GRAPHICS statement is available for customizing the graphical environment, and ODS styles enable you to manage the output appearance.

ODS GRAPHICS Statement

The ODS GRAPHICS statement is used to modify the environment in which graphics templates are executed. The ODS GRAPHICS statement is used to control

• whether ODS graphics is enabled
• the type and name of the image created
• the size of the image
• whether features such as scaling and anti-aliasing are used.
The following ODS GRAPHICS statement uses the HEIGHT= and WIDTH= options to set an aspect ratio for the output image.

```sas
ods graphics on / height=175px width=200px;
proc sgrender data=sashelp.class
   template=scatter;
run;
ods graphics off;
```

For more information about using the ODS GRAPHICS statement in GTL, see *SAS Graph Template Language: User's Guide*. For a more complete discussion of the ODS GRAPHICS statement, see “ODS GRAPHICS Statement” in *SAS ODS Graphics: Procedures Guide*.

ODS Styles

When any graphics template is executed, there is always an ODS style in effect that governs the appearance of the output. The following ODS statement sends graphics output to the RTF output destination using the LISTING style:

```sas
ods rtf style=listing;
ods graphics on / height=175px width=200px border=off;
proc sgrender data=sashelp.class
   template=scatter;
run;
ods graphics off;
ods rtf close;
```

Support for ODS styles is highly integrated into GTL syntax. By default, the graphical appearance features of most plot and text statements are mapped to corresponding style elements and associated attributes. Because of this, your output tables and graphs always have a reasonable overall appearance. Moreover, output for a given ODS destination has a consistent look (for example, table colors and graph colors do not clash).

The following figures show how a graph’s appearance can be changed by using references to style elements to set the graph’s appearance options. This technique permits changes in graph appearance by style modification instead of graphical template modification. The graphs in the figures are generated with the following GTL statement:

```sas
contourplotparm x=x y=y z=density /
   contourtype=fill nhint=9
   colormodel=ThreeColorRamp ;
```

The following style template shows the definition for the ThreeColorRamp style element:

```sas
style ThreeColorRamp /
   endcolor = GraphColors("gramp3cend")
   neutralcolor = GraphColors("gramp3cneutral")
   startcolor = GraphColors("gramp3cstart");
```
For more information about the use of ODS styles in GTL, see SAS Graph Template Language: User's Guide. For a more complete discussion of ODS styles, see SAS Output Delivery System: User's Guide.

About the Examples in This Documentation

The example programs that are shown in this document often provide all of the code that you need to generate the graphs that are shown in the figures. We encourage you to copy and paste the example code into your SAS session and generate the graphs for yourself. The examples are written to be runnable in the SAS windowing environment and in SAS Studio. Unless otherwise noted, the examples use the default ODS destination. In the SAS windowing environment, the default ODS destination is ODS HTML. For information about the default ODS output in SAS Studio, see “SAS Studio and ODS” in SAS Output Delivery System: User's Guide. For information about using SAS Studio, see SAS Studio: User's Guide.

If you generate the example graphs using an HTML destination, they are typically rendered as 640 pixel by 480 pixel images using the HTMLBlue style. Because of size limitations, the graphs in this document are not shown in their default size. They are scaled down to meet the size requirements of our documentation production system. When graphs that are produced with ODS graphics are reduced in size, several automatic processes take place to optimize the appearance of the output. Among the differences between default size graphs and smaller graphs are that the smaller graphs have scaled
down font sizes. Also, their numeric axes might display a reduced number of ticks and tick values. Thus, the graphs that you generate from the example programs will not always look identical to the graphs that are shown in the figures. However, both graphs will accurately represent the data.

When you produce your own graphical output, you can change the graph size and attributes, if needed. The *SAS Graph Template Language: User’s Guide* explains how to set fonts, DPI, anti-aliasing, and other features that contribute to producing professional-looking graphics of any size in any output format.

Examples and Resources on the Web

The SAS website contains a large number of examples that can help you visualize and code your graphs. The examples cover a range of SAS technologies including the ODS Graphics procedures.

- **Graphically Speaking** is a blog by Sanjay Matange focused on using ODS Graphics for data visualization in SAS. The blog covers topics related to the ODS Graphics procedures, the SAS Graph Template Language, and the SAS ODS Graphics Designer.

 http://blogs.sas.com/content/graphicallyspeaking/

- The Graphics Samples Output Gallery is a collection of graphs organized by SAS procedure. The graphs link to the source code in SAS Samples & Notes. The gallery is maintained by SAS Technical Support.

- The Focus Area Graphics site provides a simple interface to business and analytical graphs. The site is maintained by the SAS Data Visualization team.

- Samples & SAS Notes contains an abundance of searchable examples. You can browse by topic, search for a particular note, search for a particular technology such as *SGPLOT*, and conduct other searches.

In addition, you can share your questions, suggestions, and experiences related to graphics on the SAS/GRAFH and ODS Graphics community site. See https://communities.sas.com/community/support-communities/sas_graph_and_ods_graphics.
Part 2

Graph Block

Chapter 2

BEGINGRAPH Statement .. 21
Chapter 2

BEGINGRAPH Statement

Dictionary

BEGINGRAPH Statement

Defines the outermost container for a graph template that is defined with GTL-statements.

Requirements:
- All STATGRAPH template definitions must start with a BEGINGRAPH statement and end with an ENDDGRAPH statement.
- The BEGINGRAPH block must contain one and only one layout block.
- The layout block and its nested layouts, if any, must contain at least one plot.

Syntax

```
BEGINGRAPH <option(s)>;
  <GTL-global-statements>
  GTL-layout-block
  <GTL-global-statements>
ENDGRAPH;
```

Summary of Optional Arguments

Appearance options

- **ATTRPRIORITY= AUTO | COLOR | NONE**
 - Specifies a priority for cycling the group attributes.
- **BACKGROUNDCOLOR= style-reference | color**
 - Specifies the color of the graph background.
- **BORDER= TRUE | FALSE**
 - Specifies whether a border is drawn around the graph.
- **BORDERATTRS= style-element | style-element (line-options) | (line-options)**
 - Specifies the attributes of the border line around the graph.
- **DATACOLORS= (color-list)**
 - Specifies the color of the graph data.
specifies the list of fill colors that will replace the graph data colors from the GraphData1–GraphDataN style elements.

DATACONTRASTCOLORS=(color-list)
specifies the list of contrast colors that will replace the graph data contrast colors from the GraphData1–GraphDataN style elements.

DATALINEPATTERNS=(line-pattern-list)
specifies the list of line patterns that will replace the graph data line patterns from the GraphData1–GraphDataN style elements.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of all plots in the template that support data skins.

DATASYMBOLS=(marker-symbol-list)
specifies the list of marker symbols that will replace the graph data marker symbols from the marker symbols that are defined in the GraphData1–GraphDataN style elements.

DESIGNHEIGHT=DEFAULTDESIGNHEIGHT | dimension
specifies the design height of the graph.

DESIGNWIDTH=DEFAULTDESIGNWIDTH | dimension
specifies the design width of the graph.

DRAWSPACE= GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAVALUE
specifies a global drawing space and drawing units for all of the draw statements within this BEGINGRAPH block.

OPAQUE=TRUE | FALSE
specifies whether the graph background is opaque or transparent.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the graph border.

SUBPIXEL=AUTO | OFF | ON
specifies whether subpixel rendering is used for drawing smooth curved lines or for spacing bars more precisely.

Axis options

AXISBREAKSYMBOL=BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
specifies a symbol to use on the axis lines to indicate a break in the axis.

AXISBREAKTYPE=FULL | AXIS
specifies whether the axis break is indicated in the full display or only on the axis line.

AXISLINEEXTENT=FULL | DATA | number
specifies the extent of the axis line for all axes.

DISCRETEAXISOFFSETPAD=TRUE | FALSE
specifies whether additional padding is added to the minimum and maximum axis offsets for discrete axes.

Label options

LABELPLACEMENT=AUTO | GREEDY | SA
specifies the label-placement algorithm to use for positioning labels in the graphs.

SAPLACEMENTOPTS=(placement-options)
specifies the options for the label-placement algorithm when LABELPLACEMENT=SA.
Midpoint options

INCLUDEMISSINGDISCRETE=TRUE | FALSE
specifies whether missing values are displayed on a discrete axis.

Optional Arguments

ATTRPRIORITY=AUTO | COLOR | NONE
specifies a priority for cycling the group attributes.

AUTO
honors the current state of the attribute priority rotation pattern as specified in the active style or in the ODS GRAPHICS statement.

COLOR
changes the current setting of attribute priority rotation pattern to the color-priority pattern by cycling through the list of colors while holding the marker symbol, line pattern, or fill pattern constant. When all of the colors are exhausted, the marker symbol, line style, or fill pattern attribute increment to the next element, and then the colors in the list are repeated. This pattern repeats as needed.

NONE
changes the current setting of attribute priority rotation pattern to the default pattern, which cycles progressively through the attribute lists.

Default

The attribute priority pattern that is specified in the active style or in the ODS GRAPHICS statement.

Interactions

This option overrides the attribute priority rotation pattern that is specified in the current style and the ATTRPRIORITY= option in the ODS GRAPHICS statement.

The default lists of data colors, contrast colors, marker symbols, and line patterns are set in the active style’s GraphData1–GraphDataN elements.

The individual attributes in these lists can be overridden with the BEGINGRAPH options DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS=.

The ATTRPRIORITY= option affects the cycling of the style attributes for GROUP=, CYCLEATTRS=TRUE, and explicit style references such as MARKERATTRS=GraphData2.

See

“Attribute Rotation Patterns” in *SAS Graph Template Language: User's Guide*

AXISBREAKSYMBOL=BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
specifies a symbol to use on the axis lines to indicate a break in the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
The following figure shows an example of each symbol on a horizontal linear axis for ranges 1–4 and 6–10.

<table>
<thead>
<tr>
<th>BRACKET</th>
<th>NOTCH</th>
<th>SLANTEDLEFT</th>
<th>SLANTEDRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 6 8 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPARK</th>
<th>SQUIGGLE</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 6 8 10</td>
<td>1 3 6 8 10</td>
<td>1 3 6 8 10</td>
</tr>
</tbody>
</table>

Default: SQUIGGLE

Restriction: This option applies to linear and time axes only.

Requirements: The AXISBREAKTYPE= option must be set to AXIS for this option to have any effect.

You must use the INCLUDERANGES= option to specify ranges for the axis for this option to have any effect.

The DISPLAY= option for the axis must include the axis line for this option to have any effect.

AXISBREAKTYPE=FULL | AXIS

specifies whether the axis break is indicated in the full display or only on the axis line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows an example of each type for ranges 50–52 and 56–73 on a linear horizontal axis.

Figure 2.1 Axis Break Types FULL and AXIS

Default: FULL

Requirements: You must use the INCLUDERANGES= axis option to specify ranges for the axis for this option to have any effect.

The axis line or the plot wall outline must be displayed for AXIS to have any effect. Otherwise, FULL is used.

Interaction: When AXIS is specified, if the secondary axis line or the plot wall outline is displayed, then the axis break symbol is displayed on both the primary and the secondary axis. Otherwise, the break symbol is
displayed only on the primary axis, as shown in Figure 2.1 on page 24.

Notes
The axis break indicators pass through inner margin areas.
No attempt is made to avoid collisions between the axis break indicators and other graphical elements.

Tip
When you use AXIS, use the AXISBREAKSYMBOL= option to change the break symbol.

AXISLINEEXTENT=FULL | DATA | number
specifies the extent of the axis line for all axes.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

FULL
specifies axis lines that extend along the entire length of the axis.

DATA
specifies axis lines that extend through the data range from the minimum offset to the maximum offset.

number
specifies, as a decimal proportion, how much the axis line extends from DATA toward FULL. A value of 0 is equivalent to DATA, and a value of 1 is equivalent to FULL.

Range 0–1

Tip A numeric value is useful for bar charts when DATA terminates the axis line at the midpoint positions of the minimum and maximum bars. In that case, you can specify a numeric value to lengthen the axis line so that it extends to the full width of both bars.

The following figure shows a simple example of each value for the X and Y axis lines. The light-blue dashed lines depict the minimum and maximum offsets that are set on the axes.

![Graph with examples of axis line extent](image)

Default FULL

Restriction This option is valid only in OVERLAY and OVERLAYEQUATED layouts.

Tips The graph wall outline might appear to be an axis line. In that case, use the WALLDISPLAY=NONE or WALLDISPLAY=(FILL) option in the layout statement to suppress the wall outline.
Use the LINEEXTENT= axis option to control the axis line extent on a per-axis basis.

BACKGROUND_COLOR= *style-reference | color*

specifies the color of the graph background.

- *style-reference*
 - specifies a style reference in the form *style-element:style-attribute*. Only the style attribute named COLOR or CONTRASTCOLOR is used.

 Default: The GraphBackground:Color style reference.

 Interaction: This option has no effect when OPAQUE=FALSE.

BORDER= *TRUE | FALSE*

specifies whether a border is drawn around the graph.

 Default: The ODS GRAPHICS statement BORDER= option setting, which is TRUE by default.

 Interaction: If this option is set to FALSE, then the BORDERATTRS= option is ignored.

 See: “boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS= *style-element | style-element (line-options) | (line-options)*

specifies the attributes of the border line around the graph.

 Default: The GraphBorderLines style element.

 Interaction: BORDER= TRUE must be set for this option to have any effect.

 See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.

 “Line Options” on page 1349 for available *line-options*.

DATACOLORS= *(color-list)*

specifies the list of fill colors that will replace the graph data colors from the GraphData1–GraphDataN style elements.

 (color-list)
 - a space-separated list of colors, enclosed in parentheses. You can use a style attribute reference such as GraphData3:color, a color name, or an RGB, CMYK, HLS, or HSV (HSB) color code to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

 Requirement: The list of colors must be enclosed in parentheses.

 Example: `datacolors=(CXFF0000 green blue)`

When this option is specified, the fill colors rotate through this color list rather than through the colors that are defined in the GraphData1–GraphDataN style elements. For information about the attribute rotation patterns, see “Attribute Rotation Patterns” in *SAS Graph Template Language: User's Guide*.

 Default: The colors that are defined in the GraphData1–GraphDataN style elements.
Where applicable, the COLOR= suboption of the FILLATTRS= option overrides the DATACOLORS= option.

DATACONTRASTCOLORS= *(color-list)*

specifies the list of contrast colors that will replace the graph data contrast colors from the GraphData1–GraphDataN style elements.

(color-list)

a space-separated list of contrast colors, enclosed in parentheses. You can use a style attribute reference such as GraphData3:color, a color name, or an RGB, CMYK, HLS, or HSV (HSB) color code to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example
datacontrastcolors=(orange cyan #FF0000)

When this option is specified, the contrast colors cycle through this color list rather than through the contrast colors that are defined in the GraphData1–GraphDataN style elements. For information about the attribute rotation patterns, see “Attribute Rotation Patterns” in *SAS Graph Template Language: User’s Guide*.

Default
The contrast colors that are defined in the GraphData1–GraphDataN style elements.

Interaction
Where applicable, the COLOR= suboption of the MARKERATTRS= option or the LINEATTRS= option overrides the DATACONTRASTCOLORS= option.

DATALINEPATTERNS= *(line-pattern-list)*

specifies the list of line patterns that will replace the graph data line patterns from the GraphData1–GraphDataN style elements.

(line-pattern-list)

a space-separated list of line patterns, enclosed in parentheses. You can use a style attribute reference such as GraphData3:lineStyle, a line pattern number, or a line pattern name (where applicable) to specify a pattern. The list can contain a mix of style attribute references, line pattern numbers, and line pattern names.

Requirement
The list of line patterns must be enclosed in parentheses.

When this option is specified, the line patterns cycle through this line-pattern list rather than through the line patterns that are defined in the GraphData1–GraphDataN style elements. When the patterns in *line-pattern-list* are exhausted, the patterns repeat.

Default
The line patterns that are defined in the GraphData1–GraphDataN style elements.

Interaction
Where applicable, the PATTERN= suboption of the LINEATTRS= option overrides the DATALINEPATTERNS= option.

Example
datalinepatterns=(solid dash 16 26)

DATASKIN= *NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN*

enhances the visual appearance of all plots in the template that support data skins. The following plot statements support data skins:
Default The GraphSkins:DataSkin style attribute, if it is specified in the current style. If the current style does not specify the GraphSkins:DataSkin style attribute, then the default is NONE.

Restriction Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Interaction This option is overridden by the DATASKIN= option in the individual plot statements.

Note Applying data skins to a graph that has a very large number of markers can negatively impact performance.

DATASYMBOLS=(marker-symbol-list)
specifies the list of marker symbols that will replace the graph data marker symbols from the marker symbols that are defined in the GraphData1–GraphDataN style elements.

(marker-symbol-list)
a space-separated list of marker symbols, enclosed in parentheses. You can use a style attribute reference such as GraphData5:markerSymbol or a marker symbol name to specify a marker. The list can contain a mix of style attribute references and marker symbol names.

Requirement The list of marker symbols must be enclosed in parentheses.

When this option is specified, the marker symbols cycle through this marker symbol list rather than through the line patterns that are defined in the GraphData1–GraphDataN style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

Default The marker symbols that are defined in the GraphData1–GraphDataN style elements.

Interaction Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

Example datasyMBOLS=(circle square triangle star)

DESIGNHEIGHT=DEFAULTDESIGNHEIGHT | dimension
specifies the design height of the graph.
Default

DEFAULTDESIGNHEIGHT. This value is obtained from the SAS Registry key `ODS ⇒ ODS Graphics ⇒ Design Height` when the graph is rendered. The initial value of this registry key is 480px.

Restriction

The minimum dimension value that you can set is 2 pixels. If a smaller setting is specified, then the default design height is used.

Interactions

The design height can be overridden at run time with a render height that is specified with the `HEIGHT=` option in the ODS GRAPHICS statement (external to the template). Also, the ODS destination statement’s `IMAGE_DPI=` option can affect the height.

You can change the value of the Design Height registry key in the SAS registry. However, doing so affects the design height of all templates that do not include an explicit dimension for the design height. You can also change the height setting in the graph style, but doing so affects the height of all templates that use that style.

See

“dimension” on page 1340

DESIGNWIDTH=DEFAULTDESIGNWIDTH | dimension

specifies the design width of the graph.

Default

DEFAULTDESIGNWIDTH. This value is obtained from the SAS Registry key `ODS ⇒ ODS Graphics ⇒ Design Width` when the graph is rendered. The initial value of this registry key is 640px.

Restriction

The minimum dimension value that you can set is 2 pixels. If a smaller setting is specified, then the default design width is used.

Interactions

The design width can be overridden at run time with a render width that is specified with the `WIDTH=` option in the ODS GRAPHICS statement (external to the template). Also, the ODS destination statement’s `IMAGE_DPI=` option can affect the width.

You can change the value of the Design Width registry key in the SAS registry. However, doing so affects the design width of all templates that do not include an explicit dimension for the design width. You can also change the width setting in the graph style, but doing so affects the width of all templates that use that style.

See

“dimension” on page 1340

DISCRETEAXISOFFSETPAD=TRUE | FALSE

specifies whether additional padding is added to the minimum and maximum axis offsets for discrete axes. When set to TRUE, an additional 5 pixels of padding is added to the minimum and maximum axis offsets.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

TRUE

Restriction

This option applies only to discrete axes.

Tip

This option is useful for heat maps when you want the heat map to occupy the entire plot area. In that case, in addition to setting this
option to FALSE, set OFFSETMIN= and OFFSETMAX= to 0 for the discrete axes.

DRAWSPACE= `GRAPHPERCENT` | `GRAPHPIXEL` | `LAYOUTPERCENT` | `LAYOUTPIXEL` | `WALLPERCENT` | `WALLPIXEL` | `DATAPERCENT` | `DATAPIXEL` | `DAVALUE`

specifies a global drawing space and drawing units for all of the draw statements within this BEGINGRAPH block.

Default `LAYOUTPERCENT`

Tip Individual draw statements within this BEGINGRAPH block can override this global setting.

See “About the Drawing Space and Drawing Units” on page 1192

INCLUDEMISSINGDISCRETE= `TRUE` | `FALSE`

specifies whether missing values are displayed on a discrete axis.

Default `FALSE`

Interaction This option affects all charts and plots within the template.

See “boolean” on page 1339 for other Boolean values that you can use.

LABELPLACEMENT= `AUTO` | `GREEDY` | `SA`

specifies the label-placement algorithm to use for positioning labels in the graphs.

The following labels are affected:

- data labels for needle plots, scatter plots, series plots, step plots, and vector plots
- vertex labels for line charts
- curve labels when the curve label is positioned at the start or end of the curve

AUTO always selects GREEDY.

GREEDY

specifies the Greedy method for managing label collision. The Greedy method tries different placement combinations in order to find an optimal approximation that avoids collisions. Label placement using this method is often less optimal than label placement using the Simulated Annealing (SA) method. However, depending on the number of data points and the potential for label collisions, the Greedy process can be significantly faster.

SA

specifies the Simulated Annealing method for managing label collision. The SA method attempts to determine the global minimization-of-cost function, which is based on a simulated annealing algorithm. The resulting label placement is usually better than placement using the Greedy method. However, depending on the number of data points and the potential for label collisions, the SA method can be significantly slower.

Restriction For BANDPLOT and LINECHART, the SA method has no effect on the curve labels when the CURVELABELPOSITION= option specifies START or END.
Default
The value specified by the ODS GRAPHICS statement LABELPLACEMENT= option, which is AUTO by default.

Restriction
The data label placement algorithm is not aware of bar labels, curve labels, box plot outlier labels, and marker characters. Collisions between these elements and data labels might occur regardless of the LABELPLACEMENT= setting.

Interactions
This option overrides the ODS GRAPHICS statement LABELPLACEMENT= option.

This option affects a plot’s labels only when DATALABELPOSITION=AUTO is in effect for that plot.

The data label font size might be reduced in order to avoid overlapping labels and markers. Starting with the third maintenance release of SAS 9.4, when a broken axis is used, the data-label font size is not scaled during label placement.

OPAQUE=TRUE | FALSE
specifies whether the graph background is opaque or transparent.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When this option is set to FALSE, the graph background is transparent.

Default
TRUE

Restriction
A transparent background is supported only by the PNG, EMF, PDF, and SVG output formats. The PS output format supports a transparent background when the graph is rendered as a PNG image. It does not support a transparent background when the graph is rendered as vector-graphics output.

Interaction
When this option is set to FALSE, the BACKGROUNDCOLOR= option has no effect.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the graph border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT=dimension</td>
<td>specifies the amount of extra space added to the left side.</td>
</tr>
<tr>
<td>RIGHT=dimension</td>
<td>specifies the amount of extra space added to the right side.</td>
</tr>
<tr>
<td>TOP=dimension</td>
<td>specifies the amount of extra space added to the top.</td>
</tr>
<tr>
<td>BOTTOM=dimension</td>
<td>specifies the amount of extra space added to the bottom.</td>
</tr>
</tbody>
</table>
Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default Padding for all sides is 10 pixels.

Note The default units for dimension are pixels.

See “dimension” on page 1340

SAPLACEMENTOPTS=(placement-options)

specifies the options for the label-placement algorithm when
LABELPLACEMENT=SA. Placement options can be any of the following:

MAXITERATIONS=positive-integer

specifies the maximum number of iterations for the SA label-placement
algorithm.

Default 100

WEIGHTS=(keyword-number-list)

specifies the relative weight to give to a particular cost when determining the best
label position. The keyword number list is a space-separated list of keyword = number pairs.

The following keywords can be used:

- **LABEL** assigns a weight to the overlapping of labels
- **MARKER** assigns a weight to the overlapping of markers and labels
- **OUTOFBOUND** assigns a weight to labels that are out-of-bounds or clipped
- **PRIORITY** assigns a weight to the priority of each potential label position
- **OBSTACLE** assigns a weight to the overlapping of labels with drop lines, needles, reference lines, series lines, step lines, and vector lines

The higher the number, the more weight is assigned to the specified cost. For
example, if MARKER is given more weight than OBSTACLE, avoiding marker collisions is given a higher priority than avoiding line collisions.

Default A weight of 1.0 is assigned to each keyword

Example saplacementopts=(maxiterations=100
weights=(LABEL=2.0 OBSTACLE=10.0))

SEED=positive-integer

specifies a random number seed for the Simulated Annealing algorithm.

Default 1234567

Range 0–2147483646 ($2^{31} – 1$), where 0 specifies the current Java time as the seed value
This option applies only when LABELPLACEMENT=SA.

SUBPIXEL=AUTO | OFF | ON

specifies whether subpixel rendering is used for drawing smooth curved lines or for spacing bars more precisely.

Note: Starting with the third maintenance release of SAS 9.4, this option controls subpixel rendering only for image output. For vector-graphics output, subpixel rendering is always enabled.

AUTO

the system determines whether to use subpixel rendering. In the second maintenance release of SAS 9.4 and in earlier releases, the system uses the default rendering for the rendering technology. Starting with the third maintenance release of SAS 9.4, for image output, if the SUBPIXEL= option is explicitly set in an ODS GRAPHICS statement, the system honors its setting. Otherwise, the system determines whether to use subpixel rendering based on the following criteria:

- If a SCATTERPLOT or SCATTERPLOTMATRIX statement is used, subpixel rendering is OFF for the graph.
- If neither a SCATTERPLOT nor a SCATTERPLOTMATRIX statement is used, subpixel rendering is turned ON for the graph if one or more of the following statements is also used:
 - BANDPLOT
 - DENSITYPLOT
 - LOESSPLOT
 - BARCHART
 - HEATMAP
 - PARETOLINE
 - BARCHARTPARAM
 - HEATMAPPARAM
 - PBSPLINEPLOT
 - BOXPLOT
 - HIGHLOWPLOT
 - POLYGONPLOT
 - BOXPLOTPARM
 - HISTOGRAM
 - REGRESSIONPLOT
 - BUBBLEPLOT
 - HISTOGRAMPARAM
 - SERIESPLOT
 - CONTOURPLOTPARM
 - LINECHART
 - WATERFALLCHART

 - For all other cases, subpixel rendering is turned OFF.

OFF

never uses subpixel rendering.

Note OFF is valid starting with the third maintenance release of SAS 9.4.

ON

always uses subpixel rendering, when applicable, for image output when rendering graphs.

Default AUTO

In the second maintenance release of SAS 9.4 and in earlier releases, subpixel rendering can be used only for the following statements:

- BANDPLOT, BARCHART, BARCHARTPARAM, DENSITYPLOT, LINECHART, LOESSPLOT, PBSPLINEPLOT, REGRESSIONPLOT, and SERIESPLOT. Starting with the third maintenance release of SAS 9.4, subpixel rendering can be used for all plots and charts.

Note: Starting with the third maintenance release of SAS 9.4, this option is ignored for vector-graphics output.
Requirement

Anti-aliasing must be enabled for this option to have any effect.

Interaction

Starting with the third maintenance release of SAS 9.4, this option overrides the SUBPIXEL= option in the ODS GRAPHICS statement.

Tips

If anti-aliasing is disabled, use the ANTIALIAS=ON option in the ODS GRAPHICS statement to enable it.

Anti-aliasing is disabled automatically when the resources required for anti-aliasing exceed a preset threshold. When anti-aliasing is disabled for all or part of a graph, subpixel rendering is disabled for the entire graph. A note is written to the SAS log that provides information about how to use the ANTIALIASMAX= option in an ODS GRAPHICS statement to re-enable anti-aliasing.

See

“Using Subpixel Rendering” in *SAS Graph Template Language: User’s Guide*

Details

About the BEGINGRAPH Statement

All template definitions in the Graphics Template Language must start with a BEGINGRAPH statement and end with an ENDDGRAPH statement. Within a BEGINGRAPH block, one and only one GTL layout block is required. It can be a LATTICE, GRIDDED, OVERLAY, OVERLAYEQUATED, OVERLAY3D, REGION, DATALATTICE, or DATAPANEL layout block. This layout block and its nested layouts, if any, must contain at least one plot statement. It can contain other nested layout blocks.

The GTL global statements apply to the entire template and can include ENRTITLE and ENRTFOOTNOTE statements, attribute maps, draw statements, conditional statements, and so on. Any of these global statements can precede or follow the GTL layout block.

Changing the Size of Your Graph

By default, graphs are rendered at 640px by 480px (4:3 aspect ratio). To change the output size for a single graph, use the DESIGNWIDTH= and DESIGNHEIGHT= options in the BEGINGRAPH statement for that graph. For example, the template in the “Example Program” on page 36 uses DESIGNHEIGHT= to change the graph height to 320px. To prevent the graph width from automatically scaling to preserve the 4:3 aspect ratio, it uses DESIGNWIDTH= to maintain the 640px width. In this instance, the setting renders each graph cell as a 320px by 320px square. (The cells are square in this case, but the resulting cell size depends on the graph definition and would not be the same for all graphs.)

Note: To change the graph sizes for all templates in the current SAS session, you can use the WIDTH= and HEIGHT= options in the ODS GRAPHICS statement. Size settings in the ODS GRAPHICS statement override size settings in the BEGINGRAPH statement and remain in effect unless they are changed in another ODS GRAPHICS statement. You can also use WIDTH= and HEIGHT= settings in the graph style to modify the graphs sizes across template definitions. Be aware,
however, that if you explicitly manage the graph output size, then the graph elements might be scaled so that the size specification is honored.

The following template defines a square graph (equal height and width, 1:1 aspect ratio) by setting the design width equal to the internal default height (480px). The setting is made with DESIGNWIDTH=DEFAULTDESIGNHEIGHT:

\begin{verbatim}
proc template;
 define statgraph squareplot;
 dynamic title xvar yvar;
 begingraph / designwidth=defaultDesignHeight;
 entrytitle title;
 layout overlayequated / equatetype=square;
 scatterplot x=xvar y=yvar;
 regressionplot x=xvar y=yvar;
 endlayout;
 endgraph;
 end;
end;
\end{verbatim}

If this template is executed with the following GRENDER procedure statement, then a 480px by 480px graph is created:

\begin{verbatim}
proc sgrender data=mydata template="squareplot" ;
 dynamic title="Square Plot" xvar="time1" yvar="time2";
run;
\end{verbatim}

If the ODS GRAPHICS statement’s WIDTH= or HEIGHT= options change the render width or render height, then the \texttt{squareplot} template’s 1:1 aspect ratio would still be honored. Thus, both of the following GRENDER procedure statements would create a 550px by 550px graph:

\begin{verbatim}
ods graphics / width=550px;
proc sgrender data=mydata template="squareplot" ;
 dynamic title="Square Plot" xvar="time1" yvar="time2";
run;
\end{verbatim}

\begin{verbatim}
ods graphics / height=550px;
proc sgrender data=mydata template="squareplot" ;
 dynamic title="Square Plot" xvar="time1" yvar="time2";
run;
\end{verbatim}

\textbf{Note:} A “square graph” means that the output graph’s width and height are equal. That does not imply that the X and Y axis lengths are equal if the graph contains only one cell.
Example: BEGINGRAPH Statement

The following graph was generated by the “Example Program” on page 36:

![Graph showing Linear Regression Fit and Loess Fit for Sepal Width vs. Sepal Length](image)

Example Program

The BEGINGRAPH statement block is a required outermost container for any graph template. One of its purposes is to support options that apply to the entire graph. For example, the default graph size that a template produces is typically 640x480 pixels. If you need a different size, then you can declare the alternative size on this statement. To do so, use the DESIGNWIDTH= option, or the DESIGNHEIGHT= option, or both. This program shows one way to set the width and height of two graph cells to be equal.

```sas
proc template;
  define statgraph begingraph;
  dynamic XVAR YVAR;
  begingraph / designwidth=640px designheight=320px;
  layout lattice / columns=2;
  layout overlayequated / equatetype=square;
    entry "Linear Regression Fit" /
      valign=top texttattrs=(weight=bold);
    scatterplot x=XVAR y=YVAR / datatransparency=0.5;
    regressionplot x=XVAR y=YVAR;
  endlayout;
  layout overlayequated / equatetype=square;
    entry "Loess Fit" /
      valign=top texttattrs=(weight=bold);
    scatterplot x=XVAR y=YVAR / datatransparency=0.5;
    loessplot x=XVAR y=YVAR;
  endlayout;
  endgraph;
end;
run;

proc sgrender data=sashelp.iris template=begingraph;
```
dynamic title="Square Plot"
xvar="SepalLength" yvar="SepalWidth";
run;
Part 3

Layout Statements

Chapter 3

Summary of Layout Statements .. 41

Chapter 4

Layout Statements .. 45
Overview

Layout blocks always begin with the LAYOUT keyword followed by a keyword indicating the purpose of the layout. All layout blocks end with an ENDLAYOUT statement.

The following sections summarize the available layouts. To learn more about a layout, see the chapter devoted to that layout.
Single-cell Layouts

<table>
<thead>
<tr>
<th>Layout (Description)</th>
<th>Graphics Allowed and Cells Produced</th>
<th>Comments</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERLAY (Single Cell)</td>
<td>2-D (1 cell)</td>
<td>General purpose layout for superimposing 2-D plots</td>
<td></td>
</tr>
<tr>
<td>OVERLAYEQUATE D (Single Cell)</td>
<td>2-D (1 cell)</td>
<td>Specialized OVERLAY with equated axes</td>
<td></td>
</tr>
<tr>
<td>PROTOTYPE (Single Cell)</td>
<td>2-D (1 cell)</td>
<td>Specialized LAYOUT used only as child layout of DATAPANEL or DATALATTICE</td>
<td></td>
</tr>
<tr>
<td>REGION (Single Cell)</td>
<td>2-D (1 cell)</td>
<td>General purpose layout for displaying a single-cell plot that does not use axes</td>
<td></td>
</tr>
<tr>
<td>OVERLAY3D (Single Cell)</td>
<td>3-D (1 cell)</td>
<td>General purpose 3-D layout for superimposing 3-D plots.</td>
<td></td>
</tr>
</tbody>
</table>
Multi-cell Layouts

<table>
<thead>
<tr>
<th>Layout (Description)</th>
<th>Graphics Allowed and Cells Produced</th>
<th>Comments</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATTICE (Advanced Multi-cell)</td>
<td>2-D (1 or more cells)</td>
<td>All cells must be predefined. Axes can be shared across columns or rows and be external to grid. Many grid labeling and alignment features.</td>
<td></td>
</tr>
<tr>
<td>GRIDDED (Simple Multi-cell)</td>
<td>2-D (1 or more cells)</td>
<td>All cells must be predefined. Axes independent for each cell. Very simple multi-cell container.</td>
<td></td>
</tr>
</tbody>
</table>

Data-driven Layouts

<table>
<thead>
<tr>
<th>Layout (Description)</th>
<th>Graphics Allowed and Cells Produced</th>
<th>Comments</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAPANEL (Classification Panel)</td>
<td>2-D (1 or more cells)</td>
<td>Displays a panel of similar graphs based on data subsets by classification variable(s). Number of cells is based on crossings of (n) classification variable(s).</td>
<td></td>
</tr>
<tr>
<td>DATALATTICE (Classification Panel)</td>
<td>2-D (1 or more cells)</td>
<td>Displays a panel of similar graphs based on data subsets by classification variable(s). Number of cells is based on crossings of 1 or 2 classification variables.</td>
<td></td>
</tr>
</tbody>
</table>
Legend Layout

<table>
<thead>
<tr>
<th>Layout</th>
<th>Cells Produced</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBALLEGEND</td>
<td>1 cell for a legend</td>
<td>Specialized layout for creating a compound legend that contains multiple discrete legends.</td>
</tr>
</tbody>
</table>
Chapter 4
Layout Statements

Dictionary

LAYOUT DATALATTICE Statement .. 45
LAYOUT DATAPANEL Statement ... 70
LAYOUT GLOBALLEGEND Statement ... 96
LAYOUT GRIDDED Statement .. 102
LAYOUT LATTICE Statement .. 111
LAYOUT OVERLAY Statement .. 136
LAYOUT OVERLAYEQUATED Statement ... 144
LAYOUT OVERLAY3D Statement .. 152
LAYOUT PROTOTYPE Statement ... 159
LAYOUT REGION Statement .. 162
INNERMARGIN Statement .. 166

Dictionary

LAYOUT DATALATTICE Statement

Creates a grid of graphs based on one or two classification variables and a graphical prototype. By default, a separate instance of the prototype (a data cell) is created for each possible combination of the classification variables.

Restriction: You can specify only one LAYOUT PROTOTYPE block in the LAYOUT DATALATTICE block. If you specify more than one, then only the last prototype block specified is honored. The remaining prototype blocks are ignored.

Requirement: You must specify at least one ROWVAR= option or one COLUMNVAR= option. You can specify both.
Syntax

\begin{verbatim}
LAYOUT DATALATTICE ROWVAR=class-variable
COLUMNVAR=class-variable <option(s)>;
 LAYOUT PROTOTYPE <options>;
 GTL-statements;
 ENDLAYOUT;
 <SIDEBAR <options>;
 GTL-statements;
 ENDSIDEBAR>;
ENDLAYOUT;

LAYOUT DATALATTICE COLUMNVAR=class-variable <option(s)>;
 layout-prototype-block ;
 <sidebar-block(s)>
ENDLAYOUT;

LAYOUT DATALATTICE ROWVAR=class-variable <option(s)>;
 layout-prototype-block ;
 <sidebar-block(s)>
ENDLAYOUT;
\end{verbatim}

Summary of Optional Arguments

Appearance options

\begin{verbatim}
BACKGROUNDCOLOR=style-reference | color
 specifies the color of the layout background.

BORDER=TRUE | FALSE
 specifies whether a border is drawn around the layout.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
 specifies the attributes of the border line around the layout.

CELLHEIGHTMIN=dimension
 specifies the minimum height of a cell in the grid.

CELLWIDTHMIN=dimension
 specifies the minimum width of a cell in the grid.

COLUMNGUTTER=dimension
 specifies the amount of empty space that is between the columns.

COLUMNHEADERS=TOP | BOTTOM | BOTH
 specifies where to position the outside column heading.

HEADERBACKGROUNDCOLOR=style-reference | color
 specifies the background color of the cell headers.

HEADERBORDER=TRUE | FALSE
 specifies whether a border is drawn around the header cells.

HEADERLABELATTRS=style-element | style-element (text-options) | (text-options)
 specifies the color and font attributes of the data labels.

HEADERLOCATION=OUTSIDE | INSIDE
 indicates whether the cell header is placed within each cell (INSIDE) or as row and column headers external to the lattice (OUTSIDE).

HEADEROPAQUE=TRUE | FALSE
 specifies whether the background for cell headers is opaque (TRUE) or transparent (FALSE).
\end{verbatim}
HEADERPACK=TRUE | FALSE
specifies whether the header cells are consolidated into a comma-separated list in order to save space.

HEADERSEPARATOR="string"
 specifies one or more characters to place between each value in the cell header when HEADERPACK=TRUE.

HEADERSPLITCOUNT=positive-integer
 specifies the number of headers to consolidate on a header line before splitting the text to the next line.

OPAQUE=TRUE | FALSE
 specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the layout border.

SHRINKFONTS=TRUE | FALSE
 specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

SORTORDER=(role-sort-list)
specifies the order of the cells along the columns and rows.

Axis options

COLUMN2AXISOPTS=(axis-options)
specifies X2-axis options for all columns.

COLUMN2DATARANGE=AUTO | UNIONALL | UNION
 specifies how the X2-axes of instances of the graph-prototype are scaled.

COLUMNAXISOPTS=(axis-options)
specifies X-axis options for all columns.

COLUMN2DATARANGE=AUTO | UNIONALL | UNION
 specifies how the X-axes of instances of the graph-prototype are scaled.

ROW2AXISOPTS=(axis-options)
specifies Y2-axis options for all rows.

ROW2DATARANGE=AUTO | UNIONALL | UNION
 specifies how the Y2-axes of instances of the graph-prototype are scaled.

ROWAXISOPTS=(axis-options)
specifies Y-axis options for all rows.

ROWDATARANGE=AUTO | UNIONALL | UNION
 specifies how the Y-axes of instances of the graph-prototype are scaled.

Inset options

INSET=(variable-list)
specifies what information is displayed in an inset.

INSETOPTS=(appearance-options)
specifies location and appearance options for the inset information.

Layout options

COLUMNS=integer
 specifies the number of columns in the layout.

COLUMNWEIGHT=EQUAL | PROPORTIONAL
 specifies how weights are assigned to the columns widths.
HEADERLABELDISPLAY=NAMEVALUE | VALUE | NONE
specifies the content of the cell headers.

INCLUDEMISSINGCLASS=TRUE | FALSE
specifies whether to include grid cells for crossings of the ROWVAR and COLUMNVAR variables that contain a missing value.

PANELNUMBER=positive-integer
specifies the number of the panel to produce.

ROWGUTTER=dimension
specifies the amount of empty space between the rows.

ROWHEADERS=RIGHT | LEFT | BOTH
specifies where to position the outside row heading.

ROWS=integer
specifies the number of rows in the layout.

ROWWEIGHT=EQUAL | PROPORTIONAL
specifies how weights are assigned to the row heights.

SKIPEMPTYCELLS=TRUE | FALSE
specifies whether the external axes skip the empty cells in a partially filled grid.

START=TOPLEFT | BOTTOMLEFT
indicates whether to start populating the grid from the top left or bottom left corner.

Required Arguments
You must specify at least one of the following arguments. You can specify both.

ROWVAR=class-variable
specifies the classification variable for the rows. One row of cells is created for each unique value of the row class variable.

See ROWS= option and “Managing Rows and Columns” on page 67

COLUMNVAR=class-variable
specifies the classification variable for the columns. One column is created of each unique value of the column class variable.

See COLUMNS= option and “Managing Rows and Columns” on page 67

Optional Arguments

BACKGROUNDCOLOR=style-reference | color
specifies the color of the layout background.

style-reference
specifies a style reference in the form *style-element:*style-attribute. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphBackground:Color style reference.

Interaction OPAQUE=TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=TRUE | FALSE
specifies whether a border is drawn around the layout.
BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default The GraphBorderLines style element.

Interaction **BORDER=** TRUE must be set for this option to have any effect.

See **“General Syntax for Attribute Options” on page 1347** for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

CELLHEIGHTMIN=dimension

specifies the minimum height of a cell in the grid. Use this option in conjunction with the **CELLWIDTHMIN=** option to set the minimum cell size.

The overall size of the panel is constrained by the **HEIGHT=** and **WIDTH=** options in the ODS GRAPHICS statement. As the number of cells in the grid increases, the size of each cell decreases. At some point the cell becomes so small that a meaningful graph cannot be rendered. This option sets the minimum height threshold for all cells. If the actual cell height becomes smaller, then no panel is drawn.

Default 100px

See **“dimension” on page 1340**

CELLWIDTHMIN=dimension

specifies the minimum width of a cell in the grid. Use this option in conjunction with the **CELLHEIGHTMIN=** option to set the minimum cell size.

The overall size of the panel is constrained by the **HEIGHT=** and **WIDTH=** options in the ODS GRAPHICS statement. As the number of cells in the grid increases, the size of each cell decreases. At some point the cell becomes so small that a meaningful graph cannot be rendered. This option sets the minimum width threshold for all cells. If the actual cell width becomes smaller, then no panel is drawn.

Default 100px

See **“dimension” on page 1340**

COLUMNAXISOPTS=(axis-options)
specifies X-axis options for all columns.

Restriction Axis options must be enclosed in parentheses and separated by spaces.

See **“Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” for a list of options..**

COLUMN2AXISOPTS=(axis-options)
specifies X2-axis options for all columns.
Restriction This option is needed only if you use a plot statement that supports a secondary X2 axis. If you do not use that statement’s XAXIS= option to map data to the X2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876.

Requirement Axis options must be enclosed in parentheses and separated by spaces.

See “Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” for a list of options.

COLUMN2DATARANGE=AUTO | UNIONALL | UNION specifies how the X2-axes of instances of the graph-prototype are scaled.

AUTO
selects the X2-axis scale based on the COLUMNWEIGHT= option and the column axis type, as follows:

- When COLUMNWEIGHT=EQUAL (default), UNIONALL is selected.
- When COLUMNWEIGHT=PROPORTIONAL and the column axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.

UNIONALL
scales the X2-axis data ranges across all layout columns and panels (when PANELNUMBER= is in effect).

UNION
scales the X2-axis data ranges separately for each column on a per-panel basis. The scaling does not span multiple panels.

Default AUTO

Tip Use the COLUMNAXISOPTS= option to control shared axis features.

See The COLUMNWEIGHT= option.

The PANELNUMBER= option for information about how to create multiple panels.

COLUMN2DATARANGE=AUTO | UNIONALL | UNION specifies how the X2-axes of instances of the graph-prototype are scaled.

AUTO
automatically selects the X2-axis scale based on the COLUMNWEIGHT= option and the column axis type, as follows:

- When COLUMNWEIGHT=EQUAL (default), UNIONALL is selected.
- When COLUMNWEIGHT=PROPORTIONAL and the column axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.

UNIONALL
scales the X2-axis data ranges across all layout columns and panels (when PANELNUMBER= is in effect).

UNION
scales the X2-axis data ranges separately for each column on a per-panel basis. The scaling does not span multiple panels.
COLUMNGUTTER=\textit{dimension}

specifies the amount of empty space that is between the columns.

- **Default**: 0

Note

If there are \(n \) columns, then there are \(n-1 \) gutters.

See

“dimension” on page 1340

COLUMNGUTTER=TOP | BOTTOM | BOTH

specifies where to position the outside column heading.

- **TOP**
 - specifies that column heading text appears at the top of the layout.

- **BOTTOM**
 - specifies that column heading text appears at the bottom of the layout.

- **BOTH**
 - specifies that column heading text alternates between the top and bottom of the layout column by column.

- **Default**: TOP

Interaction

\textbf{HEADERLABELLOCATION=} OUTSIDE must be set for this option to have any effect.

COLUMNS=\textit{integer}

specifies the number of columns in the layout.

Defaults

- If this option is not specified, then the number of columns is dynamically adjusted to equal the number of classifier values for the COLUMVAR= variable.

- If this option is specified, that many columns are created. If the number of COLUMNVAR classifier values is greater than the specified number of columns, then no graph is created for some classifier values. If the number of classifier values is smaller than the specified number of columns, then extra empty columns are created.

Interactions

The overall grid size is constrained by the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. As the grid size grows, the
cell size shrinks. To control the minimum size of a cell use the
CELLHEIGHTMIN= and CELLWIDTHMIN= options.

The START= option affects the how the columns are populated.

The PANELNUMBER= option enables you to create multiple smaller
grids that completely partition the classifier values.

COLUMNWEIGHT=EQUAL | PROPORTIONAL
specifies how weights are assigned to the columns widths.

EQUAL
all columns have equal width.

PROPORTIONAL
each column has a width that is proportional to the number of discrete midpoint
values that it contains.

Restriction
At least one column axis must be discrete in order for
PROPORTIONAL to have any effect. Otherwise, EQUAL is used.

Interactions
When COLUMNNAMETARANGE=UNIONALL, PROPORTIONAL
is ignored and EQUAL is used.

When PROPORTIONAL is in effect,
COLUMNNAMETARANGE=AUTO is interpreted as UNION.

If all of the following conditions are true, then the discrete axis is
used to proportion the columns: PROPORTIONAL is in effect,
both the X and X2 axes are used, and only one of the two axes is
discrete. If both axes are discrete, then the X axis is used to
proportion the columns.

When PROPORTIONAL is in effect, the OFFSETMIN= and
OFFSETMAX= axis options are ignored in
COLUMNAXISOPTS= and COLUMN2AXISOPTS=. The axis
offsets are always set to one-half of the midpoint spacing
regardless of plot type.

Default EQUAL

HEADERBACKGROUND=style-reference | color
specifies the background color of the cell headers.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style
attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphHeaderBackground:Color style reference.

Interaction HEADEROPAQUE= TRUE must be in effect for the color to be seen.

HEADERBORDER=TRUE | FALSE
specifies whether a border is drawn around the header cells.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.
The border attributes are controlled by the GraphBorderLines style element.

See “boolean” for other Boolean values that you can use.

HEADERLABELATTRS = **style-element** | **style-element (text-options)** | (text-options)

specifies the color and font attributes of the data labels.

Default The GraphValueText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

HEADERLABELDISPLAY = **NAMEVALUE** | **VALUE** | **NONE**

specifies the content of the cell headers.

NAMEVALUE
displays the classification variable name and value as a name=value pair in each cell header.

Example If the classification variables are Country and Product, then HEADERLABEL=NAMEVALUE produces cell headers such as the following:

```
Country=CANADA
Product=TABLE
```

VALUE
displays the classification variable value only in each cell header.

Example If the classification variables are Country and Product, then HEADERLABEL=VALUE produces cell headers such as the following:

```
CANADA
TABLE
```

NONE
suppresses the cell headers.

Default NAMEVALUE

HEADERLABELLOCATION = **OUTSIDE** | **INSIDE**

indicates whether the cell header is placed within each cell (INSIDE) or as row and column headers external to the lattice (OUTSIDE).

Default OUTSIDE

HEADEROPAQUE = **TRUE** | **FALSE**

specifies whether the background for cell headers is opaque (TRUE) or transparent (FALSE).

Default TRUE
Interaction When this option is set to FALSE, the background color for cell headers is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

HEADERPACK=TRUE | FALSE

specifies whether the header cells are consolidated into a comma-separated list in order to save space.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

The following figure shows the effect of HEADERPACK= on the cell headers in one row of a data lattice. The data lattice contains classification variables Country and Year.

<table>
<thead>
<tr>
<th>HEADERPACK=FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEADERPACK=TRUE</th>
</tr>
</thead>
</table>

Default FALSE

Note If the length of the cell header text exceeds the available width, then the text is truncated.

Tip If truncation occurs, then use the HEADERSPLITCOUNT= option to split the cell header text into multiple lines.

See “boolean” on page 1339 for other Boolean values that you can use.

HEADERSEPARATOR=”string”

specifies one or more characters to place between each value in the cell header when HEADERPACK=TRUE.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default A comma followed by a space

Interaction This option is ignored when HEADERPACK=FALSE.

HEADERSPLITCOUNT=positive-integer

specifies the number of headers to consolidate on a header line before splitting the text to the next line.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.
<table>
<thead>
<tr>
<th>Default</th>
<th>The cell header text is not split</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option is ignored when HEADERPACK=FALSE.</td>
</tr>
<tr>
<td>Note</td>
<td>If the length of the cell header text exceeds the available width, then the text is truncated.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the HEADERSEPARATOR= option to specify a different separator.</td>
</tr>
</tbody>
</table>

INCLUDEMISSINGCLASS=TRUE | FALSE

specifies whether to include grid cells for crossings of the ROWVAR and COLUMNVAR variables that contain a missing value.

TRUE

any crossing of the class variables that includes a missing value produces a row or column of cells in the grid.

FALSE

any crossing of the class variables that includes a missing value does not produce a row or columns of cells in the grid.

By default, missing class values are included in the classification. When the data contains missing classification values, cells are created for the missing classes. The classification headers for the missing values are blank for missing string values or a dot for missing numeric values. You can use the INCLUDEMISSINGCLASS=FALSE option to exclude the missing values. If you want to keep the missing values, then you can create a format that specifies more meaningful headings for the missing classes. For an example, see “Missing Class Values” in *SAS Graph Template Language: User's Guide*.

Note: ODS Graphics does not support Unicode values in user-defined formats in the second maintenance release of SAS 9.4 and in earlier releases. Starting with the third maintenance release of SAS 9.4, ODS Graphics supports Unicode values in user-defined formats only if they are preceded by the (*ESC*) escape sequence. Example: "(*ESC*){unicode beta}". ODS Graphics does not support an escape character that is defined in an ODS ESCAPECHAR statement in user-defined formats.

Default

TRUE

See

“boolean ” on page 1339 for other Boolean values that you can use.

INSET=(variable-list)

specifies what information is displayed in an inset. The variable-list defines one or more variables whose names and values appear as a small table in the data cells. The variables can be either numeric or character. Variable names are separated by spaces.

Requirement

No predefined information is available for the inset. You must create the desired inset information as part of your input data. See “Creating Your Inset Data” on page 68.

Note

The variable values are associated with the data cells by data order. That is, the first observation from all the variables in variable-list are used in the first data cell, the second observation from all variables in variable-list are used in the second data cell, and so on. If a value is missing for an observation, then the corresponding name-value pair is skipped in the affected data cell.
The location and appearance of the inset is controlled by the INSETOPTS= option.

See “Adding Insets to Your Graph” in SAS Graph Template Language: User’s Guide

INSETOPTS=(appearance-options)
specifies location and appearance options for the inset information. The appearance options can be any one or more of the following values:

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the inset is automatically aligned within the layout.

NONE
do not automatically align the inset. This inset’s position is set by the HALIGN= and VALIGN= options.

AUTO
tries to center the inset in the area that is farthest from any surrounding markers. Data cells might have different inset placements.

(location-list)
restricts the inset’s possible locations to those locations in the specified location-list, and uses the location-list position that least collides with the data cell’s other graphics features. The location-list is a space-separated list that can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Example AUTOALIGN=(TOPRIGHT TOPLF)

Default NONE

Interaction When AUTOALIGN=AUTO or (location-list), the HALIGN= and VALIGN= options are ignored.

BACKGROUND COLOR=style-reference | color
specifies the color of the inset background.

style-reference
specifies a style reference in the form style-element : style-attribute. Only the COLOR and CONTRASTCOLOR style attributes are valid.

Default The background is transparent. No color is assigned.

BORDER=TRUE | FALSE
specifies whether a border is displayed around the inset.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

CONTENTDISPLAY=LABELVALUE | VALUE
specifies whether the variable information that is displayed in the inset includes the column label and value, or only the column value.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

If a label is not assigned to a column, then the column name is used as the label for that column. Consider the following inset data:
The following figure shows the effect that the CONTENTDISPLAY= option has on the content of an inset that displays this data.

<table>
<thead>
<tr>
<th>LABELVALUE</th>
<th>LABELVALUE with SEPARATOR="="</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Value 94.359</td>
<td>F Value = 94.359 Pr > F = <.0001</td>
<td>94.359 Pr > F <.0001</td>
</tr>
</tbody>
</table>

Default LABELVALUE

Tip Use the SEPARATOR= option to specify a separator other than the default blank space.

DATASCHEME=LIST | MATCHED

specifies the scheme that was used to merge the inset information into the analysis data.

LIST

one-to-one merging (no BY statement) was used to merge the inset and analysis data. The variable values are associated with the cells of the data lattice by using data order. That is, the inset variable values in the first observation are used in the inset for the first cell, the inset variable values in the second observation are used in the inset for the second cell, and so on.

MATCHED

match-merging (using a BY statement) was used to merge the inset and analysis data.

Default LIST

Tip MATCHED is the preferred data scheme for merging the inset and analysis data.

See “Adding Insets to Classification Panels” in SAS Graph Template Language: User’s Guide

HALIGN=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the inset.

Default LEFT

Interaction This option has an effect only when this layout is nested within a region layout or when this layout is nested in an overlay-type layout and AUTOALIGN=NONE.

OPAQUE=TRUE | FALSE

specifies whether the inset background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When OPAQUE=FALSE, the background color is not used.
See “boolean” on page 1339 for other Boolean values that you can use.

SEPARATOR="string"
specifies a new separator for the column label and value.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default A blank space

Interaction This option is ignored when CONTENTDISPLAY=VALUE.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the entire inset, excluding the title.

Default The GraphDataText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

TITLE="string"
specifies a title for the inset. The title is added at the top of the inset and spans the full inset width.

Note Space is not reserved for the title when this value is not specified.

Tip Text properties for the title string can be specified with TITLEATTRS=.

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the inset’s title string.

Default The GraphValueText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

V ALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the inset.

Default TOP

Interaction This option has effect only when this layout is nested within a region layout or when this layout is nested in an overlay-type layout and AUTOALIGN=NONE.

Requirements The options must be enclosed in parentheses.

Each option must be specified as a name = value pair, and each pair must be separated by a space.

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default FALSE
Interaction

When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)

specifies the amount of extra space to add outside the layout border.

AUTO

specifies that the default outside padding for this component is used.

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=**dimension

specifies the amount of extra space to add to the left side.

- **RIGHT=**dimension

specifies the amount of extra space to add to the right side.

- **TOP=**dimension

specifies the amount of extra space to add to the top.

- **BOTTOM=**dimension

specifies the amount of extra space to add to the bottom.

Note

Sides that are not assigned padding are padded with the default amount.

Tip

Use pad-options to create non-uniform padding.

Default AUTO

Note

The default units for **dimension** are pixels.

See “**dimension**” on page 1340

PAD=dimension | (pad-options)

specifies the amount of extra space that is added inside the layout border.

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

- **LEFT=**dimension

specifies the amount of extra space added to the left side.

 Default 0

- **RIGHT=**dimension

specifies the amount of extra space added to the right side.

 Default 0
TOP=dimension
specifies the amount of extra space added to the top.

Default 0

BOTTOM=dimension
specifies the amount of extra space added to the bottom.

Default 0

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

PanelNUMBER=positive-integer
specifies the number of the panel to produce. This option enables you to partition a large grid into a number of smaller grids under these conditions:

- You set a grid size explicitly (ROWS= and COLUMNS= when ROWVAR and COLUMNVAR variables are specified; ROWS= when only a ROWVAR variable is specified; COLUMNS= when only a COLUMNVAR variable is specified)
- The grid size is smaller in one or both of the dimensions of the default dynamically generated grid.
- You execute the template N times and increment the panel number each time. N is determined by CEIL(all rows * all columns / grid rows * grid columns).

Default 1

Example Suppose ROWVAR=R (R has 10 unique values) and COLUMNVAR=C (C has 11 unique values). The dynamic grid has 10 rows and 11 columns and you would have to make the HEIGHT=and WIDTH= quite large to enable 110 plots to be displayed. By setting some smaller grid size, say ROWS=3 and COLUMNS=4, and by making the value of PANELNUMBER= a dynamic or macro variable, you can create 10 panels (9 with 12 data cells and 1 with 2 data cells) that collectively display all 110 possible crossings. You simply invoke PROC SGRENDER or a DATA step 10 times, incrementing the dynamic value for PANELNUMBER each time.

ROWAXISOPTS=(axis-options)
specifies Y-axis options for all rows.

Requirement Axis options must be enclosed in parentheses and separated by spaces.

See “Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” on page 1032 for a list of options.

ROW2AXISOPTS=(axis-options)
specifies Y2-axis options for all rows.
Requirement
Axis options must be enclosed in parentheses and separated by spaces.

Interaction
This option is needed only if you use a plot statement that supports a secondary Y2 axis. If you do not use that statement’s YAXIS= option to map data to the Y2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876.

See
“Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” on page 1032 for a list of options.

ROWDATARANGE=AUTO | UNIONALL | UNION
specifies how the Y-axes of instances of the graph-prototype are scaled.

AUTO
automatically selects the Y-axis scale based on the ROWWEIGHT= option and the column axis type, as follows:

- When ROWWEIGHT=EQUAL (default), UNIONALL is selected.
- When ROWWEIGHT=PROPORTIONAL and the row axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.

UNIONALL
scales the Y-axis data ranges across all layout rows and panels (when PANELNUMBER= is in effect).

UNION
scales the Y-axis data ranges separately for each row in the layout on a per-panel basis. The scaling does not span multiple panels.

Default
AUTO

Tip
Use the ROWAXISOPTS= option to control shared axis features.

See
The ROWWEIGHT= option.

The PANELNUMBER= option for information about how to create multiple panels.

ROW2DATARANGE=AUTO | UNIONALL | UNION
specifies how the Y2-axes of instances of the graph-prototype are scaled.

AUTO
automatically selects the Y2-axis scale based on the ROWWEIGHT= option and the column axis type, as follows:

- When ROWWEIGHT=EQUAL (default), UNIONALL is selected.
- When ROWWEIGHT=PROPORTIONAL and the row axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.

UNIONALL
scales the Y2-axis data ranges across all layout rows and panels (when PANELNUMBER= is in effect).

UNION
scales the Y2-axis data ranges separately for each row in the layout on a per-panel basis. The scaling does not span multiple panels.
Default: AUTO

Interaction: This option is needed only if you use a plot statement that supports a secondary Y2 axis. If you do not use that statement’s YAXIS= option to map data to the Y2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876.

Tip: Use the ROW2AXISOPTS= option to control shared axis features.

See: The ROWWEIGHT= option.

The PANELNUMBER= option for information about how to create multiple panels.

ROWGUTTER=dimension
 specifies the amount of empty space between the rows.

Default: 0

Note: If there are \(n \) rows, then there are \(n-1 \) gutters.

See: “dimension” on page 1340.

ROWHEADERS=RIGHT | LEFT | BOTH
 specifies where to position the outside row heading.

 RIGHT
 specifies that row heading appears at the right of the layout.

 LEFT
 specifies that row heading appears at the left of the layout.

 BOTH
 specifies that row heading alternates between the right and left of the layout row by row.

Default: RIGHT

Requirement: HEADERLABELLOCATION= OUTSIDE must be set for this option to have any effect.

ROWS=integer
 specifies the number of rows in the layout.

Defaults: If this option is not specified, then the number of rows is dynamically adjusted to equal the number of classifier values for the ROWVAR= variable.

If this option is specified, then the specified number of rows is created. If the number of ROWVAR classifier values is greater than the specified number of rows, then no graph is created for some classifier values. If the number of classifier values is smaller than the specified number of rows, then extra empty rows are created.

Interactions: The overall grid size is constrained by the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. As the grid size grows, the
cell size shrinks. To control the minimum size of a cell use the
CELLHEIGHTMIN= and CELLWIDTHMIN= options.

The START= option affects how the rows are populated.

Tip

The PANELNUMBER= option enables you to create multiple smaller
grids that completely partition the classifier values.

ROWWEIGHT=EQUAL | PROPORTIONAL

specifies how weights are assigned to the row heights.

EQUAL

all rows have equal height.

PROPORTIONAL

each row has a height that is proportional to the number of discrete midpoint
values that it contains.

Restriction

At least one row axis must be discrete in order for
PROPORTIONAL to have any effect. Otherwise, EQUAL is used.

Interactions

When ROWDATARANGE=UNIONALL, PROPORTIONAL is
ignored and EQUAL is used.

When PROPORTIONAL is in effect, ROWDATARANGE=AUTO
is interpreted as UNION.

If all of the following conditions are true, then the discrete axis is
used to proportion the rows: PROPORTIONAL is in effect, both
the Y and Y2 axes are used, and only one of the two axes is
discrete. When both axes are discrete, the Y axis is used to
proportion the rows.

When PROPORTIONAL is in effect, the OFFSETMIN= and
OFFSETMAX= axis options are ignored in ROWAXISOPTS= and
ROW2AXISOPTS=. The axis offsets are always set to one-half of
the midpoint spacing regardless of plot type.

Default

EQUAL

SHRINKFONTS=TRUE | FALSE

specifies whether fonts in the layout are scaled, depending on the nesting levels of
the layouts that are used.

Default

FALSE

Note

Fonts maintain their size regardless of the specifications in the nested
layouts.

See

“*boolean*” on page 1339 for other Boolean values that you can use.

SKIPEMPTYCELLS=TRUE | FALSE

specifies whether the external axes skip the empty cells in a partially filled grid.

TRUE

skips empty cells and "snaps" the external axes to the nearest data cell, both
vertically and horizontally. Though the empty cells are not displayed, the data
cells in the grid are not enlarged to fill the area.
FALSE displays external axes at their normal locations, even if there are empty cells at one or more of the locations.

Whenever the number of unique COLUMNVAR= classifier values (data cells) is not evenly divisible by the COLUMNS= value, or the number of unique ROWVAR= classifier values (data cells) is not evenly divisible by the ROWS= value, then one or more panels is partially filled with data cells and padded with empty cells to complete the grid.

Here is an example of a data lattice that consists of 4 column-data cells and 3 row-data cells arranged in a 4-column, 2-row grid. The following figure shows the default appearance of the last panel:

When SKIPEMPTYCELLS=TRUE, the empty padding cells of all panels are removed and external axis ticks and tick values snap to the data cells:

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

SORTORDER=(role-sort-list) specifies the order of the cells along the columns and rows. The role sort list is a list of rolename=sort-order-keyword pairs, enclosed in parentheses.

rolename
a role name, which must be one of the following:

 COLUMNVAR the column role.
 ROWVAR the row variable role.
sort-order-keyword

A sort-order keyword, which must be one of the following:

- **AUTO** sorts using DATA for character data and ascending unformatted for numeric data.
- **DATA** retains the data order.
- **ASCENDINGFORMATTED** sorts in ascending order, using the formatted values.
- **DESCENDINGFORMATTED** sorts in descending order, using the formatted values.

Default: AUTO for all roles.

Tip: The placement of the cells within the layout also depends on the starting location, which is controlled by the `START=` option.

START=TOPLEFT | BOTTOMLEFT

Indicates whether to start populating the grid from the top left or bottom left corner. If ROWVAR=R has values in the sort order 1 and 2 and COLUMNVAR=C has values in the sort order a and b, then START=BOTTOMLEFT is populated as follows:

```
plot  plot R=2
plot  plot R=1
C=a  C=b
```

START=TOPLEFT is populated as follows:

```
plot  plot R=1
plot  plot R=2
C=a  C=b
```

Default: TOPLEFT

SIDEBAR Statement Options

ALIGN=BOTTOM | TOP | LEFT | RIGHT

Specifies the sidebar's location within the layout. You can specify up to four SIDEBAR blocks in a LAYOUT DATALATTICE, one for each of the bottom, top, left, and right sidebar positions.

- The LAYOUT DATALATTICE automatically aligns a sidebar with the layout columns or rows.
- Only one statement (such as ENTRY or DISCRETELEGEND) or one layout block (such as LAYOUT GRIDDED) is allowed in a SIDEBAR block. To create multi-line text in a sidebar, nest ENTRY statements within a LAYOUT GRIDDED block.

Default: BOTTOM
SPACEFILL=TRUE | FALSE

specifies whether to fill all the area of the sidebar with its contents.

Default
TRUE

Tip
To prevent a layout block within the sidebar from expanding to the sidebar boundaries, set this option to FALSE.

See
“boolean” on page 1339 for other Boolean values that you can use.

Details

Statement Description

The LAYOUT DATALATTICE statement makes it easy to create a grid of graphs, based on the values of one or two classifications variables. To create a grid that is based on more than two classification variables, or to have more control over the grid layout, use LAYOUT DATAPANEL instead.

By default, the number of cells in the layout is determined by the number of value pairings that are possible for the classification values plus any empty cells needed to complete the last row or column of the grid. The contents of each data cell are based on a graph prototype that you specify in the **graph-prototype-block**. You can enhance the display using one or more **sidebar-statement-blocks**. For classification variables that have many values, you can use the **COLUMNS=** and or **ROWS=** options and the **PANELNUMBER=** option to generate multiple panel displays.

Classification variables for the layout are specified on the **ROWVAR=** argument (to specify a row variable), or the **COLUMNVAR=** argument (to specify a column), or both arguments to specify both a column and a row variable. The graph prototype for each data cell’s contents is specified within a “**LAYOUT PROTOTYPE Block**” on page 68 block, and sidebars are specified within **SIDEBAR blocks**. The **LAYOUT PROTOTYPE** and **SIDEBAR blocks** are nested within the LAYOUT DATALATTICE block.

By default, the first data cell to be filled is in the layout’s top left corner. Use the **START=** option to change the starting data cell to the bottom left corner.

Rather than display the header labels outside the grid, you can set **HEADERLABELLOCATION= INSIDE** to display them inside the grid, as shown in the following figure:
Note: The DATALATTICE layout is designed to be the outermost layout in the template.

Managing Rows and Columns

If you do not explicitly manage columns and rows using the COLUMNS= and ROWS= options, then the default layout behavior is as follows:

- If both ROWVAR= and COLUMNVAR= are specified, then a data cell is created for each of the value pairings that are possible for the classification values of the specified variables. If the ROWVAR variable has R distinct values and the COLUMNVAR variable has C distinct values, then the dimension of grid produced is R x C.

- If only the ROWVAR variable is used, then an R x 1 grid is produced.

- If only the COLUMNVAR variable is used, then a 1 x C grid is produced.

If the class variable is of type character, then its values are returned in data order. To control the ordering of the values, you can sort the input data by the classification variables. If the class variable is of type numeric, then the values are displayed in ordinal order.

Formats can be assigned to class variables to create classification levels (for example, an AGEGROUPFMT. format for numeric AGE). In this case, the classification is performed after the format is applied. For numeric data, the order is ordinal, based on the first value in each class.

Use the INCLUDEMISSINGCLASS option to control whether cells are displayed when any value crossing contains a missing value.

The output size does not grow automatically as the number of cells increases. To set a panel size for the current template, use the DESIGNHEIGHT= and DESIGNWIDTH= options in the BEGINGRAPH statement. To set a panel size for all templates in the current SAS session, use the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. Size settings in the ODS GRAPHICS statement override size settings in the
BEGINGRAPH statement. The default output width is 640px, and the default output height is 480px.

As the number of cells in the grid increases, the size of each cell decreases. At some point the cells might become so small that a meaningful graph cannot be rendered. The CELLHEIGHTMIN= and CELLWIDTHMIN= options set a threshold for the smallest cell. If the actual cell height or width becomes smaller, then no panel is drawn. The default minimum cell size is CELLHEIGHTMIN=100px and CELLWIDTHMIN=100px.

Using the default panel size and cell size, the DATALATTICE layout accommodates a grid of about 24 cells (6 columns by 4 rows). If you know that the number of cells is larger, then you should increase the overall panel size, or decrease the minimum cell size, or both. You can also use ROWS=, COLUMNS=, and PANELNUMBER= options to partition your data so that a number of smaller grids are produced that cumulatively show all of the value crossings.

Creating YourInset Data
When you use the INSET= option to insert an inset, no predefined information is available for the inset. You must create the desired inset information as part of your input data. This is most typically done as follows:

- Create a separate data set for the inset columns making sure that the column names are different from the other columns used in graph. The number observations of inset data should match the number of cells in the classification panel. The ordering of the inset observations should be the same as the population order of the classification panel’s cells, taking into account the ROWVAR= and COLUMNVAR= arguments and the START= option. Typically, the number of observations for the inset data is smaller than the other input data for the graph.
- Merge the inset data set with the data set for the graph using a DATA or PROC SQL step. Do not match-merge the observations of the two data sets (no BY processing). The resulting data set typically has the inset columns padded with missing values.
- Use the merged data set to produce the graph, specifying the inset column names in this option’s variable-list.

LAYOUT PROTOTYPE Block
You must specify a single LAYOUT PROTOTYPE block within the LAYOUT DATALATTICE block, using the following syntax:

LAYOUT PROTOTYPE </option(s)>;
 GTL-statement(s);
ENDLAYOUT;

The LAYOUT PROTOTYPE block determines the graphical content of each data cell and is repeated within each data cell, based on the subsets of the classification variables.

For more information about the LAYOUT PROTOTYPE block and the list of available options, see “LAYOUT PROTOTYPE Statement” on page 159.

SIDEBAR Blocks
A LAYOUT DATALATTICE enables you to display one or more sidebars outside of the axes. A sidebar spans across columns or rows and is useful for displaying information that applies to all of the columns or all of the rows. For example, sidebars are useful for displaying a legend.

A SIDEBAR statement has the following syntax:
The following example shows a SIDEBAR block that displays a legend at the top of the layout grid.

```gdl
sidebar / align=top;
discretelegend 'p' 'a' / across=2;
endsidebar;
```

Example: LAYOUT DATALATTICE

This example shows the result of using row and column classification variables. In this case, a four-column, three-row data lattice is created:

- The classification values are placed as row or column labels by default.
- The ROWDATARANGE=UNION option assures that an axis range is computed separately for each row using the data ranges of all Y= columns in that row. This facilitates the visual comparison of the data cells.
- A SIDEBAR block is used to place the legend at the bottom of the lattice.

The following graph was generated by the “Example Program” on page 69:

![Graph example](image)

Example Program

```
proc template;
```
define statgraph layoutdatalattice;
begingraph;
entrytitle "Annual Furniture Sales Comparisons";
layout datalattice rowvar=country columnvar=year /
rowdatarange=union
headerlabeldisplay=value
headerbackgroundcolor=GraphAltBlock:color
rowaxisopts=(display=(tickvalues) griddisplay=on
linearopts=(tickvalueformat=dollar12.))
columnaxisopts=(display=(tickvalues)
timeopts=(tickvalueformat=monname3.));
layout prototype / cycleattrs=true;
seriesplot x=month y=TotalActual / name="Actual";
seriesplot x=month y=TotalPredict / name="Predict";
endlayout;
sidebar / align=bottom;
discretelegend "Actual" "Predict" / border=false;
endsidebar;
endlayout;
endgraph;
run;

proc summary data=sashelp.prdsal2 nway;
class country year month;
var actual predict;
output out=prdsal2 sum=TotalActual TotalPredict;
run;

proc sgrender data=prdsal2 template=layoutdatalattice;
run;

LAYOUT DATAPANEL Statement

Creates a grid of graphs based on one or more classification variables and a graphical prototype. By default, a separate instance of the prototype (a data cell) is created for each actual combination of the classification variables.

Restriction: You can specify only one LAYOUT PROTOTYPE block in the LAYOUT DATAPANEL block. If you specify more than one, then only the last prototype block specified is honored. The remaining prototype blocks are ignored.

Tip: The DATAPANEL layout should be the outermost layout in the template.
Syntax

LAYOUT DATAPANEL CLASSVARS=(class-var1…class-varN) <option(s)> ;
LAYOUT PROTOTYPE <option(s)>;
GTL-statements;
ENDLAYOUT;
<SIDEBAR <option(s)>;
GTL-statement(s);
ENDSIDEBAR;
<… more-sidebar-statement-blocks …> >
ENDLAYOUT;

Summary of Optional Arguments

Appearance options

BACKGROUNDCOLOR=style-reference | color
specifies the color of the layout background.

BORDER=TRUE | FALSE
specifies whether a border is drawn around the layout.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

CELLHEIGHTMIN=dimension
specifies the minimum height of a cell in the grid.

CELLWIDTHMIN=dimension
specifies the minimum width of a cell in the grid.

COLUMNGUTTER=dimension
specifies the amount of empty space that is between the columns.

HEADERBACKGROUNDCOLOR=style-reference | color
specifies the background color of the cell headers.

HEADERBORDER=TRUE | FALSE
specifies whether a border is drawn around the header cells.

HEADERLABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

HEADEROPAQUE=TRUE | FALSE
specifies whether the background for cell headers is opaque (TRUE) or transparent (FALSE).

HEADERPACK=TRUE | FALSE
specifies whether the header cells are consolidated into a comma-separated list in order to save space.

HEADERSEPARATOR="string"
specifies one or more characters to place between each value in the cell header when HEADERPACK=TRUE.

HEADERSCPLITCOUNT=positive-integer
specifies the number of headers to consolidate on a header line before splitting the text to the next line.

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.
PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the layout border.

SHRINKFONTS=TRUE | FALSE
specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

SORTORDER=(role-sort-list)
specifies the order of the cells along the columns and rows.

Axis options

COLUMN2AXISOPTS=(axis-options)
specifies X2-axis options for all columns.

COLUMN2DATARANGE=AUTO | UNIONALL | UNION
specifies how the X2-axes of instances of the graph-prototype are scaled.

COLUMNAXISOPTS=(axis-options)
specifies X-axis options for all columns.

COLUMNDATARANGE=AUTO | UNIONALL | UNION
specifies how the X-axes of instances of the graph-prototype are scaled.

ROW2AXISOPTS=(axis-options)
specifies Y2-axis options for all rows.

ROW2DATARANGE=AUTO | UNIONALL | UNION
specifies how the Y2-axes of instances of the graph-prototype are scaled.

ROWAXISOPTS=(axis-options)
specifies Y-axis options for all rows.

ROWDATARANGE=AUTO | UNIONALL | UNION
specifies how the Y-axes of instances of the graph-prototype are scaled.

Inset options

INSET=(variable-list)
specifies what information is displayed in an inset.

INSETOPTS=(appearance-options)
specifies location and appearance options for the inset information.

Layout options

COLUMNS=integer
specifies the number of columns in the layout.

COLUMNWEIGHT=EQUAL | PROPORTIONAL
specifies how weights are assigned to the columns widths.

HEADERLABELDISPLAY=NAMEVALUE | VALUE | NONE
specifies the content of the cell headers.

INCLUDEMISSINGCLASS=TRUE | FALSE
specifies whether to include grid cells for crossings of the CLASSVARS variables that contain a missing value.

ROWGUTTER=dimension
specifies the amount of empty space between the rows.

ROWS=integer
specifies the number of rows in the layout.

ROWWEIGHT=EQUAL | PROPORTIONAL
specifies how weights are assigned to the row heights.

Panel options

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether data cells are populated by column priority or by row priority.

PANELNUMBER=positive-integer
specifies the number of the panel to produce.

SKIPEMPTYCELLS=TRUE | FALSE
specifies whether the external axes skip the empty cells in a partially filled grid.

SPARSE=TRUE | FALSE
specifies whether crossings of the class variables include only the crossings in the data or all possible crossings.

START=TOPLEFT | BOTTOMLEFT
indicates whether to start populating the grid cells from the top left or bottom left corner.

Role options

ROLENAMEN=(role-name-list)
specifies user-defined roles for information contained in data columns.

Required Argument

CLASSVARS=(column-list)
specifies a list of classification variables. By default, a data cell is created for each crossing of these variables in the input data. The total number of grid cells created is the result of a crosstabulation table of all the classification variables plus any empty cells needed to complete the last row or column of the grid. You can request that data cells be generated for all possible crossings, even when the class variables have no values at those crossings. For more information, see the SPARSE= option.

If the class variable is of type character, then its values are returned in data order. To control the ordering of the values, you can sort the input data by the classification variables. If the class variable is of type numeric, then the values are displayed in ordinal order.

Formats can be assigned to class variables to create classification levels (for example, an AGEGROUPFMT. format for numeric AGE). In this case, the classification is performed after the format is applied. For numeric data, the order is ordinal, based on the first value in each class.

Use the INCLUDEMISSINGCLASS option to control whether cells are displayed when any value crossing contains a missing value.

The output size does not grow automatically as the number of cells increases. To set a panel size for the current template, use the DESIGNHEIGHT= and DESIGNWIDTH= options in the BEGINGRAPH statement. To set a panel size for all templates in the current SAS session, use the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. Size settings in the ODS GRAPHICS statement override size settings in the BEGINGRAPH statement. The default output width is 640px, and the default output height is 480px.

As the number of cells in the grid increases, the size of each cell decreases. At some point the cells might become so small that a meaningful graph cannot be rendered. The CELLHEIGHTMIN= and CELLWIDTHMIN= options set a threshold for the smallest cell. If the actual cell height or width becomes smaller, then no panel is drawn. The default minimum cell size is CELLHEIGHTMIN=100px and CELLWIDTHMIN=100px.

Using the default panel size and cell size, the DATAPANEL layout accommodates a grid of about 24 cells (6 columns by 4 rows). If you know that the number of cells is
larger, then you should increase the overall panel size, or decrease the minimum cell size, or both. You can also use \texttt{ROWS=}, \texttt{COLUMNS=}, and \texttt{PANELNUMBER=} options to partition your data so that a number of smaller grids are produced that cumulatively show all of the value crossings.

\textbf{Optional Arguments}

\textbf{BACKGROUND\texttt{COLOR=}style-reference \text_|\text{ color}}

specifies the color of the layout background.

\texttt{style-reference}

specifies a style reference in the form \texttt{style-element:style-attribute}. Only the style attribute named \texttt{COLOR} or \texttt{CONTRASTCOLOR} is used.

\begin{itemize}
 \item \textbf{Default}: The GraphBackground:Color style reference.
 \item \textbf{Interaction}: \texttt{OPAQUE=}TRUE must be in effect for the color to be seen. By default, \texttt{OPAQUE=}FALSE.
\end{itemize}

\texttt{BORDER=}TRUE \text_|\text{ FALSE}

specifies whether a border is drawn around the layout.

\begin{itemize}
 \item \textbf{Default}: FALSE
 \item \textbf{Interaction}: If this option is set to FALSE, then the \texttt{BORDERATTRS=} option is ignored.
 \item \textbf{See}: “boolean ” on page 1339 for other Boolean values that you can use.
\end{itemize}

\texttt{BORDERATTRS=}style-element \text_|\text{ style-element (line-options)} \text_|\text{ (line-options)}

specifies the attributes of the border line around the layout.

\begin{itemize}
 \item \textbf{Default}: The GraphBorderLines style element.
 \item \textbf{Interaction}: \texttt{BORDER=} TRUE must be set for this option to have any effect.
 \item \textbf{See}: “General Syntax for Attribute Options” on page 1347 for the syntax on using a \texttt{style-element}.
 \texttt{“Line Options” on page 1349 for available line-options.}
\end{itemize}

\texttt{HEADERBORDER=}TRUE \text_|\text{ FALSE}

specifies whether a border is drawn around the header cells.

\textit{Note}: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\begin{itemize}
 \item \textbf{Default}: TRUE
 \item \textbf{Tip}: The border attributes are controlled by the GraphBorderLines style element.
 \item \textbf{See}: “boolean ” for other Boolean values that you can use.
\end{itemize}

\texttt{CELLHEIGHTMIN=}dimension

specifies the minimum height of a cell in the grid. Use this option in conjunction with the \texttt{CELLWIDTHMIN=} option to set the minimum cell size.
The overall size of the panel is constrained by the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. As the number of cells in the grid increases, the size of each cell decreases. At some point the cell becomes so small that a meaningful graph cannot be rendered. This option sets the minimum height threshold for all cells. If the actual cell height becomes smaller, then no panel is drawn.

Default 100px

See “dimension” on page 1340

CELLWIDTHMIN=\textit{dimension}

specifies the minimum width of a cell in the grid. Use this option in conjunction with the CELLHEIGHTMIN= option to set the minimum cell size.

The overall size of the panel is constrained by the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. As the number of cells in the grid increases, the size of each cell decreases. At some point the cell becomes so small that a meaningful graph cannot be rendered. This option sets the minimum width threshold for all cells. If the actual cell width becomes smaller, then no panel is drawn.

Default 100px

See “dimension” on page 1340

COLUMNAXISOPTS=\textit{(axis-options)}

specifies X-axis options for all columns.

Restriction Axis options must be enclosed in parentheses and separated by spaces.

See “Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” for a list of options.

COLUMN2AXISOPTS=\textit{(axis-options)}

specifies X2-axis options for all columns.

Restriction This option is needed only if you use a plot statement that supports a secondary X2 axis. If you do not use that statement’s XAXIS= option to map data to the X2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876.

Requirement Axis options must be enclosed in parentheses and separated by spaces.

See “Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” for a list of options.

COLUMNDATARANGE=\textbf{AUTO | UNIONALL | UNION}

specifies how the X-axes of instances of the graph-prototype are scaled.

AUTO selects the X-axis scale based on the COLUMNWEIGHT= option and the column axis type, as follows:

- When COLUMNWEIGHT=EQUAL (default), UNIONALL is selected.
- When COLUMNWEIGHT=PROPORTIONAL and the column axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.
UNIONALL
scales the X-axis data ranges across all layout columns and panels (when PANELNUMBER= is in effect).

UNION
scales the X-axis data ranges separately for each column on a per-panel basis.
The scaling does not span multiple panels.

Default AUTO

Tip Use the COLUMNAXISOPTS= option to control shared axis features.

See The COLUMNWEIGHT= option.

The PANELNUMBER= option for information about how to create multiple panels.

COLUMN2DATARANGE=AUTO | UNIONALL | UNION
specifies how the X2-axes of instances of the graph-prototype are scaled.

AUTO
automatically selects the X2-axis scale based on the COLUMNWEIGHT= option and the column axis type, as follows:

• When COLUMNWEIGHT=EQUAL (default), UNIONALL is selected.
• When COLUMNWEIGHT=PROPORTIONAL and the column axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.

UNIONALL
scales the X2-axis data ranges across all layout columns and panels (when PANELNUMBER= is in effect).

UNION
scales the X2-axis data ranges separately for each column on a per-panel basis.
The scaling does not span multiple panels.

Default AUTO

Interaction This option is needed only if you use a plot statement that supports a secondary X2 axis. If you do not use that statement’s XAXIS= option to map data to the X2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876

Tip Use the COLUMN2AXISOPTS= option to control shared axis features.

See The COLUMNWEIGHT= option.

The PANELNUMBER= option for information about how to create multiple panels.

COLUMNGUTTER=dimension
specifies the amount of empty space that is between the columns.

Default 0

Note If there are n columns, then there are n-1 gutters.

See “dimension” on page 1340
COLUMNS=integer
specifies the number of columns in the layout.

Defaults
If this option is not specified and ROWS= is specified, then the number of data cells (and columns) increases dynamically to allow all classifier values to be presented.

If both this option and ROWS= are specified, then a grid of that size is created, regardless of the number of classifier values. If the number of classifier values is greater than the grid size, then no graphs are created for some classifier values. If the number of classifier values is small and the grid size large, then there might be empty cells created.

Interactions
The overall grid size is constrained by the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. As the grid size grows, the cell size shrinks. To control the minimum size of a cell use the CELLIHEIGHTMIN= and CELLIWIDTHMIN= options.

The START= and ORDER= options affect the how the rows are populated.

The PANELNUMBER= option enables you to create multiple smaller grids that completely partition the classifier values.

COLUMNWEIGHT=EQUAL | PROPORTIONAL
specifies how weights are assigned to the columns widths.

EQUAL
all columns have equal width.

PROPORTIONAL
each column has a width that is proportional to the number of discrete midpoint values that it contains.

Restriction
At least one column axis must be discrete in order for PROPORTIONAL to have any effect. Otherwise, EQUAL is used.

Interactions
When COLUMNNDATARANGE=UNIONALL, PROPORTIONAL is ignored and EQUAL is used.

When PROPORTIONAL is in effect, COLUMNNDATARANGE=AUTO is interpreted as UNION.

If all of the following conditions are true, then the discrete axis is used to proportion the columns: PROPORTIONAL is in effect, both the X and X2 axes are used, and only one of the two axes is discrete. If both axes are discrete, then the X axis is used to proportion the columns.

When PROPORTIONAL is in effect, the OFFSETMIN= and OFFSETMAX= axis options are ignored in COLUMNAXISOPTS= and COLUMN2AXISOPTS=. The axis offsets are always set to one-half of the midpoint spacing regardless of plot type.

Default EQUAL
HEADERBACKGROUNDCOLOR = *style-reference* | *color*

specifies the background color of the cell headers.

style-reference

specifies a style reference in the form *style-element*:style-attribute. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default: The GraphHeaderBackground:Color style reference.

Interaction: **HEADEROPAQUE** = TRUE must be in effect for the color to be seen.

HEADERLABELATTRS = *style-element* | *style-element* (text-options) | (text-options)

specifies the color and font attributes of the data labels.

Default: The GraphValueText style element.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.

“Text Options” on page 1351 for available text-options.

HEADERLABELDISPLAY = NAMEVALUE | VALUE | NONE

specifies the content of the cell headers.

NAMEVALUE

displays the classification variable name and value as a name=value pair in each cell header.

Example: If the classification variables are Country and Product, then **HEADERLABEL** = NAMEVALUE produces cell headers such as the following:

```
Country=CANADA
Product=TABLE
```

VALUE

displays the classification variable value only in each cell header.

Example: If the classification variables are Country and Product, then **HEADERLABEL** = VALUE produces cell headers such as the following:

```
CANADA
TABLE
```

NONE

suppresses the cell headers.

Default: NAMEVALUE

HEADEROPAQUE = TRUE | FALSE

specifies whether the background for cell headers is opaque (TRUE) or transparent (FALSE).

Default: TRUE

Interaction: When this option is set to FALSE, the background color for cell headers is not used.
See “boolean” on page 1339 for other Boolean values that you can use.

HEADERPACK=TRUE | FALSE

specifies whether the header cells are consolidated into a comma-separated list in order to save space.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

The following figure shows the effect of HEADERPACK= on the cell headers in one row of a data lattice. The data lattice contains classification variables Country, Year, and Product.

<table>
<thead>
<tr>
<th>HEADERPACK=FALSE</th>
<th>HEADERPACK=TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Country</td>
</tr>
<tr>
<td>1995</td>
<td>1996</td>
</tr>
<tr>
<td>DESK</td>
<td>DESK</td>
</tr>
<tr>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>1997</td>
<td>1998</td>
</tr>
<tr>
<td>DESK</td>
<td>DESK</td>
</tr>
<tr>
<td>Canada, 1995, DESK</td>
<td>Canada, 1996, DESK</td>
</tr>
</tbody>
</table>

Default FALSE

Note If the length of the cell header text exceeds the available width, then the text is truncated.

Tip If truncation occurs, then use the HEADERSPLITCOUNT= option to split the cell header text into multiple lines.

See “boolean” on page 1339 for other Boolean values that you can use.

HEADERSEPARATOR=“string”

specifies one or more characters to place between each value in the cell header when HEADERPACK=TRUE.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default A comma followed by a space

Interaction This option is ignored when HEADERPACK=FALSE.

HEADERSPLITCOUNT=positive-integer

specifies the number of headers to consolidate on a header line before splitting the text to the next line.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.
The following figure shows how HEADERSPLITCOUNT=2 splits the cell header value in a data panel of classification variables Country, Year, and Product.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESK</td>
<td>DESK</td>
<td>DESK</td>
<td>DESK</td>
</tr>
</tbody>
</table>

Default
The cell header text is not split.

Interaction
This option is ignored when HEADERPACK=FALSE.

Note
If the length of the cell header text exceeds the available width, then the text is truncated.

Tip
Use the HEADERSEPARATOR= option to specify a different separator.

INCLUDEMISSINGCLASS=TRUE | FALSE
specifies whether to include grid cells for crossings of the CLASSVARS variables that contain a missing value.

TRUE
any crossing of the class variables that includes a missing value produces a row or column of cells in the grid.

FALSE
any crossing of the class variables that includes a missing value does not produce a row or columns of cells in the grid.

By default, missing class values are included in the classification. When the data contains missing classification values, cells are created for the missing classes. The classification headers for the missing values are blank for missing string values or a dot for missing numeric values. You can use the INCLUDEMISSINGCLASS=FALSE option to exclude the missing values. If you want to keep the missing values, then you can create a format that specifies more meaningful headings for the missing classes. For an example, see “Missing Class Values” in SAS Graph Template Language: User's Guide.

Note: ODS Graphics does not support Unicode values in user-defined formats in the second maintenance release of SAS 9.4 and in earlier releases. Starting with the third maintenance release of SAS 9.4, ODS Graphics supports Unicode values in user-defined formats only if they are preceded by the (*ESC*) escape sequence. Example: "(*ESC*){unicode beta}". ODS Graphics does not support an escape character that is defined in an ODS ESCAPECHAR statement in user-defined formats.

Default
TRUE

See
“boolean” on page 1339 for other Boolean values that you can use.

INSET=(variable-list)
specifies what information is displayed in an inset. The variable-list defines one or more variables whose names and values appear as a small table in the data cells. The variables can be either numeric or character. Variable names are separated by spaces.
Requirement No predefined information is available for the inset. You must create
the desired inset information as part of your input data. See “Creating
Your Inset Data” on page 68.

Note The variable values are associated with the data cells by data order.
That is, the first observation from all the variables in variable-list are
used in the first data cell, the second observation from all variables in
variable-list are used in the second data cell, and so on. If a value is
missing for an observation, then the corresponding name-value pair is
skipped in the affected data cell.

Tip The location and appearance of the inset is controlled by the
INSETOPTS= option.

See “Adding Insets to Your Graph” in SAS Graph Template Language:
User’s Guide

INSETOPTS=(appearance-options)
specifies location and appearance options for the inset information. The appearance
options can be any one or more of the following values:

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the inset is automatically aligned within the layout.

NONE does not automatically align the inset. This inset’s position is set by the
HALIGN= and VALIGN=appearance-options.

AUTO attempts to center the inset in the area that is farthest from any surrounding
markers. Data cells might have different inset placements.

(location-list)
restricts the inset’s possible locations to those locations in the specified
location-list, and uses the location-list position that least collides with the
data cell’s other graphics features. The location-list is a space-separated list
that can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT,
CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Example AUTOALIGN=(TOPRIGHT TOPLEFT)

Default NONE

Interaction When AUTOALIGN=AUTO or (location-list), the HALIGN= and
VALIGN= options are ignored.

BACKGROUNDCOLOR=style-reference | color
specifies the color of the inset background.

style-reference
specifies a style reference in the form style-element : style-attribute. Only the
COLOR and CONTRASTCOLOR style attributes are valid.

Default The background is transparent. No color is assigned.

BORDER=TRUE | FALSE
specifies whether a border is displayed around the inset.
CONTENTDISPLAY=LABELVALUE | VALUE
specifies whether the variable information that is displayed in the inset includes the column label and value, or only the column value.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

If a label is not assigned to a column, then the column name is used as the label for that column. Consider the following inset data:

<table>
<thead>
<tr>
<th>Obs</th>
<th>TYPE</th>
<th>Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SS1</td>
<td>94.359</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The following figure shows the effect that the CONTENTDISPLAY= option has on the content of an inset that displays this data.

<table>
<thead>
<tr>
<th>LABELVALUE</th>
<th>LABELVALUE with SEPARATOR=“=”</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Value 94.359</td>
<td>F Value = 94.359</td>
<td>94.359</td>
</tr>
<tr>
<td>Pr > F <.0001</td>
<td>Pr > F = <.0001</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Tip Use the SEPARATOR= option to specify a separator other than the default blank space.

DATASCHEM=LIST | MATCHED
specifies the scheme that was used to merge the inset information into the analysis data.

LIST
one-to-one merging (no BY statement) was used to merge the inset and analysis data. The variable values are associated with the cells of the data lattice by using data order. That is, the inset variable values in the first observation are used in the inset for the first cell, the inset variable values in the second observation are used in the inset for the second cell, and so on.

MATCHED
match-merging (using a BY statement) was used to merge the inset and analysis data.

Default LIST

Tip MATCHED is the preferred data scheme for merging the inset and analysis data.

See “Adding Insets to Classification Panels” in SAS Graph Template Language: User's Guide

HALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the inset.
This option has an effect only when this layout is nested within a region layout or when this layout is nested in an overlay-type layout and AUTOALIGN=NONE.

OPAQUE=TRUE | FALSE
specifies whether the inset background is opaque (TRUE) or transparent (FALSE).

Default | **FALSE**

Interaction | When OPAQUE=FALSE, the background color is not used.

See | “boolean” on page 1339 for other Boolean values that you can use.

SEPARATOR=”string”
specifies a new separator for the column label and value.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default | A blank space

Interaction | This option is ignored when CONTENTDISPLAY=VALUE.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the entire inset, excluding the title.

Default | The GraphDataText style element.

See | “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

TITLE=”string”
specifies a title for the inset. The title is added at the top of the inset and spans the full inset width.

Note | Space is not reserved for the title when this value is not specified.

Tip | Text properties for the title string can be specified with TITLEATTRS=.

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the inset’s title string.

Default | The GraphValueText style element.

See | “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

V ALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the inset.

Default | TOP
Interaction: This option has effect only when this layout is nested within a region layout or when this layout is nested in an overlay-type layout and AUTOALIGN=NONE.

Requirements: The options must be enclosed in parentheses.

Each option must be specified as a name = value pair, and each pair must be separated by a space.

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default: FALSE

Interaction: When this option is set to FALSE, the background color is not used.

See: “boolean” on page 1339 for other Boolean values that you can use.

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether data cells are populated by column priority or by row priority.

ROWMAJOR
fills the data cells by rows, from the starting position.

COLUMNMAJOR
fills the data cells by columns, from the starting position.

Default: ROWMAJOR

Interaction: The starting point for rendering data cells is controlled by the START= option. See the START= option for examples.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.

RIGHT=dimension specifies the amount of extra space to add to the right side.

TOP=dimension specifies the amount of extra space to add to the top.

BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note: Sides that are not assigned padding are padded with the default amount.
Tip Use `pad-options` to create non-uniform padding.

Default AUTO

Note The default units for `dimension` are pixels.

See “`dimension`” on page 1340

PAD=dimension | (pad-options)

specifies the amount of extra space that is added inside the layout border.

`dimension`

specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

`LEFT=dimension`

specifies the amount of extra space added to the left side.

Default 0

`RIGHT=dimension`

specifies the amount of extra space added to the right side.

Default 0

`TOP=dimension`

specifies the amount of extra space added to the top.

Default 0

`BOTTOM=dimension`

specifies the amount of extra space added to the bottom.

Default 0

Note Sides that are not assigned padding are padded with the default amount.

Tip Use `pad-options` to create non-uniform padding.

Note The default units for `dimension` are pixels.

See “`dimension`” on page 1340

PANELNUMBER=positive-integer

specifies the number of the panel to produce. This option enables you to partition a large grid into a number of smaller sized grids under these conditions:

- You set a grid size explicitly (`ROWS=` and `COLUMNS=` options).
- The grid size (`gridrows x gridcolumns`) is smaller than the total number of classifier levels.
- You execute the template N times and increment the panel number each time. N is determined by `CEIL(total-classification-levels / gridrows x gridcolumns)`.
Example Suppose there are two classifiers (CLASS1 has 10 unique values and CLASS2 has 11 unique values). By setting some smaller grid size, say ROWS=3 and COLUMNS=4, and making the value of PANELNUMBER= a dynamic or macro variable, you can create 10 panels (9 panels with 12 data cells and 1 panel with 2 data cells) that collectively display all 110 possible crossings. You simply invoke PROC SGRENDERS or a DATA step 10 times, incrementing the dynamic value for PANELNUMBER each time.

ROLENAME=(role-name-list)
specifies user-defined roles for information contained in data columns. The role name list is a space-separated list role-name=column pairs.

Default no user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles.

Example The following example assigns the column Obs to the user-defined role TIP1.
ROLENAME=(TIP1=OBS)

ROWAXISOPTS=(axis-options)
specifies Y-axis options for all rows.

Requirement Axis options must be enclosed in parentheses and separated by spaces.

See “Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” on page 1032 for a list of options.

ROW2AXISOPTS=(axis-options)
specifies Y2-axis options for all rows.

Requirement Axis options must be enclosed in parentheses and separated by spaces.

Interaction This option is needed only if you use a plot statement that supports a secondary Y2 axis. If you do not use that statement’s YAXIS= option to map data to the Y2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876

See “Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL” on page 1032 for a list of options.

ROWDATARANGE=AUTO | UNIONALL | UNION
specifies how the Y-axes of instances of the graph-prototype are scaled.

AUTO automatically selects the Y-axis scale based on the ROWWEIGHT= option and the column axis type, as follows:

• When ROWWEIGHT=EQUAL (default), UNIONALL is selected.
• When ROWWEIGHT=PROPORTIONAL and the row axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.
UNIONALL
scales the Y-axis data ranges across all layout rows and panels (when PANELNUMBER= is in effect).

UNION
scales the Y-axis data ranges separately for each row in the layout on a per-panel basis. The scaling does not span multiple panels.

Default AUTO

Tip Use the ROWAXISOPTS= option to control shared axis features.

See The ROWAXISELECTION= option.

The PANELNUMBER= option for information about how to create multiple panels.

ROW2DATARANGE=AUTO | UNIONALL | UNION
specifies how the Y2-axes of instances of the graph-prototype are scaled.

AUTO
automatically selects the Y2-axis scale based on the ROWWEIGHT= option and the column axis type, as follows:

• When ROWWEIGHT=EQUAL (default), UNIONALL is selected.
• When ROWWEIGHT=PROPORTIONAL and the row axis is discrete, UNION is selected. Otherwise, UNIONALL is selected.

UNIONALL
scales the Y2-axis data ranges across all layout rows and panels (when PANELNUMBER= is in effect).

UNION
scales the Y2-axis data ranges separately for each row in the layout on a per-panel basis. The scaling does not span multiple panels.

Default AUTO

Interaction This option is needed only if you use a plot statement that supports a secondary Y2 axis. If you do not use that statement’s YAXIS= option to map data to the Y2 axis, then this option is ignored. For more information about how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876

Tip Use the ROW2AXISOPTS= option to control shared axis features.

See The ROWAXISOPTS= option.

The PANELNUMBER= option for information about how to create multiple panels.

ROWGUTTER=dimension
specifies the amount of empty space between the rows.

Default 0

Note If there are n rows, then there are n-1 gutters.

See “dimension” on page 1340
ROWS=integer
specifies the number of rows in the layout.

Defaults
If this option is not specified and COLUMN= is specified, then the number of data cells (and rows) increases dynamically to allow all classifier values to be presented.

If both this option and COLUMN= are specified, then a grid of that size is created, regardless of the number of classifier values. If the number of classifier values is greater than the grid size, then no graphs are created for some classifier values. If the number of classifier values is small and the grid size large, then there might be empty cells created.

Interactions
The overall grid size is constrained by the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. As the grid size grows, the cell size shrinks. To control the minimum size of a cell use the CELLHEIGHTMIN= and CELLWIDTHMIN= options.

The START= and ORDER= options affect how the rows are populated.

Tip
The PANELNUMBER= option enables you to create multiple smaller grids that completely partition the classifier values.

ROWWEIGHT=EQUAL | PROPORTIONAL
specifies how weights are assigned to the row heights.

EQUAL
all rows have equal height.

PROPORTIONAL
each row has a height that is proportional to the number of discrete midpoint values that it contains.

Restriction
At least one row axis must be discrete in order for PROPORTIONAL to have any effect. Otherwise, EQUAL is used.

Interactions
When ROWDATARANGE=UNIONALL, PROPORTIONAL is ignored and EQUAL is used.

When PROPORTIONAL is in effect, ROWDATARANGE=AUTO is interpreted as UNION.

If all of the following conditions are true, then the discrete axis is used to proportion the rows: PROPORTIONAL is in effect, both the Y and Y2 axes are used, and only one of the two axes is discrete. When both axes are discrete, the Y axis is used to proportion the rows.

When PROPORTIONAL is in effect, the OFFSETMIN= and OFFSETMAX= axis options are ignored in ROWAXISOPTS= and ROW2AXISOPTS=. The axis offsets are always set to one-half of the midpoint spacing regardless of plot type.

Default
EQUAL
SHRINKFONTS=TRUE | FALSE
specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

Default FALSE

Note Fonts maintain their size regardless of the specifications in the nested layouts.

See “boolean” on page 1339 for other Boolean values that you can use.

SKIPEMPTYCELLS=TRUE | FALSE
specifies whether the external axes skip the empty cells in a partially filled grid.

TRUE
 skips empty cells and "snaps" the external axes to the nearest data cell, both vertically and horizontally. Though the empty cells are not displayed, the data cells in the grid are not enlarged to fill the area.

FALSE
 displays external axes at their normal locations, even if there are empty cells at one or more of the locations.

Whenever the total number of classifier crossings (data cells) is not evenly divisible by the panel size (columns * rows), the last panel is partially filled with data cells and padded with empty cells to complete the grid.

Here is an example of a data panel that consists of 16 data cells arranged in a 4-column, 3-row grid. The following figure shows the default appearance of the last panel:

When SKIPEMPTYCELLS=TRUE, the empty padding cells of the last panel are removed and external axis ticks and tick values snap to the data cells:
Note that SKIPEMPTYCELLS=TRUE removes only the empty padding cells on the last panel. It does not remove any data cells that have no crossing values and therefore no graph (these data cells are displayed when SPARSE=TRUE).

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

SORTORDER=(role-sort-list)

specifies the order of the cells along the columns and rows. The role sort list is a list of rolename=sort-order-keyword pairs, enclosed in parentheses.

rolename

a role that is defined by the ROLENAME= option.

Note Roles that are not class variables are ignored.

sort-order-keyword

a sort-order keyword, which must be one of the following:

AUTO sorts using DATA for character data and ascending unformatted for numeric data.

DATA retains the data order.

ASCENDINGFORMATTED sorts in ascending order, using the formatted values.

DESCENDINGFORMATTED sorts in descending order, using the formatted values.

Default AUTO for all roles.

Tip The placement of the cells within the layout also depends on the starting location, which is controlled by the START= option.

SPARSE=TRUE | FALSE

specifies whether crossings of the class variables include only the crossings in the data or all possible crossings.
FALSE
specifies that data cells are created only for crossings of the class variables that are in the data.

TRUE
specifies that the number of data cells is the product of the unique values for each classification variable.

By default, if a crossing of the class variables has a missing value as part of the data, then a data cell is created for it.

Here is an example of a classification panel where the classification variables are COUNTRY and STATE. There are 3 distinct values of COUNTRY (Canada, Mexico, and U.S.A.) Within Canada and Mexico there are 4 states, and within U.S.A. there are 8 states. All state names are unique to each country. Therefore, there are 16 unique STATE values and 48 unique crossings of COUNTRY and STATE, but there are data for only 16 of the crossings.

Assume that a data panel layout is created with COLUMNS=6 and SPARSE=TRUE, meaning to display all possible crossings. This is what the first row would look like. Blank data cells are added whenever there are no data values for a crossing:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>British Columbia</td>
<td>Ontario</td>
<td>Quebec</td>
<td>Saskatchewan</td>
<td>Baja California Norte</td>
<td>Campeche</td>
</tr>
</tbody>
</table>

When SPARSE=FALSE the crossings of the classifiers with no data are automatically removed. This compacts the display:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
<td>Canada</td>
<td>Mexico</td>
<td>Mexico</td>
</tr>
<tr>
<td>British Columbia</td>
<td>Ontario</td>
<td>Quebec</td>
<td>Saskatchewan</td>
<td>Baja California Norte</td>
<td>Campeche</td>
</tr>
</tbody>
</table>

Default FALSE

See "boolean " on page 1339 for other Boolean values that you can use.

START=TOPLEFT | BOTTOMLEFT
indicates whether to start populating the grid cells from the top left or bottom left corner. If ORDER=ROWMAJOR (the default) and START=TOPLEFT (the default), then a 2 row 2 column grid is populated as shown in the following figure.
If ORDER=ROWMAJOR (the default) and START=BOTTOMLEFT, then a 2 row 2 column grid is populated as shown in the following figure.

If ORDER=COLUMNMAJOR and START=BOTTOMLEFT, then a 2 row 2 column grid is populated as shown in the following figure.

If ORDER=COLUMNMAJOR and START=TOPLEFT, then a 2 row 2 column grid is populated as shown in the following figure.

SIDEBAR Optional Argument

ALIGN=BOTTOM | TOP | LEFT | RIGHT

specifies the sidebar’s location within the layout. You can specify up to four SIDEBAR blocks in a LAYOUT DATAPANEL, one for each of the bottom, top, left, and right sidebar positions.

- The LAYOUT DATAPANEL automatically aligns a sidebar with the layout columns or rows.
- Only one statement (such as ENTRY or DISCRETELEGEND) or one layout block (such as LAYOUT GRIDDED) is allowed in a SIDEBAR block. To create multi-line text in a sidebar, nest ENTRY statements within a LAYOUT GRIDDED block.
Default: BOTTOM

SPACEFILL=TRUE | FALSE
specifies whether to fill all the area of the sidebar with its contents.

Default: TRUE

Tip
To prevent a layout block within the sidebar from expanding to the sidebar boundaries, set this option to FALSE.

See
“boolean” on page 1339 for other Boolean values that you can use.

Details

Statement Description

The LAYOUT DATAPANEL statement creates a grid of graphs, based on the values of one or more classifications variables. The main differences between this layout and the DATALATTICE layout is that this layout supports more than two classification variables, and it provides more control over the grid layout.

By default, the number of cells in the layout is determined by a crosstabulation table of all the classification variables plus any empty cells needed to complete the last row or column of the grid. The contents of each data cell are based on a graph prototype that you specify in the `graph-prototype-block`. You can enhance the display using one or more `sidebar-statement-blocks`. For classification variables that have many values, you can use the `COLUMNS=` option or the `ROWS=` option, or both with the `PANELNUMBER=` option to generate multiple panel displays.

The order of the value pairings for the classification variables is determined by the order that the variables are specified on the `CLASSVARS=` argument. The last named variable’s values vary most rapidly (like nested DO loops). Variable values are always returned in data order.

By default, the first data cell to be filled is in the layout’s top left corner, and data cells are filled from left-to-right, top-to-bottom. Use the `START=` option to change the starting data cell to the bottom left corner, and use the `ORDER=` option to determine whether data cells fill by column or by row. See the `START=` option for illustrations on how `START=` and `ORDER=` interact to manage the fill sequence for data cells.

Note: The DATAPANEL layout is designed to be the outermost layout in the template.

Prototype Block

You must specify a single `graph-prototype-block` within the LAYOUT DATAPANEL block, using the following syntax:

```
LAYOUT PROTOTYPE <option(s)>;
   GTL-statements;
ENDLAYOUT;
```

The `graph-prototype-block` determines the graphical content of each data cell and is repeated within each data cell, based on the subsets of the classification variables.

For more information about the LAYOUT PROTOTYPE block and the list of available options, see “LAYOUT PROTOTYPE Statement” on page 159.
Sidebar Blocks
A LAYOUT DATAPANEL enables you to display *sidebars* outside of the axis areas. A sidebar spans across columns or rows and is useful for displaying information that applies to all of the columns or all of the rows. For example, sidebars are useful for displaying a legend.

A SIDEBAR statement has the following syntax:

```
SIDEBAR{/ option(s) };
   GTL-statement(s);
ENDSIDEBAR;
```

The following example shows a SIDEBAR block that displays a legend at the top of the layout grid.

```
sidebar / align=top;
   discretelegend 'p' 'a' / across=2;
endsidebar;
```

Creating Your Inset Data
When you use the **INSET=** option to insert an inset, no predefined information is available for the inset. You must create the desired inset information as part of your input data. This is most typically done as follows (see the chapter on classification panels and the chapter on insets in *SAS Graph Template Language: User's Guide* for complete examples):

- Create a separate data set for the inset columns making sure that the column names are different from the other columns used in graph. The number observations of inset data should match the number of cells in the classification panel. The ordering of the inset observations should be the same as population order of the cells of the classification panel, taking into account the **CLASSVARS=** argument and the **ORDER=** and **START=** options. Typically, the number of observations for the inset data is smaller than the other input data for the graph.

- Merge the inset data set with the data set for the graph using a DATA or PROC SQL step. Do not match-merge the observations of the two data sets (no BY processing). The resulting data set typically has the inset columns padded with missing values.

- Use the merged data set to produce the graph, specifying the inset column names in this option’s variable-list.

Example: LAYOUTDATAPANEL Statement

This example shows a four-column, three-row data panel using two classification variables. With this layout, each data cell is subsetted and labeled with the values of the classification variables.

- The **ROWDATARANGE=UNION** option assures that an axis range is computed separately for each row using the data ranges of all Y= columns in that row. This facilitates the visual comparison of the data cells.

- A SIDEBAR block is used to place the legend at the bottom of the lattice.
Example Graph

The following graph was generated by the “Example Program” on page 95:

```
Example Program

proc template;
   define statgraph layoutdatapanel;
   begingraph;
      entrytitle "Annual Furniture Sales Comparisons";
      layout datapanel classvars=(country year) /
         columns=4 rows=3 rowdatarange=union
         headerlabeldisplay=value
         headerbackgroundcolor=GraphAltBlock:color
         rowaxisopts=(display=(tickvalues) griddisplay=on
                        linearopts=(tickvalueformat=dollar12.))
         columnaxisopts=(display=(tickvalues)
                          timeopts=(tickvalueformat=monname3.));
      layout prototype / cycleattrs=true;
      seriesplot x=month y=TotalActual / name="Actual";
      seriesplot x=month y=TotalPredict / name="Predict";
      endlayout;
      sidebar / align=top;
      discretelegend "Actual" "Predict" / border=false;
      endsidebar;
      endlayout;
   endgraph;
end;
run;

proc summary data=sashelp.prdsal2 nway;
```

class country year month;
var actual predict;
output out=prdsal2 sum=TotalActual TotalPredict;
run;

proc sgrender data=prdsal2 template=layoutdatapanel;
run;

LAYOUT GLOBALLEGEND Statement

Creates a compound legend containing multiple discrete legends positioned at the bottom of a graph.

Restrictions:

- Only one global legend is allowed in a graph.
- The LAYOUT GLOBALLEGEND statement must be placed directly inside the BEGINGRAPH block. It is not valid outside of the BEGINGRAPH block.
- Continuous legends are not supported inside the global legend.
- When the LAYOUT GLOBALLEGEND block is used, all of the template's legend statements must be specified within the LAYOUT GLOBALLEGEND block. Any legend statements that are specified outside of the LAYOUT GLOBALLEGEND block are ignored.

See: “DISCRETELEGEND and MERGEDLEGEND Statements” on page 1109

Syntax

LAYOUT GLOBALLEGEND </option(s)>;

<discreteLegend-statement(s) | mergedLegend-statement(s)>;
ENDLAYOUT;

Summary of Optional Arguments

Appearance options

- **BORDER=** TRUE | FALSE
 specifies whether a border is drawn around the layout.

- **BORDERATTRS=** style-element | style-element (line-options) | (line-options)
 specifies the attributes of the border line around the layout.

- **DISPLAYCLIPPED=** TRUE | FALSE
 specifies whether the global legend is displayed when any portion of its nested legends cannot be fully rendered because of space constraints.

- **GUTTER=** dimension
 specifies the gap between nested layouts.

- **OUTERPAD=** AUTO | dimension | (pad-options)
 specifies the amount of extra space to add outside the layout border.

- **PAD=** dimension | (pad-options)
 specifies the amount of extra space that is added inside the layout border.

- **TYPE=** ROW | COLUMN
 specifies whether nested legends are arranged into a single row or column.

- **WEIGHTS=** UNIFORM | PREFERRED | (weight-list)
 specifies the preferred space allocation for the nested legends.

Legend title options
LEGENDTITLEPOSITION=LEFT | TOP
specifies the position of each nested legend’s title.

TITLE="string"
specifies a title for the global legend.

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the global legend title.

Location options

HALIGN=CENTER | LEFT | RIGHT
specifies the layout’s horizontal alignment within the graph area that is defined by the BEGINGRAPH block.

Optional Arguments

BORDER=TRUE | FALSE
specifies whether a border is drawn around the layout.

Default FALSE

Interaction If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See “boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default The GraphBorderLines style element.

Interaction BORDER= TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

DISPLAYCLIPPED=TRUE | FALSE
specifies whether the global legend is displayed when any portion of its nested legends cannot be fully rendered because of space constraints. When the graph size is reduced, parts of a nested legend (title, legend symbol, or legend value) might be clipped (truncated). When clipping occurs and this option is FALSE, the entire global legend is removed from the graph and the space for it is reclaimed by the remainder of the graph. When this option is TRUE, the global legend always appears, even if some parts of the nested legends have been clipped.

Default FALSE

Interaction This option overrides any DISPLAYCLIPPED option that is set on its nested legend statements.

See “boolean” on page 1339 for other Boolean values that you can use.

GUTTER=dimension
specifies the gap between nested layouts.

Default 0
Note The default units for dimension are pixels.

See “dimension” on page 1340

HALIGN=CENTER | LEFT | RIGHT

specifies the layout’s horizontal alignment within the graph area that is defined by the BEINGGRAPH block.

Default CENTER

Note When CENTER is in effect and the outermost layout is an overlay-type layout, the global legend is centered below the wall area if it can fit within the wall width.

LEGENDTITLEPOSITION=LEFT | TOP

specifies the position of each nested legend’s title. Specifying LEFT places each title to the left of the legend items for that legend. Specifying TOP places each title above the legend items for that legend.

Default LEFT

OUTERPAD=AUTO | dimension | (pad-options)

specifies the amount of extra space to add outside the layout border.

AUTO

specifies that the default outside padding for this component is used.

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.

RIGHT=dimension specifies the amount of extra space to add to the right side.

TOP=dimension specifies the amount of extra space to add to the top.

BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Notes The default units for dimension are pixels.

Starting with the first maintenance release of SAS 9.4, the default padding between the global legend and the plot area (including the axes) is increased to 10 pixels. If the new default padding is not desirable, then use this option to adjust it.
PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the layout border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension
specifies the amount of extra space added to the left side.

 Default 0

RIGHT=dimension
specifies the amount of extra space added to the right side.

 Default 0

TOP=dimension
specifies the amount of extra space added to the top.

 Default 0

BOTTOM=dimension
specifies the amount of extra space added to the bottom.

 Default 0

 Note Sides that are not assigned padding are padded with the default amount.

 Tip Use pad-options to create non-uniform padding.

See “dimension” on page 1340

TITLE=“string”
specifies a title for the global legend.

 Default No title is displayed for the global legend.

 Restriction The string must be enclosed in quotation marks.

 Tip The title for the global legend is independent of the titles for its nested legends.

See “dimension” on page 1340

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the global legend title.

 Default The GraphLabelText style element.

 Interaction For this option to have any effect, the TITLE= option must also be specified.
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

TYPE=ROW | COLUMN
specifies whether nested legends are arranged into a single row or column.

Default ROW

Interaction When this option is set to ROW, the relative width of each legend is determined by the setting for the **WEIGHTS=** option.

WEIGHTS=UNIFORM | PREFERRED | (weight-list)
specifies the preferred space allocation for the nested legends.

UNIFORM
allocates an equal amount of space for all nested legends.

PREFERRED
allocates the preferred amount of space for each nested legend.

(weight-list)
a space-separated list of preferred space allocations, enclosed in parentheses. The list can combine numbers with the keyword PREFERRED. Each number is a proportional weight for the corresponding nested legend (the weights do not have to sum to 1.0). Keyword PREFERRED specifies that the corresponding nested legend should be allocated its preferred space. The order of the weights that are specified in the list should correspond to the order of the legend statements that are nested in the GLOBALLEGEND layout.

Default UNIFORM

Restriction The option is supported only for TYPE=ROW.

Tip When a *weight-list* is specified, all the legends using PREFERRED get their preferred space. Any remaining space is divided among the legends, in proportion to the numeric values specified in the *weight-list*.

Details

A global legend layout can contain multiple discrete or merged legends. Continuous legends are not supported inside the global legend block.

A global legend is placed at the bottom of the graph, just above the footnote(s). All of the discrete or merged legend statements that are nested within the global legend block are arranged into a single row or column, depending on the setting for the **TYPE=** option.

Depending on the outermost layout type and the legend content, the legend is centered on the graph wall area or on the graph output area. For example, if the outermost layout is an overlay layout, then when positioning the legend, the GLOBALLEGEND statement first attempts to center the legend on the graph wall area. If that position causes the legend to be clipped, then it then attempts to center the legend on the entire output area instead. In that case, the legend might appear to be slightly off-center with respect to the graph.

Only one global legend block is permitted in a graph. The block must be located within the BEGINGRAPH block, but outside of the outermost layout block.
When a global legend block is used, only the legend statements that are specified within the global legend block are displayed in the graph. Any legend statements that are specified outside of the global legend block are ignored.

Example: LAYOUT GLOBALLEGEND Statement

The following graph was generated by the “Example Program” on page 101:

```
Example Program
proc template;
  define statgraph globallegend;
  begingraph;
    entrytitle "Prediction Ellipses";
    layout overlay;
      scatterplot x=petallength y=petalwidth / group=species name="sp";
      ellipse x=petallength y=petalwidth / type=predicted alpha=0.2
       name="p80" legendlabel="80%" outlineattrs=graphconfidence;
      ellipse x=petallength y=petalwidth / type=predicted alpha=0.05
       name="p95" legendlabel="95%" outlineattrs=graphconfidence2;
    endlayout;
    layout globalLegend / type=column title="Sample Global Legend";
      discretelegend "sp" / title="Species:"
        discretelegend "p80" "p95" / title="Predictions:"
    endLayout;
  endgraph;
end;
run;
```
LAYOUT GRIDDED Statement

Assembles the results of nested GTL-statements into a grid.

Note: Empty cells might be omitted from the grid. See “Details” on page 109.

Syntax

LAYOUT GRIDDED <option(s)>;
 GTL-statements;
ENDLAYOUT;

Summary of Optional Arguments

Appearance options

 BACKGROUNDCOLOR=style-reference | color
 specifies the color of the layout background.

 BORDER=TRUE | FALSE
 specifies whether a border is drawn around the layout.

 BORDERATTRS=style-element | style-element (line-options) | (line-options)
 specifies the attributes of the border line around the layout.

 COLUMNGUTTER=dimension
 specifies the amount of empty space between the columns.

 OPAQUE=TRUE | FALSE
 specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

 OUTERPAD=AUTO | dimension | (pad-options)
 specifies the amount of extra space to add outside the layout border.

 PAD=dimension | (pad-options)
 specifies the amount of extra space that is added inside the layout border.

 SHRINKFONTS=TRUE | FALSE
 specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

Grid options

 COLUMNS=integer
 specifies the number of columns in the layout.

 ROWS=integer
 specifies the number of rows in the layout.

Layout options

 ROWGUTTER=dimension
 specifies the amount of empty space between the rows.

Legend options

 LOCATION=INSIDE | OUTSIDE
specifies whether the legend appears inside or outside the plot area when nested within an overlay-type layout.

Location options

AUTOALIGN=NONE | AUTO | (location-list)

specifies whether this layout is automatically aligned within its parent when nested within an overlay-type layout.

HALIGN=CENTER | LEFT | RIGHT | number

specifies this layout’s horizontal alignment within its parent when nested within an overlay-type or region layout.

VALIGN=CENTER | TOP | BOTTOM | number

specifies this layout’s vertical alignment within its parent when nested within an overlay-type or region layout.

Panel options

ORDER=ROWMAJOR | COLUMNMAJOR

specifies whether data cells are populated by column priority or by row priority.

Optional Arguments

AUTOALIGN=NONE | AUTO | (location-list)

specifies whether this layout is automatically aligned within its parent when nested within an overlay-type layout.

NONE

does not automatically align the layout within its overlay-type parent layout. This layout’s position within its parent layout is therefore set by the HALIGN= and VALIGN= options.

AUTO

within the overlay-type parent layout, attempts to center the layout in the area that is farthest from any surrounding data point markers. This option is available only if the parent layout contains a scatter plot. Otherwise, it is ignored.

(location-list)

within the parent layout, restricts the layout’s possible locations to those locations in the specified location-list, and uses the location-list position that least collides with the parent layout’s other graphics features. The location-list is a space-separated list that can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Default

NONE

Restriction

This option is ignored if this layout statement is the outermost layout or if the parent layout is not an overlay-type layout.

Interactions

When this option is not NONE and the parent layout is an overlay-type layout, the HALIGN= and VALIGN= options are ignored.

This option is ignored if LOCATION= OUTSIDE.

See

“LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type layout.
BACKGROUND COLOR=style-reference | color
specifies the color of the layout background.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default: The GraphBackground:Color style reference.

Interaction: OPAQUE=TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=TRUE | FALSE
specifies whether a border is drawn around the layout.

Default: FALSE

Interaction: If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See: “boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default: The GraphBorderLines style element.

Interaction: BORDER=TRUE must be set for this option to have any effect.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

COLUMNGUTTER=dimension
specifies the amount of empty space between the columns.

Default: 0

Note: If there are \(n\) columns, then there are \(n-1\) gutters.

See: “dimension” on page 1340

COLUMNS=integer
specifies the number of columns in the layout. This option is used to create a grid with a fixed number of columns, without concern for how many rows. For example, the following settings ensure that columns 1 and 2 in the first row are filled with content, as shown in the figure:

```
layout gridded / columns=2 order=rowmajor border=true;
   entry '1' /border=true;
   entry '2' /border=true;
   entry '3' /border=true;
endlayout;
```
 Defaults

If `ORDER= ROWMAJOR`, then the default is 1.

If `ORDER=COLUMNMAJOR`, then as many columns are created as needed to satisfy the `ROWS=` request.

Restriction

Assuming `ORDER=ROWMAJOR`, if `COLUMNS=n` and there are `m` cells defined, and `n > m`, then only `m` columns are created (there are `n - m` cells with zero size).

HALIGN=CENTER | LEFT | RIGHT | number

specifies this layout’s horizontal alignment within its parent when nested within an overlay-type or region layout.

number

specifies the horizontal alignment as a fraction of the parent container’s width.

Range

0 to 1, where 0 is all the way to the left and 1 is all the way to the right.

Interaction

For a `number` setting to take effect, `LOCATION=INSIDE` must be set. A `number` setting is invalid on this option when `LOCATION=OUTSIDE`.

Default

CENTER

Restriction

This option has effect only when this layout is nested within a region layout, or when this layout is nested in an overlay-type layout and `AUTOALIGN=None`.

See

“LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

LOCATION=INSIDE | OUTSIDE

specifies whether the legend appears inside or outside the plot area when nested within an overlay-type layout.

Default

INSIDE

Restriction

This option has effect only when the GRIDDED layout block appears within an overlay-type layout. For more information about how child positions are determined in an overlay-type layout, see “LAYOUT OVERLAY Statement” on page 136.

Interactions

If this option is set to OUTSIDE, then the HALIGN= and VALIGN= options must specify a keyword (LEFT, RIGHT, or CENTER). The `number` setting for the alignment is invalid when the layout is positioned outside of the plot area.

The actual position is determined by this option’s setting plus the settings for the AUTOALIGN= or HALIGN= and VALIGN= options.
OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether data cells are populated by column priority or by row priority.

ROWMAJOR
fills all the columns in a row, from left to right, before going to the next row.

COLUMNMAJOR
fills all the rows in a column, from top to bottom, before going to the next column.

Default ROWMAJOR

Requirements If this option is set to COLUMNMAJOR, then the ROWS= option must be specified to indicate how many rows to fill before wrapping to the next column. The default number of rows is 1.

If this option is set to ROWMAJOR, then the COLUMNS= option must be specified to indicate how many columns to fill before wrapping to the next column. The default number of columns is 1.

Interactions The ROWS= option is ignored when ORDER=ROWMAJOR.

The COLUMNS= option is ignored when ORDER=COLUMNMAJOR.

See ROWS= on page 108

COLUMNS= on page 104

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.

RIGHT=dimension specifies the amount of extra space to add to the right side.

TOP=dimension specifies the amount of extra space to add to the top.
BOTTOM=\texttt{dimension} specifies the amount of extra space to add to the bottom.

\textbf{Note} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} Use \texttt{pad-options} to create non-uniform padding.

\textbf{Default} AUTO

\textbf{Note} The default units for \texttt{dimension} are pixels.

\textbf{See} “\texttt{dimension}” on page 1340

\textbf{PAD=dimension | (pad-options)}

specifies the amount of extra space that is added inside the layout border.

\textit{dimension}

specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

\textit{(pad-options)}

a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

\textbf{LEFT=dimension}

specifies the amount of extra space added to the left side.

\textbf{Default} 0

\textbf{RIGHT=dimension}

specifies the amount of extra space added to the right side.

\textbf{Default} 0

\textbf{TOP=dimension}

specifies the amount of extra space added to the top.

\textbf{Default} 0

\textbf{BOTTOM=dimension}

specifies the amount of extra space added to the bottom.

\textbf{Default} 0

\textbf{Note} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} Use \texttt{pad-options} to create non-uniform padding.

\textbf{Note} The default units for \texttt{dimension} are pixels.

\textbf{See} “\texttt{dimension}” on page 1340

\textbf{ROWGUTTER=dimension}

specifies the amount of empty space between the rows.

\textbf{Default} 0
Note If there are n rows, then there are $n-1$ gutters.

See “dimension” on page 1340

ROWS=integer
specifies the number of rows in the layout. This option is used to create a grid with a fixed number of rows, without concern for how many columns. For example, the following settings ensure that rows 1 and 2 in the first column are filled with content, as shown in the figure:

```plaintext
layout gridded / rows=2 order=columnmajor border=true;
entry '1' /border=true;
entry '2' /border=true;
entry '3' /border=true;
endlayout;
```

Defaults If ORDER= COLUMNMAJOR, then the default is 1.

If ORDER=ROWMAJOR, then this option is ignored and as many rows are created as needed to satisfy the COLUMNS= request.

Restriction Assuming ORDER=COLUMNMAJOR, if ROWS=n and there are m cells defined, and $n > m$, then only m rows are created (there are $n - m$ cells with zero size).

SHRINKFONTS=TRUE | FALSE
specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

Default FALSE

Note Fonts maintain their size regardless of the specifications in the nested layouts.

See “boolean” on page 1339 for other Boolean values that you can use.

V ALIGN=CENTER | TOP | BOTTOM | number
specifies this layout’s vertical alignment within its parent when nested within an overlay-type or region layout.

number
specifies the vertical alignment as a fraction of the parent container’s height.

Range 0 to 1, where 0 is on the bottom and 1 is on the top.

Interaction For a *number* setting to take effect, LOCATION=INSIDE must be set. A *number* setting is invalid on this option when LOCATION=OUTSIDE.

Default CENTER
Restriction This option has effect only when this layout is nested within a region layout, or when this layout is nested in an overlay-type layout and AUTOALIGN=None.

See “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

Details

A GRIDDED layout is commonly used to create small tables of text that are nested within other layouts. The layout might also be used to span and center a single entry (a legend, for example) across a set of grids. Or it might be used to display a grid of graphs when there is no need to scale axis data ranges or align graphs across grid cells.

The GRIDDED layout automatically decides how much area to allocate to cell contents:

- Text items have a fixed size based on the amount of text and the font properties.
- Graphs take up the remaining space.

The layout’s grid size is determined by the COLUMNS= and ROWS= options. The resulting columns and rows can be separated by areas called “gutters,” which are controlled by the COLUMNGUTTER= and ROWGUTTER= options.

By default, the results of the GTL statements are placed into the grid sequentially from left to right, wrapping to a new row each time the current row is filled. You can use the ORDER= option to fill cells from top to bottom down a column. In that case, the layout cells wrap to a new column each time the current column is filled. The GTL statements can include text statements, plot statements, and layout blocks. Each statement or layout block provides content for one cell in the grid.

If a statement or layout block for a grid cell does not produce any output, then the space for that cell might not be retained as an empty cell in the grid. In that case, the empty cell is removed, and the remaining cells (if any) fill the gap in the grid. A statement produces no output when required data for that statement does not resolve. A layout block produces no output when it contains no statements or when none of the statements contained in the block produce any output.

Example: LAYOUT GRIDDED Statement

The following graph was generated by the “Example Program” on page 110:
Example Program

The GRIDDED layout offers the best way to nest a table of information inside another layout. In the GRIDDED layout, you can control the content, text justification, and fonts of columns. Because this example nests the GRIDDED layout within an OVERLAY layout, you can control where it appears within the plot area. The AUTOALIGN= option enables you to specify a prioritized list of possible positions where the layout should be drawn. The position actually used is the first one that avoids collision with the histogram. Also, the GRIDDED layout is set to be opaque so that the grid lines do not show through.

This example also illustrates a reusable template in the sense that it works for any numeric column specified by the dynamic variable VAR. Also, SGE functions for computing the N, MEAN, STDDEV of the column are used in the table to compute the statistics as the template is executed.

```sas
proc template;
  define statgraph inset;
  dynamic VAR;
  begingraph;
    entrytitle "Distribution of VAR;"
    layout overlay / yaxisopts=(griddisplay=on);
    histogram VAR / scale=percent;
    layout gridded / columns=2
      autoalign=(topleft topright) border=true
      opaque=true backgroundcolor=GraphWalls:color;
    entry halign=left "N";
    entry halign=left eval(strip(put(n(VAR),12.0)));
    entry halign=left "Mean";
    entry halign=left eval(strip(put(mean(VAR),12.2)));
    entry halign=left "Std Dev";
    entry halign=left eval(strip(put(stddev(VAR),12.2)));
  endlayout;
```
LAYOUT LATTICE Statement

Creates a grid of graphs that automatically aligns plot areas and tick display areas across grid cells to facilitate data comparisons among graphs.

Note: Empty cells might be omitted from the lattice. See “Cell Contents” on page 127.

Syntax

LAYOUT LATTICE /option(s);
GTL-statement(s) | cell-statement-block(s);
<COLUMNAXES;
 COLUMNAXIS / axis-option(s);
 <... more-COLUMNAXIS-statements ...>
ENDCOLUMNAXES;>
<COLUMN2AXES;
 COLUMNAXIS / axis-option(s);
 <... more-COLUMNAXIS-statements ...>
ENDCOLUMN2AXES;>
<ROWAXES;
 ROWAXIS / axis-option(s);
 <... more-ROWAXIS-statements ...>
ENDROWAXES;>
<ROW2AXES;
 ROWAXIS / axis-option(s);
 <... more-ROWAXIS-statements ...>
ENDROW2AXES;>
<COLUMNHEADERS;
 GTL-statement(s);
ENDCOLUMNHEADERS;
<... more-header-statement-blocks ...>
<SIDEBAR /option(s);>
 GTL-statement(s);
ENDSIDEBAR;>
<... more-sidebar-statement-blocks ...>
ENDLAYOUT;
Summary of Optional Arguments

Appearance options

- **BACKGROUNDCOLOR=** *style-reference | color*
 specifies the color of the layout background.

- **BORDER=** *TRUE | FALSE*
 specifies whether a border is drawn around the layout.

- **BORDERATTRS=** *style-element | style-element (line-options) | (line-options)*
 specifies the attributes of the border line around the layout.

- **COLUMNGUTTER=** *dimension*
 specifies the amount of empty space that is between the columns.

- **OPAQUE=** *TRUE | FALSE*
 specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

- **OUTERPAD=** *AUTO | dimension | (pad-options)*
 specifies the amount of extra space to add outside the layout border.

- **PAD=** *dimension | (pad-options)*
 specifies the amount of extra space that is added inside the layout border.

- **SHRINKFONTS=** *TRUE | FALSE*
 specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

Cell options

- **COLUMNWEIGHTS=** *UNIFORM | PREFERRED | (weight-list)*
 specifies the proportional width of each column relative to the overall grid width, not including the headings and sidebars.

- **ROWWEIGHTS=** *UNIFORM | PREFERRED | (weight-list)*
 specifies the proportional height of each row relative to the overall grid height, not including the headings and sidebars.

Column options

- **COLUMN2DATARANGE=** *DATA | UNION | UNIONALL*
 specifies how the X2-axis data ranges of graphs within the layout columns are scaled.

- **COLUMNDATARANGE=** *DATA | UNION | UNIONALL*
 specifies how the X-axis data ranges of graphs within the layout columns are scaled.

Lattice options

- **COLUMN2=** *integer*
 specifies the number of columns in the layout.

- **ROWS=** *integer*
 specifies the number of rows in the layout.

- **SKIPEMPTYCELLS=** *TRUE | FALSE*
 specifies whether the external axes skip the unused cells in a partially filled lattice.

Layout options

- **ROWGUTTER=** *dimension*
 specifies the amount of empty space between the rows.

Location options
AUTOALIGN=NONE | AUTO | (location-list)
specifies whether this layout is automatically aligned within its parent when
nested within an overlay-type layout.

HALIGN=CENTER | LEFT | RIGHT | number
specifies this layout’s horizontal alignment within its parent when nested
within an overlay-type or region layout.

VALIGN=CENTER | TOP | BOTTOM | number
specifies this layout’s vertical alignment within its parent when nested within
an overlay-type or region layout.

Panel options

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether data cells are populated by column priority or by row
priority.

Row options

ROW2DATARANGE=DATA | UNION | UNIONALL
specifies how the Y2-axis data ranges of graphs within the layout rows are
scaled.

ROWDATARANGE=DATA | UNION | UNIONALL
specifies how the Y-axis data ranges of graphs within the layout rows are
scaled.

Optional Arguments

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether this layout is automatically aligned within its parent when nested
within an overlay-type layout.

NONE
does not automatically align the layout within its overlay-type parent layout. This
layout’s position within its parent layout is therefore set by the HALIGN= and
VALIGN= options.

AUTO
within the overlay-type parent layout, attempts to center the layout in the area
that is farthest from any surrounding data point markers. This option is available
only if the parent layout contains a scatter plot. Otherwise, it is ignored.

(location-list)
within the parent layout, restricts the layout’s possible locations to those
locations in the specified location-list, and uses the location-list position that
least collides with the parent layout’s other graphics features. The location-list is
a space-separated list that can contain any of these locations: TOLEFT, TOP,
TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and
BOTTOMRIGHT.

Default

Restriction
This option is ignored if this layout statement is the outermost layout or
if the parent layout is not an overlay-type layout.

Interaction
When this option is not NONE and the parent layout is an overlay-type
layout, the HALIGN= and VALIGN= options are ignored.
See “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type layout.

Example

In the following example, the LATTICE layout is the child of the OVERLAY layout. The child layout appears in either the top right or top left position, based on which position has more “unoccupied” area.

dynamic VAR STAT1 STAT2 STAT3;
layout overlay;
 histogram VAR;
 layout lattice / AUTOALIGN=(TOPRIGHT TOPLEFT)
columns=1;
 entry STAT1;
 entry STAT2;
 entry STAT3;
 endlayout;
endlayout;

BACKGROUNDCOLOR= style-reference | color

specifies the color of the layout background.

style-reference

specifies a style reference in the form style-element:style-attribute. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default

The GraphBackground:Color style reference.

Interaction

OPAQUE=TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=TRUE | FALSE

specifies whether a border is drawn around the layout.

Default

FALSE

Interaction

If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See “boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS= style-element | style-element (line-options) | (line-options)

specifies the attributes of the border line around the layout.

Default

The GraphBorderLines style element.

Interaction

BORDER= TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

COLUMNDATARANGE= DATA | UNION | UNIONALL

specifies how the X-axis data ranges of graphs within the layout columns are scaled.

DATA

scales the X-axis data ranges separately for each cell in the layout.
UNION
scales the X-axis data ranges separately for each column in the layout. This setting is supported only if all plots across the column can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

UNIONALL
scales the X-axis data ranges across all columns in the layout. This setting is supported only if all plots across the column can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

Default DATA

Interactions The data ranges are scaled only if the data values are continuous and the graphs have the same orientation. If graphs cannot use the same horizontal range or if COLUMNDATARANGE=DATA, then the horizontal range of each graph is determined from the data.

If any plot statement in any cell contains a XAXIS=X2 option, then this plot’s X values are ignored whenever COLUMNDATARANGE= is set to UNION or UNIONALL.

Tips If column axes are externalized and if a lattice cell contains a LAYOUT OVERLAY with the XAXISOPTS= option specified, then the XAXISOPTS option is ignored. In that case, you can use the COLUMNAXIS statement to specify desired X-axis features. For more information, see “Axis Statements” on page 129.

By default, axes are always internal to the cell. To externalize column axes, set this option to UNION or UNIONALL, and then specify a COLUMNAXES block with as many COLUMNAXIS statements as there are columns that contain X-axes to manage.

COLUMN2DATARANGE=DATA | UNION | UNIONALL specifies how the X2-axis data ranges of graphs within the layout columns are scaled.

DATA scales the X2-axis data ranges separately for each cell in the layout.

UNION scales the X2-axis data ranges separately for each column in the layout. This setting is supported only if all plots across the column can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

UNIONALL scales the X2-axis data ranges across all columns in the layout. This setting is supported only if all plots across the column can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

Default DATA

Interactions The data ranges are scaled only if the data values are continuous and the graphs have the same orientation. If graphs cannot use the same
horizontal range or if COLUMN2DATARANGE=DATA, then the horizontal range of each graph is determined from the data.

If any plot statement in any cell contains a XAXIS=X option, then this plot's X values are ignored whenever COLUMN2DATARANGE= is set to UNION or UNIONALL.

Tips
Axes are always internal to the cell, by default. To externalize column axes, set this option to UNION or UNIONALL, and then specify a COLUMN2AXES block with as many COLUMNAXIS statements as there are columns that contain X2-axes to manage.

If column axes are externalized and if a lattice cell contains a LAYOUT OVERLAY with the X2AXISOPTS= option specified, then the X2AXISOPTS option is ignored. In that case, you can use the COLUMNAXIS statement to specify desired X2-axis features. For more information, see “Axis Statements” on page 129.

COLUMNGUTTER=dimension
specifies the amount of empty space that is between the columns.

Default 0

Note If there are n columns, then there are n-1 gutters.

See “dimension” on page 1340

COLUMNS=integer
specifies the number of columns in the layout.

Defaults If ORDER= ROWMAJOR, then the default is 1.

If ORDER=COLUMNMAJOR, then as many columns are created as are needed to satisfy the ROWS= request.

Interactions If both ROWS=n and COLUMNS=m are specified, then an n by m grid of cells is created. If the number of statements that define cell contents is greater than n x m, then the grid size does not expand and some statements are not displayed. If the number of statements that define cell contents is less than n x m, then the grid will contain empty cells.

If this option is not defined and ORDER=COLUMNMAJOR, then the number of columns is dynamically determined by the number of defined cells.

COLUMNWEIGHTS=UNIFORM | PREFERRED | (weight-list)
specifies the proportional width of each column relative to the overall grid width, not including the headings and sidebars.

UNIFORM equally divides the total available width among all of the columns.

PREFERRED specifies that each column gets its preferred width based on the following:

• Columns that contain one or more vertically one-dimensional plots get the maximum preferred width from the vertically one-dimensional plots.
• The remaining columns that do not contain vertically one-dimensional plots get an equal amount of width from the remaining space.

Interaction

If a one-dimensional box plot is specified in the preferred column, then the box plot's BOXWIDTH= option is ignored.

Notes

The PREFERRED option is used for lattice layouts that mix one-dimensional and two-dimensional plots in the grid. It enables the layout to compute the weights automatically for columns that contain one-dimensional plots.

Examples of one-dimensional plots include axis tables, block plots, fringe plots, and box plots with Y= values only.

(weight-list)

a space-separated list of column weights. The list should contain a weight for each column, which can be expressed as one of the following:

PREFERRED

specifies that the corresponding column gets its preferred width as described previously.

Note

The PREFERRED option should be used on columns that contain only one-dimensional plots. Using the PREFERRED keyword on columns that contain a mix of one-dimensional and two-dimensional plots might cause unexpected results. In that case, use a numeric weight instead.

Tip

The PREFERRED option is particularly useful for axis tables.

number

specifies that the corresponding column gets a width that is based on the proportion of the specified number to the total of the numbers in the weight list. For example, the following weight specifications are equivalent:

columnweights=(0.2 0.3 0.5)
columnweights=(2 3 5)

In these examples, the first column gets 20% of the available width, the second column gets 30%, and the third column gets 50%.

If the list contains the PREFERRED keyword, then the number specifies the proportion of the width that remains after the preferred width or widths are calculated and subtracted from the available width.

Requirements

The values in the weight list must be enclosed in parentheses.

If there are n columns in the grid, then the weight list should contain n weights, one for each column.

All of the numbers in the list must be positive.

At least one number in the list must be nonzero.

Note

The weights for all of the columns are specified as a proportion and, as such, are not required to total 1.0.
Example

Here is an example that specifies the preferred width for the first column, 20% of the remaining width to the second column, and 80% of the remaining width to the third column.

columnweights=(preferred 0.2 0.8)

HALIGN=CENTER | LEFT | RIGHT | number

specifies this layout’s horizontal alignment within its parent when nested within an overlay-type or region layout.

number

specifies the horizontal alignment as a fraction of the parent container’s width.

Range

0 to 1, where 0 is all the way to the left and 1 is all the way to the right.

Interaction

For a **number** setting to take effect, LOCATION=INSIDE must be set. A **number** setting is invalid on this option when LOCATION=OUTSIDE.

Default

CENTER

Restriction

This option has effect only when this layout is nested within a region layout, or when this layout is nested in an overlay-type layout and AUTOALIGN=None.

See

“LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

Example

In the following example, the LATTICE layout is the child of the OVERLAY layout and is positioned in the OVERLAY’s top right corner.

dynamic VAR STAT1 STAT2 STAT3;
layout overlay;
 histogram VAR;
 layout lattice / VALIGN=TOP HALIGN=RIGHT
 columns=1;
 entry STAT1;
 entry STAT2;
 entry STAT3;
 endlayout;
endlayout;

OPAQUE=TRUE | FALSE

specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default

FALSE

Interaction

When this option is set to FALSE, the background color is not used.

See

“boolean” on page 1339 for other Boolean values that you can use.

ORDER=ROWMAJOR | COLUMNMAJOR

specifies whether data cells are populated by column priority or by row priority.

ROWMAJOR

fills all the columns in a row, from left to right, before going to the next row.
COLUMNMAJOR
fills all the rows in a column, from top to bottom, before going to the next column.

Default ROWMAJOR

Requirements
If this option is set to COLUMNMAJOR, then the ROWS= option must be specified to indicate how many rows to fill before wrapping to the next column. The default number of rows is 1.

If this option is set to ROWMAJOR, then the COLUMNS= option must be specified to indicate how many columns to fill before wrapping to the next column. The default number of columns is 1.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.

RIGHT=dimension specifies the amount of extra space to add to the right side.

TOP=dimension specifies the amount of extra space to add to the top.

BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Note The default units for dimension are pixels.

See “dimension” on page 1340

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the layout border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:
LEFT=\textit{dimension} \\
 specifies the amount of extra space added to the left side. \\
 Default 0 \\

RIGHT=\textit{dimension} \\
 specifies the amount of extra space added to the right side. \\
 Default 0 \\

TOP=\textit{dimension} \\
 specifies the amount of extra space added to the top. \\
 Default 0 \\

BOTTOM=\textit{dimension} \\
 specifies the amount of extra space added to the bottom. \\
 Default 0 \\

\textbf{Note} Sides that are not assigned padding are padded with the default amount. \\

\textbf{Tip} Use \textit{pad-options} to create non-uniform padding. \\

\textbf{Note} The default units for \textit{dimension} are pixels. \\

\textbf{See} “\textit{dimension}” on page 1340 \\

\textbf{ROWDATARANGE=}DATA | UNION | UNIONALL \\
 specifies how the Y-axis data ranges of graphs within the layout rows are scaled. \\

\textbf{DATA} \\
 scales the Y-axis data ranges separately for each cell in the layout. \\

\textbf{UNION} \\
 scales the Y-axis data ranges separately for each row in the layout. This setting is supported only if all plots down the row can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883. \\

\textbf{UNIONALL} \\
 scales the Y-axis data ranges across all rows in the layout. This setting is supported only if all plots down the row can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883. \\

\textbf{Default} DATA \\

\textbf{Interactions} The data ranges are scaled only if the data values are continuous and the graphs have the same orientation. If graphs cannot use the same vertical range or if ROWDATARANGE=DATA, then the vertical range of each graph is determined from the data. \\

If any plot statement in any cell contains a YAXIS=Y2 option, then this plot's Y values are ignored whenever ROWDATARANGE= is set to UNION or UNIONALL.
Tips
Axes are always internal to the cell, by default. To externalize row axes, set this option to UNION or UNIONALL, and then specify a ROWAXES block with as many ROWAXIS statements as there are rows that contain Y-axes to manage.

If row axes are externalized and if a lattice cell contains a LAYOUT OVERLAY with the YAXISOPTS= option specified, then the YAXISOPTS option is ignored. In that case, you can use the ROWAXIS statement to specify desired Y-axis features. For more information, see “Axis Statements” on page 129.

ROW2DATARANGE=DATA | UNION | UNIONALL
specifies how the Y2-axis data ranges of graphs within the layout rows are scaled.

DATA
scales the Y2-axis data ranges separately for each cell in the layout.

UNION
scales the Y2-axis data ranges separately for each row in the layout. This setting is supported only if all plots down the row can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

UNIONALL
scales the Y2-axis data ranges across all rows in the layout. This setting is supported only if all plots down the row can share the same data range and axis type. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

Default **DATA**

Interactions
The data ranges are scaled only if the data values are continuous and the graphs have the same orientation. If graphs cannot use the same vertical range or if ROW2DATARANGE=DATA, then the vertical range of each graph is determined from the data.

If any plot statement in any cell contains a YAXIS=Y option, then this plot's Y values are ignored whenever ROW2DATARANGE= is set to UNION or UNIONALL.

Tips
Axes are always internal to the cell, by default. To externalize row axes, set this option to UNION or UNIONALL, and then specify a ROW2AXES block with as many ROWAXIS statements as there are rows that contain Y2-axes to manage.

If row axes are externalized and if a lattice cell contains a LAYOUT OVERLAY with the Y2AXISOPTS= option specified, then the Y2AXISOPTS option is ignored. In that case, you can use the ROWAXIS statement to specify desired Y2-axis features. For more information, see “Axis Statements” on page 129.

ROWGUTTER=dimension
specifies the amount of empty space between the rows.

Default 0

Note If there are n rows, then there are n-1 gutters.
ROWS=integer
specifies the number of rows in the layout.

Defaults
- If ORDER=COLUMNMAJOR, then the default is 1.
- If ORDER=ROWMAJOR, then as many ROWS are created as needed to satisfy the COLUMNS= request.

Interactions
- If both ROWS=n and COLUMNS=m are specified, then an n by m grid of cells is created. If the number of statements that define cell contents is greater than \(n \times m\), then the grid size does not expand and some statements are not displayed. If the number of statements that define cell contents is less than \(n \times m\), then the grid will contain empty cells.
- If ORDER=ROWMAJOR and ROWS= is not defined, then the number of rows is dynamically determined by the number of defined cells.

ROWWEIGHTS=UNIFORM | PREFERRED | (weight-list)
specifies the proportional height of each row relative to the overall grid height, not including the headings and sidebars.

- **UNIFORM**
equally divides the total available height among all of the rows.

- **PREFERRED**
specifies that each row gets its preferred height based on the following:
 - Rows that contain one or more horizontally one-dimensional plots get the maximum preferred height from the horizontally one-dimensional plots.
 - The remaining rows that do not contain horizontally one-dimensional plots get an equal amount of height from the remaining space.

Notes
The PREFERRED option is used for lattice layouts that mix one-dimensional and two-dimensional plots in the grid. It enables the layout to compute the weights automatically for rows that contain one-dimensional plots.

- Examples of one-dimensional plots include axis tables, block plots, fringe plots, and box plots with Y= values only.

weight-list
a space-separated list of row weights. The list should contain a weight for each row, which can be expressed as one of the following:

- **PREFERRED**
specifies that the corresponding row gets its preferred height as described previously.

Note
The PREFERRED option should be used on rows that contain only one-dimensional plots. Using the PREFERRED keyword on rows that contain a mix of one-dimensional and two-dimensional plots might cause unexpected results. In that case, use a numeric weight instead.
number
specifies that the corresponding row gets a height that is based on the proportion of the specified number to the total of the numbers in the weight list. For example, the following weight specifications are equivalent:

rowweights=(0.2 0.3 0.5)
rowweights=(2 3 5)

In these examples, the first row gets 20% of the available height, the second row gets 30%, and the third row gets 50%.

If the list contains the PREFERRED keyword, then the number specifies the proportion of the height that remains after the preferred height or heights are calculated and subtracted from the available height.

Requirements
The values in the weight list must be enclosed in parentheses.

If there are \(n \) rows in the grid, then the weight list should contain \(n \) weights, one for each row.

All of the numbers in the list must be positive.

At least one number in the list must be nonzero.

Note
The weights for all of the rows are specified as a proportion and, as such, are not required to total 1.0.

Example
Here is an example that specifies 25% of the available height for the first row, 25% for the second row, and 50% for the third row.
rowweights=(1 1 2)

SHRINKFONT

specifies whether fonts in the layout are scaled, depending on the nesting levels of the layouts that are used.

Default FALSE

Note Fonts maintain their size regardless of the specifications in the nested layouts.

See “boolean” on page 1339 for other Boolean values that you can use.

SKIPEMPTYCELLS

specifies whether the external axes skip the unused cells in a partially filled lattice.

FALSE
displays external axes at their normal locations.

TRUE
skips empty cells and “snaps” the external axes to the nearest populated cell, both vertically and horizontally.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

VALIGN

specifies this layout’s vertical alignment within its parent when nested within an overlay-type or region layout.

CENTER | TOP | BOTTOM | number
number
specifies the vertical alignment as a fraction of the parent container’s height.

Range
0 to 1, where 0 is on the bottom and 1 is on the top.

Interaction
For a number setting to take effect, LOCATION=INSIDE must be set. A number setting is invalid on this option when LOCATION=OUTSIDE.

Default
CENTER

Restriction
This option has effect only when this layout is nested within a region layout, or when this layout is nested in an overlay-type layout and AUTOALIGN=None.

See
“LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

Example
In the following example, the LATTICE layout is the child of the OVERLAY layout. The child layout will appear in either the top right or top left position, based on which position has more "unoccupied" area.
```
dynamic VAR STAT1 STAT2 STAT3;
layout overlay / height=500px width=600px;
    histogram VAR;
    layout lattice / VALIGN=TOP HALIGN=RIGHT
        height=80px width=70px columns=1;
        entry STAT1;
        entry STAT2;
        entry STAT3;
    endlayout;
endlayout;
```

SIDEBAR Optional Arguments

ALIGN=TOP | BOTTOM | LEFT | RIGHT
specifies the alignment of the sidebar.

Default
BOTTOM

Tip
You can use ENTRY statements to place rotated text in the right or left sidebar.

SPACEFILL=TRUE | FALSE
specifies whether to fill all the area of the sidebar with its contents.

Default
TRUE

Tip
To prevent a layout block within the sidebar from expanding to the sidebar boundaries, set this option to FALSE.

See
“boolean” on page 1339 for other Boolean values that you can use.
Details

Statement Description
The LAYOUT LATTICE statement creates a grid of graphs that are aligned across columns and rows. For plot statements that are specified in the layout block or nested in a LAYOUT OVERLAY statement, the LATTICE layout automatically aligns the plot areas and tick display areas in the plots.

Note: To achieve the alignment, the LATTICE layout automatically aligns plot areas and tick display areas across columns and rows. Also, it overrides axis-offset settings in the OVERLAY layouts that you specify in those columns and rows. (For details about offsets and the tick display area, see “Adjusting Axis Offsets” on page 886.) If you do not want this alignment, then you might use LAYOUT GRIDDED instead. For example, if you have a heterogeneous panel of graphs, such as a mix of scatter plots, box plots, bar charts, or other types of graphs, then you might consider using LAYOUT GRIDDED rather than LAYOUT LATTICE.

The layout can unify the scale of the data ranges that are displayed in the plots, based on the values set for the COLUMNDATARANGE= and ROWDATARANGE= options. If one or more plots within the template use the XAXIS= option to produce independent X2 (top) axes, then the X2 data scales can be unified, based on the values set for the COLUMN2DATARANGE= option. If one or more plots within the template use the YAXIS= option to produce independent Y2 (right) axes, then the Y2 data scales can be unified, based on the values set for the ROW2DATARANGE= options. The data ranges can be scaled separately for each column, for each row, or for both. Or they can be scaled across all columns, all rows, or all of both.

When the data-range scales are unified, you can simplify the layout by displaying only the external axes that apply to all of the graphs across the corresponding columns or rows. See “Axis Statements” on page 129 for more details.

The following figure shows the parts of the Lattice layout with the default axis display (internal axes are displayed).
This next figure shows the parts of the Lattice layout when the graph display is simplified so that only external axes are displayed.

Note: The figure shows secondary X (top) and secondary Y (right) axes. The layout also enables you to generate independent X2 (top) and independent Y2 (right) axes. For details, see “Axis Statements” on page 129.
The columns and rows can be separated by areas called “gutters,” which are controlled by the `COLUMNGUTTER=` and `ROWGUTTER=` options. In addition, the `COLUMNWEIGHTS=` and `ROWWEIGHTS=` options can be used to allocate a proportion of available space to each row and column.

The LATTICE layout automatically decides how much area to allocate to cell contents:

- Text items have a fixed size based on the amount of text and the font properties.
- Graphs take up the remaining space.

The layout’s grid size is determined by the `COLUMNS=` and `ROWS=` options.

By default, the results of the `GTL-statements` are placed into the grid sequentially from left to right, wrapping to a new row each time the current row is filled. You can use the `ORDER=` option to fill cells from top to bottom down a column. In that case, the layout cells wrap to a new column each time the current column is filled.

Cell Contents

The following general syntax is used to define the contents of each cell in a LAYOUT LATTICE:

```
GTL-statement(s) \ cell-statement-block(s)
```

A cell-statement-block, when used, has the following syntax:
The following guidelines apply to defining cell content:

- The contents of each cell is generated by GTL statements, which can be specified independently or enclosed in a CELL block.

- Independent GTL statements include text statements, plot statements, or layout blocks. Each independently specified GTL statement or layout block provides content for one cell.

- A CELL block can include text statements, plot statements, or layout blocks. Each CELL block provides content for one cell.

- Within a CELL block, you can use a CELLHEADER block to generate one or more header lines within the cell. Specify each header line on a separate GTL statement within the CELLHEADER block. The header block is typically used to specify one or more text statements, but other statements are allowed within the block. For example, you can specify a LAYOUT GRIDDED statement to produce a grid of text for the header.

- You can use only one CELLHEADER block per CELL block. If you specify more than one, then only the last one is used.

- If you do not specify a CELLHEADER block in a CELL block, then the enclosed GTL statements produce the same results that they would produce if they were specified independently.

- If more than one plot statement is needed to generate contents for a cell, you should place the plot statements in a layout block such as LAYOUT OVERLAY. Otherwise, unexpected results might occur. This applies to independent GTL statements and to GTL statements in a CELL block. See Figure 4.1 on page 129.

If a CELL block, or an independent statement or layout block for a lattice cell does not produce any output, then the space for that cell might not be retained as an empty cell in the lattice. In that case, the empty cell is removed, and the remaining cells (if any) fill the gap in the lattice. A statement produces no output when required data for that statement does not resolve. A layout block produces no output when it contains no statements or when none of the statements contained in the block produce any output.

The example code shows a LAYOUT LATTICE block that uses one GTL statement and one CELL block to generate the two-column layout shown in the following figure:
Figure 4.1 Lattice Layout with Independent Plot Statements and a CELL Block

proc template;
 define statgraph cellcontents;
 begingraph;
 layout lattice /
 columngutter=5 columns=2;

 /* independent plot statement - defines first cell */
 scatterplot x=age y=height;

 /* cell block - defines second cell */
 cell;
 cellheader;
 entry "Cell Header" / border=true;
 endcellheader;
 /* two plot statements are needed - enclose
 the statements in a LAYOUT OVERLAY block */
 layout overlay;
 scatterplot x=weight y=height;
 referenceline y=53 / lineattrs=(pattern=shortdash)
 curvelabellocation=inside curvelabel="Reference Line";
 endlayout;
 endcell;
 endgraph;
end;
run;

proc sgrender data=sashelp.class template=cellcontents;
run;

Axis Statements

Overview
The axis statements can be used to simplify and clarify the layout by displaying only the external axes in the resulting graph.

The following figure shows the default layout with internal axes displayed:
Axis statements are useful only if the data ranges across the affected columns or rows are comparable and can be unified to a common scale. For example, external axes are not supported if an affected lattice cell contains a LAYOUT OVERLAYEQUATED statement. If the axis ranges are not unified for the affected columns or rows, then the axis statements in the layout are ignored.

To unify data ranges in the layout grid, the following options are available:

<table>
<thead>
<tr>
<th>Axis</th>
<th>Option</th>
<th>Axis</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>COLUMNDATARANGE=</td>
<td>X2</td>
<td>COLUMN2DATARANGE=</td>
</tr>
<tr>
<td>Y</td>
<td>ROWDATARANGE=</td>
<td>Y2</td>
<td>ROW2DATARANGE=</td>
</tr>
</tbody>
</table>
Specifying Axis Features
For columns, axis features for the external X axes (bottom) are specified within a COLUMNAXES block, nesting one COLUMNAXIS statement for each column that contains an X axis that you need to manage. The COLUMNAXIS statement provides a DISPLAYSECONDARY= option, which enables you to display a secondary X (top) axis that mirrors the primary X axis but can have different display features. In that case, the axis features that you specify in the COLUMNAXIS statement apply to both the primary and secondary X axes.

If one or more plots within the template use the XAXIS= option to produce independent X2 (top) axes, then axis features for the external X2 axes (top) are specified within a COLUMN2AXES block, nesting one COLUMNAXIS statement for each column that contains an X2 axis that you need to manage. Within the COLUMN2AXES block, the COLUMNAXIS statement’s DISPLAYSECONDARY= option enables you to display a secondary X2 (bottom) axis that mirrors the primary X2 axis but can have different display features. Here again, the axis features that you specify in the COLUMNAXIS statement apply to both the primary and secondary X2 axes.

Note: If you specify independent X and X2 scales at the same time, then the
DISPLAYSECONDARY= option is ignored in the COLUMNAXIS statement. This
is true whether the COLUMNAXIS statement is specified in a COLUMNAXES or
COLUMN2AXES block.

For both the COLUMNAXES and COLUMN2AXES blocks, if a lattice cell within the
column contains a LAYOUT OVERLAY with the XAXISOPTS= or X2AXISOPTS=
one specified, these OVERLAY options are ignored. In such cases, the desired axis
features should be specified in the COLUMNAXIS statement.

For rows, axis features for the external Y axes (left) are specified within a ROWAXES block, nesting one ROWAXIS statement for each row that contains a Y axis that you need to manage. The ROWAXIS statement provides a DISPLAYSECONDARY= option, which enables you to display a secondary Y (right) axis that mirrors the primary Y axis but can have different display features. In that case, the axis features that you specify in the ROWAXIS statement apply to both the primary and secondary Y axes.

If one or more plots within the template use the YAXIS= option to produce independent Y2 (right) axes, then axis features for the external Y2 axes (right) are specified within a ROW2AXES block, nesting one ROWAXIS statement for each row that contains a Y2 axis that you need to manage. Within the ROW2AXES block, the ROWAXIS statement’s DISPLAYSECONDARY= option enables you to display a secondary Y2 (left) axis that mirrors the primary Y2 axis but can have different display features. Here again, the axis features that you specify in the ROWAXIS statement apply to both the primary and secondary Y2 axes.

Note: If you specify independent Y and Y2 scales at the same time, then the
DISPLAYSECONDARY= option is ignored in the ROWAXIS statement. This is true
whether the ROWAXIS statement is specified in a ROWAXES or ROW2AXES
block.

For both the ROWAXES and ROW2AXES blocks, if a lattice cell within the row
contains a LAYOUT OVERLAY with the YAXISOPTS= or Y2AXISOPTS= option
specified, these OVERLAY options are ignored. In such cases, the desired axis features
should be specified in the ROWAXIS statement.

Syntax and Restrictions for the Axis Statements
The axis-statement blocks have the following general syntax:
In the LATTICE layout block, the following restrictions apply:

- If the LAYOUT LATTICE statement sets the row or column data range to DATA, then the corresponding axes block is ignored. The data range must be set to UNION or UNIONALL to externalize the axes.

- Only one COLUMNAXES block can be used to manage X axes, and only one COLUMN2AXES block can be used to manage X2 axes. If more than one of either block is specified, then only the last one of that block type is used.

- Within a COLUMNAXES or COLUMN2AXES block, one COLUMNAXIS statement should be specified for each column that contains axes that you need to manage. Both axes blocks can contain a COLUMNAXIS statement for the same column. For example, to manage the axes in the first column of the layout, the COLUMNAXES block can contain a COLUMNAXIS statement that manages the column’s X axes. The COLUMN2AXES block can contain a COLUMNAXIS statement that manages the column’s X2 axes.

- Only one ROWAXES block can be used to manage Y axes, and only one ROWAXES block can be used to manage Y2 axes. If more than one of either block is specified, then only the last one of that block type is used.

- Within a ROWAXES or ROW2AXES block, one ROWAXIS statement should be specified for each row that contains axes that you need to manage. Both axes blocks can contain a ROWAXIS statement for the same row. For example, to manage the axes in the first row of the layout, the ROWAXES block can contain a ROWAXIS statement that manages the row’s Y axes. The ROW2AXES block can contain a ROWAXIS statement that manages the column’s Y2 axes.

- If the number COLUMNLAXIS or ROWAXIS statements is greater than the number needed, then the extra statements are ignored. If the number of statements is fewer than the number needed, then the additional COLUMNAXIS or ROWAXIS statements are automatically generated with DISPLAY=NONE options in effect.

For the list of axis-options, see “Axis Options for LAYOUT LATTICE” on page 963.

The following example shows a LAYOUT LATTICE block that uses a ROWAXES block to set external axes and display grid lines for the row display.
Here, the LAYOUT LATTICE statement specifies the ROWDATARANGE option to unify the data ranges across rows in the layout. Because LAYOUT LATTICE specifies COLUMNS=2 and there are two plot statements in the template, the resulting graph has two columns and only one row. Thus, only one ROWAXIS statement is needed in the ROWAXES block to specify axis attributes for that row of graphs. A ROW2AXES block is not needed because neither SCATTERPLOT statement in the template maps data to the Y2 axis.

For more information and examples that demonstrate how data are mapped to the axes, see “Plot Data Are Mapped to a Designated Axis” on page 876.

Header Statements

Header statements are used to display one or more headers for the columns and rows in a Lattice layout. Each statement is specified as a block in the form statement - ENDSstatement. The header block is typically used to specify one or more text statements, but other statements are allowed within the block. For example, you could specify a LAYOUT GRIDDED statement to produce a grid of text for the header.

The general syntax for a COLUMNHEADERS statement is

COLUMNHEADERS;
GTL-statement(s);
ENDCOLUMNHEADERS;

The following header statements are available:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMNHEADERS</td>
<td>specifies a header for the primary (bottom) column-header position.</td>
</tr>
<tr>
<td>COLUMN2HEADERS</td>
<td>specifies a header for the secondary (top) column-header position.</td>
</tr>
<tr>
<td>ROWHEADERS</td>
<td>specifies a header for the primary (left) row-header position. ENTRY statements can be used to specify rotated text.</td>
</tr>
<tr>
<td>ROW2HEADERS</td>
<td>specifies a header for the secondary (right) row-header position. ENTRY statements can be used to specify rotated text.</td>
</tr>
</tbody>
</table>

- The LAYOUT LATTICE aligns headers with the columns, or the rows, or both.
- Each of the header blocks COLUMNHEADERS, COLUMN2HEADERS, ROWHEADERS, and ROW2HEADERS can be used once in a LAYOUT LATTICE block. If more than one block is specified for one of the statements, then only the last specified block for that statement is used.

The following example shows a LAYOUT LATTICE block that uses a COLUMNHEADERS block to display column headers above the left and right columns in the layout.
Sidebar Statements

A LAYOUT LATTICE supports the display of a sidebar between a row or column header and an external axis. (See the figures in “Statement Description” on page 125.) A sidebar spans across columns or rows and is useful for displaying information that applies to all of the columns or all of the rows. For example, sidebars are useful for displaying legends.

A SIDEBAR statement has the following syntax:

```
SIDEBAR <option(s)>;
GTL-statement(s);
ENDSIDEBAR;
```

- You can specify up to four SIDEBAR blocks in a LAYOUT LATTICE, one for each of the top, bottom, left, and right sidebar positions.
- If two or more SIDEBAR blocks have the same alignment, then the sidebar information forms two or more columns (ALIGN=LEFT or ALIGN=RIGHT) within the sidebar area. Or it forms two or more rows (ALIGN=TOP or ALIGN=BOTTOM) within the sidebar area.
- Only one statement (such as ENTRY or DISCRETELEGEND) or one layout block (such as LAYOUT GRIDDED) is allowed in a SIDEBAR block. To create multi-line text in a sidebar, nest ENTRY statements within a LAYOUT GRIDDED block.
- The LAYOUT LATTICE automatically aligns a sidebar with the layout columns or rows.

The following example shows a LAYOUT LATTICE block that uses a SIDEBAR block to display a top sidebar in the layout.

```r
begingraph;
layout lattice / columns=2;

sidebar / align=top;
layout gridded / border=true;
entry "Top Sidebar";
entry "(spans both columns)";
endlayout;
endsidebar;

scatterplot x=x y=t;
scatterplot x=x y=y;
endgraph;
```
Example: LAYOUT LATTICE Statement

This example shows a two-cell lattice layout (two columns, one row). A ROWAXES block is used in the example to make the Y axes external to both cells.

- The ROWDATARANGE=UNION option assures that the data ranges of all Y= columns in the row cells are considered to construct a common axis range. This facilitates the visual comparison of the cells.

- A SIDEBAR block is used to place the legend at the top of the lattice.

- Because the ROWAXIS statement within the ROWAXES block uses the DISPLAYSECONDARY= option, a secondary Y axis is displayed on the right. The secondary Y axis is not an independent axis. Rather, it mirrors the primary Y axis, making it easier to read Y-axis values when viewing the bar chart that is in the right cell.

The following graph was generated by the “Example Program” on page 135:

![Vehicle Gas Mileage Chart]

Example Program

```
proc template;
define statgraph layoutlattice;
begingraph;
entrytitle "Vehicle Gas Mileage";
entryfootnote "Averages of 428 models from 38 manufactures";
layout lattice / columns=2 rowdatarange=union;
```
layout overlay / cycleattrs=true;
 barchart category=origin response=mpg_highway /
 stat=mean barwidth=0.8 name="H" ;
 barchart category=origin response=mpg_city /
 stat=mean barwidth=0.5 name="C" ;
endlayout;
layout overlay / cycleattrs=true;
 barchart category=type response=mpg_highway /
 stat=mean barwidth=0.8 ;
 barchart category=type response=mpg_city /
 stat=mean barwidth=0.5 ;
endlayout;
sidebar / align=top;
 discretelegend "H" "C" / border=false;
endsidebar;
rowaxes;
 rowaxis / display=(tickvalues)
 displaysecondary=(tickvalues) griddisplay=on;
endrowaxes;
endlayout;
endgraph;
end;
run;
proc sgrender data=sashelp.cars template=layoutlattice;
run;

LAYOUT OVERLAY Statement

Builds a composite from one or more GTL-statements. The composite could be an entire graph. Or, if this layout is nested in a GRIDDED or LATTICE layout, then the composite typically provides contents for one cell in the parent layout.

Restrictions: You can add one or more 2-D plots to the graph area that the LAYOUT OVERLAY statement creates, but all of the graphs will share the same set of axes. 3-D plots are not allowed.

Interaction: When nested within another layout type, the OVERLAY layout defines the graph display for one cell of the parent layout. A separate OVERLAY layout is specified for each cell.

Syntax

LAYOUT OVERLAY <option(s)>;
GTL-statements;
<INNERMARGIN <options(s)>;
 block-plot-statement(s); | axis-table statement(s);
ENDINNERMARGIN;>
<… more-innermargin-blocks …> >
ENDLAYOUT;

Summary of Optional Arguments

Appearance options
ASPECTRATIO=\texttt{AUTO} | \texttt{positive-number}
\hspace{1em} specifies the aspect ratio of the plot’s wall area.

BACKGROUND\texttt{COLOR}=\texttt{style-reference} | \texttt{color}
\hspace{1em} specifies the color of the layout background.

BORDER=\texttt{TRUE} | \texttt{FALSE}
\hspace{1em} specifies whether a border is drawn around the layout.

BORDER\texttt{ATTRS}=\texttt{style-element} | \texttt{style-element (line-options)} | \texttt{(line-options)}
\hspace{1em} specifies the attributes of the border line around the layout.

CYCLE\texttt{ATTRS}=\texttt{TRUE} | \texttt{FALSE}
\hspace{1em} specifies whether the default visual attributes of markers, lines, and fills in
\hspace{1em} nested plot statements automatically change from plot to plot.

OPAQUE=\texttt{TRUE} | \texttt{FALSE}
\hspace{1em} specifies whether the layout background is opaque (\texttt{TRUE}) or transparent
\hspace{1em} (\texttt{FALSE}).

OUTERPAD=\texttt{AUTO} | \texttt{dimension} | \texttt{(pad-options)}
\hspace{1em} specifies the amount of extra space to add outside the layout border.

\texttt{PAD}=\texttt{dimension} | \texttt{(pad-options)}
\hspace{1em} specifies the amount of extra space that is added inside the layout border.

WALL\texttt{COLOR}=\texttt{style-reference} | \texttt{color}
\hspace{1em} specifies the fill color of the plot wall area.

WALL\texttt{DISPLAY}=\texttt{STANDARD} | \texttt{ALL} | \texttt{NONE} | \texttt{(display-options)}
\hspace{1em} specifies whether the plot’s wall and wall outline are displayed.

\textit{Axes options}

\texttt{X2AXISOPTS=}(\texttt{axis-options})
\hspace{1em} specifies one or more X2 axis options.

\texttt{XAXISOPTS=}(\texttt{axis-options})
\hspace{1em} specifies one or more X axis options.

\texttt{Y2AXISOPTS=}(\texttt{axis-options})
\hspace{1em} specifies one or more Y2 axis options.

\texttt{YAXISOPTS=}(\texttt{axis-options})
\hspace{1em} specifies one or more Y axis options.

\textbf{Optional Arguments}

\texttt{ASPECTRATIO=\texttt{AUTO} | \texttt{positive-number}}
\hspace{1em} specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive
\hspace{1em} decimal fraction representing \textit{wall-height} divided by \textit{wall-width}. For example, 0.75
\hspace{1em} is a 3/4 aspect ratio and 1.0 is a square aspect ratio.

\begin{tabular}{ll}
\textbf{Default} & AUTO. The wall area is sized to the maximum area that can fill the
\hspace{1em} available space inside the OVERLAY layout. \\
\textbf{Interaction} & When the LAYOUT OVERLAY statement is nested in a LAYOUT
\hspace{1em} LATTICE block, the ASPECTRATIO= option is ignored unless
\hspace{1em} ROW\texttt{DATARANGE=}\texttt{DATA}, COLUMN\texttt{DATARANGE=}\texttt{DATA},
\hspace{1em} ROW2\texttt{DATARANGE=}\texttt{DATA}, and COLUMN\texttt{2DATARANGE=}\texttt{DATA}
\hspace{1em} are in effect in the LAYOUT LATTICE statement. \\
\textbf{See} & “LAYOUT LATTICE Statement” on page 111 \\
\end{tabular}

\texttt{BACKGROUND\texttt{COLOR}=\texttt{style-reference} | \texttt{color}}
\hspace{1em} specifies the color of the layout background.
style-reference
specifies a style reference in the form `style-element:style-attribute`. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default
The GraphBackground:Color style reference.

Interaction
`OPAQUE=TRUE` must be in effect for the color to be seen. By default, `OPAQUE=FALSE`.

BORDER=TRUE | FALSE
specifies whether a border is drawn around the layout.

Default
FALSE

Interaction
If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See
“boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default
The GraphBorderLines style element.

Interaction
`BORDER=TRUE` must be set for this option to have any effect.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Line Options” on page 1349 for available `line-options`.

CYCLEATTRS=TRUE | FALSE
specifies whether the default visual attributes of markers, lines, and fills in nested plot statements automatically change from plot to plot.

FALSE
does not cycle the default visual attributes of multiple plots. For example, if you overlay three series plots, then each series line has the same default visual properties.

TRUE
 attempts to use the GraphData1–GraphDataN style elements to assign different visual properties to applicable plots (scatter plots and series plots and others). Some plots in the layout do not participate in the cycling (for example, reference lines and drop lines).

Default
FALSE

See
“Rotating Visual Attributes for Each Plot in an Overlay” on page 183

“boolean ” on page 1339 for other Boolean values that you can use.

Example
In the following example, the first three series plots are assigned line properties that are based on the GraphData1, GraphData2, and GraphData3 style elements. The fourth series plot does not participate in the attribute cycling because its LINEATTRS= option assigns a line style.

```
layout overlay / cycleattrs=true;
  seriesplot x=date y=var1;
  seriesplot x=date y=var2;
```
seriesplot x=date y=var3;
seriesplot x=date y=var4 / lineattrs=GraphReference;
endlayout;

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default: FALSE

Interaction: When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space to add to the left side.
- **RIGHT=dimension** specifies the amount of extra space to add to the right side.
- **TOP=dimension** specifies the amount of extra space to add to the top.
- **BOTTOM=dimension** specifies the amount of extra space to add to the bottom.

Note: Sides that are not assigned padding are padded with the default amount.

Tip: Use pad-options to create non-uniform padding.

Default: AUTO

Note: The default units for dimension are pixels.

See “dimension” on page 1340

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the layout border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:
LEFT=\textit{dimension}
specifies the amount of extra space added to the left side.
\textbf{Default} \hspace{1em} 0

RIGHT=\textit{dimension}
specifies the amount of extra space added to the right side.
\textbf{Default} \hspace{1em} 0

TOP=\textit{dimension}
specifies the amount of extra space added to the top.
\textbf{Default} \hspace{1em} 0

BOTTOM=\textit{dimension}
specifies the amount of extra space added to the bottom.
\textbf{Default} \hspace{1em} 0

\textbf{Note} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} Use \textit{pad-options} to create non-uniform padding.

\textbf{Note} The default units for \textit{dimension} are pixels.

\textbf{See} “\textit{dimension}” on page 1340

\textbf{WALLCOLOR=}\textit{style-reference} | \textit{color}
specifies the fill color of the plot wall area.
\textit{style-reference}
specifies a style reference in the form \textit{style-element}:\textit{style-attribute}. Only the \textit{style-attribute} named \textit{COLOR} or \textit{CONTRASTCOLOR} is used.
\textbf{Default} The GraphWalls:Color style reference.

\textbf{Interaction} This option is ignored if WALLDISPLAY=NONE or WALLDISPLAY=(OUTLINE).

\textbf{WALLDISPLAY=}\textit{STANDARD} | ALL | NONE | (\textit{display-options})
specifies whether the plot’s wall and wall outline are displayed.
\textbf{STANDARD}
displays a filled wall. The setting of the FRAMEBORDER= attribute of the GraphWalls style element determines whether the wall outline is displayed.
\textbf{ALL}
displays a filled, outlined wall.
\textbf{NONE}
displays no wall and no wall outline.
\textbf{(display-options)}
a space-separated list of one or more of the following options, enclosed in parentheses:
\textbf{OUTLINE}
displays the wall outline.
\textbf{FILL}
displays a filled wall area.
<table>
<thead>
<tr>
<th>Default</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tips</td>
<td>Use the WALLCOLOR= option to control the fill color of the wall.</td>
</tr>
<tr>
<td></td>
<td>The appearance attributes of the wall outline are set by the GraphAxisLine style element.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XAXISOPTS=(axis-options)</th>
<th>specifies one or more X axis options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Axis options must be enclosed in parentheses and separated by spaces.</td>
</tr>
<tr>
<td></td>
<td>Each option must be specified as a name = value pair, and each pair must be separated by a space.</td>
</tr>
<tr>
<td>See</td>
<td>“Axis Options for LAYOUT OVERLAY” on page 889 for a list of axis options.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X2AXISOPTS=(axis-options)</th>
<th>specifies one or more X2 axis options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Axis options must be enclosed in parentheses and separated by spaces.</td>
</tr>
<tr>
<td></td>
<td>Each option must be specified as a name = value pair, and each pair must be separated by a space.</td>
</tr>
<tr>
<td>See</td>
<td>“Axis Options for LAYOUT OVERLAY” on page 889 for a list of axis options.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YAXISOPTS=(axis-options)</th>
<th>specifies one or more Y axis options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Axis options must be enclosed in parentheses and separated by spaces.</td>
</tr>
<tr>
<td></td>
<td>Each option must be specified as a name = value pair, and each pair must be separated by a space.</td>
</tr>
<tr>
<td>See</td>
<td>“Axis Options for LAYOUT OVERLAY” on page 889 for a list of options.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y2AXISOPTS=(axis-options)</th>
<th>specifies one or more Y2 axis options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Axis options must be enclosed in parentheses and separated by spaces.</td>
</tr>
<tr>
<td></td>
<td>Each option must be specified as a name = value pair, and each pair must be separated by a space.</td>
</tr>
<tr>
<td>See</td>
<td>“Axis Options for LAYOUT OVERLAY” on page 889 for a list of options.</td>
</tr>
</tbody>
</table>
Details

The LAYOUT OVERLAY statement builds a composite using one or more GTL-statements. You can specify one or more two-dimensional plots within the layout, provided all plots can share the same type of axes. You can also specify one or more insets, such as nested layout statements (for example, LAYOUT GRIDDED), ENTRY statements, and legend statements (for example, CONTINUOUSLEGEND or DISCRETELEGEND).

The following general logic applies to rendering the composite:

Note: The details for positioning insets also apply to insets that are specified within a LAYOUT REGION block.

- All plot statements are rendered first. Plot statement results are always rendered in the plot area. The plots are stacked on top of one another in the order in which they are specified, with the last one on top. It is possible for one plot’s graphical data to obscure graphical data beneath it. You can control this by selectively ordering the plot statements, or by using transparency on the individual plots, or by doing both.
- The insets are rendered next, in the order in which they are specified. As with the plot statements, it is possible for the insets to obscure the results of other statements in the layout.
- To control the horizontal and vertical positioning of some insets, you can use the inset statement’s AUTOALIGN= option, or its HALIGN= and VALIGN= options. Each nested inset determines its own relative position in the parent OVERLAY. This positioning achieves the best results for text-based insets whose size can be easily fit within an open area of the graph wall. A large text-based inset might not fit well, and an inset that contains a plot might be dropped from the display without warning when the template is executed.
- Some insets, like legends, can be positioned inside or outside of the plot area using the inset statement’s LOCATION= option. The inset’s AUTOALIGN= or HALIGN= and VALIGN= settings are then relative to that location.

Generally, the first specified plot determines the layout’s default axis characteristics. To enable another plot to define the axis characteristics, set PRIMARY=TRUE for that plot. For more information about the default axis characteristics, see “When Plots Share Data and a Common Axis” on page 880. See also the LAYOUT OVERLAYEQUATED and the LAYOUT OVERLAY3D statements.

An overlay layout can also contain an inner margin, which is a nested region at the top or bottom of the OVERLAY container. One or more inner margin plots can be specified, and each is specified within an INNERMARGIN block. Within the INNERMARGIN block, only one-dimensional plot statements such as BLOCKPLOT and AXISTABLE can be specified. See “INNERMARGIN Statement” on page 166.

Example: Simple Overlay

This example shows how to create a simple overlay of two series plots using the OVERLAY layout. The following figure shows the output.
Here is the SAS code.

```sas
data workers;
  format Date monyy5.;
  input Date monyy5. Electric Masonry;
  datalines;
  JAN80  320.3  293.8
  FEB80  315.7  285.8
  MAR80  312.6  292
  APR80  306.5  299.3
  MAY80  308.6  301.7
  JUN80  316.3  307.9
  JUL80  319.5  310.7
  AUG80  326.4  314.9
  SEP80  330.8  312.7
  OCT80  329.3  318.5
  NOV80  330.6  307.7
  DEC80  327.2  296.2
  JAN81  316.2  259.2
  FEB81  310.1  258.8
  MAR81  308.5  271.5
  APR81  311.1  281
  MAY81  313.6  283.7
  JUN81  318.3  289.3
  JUL81  321.3  291.1
  AUG81  327.4  295.9
  SEP81  326.7  292.7
  OCT81  326.4  282.6
  NOV81  322.5  275.5
  DEC81  318.6  260.2
  JAN82  301.9  214.3
  FEB82  296.1  224.8
  MAR82  298.3  228.7
```

Example: Simple Overlay
PROC TEMPLATE;
define statgraph layoutoverlay;
begingraph;	enrytitle "Trends in Employment Levels";
layout overlay / cycleattrs=true
xaxisopts=(display=(ticks tickvalues))
yaxisopts=(label="Number of Workers (thousands)");
seriesplot x=date y=electric /
curvelabel="Electrical"
curvelabellocation=outside;
seriesplot x=date y=masonry / curvelabel="Masonry"
curvelabellocation=outside;
endlayout;
endgraph;
end;
run;

PROC SGRENDER DATA=WORKERS TEMPLATE=layoutoverlay;
run;

LAYOUT OVERLAYEQUATED Statement

Builds a composite from one or more GTL-statements. The composite could be an entire graph. Or, if this layout is nested in another layout, such as a GRIDDED layout, then the composite typically provides contents for one cell in the parent layout. In an OVERLAYEQUATED layout, the display unit of the X axis always equals the display unit of the Y axis.

Restrictions: All overlaid plots share common X and Y axes.

3-D plots are not allowed.

You can add one or more of the following X-Y plots to the graph area that the LAYOUT OVERLAYEQUATED statement creates: BANDPLOT, CONTOURPLOTPARM, ELLIPSE, ELLIPSEPARM, HEATMAP, HEATMAPPARM, LOESSPLOT, NEEDLEPLOT, PBSPLINEPLOT, REGRESSIONPLOT, SCATTERPLOT, SERIESPLOT, STEPPLOT, or VECTORPLOT. As long as one of these plots is present, you can also add FRINGE PLOT, LINEPARM, MODEL BAND, REFERENCE LINE, DROPLINE, DISCRETE LEGEND, CONTINUOUS LEGEND, and text-based statements such as ENTRY.

This layout has only two independent axes from a data standpoint, X and Y. If any contained plot uses an X=X2 or Y=Y2 option, then the option is ignored and the data is mapped to the X or Y axis. However, the X2 and Y2 axes can be displayed using the DISPLAY2= suboption of the XAXISOPTS= and YAXISOPTS= options.

Interaction: When nested within another layout type, the OVERLAYEQUATED layout defines the graph display for one cell of the parent layout. A separate OVERLAYEQUATED layout is specified for each cell.
Syntax

LAYOUT OVERLAYERQUATED </option(s)>;

GTL-statements;
ENDLAYOUT;

Summary of Optional Arguments

Appearance options

- **BACKGROUND COLOR**=style-reference | color
 specifies the color of the layout background.

- **BORDER**=TRUE | FALSE
 specifies whether a border is drawn around the layout.

- **BORDER ATTRS**=style-element | style-element (line-options) | (line-options)
 specifies the attributes of the border line around the layout.

- **CYCLE ATTRS**=TRUE | FALSE
 specifies whether the default visual attributes of markers, lines, and fills in nested plot statements automatically change from plot to plot.

- **OPAQUE**=TRUE | FALSE
 specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

- **OUTER PAD**=AUTO | dimension | (pad-options)
 specifies the amount of extra space to add outside the layout border.

- **PAD**=dimension | (pad-options)
 specifies the amount of extra space that is added inside the layout border.

- **WALL COLOR**=style-reference | color
 specifies the fill color of the plot wall area.

- **WALL DISPLAY**=STANDARD | ALL | NONE | (display-options)
 specifies whether the plot’s wall and wall outline are displayed.

Axes options

- **COMMON AXIS OPTS**=(common-axis-options)
 specifies one or more options to apply to both the X and Y equated axes.

- **EQUATE TYPE**=FIT | SQUARE | SQUARE DATA | EQUATE
 specifies how to draw the axis area.

- **X AXIS OPTS**=(axis-options)
 specifies one or more X axis options.

- **Y AXIS OPTS**=(axis-options)
 specifies one or more Y axis options.

Optional Arguments

- **BACKGROUND COLOR**=style-reference | color
 specifies the color of the layout background.

 style-reference
 specifies a style reference in the form style-element:style-attribute. Only the style attribute named COLOR or CONTRASTCOLOR is used.

 Default
 The GraphBackground:Color style reference.
Interaction OPAQUE=TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=TRUE | FALSE
specifies whether a border is drawn around the layout.

Default FALSE

Interaction If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See “boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default The GraphBorderLines style element.

Interaction BORDER=TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

COMMONAXISOPTS=common-axis-options
specifies one or more options to apply to both the X and Y equated axes.

Requirements Axis options must be enclosed in parentheses.
Each option must be specified as a name = value pair and must be separated by a space.

See “Options That Apply in Common to Both Equated Axes” on page 1013 for a list of options.

CYCLEATTRS=TRUE | FALSE
specifies whether the default visual attributes of markers, lines, and fills in nested plot statements automatically change from plot to plot.

FALSE
does not cycle the default visual attributes of multiple plots. For example, if you overlay three series plots, then each series line has the same default visual properties.

TRUE
Attempts to use the GraphData1–GraphDataN style elements to assign different visual properties to applicable plots (scatter plots and series plots and others). Some plots in the layout do not participate in the cycling (for example, reference lines and drop lines).

Default FALSE

See “Rotating Visual Attributes for Each Plot in an Overlay” on page 183

“boolean” on page 1339 for other Boolean values that you can use.

EQUATETYPE=FIT | SQUARE | SQUAREDATA | EQUATE
specifies how to draw the axis area.
FIT
specifies that the X and Y axes have equal increments between tick values. The
data ranges of both axes are compared to establish a common increment size. The
axes might be of different lengths and have a different number of tick marks.
Each axis represents its own data range. One axis might be extended to use
available space in the plot area. If a TICKVALUELIST= or
TICKVALUESEQUENCE= axis option is used on COMMONAXISOPTS=,
then it is ignored.

SQUARE
specifies that both the X and Y axes have the same length and the same major
tick values. The axis length and tick values are chosen so that the minimum and
maximum of both X and Y appear in the range of values appearing on both axes.

SQUAREDATA
specifies that both the X and Y axes have the same data range, but they can have
different tick values. A UNION of the data ranges does not occur in this case. For example, if the X axis values are 20 to 40 (range of 20) and the Y axis values are
200 to 260 (range of 60), then both axes have a range of 60 units, but the X axis
can have tick values 0, 20, 40, and 60, and the Y axis can have tick values 200,
220, 240, and 260.

EQUATE
same as FIT except that neither axis is extended to use available space in the plot
area.

Default FIT

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction
When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.
AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.
RIGHT=dimension specifies the amount of extra space to add to the right side.
TOP=dimension specifies the amount of extra space to add to the top.
BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Note The default units for dimension are pixels.

See “dimension” on page 1340

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the layout border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

Default 0

RIGHT=dimension specifies the amount of extra space added to the right side.

Default 0

TOP=dimension specifies the amount of extra space added to the top.

Default 0

BOTTOM=dimension specifies the amount of extra space added to the bottom.
WALLCOLOR=style-reference | color
specifies the fill color of the plot wall area.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style- attribute named COLOR or CONTRASTCOLOR is used.

Default
The GraphWalls:Color style reference.

Interaction
This option is ignored if WALLDISPLAY=NONE or WALLDISPLAY=(OUTLINE).

WALLDISPLAY=STANDARD | ALL | NONE | (display-options)
specifies whether the plot’s wall and wall outline are displayed.

STANDARD
displays a filled wall. The setting of the FRAMEBORDER= attribute of the GraphWalls style element determines whether the wall outline is displayed.

ALL
displays a filled, outlined wall.

NONE
displays no wall and no wall outline.

(display-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

OUTLINE displays the wall outline.

FILL displays a filled wall area.

Default
STANDARD

Tips
Use the WALLCOLOR= option to control the fill color of the wall.

The appearance attributes of the wall outline are set by the GraphAxisLine style element.

XAXISOPTS=(axis-options)
specifies one or more X axis options.

Requirements
Axis options must be enclosed in parentheses and separated by spaces.

Each option must be specified as a name = value pair, and each pair must be separated by a space.
See “Options That Apply Separately to an X or Y Equated Axis” on page 1019 for a list of options.

YAXISOPTS=(axis-options)
specifies one or more Y axis options.

Requirements Axis options must be enclosed in parentheses and separated by spaces.
Each option must be specified as a name = value pair, and each pair must be separated by a space.

See “Options That Apply Separately to an X or Y Equated Axis” on page 1019 for a list of options.

Details

The LAYOUT OVERLAYEQUATED statement is similar to the LAYOUT OVERLAY statement: it builds a composite using one or more GTL-statements. Similar to a LAYOUT OVERLAY, you can specify one or more 2-D plots within the layout, provided all plots can share the same type of axes. (Additional restrictions are discussed in a moment.) You can also specify one or more insets.

As an overlay-type layout, OVERLAYEQUATED has the same behavioral characteristics as an OVERLAY layout. It uses the same general logic for rendering the composite (see “LAYOUT OVERLAY Statement” on page 136 for details), and its default axis characteristics are generally determined by the first specified plot, unless you use PRIMARY=TRUE on an alternative plot statement (see “When Plots Share Data and a Common Axis” on page 880).

OVERLAYEQUATED differs from OVERLAY in several ways. With OVERLAYEQUATED,

- The axis type for both X and Y axes is always linear. Thus, plot types that have discrete or binned axes cannot be used within this layout (for example, BOXPLOT, BOXPLOTPARM, BARCHARTPARAM, HISTOGRAM, and HISTOGRAMPARAM).

- For equal data intervals on both axes, the display distance is the same. For example, an interval of 2 on the X axis maps to the same display distance as an interval of 2 on the Y axis.

- The aspect ratio of the plot display equals the aspect ratio of the plot data. In other words, a 45 degree slope in data is represented by a 45 degree slope in the display. The EQUATETYPE= option determines how the axes are drawn.

The following figure illustrates how a series plot might map differently when specified in an OVERLAYEQUATED layout versus an OVERLAY layout:
A LAYOUT OVERLAYEQUATED statement enables you to specify one or more of the following XY plots: SCATTERPLOT, SERIESPLOT, NEEDLEPLOT, STEPPLOT, VECTORPLOT, BANDPLOT, LOESSPLOT, REGRESSIONPLOT, PBSLINEPLOT, and CONTOURPLOTPARM. As long as one of these plots is present, you can also add FRINGEPLOT, LINEPARM, MODELBAND, REFERENCELINE, DROPLINE, and insets as ENTRY, DISCRETELEGEND, and CONTINUOUSLEGEND.

From a data standpoint, this layout has only two independent axes, X and Y. If any plots within the layout block use an XAXIS=X2 or YAXIS=Y2 option, then the option is ignored and the data are mapped to the X or Y axis. To display X2 and Y2 axes, use the DISPLAYSECONDARY= suboption of the XAXISOPTS= and YAXISOPTS= options.

If an OVERLAYEQUATED statement is nested in a LATTICE layout, then some of the LATTICE’s alignment and external axis features are not supported on the OVERLAYEQUATED layout.

Example: LAYOUT OVERLAYEQUATED Statement

The following graph was generated by the “Example Program” on page 152:
Example Program

```sas
proc template;
  define statgraph layoutoverlayequated;
  begingraph;
    entrytitle "Gas Mileage for GMC Models";
    layout overlayequated / equatetype=fit;
    referenceline y=16.2 /
      curvelabel="City Average for Trucks/SUVs"
      curvelabellocation=inside
      curvelabelattrs=GraphReference;
    referenceline x=20.6 /
      curvelabel="Highway Average for Trucks/SUVs"
      curvelabellocation=inside
      curvelabelattrs=GraphReference;
    scatterplot x=mpg_highway y=mpg_city /
      datalabel=model;
    endlayout;
  endgraph;
end;
run;
proc sgrender data=sashelp.cars
  template=layoutoverlayequated;
  where make="GMC";
run;
```

LAYOUT OVERLAY3D Statement

Builds a 3-D composite from one or more GTL-statements. The composite could be an entire graph. Or, if this layout is nested in a GRIDDED or LATTICE layout, then the composite typically provides contents for one cell in the parent layout.
Restriction: You can add one or more 3-D plots to the graph area that the LAYOUT OVERLAY3D statement creates, but all of the graphs will share the same set of axes.

Syntax

LAYOUT OVERLAY3D <option(s)>;

GTL-statements;

ENDLAYOUT;

Summary of Optional Arguments

Appearance options
- **BACKGROUNDCOLOR=** *style-reference | color*
 specifies the color of the layout background.
- **BORDER=** *TRUE | FALSE*
 specifies whether a border is drawn around the layout.
- **BORDERATTRS=** *style-element | style-element (line-options) | (line-options)*
 specifies the attributes of the border line around the layout.
- **CUBE=** *TRUE | FALSE*
 specifies whether the layout displays the lines that indicate the complete bounding cube of the axis planes.
- **CYCLEATTRS=** *TRUE | FALSE*
 specifies whether the default visual attributes of markers, lines, and fills in nested plot statements automatically change from plot to plot.
- **OPAQUE=** *TRUE | FALSE*
 specifies whether the layout background is opaque (TRUE) or transparent (FALSE).
- **OUTERPAD=** *AUTO | dimension | (pad-options)*
 specifies the amount of extra space to add outside the layout border.
- **PAD=** *dimension | (pad-options)*
 specifies the amount of extra space that is added inside the layout border.
- **ROTATE=** *number*
 specifies the angle of rotation.
- **TILT=** *number*
 specifies the angle of tilt in degrees.
- **WALLCOLOR=** *style-reference | color*
 specifies the fill color of the plot wall area.
- **WALLDISPLAY=** *STANDARD | ALL | NONE | (display-options)*
 specifies whether the plot’s wall and wall outline are displayed.
- **ZOOM=** *positive-number*
 specifies a zoom factor.

Axes options
- **XAXISOPTS=** *(axis-options)*
 specifies one or more X axis options.
- **YAXISOPTS=** *(axis-options)*
 specifies one or more Y axis options.
- **ZAXISOPTS=** *(axis-options)*
 specifies one or more Z axis options.
Optional Arguments

BACKGROUND COLOR = style-reference | color
specifies the color of the layout background.

style-reference
specifies a style reference in the form *style-element:style-attribute*. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphBackground:Color style reference.

Interaction **OPAQUE = TRUE** must be in effect for the color to be seen. By default, **OPAQUE = FALSE**.

BORDER = TRUE | FALSE
specifies whether a border is drawn around the layout.

Default FALSE

Interaction If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See **“boolean” on page 1339** for other Boolean values that you can use.

BORDERATTRS = style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default The GraphBorderLines style element.

Interaction **BORDER = TRUE** must be set for this option to have any effect.

See **“General Syntax for Attribute Options” on page 1347** for the syntax on using a *style-element*.

“Line Options” on page 1349 for available *line-options*.

CUBE = TRUE | FALSE
specifies whether the layout displays the lines that indicate the complete bounding cube of the axis planes.

Default TRUE

Note The cube lines are displayed independently of the wall borders and axis lines. Because some cube lines coincide with wall borders and axis lines, it might appear that turning off wall borders or axis lines has no effect when **CUBE = TRUE**.

Tip The color, thickness, and pattern of the cube lines are determined by the GraphAxisLines style element.

See **“boolean” on page 1339** for other Boolean values that you can use.

CYCLEATTRS = TRUE | FALSE
specifies whether the default visual attributes of markers, lines, and fills in nested plot statements automatically change from plot to plot.
FALSE
does not cycle the default visual attributes of multiple plots. For example, if you overlay three series plots, then each series line has the same default visual properties.

TRUE
attempts to use the GraphData1–GraphDataN style elements to assign different visual properties to applicable plots (scatter plots and series plots and others). Some plots in the layout do not participate in the cycling (for example, reference lines and drop lines).

Default FALSE

See “Rotating Visual Attributes for Each Plot in an Overlay” on page 183

“boolean” on page 1339 for other Boolean values that you can use.

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

 LEFT=dimension specifies the amount of extra space to add to the left side.
 RIGHT=dimension specifies the amount of extra space to add to the right side.
 TOP=dimension specifies the amount of extra space to add to the top.
 BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Note The default units for dimension are pixels.
PAD=\textit{dimension} \mid \textit{pad-options}

specifies the amount of extra space that is added inside the layout border.

\textit{dimension}

specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

\textit{pad-options}

a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

\textbf{LEFT=\textit{dimension}}

specifies the amount of extra space added to the left side.

Default 0

\textbf{RIGHT=\textit{dimension}}

specifies the amount of extra space added to the right side.

Default 0

\textbf{TOP=\textit{dimension}}

specifies the amount of extra space added to the top.

Default 0

\textbf{BOTTOM=\textit{dimension}}

specifies the amount of extra space added to the bottom.

Default 0

\textbf{Note}

Sides that are not assigned padding are padded with the default amount.

\textbf{Tip}

Use \textit{pad-options} to create non-uniform padding.

\textbf{Note}

The default units for \textit{dimension} are pixels.

\textbf{See}

“\textit{dimension}” on page 1340

\textbf{ROTATE=\textit{number}}

specifies the angle of rotation. Rotation is measured in a clockwise direction about a virtual axis parallel to the Z axis (vertical) and passing through the center of the bounding cube. A counterclockwise rotation can be specified with a negative value.

Default 54

\textbf{TILT=\textit{number}}

specifies the angle of tilt in degrees. Tilt is measured in a clockwise direction about a virtual axis parallel to the X axis (vertical) and passing through the center of the bounding cube. A counterclockwise rotation can be specified with a negative value.

Default 20

\textbf{WALLCOLOR=\textit{style-reference} \mid \textit{color}}

specifies the fill color of the plot wall area.
style-reference
 specifies a style reference in the form style-element:style-attribute. Only the
 style- attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphWalls:Color style reference.

Interaction This option is ignored if WALLDISPLAY=NONE or
 WALLDISPLAY=(OUTLINE).

WALLDISPLAY=STANDARD | ALL | NONE | (display-options)
specifies whether the plot’s wall and wall outline are displayed.

STANDARD
displays a filled wall. The setting of the FRAMEBORDER= attribute of the
GraphWalls style element determines whether the wall outline is displayed.

ALL
displays a filled, outlined wall.

NONE
displays no wall and no wall outline.

(display-options)
a space-separated list of one or more of the following options, enclosed in
parentheses:

 OUTLINE displays the wall outline.
 FILL displays a filled wall area.

Default STANDARD

Tips Use the WALLCOLOR= option to control the fill color of the wall.

The appearance attributes of the wall outline are set by the GraphAxisLine
style element.

See the CUBE= option.

XAXISOPTS=(axis-options)
specifies one or more X axis options.

Requirements Axis options must be enclosed in parentheses and separated by
spaces.

 Each option must be specified as a name = value pair, and each pair
 must be separated by a space.

See “Axis Options for LAYOUT OVERLAY3D” on page 945 for a list
of axis options.

YAXISOPTS=(axis-options)
specifies one or more Y axis options.

Requirements Axis options must be enclosed in parentheses and separated by
spaces.

 Each option must be specified as a name = value pair, and each pair
 must be separated by a space.
See “Axis Options for LAYOUT OVERLAY3D” on page 945 for a list of axis options.

ZAXISOPTS=(axis-options)

specifies one or more Z axis options.

Requirements

Axis options must be enclosed in parentheses and separated by spaces.

Each option must be specified as a `name = value` pair, and each pair must be separated by a space.

See “Axis Options for LAYOUT OVERLAY3D” on page 945 for a list of axis options.

ZOOM=positive-number

specifies a zoom factor. Factors greater than 1 move closer to the bounding cube, less than 1 move farther away

Default 1

Details

The LAYOUT OVERLAY3D statement builds a 3-D composite using one or more GTL-statements. You can specify one or more 3-D plots within the layout, provided all plots can share the same type of axes. You can also specify “annotations” (for example, with one or more ENTRY statements or LAYOUT GRIDDED statements). However, annotations in the OVERLAY3D layout are more likely to collide with other graphics features than are annotations in other overlay-type layouts.

As an overlay-type layout, OVERLAY3D has the same behavioral characteristics as an OVERLAY layout. It uses the same general logic for rendering the composite (see “LAYOUT OVERLAY Statement” on page 136 for details), and its default axis characteristics are generally determined by the first specified plot, unless you use PRIMARY=TRUE on another plot statement (see “When Plots Share Data and a Common Axis” on page 880).

Within an OVERLAY3D layout, a graph’s bounding cube can be tilted, rotated, and zoomed to provide a different viewpoint. By default, the outline of the bounding cube is displayed and the viewing rotation angle is 57 degrees, the tilt angle is 20 degrees, and the zoom factor is 1. See the CUBE=, ROTATE=, TILT=, and ZOOM= options for information about how to change the viewpoint.

Example: LAYOUT OVERLAY3D Statement

The following graph was generated by the “Example Program” on page 159:
Example Program

```sas
proc template;
  define statgraph layoutoverlay3d;
  begingraph;
    entrytitle "Density Plot of Height and Weight";
    layout overlay3d / tilt=10 rotate=54
      walldisplay=none cube=false;
    surfaceplotparm x=height y=weight z=density / surfacecolorgradient=density;
    endlayout;
  endgraph;
end;
run;
proc sgrender data=sashelp.gridded template=layoutoverlay3d;
run;
```

LAYOUT PROTOTYPE Statement

Builds a composite from one or more plot-statements. The composite is used as a prototype or "rubber stamp" that repeats in each cell of a parent DATALATTICE or DATAPANEL layout.

Restrictions: You can specify only one LAYOUT PROTOTYPE block in a LAYOUT DATAPANEL or LAYOUT DATALATTICE block. If you specify more than one, then only the last prototype block specified is honored. The remaining prototype blocks are ignored. Only the following plots can be used in a LAYOUT PROTOTYPE block: BANDPLOT, BARCHART, BARCHARTPARM, BLOCKPLOT, BOXPLOT, BOXPLOT, COUNTOURPLOT, DROPLINE, ELLIPSE, FRINGEPLOT, HEATMAPPARM, HISTOGRAM, LINECHART, LINEPLOT, NEEDLEPLOT, REFERENCENAME, SCATTERPLOT, SERIESPLOT, STEPPLOT, and VECTORPLOT.
SCATTERPLOTCOLUMN plots, 3-D plots, and region plots such as PIECHART or MOSAICPLOTPARM cannot be used in the LAYOUT PROTOTYPE block. ENTRY, DISCRETELEGEND, and CONTINUOUSLEGEND statements cannot be used in the LAYOUT PROTOTYPE block. A plot statement cannot be used if it contains a column defined with an EVAL expression.

You can add one or more two-dimensional plots and one-dimensional plots to the graph area that the LAYOUT PROTOTYPE statement creates, provided all of the graphs can share the same axis type.

If you include a plot statement with a CURVELABEL= option (such as SERIESPLOT), then only CURVELABELLOCATION=INSIDE is supported.

If you include a plot statement that supports a CLIP= option (such as LINEPARM or ELLIPSEPARM), then the CLIP value is always set to TRUE.

Requirement: The LAYOUT PROTOTYPE statement must be nested in a LAYOUT DATAPANEL or LAYOUT DATALATTICE block.

Note: Nesting an INNERMARGIN block in the LAYOUT PROTOTYPE statement is valid in the first maintenance release of SAS 9.4 and later releases.

See: "LAYOUT DATAPANEL Statement" on page 70 "LAYOUT DATALATTICE Statement" on page 45

Syntax

```markdown
LAYOUT PROTOTYPE <option(s)>;
    plot-statements;
    <INNERMARGIN <options(s)>;
        block-plot-statement(s); | axis-table statement(s);
    ENDINNERMARGIN;>
    <… more-innermargin-blocks …> >
ENDLAYOUT;
```

Optional Arguments

ASPECTRATIO=AUTO | positive-number

Specifies the aspect ratio of the prototype cell. The ratio is expressed as a positive decimal fraction representing wall-height divided by wall-width. For example, 0.75 is a 3/4 aspect ratio and 1.0 is a square aspect ratio.

Default AUTO. The prototype cell is sized to the maximum area that can fill the available space inside the layout cell.

Note If AUTO is not used for the aspect ratio, then the entire DATALATTICE or DATAPANEL grid is affected and changes shape.

CYCLEATTRS=TRUE | FALSE

Specifies whether the default visual attributes of markers, lines, and fills in nested plot statements automatically change from plot to plot.

FALSE

Does not cycle the default visual attributes of multiple plots. For example, if you overlay three series plots, then each series line has the same default visual properties.
attempts to use the GraphData1–GraphDataN style elements to assign different visual properties to applicable plots (scatter plots and series plots and others). Some plots in the layout do not participate in the cycling (for example, reference lines and drop lines).

Default FALSE

See “Rotating Visual Attributes for Each Plot in an Overlay” on page 183

“boolean ” on page 1339 for other Boolean values that you can use.

WALLCOLOR=style-reference | color
specifies the fill color of the plot wall area.

style-reference
specifies a style reference in the form `style-element:style-attribute`. Only the style-attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphWalls:Color style reference.

Interaction This option is ignored if WALLDISPLAY=NONE or WALLDISPLAY=(OUTLINE).

WALLDISPLAY=STANDARD | ALL | NONE | (display-options)
specifies whether the plot’s wall and wall outline are displayed.

STANDARD
displays a filled wall. The setting of the FRAMEBORDER= attribute of the GraphWalls style element determines whether the wall outline is displayed.

ALL
displays a filled, outlined wall.

NONE
displays no wall and no wall outline.

(display-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

OUTLINE displays the wall outline.

FILL displays a filled wall area.

Default STANDARD

Tips Use the WALLCOLOR= option to control the fill color of the wall.

The appearance attributes of the wall outline are set by the GraphAxisLine style element.

When the wall outline is suppressed, adjacent lines such as axis lines and cell-header borders are still displayed. To suppress the axis lines, use the appropriate display option for the axes. The cell-header borders cannot be suppressed.
Details
The LAYOUT PROTOTYPE statement defines a plot prototype or “rubber stamp” that repeats automatically. It assembles the results of nested GTL statements into a single axis area. The plots are drawn in the order in which they are specified. The results of the last statement are placed on top.

The plot-statements determine the graphical content of the cells in the parent layout, based on the subsetting of the specified classification variables. For an example, see “LAYOUT DATALATTICE Statement” on page 45 or “LAYOUT DATAPANEL Statement” on page 70.

A PROTOTYPE layout is essentially a restricted OVERLAY layout with the same general rules for overlaying plots. The main difference is that there are no axis options available on the LAYOUT PROTOTYPE statement. Axis properties are set with the ROWAXISOPTS= and COLUMNAXISOPTS= options of the parent DATAPANEL or DATALATTICE statement.

In SAS 9.4 and later releases, a PROTOTYPE layout can also contain an inner margin, which is a nested region at the top or bottom of the PROTOTYPE container. One or more inner margin plots can be specified, and each is specified within an INNERMARGIN block. Within the INNERMARGIN block, only one-dimensional plot statements such as BLOCKPLOT and AXISTABLE can be specified. See “INNERMARGIN Statement” on page 166.

LAYOUT REGION Statement
Creates the drawing area for a plot that does not use axes.

Restrictions:

A LAYOUT REGION block cannot contain more than one plot.

A LAYOUT REGION block can contain a PIECHART or MOSAICPLOTPARM plot only.

Syntax

LAYOUT REGION </option(s)>;

 GTL-statements;

ENDLAYOUT;

Optional Arguments

BACKGROUND COLOR=style-reference | color
 specifies the color of the layout background.

style-reference
 specifies a style reference in the form style-element:style-attribute. Only the style attribute named COLOR or CONTRASTCOLOR is used.

Default
 The GraphBackground:Color style reference.

Interaction
 OPAQUE=TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=TRUE | FALSE
 specifies whether a border is drawn around the layout.
Default FALSE

Interaction If this option is set to FALSE, then the BORDERATTRS= option is ignored.

See “boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the layout.

Default The GraphBorderLines style element.

Interaction BORDER= TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

OPAQUE=TRUE | FALSE
specifies whether the layout background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the layout border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the layout border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.

RIGHT=dimension specifies the amount of extra space to add to the right side.

TOP=dimension specifies the amount of extra space to add to the top.

BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO
Note The default units for \textit{dimension} are pixels.

See “\textit{dimension}” on page 1340

PAD=dimension \ (pad-options)
specifies the amount of extra space that is added inside the layout border.

\textit{dimension}
specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

\textit{(pad-options)}
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

\textbf{LEFT=dimension}
specifies the amount of extra space added to the left side.

Default 0

\textbf{RIGHT=dimension}
specifies the amount of extra space added to the right side.

Default 0

\textbf{TOP=dimension}
specifies the amount of extra space added to the top.

Default 0

\textbf{BOTTOM=dimension}
specifies the amount of extra space added to the bottom.

Default 0

Note Sides that are not assigned padding are padded with the default amount.

Tip Use \textit{pad-options} to create non-uniform padding.

Note The default units for \textit{dimension} are pixels.

See “\textit{dimension}” on page 1340

Details

The REGION layout provides a container for plots that do not use axes. Within the LAYOUT REGION block, you can specify a single plot statement of a type that never uses axes, such as a PIECHART or MOSAICPLOTPARM. If multiple plot statements are specified, then only the first one is honored. You can also specify one or more insets, such as nested layout statements (for example, LAYOUT GRIDDED), ENTRY statements, and legend statements (CONTINUOUSLEGEND or DISCRETELEGEND). For example, you could specify a PIECHART statement with a DISCRETELEGEND statement and an ENTRY statement. You can also nest one or more layout blocks within the REGION layout. For example, you could nest a LAYOUT GRIDDED statement that creates a small table of text.
When nested within another layout type, such as a GRIDDED or LATTICE layout, the REGION layout defines the graphical display for one cell of the parent layout. A separate REGION layout is specified for each cell.

Example: LAYOUT REGION Statement

The following graph was generated by the “Example Program” on page 165:

![Average Weight by Age](image)

Example Program

``` Sas
proc template;
define statgraph layoutregion;
begingraph;
  entrytitle "Average Weight by Age";
  layout region;
    piechart category=age response=weight /
      stat=mean name="p"
      datalabelcontent={response} datalabellocation=outside;
    discretelegend "p" / title="Age" across=2
      border=true halign=right valign=top;
  endlayout;
endgraph;
end;

proc sgrender data=sashelp.class template=layoutregion;
run;
```
INNERMARGIN Statement

Provides a nested region in a LAYOUT OVERLAY or LAYOUT PROTOTYPE container in which a block plot or axis table can be placed.

Restriction: This statement is valid in LAYOUT OVERLAY and LAYOUT PROTOTYPE blocks only.

Notes: Two or more INNERMARGIN blocks that have the same alignment are stacked. Multiple statements within an INNERMARGIN block are stacked. For an X axis, the offsets on each end of the Y axis are increased to make room for the inner margin plots. For a Y axis, the offsets on each end of the X axis are increased to make room for the inner margin plots.

Syntax

INNERMARGIN < /option(s)>;
 block-plot-statement(s); | axis-table statement(s);
ENDINNERMARGIN;

Optional Arguments

ALIGN=TOP | BOTTOM | LEFT | RIGHT
specifies the alignment of the inner margin.

| Default | BOTTOM |
| Restrictions |
For a block plot, only TOP and BOTTOM are valid. LEFT and RIGHT are ignored.

For an axis table, LEFT and RIGHT can be used for a Y or Y2 axis.

Multiple statements within an INNERMARGIN block are stacked.

Note
For an inner margin with ALIGN=TOP or ALIGN=BOTTOM, the offsets on each end of the Y axis are increased to reserve space for the inner margin plots. For an inner margin with ALIGN=LEFT or ALIGN=RIGHT, the offsets on each end of the X axis are increased to reserve space for the inner margin plots.
BACKGROUNDCOLOR=style-reference | color
specifies the color of the inner margin background.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style attributes named COLOR or CONTRASTCOLOR are used.

color
specifies a color.

See color on page 1340

Default The graph wall color. (See WALLCOLOR=.)

Interaction For this option to have any effect, the OPAQUE= option must be set to TRUE.

Note The inner margin background is set to the wall color even when WALLDISPLAY= NONE.

GUTTER=dimension
specifies the gap between stacked items in the inner margin.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default 0

Requirement The inner margin must contain two or more stacked items for this option to have any effect.

Note The default units for dimension are pixels.

See “dimension” on page 1340

OPAQUE=TRUE | FALSE
specifies whether the inner margin's background is opaque.

TRUE specifies that the background is opaque.
FALSE specifies that the background is transparent.

Default FALSE

Interaction When this option is FALSE, the BACKGROUNDCOLOR= option is ignored.

Tip To prevent axis color bars and grid lines from passing through the axis table, set OPAQUE=TRUE.

See “boolean” on page 1339 for other Boolean values that you can use.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the inner-margin border.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
specifies a dimension to use for the extra space at the left, right, top, and bottom of the border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=\textit{dimension}
specifies the amount of extra space added to the left side.

Default 0

RIGHT=\textit{dimension}
specifies the amount of extra space added to the right side.

Default 0

TOP=\textit{dimension}
specifies the amount of extra space added to the top.

Default 5 px for the first inner margin adjacent to the bottom of the plot area. Otherwise, 0.

BOTTOM=\textit{dimension}
specifies the amount of extra space added to the bottom.

Default 5 px for the first inner margin adjacent to the top of the plot area. Otherwise, 0.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use \textit{pad-options} to create non-uniform padding.

Note The default units for \textit{dimension} are pixels.

See “\textit{dimension}” on page 1340

\textbf{SEPARATOR=TRUE | FALSE}
specifies whether a separating line is drawn between the inner margin and the rest of the layout content.

\textit{Note}: This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default FALSE

Tip Use the \textit{SEPARATORATTRS=} option to specify the attributes of the separating line.

See “Example: Overlay with an Inner Margin Plot” on page 169

“\textit{boolean} ” on page 1339 for other Boolean values that you can use.

\textbf{SEPARATORATTRS=}\textit{style-element | style-element (line-options)} | (line-options)
specifies the attributes of the inner margin separating line.

\textit{Note}: This option is valid in the first maintenance release of SAS 9.4 and later releases.
The graphAxisLines style element

This option is ignored when SEPARATOR=FALSE.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

“Example: Overlay with an Inner Margin Plot” on page 169

Details

An inner margin is a nested region in an OVERLAY container. You can specify one or more inner margin plots. Specify each plot within an INNERMARGIN block. Within an INNERMARGIN block, you can specify only the BLOCKPLOT and AXISTABLE statements. See “Example: Overlay with an Inner Margin Plot” on page 169.

Example: Overlay with an Inner Margin Plot

Example Overview

This example shows how to place a plot in an inner margin of an OVERLAY layout. It creates a graph that shows monthly total sales for a specific year. A LINECHART statement is used to draw the plot. The months are shown along the category axis, and the total sales values are shown along the response axis. The Sashelp.Prdsale data set is used as the data source. The tick marks on the category axis are positioned between the midpoints to align with the beginning of each month.

A BLOCKPLOT statement in an INNERMARGIN block is used to display the quarters above the category axis. The INNERMARGIN statement uses the default alignment, so the inner margin is positioned at the bottom of the layout container, beneath the line chart. Alternate shading is used in the block plot to show the block boundaries. Because the tick marks are positioned between the midpoints, they align with the block boundaries. The SEPARATOR= and SEPARATORATTRS= options are used in the INNERMARGIN statement to specify a dark-red, two-pixel-wide separator line between the inner margin and the rest of the graph.

Note: The INNERMARGIN statement SEPARATOR= and SEPARATORATTRS= options are valid in the first maintenance release of SAS 9.4 and later releases.
Example Output

Here is the output for this example.

Example Program

Here is the SAS code.

```sas
/* Create a format for the quarters */
proc format;
   value quartername 1="Quarter 1" 2="Quarter 2"
      3="Quarter 3" 4="Quarter 4";
run;

/* Define the graph template */
proc template;
   define statgraph innermargin;
      dynamic year;
      begingraph / subpixel=on;
      entrytitle "Total Sales in " year;
      layout overlay /
         xaxisopts=(type=discrete discreteopts=(ticktype=inbetween));
      innermargin /
         separator=true
         separatorattrs=(color=darkred thickness=2px);
      blockplot x=month block=quarter /
         filltype=alternate
         fillattrs=(color=cxd7d7d7)
         altfillattrs=(color=cxf7f7f7)
         display=(fill values) valuehalign=center;
      endinnermargin;
      linechart category=month response=actual /
         smoothconnect=true;
      endlayout;
endgraph;
end;
run;

/* Generate the graph */
proc sgrender data=sashelp.prdsale template=innermargin;
   format quarter quartername.;
```
where year=1994;
dynamic year=1994;
run;
Part 4

Plot Statements

Chapter 5
Key Concepts for Using Plots ... 175

Chapter 6
Plot Statements .. 189
Chapter 5
Key Concepts for Using Plots

Minimum Requirements to Generate a Plot 175
ODS Graphics Environment ... 176
Display Attributes .. 177
 Overview ... 177
 Display Attributes for Non-Grouped Data 177
 Display Attributes for Grouped Data 179
 Rotating Visual Attributes for Each Plot in an Overlay 183
 Remapping Groups for Grouped Data 183
 Interactions between Options ... 184
Location and Position of Curve Labels 185
 Overview ... 185
 Curve Label Location Relative to the Plot Area 185
 Curve Label Position Relative to the Curve Line 186

Minimum Requirements to Generate a Plot

ODS graphics are generated by template definitions that determine a graph’s layout and appearance and specify the variable roles to be represented in the graph display. A graph can be rendered from a compiled template by associating the template with a data source at run time.

The following SAS program shows the basic structure needed to meet the minimum requirements for generating a plot using GTL:

```sas
proc template;
  define statgraph minimumreq;
    begingraph;
      layout overlay;
        scatterplot x=weight y=height;
        endlayout;
    endgraph;
  end;
run;

proc sgrender data=sashelp.class template=minimumreq;
run;
```
• The DEFINE STATGRAPH statement on PROC TEMPLATE is required to open a
definition block for defining and naming a graphics template. The END statement
closes the template definition.

• A BEGINGRAPH statement block is required to define the outermost container for
the graph. The ENDFRAPH statement closes the block.

• At least one layout statement block is required for specifying the elements that
compose the graph. To generate a plot, the layout block must contain at least one plot
statement. The ENDLAYOUT statement closes the layout block.

• The PROC TEMPLATE statement must be run to compile the template and save it in
the template store (Sasuser.Templat by default).

• The PROC SGRENDER statement is required to produce a graph from a compiled
template. The DATA= option specifies a run-time data source to use, and the
TEMPLATE= option specifies the template to use. The input data source must satisfy
any restrictions that are imposed by the template. For example, it must contain any
variables that have been specified on the template’s GTL statements.

ODS Graphics Environment

The ODS GRAPHICS statement manages the settings of the ODS Graphics environment
and is a statement that you will probably use frequently in your SAS sessions. For
example, the ODS GRAPHICS statement provides options that control the physical
aspects of your graphs, such as the image size and the name of the image file that is
created for the graph.

The default image size of 640 pixels by 480 pixels (4:3 aspect ratio) for ODS Graphics is
set in the SAS Registry. You can change the image size using the WIDTH= option, or
the HEIGHT= option, or both in the ODS GRAPHICS statement. To name the output
image file, use the IMAGENAME= option.

The following ODS GRAPHICS statement sets a 320 pixel width for the graph and
names the output image file modelfit:

 ods graphics / width=320px
 imagename="modelfit" reset;

 proc sgrender data=sashelp.class template=modelfit;
 run;

 ods graphics off;

• The WIDTH= option sets the image width to 320 pixels. Because no HEIGHT=
option is used, SAS uses the design aspect ratio of the graph to compute the
appropriate height. (The width of 320px is half the default width, so SAS sets the
height to 240px, which is half the default height.)

• The IMAGENAME= option sets the name of the output image file to modelfit. The
RESET option ensures that each time the graph is produced, the previous version of
the image file is replaced. Otherwise, image names are incremented (modelfit1,
modelfit2, and so on) every time the graph is produced.

In general, it is good practice to specify only one sizing option without the other—just
the WIDTH= option or just the HEIGHT= option. That way SAS can maintain the
design aspect ratio of the graph, which might be important for many graphs. For
example, a graph that has multiple columns or a statistics table on the side needs a wide aspect ratio. Specifying both width and height in such cases might produce unpredictable results.

Note: Size settings in the ODS GRAPHICS statement affect all of the graphs that are rendered in the SAS session, unless they are changed by another ODS GRAPHICS statement. The size for a graph produced by an individual template can be set with the DESIGNWIDTH= and DESIGNHEIGHT= options in the BEGINGRAPH statement. Size settings in the ODS GRAPHICS statement override size settings in the BEGINGRAPH statement and remain in effect unless they are changed in another ODS GRAPHICS statement or ODS GRAPHICS are turned off.

For more information about using the ODS GRAPHICS statement in GTL, see *SAS Graph Template Language: User's Guide*. For a more complete discussion of the ODS GRAPHICS statement, see “ODS GRAPHICS Statement” in *SAS ODS Graphics: Procedures Guide*.

Display Attributes

Overview

The display attributes for the lines, colors, marker symbols, and text used in a graph are derived from the ODS style that is in effect when the graph is produced. These display attributes might also be influenced by grouped data. To override default display attributes, all GTL plot statements provide options that manage the graph’s visual appearance. For example, a BOXPLOT statement provides an OUTLIERATTRS= option that manages the visual appearance of outliers.

Two ways are generally available for modifying a graph’s display attributes:

- Change the ODS style that is in effect for the graph. “ODS Styles” on page 16 provides an overview of the use of styles in a graph. *SAS Graph Template Language: User's Guide* discusses the use of styles in more detail.

- Override default style settings using GTL statement options. Some examples are given in the sections that follow.

Display Attributes for Non-Grouped Data

Appendix 3, “Display Attributes,” on page 1347 documents the attribute settings that can be specified for the lines, data markers, text, or area fills in a plot. The defaults for these attributes are defined on style elements, but you can use attribute options on the plot statement to change the defaults.

For example, the LINEPARM statement provides a LINEATTRS= option that specifies the color, line pattern, or line thickness of the plot line. For non-grouped data, if you do not set a line pattern in your template, then the default line pattern for the plot is obtained from the GraphDataDefault:LineStyle style reference.

To change the default line pattern, a PATTERN= suboption on LINEATTRS= is available. *Figure 5.1 on page 178* shows the most common line patterns available for the PATTERN= suboption.
Figure 5.1 "Common Line Patterns"

<table>
<thead>
<tr>
<th>Line Pattern</th>
<th>Example</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>————</td>
<td>1</td>
</tr>
<tr>
<td>ShortDash</td>
<td>- - - - - - - -</td>
<td>2</td>
</tr>
<tr>
<td>MediumDash</td>
<td>— — — — — — — — - — — — — — —-</td>
<td>4</td>
</tr>
<tr>
<td>LongDash</td>
<td>— — — — — — — — — — — — — — —</td>
<td>5</td>
</tr>
<tr>
<td>MediumDashShortDash</td>
<td>- - - - - - - - - - - - - - -</td>
<td>- 8</td>
</tr>
<tr>
<td>DashDashDot</td>
<td>- - - - - - - - - - - - - - -</td>
<td>14</td>
</tr>
<tr>
<td>DashDotDot</td>
<td>- - - - - - - - - - - - - - -</td>
<td>15</td>
</tr>
<tr>
<td>Dash</td>
<td>— — — — — — — — — — — — — — —</td>
<td>20</td>
</tr>
<tr>
<td>LongDashShortDash</td>
<td>— — — — — — — — — — — — — — —</td>
<td>26</td>
</tr>
<tr>
<td>Dot</td>
<td>————</td>
<td>34</td>
</tr>
<tr>
<td>ThinDash</td>
<td>- - - - - - - - - - - - - - -</td>
<td>35</td>
</tr>
<tr>
<td>ShortDashDot</td>
<td>- - - - - - - - - - - - - - -</td>
<td>41</td>
</tr>
<tr>
<td>MediumDashDotDot</td>
<td>- - - - - - - - - - - - - - -</td>
<td>42</td>
</tr>
</tbody>
</table>

• the left column shows the names for the line patterns
• the center column illustrates the type of line the name requests
• the right column shows the SAS line-style numbers for the line patterns

“Available Line Patterns” on page 1352 provides the complete list of line patterns that can be used with the GTL.

In the following template definition, the LINEPARM statement’s LINEATTRS= option overrides the default line pattern by specifying PATTERN=DASH:

```sas
proc template;
  define statgraph patternchange;
  begingraph;
    layout overlay;
      scatterplot y=height x=weight;
      lineparm yintercept=intercept  slope=slope /
       lineattrs=(pattern=dash);
    endlayout;
  endgraph;
end;
```

Other display options can be managed the same way. For example, the SCATTERPLOT statement provides a MARKERATTRS= option that specifies the color, size, symbol, and weight of the plot data markers. For non-grouped data, if you do not set a marker symbol in your template, then the default marker symbol is obtained from the GraphDataDefault:MarkerSymbol style reference.

To change the default marker symbol, a SYMBOL= suboption on MARKERATTRS= is available. Figure 5.2 on page 179 shows the marker symbols available for the SYMBOL= suboption.
In the following template definition, the SCATTERPLOT statement’s MARKERATTRS= option overrides the default marker symbol by specifying SYMBOL=CIRCLEFILLED, which uses a filled circle to represent the data points.

proc template;
define statgraph symbolchange;
begingraph;
 layout overlay;
 scatterplot y=height x=weight / markerattrs=(symbol=circlefilled);
 endlayout;
endgraph;
end;

Display Attributes for Grouped Data

Appendix 3, “Display Attributes,” on page 1347 documents the attribute settings that you can specify for the lines, data markers, text, or area fills in a plot. For a grouped plot (that is, when you use the GROUP= option in the plot statement), each distinct group value can be represented in the graph by a different combination of line pattern, color, and marker symbol (depending on the graph type). The defaults for these features are set by the LineStyle, Color, ContrastColor, FillPattern, and MarkerSymbol attributes of the GraphData1–GraphDataN style elements.

Note: The MarkerSize and LineThickness style attributes are not honored in the case of grouped data.

When missing group values are displayed, the default attributes of the missing value are set by the GraphMissing style element unless the MISSING= system option specifies a character other than "." or " " . In that case, missing group value attributes are determined by the GraphData1–GraphDataN style elements.

Figure 5.1 on page 178 shows the common line patterns available, and Figure 5.2 on page 179 shows the marker symbols available.

For grouped plots, attributes such as colors, line patterns, and marker symbols are used to distinguish the individual group values. The attributes are derived from the GraphData1–GraphDataN style elements in the current style. The attributes are rotated to provide distinct visual characteristics for each group value. For information about attribute rotation, see “Attribute Rotation Patterns” in *SAS Graph Template Language: User’s Guide*. As discussed in “Rotating Visual Attributes for Each Plot in an Overlay” on page 183, plot options might also influence the attribute rotation pattern.
You can use attribute options on the plot statement to change the default display attributes used for group data. For example, in the following template definition, the LINEPARM statement’s LINEATTRS= option specifies PATTERN=DASH. This explicit setting overrides the default line pattern for the plot lines and uses dashed lines for all of the plots, leaving color to distinguish among group values.

```sas
proc template;
define statgraph dashedline;
begingraph;
layout overlay;
scatterplot y=height x=weight / group=gender;
lineparm yintercept=intercept  slope=slope / group=gender
   lineattrs=(pattern=dash);
endlayout;
endgraph;
end;
```

Rather than setting the same line pattern on all group values, you can change the default sequence of line patterns that is used for grouped values. To do so, set the LineStyle attribute in some of the style elements GraphData1–GraphDataN.

In the following example, a style is defined to change the line pattern for GraphData1 and GraphData2. In this example, the style is derived from the DEFAULT style. Values are set for the LineStyle attributes in the GraphData1 and GraphData2 style elements. The first default line in the sequence has long dashes (style value 6) and the second line has short dashes (style value 4). The LineStyle settings for the remaining GraphData elements are not set, so are derived from the parent style (DEFAULT). This new line sequence is used as the default line sequence for any plot that uses the MyDefault style. To apply the style to a graph, the STYLE= option is used in the ODS HTML statement to specify the style name.

Here is the code for this example.

```sas
/* Specify a path for the ODS output */
filename odsout "output-path";

/* Sort the SASHELP.CLASS data by sex and age. */
proc sort data=sashelp.class(keep=height weight sex age)
   out=class;
   by sex age;
run;

/* Generate slope and intercept data for plot reference lines. */
proc robustreg data=class method=m
   plots=none
   outest=stats(rename=(weight=slope));
   by sex;
   model height=weight;
run;

data class;
   merge class stats(keep=intercept slope sex);
run;

proc template;
   /* Create custom style MYDEFAULT from the STYLES.DEFAULT style. */
   define style MyDefault;
      parent=Styles.Default;
```

Similarly, for grouped data, you can set the MarkerSymbol attribute in each of the style elements GraphData1–GraphDataN. In the following example, a style is defined to change the MarkerSymbol attribute for GraphData1–GraphData3. This new sequence is used as the default marker symbol sequence for any grouped plot that uses the MyDefault style.

Here is the code for this example.
Note: The data that was generated in the previous example is used again in this example.

```sas
/* Specify a path for the ODS output */
filename odsout "output-path";

proc template;
   /* Create custom style MYDEFAULT from STYLES.DEFAULT. */
   define style MyDefault;
      parent=Styles.Default;
      style GraphData1 from GraphData1 /
         MarkerSymbol="DIAMOND";
      style GraphData2 from GraphData2 /
         MarkerSymbol="CROSS";
      style GraphData3 from GraphData3 /
         MarkerSymbol="CIRCLE";
   end;

   /* Create the plot template. */
   define statgraph testSymbols;
      begingraph;
         layout Overlay;
            scatterPlot y=height x=weight / group=age name="symbols";
            discretelegend "symbols" / title="Age";
         endlayout;
      endgraph;
   end;
run;

/* Generate the plot. */
ods _all_ close;
ods html path=odsout file="mydefaultstyle.html" style=MyDefault; /* Apply style MyDefault to the graph. */

proc sgrender data=class template=testSymbols;
run;
```
Overlay-type layouts provide the CYCLEATTRS= option, which specifies whether the default visual attributes of lines, marker symbols, and area fills in nested plot statements automatically change from plot to plot. When CYCLEATTRS=TRUE, all applicable plot statements (SCATTERPLOT, SERIESPLOT, and others) are sequentially assigned the next unused GraphDataN style element. (The sequence is overridden for plot statements that have an explicit setting, either through a style element assignment or option settings.) No plot retains its default (implicit) style element.

In the following example, assuming ungrouped data and the default attribute rotation pattern, the series plots are assigned line properties based on the GraphData1, GraphData2, and GraphData3 style elements. The reference line uses GraphReference, not GraphData4.

```plaintext
layout overlay / cycleattrs=true;
  seriesplot x=date y=var1;
  seriesplot x=date y=var2;
  seriesplot x=date y=var3;
  reference line x=cutoff / lineattrs=GraphReference;
endlayout;
```

If one of the plots in this example uses grouped data, then the grouped plots also participate in the default cycles. For example, if the second plot has three groups, then it generates three plots, which are assigned line properties based on the GraphData2, GraphData3, and GraphData4 style elements.

If the plot statement that uses grouped data also uses the INDEX= option to manage the group values (see “Remapping Groups for Grouped Data” on page 183), then the INDEX= option overrides the default behavior. In that case, the grouped plots do not participate in the default cycling.

When one or more of the plots within the layout override the default cycling behavior, the arrangement of the plots within the layout might affect the default mapping of the GraphDataN elements to those statements that participate in the default cycling.

Remapping Groups for Grouped Data

Indexing can be used to collapse the number of groups that are represented in a graph. For example, if 10 groups are in the data, then indexes 1 and 2 can be assigned to the first two groups, and index 3 can be assigned to all other groups. The third through tenth data groups are treated as a single group in the graph.

Indexing can control the order in which colors, area fills, marker symbols, and line styles are mapped to group values in a graph. This ordering method is needed only for coordinating the data display of multiple graphs when the default mapping would cause group values to be mismatched between graphs.

For example, consider two studies of three drugs, A, B, and C. If Study 1 uses all three drugs, then the first combination of color and marker symbol is mapped to Drug A. The second combination of color and marker symbol is mapped to Drug B, and the third is mapped to Drug C. If Study 2 omits Drug A, then the first combination of color and marker symbol is mapped to Drug B, and the second is mapped to Drug C. If the two graphs are viewed together, then this default mapping causes the group values to be mismatched. The visual attributes that represent Drug A in the first graph represent Drug
B in the second graph. Those that represent Drug B in the first graph represent Drug C in the second group.

The GROUP= option mappings can be made consistent between the two graphs by creating an index column for each study. For these example studies, the GROUP and INDEX columns are the following:

Table 5.1 Study 1

<table>
<thead>
<tr>
<th>Drug1</th>
<th>Index1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 5.2 Study 2

<table>
<thead>
<tr>
<th>Drug2</th>
<th>Index2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

If the graph for Study 1 specifies INDEX=INDEX1 and the graph for Study 2 specifies INDEX=INDEX2, then the second combination of color and marker symbol is mapped to Drug B in both graphs. The third combination of color and marker symbol is mapped to Drug C in both graphs.

Interactions between Options

When you use GTL statement options to manage the graph display, interactions between options might cause some option settings to be ignored. For example, an ENTRYTITLE statement provides BORDER= and BORDERATTRS= options for managing a border line around the graph title. Border attributes that are set on the BORDERATTRS= option have no effect on the graph title unless the title border line is displayed by setting BORDER=TRUE.

Similarly, if a BOXPLOT statement’s DISPLAY= option suppresses the display of outliers in a box plot, then using the OUTLIERATTRS= option to set outlier attributes has no effect. The OUTLIERATTRS= settings only take effect if DISPLAY= enables the display of outliers.

The option interactions are not limited to options that simply manage visual elements. For example, on a BOXPLOT, if the EXTREME= option extends the box whiskers beyond the fences, then outliers are suppressed in the plot and options that affect the outliers are ignored, if set.
The documentation for each GTL statement identifies the option interactions that might occur on that statement.

Location and Position of Curve Labels

Overview

On plots that generate a curve line (a series plot or a density plot, for example), you can specify a label for the curve line. You can also determine the label’s location in the graph. For example, the SERIESPLOT statement provides the following options for managing a curve label:

CURVELABEL
 specifies a label for the curve line.

CURVELABELLOCATION
 specifies the location of the curve line label relative to the plot area.

CURVELABELPOSITION
 specifies the position of the label relative to the curve line.

Curve Label Location Relative to the Plot Area

By default, the label for a curve line is displayed inside the plot area. The following figure shows the default location of the label for a series plot labeled “Curve Label”:

![Curve Label Location=INSIDE](image)

Depending on the shape of the curve line, its distribution of values, and the other plot elements that must be displayed within the plot area, GTL might have to add an offset (see “Adjusting Axis Offsets” on page 886) to one of the plot’s axis lines to provide enough room for the curve label. To prevent the offset of the axis line, you can move the curve label outside of the plot area by specifying CURVELABELLOCATION=OUTSIDE on the plot statement:
Regardless of whether the curve label is displayed inside or outside of the plot area, you can use the CURVELABELPOSITION= option to adjust the label’s position relative to the curve line.

Curve Label Position Relative to the Curve Line

Given a curve label’s location inside or outside of the plot area, a plot statement’s CURVELABELPOSITION= option can adjust the label’s position relative to the curve line. For example, the following positions are available for a series plot (for some plots, START and END are not available):

- **AUTO** positions the curve label automatically near the end series line along unused axes whenever possible (typically Y2 or X2) to avoid collision with tick values. This position is used only when CURVELABELLOCATION=OUTSIDE.

- **MAX** forces the curve label to appear near maximum series values (typically, to the right).

- **MIN** forces the curve label to appear near minimum series values (typically, to the left).

- **START** forces the curve label to appear near the beginning of the curve. This position is particularly useful when the curve line has a spiral shape. It is used only when CURVELABELLOCATION=INSIDE.

- **END** forces the curve label to appear near the end of the curve. This position is particularly useful when the curve line has a spiral shape. It is used only when CURVELABELLOCATION=INSIDE.

When CURVELABELLOCATION=INSIDE, you can choose whether to position the curve label near the START or END of the curve, or near the minimum data values (MIN) or maximum data values (MAX). START and END use a different algorithm than MIN and MAX. They are particularly useful for spiral-shaped curves whose end points do not correlate with the minimum and maximum data values. In those cases, START or END provide “better” label locations than MIN and MAX.

When CURVELABELLOCATION=OUTSIDE and CURVELABELPOSITION=AUTO, a “good” position is automatically chosen to avoid collision with the axis information.

The following figure shows the different combinations of label locations and positions:
• The minimum or maximum axis tick marks can be adjusted (see “Adjusting Axis Offsets” on page 886) so that the label can be placed inside the plot area. Increasing label length decreases the area available for displaying plots.

• When CURVELABELLOCATION=OUTSIDE, you can set the CURVELABELPOSITION to MIN or MAX, but the label might collide with the axis ticks and tick values, unless you are aware of where the axes are positioned.
Chapter 6

Plot Statements

Dictionary

- AXISTABLE Statement .. 190
- BANDPLOT Statement .. 204
- BARCHART Statement .. 218
- BARCHARTPARAM Statement ... 250
- BIHISTOGRAM3DPARM Statement 284
- BLOCKPLOT Statement .. 289
- BOXPLOT Statement .. 305
- BOXPLOTPARAM Statement ... 336
- BUBBLEPLOT Statement .. 367
- CONTOURPLOTPARAM Statement 386
- DENDROGRAM Statement ... 395
- DENSITYPLOT Statement .. 402
- DROPLINE Statement .. 416
- ELLIPSE Statement .. 422
- ELLIPSEPARAM Statement ... 431
- FRINGE PLOT Statement .. 439
- HEATMAP Statement .. 446
- HEATMAPPARAM Statement ... 459
- HIGHLOWPLOT Statement .. 471
- HISTOGRAM Statement .. 493
- HISTOGRAMPARAM Statement ... 506
- LINECHART Statement ... 521
- LINEPARAM Statement ... 542
- LOESS PLOT Statement ... 553
- MODEL BAND Statement .. 565
- MOSAICPLOTPARAM Statement 573
- NEEDLE PLOT Statement ... 584
- PBSPLINEPLOT Statement ... 600
- PIECHART Statement .. 613
- POLYGONPLOT Statement .. 628
- REFERENCELINE Statement ... 654
- REGRESSIONPLOT Statement .. 666
- SCATTERPLOT Statement ... 679
- SCATTERPLOTMATRIX Statement 715
- SERIESPLOT Statement ... 740
- STEPPLOT Statement .. 774
- SURFACEPLOTPARAM Statement 803
- TEXTPLOT Statement .. 811
- VECTORPLOT Statement ... 837
- WATERFALLCHART Statement .. 854
AXISTABLE Statement

Creates an event plot of input data along an axis of an X-Y plot.

Syntax

\[
\text{AXISTABLE} \ X=\text{column} \ | \ \text{expression} \ \text{VALUE}=\text{column} <\text{option(s)}> ; \\
\text{AXISTABLE} \ Y=\text{column} \ | \ \text{expression} \ \text{VALUE}=\text{column} <\text{option(s)}> ; \\
\]

Summary of Optional Arguments

Appearance options

\[
\text{CLASS}=\text{column} \ | \ \text{expression} \\
\text{CLASSORDER}=\text{DATA} \ | \ \text{REVERSEDATA} \ | \ \text{ASCENDING} \ | \ \text{DESCENDING} \\
\text{CLUSTERWIDTH}=\text{number} \\
\text{COLORGROUP}=\text{column} \ | \ \text{expression} \ | \ \text{discrete-attr-var} \\
\text{DATATRANSPARENCY}=\text{number} \\
\text{DISPLAY}=\text{STANDARD} | \ \text{ALL} | (\text{display-options}) \\
\text{DROPONMISSING}=\text{TRUE} | \ \text{FALSE} \\
\text{GUTTER}=\text{dimension} \\
\text{INCLUDEMISSINGCLASS}=\text{TRUE} | \ \text{FALSE} \\
\text{INDENT}=\text{dimension} \\
\text{INDENTWEIGHT}=\text{numeric-column} \ | \ \text{expression} \\
\text{PAD}=\text{dimension} | (\text{pad-options}) \\
\text{POSITION}=\text{number} \\
\text{SHOWMISSING}=\text{TRUE} | \ \text{FALSE} \\
\]\n
creates a separate row or column for each unique class value.

specifies the order in which the class values are displayed.

specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

specifies a column that is used to discretely map the color of the value text.

specifies the degree of the transparency of the header, label, and values.

specifies which features to display.

specifies whether the entire axis table is dropped when all of the VALUE= column values are missing.

specifies the gap between rows when a class variable is used.

specifies whether missing class values are represented in the table.

specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

specifies the indentation weight (multiplier) for each observation.

specifies the amount of extra space that is added inside the table border.

positions the plot along the axis orthogonal to the axis used for the values.

specifies whether missing values are represented in the table.
TEXTGROUP="discrete-attr-var"
specifies the discrete attribute variable for a discrete attribute map that maps
text attributes to values for each observation.

VALUEATTRS="style-element | style-element(text-options) | (text-options)"
specifies the color and font attributes of the text values.

VALUEFORMAT=\"format\"
specifies a SAS format or a user-defined format for the table values.

VALUEHALIGN=\"AUTO | LEFT | CENTER | RIGHT\"
in a Y-axis table, specifies the horizontal alignment of the column values
relative to the column width.

VALUEJUSTIFY=\"AUTO | LEFT | CENTER | RIGHT\"
specifies the justification of the values in the axis table.

Axes options

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the
secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the
secondary Y2 (right) axis.

Header options

HEADERLABEL="string"
specifies the text for the table header.

HEADERLABELATTRS="style-element | style-element(text-options) | (text-options)"
specifies the color and font attributes of the table header.

TITLE="string"
specifies the text for the table title.

TITLEATTRS="style-element | style-element(text-options) | (text-options)"
specifies the color and font attributes of the table title.

TITLEHALIGN=\"AUTO | CENTER | LEFT | RIGHT\"
specifies the horizontal alignment of the axis table header label relative to the
axis table width.

TITLEJUSTIFY=\"LEFT | CENTER | RIGHT\"
specifies the justification of the title string. The justification is relative to the
axis table width.

Label options

LABEL="string"
specifies the text for the table label.

LABELATTRS="style-element | style-element(text-options) | (text-options)"
specifies the color and font attributes of the column label.

LABELHALIGN=\"AUTO | LEFT | CENTER | RIGHT\"
specifies the horizontal alignment of the column label when it is displayed.

LABELJUSTIFY=\"LEFT | CENTER | RIGHT\"
specifies the justification of the column label when it is displayed.

LABELPOSITION=\"MIN | MAX\"
specifies the end of the axis on which the label is displayed.

Midpoint options

CLASSDISPLAY=\"STACK | CLUSTER\"
specifies how the class values are displayed.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Statistics options

STAT=AUTO | SUM | MEAN
specifies the statistic that is to be computed for the VALUE= column when the column is numeric.

Required Arguments

Either the X= or the Y= argument must be specified in the AXISTABLE statement. Specifying X= places an axis table along the X axis of a plot. Specifying Y= places an axis table along the Y axis of a plot.

X=column | expression
specifies the column for the X axis.

Requirement If not specified, then Y= must be specified.

Y=column | expression
specifies the column for the Y axis.

Requirement If not specified, then X= must be specified.

VALUE=column
specifies the column that contains the axis table values.

Optional Arguments

CLASS=column | expression
creates a separate row or column for each unique class value. Each row or column is labeled by the class value.

Interaction The DISPLAY= option that is in effect must include LABEL for any labels to appear.

Tip Use the LABELATTRS= option to modify the label text attributes.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

STACK
displays the class values vertically at each midpoint value on the X axis or horizontally on the Y axis.

CLUSTER
displays the class values horizontally at each midpoint value on the X axis or vertically on the Y axis.

Restriction CLUSTER applies only when the axis table is on a discrete axis.

Tip The CLUSTERWIDTH= option controls the cluster width.
CLASS= option must be specified for this option to have any effect.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

DATA displays the class values in the order in which they occur in the data.

REVERSEDATA displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING | DESCENDING displays the class values in ascending or descending order.

Default DATA

Interaction The CLASS= option must be specified for this option to have any effect.

CLUSTERWIDTH=number
specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Range 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.

Requirement For this option to take effect, the CLASS= option must also be specified, and the CLASSDISPLAY= option must be set to CLUSTER.

COLORGROUP=column | expression | discrete-attr-var
specifies a column that is used to discretely map the color of the value text.

discrete-attr-var specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Each unique value of this column is mapped to the COLOR attribute of the GraphData1–GraphDataN style elements that are in effect. If a discrete attribute variable is specified, the color mapping from its associated DISCRETEATTRMAP statement is used.

Interaction This option is ignored when the TEXTGROUP= option is specified.
DATATRANSPARENCY=number
specifies the degree of the transparency of the header, label, and values.

Default 0
Range 0–1, where 0 is opaque and 1 is entirely transparent

DISPLAY=STANDARD | ALL | (display-options)
specifies which features to display.

STANDARD
 displays the table values and, if provided, the table label.

ALL
 displays the same features as STANDARD.

(display-options)
a space-separated list of display options, enclosed in parentheses. The following options are supported:

 LABEL
 displays the table label. The label can be the VALUE= column label or name, the LABEL= value, or the CLASS= value for the table, depending on the options that you specify.

 VALUES
 displays the column values.

 Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

 Tip The column values are always displayed, even if DISPLAY=(LABEL) is specified. To hide the table label, specify DISPLAY=(VALUES).

Default STANDARD
Note If a table title is specified, it is always displayed.

DROPONMISSING=TRUE | FALSE
specifies whether the entire axis table is dropped when all of the VALUE= column values are missing.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default FALSE
Tip The SHOWMISSING= option controls whether missing values are shown in the table.

See VALUE= on page 192
 “boolean ” on page 1339 for other Boolean values that you can use.

GUTTER=dimension
specifies the gap between rows when a class variable is used.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Defaults

Y-axis table: 8 px

X-axis table: 0 px

Interaction

The CLASS= option must be specified for this option to have any effect.

See “dimension” on page 1340

HEADERLABEL= ”string”
specifies the text for the table header.

Note: Starting with the second maintenance release of SAS 9.4, the HEADERLABEL= option is deprecated and is replaced with the TITLE= option. The syntax and functionality are the same. The HEADERLABEL= option is still honored, but the TITLE= option is preferred.

Default No table header is displayed

Tip Use the HEADERLABELATRBS= option to control the appearance of the table header.

HEADERLABELATRBS= style-element | style-element(text-options) | (text-options)
specifies the color and font attributes of the table header.

Note: Starting with the second maintenance release of SAS 9.4, the HEADERLABELATRBS= option is deprecated and is replaced with the TITLEATRBS= option. The syntax and functionality are the same. The HEADERLABELATRBS= option is still honored, but the TITLEATRBS= option is preferred.

See “TITLEATRBS= style-element | style-element(text-options) | (text-options)” on page 200

INCLUDEMISSINGCLASS= TRUE | FALSE
specifies whether missing class values are represented in the table.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Missing class values are included by default. When the data contains missing class values, the label for those values is either blank for missing character values or a dot for missing numeric values.

The following figure shows an X-axis axis table that displays values for classes Class 1, Class 2, and any missing class values.

```
  Axis Table
  Class 1  1  2  3  4  5
  Class 2  1  2  3  4  5
  X Axis
```

Notice that the label for the missing class values is blank. You can use the INCLUDEMISSINGCLASS=FALSE option to exclude the missing class values. If you want to keep the missing class values, then you can create a format that specifies
a more meaningful label for the missing class. For example, here is a format that specifies a label for missing character and numeric class values.

```
proc format;
  value $missingClass " " = "(Missing)";
  value missingClass . = "(Missing)";
run;
```

A single space enclosed in quotation marks specifies a missing character value and a dot specifies a missing numeric value. Although it might seem appropriate to use empty quotation marks ("" or """) to specify a missing character value, doing so produces unexpected results. To specify a missing character value, enclose a single space in quotation marks (" " or " "). You can use this format for the class columns in the proc sgrender statement. In that case, if the class columns contain missing values, then the labels specified in the format statement are used for the missing classes.

The following figure shows the previous example when format $missingClass is applied to the class variable.

Note: In the second maintenance release of SAS 9.4 and in earlier releases, ODS Graphics does not support Unicode values in user-defined formats. Starting with the third maintenance release of SAS 9.4, ODS Graphics supports Unicode values in user-defined formats only if they are preceded by the (**ESC**) escape sequence. Example: "(**ESC**)\{unicode beta\}". ODS Graphics does not support an escape character that is defined in an ODS ESCAPECHAR statement in user-defined formats.

Default

TRUE

Interaction

The CLASS= option must be specified for this option to have any effect.

See

“boolean “ on page 1339 for other Boolean values that you can use.

INDENT=

dimension

specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

Default

1/8 inch

Interaction

The INDENTWEIGHT= option must be specified for this option to have any effect.

See

“dimension” on page 1340

INDENTWEIGHT=

numeric-column | expression

specifies the indentation weight (multiplier) for each observation.
For each observation, the INDENT= option value is multiplied by the value of the column specified by this option to determine the indentation for that observation’s value.

LABEL="string"

specifies the text for the table label.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default
The class values are used when the CLASS= option is set and CLASSDISPLAY=STACK is in effect. Otherwise, the VALUE= column label or name is used.

Interaction
This option is ignored when the CLASS= option is in effect.

Note
If the length of the label exceeds the available space, the label is split on blank space as needed to make it fit.

See
CLASS= on page 192

LABELATTRS=style-element | style-element(text-options) | (text-options)

specifies the color and font attributes of the column label.

Defaults
For non-grouped data, the GraphValueText style element.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1–GraphDataN style elements.

Restriction
Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interaction
If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

LABELALIGN=AUTO | LEFT | CENTER | RIGHT

specifies the horizontal alignment of the column label when it is displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The alignment is relative to the column width.

AUTO
uses the effective value of the LABELJUSTIFY= option.

LEFT | CENTER | RIGHT
horizontally justifies the label left, center, or right.

Default
AUTO
Restriction: This option applies only to Y-axis tables.

Interaction: The `DISPLAY=` option must include `LABEL` for this option to have any effect.

LABELJUSTIFY=LEFT | CENTER | RIGHT

specifies the justification of the column label when it is displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The justification is relative to the column width.

Default: CENTER

Restriction: This option applies only to Y-axis tables.

Interaction: The `DISPLAY=` option must include `LABEL` for this option to have any effect.

LABELPOSITION=MIN | MAX

specifies the end of the axis on which the label is displayed. The label is aligned with the tick values on the axis.

Default: MIN

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction: The `string` is case sensitive, cannot contain spaces, and must define a unique name within the template.

PAD=dimension | (pad-options)

specifies the amount of extra space that is added inside the table border.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

`dimension`

specifies a dimension to use for the extra space at the left, right, top, and bottom of the table border.

`(pad-options)`

a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

LEFT=dimension

specifies the amount of extra space added to the left side.

Default: 4 px

Restriction: This option applies only to Y-axis tables.

RIGHT=dimension

specifies the amount of extra space added to the right side.

Default: 4 px
Restriction This option applies only to Y-axis tables.

TOP=dimension
specifies the amount of extra space added to the top.

Default 0 px

Restriction This option applies only to X axis tables.

BOTTOM=dimension
specifies the amount of extra space added to the bottom.

Default 0 px

Restriction This option applies only to X axis tables.

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use *pad-options* to create non-uniform padding.

Note The default units for *dimension* are pixels.

See “*dimension*” on page 1340

POSITION=number
positions the plot along the axis orthogonal to the axis used for the values. This option enables you to position the plot when the AXISTABLE statement is not placed in an INNERMARGIN block.

number
specifies the position on the orthogonal axis as a fraction of the axis range.

Default Determined by the system.

Range 0 (bottom)–1 (top)

Interaction This option is ignored when the AXISTABLE statement is placed in an INNERMARGIN block. It is also ignored when the AXISTABLE statement is placed in a LAYOUT OVERLAY block by itself.

Tip To reserve space for the plot at either end of the orthogonal axis, specify the OFFSETMIN= or OFFSETMAX= option for the orthogonal axis.

SHOWMISSING=TRUE | FALSE
specifies whether missing values are represented in the table.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The values are evaluated before the column format is applied. When this option is set to FALSE, missing numeric and character values are hidden.

Default TRUE

See “*boolean*” on page 1339 for other Boolean values that you can use.
STAT=AUTO | SUM | MEAN

specifies the statistic that is to be computed for the VALUE= column when the column is numeric.

AUTO
computes the SUM statistic when the VALUE= column is numeric. When the column is character, it uses the first column value as the statistic value.

SUM | MEAN
computes the SUM or MEAN statistic when the VALUE= column is numeric. When the column is character, it uses the first column value as the statistic value.

Default AUTO

Interaction
When the VALUE= column is character, the STAT= option always uses the first column value as the statistic value. In that case, SUM and MEAN are ignored.

TEXTGROUP=discrete-attr-var

specifies the discrete attribute variable for a discrete attribute map that maps text attributes to values for each observation. The discrete attribute variable is defined in a **DISCRETEATTRVAR** statement.

Restrictions
A discrete attribute variable specification must be a direct reference to the attribute variable. It cannot be set by a dynamic variable.

The SIZE= specification in the discrete attribute map TEXTATTRS= option is ignored.

Interaction
When this option is specified, the **COLORGROUP=** option is ignored.

TITLE="string"

specifies the text for the table title.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default No table title is displayed

Note
When an axis table is specified in the prototype of a data-driven layout, if the table is on the X axis, then the table title appears only in the first column of each row. If the table is on the Y axis, then the table title appears only in the first row of each column.

Tip
Use the TITLEATTRS= option to control the appearance of the table title.

TITLEATTRS=style-element | style-element(text-options) | (text-options)

specifies the color and font attributes of the table title.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The GraphLabelText style element.

Interaction
If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphLabelText style element.
See “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

“Text Options” on page 1351 for available text-options.

TITLEHALIGN=AUTO | CENTER | LEFT | RIGHT

specifies the horizontal alignment of the axis table header label relative to the axis table width.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

AUTO

aligns the title based on table type as follows:

- For a Y-axis table, aligns the title according to the effective TITLEJUSTIFY= option value.
- Starting with the third maintenance release of SAS 9.4, for an X-axis table, aligns the title LEFT.

CENTER | LEFT | RIGHT

horizontally aligns the table title center, left, or right.

Default AUTO

Restriction In the second maintenance release of SAS 9.4, this option applies only to Y-axis tables. Starting with the third maintenance release of SAS 9.4, this option applies to Y-axis tables and to X-axis tables.

Interaction The TITLE= option must be specified for this option to have any effect.

TITLEJUSTIFY=LEFT | CENTER | RIGHT

specifies the justification of the title string. The justification is relative to the axis table width.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default LEFT

Restriction This option applies only to Y-axis tables.

Interaction The TITLE= option must be specified for this option to have any effect.

VALUEATTRS=style-element | style-element(text-options) | (text-options)

specifies the color and font attributes of the text values.

Default The GraphDataText style element.

Interaction If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphLabelText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.
VALUEFORMAT=format
specifies a SAS format or a user-defined format for the table values.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The format that is in effect for the column specified in the VALUE= option. If no format is in effect, BEST6 is used for numeric columns.

Note Not all of the SAS formats are supported. See Appendix 4, “SAS Formats Not Supported,” on page 1353.

VALUEALIGN=AUTO | LEFT | CENTER | RIGHT
in a Y-axis table, specifies the horizontal alignment of the column values relative to the column width.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

AUTO uses the effective value of the VALUEJUSTIFY= option.

LEFT | CENTER | RIGHT aligns the values left, center, or right relative to the column width.

Default AUTO

Restriction This option applies only to Y-axis tables.

VALUEJUSTIFY=AUTO | LEFT | CENTER | RIGHT
specifies the justification of the values in the axis table.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

AUTO uses LEFT for text values or RIGHT for numeric values.

CENTER | LEFT | RIGHT horizontally aligns the table values center, left, or right, relative to the column width.

Default AUTO

Restriction This option applies only to Y-axis tables.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.
The AXISTABLE statement enables you to place text values along the X or Y axis at specific values on the axis. It offers more flexibility than the BLOCKPLOT statement, which is used to denote changes in block values along the axis. The X and Y data does not need to be sorted.

Example: AXISTABLE Statement

This example shows how to add a table of average sales data by division below a bar chart of total sales by product and country. Here is the output that is generated by this example.

An inner margin is created at the bottom of the layout container to reserve space for the table. An AXISTABLE statement is used in the INNERMARGIN block to show the average sales by division for each product.

Here is the SAS code for this example.

```sas
proc template;
    define statgraph axistable;
    begingraph;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitle "Average Product Sales By Division and Country";
        layout overlay / cycleattrs=true
        ;
        entrytitl...
yaxisopts=(offsetmax=0.15 label="Sales By Country");
innermargin / align=bottom opaque=true backgroundcolor=cxf5f5f5;
   axistable x=product value=actual /
      name="division" stat=mean display=(label)
      headerlabel="Sales By Division"
      headerlabelattrs=GraphLabelText
      valueattrs=(size=9pt weight=bold)
      colorgroup=division class=division;
   endinnermargin;
   barchart category=product y=actual / name="country"
      barlabel=true barlabelformat=dollar5.0
      stat=mean group=country groupdisplay=cluster;
      discretelegend "country" / title="Country:" location=inside
      valign=top;
   endlayout;
   endgraph;
end;
run;

proc sgrender data=sashelp.prdsale template=axistable;
run;

See Also

“Creating an Axis-Aligned Inset with an Axis Table” in SAS Graph Template Language: User’s Guide

BANDPLOT Statement

Creates a band plot that typically shows confidence or prediction limits.

**Requirements:**

You must specify either an X= argument or a Y= argument. You cannot specify both.

When you specify the X argument, you must also specify LIMITLOWER and LIMITUPPER arguments for Y values.

When you specify the Y argument, you must also specify LIMITLOWER and LIMITUPPER arguments for X values.

The plot data should be sorted by the X or Y variable that is used in the BANDPLOT statement. Otherwise, specify CONNECTORDER= AXIS in the BANDPLOT statement.

**Syntax**

```
BANDPLOT X=column | expression
LIMITLOWER=number | numeric-column | expression
LIMITUPPER=number | numeric-column | expression <option(s)>;
```

```
BANDPLOT Y=numeric-column | expression
LIMITLOWER=number | numeric-column | expression
LIMITUPPER=number | numeric-column | expression <option(s)>;
```

**Summary of Optional Arguments**

Appearance options
BANDPLOT Statement

ANTIALIAS=AUTO | OFF
   specifies whether anti-aliasing is turned off for this plot.
CONNECTORDER=VALUES | AXIS
   specifies how to connect the data points to form the band lines.
CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
   specifies the color and font attributes of the band labels.
DATATRANSPARENCY=number
   specifies the degree of the transparency of the band fill and band outline.
DISPLAY=STANDARD | ALL | (display-options)
   specifies whether to display an outlined band area, a filled band area, or an
   outlined and filled band area.
EXTEND=TRUE | FALSE
   specifies whether the constant or "step" band is to be drawn to the area
   bounded by the axes.
FILLATTRS=style-element | style-element (fill-options) | (fill-options)
   specifies the appearance of the filled band area.
INDEX=positive-integer-column | expression
   specifies indices for mapping band attributes (fill and outline) to one of the
   GraphData1–GraphDataN style elements.
JUSTIFY=LEFT | CENTER | RIGHT
   specifies the location of the data point relative to the step when TYPE=STEP.
OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
   specifies the appearance of the band outlines.
TYPE=SERIES | STEP
   specifies how the data points for lower and upper band boundaries are
   interpolated.

Axes options

XAXIS=X | X2
   specifies whether data are mapped to the primary X (bottom) axis or to the
   secondary X2 (top) axis.
YAXIS=Y | Y2
   specifies whether data are mapped to the primary Y (left) axis or to the
   secondary Y2 (right) axis.

Data tip options

ROLENAMESPACE=(role-name-list)
   specifies user-defined roles that can be used to display information in the data
   tips.
TIP=(role-list) | NONE
   specifies the information to display when the cursor is positioned over the
   band plot.
TIPFORMAT=(role-format-list)
   specifies display formats for tip columns.
TIPLABEL=(role-label-list)
   specifies display labels for tip columns.

Label options

CURVELABELLOCATION=INSIDE | OUTSIDE
   specifies the location of the band labels relative to the plot area.
CURVELABELLOWER="string" | column
specifies a label for the lower band limit.

CURVELABELPOSITION=\texttt{AUTO} | \texttt{MAX} | \texttt{MIN} | \texttt{START} | \texttt{END}

specifies the position of the band labels relative to the curve line.

CURVELABELUPPER=\texttt{"string"} | \texttt{column}

specifies a label for the upper band limit.

LEGENDLABEL=\texttt{"string"}

specifies a label to be used in a discrete legend for this plot.

\textbf{Midpoint options}

\texttt{GROUP=column \texttt{| discrete-attr-var \texttt{| expression}}}

creates a separate band plot for each unique group value of the specified column.

INCLUDEMISSINGGROUP=\texttt{TRUE} | \texttt{FALSE}

specifies whether missing values of the group variable are included in the plot.

\textbf{Plot reference options}

\texttt{MODELNAME=\texttt{"plot-name"}}

specifies the name of the plot from which to derive the interpolation for the band.

\texttt{NAME=\texttt{"string"}}

assigns a name to this plot statement for reference in other template statements.

\textbf{Required Arguments}

You must specify either an \texttt{X=} or \texttt{Y=} argument. You cannot specify both. In addition, the \texttt{LIMITLOWER=} and \texttt{LIMITUPPER=} arguments must be used to specify the lower and upper lines for the band.

\texttt{X=column \texttt{| expression}}

specifies X values. Numeric or character values can be used.

\textbf{Requirement} You must also specify the \texttt{LIMITLOWER=} and the \texttt{LIMITUPPER=} arguments for the \texttt{Y=} values.

\texttt{Y=column \texttt{| expression}}

specifies Y values. Numeric or character values can be used.

\textbf{Requirement} You must also specify the \texttt{LIMITLOWER=} and the \texttt{LIMITUPPER=} arguments for the \texttt{X=} values.

\texttt{LIMITLOWER=number \texttt{| numeric-column \texttt{| expression}}}

specifies a constant or column representing the values of the lower band line.

\textbf{Interactions} When this option is used with the \texttt{X=} option, it specifies the \texttt{Y=} value or values.

When this option is used with the \texttt{Y=} option, it represents the \texttt{X=} value or values.

\textbf{Note} If a constant is specified, then a straight line is drawn.

\texttt{LIMITUPPER=number \texttt{| numeric-column \texttt{| expression}}}

specifies a constant or column representing the values of the lower band line.
Interactions

When this option is used with the X= option, it specifies the Y value or values.

When this option is used with the Y= option, it represents the X value or values.

Note

If a constant is specified, then a straight line is drawn.

Optional Arguments

**ANTIALIAS=AUTO | OFF**

specifies whether anti-aliasing is turned off for this plot.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**AUTO**

specifies that anti-aliasing is controlled by the ANTIALIAS= option in the ODS GRAPHICS statement.

**OFF**

specifies that anti-aliasing is always disabled for this plot.

**Default** AUTO

**Interaction**

This option overrides the ANTIALIAS= option in the ODS GRAPHICS statement.

**CONNECTORDER=VALUES | AXIS**

specifies how to connect the data points to form the band lines.

**VALUES**

connects data points in the order read from the X column (or Y column).

**AXIS**

connects data points as they occur left-to-right along the X axis (or bottom-to-top along the Y axis).

**Tip**

You can use this value to ensure the expected connect order for certain types of series lines (for example, time series) when the input data might not be sorted by the X column (or Y column).

**Default** VALUES

**CURVELABELATTRS=style-element | style-element (text-options) | (text-options)**

specifies the color and font attributes of the band labels.

**Defaults**

For non-grouped data, the GraphValueText style element.

For grouped data, text color is derived from the GraphData1:ContrastColor–GraphDataN:ContrastColor style references. The font is derived from the GraphValueText style element.

**Note**

When you specify *style-element*, only the style attributes COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT are used.
CURVELABELLOWER="string" | column
specifies a label for the lower band limit.

**Default**
No curve label is displayed for the lower band

**Requirements**
For non-grouped data, use "string".
For grouped data, use a column to define the lower band labels for each group value. All of the labels for a specific group value must be the same. Otherwise, the results are unpredictable.

**Tip**
The font and color attributes for the label are specified by the CURVELABELATTRS= option.

CURVELABELUPPER="string" | column
specifies a label for the upper band limit.

**Default**
No curve label is displayed for the upper band

**Requirements**
For non-grouped data, use "string".
For grouped data, use a column to define the upper band labels for each group value. All of the labels for a specific group value must be the same. Otherwise, the results are unpredictable.

**Tip**
The font and color attributes for the label are specified by the CURVELABELATTRS= option.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the band labels relative to the plot area.

**INSIDE**
llocates the labels inside the plot area

**OUTSIDE**
llocates the labels outside the plot area

**Default**
INSIDE

**Restriction**
OUTSIDE cannot be used when the BANDPLOT is used in multicell layouts such as LATTICE, DATAPANEL, or DATALATTICE where axes might be external to the grid.

**Interaction**
This option is used with the CURVELABELPOSITION= option to determine where the band labels appear. For more information, see “Location and Position of Curve Labels” on page 185.

CURVELABELPOSITION=AUTO | MAX | MIN | START | END
specifies the position of the band labels relative to the curve line.

**AUTO**
positions the band labels automatically near the band boundary along unused axes whenever possible (typically Y2 and X2).
Restriction  This option is used only when CURVELABELLOCATION=OUTSIDE.

**MAX**
forces the band labels to appear near maximum band values (maximum X-values for horizontal curves, and maximum Y-values for vertical curves).

**MIN**
forces the band label to appear near minimum band values (minimum X-values for horizontal curves, and minimum Y-values for vertical curves)

**START**
forces band labels to appear near the beginning of the curve.

Restriction  This option is used only when CURVELABELLOCATION=INSIDE.

Tip  This option is particularly useful when the curve line has a spiral shape.

**END**
forces band labels to appear near the end of the curve.

Restriction  This option is used only when CURVELABELLOCATION=INSIDE.

Tip  This option is particularly useful when the curve line has a spiral shape.

Defaults  AUTO when CURVELABELLOCATION=OUTSIDE.

END when CURVELABELLOCATION=INSIDE.

Restriction  The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified. The START and END settings are ignored if CURVELABELLOCATION=OUTSIDE is specified.

Interaction  This option is used with the CURVELABELLOCATION= option to determine where the band labels appear. For more information, see “Location and Position of Curve Labels” on page 185.

Note  When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the band label might fall outside of the graph area. In that case, the band label might not be displayed or might be positioned incorrectly.

**DATATRANSPARENCY=number**
specifies the degree of the transparency of the band fill and band outline.

Default  0

Range  0–1, where 0 is opaque and 1 is entirely transparent

Note  This option does not affect the band curve labels.

Tip  The FILLATTRS= option can be used to set transparency for just the band area. You can combine this option with FILLATTRS= to set one
transparency for the band outline but a different transparency for the band fill. Example:

data transparency=0.2 fillattrs=(transparency=0.6)

**DISPLAY=STANDARD | ALL | (display-options)**
specifies whether to display an outlined band area, a filled band area, or an outlined and filled band area.

- **STANDARD**
  displays filled band with no outline

- **ALL**
  displays an outlined, filled band

**(display-options)**
a space-separated list of one or more of the following options enclosed in parentheses:

- **OUTLINE**
  displays an outlined band

- **FILL**
  displays a filled band

**Default**
The value of the DisplayOpt attribute of the GraphBand style element, which is DisplayOpt="FILL" by default.

**Tip**
Use the OUTLINEATTRS= and FILLATTRS= options to control the appearance of the band.

**EXTEND=TRUE | FALSE**
specifies whether the constant or "step" band is to be drawn to the area bounded by the axes.

**Default**
FALSE

**Requirement**
When this option is used for a constant band, constants must be specified for the upper and lower band limits. This requirement does not apply to "step" bands.

**Interactions**
This option is ignored when band labels are placed inside the plot area (CURVELABELLOCATION=INSIDE). To extend the bands in that case, use the CURVELABELLOCATION=OUTSIDE option.

If the X or Y value is character, then the EXTEND= option is honored only when the upper and lower limits specify a number.

**Tip**
If this option is not specified, then there can be a small gap between the line and the axis. The gap is controlled by the axis offset. If the axis offset is set to 0, then there is no gap.

**See**
“boolean” on page 1339 for other Boolean values that you can use.

**FILLATTRS=style-element | style-element (fill-options) | (fill-options)**
specifies the appearance of the filled band area.

**Defaults**
For non-grouped data, the GraphConfidence:Color style reference.

For grouped data, the Color attribute of GraphData1–GraphDataN style elements.
Interaction  For this option to have any effect, the fill must be enabled by the ODS style or by the DISPLAY= option.

Tip  The DATATRANSPARENCY= option sets the transparency for both the band fill and band outline. You can combine this option with DATATRANSPARENCY= to set one transparency for the band outline and a different transparency for the band fill. Example:
  datatransparency=0.2 fillattrs=(transparency=0.6)

See  “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

  “Fill Options” on page 1348 for available fill-options values.

**GROUP=column | discrete-attr-var | expression**

creates a separate band plot for each unique group value of the specified column.

*discrete-attr-var*  specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction  A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Defaults  If the band outline is enabled by the ODS style or the DISPLAY= option, then each distinct group value is represented in the plot by a different combination of outline color (defined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements) and outline pattern (defined by the LineStyle attribute of the GraphData1–GraphDataN and GraphMissing style elements).

  If the band fill is enabled by the ODS style or the DISPLAY= option, then each distinct group value is represented in the plot by a different fill color (defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements).

Restriction  This option can be used only when a numeric column is specified for the upper limit or the lower limit of the band plot. The other limit could be a constant, if desired.

Interactions  To label grouped band plots, you must specify CURVELABELLOWER= column and CURVELABELUPPER= column

The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of colors and line patterns.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

Tip  The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the band lines, but the
PATTERN= suboption of the OUTLINEATTRS= option could be used to assign the same line pattern to all band outlines.

See “DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

Default TRUE

Interaction For this option to take effect, the GROUP= option must also be specified.

Tip The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean ” on page 1339 for other Boolean values that you can use.

INDEX=positive INTEGER-column | expression

specifies indices for mapping band attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

Requirements The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction For this option to take effect, the GROUP= option must also be specified.

Notes The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

JUSTIFY=LEFT | CENTER | RIGHT

specifies the location of the data point relative to the step when TYPE=STEP.
**LEGENDLABEL="string"**
specifies a label to be used in a discrete legend for this plot.

- **Default**: The string specified on the NAME= option.
- **Restriction**: This option applies only to an associated DISCRETELEGEND statement.
- **Interaction**: If the GROUP= option is specified, then this option is ignored.

**MODELNAME="plot-name"**
specifies the name of the plot from which to derive the interpolation for the band. When this option is used, the band plot forms prediction or confidence limits for the plot that supplies the fitted model.

- **Requirement**: plot-name must be the name that has been assigned on the associated plot’s NAME= option.
- **Interaction**: This option overrides the JUSTIFY= and TYPE= options.
- **Tip**: If this option is not specified, then the interpolation is set by the TYPE= option.

**NAME="string"**
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

- **Restriction**: The string is case sensitive, cannot contain spaces, and must define a unique name within the template.
- **Interaction**: The string is used as the default legend label if the LEGENDLABEL= option is not used.

**OUTLINEATTRS=style-element | style-element (line-options) | (line-options)**
specifies the appearance of the band outlines.

- **Defaults**: For non-grouped data, the GraphConfidence style element. For grouped data, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements.
Interaction
For this option to have any effect, the outline must be enabled by the ODS style or by the DISPLAY= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

See “Line Options” on page 1349 for available line-options values.

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles X, Y, LIMITUPPER, LIMITLOWER, GROUP, CURVELABELUPPER, and CURVELABELLOWER.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the band plot. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the band plot can be specified along with roles that do.

(role-list)
an ordered, space-separated list of unique BANDPLOT and user-defined roles. BANDPLOT roles include X, Y, LIMITUPPER, LIMITLOWER, GROUP, INDEX, CURVELABELUPPER, and CURVELABELLOWER.

User-defined roles are defined with the ROLENAME= option.

Note CURVELABELUPPER and CURVELABELLOWER are considered roles only when they are assigned a column of values. They are not considered roles and do not display data tips when assigned a string.

Example This example displays data tips for the columns assigned to the roles X, LIMITUPPER, and LIMITLOWER as well as the column Obs, which is not assigned to any pre-defined BANDPLOT role. The Obs column must first be assigned a role.

ROLENAME=(TIP1=OBS)
TIP=(TIP1 X LIMITUPPER LIMITLOWER)

NONE
suppresses data tips from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: X, Y, LIMITUPPER, LIMITLOWER, and GROUP.
**Requirement**
To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

**Interaction**
This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

**Tip**
The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

---

**TIPFORMAT=(role-format-list)**
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

- **(role-format-list)** a space-separated list of role-name = format pairs.

  **Example**
  
  ```
 ROLENAME=(TIP1=SALARY)
 TIP=(TIP1)
 TIPFORMAT=(TIP1=DOLLAR12.)
  ```

  **Default**
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

  **Restriction**
  Only the roles that appear in the TIP= option are used.

  **Requirement**
  A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

---

**TIPLABEL=(role-label-list)**
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

- **role-label-list** a space-separated list of rolename = "string" pairs.

  **Example**
  
  ```
 ROLENAME=(TIP1=PCT)
 TIP=(TIP1)
 TIPLABEL=(TIP1="Percent")
  ```

  **Default**
The column label or column name of the column assigned to the role.

  **Restriction**
  Only the roles that appear in the TIP= option are used.

  **Requirement**
  A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

---

**TYPE=SERIES | STEP**
specifies how the data points for lower and upper band boundaries are interpolated.

**SERIES**
connects the data points using line segments (as in a SeriesPlot).

**STEP**
connects the data points (as in a StepPlot).
Default SERIES

Interactions TYPE=STEP must be specified to enable the JUSTIFY= option.

If the MODELNAME= option is specified, then this option is ignored.

**XAXIS=X | X2**
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interactions This option is ignored if the X= argument is not specified.

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**YAXIS=Y | Y2**
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interactions This option is ignored if the Y= argument is not specified.

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**Details**

A band plot can specify an X column with Y upper and lower limits, or a Y column with X upper and lower limits. If you specify the X argument, then you must specify LIMITLOWER and LIMITUPPER arguments for the Y values to apply the limits to the Y axis. If you specify the Y argument, then you must specify LIMITLOWER and LIMITUPPER arguments for the X values to apply the limits to the X axis.

When you use a BANDPLOT statement to display prediction or confidence limits, the band plot can be used with another plot that specifies a fitted model. For example, it can be used with a series or step plot. In these cases, use the BANDPLOT option MODELNAME= or TYPE= to identify the interpolation for the band.

You can use the BANDPLOT statement in displays that are independent of other plots. For example, a band plot can be used to define yellow and green areas in an OVERLAY LAYOUT statement that also contains a scatter plot. This use implies concern for any of the scatter plot values that fall in the yellow area and comfort for any values that fall in the green area. For this use, the upper and lower limits would be specified by a constant.

*Note:* The BANDPLOT statement is optimized to work as a Confidence or Prediction band. If the band is self intersecting (not sorted for X or for Y), then the resulting band is unpredictable. With unsorted data, the band that is generated for an output Raster Image might not match the band that is generated for an output Vector Graphic.
Example: BANDPLOT Statement

The following graph was generated by the “Example Program” on page 217:

![Fit Plot for Weight](image)

Example Program

Here is the code for this example.

```sas
proc template;
 define statgraph bandplot;
 begingraph;
 entrytitle "Fit Plot for Weight";
 layout overlay;
 bandplot x=height limitupper=uppermean
 limitlower=lowermean /
 name="band" modelname="fit"
 legendlabel="95% Confidence Limits";
 scatterplot x=height y=weight / primary=true;
 seriesplot x=height y=predict / name="fit"
 legendlabel="Fit Line";
 discretelegend "fit" "band";
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.classfit template=bandplot;
run;
```
BARCHART Statement

Creates a bar chart computed from input data.

**Tips:** For charts that have a large number of bars that are very close together, slight variations in spacing that normally occur due to integer rounding can become more obvious. Subpixel rendering provides more precise bar spacing in that case. In the second maintenance release of SAS 9.4 and in earlier releases, specify SUBPIXEL=ON in the BEGINGRAPH statement to enable subpixel rendering. See **SUBPIXEL=** on page 33. Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default.

To disable subpixel rendering in the third maintenance release of SAS 9.4 and in later releases, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see **SUBPIXEL=** on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

**Syntax**

```
BARCHART CATEGORY=column | expression </option(s)>;
BARCHART CATEGORY=column | expression
RESPONSE=numeric-column | expression </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

```
BARWIDTH=number
specifies the width of a bar as a ratio of the maximum possible width.

BASELINEATTRS=style-element | (line-options)
specifies the appearance of the baseline.

COLORBYFREQ=TRUE | FALSE
specifies whether the bar colors are based on statistical values when the COLORRESPONSE= option is not specified.

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option or the COLORBYFREQ= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the bar colors to a continuous color gradient.

CONNECTATTRS=style-element | style-element (line-options) | (line-options)
specifies the appearance of the bar connect lines.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the filled bars.

DATATRANSPARENCY=number
specifies the degree of the transparency of the bar fill, bar outline, connect line, and bar labels, if displayed.

DISPLAY=STANDARD | ALL | (display-options)
specifies which bar features to display.
```
DISPLAYZEROLENGTHBAR=TRUE | FALSE
    specifies whether zero-length bars are drawn.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
    specifies the appearance of the filled bar area.

FILLPATTERNATTRS=style-element | (fill-pattern-options)
    specifies the appearance of the pattern-filled bar area.

FILLTYPE=SOLID | GRADIENT
    specifies the bar fill type.

INDEX=positive-integer-column | expression
    specifies indices for mapping bar attributes (fill and outline) to one of the
    GraphData1–GraphDataN style elements.

INTERVALBARWIDTH=dimension
    specifies the width of the bars in an interval bar chart as a ratio of the interval
    width.

ORIENT=VERTICAL | HORIZONTAL
    specifies the orientation of the Y axis and the bars.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
    specifies the appearance of the bar outlines.

TARGET=numeric-column | expression
    specifies the target value for each bar.

Axes options

BASELINEINTERCEPT=number
    specifies the response axis intercept for the baseline.

PRIMARY=TRUE | FALSE
    specifies that the data columns for this plot and the plot type be used for
    determining default axis features.

XAXIS=X | X2
    specifies whether data are mapped to the primary X (bottom) axis or to the
    secondary X2 (top) axis.

YAXIS=Y | Y2
    specifies whether data are mapped to the primary Y (left) axis or to the
    secondary Y2 (right) axis.

Data tip options

TIP=(role-list) | NONE
    specifies the information to display when the cursor is positioned over a bar.

TIPFORMAT=(role-format-list)
    specifies display formats for tip columns.

TIPLABEL=(role-label-list)
    specifies display labels for tip columns.

Label options

BARLABEL=TRUE | FALSE
    specifies whether the bar statistic value is displayed at the end of the bar.

BARLABELATTRS=style-element | style-element (text-options) | (text-options)
    specifies the text properties of the bar label text.

BARLABELFITPOLICY=AUTO | NONE
    specifies a policy for avoiding collisions among the bar labels when labels
    are displayed.

BARLABELFORMAT=format
specifies the text format used to display the bar label.

**LEGENDLABEL=**"string"
specifies a label to be used in a discrete legend for this plot.

**SEGMENTLABEL=**TRUE | FALSE
specifies whether a label is displayed inside each bar segment.

**SEGMENTLABELATTRS=**style-element | style-element (text-options) | (text-options)
specifies the text properties of the text for the bar segment label.

**SEGMENTLABELFITPOLICY=**NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

**SEGMENTLABELFORMAT=**format
specifies the text format for the bar segment labels.

### Midpoint options

**DISCRETEOFFSET=**number
specifies an amount to offset all bars from the category midpoints.

**GROUP=**column | discrete-attr-var | expression
creates a separate bar segment or bar for each unique group value in the specified column.

**GROUP100=**NONE | MAGNITUDE | POSITIVE
displays the computed response values (FREQ, SUM, or MEAN), normalized to 100%.

**GROUPDISPLAY=**STACK | CLUSTER
specifies how to display grouped bars.

**GROUPORDER=**DATA | REVERSED DATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

**INCLUDEMISSINGGROUP=**TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

### ODS options

**URL=**string-column
specifies an HTML page to display when the bar is selected.

### Plot reference options

**NAME=**"string"
assigns a name to this plot statement for reference in other template statements.

### Statistics options

**COLORSTAT=**FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic to be calculated for the data range of the bar-color gradient.

**STAT=**FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic to be computed for the Y-axis.

### Required Arguments

Specifying only CATEGORY= creates a bar chart with bars that, by default, represent frequency counts or percents of CATEGORY. Specifying both CATEGORY= and
RESPONSE= creates a bar chart with bars representing summarized values of RESPONSE categorized by CATEGORY.

**CATEGORY=column | expression**

specifies the column or expression for the category values.

**Notes** You can use X= as an alternative to CATEGORY=. If you use X=, then be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options recognize X as the category role and not as CATEGORY.

For interval category values, if a user-defined format is applied to the category column, the format should map each category value to only one unique formatted value. Otherwise, unexpected results might occur.

**RESPONSE=numeric-column | expression**

specifies the numeric column or expression for the response values.

**Notes** You can use Y= as an alternative to RESPONSE=. If you use Y=, then be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options will recognize Y as the response role and not RESPONSE in that case.

This option is required only when you want summarized values of RESPONSE that are categorized by CATEGORY.

**Optional Arguments**

**BARLABEL=TRUE | FALSE**

specifies whether the bar statistic value is displayed at the end of the bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default FALSE

Tip The font and color attributes for the label are specified by the BARLABELATTRS= option. The text format is specified by the BARLABELFORMAT= option.

See “boolean ” on page 1339 for other Boolean values that you can use.

**BARLABELATTRS=style-element | style-element (text-options) | (text-options)**

specifies the text properties of the bar label text.

Default The GraphDataText style element.

Requirement For this option to take effect, BARLABEL=TRUE must be specified.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

**BARLABELFITPOLICY=AUTO | NONE**

specifies a policy for avoiding collisions among the bar labels when labels are displayed.
for a vertical bar chart, rotates the bar labels if the labels exceed the midpoint spacing. For a horizontal bar chart, always draws the labels horizontally. The following figure shows an example.

See the BARWIDTH= option for more information about the bar spacing.

NONE
does not rotate the bar labels. Labels that are too long overlap.

Labels can collide along their length and along their height. In some cases, if one or more labels collide when the specified fit policy is used, then all of the labels are dropped from the display. When that occurs, the following warning message is written to the SAS log:

WARNING: The bar labels are suppressed. Use BARLABELFITPOLICY=NONE to force the labels to be displayed.

TIP If the labels collide along their height, then using the BARLABELATTRS= option to reduce the label font size might eliminate the collision.

Default AUTO

Requirement For this option to take effect, BARLABEL=TRUE must be specified.

BARLABELFORMAT=\texttt{format}
specifies the text format used to display the bar label.

Default The column format assigned to the RESPONSE= column or BEST6 if no format is assigned.

Requirement For this option to take effect, BARLABEL=TRUE must be specified.

BARWIDTH=\texttt{number}
specifies the width of a bar as a ratio of the maximum possible width.

Default 0.85

Range 0.1–1, where 0.1 is the narrowest and 1 is the widest
Interaction Starting with the third maintenance release of SAS 9.4, the INTERVALBARWIDTH= option overrides this option for an interval bar chart.

Notes This option is needed only to change the default behavior. By default, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Tip To remove any inter-bar gap, set BARWIDTH=1.

BASELINEATTRS=style-element | (line-options)

specifies the appearance of the baseline.

Default The GraphAxisLines style element.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0:

```plaintext
baselineattrs=(thickness=0)
```

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

BASELINEINTERCEPT=number

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, whether for a specified value or for the default value. When this option is used, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interactions If GROUPDISPLAY=STACKED is specified, then this option is ignored and the baseline is not displayed.

This option is ignored when the GROUP100= option is used.

If necessary, the response axis data range is extended to include the baseline intercept. When a logarithmic response axis is requested and BASELINEINTERCEPT= specifies 0 or a negative value, the
response axis reverts to a linear axis. To restore the log axis in that case, set BASELINEINTERCEPT= to a positive value.

Note

Label positions are automatically adjusted to prevent the labels from overlapping.

Tips

Control the appearance of the baseline with the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

The baseline does not add a tick or a tick value to the axis. To label the baseline, use a REFERENCELINE statement to overlay a line with the same X or Y value and include the CURVELABEL= option to specify the label text.

COLORBYFREQ=TRUE | FALSE

specifies whether the bar colors are based on statistical values when the COLORRESPONSE= option is not specified. Setting this option to TRUE enables you to color the bars based on frequency counts, percentages, or proportions.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

FALSE

Requirement

The COLORSTAT= option must be FREQ, PCT, or PROPORTION for this option to have any effect.

Interactions

This option is ignored when the COLORRESPONSE= option is specified.

When the GROUP= option is specified with the COLORBYFREQ= option, the color attributes are controlled by the COLORBYFREQ= option.

The COLOR= suboption of the FILLATTRAIS=, FILLPATTERNATTRS=, and OUTLINEATTRS= options overrides this option for the associated color attribute.

Note

This option is independent of the STAT= and RESPONSE= options.

Tips

Use the COLORSTAT= option to specify whether frequency counts, percentages, or proportions are computed for the COLORRESPONSE= column.

Use the FILLTYPE= option to specify whether each bar is filled with a solid color or with a gradient color.

See

“Example 3: Bar Chart with Bar Colors Controlled by a Statistic” on page 249

COLORMODEL=color-ramp-style-element | (color-list)

specifies a color ramp to use with the COLORRESPONSE= option or the COLORBYFREQ= option.
color-ramp-style-element
specifies the name of a color-ramp style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color” on page 1340

Defaults For outline-only bars, the ThreeColorAltRamp style element
For bars with fill, the ThreeColorRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option or the COLORBYFREQ=TRUE option must also be specified.

Tip Use the DISPLAY= option to specify whether outlines and fills are displayed.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the bar colors to a continuous color gradient.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

range-attr-var specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. Each bar is colored using one color from the gradient range. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Requirement For a grouped plot, the COLORRESPONSE values should remain constant for each group value. If the COLORRESPONSE column has multiple values for a single GROUP value, unexpected results might occur.
The `COLORBYFREQ=` option is ignored when this option is specified.

When the `GROUP=` option is specified with the `COLORRESPONSE=` option, the color attributes are controlled by the `COLORRESPONSE=` option.

When fill, fill pattern, or both are displayed, this option overrides suboption `COLOR=` in the `FILLATTRS=` option and in the `FILLPATTERNATTRS=` option and varies the color according to the color gradient or the attribute map.

When only the outlines are displayed, this option overrides suboption `COLOR=` in the `OUTLINEATTRS=` option and varies the outline color according to the color gradient or the attribute map.

**Tips**

To display a legend with this option in effect, use a `CONTINUOUSLEGEND` statement.

Use the `COLORSTAT=` option to specify the statistic to compute for the `COLORRESPONSE=` column.

Use the `FILLTYPE=` option to specify whether each bar is filled with a solid color or with a gradient color.

For a numeric column or expression, the `ThreeColorRamp` style element defines the fill color gradient, and the `ThreeColorAltRamp` style element defines the outline color gradient.

**COLORSTAT=** `FREQ | PCT | SUM | MEAN | PROPORTION` specifies the statistic to be calculated for the data range of the bar-color gradient.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The statistics that are available depend on the `COLORRESPONSE=` and `COLORBYFREQ=` option specifications. When the `COLORRESPONSE=` option is specified, the following values are valid:

SUM

MEAN

When the `COLORRESPONSE=` option is not specified and `COLORBYFREQ=` `TRUE` is in effect, the following values are valid:

FREQ frequency count

PCT percentages between 0 and 100

PROPORTION proportions between 0 and 1

**Defaults**

FREQ when the `COLORRESPONSE=` option is not specified and `COLORBYFREQ=` `TRUE` is in effect.

SUM when the `COLORRESPONSE=` option is specified.

**Interactions**

This option is ignored when the `COLORRESPONSE=` option is not specified and `COLORBYFREQ=` `FALSE` is in effect.
This option might affect existing SAS programs. For programs written before the third maintenance release of SAS 9.4, if STAT= and COLORRESPONSE= are specified in a BARCHART statement, then the bar-chart colors and color statistic might change from those of the previous SAS releases. To restore the original colors and color statistic in that case, set COLORSTAT= in the BARCHART statement to the same statistic that is specified in STAT=.

**Note**
This option is independent of the STAT= and RESPONSE= options.

**See**
COLORBYFREQ= on page 224
COLORRESPONSE= on page 225
STAT= on page 240

“Example 3: Bar Chart with Bar Colors Controlled by a Statistic” on page 249

**CONNECTATTRS=**

- `style-element` | `style-element (line-options)` | `(line-options)`

specifies the appearance of the bar connect lines.

**Default**
The GraphConnectLine style element.

**See**
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Line Options” on page 1349 for available `line-options`.

**DATASKIN=**

- NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the filled bars. The following figure shows bars with each of the skins applied.

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Default**
The DATASKIN= option value that is specified in the BEGINGRAPH statement. If not specified, then the GraphSkins:DataSkin style element value is used.

**Restriction**
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot,
the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

**Requirement**
For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

**Interactions**
This option overrides the BEGINGRAPH statement DATASKIN= option.

The data skin appearance is based on the FILLATTRS= color.

When a data skin is applied, all bar outlines are set by the skin, and the OUTLINEATTRS= option is ignored.

When FILLTYPE=GRADIENT is in effect, DATASKIN=SHEEN is ignored. In that case, use one of the other skins.

**DATATRANSPARENCY=number**
specifies the degree of the transparency of the bar fill, bar outline, connect line, and bar labels, if displayed.

**Default** 0

**Range** 0–1, where 0 is opaque and 1 is entirely transparent

**Tip**
The FILLATTRS= option can be used to set transparency for just the filled bar area. You can combine this option with FILLATTRS= to set one transparency for the bar outlines and connect lines but a different transparency for the bar fills. Example:

dataTRANSPARENCY=0.2 fillattrs=(transparency=0.6)

**DISCRETEOFFSET=number**
specifies an amount to offset all bars from the category midpoints.

**Default** 0 (no offset, all bars are centered on the category midpoints)

**Range** -0.5 to +0.5, where 0.5 represents half the distance between category ticks. Normally, a positive offset is to the right when ORIENT=VERTICAL, and up when ORIENT=HORIZONTAL. (If the layout's axis options set REVERSE=TRUE, then the offset direction is also reversed.)

**Tip** Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

**See** “About the DISCRETEOFFSET= Option” on page 245

**Chapter 8, “Axis Options in Layouts,” on page 889** for information about the REVERSE=, OFFSETMIN=, and OFFSETMAX= axis options

**ORIENT=**

**DISPLAY=STANDARD | ALL | (display-options)**
specifies which bar features to display.
STANDARD
displays outlined, filled bars

ALL
displays outlined, filled bars, and connect lines

(display-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

OUTLINE
displays outlined bars.

FILL
displays bars with a solid fill.

CONNECT
displays line segments connecting adjacent midpoints at the end of each bar.

FILLPATTERN
displays bars with a patterned fill. This setting is used primarily for grouped bar charts that must be rendered in monochrome for use in a journal article. The fill patterns make it easier to distinguish among groups when color is not available.

Default STANDARDF

Restriction Connect lines are not drawn for grouped data.

Note The connect lines are drawn in axis order starting with the third maintenance release of SAS 9.4. They are drawn in data order in prior releases.

Tips Use the OUTLINEATTRS=, FILLATTRS=, and FILLPATTERNATTRS= options to control the appearance of the bars. Use CONNECTATTRS= to control the appearance of the connect lines.

You can specify both FILL and FILLPATTERN to combine solid fills and pattern fills in the bars.

DISPLAYZEROLENGTHBAR=TRUE | FALSE
specifies whether zero-length bars are drawn.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar is displayed as a line spanning the normal bar width at the bar-chart baseline on the response axis. When this option is set to TRUE, zero-length bars are displayed. Otherwise, they are suppressed. The following figure shows a simple example of each outcome. In the figure, the plot wall outline, category axis line, and bar-chart baseline are suppressed for clarity.
Default: TRUE

Interaction: This option is ignored when the GROUP= and GROUPDISPLAY=STACK options are in effect. In that case, zero-length bar segments are drawn.

Note: When this option is set to FALSE, the bar is not drawn, but other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip: This option is useful when the bar-chart baseline is suppressed.

**FILLATTRS=** *style-element | style-element (fill-options) | (fill-options)*

specifies the appearance of the filled bar area.

Defaults: For non-grouped data, the GraphDataDefault:Color style reference

For grouped data, the Color attribute of the GraphData1–GraphDataN style elements.

Interaction: When COLORRESPONSE= is in effect and the DISPLAY= option enables FILL display, the FILLATTRS= suboption COLOR= is ignored, and the bar fill colors vary according to the gradient.

Tip: The DATATRANSPARENCY= option sets the transparency for the bar fills, bar outlines, and connect lines. You can combine this option with DATATRANSPARENCY= to set one transparency for the bar outlines and connect lines but a different transparency for the bar fills. Example: datatransparency=0.2 fillattrs=(transparency=0.6)

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.

“Fill Options” on page 1348 for available *fill-options*.

**FILLPATTERNATTRS=** *style-element | (fill-pattern-options)*

specifies the appearance of the pattern-filled bar area.

*style-element*

specifies the name of a style element. You can specify only one of the elements GraphData1–GraphDataN.

Restriction: The only styles that are delivered by SAS that support fill patterns are JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER. If any other such style is in effect and this option uses *style-element* in its specification, then this option is ignored.

*(fill-pattern-options)*

a space-separated list of one or more of the following options, enclosed in parentheses:

COLOR=color | style-reference

specifies a color to use for the bar-fill-pattern lines. With grouped data, the COLOR= setting has the effect of holding the fill color constant across all group values.

PATTERN=line-pattern

specifies a line pattern to use for the bar fill.
To specify a line-pattern, combine a line-direction prefix (R for right, L for left, and X for cross hatch) with a line-identification number:

With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

Interaction For this option to take effect, the DISPLAY= option must include FILLPATTERN among the display options.

See DISPLAY=

FILLTYPE=SOLID | GRADIENT
specifies the bar fill type.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID each bar is filled with the color that is assigned to that bar.

GRADIENT an alpha gradient is used to determine the bar fill color. Each bar is filled with a color and a transparency gradient that starts at the bar top with the specified fill color and transparency, and transitions to fully transparent at the bar baseline. The initial fill color is determined by a style element or by the FILLATTRS= option COLOR= suboption. The initial transparency is determined by the DATATRANSPARENCY= option or by the FILLATTRS= option TRANSPARENCY= suboption.

Interactions The SHEEN data skin cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins.

In the second maintenance release of SAS 9.4, FILLTYPE=GRADIENT is ignored when GROUPDISPLAY=STACK is in effect. Starting with the third maintenance release of SAS 9.4, FILLTYPE=GRADIENT is honored in that case.

Tips Use the DATATRANSPARENCY= option or the FILLATTRS= option TRANSPARENCY= suboption to set the initial transparency in the gradients.

For grouped plots, use the FILLATTRS= option in a discrete attribute map to set the initial transparency in the gradients for specific values.
Default SOLID

Interaction The DISPLAY= option must include FILL for this option to have any effect.

GROUP=column | discrete-attr-var | expression
creates a separate bar segment or bar for each unique group value in the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

For example, the sashelp.Cars data used in the “Example Program” on page 247 contains a column named Origin, which identifies the region that produces each car. This column could be used in the BARCHART statement to group the bars in the display (see the GROUPDISPLAY= option to see the output for the grouped bars):

layout overlay;
  barchart category=type response=mpg_highway /
    stat=mean group=origin name="b";
  discretelegend "b" / title="Regions:"
endlayout;

Defaults If bar fills or fill patterns are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different fill color or fill pattern. The fill colors are defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements. The fill patterns are defined by the FillPattern attribute of the GraphData1–GraphDataN and GraphMissing style elements.

If bar outlines are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different outline. The outline colors are defined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions Connect lines are not drawn for grouped data.

By default, the group values are mapped in the order of the data. Use the GROUPORDER= option to control the sorting order of the grouped bar segments. Use the INDEX= option to alter the default sequence of colors and line patterns.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

When both the GROUP= and COLORRESPONSE= options are specified, the color attributes are controlled by the COLORRESPONSE= option.
The bar display depends on the setting for the `GROUPDISPLAY=` option.

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the bar outlines, but you can use the `PATTERN=` setting on the `OUTLINEATTRS=` option to assign the same line pattern to all bar outlines and connect lines.

See “DISCRETEATTRVAR Statement” on page 1297

GROUP100=NONE | MAGNITUDE | POSITIVE

Displays the computed response values (FREQ, SUM, or MEAN), normalized to 100%.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NONE displays the summarized data.

MAGNITUDE normalizes both the negative and positive values to 100% by magnitude, and displays the group values, preserving the sign. The positive values are displayed above the bars for a vertical bar chart and on the right end for a horizontal bar chart. The negative values are displayed enclosed in parentheses below the bars for a vertical bar chart and on the left end for a horizontal bar chart.

The following figure illustrates the effect of MAGNITUDE on stacked bars in a vertical bar chart.

**POSITIVE**

Drops the negative values and normalizes only the positive values to 100%. The following figure demonstrates the effect of POSITIVE on clustered bars in a vertical bar chart. This chart uses the same data as the chart in the previous figure.
Notice that the negative values are dropped from the chart.

**Default**  
NONE

**Requirement**  
The GROUP= option must be specified for this option to have any effect.

**Interaction**  
When this option is used, the BASELINEINTERCEPT= and TARGET= options are ignored.

**Note**  
You can use this option with any value for the GROUPDISPLAY= option.

**Tip**  
To display the values, specify BARLABEL=TRUE.

**GROUPDISPLAY=STACK | CLUSTER**  
specifies how to display grouped bars.

**STACK**  
displays group values as stacked segments within the category bar.

**CLUSTER**  
displays group values as separate adjacent bars that replace the single category bar. Each cluster of group values is centered at the category midpoint on the axis. This example illustrates the clusters and also how groups are displayed when they have an unequal number of unique values.
When you use the `BARLABEL=` option and the `GROUP=` option, the `BARLABEL` values are displayed for each bar when `GROUPDISPLAY=CLUSTER`. When `GROUPDISPLAY=STACK`, the whole bar is labeled at the top.

Tip For a linear response axis, when STAT=MEAN or STAT=PCT, the axis tick values might be displayed as integer values when `GROUPDISPLAY=STACK`. Changing `GROUPDISPLAY=STACK` to `CLUSTER` in that case might cause the axis values to change to decimal values. To keep the integer axis values in both cases, you can specify the `INTEGER=TRUE` option for the response axis. See `INTEGER=` on page 915.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in the group-column data order.

**REVERSEDATA**
orders the groups within a category in the reverse group-column data order.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**Tip** This option is useful when you want to reverse the category axis.

**ASCENDING**
orders the groups within a category in ascending order.

**DESCENDING**
orders the groups within a category in descending order.

**Default** DATA

**Interactions** This option is ignored if the `GROUP=` option is not also specified.

By default, the groups in the legend are shown in the order that is specified in `GROUPORDER`. 
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**INCLUDEMISSINGGROUP=TRUE | FALSE**

specifies whether missing values of the group variable are included in the plot.

**Default**

TRUE

**Interaction**

For this option to take effect, the GROUP= option must also be specified.

**Tip**

The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean” on page 1339 for other Boolean values that you can use.

**INDEX=positive-integer-column | expression**

specifies indices for mapping bar attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

**Requirements**

The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

**Interaction**

For this option to take effect, the GROUP= option must also be specified.

**Notes**

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

**Tip**

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.
INTERVALBARWIDTH=\textit{dimension}

specifies the width of the bars in an interval chart as a ratio of the interval width.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\textbf{Default} \quad The width specified by the \texttt{BARWIDTH=} option.

\textbf{Restriction} \quad This option applies only to a linear or time category axis. When the category axis is discrete, this option is ignored.

\textbf{Interaction} \quad When the category data is interval, this option overrides the \texttt{BARWIDTH=} option.

\textbf{Tip} \quad To make the category axis type linear or time, include \texttt{TYPE=LINEAR} or \texttt{TYPE=TIME} in the category axis options or assign the role of primary plot to a plot that makes the category axis linear or time.

\textbf{See} \quad “\textit{dimension}” on page 1340

\textbf{LEGENDLABEL=}\texttt{"string"}

specifies a label to be used in a discrete legend for this plot.

\textbf{Default} \quad The response-variable label. If a label is not defined, then the response-variable name is used.

\textbf{Restriction} \quad This option applies only to an associated \texttt{DISCRETELEGEND} statement.

\textbf{Interaction} \quad If the \texttt{GROUP=} option is specified, then this option is ignored.

\textbf{NAME=}\texttt{"string"}

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

\textbf{Restriction} \quad The \textit{string} is case sensitive, cannot contain spaces, and must define a unique name within the template.

\textbf{Interaction} \quad The \textit{string} is used as the default legend label if the \texttt{LEGENDLABEL=} option is not used.

\textbf{ORIENT=VERTICAL | HORIZONTAL}

specifies the orientation of the Y axis and the bars.

\textbf{Default} \quad \texttt{VERTICAL}

\textbf{Notes} \quad When this option is set to \texttt{HORIZONTAL}, the category variable appears on the Y (or Y2) axis and the response variable appears on the X (or X2) axis. To set the axis properties for this chart, you should use the appropriate axis options of the layout container.

When this option is set to \texttt{VERTICAL}, the category variable appears on the X (or X2) axis and the response variable appears on the Y (or Y2) axis. To set the axis properties for this chart, you should use the appropriate axis options of the layout container.
If you change the orientation of the bar chart, then you should adjust the layout container’s axis options appropriately.

**OUTLINEATTRS=**

```
OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
```

specifies the appearance of the bar outlines.

**Defaults**

For non-grouped data, the ContrastColor, LineThickness, and LineStyle attributes of the GraphOutlines style element.

For grouped data and filled bars, the ContrastColor attribute of the GraphData1–GraphDataN style elements, and the LineThickness and LineStyle attributes of the GraphOutlines style element.

For grouped data and unfilled bars, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements, and the LineThickness attribute of the GraphOutlines style element.

**Interactions**

For this option to have any effect, outlines must be enabled by the ODS style or the DISPLAY= option.

If the DATASKIN= option applies a data skin, then this option is ignored.

When the COLORRESPONSE= and DISPLAY=(OUTLINE) options are in effect, the OUTLINEATTRS= suboption COLOR= is ignored, and the bar outline colors vary according to the gradient.

**See**

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**PRIMARY=**

```
PRIMARY=TRUE | FALSE
```

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

**Default**

FALSE

**Restriction**

This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

**Note**

In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

**See**

“When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

**SEGMENTLABEL=**

```
SEGMENTLABEL=TRUE | FALSE
```

specifies whether a label is displayed inside each bar segment.

**Note:** This feature applies to the second maintenance release of SAS 9.4 and to later releases.
For an ungrouped bar chart or for a grouped bar chart with `GROUPDISPLAY=CLUSTER`, AUTO displays a bar label inside each bar. The label displays the statistic for that bar. For a grouped bar chart with `GROUPDISPLAY=STACK`, AUTO displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following figure.

When this value is set to FALSE, no labels are displayed inside the bars.

**Default** FALSE

**Tips**
For a grouped bar chart with `GROUPDISPLAY=STACK`, specify both `SEGMENTLABEL=TRUE` and `BARLABEL=TRUE` to display a label for each bar segment and a label for the entire bar.

Use the `SEGMENTLABELATTRS=` option to modify the appearance of the label text.

Use the `SEGMENTLABELFITPOLICY=` option to specify a policy for fitting the labels inside the bars.

Use the `SEGMENTLABELFORMAT=` option to modify the format of the segment labels.

**See**
“boolean ” on page 1339 for other Boolean values that you can use.

**SEGMENTLABELATTRS=**

```
| style-element | style-element | (text-options) | (text-options) |
```

specifies the text properties of the text for the bar segment label.

**Note:** This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**Default**
The `GraphDataText` style element.

**Interaction**
This option is ignored when `SEGMENTLABEL=FALSE`.

**See**
“General Syntax for Attribute Options” on page 1347 for the syntax for using a `style-element`.

“Text Options” on page 1351 for available `text-options`. 
SEGMENTLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment. For a vertical bar chart, the label width must not exceed the bar width, and the text height must not exceed the segment height. For a horizontal bar chart, the label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default THIN

Interaction This option is ignored when SEGMENTLABEL=FALSE.

SEGMENTLABELFORMAT=format
specifies the text format for the bar segment labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option is ignored when SEGMENTLABEL=FALSE.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic to be computed for the Y-axis. For bar charts with no RESPONSE= column:

FREQ frequency count
PCT percentages between 0 and 100
PROPORTION proportions between 0 and 1

Note: Prior to SAS 9.4, PCT displayed proportions between 0 and 1. To restore the original PCT results in SAS 9.4 and later releases, specify PROPORTION instead.

For bar charts with a RESPONSE= column:

SUM
MEAN

Defaults For bar charts with no RESPONSE= column, the default is FREQ.

For bar charts with a RESPONSE= column, the default is SUM.
Note: When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

Tip: If this option is used with COLORRESPONSE= in SAS programs that were written before the third maintenance release of SAS 9.4, the bar-chart colors and color statistic might change from those of the previous SAS releases. To restore the original colors and color statistic, set COLORSTAT= in the BARCHART statement to the same statistic that is specified in STAT=.

**TARGET=**<br>specifies the target value for each bar. The visual representation is a triangle with a line at the target value.

```
layout overlay;
barchart category=type response=mpg_highway / barwidth=.8
 target=mpg_city group=origin groupdisplay=cluster
 name='bar';
discretelegend 'bar';
endlayout;
```

- **Default:** No targets are displayed.
- **Interactions:** For this option to take effect, the RESPONSE= argument must also be used.
  
  - If the GROUP= option is used and GROUPDISPLAY= STACK, then this option is ignored.
  
  - This option is ignored when the GROUP100= option is used.
- **Tips:**
  
  - The statistic indicated by the STAT= option applies to the TARGET=column. If a constant value is desired for each target, then specify it only once for repeated category (X) values (or category and GROUP combinations), and leave the other target values missing.
  
  - The target color is that of the bar outline.
TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a bar. If this option is used, then the information specified replaces all of the information that is displayed by default.

(role-list)
an ordered, space-separated list of unique BARCHART roles. BARCHART roles include CATEGORY or X, RESPONSE or Y, COLORRESPONSE, INDEX, GROUP, and TARGET.

Notes
For the category and response roles, the TIP= option recognizes only the category and response arguments that you use in the BARCHART statement. If you use the CATEGORY= and RESPONSE= arguments, then you must specify roles CATEGORY and RESPONSE. Conversely, if you use the X= and Y= arguments, then you must specify roles X and Y.

Example
The following example displays data tips for the columns assigned only to the roles CATEGORY and RESPONSE:

TIP=(CATEGORY RESPONSE)

TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
TIP= (RESPONSE)
TIPFORMAT= (RESPONSE=DOLLAR12.)

Default
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.
**Restriction**  Only the roles that appear in the TIP= option are used.

**Requirement**  A column must be assigned to each of the specified roles.

**TIPLABEL=** *(role-label-list)*
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

*role-label-list*

a space-separated list of *rolename* ="*string*" pairs.

**Example**

```
TIP=(RESPONSE)
TIPLABEL=(RESPONSE="Average Sales")
```

**Default**  The column label or column name of the column assigned to the role.

**Restriction**  Only the roles that appear in the TIP= option are used.

**Requirement**  A column must be assigned to each of the specified roles.

**URL=** *string-column*
specifies an HTML page to display when the bar is selected.

*string-column*

specifies a column that contains a valid HTML page reference (HREF) for each bar that is to have an active link.

**Example**  

```
http://www.sas.com/technologies/analytics/index.html
```

**Requirement**  To generate selectable bars, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

**Interactions**  This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

**Notes**  For non-grouped data, the values of the column are expected to be same for each unique category value. If they are not, then the results might be unpredictable.

For grouped data, the values of the column are expected to be the same for each unique category and GROUP combination.

**Tips**  The URL value can be blank for some category values, meaning that no action is taken when the bars for those category values are selected.

The URL value can be the same for different category values, meaning that the same action is taken when the bars for those category values are selected.
XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interactions This option is ignored if the RESPONSE= argument is not specified.

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

Statement Description
The BARCHART statement creates a bar chart with bars that represent summarized response values. The response values are categorized by the unique category values or, starting with the third maintenance release of SAS 9.4, by the bins in binned category data. The BARCHART statement takes nonsummarized data as input and calculates the appropriate summarization statistics (sum, mean, and so on) for each unique category value or category bin. Prior to the third maintenance release of SAS 9.4, the category axis for a bar chart must be discrete. Starting with the third maintenance release of SAS 9.4, the category axis can be discrete, linear, or time. The response axis in all cases is interval.

When the chart is oriented vertically, the X (or X2) axis is used for CATEGORY and the Y (or Y2) axis is used for RESPONSE. When it is oriented horizontally, the X (or X2) axis is used for RESPONSE and the Y (or Y2) axis is used for CATEGORY. (See ORIENT= on page 237.)

By default, if the category column is character, then the bars in the chart appear in the order in which the category values are present in the input data. If the category column is numeric, then the values are presented in ascending order. For non-grouped data, duplicated category values are summarized into a unique value. For grouped data, the category values are summarized as needed. (See the GROUP= option.)

Starting with the third maintenance release of SAS 9.4, for numeric category values, an interval bar chart is generated only when the category axis type is linear or time. To specify a category axis type of linear or time, include the TYPE= option in the category axis options, or assign the role of primary plot to a plot that sets the category axis type to linear or time automatically. By default, a bar is drawn for each unique category value, which can result in a large number of bars for numeric category data.

When binning is used, for each bin, a summarization statistic is computed, and a bar is drawn that represents that statistic. The width of each bar spans the width of the bin that it represents. The left-most edge of the bar represents the start of the bin, and the right-most edge represents the end. See “Example 1: Horizontal Bar Chart” on page 247.
Prior to the third maintenance release of SAS 9.4, use the HISTOGRAM statement to create a bar chart that represents response values along an interval axis.

**About the DISCRETEOFFSET= Option**

The DISCRETEOFFSET= option is useful for graphing multiple response variables side by side on a common axis. By default within an overlay-type layout, if multiple BARCHART statements are used with different response variables, then the bars for matching category values are centered on the midpoints and the bars are superimposed. To make it easier to distinguish among superimposed bars, you can assign a different BARWIDTH= setting to each BARCHART statement in the overlay:

```
layout overlay / cycleattrs=true
 xaxisopts=(display=(tickvalues))
 yaxisopts=(label="Revenue" offsetmax=0.2);

barchart category=year response=A_revenue / stat=sum name="A"
 legendlabel="A" barwidth=0.8 ;
barchart category=year response=B_revenue / stat=sum name="B"
 legendlabel="B" barwidth=0.6 ;
barchart category=year response=C_revenue / stat=sum name="C"
 legendlabel="C" barwidth=0.4 ;

discretelegend "A" "B" "C" / title="Product:" location=inside halign=right valign=top;
endlayout;
```

To place the different response values side by side, you can assign a different offset to each BARCHART statement. The BARWIDTH= option can be used with DISCRETEOFFSET= to create narrower bars that require less width within the plot area:

```
layout overlay / cycleattrs=true
 xaxisopts=(display=(tickvalues))
 yaxisopts=(label="Revenue" offsetmax=0.2);

barchart category=year response=A_revenue / stat=sum name="A"
 legendlabel="A" barwidth=0.8 ;
 discreteoffset=-0.3 barwidth=0.3 ;
barchart category=year response=B_revenue / stat=sum name="B"
 legendlabel="B" ;
```

To place the different response values side by side, you can assign a different offset to each BARCHART statement. The BARWIDTH= option can be used with DISCRETEOFFSET= to create narrower bars that require less width within the plot area:
Different combinations of DISCRETEOFFSET and BARWIDTH can be used to get the effect that you want. Gaps can be created between bars by providing a narrower bar width. Or, bars can be overlapped if the bar widths are increased in proportion to the discrete offset.

layout overlay / cycleattrs=true
xaxisopts=(display=(tickvalues))
yaxisopts=(label="Revenue" offsetmax=0.2);

barchart category=year response=A_revenue / stat=sum name="A"
  legendlabel="A" datatransparency=0.2
discreteoffset=-0.2 barwidth=0.5 ;
barchart category=year response=B_revenue / stat=sum name="B"
  legendlabel="B" datatransparency=0.2
discreteoffset=0   barwidth=0.5 ;
barchart category=year response=C_revenue / stat=sum name="C"
  legendlabel="C" datatransparency=0.2
discreteoffset=+0.2 barwidth=0.5 ;

discretelegend "A" "B" "C" / title="Product:"
  location=inside halign=right valign=top;
endlayout;
Examples

Example 1: Horizontal Bar Chart
The following graph was generated by the “Example Program” on page 247:

```
proc template;
 define statgraph barchart;
 begingraph;
 entrytitle "Average Mileage by Vehicle Type";
 layout overlay;
 barchart category=type response=mpg_highway / stat=mean orient=horizontal;
 endlayout;
 endgraph;
end;
```

Example 2: Interval Bar Chart

Interval bar charts are available starting with the third maintenance release of SAS 9.4. In the second maintenance release of SAS 9.4 and in earlier releases, use the HISTOGRAM statement to generate an interval bar chart. The following graph was generated by the “Example Program” on page 248:

Example Program

Here is the SAS code.

```sas
proc template;
 define statgraph cylinders;
 begingraph;
 entrytitle "Interval Bar Chart of Vehicle Engine Cylinders";
 layout overlay /
 xaxisopts=(label="Engine Cylinders" type=linear
 linearopts=(tickvaluelist=(3 4 5 6 8 10 12)))
 yaxisopts=(label="Percentage of Vehicles Manufactured"
 griddisplay=on linearopts=(tickvalueformat=percent7.1));
 barchart category=cylinders / stat=proportion
 barlabel=true barlabelformat=percent7.1;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.cars template=cylinders;
```

248 \ Chapter 6 \ Plot Statements
Details

An interval bar chart can be generated only when the category axis type is LINEAR or TIME. In this example, the TYPE=LINEAR option is included in the XAXISOPTS= options. With numeric category data, a bar is drawn for each unique category value. In some cases, that can generate too many bars in the resulting chart. In this example, there are only seven unique values. The TICKVALUELIST= option is used in the XAXISOPTS= option to display all of the values on the category axis.

Example 3: Bar Chart with Bar Colors Controlled by a Statistic

The ability to use a computed statistic to control the bar colors in a bar chart is available starting with the third maintenance release of SAS 9.4. This example uses the COLORBYFREQ=TRUE option to enable a computed statistic to control the bar colors and the COLOSTAT=PCT to specify percentage as the controlling statistic. Here is the output from “Example Program” on page 249.

Example Program

```sas
proc template;
 define statgraph barchart;
 begingraph;
 entrytitle "Average Mileage by Vehicle Type";
 layout overlay;
 barchart category=type response=mpg_highway / name="bar"
 stat=mean orient=horizontal
 colorbyfreq=true colorstat=pct;
 continuouslegend "bar" /
 title="Percent of Total Models Manufactured";
 endlayout;
 endgraph;
end;
run;
```
proc sgrender data=sashelp.cars template=barchart;
run;

## BARCHARTPARM Statement

Creates a bar chart specified by pre-summarized data.

### Requirement:
The input data must be pre-summarized, with appropriate summarization statistics (sum, mean, and so on) computed for the RESPONSE column.

### Tips:
For charts that have a large number of bars that are very close together, slight variations in spacing that normally occur due to integer rounding can become more obvious. Subpixel rendering provides more precise bar spacing in that case. In the second maintenance release of SAS 9.4 and in earlier releases, specify SUBPIXEL=ON in the BEGINGRAPH statement to enable subpixel rendering. See SUBPIXEL= on page 33. Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default.

To disable subpixel rendering in the third maintenance release of SAS 9.4 and in later releases, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

### Syntax

**BARCHARTPARM** CATEGORY=column | expression
RESPONSE=numeric-column | expression <option(s)>;

### Summary of Optional Arguments

#### Appearance options

- **BARWIDTH=number**
  specifies the width of a bar as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element | (line-options)**
  specifies the appearance of the baseline.

- **CLUSTERWIDTH=number**
  specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

- **COLORMODEL=color-ramp-style-element | (color-list)**
  specifies a color ramp to use with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column | range-attr-var | expression**
  specifies the column or range attribute variable to use to map the bar colors to a continuous color gradient.

- **CONNECTATTRS=style-element | style-element (line-options) | (line-options)**
  specifies the appearance of the bar connect lines.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  enhances the visual appearance of the filled bars.

- **DATATRANSPARENCY=number**
  specifies the degree of the transparency of the bar fill, bar outline, error bars, connect line, and data labels, if displayed.
DISPLAY=STANDARD | ALL | (display-options)
specifies which bar features to display.

DISPLAYZEROLENGTHBAR=TRUE | FALSE
specifies whether zero-length bars are drawn.

ERRORBARATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the error bars associated with the bars.

ERRORBARCAPSHAPE=SERIF | NONE
specifies whether the error bars have a serif cap.

ERRORLOWER=numeric-column | expression
specifies the values of the lower endpoints on the Y error bars.

ERRORUPPER=numeric-column | expression
specifies the values of the upper endpoints on the Y error bars.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the filled bar area.

FILLPATTERNATTRS=style-element | (fill-pattern-options)
specifies the appearance of the pattern-filled bar area.

FILLTYPE=SOLID | GRADIENT
specifies the bar fill type.

INDEX=positive-integer-column | expression
specifies indices for mapping bar attributes (fill and outline) to one of the
GraphData1–GraphDataN style elements.

INTERVALBARWIDTH=dimension
specifies the width of the bars in an interval bar chart as a ratio of the interval
width.

ORIENT=VERTICAL | HORIZONTAL
specifies the orientation of the Y axis and the bars.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the appearance of the bar outlines.

TARGET=numeric-column | expression
specifies the target value for each bar.

Axes options

BASELINEINTERCEPT=number
specifies the response axis intercept for the baseline.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for
determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the
secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the
secondary Y2 (right) axis.

Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a bar.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

**TIPLABEL=(role-label-list)**

specifies display labels for tip columns.

### Label options

**DATALABEL=column | expression**

specifies the label that appears at the end of each bar.

**DATALABELATRMS=style-element | style-element (text-options) | (text-options)**

specifies the color and font attributes of the labels that are specified in the DATALABEL= option.

**DATALABELFITPOLICY=AUTO | NONE | ROTATE | SPLIT | SPLITALWAYS**

specifies a policy for avoiding collisions among the bar labels when labels are displayed.

**DATALABELSPLITCHAR="character-list"**

specifies one or more characters on which the data labels can be split.

**DATALABELSPLITCHARDROP=TRUE | FALSE**

specifies whether the split characters are included in the displayed data labels.

**DATALABELTYPE=AUTO | COLUMN**

specifies whether the data labels display the RESPONSE values or the values of the column that is specified by the DATALABEL= option.

**LEGENDLABEL="string"**

specifies a label to be used in a discrete legend for this plot.

**SEGMENTLABELATRMS=style-element | style-element (text-options) | (text-options)**

specifies the text properties of the text for the bar segment label.

**SEGMENTLABELFITPOLICY=NONE | NOCLIP | THIN**

specifies a policy for fitting the bar segment labels within the bar segments.

**SEGMENTLABELFORMAT=format**

specifies the text format for the bar segment labels.

**SEGMENTLABELTYPE=NONE | AUTO**

specifies whether a label is displayed inside each bar segment.

### Midpoint options

**DISCRETEOFFSET=number**

specifies an amount to offset all bars from the category midpoints.

**GROUP=column | discrete-attr-var | expression**

creates a separate bar segment or bar for each unique group value in the specified column.

**GROUP100=NONE | MAGNITUDE | POSITIVE**

displays the response values, normalized to 100%.

**GROUPDISPLAY=STACK | CLUSTER**

specifies how to display grouped bars.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**INCLUDEMISSINGGROUP=TRUE | FALSE**

specifies whether missing values of the group variable are included in the plot.

### ODS options

**URL=string-column**
specifies an HTML page to display when the bar is selected.

**Plot reference options**

NAME="string"

assigns a name to this plot statement for reference in other template statements.

**Required Arguments**

**CATEGORY=**column | expression

specifies the column for the unique category values. All values are treated as discrete.

**Note**

You can use X= as an alternative to CATEGORY=. If you use X=, then be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options will recognize X as the category role and not CATEGORY in that case.

**RESPONSE=**numeric-column | expression

specifies the column for the response values.

**Note**

You can use Y= as an alternative to RESPONSE=. If you use Y=, then be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options will recognize Y as the response role and not RESPONSE in that case.

**Optional Arguments**

**BARWIDTH=**number

specifies the width of a bar as a ratio of the maximum possible width.

**Default**

0.85

**Range**

0.1–1, where 0.1 is the narrowest and 1 is the widest

**Interaction**

Starting with the third maintenance release of SAS 9.4, the INTERVALBARWIDTH= option overrides this option for an interval bar chart.

**Notes**

This option is needed only to change the default behavior.

By default, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

**Tip**

To remove any inter-bar gap, set BARWIDTH=1.

**BASELINEATTRS=**style-element | (line-options)

specifies the appearance of the baseline.

**Default**

The GraphAxisLines style element.

**Notes**

The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**

To suppress the baseline, set the line thickness to 0:

baselineattrs=(thickness=0)
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**BASELINEINTERCEPT=**number

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, whether for a specified value or for the default value. When this option is used, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

![Diagram showing BASELINEINTERCEPT=0](image)

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
</table>

**Interactions**

If GROUPDISPLAY=STACKED is specified, then this option is ignored and the baseline is not displayed.

If necessary, the response axis data range is extended to include the baseline intercept. When a logarithmic response axis is requested and BASELINEINTERCEPT= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINEINTERCEPT= to a positive value.

**Note**

Label positions are automatically adjusted to prevent the labels from overlapping.

**Tips**

Control the appearance of the baseline with the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

The baseline does not add a tick or a tick value to the axis. To label the baseline, use a REFERENCELINE statement to overlay a line with the same X or Y value and include the CURVELABEL= option to specify the label text.

**CLUSTERWIDTH=**number

specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.
### Default

0.85

### Range

0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.

### Requirement

For this option to take effect, the `GROUP=` option must also be specified, and the `GROUPDISPLAY=` option must be set to `CLUSTER`.

### Interaction

When `GROUPDISPLAY=CLUSTER`, the default `BARWIDTH` is 1.0.

### `COLORMODEL= color-ramp-style-element | (color-list)`

specifies a color ramp to use with the `COLORRESPONSE=` option.

- **color-ramp-style-element**
  - specifies the name of a color-ramp style element. The style element should contain these style attributes:
    - `STARTCOLOR` specifies the color for the smallest data value of the `COLORRESPONSE=` column.
    - `NEUTRALCOLOR` specifies the color for the midpoint of the range of the `COLORRESPONSE=` column.
    - `ENDCOLOR` specifies the color for the highest data value of the `COLORRESPONSE=` column.

- **(color-list)**
  - specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as `GraphData3:Color`, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

#### Requirement

The list of colors must be enclosed in parentheses.

#### See

“color” on page 1340

#### Defaults

For outline-only bars, the ThreeColorAltRamp style element
For bars with fill, the ThreeColorRamp style element

**Interaction**
For this option to take effect, the COLORRESPONSE= option must also be specified.

**Tip**
Use the DISPLAY= option to specify whether outlines and fills are displayed.

**COLORRESPONSE=** numeric-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the bar colors to a continuous color gradient.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**range-attr-var**
specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

**Restriction**
A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. Each bar is colored using one color from the gradient range. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

**Requirement**
For a grouped plot, the COLORRESPONSE values should remain constant for each group value. If the COLORRESPONSE column has multiple values for a single GROUP value, unexpected results might occur.

**Interactions**
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

When fill, fill pattern, or both are displayed, this option overrides suboption COLOR= in the FILLATTRS= option and in the FILLPATTERNATTRS= option and varies the color according to the color gradient or the attribute map.

When only the outlines are displayed, this option overrides suboption COLOR= in the OUTLINEATTRS= option and varies the outline color according to the color gradient or the attribute map.

**Tips**
To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

Use the FILLTYPE= option to specify whether each bar is filled with a solid color or with a gradient color.

For a numeric column or expression, the ThreeColorRamp style element defines the fill color gradient, and the ThreeColorAltRamp style element defines the outline color gradient.
CONNECTATTRS=\texttt{style-element} \mid \texttt{style-element (line-options)} \mid (\texttt{line-options})

specifies the appearance of the bar connect lines.

Default The GraphConnectLine style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a \texttt{style-element}.

“Line Options” on page 1349 for available \texttt{line-options}.

DATALABEL=\texttt{column} \mid \texttt{expression}

specifies the label that appears at the end of each bar.

Interactions Starting with the second maintenance release of SAS 9.4, this option is ignored when DATALABELTYPE=AUTO.

When the \texttt{GROUP=} option is in effect, the data label values are displayed only when GROUPDISPLAY=CLUSTER.

If the \texttt{GROUP=} option is in effect and there are multiple input observations per bar for the \texttt{GROUP=} column, then the value for the DATALABEL= column should be the same for each observation that is on the same bar.

DATALABELATTRS=\texttt{style-element} \mid \texttt{style-element (text-options)} \mid (\texttt{text-options})

specifies the color and font attributes of the labels that are specified in the DATALABEL= option.

Default The GraphDataText style element.

Interaction For this option to take effect, the DATALABEL= option must also be used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a \texttt{style-element}.

“Text Options” on page 1351 for available \texttt{text-options}.

DATALABELFITPOLICY=AUTO \mid NONE \mid ROTATE \mid SPLIT \mid SPLITALWAYS

specifies a policy for avoiding collisions among the bar labels when labels are displayed.

\textbf{AUTO}

selects a collision avoidance policy based on the chart orientation and data type. For a numeric column with ORIENT=VERTICAL, AUTO rotates the labels if they do not fit the midpoint spacing. For a character column, AUTO splits the labels if they do not fit the midpoint spacing.

\textbf{Note} When ORIENT=HORIZONTAL, AUTO always draw the labels horizontally.

\textbf{Tip} If character labels do not fit after splitting, then try using ROTATE instead of AUTO.

See ORIENT= on page 273 for information about chart orientation.

BARWIDTH= for information about bar spacing.
NONE
does not attempt to fit bar labels that collide.

ROTATE
rotates the bar labels for vertical bars if the labels collide in the available width.

Requirement The chart orientation must be vertical (ORIENT=VERTICAL).

SPLIT
splits the label for vertical bars at a split character only if a split is needed at that
color character in order to make the label fit the available space. No split occurs at split
color characters that occur where a split is not needed. If the label does not contain any
of the specified split characters, then a split does not occur. In that case, if the
label does not fit the available space, then it might collide with the adjoining
labels.

Requirement The chart orientation must be vertical (ORIENT=VERTICAL).

See the DATALABELSPLITCHAR= option for information about
specifying the split characters

SPLITALWAYS
splits the label for vertical bars at every occurrence of a split character. If the
label does not contain any of the specified split characters, then a split does not
occur.

Requirement The chart orientation must be vertical (ORIENT=VERTICAL).

See the DATALABELSPLITCHAR= option for information about
specifying the split characters

Here is an example of a vertical bar chart where DATALABELFITPOLICY=AUTO
and a numeric column is used as the data labels.

In this case, AUTO rotates the numeric labels to avoid collision.

In some cases, if one or more labels collide when the specified fit policy is used, then
all of the labels are dropped from the display. When that occurs, the following
warning message is written to the SAS log:

WARNING: The bar labels are suppressed. Use DATALABELFITPOLICY=NONE to
force the labels to be displayed.

**Default**

AUTO

**Requirement**
The DATALABEL= option must also be specified.

**Interaction**
When DATALABELTYPE=AUTO is in effect, for a vertical bar chart, only AUTO, NONE, and ROTATE are valid. All other values revert to AUTO. For a horizontal bar chart, only AUTO and NONE are valid. All other values revert to AUTO.

**DATALABELSPLITCHAR="character-list"**
specifies one or more characters on which the data labels can be split. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABELFITPOLICY=SPLIT and a data label collision is detected, the data label is split on a specified split character only if a split is needed at that point in order to make the label fit. In that case, a split might not occur on every split character. When DATALABELFITPOLICY=SPLITALWAYS, the data label is split unconditionally on every occurrence of a split character. If the data label does not contain any of the specified split characters, then the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

**Default**
A blank space

**Requirements**
The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitchar="abc"

The DATALABELFITPOLICY= option must specify SPLIT or SPLITALWAYS.

**Interactions**
The DATALABELFITPOLICY= option specifies the policy that is used to manage the split behavior of the data label.

The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the displayed data label or are dropped.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**DATALABELSPLITCHARDROP=TRUE | FALSE**
specifies whether the split characters are included in the displayed data labels.
TRUE

drops a split character from the display when a split occurs at that character. Split characters at which a split does not occur are left in place. The DATALABELFITPOLICY= option determines where the labels are split. When DATALABELFITPOLICY=SPLIT, each label is split at a split character only where a split is needed in order to make the label fit the available space. At each split point, the split character is dropped, and the characters that follow the split character, up to but not including the split character at the next split point, are wrapped to the following line.

When DATALABELFITPOLICY=SPLITALWAYS, each label is split at every instance of a split character. All of the split characters are dropped. The characters that follow each split character, up to but not including the next split character, are wrapped to the next line.

The following figure shows how label Product*Group*1 is split when the DATALABELSPLITCHARDROP=TRUE and DATALABELSPLITCHAR="*" options are specified with the SPLIT and SPLITALWAYS fit policies.

FALSE

includes the split characters in the data label display. The DATALABELFITPOLICY= option determines how the split characters are displayed. When DATALABELFITPOLICY=SPLIT, each data label is split at a split character only where a split is needed in order to make the label fit the available space. A split might not occur at every split character in the label. At each split point, the split character remains as the last character in the current line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until the entire data label is displayed.

When DATALABELFITPOLICY=SPLITALWAYS, each data label is split at every instance of a split character in the label regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows how label Product*Group*1 is split when the DATALABELSPLITCHARDROP=FALSE and DATALABELSPLITCHAR="*" options are specified with the SPLIT and SPLITALWAYS fit policies.
In this example, when DATALABELFITPOLICY=SPLIT, the label is split at the first occurrence of the asterisk in order to make the label fit. No split is needed at the second asterisk. The characters that follow the first asterisk wrap to the next line. When DATALABELFITPOLICY=SPLITALWAYS, the label is split at every occurrence of the asterisk. Each asterisk remains as the last character in the current line, and the characters that follow are wrapped to the next line.

Default: TRUE. A split character is dropped from the data-label display when a split occurs at that character.

Requirements: The DATALABEL= option must also be specified.

The DATALABELFITPOLICY= option must specify SPLIT or SPLITALWAYS.

Interaction: The DATALABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

**DATALABELTYPE=AUTO | COLUMN**

specifies whether the data labels display the RESPONSE values or the values of the column that is specified by the DATALABEL= option.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**AUTO**

the labels are displayed as follows:

- For an ungrouped bar chart, the summarized value for each bar is placed above the bar.
- For a grouped bar chart with stacked bars, the total of the summarized segment values for each bar is placed above the segmented bar.
- For a grouped bar chart with clustered bars, the summarized value for each bar in the cluster is placed above the bar.

**Interactions**

AUTO overrides the DATALABEL= option.

When AUTO is in effect, some data-label fit policies are unavailable. See DATALABELFITPOLICY=.

**COLUMN**

the data labels display the DATALABEL= column values.

**Interaction**

The DATALABEL= option must be specified for COLUMN to have any effect. If the DATALABEL= option is not specified, AUTO is used instead.
Default COLUMN

**DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the filled bars. The following figure shows bars with each of the skins applied.

![Bar chart showing different skins](image)

Default The **DATASKIN=** option value that is specified in the BEGINGRAPH statement. If not specified, then the GraphSkins:DataSkin style element value is used.

Restriction Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the **DATASKINMAX=** option in your ODS GRAPHICS statement to increase the maximum limit.

Requirement For this option to have any effect, the fill must be enabled by the ODS style or the **DISPLAY=** option.

Interactions This option overrides the BEGINGRAPH statement **DATASKIN=** option.

The data skin appearance is based on the **FILLATTRS=** color.

When a data skin is applied, all bar outlines are set by the skin, and the **OUTLINEATTRS=** option is ignored.

When **FILLTYPE=GRADIENT** is in effect, **DATASKIN=SHEEN** is ignored. In that case, use one of the other skins.

**DATATRANSPARENCY=**number
specifies the degree of the transparency of the bar fill, bar outline, error bars, connect line, and data labels, if displayed.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent
Tip The FILLATTRS= option can be used to set transparency for just the bar fills. You can combine this option with FILLATTRS= to set one transparency for the bar outlines, error bars, and connect lines but a different transparency for the bar fills. Example:

\[
\text{datatransparency}=0.2 \quad \text{fillattrs}=(\text{transparency}=0.6)
\]

**DISCRETEOFFSET=number**

specifies an amount to offset all bars from the category midpoints.

**Default** 0 (no offset, all bars are centered on the category midpoints)

**Range** -0.5 to +0.5, where 0.5 represents half the distance between category ticks. Normally, a positive offset is to the right when ORIENT=VERTICAL, and up when ORIENT=HORIZONTAL. (If the layout’s axis options set REVERSE=TRUE, then the offset direction is also reversed.)

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

**See** “About the DISCRETEOFFSET= Option” on page 280

Chapter 8, “Axis Options in Layouts,” on page 889 for information about the OFFSETMIN= and OFFSETMAX= axis options

**ORIENT=**

**DISPLAY=STANDARD | ALL | (display-options)**

specifies which bar features to display.

**STANDARD**

displays outlined, filled bars

**ALL**

displays outlined, filled bars and also connect lines

**(display-options)**

a space-separated list of one or more of the following options enclosed in parentheses:

**OUTLINE**

displays outlined bars.

**FILL**

displays bars with a solid fill.

**CONNECT**

displays line segments connecting adjacent midpoints at the end of each bar.

**FILLPATTERN**

displays bars with a patterned fill. This setting is used primarily for grouped bar charts that must be rendered in monochrome for use in a journal article. The fill patterns make it easier to distinguish among groups when color is not available.

**Default** STANDARD
Restriction
Neither error bars nor connect lines are displayed for grouped data.

Interaction
Connect lines are not drawn for grouped data.

Note
Error bars are automatically displayed whenever the \texttt{ERRORUPPER=} or \texttt{ERRORLOWER=} options are specified.

Tips
Use the \texttt{OUTLINEATTRS=} , \texttt{FILLATTRS=} , and \texttt{FILLPATTERNATTRS=} options to control the appearance of the bars. Use \texttt{CONNECTATTRS=} to control the appearance of the connect lines.

Both FILL and FILLPATTERN can be specified to combine solid fills and pattern fills in the bars.

\textbf{DISPLAYZEROLENGTHBAR=TRUE | FALSE}

specifies whether zero-length bars are drawn.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar is displayed as a line spanning the normal bar width at the bar-chart baseline on the response axis. When this option is set to TRUE, zero-length bars are displayed. Otherwise, they are suppressed. The following figure shows a simple example of each outcome. In the figure, the plot wall outline, category axis line, and bar-chart baseline are suppressed for clarity.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{example.png}
\caption{Example showing zero-length bars.}
\end{figure}

Default TRUE

Interaction This option is ignored when the \texttt{GROUP=} and \texttt{GROUPDISPLAY=} options are in effect. In that case, zero-length bar segments are drawn.

Note When this option is set to FALSE, the bar is not drawn, but other elements associated with the bar such as the target bar, the error bar, the bar label, and the data label, are drawn.

Tip This option is useful when the bar-chart baseline is suppressed.

\textbf{ERRORBARATTRS=}\textit{style-element | style-element (line-options)} \textit{| (line-options)}

specifies the attributes of the error bars associated with the bars.

Defaults For non-grouped data, the GraphError style element.

For grouped data, theLineStyle and LineThickness attributes of the GraphError style element and the ContrastColor attribute of the GraphData1–GraphDataN style elements.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a \textit{style-element}. 

“Line Options” on page 1349 for available line-options.

**ERRORBARCAPSHAPE=SERIF | NONE**
specifies whether the error bars have a serif cap.

<table>
<thead>
<tr>
<th>SERIF</th>
<th>NONE</th>
</tr>
</thead>
</table>

**Defaults**
SERIF in the first maintenance release of SAS 9.4 and earlier releases.

Starting with the second maintenance release of SAS 9.4, GraphError:CapStyle style reference. If attribute CapStyle is not defined in the active style, then SERIF is the default value.

**Tip**
The appearance of the error bars is controlled by the ERRORBARATTRS= option.

**ERRORLOWER=numeric-column | expression**
specifies the values of the lower endpoints on the Y error bars.

**Default**
The lower segment of the error bars is not drawn.

**Requirement**
The error bar values must be absolute data values, not data values relative to the value of the bar.

**Interaction**
If the GROUP= option is specified with GROUPDISPLAY=STACK or with GROUP100=POSITIVE or MAGNITUDE, then this option is ignored.

**Tip**
You can use the ERRORBARATTRS= option to control the appearance of the error bars.

**ERRORUPPER=numeric-column | expression**
specifies the values of the upper endpoints on the Y error bars.

**Default**
The upper segment of the error bars is not drawn.

**Requirement**
The error bar values must be absolute data values, not data values relative to the value of the bar.

**Interaction**
If the GROUP= option is specified with GROUPDISPLAY=STACK or with GROUP100=POSITIVE or MAGNITUDE, then this option is ignored.

**Tip**
You can use the ERRORBARATTRS= option to control the appearance of the error bars.

**FILLATTRS=style-element | style-element (fill-options) | (fill-options)**
specifies the appearance of the filled bar area.

**Defaults**
For non-grouped data, the GraphDataDefault:Color style reference.
For grouped data, the GraphData1:Color–GraphDataN:Color style references.

**Interaction**
When `COLORRESPONSE=` is in effect and the `DISPLAY=` option enables FILL display, the `FILLATTRAWS=` suboption `COLOR=` is ignored, and the bar fill colors vary according to the gradient.

**Tip**
The `DATATRANSPERENCY=` option sets the transparency for bar fills, bar outlines, error bars, and connect lines. You can combine this option with `DATATRANSPERENCY=` to set one transparency for the bar outlines, error bars, and connect lines but a different transparency for the bar fills. Example:
```
datatransparency=0.2 fillattrs=(transparency=0.6)
```

**See**
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Fill Options” on page 1348 for available fill-options.

```
FILLPATTERNATTRAWS=style-element | (fill-pattern-options)
```

specifies the appearance of the pattern-filled bar area.

*style-element*

specifies the name of a style element. You can specify only one of the elements `GraphData1–GraphDataN`.

**Restriction**
The only styles that are delivered by SAS that support fill patterns are `JOURNAL2`, `JOURNAL3`, and `MONOCHROMEPRINTER`. If any other such style is in effect and this option uses `style-element` in its specification, then this option is ignored.

*(fill-pattern-options)*
a space-separated list of one or more of the following options, enclosed in parentheses:

**COLOR=color | style-reference**
specifies a color to use for the bar-fill-pattern lines. With grouped data, the `COLOR=` setting has the effect of holding the fill color constant across all group values.

**PATTERN=line-pattern**
specifies a line pattern to use for the bar fill.

To specify a line-pattern, combine a line-direction prefix (R for right, L for left, and X for cross hatch) with a line-identification number:
With grouped data, the PATTERN= setting has the effect of holding the fill pattern constant across all group values.

**Interaction**
For this option to take effect, the DISPLAY= option must include FILLPATTERN among the display options.

**See**
DISPLAY=

### FILLTYPE=SOLID | GRADIENT
specifies the bar fill type.

**Note:** This feature applies to the second maintenance release of SAS 9.4 and to later releases.

#### SOLID
each bar is filled with the color that is assigned to that bar.

#### GRADIENT
an alpha gradient is used to determine the bar fill color. Each bar is filled with a color and a transparency gradient that starts at the bar top with the specified fill color and transparency, and transitions to fully transparent at the bar baseline. The initial fill color is determined by a style element or by the FILLATTRS= option COLOR= suboption. The initial transparency is determined by the DATATRANSPARENCY= option or by the FILLATTRS= option TRANSPARENCY= suboption.

**Interactions**
The SHEEN data skin cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins.

In the second maintenance release of SAS 9.4, FILLTYPE=GRADIENT is ignored when GROUPDISPLAY=STACK is in effect. Starting with the third maintenance release of SAS 9.4, FILLTYPE=GRADIENT is honored in that case.

**Tips**
Use the DATATRANSPARENCY= option or the FILLATTRS= option TRANSPARENCY= suboption to set the initial transparency in the gradients.

For grouped plots, use the FILLATTRS= option in a discrete attribute map to set the initial transparency in the gradients for specific values.

**See**
DATASKIN= on page 262

**Default**
SOLID

**Interaction**
The DISPLAY= option must include FILL for this option to have any effect.

### GROUP=column | discrete-attr-var | expression
creates a separate bar segment or bar for each unique group value in the specified column.

*discrete-attr-var*
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.
Restriction  A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

The bar display depends on the setting for the GROUPDISPLAY= option. For example, for a vertical bar chart with GROUPDISPLAY=STACK, bar segments are stacked to form the bar. The height of each segment represents the corresponding group value’s proportional contribution to the response value.

Defaults  If bar fills are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different fill color or fill pattern. The fill colors are defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements. The fill patterns are defined by the FillPattern attribute of the GraphData1–GraphDataN and GraphMissing style elements.

If bar outlines are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different outline. The outline colors are defined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions  Connect lines are not drawn for grouped data.

By default, the group values are mapped in the order of the data. Use the GROUPORDER= option to control the sorting order of the group values.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

When both the GROUP= and COLORRESPONSE= options are specified, the color attributes are controlled by the COLORRESPONSE= option.

Tips  The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the bar outlines, but you could use the PATTERN= setting on the OUTLINEATTRS= option to assign the same line pattern to all bar outlines and connect lines.

Use the INDEX= option to alter the default sequence of colors, fill patterns, and line patterns.

GROUP100=NONE | MAGNITUDE | POSITIVE  displays the response values, normalized to 100%.

Note:  This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NONE  displays the data as received.

MAGNITUDE  normalizes both the negative and positive values to 100% by magnitude, and displays the group values, preserving the sign. The positive values are displayed above the bars for a vertical bar chart and on the right end for a horizontal bar.
The negative values are displayed enclosed in parentheses below the bars for a vertical bar chart and on the left end for a horizontal bar chart.

The following figure illustrates the effect of MAGNITUDE on stacked bars in a vertical bar chart.

**POSITIVE**

drops the negative values and normalizes only the positive values to 100%. The following figure demonstrates the effect of POSITIVE on clustered bars in a vertical bar chart. This chart uses the same data as the chart in the previous figure.

Notice that the negative values are dropped from the chart.

**Default**

NONE

**Requirement**

The GROUP= option must be specified for this option to have any effect.

**Interaction**

Error bars are not drawn when GROUP100=POSITIVE or MAGNITUDE. See ERRORLOWER= and ERRORUPPER=.

**Note**

You can use this option with any value for the GROUPDISPLAY= option.
To display the values, specify DATALABELTYPE=AUTO.

**GROUPDISPLAY=STACK | CLUSTER**

specifies how to display grouped bars.

**STACK**

displays group values as stacked segments within the category bar.

**CLUSTER**

displays group values as separate adjacent bars that replace the single category bar. Each cluster of group values is centered at the category midpoint on the axis. This example illustrates the clusters and also how groups are displayed when they have an unequal number of unique values.

---

**Default**

STACK

**Interactions**

When you use the DATALABEL= option and the GROUP= option, the DATALABEL values are displayed for each bar when GROUPDISPLAY=CLUSTER. When GROUPDISPLAY=STACK, the whole bar is labeled at the top.

Error bars are not drawn when GROUPDISPLAY=STACK.

When the TARGET= and GROUP= options are in effect, the target values are not displayed when GROUPDISPLAY=STACK. In that
case, you must specify GROUPDISPLAY=CLUSTER to display the target values.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.

Default DATA

Interactions This option is ignored if the GROUP= option is not also specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INCLUDEMISSINGGROUP=TRUE | FALSE specifies whether missing values of the group variable are included in the plot.

Default TRUE

Interaction For this option to take effect, the GROUP= option must also be specified.

Tip The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean” on page 1339 for other Boolean values that you can use.
**INDEX=positive-integer-column | expression**
specifies indices for mapping bar attributes (fill and outline) to one of the
GraphData1–GraphDataN style elements.

**Requirements**
The column or expression value must be an integer value of 1 or
greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values.
Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same.
Otherwise, the results are unpredictable.

**Interaction**
For this option to take effect, the GROUP= option must also be
specified.

**Notes**
The index values are 1-based indices. For the style attributes in
GraphData1–GraphDataN, if the index value is greater than N, then
a modulo operation remaps that index value to a number less than N
to determine which style to use.

If you do not use this option, then the group values are mapped in
the order of the data.

**Tip**
You can use indexing to collapse the number of groups that are
represented in a graph. For more information, see “Remapping
Groups for Grouped Data” on page 183.

**INTERVALBARWIDTH=dimension**
specifies the width of the bars in an interval bar chart as a ratio of the interval width.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

**Default**
The width specified by the BARWIDTH= option.

**Restriction**
This option applies only to a linear or time category axis. When the
category axis is discrete, this option is ignored.

**Interaction**
When the category data is interval, this option overrides the
BARWIDTH= option.

**Tip**
To make the category axis type linear or time, include TYPE=LINEAR
or TYPE=TIME in the category axis options or assign the role of
primary plot to a plot that makes the category axis linear or time.

**See**
“dimension” on page 1340

**LEGENDLABEL="string"**
specifies a label to be used in a discrete legend for this plot.

**Default**
The response-variable label. If a label is not defined, then the response-
variable name is used.

**Restriction**
This option applies only to an associated DISCRETELEGEND
statement.
Interaction If the GROUP= option is specified, then this option is ignored.

**NAME=**"string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The *string* is used as the default legend label if the LEGENDLABEL= option is not used.

**ORIENT=**VERTICAL | HORIZONTAL

specifies the orientation of the Y axis and the bars.

Default VERTICAL

Notes When this option is set to VERTICAL, the category variable appears on the X (or X2) axis and the response variable appears on the Y (or Y2) axis. To set the axis properties for this chart, you should use the appropriate axis options of the layout container.

When this option is set to HORIZONTAL, the category variable appears on the Y (or Y2) axis and the response variable appears on the X (or X2) axis. To set the axis properties for this chart, you should use the appropriate axis options of the layout container.

If you change the orientation of the bar chart, then you should adjust the layout container’s axis options appropriately.

**OUTLINEATTRS=**style-element | style-element (line-options) | (line-options)

specifies the appearance of the bar outlines.

Defaults For non-grouped data, the ContrastColor, LineThickness, and LineStyle attributes of the GraphOutlines style element.

For grouped data and filled bars, the ContrastColor attribute of the GraphData1–GraphDataN style elements, and the LineThickness and LineStyle attributes of the GraphOutlines style element.

For grouped data and unfilled bars, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements, and the LineThickness attribute of the GraphOutlines style element.

Interactions For this option to have any effect, outlines must be enabled by the ODS style or the DISPLAY= option.

If the DATASKIN= option applies a data skin, then this option is ignored.

When the COLORRESPONSE= and DISPLAY=(OUTLINE) options are in effect, the OUTLINEATTRS= suboption COLOR= is ignored, and the bar outline colors vary according to the gradient.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
“Line Options” on page 1349 for available line-options.

**PRIMARY=TRUE | FALSE**
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

**Default** FALSE

**Restriction** This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

**Note** In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

**See**
“When Plots Share Data and a Common Axis” on page 880

**boolean** on page 1339 for other Boolean values that you can use.

**ROLENAME=(role-name-list)**
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

**(role-name-list)**
a space-separated list of role-name = column pairs.

**Example** The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

**Default** No user-defined roles

**Requirement** The role names that you choose must be unique and different from the predefined roles CATEGORY or X, RESPONSE or Y, ERRORLOWER, ERRORUPPER, GROUP, and INDEX.

**SEGMENTLABELATTRS=**style-element | style-element (text-options) | (text-options)**
specifies the text properties of the text for the bar segment label.

**Note:** This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**Default** The GraphDataText style element.

**Interaction** This option is ignored when SEGMENTLABELTYPE=NONE.

**See**
“General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

“Text Options” on page 1351 for available text-options.

**SEGMENTLABELFITPOLICY=**NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

274  Chapter 6 • Plot Statements
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**NONE**
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

**NOCLIP**
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

**THIN**
drops any bar segment label that does not fit within its segment. For a vertical bar chart, the label width must not exceed the bar width, and the text height must not exceed the segment height. For a horizontal bar chart, the label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default THIN

**Interaction** This option is ignored when **SEGMENTLABELTYPE=NONE**.

**SEGMENTLABELFORMAT=** *format*
specifies the text format for the bar segment labels.

**Defaults**
If DATALABELTYPE=AUTO is in effect, the column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

If DATALABELTYPE=COLUMN is in effect, the column format assigned to the DATALABEL= column, or BEST6 if no format is assigned.

**Interaction** This option is ignored when **SEGMENTLABELTYPE=NONE**.

**SEGMENTLABELTYPE=NONE | AUTO**
specifies whether a label is displayed inside each bar segment.

**Note:** This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For an ungrouped bar chart or for a grouped bar chart with GROUPDISPLAY=CLUSTER, AUTO displays a bar label inside each bar. The label for each bar displays the value for that bar. For a grouped bar chart with GROUPDISPLAY=STACK, AUTO displays a label inside each bar segment. The label for each bar segment displays the value for that segment.
DATALABELTYPE=NONE

**Default**
NONE

**Interaction**
The DATALABELTYPE= option determines whether the segment labels display the RESPONSE column values or the values of the column that is specified by the DATALABEL= option.

**Tips**
For a grouped bar chart with GROUPDISPLAY=STACK, specify both SEGMENTLABELTYPE=AUTO and DATALABEL=TRUE to display a label for each bar segment and a label for the entire bar.

- Use the SEGMENTLABELATTRS= option to modify the appearance of the label text.
- Use the SEGMENTLABELFITPOLICY= option to specify a policy for fitting the labels inside the bars.
- Use the SEGMENTLABELFORMAT= option to modify the format of the segment labels.

**See**
“boolean ” on page 1339 for other Boolean values that you can use.

**TARGET=numeric-column | expression**

specifies the target value for each bar. The visual representation is a triangle with a line at the target value.

layout overlay;
  barchartparm category=type response=mpg_highway / barwidth=.8
target=mpg_city group=origin groupdisplay=cluster
  name='bar';
discretelegend 'bar';
endlayout;
Default No targets are displayed.

Interactions For this option to take effect, the RESPONSE= argument must also be used.

If the GROUP= option is used and GROUPDISPLAY= STACK, then this option is ignored.

Tip The target color is that of the bar outline.

**TIP=(role-list) | NONE**

specifies the information to display when the cursor is positioned over a bar. If this option is used, then the information specified replaces all of the information that is displayed by default. You can specify roles for columns that do not contribute to the bar chart along with roles that do.

**(role-list)**

an ordered, space-separated list of unique BARCHARTPARM roles and user-defined roles. BARCHARTPARM roles include CATEGORY or X, RESPONSE or Y, COLORRESPONSE, ERRORUPPER, ERRORLOWER, INDEX, GROUP, and DATALABEL.

Notes For the category and response roles, the TIP= option recognizes only the category and response arguments that you use in the BARCHARTPARM statement. If you use the CATEGORY= and RESPONSE= arguments, then you must specify roles CATEGORY and RESPONSE. Conversely, if you use the X= and Y= arguments, then you must specify roles X and Y.

The COLORRESPONSE role is valid starting with the third maintenance release of SAS 9.4.

Tip Use the ROLENAME= option to define user-defined roles.

**NONE**

suppresses data tips and URLs (if requested) from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: CATEGORY or X, RESPONSE or Y, COLORRESPONSE, ERRORLOWER, ERRORUPPER, and GROUP.
Requirement

To generate data tips in the output, you must include an ODS GRAPHICS ON statement with the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip

You can control the labels and formats for the TIP roles with the TIPLABEL= and TIPFORMAT= options.

Example

The following example displays data tips for the columns assigned to the roles CATEGORY and RESPONSE as well as for the column Pct. The Pct column is not assigned to any pre-defined bar chart role, so it must first be assigned a role.

\[
\text{ROLENAME}=(\text{TIP1}=\text{PCT}) \\
\text{TIP}=(\text{TIP1} \ \text{CATEGORY} \ \text{RESPONSE})
\]

TIPFORMAT=(role-format-list)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

\[
\text{(role-format-list)} \\
\text{a space-separated list of role-name = format pairs.}
\]

Example

\[
\text{ROLENAME}=(\text{TIP1}=\text{SALARY}) \\
\text{TIP}=(\text{TIP1}) \\
\text{TIPFORMAT}=(\text{TIP1}=\text{DOLLAR12.})
\]

Default

The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

\[
\text{role-label-list} \\
\text{a space-separated list of rolename ="string" pairs.}
\]

Example

\[
\text{ROLENAME}=(\text{TIP1}=\text{PCT}) \\
\text{TIP}=(\text{TIP1}) \\
\text{TIPLABEL}=(\text{TIP1}="Percent")
\]

Default

The column label or column name of the column assigned to the role.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)
**URL=string-column**

specifies an HTML page to display when the bar is selected.

*string-column*

specifies a column that contains a valid HTML page reference (HREF) for each bar that is to have an active link.

**Example**  
http://www.sas.com/technologies/analytics/index.html

**Requirements**

To generate selectable bars, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

For non-grouped data, the values of the column are expected to be the same for each unique category value. If they are not, then only the first URL value for a given category value is used.

For grouped data, the values of the column are expected to be the same for each unique category and GROUP combination.

**Interactions**

This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

**Tips**

The URL value can be blank for some category values, meaning that no action is taken when the bars for those category values are selected.

The URL value can be the same for different category values, meaning that the same action is taken when the bars for those category values are selected.

**XAXIS=**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

**Default**  
X

**Interaction**

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**YAXIS=**

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

**Default**  
Y

**Interaction**

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
Details

Statement Description
The input data for the BARCHARTPARM statement is expected to be pre-summarized, with appropriate summarization statistics (sum, mean, and so on) computed for the response column. When the category values are not unique, the display is not meaningful. Prior to the third maintenance release of SAS 9.4, the category axis must be discrete. Starting with the third maintenance release of SAS 9.4, the category axis can be discrete, linear, or time. The response axis in all cases is interval.

When the chart is oriented vertically, the X (or X2) axis is used for category and the Y (or Y2) axis is used for response. When the chart is oriented horizontally, the X (or X2) axis is used for response and the Y (or Y2) axis is used for category. (See ORIENT= on page 273.) If the chart is the primary chart, then any charts or plots that are overlaid with it must have similar axis types.

By default, if the CATEGORY= column is character, then the bars in the chart appear in the order in which the category values are present in the input data. If the CATEGORY= column is numeric, then the values are presented in ascending order.

About the DISCRETEOFFSET= Option
The DISCRETEOFFSET= option is useful for graphing multiple response variables side by side on a common axis. By default within an overlay-type layout, if multiple BARCHART statements are used with different response variables, then the bars for matching category values are centered on the midpoints and the bars are superimposed.

To make it easier to distinguish among superimposed bars, you can assign a different BARWIDTH= setting to each BARCHARTPARM statement in the overlay:

```
layout overlay / cycleattrs=true
 xaxisopts=(display=(tickvalues))
 yaxisopts=(label="Revenue" offsetmax=0.2);

 barchartparm category=year response=A_revenue / name="A"
 legendlabel="A" barwidth=0.8 ;
 barchartparm category=year response=B_revenue / name="B"
 legendlabel="B" barwidth=0.6 ;
 barchartparm category=year response=C_revenue / name="C"
 legendlabel="C" barwidth=0.4 ;

 discretelegend "A" "B" "C" / title="Product:"
 location=inside halign=right valign=top;
endlayout;
```
To place the different response values side by side, you can assign a different offset to each BARCHARTPARM statement. The BARWIDTH= option can be used with DISCRETEOFFSET= to create narrower bars that require less width within the plot area:

```plaintext
layout overlay / cycleattrs=true
 xaxisopts=(display=(tickvalues))
 yaxisopts=(label="Revenue" offsetmax=0.2);

barchartparm category=year response=A_revenue / name="A"
 legendlabel="A"
 discreteoffset=-0.3 barwidth=0.3;

barchartparm category=year response=B_revenue / name="B"
 legendlabel="B"
 discreteoffset=0 barwidth=0.3;

barchartparm category=year response=C_revenue / name="C"
 legendlabel="C"
 discreteoffset=+0.3 barwidth=0.3;

discretelegend "A" "B" "C" / title="Product:
 location=inside halign=right valign=top;
endlayout;
```
Different combinations of DISCRETEOFFSET and BARWIDTH can be used to get the effect that you want. Gaps can be created between bars by providing a narrower bar width. Or, bars can be overlapped if the bar widths are increased in proportion to the discrete offset.

```plaintext
layout overlay / cycleattrs=true
 xaxisopts=(display=(tickvalues))
 yaxisopts=(label="Revenue" offsetmax=0.2);

barchartparm category=year response=A_revenue / name="A"
 legendlabel="A" datatransparency=0.2
 discreteoffset=-0.2 barwidth=0.5 ;
barchartparm category=year response=B_revenue / name="B"
 legendlabel="B" datatransparency=0.2
 discreteoffset=0 barwidth=0.5 ;
barchartparm category=year response=C_revenue / name="C"
 legendlabel="C" datatransparency=0.2
 discreteoffset=+0.2 barwidth=0.5 ;

discretelegend "A" "B" "C" / title="Product:" location=inside halign=right valign=top;
endlayout;
```

![Three Bar Overlay, Offset=0.2, Width=0.5](image)
Example: BARCHARTPARAM Statement

The following graph was generated by the “Example Program” on page 283:

![Average Mileage by Vehicle Type](image)

Errorbars show +/- 1 Standard Error

Example Program

```plaintext
proc template;
 define statgraph barchartparm;
 begingraph;
 entrytitle "Average Mileage by Vehicle Type";
 entryfootnote halign=left "Error bars show +/- 1 Standard Error";
 layout overlay;
 barchartparm category=type response=mean /
 errorlower=eval(mean-stderr)
 errorupper=eval(mean+stderr) ;
 endlayout;
 endgraph;
 end;
run;

/* create summarized data for barchartparm */
proc summary data=sashelp.cars nway;
 class type;
 var mpg_highway;
 output out=mileage mean=mean stderr=stderr ;
run;
```
proc sgrender data=mileage template=barchartparm;
run;

BIHISTOGRAM3DPARM Statement

Creates a three-dimensional bivariate histogram of three variables X, Y, and Z, where the values of X and Y have been gridded. The Z variable represents a response value for the frequency, percentage counts, or densities of each bin combination.

Restriction: BIHISTOGRAM3DPARM does not support the data tips that are enabled by the IMAGEMAP= option in the ODS GRAPHICS statement.

Requirements: The input data must be binned by both X and Y. That is, the values for X column and Y column must form a complete rectangular grid of bins. Input data with non-binned columns should be preprocessed with the KDE procedure (SAS/STAT), which enables you to set the number of bins for X and Y, or with a technique similar to that used in "Example: BIHISTOGRAM3DPARM Statement" on page 288.

The BIHISTOGRAM3DPARM statement must be specified within a LAYOUT OVERLAY3D statement and cannot be nested under an OVERLAY, OVERLAYEQUATED, or PROTOTYPE layout.

The input data for Z= column must be nonnegative.

Note: In the plot display, the direction of the Z axis is upward rather than outward.

Syntax

```
BIHISTOGRAM3DPARM X=numeric-column | expression
 Y=numeric-column | expression
 Z=non-negative-numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **DATATRANSPARENCY=number**
  specifies the degree of the transparency of the bins.

- **DISPLAY=STANDARD | ALL | (display-options)**
  specifies whether to display outlined bins, filled bins, or outlined and filled bins.

- **FILLATTRS=style-element | style-element (fill-options) | (fill-options)**
  specifies the appearance of the filled bins.

- **OUTLINEATTRS=style-element | style-element (line-options) | (line-options)**
  specifies the appearance of the bin outlines.

- **XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
  specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

- **YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
  specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axes options

- **BINAXIS=TRUE | FALSE**
  specifies whether to use bins as the basis for the axis tick marks.
**PRIMARY=TRUE | FALSE**
specifies that the data columns for this plot and the plot type be used for determining default axis features.

**Label options**

**ENDLABELS=TRUE | FALSE**
specifies whether the axis ticks and value labels are drawn at the bin endpoints (TRUE) or at the bin midpoints (FALSE).

**LEGENDLABEL=“string”**
specifies a label to be used in a discrete legend for this plot.

**Plot reference options**

**NAME=“string”**
assigns a name to this plot statement for reference in other template statements.

**Required Arguments**

**X=numeric-column | expression**
specifies the bin location of the numeric X values.

**Y=numeric-column | expression**
specifies the bin location of the numeric Y values.

**Z=nonnegative-numeric-column | expression**
specifies the response values, such as the frequency counts, percentages, or densities.

**Optional Arguments**

**BINAXIS=TRUE | FALSE**
specifies whether to use bins as the basis for the axis tick marks.

- **TRUE**
specifies that the **ENDLABELS=** option determines how the axis ticks and value labels are displayed.

- **FALSE**
specifies that standard axes are used. Bin boundaries and midpoints that are set by the **ENDLABELS=** option are ignored.

Default: **TRUE**

**Interactions**

For this option to take effect, this plot must be the primary plot in the parent OVERLAY3D layout. For more information, see the **PRIMARY=** option.

When this option is set to TRUE, some X-axis options that are set on the parent layout might not apply, such as **INTEGER=**, **TICKVALUELIST=**, **TICKVALUESEQUENCE=**, and **INCLUDERANGES=**.

**See**

“**boolean** ” on page 1339 for other Boolean values that you can use.

**DATATRANSPARENCY=number**
specifies the degree of the transparency of the bins.

Default: **0**
Range 0–1, where 0 is opaque and 1 is entirely transparent

**DISPLAY=STANDARD | ALL | (display-options)**
specifies whether to display outlined bins, filled bins, or outlined and filled bins.

**STANDARD**
does the following based on the layout in which it is contained:

- When used inside an overlay layout, it displays an outlined, filled block without text values or a label (OUTLINE FILL).
- When used as a stand-alone plot inside a lattice or gridded layout, it displays an outlined, filled block with text values and a label (OUTLINE FILL VALUES LABEL).

**ALL**
displays outlined, filled bins.

**(display-options)**
a space-separated list of one or more of the following options enclosed in parentheses:

- **OUTLINE** displays outlined bins
- **FILL** displays filled bins

Default **STANDARD**

**Tip**
Use the OUTLINEATTRS= and FILLATTRS= options to control the appearance of the bins.

**ENDLABELS=TRUE | FALSE**
specifies whether the axis ticks and value labels are drawn at the bin endpoints (TRUE) or at the bin midpoints (FALSE).

Default **FALSE**.

**Interactions**
This option is ignored if this plot is not the primary plot in the parent layout. For more information, see the **PRIMARY=** option.

This option is ignored if **BINAXIS=** FALSE. By default, **BINAXIS=TRUE**.

**See**
“**boolean**” on page 1339 for other Boolean values that you can use.

**FILLATTRS=** **style-element | style-element (fill-options) | (fill-options)**
specifies the appearance of the filled bins.

Default **The GraphDataDefault style element.**

**See**
“**General Syntax for Attribute Options**” on page 1347 for the syntax on using a **style-element**.

“**Fill Options**” on page 1348 for available **fill-options**.

**LEGENDLABEL="string"**
specifies a label to be used in a discrete legend for this plot.

Default **The string specified on the** **NAME=** option.
**NAME=string**

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

**OUTLINEATTRS=**

specifies the appearance of the bin outlines.

**PRIMARY=TRUE | FALSE**

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

**XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**

specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

**YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**

specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

**Details**

Because the BIHISTOGRAM3DPARM statement does not perform a binning computation on the input columns, you must pre-bin the data. In addition, input data for
the statement must be binned by both X and Y. That is, the values for the X column and
the Y column must form a complete, rectangular grid of bins. Input data with non-binned
columns should be preprocessed with the KDE procedure (SAS/STAT), which enables
you to set the number of bins for X and Y. Alternatively, the data can be preprocessed
with a technique similar to the example, where a pre-defined bin width is used.

The bounding cube can be titled, rotated, and zoomed to provide a different viewpoint.
By default, the outline of the bounding cube is displayed and the viewing rotation angle
is 57 degrees, the tilt angle is 20 degrees and the zoom factor is 1. See the CUBE=,
ROTATE=, TILT=, and ZOOM= options of the LAYOUT OVERLAY3D statement for
information about how to change the viewpoint.

The X-axis, Y-axis, and Z-axis are linear by default. You can change axis properties with
the XAXISOPTS=, YAXISOPTS=, and ZAXISOPTS= options of the LAYOUT
OVERLAY3D statement.

Note: When BINAXIS=TRUE, some axis options for the X- and Y-axes might not
apply.

Example: BIHISTOGRAM3DPARM Statement

The following graph was generated by the “Example Program” on page 288:

Example Program

```sas
proc template;
define statgraph bihistogram;
begingraph;
entrytitle "Distribution of Height and Weight";
entryfootnote halign=right "SASHELP.HEART";
```
data heart;
  set sashelp.heart(keep=height weight);
  if height ne . and weight ne .;
  height=round(height,5);
  weight=round(weight,25);
run;

proc summary data=heart nway completetypes;
  class height weight;
  var height;
  output out=stats(keep=height weight count) N=Count;
run;

proc sgrender data=stats template=bihistogram;
run;

**BLOCKPLOT Statement**

Creates one or more strips of rectangular blocks containing text values. The width of each block corresponds to specified numeric intervals.

**Syntax**

```
BLOCKPLOT X=column | expression
BLOCK=column | expression <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

```
ALTFILLATTRS=style-element | style-element (fill-options) | (fill-options)
```

specifies the appearance of alternate fills.

```
BLOCKINDEX=positive-integer-column | expression
```

specifies indices for remapping the assignment of the color of the block fills.

```
CLASS=column | expression
```

creates a separate block plot for each unique value of the specified column or expression.

```
DATATRANSPARENCY=number
```

specifies the degree of the transparency of the block fill and outline.

```
DISPLAY=STANDARD | ALL | (display-options)
```

specifies whether to display an outlined, a filled, or an outlined and filled block area.

```
EXTENDBLOCKONMISSING=TRUE | FALSE
```

specifies whether a missing value in the BLOCK column starts a new block or reverts to the previous nonmissing value.
FILLATTRS=\texttt{style-element | style-element (fill-options) | (fill-options)}
specifies the appearance of the block fills.

FILLTYPE=MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

INCLUDEMISSINGCLASS=TRUE | FALSE
specifies whether missing values in the class column are included in the plot.

OUTLINEATTRS=\texttt{style-element | style-element (line-options) | (line-options)}
specifies the appearance of the block outlines.

REPEATEDVALUES=TRUE | FALSE
specifies whether contiguous block values that are identical create separate blocks.

Axes options

\texttt{XAXIS=X | X2}
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Label options

\texttt{BLOCKLABEL=column | expression}
specifies alternative text to display for the internal block text values.

\texttt{LABEL="string"}
specifies an external label for a single block plot.

\texttt{LABELATTRS=style-element | style-element (text-options) | (text-options)}
specifies the color and font attributes of the external block label(s).

\texttt{LABELPOSITION=LEFT | RIGHT | TOP | BOTTOM}
specifies the alignment of BLOCK label.

Plot reference options

\texttt{NAME="string"}
assigns a name to this plot statement for reference in other template statements.

Text options

\texttt{VALUEATTRS=style-element | style-element (text-options) | (text-options)}
specifies the appearance of the internal block text values or the alternative values that are specified by the BLOCKLABEL= option.

\texttt{VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE}
specifies how text values are adjusted to fit within the containing block.

\texttt{VALUEHALIGN=LEFT | CENTER | RIGHT | START}
specifies the horizontal alignment of the value text within the blocks.

\texttt{VALUESPLITCHAR="character-list"}
specifies one or more characters on which the values can be split, if needed.

\texttt{VALUESPLITCHARDROP=TRUE | FALSE}
specifies whether the split characters are included in the displayed values.

\texttt{VALUEVALIGN=TOP | CENTER | BOTTOM}
specifies the vertical alignment of the value text within the blocks.

\textbf{Required Arguments}

\texttt{X=column | expression}
specifies numeric X axis positions. When the X-axis is numeric and the specified column is numeric, values are expected to be in sorted, ascending order. If the X-axis
is discrete and the specified column is numeric, values are treated as numeric-discrete.

**BLOCK=column | expression**
specifies a value for each X position. Numeric values are converted to text strings according to an assigned format or BEST6.

### Optional Arguments

**ALTFILLATTRS=style-element | style-element (fill-options) | (fill-options)**
specifies the appearance of alternate fills. This option in conjunction with the FILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE.

<table>
<thead>
<tr>
<th>Default</th>
<th>The GraphWalls style element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>FILLTYPE= ALTERNATE must set for this option to have any effect.</td>
</tr>
<tr>
<td>Interaction</td>
<td>For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.</td>
</tr>
<tr>
<td>Tips</td>
<td>The FILLATTRS= option controls the fill color. To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value. The DATATRANSPARENCY= option sets the transparency for the block fills and the outlines. You can combine this option with DATATRANSPARENCY= to set one transparency for the outlines but a different transparency for the alternate block fills. Example: datatransparency=0.2 altfillattrs=(transparency=0.6)</td>
</tr>
<tr>
<td>See</td>
<td>“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element. “Fill Options” on page 1348 for available fill-options.</td>
</tr>
</tbody>
</table>

**BLOCKINDEX=positive-integer-column | expression**
specifies indices for remapping the assignment of the color of the block fills.

| Requirements | FILLTYPE= MULTICOLOR must be set for this option to have any effect. The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored. The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored. All of the indices for a specific block value must be the same. Otherwise, the results are unpredictable. |
| Notes        | The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style element to use. |
If this option is not used, then the color values are mapped in the order of GraphData1–GraphDataN.

**BLOCKLABEL=column | expression**
specifies alternative text to display for the internal block text values.

- **Default**: The BLOCK= values
- **Interaction**: The DISPLAY= option must include VALUES for the alternative text to appear.
- **Note**: The text for each block segment must be the same. Otherwise, the results are unpredictable.
- **Tips**: This option is particularly useful for showing regimes in forecasting and time series plots.

The font and color attributes for the alternative text are specified by the VALUEATTRS= option.

**CLASS=column | expression**
creates a separate block plot for each unique value of the specified column or expression. Each block plot is labeled externally by the class value.

- **Interaction**: The DISPLAY= option must include LABEL for any external labels to appear.
- **Tip**: The font and color attributes for the external labels are specified by the LABELATTRS= option.

**DATATRANSPARENCY=number**
specifies the degree of the transparency of the block fill and outline.

- **Default**: 0
- **Range**: 0–1, where 0 is opaque and 1 is entirely transparent
- **Note**: This option does not affect the block values or labels.
- **Tip**: The ALTFILLATTRS= option can be used to set transparency for just the alternate block fills. The FILLATTRS= option can be used to specify transparency for the block fills. You can combine this option with ALTFILLATTRS= and with FILLATTRS= to set one transparency for the outlines but a different transparency for the block fills. Example:

```
datatransparency=0.2
altfillattrs=(transparency=0.6) fillattrs=(transparency=0.6)
```

**DISPLAY=STANDARD | ALL | (display-options)**
specifies whether to display an outlined, a filled, or an outlined and filled block area. Values and a label can also be added or suppressed.

- **STANDARD**: does the following based on the parent layout type:
  - when used inside an overlay-type layout (OUTLINE FILL), STANDARD displays an outlined, filled block without text values or a label.
when used as a stand-alone plot inside a LATTICE or GRIDDED layout (OUTLINE FILL VALUES LABEL), STANDARD displays an outlined, filled block with text values and a label.

**ALL**

displays all possible features.

**display-options**

a space-separated list of one or more of the following options enclosed in parentheses:

- OUTLINE displays an outlined, non-filled block
- FILL displays a filled, non-outlined block
- VALUES displays internal block values or the alternative block values that are specified by the BLOCKLABEL= option
- LABEL displays the external block label or labels

**Default** STANDARD

**Tips** Use the OUTLINEATTRS=, FILLATTRS=, ALTFILLATTRS=, and BLOCKINDEX= options to control the appearance of the blocks.

Use the VALUEATTRS= and LABELATTRS= options to control the text appearance.

**EXTENDBLOCKONMISSING=TRUE | FALSE**

specifies whether a missing value in the BLOCK column starts a new block or reverts to the previous nonmissing value.

**Default** FALSE

**Tip** When EXTENDBLOCKONMISSING=TRUE, you can set up the input data for the BLOCK= column with nonmissing values where you expect the blocks to change and leave the remaining block values missing. For an example, see “Example 1: BlockPlot Overlaid with SeriesPlot” on page 301.

**See** “boolean” on page 1339 for other Boolean values that you can use.

**FILLATTRS=** *style-element | style-element (fill-options) | (fill-options)*

specifies the appearance of the block fills. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE= ALTERNATE.

**Default** The GraphData1 style element.

**Requirement** FILLTYPE= ALTERNATE must set for this option to have any effect.

**Interaction** For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

**Tips** The ALTFILLATTRS= option controls the alternating fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.
The `DATATRANSPARENCY=` option sets the transparency for the block fills and the outlines. You can combine this option with `TRANSPARENCY=` in (fill-options) to set one transparency for the outlines and a different transparency for the block fills. For example:

```plaintext
datatransparency=0.2 fillattrs=(transparency=0.6)
```

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

**FILLTYPE=MULTICOLOR | ALTERNATE**

specifies how the blocks are filled.

**MULTICOLOR**

fills the blocks with the color specified by the `COLOR` attribute of the style elements `GraphData1–GraphDataN` and `GraphMissing` (for missing `BLOCK=` values), or the style elements indicated by the `BLOCKINDEX=` column.

**ALTERNATE**

alters the block fill between the colors specified by the `FILLATTRS=` and `ALTFILLATTRS=` options.

**Default**

MULTICOLOR

**Interactions**

For this option to have any effect, the fill must be enabled by the ODS style or the `DISPLAY=` option.

When this option is set to ALTERNATE, the block plot does not support a `DISCRETELEGEND` entry.

**INCLUDEMISSINGCLASS=TRUE | FALSE**

specifies whether missing values in the class column are included in the plot. Missing class values are included by default. When the data contains missing class values, the label for those values is either blank for missing character values or a dot for missing numeric values.

The following figure shows block plots for classes Class 1, Class 2, and any missing class values.

```
Class 1
1 1 1
2 2 2
3 3 3
4 4 4
5 5

Class 2
1 1 1
2 2 2
3 3 3
4 4 4
5 5

X Axis
```

Notice that the label for the missing class values is blank. You can use the `INCLUDEMISSINGCLASS=False` option to exclude the missing class values. If you want to keep the missing class values, then you can create a format that specifies a more meaningful label for the missing class. For example, here is a format that specifies a label for missing character and numeric class values.

```plaintext
proc format;
 value $missingClass " " = "(Missing)";
 value missingClass . = "(Missing)";
run;
```
A single space enclosed in quotation marks specifies a missing character value and a dot specifies a missing numeric value. Although it might seem appropriate to use empty quotation marks ("" or "") to specify a missing character value, doing so produces unexpected results. To specify a missing character value, enclose a single space in quotation marks (" " or " "). You can use this format for the class columns in the PROC SGRENDER statement. In that case, if the class columns contain missing values, then the labels specified in the format statement are used for the missing classes.

The following figure shows the previous example when format $missingClass is applied to the class variable.

Note: In the second maintenance release of SAS 9.4 and in earlier releases, ODS Graphics does not support Unicode values in user-defined formats. Starting with the third maintenance release of SAS 9.4, ODS Graphics supports Unicode values in user-defined formats only if they are preceded by the (*ESC*) escape sequence. Example: "(*ESC*){unicode beta}". ODS Graphics does not support an escape character that is defined in an ODS ESCAPECHAR statement in user-defined formats.

**Default**

**TRUE**

**Interaction**

The CLASS= option must be specified for this option to have any effect.

**See**

"boolean " on page 1339 for other Boolean values that you can use.

**LABEL=string**

specifies an external label for a single block plot.

**Defaults**

The label of the BLOCK= column.

The name of the BLOCK= column, if there is no column label.

**Interactions**

If the CLASS= option is specified, then this option is ignored.

The DISPLAY= option must include LABEL for any external label(s) to appear.

**Tip**

The font and color attributes for the external label are specified by the LABELATTRS= option.

**LABELATTRS=style-element | style-element (text-options) | (text-options)**

specifies the color and font attributes of the external block label(s).

**Default**

The GraphLabelText style element.

**Interaction**

If one or more text options are specified and they do not include all of the font properties such as color, family, size, weight, style, then the non-specified properties are derived from the GraphLabelText style element.
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

**LABELPOSITION=LEFT | RIGHT | TOP | BOTTOM**
specifies the alignment of BLOCK label.

**LEFT**
places the label to the left of the strip of block values.

**RIGHT**
places the label to the right of the strip of block values.

**TOP**
places the label above the strip of block values.

**BOTTOM**
places the label below the strip of block values.

Default  LEFT

**NAME="string"**
assigns a name to this plot statement for reference in other template statements. This option is used mostly in the DISCRETELEGEND statement in order to coordinate the use of colors and line patterns between the plot and the legend.

**Restriction**  The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

**OUTLINEATTRS=style-element | style-element (line-options) | (line-options)**
specifies the appearance of the block outlines.

Default  The GraphOutlines style element.

**Interactions**  For this option to have any effect, the outlines must be enabled by the ODS style or the DISPLAY= option.

If labels are displayed in the TOP or BOTTOM position, then they are also outlined.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**REPEATEDVALUES=TRUE | FALSE**
specifies whether contiguous block values that are identical create separate blocks.

**FALSE**
creates only one block when two or more identical block values appear consecutively.

**TRUE**
creates one block for each identical value when two or more identical values appear consecutively.

Default  FALSE

See “boolean ” on page 1339 for other Boolean values that you can use.
VALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the appearance of the internal block text values or the alternative values that are specified by the BLOCKLABEL= option.

Default The GraphValueText style element.

Interaction If one or more text options are specified and they do not include all of the font properties such as color, family, size, weight, style, then the non-specified properties are derived from the GraphValueText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE
specifies how text values are adjusted to fit within the containing block.

NONE makes no attempt to fit values that collide.

SHRINK reduces the font size of the values until they all fit.

SPLIT splits a value that does not fit within the containing block at a split character in order to make the value fit the available space. No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, then a split does not occur.

Interaction The VALUESPLITCHAR= option specifies the split characters.

Tip Use the VALUEHALIGN= option to control the alignment of the split lines.

SPLITALWAYS splits each value at every occurrence of a split character. If the value does not contain any of the specified split characters, then a split does not occur.

Interaction The VALUESPLITCHAR= option specifies the split characters.

Tip Use the VALUEHALIGN= option to control the alignment of the split lines.

TRUNCATE truncates any value that does not fit. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

Default TRUNCATE

Interaction The SPLIT and SPLITALWAYS policies are ignored when the BLOCKPLOT statement is placed in a DATALATTICE or DATAPANEL layout and the BLOCKPLOT CLASS= option is set. In that case, the TRUNCATE fit policy is used instead.

VALUEHALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal alignment of the value text within the blocks.
**LEFT**
left-aligned within the block

**CENTER**
center-aligned within the block

**RIGHT**
right-aligned within the block

**START**
center-aligned at the starting value of the block

<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
</table>

**Restriction**
When the BLOCKPLOT statement is placed inside an INNERMARGIN block, only VALUEALIGN=CENTER is honored.

**Requirement**
For this option to have any effect, the DISPLAY= option must include VALUE.

**Interaction**
When REPEATEDVALUES= TRUE and X values are numeric, only CENTER and START can be used for a discrete axis. In addition, only LEFT and START can be used for a linear or log axis. For example, if REPEATEDVALUES=TRUE and the axis is discrete, then a setting of RIGHT for this option is ignored and LEFT is used instead.

**VALUESPLITCHAR="character-list"**
specifies one or more characters on which the values can be split, if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

When VALUESPLITPOLICY=SPLIT, if a value collision is detected, then the value is split at each occurrence of any of the specified split characters. When VALUESPLITPOLICY=SPLITALWAYS, the value is split unconditionally on each of the specified split characters. If the value does not contain any of the specified split characters, then the value is not split.

"character-list"
one or more characters with no delimiter between each character and enclosed in quotation marks.

<table>
<thead>
<tr>
<th>Default</th>
<th>A blank space</th>
</tr>
</thead>
</table>

**Requirements**
The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:

valuesplitchar="abc"

The VALUEFITPOLICY= option must specify SPLIT or SPLITALWAYS.

**Interactions**
The VALUESPLITCHARDROP= option specifies whether the split characters are included in the displayed value or are dropped.
The VALUEFITPOLICY= option sets the policy that is used to manage the split behavior of the value.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

VALUESPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the displayed values.

TRUE

drops a split character from the value when a split occurs at that character. Split characters at which a split does not occur are left in place. The VALUEFITPOLICY= option determines where the values are split. When VALUEFITPOLICY=SPLIT, each value is split at a split character only where a split is needed in order to make the value fit the available space. At each split point, the split character is dropped, and the characters that follow the split character, up to but not including the split character at the next split point, are wrapped to the following line.

When VALUEFITPOLICY=SPLITALWAYS, each value is split at every instance of a split character. All of the split characters are dropped. The characters that follow each split character, up to but not including the next split character, are wrapped to the next line.

The following figure shows how value Product*Group*1 is split when the VALUESPLITCHARDROP=TRUE, VALUESPLITCHAR="*", and VALUEHALIGN=CENTER options are specified with the SPLIT and SPLITALWAYS fit policies.

FALSE

includes the split characters in the value display. The VALUEFITPOLICY= option determines how the split characters are displayed. When VALUEFITPOLICY=SPLIT, each value is split at a split character only where a split is needed in order to make the value fit the available space. A split might not occur at every split character in the value. At each split point, the split character remains as the last character in the current line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until the entire value is displayed.
When VALUEFITPOLICY=SPLITALWAYS, each value is split at every instance of a split character in the value regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows how value Product*Group*1 is split when the VALUESPLITCHARDROPO=FALSE, VALUESPLITCHAR=“*”, and VALUEHALIGN=CENTER options are specified with the SPLIT and SPLITALWAYS fit policies.

<table>
<thead>
<tr>
<th>VALUEFITPOLICY=SPLIT</th>
<th>Product<em>Group</em>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUEFITPOLICY=SPLITALWAYS</td>
<td>Product<em>Group</em>1</td>
</tr>
</tbody>
</table>

In this example, when VALUEFITPOLICY=SPLIT, the label is split at the first occurrence of the asterisk to make the value fit. No split is needed at the second asterisk. The characters that follow the first asterisk wrap to the next line. When VALUEFITPOLICY=SPLITALWAYS, the value is split at every occurrence of the asterisk. Each asterisk remains as the last character in the current line, and the characters that follow are wrapped to the next line.

Default | TRUE. A split character is dropped from the value display when a split occurs at that character.

Requirement | The VALUEFITPOLICY= option must specify SPLIT or SPLITALWAYS.

Interaction | The VALUE_SPLITCHAR= option specifies the split characters.

See | “boolean” on page 1339 for other Boolean values that you can use.

**VALUEALIGN=TOP | CENTER | BOTTOM**

specifies the vertical alignment of the value text within the blocks.

Default | CENTER

Interaction | For this option to have any effect, the DISPLAY= option must include VALUE.

**XAXIS=X | X2**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default | X

Interaction | The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
Details

A block plot contains information about X locations and text values to be associated with corresponding intervals along the X axis. There is no Y axis information in this plot.

Examples

Example 1: BlockPlot Overlaid with SeriesPlot

When overlaid with plots that have a Y axis (a series plot for example), a block plot expands vertically to fill the Y axis range. In the BLOCKPLOT statement, the BLOCK= argument can be used to reference text values from a column. The resulting graph displays those values within the plot wall. This example shows how a block plot can be specified with a series plot within an OVERLAY layout. Here is the output for this example.

Example Output

![Microsoft Share Prices and Significant OS Releases](image)

Example Program

```plaintext
data MSevents;
 input Date date9. Release $5.;
 label Release="Windows Release";
datalines;
01jun1990 3.0
01sep1995 95
01mar1998 98
01nov2001 XP
```

Example 1: BlockPlot Overlaid with SeriesPlot

301
Program Description

Prepare the data. To prepare data for the graph, “event” information must be added to the existing data for stock prices. Here is the SAS code that generates the data for this example. Notice that the first DATA step creates a Release column. That column is later specified on the BLOCK= argument to display text values on the wall of the block plot. For more information about the merged input data, see “About the Merged Data” on page 303.

```
data MSevents;
 input Date date9. Release $5.;
 label Release="Windows Release";
 datalines;
 01jun1990 3.0
 01sep1995 95
 01jul1998 98
 01mar2000 2000
 01nov2001 XP
;```

```
proc sort data=sashelp.stocks(keep=date stock close)
  out=MSstock;
  where stock="Microsoft";
  by date;
run;
```

```
data events;
  merge MSstock MSevents;
  by date;
run;
```

```
proc template;
  define statgraph blockplot1;
  begingraph;
    entrytitle "Microsoft Share Prices";
    entrytitle "and Significant OS Releases";
    layout overlay;
      blockplot x=date block=release /
        datatransparency=0.3 valuealign=top
        labelposition=top display=(fill values label)
        extendblockonmissing=true
      ;
      seriesplot x=date y=close;
    endlayout;
  endgraph;
end;
run;
```

```
proc sgrender data=events template=blockplot1;
  format date year4.;
  label date="Year";
run;
```
Define the template. In the GTL template code, BLOCK=RELEASE is specified in the BLOCKPLOT statement so that the RELEASE values are displayed on the wall of the resulting block plot. In this template, the BLOCKPLOT statement sets EXTENDBLOCKONMISSING=TRUE so that missing values in the data revert to the previous nonmissing value in the block plot. Thus, in the block plot, values are missing until 01JUN90, when the value changes from missing to 3.0. The block plot retains that 3.0 value for subsequent observations until the next nonmissing value replaces it (in this case, the value 95 on 01SEP95). In the example output shown in “Example Output” on page 301, the fill color for each of the nonmissing values is determined by the style elements GraphData1–GraphData5 in this case. The fill color for the missing values is determined by the next available GraphDataN style element, which is GraphData6 in this case.

Generate the graph. Format the date values on the X axis as four-digit year values, and label the X axis “Year.”

About the Merged Data

In the merged input data set, the Release column value is missing for each observation until the first event defined in the MSEvents data, 3.0, occurs in June of 1990. The Release column value is missing again for the subsequent observations until the next event defined in the MSEvents data, 95, occurs in September of 1995. Here is a sample of the merged data.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Stock</th>
<th>Date</th>
<th>Close</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Microsoft</td>
<td>02APR90</td>
<td>$58.00</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Microsoft</td>
<td>01MAY90</td>
<td>$73.00</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Microsoft</td>
<td>01JUN90</td>
<td>$76.00</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Example 2: Stand-Alone BlockPlot in Lattice Layout

When used as a stand-alone plot in a lattice layout, the block plot’s height can be controlled. Using this technique, it is possible to include two or more “event” strips in a plot. This example demonstrates this technique by creating a series plot with an event strip as shown in the following figure.

Example Output

![Microsoft Share Prices and Significant OS Releases](image)

Example Program

In this example, the lattice ROWWEIGHTS=(0.04 0.96) option apportions 4% of the vertical space to the block plot. Here is the code for this example.

```
proc template;
define statgraph blockplot2;
begingraph;
entrytitle "Microsoft Share Prices";
entrytitle "and Significant OS Releases";
layout lattice / rowweights=(0.04 0.96);
blockplot x=date block=release / datatransparency=0.3 valuefitpolicy=shrink labelposition=left display=(fill label outline values) extendblockonmissing=true;
seriesplot x=date y=close;
endlayout;
endgraph;
end;
```
run;

proc sgrender data=events template=blockplot2;
 format date year4.;
 label date="Year";
run;

BOXPLOT Statement

Creates box plots that are computed from input data.

Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see "ODS GRAPHICS Statement" in SAS ODS Graphics: Procedures Guide.

Syntax

BOXPLOT Y=numeric-column | expression <option(s)>;
BOXPLOT X=column | expression
Y=numeric-column | expression <option(s)>;

Summary of Optional Arguments

Appearance options

BOXWIDTH=number
 specifies the width of a box as a ratio of the maximum possible width.
CAPSHAPE=SERIF | LINE | BRACKET | NONE
 specifies the shape at the ends of the whiskers.
CLUSTERWIDTH=number
 specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.
CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
 specifies that a connect line joins a statistic from box to box.
CONNECTATTRS=style-element | style-element (line-options) | (line-options)
 specifies the attributes of the lines connecting multiple boxes.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 enhances the visual appearance of the filled boxes.
DATATRANSPARENCY=number
 specifies the degree of the transparency of the box outlines, box fill, whiskers, mean, median, caps, connect lines, outliers, and data labels, if displayed.
DISPLAY=STANDARD | ALL | (display-options)
 specifies which additional features of the box plot to display.
EXTREME=TRUE | FALSE
 specifies whether the whiskers can extend beyond the fences.
FILLATTRS=style-element | style-element (fill-options) | (fill-options)
 specifies the appearance of the interior fill area of the boxes.
INDEX=positive-integer-column | expression
 specifies indices for mapping box attributes (fill and outline) to one of the
 GraphData1–GraphDataN style elements.

INTERVALBOXWIDTH=AUTO | dimension
 specifies the box width when an interval category (X) column is specified.

MEANATTRS=style-element | style-element (marker-options) | (marker-options)
 specifies the attributes of the marker representing the mean within the box.

MEDIANATTRS=style-element | style-element (line-options) | (line-options)
 specifies the appearance of the line representing the median within the box.

ORIENT=VERTICAL | HORIZONTAL
 specifies the orientation of the Y axis and of the boxes.

OUTLIERATTRS=style-element | style-element (marker-options) | (marker-options)
 specifies the attributes of the markers representing the outliers.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the appearance of the box outline.

SPREAD=TRUE | FALSE
 specifies whether outliers with the same value are spread out to avoid
 overlap.

WHISKERATTRS=style-element | style-element (line-options) | (line-options)
 specifies the line properties of the whiskers and caps.

Axes options

 PRIMARY=TRUE | FALSE
 specifies that the data columns for this plot and the plot type be used for
 determining default axis features.

 XAXIS=X | X2
 specifies whether data are mapped to the primary X (bottom) axis or to the
 secondary X2 (top) axis.

 YAXIS=Y | Y2
 specifies whether data are mapped to the primary Y (left) axis or to the
 secondary Y2 (right) axis.

Data tip options

 OUTLIERTIP=(role-list)
 specifies the information to display when the cursor is positioned over an
 outlier.

 TIP=(role-list) | NONE
 specifies the information to display when the cursor is positioned over a box
 or whisker in the box plot.

 TIPFORMAT=(role-format-list)
 specifies display formats for tip columns.

 TIPLABEL=(role-label-list)
 specifies display labels for tip columns.

Label options

 DATALABEL=column
 specifies the labels of the outliers. Either a numeric or a character column can
 be used.

 DATALABELATTRS=style-element | style-element (text-options) | (text-options)
 specifies the color and font attributes of the outlier labels.

 DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

DATALABELSPLITCHAR=character-list
specifies one or more characters on which the data labels can be split if needed.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY=CENTERT | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.

LABELFAR=TRUE | FALSE
specifies whether all outliers or only far outliers are labeled.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

DISCRETEOFFSET=number
specifies an amount to offset all boxes from the discrete X ticks.

GROUP=column | discrete-attr-var | expression
creates a box plot for each unique group value of the specified column.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how to display the boxes that represent group values for the coordinate pairs.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Plot reference options

NAME="string"
Assigns a name to this plot statement for reference in other template statements.

Statistics options

DISPLAYSTATS=NONE | STANDARD | ALL | (statistics-list)
specifies the statistics to be displayed for each box.

FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies one of five definitions used to calculate percentiles.

WEIGHT=numeric-column | expression
specifies a column that contains a statistics calculation a priori weight for each observation of the input data object.

WHISKERPERCENTILE=number
specifies the whisker length, in percentile units.

Required Arguments

Specifying only Y= creates a single box plot. Specifying both X= and Y= creates a box plot for each unique value of X.

Y=numeric-column | expression
specifies the column for the Y values. This argument is required.
X=column | expression
specifies the column for the X values. This argument is required if you want to create a box plot for each unique X value.

Note For interval X values, if a user-defined format is applied to the X column, the format should map each X value to only one unique formatted value. Otherwise, unexpected results might occur.

Optional Arguments

BOXWIDTH=number
specifies the width of a box as a ratio of the maximum possible width.

- **Defaults**
 For nongrouped data, the default is 0.4.
 For grouped data, the default is 0.6.

- **Range**
 0–1, where 0 is the narrowest and 1 is the widest

- **Interactions**
 For grouped box plots with a discrete X (category) axis, the box width is a percentage of the CLUSTERWIDTH.

 Prior to the third maintenance release of SAS 9.4, this option is ignored for an interval box plot, and the box width is controlled by the INTERVALBOXWIDTH= option. Starting with the third maintenance release of SAS 9.4, this option is honored for an interval box plot, but it can be overridden by the INTERVALBOXWIDTH= option.

CAPSHAPE=SERIF | LINE | BRACKET | NONE
specifies the shape at the ends of the whiskers.

- **SERIF**
 specifies a short line perpendicular to the whisker.

- **LINE**
 specifies a line perpendicular to the whisker that extends the width of the box.

- **BRACKET**
 specifies a line perpendicular to the whiskers that extends the width of the box and that has short extensions at each end. The extensions are drawn in the direction of the box.

- **NONE**
 specifies that no shape appears at the ends of the whiskers.

The following figure shows each of the shapes.

![Whisker Shapes](image)

- **Default**
 The GraphBox:CapStyle style reference.
Interactions

The cap color and the thickness are specified by the `WHISKERATTRS=` option. The cap pattern is always solid.

The `DISPLAY=` option must include `CAPS` in order for cap lines to be shown.

CLUSTERWIDTH=number

specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

| Default | 0.7 |
| Range | 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width. |
| Requirement | For this option to take effect, the `GROUP=` option must also be specified, and the `GROUPDISPLAY=` option must be set to `CLUSTER`. |
| Note | When the X axis is an interval axis, the cluster width is a fraction of the smallest data interval. |

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX

specifies that a connect line joins a statistic from box to box.

| Default | The GraphBox:Connect style reference. |
| Requirement | The `DISPLAY=` option must contain the CONNECT `display-options` value for the connect line to be displayed. |
| Interaction | This option applies only when the `X=` argument is used to generate multiple boxes. |
| Note | Starting with the third maintenance release of SAS 9.4, the connect lines are drawn in axis order. In prior releases, they are drawn in data order. |
CONNECTATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the lines connecting multiple boxes.

Default
The GraphConnectLine style element.

Interactions
If there is only one box, then this option is ignored.

If the DISPLAY= option does not include CONNECT, or if the GROUP= option is used, then this option is ignored.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

DATALABEL=column
specifies the labels of the outliers. Either a numeric or a character column can be used.

Default
No data labels are displayed

Interaction
This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See
LABELFAR= option

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the outlier labels.

Default
The GraphDataText style element.

Interactions
This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

If one or more label options are specified and they do not include all the font properties (color, family, size, weight, style), then the non-specified properties are derived from the GraphDataText style element.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters. When set to TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters.

Default
FALSE. The data labels are not split.

Requirement
The DATALABEL= option must also be specified.

Interaction
The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

See
“boolean ” on page 1339 for other Boolean values that you can use.
DATALABELSPLITCHAR="character-list"

specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATABASE= is specified and DATABASESPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default

A blank space

Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitsplitchar="abc"

The DATABASE= option and the DATABASESPLIT=TRUE option must also be specified.

Interaction

The DATABASESPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

Use the DATABASESPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATABASESPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the data labels.

TRUE

drops the split characters from the data label.

FALSE

includes the split characters in the data label. When DATABASESPLIT=TRUE and DATABASESPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATABASESPLIT=TRUE
- DATABASESPLITCHARDROP=TRUE | FALSE
- DATABASESPLITCHAR="*"
When `DATALABELSPLITCHARDROP=TRUE`, the asterisks are removed from the label. When `DATALABELSPLITCHARDROP=FALSE`, each asterisk remains as the last character in the line prior to the new line.

Default: TRUE. The split characters are dropped from the data label.

Requirement: The `DATALABEL=` option and the `DATALABELSPLIT=TRUE` option must also be specified.

Interaction: The `DATALABELSPLITCHAR=` option specifies the split characters.

See: “`boolean`” on page 1339 for other Boolean values that you can use.

`DATALABELSPLITJUSTIFY=CENTE`R | `LEF`T | `RI`GHT specifies the justification of the strings that are inside the data label blocks.

Default: Justification is determined by the system.

Requirement: The `DATALABEL=` option and the `DATALABELSPLIT=TRUE` option must also be specified.

`DATASKIN=NONE` | `CRISP` | `GLOSS` | `MATTE` | `PRESSED` | `SHEEN` enhances the visual appearance of the filled boxes. The following figure shows boxes with each of the skins applied.
The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Requirement
For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Interactions
This option overrides the BEGINGRAPH statement DATASKIN= option.

The data skin appearance is based on the FILLATTRS= color.

When a data skin is applied, all bar outlines are set by the skin, and the OUTLINEATTRS= option is ignored.

DATATRANSPARENCY=number

specifies the degree of the transparency of the box outlines, box fill, whiskers, mean, median, caps, connect lines, outliers, and data labels, if displayed.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

Tip
The FILLATTRS= option can be used to set transparency for just the interior fill area of the boxes. You can combine this option with FILLATTRS= to set one transparency for the box outlines and the whiskers, mean, median, caps, and connect lines, but a different transparency for the box fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

DISCRETEOFFSET=number

specifies an amount to offset all boxes from the discrete X ticks.

Default 0 (no offset, all boxes are centered on the discrete ticks)

Range -0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is to the right when ORIENT=VERTICAL, and up when ORIENT=HORIZONTAL. (If the layout's axis options set REVERSE=TRUE, then the offset direction is also reversed.)

Restriction
This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip
Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

See “About the DISCRETEOFFSET= Option” on page 327
DISPLAY=STANDARD | ALL | (display-options)
specifies which additional features of the box plot to display.

STANDARD
displays this combination of features (CAPS FILL MEAN MEDIAN OUTLIERS)

ALL
displays all features

(display-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

CAPS displays caps at the ends of the whiskers
CONNECT displays the line connecting multiple boxes
FILL displays filled boxes
MEAN displays the mean symbol within the box
MEDIAN displays the median line within the box
NOTCHES displays notched boxes
OUTLIERS displays markers for the outliers

The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm \frac{1.58 \text{ IQR}}{\sqrt{n}}
\]

In the equation, IQR (IQR=Q3-Q1) is the interquartile range and \(n \) is the sample size. The medians (central lines) of the two boxes are significantly different at approximately the 0.05 level if the corresponding notches do not overlap.

Default
The GraphBox:DisplayOpt style reference. If this style element does not exist, then the default is STANDARD.

Interaction
If **EXTREME=** TRUE, then the OUTLIERS feature is ignored.
Notes
Starting with the third maintenance release of SAS 9.4, connect lines are drawn in axis order. They are drawn in data order in prior releases.

Starting with the third maintenance release of SAS 9.4, when DISPLAY= includes MEAN, the BOXPLOT statement contributes its mean markers to a discrete legend when TYPE=MARKER is in effect in the DISCRETELEGEND statement.

Tips
To control the appearance of these features, use the CONNECTATTRS=, FILLATTRS=, MEANATTRS=, MEDIANATTRS=, OUTLIERATTRS=, and WHISKERATTRS= options. The WHISKERATTRS= option controls affects both CAPS and WHISKERS.

Regardless of which display options are being displayed, this option does not affect the axis range.

DISPLAYSTATS=NONE | STANDARD | ALL | *(statistics-list)*

specifies the statistics to be displayed for each box.

- **NONE**
 does not display any statistics.

- **STANDARD**
 displays N, MEAN, and STD.

- **ALL**
 displays all available statistics (see the *(statistics-list)*)

(statistics-list)

- a space-separated list of one or more of the following statistics, enclosed in parentheses:

 - **DATAMAX** maximum data value that includes not only the maximum whisker values but also the maximum outlier values. This option is valid in the first maintenance release of SAS 9.4 and later releases. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

 - **DATAMIN** minimum data value that includes not only the minimum whisker values but also the minimum outlier values. This option is valid in the first maintenance release of SAS 9.4 and later releases. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

 - **IQR** interquartile range (Q3–Q1).

 - **MAX** maximum data value below the box upper fence.

 - **MEAN** mean data value for the box.

 - **MEDIAN** median data value for the box.

 - **MIN** minimum data value above the box lower fence.

 - **N** number of observations for the box.

 - **Q1** lower quartile (25th percentile) for the box.

 - **Q3** upper quartile (75th percentile) for the box.

 - **RANGE** range of the data (MAX–MIN).
STD
sum of the weights for the box. This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default
NONE

Restriction
This option is ignored if ORIENT= HORIZONTAL.

Note
The notches in the box plot can extend beyond DATAMIN and DATAMAX in some cases.

EXTREME=TRUE | FALSE
specifies whether the whiskers can extend beyond the fences. Fences are locations above and below the box. The upper and lower fences are located at a distance 1.5 times the Interquartile Range (IQR) (IQR = Q3 - Q1). The upper and lower far fences are located at a distance 3 times the IQR.

FALSE
specifies that whiskers be drawn from the upper edge of the box to the largest value within the upper fence, and from the lower edge of the box to the smallest value within the lower fence. This representation is sometime called a schematic box plot or a Tukey box plot.

TRUE
specifies that whiskers be drawn to the largest and smallest data values, whether these values are inside or outside the fences. The outliers and far outliers are not displayed and are not labeled. This representation is sometime called a skeletal box and whisker plot.

Default
FALSE

Interaction
This option overrides the DATALABEL=, DATALABELATTRS=, LABELFAR=, OUTLIERATTRS=, and SPREAD= options.

See
“Statement Summary” on page 326

“boolean ” on page 1339 for other Boolean values that you can use.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the interior fill area of the boxes.

Defaults
For non-grouped data, the GraphDataDefault:Color style reference.

For grouped data, the Color attribute of the GraphData1–GraphDataN style elements.

Interaction
For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Tip
The DATATRANSPARENCY option sets the transparency for the box outlines, box fill, whiskers, mean, median, caps, connect lines, and outliers. You can combine this option with DATATRANSPARENCY= to set one transparency for the box outlines and the whiskers, mean, median, caps, and connect lines, but a different transparency for the box fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

FREQ=numeric-column | expression

specifies a numeric column that provides frequencies for each observation that is read.

Default All observations have a frequency count of 1.

Restriction If the value of the numeric-column is missing or is less than 1, then the observation is not used in the analysis. If the value is not an integer, then only the integer portion is used.

Note If \(n \) is the value of the numeric column for a given observation, then that observation is used \(n \) times for the purposes of any statistical computation.

GROUP=column | discrete-attr-var | expression

creates a box plot for each unique group value of the specified column.

discrete-attr-var specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

For example, the Sashelp.Cars data that is used in the “Example Program” on page 336 contains a column named Origin, which identifies the region that produces each car. This column could be used in the BOXPLOT statement to group the box plots in the display (see the GROUPDISPLAY= option to see the output for the grouped boxes):

```plaintext
layout overlay / xaxisopts=(display=(line ticks tickvalues));
boxplot y=mpg_city x=cylinders / name="b"
  datalabel=make spread=true
  display=(caps fill mean median)
  group=origin ;
discretelegend "b" / title="Vehicle Type: ";
endlayout;
```

Defaults Each distinct group value is represented in the plot by a different box outline color. The outline colors are defined by the GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

If the MEDIAN, CAPS, or NOTCHES are enabled by the DISPLAY= option, then each of these features uses the same color as the box outline. Line styles do not change by group value.

If the MEAN or OUTLIERS are enabled by the DISPLAY= option, then each distinct group value is represented by a different marker. The markers are defined by the MarkerSymbol and ContrastColor attributes of the GraphData1–GraphDataN and GraphMissing style
elements. A marker is used for both MEAN and OUTLIERS, if displayed.

If box fills are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different fill color. The fill colors are defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions

Connect lines are not drawn for grouped data.

The box plot display depends on the setting for the GROUPDISPLAY= option.

By default, the group values are mapped in the order of the data. The GROUPORDER= option can be used to control the sorting order of the group values. The INDEX= option can be used to alter the default sequence of colors and markers.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

Tip

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the box outlines, but the PATTERN= setting in the OUTLIERATTRS= option could be used to assign the same line pattern to all box outlines and connect lines.

See “DISCRETEATTRVAR Statement” on page 1297

GROUPDISPLAY=OVERLAY | CLUSTER

specifies how to display the boxes that represent group values for the coordinate pairs. The following example shows a box plot with GROUPDISPLAY=CLUSTER:

OVERLAY
draws boxes for a given group value at the exact coordinate. Depending on the data, boxes at a given coordinate might overlap.

CLUSTER
draws boxes for a given group value adjacent to each other.
OVERLAY

Interaction: This option is ignored unless **GROUP** is specified.

Tip: Use the **CLUSTERWIDTH** option to control the width of the clusters when **CLUSTER** is in effect.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

Specifies the ordering of the groups within a category.

- **DATA**
 - Orders the groups within a category in the group-column data order.

- **REVERSEDATA**
 - Orders the groups within a category in the reverse group-column data order.

 Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

 Tip: This option is useful when you want to reverse the category axis.

- **ASCENDING**
 - Orders the groups within a category in ascending order.

- **DESCENDING**
 - Orders the groups within a category in descending order.

Default: **DATA**

Interaction: This option is ignored if the **GROUP** option is not also specified.

By default, the groups in the legend are shown in the order that is specified in **GROUPORDER**.

Notes: Attributes such as color, symbol, and pattern are assigned to each group in the **DATA** order by default, regardless of the **GROUPORDER** option setting.

The **ASCENDING** and **DESCENDING** settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INCLUDEMISSINGGROUP=TRUE | FALSE

Specifies whether missing values of the group variable are included in the plot.

Default: **TRUE**

Interaction: For this option to take effect, the **GROUP** option must also be specified.

Tip: The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the **INDEX** option is used, the **MISSING** system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value...
are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping box attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

Requirements The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction For this option to take effect, the GROUP= option must also be specified.

Notes The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

INTERVALBOXWIDTH=AUTO | dimension
specifies the box width when an interval category (X) column is specified.

AUTO
prior to the third maintenance release of SAS 9.4, AUTO uses 85% of the smallest interval between any two boxes for the given plot. Starting with the third maintenance release of SAS 9.4, AUTO uses the BOXWIDTH= option setting.

dimension sets the box width to the specified value.

Default AUTO

Restriction The axis type for the category axis (X by default) must be LINEAR, and the X column must be numeric.

Interaction Prior to the third maintenance release of SAS 9.4, this option controls the box width for an interval box plot. Starting with the third maintenance release of SAS 9.4, this option overrides the BOXWIDTH= option for an interval box plot.

See “dimension” on page 1340

LABELFAR=TRUE | FALSE
specifies whether all outliers or only far outliers are labeled.
FALSE
applies the labels specified by the DATALABEL= option to both the outliers and the far outliers.

TRUE
applies the labels specified by the DATALABEL= option to the far outliers.

Default FALSE

Interaction This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See “Statement Summary” on page 326 for information about outliers.

“boolean ” on page 1339 for other Boolean values that you can use.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default The Y= column label. If a label is not defined, then the Y= column name is used.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

MEANATTRS= *style-element | style-element (marker-options) | (marker-options)*
specifies the attributes of the marker representing the mean within the box.

Defaults For non-grouped data, GraphBoxMean style element.

For grouped data, the MarkerSymbol, Markersize, and ContrastColor attributes of the GraphData1–GraphDataN style elements.

Interaction This option is ignored if the DISPLAY= option does not display the mean.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

MEDIANATTRS= *style-element | style-element (line-options) | (line-options)*
specifies the appearance of the line representing the median within the box.

Defaults For non-grouped data, the GraphBoxMedian style element.

For grouped data, the LineStyle and LineThickness attributes of the GraphBoxMedian style element, and the ContrastColor attribute of the GraphData1–GraphDataN style elements.

Interaction This option is ignored if the DISPLAY= option does not display the median.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
“Line Options” on page 1349 for available line-options.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

ORIENT=VERTICAL | HORIZONTAL

specifies the orientation of the Y axis and of the boxes.

Default VERTICAL

OUTLIERATTRS=style-element | style-element (marker-options) | (marker-options)

specifies the attributes of the markers representing the outliers.

Defaults For non-grouped data, GraphOutlier style element.

For grouped data, the MarkerSymbol, Markersize, and ContrastColor attributes of the GraphData1–GraphDataN style elements.

Interaction This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

OUTLIERTIP=(role-list)

specifies the information to display when the cursor is positioned over an outlier. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the box plot can be specified along with roles that do contribute.

(role-list)
an ordered, space-separated list of unique BOXPLOT roles. BOXPLOT roles for OUTLIERTIP include X, Y, STAT, and DATALABEL.

Note In the data tip, the STAT role displays the text “outlier” or “far outlier” as applicable.

Example The following example displays data tips only for the column that is assigned to the X role:
OUTLIERTIP=(X)

Default The columns assigned to these roles are automatically included in the data tip information: X and Y.

Requirement To generate data tips, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and write the graphs to the ODS HTML destination.
The labels and formats for the OUTLIERTIP variables can be controlled with the `TIPLABEL=` and `TIPFORMAT=` options.

See the `TIP=` option for specifying the information to display when the cursor is positioned over a box or whisker in the box plot.

`OUTLINEATTRS=style-element | style-element (line-options) | (line-options)`

specifies the appearance of the box outline.

Defaults
- For non-grouped data, the ContrastColor, LineThickness, and LineStyle attributes of the GraphOutlines style element.
- For grouped data and filled boxes, the LineStyle and LineThickness attributes of the GraphOutlines style element, and the ContrastColor attribute of the GraphData1–GraphDataN style elements.
- For grouped data and unfilled boxes, the LineThickness attribute of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Line Options” on page 1349 for available `line-options`.

`PERCENTILE=1 | 2 | 3 | 4 | 5`

specifies one of five definitions used to calculate percentiles.

Default 5 (empirical distribution function with averaging)

Note The percentile definition and default are the same as those that are used by the `PCTLDEF=` option of the UNIVARIATE procedure and the `QNTLDEF=` option of the SUMMARY procedure.

See “Calculating Percentiles” on page 329

`PRIMARY=TRUE | FALSE`

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify `PRIMARY=TRUE` for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.
SPREAD=TRUE | FALSE
specifies whether outliers with the same value are spread out to avoid overlap. For
vertical box plots this means offsetting the outliers horizontally. If this option is
false, then outliers with the same value are plotted in the same position, which means
only one is visible.

Default FALSE

Interaction This option is ignored if EXTREME= TRUE or the DISPLAY= option
does not display the outliers.

See “boolean ” on page 1339 for other Boolean values that you can use.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or
whisker in the box plot. If this option is used, then it replaces all of the information
that is displayed by default.

(role-list)
an ordered, space-separated list of unique BOXPLOT roles. BOXPLOT roles for
TIP include DATAMAX, DATAMIN, MAX, MIN, MEAN, MEDIAN, N, Q1,
Q2, STD, SUMWGT, and X.

Note The roles DATAMAX, DATAMIN, and SUMWGT apply to the first
maintenance release of SAS 9.4 and later releases.

Tip Statistics such as N, MIN, and MAX are special roles, They are not
column-based like the X role.

Example The following example displays data tips only for the columns that
are assigned to the roles X (CATEGORY) and the statistic MEAN:
TIP=(X MEAN)

NONE
suppresses data tips from the plot.

Default The columns assigned to these roles are automatically included in the
data tip information: X, N, STD, MIN, MAX, Q1, Q3, MEAN, and
MEDIAN.

Requirement To generate data tips in the output, you must include an ODS
GRAPHICS ON statement that has the IMAGEMAP option
specified, and you must write the output to the ODS HTML
destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or
PROTOTYPE layout and the INCLUDERANGES= option is
specified in the LINEAROPTS= or TIMEOPTS= option for either
axis.

Tip The labels and formats for the TIP roles can be controlled with the
TIPLABEL= and TIPFORMAT= options.

See the OUTLIERTIP= option for specifying the information to display
when the cursor is positioned over an outlier.
TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the
formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
TIP=(X Y)
TIPFORMAT=(X=4. Y=4.)

Default
The column format of the column assigned to the role or BEST6 if no
format is assigned to a numeric column.

Restriction
Only the roles that appear in the OUTLIERTIP= or TIP= options are
used.

Requirement
A column must be assigned to each of the specified roles.

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the
labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example
TIP=(X)
TIPLABEL=(X="Type")

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the OUTLIERTIP= or TIP= options are
used.

Requirement
A column must be assigned to each of the specified roles.

WEIGHT=numeric-column | expression
specifies a column that contains a statistics calculation a priori weight for each
observation of the input data object.

Requirement
The value must be nonnegative.

Interaction
If the value for an observation is missing or is less than 1, then the
observation is removed from the analysis.

WHISKERATTRS=style-element | style-element (line-options) | (line-options)
specifies the line properties of the whiskers and caps.

Defaults
For non-grouped data, the GraphBoxWhisker style element.

For grouped data, the LineStyle and LineThickness attributes of the
GraphBoxWhisker style element, and the ContrastColor attribute of the
GraphData1–GraphDataN style elements.

Restriction
The caps are always drawn with a solid line.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.
WHISKERPERCENTILE=number
specifies the whisker length, in percentile units. When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

- 0 specifies the high and low extremes
- 10 specifies the 10th percentile low and the 90th percentile high
- 25 specifies the 25th percentile low and the 75th percentile high

Default: The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range: 0–25

Notes: When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default: X

Interaction: This option is ignored if the X= argument is not specified.

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default: Y

Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

Statement Summary
The BOXPLOT statement displays a single box if given just a Y argument. It displays multiple boxes if given both Y and X arguments and X has more than one unique value.

By default for numeric or character columns, the category (X) axis is TYPE=DISCRETE. You can override the default and set the TYPE= to LINEAR or TIME in the parent layout, provided that the X column is numeric. The axis for the analysis (Y) column is always LINEAR. When the X axis is LINEAR, you must use the INTERVALBOXWIDTH= option to specify the box width.
When **ORIENT=** VERTICAL, the X (or X2) axis is used for the X column and the Y (or Y2) axis is used for the Y column. When **ORIENT=** HORIZONTAL, the X (or X2) axis is used for the Y column and the Y (or Y2) axis is used for the X column.

Two basic box plot representations can be drawn with the **BOXPLOT** statement: a *schematic (Tukey) box plot* and a *skeletal box plot*. See the **EXTREME=** option for details.

The following figure illustrates the box plot elements:

As shown in the figure, the bottom and top edges of the box are located at the 25th and 75th percentiles of the sample. Within the box, you can display the median (50th percentile) as a line and the mean as a marker (see **DISPLAY=** option).

You can also display markers and data labels for outliers. Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5 \times IQR$). Outliers that are beyond upper and lower far fences ($\pm 3 \times IQR$) are called FAR OUTLIERS and can also be identified and labeled. From a graphical perspective, the location of fences along the axis are known, but there is no line or marker that displays a fence. (See **DISPLAY=**, **LABELFAR=**, and **DATALABEL=** options).

Finally, you can control the range represented by the whiskers. By default, the whiskers are drawn from the upper edge of the box to the MAX value, and from the lower edge of the box to the MIN value. (See the **EXTREME=** option.)

About the DISCRETEOFFSET= Option

This feature is useful for graphing multiple response variables side by side on a common axis. By default within an overlay-type layout, if multiple **BOXPLOT** statements are used with different analysis variables, then the boxes for matching X values are centered on the ticks. Depending on the data, the boxes might be superimposed. The following code fragment shows the default box positioning:

```
layout overlay / cycleattrs=true
```


To place the different response values side by side, you can assign a different offset to each BOXPLOT statement. The BOXWIDTH= option can be used in conjunction with the DISCRETEOFFSET= option to create narrower boxes when desired.

```plaintext
layout overlay / cycleattrs=true
   yaxisopts=(label="Miles Per Gallon");
   boxplot x=type y=mpg_city / name="City"
      discreteoffset=0.2 legendlabel="City";
   boxplot x=type y=mpg_highway / name="Highway"
      discreteoffset=0.2 legendlabel="Highway";
   discretelegend "City" "Highway";
endlayout;
```
Calculating Percentiles

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let \(n \) be the number of nonmissing values for a variable, and let \(X_1, X_2, ..., X_n \) represent the ordered values of the variable. \(X_1 \) is the smallest value, \(X_2 \) is the next smallest, and \(X_n \) is the largest value. Let the \(\text{rth} \) percentile be \(y \), set:

\[
p = \frac{t}{100}
\]

and let:

\[
np = j + g
\]

when PERCENTILE=1, 2, 3, or 5, or let:

\[
(n + 1)p = j + g
\]

when PERCENTILE=4, where \(j \) is the integer part of \(np \), and \(g \) is the fractional part of \(np \). Then the PERCENTILE= option defines the \(\text{rth} \) percentile, \(y \), as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at (X_{np})</td>
<td>(y = (1 - g)x_j + gx_{j+1})</td>
<td>(x_i) is taken to be (x_j)</td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to (np)</td>
<td>(y = x_j)</td>
<td>Used when (g < \frac{1}{2}) or when (g = \frac{1}{2}) and (j) is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_{j+1})</td>
<td>Used when (g = \frac{1}{2}) and (j) is odd or when (g > \frac{1}{2})</td>
</tr>
<tr>
<td>Percentile</td>
<td>Description</td>
<td>Equation</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>$y = x_j$</td>
<td>Used when $g = 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y = x_{j + 1}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at $x_{(n + 1)p}$</td>
<td>$y = (1 - g)x_j + gx_{j + 1}$</td>
<td>$x_{n + 1}$ is taken to be x_n</td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>$y = \frac{1}{2}(x_j + x_{j + 1})$</td>
<td>Used when $g = 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y = x_{j + 1}$</td>
<td>Used when $g > 0$</td>
</tr>
</tbody>
</table>

Changing Box Plot Display

The SAS System defines graphical style elements that control the display of box plots generated with the BOXLOT or BOXPLOTPARM statement. Using these style elements as a starting point, you can change the style attribute values to achieve a very different appearance for your box plots. Using the DEFAULT style for an example, here is a portion of the style template for elements that are related to box plots:

```sas
proc template;
define style Default;
...
style GraphBox /
capstyle = "serif"
connect = "mean"
displayopts = "fill caps median mean outliers";
style GraphBoxMean / ...;
style GraphBoxMedian / ...;
style GraphBoxOutlier / ...;
style GraphBoxWhisker / ...;
...
end;
run;
```

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphBox</td>
<td>general box plot properties (see the next table)</td>
</tr>
<tr>
<td>GraphBoxMean</td>
<td>marker properties of mean marker</td>
</tr>
<tr>
<td></td>
<td>(MARKERSYMBOL=, MARKERSIZE=, CONTRASTCOLOR=)</td>
</tr>
<tr>
<td>GraphBoxMedian</td>
<td>line properties of the median line</td>
</tr>
<tr>
<td></td>
<td>(LINESTYLE=, LINETHICKNESS=, CONTRASTCOLOR=)</td>
</tr>
<tr>
<td>GraphBoxOutlier</td>
<td>marker properties of outliers</td>
</tr>
<tr>
<td></td>
<td>(MARKERSYMBOL=, MARKERSIZE=, CONTRASTCOLOR=)</td>
</tr>
</tbody>
</table>
Style Element | Purpose
---|---
GraphBoxWhisker | line properties of whiskers and caps
(LINESTYLE=, LINETHICKNESS=, CONTRASTCOLOR=)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECT=</td>
<td>"MEAN"</td>
<td>statistic to connect with line</td>
</tr>
<tr>
<td>CAPSTYLE=</td>
<td>"SERIF"</td>
<td>shape at ends of whiskers</td>
</tr>
<tr>
<td>DISPLAYOPTS=</td>
<td>"<CAPS>"</td>
<td>show caps at end of whiskers</td>
</tr>
<tr>
<td></td>
<td>"<FILL>"</td>
<td>show filled boxes</td>
</tr>
<tr>
<td></td>
<td>"<MEAN>"</td>
<td>show a marker for the mean</td>
</tr>
<tr>
<td></td>
<td>"<MEDIAN>"</td>
<td>show a line for the median</td>
</tr>
<tr>
<td></td>
<td>"<OUTLIERS>"</td>
<td>show markers for the outliers</td>
</tr>
<tr>
<td></td>
<td>"<CONNECT>"</td>
<td>show line connecting same statistic on multiple boxes</td>
</tr>
<tr>
<td></td>
<td>"<NOTCHES>"</td>
<td>show notched boxes</td>
</tr>
</tbody>
</table>

The DISPLAYOPTS attribute of GraphBox lists the general features to be displayed. The following diagram shows the standard display for box plots, as defined by the DEFAULT style. The keywords that are related to the appearance features are annotated:
The two display options that are not the default are CONNECT (show connect lines) and NOTCHES.

The STATISTICAL style is derived from the DEFAULT style and inherits the GraphBox element from the parent DEFAULT style. The following code generates a box plot for the STATISTICAL style:

```sas
/* Specify a path for the ODS output */
filename odsout "output-path";

proc template;
  define statgraph boxplotdef;
  begingraph;
    entrytitle "Statistical Style";
    layout overlay / xaxisopts=(label="Age" type=linear);
      boxplot x=ageatstart y=cholesterol / intervalboxwidth=40;
    endlayout;
  endgraph;
end;

ods graphics / outputfmt=static;
ods _all_ close;
ods html path=odsout file="boxplot.html" style=statistical;

proc sgrender data=sashelp.heart template=boxplotdef;
  where ageatstart between 50 and 55;
run;

ods html close;
ods html; /* Not required in SAS Studio */
```
For this example, we want to change the following attributes on the default box plot:

- By default, serif caps are displayed at the end of the fences. We want to remove those caps from the fence lines.
- By default, the boxes are filled. We want to display empty, notched boxes.
- By default, the mean values are represented by hollow diamonds. We want to display filled diamonds and slightly reduce their size.
- By default, the marker symbols for the outliers are hollow black circles. We want to change the size and shape of the marker symbols, and again reduce their size.

To make these changes, we can derive a new style from the STATISTICAL style and set the attributes that we want to change. Any attribute settings that we do not change are inherited from the parent STATISTICAL style. The following style template effects the desired changes:

```plaintext
proc template;
  define style Boxplot;
    parent = styles.statistical;
    style GraphBox from GraphBox /
      capstyle = "line"
      displayopts = "caps median mean outliers notches";
    style GraphBoxMean from GraphBoxMean /
      markersymbol="diamondfilled"
      contrastcolor=GraphColors("gcdata1")
      markersize = 5px;
    style GraphOutlier from GraphOutlier /
      markersize = 5px
      markersymbol = "x"
      contrastcolor = GraphColors("gcdata2");
  end;
run;
```
Note the following:

- The DEFINE STYLE statement assigns the name BOXPLOT to our new style, and sets the STATISTICAL style as the parent style.

- On the GraphBox style element, the CAPSTYLE= attribute is set to LINE, which removes the serif caps from the end of the fences. The DISPLAYOPTS= attribute drops the FILL value from the display list and adds the NOTCHES value; these changes determine that the graph displays empty, notched boxes.

- On the GraphBoxMean style element, the marker symbol is changed to a filled diamond and the marker size is reduced to 5 pixels (the default is 9 pixels). The CONTRASTCOLOR= attribute is set to GCDATA1 (the default is GCDATA).

- On the GraphBoxOutlier style element, the marker symbol is changed to an X and the marker size is reduced to 5 pixels (the default is 7 pixels). The CONTRASTCOLOR= attribute is set to GCDATA2 (the default is GCOUTLIER).

The following code generates a box plot for the BOXPLOT style:

```sas
/* Specify a path for the ODS output */
filename odsout "output-path";

proc template;
   define statgraph boxplotdef;
   begingraph;
      entrytitle "Boxplot Style";
      layout overlay / xaxisopts=(label="Age" type=linear);
      boxplot x=ageatstart y=cholesterol / intervalboxwidth=40;
   endlayout;
   endgraph;
end;

ods graphics / outputfmt=static;
ods _all_ close;
ods html path=odsout file="notchedboxplot.html" style=Boxplot;

proc sgrender data=sashelp.heart template=boxplotdef;
   where ageatstart between 50 and 55;
run;

ods html close;
ods html; /* Not required in SAS Studio */
```
When making such style changes remember that you are affecting all box plot displays for all procedures that produce box plots when this style is in effect. It is possible to change the box plot appearance for specific procedures, but to do this, a specific graph template must be modified, not a style template.

For a comprehensive description of the style elements affecting ODS graphics, see “Graph Style Elements Used by ODS Graphics” in SAS Graph Template Language: User’s Guide.

Example: BOXPLOT Statement

The following graph was generated by the “Example Program” on page 336:
Example Program

```sas
proc template;
   define statgraph boxplot;
   begingraph;
      entrytitle "City Mileage for Vehicle Types";
      layout overlay
         xaxisopts=(offsetmin=0.1 offsetmax=0.1);
      boxplot y=mpg_city x=type /
         datalabel=make spread=true;
   endlayout;
   endgraph;
end;
run;

proc sgrender data=sashelp.cars template=boxplot;
   label type="Vehicle Type";
run;
```

BOXPLOTPARM Statement

Creates side-by-side box plots specified by parameters.

Requirements:

The input data must be precomputed. See "Input Data Requirements for the BOXPLOTPARM Statement" on page 362.

Nonmissing Y values for statistical observations of Q1 and Q3 are required for a box to be drawn.

The statistical values, if present, must conform to the following rules for a box to be displayed:

\[Q1 \leq \text{MEDIAN} \leq Q3 \]
Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

BOXPLOTPARM Y=numeric-column | expression
STAT=string-column </option(s)>;

BOXPLOTPARM X=column | expression
Y=numeric-column | expression
STAT=string-column </option(s)>;

Summary of Optional Arguments

Appearance options

BOXWIDTH=number
specifies the width of a box as a ratio of the maximum possible width.

CAPSHAPE=SERIF | LINE | BRACKET | NONE
specifies the shape at the ends of the whiskers.

CLUSTERWIDTH=number
specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the lines connecting multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the filled boxes.

DATATRANSPARENCY=number
specifies the degree of the transparency of the box outlines, box fill, whiskers, mean, median, caps, connect lines, outliers, and data labels, if displayed.

DISPLAY=STANDARD | ALL | (display-options)
specifies which additional features of the box plot to display.

EXTREME=TRUE | FALSE
specifies whether the whiskers can extend beyond the fences.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the interior fill area of the boxes.

INDEX=positive-integer-column | expression
specifies indices for mapping box attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

INTERVALBOXWIDTH=AUTO | dimension
specifies the box width when an interval category (X) column is specified.
MEANATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the marker representing the mean within the box.

MEDIANATTRS=style-element | style-element (line-options) | (line-options)
specifies the appearance of the line representing the median within the box.

ORIENT=VERTICAL | HORIZONTAL
specifies the orientation of the Y axis and of the boxes.

OUTLIERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the markers representing the outliers.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the appearance of the box outline.

SPREAD=TRUE | FALSE
specifies whether outliers with the same value are spread out to avoid overlap.

WHISKERATTRS=style-element | style-element (line-options) | (line-options)
specifies the line properties of the whiskers and caps.

Axes options

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

X AXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Y AXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

OUTLIERTIP=(role-list)
specifies the information to display when the cursor is positioned over an outlier.

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

DATALABEL=column
specifies the labels of the values that are identified as outlier or far outlier by the STAT= column.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the outlier labels.

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed.

DATALABELSPLITCHARDROP= TRUE | FALSE

specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY= CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

LABELFAR= TRUE | FALSE

specifies whether all outliers or only far outliers are labeled.

LEGENDLABEL= "string"

specifies a label to be used in a discrete legend for this plot.

Midpoint options

DISCRETEOFFSET= number

specifies an amount to offset all boxes from the discrete X ticks.

GROUP= column | discrete-attr-var | expression

creates a box plot for each unique group value of the specified column.

GROUPDISPLAY= OVERLAY | CLUSTER

specifies how to display the boxes that represent group values for the coordinate pairs.

GROUPORDER= DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP= TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

ODS options

URL= string-column

specifies an HTML page that is displayed when a box or an outlier marker is selected.

Plot reference options

NAME= "string"

assigns a name to this plot statement for reference in other template statements.

Statistics options

DISPLAYSTATS= NONE | STANDARD | ALL | (statistics-list)

specifies the statistics to be displayed for each box.

Required Arguments

Specifying only **Y=** creates a single box plot. Specifying both **X=** and **Y=** creates a box plot for each unique value of **X**.

Y= numeric-column | expression

specifies the column for the Y values. The Y values must be the statistical values needed for the box plot. At a minimum, there must be nonmissing values for the 25th and 75th percentiles.

X= column | expression

specifies the column for the X values. The X values must qualify or classify the values in the Y column. This optional argument is used to create a plot box for each classifier.
Restriction When you specify a numeric column for the X= argument and the category axis is an interval axis, you should not change the column value format. Doing so might result in incorrect output.

STAT=string-column
specifies the statistic that is represented by the value in the Y column. Valid STAT= column values include the following (see the requirements listed at the end of this description):

BOXWIDTH
specifies the width of the boxes as a ratio of the maximum possible width. The range of values is 0 (narrowest) to 1 (widest). The default is 0.4. If the Y value corresponding to BOXWIDTH is in range, then it overrides the setting that is specified in the BOXWIDTH= option.

DATAMAX
specifies the maximum data value that includes not only the maximum whisker values but the maximum outlier values as well. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

Note This statistic is valid in the first maintenance release of SAS 9.4 and later releases.

DATAMIN
specifies the minimum data value that includes not only the minimum whisker values but the minimum outlier values as well. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

Note This statistic is valid in the first maintenance release of SAS 9.4 and later releases.

FAROUTLIER
specifies the observations that are outside the lower and upper far fences. The far fences are located at a distance 3 times the Interquartile Range (IQR = Q3–Q1) above and below the box. The far outliers are labeled when the DATALABEL= option is used. Specify that LABELFAR= TRUE to label only the far outliers but not the outliers.

MAX
specifies the maximum data value less than or equal to the upper fence.

MEAN
specifies the data mean.

MEDIAN
specifies the data median.

MIN
specifies the minimum data value greater than or equal to the lower fence.

N
specifies the subgroup sample size. The N value is not shown in the plot but is used to calculate notch locations when the DISPLAY= option displays notches.

OUTLIER
specifies the observations that are outside the lower and upper fences. The fences are located at a distance 1.5 times the Interquartile Range (IQR = Q3–Q1) above and below the box. The outliers are labeled when the DATALABEL= option is used.
Q1 specifies the 1st quartile (25th percentile). The data must contain a nonmissing value for this quartile.

Q3 specifies the 3rd quartile (75th percentile). The data must contain a nonmissing value for this quartile.

STD specifies the data standard deviation.

SUMWGT specifies the sum of the weights for the box.

Note This statistic is valid in the first maintenance release of SAS 9.4 and later releases.

Requirements Nonmissing Y values for STAT observations of Q1 and Q3 are required for a box to be drawn. Other STAT values can be omitted or have missing Y values.

The STAT values, if present, must conform to the following rules for a box to be displayed:

\[Q1 \leq \text{MEDIAN} \leq Q3 \]
\[\text{MIN} \leq \text{MAX} \]
\[\text{STD} \geq 0 \]
\[N > 0 \]

Optional Arguments

BOXWIDTH=number specifies the width of a box as a ratio of the maximum possible width.

Defaults

For nongrouped data, the default is 0.4.

For grouped data, the default is 0.6.

Range

0–1, where 0 is the narrowest and 1 is the widest

Interactions

For grouped box plots with a discrete X (category) axis, the box width is a percentage of the CLUSTERWIDTH.

This option is overridden by the Y value when the STAT= column value is BOXWIDTH and the corresponding Y value is in range.

Prior to the third maintenance release of SAS 9.4, this option is ignored for an interval box plot, and the box width is controlled by the INTERVALBOXWIDTH= option. Starting with the third maintenance release of SAS 9.4, this option is honored for an interval box plot, but it can be overridden by the INTERVALBOXWIDTH= option.

CAPSHAPE=SERIF | LINE | BRACKET | NONE specifies the shape at the ends of the whiskers.

SERIF specifies a short line perpendicular to the whisker.
LINE
specifies a line perpendicular to the whisker that extends the width of the box.

BRACKET
specifies a line perpendicular to the whiskers that extends the width of the box and that has short extensions at each end. The extensions are drawn in the direction of the box.

NONE
specifies that no shape appears at the ends of the whiskers.

The following figure shows each of the shapes.

```
+-------------------+-------------------+-------------------+-------------------+
| Serif             | Line              | Bracket           | None              |
+-------------------+-------------------+-------------------+-------------------+
|                   |                   |                   |                   |
+-------------------+-------------------+-------------------+-------------------+
```

Default
The GraphBox:CapStyle style reference.

Interactions
The cap color and the thickness are specified by the WHISKERATTRS= option. The cap pattern is always solid.

The DISPLAY= option must include CAPS in order for cap lines to be shown.

CLUSTERWIDTH=number
specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

```
+-------------------+-------------------+-------------------+-------------------+
| Cluster           | Cluster           | Cluster           | Cluster           |
+-------------------+-------------------+-------------------+-------------------+
|                   |                   |                   |                   |
+-------------------+-------------------+-------------------+-------------------+
```

Default 0.7

Range 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.
Requirement
For this option to take effect, the GROUP= option must also be specified, and the GROUPDISPLAY= option must be set to CLUSTER.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Default
The GraphBox:Connect style reference.

Requirement
The DISPLAY= option must contain the CONNECT display-options value for the connect line to be displayed.

Interaction
This option applies only when the X= argument is used to generate multiple boxes.

Note
Starting with the third maintenance release of SAS 9.4, the connect lines are drawn in axis order. In prior releases, they are drawn in data order.

CONNECTATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the lines connecting multiple boxes.

Default
The GraphConnectLine style element.

Interaction
If there is only one box, then this option is ignored.

If the DISPLAY= option does not include CONNECT, or if the GROUP= option is used, then this option is ignored.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

DATALABEL=column
specifies the labels of the values that are identified as outlier or far outlier by the STAT= column. Either a numeric or a character column can be used.

Default
No data labels are displayed

Interaction
This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See
the LABELFAR= option

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the outlier labels.

Default
The GraphDataText style element.

Interaction
This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.
DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters. When set to TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters.

Default	FALSE. The data labels are not split.
Requirement	The DATALABEL= option must also be specified.
Interaction	The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.
See	“boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

Default	A blank space
Requirements	The list of characters must be enclosed in quotation marks.
Requirements	Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:
	datalabelsplitchar="abc"
Interaction	The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.
Notes	When multiple characters are specified, the order of the characters in the list is not significant.
Notes	The split characters are case sensitive.
Tip	Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

TRUE
drops the split characters from the data label.
FALSE includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"

When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default TRUE. The split characters are dropped from the data label.

Requirement The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction The DATALABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

Default Justification is determined by the system.

Requirement The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the filled boxes. The following figure shows boxes with each of the skins applied.
The `DATASKIN=` option value that is specified in the `BEGINGRAPH` statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the `DATASKINMAX=` option in your ODS GRAPHICS statement to increase the maximum limit.

For this option to have any effect, the fill must be enabled by the ODS style or the `DISPLAY=` option.

This option overrides the `BEGINGRAPH` statement `DATASKIN=` option.

The data skin appearance is based on the `FILLATTRS=` color.

When a data skin is applied, all bar outlines are set by the skin, and the `OUTLINEATTRS=` option is ignored.

DATATRANSPARENCY=number

specifies the degree of the transparency of the box outlines, box fill, whiskers, mean, median, caps, connect lines, outliers, and data labels, if displayed.

Default: 0

Range: 0–1, where 0 is opaque and 1 is entirely transparent

The `FILLATTRS=` option can be used to set transparency for just the interior fill area of the boxes. You can combine this option with `FILLATTRS=` to set one transparency for the box outlines and the whiskers, mean, median, caps, and connect lines, but a different transparency for the box fills. Example:

```
datatransparency=0.2 fillattrs=(transparency=0.6)
```
DISCRETEOFFSET=number
specifies an amount to offset all boxes from the discrete X ticks.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (no offset, all boxes are centered on the discrete ticks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is to the right when ORIENT=VERTICAL, and up when ORIENT=HORIZONTAL. (If the layout's axis options set REVERSE=TRUE, then the offset direction is also reversed.)</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to discrete axes only. For nondiscrete axes, this option is ignored.</td>
</tr>
<tr>
<td>Tip</td>
<td>Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.</td>
</tr>
<tr>
<td>See</td>
<td>“About the DISCRETEOFFSET= Option” on page 364</td>
</tr>
</tbody>
</table>

DISPLAY=STANDARD | ALL | (display-options)
specifies which additional features of the box plot to display.

- **STANDARD**
 displays this combination of features (CAPS FILL MEAN MEDIAN OUTLIERS)

- **ALL**
 displays all features

(display-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

- **CAPS** displays caps at the ends of the whiskers
- **CONNECT** displays the line connecting multiple boxes
- **FILL** displays filled boxes
- **MEAN** displays the mean symbol within the box
- **MEDIAN** displays the median line within the box
- **NOTCHES** displays notched boxes
- **OUTLIERS** displays markers for the outliers

The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm 1.58 \frac{\text{IQR}}{\sqrt{n}}
\]

In the equation, IQR is the interquartile range and \(n \) is the sample size.
The GraphBox:DisplayOpts style reference. If this style element does not exist, then the default is STANDARD.

The display features requested can be displayed only if the input data includes this information.

If EXTREME= TRUE, then the OUTLIERS feature is ignored.

Starting with the third maintenance release of SAS 9.4, the connect lines are drawn in axis order. They are drawn in data order in prior releases.

Starting with the third maintenance release of SAS 9.4, when DISPLAY= includes MEAN, the BOXPLOTPARM statement contributes its mean markers to a discrete legend when TYPE=MARKER is in effect in the DISCRETELEGEND statement.

To control the appearance of these features, use the CONNECTATTRS=, FILLATTRS=, MEANATTRS=, MEDIANATTRS=, OUTLIERATTRS=, and WHISKERATTRS= options. The WHISKERATTRS= option controls affects both CAPS and WHISKERS.

Regardless of which display options are being displayed, this option does not affect the axis range.

DISPLAYSTATS=NONE | STANDARD | ALL | (statistics-list)

specifies the statistics to be displayed for each box.

NONE

does not display any statistics.

STANDARD

displays N, MEAN, and STD.

ALL

displays all available statistics (see the statistics-list)
(statistics-list)
a space-separated list of one or more of the following statistics, enclosed in parentheses:

- **DATAMAX**: maximum data value that includes not only the maximum whisker values but also the maximum outlier values. This option is valid in the first maintenance release of SAS 9.4 and later releases. The DATAMAX value is greater than or equal to the MAX value and is always represented in the axis range.

- **DATAMIN**: minimum data value that includes not only the minimum whisker values but also the minimum outlier values. This option is valid in the first maintenance release of SAS 9.4 and later releases. The DATAMIN value is less than or equal to the MIN value and is always represented in the axis range.

- **IQR**: interquartile range (Q3–Q1).

- **MAX**: maximum data value below the box upper fence.

- **MEAN**: mean data value for the box.

- **MEDIAN**: median data value for the box.

- **MIN**: minimum data value above the box lower fence.

- **N**: number of observations for the box.

- **Q1**: lower quartile (25th percentile) for the box.

- **Q3**: upper quartile (75th percentile) for the box.

- **RANGE**: range of the data (MAX–MIN).

- **STD**: standard deviation of the data for the box.

- **SUMWGT**: sum of the weights for the box. This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default: NONE

Restrictions: This option is ignored if **ORIENT=** HORIZONTAL

Only those statistics that are included in the **STAT=** column can be displayed. **RANGE** requires both **MAX** and **MIN** to be included. **IQR** requires both **Q1** and **Q3** to be included.

Note: The notches in the box plot can extend beyond DATAMIN and DATAMAX in some cases.

EXTREME=TRUE | FALSE
specifies whether the whiskers can extend beyond the fences. Fences are locations above and below the box. The upper and lower fences are located at a distance 1.5 times the Interquartile Range (IQR) (IQR = Q3 - Q1). The upper and lower far fences are located at a distance 3 times the IQR.

FALSE specifies that whiskers be drawn from the upper edge of the box to the largest value within the upper fence, and from the lower edge of the box to the smallest value within the lower fence. This representation is sometime called a schematic box plot or a Tukey box plot.
TRUE specifies that whiskers be drawn to the largest and smallest data values, whether these values are inside or outside the fences. The outliers and far outliers are not displayed and are not labeled. This representation is sometime called a *skeletal box and whisker plot*.

Default
FALSE

Interaction
This option overrides the `DATALABEL=`, `DATALABELATTRS=`, `LABELFAR=`, `OUTLIERATTRS=`, and `SPREAD=` options.

See
“Statement Summary” on page 361

“boolean” on page 1339 for other Boolean values that you can use.

FILLATTRS= `style-element | style-element (fill-options) | (fill-options)`
specifies the appearance of the interior fill area of the boxes.

Defaults
For non-grouped data, the Color attribute of GraphDataDefault style element.

For grouped data, the Color attribute of GraphData1–GraphDataN style elements.

Interaction
For this option to have any effect, the fill must be enabled by the ODS style or the `DISPLAY=` option.

Tip
The `DATATRANSPARENCY=` option sets the transparency for the box outlines, box fill, whiskers, mean, median, caps, connect lines, and outliers. You can combine this option with `DATATRANSPARENCY=` to set one transparency for the box outlines and the whiskers, mean, median, caps, and connect lines, but a different transparency for the box fills. Example:

`datatransparency=0.2 fillattrs=(transparency=0.6)`

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Fill Options” on page 1348 for available `fill-options`.

GROUP= `column | discrete-attr-var | expression`
creates a box plot for each unique group value of the specified column.

`discrete-attr-var`
specifies a discrete attribute map variable that is defined in a `DISCRETEATTRVAR` statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

The box plot display depends on the setting for the `GROUPDISPLAY=` option. This option can be used to group the box plots in the display.

Defaults
Each distinct group value is represented in the plot by a different box outline color. The outline colors are defined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements.
If the MEDIAN, CAPS, or NOTCHES are enabled by the \texttt{DISPLAY=} option, then each of these features uses the same color as the box outline. Line styles do not change by group value.

If the MEAN or OUTLIERS are enabled by the \texttt{DISPLAY=} option, then each distinct group value is represented by a different marker. The markers are defined by the MarkerSymbol and ContrastColor attributes of the GraphData1–GraphDataN and GraphMissing style elements. A marker is used for both MEAN and OUTLIERS, if displayed.

If box fills are enabled by the ODS style or by the \texttt{DISPLAY=} option, then each distinct group value is represented in the plot by a different fill color. The fill colors are defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style references.

\textbf{Interactions} Connect lines are not drawn for grouped data.

This option causes the \texttt{DISPLAY=(CONNECT)} and the \texttt{CONNECT=} options to be ignored.

\textbf{Tips} By default, the group values are mapped in the order of the data. The \texttt{GROUPORDER=} option can be used to control the sorting order of the group values. The \texttt{INDEX=} option can be used to alter the default sequence of colors and markers.

The \texttt{INCLUDEMISSINGGROUP} option controls whether missing group values are considered a distinct group value.

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the box outlines, but the \texttt{PATTERN=} setting on the \texttt{OUTLIERATTRS=} option could be used to assign the same line pattern to all box outlines and connect lines.

\textbf{See} the \texttt{GROUPDISPLAY=} option to see the output for the grouped boxes

\textit{“DISCRETEATTRVAR Statement” on page 1297}

\textbf{GROUPDISPLAY=OVERLAY | CLUSTER}

specifies how to display the boxes that represent group values for the coordinate pairs. The following example shows a box plot with \texttt{GROUPDISPLAY=CLUSTER}:
OVERLAY
draws boxes for a given group value at the exact coordinate. Depending on the data, boxes at a given coordinate might overlap.

CLUSTER
draws boxes for a given group value adjacent to each other. This option is available only when the category (X) column is discrete.

Default OVERLAY

Interactions This option is ignored unless GROUP= is specified.

The groups in the legend are shown in the order that is specified in GROUPORDER by default.

Attributes such as color, symbol, and pattern are assigned to each group in DATA order by default.

Tip Use the CLUSTERWIDTH= option to control the width of the clusters when CLUSTER is in effect.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.
Default	DATA
Interactions | This option is ignored if the GROUP= option is not also specified.
---|---
By default, the groups in the legend are shown in the order that is specified in GROUPORDER.
---|---
Notes | Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.
---|---
The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.
---|---
INCLUDEMISSINGGROUP= TRUE | FALSE
---|---
specifies whether missing values of the group variable are included in the plot.
---|---
Default | TRUE
---|---
Interaction | For this option to take effect, the GROUP= option must also be specified.
---|---
Tip | The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.
---|---
See | “boolean” on page 1339 for other Boolean values that you can use.
---|---
INDEX= positive-integer-column | expression
---|---
specifies indices for mapping box attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.
---|---
Requirements | The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.
---|---
The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.
---|---
All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.
---|---
Interaction | For this option to take effect, the GROUP= option must also be specified.
---|---
Notes | The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.
If you do not use this option, then the group values are mapped in the order of the data.

Tip
You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

INTERVALBOXWIDTH=AUTO | *dimension*

specifies the box width when an interval category (X) column is specified.

AUTO

prior to the third maintenance release of SAS 9.4, AUTO uses 85% of the smallest interval between any two boxes for the given plot. Starting with the third maintenance release of SAS 9.4, AUTO uses the BOXWIDTH= option setting or the Y value when STAT=BOXWIDTH and the corresponding Y value is in range.

dimension

sets the box width to the specified value.

Default AUTO

Restriction The axis type for the category axis (X by default) must be LINEAR, and the X column must be numeric.

Interactions Starting with the third maintenance release of SAS 9.4, this option is overridden by the Y value when the STAT= column value is BOXWIDTH and the corresponding Y value is in range.

Prior to the third maintenance release of SAS 9.4, this option controls the box width for an interval box plot. Starting with the third maintenance release of SAS 9.4, this option overrides the BOXWIDTH= option for an interval box plot.

See
“*dimension*” on page 1340

LABELFAR=TRUE | FALSE

specifies whether all outliers or only far outliers are labeled.

FALSE

applies the labels specified by the DATALABEL= option to both the outliers and the far outliers.

TRUE

applies the labels specified by the DATALABEL= option to the far outliers.

Default FALSE

Interaction This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See
“Statement Summary” on page 326 for information about outliers.

“boolean ” on page 1339 for other Boolean values that you can use.

LEGENDLABEL="*string*"

specifies a label to be used in a discrete legend for this plot.
The Y= column label. If a label is not defined, then the Y= column name is used.

This option applies only to an associated DISCRETELEGEND statement.

If the GROUP= option is specified, then this option is ignored.

MEANATTRS=

<table>
<thead>
<tr>
<th>MEANATTRS=</th>
<th>Specifies the attributes of the marker representing the mean within the box.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults</td>
<td>For non-grouped data, GraphBoxMean style element.</td>
</tr>
<tr>
<td></td>
<td>For grouped data, the MarkerSymbol, Markersize, and ContrastColor attributes of the GraphData1–GraphDataN style elements.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option is ignored if the DISPLAY= option does not display the mean.</td>
</tr>
</tbody>
</table>

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

MEDIANATTRS=

<table>
<thead>
<tr>
<th>MEDIANATTRS=</th>
<th>Specifies the appearance of the line representing the median within the box.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults</td>
<td>For non-grouped data, the GraphBoxMedian style element.</td>
</tr>
<tr>
<td></td>
<td>For grouped data, the LineStyle and LineThickness attributes of the GraphBoxMedian style element, and the ContrastColor attribute of the GraphData1–GraphDataN style elements.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option is ignored if the DISPLAY= option does not display the median.</td>
</tr>
</tbody>
</table>

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

NAME="string"

Assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

The string is used as the default legend label if the LEGENDLABEL= option is not used.

ORIENT=VERTICAL | HORIZONTAL

Specifies the orientation of the Y axis and of the boxes.

Default VERTICAL
OUTLIERATTRS=style-element | style-element (marker-options) | (marker-options)

specifies the attributes of the markers representing the outliers.

Defaults

For non-grouped data, GraphOutlier style element.

For grouped data, the MarkerSymbol, Markersize, and ContrastColor attributes of the GraphData1–GraphDataN style elements.

Interaction

This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

OUTLIERTIP=(role-list)

specifies the information to display when the cursor is positioned over an outlier. If this option is used, then it replaces all of the information that is displayed by default.

(role-list)

an ordered, space-separated list of unique BOXPLOTPARM roles and user-defined roles. BOXPLOTPARM roles for OUTLIERTIP include X, Y, STAT, and DATALABEL.

Note

In the data tip, the STAT role displays the text “outlier” or “far outlier” as applicable.

Tip

User-defined roles are defined with the ROLENAME= option.

Example

The following example displays data tips for the columns that are assigned to the X and Y roles, and also the data column Obs, which is not assigned to any pre-defined BOXPLOTPARM role. The Obs column must first be assigned a role:

```
ROLENAME=(TIP1=OBS)
OUTLIERTIP=(X Y TIP1)
```

Default

The columns assigned to these roles are automatically included in the data tip information: X and Y.

Requirement

To generate data tips, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and write the graphs to the ODS HTML destination.

Interaction

The labels and formats for the OUTLIERTIP variables can be controlled with the TIPLABEL= and TIPFORMAT= options.

See

the ROLENAME= option for specifying user-defined roles.

the TIP= option for specifying the information to display when the cursor is positioned over a box or whisker in the box plot.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the appearance of the box outline.

Defaults

For non-grouped data, the ContrastColor, LineThickness, and LineStyle attributes of the GraphOutlines style element.
For grouped data and filled boxes, the LineStyle and LineThickness attributes of the GraphOutlines style element, and the ContrastColor attribute of the GraphData1–GraphDataN style elements.

For grouped data and unfilled boxes, the LineThickness attribute of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the OUTLIERTIP= option.

(role-name-list) a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles DATAMAX, DATAMIN, MAX, MIN, MEAN, MEDIAN, N, Q1, Q2, STD, SUMWGT, and X.

Note The roles DATAMAX, DATAMIN, and SUMWGT are valid in the first maintenance release of SAS 9.4 and later releases.

SPREAD=TRUE | FALSE
specifies whether outliers with the same value are spread out to avoid overlap. For vertical box plots this means offsetting the outliers horizontally. If this option is
false, then outliers with the same value are plotted in the same position, which means only one is visible.

Default FALSE

Interaction This option is ignored if EXTREME= TRUE or the DISPLAY= option does not display the outliers.

See “boolean ” on page 1339 for other Boolean values that you can use.

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over a box or whisker in the box plot. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the box plot can be specified along with roles that do contribute.

(role-list)

an ordered, space-separated list of unique BOXPLOTPARM roles. BOXPLOTPARM roles for TIP include DATAMAX, DATAMIN, MAX, MIN, MEAN, MEDIAN, N, Q1, Q2, STD, SUMWGT, and X.

Note The roles DATAMAX, DATAMIN, and SUMWGT are valid in the first maintenance release of SAS 9.4 and later releases.

Tip Statistics such as N, MIN, and MAX are special roles, They are not column-based like the X role.

Example The following example displays data tips only for the columns that are assigned to the roles X (CATEGORY) and the statistic MEAN: TIP=(X MEAN)

NONE

suppresses data tips from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: DATAMAX, DATAMIN, MAX, MIN, MEAN, MEDIAN, N, Q1, Q2, STD, SUMWGT, and X.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

See the OUTLIERTIP= option for specifying the information to display when the cursor is positioned over an outlier.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.
(role-format-list)
a space-separated list of role-name = format pairs.

Example
```
ROLENAME=(TIP1=SALARY)  
TIP=(TIP1)  
TIPFORMAT=(TIP1=DOLLAR12.)
```

Default
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction
Only the roles that appear in the OUTLIERTIP= or TIP= options are used.

Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

角色标签列表
a space-separated list of rolename = "string" pairs.

Example
```
ROLENAME=(TIP1=PCT)  
TIP=(TIP1)  
TIPLABEL=(TIP1="Percent")
```

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the OUTLIERTIP= or TIP= options are used.

Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

URL=string-column
specifies an HTML page that is displayed when a box or an outlier marker is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

字符串列
specifies a column that contains a valid HTML page reference (HREF) for each box or outlier marker that is to have an active link.

Example
```
http://www.sas.com/technologies/analytics/index.html
```

The character column can specify different target URLs for each box and outlier marker.

Requirements
The target URLs for the boxes must be specified in the Q1 statistic observations, and the target URLs for the outlier markers must be specified in the OUTLIER statistic observations. URLs that are specified in observations other than Q1 and OUTLIER are ignored.
To generate selectable boxes and outlier markers, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

Interaction

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip

The URL value can be blank for a box or outlier, meaning that no action is taken when that box or outlier marker is selected.

Example

The following vehicle mileage data sample shows box and outlier URLs specified in column URL for Sedan.

<table>
<thead>
<tr>
<th>STAT</th>
<th>X</th>
<th>VALUE</th>
<th>DATALABEL</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Sedan</td>
<td>262.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>Sedan</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIAN</td>
<td>Sedan</td>
<td>20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>Sedan</td>
<td>18.00</td>
<td>./mileageSedan.html</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Sedan</td>
<td>24.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>Sedan</td>
<td>4.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>36.00</td>
<td>Honda</td>
<td>./mileageHonda.html</td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>35.00</td>
<td>Toyota</td>
<td>./mileageToyota.html</td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>35.00</td>
<td>Toyota</td>
<td>./mileageToyota.html</td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>38.00</td>
<td>Volkswagen</td>
<td>./mileageVolkswagen.html</td>
</tr>
<tr>
<td>MIN</td>
<td>Sedan</td>
<td>12.00</td>
<td>Volvo</td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>Sedan</td>
<td>33.00</td>
<td>Volvo</td>
<td></td>
</tr>
</tbody>
</table>

WHISKERATTRS=

```plaintext
style-element | style-element (line-options) | (line-options)
```

specifies the line properties of the whiskers and caps.

Defaults

For non-grouped data, the GraphBoxWhisker style element.

For grouped data, the LineStyle and LineThickness attributes of the GraphBoxWhisker style element, and the ContrastColor attribute of the GraphData1–GraphDataN style elements.

Restriction

The caps are always drawn with a solid line.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Line Options” on page 1349 for available `line-options`.

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default

X

Interactions

This option is ignored if the X= argument is not specified.
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS= **Y | Y2**
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>Y</th>
</tr>
</thead>
</table>

Interaction
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

Statement Summary
The BOXPLOTPARM statement requires precomputed input data. One reason to choose this statement over the BOXPLOT statement is that you can control the computational technique used to compute various statistics for the box plot, such as the mean, quartiles, location of fences, outlier definition, and so on. See Appendix 5, “Generalized Macro for BOXPLOTPARM Data,” on page 1357 for examples of such computations using PROC SUMMARY and multiple DATA steps.

The BOXPLOTPARM statement displays a single box if given just Y and a STAT argument. It displays multiple boxes if given both Y and X and a STAT argument and X has more than one unique value.

By default for numeric or character columns, the category (X) axis is TYPE=DISCRETE. You can override the default and specify TYPE=LINEAR in the parent layout, provided that the X column is numeric. The axis for the analysis (Y) column is always LINEAR. When the X axis is LINEAR, you can use the **INTERVALBOXWIDTH=** option to specify the box width.

When ORIENT= VERTICAL, the X (or X2) axis is used for the X column and the Y (or Y2) axis is used for the Y column. When ORIENT=HORIZONTAL, the X (or X2) axis is used for the Y column and the Y (or Y2) axis is used for the X column.

Two basic box plot representations can be drawn with the BOXPLOTPARM statement: a **schematic (Tukey) box plot** and a **skeletal box plot**. See the **EXTREME=** option for details.

The following figure illustrates the box plot elements:
As shown in the figure, the bottom and top edges of the box are located at the 1st quartile (25th percentile) and 3rd quartile (75th percentile) of the sample. Within the box, you can display the median (50th percentile) as a line and the mean as a marker (see the DISPLAY= option).

You can also display markers and data labels for outliers. Outliers are observations that are more extreme than the upper and lower fences (±1.5 IQR). Outliers that are beyond upper and lower far fences (±3 IQR) are called FAR OUTLIERS and can also be identified and labeled. From a graphical perspective, the location of fences along the axis are known, but there is no line or marker that displays a fence. (See DISPLAY=, LABELFAR=, and DATALABEL= options).

Finally, you can control the range represented by the whiskers. By default, the whiskers are drawn from the upper edge of the box to the MAX value, and from the lower edge of the box to the MIN value. (See the EXTREME= option.)

Input Data Requirements for the BOXPLOT Parm Statement

At a minimum, valid data for the BOXPLOT Parm statement must provide a numeric column (Y=) that contains calculated statistics for an analysis, and a string column (STAT=) that identifies each statistic. The Y column must contain nonmissing values for the Q1 (25th percentile) and Q3 (75th percentile) statistics. If Y values are missing or not supplied for other statistic values, then those statistics are not displayed in the plot, regardless of syntax requests to display them.

For example, a petroleum company uses a turbine to heat water into steam that is pumped into the ground to make oil more viscous and easier to extract. This process occurs 20 times daily, and the amount of power (in kilowatts) used to heat the water to the desired temperature is recorded. The following data show the statistics that are calculated for one day of this process:
To plot the data from the preceding table, the following `BOXPLOTPARM` statement uses the `Y=` and `STAT=` arguments to generate a single box plot for the recorded statistics:

```
BOXPLOTPARM Y=PowerOutputs STAT=Statistic;
```

If the data contain statistics for multiple days of the process, then a third column in the data must be present to identify the days that the statistics were recorded. For example, the following data show the statistics that are calculated for two days of this process:

<table>
<thead>
<tr>
<th>Day</th>
<th>PowerOutputs</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>04JUL</td>
<td>3180.00</td>
<td>MIN</td>
</tr>
<tr>
<td>04JUL</td>
<td>3340.00</td>
<td>Q1</td>
</tr>
<tr>
<td>04JUL</td>
<td>3487.40</td>
<td>MEAN</td>
</tr>
<tr>
<td>04JUL</td>
<td>3490.00</td>
<td>MEDIAN</td>
</tr>
<tr>
<td>04JUL</td>
<td>3610.00</td>
<td>Q3</td>
</tr>
<tr>
<td>04JUL</td>
<td>4050.00</td>
<td>MAX</td>
</tr>
<tr>
<td>04JUL</td>
<td>20.00</td>
<td>N</td>
</tr>
</tbody>
</table>
To plot the data from the preceding table, the BOXPLOTPARM statement needs the `Y=`,
`STAT=`, and `X=` arguments to generate a separate box plot for each day that the statistics
were recorded:

```plaintext
BOXPLOTPARM Y=PowerOutputs STAT=Statistic X=Day;
```

See Appendix 5, “Generalized Macro for BOXPLOTPARM Data,” on page 1357 for a
more complete example of providing input data for BOXPLOTPARM.

About the **DISCRETEOFFSET= Option**
The **DISCRETEOFFSET**= option is useful for graphing multiple response variables side
by side on a common axis. By default within an overlay-type layout, if multiple
BOXPLOTPARM statements are used with different analysis variables, then the boxes
for matching X values are centered on the ticks. Depending on the data, the boxes might
be superimposed. The following code fragment shows the default box positioning:
To place the different response values side by side, you can assign a different offset to each BOXPLOTPARM statement. The BOXWIDTH= option can be used in conjunction with the DISCRETEOFFSET= option to create narrower boxes when desired.

```
layout overlay / cycleattrs=true
    yaxisopts=(label="Miles Per Gallon");

    boxplotparm x=type y=mpg_city stat=y_stat / name="City"
    discreteoffset=0.2 ;
    boxplotparm x=type y=mpg_highway stat=y_stat / name="Highway"
    discreteoffset=-0.2 ;

    discretelegend "City" "Highway";
endlayout;
```
Changing Box Plot Display
The SAS System defines graphical style elements that control the display of box plots. Using these style elements as a starting point, you can change the style attribute values to achieve a very different appearance for your box plots. For more information, see “Changing Box Plot Display” on page 330.

Example: BOXPLOTPARM Statement

The following graph was generated by the “Example Program” on page 367:
Example Program

The following input data generates the box for Sedan in the graph. See Appendix 5, “Generalized Macro for BOXPLOTPARM Data,” on page 1357 to see the code for creating all of the data.

<table>
<thead>
<tr>
<th>STAT</th>
<th>X</th>
<th>VALUE</th>
<th>DATALABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Sedan</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>Sedan</td>
<td>21.0840</td>
<td></td>
</tr>
<tr>
<td>MEDIAN</td>
<td>Sedan</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>Sedan</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Sedan</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>Sedan</td>
<td>4.2346</td>
<td></td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>36</td>
<td>Honda</td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>35</td>
<td>Toyota</td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>35</td>
<td>Toyota</td>
</tr>
<tr>
<td>OUTLIER</td>
<td>Sedan</td>
<td>38</td>
<td>Volkswagen</td>
</tr>
<tr>
<td>MIN</td>
<td>Sedan</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>Sedan</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here is the code for this example.

```sas
/* Define the template for the plot. */
proc template;
   define statgraph boxplotparm1;
      begingraph;
         entrytitle "City Mileage for Vehicle Types";
         layout overlay;
            boxplotparm y=value x=x stat=stat /
               datalabel=datalabel spread=true ;
         endlayout;
      endgraph;
   end;
run;

/* Use the BOXCOMPUTE macro to generate the data for this plot. */
%boxcompute(indsn=sashelp.cars,x=type,y=mpg_city,datalabel=make);

/* Generate the plot. */
proc sgrender data=boxdata template=boxplotparm1;
run;
```

BUBBLEPLOT Statement

Creates a bubble plot of the input data. The locations of the bubble centers correspond to the values of X and Y columns in the data, and the bubble radii correspond to the values of a SIZE column.

Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.
Syntax

BUBBLEPLOT X=column | expression
Y=column | expression
SIZE=numeric-column | expression </option(s)>;

Summary of Optional Arguments

Appearance options

- BUBBLERADIUSMAX=dimension
 specifies the drawing size of the largest bubble.

- BUBBLERADIUSMIN=dimension
 specifies the drawing size of the smallest bubble.

- COLORMODEL=color-ramp-style-element | (color-list)
 specifies a color ramp to use with the COLORRESPONSE= option.

- COLORRESPONSE=numeric-column | range-attr-var | expression
 specifies the numeric column or range attribute map variable to use to determine the bubble colors.

- DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 enhances the visual appearance of the filled bubbles.

- DATATRANSPARENCY=number
 specifies the degree of the transparency of the bubble fills and bubble outlines.

- DISPLAY=STANDARD | ALL | (display-options)
 specifies whether to display outlined bubbles, filled bubbles, or outlined and filled bubbles.

- DRAWORDER=SIZE | DATA
 specifies whether the bubbles are drawn according to bubble size or according to data order.

- FILLATTRS=style-element | style-element (fill-options) | (fill-options)
 specifies the appearance of the filled bubble areas.

- INDEX=positive-integer-column | expression
 specifies indices for mapping bubble attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

- OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the appearance of the bubble outlines.

- RELATIVESCALE=TRUE | FALSE
 specifies whether the SIZE= column values are interpreted as relative values.

- RELATIVESCALETYPE=LINEAR | PROPORTIONAL
 specifies the type of scaling that is to be applied to the SIZE= column values.

- REVERSECOLORMODEL=TRUE | FALSE
 specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

- SIZETHRESHOLDMAX=numeric-value
 specifies a SIZE= column value threshold at which bubble size is clamped to the BUBBLERADIUSMAX= option value.

Axes options

- PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

ROLENAMESPACE=(role-name-list)

specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over the bubbles.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns.

TIPLABEL=(role-label-list)

specifies display labels for tip columns.

Label options

DATALABEL=column | expression

specifies a column for bubble labels.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the bubble labels.

DATALABELPOSITION=TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT

specifies the location of the bubble labels relative to the bubble.

DATALABELSPLIT=TRUE | FALSE

specifies whether to split the data labels at the specified split characters.

DATALABELSPLITCHAR="character-list"

specifies one or more characters on which the data labels can be split if needed.

DATALABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression

creates a separate bubble color for each unique grouping that is specified.

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

ODS options

URL=string-column

specifies an HTML page to display when a bubble is selected.
Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=column | expression
specifies the column for the X values of the bubble centers.

Y=column | expression
specifies the column for the Y values of the bubble centers.

SIZE=numeric-column | expression
specifies the bubble SIZE values.

Optional Arguments

BUDDLE_RADIUS_MAX=dimension
specifies the drawing size of the largest bubble.

- Default: Three times as large as the size set by GraphDataDefault:markerSize
- Restriction: The dimension value must be greater than the BUBBLE_RADIUS_MIN=dimension value.
- Interaction: This option is ignored when RELATIVESCALE= FALSE.
- Tip: A maximum size that is specified as a percent is interpreted as a percent of the graph's height. The height can be adjusted with the DESIGNHEIGHT= option in the BEGINGRAPH statement or the HEIGHT= option in the ODS GRAPHICS statement.
- See: “dimension” on page 1340

BUDDLE_RADIUS_MIN=dimension
specifies the drawing size of the smallest bubble.

- Default: GraphDataDefault:markerSize
- Restriction: The BUBBLE_RADIUS_MIN= value must be less than the BUBBLE_RADIUS_MAX= value.
- Interaction: This option is ignored when RELATIVESCALE= FALSE.
- Tip: A maximum size that is specified as a percent is interpreted as a percent of the graph's height. The height can be adjusted with the DESIGNHEIGHT= option in the BEGINGRAPH statement or the HEIGHT= option in the ODS GRAPHICS statement.
- See: “dimension” on page 1340

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

- color-ramp-style-element specifies the name of a color-ramp style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color ” on page 1340

Default The ThreeColorRamp style element for filled bubbles and ThreeColorAltRamp for unfilled bubbles

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

Tip To reverse the start and end colors of the ramp that is assigned to the color model, use the REVERSECOLORMODEL= option.

COLORRESPONSE= numeric-column | range-attrib-var | expression specifies the numeric column or range attribute map variable to use to determine the bubble colors.

range-attrib-var specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Interactions The mapped color used for the bubbles is also used for the data labels.

When the GROUP= option is specified with the COLORRESPONSE= option, the GROUP= option is ignored.

When fill is displayed, this option overrides suboption COLOR= in the FILLATTRS= option and varies the fill color according to the color gradient or the attribute map.

When only the outlines are displayed, this option overrides suboption COLOR= in the OUTLINEATTRS= option and varies the outline color according to the color gradient or the attribute map.
Note When both the fill and outline are displayed, the bubble fill color varies according to the color gradient or attribute map but the bubble outline color remains fixed on the color specified in option OUTLINEATTRS=.

Tip To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

DATALABEL=column | expression
specifies a column for bubble labels. The label positions are adjusted to prevent them from overlapping.

Default No labels are displayed.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the bubble labels.

Defaults For non-grouped data, the GraphDataText style element.
For grouped data, the text color is derived from the GraphData1–GraphDataN style elements. The data label color changes to match the group color derived from the ContrastColor attribute of the style element that is in effect.

Interaction The default attributes are overridden if the COLORRESPONSE= option is used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

DATALABELPOSITION=TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the bubble labels relative to the bubble.

Default TOPRIGHT

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters. When set to TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters.

Default FALSE. The data labels are not split.

Requirement The DATALABEL= option must also be specified.

Interactions The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATALABELPOSITION=AUTO.

See “boolean ” on page 1339 for other Boolean values that you can use.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the
data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default

A blank space

Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitchar="abc"

The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interactions

This option has no effect if DATALABELPOSITION=AUTO.

The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATALABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the data labels.

TRUE

drops the split characters from the data label.

FALSE

includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

• the data label text for this label is Product*Group*A
• DATALABELSPLIT=TRUE
• DATALABELSPLITCHARDROP=TRUE | FALSE
• DATALABELSPLITCHAR="*"
When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default: TRUE. The split characters are dropped from the data label.

Requirement: The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction: The DATALABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

AUTO

justifies the labels based on the DATALABELPOSITION= option as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, then the bottom center of the text box is positioned at the top of the marker.
Default: AUTO

Requirement: The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction: This option has no effect if DATALABELPOSITION=AUTO.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the filled bubbles. The following figure shows bubbles with each of the skins applied.

![Skin Examples]

Default: The DATASKIN= option value that is specified in the BEGINGRAPH statement. If not specified, then the GraphSkins:DataSkin style element value is used.

Restriction: Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Requirement: For this option to have any effect, DISPLAY= FILL must be in effect. Otherwise, this option is ignored.

Interactions: This option overrides the BEGINGRAPH statement DATASKIN= option.

The appearance of the data skin is based on the FILLATTRS= color.

This option is ignored if the RELATIVESCALE= option is set to FALSE.

When a data skin is applied, all bubble outlines are set by the skin, and the OUTLINEATTRS= option is ignored.

DATATRANSPARENCY=number

specifies the degree of the transparency of the bubble fills and bubble outlines

Default: 0

Range: 0–1, where 0 is opaque and 1 is entirely transparent
Note This option does not affect the data labels.

Tip The FILLATTRS= option can be used to set transparency for just the filled bubble areas. You can combine this option with FILLATTRS= to set one transparency for the bubble outlines but a different transparency for the bubble fills. Example:

```
data transparency=0.2 fillattrs=(transparency=0.6)
```

DISPLAY=STANDARD | ALL | (display-options)

specifies whether to display outlined bubbles, filled bubbles, or outlined and filled bubbles.

STANDARD

displays outlined, filled bubbles

ALL

displays outlined, filled bubbles

(display-options)

a space-separated list of one or more of the following options enclosed in parentheses:

- **OUTLINE** displays outlined bubbles
- **FILL** displays filled bubbles

Default **STANDARD**

Tip Use the DATASKIN=, OUTLINEATTRS=, and FILLATTRS= options to control the appearance of the bubbles.

DRAWORDER=SIZE | DATA

specifies whether the bubbles are drawn according to bubble size or according to data order.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

SIZE

draws the bubbles according to bubble size, from the largest to the smallest

DATA

draws the bubbles according to data order

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

![DRAWORDER-SIZE and DRAWORDER-DATA](image)

Default **SIZE**
FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the filled bubble areas.

Defaults
For non-grouped data, the GraphDataDefault:Color style reference.

For grouped data, the Color attribute of GraphData1–GraphDataN style elements.

Interactions
For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

When COLORRESPONSE= is in effect and the DISPLAY= option enables FILL display, the FILLATTRS= suboption COLOR= is ignored, and the bubble fill colors vary according to the gradient.

Tip
The DATATRANSPARENCY= option sets the transparency for the bubble fills and the bubble outlines. You can combine this option with DATATRANSPARENCY= to set one transparency for the outlines but a different transparency for the fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

GROUP=column | discrete-attr-var | expression
creates a separate bubble color for each unique grouping that is specified.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default
The bubble attributes for each unique group value are derived from the GraphData1–GraphDataN and GraphMissing style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and the CONTRASTCOLOR attribute is used for the bubble outlines. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN attributes are used for the bubble outlines.

Interactions
If a discrete attribute map variable is specified, then the color mapping for the bubbles is defined by the associated DISCRETEATTRMAP statement. See “DISCRETEATTRMAP Statement” on page 1287.

The mapped color that is used for outlines is also used as the color of the data labels.

This option is ignored if the COLORRESPONSE= option is also used.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.
Note: All bubbles have only one fill and one outline color as specified by the FILLATTRS= and OUTLINEATTRS options.

See: “DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP= TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

Default: TRUE

Interaction: For this option to take effect, the GROUP= option must also be specified.

Tip: The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See: “boolean” on page 1339 for other Boolean values that you can use.

INDEX= positive-integer-column | expression

specifies indices for mapping bubble attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

Requirements: The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction: For this option to take effect, the GROUP= option must also be specified.

Notes: The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip: You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default: The SIZE= column label. If a label is not defined, then the SIZE= column name is used.
Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the appearance of the bubble outlines.

Defaults For non-grouped data, the GraphOutlines style element.

For grouped data, unfilled bubbles use both the CONTRASTCOLOR and PATTERN attributes of the GraphData1–GraphDataN style elements. Filled bubbles use only the CONTRASTCOLOR attribute. If the COLORRESPONSE= option is specified and the bubbles are filled, then the outline attributes are derived from the GraphDataDefault style element. For unfilled bubbles, the outline colors vary according to the gradient.

Interactions For this option to have any effect, outlines must be enabled by the ODS style or the DISPLAY= option.

If the DATASKIN= option applies a data skin, then this option is ignored.

When the COLORRESPONSE= and DISPLAY=(OUTLINE) options are in effect, the OUTLINEATTRS= suboption COLOR= is ignored, and the bubble outline colors vary according to the gradient.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“The Line Options” on page 1349 for available line-options.

PRIMARY=TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If
multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

RELATIVESCALE=TRUE | FALSE

specifies whether the SIZE= column values are interpreted as relative values. Relative means that the size values do not translate directly into bubble radii. Rather, the bubble sizes are scaled to represent the value range of the SIZE= column.

For example, when RELATIVESCALE=TRUE, if only two bubbles are drawn with sizes of 2 and 4, then they appear the same as only two bubbles with sizes of 4000 and 8000. By contrast, when RELATIVESCALE=FALSE, the size values are interpreted in the same units as the axes.

If you set this option to FALSE, then it is recommended that you also place the BUBBLEPLOT statement in a LAYOUT OVERLAYEQUATED container. This ensures that the X and Y axis units are the same. For more information, see “Details” on page 384.

Default TRUE

Interactions

When this option is set to TRUE, the BUBBLERADIUSMAX= and BUBBLERADIUSMIN= options can be used to fix the drawing size of the smallest bubble and largest bubble. If RELATIVESCALE=FALSE, then the BUBBLERADIUSMAX= and BUBBLERADIUSMIN= options are ignored.

If this option is set to FALSE, then the DATASKIN= option is ignored.

If one or both axes are discrete, then RELATIVESCALE=FALSE is ignored.

Tip

If you specify RELATIVESCALE=FALSE, then it is recommended that you also place the BUBBLEPLOT statement in a LAYOUT OVERLAYEQUATED container to ensure that the X and Y axis units are the same. If you place the BUBBLEPLOT statement in a LAYOUT OVERLAY container instead, then the bubbles might be drawn as ellipses because the X and Y axes units are different.

See “boolean ” on page 1339 for other Boolean values that you can use.

RELATIVESCALETYPER=LINER | PROPORTIONAL

specifies the type of scaling that is to be applied to the SIZE= column values.

LINEAR

increases the size of the bubbles in linear proportion to the range of the SIZE= column values. For example, if only two bubbles are drawn with sizes of 2 and 4, then they appear the same as only two bubbles with sizes of 4000 and 8000.

PROPORTIONAL

increases the size of each bubble in direct proportion to its corresponding SIZE= column value. For example, if only two bubbles are drawn with sizes of 50 and 100, then the bubble for SIZE=50 is drawn to half the size of the bubble for SIZE=100.
Default LINEAR

Interactions This option is ignored when RELATIVESCALE=FALSE.

When the SIZETHRESHOLDMAX= option is specified, for any SIZE= column value that is greater than the SIZETHRESHOLDMAX= value, the proportional scale is adjusted so that the size of the bubble for that value is clamped to the BUBBLERADIUSMAX= value.

If all the values for the SIZE= column are negative, then RELATIVESCALETYPE=PROPORTIONAL is ignored, and the default value is used.

When RELATIVESCALETYPE=PROPORTIONAL is specified, the BUBBLERADIUSMIN= option specifies the minimum bubble size. In that case, when a SIZE= column value results in a bubble of a size that is less than the BUBBLERADIUSMIN= value, the bubble size for that value is changed to the BUBBLERADIUSMIN= value.

REVERSECOLORMODEL=
TRUE | **FALSE**

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default FALSE

See COLORMODEL=

“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAME=(role-name-list)

specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)

a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:

ROLENAME=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles X, Y, SIZE, GROUP, DATALABEL, and COLORRESPONSE.

SIZETHRESHOLDMAX= numeric-value

specifies a SIZE= column value threshold at which bubble size is clamped to the BUBBLERADIUSMAX= option value. The size of the bubbles for all SIZE= column values that equal or exceed the specified threshold value is set to the BUBBLERADIUSMAX= value.

Default The maximum SIZE= column value is mapped to the BUBBLERADIUSMAX= option value.
TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the bubbles. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the bubble plot can be specified along with roles that do.

(role-list)
an ordered, space-separated list of unique BUBBLEPLOT and user-defined roles. BUBBLEPLOT roles include X, Y, SIZE, GROUP, DATALABEL, and COLORRESPONSE.

Tip User-defined roles are defined with the **ROLENAME=** option.

Example The following example displays data tips for the columns assigned to the roles X, Y, and SIZE, as well as the column Pop_2009. The POP_2009 column is not assigned to any pre-defined BUBBLEPLOT role, so it must first be assigned a role:

```
ROLENAME=(TIP1=POP_2009)
TIP=(TIP1 X Y SIZE)
```

NONE suppresses data tips and URLs (if requested) from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: X, Y, SIZE, GROUP, DATALABEL, and COLORRESPONSE.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip The labels and formats for the TIP roles can be controlled with the **TIPLABEL=** and **TIPFORMAT=** options.

TIPFORMAT=(role-format-list) specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
```
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
```

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.
Requirement A column must be assigned to each of the specified roles. (See the
ROLENAME= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the
labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default The column label or column name of the column assigned to the role.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles. (See the
ROLENAME= option.)

URL=string-column
specifies an HTML page to display when a bubble is selected.

string-column
specifies a column that contains a valid HTML page reference (HREF) for each
bubble that is to have an active link.

Example http://www.sas.com/technologies/analytics/
index.html

Requirement To generate a plot with selectable bubbles, you must include an ODS
GRAPHICS ON statement that has the IMAGEMAP option
specified, and you must write the output to the ODS HTML
destination.

Interactions This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or
PROTOTYPE layout and the INCLUDERANGES= option is
specified in the LINEAROPTS= or TIMEOPTS= option for either
axis.

Tips The URL value can be blank for some X and Y pairs, meaning that
no action is taken when the corresponding point is selected.

The URL value can be the same for any X and Y pairs. In that case,
the same action is taken when the bubbles for those X and Y pairs are
selected.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary
X2 (top) axis.

Default X
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS= `Y | Y2`

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default `Y`

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

The BUBBLEPLOT statement displays one bubble for each row in the data, provided that row contains nonmissing values for X, Y, and SIZE. By default, the bubbles are displayed as filled, outlined circles. Regardless of the data order, the bubbles are always drawn from the largest size to the smallest size.

By default, the minimum and maximum values of the SIZE= column establish a range over which the bubble radii increase in linear proportion. The actual drawing size of the smallest and largest bubble is set automatically. You can adjust the smallest and largest bubble sizes with the BUBBLERADIUSMIN= and BUBBLERADIUSMAX= options. In these cases where the bubble sizes are proportional to each other, the default setting RELATIVESCALE=TRUE is appropriate.

If the SIZE= values are in the same units as the X and Y values, and both X and Y are numeric, then you can generate a plot where the bubble-radius units match the axis-scale units. To do so, specify the BUBBLEPLOT statement within a LAYOUT OVERLAYEQUATED block, and in the BUBBLEPLOT statement, set RELATIVESCALE=FALSE.

By default, for character columns, the X and Y axes are always discrete. For numeric columns, the X and Y axes are linear. You can change axis type for numeric axes with the layout options XAXISOPTS= and YAXISOPTS=.

Note: Within a LAYOUT OVERLAY, the unit-interval of the X and Y axes are not necessarily the same and the bubbles might be distorted into ellipses when RELATIVESCALE=FALSE. The OVERLAYEQUATED container ensures that the bubbles are displayed as circles, assuming that both the X= and Y= arguments specify numeric columns.

data influence;
input x y radius category;
datalines;
 2 4 1 1
 5 5 2 1
 6 3 2 2
 12 7 3 2
;proc template;
define statgraph equatedbubbles;
begingraph;
 entrytitle 'Radius of Influence';
 entrytitle 'Bubbles Show Distance Covered by Observation';
 layout overlayequated /
Example: BUBBLEPLOT Statement

The following graph was generated by the “Example Program” on page 386:
Example Program

```sas
data bubbleintro;
  input Engineer $ Salary number;
  format Salary dollar7.0 number comma6.0;
  datalines;
  Electric 59000 89382
  Civil 54000 73273
  Software 56000 34833
  Chemical 62000 25541
  Mechanical 60000 19601
;
proc template;
  define statgraph engineer;
  begingraph;
    entrytitle 'Median Salary for Entry Level Engineers';
    entrytitle 'Bubbles Show Number of Engineers in Survey';
    layout overlay;
      bubbleplot x=engineer y=salary
        size=number / datalabel=number;
    endlayout;
  endgraph;
end;
proc sgrender data=bubbleintro template=engineer;
run;
```

CONTOURPLOT PARM Statement

Creates a contour plot representing a response variable evaluated over a grid of X and Y values.

Restriction: Contour plots do not support data tips.
Tips: By default, the CONTOURPLOTPARM statement assumes that the X-Y grid is complete and does not contain any missing or irregular values. If the X-Y grid is not complete, specify GRIDDED=FALSE in the CONTOURPLOTPARM statement so that the values needed to complete the grid are calculated. Otherwise, unexpected results might occur.

You can use a legend to display the contour level values. For CONTOURTYPE=LINE and CONTOURTYPE=LabeledLINE, use a DISCRETELEGEND statement to add a legend. For all other contour types, use a CONTINUOUSLEGEND statement to add a legend.

For filled contour types, there might be small, visible gaps between the axes and the contour boundaries. To eliminate the gaps, specify the following axis options in the layout statement for the plots parent layout:

```
XAXISOPTS=(OFFSETMIN=0 OFFSETMAX=0
  LINEAROPTS=(THRESHOLDMIN=0 THRESHOLDMAX=0 ))
YAXISOPTS=(OFFSETMIN=0 OFFSETMAX=0
  LINEAROPTS=(THRESHOLDMIN=0 THRESHOLDMAX=0 ))
```

Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

```plaintext
CONTOURPLOTPARM X=numeric-column | expression
  Y=numeric-column | expression
  Z=numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **COLORMODEL=style-element | (color-list)**
 specifies a color ramp that is to be used to determine the colors of filled or gradient contours.

- **CONTOURTYPE=LINE | FILL | GRADIENT | LINEFILL | LINEGRADIENT | LABELEDLINE | LABELEDLINEFILL | LABELEDLINEGRADIENT**
 specifies how the contour is displayed.

- **GRIDDED=TRUE | FALSE**
 specifies whether the X and Y values are equally spaced in a rectangular grid.

- **LEVELS=(contour-value-list)**
 specifies a list of contour level values.

- **LINEATTRS=style-element | style-element (line-options) | (line-options)**
 specifies the attributes of the contour lines.

- **NHINT=integer**
 specifies the suggested number of contour levels for the Z column.

- **NLEVELS=integer**
 specifies the actual number of contour levels for the Z column.

- **REVERSECOLORMODEL=TRUE | FALSE**
specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Axes options

PRIMAR Y=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Label options

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

LINELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the contour line labels.

LINELABELBASELINE=HORIZONTAL | TANGENT
specifies the text alignment of the contour line labels.

LINELABELFORMAT=format
specifies the format to use for the contour line labels.

LINELABELPOSITION=MIDDLE | BEGIN | END
specifies the position for the contour line labels.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=numeric-column | expression
specifies the X coordinates for the grid.

Y=numeric-column | expression
specifies the Y coordinates for the grid.

Z=numeric-column | expression
specifies the contour response values.

Optional Arguments

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used to determine the colors of filled or gradient contours.

style-element
specifies the name of a style element. The style element can contain these style attributes:

STARTCOLOR specifies a color for the smallest data value of the Z= column.
NEUTRALCOLOR specifies a color for the midpoint of the range of the Z= column.

ENDCOLOR specifies a color for the highest data value of the Z= column.

\[(color-list)\]

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData2:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color ” on page 1340

Default The ThreeColorRamp style element.

Interactions The REVERSECOLORMODEL= option can be used to reverse the start and end colors of the ramp assigned to the color model.

CONTOURTYPE=LINE | FILL | GRADIENT | LINEFILL | LINEGRADIENT | LABELEDLINE | LABELEDLINEFILL | LABELEDLINEGRADIENT

specifies how the contour is displayed.

LINE

displays contour levels as unlabeled lines.

FILL

displays the area between the contour levels as filled. Each contour interval is filled with one color.

GRADIENT

displays a smooth gradient of color to represent contour levels.

LINEFILL

combines the LINE and FILL types. Each contour interval is filled with one color. Displays contour levels as unlabeled lines.

LINEGRADIENT

combines the LINE and GRADIENT types. Displays contour levels as unlabeled lines.

LABELEDLINE

adds labels to the LINE type, displaying contour levels as labeled lines.

LABELEDLINEFILL

adds labels to the LINEFILL type. Each contour interval is filled with one color. Displays contour levels as lines with labels showing contour level values.

LABELEDLINEGRADIENT

adds labels to the LINEGRADIENT type. Displays contour levels as lines with labels showing contour level values.

The following figure shows the effect of each of the values.
The GraphContour:DisplayOpts style reference.

Interactions

The fill colors of the types that enable FILL or GRADIENT are controlled by the `COLORMODEL=` option.

The line properties of the types that enable LINE or LABELEDLINE are controlled by the `LINEATRERS=` option.

The label properties of the types that enable LABELEDLINE are controlled by the `LINELABELATRERS=` and `LINELABELBASELINE=` options.

If a DISCRETELEGEND statement is associated with the contour, then the legend is NOT displayed if `CONTOURTYPE=` is set to FILL or GRADIENT.

If a CONTINUOUSLEGEND statement is associated with the contour, then the legend is NOT displayed if `CONTOURTYPE` is set to LINE or LABELEDLINE.

GRIDDED=TRUE | FALSE

specifies whether the X and Y values are equally spaced in a rectangular grid. If set to FALSE, then additional calculations are performed in order to complete the grid.

For information about the algorithm used to calculate the grid, see “Mesoscale Objective Map Analysis Using Weighted Time-Series Observations.”

Default TRUE

Tip By default, the CONTOURPLOTPARM statement assumes that the X-Y grid is complete and does not contain any missing or irregular values. If the X-Y grid is not complete, then specify GRIDDED=FALSE so that the plot calculates the values needed to complete the grid. Otherwise, unexpected results might occur.

See “boolean” on page 1339 for other Boolean values that you can use.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

The Z-column label. If a label is not defined, then the Z-column name is used.

This option applies only to an associated DISCRETELEGEND statement.

LEVELS=(contour-value-list)
specifies a list of contour level values.

(contour-value-list)
a space-separated list of numeric values, enclosed in parentheses.

The number of levels and the level values are determined internally using the NHINT= or NLEVELS= option value.

This option overrides the NHINT= and NLEVELS= options.

Values that are outside of the data range are ignored.

Example

```plaintext
levels=(0.0001 0.0004 0.0007 0.0010 0.0013 0.0016)
```

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the contour lines.

The GraphDataDefault style element.

This option is honored only if the CONTOURTYPE= displays lines.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

LINELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the contour line labels.

The GraphValueText style element.

This option is honored only if the CONTOURTYPE= displays labels.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

LINELABELBASELINE=HORIZONTAL | TANGENT
specifies the text alignment of the contour line labels. Each contour line has a precomputed label point.

HORIZONTAL specifies that each label is parallel to the X-axis. The label intersects its contour line and is centered at the label point.

TANGENT specifies that each label is drawn tangent to the contour line at the label point. This reduces intersection with the contour line and causes labels to be tilted at various angles in relation to the X-axis.

Default HORIZONTAL
LINELABELFORMAT= *format*

specifies the format to use for the contour line labels.

Default
The format associated with the Z column or BEST6. if no format is assigned.

Interaction
This option is honored only if the CONTOURTYPE= displays labels.

LINELABELPOSITION= *MIDDLE | BEGIN | END*

specifies the position for the contour line labels.

Default
MIDDLE

Interaction
This option is honored only if the CONTOURTYPE= option specifies labels.

NAME= "*string*"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to indicate the colors associated with the Z values.

Restriction
The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction
The *string* is used as the default legend label if the LEGENDLABEL= option is not used.

NHINT= *integer*

specifies the suggested number of contour levels for the Z column.

Default
7

Interaction
This option is ignored if the LEVELS= or NLEVELS= option is specified.

Note
The actual number of levels is adjusted to provide an appropriate number of levels for the data.

NLEVELS= *integer*

specifies the actual number of contour levels for the Z column.

Default
The number of levels is determined internally, using the NHINT= value.

Interactions
This option overrides the NHINT= option.

This option is ignored if CONTOURTYPE= GRADIENT.

This option is ignored if the LEVELS= option is specified.

PRIMARY= *TRUE | FALSE*

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.
Default: FALSE

Restriction: This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note: In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See: “When Plots Share Data and a Common Axis” on page 880

REVERSECOLORMODEL=TRUE | FALSE

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default: FALSE

See: COLORMODEL=

“boolean ” on page 1339 for other Boolean values that you can use.

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default: X

Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default: Y

Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

A CONTOURPLOTPARM statement uses the CONTOURTYPE= option to specify the type of contour plot to generate. Contour types that display fills or gradients but no contour lines can use only a CONTINUOUSLEGEND statement to represent the contour level values in a legend. Contour types that display lines can use either a CONTINUOUSLEGEND or DISCRETELEGEND statement to identify contour level values.

By default, the CONTOURPLOTPARM statement assumes that the X-Y grid is complete. If the grid is not complete, then set the GRIDDED= option to FALSE so that the plot calculates the values needed to complete into a grid with a bounding rectangle.
For filled or gradient contour types, small gaps might be visible between the axes and the bounding box of the contour data. To eliminate these gaps, set the axis options of the LAYOUT OVERLAY statement as follows:

```plaintext
XAXISOPTS=(OFFSETMIN=0 OFFSETMAX=0
          LINEAROPTS=(THRESHOLDMIN=0 THRESHOLDMAX=0))

YAXISOPTS=(OFFSETMIN=0 OFFSETMAX=0
          LINEAROPTS=(THRESHOLDMIN=0 THRESHOLDMAX=0))
```

Contour plots do not support the data tips that are enabled by the IMAGEMAP= option in the ODS GRAPHICS statement.

Example: CONTOURPLOTPARM Statement

The following graph was generated by the “Example Program” on page 394:

Example Program

```plaintext
proc template;
  define statgraph contourplotparm;
  begingraph;
    entrytitle "Contour Plot of Height and Weight";
    layout overlay /
      xaxisopts=(offsetmin=0 offsetmax=0
                linearopts=(thresholdmin=0 thresholdmax=0))
      yaxisopts=(offsetmin=0 offsetmax=0
                linearopts=(viewmax=250
                            thresholdmin=0 thresholdmax=0));
```
DENDROGRAM Statement

Creates a tree diagram that is typically used to display the results of a hierarchical clustering analysis.

Syntax

DENDROGRAM NODEID=column | expression
PARENTID=column | expression
CLUSTERHEIGHT=numeric-column | expression <option(s)>;

Summary of Optional Arguments

Appearance options

CLUSTERS=numeric-column | expression
specifies a numeric column containing the resultant number of clusters at each node.

CUT=TRUE | FALSE
specifies whether the tree is to be cut.

CUTOPTS=(pruning-options)
specifies pruning options for cutting the dendrogram.

DATATRANSPARENCY=number
specifies the degree of the transparency of the dendrogram lines.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the dendrogram lines.

ORIENT=VERTICAL | HORIZONTAL
specifies the orientation of the dendrogram leaf axis.

TREETYPE=RECTANGULAR | TRIANGULAR
specifies the type of tree structure to draw.

Axes options

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.
Data tip options

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a dendrogram line.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

NODEID=column | expression
specifies a column for the ID values of the nodes. Each node ID value must be unique. If duplicate NODEID values are found, then the dendrogram is not rendered. The column can be numeric or character, but it must be of the same type and have the same formatted length as the ParentID column.

The maximum number of nodes that are supported by the dendrogram is determined by the DISCRETEMAX= option in the ODS GRAPHICS statement. The default value is DISCRETEMAX=1000. If the graph data contains more than 1000 discrete values, then the dendrogram is not drawn and a warning is written to the SAS log. In that case, you can use the DISCRETEMAX= option to increase the maximum number of discrete values that are allowed.

PARENTID=column | expression
specifies a column for the parent ID values of the nodes. The column can be numeric or character, but it must be of the same type and have the same formatted length as the NodeID column.

CLUSTERHEIGHT=numeric-column | expression
specifies the column for the height values for each node.

Optional Arguments

CLUSTERS=numeric-column | expression
specifies a numeric column containing the resultant number of clusters at each node.

Interaction
For this option to take effect, the pruning options in the CUTOPTS= option must set TYPE=NCLUSTERS and specify a number for the NCLUSTERS= setting.

CUT=TRUE | FALSE
specifies whether the tree is to be cut.

Default FALSE

Tip To set the properties of the CUT, use the CUTOPTS= option.
See “boolean” on page 1339 for other Boolean values that you can use.

CUTOPTS=(pruning-options)
specifies pruning options for cutting the dendrogram. The following *pruning-options* must be specified as a space-separated list of *option = value* pairs enclosed in parentheses.

- **CUTHEIGHT=number**
specifies the height at which the tree is to be pruned.
 - **Default**: The tree is not pruned.
 - **Requirement**: You must include pruning option TYPE=CUTHEIGHT with this option.
 - **Interaction**: This option is ignored when CUT=FALSE or when pruning option TYPE=CUTHEIGHT is not explicitly specified.
 - **Example**: CUTOPTS=(TYPE=CUTHEIGHT CUTHEIGHT=0.75)

- **NCLUSTERS=number**
specifies the number of clusters to use for pruning the tree.
 - **Default**: The tree is not pruned.
 - **Interaction**: For this setting to take effect, *pruning-option* TYPE=NCLUSTERS must also be set. In addition, the CLUSTERS= option must be used, and the CUT= option must be set to TRUE.

- **OUTLINEATTRS=style-element | style-element (line-options) | (line-options)**
specifies the attributes of the cut lines.
 - **Default**: The GraphDataDefault style element.
 - **See**: “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.
 - **See**: “Line Options” on page 1349 for available *line-options*.

TYPE=CUTHEIGHT | NCLUSTERS
specifies which rule to use to prune the tree.
 - **Default**: CUTHEIGHT

- **DATATRANSPARENCY=number**
specifies the degree of the transparency of the dendrogram lines.
 - **Default**: 0
 - **Range**: 0–1, where 0 is opaque and 1 is entirely transparent

- **LEGENDLABEL="string"**
specifies a label to be used in a discrete legend for this plot.
 - **Default**: The CLUSTERHEIGHT= column label. If a label is not defined, then the CLUSTERHEIGHT= column name is used.
Restriction: This option applies only to an associated DISCRETELEGEND statement.

LINEATTRS=

```
style-element | style-element (line-options) | (line-options)
```

specifies the attributes of the dendrogram lines.

Default: The GraphDataDefault style element.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction: The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction: The string is used as the default legend label if the LEGENDLABEL= option is not used.

ORIENT=VERTICAL | HORIZONTAL

specifies the orientation of the dendrogram leaf axis.

Default: VERTICAL

PRIMARY=TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default: FALSE

Restriction: This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note: In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See: “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over a dendrogram line. If this option is used, then it replaces all of the information that is displayed by default.

(role-list)

an ordered, space-separated list of unique DENDROGRAM roles, which include NODEID, PARENTID, and CLUSTERHEIGHT.
The following example displays data tips for the columns assigned to the roles NODEID and PARENTID.

\[
\text{TIP}=(\text{NODEID} \text{ PARENTID})
\]

NONE suppresses data tips from the plot.

Default The columns assigned to the following roles are automatically included in the data tip information: NODEID, PARENTID, and CLUSTERHEIGHT.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=\((\text{role-format-list})\)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

\[(\text{role-format-list})\]

\[\text{a space-separated list of role-name} = \text{format pairs.}\]

Example TIPFORMAT= (CLUSTERHEIGHT=4.1)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles.

TIPLABEL=\((\text{role-label-list})\)

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

\[\text{role-label-list}\]

\[\text{a space-separated list of rolename} = \text{"string" pairs.}\]

Example TIPLABEL=(CLUSTERHEIGHT="Height")

Default The column label or column name of the column assigned to the role.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles.

TREETYPE=RECTANGULAR | TRIANGULAR

specifies the type of tree structure to draw.
Default: RECTANGULAR

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default: X

Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default: Y

Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

A dendrogram is a tree diagram that is typically used to show the cluster arrangements in hierarchical data. The DENDROGRAM statement supports clusters with only a single root. If multiple roots are found in the data, then a warning is written to the SAS log and the dendrogram is not drawn. The maximum number of nodes that is supported by the DENDROGRAM statement is determined by the DISCRETEMAX= option in the ODS GRAPHICS statement, which is 1000 by default.

In the Graph Template Language, a DENDROGRAM plot typically appears by itself in a LAYOUT OVERLAY container. You can overlay REFERENCeline or BANDPLOT statements on a DENDROGRAM, but overlaying other plot types might produce unexpected results.

Using the DENDROGRAM statement in layouts where the axis ranges are merged across cells might produce unexpected results.

Example: DENDROGRAM Statement

The following graph was generated by the “Example Program” on page 401:
Example Program

```sas
data clustree;
  input id $ parent $7-12 height nClus;
  label id="Cluster ID" parent="Parent ID";
  datalines;
  clus1       3 1
  clus2 clus1 0.2 7
  clus3 clus1 1.75 2
  clus4 clus3 0.7 4
  clus5 clus3 0.8 3
  clus6 clus4 0.4 5
  clus7 clus6 0.1 9
  clus8 clus5 0.25 6
  clus9 clus8 0.15 8
  1     clus9 0 10
  2     clus6 0 10
  3     clus2 0 10
  4     clus7 0 10
  5     clus7 0 10
  6     clus2 0 10
  7     clus4 0 10
  8     clus5 0 10
  9     clus8 0 10
  10    clus9 0 10
run;

proc template;
  define statgraph dendrogram;
  begingraph;
    layout overlay;
      dendrogram nodeID=id parentID=parent clusterheight=height;
  endgraph;
end;
```
DENSITYPLOT Statement

Creates a univariate probability density curve computed from input data.

Tips: If the data density is not known, then use the `KERNEL` distribution option in the DENSITYPLOT statement.

Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default. To disable subpixel rendering, specify `SUBPIXEL=OFF` in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement `SUBPIXEL=` option, see `SUBPIXEL=` on page 33. For information about the ODS GRAPHICS statement `SUBPIXEL=` option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

```
DENSITYPLOT numeric-column | expression </distribution-option> <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `DATATRANSPARENCY=number`

 specifies the degree of the transparency of the density curve and curve label.

- `LINEATTRS=style-element | style-element (line-options) | (line-options)`

 specifies the attributes of the density curve.

- `ORIENT=VERTICAL | HORIZONTAL`

 specifies the orientation of the Y axis.

Axes options

- `PRIMARY=TRUE | FALSE`

 specifies that the data columns for this plot and the plot type be used for determining default axis features.

- `XAXIS=X | X2`

 specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

- `YAXIS=Y | Y2`

 specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

- `TIPFORMAT=(role-format-list)`

 specifies display formats for tip columns.

- `TIPLABEL=(role-label-list)`

 specifies display labels for tip columns.
Label options

CURVELABEL="string"
specifies a label for the density curve.

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the density curve label.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the density curve label relative to the plot area.

CURVELABELPOSITION=AUTO | MAX | MIN | START | END
specifies the position of the density curve label relative to the curve line.

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the curve label at the specified split characters.

CURVELABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the curve label text.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the curve label block.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
creates a separate density curve for each unique group value in the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Statistics options

FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

WEIGHT=numeric-column | expression
specifies a column that contains a density-curve calculation a priori weight for each observation of the input data object.

Required Arguments

numeric-column
specifies a numeric column of data values that are used to calculate the parameters for the probability distribution.

equation
specifies an equation that calculates values when those values are not stored in the data.
Optional Arguments

CURVELABEL=\"string\"
specifies a label for the density curve.

- **Default**: No curve label is displayed.
- **Restriction**: This option is not valid when the GROUP= option is specified.
- **Tip**: The font and color attributes for the label are specified by the CURVELABELATRGS= option.

CURVELABELATRGS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the density curve label.

- **Default**: The GraphValueText style element.
- **Interaction**: For this option to take effect, the CURVELABEL=curvelabel option must also be used.
- **See**: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
 “Text Options” on page 1351 for available text-options.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the density curve label relative to the plot area.

- **INSIDE**: locates the labels inside the plot area
- **OUTSIDE**: locates the labels outside the plot area

- **Default**: INSIDE
- **Restriction**: OUTSIDE cannot be used when the DENSITYPLOT is used in multi-cell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes can be external to the grid.
- **Interaction**: This option is used in conjunction with the CURVELABELPOSITION= option to determine where the curve label appears. For more information, see “Location and Position of Curve Labels” on page 185.

CURVELABELPOSITION= AUTO | MAX | MIN | START | END
specifies the position of the density curve label relative to the curve line.

- **AUTO**: positions the density label automatically near the end of the density curve along unused axes whenever possible (typically Y2 or X2) to avoid collision with tick values.
- **Restriction**: This option is used only when CURVELABELLOCATION=OUTSIDE.
- **MAX**: forces the density label to appear near maximum density X-values (typically, to the right).
MIN
forces the density label to appear near minimum density X-values (typically, to the left).

START
forces the density label to appear near the beginning of the curve.

Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the curve line has a spiral shape.

END
forces the density label to appear near the end of the curve.

Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the curve line has a spiral shape.

Defaults AUTO when CURVELABELLOCATION=OUTSIDE.

END when CURVELABELLOCATION=INSIDE.

Restriction The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified. The START and END settings are ignored if CURVELABELLOCATION=OUTSIDE is specified.

Interactions For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELLOCATION= option to determine where the density label appears. For more information, see “Location and Position of Curve Labels” on page 185.

Note When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the curve label might fall outside of the graph area. In that case, the curve label might not be displayed or might be positioned incorrectly.

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the curve label at the specified split characters. When a curve label is split, the label is split on each occurrence of the specified split characters.

Default FALSE. The curve label is not split.

Requirement The CURVELABEL= option must also be specified.

Interactions The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.
See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHCHAR=“character-list”

specifies one or more characters on which the curve label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the curve label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLITCH=TRUE, the curve label is split unconditionally at each occurrence of any of the specified split characters. If the curve label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no delimiter between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:

```
curvelabelsPLITCHCHAR="abc"
```

The CURVELABEL= option and the CURVELABELSPLITCH=TRUE option must also be specified.

Interactions This option has no effect if CURVELABELPOSITION=AUTO.

The CURVELABELSPLITCHCHARDROP= option specifies whether the split characters are included in the curve label or are dropped.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip Use the CURVELABELSPLITCHCHARJUSTIFY= option to specify the justification of the strings in the curve label block.

CURVELABELSPLITCHCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the curve label text.

TRUE
drops the split characters from the curve label text.

FALSE includes the split characters in the curve label text. When CURVELABELSPLITCH=TRUE and CURVELABELSPLITCHCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a curve label with the following specifications:
• CURVELABELPOSITION=MAX
• CURVELABEL="Product*Group*A"
• CURVELABELSPLIT=TRUE
• CURVELABELSPLITCHARDROP=TRUE | FALSE
• CURVELABELSPLITCHAR="*"

Note: The horizontal line to the left of the label represents the maximum end of the curve for reference.

When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default TRUE. The split characters are dropped from the curve label.

Requirement The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction The CURVELABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT specifies the justification of the strings that are inside the curve label block.

AUTO
justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT
justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the curve for reference.
In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default AUTO

Requirement The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction This option has no effect if CURVELABELPOSITION=AUTO.

DATATRANSPARENCY= *number*

specifies the degree of the transparency of the density curve and curve label.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

FREQ= *numeric-column | expression*

specifies a numeric column that provides frequencies for each observation that is read.

Default All observations have a frequency count of 1.

Restriction If the value of the *numeric-column* is missing or is less than 1, then the observation is not used in the analysis. If the value is not an integer, then only the integer portion is used.

Note If n is the value of the numeric column for a given observation, then that observation is used n times for the purposes of any statistical computation.

GROUP= *column | discrete-attr-var | expression*

creates a separate density curve for each unique group value in the specified column.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

discrete-attr-var

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

For example, the Sashelp.Cars data contains a column named Origin, which identifies the region that produces each car. This column could be used in the DENSITYPLOT statement to group the density curves in the display:

```sas
proc template;
define statgraph densityplot;
begingroup;
  entrytitle "Highway Mileage Distribution by Origin";
```
layout overlay /
 xaxisopts=(griddisplay=on
 gridattrs=(color=lightgray pattern=dot))
 yaxisopts=(griddisplay=on
 gridattrs=(color=lightgray pattern=dot));
densityplot mpg_highway / name="densityplot" group=origin;
discretelegend "densityplot" / title="Origin:"
 endlayout;
endgraph;
end;
run;

proc sgrender template=densityplot data=sashelp.cars;
run;

Here is the output.

Default
Each distinct group value is represented in the plot by a different line color and pattern. The line color is determined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements. The line pattern is determined by the LineStyle attribute of the GraphData1–GraphDataN and GraphMissing style elements.

Note
The group values are mapped in the order in which they appear in the data.

Tip
You can individually override the representations that are used to identify the groups. For example, in some ODS styles, each distinct group value is represented by a different line color and pattern. In that case, you can use the PATTERN= setting on the LINEATTRS= option to assign the same line pattern to all of the curves.

See
“DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default TRUE
<table>
<thead>
<tr>
<th>Interaction</th>
<th>For this option to take effect, the GROUP= option must also be specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.</td>
</tr>
<tr>
<td>See</td>
<td>“boolean ” on page 1339 for other Boolean values that you can use.</td>
</tr>
</tbody>
</table>

LEGENDLABEL=\"string\"	specifies a label to be used in a discrete legend for this plot.
Default	The string specified on the NAME= option.
Restriction	This option applies only to an associated DISCRETELEGEND statement.

LINEATTRS=style-element	style-element (line-options)	(line-options)	specifies the attributes of the density curve.
Defaults	For non-grouped data, the GraphFit style element.		
	For grouped data, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements, and the GraphFit:LineThickness style reference.		
See	“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.		
	“Line Options” on page 1349 for available line-options.		

NAME=\"string\"	assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.
Restriction	The string is case sensitive, cannot contain spaces, and must define a unique name within the template.
Interaction	The string is used as the default legend label if the LEGENDLABEL= option is not used.

| ORIENT=VERTICAL | HORIZONTAL | specifies the orientation of the Y axis. |
| Default | VERTICAL | |

| PRIMARY=TRUE | FALSE | specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis. |
| Default | FALSE | |
Restriction This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean” on page 1339 for other Boolean values that you can use.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example TIPFORMAT= (Y=6.2)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Requirement To enable data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Note The columns assigned to the X and Y roles are automatically included in the data tip information.

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename = "string" pairs.

Example TIPLABEL=(Y="Curve")

Default The column label or column name of the column assigned to the role.

Note The columns assigned to the X and Y roles are automatically included in the data tip information.

WEIGHT=numeric-column | expression
specifies a column that contains a density-curve calculation a priori weight for each observation of the input data object.

Requirement The value must be nonnegative.

Interaction If the value for an observation is missing or is less than 1, then the observation is removed from the analysis.
XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Distribution Options

KERNEL (C=positive-number <WEIGHTFUNCTION=NORMAL | QUADRATIC | TRIANGULAR> <MAXPOINTS=positive-integer>)
specifies a nonparametric kernel density estimate. The general form of the kernel density estimator is as follows.

\[
\hat{f}_n(x) = \frac{100h}{nh} \sum_{i=1}^{n} K_0 \left(\frac{x - x_i}{h} \right)
\]

In the equation, \(K_0(\cdot)\) is the weight function, \(h\) is the bandwidth, \(n\) is the sample size, and \(x_i\) is the \(i\)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \(K_0(\cdot)\).

For more information, see the discussion of Kernel Density Estimates for the UNIVARIATE procedure in the documentation for Base SAS.

T I P Use the KERNEL distribution option when the data density is not known.

C=positive-number
specifies a positive number (0 < number <= 100) that represents the standardized bandwidth.

The value of \(\lambda\), referred to as the bandwidth parameter, determines the degree of smoothness in the estimated density function. You specify \(\lambda\) indirectly by specifying a standardized bandwidth \(c\) with the C=kernel-option. If \(Q\) is the interquartile range and \(n\) is the sample size, then \(c\) is related to \(\lambda\) by the following equation:

\[
\lambda = cQn - \frac{1}{5}
\]

Default Calculated from the data as the bandwidth that minimizes the approximate mean integrated square error (MISE).

Range 0 to 100 (inclusive)
WEIGHTFUNCTION=NORMAL | QUADRATIC | TRIANGULAR

specifies one of the weight functions NORMAL, QUADRATIC, or TRIANGULAR.

The formulas for the weight functions are as follows:

NORMAL
\[K_0(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} t^2 \right) \text{ for } -\infty < t < \infty \]

QUADRATIC
\[K_0(t) = \frac{3}{4}(1 - t^2) \text{ for } |t| \leq 1 \]

TRIANGULAR
\[K_0(t) = 1 - |t| \text{ for } |t| \leq 1 \]

Default: NORMAL

Note
In prior SAS releases, the weight function was specified with the WEIGHT= option. In SAS 9.4 and later releases, the WEIGHT= option is not valid as a distribution option. You must use the WEIGHTFUNCTION= option instead.

MAXPOINTS=positive-integer

specifies the maximum number of points generated for the curve.

Default: 512

NORMAL (<MU=number> <SIGMA=number> <MAXPOINTS=number>)

specifies a normal density estimate, with mean and standard deviation. The fitted density function equation is as follows:

\[p(x) = \frac{100h}{\pi \sigma^2} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right) \text{ for } -\infty < x < \infty \]

In the equation, \(\mu \) is the mean and \(\sigma \) is the standard deviation (\(\sigma > 0 \)). You can specify \(\mu \) with the MU= suboption and \(\sigma \) with the SIGMA= suboption. By default, ODS estimates \(\mu \) with the sample mean and \(\sigma \) with the sample standard deviation.

For more information, see the discussion of Kernel Density Estimates for the UNIVARIATE procedure in the documentation for Base SAS.

MU=number

specifies the mean.

Default: The value is calculated from the data.

SIGMA=number

specifies the standard deviation.

Default: The value is calculated from the data.

MAXPOINTS=number

specifies the maximum number of points generated for the curve.

Default: 200
Details

A typical DENSITYPLOT statement specifies either the NORMAL or the KERNEL distribution option. If no distribution option is specified, then the NORMAL() option is used. The following syntax explicitly shows the default case:

\[
\text{DENSITYPLOT numeric-column / NORMAL()}
\]

To specify a kernel distribution, use the following plot syntax:

\[
\text{DENSITYPLOT numeric-column / KERNEL()}
\]

If more than one distribution option is specified, then the last distribution option specified is used.

Examples

Example 1: DENSITYPLOT Statement
The following graph was generated by the “Example Program” on page 414:

![Fitted Density Curves of Patient Weight](image)

Example Program
When used as a stand-alone plot or overlaid with other density plots, the dependent axis shows the computed density values.

```plaintext
proc template;
  define statgraph densityplot1;
  begingraph;
    entrytitle "Fitted Density Curves";
    entrytitle "of Patient Weight";
    entryfootnote halign=left "Framingham Heart Study";
    layout overlay;
      densityplot weight / normal()
        lineattrs=graphfit name="n" legendlabel="Normal";
```
Example 2: Density Plot and Histogram

When one or more density plots are overlaid on a histogram, the dependent axis shows the statistic indicated by the histogram’s SCALE= option. The area under each density curve is equal to the area of the histogram. The following graph was generated by the “Example Program” on page 415:

Example Program

```
proc template;
define statgraph densityplot2;
begingraph;
  entrytitle "Patient Weight Distribution";
  entrytitle "with Fitted Normal Curve";
  entryfootnote halign=left "Framingham Heart Study";
  layout overlay;
    histogram weight / primary=true scale=count;
    densityplot weight / normal() lineattrs=graphfit;
  endlayout;
endgraph;
end;
run;
```
proc sgrender data=sashelp.heart template=densityplot2;
 label weight="Patient Weight"
run;

DROPLINE Statement

Creates a horizontal or vertical drop line from a point to an axis.

Requirement: A DROPLINE statement must be used within a 2-D layout (for example, an OVERLAY, OVERLAYEQUATED, DATALATTICE, or DATAPANEL layout).

Syntax

```
DROPLINE X=x-axis-value | column | expression
Y=y-axis-value | column | expression </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **CLIP=TRUE | FALSE**
 specifies whether the data for the line are considered when determining the data ranges for the axes.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 enhances the visual appearance of the drop line.

- **DATATRANSPARENCY=number**
 specifies the degree of the transparency of the drop line.

- **LINEATTRS=style-element | style-element (line-options) | (line-options)**
 specifies the attributes of the drop line.

Axes options

- **DISCRETEOFFSET=number**
 specifies an amount to offset all drop lines from discrete X values, or Y values, or both.

- **DROPTO=X | Y | BOTH**
 specifies the axis to which the line is dropped.

- **XAXIS=X | X2**
 specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

- **YAXIS=Y | Y2**
 specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Label options

- **LABEL="string" | string-column**
 specifies a label for the point(s) indicated by the X= and Y= arguments.

- **LABELATTRS=style-element | style-element (text-options) | (text-options)**
 specifies the color and font attributes of the drop line label(s).

- **LEGENDLABEL="string"**
 specifies a label to be used in a discrete legend for this plot.

Plot reference options
NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=x-axis-value | column | expression
specifies the X coordinate of the drop line(s).

Requirement
Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Note
When a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Tip
By default, if a specified value is outside of the X-axis data range, then the data range is extended to include the value. This behavior can be changed with the CLIP= option.

Y=y-axis-value | column | expression
specifies the Y coordinate of the drop line(s).

Requirement
Values must agree in type with the Y-axis data type.

Note
When a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Tip
By default, if a specified value is outside of the Y-axis data range, then the data range is extended to include the value. This behavior can be changed with the CLIP= option.

Optional Arguments

CLIP=TRUE | FALSE
specifies whether the data for the line are considered when determining the data ranges for the axes.

FALSE
specifies that the reference line values are to be considered when the axis range is determined. The reference lines are drawn as follows based on the axis type:

- For a discrete axis, the reference line values that are not already on the axis are added to the end of the axis data list. When applicable, the axis values are then sorted:

 - If the axis values are numeric values, then they are sorted ordinally.

 - If the axis values are character values and a sorting option is applied to the axis, then they are sorted as specified by the sorting option.

 Reference lines are then drawn at the specified locations.

 - For a linear, log, or time axis, a new axis data list is created by performing a mathematical union of the data values and the reference line values. The reference lines are then drawn at the locations specified.
TRUE
specifies that the reference line values are not to be considered when the axis
range is determined. The reference lines are drawn as follows based on the axis
type:

• For a discrete axis, if the reference line value exactly matches a value on the
 axis, then a reference line is drawn at that location. Otherwise, the reference
 line is not drawn.

 Note: If the axis values are formatted, then the reference line value must
 exactly match the formatted axis value in order for the line to be drawn.

• For a linear, log, or time axis, if the reference line value is within the axis
 data range, then the reference line is drawn at the specified location.
 Otherwise, the reference line is not drawn.

Default FALSE
See “boolean” on page 1339 for other Boolean values that you can use.

DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the drop line. The following figure shows drop
dlines with each of the skins applied.

The DATASKIN= option value that is specified in the BEGINGRAPH
statement. If that value is not specified, then the GraphSkins:DataSkin
style element value is used.

Restriction Starting with the first maintenance release of SAS 9.4, the maximum
number of skinned graphical elements is limited to 200 per plot in an
overlay or prototype layout. When this limit is exceeded for a plot, the
specified data skin is not applied to that plot. In that case, use the
DATASKINMAX= option in your ODS GRAPHICS statement to
increase the maximum limit.

Interaction This option overrides the BEGINGRAPH statement DATASKIN=
option.

DATATRANSPARENCY=number
specifies the degree of the transparency of the drop line.
DISCRETEOFFSET=number

specifies an amount to offset all drop lines from discrete X values, or Y values, or both.

Default	0 (no offset, all drop lines are centered on discrete X values, or discrete Y values, or both)
Range	-0.5 to +0.5 where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.
Restriction	This option applies to discrete axes only. For nondiscrete axes, this option is ignored.
Tip	Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DROPTO=X | Y | BOTH

specifies the axis to which the line is dropped.

X
draws one or more droplines to an X axis.

Tip The XAXIS= option determines whether the X axis or X2 axis is the endpoint for the line.

Y
draws one or more droplines to a Y axis.

Tip The YAXIS= option determines whether the Y axis or Y2 axis is the endpoint for the line.

BOTH
draws one or more droplines to both axes.

<table>
<thead>
<tr>
<th>Note</th>
<th>This option is valid in the first maintenance release of SAS 9.4 and later releases.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>X</th>
</tr>
</thead>
</table>

LABEL="string" | string-column

specifies a label for the point(s) indicated by the X= and Y= arguments.

<table>
<thead>
<tr>
<th>Default</th>
<th>No label is specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>If drawing multiple drop lines using X=column or Y=column, then you can assign corresponding labels by using a column to define the labels.</td>
</tr>
</tbody>
</table>
Note: Starting with the first maintenance release of SAS 9.4, space is reserved at the maximum end of the X axis to accommodate the length of the labels regardless of where the labels appear in the plot.

Tips: You can use the OFFSETMAX= axis option to adjust the amount of space that is reserved on the X axis for the labels.

The font and color attributes for the label are specified by the LABELATTRS= option.

LABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the drop line label(s).

Default: The GraphValueText style element.

Interaction: For this option to have any effect, the LABEL= option must also be specified.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default: The string specified on the NAME= option.

Restriction: This option applies only to an associated DISCRETELEGEND statement.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the drop line.

Default: The GraphReference style element.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction: The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction: The string is used as the default legend label if the LEGENDLABEL= option is not used.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default: X
Another plot that establishes a data range for the designed axis must be included.

Interaction

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS= Y | Y2

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Restriction Another plot that establishes a data range for the designed axis must be included.

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

A drop line is always drawn perpendicular from the specified point to the X (bottom), X2 (top), Y (left), or Y2 (right) axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The **DROPTO**= option controls whether a horizontal or vertical drop line is created. **DROPTO**=X specifies the horizontal axis for a vertical drop line, and **DROPTO**=Y specifies the vertical axis for a horizontal drop line.

A DROPLINE statement can be used only within a 2-D overlay-type layout (OVERLAY, OVERLAYEQUATED, PROTOTYPE). Another plot statement that is derived from data values that provide boundaries for the axis area must be included in the layout. For example, it can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.

To generate both a vertical and a horizontal drop line from a single point, use multiple DROPLINE statements.

Example: DROPLINE Statement

Example Graph

The following graph was generated by the “Example Program” on page 422. The graph shows two DROPLINE statements originating from the same point (X=3, Y=5). One statement uses **DROPTO**=X and the other uses **DROPTO**=Y.
Example Program

```sas
proc template;
define statgraph dropline;
begingraph;
entrytitle "Drop lines at Inflection Point";
layout overlay / yaxisopts=(linearopts=(viewmin=0));
seriesplot x=x y=y;
dropline x=3 y=5 / dropto=x
lineattrs=(color=blue pattern=dot) label="(3,5)";
dropline x=3 y=5 / dropto=y
lineattrs=(color=blue pattern=dot);
endlayout;
endgraph;
endgraph;
end;
run;

data test;
do X=0 to 8 by 0.25;
    Y=(x-3)*(x-3) + 5;
    output;
end;
run;

proc sgrender data=test template=dropline;
run;
```

ELLIPSE Statement

Creates a confidence ellipse computed from input data.
Requirements: An ELLIPSE statement must be used in a two-dimensional overlay-type layout (for example, an OVERLAY, OVERLAYEQUATED, or PROTOTYPE layout). The ELLIPSE statement must be overlaid with another plot that is derived from data values that provide boundaries for the axis area. It is typically overlaid with a scatter plot.

Syntax

```
ELLIPSE X=numeric-column | expression
    Y=numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `CLIP=TRUE | FALSE` specifies whether the data for the ellipse are considered when determining the data ranges for the axes.
- `DATATRANSPARENCY=number` specifies the degree of the transparency of the ellipse fill color and outline.
- `DISPLAY=STANDARD | ALL | (display-options)` specifies whether to display an outlined ellipse, a filled ellipse, or an outlined and filled ellipse.
- `FILLATTRS=style-element | style-element (fill-options) | (fill-options)` specifies the appearance of the interior fill area of the ellipse.
- `OUTLINEATTRS=style-element | style-element (line-options) | (line-options)` specifies the attributes of the ellipse outline.

Axes options

- `XAXIS=X | X2` specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.
- `YAXIS=Y | Y2` specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Label options

- `LEGENDLABEL="string"` specifies a label to be used in a discrete legend for this plot.

Midpoint options

- `GROUP=column | discrete-attr-var | expression` creates a separate ellipse for each unique group value in the specified column.
- `INCLUDEMISSINGGROUP=TRUE | FALSE` specifies whether missing values of the group variable are included in the plot.

Plot reference options

- `NAME="string"` assigns a name to this plot statement for reference in other template statements.

Statistics options
Required Arguments

- **X=numeric-column | expression**
 specifies the numeric column for the X values.

- **Y=numeric-column | expression**
 specifies the numeric column for the Y values.

Optional Arguments

- **ALPHA=positive-number**
 sets a significance value for the confidence level to compute for the ellipse.

 Default 0.05

 Range $0 < \text{number} < 1$

 Note ALPHA=0.05 represents a 95% confidence level.

- **CLIP=TRUE | FALSE**
 specifies whether the data for the ellipse are considered when determining the data ranges for the axes.

 FALSE
 The data for the ellipse contribute to the data range for each axis. Each axis might be extended to force the display of the entire ellipse.

 TRUE
 The data for the ellipse are ignored when establishing axis scales. Each axis scale is determined by the other plots in the parent layout. This might result in the ellipse not being entirely displayed (clipped) if its data range is not within the data ranges of the other plots.

 Default FALSE

 See “boolean” on page 1339 for other Boolean values that you can use.

- **DATATRANSPARENCY=number**
 specifies the degree of the transparency of the ellipse fill color and outline.

 Default 0

 Range 0–1, where 0 is opaque and 1 is entirely transparent

 Tip The FILLATTRS= option can be used to set transparency for just the ellipse fill. You can combine this option with FILLATTRS= to set one transparency for the ellipse outline but a different transparency for the ellipse fill. Example:
DISPLAY=STANDARD | ALL | *(display-options)*
specifies whether to display an outlined ellipse, a filled ellipse, or an outlined and filled ellipse.

STANDARD
displays an outlined, unfilled ellipse

ALL
displays an outlined, filled ellipse

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

OUTLINE
displays an outlined ellipse

FILL
displays a filled ellipse

Default GraphEllipse:DisplayOpts style reference.

Tip Use **FILLATTRS=** and **OUTLINEATTRS=** to control the appearance of the ellipse.

FILLATTRS=style-element | style-element *(fill-options)* | *(fill-options)*
specifies the appearance of the interior fill area of the ellipse.

Default The GraphDataDefault style element.

Interaction For this option to have any effect, the fill must be enabled by the ODS style or the **DISPLAY**= option.

Tip The **DATATRANSPARENCY**= option sets the transparency for the ellipse fill and ellipse outline. You can combine this option with **DATATRANSPARENCY**= to set one transparency for the outline but a different transparency for the fill. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

Default All observations have a frequency count of 1.

Restriction If the value of the *numeric-column* is missing or is less than 1, then the observation is not used in the analysis. If the value is not an integer, then only the integer portion is used.

Note If *n* is the value of the numeric column for a given observation, then that observation is used *n* times for the purposes of any statistical computation.
GROUP=column | discrete-attr-var | expression
creates a separate ellipse for each unique group value in the specified column.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

For example, the Sashelp.Iris data contains a column named Species, which identifies the species of each plant. This column could be used in the ELLIPSE statement to group the ellipses in the display:

```sas
proc template;
define statgraph ellipsegroup;
begingraph;
  entrytitle "95% Prediction By Species";
  layout overlay;
    scatterplot x=petallength y=petalwidth / name="sp"
      group=species;
    ellipse x=petallength y=petalwidth / group=species
      type=predicted alpha=0.05 name="p95";
    mergedlegend "sp" "p95" / location=inside
      autoalign=(topleft) across=1;
  endlayout;
endgraph;
end;
run;

proc sgrender data=sashelp.iris template=ellipsegroup;
run;
```

Here is the output.

![Graph](image.png)

Default Each distinct group value is represented in the plot by a different line color and pattern. The line color is determined by the ContrastColor attribute of
the GraphData1–GraphDataN and GraphMissing style elements. The line pattern is determined by the LineStyle attribute of the GraphData1–GraphDataN and GraphMissing style elements.

Note
The group values are mapped in the order in which they appear in the data.

Tip
You can individually override the representations that are used to identify the groups. For example, in some ODS styles, each distinct group value is represented by a different line color and pattern. In that case, you can use the PATTERN= setting on the OUTLINEATTRS= option to assign the same line pattern to all of the ellipses.

See
“DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP= **TRUE | FALSE**
specifies whether missing values of the group variable are included in the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default
TRUE

Interaction
For this option to take effect, the GROUP= option must also be specified.

Tip
The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See
“boolean” on page 1339 for other Boolean values that you can use.

LEGENDLABEL= **"string"**
specifies a label to be used in a discrete legend for this plot.

Default
The string specified on the NAME= option.

Restriction
This option applies only to an associated DISCRETELEGEND statement.

NAME= **"string"**
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction
The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction
The string is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEATTRS= **style-element | style-element (line-options) | (line-options)**
specifies the attributes of the ellipse outline.

Defaults
For non-grouped data, the GraphDataDefault style element.
For grouped data, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements, and the LineThickness attribute of the GraphDataDefault style element.

Interaction For this option to have any effect, the outlines must be enabled by the ODS style or the DISPLAY= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

TYPE=MEAN | PREDICTED
specifies the type of ellipse.

MEAN
specifies a confidence ellipse of the mean

PREDICTED
specifies a prediction ellipse for a new observation

Default MEAN

See ALPHA= option for specifying a confidence level.

For statistical details about how the ellipse is calculated, see “Confidence and Prediction Ellipses ” on page 429.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

Statement Description
The ELLIPSE statement can be used only within 2-D overlay-type layouts. It computes an ellipse for a set of points specified by the X and Y columns and a confidence level specified by the ALPHA= option. Use the TYPE= option to control whether a predicted or confidence ellipse is generated.
Confidence and Prediction Ellipses

Two types of ellipses can be computed for the input data (where observations correspond to points in a scatter plot). One is a confidence ellipse for the population mean (TYPE=MEAN), and the other is a prediction ellipse for a new observation (TYPE=PREDICT). Both assume a bivariate normal distribution.

Let Z and S be the sample mean and sample covariance matrix of a random sample of size n from a bivariate normal distribution with mean μ and covariance matrix Σ. The variable $Z - \mu$ is distributed as a bivariate normal variate with mean zero and covariance $\left(\frac{1}{n}\right)\Sigma$, and it is independent of S. Using Hotelling’s T^2 statistic, which is defined as follows:

$$T^2 = n(Z - \mu)'S^{-1}(Z - \mu)$$

A 100(1$-$\alpha$)% confidence ellipse for μ is computed from the following equation:

$$\frac{n}{n-1}(Z - \mu)'S^{-1}(Z - \mu) = \frac{2}{n-2}F_{2,n-2}(1-\alpha)$$

where $F_{2,n-2}(1-\alpha)$ is the $(1-\alpha)$ critical value of an F distribution with degrees of freedom 2 and $n-2$.

A prediction ellipse is a region for predicting a new observation in the population. It also approximates a region containing a specified percentage of the population.

Denote a new observation as the bivariate random variable Z_{new}. The following variable:

$$Z_{new} - Z = (Z_{new} - \mu) - (Z - \mu)$$

is distributed as a bivariate normal variate with mean zero (the zero vector) and covariance $\left(1 + \frac{1}{n}\right)\Sigma$, and it is independent of S. A 100(1$-$\alpha$)% prediction ellipse is then given by the following equation:

$$\frac{n}{n-1}(Z - \mu)'S^{-1}(Z - \mu) = \frac{2(n+1)}{n-2}F_{2,n-2}(1-\alpha)$$

The family of ellipses generated by different critical values of the F distribution has a common center (the sample mean) and common major and minor axis directions.

The shape of an ellipse depends on the aspect ratio of the plot. The ellipse indicates the correlation between the two variables if the variables are standardized (by dividing the variables by their respective standard deviations). In this situation, the ratio between the major and minor axis lengths is:

$$\frac{1 + r}{1 - r}$$

In particular, if $r = 0$, then the ratio is 1, which corresponds to a circular confidence contour and indicates that the variables are uncorrelated. A larger value of the ratio indicates a larger positive or negative correlation between the variables.

Example: ELLIPSE Statement

The following graph was generated by the “Example Program” on page 430:
Example Program

This example overlays two ELLIPSE statements on a SCATTERPLOT of the same data. Both ELLIPSE statements use TYPE=PREDICTED. One ELLIPSE statement uses ALPHA=0.2, and the other uses ALPHA=0.05.

```sas
proc template;
  define statgraph ellipse;
  begingraph;
    entrytitle "Prediction Ellipses";
    layout overlayequated / equatetype=equate;
      scatterplot x=petallength y=petalwidth / datatransparency=0.5;
      ellipse x=petallength y=petalwidth / type=predicted alpha=0.2
        name="p80" legendlabel="80%"
        outlineattrs=graphconfidence;
      ellipse x=petallength y=petalwidth / type=predicted alpha=0.05
        name="p95" legendlabel="95%"
        outlineattrs=graphconfidence2;
    discretelegend "p80" "p95" /
      location=inside autoalign=(topleft);
  endlayout;
  entryfootnote halign=left "Fisher's Iris Data";
  endgraph;
run;
proc sgrender data=sashelp.iris template=ellipse;
run;
```
ELLIPSEPARM Statement

Creates an ellipse specified by slope, axis, and origin parameters.

Requirements: An ELLIPSEPARM statement must be used in a two-dimensional overlay-type layout (for example, an OVERLAY, OVERLAYEQUATED, or PROTOTYPE layout).

The ELLIPSEPARM statement must be overlaid with another plot that is derived from data values that provide boundaries for the axis area. It is typically overlaid with a scatter plot.

Tip: You can generate a single ellipse by specifying a constant for each required argument. You can generate multiple ellipses by specifying a numeric column for any or all required arguments. If any of the `SEMIMAJOR=`, `SEMIMINOR=`, `XORIGIN=` or `YORIGIN=` constants or columns contains a missing value, then no ellipse is drawn. To request a vertical major axis, specify `SLOPE=.` (missing value) as a constant or column value.

Syntax

```
ELLIPSEPARM SEMIMAJOR=number | numeric-column | expression
SEMIMINOR=number | numeric-column | expression
SLOPE=number | numeric-column | expression
XORIGIN=number | numeric-column | expression
YORIGIN=number | numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `CLIP=TRUE | FALSE` specifies whether the data for the ellipse are considered when determining the data ranges for the axes.
- `DATATRANSPARENCY=number` specifies the degree of the transparency of the ellipse fill color and outline.
- `DISPLAY=STANDARD | ALL | (display-options)` specifies whether to display an outlined ellipse, a filled ellipse, or an outlined and filled ellipse.
- `FILLATTRS=style-element | style-element (fill-options) | (fill-options)` specifies the appearance of the interior fill area of the ellipse.
- `INDEX=positive-integer-column | expression` specifies indices for mapping ellipse attributes (fill and outline) to one of the `GraphData1–GraphDataN` style elements.
- `OUTLINEATTRS=style-element | style-element (line-options) | (line-options)` specifies the attributes of the ellipse outline.

Axes options

- `XAXIS=X | X2` specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.
- `YAXIS=Y | Y2` specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.
Label options

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
creates a separate ellipse for each unique group value of the specified
column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the
plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template
statements.

Required Arguments

SEMIMAJOR=number | numeric-column | expression
specifies half the length of the major axis for the ellipse. Values are in the same units
as the data. The SEMIMAJOR value can be greater than, smaller than, or equal to
the SEMIMINOR value.

Restriction If a numeric column is specified and the column contains negative
values, then no ellipses are drawn. In the second maintenance release of
SAS 9.4 and in earlier releases, the same is true if the column contains
missing values. Starting with the third maintenance release of SAS 9.4,
if the column contains a missing value, the ellipse for that observation
is not drawn. However, the remaining ellipses that have nonmissing
values for this argument and for SEMIMINOR= are drawn.

SEMIMINOR=number | numeric-column | expression
specifies half the length of the minor axis for the ellipse. Values are in the same units
as the data. The SEMIMINOR value can be greater than, smaller than, or equal to
the SEMIMAJOR value.

Restriction If a numeric column is specified and the column contains negative
values, then no ellipses are drawn. In the second maintenance release of
SAS 9.4 and in earlier releases, the same is true if the column contains
missing values. Starting with the third maintenance release of SAS 9.4,
if the column contains a missing value, the ellipse for that observation
is not drawn. However, the remaining ellipses that have nonmissing
values for this argument and for SEMIMAJOR= are drawn.

SLOPE=number | numeric-column | expression
specifies the slope of the major axis for the ellipse. Slope can be positive or negative.

Note The slope value is in the data space and might or might not be maintained in
the screen space. Thus, setting SLOPE=1 does not always generate a 45
degree line on the screen.

Tip Setting SLOPE=0 creates a major axis parallel to the X-axis. Setting
SLOPE=. (missing value) creates a major axis parallel to the Y-axis.
XORIGIN=number | numeric-column | expression
specifies the X coordinate of the center of the ellipse. Values are in the units of the data.

Tip By default, if the value specified for the XORIGIN= option is outside of the X-axis data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

YORIGIN=number | numeric-column | expression
specifies the Y coordinate of the center of the ellipse. Values are in the units of the data.

Tip By default, if the value specified for the YORIGIN= option is outside of the Y-axis data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

Optional Arguments

CLIP=TRUE | FALSE
specifies whether the data for the ellipse are considered when determining the data ranges for the axes.

FALSE
The data for the ellipse contribute to the data range for each axis. Each axis might be extended to force the display of the entire ellipse.

TRUE
The data for the ellipse are ignored when establishing axis scales. Each axis scale is determined by the other plots in the parent layout. This might result in the ellipse not being entirely displayed (clipped) if its data range is not within the data ranges of the other plots.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

DATATRANSPARENCY=number
specifies the degree of the transparency of the ellipse fill color and outline.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

Tip The FILLATTRS= option can be used to set transparency for just the ellipse fill. You can combine this option with FILLATTRS= to set one transparency for the ellipse outline but a different transparency for the ellipse fill. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

DISPLAY=STANDARD | ALL | (display-options)
specifies whether to display an outlined ellipse, a filled ellipse, or an outlined and filled ellipse.

STANDARD
 displays an outlined, unfilled ellipse

ALL
 displays an outlined, filled ellipse
(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

OUTLINE displays an outlined ellipse
FILL displays a filled ellipse

Default GraphEllipse:DisplayOpts style reference.
Tip Use FILLATTRS= and OUTLINEATTRS= to control the appearance of the ellipse.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the interior fill area of the ellipse.

Defaults For non-grouped data, the GraphDataDefault style element.
 For grouped data, the GraphData1–GraphDataN style elements.
Interaction For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.
Tip The DATATRANSPARENCY option sets the transparency for the ellipse fill and ellipse outline. You can combine this option with DATATRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:
 datatransparency=0.2 fillattrs=(transparency=0.6)
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
 “Fill Options” on page 1348 for available fill-options.

GROUP=column | discrete-attr-var | expression
creates a separate ellipse for each unique group value of the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

The representations that are used to identify the groups can be overridden individually. For example, each distinct group value might be represented by a different line pattern for the ellipses, but the PATTERN= suboption of the OUTLINEATTRS= option could be used to assign the same line pattern to all ellipse outlines, letting outline color distinguish group values.

Defaults If DISPLAY= (OUTLINE), then each distinct group value might be represented in the plot by a different combination of outline color and line pattern. Line color and pattern vary according to the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN and GraphMissing style elements. Line thickness (for grouped and ungrouped data) is controlled by the OUTLINEATTRS= option.
If DISPLAY=(FILL), then each distinct group value might be represented in the plot by a different fill color defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements.

If DISPLAY=(FILL OUTLINE), then each distinct group value might be represented in the plot by a different fill color, outline color, and outline pattern.

Restriction

When the GROUP= option is specified, the group value must be a character or numeric column. For each group value, there must be a numeric column that does not contain missing values for SEMIMAJOR=, SEMIMINOR=, XORIGIN=, and YORIGIN=. The SLOPE= column can contain missing values. Under these circumstances, an ellipse is drawn for each group value.

Interaction

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

See

“DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

Default

TRUE

Interaction

For this option to take effect, the GROUP= option must also be specified.

Tip

The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See

“boolean ” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression

specifies indices for mapping ellipse attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

Requirements

The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction

For this option to take effect, the GROUP= option must also be specified.
Notes

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page "183.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default The string specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the ellipse outline.

Defaults For non-grouped data, the GraphDataDefault style element.
For grouped data, the GraphData1–GraphDataN style elements.

See “General Syntax for Attribute Options” on page "1347 for the syntax on using a style-element.

“Line Options” on page "1349 for available line-options.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Restriction Another plot that establishes a data range for the designed axis must be included.

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Restriction Another plot that establishes a data range for the designed axis must be included.

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details
The ELLIPSEPARAM statement plots an ellipse with specified semimajor and semiminor axis lengths, a specified slope for the major axis, and the ellipse center. The ellipse center is the point of intersection of the semimajor and semiminor axes. It can be used only within a two-dimensional overlay-type layout (for example, an OVERLAY, OVERLAYEREQUATED, or PROTOTYPE layout). The ELLIPSEPARAM statement does not perform computations on input data to derive the location and shape of the ellipse. Another plot that is derived from data values that provide boundaries for the axis area must be included in the layout. It is typically overlaid with a scatter plot. See “ELLIPSE Statement” on page 422 for information about computed ellipses.

Example: ELLIPSEPARAM Statement
The following graph was generated by the “Example Program” on page 438:
Overview

This is a simplified version of the CorrLoadPlot template for PROC PLS in the SAS/STAT product. It consists of overlaid scatter plots of the scores of the first two factors, the loadings of the model effects, and the loadings of the dependent variables. The loadings are scaled so that the amount of variation in the variables that is explained by the model is proportional to the distance from the origin; circles indicating various levels of explained variation are also overlaid.

The circles are drawn with ELLIPSEPARM statements by setting the SEMIMAJOR and SEMIMINOR lengths to be the same. Notice that all circles are concentric because they share the same origin (0,0). The radius of each circle is passed dynamically.

Also note that an OVERLAYEQUATED layout was used to force the length of unit intervals on both axes to be the same.

The input data shown is representative of that computed by PROC PLS for the Correlation Loadings Plot. For more details, see the first example for PROC PLS in the SAS/STAT user’s guide.

Example Program

Here is the SAS program for this example.

```sas
proc template;
define statgraph ellipseparm;
dynamic RADIUS1 RADIUS2 RADIUS3 RADIUS4 ;
begingraph;
entrytitle "Correlation Loading Plot";
layout overlayequated / equatetype=square
   commonaxisopts=(
tickvaluelist=(-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1)
   viewmin=-1 viewmax=1)
xaxisopts=(label="Factor 1" offsetmin=0.05 offsetmax=0.05)
yaxisopts=(label="Factor 2" offsetmin=0.05 offsetmax=0.05);
ellipseparm semimajor=RADIUS1 semiminor=RADIUS1 slope=0
   xorigin=0 yorigin=0 / clip=true display=(outline)
   outlineattrs=(pattern=dash) datatransparency=0.75;
ellipseparm semimajor=RADIUS2 semiminor=RADIUS2 slope=0
   xorigin=0 yorigin=0 / clip=true display=(outline)
   outlineattrs=(pattern=dash) datatransparency=0.75;
ellipseparm semimajor=RADIUS3 semiminor=RADIUS3 slope=0
   xorigin=0 yorigin=0 / clip=true display=(outline)
   outlineattrs=(pattern=dash) datatransparency=0.75;
ellipseparm semimajor=RADIUS4 semiminor=RADIUS4 slope=0
   xorigin=0 yorigin=0 / clip=true display=(outline)
   outlineattrs=(pattern=dash) datatransparency=0.75;
sscatterplot x=xcirclelabel y=ycirclelabel / primary=true
   markercharacter=circlelabel datatransparency=0.75;
sscatterplot x=corr1 y=corr2 / name="ScatterVars"
   group=corrgroup markercharacter=corrlabel;
discretelegend "ScatterVars";
endlayout;
endGraph;
end;
```
run;

data corrplot;
 infile cards missover;
 xCircleLabel yCircleLabel CircleLabel :$8.;
data lines;
 -0.179 -0.268 Predictor Loading S1 0 0.5 25%
 0.105 0.332 Predictor Loading S2 0 -0.5 25%
 -0.654 0.094 Predictor Loading S3 0 0.707 50%
 -0.653 0.685 Predictor Loading S4 0 -0.707 50%
 0.096 0.059 Predictor Loading S5 0 0.866 75%
 0.132 0.036 Predictor Loading L1 0 -0.866 75%
 0.087 0.156 Predictor Loading L2 0 1 100%
 0.940 0.160 Predictor Loading L3 0 -1 100%
 0.607 -0.350 Predictor Loading L4
 0.096 0.059 Predictor Loading L5
 -0.111 -0.534 Predictor Loading P1
 0.003 0.256 Predictor Loading P2
 0.293 0.551 Predictor Loading P3
 -0.480 0.643 Predictor Loading P4
 -0.096 0.059 Predictor Loading P5
 0.946 0.279 Response Loading log_RAI
 -0.196 0.403 Observation 1
 0.020 -0.001 Observation 2
 -0.195 0.324 Observation 3
 0.021 -0.079 Observation 4
 -0.009 -0.274 Observation 5
 0.567 0.294 Observation 6
 -0.096 -0.059 Observation 7
 0.258 0.210 Observation 8
 -0.104 -0.309 Observation 9
 -0.187 -0.458 Observation 10
 0.051 -0.078 Observation 11
 0.017 0.260 Observation 12
 -0.621 0.372 Observation 13
 0.392 0.138 Observation 14
 0.080 -0.221 Observation 15
run;

proc sgrender data=corrplot template=ellipseparm;
 dynamic radius1=0.50 radius2=0.71 radius3=0.87 radius4=1;
run;

FRINGEPLOT Statement

Creates a fringe plot on the X axis of an X-Y plot.

Syntax

FRINGEPLOT numeric-column | expression </option(s)>;
Summary of Optional Arguments

Appearance options

DATATRANSPARENCY=number
specifies the degree of the transparency of the fringe.

FRINGEHEIGHT=dimension
specifies the height of the fringe lines.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the fringe lines for the data points.

Axes options

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a fringe line.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column \ discrete-attr-var | expression
creates a distinct set of lines for each unique group value of the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Argument

numeric-column | expression
specifies a column that provides the X coordinates of the data values.
Optional Arguments

DATATRANSPARENCY=number
specifies the degree of the transparency of the fringe.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

FRINGEHEIGHT=dimension
specifies the height of the fringe lines.

Default 10 px

See “dimension” on page 1340

GROUP=column | discrete-attr-var | expression
creates a distinct set of lines for each unique group value of the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default Each distinct group value is represented in the plot by a different color. The colors are determined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements. The line style and line thickness are determined by the GraphDataDefault style element.

Interactions The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of colors and line patterns.

The INCLUDEMISSINGGROUP= option controls whether missing group values are considered a distinct group value.

Note You can override the representations that are used to identify the groups. For example, you can use the LINEATTRS=(PATTERN=pattern) option to assign the same line pattern to all of the plot’s line patterns, letting line color indicate group values. Likewise, you can use LINEATTRS=(COLOR=color) to assign the same color to all lines, letting line pattern indicate group values.

See “DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Default TRUE

Interaction For this option to take effect, the GROUP= option must also be specified.
Tip

The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See

“boolean” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression

specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

Requirements

The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction

For this option to take effect, the GROUP= option must also be specified.

Notes

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default

The X-column label. If a label is not defined, then the X-column name is used.

Restriction

This option applies only to an associated DISCRETELEGEND statement.

LINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the fringe lines for the data points.

Default

The GraphDataDefault style element.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.
NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined role X.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a fringe line. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the fringe plot can be specified along with roles that do.

role-list
an ordered, space-separated list of unique FRINGEPLOT and user-defined roles. The FRINGEPLOT role is X.

Tip User-defined roles are defined with the ROLENAME= option.

Example The following example displays data tips for the columns assigned to the roles X and Y, as well as the column Pct, which is not assigned to any pre-defined FRINGEPLOT role. The Pct column should appear first in the data tip:

ROLENAME=(TIP1=PCT)
TIP=(X TIP1)

NONE suppresses data tips from the plot.

Default The column assigned to the X role is automatically included in the data tip information.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option.
specifies, and you must write the output to the ODS HTML destination.

Interaction

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip

The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT \(=\) **(role-format-list)**

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)

a space-separated list of role-name = format pairs.

Example

```plaintext
ROLENAME=(TIP1=SAIARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
```

Default

The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL \(=\) **(role-label-list)**

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

(role-label-list)

a space-separated list of rolename ="string" pairs.

Example

```plaintext
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")
```

Default

The column label or column name of the column assigned to the role.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

XAXIS \(=\) **X | X2**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default

X

Interaction

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
Note The display of the fringe lines is always anchored on the X-axis (at the bottom of the plot area), even when the FRINGEPLOT’s X-column data range is mapped to the X2 axis.

Details
In a FRINGEPLOT, each fringe line represents the location of the corresponding raw data value on the X axis. All fringe lines are of equal length.

Example: FRINGEPLOT Statement

The following graph was generated by the “Example Program” on page 445:

Example Program

```
proc template;
  define statgraph fringeplot;
    dynamic VAR VARLABEL;
  begingraph;
    entrytitle "Histogram and Fringeplot";
    layout overlay / xaxisopts=(label=VARLABEL)
                   yaxisopts=(offsetmin=0.03);
      fringeplot VAR / datatransparency=0.75
                        fringeheight=3pct;
      histogram VAR;
    endlayout;
  endgraph;
end;
run;
```
HEATMAP Statement

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Syntax

```
HEATMAP X=numeric-column | expression
   Y=numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `COLORMODEL=color-ramp-style-element | (color-list)`
 - Specifies a color ramp to use with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column | range-attr-var | expression`
 - Specifies a numeric column that is used to color the heat map regions.
- `COLORSTAT= FREQ | PCT | PROPORTION | SUM | MEAN`
 - Specifies the statistic to be calculated for the COLORRESPONSE= column.
- `DATATRANSPARENCY=number`
 - Specifies the degree of transparency of the outline and fill for each region.
- `DISPLAY=ALL | STANDARD | (display-options)`
 - Specifies the degree of the transparency of the rectangles.
- `FILLATTRS=(TRANSPARENCY=number)`
 - Specifies the transparency of the interior fill area of the regions.
- `OUTLINEATTRS=style-element | style-element (line-options) | (line-options)`
 - Specifies the appearance of the rectangle outlines.
- `REVERSECOLORMODEL=TRUE | FALSE`
 - Specifies whether to reverse the gradient that is specified by the ODS style that is in effect or by the COLORMODEL= option.
- `WEIGHT=numeric-column`
 - Specifies a variable in the input data set that contains values to be used as a priori weights for the colored-region calculations.
- `XGAP=number`
 - Specifies the amount of horizontal space on either side of each color-coded region in the heat map.
- `YGAP=number`
 - Specifies the amount of horizontal space on either side of each color-coded region in the heat map.

Axes options

```
PRIMARY=TRUE | FALSE
```
specifies that the data columns for this plot are used for determining default axis features.

XAXIS=X | X2

specifies whether data is mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

XBINAXIS=TRUE | FALSE

specifies whether to use bins as the basis for x-axis tick marks.

XENDLABELS=TRUE | FALSE

specifies whether the X axis ticks and tick values are placed at the bin end-points or at the bin mid-points.

YAXIS=Y | Y2

specifies whether data is mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

YBINAXIS=TRUE | FALSE

specifies whether to use bins as the basis for x-axis tick marks.

YENDLABELS=TRUE | FALSE

specifies whether the Y axis ticks and tick values are placed at the bin end-points or at the bin mid-points.

Binning options

NXBINS=positive-integer

specifies the number of bins to use for the X role.

NYBINS=positive-integer

specifies the number of bins to use for the Y role.

XBINSIZE=positive-number

specifies the size of bins along the X role, in data units.

XBINSTART=number

specifies the data value for the first bin of the X role.

XBOUNDARY=UPPER | LOWER

specifies how an input value is counted when it lies on the endpoint of an X bin.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS

specifies whether the XBINSTART= value represents the midpoint, lower endpoint, or upper endpoint of the bin.

YBINSIZE=positive-number

specifies the size of bins along the Y role, in data units.

YBINSTART=number

specifies the data value for the first bin of the Y role.

YBOUNDARY=UPPER | LOWER

specifies how an input value is counted when it lies on the endpoint of an Y bin.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS

specifies whether the YBINSTART= value represents the midpoint, lower endpoint, or upper endpoint of the bin.

Data option

DISCRETEX=TRUE | FALSE

specifies whether the X axis is discrete when X= specifies a numeric column.

DISCRETEY=TRUE | FALSE

specifies whether the Y axis is discrete when Y= specifies a numeric column.
Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Plot reference options

NAME="string"
assigns a name to a HEATMAP statement for reference in other template statements and log messages.

Statistics options

FREQ=numeric-column | expression
specifies a column for the frequency count for each observation in the input data.

Required Arguments

X=column | expression
specifies the column for the X values.

Requirement
If X= specifies a numeric column, then the DISCRETEX= option must be set correctly for the X-axis type. When it is not set correctly, the heat map is not drawn. If the X-axis type is discrete, then you must specify DISCRETEX=TRUE in the HEATMAP statement. Otherwise, DISCRETEX=FALSE must be in effect.

See
DISCRETEX= on page 450

Y=column | expression
specifies the column for the Y values.

Requirement
If Y= specifies a numeric column, then the DISCRETEY= option must be set correctly for the Y-axis type. When it is not set correctly, the heat map is not drawn. If the Y-axis type is discrete, then you must specify DISCRETEY=TRUE in the HEATMAP statement. Otherwise, DISCRETEY=FALSE must be in effect.

See
DISCRETEY= on page 450

Optional Arguments

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

color-ramp-style-element
specifies the name of a color-ramp style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color” on page 1340

Default The ThreeColorRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

Tip To reverse the start and end colors of the ramp that is assigned to the color model, use the REVERSECOLORMODEL= option.

COLORRESPONSE= specifies a numeric column that is used to color the heat map regions.

range-attr-var specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLOREMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Tips
To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

Use the COLORSTAT= option to specify the statistic to compute for the COLORRESPONSE= column.

COLORSTAT= specifies the statistic to be calculated for the COLORRESPONSE= column.

Default FREQ

Interaction When FREQ, PCT, or PROPORTION is specified, the colors are controlled by the FREQ= and WEIGHT= option values. When SUM or MEAN is specified, the colors are controlled by the FREQ=, WEIGHT=, and COLORRESPONSE= option values.
DATATRANSPARENCY=number
specifies the degree of the transparency of the outline and fill for each region.

Default 0
Range 0–1, where 0 is opaque and 1 is entirely transparent
Tip Use the FILLATTRS= option to set transparency for just the rectangle fills. You can combine this option with FILLATTRS= to set one transparency for the rectangle outlines and a different transparency for the rectangle fills. Example:
 datatransparency=0.2 fillattrs=(transparency=0.6)

DISCRETEX=TRUE | FALSE
specifies whether the X axis is discrete when X= specifies a numeric column.

Default FALSE
Requirement If X= specifies a numeric column and the X axis type is discrete, then you must specify DISCRETEX=TRUE. Otherwise, the heat map might not be drawn.
Interaction If X= specifies a character column, then this option is ignored, and the X axis is considered to be discrete.
See X= on page 448

DISCRETEY=TRUE | FALSE
specifies whether the Y axis is discrete when Y= specifies a numeric column.

Default FALSE
Requirement If Y= specifies a numeric column and the Y axis type is discrete, then you must specify DISCRETEY=TRUE. Otherwise, the heat map might not be drawn.
Interaction If Y= specifies a character column, then this option is ignored, and the Y axis is considered to be discrete.
See Y= on page 448

DISPLAY=ALL | STANDARD | (display-options)
specifies the degree of the transparency of the rectangles.

STANDARD displays colored regions.
ALL displays outlined, colored regions.
display-options a space-separated list of options, enclosed in parentheses. Currently, only OUTLINE is supported, which displays outlined, filled rectangles.
HEATMAP Statement

FILLATTRS=(TRANSAPRENCY=number)

specifies the transparency of the interior fill area of the regions.

<table>
<thead>
<tr>
<th>Default</th>
<th>STANDARD</th>
</tr>
</thead>
</table>

FREQ= numeric-column | expression

specifies a column for the frequency count for each observation in the input data.

NAME= "string"

assigns a name to a HEATMAP statement for reference in other template statements and log messages.

NXBINS= positive-integer

specifies the number of bins to use for the X role. The system determines the XBINSIZE= and XBINSTART= values if they are not specified. The bins always span the range of the data.

<table>
<thead>
<tr>
<th>Default</th>
<th>Determined by the system.</th>
</tr>
</thead>
</table>

NYBINS= positive-integer

specifies the number of bins to use for the Y role. The system determines the YBINSIZE= and YBINSTART= values if they are not specified. The bins always span the range of the data.

<table>
<thead>
<tr>
<th>Default</th>
<th>Determined by the system.</th>
</tr>
</thead>
</table>

Restrictions

- If the value of FREQ for a given observation is missing or is less than 1, that observation is not used in the analysis.
- If the value is not an integer, only the integer portion is used.

Restriction

The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Tip

This option is used mostly with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the appearance of the rectangle outlines.

Defaults
 For filled regions, the GraphOutlines style element
 For unfilled regions, the GraphOutlinesUnfilled style element

Interaction
 For this option to have any effect, outlines must be enabled by the ODS style or by the DISPLAY= option.

Note
 When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

See
 “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element value
 “Line Options” on page 1349 for available line-options values

PRIMARY=TRUE | FALSE
 specifies that the data columns for this plot are used for determining default axis features.

Default
 FALSE. If no plot in an OVERLAY layout is designated as primary, the data columns associated with the first plot that could be primary is considered primary on a per-axis basis.

Restrictions
 Only one plot in an overlay can be primary on a per-axis basis. If multiple plots specify PRIMARY=TRUE for the same axis, the last one specified is considered the primary plot.

 This option is ignored if the plot is placed in a GRIDDED or LATTICE layout block.

Tip
 This option is needed only when there are two or more plots within an overlay that contribute to a common axis. If PRIMARY=TRUE for one of them, then that plot’s data columns are used to determine the axis features, regardless of where this plot statement occurs within the OVERLAY layout block.

REVERSECOLORMODEL=TRUE | FALSE
 specifies whether to reverse the gradient that is specified by the ODS style that is in effect or by the COLORMODEL= option.

Default
 FALSE

See
 COLORMODEL= on page 448

ROLENAMESPACE=(role-name-list)
 specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
 a space-separated list of role-name = column pairs.

Example
 The following example assigns the column Obs to the user-defined role TIP:

 The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default
No user-defined roles

Requirement
The role names that you choose must be unique and different from the predefined roles X, Y, COLORGROUP=, and COLORRESPONSE=.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle. If this option is used, the specified information replaces all the information that is displayed by default. You can specify roles for columns that do not contribute to the bar chart along with roles that do.

(role-list)
an ordered, space-separated list of unique HEATMAP roles and user-defined roles. HEATMAP roles include X, Y, and the implicit count.

Example
To display data tips for the columns assigned to the roles X and Y as well as the user-defined role TIP1:
ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y)

NONE
suppresses data tips and URLs (if requested) in the graph output.

Default
The columns assigned to these roles are automatically included in the data tip information: X and Y

Requirement
To generate data tips, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and write the graphs to the ODS HTML destination.

Tip
You can control the labels and formats for the TIP variables with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
To specify a format for the user-defined TIP1 role:
ROLENAME=(TIP1=PCT)
TIP=(TIP1 X Y)
TIPFORMAT=(TIP1=PERCENT7.2)

Default
The column format of the variable assigned to the role or BEST6. if no format is assigned to a numeric column.

Requirement
This option provides a way to control the formats of columns that appear in data tips. Only the roles that appear in the TIP= option are used.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.
(role-label-list)
a space-separated list of role-name = "string" pairs.

Example
To specify a label for the user-defined TIP1 role:

```
ROLENAME=(TIP1=PCT)  
TIP=(TIP1 X Y)  
TIPLABEL=(TIP1="Percent")
```

Default
The column label or column name of the variable assigned to the role.

Requirement
This option provides a way to control the labels of columns that appear in data tips. Only the roles that appear in the TIP= option are used.

WEIGHT=numeric-column
specifies a variable in the input data set that contains values to be used as a priori weights for the colored-region calculations.

Requirement
The values of the weight variable must be nonnegative.

Note
If an observation's weight is zero, negative, or missing, the observation is deleted from the analysis.

XAXIS=X | X2
specifies whether data is mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default
X

Interaction
The overall plot specification and the layout type determine the axis display. For more information, see "How Axis Features Are Determined" on page 875.

XBINAXIS=TRUE | FALSE
specifies whether to use bins as the basis for x-axis tick marks. When this option is FALSE, a standard axis is used, ignoring bin boundaries and midpoints.

Default
TRUE

Interactions
When this option is TRUE, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is FALSE, the XENDLABELS= option is ignored.

When this option is TRUE, the system attempts to compute nice values for the bin end points. In that case, the sum of the bin data ranges might exceed the actual data range.

When this option is TRUE, the axis ticks are in predetermined locations and are not changed when the parent layout specifies axis suboptions such as TICKVALUETYPE=, TICKVALUESEQUENCE=, and INCLUDERANGES=.

See
“boolean ” on page 1339 for other Boolean values that you can use.
XBINSIZE=\textit{positive-number}

specifies the size of bins along the X role, in data units. The system determines the NXBINS= and XBINSTART= values if they are not specified. The bins always span the X data range.

Default

Determined by the system.

Interaction

The XGAP= option is applied after this option.

XBINSTART=\textit{number}

specifies the data value for the first bin of the X role. The system determines the NXBINS= and XBINSIZE= values if they are not specified. The bins always span the X data range.

Default

Determined by the system.

Interaction

The XVALUES= option specifies how this value is interpreted.

XBOUNDARY=UPPER | LOWER

specifies how an input value is counted when it lies on the endpoint of an X bin. If this option is set to UPPER, then the value is counted as one of the values in the upper bin. Otherwise, it is counted in the lower bin.

Default

UPPER

XENDLABELS=TRUE | FALSE

specifies whether the X axis ticks and tick values are placed at the bin end-points or at the bin mid-points.

Default

FALSE. The axis ticks and tick values are placed at the bin mid-points.

Interaction

If XBINAXIS=FALSE, then this option is ignored.

This option is ignored when the X column is non-numeric.

Tip

The axis ticks and tick value placements are independent of the XVALUES= option.

XGAP=\textit{number}

specifies the amount of horizontal space on either side of each color-coded region in the heat map.

Default

0

Interaction

If the XBINSIZE= option is specified, the XGAP= value is subtracted from the specified X bin size.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS

specifies whether the XBINSTART= value represents the midpoint, lower endpoint, or upper endpoint of the bin.

Default

MIDPOINTS

See

XBINSTART= on page 455

XENDLABELS= on page 455
YAXIS=Y | Y2
specifies whether data is mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YBINAXIS=TRUE | FALSE
specifies whether to use bins as the basis for x-axis tick marks. When this option is FALSE, a standard axis is used, ignoring bin boundaries and midpoints.

Default TRUE

Interaction When this option is TRUE, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is FALSE, the YENDLABELS= option is ignored.

When this option is TRUE, the system attempts to compute nice values for the bin end points. In that case, the sum of the bin data ranges might exceed the actual data range.

When this option is TRUE, the axis ticks are in predetermined locations and are not changed when the parent layout specifies axis suboptions such as TICKVALUELIST=, TICKVALUESEQUENCE=, and INCLUDERANGES=.

See “boolean ” on page 1339 for other Boolean values that you can use.

YBINSIZE=positive-number
specifies the size of bins along the Y role, in data units. The system determines the NYBINS= and YBINSTART= values if they are not specified. The bins always span the Y data range.

Default Determined by the system.

Interaction The YGAP= option is applied after this option.

YBINSTART=number
specifies the data value for the first bin of the Y role. The system determines the NYBINS= and YBINSIZE= values if they are not specified. The bins always span the Y data range.

Default Determined by the system.

Interaction The YVALUES= option specifies how this value is interpreted.

YBOUNDARY=UPPER | LOWER
specifies how an input value is counted when it lies on the endpoint of an Y bin. If this option is set to UPPER, then the value is counted as one of the values in the upper bin. Otherwise, it is counted in the lower bin.

Default UPPER
YENDLABELS=TRUE | FALSE
specifies whether the Y axis ticks and tick values are placed at the bin end-points or at the bin mid-points.

<table>
<thead>
<tr>
<th>Default</th>
<th>FALSE. The axis ticks and tick values are placed at the bin mid-points.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>If YBINAXIS=FALSE, then this option is ignored.</td>
</tr>
<tr>
<td></td>
<td>This option is ignored when the Y column is non-numeric.</td>
</tr>
<tr>
<td>Tip</td>
<td>The axis ticks and tick value placements are independent of the YVALUES= option.</td>
</tr>
</tbody>
</table>

YGAP=number
specifies the amount of horizontal space on either side of each color-coded region in the heat map.

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>If the YBINSIZE= option is specified, the YGAP= value is subtracted from the specified Y bin size.</td>
</tr>
</tbody>
</table>

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the YBINSTART= value represents the midpoint, lower endpoint, or upper endpoint of the bin.

<table>
<thead>
<tr>
<th>Default</th>
<th>MIDPOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>YBINSTART= on page 456</td>
</tr>
<tr>
<td></td>
<td>YENDLABELS= on page 457</td>
</tr>
</tbody>
</table>
Example: HEATMAP Statement

The following graph was generated by the “Example Program” on page 458.

Example Program

```sas
proc template;
  define statgraph heatmap;
  begingraph;
    entrytitle "Vehicle Mileage By Curb Weight";
    layout overlay /
      xaxisopts=(label="Curb Weight (LBS)");
    heatmap x=weight y=mpg_city / name="heatmap"
      nybins=11 ybinsize=10
      nxbins=11 xbinstart=2000 xbinsize=500;
    continuouslegend "heatmap" / title="Count"
      location=outside;
  endlayout;
endgraph;
run;

proc sgrender data=sashelp.cars template=heatmap;
run;
```
HEATMAPPARM Statement

Creates a two-dimensional plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

Requirements: The COLORGROUP= or the COLORRESPONSE= role must be specified. The data for a parameterized heat map in a single-cell graph or in a cell in a classification panel must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

Note: The data for a parameterized heat map should contain only one observation for each X and Y value pair.

Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see "ODS GRAPHICS Statement" in SAS ODS Graphics: Procedures Guide.

Syntax

```
HEATMAPPARM X=column | expression
   Y=column | expression
   COLORGROUP=column | discrete-attr-var | expression </option(s)>;
```

```
HEATMAPPARM X=column | expression
   Y=column | expression
   COLORRESPONSE=numeric-column | range-attr-var | expression </option(s)>;
```

Summary of Optional Arguments

Appearance options

```
COLORMODEL=color-ramp-style-element | (color-list)
   specifies a color ramp to use with the COLORRESPONSE= option.
```

```
DATATRANSPARENCY=number
   specifies the degree of the transparency of the filled rectangles.
```

```
DISPLAY=STANDARD | ALL | (display-options)
   specifies whether to display outlined, colored rectangles or just colored rectangles.
```

```
FILLATTRS=(TRANSPARENCY=number)
   specifies the transparency of the area fill in the rectangles.
```

```
INCLUDEMISSINGCOLOR=TRUE | FALSE
   specifies whether missing values of the color-group variable or of the color-response variable are included in the plot.
```

```
OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
   specifies the appearance of the outlines of the filled rectangles.
```

```
REVERSECOLORMODEL=TRUE | FALSE
   specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.
```
XGAP=number
 specifies the amount of horizontal space on either side of each filled rectangle.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
 specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

YGAP=number
 specifies the amount of vertical space on either side of each filled rectangle.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
 specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axes options

PRIMARY=TRUE | FALSE
 specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
 specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

XBINAXIS=TRUE | FALSE
 specifies whether to use bins as the basis for X-axis tick marks.

XBOUNDARIES=(numeric-list)
 specifies the boundaries of the X-value bins.

YAXIS=Y | Y2
 specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

YBINAXIS=TRUE | FALSE
 specifies whether to use bins as the basis for Y-axis tick marks.

YBOUNDARIES=(numeric-list)
 specifies the boundaries of the Y-value bins.

Data option

DISCRETEX=TRUE | FALSE
 specifies whether the X axis is discrete when X= specifies a numeric column.

DISCRETEY=TRUE | FALSE
 specifies whether the Y axis is discrete when Y= specifies a numeric column.

Data tip options

ROLENANE=(role-name-list)
 specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
 specifies the information to display when the cursor is positioned over a filled rectangle.

TIPFORMAT=(role-format-list)
 specifies display formats for tip columns.

TIPLABEL=(role-label-list)
 specifies display labels for tip columns.

Label options

XENDLABELS=TRUE | FALSE
specifies whether the axis ticks and value labels are drawn at the endpoints of the bins or midpoints of the bins.

YENDLABELS=TRUE | FALSE

specifies whether the axis ticks and value labels are drawn at the endpoints of the bins or midpoints of the bins.

ODS options

URL=string-column

specifies an HTML page to display when a rectangle is selected.

Plot reference options

NAME="string"

assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=column | expression

specifies the column for the X values.

Requirement If X= specifies a numeric column, then the DISCRETEX= option must be set correctly for the X-axis type. When it is not set correctly, the heat map is not drawn. If the X-axis type is discrete, then you must specify DISCRETEX=TRUE in the HEATMAP statement. Otherwise, DISCRETEX=FALSE must be in effect.

See DISCRETEX= on page 463

Y=column | expression

specifies the column for the Y values.

Requirement If Y= specifies a numeric column, then the DISCRETEY= option must be set correctly for the Y-axis type. When it is not set correctly, the heat map is not drawn. If the Y-axis type is discrete, then you must specify DISCRETEY=TRUE in the HEATMAP statement. Otherwise, DISCRETEY=FALSE must be in effect.

See DISCRETEY= on page 463

COLORGROUP=column | discrete-atr-attr-var | expression

specifies a column or a discrete attribute variable that is used to discretely color the regions in the heat map.

discrete-atr-attr-var

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Requirement This argument is required when the response variable is of type discrete.

See “DISCRETEATTRVAR Statement” on page 1297
COLORRESPONSE=numeric-column | range-attr-var | expression

specifies a numeric column or a range attribute variable that is used to color the regions of the heat map.

range-attr-var

specifies a range attribute variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute variable specification must be a direct reference to the attribute variable. It cannot be set by a dynamic variable.

When numeric-column or expression is specified, the colors for each region are computed by mapping the values to a color ramp that is defined by the COLORMODEL= option. When attr-variable is specified, the colors defined in the associated RANGEATTRVAR or DISCRETEATTRVAR statement are used to color the regions.

Requirement This argument is required when the response variable is of type interval.

See “RANGEATTRVAR Statement” on page 1308

Optional Arguments

COLORMODEL=color-ramp-style-element | (color-list)

specifies a color ramp to use with the COLORRESPONSE= option.

color-ramp-style-element

specifies the name of a color-ramp style element. The style element should contain these style attributes:

STARTCOLOR	specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR	specifies the color for the midpoint of the range of the COLORRESPONSE= column.
ENDCOLOR	specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color” on page 1340

Default The ThreeColorRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

Tip To reverse the start and end colors of the ramp that is assigned to the color model, use the REVERSECOLORMODEL= option.
DATATRANSPARENCY=number
specifies the degree of the transparency of the filled rectangles.

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0–1, where 0 is opaque and 1 is entirely transparent</td>
</tr>
</tbody>
</table>

DISCRETEX=TRUE | FALSE
specifies whether the X axis is discrete when X= specifies a numeric column.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>FALSE</th>
</tr>
</thead>
</table>
| Requirements | If X= specifies a numeric column and the X axis type is discrete, then you must specify DISCRETEX=TRUE. Otherwise, the heat map might not be drawn.
In SAS programs that were written before the third maintenance release of SAS 9.4, if the HEATMAPPARM statement is used to plot data on a discrete category axis, you must add the DISCRETEX=TRUE option to the HEATMAPPARM statement. Otherwise, the heat map is not drawn. |
| Interaction | If X= specifies a character column, then this option is ignored, and the X axis is considered to be discrete. |
| See | X= on page 461 |

DISCRETEY=TRUE | FALSE
specifies whether the Y axis is discrete when Y= specifies a numeric column.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>FALSE</th>
</tr>
</thead>
</table>
| Requirements | If Y= specifies a numeric column and the Y axis type is discrete, then you must specify DISCRETEY=TRUE. Otherwise, the heat map might not be drawn.
In SAS programs that were written before the third maintenance release of SAS 9.4, if the HEATMAPPARM statement is used to plot data on a discrete response axis, you must add the DISCRETEY=TRUE option to the HEATMAPPARM statement. Otherwise, the heat map is not drawn. |
| Interaction | If Y= specifies a character column, then this option is ignored, and the Y axis is considered to be discrete. |
| See | Y= on page 461 |

DISPLAY=STANDARD | ALL | (display-options)
specifies whether to display outlined, colored rectangles or just colored rectangles.

STANDARD
displays colored rectangles
ALL
 displays outlined, colored rectangles

(display-options)
 a space-separated list of one or more of options enclosed in parentheses. Currently, only the OUTLINE option is supported, which displays outlines around the filled rectangles (same as keyword ALL).

Default STANDARD

FILLATTRS=(TRANSPARENCY=number)
 specifies the transparency of the area fill in the rectangles.

Default The DATATRANSPARENCY= option value

Range 0–1, where 0 is opaque and 1 is entirely transparent

Restriction Only the TRANSPARENCY= suboption is honored. If a style element or any other fill suboption is specified, then it is ignored by the HEATMAPPARAM statement.

Note The fill colors are determined by the COLORRESPONSE= or COLORGROUP= or column.

INCLUDEMISSINGCOLOR=TRUE | FALSE
 specifies whether missing values of the color-group variable or of the color-response variable are included in the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default TRUE

Tip The attributes of the missing color-group or color-response value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphDataN style element instead of by the GraphMissing style element.

See COLORGROUP= on page 461

COLORRESPONSE= on page 462

“boolean ” on page 1339 for other Boolean values that you can use.

NAME="string"
 assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the appearance of the outlines of the filled rectangles.
Default The ContrastColor and LineThickness attributes of the GraphOutlines style element.

Interaction For this option to have any effect, outlines must be enabled by the ODS style or the DISPLAY= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

REVERSECOLORMODEL=TRUE | FALSE
specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default FALSE

See COLORMODEL=

“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list) a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:

ROLENAMESPACE=(TIP1=OBS)

Default No user-defined roles
Requirement The role names that you choose must be unique and different from the predefined roles X, Y, COLORGROUP=, and COLORRESPONSE=.

\[\text{TIP=} \text{(role-list)} | \text{NONE} \]

specifies the information to display when the cursor is positioned over a filled rectangle. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the heat map can be specified along with roles that do.

\[(\text{role-list})\]

an ordered, space-separated list of unique HEATMAPPARM and user-defined roles. HEATMAPPARM roles include X and Y.

Example The following example displays data tips for the columns X and PCT. The Pct column is not assigned to any pre-defined HEATMAPPARM role, so it must first be assigned a role:

\[
\text{ROLENAME=} \text{(TIP1=PCT)} \\
\text{TIP=} \text{(X TIP1)}
\]

\[\text{NONE} \]

suppresses data tips from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: X and Y, and COLORGROUP= or COLORRESPONSE=.

Requirement To enable data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip The labels and formats for the TIP variables can be controlled with the TIPLABEL= and TIPFORMAT= options.

\[\text{TIPFORMAT=} \text{(role-format-list)} \]

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

\[(\text{role-format-list})\]

a space-separated list of role-name = format pairs.

Example ROLENAME= (TIP1=SALARY) \\
TIP= (TIP1) \\
TIPFORMAT= (TIP1=DOLLAR12.)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.
Requirement A column must be assigned to each of the specified roles. (See the `ROLENAME=` option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of `rolename ="string"` pairs.

Example
```
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")
```

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the `TIP=` option are used.

Requirement
A column must be assigned to each of the specified roles. (See the `ROLENAME=` option.)

URL=string-column
specifies an HTML page to display when a rectangle is selected.

string-column
specifies a column that contains a valid HTML page reference (HREF) for each rectangle that is to have an active link.

Example
```
http://www.sas.com/technologies/analytics/index.html
```

Requirement
To generate a plot with selectable rectangles, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interactions
This option has no effect when `TIP=NONE`.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tips
The URL value can be blank for some X and Y pairs. In that case, no action is taken when the corresponding rectangle is selected.

The URL value can be the same for any X and Y pairs. In that case, the same action is taken when the rectangle for those X and Y pairs is selected.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default
X
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

XBINAXIS=TRUE | FALSE
specifies whether to use bins as the basis for X-axis tick marks. When this option is FALSE, a standard axis is used, ignoring bin boundaries and midpoints.

Default TRUE

Interactions
- When this option is TRUE, the **XENDLABELS=** option determines how the axis ticks and value labels are displayed. When this option is FALSE, the XENDLABELS= option is ignored.
- When this option is TRUE, the axis ticks are in predetermined locations and are not changed when the parent layout specifies axis suboptions such as TICKVALUELIST=, TICKVALUESEQUENCE=, and INCLUDERANGES=.

See “boolean ” on page 1339 for other Boolean values that you can use.

XBOUNDARIES=(numeric-list)
specifies the boundaries of the X-value bins. The boundaries are specified as a space-separated list of values enclosed in parentheses. The keywords MIN and MAX can be used as one of the values in the list of boundaries. Keywords MIN and MAX indicate the minimum and maximum data values for the X variable.

Interaction This option is ignored if the X values are not numeric.

Tip This option can be used to specify unequal bins.

Example xboundaries=(MIN 20 200 250 MAX)

XENDLABELS=TRUE | FALSE
specifies whether the axis ticks and value labels are drawn at the endpoints of the bins or midpoints of the bins.

Default FALSE. The axis ticks and values labels are drawn at the bin midpoints.

Interactions
- If this option is set to FALSE, then the axis ticks and value labels are drawn at the bin midpoints, regardless of whether the XVALUES= option identifies the X data as endpoint values or midpoint values.
- This option is ignored if the X values are not numeric or if XBINAXIS=FALSE.

See “boolean ” on page 1339 for other Boolean values that you can use.

XGAP=number
specifies the amount of horizontal space on either side of each filled rectangle.

Default 0

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.
MIDPOINTS

See XENDLABELS=

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YBINAXIS=TRUE | FALSE
specifies whether to use bins as the basis for Y-axis tick marks. When this option is FALSE, a standard axis is used, ignoring bin boundaries and midpoints.

Default TRUE

Interactions When this option is TRUE, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is FALSE, the YENDLABELS= option is ignored.

When this option is TRUE, the axis ticks are in predetermined locations and are not changed when the parent layout specifies axis suboptions such as TICKVALUELIST=, TICKVALUESEQUENCE=, and INCLUDERANGES=.

See “boolean ” on page 1339 for other Boolean values that you can use.

YBOUNDARIES=(numeric-list)
specifies the boundaries of the Y-value bins. The boundaries are specified as a space-separated list of values enclosed in parentheses. The keywords MIN and MAX can be used as one of the values in the list of boundaries. Keywords MIN and MAX indicate the minimum and maximum data values for the Y variable. Example:

yboundaries=(MIN 20 200 250 MAX)

Interaction This option is ignored if the Y values are not numeric.

Tip This option can be used to specify unequal bins.

YENDLABELS=TRUE | FALSE
specifies whether the axis ticks and value labels are drawn at the endpoints of the bins or midpoints of the bins.

Default FALSE. The axis ticks and values labels are drawn at the bin midpoints.

Interactions If this option is set to FALSE, then the axis ticks and value labels are drawn at the bin midpoints, regardless of whether the YYVALUES= option identifies the Y data as endpoint values or midpoint values.

This option is ignored if the Y values are not numeric or if YBINAXIS=FALSE.

See “boolean ” on page 1339 for other Boolean values that you can use.
YGAP=number
 specifies the amount of vertical space on either side of each filled rectangle.
 Default 0

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
 specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.
 Default MIDPOINTS

See YENDLABELS=

Details
A heat map is useful for visualizing the magnitude of a response variable in relation to two independent variables. For example, in molecular biology, heat maps can be used to track the expression of genes across multiple sample studies. In the HEATMAPPARM statement, you specify the independent variables in the X and Y arguments. For a response variable that has discrete values, use the COLORGROUP argument, or for a response variable that has interval values, use the COLORRESPONSE argument. For interval response variables, you can use the COLORMODEL= option to define the color ramp that is used to fill the rectangles.

Example: HEATMAPPARM Statement

The following graph was generated by the “Example Program” on page 471:
Example Program

```sas
proc template;
  define statgraph heatmapparm;
  begingraph;
    layout overlay;
      heatmapparm x=height y=weight colorresponse=count /
        name="heatmapparm" xbinaxis=false ybinaxis=false;
      continuouslegend "heatmapparm" / location=outside valign=bottom;
    endlayout;
  endgraph;
end;
run;

proc sgrender data=sashelp.gridded template=heatmapparm;
run;
```

HIGHLOWPLOT Statement

Creates a display of floating vertical or horizontal lines or bars that connect the minimum and maximum response values for each value of a categorical variable.

Requirements:
Either the X= or Y= argument must be specified, but you cannot specify both on the same HIGHLOWPLOT statement.

The HIGH= and LOW= arguments are required.

Note:
Specifying the X= option creates a vertical high-low chart, which would typically be used in the financial industry to plot stock values over time. Specifying the Y= option creates a horizontal high-low chart, which would typically be used in the Health and Life Sciences industry to display over time the duration of adverse events or of adverse reactions to medication.

Tips:
For charts that have a large number of bars that are very close together, slight variations in spacing that normally occur due to integer rounding can become more obvious. Subpixel rendering provides more precise bar spacing in that case. In the second maintenance release of SAS 9.4 and in earlier releases, specify SUBPIXEL=ON in the BEGINGRAPH statement to enable subpixel rendering. See SUBPIXEL= on page 33. Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default.

To disable subpixel rendering in the third maintenance release of SAS 9.4 and in later releases, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

```
HIGHLOWPLOT X=column | expression
LOW=numeric-column | expression
HIGH=numeric-column | expression </option(s)>;

HIGHLOWPLOT Y=column | expression
LOW=numeric-column | expression
HIGH=numeric-column | expression </option(s)>;
```
Summary of Optional Arguments

Appearance options

BARWIDTH=number
specifies the width of a bar as a ratio of the maximum possible width.

CLIPCAP=TRUE | FALSE
specifies whether a special clip cap is displayed to indicate where clipping occurred.

CLIPCAPSHAPE=DEFAULT | BARBEDARROW | CLIPPEDARROW | CLOSEDARROW | FILLEDARROW | OPENARROW | SERIF
specifies the shape of the arrowhead on the clipped end of a line or bar when CLIPCAP=TRUE.

CLOSE=numeric-column | expression
specifies a column or expressions whose values are used to display a closing-value indicator.

CLUSTERWIDTH=number
on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the bar or line colors.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the filled bars or lines of a high-low chart.

DATATRANSPARENCY=number
specifies the degree of the transparency of the colored regions, and the high-end and low-end labels.

DISPLAY=STANDARD | ALL | (display-options)
specifies whether to display outlined colored regions or just colored regions.

ENDCAPDISPLAYPOLICY=AUTO | ALWAYS
specifies the policy for displaying end caps when end caps are present.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the interior fill area of the bars.

HIGHCAP=column | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
specifies the type of cap used at the high end of the bar or line.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) or bar attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

INTERVALBARWIDTH=dimension
specifies the width of the floating bars.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the floating plot lines.

LOWCAP=column | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
specifies the type of cap used at the low end of the bar or line.

OPEN=numeric-column | expression
specifies a column or expressions whose values are used to display an opening-value indicator.

OUTLINEATTRS=
style-element | style-element (line-options) | (line-options)
specifies the appearance of the outlines of the filled regions.

TYPE=
LINE | BAR
specifies whether data values should be represented by bars or lines.

Axes options

PRIMARY=
TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=
X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=
Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

ROLENAMENAMES=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a bar or line.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

HIGHLABEL=
column | expression
specifies the label to display at the high end of the bar or line.

LABELATTRS=
style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the labels for the bars or lines.

LOWLABEL=
column | expression
specifies the label to appear at the low end of each floating bar or line.

Midpoint options

DISCRETEOFFSET=
number
specifies an amount to offset all bars or lines from the category midpoints when graphing multiple response variables side by side on a common axis.

GROUP=
column | discrete-attr-var | expression
creates a distinct set of floating bars or lines for each unique group value in the specified column.

GROUPDISPLAY=
OVERLAY | CLUSTER
specifies whether grouped bars or lines are overlaid or clustered around the category midpoints.

GROUPORDER=
DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP=
TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Plot reference options

- **NAME="string"**
 assigns a name to this plot statement for reference in other template statements.

Required Arguments

Either the X= or Y= argument must be specified, but you cannot specify both on the same HIGHLOWPLOT statement. The HIGH= and LOW= arguments are required.

- **X=column | expression**
 specifies a column or expression representing the values in a vertical high-low chart. The values can be character or numeric.

- **Y=column | expression**
 specifies a column or expression representing the values in a horizontal high-low chart. The values can be character or numeric.

- **LOW=numeric-column | expression**
 specifies a column or expression representing the values of the lower end of the floating bar or line.

- **HIGH=numeric-column | expression**
 specifies a column or expression representing the values of the higher end of the floating bar or line.

Optional Arguments

- **BARWIDTH=number**
 specifies the width of a bar as a ratio of the maximum possible width.

 | Default | 0.85 |
 | Range | 0.1–1, where 0.1 is the narrowest and 1 is the widest |
 | Restriction | This option has an effect only when TYPE=BAR. |
 | Interaction | Prior to the third maintenance release of SAS 9.4, this option is ignored for an interval high-low plot, and the bar width is controlled by the INTERVALBARWIDTH= option. Starting with the third maintenance release of SAS 9.4, this option is honored for an interval high-low plot but it can be overridden by the INTERVALBARWIDTH= option. |
 | Notes | This option is needed only to change the default behavior. |

 By default, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

 Tip
 To remove any inter-bar gap, set BARWIDTH=1.

 See
 DISCRETEOFFSET= option for examples of using this option.

- **CLIPCAP=TRUE | FALSE**
 specifies whether a special clip cap is displayed to indicate where clipping occurred. When the VIEWMIN= and VIEWMAX= axis options are specified for an axis and a data value exceeds the specified axis range, the bar for that value is clipped. In that
case, when CLIPCAP=TRUE, a special clip cap is displayed at the clipped end of the bar. If the bar already has a high or low cap, then it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by the Y axis range. The default clip cap is a vertical clipped arrowhead that points toward the clip edge (\(\uparrow\) or \(\downarrow\)). For horizontal bars, the cap is added to the end of the bar that is clipped by the X axis range. The default clip cap is a horizontal clipped arrowhead that points toward the clip edge (\(\rightarrow\) or \(\leftarrow\)). If an entire bar is clipped, then a clip cap is displayed at the high or low side where the bar was clipped.

The following figure shows a side-by-side comparison of a vertical line high-low chart with no clipping and with clipping when CLIPCAP=TRUE.

The first graph shows the default case in which no clipping occurs. The second graph shows the case in which VIEWMIN= and VIEWMAX= specify a range that causes clipping on the Y axis. In the second graph, the clip caps indicate clipping for each category line as follows:

- A the high end of the line is clipped.
- B the low end of the line is clipped.
- C both ends of the line are clipped.
- D the entire line is clipped at the low end.
- E the entire line is clipped at the high end.

Default FALSE

Interaction Clip caps appear only when CLIPCAP=TRUE and the data values exceed the axis range that is specified by the VIEWMIN= and VIEWMAX= options. When the VIEWMIN= and VIEWMAX= options are not specified, the axis range is adjusted to accommodate the data values and clipping does not occur.

Note If the HIGHLABEL= and LOWLABEL= options are in effect and the bar is clipped, then the label value at the clipped end is drawn at the tip of the clip cap. If the entire bar is clipped, then the labels are not shown.
Tip Use the CLIPCAPSHAPE= option to specify a different clip-cap arrowhead.

See “boolean” on page 1339 for other Boolean values that you can use.

CLIPCAPSHAPE=DEFAULT | BARBEDARROW | CLIPPEDARROW | CLOSEDARROW | FILLEDARROW | OPENARROW | SERIF

specifies the shape of the arrowhead on the clipped end of a line or bar when CLIPCAP=TRUE. The following figure shows each of the clip-cap arrowhead shapes for vertical lines and bars that are clipped at both ends.

In the first maintenance release of SAS 9.4 and earlier releases, this option specifies the arrowhead shape only for the clipped end of clipped lines (TYPE=LINE). For bars (TYPE=BAR), this option is ignored, and CLIPPEDARROW is always used as the arrowhead shape for the clipped end of clipped bars.

Starting with the second maintenance release of SAS 9.4, this option specifies the arrowhead shape for the clipped end of clipped lines or clipped bars. For bars, you can specify the CLIPPEDARROW shape for filled and unfilled bars. When any value other than CLIPPEDARROW or DEFAULT is specified for bars, the FILLEDARROW shape is used for filled bars, and the CLOSEDARROW shape is used for unfilled bars.

Default DEFAULT, which is the same as CLIPPEDARROW

Interaction This option is ignored when CLIPCAP=FALSE.

CLOSE=numeric-column | expression

specifies a column or expressions whose values are used to display a closing-value indicator. This option is typically used when TYPE=LINE, but it can be used when TYPE=BAR. For vertical high-low charts, the value is represented by a short horizontal line extending from the side that displays the higher X values. For horizontal high-low charts, the value is represented by a short vertical line extending from the side that displays the higher Y values.

CLUSTERWIDTH=number

on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

Default 0.85
Range

0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.

Interaction

For this option to take effect, the GROUP= option must also be specified, and the GROUPDISPLAY= option must be set to CLUSTER.

COLORMODEL=

color-ramp-style-element | (color-list)

specifies a color ramp to use with the COLORRESPONSE= option.

color-ramp-style-element

specifies the name of a color-ramp style element. The style element should contain these style attributes:

- **STARTCOLOR**: specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR**: specifies the color for the midpoint of the range of the COLORRESPONSE= column.
- **ENDCOLOR**: specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

See

“color " on page 1340

Defaults

For lines or for outline-only bars, the ThreeColorAltRamp style element.

For bars with fill, the ThreeColorRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=

numeric-column | range-attr-var | expression

specifies the column or range attribute variable to use to map the bar or line colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

range-attr-var

specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction

A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.
Requirement
For a grouped plot, the COLORRESPONSE values should remain constant for each group value. If the COLORRESPONSE column has multiple values for a single GROUP value, unexpected results might occur.

Interactions
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

When fill is displayed, this option overrides suboption COLOR= in the FILLATTRS= option and varies the fill color according to the color gradient or the attribute map.

When only the outlines are displayed, this option overrides suboption COLOR= in the OUTLINEATTRS= option and varies the outline color according to the color gradient or the attribute map.

Tips
To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

For a numeric column or expression, the ThreeColorRamp style element defines the fill color gradient, and the ThreeColorAltRamp style element defines the outline color gradient.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the filled bars or lines of a high-low chart. The following figure shows a high-low chart that contains a filled bar and a line with each of the skins applied.

```
Default
The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.
Interactions

This option overrides the BEGINGRAPH statement DATASKIN= option.

When TYPE=BAR, the DISPLAY= option in effect must include FILL in order for the DATASKIN= option to have any effect.

For filled bars, the skin appearance is based on the FILLATTRS= option color specification.

**DATATRANSPARENCY=number**

specifies the degree of the transparency of the colored regions, and the high-end and low-end labels.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

Tip The FILLATTRS option can be used to set transparency for just the colored regions. You can combine this option with FILLATTRS= to set one transparency for the outlines but a different transparency for the region fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

**DISCRETEOFFSET=number**

specifies an amount to offset all bars or lines from the category midpoints when graphing multiple response variables side by side on a common axis.

Default 0 (no offset, all bars or lines are centered on the category midpoints)

Range –0.5 to +0.5, where 0.5 represents half the distance between category ticks. Normally, a positive offset is to the right for a vertical plot and up for a horizontal plot. (If the layout's axis options set REVERSE=TRUE, then the offset direction is also reversed.)

Restriction This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

See “About the DISCRETEOFFSET= Option” on page 490

**DISPLAY=STANDARD | ALL | (display-options)**

specifies whether to display outlined colored regions or just colored regions.

STANDARD

displays outlined, colored regions

ALL

displays outlined, colored regions

(display-options)

a space-separated list of one or more of the following options enclosed in parentheses:
FILL displays filled (colored) regions
OUTLINE displays outlined regions

Default STANDARD

Interaction For this option to take effect, TYPE=BAR must also be specified.

ENDCAPDISPLAYPOLICY=AUTO | ALWAYS
specifies the policy for displaying end caps when end caps are present.

AUTO
draws the end caps only for the elements with a low-to-high range that is large enough to accommodate the end caps. Draws just the bar or line for the rest.

ALWAYS
always draws the end caps.

Note When the low-to-high range is not large enough for the end caps, the end caps might overlap. The data ranges that are smaller than the end-cap size might not be resolvable beyond the rendered size of the end caps.

Default AUTO

Interactions This option is honored only when the option TYPE=LINE is in effect.

This option is ignored if the LOWCAP= or HIGHCAP= option is not set or is effectively set to NONE.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the interior fill area of the bars.

Defaults For non-grouped data, the GraphDataDefault:Color style reference.

For grouped data, the Color attribute of GraphData1–GraphDataN style elements.

Interactions For this option to take effect, TYPE=BAR must also be specified, and the DISPLAY= option must allow the fill to be displayed.

When COLORRESPONSE= is in effect, the FILLATTRS= suboption COLOR= is ignored, and the bar fill colors vary according to the gradient.

Tip The DATATRANSPERANCY= option sets the transparency for the colored regions and the outlines around them. You can combine this option with DATATRANSPERANCY= to set one transparency for the outlines but a different transparency for the colored regions. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

GROUP=column | discrete-attr-var | expression
creates a distinct set of floating bars or lines for each unique group value in the specified column.
discrete-attr-var

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Defaults

For filled bars, each distinct group value is represented in the plot by a different fill color. The fill colors are defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements.

For floating lines and outlined bars, each distinct group value is represented in the plot by a different line color and line pattern. The line colors and line patterns are defined by the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions

If the X or Y role is discrete, then the bars or lines representing the group can be drawn in a cluster or overlaid, based on the setting for the GROUPDISPLAY= option. However, if the X or Y role is interval, then the lines representing the group are overlaid and the GROUPDISPLAY= option is ignored.

By default, the group values are mapped in the order of the data. Use the GROUPORDER= option to control the sorting order of the grouped bar segments. Use the INDEX= option to alter the default sequence of colors and line patterns.

The INCLUDEMISSINGGROUP= option determines whether missing group values are considered a distinct group value.

When both the GROUP= and COLORRESPONSE= options are specified, the color attributes are controlled by the COLORRESPONSE= option.

Tip

The representations that are used to identify the groups can be overridden. For example, if each distinct group value is represented by a different line pattern, you can use the LINEATTRS=(PATTERN=pattern) specification to assign the same line pattern to all the plot lines. In that case, the line color denotes group values. Likewise, you can use LINEATTRS=(COLOR=color) to assign the same color to all lines, letting line pattern denote group values.

See

“DISCRETEATTRVAR Statement” on page 1297

GROUPDISPLAY=OVERLAY | CLUSTER

specifies whether grouped bars or lines are overlaid or clustered around the category midpoints.

OVERLAY

centers the bars or lines for matching category values on the midpoints. The bars or lines in each set of group values are superimposed on each other.

CLUSTER

clusters the bars or lines for matching category values around the midpoints. Each cluster of group values is centered at the midpoint for the category.
The following example shows the effect of clustering the lines in a stock report when the category values are grouped into a single response variable. Note that if your category values are not grouped in the same column but are stored in separate columns, then you can get this same effect by using the DISCRETEOFFSET= option.

```
layout overlay /
 yaxisopts=(label="Stock Value");
highlowplot x=month high=high low=low /
 close=close open=open
 legendlabel="Stock" name="cluster"
 group=stock groupdisplay=cluster
 lineattrs=(pattern=solid);
 discretelegend "cluster" / title="Stock"
 location=inside halign=right valign=top;
endlayout;
```

Default OVERLAY

Interaction For this option to take effect, the GROUP= option must also be specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.
DESCENDING
orders the groups within a category in descending order.

Default
DATA

Interactions
This option is ignored if the GROUP= option is not also specified.

This option is ignored when GROUPDISPLAY=OVERLAY.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

HIGHCAP=column | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the high end of the bar or line. All of the keywords can be specified for any high-low chart. The effect of each keyword depends on the setting for the TYPE= and DISPLAY= options as follows:

- When TYPE=BAR and DISPLAY= includes FILL, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and DISPLAY= does not include FILL, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Figure 6.1 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars
### HIGHLABEL=

*column | expression*

specifies the label to display at the high end of the bar or line.

### INCLUDEMISSINGGROUP=

**TRUE | FALSE**

specifies whether missing values of the group variable are included in the plot.

**Default** TRUE

**Interaction** For this option to take effect, the GROUP= option must also be specified.

**Tip** The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

**See** “boolean” on page 1339 for other Boolean values that you can use.

### INDEX=

*positive-integer-column | expression*

specifies indices for mapping line attributes (color and line pattern) or bar attributes (fill and outline) to one of the GraphData1–GraphDataN style elements.

**Requirements**

- The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.
- The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.
- All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

**Interaction** For this option to take effect, the GROUP= option must also be specified.

**Notes**

- The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.
- If you do not use this option, then the group values are mapped according to the setting of the GROUPORDER= option.

**Tip** You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.
INTERVALBARWIDTH=\textit{dimension}\par  
specifies the width of the floating bars.

\textbf{Defaults} \quad \textit{Prior to the third maintenance release of SAS 9.4, 85\% of the smallest interval between any two bars for the given plot}

\textit{Starting with the third maintenance release of SAS 9.4, the BARWIDTH= option setting}

\textbf{Restriction} \quad \textit{For this option to take effect, TYPE=BAR must be set, and the independent variable must be of type interval.}

\textbf{Interaction} \quad \textit{Prior to the third maintenance release of SAS 9.4, this option controls the bar width for a high-low plot. Starting with the third maintenance release of SAS 9.4, this option overrides the BARWIDTH= option.}

\textbf{See} \quad \textit{“dimension” on page 1340}

\textbf{LABELATTRS=style-element | style-element (text-options) | (text-options)}\par  
specifies the color and font attributes of the labels for the bars or lines.

\textbf{Defaults} \quad \textit{In the second maintenance release of SAS 9.4 and earlier releases, the GraphDataText style element.}

\textit{Starting with the second maintenance release of SAS 9.4, the GraphDataText style element is the default for non-grouped data. For grouped data, the data label color is determined by the ContrastColor attribute of the GraphData1–GraphDataN style elements.}

\textbf{See} \quad \textit{“General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.}

\textit{“Text Options” on page 1351 for available text-options.}

\textbf{LINEATTRS=style-element | style-element (line-options) | (line-options)}\par  
specifies the attributes of the floating plot lines.

\textbf{Defaults} \quad \textit{For non-grouped data, the GraphDataDefault style element.}

\textit{For grouped data, the ContrastColor, LineStyle, and LineThickness attributes of the GraphData1–GraphDataN style elements.}

\textbf{Interaction} \quad \textit{For this option to have any effect, TYPE= LINE must also be specified.}

\textbf{See} \quad \textit{“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.}

\textit{“Line Options” on page 1349 for available line-options.}

\textbf{LOWCAP=column | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW}\par  
specifies the type of cap used at the low end of the bar or line. All of the keywords can be specified for any high-low chart. The effect of each keyword depends on the setting for the \textit{TYPE=} and \textit{DISPLAY=} options as follows:

\begin{itemize}
  \item When \textit{TYPE=}BAR and \textit{DISPLAY=} includes FILL, FILLEDARROW is used for all settings other than NONE.
\end{itemize}
• When TYPE=BAR and DISPLAY= does not include FILL, CLOSEDARROW is used for all settings other than NONE.

• When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

Figure 6.1 on page 483 shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Default NONE

Interaction When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself is reduced.

Note If the length of the high-low element is smaller than the cap, then the cap is not drawn.

LOWLABEL=column | expression specifies the label to appear at the low end of each floating bar or line.

NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

OPEN=numeric-column | expression specifies a column or expressions whose values are used to display an opening-value indicator. This option is typically used when TYPE=LINE, but it can be used when TYPE=BAR. For vertical high-low charts, the value is represented by a short horizontal line extending from the side that displays the lower X values. For horizontal high-low charts, the value is represented by a short vertical line extending from the side that displays the lower Y values.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options) specifies the appearance of the outlines of the filled regions.

Defaults For non-grouped data, the ContrastColor, LineThickness, and LineStyle attributes of the GraphOutlines style element.

For grouped data when FILL is displayed, the LineThickness and LineStyle attributes of the GraphOutlines style element, and the ContrastColor attribute of the GraphData1–GraphDataN style elements.

For grouped data when FILL is not displayed, the LineThickness attribute of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements.

Interactions For this option to have any effect, TYPE=BAR must be specified, and outlines must be enabled by the ODS style or the DISPLAY= option.

When the COLORRESPONSE= and DISPLAY=(OUTLINE) options are in effect, the OUTLINEATTRS= suboption COLOR= is ignored, and the bar outline colors vary according to the gradient.
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**PRIMARY=TRUE | FALSE**
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

**Default** FALSE

**Restriction** This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

**Note** In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

**ROLENAME=(role-name-list)**
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

**(role-name-list)**
a space-separated list of role-name = column pairs.

**Example** The following example assigns the column Obs to the user-defined role TIP:

ROLENAMEN=(TIP1=OBS)

**Default** No user-defined roles

**Requirement** The role names that you choose must be unique and different from the predefined roles X, Y, LOW, HIGH, OPEN, and CLOSE.

**TIP=(role-list) | NONE**
specifies the information to display when the cursor is positioned over a bar or line. If this option is used, then the information specified replaces all of the information that is displayed by default. You can specify roles for columns that do not contribute to the bar chart along with roles that do.

**(role-list)**
an ordered, space-separated list of unique HIGHLOWPLOT and user-defined roles. HIGHLOWPLOT roles include X, Y, LOW, HIGH, OPEN, CLOSE, GROUP, and COLORRESPONSE.

**Note** The COLORRESPONSE role is valid starting with the third maintenance release of SAS 9.4.
The following example displays data tips for the columns X and Pct. The Pct column is not assigned to any pre-defined HIGHLOWPLOT role, so it must first be assigned a role.

```
ROLENAME=(TIP1=PCT)
TIP=(X TIP1)
```

**NONE**

Suppresses data tips from the plot.

**Default**

The columns assigned to these roles are automatically included in the data tip information: X or Y and GROUP.

**Requirement**

To generate data tips in the output, you must include an ODS GRAPHICS ON statement with the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

**Interaction**

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

**Tip**

You can control the labels and formats for the TIP roles with the TIPLABEL= and TIPFORMAT= options.

**TIPFORMAT=(role-format-list)**

Specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

```
(role-format-list)
```

A space-separated list of role-name = format pairs.

**Example**

```
ROLENAME=(TIP1=Salary)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
```

**Default**

The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

**Restriction**

Only the roles that appear in the TIP= option are used.

**Requirement**

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

**TIPLABEL=(role-label-list)**

Specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

```
role-label-list
```

A space-separated list of rolename = "string" pairs.

**Example**

```
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")
```

**Default**

The column label or column name of the column assigned to the role.

**Restriction**

Only the roles that appear in the TIP= option are used.
Requirement  A column must be assigned to each of the specified roles. (See the `ROLENAME=` option.)

**TYPE=LINE | BAR**
specifies whether data values should be represented by bars or lines.

BAR  uses fill and outline attributes.
LINE  uses line attributes.

Default  LINE

**XAXIS=X | X2**
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default  X

Interactions  When the Y= argument is specified, the HIGH= and LOW= arguments are mapped to the axis that is specified on this option (X or X2).

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**YAXIS=Y | Y2**
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default  Y

Interactions  When the X= argument is specified, the HIGH= and LOW= arguments are mapped to the axis that is specified on this option (Y or Y2).

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**Details**

**Statement Description**

A high-low chart specifies that floating vertical or horizontal lines or bars connect the minimum and maximum response values for each value of a categorical variable. The data should have at least two response values for every category value. Otherwise, the single value is displayed without the connecting line or bar. In the statement syntax, the X and Y arguments can specify a column with character or numeric values. The LOW and HIGH arguments must specify a numeric column.

The HIGHLOWPLOT statement can be used to create a plot showing the high and low response values for observations along a time axis. The independent variable can be interval or discrete. The HIGHLOWPLOT has two common uses:

- One typical use of a high-low chart is in the financial industry to plot stock values by day. The `OPEN=` and `CLOSE=` options are typically used in the plot, and the `TYPE=`
• Another typical use of a high-low chart is in the Health and Life Sciences industry to display over time the duration of adverse events or of adverse reactions to medication. The HIGHCAP= and LOWCAP= options are typically used in the plot, and the TYPE= option is set to BAR, as illustrated in “Example 2: Horizontal High-low Chart” on page 492.

For both vertical and horizontal high-low charts, the data values can be grouped using the GROUP= option. For grouped data, the data values are not summarized. Each observation is plotted independently, and the line or bar segment for each category value can use different display characteristics.

About the DISCRETEOFFSET= Option
This feature is useful for graphing multiple response variables side by side on a common axis. By default within an overlay-type layout, if multiple HIGHLOWPLOT statements are used with different response variables, then the bars or lines for matching category values are centered on the midpoints and superimposed on each other. In those cases, you can make it easier to distinguish among superimposed bars or lines by assigning a different width for them in each HIGHLOWPLOT statement in the overlay.

If you prefer to avoid superimposed bars or lines, then you can assign a different offset to each HIGHLOWPLOT statement. If desired, you can adjust the width of the bar or line in conjunction with DISCRETEOFFSET= to create narrower bars that require less width within the plot area.

The following example defines offsets for the lines in a stock report:

```plaintext
layout overlay / cycleattrs=true
 yaxisopts=(label="Stock Value");
highlowplot x=month high=a_high low=a_low /
 close=a_close open=a_open
 legendlabel="A" name="ahighlow" lineattrs=(pattern=solid)
 discreteoffset=-0.2 ;
highlowplot x=month high=b_high low=b_low /
 close=b_close open=b_open
 legendlabel="B" name="bhighlow" lineattrs=(pattern=solid)
 discreteoffset=0 ;
highlowplot x=month high=c_high low=c_low /
 close=c_close open=c_open
 legendlabel="C" name="chighlow" lineattrs=(pattern=solid)
 discreteoffset=+0.2 ;
discretelegend "ahighlow" "bhighlow" "chighlow" / title="Stock*
 location=inside halign=right valign=top;
endlayout;
```
Examples

Example 1: Vertical High-low Chart
The following vertical high-low chart was generated by “Example Program” on page 491:

```
proc template;
define statgraph highlow;
begingraph;
layout overlay;
 ... code ...
endgraph;
end;
```

Example Program
Example 2: Horizontal High-low Chart

The following horizontal high-low chart was generated by “Example Program” on page 492:

Example Program

data highlowbar;
  length cap $ 12;
  input drug $ 1-10 low high cap $;
datalines;
Drug A  10  20  NONE
Drug A  30  60  FILLEDARROW
Drug B  20  35  NONE
Drug B  50  75  FILLEDARROW
Drug C  30  90  FILLEDARROW;
proc template;
define statgraph highlowbar;
begingraph;
  entrytitle 'Medications Plot';
layout overlay /
HISTOGRAM Statement

Creates a univariate histogram computed from input data.

**Note:** When a histogram is placed on a log axis, binning is done on a linear scale, but the bins are drawn on the log scale. As a result, the bins might have different widths along the log axis.

**Syntax**

```
HISTOGRAM numeric-column | expression <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **BINSTART=number**
  - specifies the X coordinate of the first bin.

- **BINWIDTH=positive-number**
  - specifies the bin width.

- **BOUNDARY=UPPER | LOWER**
  - specifies how a boundary is counted when it lies on the endpoint of a bin.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  - enhances the visual appearance of the filled bars.

- **DATATRANSPARENCY=number**
  - specifies the degree of the transparency of the bar fills and bar outlines.

- **DISPLAY=STANDARD | ALL | (display-options)**
  - specifies whether to display outlined bars, filled bars, or outlined and filled bars.

- **FILLATTRS=style-element | style-element (fill-options) | (fill-options)**
  - specifies the appearance of the interior fill area of the bars.

- **FILLPATTERNATTRS=style-element | (fill-pattern-options)**
  - specifies the appearance of the pattern-filled bar area.
FILLTYPE=SOLID | GRADIENT
    specifies the bar fill type.

NBINS=positive-integer
    specifies the number of bins.

ORIENT=VERTICAL | HORIZONTAL
    specifies the orientation of the Y axis and the bars.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
    specifies the line properties of the bar outlines.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
    specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axes options

BINAXIS=TRUE | FALSE
    specifies whether to use bins as the basis for the axis tick marks.

PRIMARY=TRUE | FALSE
    specifies that the data columns for this plot and the plot type be used for determining default axis features.

SCALE=PERCENT | COUNT | PROPORTION | DENSITY
    specifies the scale for the Y axis.

XAXIS=X | X2
    specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
    specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

TIPFORMAT=(role-format-list)
    specifies display formats for tip columns.

TIPLABEL=(role-label-list)
    specifies display labels for tip columns.

Label options

DATALABELTYPE=NONE | AUTO | COUNT | DENSITY | PERCENT | PROPORTION
    specifies the statistic to display at the end of each bar.

ENDLABELS=TRUE | FALSE
    specifies whether the axis ticks and value labels are drawn at the bin endpoints (TRUE) or at the bin midpoints (FALSE).

LEGENDLABEL="string"
    specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
    creates a separate bar segment or bar for each unique group value in the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
    specifies whether missing values of the group variable are included in the plot.
Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Statistics options

FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

WEIGHT=numeric-column | expression
specifies a column that contains a bin-width calculation a priori weight for each observation of the input data object.

Required Argument

numeric-column | expression
specifies a column that contains numeric values, or a dynamic variable that refers to such a column.

Optional Arguments

BINAXIS=TRUE | FALSE
specifies whether to use bins as the basis for the axis tick marks.

TRUE
specifies that the ENDLABELS= option determines how the axis ticks and value labels are displayed.

FALSE
specifies that standard axes are used. Bin boundaries and midpoints that are set by the ENDLABELS= option are ignored.

Default

TRUE

Interaction

This option is ignored when this histogram is not the primary plot. For more information about primary plots, see “When Plots Share Data and a Common Axis” on page 880.

BINAXIS=TRUE is ignored when the histogram is placed on a log axis.

When this option is set to TRUE, some X-axis options that are set on the parent layout might not apply, such as INTEGER=, TICKVALUELIST=, TICKVALUESEQUENCE=, and INCLUDERANGES=.

See

“boolean ” on page 1339 for other Boolean values that you can use.

BINSTART=number
specifies the X coordinate of the first bin. This option can be used with the BINWIDTH= and NBINS= options to specify the bins.

Default

Determined by the system.

Interaction

This option is ignored if the specified number is greater than the minimum data value. In that case, the default starting bin is used instead.
Note If the BINSTART= value is less than the minimum data value, then the lower end of the histogram might be padded with zero-height bins in order to accommodate the BINSTART= value.

See XVALUES=

**BINWIDTH=positive-number**
specifies the bin width. This option can be used with the BINSTART= and NBINS= options to specify the bins.

**Default** Determined by the system.

**Restriction** Starting with the first maintenance release of SAS 9.4, the maximum number of bins is limited to approximately 10,000. If the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that yields approximately 10,000 bins. A warning of the change is written to the SAS log in that case.

**Interaction** This option is ignored when the NBINS= option is also specified (with or without the BINSTART= option) and the resulting data range does not completely span the unbinned input data range. In that case, the NBINS= option is honored and the default bin width is used instead.

**Note** When BINSTART=, NBINS=, or both are specified with this option and the resulting data range is greater than the unbinned input data range, the histogram might be padded with zero-height bins in order to accommodate the BINSTART=, NBINS=, and BINWIDTH= option values.

**BOUNDARY=UPPER | LOWER**
specifies how a boundary is counted when it lies on the endpoint of a bin. If this option is set to UPPER, then the value is counted as one of the values in the upper bin (the bin to the right). Otherwise, it is counted in the lower bin.

**Default** UPPER

**DATALABELTYPE=NONE | AUTO | COUNT | DENSITY | PERCENT | PROPORTION**
specifies the statistic to display at the end of each bar.

NONE suppresses the data labels.

AUTO uses the SCALE= option value. By default, SCALE=PERCENT.

COUNT | DENSITY | PERCENT | PROPORTION specifies that the count, density, percentage, or proportion statistic is to be displayed at the end of each bar.

**Default** NONE

**Interaction** When DATALABELTYPE=AUTO, the SCALE= option determines the statistic that is displayed at the end of each bar.
DATASKIN=NONE | CRISP | GLOSS | MATTE | Pressed | SHEEN enhances the visual appearance of the filled bars. The following figure shows histogram bars with each of the skins applied.

Default

The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction

Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Requirement

For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Interactions

This option overrides the BEGINGRAPH statement DATASKIN= option.

The data skin appearance is based on the FILLATTRS= color.

When a data skin is applied, all bar outlines are set by the skin, and the OUTLINEATTRS= option is ignored.

When FILLTYPE=GRADIENT is in effect, DATASKIN=SHEEN is ignored. In that case, use one of the other skins.

DATATRANSPARENCY=number

specifies the degree of the transparency of the bar fills and bar outlines.

Default

0

Range

0–1, where 0 is opaque and 1 is entirely transparent

Tip

The FILLATTRS= option can be used to set transparency for just the bar fills. You can combine this option with FILLATTRS= to set one transparency for the bar outlines but a different transparency for the bar fills. Example:
DISPLAY=STANDARD | ALL | (display-options)  
specifies whether to display outlined bars, filled bars, or outlined and filled bars.

STANDARD  
displays outlined, filled bars. (Currently, the same as ALL.)

ALL  
displays outlined, filled bars.

(display-options)  
a space-separated list of one or more of the following options, enclosed in parentheses:

OUTLINE  
displays outlined bars.

FILL  
displays bars with a color fill.

FILLPATTERN  
displays bars with a patterned fill.

Note This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default The GraphHistogram:DisplayOpts style reference.

Tip Use the OUTLINEATTRS=, FILLATTRS=, and FILLPATTERNATTRS= options to control the appearance of the bars.

ENDLABELS=TRUE | FALSE  
specifies whether the axis ticks and value labels are drawn at the bin endpoints (TRUE) or at the bin midpoints (FALSE).

Default FALSE.

Interactions This option is ignored if this plot is not the primary plot in the parent layout. For more information, see the PRIMARY= option.

This option is ignored if BINAXIS= FALSE. By default, BINAXIS=TRUE.

If the TICKS= suboption is specified in the XAXISOPTS= option, then this option is ignored.

See “boolean ” on page 1339 for other Boolean values that you can use.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)  
specifies the appearance of the interior fill area of the bars.

Defaults In the first maintenance release of SAS 9.4 and earlier releases, the Color attribute of the GraphDataDefault style element

Starting with the second maintenance release of SAS 9.4, the Color attribute of the GraphDataDefault style element for non-grouped data or the GraphData1–GraphDataN style elements for grouped data.
Interaction For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Tip The DATATRANSPARENCY= option sets the transparency for bar fills and bar outlines. You can combine this option with DATATRANSPARENCY= to set one transparency for the outlines but a different transparency for the fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

FILLPATTERNATTRS=style-element | (fill-pattern-options)
specifies the appearance of the pattern-filled bar area.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

style-element specifies the name of a style element. You can specify only one of the elements GraphData1–GraphDataN.

Restriction The only styles that are delivered by SAS that support fill patterns are JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER. If any other such style is in effect and this option uses style-element in its specification, then this option is ignored.

(fill-pattern-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

COLOR=color | style-reference specifies a color to use for the bar-fill-pattern lines.

PATTERN=line-pattern specifies a line pattern to use for the bar fill.

To specify a line-pattern, combine a line-direction prefix (R for right, L for left, and X for cross hatch) with a line-identification number:

Interaction For this option to take effect, the DISPLAY= option must include FILLPATTERN among the display options.

See DISPLAY=
FILLTYPE=SOLID | GRADIENT
specifies the bar fill type.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID
each bar is filled with the color that is assigned to that bar.

GRADIENT
an alpha gradient is used to determine the bar fill color. Each bar is filled with a color and a transparency gradient that starts at the bar top with the specified fill color and transparency, and transitions to fully transparent at the bar baseline. The initial fill color is determined by a style element or by the FILLATTRS= option COLOR= suboption. The initial transparency is determined by the DATATRANSPARENCY= option or by the FILLATTRS= option TRANSPARENCY= suboption.

Interaction The SHEEN data skin cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins.

Tip Use the DATATRANSPARENCY= option or the FILLATTRS= option TRANSPARENCY= suboption to set the initial transparency in the gradients.

See DATASKIN= on page 497

Default SOLID

Interaction The DISPLAY= option must include FILL for this option to have any effect.

FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

Default All observations have a frequency count of 1.

Restriction If the value of the numeric-column is missing or is less than 1, then the observation is not used in the analysis. If the value is not an integer, then only the integer portion is used.

Note If n is the value of the numeric column for a given observation, then that observation is used n times for the purposes of any statistical computation.

GROUP=column | discrete-attr-var | expression
creates a separate bar segment or bar for each unique group value in the specified column.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.
Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

For example, the Sashelp.Cars data contains a column named Origin, which identifies the region that produces each car. This column could be used in the HISTOGRAM statement to group the bars in the display:

```sas
proc template;
 define statgraph histogram;
 begingraph;
 entrytitle "Highway Mileage Distribution by Origin";
 layout overlay /;
 histogram mpg_highway / name="histogram" group=origin;
 discretelegend "histogram" / title="Origin:";
 endlayout;
 endgraph;
end;
run;
```

```sas
proc sgrender template=histogram data=sashelp.cars;
run;
```

Here is the output.

![Graph](image)

Defaults If bar fills or fill patterns are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different fill color or fill pattern. The fill colors are defined by the Color attribute of the GraphData1–GraphDataN and GraphMissing style elements. The fill patterns are defined by the FillPattern attribute of the GraphData1–GraphDataN and GraphMissing style elements.

If bar outlines are enabled by the ODS style or by the DISPLAY= option, then each distinct group value is represented in the plot by a different outline. The outline colors are defined by the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements. The outline thickness and pattern are defined by the LineThickness and LineStyle attributes of the GraphOutlines style element.
The group values are mapped in the order in which they appear in the data.

You can individually override the representations that are used to identify the groups. For example, in some ODS styles, each distinct group value is represented by a different line pattern for the bar outlines. In that case, you can use the PATTERN= setting on the OUTLINEATTRS= option to assign the same line pattern to all of the bar outlines.

See “DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default TRUE

Interaction For this option to take effect, the GROUP= option must also be specified.

Tip The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean ” on page 1339 for other Boolean values that you can use.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default The string specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default The string specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.
Interaction  The string is used as the default legend label if the \texttt{LEGENDLABEL=}
option is not used.

\textbf{NBINS=positive-integer}  

specifies the number of bins. This option can be used with the \texttt{BINSTART=} and \texttt{BINWIDTH=} options to specify the bins.  

Default  Determined by the system.

Ranges  A positive integer in SAS 9.4 and earlier releases

\begin{verbatim}
  2–10000 starting with the first maintenance release of SAS 9.4
\end{verbatim}

Note  When \texttt{BINWIDTH=}, \texttt{BINSTART=} or both are specified with this option and the resulting data range is greater than the unbinned input data range, the histogram might be padded with zero-height bins in order to accommodate the \texttt{BINSTART=} , \texttt{BINWIDTH=} , and \texttt{NBINS=} option values.

\textbf{ORIENT=VERTICAL | HORIZONTAL}  

specifies the orientation of the Y axis and the bars.  

Default  VERTICAL

\textbf{OUTLINEATTRS=style-element | style-element (line-options) | (line-options)}  

specifies the line properties of the bar outlines.  

Defaults  For non-grouped data, the \texttt{GraphOutlines} style element.

In the first maintenance release of SAS 9.4 and earlier releases, for grouped data and filled bars, the \texttt{ContrastColor} and \texttt{LineStyle} attributes of the \texttt{GraphData1–GraphDataN} style elements, and the \texttt{LineThickness} attribute of the \texttt{GraphOutlines} style element.

Starting with the second maintenance release of SAS 9.4, for grouped data and filled bars, the \texttt{ContrastColor} attribute of the \texttt{GraphData1–GraphDataN} style elements, and the \texttt{LineThickness} and \texttt{LineStyle} attributes of the \texttt{GraphOutlines} style element.

Interaction  For this option to have any effect, the outlines must be enabled by the ODS style or by the \texttt{DISPLAY=} option.

See  “General Syntax for Attribute Options” on page 1347 for the syntax for using a \texttt{style-element}.  

“Line Options” on page 1349 for available \texttt{line-options}.

\textbf{PRIMARY=TRUE | FALSE}  

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default  FALSE

Restriction  This option is ignored if the plot is placed under a \texttt{GRIDDED} or \texttt{LATTICE} layout block.
Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean” on page 1339 for other Boolean values that you can use.

**SCALE=** PERCENT | COUNT | PROPORTION | DENSITY

specifies the scale for the Y axis.

PERCENT displays the percentages between 0 and 100 on the Y axis.
COUNT displays the frequency counts on the Y axis.
PROPORTION displays the proportions between 0 and 1 on the Y axis.
DENSITY displays the true density estimates on the Y axis.

Default PERCENT

Tip When **SCALE=** PERCENT, the response axis tick values do not include a percent sign after each value. To add a percent sign after each response axis tick value in that case, use **SCALE=** PROPORTION, and then specify the options shown in the following example for the response axis:

\[
yaxisopts=(label="Percent" linearopts=(tickvalueformat=percent.))
\]

**TIPFORMAT=(role-format-list)**

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list) a space-separated list of role-name = format pairs.

Example TIPFORMAT=(Y=6.2)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Requirement To enable data tips in the output, you must include an ODS Graphics ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Note The X role represents the binned value. The Y role represents the computed amount of X in the units specified by the **SCALE=** option.

**TIPLABEL=(role-label-list)**

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

(role-label-list) a space-separated list of rolename = "string" pairs.

Example TIPLABEL=(Y=\"Percent\")
### HISTOGRAM Statement

<table>
<thead>
<tr>
<th>Default</th>
<th>The column label or column name of the column assigned to the role.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Note</strong></td>
<td>The Y role represents the computed amount of X in the units specified by the SCALE= option.</td>
</tr>
</tbody>
</table>

**WEIGHT=**numeric-column | expression

specifies a column that contains a bin-width calculation a priori weight for each observation of the input data object.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>The value must be nonnegative.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interaction</strong></td>
<td>If the value for an observation is missing or is less than 1, then the observation is removed from the analysis.</td>
</tr>
</tbody>
</table>

**XAXIS=X | X2**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interaction</strong></td>
<td>The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.</td>
</tr>
</tbody>
</table>

**XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**

specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins. For example, if BINSTART=10 and BINWIDTH=10, then using LEFTPOINTS would result in bins 10 - 20, 20 - 30, and so on. Using RIGHTPOINTS would result in bins 0 - 10, 10 - 20, ...., and using MIDPOINTS would result in bins 5 - 15, 15 - 25, ... .

<table>
<thead>
<tr>
<th>Default</th>
<th>MIDPOINTS</th>
</tr>
</thead>
</table>

**YAXIS=Y | Y2**

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interaction</strong></td>
<td>The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.</td>
</tr>
</tbody>
</table>

### Details

The histogram’s default bin width is computed by using the number of observations and the range of the data. When a curve is overlaid on the histogram, the histogram’s bin width is used to scale the curve so that the area under the curve is equal to the area of the histogram.

The X-axis and Y-axis are linear by default. You can change axis properties with the XAXISOPTS= and YAXISOPTS= options of the layout statement.
Example: HISTOGRAM Statement

The following graph was generated by the “Example Program” on page 506:

![Histogram of Vehicle Weights](image)

Example Program

```plaintext
proc template;
define statgraph histogram;
begingraph;
 entrytitle "Histogram of Vehicle Weights";
 layout overlay /
 xaxisopts=(label="Vehicle Weight (LBS)")
 yaxisopts=(griddisplay=on);
 histogram weight;
 endlayout;
endgraph;
end;
run;

proc sgrender data=sashelp.cars template=histogram;
run;
```

HISTOGRAMPARM Statement

Creates a univariate histogram for specified values of bin midpoints and bin frequencies.

Restriction: Only uniform width bins are supported.
Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

HISTOGRAMPARM X=numeric-column | expression
Y=non-negative-numeric-column | expression <option(s)>;

Summary of Optional Arguments

Appearance options

- DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN enhances the visual appearance of the filled bars.
- DATATRANSPARENCY=number specifies the degree of the transparency of the bars (outline and fill).
- DISPLAY=STANDARD | ALL | (display-options) specifies whether to display outlined bars, filled bars, or outlined and filled bars.
- FILLATTRS=style-element | style-element (fill-options) | (fill-options) specifies the appearance of the interior fill area of the bars.
- FILLPATTERNATTRS=style-element | (fill-pattern-options) specifies the appearance of the pattern-filled bar area.
- FILLTYPE=SOLID | GRADIENT specifies the bar fill type.
- ORIENT=VERTICAL | HORIZONTAL specifies the orientation of the Y axis and the bars.
- OUTLINEATTRS=style-element | style-element (line-options) | (line-options) specifies the line properties of the bar outlines.
- XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axes options

- BINAXIS=TRUE | FALSE specifies whether to use bins as the basis for the axis tick marks.
- PRIMARY=TRUE | FALSE specifies that the data columns for this plot and the plot type be used for determining default axis features.
- XAXIS=X | X2 specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.
- YAXIS=Y | Y2 specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options
ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a
histogram bin.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options
DATALABEL=column | expression
specifies a column for the bar labels.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the bar labels.

DATALABELFITPOLICY=AUTO | NONE | ROTATE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the bar labels when labels
are displayed.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

ENDLABELS=TRUE | FALSE
specifies whether the axis ticks and value labels are drawn at the bin
endpoints (TRUE) or at the bin midpoints (FALSE).

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Plot reference options
NAME="string"
assigns a name to this plot statement for reference in other template
statements.

Required Arguments
X=numeric-column | expression
specifies the column for the midpoint values.

Requirement The X values must be equally spaced.

Y=non-negative-numeric-column | expression
specifies the column for the frequency values. These values can be frequency counts,
percentages, or proportions between 0 and 1.

Requirement The Y values cannot be negative.

Optional Arguments
BINAXIS=TRUE | FALSE
specifies whether to use bins as the basis for the axis tick marks.
TRUE
specifies that the ENDLABELS= option determines how the axis ticks and value labels are displayed.

FALSE
specifies that standard axes are used. Bin boundaries and midpoints that are set by the ENDLABELS= option are ignored.

Default TRUE

Interactions This option is ignored when this histogram is not the primary plot. For more information about primary plots, see “When Plots Share Data and a Common Axis” on page 880.

BINAXIS=TRUE is ignored when the histogram is placed on a log axis.

When this option is set to TRUE, some X-axis options that are set on the parent layout might not apply, such as INTEGER=, TICKVALUELIST=, TICKVALUESEQUENCE=, and INCLUDERANGES=.

See “boolean ” on page 1339 for other Boolean values that you can use.

**DATALABEL=column | expression**
specifies a column for the bar labels. The labels appear at the top or end of each bar, depending on the chart orientation.

Default No data labels are displayed

**DATALABELATTRS=style-element | style-element (text-options) | (text-options)**
specifies the color and font attributes of the bar labels.

Default The GraphDataText style element

Interactions The DATALABEL= option must be specified for this option to have any effect.

When text options are specified, any font properties that are not specified (color, family, size, weight, and style) are derived from the GraphDataText style element.

See “General Syntax for Attribute Options” on page 1347

“Text Options” on page 1351

**DATALABELFITPOLICY=AUTO | NONE | ROTATE | SPLIT | SPLITALWAYS**
specifies a policy for avoiding collisions among the bar labels when labels are displayed.

**AUTO**
selects a collision avoidance policy based on the chart orientation and data type. For a numeric column with ORIENT=VERTICAL, AUTO rotates the labels if they do not fit the midpoint spacing. For a character column, AUTO splits the labels if they do not fit the midpoint spacing.

**Note** When ORIENT=HORIZONTAL, AUTO always draw the labels horizontally.
Tip  If character labels do not fit after splitting, then try using ROTATE instead of AUTO.

See  ORIENT= on page 516 for information about chart orientation.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>does not attempt to fit bar labels that collide.</td>
</tr>
<tr>
<td>ROTATE</td>
<td>rotates the bar labels for vertical bars if the labels collide in the available width.</td>
</tr>
<tr>
<td>Requirement</td>
<td>The chart orientation must be vertical (ORIENT=VERTICAL).</td>
</tr>
</tbody>
</table>

**SPLIT**
splits the label for vertical bars at a split character only if a split is needed at that character in order to make the label fit the available space. No split occurs at split characters that occur where a split is not needed. If the label does not contain any of the specified split characters, then a split does not occur. In that case, if the label does not fit the available space, then it might collide with the adjoining labels.

Requirement  The chart orientation must be vertical (ORIENT=VERTICAL).

See  DATALABELSPLITCHAR= for information about specifying the split characters

**SPLITALWAYS**
splits the label for vertical bars at every occurrence of a split character. If the label does not contain any of the specified split characters, then a split does not occur.

Requirement  The chart orientation must be vertical (ORIENT=VERTICAL).

See  DATALABELSPLITCHAR= for information about specifying the split characters

Default  AUTO

Requirement  The DATALABEL= option must also be specified.

**DATALABELSPLITCHAR="character-list"**
specifies one or more characters on which the data labels can be split. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABELFITPOLICY=SPLIT, data labels are split on a split character only if a split is needed at that point in order to make the label fit. When DATALABELFITPOLICY=SPLITALWAYS, the data labels are split unconditionally on each occurrence of a split character. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

Default  A blank space
Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitchar="abc"

The `DATALABELFITPOLICY` option must specify `SPLIT` or `SPLITALWAYS`.

Interactions

The `DATALABELFITPOLICY` option specifies the policy that is used to manage the split behavior of the data labels.

The `DATALABELSPLITCHARDROP` option specifies whether the split characters are included in the data label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**DATALABELSPLITCHARDROP=TRUE | FALSE**

specifies whether the split characters are included in the data labels.

**TRUE**

drops a split character from the data label when a split occurs at that character. Split characters at which a split does not occur are left in place. The `DATALABELFITPOLICY` option determines where the labels are split. When `DATALABELFITPOLICY=SPLIT`, each label is split at a split character only where a split is needed in order to make the label fit the available space. At each split point, the split character is dropped, and the characters that follow the split character, up to but not including the split character at the next split point, are wrapped to the following line.

When `DATALABELFITPOLICY=SPLITALWAYS`, each label is split at every instance of a split character. All of the split characters are dropped. The characters that follow each split character, up to but not including the next split character, are wrapped to the next line.

The following figure shows how label “Product*Group*1” is split when the `DATALABELSPLITCHARDROP=TRUE` and `DATALABELSPLITCHAR="*"` options are used with the `SPLIT` and `SPLITALWAYS` fit policies.

<table>
<thead>
<tr>
<th><strong>DATALABELFITPOLICY=SPLIT</strong></th>
<th>Product Group*1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DATALABELFITPOLICY=SPLITALWAYS</strong></td>
<td>Product Group 1</td>
</tr>
</tbody>
</table>

In this example, when `DATALABELFITPOLICY=SPLIT`, the label is split at the first occurrence of the asterisk in order to make the label fit. No split is needed at the second asterisk. The first asterisk is dropped, and `Group*1` wraps to the next line. Notice that the second asterisk is not dropped in this case. When `DATALABELFITPOLICY=SPLITALWAYS`, the label is split at every occurrence of the asterisk. In this case, both asterisks are dropped, and the characters that follow each asterisk wrap to the next line.
includes the split characters in the data label. The DATALABELFITPOLICY= option determines how the split characters are displayed. When DATALABELFITPOLICY=SPLIT, each data label is split at a split character only where a split is needed in order to make the label fit the available space. A split might not occur at every split character in the label. At each split point, the split character remains as the last character in the current line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until the entire data label is displayed.

When DATALABELFITPOLICY=SPLITALWAYS, each data label is split at every instance of a split character in the label regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows how label “Product*Group*1” is split when the DATALABELSPLITCHARDROP=FALSE and DATALABELSPLITCHAR=“*” options are used with the SPLIT and SPLITALWAYS fit policies.

In this example, when DATALABELFITPOLICY=SPLIT, the label is split at the first occurrence of the asterisk in order to make the label fit. No split is needed at the second asterisk. The characters that follow the first asterisk wrap to the next line. When DATALABELFITPOLICY=SPLITALWAYS, the label is split at every occurrence of the asterisk. Each asterisk remains as the last character in the current line, and the characters that follow are wrapped to the next line.

**Default**
TRUE. A split character is dropped from the data label when a split occurs at that character.

**Requirements**
The DATALABEL= option must also be specified.

The DATALABELFITPOLICY= option must specify SPLIT or SPLITALWAYS.

**Interaction**
The DATALABELSPLITCHAR= option specifies the split characters.

**See**
“boolean” on page 1339 for other Boolean values that you can use.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
enhances the visual appearance of the filled bars. The following figure shows histogram bars with each of the skins applied.
The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

This option overrides the BEGINGRAPH statement DATASKIN= option.

The data skin appearance is based on the FILLATTRS= color.

When a data skin is applied, all bar outlines are set by the skin, and the OUTLINEATTRS= option is ignored.

When FILLTYPE=GRADIENT is in effect, DATASKIN=SHEEN is ignored. In that case, use one of the other skins.

specifies the degree of the transparency of the bars (outline and fill).

0

0–1, where 0 is opaque and 1 is entirely transparent

The FILLATTRS= option can be used to set transparency for just the bar fills. You can combine this option with FILLATTRS= to set one transparency for the bar outlines but a different transparency for the bar fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)

specifies whether to display outlined bars, filled bars, or outlined and filled bars.
STANDARD
displays outlined, filled bars. (Currently, the same as ALL.)

ALL
displays outlined, filled bars.

(display-options)
a space-separated list of one or more of the following options, enclosed in parentheses:

OUTLINE
displays outlined bars.

FILL
displays bars with a color fill.

FILLPATTERN
displays bars with a patterned fill.

Note This option is valid in the first maintenance release of SAS 9.4 and later releases.

Default The GraphHistogram:DisplayOpts style reference.

Tip Use the OUTLINEATTRS=, FILLATTRS=, and FILLPATTERNATTRS= options to control the appearance of the bars.

ENDLABELS=TRUE | FALSE
specifies whether the axis ticks and value labels are drawn at the bin endpoints (TRUE) or at the bin midpoints (FALSE).

Default FALSE.

Interactions This option is ignored if this plot is not the primary plot in the parent layout. For more information, see the PRIMARY= option.

This option is ignored if BINAXIS= FALSE. By default, BINAXIS=TRUE.

If the TICKS= suboption is specified in the XAXISOPTS= option, then this option is ignored.

See “boolean ” on page 1339 for other Boolean values that you can use.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the interior fill area of the bars.

Default The GraphDataDefault style element

Interaction For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Tip The DATATRANSPARENCY= option sets the transparency for bar fills and bar outlines. You can combine this option with DATATRANSPARENCY= to set one transparency for the outlines but a different transparency for the fills. Example:

datatransparency=0.2 fillattrs=(transparency=0.6)
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

**FILLPATTERNATTRS=** style-element | (fill-pattern-options)

specifies the appearance of the pattern-filled bar area.

*Note:* This option is valid in the first maintenance release of SAS 9.4 and later releases.

**style-element**

specifies the name of a style element. You can specify only one of the elements GraphData1–GraphDataN.

**Restriction**
The only styles that are delivered by SAS that support fill patterns are JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER. If any other such style is in effect and this option uses style-element in its specification, then this option is ignored.

**fill-pattern-options**
a space-separated list of one or more of the following options, enclosed in parentheses:

**COLOR=color | style-reference**
specifies a color to use for the bar-fill-pattern lines.

**PATTERN=** line-pattern
specifies a line pattern to use for the bar fill.

To specify a line-pattern, combine a line-direction prefix (R for right, L for left, and X for cross hatch) with a line-identification number:

![Line-patterns](image)

**Interaction**
For this option to take effect, the DISPLAY= option must include FILLPATTERN among the display options.

**See**
DISPLAY=

**FILLTYPE=SOLID | GRADIENT**
specifies the bar fill type.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**SOLID**
each bar is filled with the color that is assigned to that bar.
**GRADIENT**

An alpha gradient is used to determine the bar fill color. Each bar is filled with a color and a transparency gradient that starts at the bar top with the specified fill color and transparency, and transitions to fully transparent at the bar baseline. The initial fill color is determined by a style element or by the FILLATTRS= option COLOR= suboption. The initial transparency is determined by the DATATRANSPARENCY= option or by the FILLATTRS= option TRANSPARENCY= suboption.

**Interaction**
The SHEEN data skin cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins.

**Tip**
Use the DATATRANSPARENCY= option or the FILLATTRS= option TRANSPARENCY= suboption to set the initial transparency in the gradients.

**See**
DATASKIN= on page 512

**Default**
SOLID

**LEGENDLABEL="string"**
specifies a label to be used in a discrete legend for this plot.

**Default**
The string specified on the NAME= option.

**Restriction**
This option applies only to an associated DISCRETELEGEND statement.

**NAME="string"**
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

**Restriction**
The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

**Interaction**
The string is used as the default legend label if the LEGENDLABEL= option is not used.

**ORIENT=VERTICAL | HORIZONTAL**
specifies the orientation of the Y axis and the bars.

**Default**
VERTICAL

**OUTLINEATTRS=style-element | style-element (line-options) | (line-options)**
specifies the line properties of the bar outlines.

**Default**
The GraphOutlines style element.

**Interaction**
For this option to have any effect, the outlines must be enabled by the ODS style or the DISPLAY= option.
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**PRIMARY=TRUE | FALSE**

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

**ROLENAME=(role-name-list)**

specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)

a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:

ROLENAME=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles X, Y, and DATALABEL.

**TIP=(role-list) | NONE**

specifies the information to display when the cursor is positioned over a histogram bin. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the histogram can be specified along with roles that do.

(role-list)

an ordered, space-separated list of unique HISTOGRAMPARM and user-defined roles. HISTOGRAMPARM roles include X, Y, and DATALABEL.

Tip User-defined roles are defined with the ROLENAME= option.

Example The following example displays data tips for the columns assigned to the roles X and Y, as well as the column Pct, which is not assigned to any pre-defined HISTOGRAMPARM role. The Pct column must first be assigned a role:
NONE
   suppresses data tips from the plot.

Default
   The columns assigned to these roles are automatically included in the
data tip information: X and Y.

Requirement
   To enable data tips in the output, you must include an ODS
GRAPHICS ON statement that has the IMAGEMAP option
specified, and you must write the output to the ODS HTML
destination.

Interaction
   This option is ignored when the plot statement is in an OVERLAY or
PROTOTYPE layout and the INCLUDERANGES= option
is specified in the LINEAROPTS= or TIMEOPTS= option for either
axis.

Tip
   The labels and formats for the TIP roles can be controlled with the
TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)
   specifies display formats for tip columns. This option provides a way to control the
formats of columns that appear in data tips.

(role-format-list)
   a space-separated list of role-name = format pairs.

Example
   ROLENAME=(TIP1=SALARY)
   TIP=(TIP1)
   TIPFORMAT=(TIP1=DOLLAR12.)

Default
   The column format of the column assigned to the role or BEST6 if no
format is assigned to a numeric column.

Restriction
   Only the roles that appear in the TIP= option are used.

Requirement
   A column must be assigned to each of the specified roles. (See the
ROLENAME= option.)

TIPLABEL=(role-label-list)
   specifies display labels for tip columns. This option provides a way to control the
labels of columns that appear in data tips.

role-label-list
   a space-separated list of rolename ="string" pairs.

Example
   ROLENAME=(TIP1=PCT)
   TIP=(TIP1)
   TIPLABEL=(TIP1="Percent")

Default
   The column label or column name of the column assigned to the role.

Restriction
   Only the roles that appear in the TIP= option are used.
Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

**XAXIS=X | X2**
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

Default MIDPOINTS

**YAXIS=Y | Y2**
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details
When a curve is overlaid on the histogram, the histogram bin width is used to scale the curve so that the area under the curve is equal to the area of the histogram.

The X-axis and Y-axis are linear by default. You can change axis properties with the XAXISOPTS= and YAXISOPTS= options of the LAYOUT OVERLAY statement.

---

**Example: HISTOGRAMPARM Statement**

The following graph was generated by the “Example Program” on page 520:
Example Program

proc template;
define statgraph histogramparm;
begingraph;
  entrytitle "Histogram of Vehicle Weights";
  layout overlay;
    histogramparm x=midpoint y=frequency;
  endlayout;
endgraph;
end;
run;
data bins;
  input Midpoint Frequency;
  label midpoint="Vehicle Weight (LBS)";
datalines;
2000 18
3000 208
4000 159
5000 36
6000 6
7000 1
;
run;
proc sgrender data=bins template=histogramparm;
run;
LINECHART Statement

Creates a line chart that is computed from input data.

Restrictions:  
GROUPDISPLAY=STACK has stringent requirements for the data. If the requirements are not met for all the data, then the line chart is not drawn. If the LINECHART statement is in a LAYOUT DATALATTICE or LAYOUT DATAPANEL block, then the requirements are tested for all of the data, not for each individual panel.

The category axis (the X-axis when ORIENT=VERTICAL or the Y-axis when ORIENT=HORIZONTAL) is always discrete.

The response axis (the Y-axis when ORIENT=VERTICAL or the X-axis when ORIENT=HORIZONTAL) is always numeric.

The LINECHART statement performs discrete binning for a numeric category column only.

Note: Specifying only the CATEGORY= option creates a computed line chart with vertices representing frequency counts or percents of unique CATEGORY values. For a non-grouped chart, specifying both the CATEGORY= and RESPONSE= options creates a computed line chart with vertices representing the summarized values of the RESPONSE values that are categorized by unique CATEGORY values.

Tips: The line segments in the chart always join the categorical values in the order in which they appear on the axis. By default, the vertices in the line chart appear in the order in which the X values occur in the input data. To change the categorical axis tick value order, use the SORTORDER= or TICKVALUELIST= suboption of the DISCRETEOPTS= option for the X-axis. For example:

```
XAXISOPTS=(DISCRETEOPTS=(SORTORDER=ASCENDINGFORMATTED))
```

The response axis of the line chart includes the zero value by default. You can use the BASELINEINTERCEPT= to change the Y intercept.

By default, missing category values are ignored. To treat missing category values as a category, include the INCLUDEMISSINGDISCRETE=TRUE option in the BEGINGRAPH statement.

Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

See:  
“LAYOUT DATALATTICE Statement” on page 45
“LAYOUT DATAPANEL Statement” on page 70
Chapter 8, “Axis Options in Layouts,” on page 889
“BEGINGRAPH Statement” on page 21

Syntax

```sas
LINECHART CATEGORY=column | expression </option(s)> ;
LINECHART CATEGORY=column | expression
RESPONSE=numeric-column | expression </option(s)> ;
```
Summary of Optional Arguments

Appearance options

BREAK=TRUE | FALSE
breaks the line at missing values of the RESPONSE variable.

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

COLORRESPONSE=numic-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the line, marker, and fill colors.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the lines and markers.

DATATRANSPARENCY=number
specifies the degree of the transparency of the line, markers, and vertex labels, if displayed.

DISPLAY=STANDARD | ALL | (display-options)
specifies which graphical features to display.

FILLATTRS=style-element | (fill-options)
specifies the appearance of the filled area.

FILLEDOUTLINEDMARKERS=TRUE | FALSE
specifies whether markers are drawn with both fill and an outline.

GROUPDISPLAY=OVERLAY | STACK
specifies how to display grouped lines.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color, marker symbol, and line pattern) and fill attributes to one of the GraphData1–GraphDataN style elements.

LINEATTRS=style-element | (line-options)
specifies the appearance of the line.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the data markers.

MARKERFILLATTRS=style-element | (fill-options)
specifies the appearance of the filled markers.

MARKEROUTLINEATTRS=style-element | (line-options)
specifies the appearance of the marker outlines.

ORIENT=VERTICAL | HORIZONTAL
specifies the orientation of the Y axis.

SMOOTHCONNECT=TRUE | FALSE
specifies that a smoothed line passes through all vertices.

Axes options

BASELINEINTERCEPT=number | AUTO | AXISMIN | AXISMINEXTEND |
AXISMAX | AXISMAXEXTEND
specifies the Y-intercept for the baseline.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

**Data tip options**

ROLENAME=(role-name-list)

specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over a line.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns.

TIPLABEL=(role-label-list)

specifies display labels for tip columns.

**Label options**

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

VERTEXLABEL=TRUE | FALSE

specifies whether to label the vertices with their response value (or statistic).

VERTEXLABELATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the vertex labels.

VERTEXLABELFORMAT=format

specifies the format used to display the vertex label response or statistic.

**Midpoint options**

GROUP=column | discrete-attr-var | expression

creates a separate line for each unique group value in the specified column.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

**ODS options**

URL=string-column

specifies an HTML page to display when a line segment, marker, or fill area is selected.

**Plot reference options**

NAME="string"

assigns a name to this plot statement for reference in other template statements.

**Statistics options**

STAT=FREQ | PCT | SUM | MEAN | PROPORTION

specifies the statistic to be computed for the Y-axis.

**Required Argument**

CATEGORY=column | expression

specifies the column or expression for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.
**Optional Arguments**

**BASELINEINTERCEPT=number | AUTO | AXISMIN | AXISMINEXTEND | AXISMAX | AXISMAXEXTEND**

specifies the Y-intercept for the baseline.

*number*

specifies the Y coordinate of the baseline. This value is included in the data range that is reported by the line chart.

**Interaction**

When *number* is specified, if necessary, the response axis data range is extended to include the baseline intercept. When a logarithmic response axis is requested and *number* is 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINEINTERCEPT= to a positive value.

**AUTO**

bases the intercept on the response axis range in the following ways:

- If the response axis range has both positive and negative values or contains 0, then the intercept is 0.
- If the response axis range contains all positive values, then AUTO is interpreted as AXISMINEXTEND.
- If the response axis range contains only negative values, then AUTO is interpreted as AXISMAXEXTEND.

**AXISMIN**

places the baseline at the minimum value of the axis range.

**AXISMINEXTEND**

places the baseline at the start of the minimum offset in the wall. This location corresponds to the bottom edge of the wall when there is no inner margin plot and the axis is not reversed. If there is an inner margin plot at the bottom, then the baseline is placed at the boundary of the inner margin and the minimum offset.

**AXISMAX**

places the baseline at the maximum value of the axis range.

**AXISMAXEXTEND**

places the baseline at the start of the maximum offset in the wall. This location corresponds to the top edge of the wall when there is no inner margin plot, and the axis is not reversed. If there is an inner margin plot at the top, then the baseline is placed at the boundary of the inner margin and the maximum offset.

**Default**

**AUTO**

**Interactions**

When **GROUPDISPLAY= STACK** is in effect, this option is ignored, and the plot is drawn as if BASELINEINTERCEPT=0.

When **DISPLAY=** includes **FILL**, the fill extends to the baseline that is specified by the BASELINEINTERCEPT= option.

**BREAK=TRUE | FALSE**

breaks the line at missing values of the RESPONSE variable.

**Default**

**FALSE**
Note If BREAK=FALSE, then missing values are skipped and a continuous line is drawn.

See “boolean” on page 1339 for other Boolean values that you can use.

**COLORMODEL=**<br>specifies a color ramp to use with the COLORRESPONSE= option.

*color-ramp-style-element*<br>specifies the name of a color-ramp style element. The style element should contain these style attributes:

- **STARTCOLOR**<br>specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR**<br>specifies the color for the midpoint of the range of the COLORRESPONSE= column.
- **ENDCOLOR**<br>specifies the color for the highest data value of the COLORRESPONSE= column.

*(color-list)*<br>specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.

See “color” on page 1340

**Default** The ThreeColorAltRamp style element.

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=**<br>specifies the column or range attribute variable to use to map the line, marker, and fill colors.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.

*range-attr-var*<br>specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

**Restriction** A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

**Requirement** The COLORRESPONSE values should remain constant for each group value in a grouped plot and for the entire plot in an ungrouped plot. If the COLORRESPONSE column has multiple values for a
single GROUP value or for a non-grouped plot, unexpected results might occur.

**Interactions**

When the `GROUP=` option is specified with the `COLORRESPONSE=` option, the color attributes are controlled by the `COLORRESPONSE=` option.

When this option is specified without the `GROUP=` option, only a single line is generated for the plot, and the line color is derived from the `COLORRESPONSE=` value.

When fill is displayed, this option overrides suboption `COLOR=` in the `FILLATTRS=` option and varies the fill color according to the color gradient or the attribute map. The line and marker colors in that case are controlled by the `contrastColor` attribute of the `GraphDataDefault` style element.

When fill is not displayed, this option overrides suboption `COLOR=` in the `LINEATTRS=` and `MARKERATTRS=` options, and varies the line and marker colors according to the color gradient or the attribute map.

**Tips**

To display a legend with this option in effect, use a `CONTINUOUSLEGEND` statement.

For a numeric column or expression, the `ThreeColorRamp` style element defines the fill color gradient, and the `ThreeColorAltRamp` style element defines the line color gradient.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

enhances the visual appearance of the lines and markers. The following figure shows lines and CIRCLEFILLED markers with each of the skins applied.

![Skin Options](image)

**Default**

The `DATASKIN=` option value that is specified in the `BEGINGRAPH` statement. If not specified, then the `GraphSkins:DataSkin` style element value is used.

**Restriction**

Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the...
specified data skin is not applied to that plot. In that case, use the DATA\$\text{ASKINMAX}=\text{option in your ODS GRAPHICS statement to increase the maximum limit.}

**Interactions**

This option overrides the BE\$\text{INGRAPH statement DATASKI\$}\text{N=} option.

The skin appearance is based on the color that is in effect for the lines and markers.

**DATATR\$\text{ANSPARENCY=}number**

specifies the degree of the transparency of the line, markers, and vertex labels, if displayed.

**Default** 0

**Range** 0–1, where 0 is opaque and 1 is entirely transparent

**Tip** The FILL\$\text{ATTRS=} option can be used to set transparency for just the fills. You can combine this option with FILL\$\text{ATTRS=} to set one transparency for the lines but a different transparency for the fills. For example:

```
datatransparency=0.2 fillattrs=(transparency=0.6)
```

**DISPLAY=STANDARD | ALL | (display-options)**

specifies which graphical features to display.

**STANDARD**

displays a line with no markers and no fill under the line to the baseline.

**ALL**

displays a line with markers and the fill under the line to the baseline.

**(display-options)**

a space-separated list of one or more of the following options enclosed in parentheses:

**FILL**

displays a filled area between the line and the baseline.

**Interaction**

When GROUP\$\text{DISPLAY=}STACK, DISPLAY=FILL fills between adjacent group lines except for the first group, which fills to the baseline.

**LINE**

displays line segments that join the vertices.

**MARKERS**

displays markers at each vertex.

**Default** STANDARD

**Tip**

Use the LINE\$\text{ATTRS=} , MARKER\$\text{ATTRS=} , and FILL\$\text{ATTRS=} options to control the appearance of the line segments, markers, and fill, respectively.

**FILL\$\text{ATTRS=}style-element | (fill-options)**

specifies the appearance of the filled area.

**Defaults**

For non-grouped data, the COLOR attribute of GraphDataDefault style element.
For grouped data, the COLOR attribute of GraphData1–GraphDataN style elements is used.

**Interactions**

For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

When COLORRESPONSE= is in effect and the DISPLAY= option enables FILL display, the FILLATTRS= suboption COLOR= is ignored, and the fill colors vary according to the gradient.

**Note**

When style-element is specified, only the style element’s COLOR attribute is used.

**Tip**

The DATATRANSPARENCY= option sets the transparency for the fills and the lines. You can combine this option with DATATRANSPARENCY= to set one transparency for the lines but a different transparency for the fills. For example:

datatransparency=0.2 fill=transparency=0.6

**See**

“General Syntax for Attribute Options” on page 1347

“Fill Options” on page 1348

FILLEDOUTLINEDMARKERS=TRUE | FALSE

specifies whether markers are drawn with both fill and an outline.

**TRUE**

draws filled markers (marker symbols with the suffix FILLED) using both fill and an outline. When this option is TRUE, the fill color and outline color for filled markers are determined in the following ways:

- If the GROUP= option is specified, then by default, the fill color is derived from the GraphData1–GraphDataN style elements Color attribute, and the marker outlined color is derived from the GraphData1–GraphDataN style elements ContrastColor attribute.
- If the GROUP= option is not specified, then by default, the fill color is derived from the GraphDataDefault style elements Color attribute, and the marker outlined color is derived from the GraphOutline style elements ContrastColor attribute.

**FALSE**

draws the markers using fill or an outline, but not both.

**Default**

FALSE

**Tip**

To specify the marker fill and outline colors for a non-grouped plot, set this option to TRUE, and then use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify the colors.

**See**

GROUP= on page 529

MARKERFILLATTRS= on page 532

MARKEROUTLINEATTRS= on page 533

“boolean ” on page 1339 for other Boolean values that you can use.
GROUP=column | discrete-attr-var | expression
creates a separate line for each unique group value in the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default
Each distinct group value is represented in the plot by a different combination of color, line pattern, and marker symbol. Lines and markers vary according to the ContrastColor, LineStyle, and MarkerSymbol attributes of the GraphData1–GraphDataN and GraphMissing style elements.

Interaction
When both the GROUP= and COLORRESPONSE= options are specified, the color attributes are controlled by the COLORRESPONSE= option.

Tip
The representations that are used to identify the groups can be overridden individually. For example, each distinct group value is represented by a different line pattern for the lines, but you can use the PATTERN= suboption of the LINEATTRS= option to assign the same line pattern to all lines.

See
“DISCRETEATTRMAP Statement” on page 1287

GROUPDISPLAY=OVERLAY | STACK
specifies how to display grouped lines.

OVERLAY
displays group values overlaid on top of each other.

STACK
displays group values as stacked lines.

Default
OVERLAY

Restriction
When STACK is in effect, if any response value is negative or if any crossing of the group value with the category is absent or is a missing value, then the chart is not drawn and a warning message is written to the SAS log.

Interaction
When STACK is in effect, the BASELINEINTERCEPT= option is treated as if it is set to zero.

Tip
When the response axis is linear, STAT=MEAN or STAT=PCT, and GROUPDISPLAY=STACK, the axis tick values might be displayed as integer values. When the response axis is linear, STAT=MEAN or STAT=PCT, and GROUPDISPLAY=OVERLAY, the axis tick values might be displayed as decimal values. To keep the integer axis values for both cases, you can specify the INTEGER=TRUE option for the response axis. See INTEGER= on page 915.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.
DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip  This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.

Default     DATA

Interactions
This option is ignored if the GROUP= option is not also specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Default     TRUE

Interaction
For this option to take effect, the GROUP= option must also be specified.

Tip  The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See  “boolean ” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color, marker symbol, and line pattern) and fill attributes to one of the GraphData1–GraphDataN style elements.

Requirements The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.
The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction
For this option to take effect, the GROUP= option must also be specified.

Notes
The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip
You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default
If the RESPONSE= option is specified, then the response variable label is used. Otherwise, the CATEGORY= variable label is used. If a label is not assigned to the response variable or category variable, then the variable name is used.

Restriction
This option applies only to an associated DISCRETELEGEND statement.

Interaction
If the GROUP= option is specified, then this option is ignored.

LINEATTRS=style-element | (line-options)
specifies the appearance of the line.

Defaults
For non-grouped data, the GraphDataDefault style element.

For grouped data, the LineThickness attributes of the GraphDataDefault style element, and the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements.

Interaction
When COLORRESPONSE= is in effect, the LINEATTRS= suboption COLOR= is ignored, and the line fill colors vary according to the gradient.

Note
When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.
MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the data markers.

Defaults

For non-grouped data, GraphDataDefault style element.

For grouped data, the MarkerSymbol and ContrastColor attributes of
the GraphData1–GraphDataN style elements, and the
GraphDataDefault:MarkerSize style reference.

Interactions

If FILLEDOUTLINEDMARKERS=TRUE, then this option’s
COLOR= suboption is ignored. In that case, to specify the marker fill
color, use the MARKERFILLATTRS= option instead.

This option’s COLOR= suboption overrides the default behavior for
grouped data. When the COLOR= suboption is specified in that case,
all markers have the same color, and the marker symbol alone
distinguishes the markers.

This option’s SYMBOL= suboption overrides the default behavior for
grouped data. When the SYMBOL= suboption is specified in that
case, all markers have the same symbol, and the symbol color alone
distinguishes the markers.

The TRANSPARENCY= fill option overrides this option’s
DATATRANSPARENCY= suboption.

This option is ignored if the DISPLAY= option disables the display of
the markers.

If the DATASKIN= option is in effect, then the data skin determines
the marker outlines. Any outline-related settings from the current ODS
style or from the marker attribute options are ignored.

Note

When style-element is specified, only the style element’s
MARKERSYMBOL, CONTRASTCOLOR, and MARKERSIZE
attributes are used.

See

“General Syntax for Attribute Options” on page 1347 for the syntax
on using a style-element.

“Marker Options” on page 1350 for available marker-options.

MARKERFILLATTRS=style-element | (fill-options)
specifies the appearance of the filled markers.

Defaults

For non-grouped data, the COLOR attribute of the GraphDataDefault
style element

For grouped data, the COLOR attribute of a GraphData1–GraphDataN
style element

Restriction

The TRANSPARENCY= fill option is ignored. Use the
MARKERATTRS= option to set the marker transparency.

Interaction

This option is in effect only when
FILLEDOUTLINEDMARKERS=TRUE and the DISPLAY= option
enables fill display.
Note  When style-element is specified, only the style element’s COLOR attribute is used.

See “General Syntax for Attribute Options” on page 1347

“Fill Options” on page 1348

MARKEROUTLINEATTRS=style-element | (line-options)
specifies the appearance of the marker outlines.

Defaults  For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attribute of the GraphOutlines style element and the ContrastColor attribute of a GraphData1–GraphDataN style element.

Restriction  The line style of the marker outline is always solid.

Interaction  This option is ignored when a data skin is applied by the current style or by the DATASKIN= option. In the latter case, the outline is set by the data skin.

Note  When style-element is specified, only the style element’s CONTRASTCOLOR and LINETHICKNESS attributes are used.

See “General Syntax for Attribute Options” on page 1347

“Line Options” on page 1349

NAME="string"
assigns a name to this plot statement for reference in other template statements. This option is used mostly in the CONTINUOUSLEGEND on page 1098 statement in order to coordinate the use of colors and line patterns between the plot and the legend.

Restriction  The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction  The string is used as the default legend label if the LEGENDLABEL= option is not used.

ORIENT=VERTICAL | HORIZONTAL
specifies the orientation of the Y axis.

Default  VERTICAL

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default  FALSE

Restriction  This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note  In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot,
the first plot that can be a primary plot is considered the primary plot. If
multiple plots specify PRIMARY=TRUE for the same axis, then the
last such plot encountered is considered the primary plot.

See

“When Plots Share Data and a Common Axis” on page 880
“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.
This option provides a way to add to the data columns that appear in data tips that are
specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example
The following example assigns the column Obs to the user-defined
role TIP:
ROLENAME=(TIP=OBS)

Default
No user-defined roles

Requirement
The role names that you choose must be unique and different from
the predefined roles CATEGORY, RESPONSE, DATALABEL, and
GROUP.

SMOOTHCONNECT=TRUE | FALSE
specifies that a smoothed line passes through all vertices.

Default
FALSE. Straight line segments are used if the vertices are to be
connected.

Interaction
This option is ignored when GROUPDISPLAY=STACK.

See
“boolean ” on page 1339 for other Boolean values that you can use.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic to be computed for the Y-axis. For bar charts with no
RESPONSE= column:

FREQ frequency count
PCT percentages between 0 and 100 inclusive
PROPORTION proportions between 0 and 1 inclusive

For bar charts with a RESPONSE= column:

SUM
MEAN

Defaults
SUM for line charts that specify the RESPONSE= argument.
FREQ for line charts that do not specify the RESPONSE= argument.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a line. If this
option is used, then the information specified replaces all of the information that is
displayed by default. You can specify roles for columns that do not contribute to the line chart along with roles that do.

\begin{itemize}
\item \texttt{role-list}: an ordered, space-separated list of unique LINECHART roles and user-defined roles. LINECHART roles include \texttt{CATEGORY}, \texttt{RESPONSE}, \texttt{COLORRESPONSE}, \texttt{DATALABEL}, and \texttt{GROUP}.
\item \textbf{Note}: The \texttt{COLORRESPONSE} role is valid starting with the third maintenance release of SAS 9.4.
\item \textbf{Tip}: User-defined roles are defined with the \texttt{ROLENAME=} option.
\end{itemize}

\begin{itemize}
\item \texttt{NONE}: suppresses data tips and URLs (if requested) from the plot.
\item \textbf{Default}: The columns assigned to the following roles are automatically included in the data tip information: \texttt{CATEGORY}, \texttt{RESPONSE}, and \texttt{GROUP}.
\item \textbf{Restriction}: Data tips are available only for graphs that are written to the ODS HTML destination.
\item \textbf{Requirement}: To generate data tips, include an ODS GRAPHICS ON statement that specifies the \texttt{IMAGEMAP} option. See “ODS GRAPHICS Statement” in \textit{SAS ODS Graphics: Procedures Guide} for information about the ODS GRAPHICS statement.
\item \textbf{Interaction}: This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the \texttt{INCLUDERANGES=} option is specified in the \texttt{LINEAROPTS=} or \texttt{TIMEOPTS=} option for either axis.
\item \textbf{Note}: The \texttt{RESPONSE} role represents the computed values for the \texttt{CATEGORY} role (and \texttt{RESPONSE=} role), based on the \texttt{STAT=} option.
\item \textbf{Tip}: You can control the labels and formats for the \texttt{TIP} roles with the \texttt{TIPLABEL=} and \texttt{TIPFORMAT=} options.
\item \textbf{Example}: To display data tips for the columns assigned to the roles \texttt{X} and \texttt{Y} as well as the user-defined role \texttt{TIP1}:
\begin{verbatim}
ROLENAME= (TIP1=OBS)
TIP=(TIP1 X Y)
\end{verbatim}
\end{itemize}

\textbf{TIPFORMAT=}\texttt{(role-format-list)}

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

\begin{itemize}
\item \texttt{role-format-list}: a space-separated list of \texttt{role-name} = \texttt{format} pairs.
\item \textbf{Example}:
\begin{verbatim}
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
\end{verbatim}
\item \textbf{Default}: The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.
\end{itemize}
Restriction: Only the roles that appear in the TIP= option are used.

Requirement: A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

**TIPLABEL=(role-label-list)**

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

*role-label-list*

a space-separated list of *rolename = "string"* pairs.

**Example**

```
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")
```

**Default**

The column label or column name of the column assigned to the role.

**Restriction**

Only the roles that appear in the TIP= option are used.

**Requirement**

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

**URL=string-column**

specifies an HTML page to display when a line segment, marker, or fill area is selected.

*string-column*

specifies a column that contains a valid HTML page reference (HREF) for each line that is to have an active link.

**Example**

```
http://www.sas.com/technologies/analytics/index.html
```

**Requirement**

To generate selectable line segments, markers, and fill areas, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

**Interactions**

This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

**Notes**

For non-grouped data, the values of the column are expected to be same for each unique X value. If they are not, then the results might be unpredictable.

For grouped data, the values of the column are expected to be the same for each unique X and GROUP combination.

**Tips**

The URL value can be blank for some X values, meaning that no action is taken when the line segments for those X values are selected.
The URL value can be the same for different X values, meaning that the same action is taken when the line segments for those X values are selected.

**VERTEXLABEL=TRUE | FALSE**
specifies whether to label the vertices with their response value (or statistic).

<table>
<thead>
<tr>
<th>Default</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>When <code>GROUPDISPLAY=STACK</code> is in effect, vertex labeling displays the sum of the vertex responses per category.</td>
</tr>
<tr>
<td>Tips</td>
<td>You can modify the visual attributes for the label by using the VERTEXLABELATTRS= option.</td>
</tr>
<tr>
<td></td>
<td>You can modify the text format by using the VERTEXLABELFORMAT= option.</td>
</tr>
<tr>
<td>See</td>
<td>“boolean” on page 1339 for other Boolean values that you can use.</td>
</tr>
</tbody>
</table>

**VERTEXLABELATTRS=**

Default	The GraphDataText style element.
Requirement	VERTEXLABEL=TRUE must be in effect for this option to have any effect.
Interaction	If one or more text options are specified and they do not include all the font properties (color, family, size, weight, style), then non-specified properties are derived from the GraphDataText style element.
Note	When `style-element` is specified, only the style element’s COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTPART attributes are used.
See	“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.
	“Text Options” on page 1351 for available `text-options`.

**VERTEXLABELFORMAT=**
specifies the format used to display the vertex label response or statistic.

| Default   | The column format assigned to the response variable, or BEST6.2 if the column does not have an associated format. |
| Requirement | VERTEXLABEL=TRUE must be in effect for this option to have any effect. |

**XAXIS=X | X2**
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

| Default   | X |
Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default: Y

Interaction: The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Optional Response Argument

RESPONSE=numeric-column | expression
specifies the numeric column or expression for the response values.

Details

A line chart shows the relationship of one variable to another as trends in the data over a period of time. The trends are shown by connecting the successive data points with a line. Typically, a line chart is used to chart a response value against a discrete categorical value where each value on the horizontal axis has only one corresponding value on the vertical axis. A grouping variable can be used to show multiple trends based on the group values.

In a line chart, the category axis (X) is always discrete, and the response axis (Y) is always linear. The line segments in the chart always join the categorical values in the order in which they appear on the axis. The vertices in the line chart appear in the order in which the categorical values appear in the input data.

Examples

Example 1: Grouped Line Chart with Custom Line and Fill Attributes
This example shows you how to generate a simple line chart by using the LINECHART statement and how to use the statement options to customize the plot.
The following graph was generated by the “Example Program” on page 539. It shows the trend of the average closing price of the IBM, Intel, and Microsoft stocks from 1995 through 2005.

Example Program

Here is the SAS code for this example.

```sas
/* Extract per-year data for 1995 through 2005 from SASHELP.STOCKS */
data linechartdata;
 set sashelp.stocks(where=(year(date) between 1995 and 2005));
 year=year(date);
 label year="Year";
run;

/* Define the line chart template */
proc template;
 define statgraph linechart;
 begingraph;
 entrytitle "Stock Index Performance: 1995 - 2005";
 layout overlay /
 /* Add a grid */
 xaxisopts=(gridattrs=(pattern=dot color=lightgray))
 yaxisopts=(gridattrs=(pattern=dot color=lightgray));
 linechart category=year response=close / name="linechart"
 /* Compute the mean statistic */
 stat=mean
 /* Group by stock to draw a line for each stock */
 // Group by stock to draw a line for each stock */
 endgraph;
end;
```
Example 2: Grouped Line Chart with Discrete Attribute Map

This example shows you how to create a more flexible template that enables you to easily generate multiple line graphs that use different data. It also shows you how to customize the plot appearance by using a discrete attribute map.

The following graph was generated by the “Example Program” on page 541. It shows the trend of the average monthly closing price of the IBM, Intel, and Microsoft stocks for 2001.

![Stock Index Performance in 2001](image-url)
Example Program

Here is the SAS code for this example.

```sas
/* Define the line chart template */
proc template;
define statgraph linechart;
begingraph;
/* Create a dynamic variable for the year */
dynamic year;
/* Define the display attributes for each stock. Since DISCRETEATTRMAP does not support the MARKERATTRS= suboption SIZE=, the marker size is set separately. */
discreteattrmap name="stocks" / ignorecase=true;
value "IBM" /
 markerattrs=(color=blue symbol=trianglefilled)
 lineattrs=(color=lightblue pattern=solid);
value "Intel" /
 markerattrs=(color=red symbol=circlefilled)
 lineattrs=(color=verylightred pattern=solid);
value "Microsoft" /
 markerattrs=(color=orange symbol=squarefilled)
 lineattrs=(color=verylightorange pattern=solid);
enddiscreteattrmap;
/* Associate the attribute map with input data column Stock and assign the name STOCKATTRS to the named association */
discreteattrvar attrvar=stockattrs var=stock attrmap="stocks";

entrytitle "Stock Index Performance in " year;
layout overlay /
/* Add a grid */
xaxisopts=(griddisplay=on gridattrs=(pattern=dot color=lightgray))
yaxisopts=(griddisplay=on gridattrs=(pattern=dot color=lightgray));
linechart category=date response=close / name="linechart"
/* Compute the mean */
stat=mean
/group=stockattrs
/* Display the lines and markers */
display=(line markers)
/* Set the marker size */
markerattrs=(size=6)
/* Show vertex labels and specify their attributes */
vertexlabel=true
vertexlabelattrs=(size=7pt)
vertexlabelformat=dollar4.0;
/* Add a legend */
discretelegend "linechart";
```

Example 2: Grouped Line Chart with Discrete Attribute Map
/* Create a macro that generates a line chart for a specific year */
%macro genchart(year=);
    /* Generate the chart */
    proc sgrender data=sashelp.stocks template=linechart;
        where year(date)=&year; /* Get the data for the specified year */
        format date monname3.; /* Format the date as 3-letter month */
        dynamic year="&year;"; /* Pass the year to the template */
    run;
%mend genchart;

/* Generate a chart for 2001 */
genchart(year=2001);

---

LINEPARM Statement

Creates a straight line specified by a point and a slope.

**Requirement:** A LINEPARM statement can be used only within a 2-D layout (OVERLAY, OVERLAYEQUATED, DATALATTICE, or DATAPANEL). Another plot statement that is derived from data values that provide boundaries for the axis area must be included.

**Syntax**

```
LINEPARM X=number | numeric-column | expression
 Y=number | numeric-column | expression
 SLOPE=number | numeric-column | expression </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **CLIP=TRUE | FALSE**
  indicates whether the data for the line is considered when the data ranges are determined for the axes.

- **DATATRANSPARENCY=number**
  specifies the degree of the transparency of the line.

- **EXTEND=TRUE | FALSE**
  indicates whether the line is to be drawn to the area bounded by the axes.

- **INDEX=positive-integer-column | expression**
  indicates indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

- **LINEATTRS=style-element | style-element (line-options) | (line-options)**
  indicates the attributes of the line.

**Axes options**

```
XAXIS=X | X2
```
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

**Label options**

CURVELABEL="string" | column | expression
specifies a label for the line.

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the line label.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the line label relative to the plot area.

CURVELABELPOSITION=AUTO | MAX | MIN
specifies the position of the line label relative to the line end points.

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the line label at the specified split characters.

CURVELABELSPLITCHAR="character-list"
specifies one or more characters on which the line label can be split if needed.

CURVELABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the line label text.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the line label block.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

**Midpoint options**

GROUP=column | discrete-attr-var | expression
creates a separate parameterized line plot for each unique group value of the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

**Plot reference options**

NAME="string"
assigns a name to this plot statement for reference in other template statements.

**Required Arguments**

X=number | numeric-column | expression
specifies the X coordinate of a point.

By default, if the specified value is outside of the data range, then the data range is extended to include the specified intercept. This behavior can be changed with the CLIP= option. If a numeric-column is specified and the column contains missing values, then no line is drawn for the missing values.

Values are displayed in the units of the data.

Y=number | numeric-column | expression
specifies the Y coordinate of a point.
By default, if the specified value is outside of the data range, then the data range is extended to include the specified intercept. This behavior can be changed with the \texttt{CLIP=} option. If a \texttt{numeric-column} is specified and the column contains missing values, then no line is drawn for the missing values.

Values are displayed in the units of the data.

\textbf{SLOPE=number | numeric-column | expression}

specifies the slope of the line. Slope can be positive or negative.

\texttt{SLOPE=0} creates a line parallel to the X-axis. \texttt{SLOPE=.} (a missing value) creates a line parallel to the Y-axis.

\section*{Optional Arguments}

\textbf{CLIP=TRUE | FALSE}

specifies whether the data for the line is considered when the data ranges are determined for the axes.

\texttt{FALSE}

specifies that the data for the line contributes to the data range for each axis. Each axis might be extended in order to force the display of the line. When \texttt{CLIP=FALSE}, the \texttt{SLOPE=} option determines how the X= and Y= values contribute to the axis data range in the following ways:

- If \texttt{SLOPE=}0, then only the Y= values contribute to the axis data range.
- If \texttt{SLOPE=}=. (missing), then only the X= values contribute to the axis data range.
- If \texttt{SLOPE=} is neither 0 nor missing, then the X= and Y= values contribute to the axis data range.

\texttt{TRUE}

specifies that the data for the line is ignored when axis scales are being established. Each axis scale is determined by the other plots in the layout. In this case, the line might not be displayed if its data range is not within the data ranges of the other plots.

Default \texttt{FALSE}

See \texttt{"boolean " on page 1339} for other Boolean values that you can use.

\textbf{CURVELABEL= "string" | column | expression}

specifies a label for the line.

Default No line label is displayed

Restrictions When the \texttt{GROUP=} option is specified, \texttt{"string"} and \texttt{expression} are not valid. Use \texttt{column} in that case.

When the \texttt{GROUP=} option is not specified, \texttt{column} is not valid. Use \texttt{"string" or expression} in that case.

The line label for missing values is ignored.

Tip The font and color attributes for the label are specified by the \texttt{CURVELABELATRIS=} option.

See \texttt{GROUP=} on page 549
CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the line label.

Defaults
For non-grouped data, the GraphValueText style element.

For grouped data, text color is derived from the
GraphData1:ContrastColor–GraphDataN:ContrastColor style
references. The font is derived from the GraphValueText style
element.

Interactions
For this option to take effect, the CURVELABEL= option must also
be used.

This option’s COLOR= setting overrides the colors indicated by the
GROUP= option.

Tip
When the GROUP= option is used, each distinct group value might be
represented by a different color. The line label that is associated with
the group is assigned the group color. This option can be used to
specify a single color for all line labels in a plot, without affecting the
line colors.

See
“General Syntax for Attribute Options” on page 1347 for the syntax
on using a style-element.

“Text Options” on page 1351 for available text-options.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the line label relative to the plot area.

INSIDE
locates the labels inside the plot area

OUTSIDE
locates the labels outside the plot area

Default
INSIDE

Restriction
OUTSIDE cannot be used when the LINEPARM is used in multi-cell
layouts such as LATTICE, DATAPANEL, or DATALATTICE, where
axes might be external to the grid.

Interactions
For this option to take effect, the CURVELABEL= option must also
be specified.

This option is used in conjunction with the
CURVELABELPOSITION= option to determine where the line labels
appear.

See
“Location and Position of Curve Labels” on page 185

CURVELABELPOSITION=AUTO | MAX | MIN
specifies the position of the line label relative to the line end points. This option is
used in conjunction with the CURVELABELLOCATION= option to determine
where the line label appears.
AUTO
automatically positions the line label near the line boundary along unused axes whenever possible (typically Y2 and X2) in order to avoid collision with tick values.

Restriction This option is used only when CURVELABELLOCATION=OUTSIDE.

MAX
forces the line label to appear near maximum line values (typically, upper right).

MIN
forces the line label to appear near minimum line values (typically, lower left).

Defaults AUTO when CURVELABELLOCATION=OUTSIDE.

MAX when CURVELABELLOCATION=INSIDE.

Restriction The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified.

Interaction For this option to take effect, the CURVELABEL= option must also be specified.

Note When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the curve label might fall outside of the graph area. In that case, the curve label might not be displayed or might be positioned incorrectly.

See “Location and Position of Curve Labels” on page 185

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the line label at the specified split characters. When a line label is split, the label is split on each occurrence of the specified split characters.

Default FALSE. The line label is not split.

Requirement The CURVELABEL= option must also be specified.

Interactions The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.

See “boolean ” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHAR="character-list"
specifies one or more characters on which the line label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the line label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the line label is split unconditionally at each occurrence of any of the specified split characters. If the line label does not contain any of the specified characters, then the label is not split.
"character-list"
  one or more characters with no delimiter between each character and enclosed in quotation marks.

<table>
<thead>
<tr>
<th>Default</th>
<th>A blank space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>The list of characters must be enclosed in quotation marks.</td>
</tr>
<tr>
<td></td>
<td>Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:</td>
</tr>
<tr>
<td></td>
<td>curvelabelsplitchar=&quot;abc&quot;</td>
</tr>
<tr>
<td></td>
<td>The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.</td>
</tr>
<tr>
<td>Interactions</td>
<td>This option has no effect if CURVELABELPOSITION=AUTO.</td>
</tr>
<tr>
<td></td>
<td>The CURVELABELSPLITCHARDROP= option specifies whether the split characters are included in the line label or are dropped.</td>
</tr>
<tr>
<td>Notes</td>
<td>When multiple characters are specified, the order of the characters in the list is not significant.</td>
</tr>
<tr>
<td></td>
<td>The split characters are case sensitive.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the CURVELABELSPLITJUSTIFY= option to specify the justification of the strings in the line label block.</td>
</tr>
</tbody>
</table>

CURVELABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the line label text.

**TRUE**
  drops the split characters from the line label text.

**FALSE**
  includes the split characters in the line label text. When CURVELABELSPLIT=TRUE and CURVELABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a line label with the following specifications:

- CURVELABELPOSITION=MAX
- CURVELABEL="Product*Group*A"
- CURVELABELSPLIT=TRUE
- CURVELABELSPLITCHARDROP=TRUE | FALSE
- CURVELABELSPLITCHAR="*

*Note:* The horizontal line to the left of the label represents the maximum end of the line for reference.
When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default

TRUE. The split characters are dropped from the line label.

Requirement

The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction

The CURVELABELSPLITCHAR= option specifies the split characters.

See

“boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the line label block.

AUTO

justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the line for reference.

In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default

AUTO

Requirement

The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.
Interaction  This option has no effect if CURVELABELPOSITION=AUTO.

\textbf{DATATRANSPARENCY=number}

specifies the degree of the transparency of the line.

\begin{itemize}
  \item Default: 0
  \item Range: 0–1, where 0 is opaque and 1 is entirely transparent
  \item Note: This option does not affect the line label.
\end{itemize}

\textbf{EXTEND=TRUE | FALSE}

specifies whether the line is to be drawn to the area bounded by the axes.

\begin{itemize}
  \item Default: FALSE
  \item Note: If this option is not specified, then there can be a small gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.
  \item See: “boolean” on page 1339 for other Boolean values that you can use.
\end{itemize}

\textbf{GROUP=column | discrete-attr-var | expression}

creates a separate parameterized line plot for each unique group value of the specified column.

\begin{itemize}
  \item \textit{discrete-attr-var}: specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.
  \item Restriction: A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.
  \item Default: Each distinct group value might be represented in the plot by a different combination of line color and line pattern. Line colors vary according to the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements. The line patterns vary according to the LineStyle attribute of the GraphData1–GraphDataN and GraphMissing style elements.
  \item Restriction: When this option is used, the \textit{X}, \textit{Y}, and \textit{SLOPE} arguments must specify numeric columns.
  \item Interactions: The group values are mapped in the order of the data, unless the \textbf{INDEX=} option is used to alter the default sequence of line colors and line patterns.
  \item Tip: The \textbf{LINEATTRS=} option can be used to override the representations that are used to identify the groups. For example, \textbf{LINEATTRS=(PATTERN=SOLID)} can be used to assign the same pattern to all of the lines, letting the line color distinguish group values. Likewise, \textbf{LINEATTRS=(COLOR=BLACK)} can be used to
assign the same color to all of the lines, letting the line pattern distinguish group values.

See
“DISCRETEATTRVAR Statement” on page 1297

INCLUDEDMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Default
TRUE

Interaction
For this option to take effect, the GROUP= option must also be specified.

Tip
The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See
“boolean ” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

Requirements
The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction
For this option to take effect, the GROUP= option must also be specified.

Notes
The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip
You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default
The string specified on the NAME= option.
**Restriction**  This option applies only to an associated DISCRETELEGEND statement.

**Interaction**  If the GROUP= option is specified, then this option is ignored.

**LINEATRERS=** *style-element | style-element (line-options) | (line-options)*

specifies the attributes of the line.

**Defaults**

- For non-grouped data, the GraphDataDefault style element.
- For grouped data, the ContrastColor, LineStyle, and LineThickness attributes of the GraphData1–GraphDataN style elements.

**See**

- “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.
- “Line Options” on page 1349 for available *line-options*.

**NAME="string"**

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

**Restriction**  The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

**Interaction**  The *string* is used as the default legend label if the LEGENDLABEL= option is not used.

**XAXIS=X | X2**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

**Default**  X

**Restriction**  Another plot that establishes a data range for the designed axis must be included.

**Interaction**  The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**YAXIS=Y | Y2**

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

**Default**  Y

**Restriction**  Another plot that establishes a data range for the designed axis must be included.

**Interaction**  The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
Details

The LINEPARM statement creates a straight line. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric column for any or all required arguments. If any of the X= or Y= columns contains a missing value, then no line is drawn. To request a vertical line, specify SLOPE=. (specify a missing value as a constant or column value).

A LINEPARM statement can be used in any layout except GRIDDED or OVERLAY3D layouts. The parent layout must include another plot statement that is derived from data values that establish a data range for the axes. For example, it can be used with a scatter plot or a histogram.

To draw vertical or horizontal reference lines, consider using the simpler REFERENCELINE statement.

Example: LINEPARM Statement

The following graph was generated by the “Example Program” on page 552:

```
proc template;
 define statgraph lineparm;
 begingraph;
```

Example Program

The LINEPARM statement draws a line based on a point and the slope of the line that passes through that point. You can use this statement to create a reference line with any slope or, in this example, to draw a fit from a linear regression. Many SAS/STAT procedures create output data sets containing a Y-intercept and slope and coefficient for the linear regression equation.

```
proc template;
 define statgraph lineparm;
 begingraph;
```
entrytitle "Robust Fit of Height and Weight by Sex ";
layout overlay / xaxisopts=(offsetmax=0.35);
screenshot x=height y=weight / group=sex
markercharacter=eval(substr(sex,1,1))
markercharacterattrs=(size=5pt) datatransparency=0.7;
lineparm x=0 y=intercept slope=slope /
name="Line" group=sex clip=true
curvelabel=eval("Weight = \*\*\put(slope,5.3)\*\* \* Height = \*\*\put(intercept,6.1)\)"
curvelabellocation=inside
curvelabelattrs=(size=8pt);
discretelegend "Line";
endlayout;
endgraph;
end;
run;

proc sort data=sashelp.heart(keep=height weight sex)
  out=heart;
  by sex;
run;
ods exclude all;
proc robustreg data=heart method=m
  outest=stats(rename=(height=slope));
  by sex;
  model weight=height;
run;

data all;
  merge heart stats(keep=intercept slope sex);
run;
ods select all;
proc sgrender data=all template=lineparm;
run;

**LOESSPLOT Statement**

Creates a fitted loess curve computed from input data.

**Restriction:** The LOESSPLOT statement supports only models of one independent and one dependent variable.

**Note:** If the input data contains a large number of observations, then it might take several minutes to generate the plot.

**Tips:** By default, the LOESSPLOT statement will process up to 5000 observations. If the input data exceeds 5000 observations, then the plot is not generated. In that case, you can use the ODS GRAPHICS statement LOESSMAXOBS= option to extend the limit. See "Details" on page 564.

Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page...
For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

LOESSPLOT X=numeric-column | expression
Y=numeric-column | expression <(regression-options) <option(s)> >;

Summary of Optional Arguments

Appearance options

DATATRANSPARENCY=number
  specifies the degree of the transparency of the loess curve.
INDEX=positive-integer-column | expression
  specifies indices for mapping line attributes (color and line pattern) to one of
  the GraphData1–GraphDataN style elements.
LINEATTRS=style-element | style-element (line-options) | (line-options)
  specifies the attributes of the loess curve.

Axes options

PRIMARY=TRUE | FALSE
  specifies that the data columns for this plot and the plot type be used for
determining default axis features.
XAXIS=X | X2
  specifies whether data are mapped to the primary X (bottom) axis or to the
  secondary X2 (top) axis.
YAXIS=Y | Y2
  specifies whether data are mapped to the primary Y (left) axis or to the
  secondary Y2 (right) axis.

Data tip options

TIPFORMAT=(role-format-list)
  specifies display formats for tip columns.
TIPLABEL=(role-label-list)
  specifies display labels for tip columns.

Label options

CURVELABEL="string"
  specifies a label for the loess curve.
CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
  specifies the color and font attributes of the curve labels.
CURVELABELLOCATION=INSIDE | OUTSIDE
  specifies the location of the curve label relative to the plot area.
CURVELABELPOSITION=AUTO | MAX | MIN | START | END
  specifies the position of the curve label relative to the curve line.
CURVELABELSPLIT=TRUE | FALSE
  specifies whether to split the curve label at the specified split characters.
CURVELABELSPLITCHAR="character-list"
  specifies one or more characters on which the curve label can be split if
  needed.
CURVELABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the curve label text.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the curve label block.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
creates a distinct set of curves from just the observations that correspond to each unique group value of the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=numeric-column | expression
specifies the column for the X values.

Y=numeric-column | expression
specifies the column for the Y values.

Optional Arguments

CURVELABEL="string"
specifies a label for the loess curve.

Default
No curve label is displayed

Interaction
This option is not valid when the GROUP= option is specified.

Tip
The font and color attributes for the label are specified by the CURVELABELATTRS= option.

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the curve labels.

Default
The GraphValueText style element.

Interactions
For this option to take effect, the CURVELABEL= option must also be specified.

If the GROUP= option is specified, then this option is ignored.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the curve label relative to the plot area.
INSIDE
locates the labels inside the plot area

OUTSIDE
locates the labels outside the plot area

Default
INSIDE

Restriction
OUTSIDE cannot be used when the LOESSPLOT is used in multicell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes might be external to the grid.

Interactions
For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELPOSITION= option to determine where the curve labels appear.

See
“Location and Position of Curve Labels” on page 185

CURVELABELPOSITION=AUTO | MAX | MIN | START | END
specifies the position of the curve label relative to the curve line. This option is used in conjunction with the CURVELABELLOCATION= option to determine where the curve label appears.

AUTO
automatically positions the curve label near the curve boundary along unused axes whenever possible (typically Y2 and X2) in order to avoid collision with tick values.

Restriction
This option is used only when CURVELABELPOSITION=OUTSIDE.

MAX
forces the curve label to appear near maximum curve values (typically, upper right).

MIN
forces the curve label to appear near minimum curve values (typically, lower left).

START
forces the curve label to appear near the beginning of the curve.

Restriction
This option is used only when CURVELABELLOCATION=INSIDE.

Tip
This option is particularly useful when the curve line has a spiral shape.

END
forces the curve label to appear near the end of the curve.

Restriction
This option is used only when CURVELABELLOCATION=INSIDE.

Tip
This option is particularly useful when the curve line has a spiral shape.
Defaults

AUTO when CURVELABELLOCATION=OUTSIDE.

END when CURVELABELLOCATION=INSIDE.

Interactions

For this option to take effect, the CURVELABEL= option must also be specified.

The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified. The START and END settings are ignored if CURVELABELLOCATION=OUTSIDE is specified.

Note

When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the curve label might fall outside of the graph area. In that case, the curve label might not be displayed or might be positioned incorrectly.

See

“Location and Position of Curve Labels” on page 185

CURVELABELSPLIT=TRUE | FALSE

specifies whether to split the curve label at the specified split characters. When a curve label is split, the label is split on each occurrence of the specified split characters.

Default

FALSE. The curve label is not split.

Requirement

The CURVELABEL= option must also be specified.

Interactions

The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.

See

“boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHAR="character-list"

specifies one or more characters on which the curve label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the curve label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the curve label is split unconditionally at each occurrence of any of the specified split characters. If the curve label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no delimiter between each character and enclosed in quotation marks.

Default

A blank space

Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:
The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

**Interactions**

This option has no effect if CURVELABELPOSITION=AUTO.

The CURVELABELSPLITCHARDROP= option specifies whether the split characters are included in the curve label or are dropped.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**

Use the CURVELABELSPLITJUSTIFY= option to specify the justification of the strings in the curve label block.

**CURVELABELSPLITCHARDROP=TRUE | FALSE**

specifies whether the split characters are included in the curve label text.

**TRUE**

drops the split characters from the curve label text.

**FALSE**

includes the split characters in the curve label text. When CURVELABELSPLIT=TRUE and CURVELABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a curve label with the following specifications:

- CURVELABELPOSITION=MAX
- CURVELABEL="Product*Group*A"
- CURVELABELSPLIT=TRUE
- CURVELABELSPLITCHARDROP=TRUE | FALSE
- CURVELABELSPLITCHAR="*"

*Note:* The horizontal line to the left of the label represents the maximum end of the curve for reference.

When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

**Default**

TRUE. The split characters are dropped from the curve label.
The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

The CURVELABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the curve label block.

AUTO
justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT
justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the curve for reference.

In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default AUTO

The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

This option has no effect if CURVELABELPOSITION=AUTO.

DATATRANSPARENCY=number
specifies the degree of the transparency of the loess curve.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

GROUP=column | discrete-attr-var | expression
creates a distinct set of curves from just the observations that correspond to each unique group value of the specified column.
discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default
Each distinct group value might be represented in the plot by a different combination of color and line pattern. Line colors vary according to the ContrastColor attribute of the GraphData₁–GraphDataₙ and GraphMissing style elements. Line patterns vary according to the LineStyle attribute of the GraphData₁–GraphDataₙ style elements.

Restriction
The input data must be sorted by the GROUP= column.

Interactions
The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of line colors and line patterns.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

Tip
The LINEATTRS= option can be used to override the representations that are used to identify the groups. For example, LINEATTRS=(PATTERN=SOLID) can be used to assign the same pattern to all of the loess curves, letting the line color distinguish group values. Likewise, LINEATTRS=(COLOR=BLACK) can be used to assign the same color to all of the curves, letting the line pattern distinguish group values.

See
“DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Default
TRUE

Interaction
For this option to take effect, the GROUP= option must also be specified.

Tip
The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData₁–GraphDataₙ style element instead of by the GraphMissing style element.

See
“boolean” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) to one of the GraphData₁–GraphDataₙ style elements.
The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

For this option to take effect, the GROUP= option must also be specified.

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default
The string specified on the NAME= option.

Restriction
This option applies only to an associated DISCRETELEGEND statement.

Interaction
If the GROUP= option is specified, then this option is ignored.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the loess curve.

Default
The GraphFit style element.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction
The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction
The string is used as the default legend label if the LEGENDLABEL= option is not used.
PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining
default axis features. This option is needed only when two or more plots within an
overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or
LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary
plot on a per-axis basis. When no plot is designated as the primary plot,
the first plot that can be a primary plot is considered the primary plot. If
multiple plots specify PRIMARY=TRUE for the same axis, then the
last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880
“boolean ” on page 1339 for other Boolean values that you can use.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the
formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example TIPFORMAT=(Y=6.2)

Default The column format of the column assigned to the role or BEST6 if no
format is assigned to a numeric column.

Requirement To enable data tips in the output, you must include an ODS
GRAPHICS ON statement that has the IMAGEMAP option
specified, and you must write the output to the ODS HTML
destination.

Note The columns assigned to the X, Y, and GROUP (if assigned) roles are
automatically included in the data tip information.

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the
labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example TIPLABEL=(Y="Curve")

Default The column label or column name of the column assigned to the role.

Note The columns assigned to the X, Y, and GROUP (if assigned) roles are
automatically included in the data tip information.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary
X2 (top) axis.
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**YAXIS=Y | Y2**
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

**Loess Regression Options**

**ALPHA=positive-number**
specifies the confidence level to compute.

Default 0.05

Range 0 < number < 1

Tip ALPHA=0.05 represents a 95% confidence level.

**CLM=“name”**
produces confidence limits for a mean predicted value for each observation. The confidence level is set by the ALPHA= option.

Interaction “name” is a unique name within the template that is case sensitive and cannot contain spaces. It must be assigned in order for the confidence limits to be computed. To display confidence limits, you must use this name as the required argument of a MODELBAND statement.

**DEGREE=1 | 2**
specifies the degree of the local polynomials to use for each local regression. The valid values are 1 for local linear fitting or 2 for local quadratic fitting.

Default 1

**INTERPOLATION=LINEAR | CUBIC**
specifies the degree of the interpolating polynomials used for blending local polynomial fits at the kd tree vertices.

CUBIC cubic polynomials
LINEAR linear polynomials

Default LINEAR

**MAXPOINTS=positive-integer**
specifies the maximum number of predicted points generated for the loess curve as well as confidence limits.

Default 201
SMOOTH=AUTO | positive-number
specifies a regression parameter value.

Default AUTO

REWEIGHT=None | positive-integer
specifies the number of iterative re-weighting steps to be done. Such iterations are
appropriate when there are outliers in the data or when the error distribution is a
symmetric long-tailed distribution.

Default NONE

WEIGHT=numeric-column
specifies a column in the input data set that contains values to be used as a priori
weights for a loess fit. The values of the weight column must be nonnegative. If an
observation’s weight is zero, negative, or missing, then the observation is deleted
from the analysis.

Details

The LOESSPLOT statement only supports statistical models of one independent and one
dependent variable. For more information about the fitting methodology, see the LOESS
procedure in the SAS/STAT user’s guide.

In addition to the loess curve, the LOESSPLOT statement can compute confidence
levels for the fitted line. To display the confidence levels:

1. Use the CLM= option to declare a name for the confidence level of the mean.
2. Use a MODELBAND statement to refer this name. This statement draws a
   confidence band from this information. See “MODELBAND Statement” on page
   565 for information about how to control the appearance of the confidence band.

By default, the LOESSPLOT statement will process up to 5000 observations. If the input
data contains more than 5000 observations, then the plot is not drawn and the following
note is written to the SAS log:

NOTE: The number of observations of the LOESS plot (nnnn) exceeds the
limit of 5000. Specify the LOESSMAXOBS option of the ODS GRAPHICS statement to
override the limit.

In that case, you can use the following statement to extend the limit:

ods graphics / loessmaxobs=nnnn

where nnnn is the new limit.

Note: When the input data contains a large number of observations, it might take several
minutes to generate the plot.

For more information about the LOESSMAXOBS= option, see “ODS GRAPHICS

Example: LOESSPLOT Statement

The following graph was generated by the “Example Program” on page 565:
Example Program

```
proc template;
 define statgraph loessplot;
 begingraph;
 entrytitle "Loess Fit Plot";
 layout overlay;
 scatterplot x=weight y=mpg_highway / datatransparency=0.7;
 loessplot x=weight y=mpg_highway / name="fitline" alpha=0.05 legendlabel="Loess Fit";
 discretelegend "fitline";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=loessplot;
run;
```

MODELBAND Statement

Creates a band showing confidence limits for an associated smoother plot.

**Requirement:** A MODELBAND statement must be associated with a smoother statement (LOESSPLOT, REGRESSIONPLOT, or PBSPLINEPLOT) that specifies a fitted model and a type of confidence level to compute.

**Interaction:** Starting with the second maintenance release of SAS 9.4, a confidence band that depicts confidence limits for individual predicted values (CLI) for a weighted spline plot or regression plot is displayed as a high-low chart instead of a band.
Syntax

MODELBand "<confidencename>" <option(s)>

Summary of Optional Arguments

Appearance options

ANTIALIAS=AUTO | OFF
specifies whether anti-aliasing is turned off for this plot.

DATATRANSparency=number
specifies the degree of the transparency of the band fill and the band outline.

DISPLAY=STANDARD | ALL | (display-options)
specifies whether to display an outlined area, a filled area, or an outlined and filled modelband area.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the filled modelband area.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the modelband outlines.

Axes options

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPlABEL=(role-label-list)
specifies display labels for tip columns.

Label options

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the upper and lower band labels.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the band labels relative to the plot area.

CURVELABELLOWER="string"
specifies a label for the lower band limit.

CURVELABELPOSITION=Auto | Max | Min | Start | END
specifies the position of the band label relative to the band line.

CURVELABELUPPER="string"
specifies a label for the upper band limit.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.
**Required Argument**

"confidence-name"

specifies the case-sensitive name assigned to a confidence option in a smoother plot statement.

Requirement  

*confidence-name* must have been assigned to the CLM= or CLI= option on a smoother plot statement such as LOESSPLOT, REGRESSIONPLOT, or PBSPLINEPLOT.

**Optional Arguments**

**ANTIALIAS=**AUTO | OFF

specifies whether anti-aliasing is turned off for this plot.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**AUTO**

specifies that anti-aliasing is controlled by the ANTIALIAS= option in the ODS GRAPHICS statement.

**OFF**

specifies that anti-aliasing is always disabled for this plot.

Default  

AUTO

Interaction  

This option overrides the ANTIALIAS= option in the ODS GRAPHICS statement.

**CURVELABELATTRS=**style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the upper and lower band labels.

Default  

The GraphValueText style element.

Interactions  

For this option to take effect, the CURVELABELLOWER= or CURVELABELUPPER= option must also be specified.

If the smoother statement’s GROUP= option is specified, then this option is ignored.

See  

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

**CURVELABELLOWER=**"string"

specifies a label for the lower band limit.

Default  

No curve label is displayed for the lower band

Interaction  

If the smoother statement’s GROUP= option is specified, then this option is ignored.

Tip  

The font and color attributes for the label are specified by the CURVELABELATTRS= option.

**CURVELABELUPPER=**"string"

specifies a label for the upper band limit.
<table>
<thead>
<tr>
<th>Default</th>
<th>No curve label is displayed for the upper band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>If the smoother statement’s GROUP= option is specified, then this option is ignored.</td>
</tr>
<tr>
<td>Tip</td>
<td>The font and color attributes for the label are specified by the CURVELABELATRERS= option.</td>
</tr>
</tbody>
</table>

**CURVELABELLOCATION=INSIDE | OUTSIDE**

specifies the location of the band labels relative to the plot area.

**INSIDE**
locates the labels inside the plot area

**OUTSIDE**
locates the labels outside the plot area

<table>
<thead>
<tr>
<th>Default</th>
<th>INSIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>OUTSIDE cannot be used when the MODELBand is used in multi-cell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes might be external to the grid.</td>
</tr>
</tbody>
</table>

| Interactions | For this option to take effect, the CURVELABELLOWER= or CURVELABELUPPER= option must also be specified. |

This option is used in conjunction with the CURVELABELPOSITION= option to determine where the band labels appear.

See | “Location and Position of Curve Labels” on page 185 |

**CURVELABELPOSITION=AUTO | MAX | MIN | START | END**

specifies the position of the band label relative to the band line.

**AUTO**
automatically positions the band labels near the band boundary along unused axes whenever possible (typically Y2 and X2).

| Restriction | This option is used only when CURVELABELPOSITION=OUTSIDE. |

**MAX**
forces the band label to appear near maximum band values (typically, upper right)

**MIN**
forces the band label to appear near minimum band values (typically, lower left)

**START**
forces the band label to appear near the beginning of the band.

| Restriction | This option is used only when CURVELABELLOCATION=INSIDE. |

**Tip**
This option is particularly useful when the curve line has a spiral shape.

**END**
forces the band label to appear near the end of the band.
Restriction: This option is used only when CURVELABELLOCATION=INSIDE.

Tip: This option is particularly useful when the curve line has a spiral shape.

Defaults: AUTO when CURVELABELLOCATION=OUTSIDE.

END when CURVELABELLOCATION=INSIDE.

Restrictions: The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified.

Interactions: For this option to take effect, the CURVELABELLOWER= or CURVELABELUPPER= option must also be specified.

Note: This option is used in conjunction with the CURVELABELLOCATION= option to determine where the band label appears.

Note: When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the band label might fall outside of the graph area. In that case, the band label might not be displayed or might be positioned incorrectly.

See: “Location and Position of Curve Labels” on page 185

**DATATRANSPARENCY=**number

specifies the degree of the transparency of the band fill and the band outline.

Default: 0

Range: 0–1, where 0 is opaque and 1 is entirely transparent

Note: This option does not affect the curve label.

Tip: The FILLATTRS= option can be used to set transparency for just the filled band area. You can combine this option with FILLATTRS= to set one transparency for the band outline but a different transparency for the band fill. Example:

```
data transparency=0.2 fillattrs=(transparency=0.6)
```

**DISPLAY=**STANDARD | ALL | (display-options)

specifies whether to display an outlined area, a filled area, or an outlined and filled modelband area.

STANDARD

displays a filled band with no outlined

ALL

displays an outlined, filled band
display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

    OUTLINE   displays an outlined band
    FILL      displays a filled band

Default The GraphBand:DisplayOpts style reference.

Tip Use the OUTLINEATTRS= and FILLATTRS= options to control the appearance of the band.

**FILLATTRS=**style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the filled modelband area.

Defaults For non-grouped data, the GraphConfidence:Color style reference.

For grouped data, the GraphData1:Color–GraphDataN:Color style references.

Interaction For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Tip The DATATRANSPARENCY= option sets the transparency for band outline and the band fill. You can combine this option with DATATRANSPARENCY= to set one transparency for the band outline but a different transparency for the band fill. Example:

    datatransparency=0.2 fillattrs=(transparency=0.6)

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

**LEGENDLABEL="string"**
specifies a label to be used in a discrete legend for this plot.

Default The string specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction The smoother statement’s GROUP= option overrides this option.

**NAME="string"**
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

**OUTLINEATTRS=**style-element | style-element (line-options) | (line-options)
specifies the attributes of the modelband outlines.
Defaults For non-grouped data, the GraphConfidence style element.

For grouped data, the GraphData1: ContrastColor–
GraphDataN:ContrastColor style references.

Interaction If DISPLAY=(FILL), then this option has no effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**TIPFORMAT=(role-format-list)**
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

*(role-format-list)* a space-separated list of role-name = format pairs. The role-names X, LIMITLOWER, LIMITUPPER, GROUP, and INDEX are available to indicate which data tip values to format.

Example TIPFORMAT=(LIMITUPPER=5.3 LIMITLOWER=5.3)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Requirement To enable data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

**TIPLABEL=(role-label-list)**
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

*(role-label-list)* a space-separated list of rolename ="string" pairs. The role-names X, LIMITLOWER, LIMITUPPER, GROUP, and INDEX are available to indicate which data tip values to label.

Example TIP=(X)
TIP=(X="Type")

Default The column label or column name of the column assigned to the role.

**XAXIS=X | X2**
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Requirement The setting for this option should be the same as for the smoother statement referenced by the confidence-name.

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Requirement The setting for this option should be the same as for the smoother statement referenced by the confidence-name.

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Example: MODELBAND Statement

The following graph was generated by the “Example Program” on page 572:

Example Program

```
proc template;
 define statgraph modelband;
 begingraph;
 entrytitle "Spline Fit with Confidence Bands";
 layout overlay;
 modelband "cliband" / name="confband1" display=all
 legendlabel="90% CLI" fillattrs=GraphConfidence;
 modelband "clmband" / name="confband2" display=all
 legendlabel="90% CLM" fillattrs=GraphConfidence2;
 scatterplot x=weight y=mpg_highway /
```
 MOSAICPLOTPARM Statement

Creates a mosaic plot from pre-summarized categorical data.

### Restriction:
You can use the MOSAICPLOTPARM statement in GRIDDED, LATTICE, and REGION layouts only.

### Note:
On z/OS hosts, the mosaic plot categories might appear in an order other than data order.

### Syntax

```plaintext
MOSAICPLOTPARM CATEGORY=(column-list)
COUNT=non-negative-numeric-column | expression </option(s)>;
```

### Summary of Optional Arguments

**Appearance options**

- `COLORGROUP=column | discrete-attr-var`
  specifies the category column to use for discrete fill colors for the tiles.

- `COLORMODEL=color-ramp-style-element | (color-list)`
  specifies a color ramp to use with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column | range-attr-var | expression`
  specifies a numeric column to use to map tile fill colors to a continuous gradient.

- `DATATRANSPARENCY=number`
  specifies the degree of the transparency of the tile fill, outlines, and the values that are located inside the tiles if those values are displayed.

- `DISPLAY=STANDARD | ALL | (display-options)`
  specifies which graphical features to display in the plot.

- `FILLATTRS=style-element | (fill-options)`
  specifies the appearance of the tile fill areas.

- `GUTTER=dimension | (dimension-list)`
  specifies the gutter (gap) between the splits.

- `OUTLINEATTRS=style-element | (line-options)`
  specifies the appearance of the tile outlines.

- `REVERSECOLORMODEL=TRUE | FALSE`
  specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.
SQUARED=TRUE | FALSE
specifies that a square aspect ratio be used for the plot area.

Data tip options
ROLENAMES=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.
TIP=(role-list) | NONE
specifies the information that is displayed when the cursor is positioned over
a tile.
TIPFORMAT=(role-format-list)
specifies display formats for tip columns.
TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options
INSIDEVALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the category values when they are
located inside a tile.
LABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the category labels.
LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.
VALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the category values that are located
outside of the tiles.
VALUELOCATION=AUTO | INSIDE | OUTSIDE
specifies the location of the category column values in a two-way plot.
XVALUEFITPOLICY=ROTATE | NONE
specifies a policy for avoiding collisions along the width of the plot among
category values that are outside of the tiles.
YVALUEFITPOLICY=NONE | ROTATEALWAYS
specifies a policy for avoiding collisions along the height of the plot among
category values that are outside of the tiles.

ODS options
URL=string-column
specifies the URL of an HTML page to display when a tile is selected.

Plot reference options
NAME="string"
assigns a name to this plot statement for reference in other template
statements.

Required Arguments
CATEGORY=(column-list)
specifies a list of columns of category (classification) values.

Restriction No more than three columns can be specified.
COUNT=non-negative-numeric-column | expression
 specifies the column of counts (pre-summarized) for each of the category value combinations.

Restriction  The column values cannot be negative.

Tip          You need to provide only the category crossings with nonzero counts.

Optional Arguments

COLORGROUP=column | discrete-attr-var
 specifies the category column to use for discrete fill colors for the tiles.

discrete-attr-var
 specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction  A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Each unique value of this column is mapped to the COLOR attribute of the GraphData1–GraphDataN style elements that are in effect. If a discrete attribute map variable is specified, the color mapping from its associated DISCRETEATTRMAP statement is used.

Restriction  This column or the associated column in the discrete attribute map variable must be one of the columns in the category column list.

Interactions This option is ignored if the COLORRESPONSE= option is specified.

This option overrides the FILLATTRS= option.

COLORMODEL=color-ramp-style-element | (color-list)
 specifies a color ramp to use with the COLORRESPONSE= option.

color-ramp-style-element
 specifies the name of a color-ramp style element. The style element should contain these style attributes:

STARTCOLOR          specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR         specifies the color for the midpoint of the range of the COLORRESPONSE= column.

ENDCOLOR             specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list)
 specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

See          “color ” on page 1340
Default  The ThreeColorRamp style element

Interaction  For this option to take effect, the COLORRESPONSE= option must also be specified.

Tip  To reverse the start and end colors of the ramp that is assigned to the color model, use the REVERSECOLORMODEL= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies a numeric column to use to map tile fill colors to a continuous gradient.

range-attr-var
specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction  A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Interactions
When fill is displayed, this option overrides suboption COLOR= in the FILLATTRS= option and varies the fill color according to the color gradient or the attribute map.

When only the outlines are displayed, this option overrides suboption COLOR= in the OUTLINEATTRS= option and varies the outline color according to the color gradient or the attribute map.

Tip  To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

DATATRANSPARENCY=number
specifies the degree of the transparency of the tile fill, outlines, and the values that are located inside the tiles if those values are displayed.

Default  0

Range  0–1, where 0 is opaque and 1 is entirely transparent

DISPLAY=STANDARD | ALL | (display-options)
specifies which graphical features to display in the plot.

STANDARD  displays tiles with fills, outlines, labels, and values.

ALL  same as STANDARD.

display-options  a space-separated list of one or more of the following options, enclosed in parentheses:

FILL  displays filled tiles.

OUTLINE  displays the tile outline.
LABELS displays the category column labels.
TICKS displays the category ticks.
VALUES displays the category values.

Default STANDAR

Interactions If neither FILL nor OUTLINE are present in the display-options list, then filled and outlined tiles are displayed.

If YVALUELOCATION=INSIDE or if YVALUELOCATION=AUTO and is effectively set to INSIDE, then the axis ticks are not displayed even if the display of the ticks is specified for the axis.

FILLATRBS=style-element | (fill-options)
specifies the appearance of the tile fill areas. See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element. See “Fill Options” on page 1348 for the available fill options.

Default The GraphDataDefault style element

Interaction When COLORRESPONSE= is in effect and the DISPLAY= option enables FILL display, the FILLATRBS= suboption COLOR= is ignored, and the fill colors vary according to the gradient.

Note When style-element is specified, only the style element’s COLOR attribute is used.

GUTTER=dimension | (dimension-list)
specifies the gutter (gap) between the splits. The splits occur in the following way:

- When a single dimension is specified, the dimension applies to the gap for the last split, which has the smallest gap. From the next-to-last last split to the first split, the gutter is doubled on each split. A single dimension has the effect of setting a minimum gap for the plot. The following figure shows an example in which GUTTER=10.

Note: The plot contains equally sized tiles for demonstration purposes.

In this case, the gaps are 30 pixels for the first split, 20 pixels for the second split, and 10 pixels for the third split (minimum gap).
When a list of dimension values is used, the values apply to each split in the order in which they are specified. The following figure shows an example in which GUTTER=(10 20 30).

In this case, the gaps are 10 pixels for the first split, 20 pixels for the second split, and 30 pixels for the third split.

Default 3px. Dimensions with no units are assumed to be in pixels.

See “dimension” on page 1340

INSIDEVALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the category values when they are located inside a tile. See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element. See “Text Options” on page 1351 for the available text options.

Default The GraphValueText style element.

Interaction If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the non-specified properties are derived from the GraphValueText style element.

Note When style-element is specified, only the element’s COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT attributes are used.

Tip You can use the VALUEATTRS= option to change the text attributes for the values that are located outside the plot area.

LABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the category labels. See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element. See “Text Options” on page 1351 for the available text options.

Default The GraphLabelText style element.

Interaction If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the non-specified properties are derived from the GraphLabelText style element.
Note When *style-element* is specified, only the style element’s COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT attributes are used.

LEGENDLABEL=*

specifies a label to be used in a discrete legend for this plot.

Default The *string* specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the COLORGROUP= option is in effect, then this option is ignored.

NAME=*

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The *string* is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEATTRS=*

specifies the appearance of the tile outlines. See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element. See “Line Options” on page 1349 for the available line options.

Default The GraphOutlines style element.

Interaction When the COLORRESPONSE= and DISPLAY=(OUTLINE) options are in effect, the OUTLINEATTRS= suboption COLOR= is ignored, and the outline colors vary according to the gradient.

Note When *style-element* is used, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS are used.

REVERSECOLORMODEL=TRUE | FALSE

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default FALSE

See COLORMODEL=

“boolean” on page 1339 for other Boolean values that you can use.

ROLENAME=(role-name-list)

specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.
### Example

The following example assigns the column Obs to the user-defined role TIP:

```plaintext
ROLENAME=(TIP1=OBS)
```

### Default

No user-defined roles

### Requirement

The role names that you choose must be unique and different from the predefined roles. The predefined roles are `CATEGORY1–CATEGORYn` (in the order in which they are specified in the `CATEGORY=` option), `COUNT`, `COLORGROUP`, and `COLORRESPONSE`.

### `SQUARED=TRUE | FALSE`

Specifies that a square aspect ratio be used for the plot area.

**Default**

`FALSE`

**Restriction**

This option applies to multi-way plots only.

**Tip**

Setting this option to `TRUE` makes the height of the plot the same as its width, which can make it easier to compare the proportions.

**See**

“boolean” on page 1339 for other Boolean values that you can use.

### `TIP=(role-list) | NONE`

Specifies the information that is displayed when the cursor is positioned over a tile. If this option is used, then all of the information that is displayed by default is replaced. Roles for columns that do not contribute to the bar chart can be specified along with roles that do.

**Default**

The columns that are assigned to the category columns and `COUNT` roles are automatically included in the data tip information.

**Requirement**

To generate data tips, you must include an ODS GRAPHICS ON statement with the `IMAGEMAP` option specified. You must also write the graphs to the ODS HTML destination.

**Interaction**

The labels and formats for the TIP roles can be controlled with the `TIPLABEL=` and `TIPFORMAT=` options.

**Example**

To display data tips for the columns that are assigned to the roles `X` and `Y` as well as the user-defined role `TIP1`:

```plaintext
ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y)
```

### `TIPFORMAT=(role-format-list)`

Specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.
a space-separated list of \( role-name = format \) pairs.

**Example**

```plaintext
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
```

**Default**  
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

**Restriction**  
Only the roles that appear in the TIP= option are used.

**Requirement**  
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

**TIPLABEL=(role-label-list)**

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

A space-separated list of \( rolename = "string" \) pairs.

**Example**

```plaintext
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")
```

**Default**  
The column label or column name of the column assigned to the role.

**Restriction**  
Only the roles that appear in the TIP= option are used.

**Requirement**  
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

**URL=string-column**

specifies the URL of an HTML page to display when a tile is selected.

A column that contains a valid HTML page reference (HREF) for each tile that is to have an active link.

**Example**

```plaintext
http://www.sas.com/technologies/analytics/index.html
```

**Requirement**  
To generate selectable tiles, you must include an ODS GRAPHICS ON statement with the IMAGEMAP option specified. You must also write the graphs to the ODS HTML destination.

**Tip**  
The URL value can be blank for some tiles, which means that no action is taken when those tiles are selected. The URL value can be the same for different tiles, which means that the same action is taken when those tiles are selected.

**VALUEATTRS=style-element | style-element (text-options) | (text-options)**

specifies the color and font attributes of the category values that are located outside of the tiles. See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element. See “Text Options” on page 1351 for the available text options.
Default: The GraphValueText style element.

Interaction: If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the non-specified properties are derived from the GraphValueText style element.

Note: When style-element is used, only the style element’s COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT attributes are used.

Tip: You can use the INSIDEVALUEATTRS= option to change text attributes for values that are located inside the tiles.

**VALUELOCATION=AUTO | INSIDE | OUTSIDE**

specifies the location of the category column values in a two-way plot.

**AUTO**
locates the values for the second category in the CATEGORY= list that are outside of the tiles. If the first category in the CATEGORY= list has any missing crossings with the second category, or if any of the second category values collide, then the values are located inside the tiles per the default fit policy.

**INSIDE**
for each category value, locates the values inside the largest tile.

**OUTSIDE**
locates the values outside of the tiles, in the plot area.

Default: AUTO

Restriction: This option applies to two-way plots only.

**XVALUEFITPOLICY=ROTATE | NONE**
specifies a policy for avoiding collisions along the width of the plot among category values that are outside of the tiles.

**ROTATE**
rotates the values if any of the values collide.

**NONE**
does not attempt to fit values that collide.

Default: ROTATE

**YVALUEFITPOLICY=NONE | ROTATEALWAYS**
specifies a policy for avoiding collisions along the height of the plot among category values that are outside of the tiles.

**NONE**
does not attempt to fit values that collide.

**ROTATEALWAYS**
rotates the values regardless of whether any of the values collide.

Default: NONE

Interaction: This option is effective only when VALUELOCATION=OUTSIDE.
Details

A mosaic plot displays relative frequencies for categorical variables. Each crossing of the categorical values is represented by a tile. The area of each tile is proportional to the frequency of that crossing. The plot is the result of an iterative process. The first iteration splits the plot area into tiles along the width according to the relative frequency of the first category column values. Subsequent iterations split the tiles from the previous iteration in the direction orthogonal to the previous split by using the relative frequencies of each category column's values. By default, the gap (or gutter) for each split gets progressively smaller, with a minimum gap of 3 pixels. You can use the GUTTER= option to specify a different gap for each split.

The following figure provides an example of a three-way mosaic plot, which has three categories.

![Three-Way Mosaic Plot](image)

*Note:* The plot contains equally sized tiles for demonstration purposes.

In the example plot, the first split is along the width for CATEGORY 1. The second split is along the height for CATEGORY 2. Finally, the third split is along the width for CATEGORY 3. Notice how the gaps between the tiles get progressively smaller from the first split to the last split.

---

**Example: MOSAICPLOTPARM Statement**

The following graph was generated by the “Example Program” on page 584:
Example Program

/* Summarize the SASHELP.CARS data for ORIGIN and TYPE */
proc summary data=sashelp.cars nway;
   class origin type;
   var mpg_highway;
   output out=mileage mean=avgMpg N=count / noinherit;
run;

/* Generate the plot */
proc template;
   define statgraph mosaicPlotParm;
      begingraph;
      layout region;
      mosaicPlotParm category=(type origin) count=count /
         name="mosaic" colorresponse=avgMpg;
      continuouslegend "mosaic" / title="Average Miles Per Gallon"
         pads=(left=5);
      endlayout;
      endgraph;
   end;
run;

proc sgrender data=mileage template=mosaicPlotParm;
run;

NEEDELEPLOT Statement

Creates a plot of observations as points connected to a baseline by vertical line segments.
Syntax

NEEDLEPLOT X=column | expression
Y=numeric-column | expression <option(s)>;

Summary of Optional Arguments

Appearance options

BASELINEATTRS=style-element | (line-options)
specifies the appearance of the baseline.

CLUSTERWIDTH=number
specifies the width of the group clusters as a fraction of the midpoint spacing or bin width.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the needle plot lines.

DATATRANSPARENCY=number
specifies the degree of the transparency of the needle lines, markers, and data labels, if displayed.

DISPLAY=STANDARD | ALL | display-options
specifies whether to display needle lines with or without markers.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color, marker symbol, and line pattern) to one of the GraphData1–GraphDataN style elements.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the needle lines for the data points.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the data markers.

Axes options

BASELINEINTERCEPT=number | RELATIVE
specifies the Y-intercept for the baseline.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

ROLENAMESPACE=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a needle line or marker.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.
Label options

\textbf{DATALABEL=column}

specifies labels at the data points.

\textbf{DATALABELATTRS=style-element | style-element \{text-options\} | \{text-options\}}

specifies the color and font attributes of the data labels.

\textbf{DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT}

specifies the location of the data labels relative to the end of the needle lines and markers, if displayed.

\textbf{DATALABELSPLIT=TRUE | FALSE}

specifies whether to split the data labels at the specified split characters.

\textbf{DATALABELSPLITCHAR="character-list"}

specifies one or more characters on which the data labels can be split if needed.

\textbf{DATALABELSPLITCHARDROP=TRUE | FALSE}

specifies whether the split characters are included in the data labels.

\textbf{DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT}

specifies the justification of the strings that are inside the data label blocks.

\textbf{ LEGENDLABEL="string"}

specifies a label to be used in a discrete legend for this plot.

Midpoint options

\textbf{DISCRETEOFFSET=number}

specifies an amount to offset all needle lines and markers from discrete X values when graphing multiple response variables side by side on a common axis.

\textbf{GROUP=column | discrete-attr-var | expression}

creates a distinct set of needle lines, markers, and data labels for each unique group value of the specified column.

\textbf{GROUPDISPLAY=OVERLAY | CLUSTER}

specifies whether grouped needle lines are overlaid or clustered around the category midpoints on a discrete axis or around the intervals on an interval axis.

\textbf{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}

specifies the ordering of the groups within a category.

\textbf{INCLUDEMISSINGGROUP=TRUE | FALSE}

specifies whether missing values of the group variable are included in the plot.

ODS options

\textbf{URL=string-column}

specifies an HTML page to display when a needle or marker is selected.

Plot reference options

\textbf{NAME="string"}

assigns a name to this plot statement for reference in other template statements.

Required Arguments

\textbf{X=column | expression}

specifies a column or expression for the X values.
Y=numeric-column | expression
 specifies a numeric column or numeric expression for the Y values.

Optional Arguments

**BASELINEATTRS=style-element | (line-options)**
 specifies the appearance of the baseline.

Default  The GraphAxisLines style element.

Notes   The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR,
LINESTYLE, and LINETHICKNESS attributes are used.

Tip  To suppress the baseline, set the line thickness to 0:
baselineattrs=(thickness=0)

See  “General Syntax for Attribute Options” on page 1347 for the syntax on
using a *style-element*.

“Line Options” on page 1349 for available *line-options*.

**BASELINEINTERCEPT=number | RELATIVE**
 specifies the Y-intercept for the baseline. The baseline is always displayed in the
chart, whether for a specified value or the default value. When this option is used,
the axis range is adjusted to include the baseline, and the baseline is placed at the
specified value on the response axis.

*number*
 specifies the Y-intercept value to use for the baseline.

Interaction  When *number* is specified, if necessary, the response axis data
range is extended to include the baseline intercept. When a
logarithmic response axis is requested and *number* is 0 or a negative
value, the response axis reverts to a linear axis. To restore the log
axis in that case, set BASELINEINTERCEPT= to a positive value.

Tips  The baseline does not add a tick or a tick value to the axis. To label
the baseline, you can overlay a REFERENCELINE statement with
the same Y value and use its CURVELABEL option.

The appearance of the baseline is controlled by the
BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set
the line thickness to 0.

**RELATIVE**
 places the baseline at the Y-axis tick mark closest to the minimum of the range
for the needle data points.

Default  0

**CLUSTERWIDTH=number**
 specifies the width of the group clusters as a fraction of the midpoint spacing or bin
width.
Default 0.85

Range 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.

Requirement For this option to take effect, the GROUP= option must also be specified, and the GROUPDISPLAY= option must be set to CLUSTER.

Interaction When markers are displayed for interval data and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

DATALABEL=column
specifies labels at the data points.

Default No data labels are displayed

Note The position of the labels is adjusted to prevent the labels from overlapping.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

Defaults For non-grouped data, the GraphValueText style element.

For grouped data, the GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

Interaction For this option to have any effect, the DATALABEL= option must also be specified.

Note When the DATALABELPOSITION=AUTO option is in effect, in some cases, the data label font size might be reduced in order to avoid overlapping labels and markers.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the end of the needle lines and markers, if displayed.

Default AUTO

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters. When set to TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters.

Default FALSE. The data labels are not split.
Requirement	The DATALABEL= option must also be specified.
Interactions | The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATALABELPOSITION=AUTO.

See | “boolean” on page 1339 for other Boolean values that you can use.

**DATALABELSPLITCHAR=**"character-list"

specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default | A blank space

Requirements | The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitchar="abc"

The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interactions | This option has no effect if DATALABELPOSITION=AUTO.

The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes | When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip | Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

**DATALABELSPLITCHARDROP=**TRUE | FALSE

specifies whether the split characters are included in the data labels.

TRUE

drops the split characters from the data label.

FALSE

includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as
the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"

When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default: TRUE. The split characters are dropped from the data label.

Requirement: The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction: The DATALABELSPLITCHARDROP= option specifies the split characters.

See: “boolean” on page 1339 for other Boolean values that you can use.

**DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT**

specifies the justification of the strings that are inside the data label blocks.

**AUTO**

justifies the labels based on the DATALABELPOSITION= option as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

**CENTER | LEFT | RIGHT**

justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.
In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, then the bottom center of the text box is positioned at the top of the marker.

**Default** AUTO

**Requirement** The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

**Interaction** This option has no effect if DATALABELPOSITION=AUTO.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

enhances the visual appearance of the needle plot lines. The following figure shows a needle plot with each of the skins applied.

![Skin Examples](image)

**Default** The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

**Restriction** Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

**Interaction** This option overrides the BEGINGRAPH statement DATASKIN= option.

**DATATRANSPARENCY=number** specifies the degree of the transparency of the needle lines, markers, and data labels, if displayed.
**DISCRETEOFFSET=number**

specifies an amount to offset all needle lines and markers from discrete X values when graphing multiple response variables side by side on a common axis.

**Default**

0 (no offset, all needle lines and markers are centered on the discrete X values)

**Range**

0–1, where 0 is opaque and 1 is entirely transparent

**Restriction**

This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

**Tip**

Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

**DISPLAY=STANDARD | ALL | display-options**

specifies whether to display needle lines with or without markers.

**STANDARD**

displays needle lines without markers.

**ALL**

displays needle lines with markers.

(display-options)

a space-separated list of one or more options enclosed in parentheses. Currently, only the MARKERS option is supported, which displays needle lines with markers.

**Default**

STANDARD

**Tip**

Use the MARKERATTRS= and LINEATTRS= options to control the appearance of the line and markers.

**GROUP=column | discrete-attr-var | expression**

creates a distinct set of needle lines, markers, and data labels for each unique group value of the specified column.

**discrete-attr-var**

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

**Restriction**

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

**Default**

Each distinct group value might be represented in the plot by a different combination of color, line pattern, and marker symbol. These vary according to the ContrastColor, LineStyle, and MarkerSymbol
attributes of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions

The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of marker symbols, colors, and line patterns.

The marker size is set by the MARKERATTRS= option.

The INCLUDEMISSINGGROUP= option controls whether missing group values are considered a distinct group value.

Note

The representations that are used to identify the groups can be overridden. For example, each distinct group value might be represented by a different line pattern, but the LINEATTRS=(PATTERN=pattern) option could be used to assign the same line pattern to all of the plot’s line patterns, letting line color indicate group values. Likewise, LINEATTRS=(COLOR=color) could be used to assign the same color to all lines, letting line pattern indicate group values.

See

“DISCRETEATTRVAR Statement” on page 1297

GROUPDISPLAY=OVERLAY | CLUSTER

specifies whether grouped needle lines are overlaid or clustered around the category midpoints on a discrete axis or around the intervals on an interval axis.

OVERLAY

centers the needle lines for matching category values on the midpoints. The needle lines in each set of group values are superimposed on each other.

CLUSTER

clusters the needle lines for matching category values around the midpoints. Each cluster of group values is centered at the midpoint for the category.

Default

OVERLAY

Interactions

For this option to take effect, the GROUP= option must also be specified.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER is in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in the group-column data order.

REVERSEDATA

orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
Tip  This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.

Default  DATA

Interactions  This option is ignored if the GROUP= option is not also specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes  Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tips  Use the CLUSTERWIDTH= option to control the distance between the group markers in a cluster.

Use the INDEX= option to alter the default sequence of visual attributes that is assigned to the groups.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Default  TRUE

Interaction  For this option to take effect, the GROUP= option must also be specified.

Tip  The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See  “boolean ” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color, marker symbol, and line pattern) to one of the GraphData1–GraphDataN style elements.

Requirements  The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.
The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

**Interaction**

For this option to take effect, the GROUP= option must also be specified.

**Notes**

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

**Tip**

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

**LEGENDLABEL=**"string"

specifies a label to be used in a discrete legend for this plot.

**Default**

The Y-column label. If a label is not defined, then the Y-column name is used.

**Restriction**

This option applies only to an associated DISCRETELEGEND statement.

**Interaction**

If the GROUP= option is specified, then this option is ignored.

**LINEATTRS=**style-element | style-element (line-options) | (line-options)

specifies the attributes of the needle lines for the data points.

**Defaults**

For non-grouped data, the GraphDataDefault style element.

For grouped data, the ContrastColor, LineStyle and LineThickness attributes of the GraphData1–GraphDataN style elements.

**See**

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

**MARKERATTRS=**style-element | style-element (marker-options) | (marker-options)

specifies the attributes of the data markers.

**Defaults**

For non-grouped data, GraphDataDefault style element.

For grouped data, the MarkerSymbol and ContrastColor attributes of the GraphData1–GraphDataN style elements, and the GraphDataDefault:MarkerSize style reference.

**Interactions**

This option’s COLOR= suboption overrides the default behavior for grouped data. When the COLOR= suboption is specified in that case,
all markers have the same color, and the marker symbol alone distinguishes the markers.

This option’s SYMBOL= suboption overrides the default behavior for grouped data. When the SYMBOL= suboption is specified in that case, all markers have the same symbol, and the symbol color alone distinguishes the markers.

The TRANSPARENCY= fill option overrides this option’s DATATRANSPARENCY= suboption.

This option is ignored if the DISPLAY= option disables the display of the markers.

If the DATASKIN= option is in effect, then the data skin determines the marker outlines. Any outline-related settings from the current ODS style or from the marker attribute options are ignored.

**Note**
When *style-element* is specified, only the style element’s MARKERSYMBOL, CONTRASTCOLOR, and MARKERSIZE attributes are used.

**See**
“General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.

“Marker Options” on page 1350 for available marker-options.

**NAME=**"*string*"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

**Restriction**
The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

**PRIMARY=****TRUE | FALSE**
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

**Default**
FALSE

**Restriction**
This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

**Note**
In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

**See**
“When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.
ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example
The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default
No user-defined roles

Requirement
The role names that you choose must be unique and different from the predefined roles X, Y, DATALABEL, INDEX, and GROUP.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a needle line or marker. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the needle plot can be specified along with roles that do.

(role-list)
an ordered, space-separated list of unique NEEDLEPLOT and user-defined roles. NEEDLEPLOT roles include X, Y, DATALABEL, and GROUP.

User-defined roles are defined with the ROLENAME= option.

Example
The following example displays data tips for the columns assigned to the roles X and Y as well as the column Obs, which is not assigned to any pre-defined NEEDLEPLOT role. The Obs column must first be assigned a role.

ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y)

NONE
suppresses data tips and URLs (if requested) from the plot.

Default
The columns assigned to these roles are automatically included in the data tip information: X, Y, DATALABEL, and GROUP.

Requirement
To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction
This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip
The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.
TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)

Default
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction
Only the roles that appear in the TIP= option are used.

Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the TIP= option are used.

Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

URL=string-column
specifies an HTML page to display when a needle or marker is selected.

string-column
specifies a column that contains a valid HTML page reference (HREF) for each needle that is to have an active link.

Example
http://www.sas.com/technologies/analytics/index.html

Requirement
To generate selectable needle lines, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interactions
This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is
specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

**Tips**

The URL value can be blank for some X and Y pairs, meaning that no action is taken when the corresponding needle or marker is selected.

The URL value can be the same for any X and Y pairs. In that case, the same action is taken when the needle or marker is selected for those X and Y pairs.

**XAXIS=X | X2**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

**Default**

X

**Interaction**

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**YAXIS=Y | Y2**

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

**Default**

Y

**Interaction**

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**Details**

In the NEEDLEPLOT statement, the X column can specify character or numeric values. The Y column must specify numeric values. For character columns, the X-axis is always of TYPE=DISCRETE. For numeric columns, the X-axis is of TYPE=LINEAR by default.

The Y-axis is of TYPE=LINEAR by default.

---

**Example: NEEDLEPLOT Statement**

The following graph was generated by the “Example Program” on page 600:
Example Program

```sas
proc template;
 define statgraph needleplot;
 begingraph;
 entrytitle "IBM Stock Trend";
 layout overlay;
 needleplot x=date y=close /
 baselineintercept=80 lineattrs=(color=blue);
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.stocks template=needleplot;
 where stock='IBM' and date > '31dec1999'd;
run;
```

PBSPLINEPLOT Statement

Creates a fitted penalized B-spline curve computed from input data.

**Restriction:** The PBSPLINEPLOT statement supports only models of one independent and one dependent variable.

**Tip:** Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.
Syntax

**PBSPLINEPLOT**  
\[ X=\text{numeric-column} \mid \text{expression} \]  
\[ Y=\text{numeric-column} \mid \text{expression} \langle/\langle \text{regression-option(s)}\rangle \langle/\langle \text{option(s)}\rangle \rangle; \]

**Summary of Optional Arguments**

**Appearance options**

- **DATATRANSPARENCY=** *number*  
  specifies the degree of the transparency of the curve and curve label.
- **INDEX=** *positive-integer-column* \| *expression*  
  specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.
- **LINEATTRS=** *style-element* \| *style-element (line-options)* \| (*line-options)*  
  specifies the line attributes of the spline curve.

**Axes options**

- **PRIMARY=** *TRUE | FALSE*  
  specifies that the data columns for this plot and the plot type be used for determining default axis features.
- **XAXIS=** *X | X2*  
  specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.
- **YAXIS=** *Y | Y2*  
  specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

**Data tip options**

- **TIPFORMAT=** *(role-format-list)*  
  specifies display formats for tip columns.
- **TIPLABEL=** *(role-label-list)*  
  specifies display labels for tip columns.

**Label options**

- **CURVELABEL=** "string"  
  specifies a label for the spline curve.
- **CURVELABELATTRS=** *style-element* \| *style-element (text-options)* \| (*text-options)*  
  specifies the color and font attributes of the spline curve labels.
- **CURVELABELLOCATION=** *INSIDE | OUTSIDE*  
  specifies the location of the spline curve label relative to the plot area.
- **CURVELABELPOSITION=** *AUTO | MAX | MIN | START | END*  
  specifies the position of the spline curve label relative to the curve line.
- **CURVELABELSPLIT=** *TRUE | FALSE*  
  specifies whether to split the curve label at the specified split characters.
- **CURVELABELSPLITCHAR=** "character-list"  
  specifies one or more characters on which the curve label can be split if needed.
- **CURVELABELSPLITCHARDROP=** *TRUE | FALSE*  
  specifies whether the split characters are included in the curve label text.
- **CURVELABELSPLITJUSTIFY=** *AUTO | CENTER | LEFT | RIGHT*  
  specifies the justification of the strings that are inside the curve label block.
LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
creates a distinct set of curves from just the observations that correspond to
each unique group value of the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the
plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template
statements.

Required Arguments

X=numeric-column | expression
specifies the column for the X values.

Y=numeric-column | expression
specifies the column for the Y values.

Optional Arguments

CURVELABEL="string"
specifies a label for the spline curve.

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the spline curve labels.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the spline curve label relative to the plot area.

INSIDE
locates the labels inside the plot area

---

**Default**
No curve label is displayed

**Interaction**
This option is not valid when the GROUP= option is specified.

**Tip**
The font and color attributes for the label are specified by the CURVELABELATTRS= option.

---

**Default**
The GraphValueText style element.

**Interactions**
For this option to take effect, the CURVELABEL= option must also
be specified.

If the GROUP= option is specified, then this option is ignored.

**See**
“General Syntax for Attribute Options” on page 1347 for the syntax
on using a style-element.

“Text Options” on page 1351 for available text-options.
OUTSIDE
locates the labels outside the plot area

Default INSIDE

Restriction OUTSIDE cannot be used when the PBSPLINEPLOT is used in multicell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes might be external to the grid.

Interactions For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELPOSITION= option to determine where the curve labels appear.

See “Location and Position of Curve Labels” on page 185

CURVELABELPOSITION= AUTO | MAX | MIN | START | END
specifies the position of the spline curve label relative to the curve line.

AUTO
automatically positions the spline curve label near the curve boundary along unused axes whenever possible (typically Y2 and X2) in order to avoid collision with tick values.

Restriction This option is used only when CURVELABELPOSITION=OUTSIDE.

MAX
forces the spline curve label to appear near maximum curve values (typically, upper right)

MIN
forces the spline curve label to appear near minimum curve values (typically, lower left)

START
forces the spline curve label to appear near the beginning of the curve.

Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the curve line has a spiral shape.

END
forces the spline curve label to appear near the end of the curve.

Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the curve line has a spiral shape.

Defaults AUTO when CURVELABELLOCATION=OUTSIDE.
END when CURVELABELLOCATION=INSIDE.
Interactions
For this option to take effect, the CURVELABEL= option must also be specified.

The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified. The START and END settings are ignored if CURVELABELLOCATION=OUTSIDE is specified.

This option is used in conjunction with the CURVELABELLOCATION= option to determine where the spline curve label appears.

Note
When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the spline curve label might fall outside of the graph area. In that case, the spline curve label might not be displayed or might be positioned incorrectly.

See
“Location and Position of Curve Labels” on page 185

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the curve label at the specified split characters. When a curve label is split, the label is split on each occurrence of the specified split characters.

Default
FALSE. The curve label is not split.

Requirement
The CURVELABEL= option must also be specified.

Interactions
The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.

See
“boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHAR="character-list"
specifies one or more characters on which the curve label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the curve label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the curve label is split unconditionally at each occurrence of any of the specified split characters. If the curve label does not contain any of the specified characters, then the label is not split.

"character-list"
one or more characters with no delimiter between each character and enclosed in quotation marks.

Default
A blank space

Requirements
The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:
The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

**Interactions**
This option has no effect if CURVELABELPOSITION=AUTO.

The CURVELABELSPLITCHARDROP= option specifies whether the split characters are included in the curve label or are dropped.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**
Use the CURVELABELSPLITJUSTIFY= option to specify the justification of the strings in the curve label block.

**CURVELABELSPLITCHARDROP=** TRUE | FALSE
specifies whether the split characters are included in the curve label text.

**TRUE**
drops the split characters from the curve label text.

**FALSE**
includes the split characters in the curve label text. When CURVELABELSPLIT=TRUE and CURVELABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a curve label with the following specifications:
- CURVELABELPOSITION=MAX
- CURVELABEL="Product*Group*A"
- CURVELABELSPLIT=TRUE
- CURVELABELSPLITCHARDROP=TRUE | FALSE
- CURVELABELSPLITCHAR="*"

*Note:* The horizontal line to the left of the label represents the maximum end of the curve for reference.

When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

**Default**
TRUE. The split characters are dropped from the curve label.
The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

The CURVELABELSPLITCHAR= option specifies the split characters.

"boolean " on page 1339 for other Boolean values that you can use.

**CURVELABELSPLITJUSTIFY=**AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the curve label block.

**AUTO**

justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

**CENTER | LEFT | RIGHT**

justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the curve for reference.

In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

**DATATRANSPARENCY=**number

specifies the degree of the transparency of the curve and curve label.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

**GROUP=**column | discrete-attr-var | expression

creates a distinct set of curves from just the observations that correspond to each unique group value of the specified column.
discrete-attr-var

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction  
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default  
Each distinct group value might be represented in the plot by a different combination of color and line pattern. Line colors vary according to the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements. Line patterns vary according to the LineStyle attribute of the GraphData1–GraphDataN and GraphMissing style elements.

Restriction  
The input data must be sorted by the GROUP= column.

Interactions  
The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of line colors and line patterns.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

Tip  
The LINEATTRS= option can be used to override the representations that are used to identify the groups. For example, LINEATTRS=(PATTERN=SOLID) can be used to assign the same pattern to all of the loess curves, letting the line color distinguish group values. Likewise, LINEATTRS=(COLOR=BLACK) can be used to assign the same color to all of the curves, letting the line pattern distinguish group values.

See  
“DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

Default  
TRUE

Interaction  
For this option to take effect, the GROUP= option must also be specified.

Tip  
The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See  
“boolean ” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression

specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.
Requirements

The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction

For this option to take effect, the GROUP= option must also be specified.

Notes

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default

The string specified on the NAME= option.

Restriction

This option applies only to an associated DISCRETELEGEND statement.

Interaction

If the GROUP= option is specified, then this option is ignored.

LINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the line attributes of the spline curve.

Default

The GraphFit style element.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction

The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction

The string is used as the default legend label if the LEGENDLABEL= option is not used.
PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining
default axis features. This option is needed only when two or more plots within an
overlay-type layout contribute to a common axis.

Default FALSE
Restriction This option is ignored if the plot is placed under a GRIDDED or
LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary
plot on a per-axis basis. When no plot is designated as the primary plot,
the first plot that can be a primary plot is considered the primary plot. If
multiple plots specify PRIMARY=TRUE for the same axis, then the
last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880
“boolean ” on page 1339 for other Boolean values that you can use.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the
formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example TIPFORMAT=(Y=6.2)

Default The column format of the column assigned to the role or BEST6 if no
format is assigned to a numeric column.

Requirement To enable data tips in the output, you must include an ODS
GRAPHICS ON statement that has the IMAGEMAP option
specified, and you must write the output to the ODS HTML
destination.

Note The columns assigned to the X, Y, and GROUP (if assigned) roles are
automatically included in the data tip information.

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the
labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string” pairs.

Example TIPLABEL=(Y="Curve")

Default The column label or column name of the column assigned to the role.

Note The columns assigned to the X, Y, and GROUP (if assigned) roles are
automatically included in the data tip information.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary
X2 (top) axis.
Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2 specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

**PBSPLINE Regression Options**

**ALPHA=** *positive-number*
specifies the confidence level to compute.

Default 0.05

Range $0 < \text{positive-number} < 1$

Tip ALPHA=0.05 represents a 95% confidence level.

**CLI=** "name"
produces confidence limits for individual predicted values for each observation.

Interaction *name* is a unique name within the template that is case sensitive and cannot contain spaces. It must be assigned in order for the confidence limits to be computed. To display confidence limits, you must use this name as the required argument of a MODEL BAND statement. See the example in the section “Example: PBSPLINEPLOT Statement” on page 612.

**CLM=** "name"
produces confidence limits for a mean predicted value for each observation.

Interaction *name* is a unique name within the template that is case sensitive and cannot contain spaces. It must be assigned in order for the confidence limits to be computed. To display confidence limits, you must use this name as the required argument of a MODEL BAND statement. See the example in the section “Example: PBSPLINEPLOT Statement” on page 612.

**DEGREE=** *non-negative-integer*
specifies the degree of B-spline.

Default 3

Ranges 0–174 in the first maintenance release of SAS 9.4 and earlier releases.

0–10 starting with the second maintenance release of SAS 9.4.
Restriction  Starting with the second maintenance release of SAS 9.4, DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.

**FREQ=numeric-column**
specifies a column in the input data set that represents the frequency of occurrence of the current observation, essentially treating the data set as if each observation appeared \( n \) times, where \( n \) is the value of the FREQ column for the observation. Noninteger values of the FREQ column are truncated to the largest integer less than the FREQ value. The observation is used in the analysis only if the value of the FREQ column is greater than or equal to 1.

**MAXPOINTS=positive-integer**
specifies the maximum number of predicted points generated for the spline curve as well as any confidence limits.

Default 201

**NKNOTS=non-negative-integer**
specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for an extreme lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When SMOOTH=0 is specified, you should typically ask for many fewer knots than the default, since there is no penalty for lack of smoothness. For example, ten or fewer knots is usually enough to follow the functional form found in most data.

Default 100

Restriction  Starting with the second maintenance release of SAS 9.4, MKNOTS= and DEGREE= cannot be set to 0 simultaneously. When both are set to 0, an error results.

See example “Penalized B-Splines” in the TRANSREG procedure description in SAS/STAT User’s Guide.

**SMOOTH=AUTO | non-negative-number**
specifies a regression parameter value.

Default AUTO

Note  With SMOOTH=AUTO, a regression parameter that minimizes a lack-of-smoothness penalty is automatically selected.

Tip  You can specify SMOOTH=0 to get an ordinary B-spline fit.

**WEIGHT=numeric-column**
specifies a column in the input data set that contains values to be used as a priori weights for a penalized B-spline fit. If an observation’s weight is zero, negative, or missing, then the observation is deleted from the analysis.

Interaction  Starting with the second maintenance release of SAS 9.4, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low chart instead of a band.
Details

The PBSPLINEPLOT statement only supports models of one independent and one dependent variable. For more information about the fitting methodology, see the TRANSREG procedure in the SAS/STAT user’s guide.

In addition to the penalized B-spline, the PBSPLINEPLOT statement can compute confidence levels for the fitted line. To display the confidence levels,

1. use the CLI= or CLM= option to declare a name for the confidence level
2. use a MODELBAND statement to refer to this name. This statement draws a confidence band from this information. See “MODELBAND Statement” on page 565 for information about how to control the appearance of the confidence band.

Example: PBSPLINEPLOT Statement

The following graph was generated by the “Example Program” on page 612:

Example Program

```sas
proc template;
define statgraph pbsplineplot;
begingraph;
entrytitle "Spline Fit";
layout overlay;
scatterplot x=weight y=mpg_highway / datatransparency=0.7;
pbsplineplot x=weight y=mpg_highway / name="fitline" alpha=0.05 legendlabel="Spline Fit";
```
PIECHART Statement

Creates a pie chart that is computed from input data.

**Requirement:** The PIECHART statement must be placed in a LAYOUT REGION, LAYOUT GRIDDED, or LAYOUT LATTICE block. It cannot be placed in an overlay-type layout such as LAYOUT OVERLAY or LAYOUT OVERLAYEQUATED because a pie chart does not have axes.

**Note:** The PIECHART statement does not honor the ODS GRAPHICS options DISCRETEMAX=, GROUPMAX=, and LABELMAX=.

**Syntax**

```
PIECHART CATEGORY=column | discrete-attr-var | expression /option(s);
PIECHART CATEGORY=column | discrete-attr-var | expression
RESPONSE=numeric-column | expression /option(s);
```

**Summary of Optional Arguments**

**Appearance options**

```
CATEGORYDIRECTION=COUNTERCLOCKWISE | CLOCKWISE
 specifies whether to display the pie slices in counterclockwise or clockwise sequence.
CENTERFIRSTSLICE=TRUE | FALSE
 specifies whether the first pie slice is centered on the starting angle or starts on the starting angle.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 enhances the visual appearance of the filled pie slices.
DATATRANSPARENCY=number
 specifies the degree of the transparency of all pie slices, outlines, and text.
DISPLAY=STANDARD | (display-options)
 specifies whether to display outlined pie slices, filled pie slices, or outlined and filled pie slices.
FILLATTRS=style-element | style-element (fill-options) | (fill-options)
 specifies the appearance of the filled pie slices.
OTHERSLICEOPTS=(other-slice-options)
 specifies the properties of the Other slice.
OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the properties of the pie and slice outlines.
START=degrees
```
specifies which degree between 0 and 360 serves as the starting position for the first pie slice.

**Data tip options**

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over a pie slice.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns.

TIPLABEL=(role-label-list)

specifies display labels for tip columns.

**Grouping options**

GROUP=column | expression

creates a separate concentric annulus (or stacked cylinders) for each unique group value of the specified column.

GROUPGAP=dimension

specifies a dimension for the optional gap that can be displayed between each annulus of a grouped pie.

GROUPLABELOPTS=(grouplabel-options)

specifies text attributes, location, and other options for displaying group labels.

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the Group column are included in the pie.

OTHERSLICE=TRUE | FALSE

specifies whether to consolidate smaller pie slices into a single slice that represents “other” values that are in the data, or whether to display those smaller slices as separate pie slices.

**Label options**

DATALABELATRGS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the slice labels.

DATALABELCONTENT=ALL | STANDARD | NONE | (content-options)

specifies the information to display in the slice labels.

DATALABELLOCATION=AUTO | INSIDE | OUTSIDE | CALLOUT

specifies whether to display the slice labels within the pie slices or outside of the pie circumference.

LABELFITPOLICY=NONE | DROP

specifies the label fitting policy to be used if a particular label does not fit within the pie slice.

**ODS options**

URL=string-column

specifies an HTML page to display when a pie slice is selected.

**Plot reference options**

NAME="string"

assigns a name to this plot statement for reference in other template statements.

**Statistics options**

STAT=FREQ | PCT | SUM | MEAN
specifies the statistic to be computed.

**Required Argument**

CATEGOR Y=column | discrete-attr-var | expression

specifies the column for the category values. Duplicated values of CATEGORY are summarized into a unique value. All values are treated as discrete.

*discrete-attr-var*

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

**Restriction**

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

See “DISCRETEATTRVAR Statement” on page 1297

**Optional Arguments**

CATEGOR YDIRECTION=COUNTERCLOCKWISE | CLOCKWISE

specifies whether to display the pie slices in counterclockwise or clockwise sequence.

**Default**

COUNTERCLOCKWISE

**Tip**

The START= option controls the starting angle for the first pie slice.

CENTERFIRSTSLICE=TRUE | FALSE

specifies whether the first pie slice is centered on the starting angle or starts on the starting angle.

**Note:** This option is valid in the first maintenance release of SAS 9.4 and later releases.

The following figure shows the effect of this option on a pie chart in which Asia is the first category slice, the starting angle is 0 degrees, and the category direction is counterclockwise.

**Default**

FALSE

**Tips**

Use the START= option to change the starting angle.
Use the `CATEGORYDIRECTION=` option to change the category direction.

**See**  
“`boolean`” on page 1339 for other Boolean values that you can use.

**DATALABELATTRS=**`style-element | style-element (text-options) | (text-options)`  
specifies the color and font attributes of the slice labels.

**Default**  
The GraphValueText style element.

**See**  
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Text Options” on page 1351 for available `text-options`.

**DATALABELCONTENT=**`ALL | STANDARD | NONE | (content-options)`  
specifies the information to display in the slice labels.

`ALL`  
displays all available information

`STANDARD`  
equivalent to specifying the two `content-options` CATEGORY and RESPONSE

`NONE`  
does not display slice labels

`(content-options)`  
a space-separated list of one or more of the following options enclosed in parentheses:

`CATEGORY`  
displays the CATEGORY value

`PERCENT`  
displays the following based on the setting for the STAT= option:

- when STAT=FREQ or STAT=PCT, the PERCENT value
- when STAT=MEAN or STAT=SUM, nothing

`RESPONSE`  
displays the statistic that is requested in the STAT= option.

**Defaults**  
When `STAT=PCT`, the default is (CATEGORY PERCENT).

Otherwise, the default is STANDARD.

**Note**  
The position of the labels is adjusted to prevent the labels from overlapping.

**DATALABELLOCATION=**`AUTO | INSIDE | OUTSIDE | CALLOUT`  
specifies whether to display the slice labels within the pie slices or outside of the pie circumference.
AUTO
automatically selects either INSIDE, OUTSIDE, or CALLOUT to optimize the label position

INSIDE
locates the slice labels inside the pie slices.

*Note:* If a particular label does not fit within the pie slice, then the fit policy takes effect (set by the `LABELFITPOLICY=` option).

OUTSIDE
locates the slice labels outside of the pie circumference.

CALLOUT
locates the slice labels outside of the pie circumference and draws a line from the label to its slice.

Default AUTO

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
enhances the visual appearance of the filled pie slices. The following figure shows pies with each of the skins applied.
The `DATASKIN=` option value that is specified in the `BEGINGRAPH` statement. If not specified, then the GraphSkins:DataSkin style element value is used.

Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the `DATASKINMAX=` option in your ODS GRAPHICS statement to increase the maximum limit.

For this option to have any effect, `DISPLAY= FILL` must be in effect. Otherwise, this option is ignored.

This option overrides the `BEGINGRAPH` statement `DATASKIN=` option.

The appearance of the data skin is based on the `FILLATTRS=` color.

When a data skin is applied, all slice outlines are set by the skin, and the `OUTLINEATTRS=` option is ignored.

**DATATRANSPARENCY=number**

specifies the degree of the transparency of all pie slices, outlines, and text.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

The `FILLATTRS=` option can be used to set transparency for just the pie slices. The `OTHERSLICEOPTS=` option can be used to specify transparency for the “other” slice. You can combine this option with `FILLATTRS=` and with `OTHERSLICEOPTS=` to set one transparency for the outlines and text but a different transparency for the pie slices.

Example:

```
data transparency=0.2 fillattrs=(transparency=0.6)
```
**DISPLAY=STANDARD | (display-options)**
specifies whether to display outlined pie slices, filled pie slices, or outlined and filled pie slices.

**STANDARD**
displays outlined, filled pie slices

**(display-options)**
a space-separated list of one or more of the following options enclosed in parentheses:

**OUTLINE**
displays outlined pie slices. The default outline properties are set by the GraphOutline style element.

**FILL**
displays filled pie slices with each slice a different color. The default colors are set by the Color attribute of the GraphData1–GraphDataN style elements. The fill color of the “other” slice (if shown) is from the color attribute of the GraphOther style element. If FILL is not specified, then an opaque pie is drawn using the background color of the containing layout.

**Default** STANDARD

**Tip** Use the OUTLINEATTRS= and FILLATTRS= options to control the appearance of the pie slices.

**FILLATTRS=style-element | style-element (fill-options) | (fill-options)**
specifies the appearance of the filled pie slices. Prior to the third maintenance release of SAS 9.4, this option specifies the color and transparency of all of the pie slices, excluding the Other slice. Starting with the third maintenance release of SAS 9.4, this option specifies the transparency for the Other slice as well.

**Default** The GraphDataDefault:Color style reference.

**Interaction** For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

**Tips** The FILLATTRS= suboption of the OTHERSLICEOPTS= option specifies the color and transparency of the Other slice.

The DATATRANSPARENCY= option sets the transparency for all pie slices, outlines, and text. You can combine this option with DATATRANSPARENCY= to set one transparency for the outlines and text but a different transparency for the pie slices. Example: datatransparency=0.2 fillattrs=(transparency=0.6)

**See** “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element value.

“Fill Options” on page 1348 for available fill-options values.

**GROUP=column | expression**
creates a separate concentric annulus (or stacked cylinders) for each unique group value of the specified column. The grouped rings are displayed in data order.
Interactions

When this option is used, the unique column values are found and then the slice colors are taken from the GraphData1–GraphDataN style elements.

Missing values in the data can affect the group order. You can use the `INCLUDEMISSINGGROUP=` option to manage missing group values. In addition, you can use `INCLUDEMISSINGDISCRETE=TRUE` in the `BEGINGRAPH` statement to create pie slices for missing CATEGORY values.

Tip

This option creates only rings of pies. To create a grid of pies, specify the `PIECHART` statement within a `LAYOUT LATTICE`, `LAYOUT DATALATTICE`, or `LAYOUT DATAPANEL` statements.

See

- `FILLATTRS`
- `GROUPGAP`
- `GROUPLABELOPTS`

**GROUPGAP=** `dimension`

specifies a dimension for the optional gap that can be displayed between each annulus of a grouped pie.

Default

0

Restriction

For this option to take effect, the `GROUP=` option must also be specified.

Interaction

If the specified `dimension` is too large for the area that is available to the pie chart, then the results might be unexpected.

Note

The size of the inner pie remains the same regardless of the `GROUPGAP=` value.
GROUPLABELOPTS=(grouplabel-options)  
specifies text attributes, location, and other options for displaying group labels. The  
following grouplabel-options are available. One or more options can be specified as  
space-separated name = value pairs.

LABEL=AUTO | NONE | "string"  
specifies a descriptive label for the Group column

/auto  specifies the column label of the GROUP= column or the column  
name of the GROUP= column, if no column label exists.

/NONE  specifies that no label is displayed

/"string"  specifies a string to use as the label

Default  AUTO

LABELATTRS=style-element | style-element (text-options) | (text-options)  
specifies the text properties of the group label.

Default  The GraphLabelText style element.

See  “General Syntax for Attribute Options” on page 1347 for the syntax on  
using a style-element.

“Text Options” on page 1351 for available text-options.

LOCATION=RIGHT | LEFT  
specifies whether the block of text for group labeling appears to the right or left  
of the pie.

Default  RIGHT

VALUEATTRS=style-element | style-element (text-options) | (text-options)  
specifies the text properties of the group values.

Default  The GraphValueText style element.

See  “General Syntax for Attribute Options” on page 1347 for the syntax on  
using a style-element.

“Text Options” on page 1351 for available text-options.

INCLUDEMISSINGGROUP=TRUE | FALSE  
specifies whether missing values of the Group column are included in the pie.

Default  TRUE
Restriction  For this option to take effect, the `GROUP=` option must also be specified.

See  “boolean ” on page 1339 for other Boolean values that you can use.

**LABELFITPOLICY=NONE | DROP**

specifies the label fitting policy to be used if a particular label does not fit within the pie slice.

- **NONE**
  - draws each label regardless of whether it fits within the slice region.

- **DROP**
  - drops labels that do not fit within the slice region, but draws labels that do fit.

Default  NONE

Tip  This option determines how labels are managed when `DATALABELLOCATION= INSIDE` and a particular label does not fit within the pie slice.

**NAME="string"**

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction  The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

**OTHERSLICE=TRUE | FALSE**

specifies whether to consolidate smaller pie slices into a single slice that represents “other” values that are in the data, or whether to display those smaller slices as separate pie slices. If this option is set to FALSE, then all unique category values appear as slices. If this option is set to TRUE, then some of the smaller slices might be combined into a single slice, referred to as the Other slice.

Default  TRUE

Tip  To set the properties of the “other” slice, use the `OTHERSLICEOPTS=` option.

See  “boolean ” on page 1339 for other Boolean values that you can use.

**OTHERSLICEOPTS=(other-slice-options)**

specifies the properties of the Other slice. Example:

```plaintext
piechart category=region / name="p"
 datalabelcontent=(percent) datalabellocation=inside
 otherslice=true
 othersliceopts=(type=percent percent=11 label="Other Regions")
```

```plaintext`
The following *other-slice-options* values are available. You can specify one or more options as space-separated *name = value* pairs.

TYPE=PERCENT | MAXSLICES

specifies which method to use to determine the size of the Other slice.

- **PERCENT** uses the percentage that is set by the PERCENT= suboption.
- **MAXSLICES** uses the count that is set by the MAXSLICES= suboption.

Default PERCENT

MAXSLICES=positive-integer

specifies the maximum number of category values to represent with pie slices. Any remaining values are consolidated into the Other slice.

Default 10

Interactions For this option to have any effect, TYPE=MAXSLICES must also be specified among the suboptions for OTHERSLICEOPTS=.

The slices are counted in the order in which they are displayed. This order is affected by the CATEGORYDIRECTION= option.

PERCENT=percent-of-total

collects all category values with response values less than or equal to the specified *percent-of-total* value into the Other slice.

Default 4. Any original slice that represents 4% or less of the total is put in the Other category.

Range 0–100

Interaction For this option to have any effect, TYPE=PERCENT must also be specified among the suboptions for OTHERSLICEOPTS=.
LABEL="string"
specifies a label for the Other slice.

Default "OTHER"

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the area fill for the Other slice. This option does not affect the appearance of the area fill for the remaining slices.

Default The GraphOther style element.

Interactions
Suboption TRANSPARENCY= in this option overrides the DATATRANSparenCy= option for the other slice only.

Starting with the third maintenance release of SAS 9.4, suboption TRANSPARENCY= in this option overrides suboption TRANSPARENCY= in option FILLATTRS= in the PIECHART statement only for the Other slice.

See “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element value.

“Fill Options” on page 1348 for available fill-options values.

Interaction This option is ignored if OTHERSLICE=FALSE.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the properties of the pie and slice outlines.

Default The GraphOutlines style element.

Interactions
For this option to have any effect, outlines must be enabled by the ODS style or the DISPLAY= option.

If the DATASKIN= option applies a data skin, then this option is ignored.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

START=degrees
specifies which degree between 0 and 360 serves as the starting position for the first pie slice. A value of 0 degrees corresponds to the three o'clock position. Degrees can be either positive or negative. Positive values move the starting position counterclockwise, and negative values move the starting position clockwise. From the starting point specified by this option, the slices are drawn in the direction specified by the CATEGORYDIRECTION= option.

Default 0

Range 0 to 360

STAT=FREQ | PCT | SUM | MEAN
specifies the statistic to be computed. For pie charts with no RESPONSE= column:

FREQ frequency count
PCT percentages between 0 and 100

For pie charts with a RESPONSE= column:

SUM
MEAN

Defaults SUM for pie charts that specify the RESPONSE= argument
FREQ for pie charts that do not specify the RESPONSE= argument

TIP=(role-list) | NONE specifies the information to display when the cursor is positioned over a pie slice. If this option is used, then it replaces all of the information that is displayed by default.

(role-list)
an ordered, space-separated list of unique PIECHART roles. PIECHART roles include CATEGORY, RESPONSE, and GROUP. The RESPONSE role represents the computed statistic for the CATEGORY value, based on the statistic that is set by the STAT= option.

Example The following example displays data tips for the columns assigned to the roles CATEGORY and RESPONSE.
TIP=(CATEGORY RESPONSE)

NONE suppresses data tips and URLs (if requested) from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: CATEGORY and RESPONSE.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Tip The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list) specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example TIP=(RESPONSE)
TIPFORMAT=(RESPONSE=DOLLAR12.)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles.
TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list

a space-separated list of rolename = "string" pairs.

Example

TIP=(RESPONSE)
TIPLABEL=(RESPONSE="Average Sales")

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the TIP= option are used.

Requirement
A column must be assigned to each of the specified roles.

URL=string-column
specifies an HTML page to display when a pie slice is selected.

string-column

specifies a column that contains a valid HTML page reference (HREF) for each pie slice that is to have an active link.

Example

http://www.sas.com/technologies/analytics/index.html

Restriction
A generated Other slice does not have a URL. See OTHERSLICE=.

Requirement
To generate a plot with selectable pie slices, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction
This option has no effect when TIP=NONE.

Tips
The URL value can be blank for some pie slices, meaning that no action is taken when the corresponding slice is selected.

The URL value can be the same for any CATEGORY and RESPONSE pairs. In that case, the same action is taken when the pie slices for those pairs are selected.

Optional Response Argument

RESPONSE=numeric-column | expression
specifies response values that are read from a numeric column or an expression.

Details
The input data for the PIECHART statement is raw, unsummarized input data. The PIECHART performs discrete binning for the Category column and calculates appropriate summarization statistics (sum, mean, and so on) based on the setting for the STAT= option.

The fill color of each pie slice is derived from the Color attribute of the GraphData1–GraphDataN style elements as described in “Attribute Rotation Patterns” in *SAS Graph*
The default order of the pie slices depends on the data type of the CATEGORY values:

- For numeric data, the slices appear in the ascending order of the unformatted data values.
- For discrete data, the slices appear in data order.

You can use the START= and CATEGORYDIRECTION= options to control the pie slice positions and display order.

By default, the pie slices are labeled with the CATEGORY and RESPONSE values, which are displayed inside the slices. You can use the DATALABELLOCATION= and DATALABELCONTENT= options to control where the pie slices are labeled and the label content.

By default, if two or more slices take up less than 4% of a pie, then an “other” slice is created by consolidating those small slices. To change the default criteria, use the OTHERSLICE= and OTHERSLICEOPTS= options. The calculated “other” slice is displayed as the last slice in the pie, and as the last legend entry for the pie. If a category value is the same as the “other” slice label, then two slices might be displayed with the same label ("Other" by default) and different fill attributes. In that case, both slices are represented in the pie legend.

To create a pie slice for missing CATEGORY values, specify INCLUDEMISSINGDISCRETE=TRUE in the BEGINGRAPH statement. The fill color of the missing category slice is assigned the fill color from the GraphMissing style element except when a user-defined format is applied to the category value. In that case, the missing category slice is assigned the fill color from a GraphData1–GraphdDataN style element in data order instead.

Note: The PIECHART statement does not honor the MISSING= system option. Regardless of the MISSING= system option value, unless a user-defined format is applied to the value, the default missing-numeric-value character (.) is used to depict missing numeric values.

Example: PIECHART Statement

The following graph was generated by the “Example Program” on page 628:
Example Program

```
proc template;
define statgraph simplepie;
begingraph;
  entrytitle "Car Models by Origin";
  layout region;
    piechart category=origin / datalabellocation=outside;
  endlayout;
endgraph;
end;
run;
proc sgrender data=sashelp.cars
template=simplepie;
run;
```

POLYGONPLOT Statement

Draws a polygon from data that is stored in a data set.

Note: This statement is valid in the first maintenance release of SAS 9.4 and later releases.

Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.
Syntax

POLYGONPLOT X=column | expression Y=column | expression
ID=column | expression</options(s)>

Summary of Optional Arguments

Appearance options

ANTIALIAS=AUTO | OFF
specifies whether anti-aliasing is turned off for this plot.

BACKLIGHT=number | AUTO
specifies a back-light effect for the polygon label text.

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies the numeric column or range attribute map variable to use to
determine the polygon colors.

DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of filled polygons.

DATATRANSPARENCY=number
specifies the degree of the transparency of the polygon fill, outline, and label,
when these attributes are displayed.

DISPLAY=STANDARD | ALL | (display-options)
specifies whether to display the polygon outline, fill, or both.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the filled polygon areas.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the appearance of the polygon outline.

REVERSECOLORMODEL=TRUE | FALSE
specifies whether to reverse the gradient (color ramp) that is defined by either
the ODS style that is in effect or by the COLORMODEL= option.

ROTATE=numeric-column | numeric-constant | expression
specifies the angle of rotation for the polygon, measured in degrees.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the
polygon.

Axes options

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for
determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the
secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the
secondary Y2 (right) axis.

Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.
TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the polygon.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

LABEL=column | expression
specifies the label for the polygon.

LABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the polygon label.

LABELLOCATION=INSIDEBBOX | OUTSIDEBOX | OUTSIDE
specifies the location of the polygon label.

LABELPOSITION=CENTRE | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label with respect to the label location.

LABELSPLIT=TRUE | FALSE
specifies whether to split the polygon label at the specified split characters.

LABELSPLITCHAR="character-list"
specifies one or more characters on which the polygon label can be split if needed.

LABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the polygon label.

LABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the polygon label blocks.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

DISCRETEOFFSET=number
specifies the amount by which to offset all polygon vertices from discrete X values, from discrete Y values, or from both.

GROUP=column | discrete-attr-var | expression
creates a separate and visually distinctive polygon for each unique grouping value.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

XOFFSET=numeric-column | expression
specifies an individual offset from the discrete X value on each vertex of the polygon.

YOFFSET=numeric-column | expression
specifies an individual offset from the discrete Y value on each vertex of the polygon.

ODS options

URL=string-column
specifies an HTML page that is displayed when the polygon is selected.

Plot reference options
NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=column | expression
specifies the column for the X values.

Note A missing value in the X column signals the start of the data for a hole in the polygon. See “Drawing Holes in a Polygon” on page 650.

Y=column | expression
specifies the column for the Y values.

Note A missing value in the Y column signals the start of the data for a hole in the polygon. See “Drawing Holes in a Polygon” on page 650.

ID=column | expression
specifies the column that contains the ID value that is associated with each polygon.

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Only unformatted values in the ID= column are used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>All of the observations for a single polygon must have the same ID value.</td>
</tr>
<tr>
<td></td>
<td>When multiple polygons are defined in the same data set, all of the observations for a given ID must be defined contiguously. Interspersing the ID observations in the data set can produce unexpected results.</td>
</tr>
</tbody>
</table>

Note Observations that have a missing value in the ID column are ignored by the POLYGONPLOT statement.

Optional Arguments

ANTIALIAS=AUTO | OFF
specifies whether anti-aliasing is turned off for this plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

AUTO
specifies that anti-aliasing is controlled by the ANTIALIAS= option in the ODS GRAPHICS statement.

OFF
specifies that anti-aliasing is always disabled for this plot.

Default AUTO

Interaction This option overrides the ANTIALIAS= option in the ODS GRAPHICS statement.

BACKLIGHT=number | AUTO
specifies a back-light effect for the polygon label text.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
The effect is applied only to the polygon label text.

\textit{number}

specifies the degree of the back-light effect.

Range 0–1, where 0 specifies no effect and 1 specifies maximum effect

\textbf{AUTO}

the system selects an appropriate level for the back-light effect. If the \texttt{GROUP=} or \texttt{COLORRESPONSE=} option is in effect, \texttt{BACKLIGHT}=0.75. Otherwise, \texttt{BACKLIGHT}=0.5.

The following figure shows the effect on a polygon label located inside the polygon bounding box.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>AUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Label</td>
<td>Label</td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a contrasting white back-light effect is used. For lighter colors, a contrasting black back-light effect is used. The following figure shows the two back-light types when \texttt{BACKLIGHT}=1.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Light-Gray Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Label</td>
</tr>
</tbody>
</table>

\textbf{Default} 0 (no back-light effect)

\textbf{Restriction} Vector graphics output cannot be generated when the back-light effect is applied. If you request vector graphics output and enable the back-light effect, an image is generated instead.

\textbf{Interaction} The \texttt{LABEL=} option must be specified for this option to have any effect.

\textbf{Tip} The \texttt{BACKLIGHT=} option is most effective when the text color has a low level of contrast with the background or when the background is cluttered.

\texttt{COLORMODEL=color-ramp-style-element | (color-list)}

specifies a color ramp to use with the \texttt{COLORRESPONSE=} option.

\texttt{color-ramp-style-element}

specifies the name of a color-ramp style element. The style element should contain these style attributes:

\texttt{STARTCOLOR} specifies the color for the smallest data value of the \texttt{COLORRESPONSE=} column.

\texttt{NEUTRALCOLOR} specifies the color for the midpoint of the range of the \texttt{COLORRESPONSE=} column.
ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color” on page 1340

Defaults For a filled polygon, the ThreeColorRamp style element
For an unfilled polygon, the ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

Tip To reverse the start and end colors of the ramp that is assigned to the color model, use the REVERSECOLORMODEL= option.

COLORRESPONSE= **numeric-column | range-attr-var | expression** specifies the numeric column or range attribute map variable to use to determine the polygon colors.

range-attr-var specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Requirement The COLORRESPONSE= value should remain constant for the same ID value. Otherwise, unexpected results might occur.

Interactions When the GROUP= option is specified with the COLORRESPONSE= option, the GROUP= option is ignored.

When fill is displayed, this option overrides suboption COLOR= in the FILLATTRS= option and varies the fill color according to the color gradient or the attribute map.

When only the outline is displayed, this option overrides suboption COLOR= in the OUTLINEATTRS= option and varies the outline color according to the color gradient or the attribute map.

Tip To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of filled polygons. The following figure shows a polygon with each of the skins applied.

![Polygon with each skin applied](image)

Default
The **DATASKIN=** option value that is specified in the BEGINGRAPH statement. If not specified, then the GraphSkins:DataSkin style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the **DATASKINMAX=** option in your ODS GRAPHICS statement to increase the maximum limit.

Requirement
For this option to have any effect, the **DISPLAY=** option must include **FILL**.

Interactions
This option overrides the BEGINGRAPH statement **DATASKIN=** option.

The appearance of the data skin is based on the **FILLATTRS=** color.

When a data skin is applied, all polygon outlines are set by the skin and the **OUTLINEATTRS=** option is ignored.

DATATRANSPARENCY=number
specifies the degree of the transparency of the polygon fill, outline, and label, when these attributes are displayed.

Default
0

Range
0–1, where 0 is opaque and 1 is entirely transparent

Tip
You can use the **FILLATTRS=** option to set transparency for just the filled polygon areas. You can combine this option with **FILLATTRS=** to set one transparency for the polygon outline and label and a different transparency for the polygon fill. Example:

```
data transparency=0.2 fillattrs=(transparency=0.6)
```
DISCRETEOFFSET=\(\text{number} \)

specifies the amount by which to offset all polygon vertices from discrete X values, from discrete Y values, or from both.

Default

0 (all polygon vertices are centered on the discrete X values, on the discrete Y values, or on both)

Range

\(-0.5\) to \(+0.5\), where 0.5 represents half the distance between discrete ticks. A positive offset is to the right on discrete X values and up on discrete Y values. If option REVERSE=TRUE is specified in the layouts axis options, then the offset direction is also reversed.

Restriction

This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Interaction

This option is ignored when the XOFFSET= or YOFFSET= option is specified.

Tip

Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets in order to accommodate the discrete offset.

DISPLAY=\(\text{STANDARD | ALL | (display-options)} \)

specifies whether to display the polygon outline, fill, or both.

STANDARD

displays the polygon outline

ALL

displays the polygon outline and fill

(display-options)

a space-separated list of one or more of the following options enclosed in parentheses:

OUTLINE

displays the polygon outline

FILL

displays the polygon fill

Default \(\text{STANDARD} \)

Tip

Use the DATASKIN=, OUTLINEATTRS=, and FILLATTRS= options to control the appearance of the fill and outline.

FILLATTRS=\(\text{style-element | style-element (fill-options) | (fill-options)} \)

specifies the appearance of the filled polygon areas.

Defaults

For non-grouped data, the GraphDataDefault:Color style reference.

For grouped data, the Color attribute of GraphData1–GraphDataN style elements.

Interactions

For this option to have any effect, the fill must be enabled by the ODS style or by the DISPLAY= option.
When `COLORRESPONSE=` is in effect and the `DISPLAY=` option enables FILL display, the `FILLATTRS=` suboption `COLOR=` is ignored, and the polygon fill colors vary according to the gradient.

Tip

The `DATATRANSPARENCY=` option sets the transparency for the polygon fill and outline. You can combine this option with `DATATRANSPARENCY=` to set one transparency for the outlines but a different transparency for the fills. Example:

```
datatransparency=0.2 fillattrs=(transparency=0.6)
```

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Fill Options” on page 1348 for available `fill-options`.

GROUP= `column` | `discrete-attr-var` | `expression`

creates a separate and visually distinctive polygon for each unique grouping value.

- `discrete-attr-var` specifies a discrete attribute map variable that is defined in a `DISCRETEATTRVAR` statement.

Restriction

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default

The polygon attributes for each unique group value are derived from the `GraphData1–GraphDataN` and `GraphMissing` style elements. If the polygon is filled, then the `COLOR` attribute is used for the polygon fill and the `CONTRASTCOLOR` attribute is used for the polygon outline. If the polygon is not filled, then the `CONTRASTCOLOR` and `PATTERN` attributes are used for the polygon outline.

Requirement

The group value must remain constant for the same ID value. Otherwise, the results are unpredictable.

Interactions

If a discrete attribute map variable is specified, then the colors and outline patterns are mapped according to the associated `DISCRETEATTRMAP` statement. See “`DISCRETEATTRMAP Statement`” on page 1287. Otherwise, the colors and outline patterns are mapped according to data order.

Note

The group values should remain constant for the same ID value.

See

“`DISCRETEATTRVAR Statement`” on page 1297

INCLUDEMISSINGGROUP= `TRUE` | `FALSE`

specifies whether missing values of the group variable are included in the plot.

Default

`TRUE`

Restriction

This option is ignored and missing group values are not displayed when `ID=` and `GROUP=` specify the same values.
Interaction

For this option to take effect, the GROUP= option must also be specified.

Tip

The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See

“boolean” on page 1339 for other Boolean values that you can use.

LABEL=column | expression

specifies the label for the polygon.

Default

No label is displayed for the polygon.

Note

The label text should be the same for all of the observations for a polygon ID. When different labels are specified for the same ID, the label that is specified in the first observation for that ID is used.

Tips

The default label text color is based on the use of polygon fill and outline colors, and on whether the GROUP= or COLORRESPONSE= option is specified. To change the label text color and font, use the LABELATTRS= option.

Use the LABELLOCATION= and LABELPOSITION= options to change the location of the polygon label.

For long labels, use the LABELSPLIT=, LABELSPLITCHAR=, LABELSPLITCHARTDROP=, and LABELSPLITJUSTIFY= options to split the label into multiple lines.

LABELATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the polygon label.

Defaults

For non-grouped data, the GraphDataText style element, unless COLORRESPONSE= is specified. When COLORRESPONSE= is specified, the label color is determined by the outline color when outlines are displayed, or by the GraphDataText style element color attribute when outlines are not displayed. All other text attributes are derived from the GraphDataText style element.

For grouped data, the GraphData1–GraphDataN style elements. The label color is determined by the contrast color attribute.

Interaction

If one or more text options are specified and they do not include all of the font properties (such as color, family, size, weight, and style), then the non-specified properties are derived from the GraphLabelText style element or from a GraphData1–GraphDataN style element.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.
LABELLOCATION=INSIDEBOX | OUTSIDEBOX | OUTSIDE
specifies the location of the polygon label.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSIDEBOX</td>
<td>locates the label inside the bounding box of the polygon.</td>
</tr>
<tr>
<td>OUTSIDEBOX</td>
<td>locates the label outside the bounding box of the polygon but inside the plot area.</td>
</tr>
<tr>
<td>OUTSIDE</td>
<td>locates the label outside the plot area.</td>
</tr>
</tbody>
</table>

Default INSIDEBOX

Restriction OUTSIDE cannot be used when the POLYGONPLOT statement is used in multi-cell layouts such as LATTICE, DATAPANEL, or DATALATTICE in which the axes might be external to the grid.

Interaction The LABEL= option must be specified for this option to have any effect.

Tip The label's exact position is relative to the polygon's X and Y data ranges and is determined by the combination of this option and the LABELPOSITION= option.

LABELPOSITION=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label with respect to the label location.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>centers the label in the polygon’s bounding box</td>
</tr>
<tr>
<td>XMIN</td>
<td>positions the label at the polygon's minimum X value and centers it in the Y-value range</td>
</tr>
<tr>
<td>XMAX</td>
<td>positions the label at the maximum X value and centers it in the Y-value range</td>
</tr>
<tr>
<td>YMIN</td>
<td>positions the label at the minimum Y value and centers it in the X-value range</td>
</tr>
<tr>
<td>YMAX</td>
<td>positions the label at the maximum Y value and centers it in the X-value range</td>
</tr>
</tbody>
</table>

The following figure shows the label positions for each of the label locations that are specified by the LABELLOCATION= option.
Defaults CENTER when LABELLOCATION=INSIDEbbox

YMAX when LABELLOCATION=OUTSIDEbbox or LABELLOCATION=OUTSIDE

Restriction CENTER is valid only when LABELLOCATION=INSIDEbbox.

Interaction When LABELLOCATION=OUTSIDE, increasing label length might cause the available plot area to decrease.

Tip When LABELLOCATION=OUTSIDE, the polygon label might collide with the axis tick values on the orthogonal axis. In that case, if the secondary orthogonal axis is not being used, specify the opposite end of the axis. Otherwise, change LABELLOCATION= to INSIDEbbox or OUTSIDEbbox.

LABELSPLIT=TRUE | FALSE

specifies whether to split the polygon label at the specified split characters. When this option is set to TRUE, the polygon label is split unconditionally at each occurrence of any of the specified split characters.

Default FALSE. The polygon label is not split.

Requirement The LABEL= option must also be specified.

Interaction The LABELSPLITCHAR= option specifies one or more characters on which splits can occur.

See “boolean ” on page 1339 for other Boolean values that you can use.
LABELSPLITCHAR="character-list"
specifies one or more characters on which the polygon label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the polygon label. In that case, all of the specified split characters together are treated as a single split character.

When LABEL= is specified and LABELSPLIT=TRUE, the polygon label is split unconditionally at each occurrence of any of the specified split characters. If the polygon label does not contain any of the specified characters, then the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

```
labelsplitchar="abc"
```

The LABEL= option and the LABELSPLIT=TRUE option must also be specified.

Interaction The LABELSPLITCHARDROP= option specifies whether the split characters are included in the polygon label or are dropped.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip Use the LABELSPLITJUSTIFY= option to specify the justification of the strings in the polygon label block.

LABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the polygon label.

TRUE drops the split characters from the polygon label.

FALSE includes the split characters in the polygon label. When LABELSPLIT=TRUE and LABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of polygon label Product*Group*A split on * when LABELSPLITCHARDROP=TRUE and LABELSPLITCHARDROP=FALSE.
LABELSPLITCHARDROP=

TRUE

The split characters are dropped from the polygon label.

Requirement

The LABEL= option and the LABELSPLIT=TRUE option must also be specified.

Interaction

The LABELSPLITCHAR= option specifies the split characters.

See

“boolean” on page 1339 for other Boolean values that you can use.

LABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the polygon label blocks.

AUTO

justifies the labels based on the LABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>LABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMIN</td>
<td>RIGHT</td>
</tr>
<tr>
<td>XMAX</td>
<td>LEFT</td>
</tr>
<tr>
<td>CENTER, YMAX, or YMIN</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which LABELPOSITION=YMAX.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

In this case, because LABELPOSITION=YMAX, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored.

Default

AUTO

Requirement

The LABEL= option and the LABELSPLIT=TRUE option must also be specified.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.
The string specified on the NAME= option.

This option applies only to an associated DISCRETELEGEND statement.

If the GROUP= option is specified, then this option is ignored.

NAME= "string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

The string is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEATTRS= style-element | style-element (line-options) | (line-options)

specifies the appearance of the polygon outline.

For non-grouped data, the GraphOutlines style element.

For grouped data, unfilled polygons use both the CONTRASTCOLOR and PATTERN attributes of the GraphData1–GraphDataN style elements. Filled polygons use only the CONTRASTCOLOR attribute.

For this option to have any effect, outlines must be enabled by the ODS style or by the DISPLAY= option.

If the DATASKIN= option applies a data skin, then this option is ignored.

When the COLORRESPONSE= and DISPLAY=(OUTLINE) options are in effect, the OUTLINEATTRS= suboption COLOR= is ignored, and the polygon outline colors vary according to the gradient.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

PRIMARY= TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

FALSE

This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY= TRUE for the same axis, then the last such plot encountered is considered the primary plot.
See “When Plots Share Data and a Common Axis” on page 880 for other Boolean values that you can use.

REVERSECOLORMODEL=TRUE | FALSE
specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default FALSE

See COLORMODEL=
“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAMESPACE=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:
ROLENAMESPACE=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles ID, COLORRESPONSE, GROUP, LABEL, and URL.

ROTATE=numeric-column | numeric-constant | expression
specifies the angle of rotation for the polygon, measured in degrees. Positive angles rotate the image counter clockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0. No rotation is performed.

Interaction When this option is specified, the LABELLOCATION= and LABELPOSITION= options are overridden with LABELLOCATION=INSIDEBOX and LABELPOSITION=CENTER.

Notes The rotation angle is measured in screen coordinates.

A missing value in the rotation data is treated as 0.

Rotating a polygon does not change data ranges that are reported to the axes. As a result, clipping might occur in some cases.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.

AUTO
rotates the label with the rotation of the polygon.
NONE
does not rotate the label with the rotation of the polygon. The label position remains fixed regardless of the polygon rotation.

VERTICAL
rotates the label to a vertical position.

Restriction VERTICAL is valid only when the polygon is not rotated (ROTATE=0). When the polygon is rotated, ROTATELABEL=VERTICAL is ignored, and the default (AUTO) is used instead.

Default AUTO

Interaction The LABEL= option must be specified for this option to have any effect.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the polygon. If you use this option, it replaces all of the information that is displayed by default. You can specify roles for columns that do not contribute to the polygon plot along with roles that do.

(role-list) an ordered, space-separated list of unique POLYGONPLOT and user-defined roles. POLYGONPLOT roles include ID, COLORRESPONSE, GROUP, LABEL, and URL.

Tip User-defined roles are defined with the ROLENAME= option.

Example The following example displays the columns that are assigned to the roles ID and URL, and the columns XOffset and YOffset in the data tips. The XOffset and YOffset columns are not assigned to any predefined POLYGONPLOT role, so they must first be assigned a role:

ROLENAME=(TIP1=XOFFSET TIP2=YOFFSET)
TIP=(ID TIP1 TIP2 URL)

NONE
suppresses data tips and URLs (if requested) from the plot.

Default The columns that are assigned to the following roles are automatically included in the data tip information: ID, COLORRESPONSE or GROUP, LABEL, and URL.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip You can control the labels and formats for the TIP roles with the TIPLABEL= and TIPFORMAT= options.
TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)

Default
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction
Only the roles that appear in the TIP= option are used.

Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the TIP= option are used.

URL=string-column
specifies an HTML page that is displayed when the polygon is selected.

string-column
-specifies a column that contains a valid HTML page reference (HREF) for each polygon that is to have an active link.

Example
http://www.sas.com/technologies/analytics/index.html

Requirement
To generate a plot with selectable polygons, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

Interactions
This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Note
The URL values should remain constant for the same ID value.
XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.</td>
</tr>
</tbody>
</table>

XOFFSET=numeric-column | expression
specifies an individual offset from the discrete X value on each vertex of the polygon.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (all polygon vertices are centered on the discrete X values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>–0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is to the right on discrete X values. If option REVERSE=TRUE is specified in the layout's X-axis options, then the offset direction is also reversed.</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to discrete axes only. For nondiscrete axes, this option is ignored.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option overrides the DISCRETEOFFSET= option.</td>
</tr>
<tr>
<td>Tip</td>
<td>Setting the discrete offset for the plots does not affect the axis minimum offset and maximum offset. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets in order to accommodate the discrete offset.</td>
</tr>
</tbody>
</table>

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.</td>
</tr>
</tbody>
</table>

YOFFSET=numeric-column | expression
specifies an individual offset from the discrete Y value on each vertex of the polygon.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (all polygon vertices are centered on the discrete Y values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>–0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is up on discrete Y values. If option REVERSE=TRUE is specified in the layout's Y-axis options, then the offset direction is also reversed.</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to discrete axes only. For nondiscrete axes, this option is ignored.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option overrides the DISCRETEOFFSET= option.</td>
</tr>
</tbody>
</table>
Tip

Setting the discrete offset for the plots does not affect the axis minimum offset and maximum offset. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets in order to accommodate the discrete offset.

Details

Overview

The POLYGONPLOT statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. The next X-Y pair in the data specifies the coordinates of the first vertex. A line segment is drawn from the starting point to the first vertex. For subsequent X-Y pairs, a line segment is drawn from the previous vertex to the current vertex. This pattern repeats until all of the segments have been drawn. If the last segment does not close the polygon, then the POLYGONPLOT statement automatically draws a segment from the last vertex back to the starting point in order to close the polygon.

Using the POLYGONPLOT statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. Unlike DRAW statements in a BEGINPOLYGON block, the following conditions apply to the POLYGONPLOT statement:

• you need to modify only the polygon data in the graph data set to modify the polygon. You do not need to modify the template code. (See “BEGINPOLYGON Statement” on page 1199.)

• you can draw polygons between plots. The BEGINPOLYGON block and DRAW statements can draw polygons only on top of or behind the graph.

Requirements for the Polygon Data Set

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data-set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the coordinates of each vertex in the order in which the polygon is to be drawn. There should be no gaps in the data. If your last observation does not close the polygon, then the POLYGONPLOT statement automatically draws a segment from your last vertex back to the starting point in order to close the polygon.

If you want to draw multiple polygons, then your ID column must specify a unique identifier value for each polygon. The identifier value associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.

The following table shows additional columns that you can use to customize your polygon plot.

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORRESPONSE</td>
<td>Numeric</td>
<td>Specifies the numeric column or range attribute map variable that is used to determine the polygon colors. (p. 633)</td>
</tr>
<tr>
<td>Column</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>GROUP</td>
<td>Numeric or character</td>
<td>Creates a separate polygon color, outline pattern, or both for each unique grouping that is specified.</td>
</tr>
<tr>
<td>LABEL</td>
<td>Numeric or character</td>
<td>Specifies the label for the polygon.</td>
</tr>
<tr>
<td>URL</td>
<td>Character</td>
<td>Specifies an HTML page that is displayed when the polygon is selected.</td>
</tr>
<tr>
<td>XOFFSET</td>
<td>Numeric</td>
<td>Specifies an individual offset from the discrete X value on each vertex of the polygon.</td>
</tr>
<tr>
<td>YOFFSET</td>
<td>Numeric</td>
<td>Specifies an individual offset from the discrete Y value on each vertex of the polygon.</td>
</tr>
</tbody>
</table>

* You can specify any valid column name for these columns in your data set.

Drawing a Single Polygon

For a single polygon, the polygon data set contains an X column and Y column that define the polygon vertices, and an ID column that specifies a constant value. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is example data for a simple four-sided polygon that is identified as P1 and that starts at point X=40, Y=100.

<table>
<thead>
<tr>
<th>Obs</th>
<th>id</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>P1</td>
<td>20</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>P1</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>P1</td>
<td>180</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>P1</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>
The following figure shows how the polygon is drawn. Grid lines are provided to help you locate the polygon vertices in the output.

![Polygon Diagram](image)

The polygon starting point is X=40, Y=100 (shown in red). From the starting point, the segments are drawn in data order. Data order is in a clockwise direction, as indicated by the gray arrow. Although the last observation (X=40, Y=100) is provided in this example, it is not required. If the last observation is not provided in the data, then the POLYGONPLOT statement draws the last segment automatically in order to close the polygon.

For an example, see “Example: Drawing a Simple Polygon That Highlights Data” on page 652.

Drawing Multiple Polygons

For multiple polygons, the POLYGONPLOT data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon vertices. The polygons are overlaid on the graph in the order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is example data for three separate polygons.

<table>
<thead>
<tr>
<th>Obs</th>
<th>id</th>
<th>x</th>
<th>y</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ID=1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>30</td>
<td>0</td>
<td>ID=2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
In addition to the ID column, X column, and Y column, the Label column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.

The following figure shows how the polygons are drawn from this data. Grid lines are provided to help you locate the polygon vertices in the output.

The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the starting point for that shape. The gray arrow indicates the direction in which the segments are drawn for each shape.

Drawing Holes in a Polygon

Using the POLYGONPLOT statement, you can draw one or more holes inside a polygon. To create data for a polygon with one or more holes:

1. Specify the X and Y values for the outer polygon.
2. To start the data for a hole, add an observation that has missing X and Y values. The missing X and Y values signal the POLYGONPLOT statement that the observations that follow define the data for a hole.
3. Specify the X and Y values for the hole polygon.
4. Repeat Steps 2 and 3 for each additional hole.

Here is example data for a simple polygon that has two holes.

```
Obs   id   x   y
```

```
Polygon Data
```

```
10  3  60  0  ID=3
11  3  80  5
12  3  80  15
13  3  70  30
14  3  60  30
15  3  60  0
```
Observations 1–7 specify the data for the outer polygon. In observation 8, the X and Y values are missing, which indicates the start of the data for the first hole. Observations 9–13 define the data for the first hole polygon. Observation 14 indicates the start of the data for the second hole, which is defined by observations 15–19.

The following figure shows how the polygon is drawn from this data. Grid lines are provided to help you locate the polygon vertices in the output.

The outer polygon is drawn first, starting at point X=1, Y=1. The segments are drawn in data order, which is in a counterclockwise direction as indicated by the gray arrow. The first hole is drawn next, starting at point X=3, Y=8. Its segments are drawn in a clockwise direction. The second hole is drawn last, starting at point X=3, Y=2. Its segments are drawn in a counterclockwise direction.
Example: Drawing a Simple Polygon That Highlights Data

This example shows you how to use the POLYGONPLOT statement to draw a filled polygon that highlights data in an iris petal dimension scatter plot. The polygon surrounds the markers for the Setosa species in order to highlight the data for that species. This example is a modified version of the example in “Example: BEGINPOLYGON Statement” on page 1205. This version uses the POLYGONPLOT statement instead of a BEGINPOLYGON block so that you can compare the two methods. The following figure shows the output for this example.

```
/* Generate the data for the polygon */
data polydata;
   input polyID polyX polyY label $8-40;
   datalines;
   1 9 2 Setosa
   1 13 5
   1 16 7
   1 17 6
   1 20 5
   1 20 1
   1 17 1
   1 15 0
   1 14 0
   1 11 0
;run;
```

Here is the SAS code for this example.
/* Concatenate the SASHELP.IRIS and polygon data into data set IRIS */
data iris;
 set sashelp.iris polydata;
run;

/* Create the template for the graph */
proc template;
 define statgraph discretelegend;
 begingraph / drawspace=datavalue;
 entrytitle "Iris Petal Dimensions";
 layout overlayequated / equatetype=equate;
 scatterplot x=petallength y=petalwidth / name="s"
 group=species includemissinggroup=false;
 ellipse x=petallength y=petalwidth / type=predicted alpha=.2
 name="p80" legendlabel="80%" outlineattrs=graphconfidence;
 ellipse x=petallength y=petalwidth / type=predicted alpha=.05
 name="p95" legendlabel="95%" outlineattrs=graphconfidence2;
 polygonplot x=polyX y=polyY id=polyID / display=(fill)
 fillattrs=(color=yellow transparency=0.75)
 label=label labellocation=outsidebbox labelposition=ymax;
 discretelegend "s" / title="Species:"
 discretelegend "p80" "p95" / across=1 autoalign=(topleft)
 location=inside;
 endlayout;
 entryfootnote halign=left "Fisher's Iris Data";
 endgraph;
end;
run;

/* Generate the graph */
proc sgrender data=iris template=discretelegend;
run;

Details

To draw a single polygon, the data set must provide an X column, a Y column, and an ID column. The data specifies the polygon vertices around the Setosa data in a clockwise direction. A Label column is added to provide a label for the polygon in the plot output. Concatenation of the Polydata and Sashelp.Irises data sets results in missing values for the SCATTERPLOT statement grouping variable in the Iris data set. By default, the SCATTERPLOT statement includes missing group values. To exclude the missing group values, the INCLUDEMISSINGGROUP=FALSE option is added to the SCATTERPLOT statement.

In the POLYGONPLOT statement, the DISPLAY= option specifies the polygon fill only. The FILLATTRS= option specifies the fill color as yellow and a fill transparency of 0.75. Rather than using draw statements to draw an annotation for the polygon, this example uses the POLYGONPLOT statement label feature to label the polygon. The LABEL= option specifies the column in the data set that contains the polygon label text. The LABELLOCATION= and LABELPOSITION= options place the polygon label outside of and above the polygon’s bounding box.

To draw the polygon, the POLYGONPLOT statements starts at X=9, Y=2, and draws a segment between each vertex in data order. The last vertex, X=11, Y=0, does not close
the polygon. To close the polygon, the POLYGONPLOT statement draws a segment between X=11, Y=0 and X=9, Y=2 automatically.

If you want to highlight the Versicolor data instead of the Setosa data, then you need only modify the data in the Polydata data set to draw a polygon around the Versicolor data instead. You do not have to make any changes to the template code.

REFERENCELINE Statement

Creates a horizontal or vertical reference line.

Requirement: A REFERENCELINE statement can be used within a 2-D layout (OVERLAY, OVERLAYEQUATED, DATALATTICE, or DATAPANEL) only.

Note: Specifying the X= option creates a line perpendicular to the X-axis at an X-intercept. Specifying the Y= option creates a line perpendicular to the Y-axis at a Y-intercept.

Syntax

```
REFERENCELINE X=x-axis-value | column | expression <option(s)>;
REFERENCELINE Y=y-axis-value | column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **CLIP=TRUE | FALSE**

specifies whether the reference line data is to be considered when determining the data range for the axis.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

enhances the visual appearance of the reference lines.

- **DATATRANSPARENCY=number**

specifies the degree of the transparency of the reference line.

- **LINEATTRS=style-element | style-element (line-options) | (line-options)**

specifies the attributes of the reference line.

Axes options

- **XAXIS=X | X2**

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

- **YAXIS=Y | Y2**

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Label options

- **CURVELABEL="string" | column | expression**

specifies a label for the reference line or lines.

- **CURVELABELATTRS=style-element | style-element (text-options) | (text-options)**

specifies the color and font attributes of the reference line label(s).

- **CURVELABELLOCATION=INSIDE | OUTSIDE**

specifies the location of the reference line label relative to the plot area.

- **CURVELABELPOSITION=AUTO | MAX | MIN**

specifies the position of the reference line label relative to the reference line.
CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the reference line label at the specified split characters.

CURVELABELSPLITCHAR="character-list"
specifies one or more characters on which the reference line label can be split if needed.

CURVELABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the reference line label text.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the reference line label block.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

DISCRETEOFFSET=number
specifies an amount to offset all reference lines from the specified values when the X or Y axis is discrete.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

You must use either the X= or the Y= argument in the REFERENCELINE statement.

X=x-axis-value | column | expression
specifies the X intercept of the reference line or lines.

Requirements
If X is not specified, then Y must be specified.

Values must be the same type as the data type of the X axis. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

Unformatted numeric values do not map to a formatted discrete axis. When the X axis is a discrete axis, the X axis value must be the formatted value that appears on the X axis. If a column is specified for the values in that case, then the specified column must use the same format that is used for the X axis.

Note
When a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Tips
By default, if the value that is specified for the X= argument is outside of the data range, then the data range is extended to include the specified intercept. You can change this behavior with the CLIP= option.

You can use the COLN() or COLC() function in an EVAL() expression to specify multiple reference lines on the X axis. See “GTL Functions Used with the EVAL Function” on page 1324.
Y=\textit{y-axis-value} | \textit{column} | \textit{expression}

specifies the Y intercept of the reference line or lines.

\textbf{Requirements}

If Y is not specified, then X must be specified.

- Values must be the same type as the data type of the Y axis.
- Unformatted numeric values do not map to a formatted discrete axis. When the Y axis is a discrete axis, Y axis value must be the formatted value that appears on the Y axis. If a column is specified for the values in that case, then the specified column must use the same format that is used for the Y axis.

\textbf{Note}

When a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

\textbf{Tips}

By default, if the value that is specified for the Y= argument is outside of the data range, then the data range is extended to include the specified intercept. You can change this behavior with the CLIP= option.

You can use the COLN() or COLC() function in an EVAL() expression to specify multiple reference lines on the Y axis. See “GTL Functions Used with the EVAL Function” on page 1324.

\textbf{Optional Arguments}

\textbf{CLIP=}TRUE | FALSE

specifies whether the reference line data is to be considered when determining the data range for the axis.

\textbf{FALSE}

specifies that the reference line values are to be considered when the axis range is determined. The reference lines are drawn as follows based on the axis type:

- For a discrete axis, the reference line values that are not already on the axis are added to the end of the axis data list. When applicable, the axis values are then sorted:
 - If the axis values are numeric values, then they are sorted ordinally.
 - If the axis values are character values and a sorting option is applied to the axis, then they are sorted as specified by the sorting option.

Reference lines are then drawn at the specified locations.

- For a linear, log, or time axis, a new axis data list is created by performing a mathematical union of the data values and the reference line values. The reference lines are then drawn at the locations specified.

\textbf{TRUE}

specifies that the reference line values are not to be considered when the axis range is determined. The reference lines are drawn as follows based on the axis type:

- For a discrete axis, if the reference line value exactly matches a value on the axis, a reference line is drawn at that location. Otherwise, the reference line is not drawn.
Note: If the axis values are formatted, then the reference line value must exactly match the formatted axis value in order for the line to be drawn.

- For a linear, log, or time axis, if the reference line value is within the axis data range, then the reference line is drawn at the specified location. Otherwise, the reference line is not drawn.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

`CURVELABEL=string | column | expression`

specifies a label for the reference line or lines.

Requirement
If you use the COLN() or COLC() function in the X= or Y= option to specify multiple reference line intercepts, then you must use the COLC() function in the CURVELABEL= option to specify exactly one label for each reference line intercept. Otherwise, this option is ignored. See “GTL Functions Used with the EVAL Function” on page 1324.

Interactions
If the X or Y argument specifies a value, then use "string".

If the X or Y argument specifies a column, then use a column to define the label for each value.

Tip
The font and color attributes for the label are specified by the CURVELABELATTRS= option.

`CURVELABELATTRS=style-element | style-element (text-options) | (text-options)`

specifies the color and font attributes of the reference line label(s).

Default
The GraphValueText style element.

Interaction
For this option to take effect, the CURVELABEL= option must also be used.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

`CURVELABELLOCATION=INSIDE | OUTSIDE`

specifies the location of the reference line label relative to the plot area.

Default OUTSIDE

Restriction
OUTSIDE cannot be used when the REFERENCELINE is used in multicell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes might be external to the grid.

Interactions
For this option to take effect, the CURVELABEL= option must also be specified.
This option is used in conjunction with the CURVELABELPOSITION= option to determine where the line labels appear.

See “Location and Position of Curve Labels” on page 185

CURVELABELPOSITION=AUTO | MAX | MIN
specifies the position of the reference line label relative to the reference line.

AUTO
automatically positions the line label near the line boundary along unused axes whenever possible (typically Y2 and X2) in order to avoid collision with tick values.

Restriction This option is used only when CURVELABELLOCATION= OUTSIDE.

MAX
forces the line label to appear near maximum line values (typically, the top or right).

MIN
forces the line label to appear near minimum line values (typically, the bottom or left).

Defaults AUTO when CURVELABELLOCATION=OUTSIDE.

MAX when CURVELABELLOCATION=INSIDE.

Restriction The AUTO setting is ignored if CURVELABELLOCATION= INSIDE is specified.

Interactions For this option to take effect, the CURVE= option must also be specified.

This option is used in conjunction with the CURVELABELLOCATION= option to determine where the line label appears.

Note When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the reference line label might fall outside of the graph area. In that case, the reference line label might not be displayed or might be positioned incorrectly.

See “Location and Position of Curve Labels” on page 185

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the reference line label at the specified split characters. When a reference line label is split, the label is split on each occurrence of the specified split characters.

Default FALSE. The reference line label is not split.

Requirement The CURVE= option must also be specified.

Interactions The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.
This option has no effect when CURVELABELPOSITION=AUTO.

See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHAR="character-list"

specifies one or more characters on which the reference line label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the reference line label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the reference line label is split unconditionally at each occurrence of any of the specified split characters. If the reference line label does not contain any of the specified characters, then the label is not split.

"character-list"

a list of one or more characters with no spaces between them enclosed in quotation marks.

Example To specify the split characters a, b, and c:
curvelabelsplitchar="abc"

Default A blank space

Requirement The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interactions This option has no effect if CURVELABELPOSITION=AUTO.

The CURVELABELSPLITCHARDROP= option specifies whether the split characters are included in the reference line label or are dropped.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip Use the CURVELABELSPLITJUSTIFY= option to specify the justification of the strings in the reference line label block.

CURVELABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the reference line label text.

TRUE
drops the split characters from the reference line label text.

FALSE
includes the split characters in the reference line label text. When CURVELABELSPLIT=TRUE and CURVELABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a Y-axis reference line label with the following specifications:

• CURVELABELPOSITION=MAX
- CURVELABEL="Product*Group*A"
- CURVELABELSPLIT=TRUE
- CURVELABELSPLITCHARDROP=TRUE | FALSE
- CURVELABELSPLITCHAR="*"

Note: The horizontal line to the left of the label represents the maximum end of the reference line for reference.

When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default TRUE. The split characters are dropped from the reference line label.

Requirement The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction The CURVELABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT specifies the justification of the strings that are inside the reference line label block.

AUTO
justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT
justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the reference line for reference.
In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default:

AUTO

Requirement:

The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction:

This option has no effect if CURVELABELPOSITION=AUTO.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the reference lines. The following figure shows a blue reference line with each of the skins applied.

Default:

The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction:

Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Interactions:

This option overrides the BEGINGRAPH statement DATASKIN= option.

The data skin appearance is based on the **LINEATTRS=** color.

DATATRANSPARENCY=number

specifies the degree of the transparency of the reference line.

Default:

0
Range 0–1, where 0 is opaque and 1 is entirely transparent

Note This option does not affect the reference line label.

DISCRETEOFFSET=number

specifies an amount to offset all reference lines from the specified values when the X or Y axis is discrete.

Default 0 (no offset, all reference lines are centered on discrete X or Y values)

Range -0.5 to +0.5 where 0.5 represents half the distance between discrete ticks. A positive offset is to the right for a vertical reference line and up for a horizontal reference line. If the layout’s axis options set REVERSE=TRUE, then the offset direction is also reversed.

Restriction This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default The string specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

LINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the reference line.

Default The GraphReference style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element "Line Options” on page 1349 for available line-options.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.
Another plot that establishes a data range for the designed axis must be included.

This option is ignored if the X= argument is not specified.

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Details
Reference lines are always drawn perpendicular to the axes. They are drawn from one axis boundary to the companion boundary (X to X2 or Y to Y2). Axis offsets do not apply to reference lines.

A REFERENCeline statement can be used only within 2-D overlay-type layouts (OVERLAY, OVERLAYEQUATED, or PROTOTYPE). A stand-alone plot statement that provides a sufficient data range for determining axis extents must be included in the layout. For example, a REFERENCeline statement can be used with a scatter plot or a histogram.

If a column is used to generate multiple reference lines, then the column type (numeric or string) must agree with the type of data presented on the axis.

Examples

Example 1: Specifying a Single Reference Line
This example shows you how to draw a reference line using the REFERENCeline statement. The follow figure shows the output for this example.
Example Program

Here is the SAS code for this example.

```sas
/* Create the template for the graph */
proc template;
  define statgraph referenceline;
  begingraph;
    entrytitle "Line of Symmetry";
    layout overlay / yaxisopts=(linearopts=(viewmin=0));
      seriesplot x=x y=y;
      referenceline x=3 /
        lineattrs=(color=blue) curvelabel="X=3";
    endlayout;
  endgraph;
end;
run;

/* Generate the plot data */
data test;
  do X=0 to 8 by 0.25;
    Y=(x-3)*(x-3) + 5;
    output;
  end;
run;

/* Generate the graph */
proc sgrender data=test template=referenceline;
run;
```
Example 2: Specifying Reference Lines Using Data Columns

This example shows you how to specify the reference-line intercept values for multiple reference lines using columns in the data set for the graph. The following figure shows the output for this example.

Output 6.1 Multiple Reference Lines in a Graph

Example Program

Here is the SAS code for this example.

```sas
/* Define the template for the graph */
proc template;
    define statgraph referenceline;
        begingraph;
            entrytitle "Line of Symmetry";
            layout overlay / yaxisopts=(linearopts=(viewmin=0));
                seriesplot x=x y=y;
                referenceline y=yR / curvelabel=label
                    lineattrs=(color=gray pattern=dot);
            endlayout;
        endgraph;
    end;
run;

/* Generate the graph data */
data graphdata;
    /* Plot data */
    do X=0 to 8 by 0.25;
        Y=(x-3)*(x-3) + 5;
        output;
    end;
```
/* Reference line data */
x=.; y=.; yR=14; label='Y=14'; output;
x=.; y=.; yR=5; label='Y=5'; output;
run;

/* Generate the graph */
proc sgrender data=graphdata template=referenceline;
run;

Example 3: Specifying Reference Lines Using the COLN and COLC Functions
This example shows you how to use the COLN() and COLC() functions to specify multiple intercept values directly in the REFERENCELINE statement. This approach is an alternative to including the reference line data in the plot data. The output is shown in “Example 2: Specifying Reference Lines Using Data Columns” on page 665.

Example Program
Here is the SAS code for this example.

/* Create the template for the graph */
proc template;
define statgraph referencelines;
begingraph;
 entrytitle "Line of Symmetry";
 layout overlay / yaxisopts=(linearopts=(viewmin=0));
 seriesplot x=x y=y;
 /* Use COLN() to specify the intercept values */
 reference line y=eval(coln(14, 5)) /
 /* Use COLC() to specify a label for each reference line */
 curvelabel=eval(colc("Y=14", "Y=5"))
 lineattrs=(color=gray pattern=dot);
 endlayout;
endgraph;
end;
run;

/* Generate the plot data */
data test;
do X=0 to 8 by 0.25;
 Y=(x-3)*(x-3) + 5;
 output;
end;
run;

/* Generate the graph */
proc sgrender data=test template=referencelines;
run;

REGRESSIONPLOT Statement
Creates a fitted regression line or curve computed from input data.

Restriction: The REGRESSIONPLOT statement supports only models of one independent and one dependent variable.
Tip: Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.

Syntax

REGRESSIONPLOT X=numeric-column | expression
Y=numeric-column | expression <(/<regression-options> <option(s)>)>;

Summary of Optional Arguments

Appearance options

DATATRANSPARENCY=number
specifies the degree of the transparency of the regression line and line label.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the regression line.

Axes options

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

CURVELABEL=“string”
specifies a label for the regression line.

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the regression line labels.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the regression line label relative to the plot area.

CURVELABELPOSITION=AUTO | MAX | MIN | START | END
specifies the position of the regression line label relative to the regression line.

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the regression line label at the specified split characters.

CURVELABELSPLITCHAR="character-list"
 specifies one or more characters on which the regression line label can be split if needed.

CURVELABELSPLITCHARDROP=TRUE | FALSE
 specifies whether the split characters are included in the regression line label text.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
 specifies the justification of the strings that are inside the regression line label block.

LEGENDLABEL="string"
 specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
 creates a distinct set of regression lines from just the observations that correspond to each unique group value of the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
 specifies whether missing values of the group variable are included in the plot.

Plot reference options

NAME="string"
 assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=numeric-column | expression
 specifies the column for the X values.

Y=numeric-column | expression
 specifies the column for the Y values.

Optional Arguments

CURVELABEL="string"
 specifies a label for the regression line.

Defaults
 No regression line label is displayed

This option is not valid when the GROUP= option is specified.

Tip
 The font and color attributes for the label are specified by the CURVELABELATTRS= option.

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
 specifies the color and font attributes of the regression line labels.

Default
 The GraphValueText style element.

Interactions
 For this option to take effect, the CURVELABEL= option must also be used.
If the GROUP= option is specified, then this option is ignored.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

CURVELABELLOCATION=INSIDE | OUTSIDE

specifies the location of the regression line label relative to the plot area.

INSIDE
locates the labels inside the plot area

OUTSIDE
locates the labels outside the plot area

Default INSIDE

Restriction OUTSIDE cannot be used when the REGRESSIONPLOT is used in multi-cell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes might be external to the grid.

Interactions For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELPOSITION= option to determine where the line labels appear.

See
“Location and Position of Curve Labels” on page 185

CURVELABELPOSITION=AUTO | MAX | MIN | START | END

specifies the position of the regression line label relative to the regression line.

AUTO automatically positions the line label near the line boundary along unused axes whenever possible (typically Y2 and X2) in order to avoid collision with tick values.

Restriction This option is used only when CURVELABELLOCATION= OUTSIDE.

MAX forces the line label to appear near maximum line values (typically, upper right).

MIN forces the line label to appear near minimum line values (typically, lower left).

START forces the line label to appear near the beginning of the regression line.

Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the regression line has a spiral shape.

END forces the line label to appear near the end of the regression line.
Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the regression line has a spiral shape.

Defaults AUTO when CURVELABELLOCATION=OUTSIDE.

END when CURVELABELLOCATION=INSIDE.

Restriction The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified. The START and END settings are ignored if CURVELABELLOCATION=OUTSIDE is specified.

Interactions For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELLOCATION= option to determine where the line label appears.

Note When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the label might fall outside of the graph area. In that case, the regression-line label might not be displayed or might be positioned incorrectly.

See “Location and Position of Curve Labels” on page 185

CURVELABELSPLIT=TRUE | FALSE
specifies whether to split the regression line label at the specified split characters. When a regression line label is split, the label is split on each occurrence of the specified split characters.

Default FALSE. The regression line label is not split.

Requirement The CURVELABEL= option must also be specified.

Interactions The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.

See “boolean ” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHAR=character-list
specifies one or more characters on which the regression line label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the regression line label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the regression line label is split unconditionally at each occurrence of any of the specified split characters. If the regression line label does not contain any of the specified characters, then the label is not split.
"character-list"
 one or more characters with no delimiter between each character and enclosed in
 quotation marks.

Default A blank space

Requirements
 The list of characters must be specified with no delimiters.
 Multiple characters must be specified with no delimiters. For example, to specify
 the split characters a, b, and c, use the following option:
 curvelabelsplitchar="abc"
 The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interactions
 This option has no effect if CURVELABELPOSITION=AUTO.
 The CURVELABELSPLITCHARDROP= option specifies whether
 the split characters are included in the regression line label or are
 dropped.

Notes
 When multiple characters are specified, the order of the characters
 in the list is not significant.
 The split characters are case sensitive.

Tip
 Use the CURVELABELSPLITJUSTIFY= option to specify the
 justification of the strings in the regression line label block.

CURVELABELSPLITCHARDROP=TRUE | FALSE
 specifies whether the split characters are included in the regression line label text.

 TRUE
 drops the split characters from the regression line label text.

 FALSE
 includes the split characters in the regression line label text. When
 CURVELABELSPLIT=TRUE and
 CURVELABELSPLITCHARDROP=FALSE, each split character remains as the
 last character in the current line. The characters that follow the split character, up
 to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a regression line label with the following
specifications:
 • CURVELABELPOSITION=MAX
 • CURVELABEL="Product*Group*A"
 • CURVELABELSPLIT=TRUE
 • CURVELABELSPLITCHARDROP=TRUE | FALSE
 • CURVELABELSPLITCHAR="*"

Note: The horizontal line to the left of the label represents the maximum end of the
regression line for reference.
When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default

TRUE. The split characters are dropped from the regression line label.

Requirement

The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction

The CURVELABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY= AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the regression line label block.

AUTO

justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the regression line for reference.

In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default

AUTO
Requirement The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction This option has no effect if CURVELABELPOSITION=AUTO.

DATATRANSPARENCY=number

specifies the degree of the transparency of the regression line and line label.

| Default | 0 |
| Range | 0–1, where 0 is opaque and 1 is entirely transparent |

GROUP=column | discrete-attr-var | expression

creates a distinct set of regression lines from just the observations that correspond to each unique group value of the specified column.

- **discrete-attr-var** specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

 Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

 Default Each distinct group value might be represented in the plot by a different combination of line color and line pattern. Line colors vary according to the ContrastColor attribute of the GraphData1–GraphDataN and GraphMissing style elements. Line patterns vary according to the LineStyle attribute of the GraphData1–GraphDataN style elements.

 Restriction The input data must be sorted by the GROUP= column.

 Interactions The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of line colors and line patterns.

 The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

 Tip The LINEATTRS= option can be used to override the representations that are used to identify the groups. For example, LINEATTRS=(PATTERN=SOLID) can be used to assign the same pattern to all of the lines, letting the line color distinguish group values. Likewise, LINEATTRS=(COLOR=BLACK) can be used to assign the same color to all of the lines, letting the line pattern distinguish group values.

 See “DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

| Default | TRUE |
| Interaction | For this option to take effect, the GROUP= option must also be specified. |
Tip
The attributes of the missing group value are determined by the
GraphMissing style element unless a discrete attribute map is in effect,
the INDEX= option is used, the MISSING= system option changes the
default missing character, or a user-defined format is applied to the
group value. In those cases, the attributes of the missing group value
are determined by a GraphData1–GraphDataN style element instead of
by the GraphMissing style element.

See "boolean " on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) to one of the
GraphData1–GraphDataN style elements.

Requirements
The column or expression value must be an integer value of 1 or
greater. Otherwise, this option is ignored.
The positive-integer column must not contain missing values.
Otherwise, the entire column is invalidated and this option is
ignored.
All of the indexes for a specific group value must be the same.
Otherwise, the results are unpredictable.

Interaction
For this option to take effect, the GROUP= option must also be
specified.

Notes
The index values are 1-based indices. For the style attributes in
GraphData1–GraphDataN, if the index value is greater than N, then
a modulo operation remaps that index value to a number less than N
to determine which style to use.
If you do not use this option, then the group values are mapped in
the order of the data.

Tip
You can use indexing to collapse the number of groups that are
represented in a graph. For more information, see “Remapping
Groups for Grouped Data” on page 183.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default
The string specified on the NAME= option.

Restriction
This option applies only to an associated DISCRETELEGEND
statement.

Interaction
If the GROUP= option is specified, then this option is ignored.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the regression line.

Default
The GraphFit style element.

See "General Syntax for Attribute Options" on page 1347 for the syntax on
using a style-element.
“Line Options” on page 1349 for available line-options.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction
The *string* is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction
The *string* is used as the default legend label if the **LEGENDLABEL**= option is not used.

PRIMARY=TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default
FALSE

Restriction
This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note
In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See
“When Plots Share Data and a Common Axis” on page 880

TIPFORMAT=(role-format-list)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example
TIPFORMAT=(Y=6.2)

Default
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Requirement
To enable data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Note
The columns assigned to the X, Y, and GROUP (if assigned) roles are automatically included in the data tip information.

TIPLABEL=(role-label-list)

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.
role-label-list

a space-separated list of rolename = "string" pairs.

Example TIPLABEL=(Y="Curve")

Default The column label or column name of the column assigned to the role.

Note The columns assigned to the X, Y, and GROUP (if assigned) roles are automatically included in the data tip information.

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interaction The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Regression Options

ALPHA=positive-number

specifies the confidence level to compute.

Default 0.05

Range 0 < positive-number < 1

Tip ALPHA=0.05 represents a 95% confidence level.

CLI="name"

produces confidence limits for individual predicted values for each observation. The confidence level is set by the ALPHA= option.

Interaction name is a unique name within the template that is case sensitive and cannot contain spaces. It must be assigned in order for the confidence limits to be computed. To display confidence limits, you must use this name as the required argument of a MODELBand statement. See the example in “Example: REGRESSIONPLOT Statement” on page 678.

CLM="name"

produces confidence limits for a mean predicted value for each observation. The confidence level is set by the ALPHA= option.
Interaction *name* is a unique name within the template that is case sensitive and cannot contain spaces. It must be assigned in order for the confidence limits to be computed. To display confidence limits, you must use this name as the required argument of a MODELBand statement. See the example in “Example: REGRESSIONPLOT Statement” on page 678.

DEGREE=non-negative-integer
specifies the degree of the polynomial.
The default value, DEGREE=1, produces a linear fit, DEGREE=2 produces a quadratic fit, DEGREE=3 produces a cubic fit, and so on.
The value of the DEGREE=d option corresponds to one of the following TRANSREG procedure specifications for the independent variable: SPLINE(X / DEGREE=d) or PBSPLINE(X / DEGREE=d LAMBDA=0).
Default 1
Ranges 0–174 in the first maintenance release of SAS 9.4 and earlier releases.
0–10 starting with the second maintenance release of SAS 9.4.

FREQ=numeric-column
specifies a column in the input data set that represents the frequency of occurrence of the current observation, essentially treating the data set as if each observation appeared n times, where n is the value of the FREQ column for the observation. Noninteger values of the FREQ column are truncated to the largest integer less than the FREQ value. The observation is used in the analysis only if the value of the FREQ column is greater than or equal to 1.

MAXPOINTS=positive-integer
specifies the maximum number of predicted points generated for the regression curve as well as any confidence limits.
Default 201

WEIGHT=numeric-column
specifies a column in the input data set that contains values to be used as a priori weights for a regression fit. If an observation’s weight is zero, negative, or missing, then the observation is deleted from the analysis.

Interaction Starting with the second maintenance release of SAS 9.4, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low chart instead of a band.

Details

The REGRESSIONPLOT statement only supports models of one independent and one dependent variable. For more information about the fitting methodology, see the TRANSREG procedure in the SAS/STAT user’s guide.

In addition to the regression line, the REGRESSIONPLOT statement can compute confidence levels for the fitted line. To display the confidence levels:

1. Use the CLI= or CLM= regression option(s) to declare a name for each confidence level.
2. Use MODELBand statements to refer to the name(s) and draw a confidence band(s) from this information.

Example: REGRESSIONPLOT Statement

The following graph was generated by the “Example Program” on page 678:

![Regression Fit Plot](image)

Example Program

```plaintext
class proc template;
define statgraph regressionplot;
begingraph;
entrytitle "Regression Fit Plot";
layout overlay;
scatterplot x=weight y=mpg_highway / datatransparency=0.7;
regressionplot x=weight y=mpg_highway / name="fitline" alpha=0.05 legendlabel="Regression Fit";
discretelegend "fitline";
endlayout;
endgraph;
end;
run;

proc sgrender data=sashelp.cars template=regressionplot;
run;
```
SCATTERPLOT Statement

Creates a scatter plot of input data.

Syntax

SCATTERPLOT X=column | expression
 Y=column | expression </option(s)>;

Summary of Optional Arguments

Appearance options

CLUSTERWIDTH=number
 on a discrete axis, specifies the width of the group clusters as a fraction of the
 midpoint spacing. On an interval axis, specifies the width of the group
 clusters as a fraction of the minimum interval between adjacent data values.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= or
 MARKERCOLORGRADIENT= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
 starting with the second maintenance release of SAS 9.4, specifies the
 column or range attribute map variable to use to determine the marker colors.

CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)
 specifies whether space requirements for this plot contribute to the
 calculation of the axis offsets.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 enhances the visual appearance of the plot markers.

DATATRANSPARENCY=number
 specifies the degree of the transparency of the markers, data labels, and error
 bars, when displayed.

DISCRETEMARKERSIZE=number
 specifies the size of a marker as a fraction of the tick spacing.

ERRORBARATTRS=style-element | style-element (line-options) | (line-options)
 specifies the attributes of the error bars that are associated with the data
 points.

ERRORBARCAPSHAPE=SERIF | NONE
 specifies whether the error bars have a serif cap.

FILLEDOUTLINEDMARKERS=TRUE | FALSE
 specifies whether markers are drawn with both fill and an outline.

INDEX=positive-integer-column | expression
 specifies indices for mapping marker attributes (color and symbol) to one of
 the GraphData1–GraphDataN style elements.

LABELSTRIP=TRUE | FALSE
 specifies whether leading and trailing blanks are stripped from marker
 characters or data labels that have a fixed position before they are displayed
 in the plot.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
 specifies the attributes of the data markers.

MARKERCHARACTER=column | expression
specifies a column that defines strings that are to be used instead of marker symbols.

MARKERCHARACTERATTRS= *style-element | style-element (text-options) | (text-options)*

specifies the color and font attributes of the marker character specified on the MARKERCHARACTER= option.

MARKERCHARACTERPOSITION= *CENTER | TOP | BOTTOM | LEFT | RIGHT | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT*

specifies the justification of the marker characters.

MARKERCOLORGRADIENT= *numeric-column | range-attr-var | expression*

in the first maintenance release of SAS 9.4 and earlier releases, specifies the column or range attribute map variable that is used to determine the marker colors.

MARKERFILLATTRS= *style-element | (fill-options)*

specifies the appearance of the filled markers.

MARKEROUTLINEATTRS= *style-element | (line-options)*

specifies the appearance of the marker outlines.

MARKERSIZEMAX= *dimension*

for the first maintenance release of SAS 9.4 and for earlier releases, specifies a drawing size for the largest marker when the marker size represents response values.

MARKERSIZEMIN= *dimension*

for the first maintenance release of SAS 9.4 and for earlier releases, specifies a drawing size for the smallest marker when the marker size represents response values.

MARKERSIZERESPONSE= *numeric-column | expression*

for the first maintenance release of SAS 9.4 and for earlier releases, specifies a column that is used to map the drawing size of the markers.

OUTLINEDMARKERCHARACTERS= *TRUE | FALSE*

specifies whether the characters that are used as marker symbols are outlined in order to enhance their appearance in the graph.

REVERSECOLORMODEL= *TRUE | FALSE*

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

SIZEMAX= *dimension*

starting with the second maintenance release of SAS 9.4, specifies a drawing size for the largest marker when the marker size represents response values.

SIZEMIN= *dimension*

starting with the second maintenance release of SAS 9.4, specifies a drawing size for the smallest marker when the marker size represents response values.

SIZERESPONSE= *numeric-column | expression*

starting with the second maintenance release of SAS 9.4, specifies a column that is used to map the drawing size of the markers.

SUBPIXEL= *AUTO | OFF*

specifies whether subpixel rendering is used for image output when the scatter plot is rendered.

USEDISCRETESIZE= *TRUE | FALSE*

specifies that the marker size should be based on fraction of the midpoint spacing that is set by the DISCRETEMARKERSIZE= option.

XERRORLOWER= *numeric-column | expression*

specifies values for the lower endpoints on the X error bars. The error bars are drawn from the markers to the endpoints.
XERRORUPPER=numeric-column | expression
specifies values for the upper endpoints on the X error bars.

YERRORLOWER=numeric-column | expression
specifies values for the lower endpoints on the Y error bars.

YERRORUPPER=numeric-column | expression
specifies values for the upper endpoints on the Y error bars.

Axes options

CLUSTERAXIS=AUTO | X | Y
specifies the axis to use for clustering groups when
GROUPDISPLAY=CLUSTER.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for
determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the
secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the
secondary Y2 (right) axis.

Data tip options

ROLENANE=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the
scatter points.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

DATALABEL=column | expression
specifies a column for marker labels. The label positions are adjusted to
prevent them from overlapping.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOpleft | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the markers.

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if
needed.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.
LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options
DISCRETEOFFSET=number
specifies an amount to offset all markers from discrete X values, or discrete Y values, or both.

GROUP=column | discrete-attr-var | expression
creates a separate marker type for each unique group value of the specified column.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how marker groups are positioned for the coordinate pairs.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

JITTER=NONE | AUTO
specifies whether to jitter data markers.

JITTEROPTS=(jitter-options)
specifies options for managing jittering.

ODS options
URL=string-column
specifies an HTML page to display when a point is selected.

Plot reference options
NAME="string"
assigns a name to this plot statement for reference in other template statements.

Statistics options
FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

Required Arguments
X=column | expression
specifies the column for the X values.

Y=column | expression
specifies the column for the Y values.

Optional Arguments
COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= or MARKERCOLORGRADIENT= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= or MARKERCOLORGRADIENT= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= or MARKERCOLORGRADIENT= column.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= or MARKERCOLORGRADIENT= column.

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color” on page 1340

Default The ThreeColorAltRamp style element.

Interaction For this option to take effect, the COLORRESPONSE= or MARKERCOLORGRADIENT= option must also be specified.

Tip The REVERSECOLORMODEL= option can be used to reverse the start and end colors of the ramp assigned to the color model.

COLORRESPONSE=numeric-column | range-attr-var | expression

starting with the second maintenance release of SAS 9.4, specifies the column or range attribute map variable to use to determine the marker colors.

Note: Starting with the second maintenance release of SAS 9.4, the COLORRESPONSE= option replaces the MARKERCOLORGRADIENT= option. The syntax and functionality are the same. The MARKERCOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is preferred.

range-attr-var specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

Tip For each range in the attribute map, the RANGEALTCOLOR= or RANGEEALTCLASS= option in the RANGE statement determines the marker colors.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLOREMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

You can use this option to add a second response variable to an analysis. For example, in an analysis of weight by height, you can specify an age column by using
the COLORRESPONSE= or MARKERCOLORGRADIENT= option so that the change in the gradient color of the markers reflects the change in age.

Requirement
For a grouped plot, the COLORRESPONSE values should remain constant for each group value. If the COLORRESPONSE column has multiple values for a single GROUP value, unexpected results might occur.

Interactions
When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Suboption COLOR= in the DATALABELATTRS= option overrides this option for the data label color attribute.

This option overrides suboption COLOR= in the MARKERATTRS= option and in the MARKERCHARACTERATTRS= option and varies the marker color according to the color gradient or the attribute map.

Note
You can use MARKERCOLORGRADIENT= as an alternative to COLORRESPONSE=. However, if you use MARKERCOLORGRADIENT=, be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options recognize MARKERCOLORGRADIENT as the color role, not COLORRESPONSE.

Tips
To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

Starting with the second maintenance release of SAS 9.4, when this option is in effect and error bars are displayed, the error bars derive their color from the markers. To set a fixed color for the error bars, use the ERRORBARATTRS= option.

If the MARKERCHARACTER= option is also specified, then the gradients that would be applied to the markers are applied to the text strings.

CLUSTERAXIS=AUTO | X | Y
specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.
AUTO uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

X | Y uses the X or Y axis for clustering groups.

Default AUTO

Interaction The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect.

CLUSTERWIDTH=number
on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

Default 0.85

Range 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.

Interactions For this option to take effect, the GROUP= option must also be specified, and the GROUPDISPLAY= option must be set to CLUSTER.

When GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect for interval data, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

CONTRIBUTEOffsets=ALL | NONE | (axis-offset-list)
specifies whether space requirements for this plot contribute to the calculation of the axis offsets.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

This plot's layout container queries each of its plots for a preferred offset and includes all of the offsets in the axis offset calculations. If the DATALABEL= or MARKERCHARACTER= option is specified for this plot, this plot might request a preferred offset that prevents the clipping of any data labels or marker character
strings that appear at the ends of the axes. The requested offset is based on the longest string. If the label or marker character lengths vary significantly, the result is wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTE OFFSETS= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

ALL
the space requirements for this plot are contributed to the axis offset calculations.

NONE
the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)
a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values, enclosed in parentheses:

- **XMAX** the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.
- **XMIN** the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.
- **YMAX** the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.
- **YMIN** the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default ALL

Interaction
Offsets that are set in the layout axis options are always honored, regardless of the setting on this option.

Note
This option does not affect offset requests from other plots.

DATALABEL=column | expression
specifies a column for marker labels. The label positions are adjusted to prevent them from overlapping.

Default
No data labels are displayed
If a numeric column is specified and the column has no format, then a BEST6 format is applied.

This option is ignored if the MARKERCHARACTER= option is used, which displays labels instead of the markers.

Use this option to display labels for the markers. The position of the labels are adjusted to prevent the labels from overlapping. If you want labels displayed instead of markers, then use the MARKERCHARACTER= option.

DATALABELATTRS=

- `style-element` | `style-element (text-options)` | `(text-options)`

specifies the color and font attributes of the data labels.

Defaults

- For non-grouped data, the GraphDataText style element.
- For grouped data, the GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

For this option to take effect, the DATALABEL= option must also be specified.

This option is ignored if the MARKERCHARACTER= option is specified.

When the DATALABELPOSITION=AUTO option is in effect, in some cases, the data label font size might be reduced in order to avoid overlapping labels and markers.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`

“Text Options” on page 1351 for available `text-options`.

DATALABELPOSITION=

- `AUTO` | `TOPRIGHT` | `TOP` | `TOPLEFT` | `LEFT` | `CENTER` | `RIGHT` | `BOTTOMLEFT` | `BOTTOM` | `BOTTOMRIGHT`

specifies the location of the data labels relative to the markers.

Default AUTO

DATALABELSPLIT=

- `TRUE` | `FALSE`

specifies whether to split the data labels at the specified split characters.

Default FALSE

The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATALABELPOSITION=AUTO.

See “boolean ” on page 1339 for other Boolean values that you can use.

DATALABELSPLITCHAR=

- `"character-list"`

specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.
When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitchar="abc"

Interactions

This option has no effect if DATALABELPOSITION=AUTO or if DATALABELSPLIT=FALSE.

The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATALABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the data labels. The split characters are specified by the DATALABELSPLITCHAR= option.

TRUE
drops the split characters from the data label.

FALSE
includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"
When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default

TRUE. The split characters are dropped from the data label.

Interactions

This option has no effect unless DATALABELSPLIT=TRUE.

The DATALABELSPLITCHAR= option specifies the split characters.

See

"boolean " on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

AUTO

justifies the labels based on the DATALABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, then the bottom center of the text box is positioned at the top of the marker.

Default

AUTO
Interaction This option has no effect if DATALABELPOSITION=AUTO or if DATALABELSPLIT=FALSE.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the plot markers. The following figure shows large CIRCLEFILLED markers with each of the skins applied.

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default
The **DATASKIN=** option value that is specified in the BEGINGRAPH statement. If not specified, then the GraphSkins:DataSkin style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the **DATASKINMAX=** option in your ODS GRAPHICS statement to increase the maximum limit.

Interactions
This option overrides the BEGINGRAPH statement **DATASKIN=** option.

When a data skin is applied, all marker outlines are set by the skin, and the outline settings are ignored from the ODS style or from **MARKERATTRS=** option.

DATATRANSPARENCY=number
specifies the degree of the transparency of the markers, data labels, and error bars, when displayed.

Default
0

Range
0–1, where 0 is opaque and 1 is entirely transparent

DISCRETEMARKERSIZE=number
specifies the size of a marker as a fraction of the tick spacing.

Default
0.5

Range
0 to 1
Requirement For this option to take effect, at least one of the axes must be discrete.

Interactions If both of the axes are discrete, then the marker size is a fraction of the smaller tick spacing.

If the X axis is a numeric interval axis and the GROUPDISPLAY=CLUSTER option is in effect, then the marker size is a fraction of the interval between the two closest but not identical points in the X direction.

For this option to take effect, the USEDISCRETESIZE= option must be set to TRUE (the default is FALSE).

DISCRETEOFFSET=number

specifies an amount to offset all markers from discrete X values, or discrete Y values, or both. This feature is useful for graphing multiple response variables side by side on a common axis. By default within an overlay-type layout, if a SCATTERPLOT is used with other plots with a discrete axis, then the markers are centered on the discrete X values, or discrete Y values, or both. Depending on the data, the markers might be superimposed over other graph data. The following code fragment shows the default positioning when a SCATTERPLOT is used with a BOXPLOT:

```
layout overlay / cycleattrs=true
    xaxisopts=(type=discrete);

    scatterplot x=age y=weight;
    boxplot x=age y=weight;

endlayout;
```

To avoid superimposed plots, you can assign a different offset to each plot statement:

```
layout overlay / cycleattrs=true
    xaxisopts=(type=discrete);
    scatterplot x=age y=weight /
        discreteoffset=0.2;
    boxplot x=age y=weight /
        discreteoffset=-0.2;
endlayout;
```
Default

0 (no offset, all markers are centered on the discrete X values, or discrete Y values, or both)

Range

−0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is to the right on discrete X values and up on discrete Y values. If the layout’s axis options set REVERSE=TRUE, then the offset direction is also reversed.

Restriction

This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip

Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

ERRORBARATTRS=

style-element | style-element (line-options) | (line-options)

specifies the attributes of the error bars that are associated with the data points.

Defaults

For non-grouped data, the GraphError style element.

For grouped data, the LineStyle and LineThickness attributes of the GraphError style element and the ContrastColor attribute of the GraphData1–GraphDataN style elements. (The LineStyle does not apply to the "serif" parts of the error bars.)

Interaction

For this option to take effect, error bars must be displayed by the **XERRORLOWER=**, **XERRORUPPER=**, **YERRORLOWER=**, or **YERRORUPPER=** options.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a **style-element**.

“Line Options” on page 1349 for available **line-options**.

ERRORBARCAPSHAPE=SERIF | NONE

specifies whether the error bars have a serif cap.
Defaults

SERIF in the first maintenance release of SAS 9.4 and earlier releases.

Starting with the second maintenance release of SAS 9.4, GraphError:CapStyle style reference. If attribute CapStyle is not defined in the active style, then SERIF is the default value.

Tip

The appearance of the error bars is controlled by the ERRORBARATTRS= option.

FILLEDOUTLINEDMARKERS=TRUE | FALSE

specifies whether markers are drawn with both fill and an outline.

TRUE
draws filled markers (marker symbols with the suffix FILLED) using both fill and an outline. When this option is TRUE, the fill color and outline color for filled markers are determined in the following ways:

- If the GROUP= option is specified, then by default, the fill color is derived from the GraphData1–GraphDataN style elements Color attribute, and the marker outlined color is derived from the GraphData1–GraphDataN style elements ContrastColor attribute.
- If the GROUP= option is not specified, then by default, the fill color is derived from the GraphDataDefault style elements Color attribute, and the marker outlined color is derived from the GraphOutline style elements ContrastColor attribute.
- If the COLORRESPONSE= MARKERCOLORGRADIENT= option is specified, then the marker fill is drawn by using the mapped color that is computed from the value of the COLORRESPONSE= or MARKERCOLORGRADIENT= option for that observation. The marker outline is drawn by using the MARKEROUTLINEATTRS= specification.

FALSE
draws the markers using fill or an outline, but not both.

Default

FALSE

Tip

To specify the marker fill and outline colors for a non-grouped plot, set this option to TRUE, and then use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify the colors.

See

GROUP= on page 694
MARKERFILLATTRS= on page 703
MARKEROUTLINEATTRS= on page 703
COLORRESPONSE= on page 683
“boolean “ on page 1339 for other Boolean values that you can use.
FREQ=numeric-column | expression
 specifies a numeric column that provides frequencies for each observation that is read.

Default All observations have a frequency count of 1.

Restriction If the value of the numeric-column is missing or is less than 1, then the observation is not used in the analysis. If the value is not an integer, then only the integer portion is used.

Note If \(n \) is the value of the numeric column for a given observation, then that observation is used \(n \) times for the purposes of any statistical computation.

GROUP=column | discrete-attr-var | expression
 creates a separate marker type for each unique group value of the specified column.

discrete-attr-var
 specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default Each distinct group value might be represented in the plot by a different combination of color and marker symbol. Markers vary according to the ContrastColor and MarkerSymbol attributes of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of markers and colors.

The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

The marker size is set by the MARKERATTRS= option.

The MARKERCHARACTER=, COLORRESPONSE=, and MARKERCOLORGRADIENT= options override the group settings for the marker symbol and marker color.

The SIZERESPONSE= and MARKERSIZERESPONSE= options override this option’s SIZE= setting.

Tip The representations that are used to identify the groups can be overridden. For example, each distinct group value is represented by a different marker symbol, but the MARKERATTRS=(SYMBOL=marker) option could be used to assign the same symbol to all of the plot’s marker symbols, letting marker color indicate group values. Likewise, MARKERATTRS=(COLOR=color) could be used to assign the same color to all markers, letting marker symbol indicate group values.

See “DISCRETEATTRVAR Statement” on page 1297
GROUPDISPLAY=OVERLAY | CLUSTER
specifies how marker groups are positioned for the coordinate pairs.

OVERLAY
draws markers for a given group value at the exact coordinate. Depending on the data, markers at a given coordinate might overlap.

CLUSTER
draws markers for a given group value adjacent to each other.

Default OVERLAY

Interaction For interval data, when GROUPDISPLAY=CLUSTER is in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

Tip Use the CLUSTERWIDTH= option to control the width of the clusters when CLUSTER is in effect.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.

Default DATA

Interactions This option is ignored if the GROUP= option is not also specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.
Tips

Use the CLUSTERWIDTH= option to control the distance between the group markers in a cluster.

Use the INDEX= option to alter the default sequence of visual attributes that is assigned to the groups.

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

Default TRUE

Interaction For this option to take effect, the GROUP= option must also be specified.

Tip The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression

specifies indices for mapping marker attributes (color and symbol) to one of the GraphData1–GraphDataN style elements.

Requirements The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interactions For this option to take effect, the GROUP= option must also be specified.

The MARKERCHARACTER=, COLORRESPONSE=, and MARKERCOLORGRADIENT= options override the group settings for the marker symbol and marker color.

Notes The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.
JITTER=NONE | AUTO
specifies whether to jitter data markers.

NONE
does not offset the data markers.

AUTO
the system determines the best way to display the data markers, based on the
settings specified by the JITTEROPTS= option.

The following figures show a side-by-side comparison of a BOXPLOT and
SCATTERPLOT in which the JITTER=NONE and JITTER=AUTO options are
specified in the SCATTERPLOT statements. The first figure shows the case in which
the Y axis is linear and the X axis is discrete.

In this case, when jittering is disabled (JITTER=NONE), markers that represent the
same Y value are overlaid, which results in some markers being obscured. When
jittering is enabled (JITTER=AUTO), one-dimensional systematic jittering occurs
along the X axis. The markers that represent approximately the same Y value are
offset along the X axis from the midpoint of that value in order to make all of the
markers visible.

The next figure shows the case in which both axes are linear.
In this case, when jittering is disabled (JITTER=NONE), markers that represent the same X and Y bin value are overlaid as in the previous case, which results in some markers being obscured. However, unlike the previous case, when jittering is enabled (JITTER=AUTO), two-dimensional random jittering occurs along the X and the Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.

Default NONE

Restrictions
In SAS 9.4, jittering is not supported when GROUPDISPLAY=CLUSTER. Starting with the first maintenance release of SAS 9.4, this restriction is removed.

One-dimensional systematic jittering is not supported when the MARKERCHARACTER= or the MARKERSIZERESPONSE= option is in effect. Random jittering is supported in those cases when both the X and Y axes are interval axes.

Interactions
When jittering is enabled, the FREQ= option is ignored.

If this option is set to AUTO and both axes are discrete, then one-dimensional systematic jittering occurs along the X axis.

Notes
Jittering changes the default axis offsets, but it does not change the axis data range.

When jittering is requested on a discrete axis and a large amount of data is plotted, the jittering process can become resource-intensive. In that case, it might take longer to render the plot.

JITTEROPTS=(jitter-options)
specifies options for managing jittering. The jitter options can be one or more of the following values, separated by a space:

AXIS=AUTO | X | Y | BOTH
specifies the axis to use for jittering the data markers.

AUTO
the system determines the axis, based on the following criteria:

• If the X axis is discrete, then one-dimensional systematic jittering is applied along the X axis.
• If the Y axis is discrete and the X axis is interval, then one-dimensional systematic jittering is applied along the Y axis.
• If the X and Y axes are interval, then random jittering is applied along both the X and Y axes.

X
jittering is on the X axis. If the X axis is discrete, then 1-dimensional systematic jittering is applied. Otherwise, 1-dimensional random jittering is applied.

Note If both the X and Y axes are discrete, then specifying BOTH is equivalent to specifying X.
Y jittering is applied on the Y axis. If the Y axis is discrete, then 1-dimensional systematic jittering is applied. Otherwise, 1-dimensional random jittering is applied.

BOTH
specifies that random jittering is applied on both the X and Y axes. This option applies only when both the X and Y axes are interval.

Tip When the X or Y axis is discrete, specifying BOTH is equivalent to specifying AUTO.

Default AUTO

Restriction When the `MARKERCHARACTER=` or the `MARKERSIZERESPONSE=` option is in effect, 1-dimensional systematic jittering is not supported. Random jittering is supported in those cases when both the X and Y axes are interval axes.

WIDTH= *positive-number*
specifies the width of the jittering space as a fraction of either the midpoint spacing or of the minimal interval width.

Defaults
- 0.85 for 1-dimensional systematic jittering
- 0.4 for random jittering on one or both axes.

Note For a discrete axis, this option has effect only when the markers cannot be clustered side-by-side without overlapping. When WIDTH= is set to a value that is sufficient to eliminate marker overlap in that case, increasing the value further has no effect.

Tip The specified number can be greater than 1.

Interaction This option is ignored when JITTER=NONE.

LABELSTRIP= **TRUE | FALSE**
specifies whether leading and trailing blanks are stripped from marker characters or data labels that have a fixed position before they are displayed in the plot. The `MARKERCHARACTER=` option specifies the column that provides the marker strings that are to be used in place of marker symbols.

Default FALSE

Interactions
- This option effects marker strings only when the `MARKERCHARACTER=` option is specified.
- This option effects data labels only when `DATALABEL=` is specified and `DATALABELPOSITION=` is not AUTO.

Tip Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

See "**boolean** " on page 1339 for other Boolean values that you can use.
LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default The Y-column label. If a label is not defined, then the Y-column name is used.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)

specifies the attributes of the data markers.

Defaults For non-grouped data, GraphDataDefault style element.

For grouped data, the MarkerSymbol and ContrastColor attributes of the GraphData1–GraphDataN style elements, and the GraphDataDefault:MarkerSize style reference.

Interactions If the COLORRESPONSE= or MARKERCOLORGRADIENT= option is specified, then this option’s COLOR= suboption is ignored.

If the MARKERCHARACTER= option is specified, then this option’s SYMBOL= and WEIGHT= suboptions are ignored.

If FILLEDOUTLINEDMARKERS=TRUE, then this option’s COLOR= suboption is ignored. In that case, to specify the marker fill color, use the MARKERFILLATTRS= option instead.

This option’s COLOR= suboption overrides the default behavior for grouped data. When the COLOR= suboption is specified in that case, all markers have the same color, and the marker symbol alone distinguishes the markers.

This option’s SYMBOL= suboption overrides the default behavior for grouped data. When the SYMBOL= suboption is specified in that case, all markers have the same symbol, and the symbol color alone distinguishes the markers.

The TRANSPARENCY= fill option overrides this option’s DATATRANSPARENCY= suboption.

Note When style-element is specified, only the style element’s MARKERSYMBOL, CONTRASTCOLOR, and MARKERSIZE attributes are used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

MARKERCHARACTER=column | expression

specifies a column that defines strings that are to be used instead of marker symbols.
Each string is centered horizontally and vertically at the data point. The data point positions are not adjusted to prevent text overlap.

Interactions

This option overrides the `DATALABEL=` option.

If the `GROUP=` option is also used, then color is displayed for a DISCRETE legend, but the character is not displayed in the legend. For text strings, the same colors are applied to the text strings as would have been applied to markers.

One-dimensional systematic jittering is not supported when this option is in effect. Random jittering is supported when this option is in effect and both the X and Y axes are interval axes. See `JITTER=` on page 697.

Note

If a numeric column is used, then its values are converted to strings using the format associated with the column or BEST6 if no format is defined.

Tips

Lengthy strings might be clipped by the plot border. To reduce clipping, you can use the `OFFSETMIN=` and `OFFSETMAX=` suboptions of the `XAXISOPTS=` and `YAXISOPTS=` options to increase the axis offsets.

You can use the `MARKERCHARACTERPOSITION=` option to change the justification of the marker character.

You can use the `OUTLINEDMARKERCHARACTERS=` option to enhance the appearance of the marker characters.

You can use the `LABELSTRIP=` option to strip the leading and trailing blanks from numeric value strings in order to center each string on its data point.

MARKERCHARACTERATTRS=

`style-element | style-element (text-options) | (text-options)` specifies the color and font attributes of the marker character specified on the `MARKERCHARACTER=` option.

Defaults

For non-grouped data, the `GraphDataText` style element.
For grouped data, GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

Interactions

For this option to take effect, the `MARKERCHARACTER=` option must also be used.

When the `GROUP=` option is also specified, each distinct group value might be represented by a different color (depending on the ODS style setting or the setting on the `INDEX=` option). The marker character that is associated with the group is assigned the group color.

This option’s `COLOR=` suboption can be used to specify a single color for all marker characters in a grouped plot, without affecting items that have a group color, such as error bars and marker symbols.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Text Options” on page 1351 for available `text-options`.

MARKERCHARACTERPOSITION=

`CENTER | TOP | BOTTOM | LEFT | RIGHT | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT`

specifies the justification of the marker characters. The following figure shows the effect of each of the values on the position of marker character M.

![Diagram showing the effect of marker character position]

Note: The red dots represent the center in each case for reference.

Default

`CENTER`

Interaction

This option is ignored if the `MARKERCHARACTER=` option is not specified.

Tip

You can use the `LABELSTRIP=` option to strip the leading and trailing blanks from value strings in order to properly justify each string on its data point.

MARKERCOLORGRADIENT=

`numeric-column | range-attr-var | expression`

in the first maintenance release of SAS 9.4 and earlier releases, specifies the column or range attribute map variable that is used to determine the marker colors.

Note: Starting with the second maintenance release of SAS 9.4, the `MARKERCOLORGRADIENT=` option is deprecated and replaced with the `COLORRESPONSE=` option. The syntax and functionality are the same. The `MARKERCOLORGRADIENT=` option is still honored, but the `COLORRESPONSE=` option is preferred.
Note Starting with the second maintenance release of SAS 9.4, if you use the MARKERCOLORGRADIENT= option, then be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options recognize the MARKERCOLORGRADIENT role and not the COLORRESPONSE role.

See COLORRESPONSE= on page 683

MARKERFILLATTRS=style-element | (fill-options)
specifies the appearance of the filled markers.

Defaults For non-grouped data, the COLOR attribute of the GraphDataDefault style element
For grouped data, the COLOR attribute of a GraphData1–GraphDataN style element

Restriction The TRANSPARENCY= fill option is ignored. Use the MARKERATTRS= option to set the marker transparency.

Interactions This option is in effect only when FILLEDOUTLINEDMARKERS=TRUE and the DISPLAY= option enables fill display.
When the COLORRESPONSE= or MARKERCOLORGRADIENT= option is in effect, this option’s COLOR= specification is ignored.

Note When style-element is specified, only the style element’s COLOR attribute is used.

See “General Syntax for Attribute Options” on page 1347
“Fill Options” on page 1348

MARKEROUTLINEATTRS=style-element | (line-options)
specifies the appearance of the marker outlines.

Defaults For non-grouped data, the GraphOutlines style element.
For grouped data, the LineThickness attribute of the GraphOutlines style element and the ContrastColor attribute of a GraphData1–GraphDataN style element.

Restriction The line style of the marker outline is always solid.

Interaction This option is ignored when a data skin is applied by the current style or by the DATASKIN= option. In the latter case, the outline is set by the data skin.

Note When style-element is specified, only the style element’s CONTRASTCOLOR and LINETHICKNESS attributes are used.

See “General Syntax for Attribute Options” on page 1347
“Line Options” on page 1349

MARKERSIZEMAX=dimension
for the first maintenance release of SAS 9.4 and for earlier releases, specifies a drawing size for the largest marker when the marker size represents response values.
Note: Starting with the second maintenance release of SAS 9.4, the SIZEMAX= option replaces the MARKERSIZEMAX= option. The syntax and functionality are the same. The MARKERSIZEMAX= option is still honored, but the SIZEMAX= option is preferred.

See SIZEMAX= on page 706

“dimension” on page 1340

MARKERSIZEMIN=\textit{dimension}
for the first maintenance release of SAS 9.4 and for earlier releases, specifies a drawing size for the smallest marker when the marker size represents response values.

Note: Starting with the second maintenance release of SAS 9.4, the SIZEMIN= option replaces the MARKERSIZEMIN= option. The syntax and functionality are the same. The MARKERSIZEMIN= option is still honored, but the SIZEMIN= option is preferred.

See SIZEMIN= on page 706

“dimension” on page 1340

MARKERSIZERESPONSE=\textit{numeric-column} | \textit{expression}
for the first maintenance release of SAS 9.4 and for earlier releases, specifies a column that is used to map the drawing size of the markers.

Note: Starting with the second maintenance release of SAS 9.4, the SIZERESPONSE= option replaces the MARKERSIZERESPONSE= option. The syntax and functionality are the same. The MARKERSIZERESPONSE= option is still honored, but the SIZERESPONSE= option is preferred.

Interaction One-dimensional systematic jittering is not supported when this option is in effect. Random jittering is supported when this option is in effect and both the X and Y axes are interval axes. See JITTER= on page 697.

NAME="\textit{string}"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The \textit{string} is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The \textit{string} is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEDMARKERCHARACTERS=\texttt{TRUE} | \texttt{FALSE}
specifies whether the characters that are used as marker symbols are outlined in order to enhance their appearance in the graph.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

Note: This feature is deprecated starting with the second maintenance release of SAS 9.4. The OUTLINEDMARKERCHARACTERS= option is still honored, but the TEXTPLOT statement is now the preferred method of creating a scatter plot using text markers.
The following figure shows the marker characters M and F displayed when OUTLINEDMARKERCHARACTERS=FALSE (default) and when OUTLINEDMARKERCHARACTERS=TRUE.

<table>
<thead>
<tr>
<th>OUTLINEDMARKERCHARACTERS</th>
<th>FALSE</th>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>M</td>
<td>F</td>
</tr>
</tbody>
</table>

Default: FALSE

Restriction: Outline marker characters are not supported in vector graphics output. When this option is set and vector graphics output is requested, the graph is converted into an image instead. A note indicating the conversion is written to the SAS log. To restore the vector graphics output in that case, remove the OUTLINEDMARKERCHARACTERS= option from the SCATTERPLOT statement.

Interaction: The MARKERCHARACTER= option must be specified for this option to have any effect.

See: “boolean ” on page 1339 for other Boolean values that you can use.

PRIMARY=TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default: FALSE

Restriction: This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note: In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See: “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

REVERSECOLORMODEL=TRUE | FALSE

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default: FALSE

See: COLORMODEL=

“boolean ” on page 1339 for other Boolean values that you can use.
ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles X, Y, DATALABEL, MARKERCHARACTER, COLORRESPONSE or MARKERCOLORGRADIENT, XERRORLOWER, XERRORUPPER, YERRORLOWER, YERRORUPPER, GROUP, and INDEX.

SIZEMAX=dimension
starting with the second maintenance release of SAS 9.4, specifies a drawing size for the largest marker when the marker size represents response values.

Note: Starting with the second maintenance release of SAS 9.4, the SIZEMAX= option replaces the MARKERSIZEMAX= option. The syntax and functionality are the same. The MARKERSIZEMAX= option is still honored, but the SIZEMAX= option is preferred.

Default Three times the GraphDataDefault:MarkerSize setting (typically 7px) or 21px.

Restriction The SIZEMAX= value must be greater than the SIZEMIN= or MARKERSIZEMIN= value.

Interactions For this option to take effect, the SIZERESPONSE= or MARKERSIZERESPONSE= option must also be used.

This option is ignored when the MARKERCHARACTER= option is used. To manage the size of marker characters in a scatter plot, use the TEXTPLOT statement.

Tip If you specify this size as a percent, then the specified value is interpreted as a percent of the graph’s height. You can control the height by using the DESIGNHEIGHT= option of the BEGINGRAPH statement, or by using the HEIGHT= option of the ODS GRAPHICS statement. For a standard 640px by 480px output size, a percentage value of 4.5% sets a maximum size of about 21px, which is approximately the same marker size that would result from this option’s typical default setting.

See “dimension” on page 1340

SIZEMIN=dimension
starting with the second maintenance release of SAS 9.4, specifies a drawing size for the smallest marker when the marker size represents response values.
Note: Starting with the second maintenance release of SAS 9.4, the SIZEMIN= option replaces the MARKERSIZEMIN= option. The syntax and functionality are the same. The MARKERSIZEMIN= option is still honored, but the SIZEMIN= option is preferred.

Default
The GraphDataDefault:MarkerSize setting, which is typically 7px.

Restriction
The SIZEMIN= value must be less than the SIZEMAX= or MARKERSIZEMAX= value.

Interactions
For this option to take effect, you must also specify the SIZERESPONSE= or MARKERSIZERESPONSE= option.

This option is ignored when the MARKERCHARACTER= option is used. To manage the size of marker characters in a scatter plot, use the TEXTPLOT statement.

Tip
If you specify this size as a percent, then the specified value is interpreted as a percent of the graph’s height. You can control the height by using the DESIGNHEIGHT= option of the BEGINGRAPH statement, or by using the HEIGHT= option of the ODS GRAPHICS statement. For a standard 640px by 480px output size, a percentage value of 1.5% sets a minimum size of about 7px, which is approximately the same marker size that would result from this option’s typical default setting.

See
“dimension” on page 1340

SIZERESPONSE=numeric-column | expression
starting with the second maintenance release of SAS 9.4, specifies a column that is used to map the drawing size of the markers.

Note: Starting with the second maintenance release of SAS 9.4, the SIZERESPONSE= option replaces the MARKERSIZERESPONSE= option. The syntax and functionality are the same. The MARKERSIZERESPONSE= option is still honored, but the SIZERESPONSE= option is preferred.

By default, the minimum and maximum values of this column establish a range over which the marker sizes vary in linear proportion. The actual drawing size of the smallest marker and the largest marker is set automatically.

Default
The GraphDataDefault:MarkerSize setting, which is typically 7px.

Interactions
This option overrides the SIZE= setting in the MARKERATTRS= option.

This option is ignored when the MARKERCHARACTER= option is used. To manage the size of marker characters in a scatter plot, use the TEXTPLOT statement.

Tip
You can adjust the smallest and largest marker size with the SIZEMIN= and SIZEMAX= options, or with the MARKERSIZEMIN= and MARKERSIZEMAX= options.

SUBPIXEL=AUTO | OFF
specifies whether subpixel rendering is used for image output when the scatter plot is rendered.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

AUTO
The system sets subpixel rendering OFF for this scatter plot, unless SUBPIXEL=ON is specified in the BEGINGRAPH statement or in an ODS GRAPHICS statement. In that case, subpixel rendering is ON for this scatter plot.

OFF
Disables subpixel rendering for image output only for this scatter plot.

Default AUTO

Requirement Anti-aliasing must be enabled for this option to have any effect.

Notes This option affects subpixel rendering only for this plot. Subpixel rendering for other plots in the graph is not affected.

For vector-graphics output, this option is ignored, and subpixel rendering is always enabled.

When subpixel rendering is used for the graph but is turned OFF for this scatter plot, some elements in the scatter plot such as the plot markers might be offset a half pixel, which can make them appear blurry in the image output.

Tips Anti-aliasing is enabled by default. If anti-aliasing has been disabled, use the ANTIALIAS=ON option in the ODS GRAPHICS statement to re-enable it.

Anti-aliasing is disabled automatically for this plot when the resources required to anti-alias it exceed a preset threshold. When anti-aliasing is disabled for this or any other plot in the graph, subpixel rendering is disabled for the entire graph. A note is written to the SAS log that provides information about how to use the ANTIALIASMAX= option in an ODS GRAPHICS statement to re-enable anti-aliasing.

See “Using Subpixel Rendering” in SAS Graph Template Language: User's Guide

TIP=(role-list) | NONE
Specifies the information to display when the cursor is positioned over the scatter points. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the scatter plot can be specified along with roles that do.

(role-list)
an ordered, space-separated list of unique SCATTERPLOT and user-defined roles. SCATTERPLOT roles include X, Y, DATALABEL, MARKERCHARACTER, COLORRESPONSE or MARKERCOLORGRADIENT, XERRORLOWER, XERRORUPPER, YERRORLOWER, YERRORUPPER, GROUP, and INDEX.

User-defined roles are defined with the ROLENAME= option.
If you use the COLORRESPONSE= option, you must specify the COLORRESPONSE role for the color values. Likewise, if you use the MARKERCOLORGRADIENT= option, you must specify the MARKERCOLORGRADIENT role for the color values. Although they are functionally the same, you cannot mix the COLORRESPONSE= and MARKERCOLORGRADIENT= options, and their corresponding roles.

The following example displays data tips for the columns assigned to the roles X, XERRORUPPER, and XERRORLOWER, as well as the column Obs, which is not assigned to any pre-defined SCATTERPLOT role. The Obs column must first be assigned a role.

```
ROLENAME=(TIP1=OBS)
TIP=(TIP1 X XERRORUPPER XERRORLOWER)
```

NONE suppresses data tips and URLs (if requested) from the plot.

The columns assigned to these roles are automatically included in the data tip information: X, Y, DATALABEL, MARKERCHARACTER, COLORRESPONSE or MARKERCOLORGRADIENT on page 702, XERRORLOWER, XERRORUPPER, YERRORLOWER, YERRORUPPER, FREQ, and GROUP.

To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

```
TIPFORMAT=(role-format-list)
```

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

```
(role-format-list)
a space-separated list of role-name = format pairs.
```

```
Example
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
```

The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Only the roles that appear in the TIP= option are used.
Requirement A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list

a space-separated list of rolename ="string" pairs.

Example

ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default

The column label or column name of the column assigned to the role.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

URL=string-column

specifies an HTML page to display when a point is selected.

string-column

specifies a column that contains a valid HTML page reference (HREF) for each marker that is to have an active link.

Example

http://www.sas.com/technologies/analytics/index.html

Requirement

To generate selectable markers, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interactions

This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tips

The URL value can be blank for some X and Y pairs, meaning that no action is taken when the corresponding point is selected.

The URL value can be the same for any X and Y pairs. In that case, the same action is taken when the points for those X and Y pairs are selected.

USEDISCRETESIZE=TRUE | FALSE

specifies that the marker size should be based on fraction of the midpoint spacing that is set by the DISCRETEMARKERSIZE= option.

Default

FALSE

See

DISCRETEMARKERSIZE=
“boolean” on page 1339 for other Boolean values that you can use.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default X

Interactions This option is ignored if the X= argument is not specified.

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

XERRORLOWER=numeric-column | expression
specifies values for the lower endpoints on the X error bars. The error bars are drawn from the markers to the endpoints.

Default The lower segment of the error bars is not drawn.

Note The values are actual values, not relative values.

Tips The appearance of the error bars is controlled by the ERRORBARATTRS= option.

If markers are displayed in the plot, then the markers overlay the error bars. Large filled markers can obscure short error bars. To enable the error bars to show through the markers in that case, you can use the MARKERATTRS= option to specify a degree of transparency for the filled markers.

XERRORUPPER=numeric-column | expression
specifies values for the upper endpoints on the X error bars. The error bars are drawn from the markers to the endpoints.

Default The upper segment of the error bars is not drawn.

Note The values are actual values, not relative values.

Tips The appearance of the error bars is controlled by the ERRORBARATTRS= option.

If markers are displayed in the plot, then the markers overlay the error bars. Large filled markers can obscure short error bars. To enable the error bars to show through the markers in that case, you can use the MARKERATTRS= option to specify a degree of transparency for the filled markers.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default Y

Interactions This option is ignored if the Y= argument is not specified.
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YERRORLOWER=numeric-column | expression

specifies values for the lower endpoints on the Y error bars. The error bars are drawn from the markers to the endpoints.

<table>
<thead>
<tr>
<th>Default</th>
<th>The lower segment of the error bars is not drawn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>The values are actual values, not relative values.</td>
</tr>
<tr>
<td>Tips</td>
<td>The appearance of the error bars is controlled by the <code>ERRORBARATTRS=</code> option.</td>
</tr>
</tbody>
</table>

If markers are displayed in the plot, then the markers overlay the error bars. Large filled markers can obscure short error bars. To enable the error bars to show through the markers in that case, you can use the `MARKERATTRS=` option to specify a degree of transparency for the filled markers.

YERRORUPPER=numeric-column | expression

specifies values for the upper endpoints on the Y error bars. The error bars are drawn from the markers to the endpoints.

<table>
<thead>
<tr>
<th>Default</th>
<th>The upper segment of the error bars is not drawn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>The values are actual values, not relative values.</td>
</tr>
<tr>
<td>Tips</td>
<td>The appearance of the error bars is controlled by the <code>ERRORBARATTRS=</code> option.</td>
</tr>
</tbody>
</table>

If markers are displayed in the plot, then the markers overlay the error bars. Large filled markers can obscure short error bars. To enable the error bars to show through the markers in that case, you can use the `MARKERATTRS=` option to specify a degree of transparency for the filled markers.

Examples

Example 1: Grouped Scatter Plot
The following graph was generated by the “Example Program” on page 713:
Example Program

```
proc template;
  define statgraph scatterplot;
  begingraph;
    entrytitle "Height and Weight by Sex";
    layout overlay;
      scatterplot x=height y=weight / group=sex name="scatter" datalabel=name;
      discretelegend "scatter";
    endlayout;
  endgraph;
end;
run;
```

```
proc sgrender data=sashelp.class template=scatterplot;
run;
```

Example 2: Discrete Scatter Plot

The following graph was generated by the “Example Program” on page 714:
Example Program

/* Summarize SASHELP.CARS for mean MPG_HIGHWAY */
proc summary data=sashelp.cars nway;
 class type;
 var mpg_highway;
 output out=mileage mean=mean;
run;

/* Sort by mileage */
proc sort data=mileage;
 by mean;
 run;

/* Define the graph template */
proc template;
 define statgraph scatterplot;
 begingraph;
 entrytitle "Average Highway MPG By Type";
 layout overlay /
 xaxisopts=(griddisplay=on gridattrs=(color=lightgray))
 yaxisopts=(griddisplay=on gridattrs=(color=lightgray)
 linearopts=(minorgrid=true minortickcount=9
 minorgridattrs=(color=lightgray pattern=dot)));
 scatterplot x=type y=mean /
 group=type groupdisplay=cluster
 markerattrs=graphDataDefault;
 endlayout;
 endgraph;
 end;
run;
Details

This example creates a scatter plot of average highway mileage by vehicle type. The SUMMARY procedure is used to compute the mean highway mileage for each vehicle type. The SORT procedure is then used to sort the data by mileage in ascending order. Normally, when you plot discrete values using the SCATTERPLOT statement, the values at each end of the category axis are offset to accommodate the width of the largest marker. When a small symbol is used, this can result in the minimum and maximum symbols being placed very close to the edge of the axis. You can use the OFFSETMAX= and OFFSETMIN= axis options to specify offsets for each end of the category axis. However, you have to determine an appropriate offset value.

In this example, the GROUP= and GROUPDISPLAY= options are used to create offsets automatically. The GROUP= option creates a group for each category value. The GROUPDISPLAY=CLUSTER option displays the group values in a cluster and automatically offsets the end values by one-half of the available midpoint spacing, which is similar to the offsets that are used in bar charts. To restore the default colors and symbols that are used for ungrouped data, the MARKERATTRS= option is used to set the marker attributes to the graphDataDefault style element.

SCATTERPLOTMATRIX Statement

Creates a matrix of all pairwise scatter plots of the specified columns.

Restriction: The SCATTERPLOTMATRIX statement cannot appear within a LAYOUT OVERLAY, LAYOUT OVERLAY3D, or LAYOUT OVERLAYEQUATED block. It is typically placed in a LAYOUT GRIDDED block.

Syntax

SCATTERPLOTMATRIX numeric-column-list </option(s)>;

Summary of Optional Arguments

Appearance options

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= or MARKERCOLORGRADIENT= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
 starting with the second maintenance release of SAS 9.4, specifies the column or range attribute map variable to use to determine the marker colors.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 enhances the visual appearance of the plot markers.

DATATRANSPARENCY=number
 specifies the degree of the transparency of the markers and data labels.

DIAGONAL=LABEL | (graph-list)
 specifies whether the diagonal cells of the matrix are labeled with the labels (names) of the required arguments, or with a plot.

INDEX=positive-integer-column | expression
specifies indices for mapping marker attributes (color and symbol) to one of the GraphData1–GraphDataN style elements.

`LABELSTRIP=TRUE | FALSE`

specifies whether leading and trailing blanks are stripped from marker characters or data labels that have a fixed position before they are displayed in the plot.

`MARKERATTRS=style-element | style-element (marker-options) | (marker-options)`

specifies the attributes of the data markers.

`MARKERCHARACTER=column | expression`

specifies a column that defines strings that are to be used instead of marker symbols.

`MARKERCHARACTERATTRS=style-element | style-element (text-options) | (text-options)`

specifies the color and font attributes of the marker character specified on the `MARKERCHARACTER=` option.

`MARKERCHARACTERPOSITION=CENTER | TOP | BOTTOM | LEFT | RIGHT | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT`

specifies the justification of the marker characters.

`MARKERCOLORGRADIENT=numeric-column | range-attr-var | expression`

in the first maintenance release of SAS 9.4 and earlier releases, specifies the column or range attribute map variable that is used to determine the marker colors.

`MATRIX TYPE=FULL | UPPERTRIANGLE | LOWERTRIANGLE`

specifies whether to display the full matrix, or just the upper or lower triangle of the matrix.

`REVERSECOLO RMODEL=TRUE | FALSE`

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the `COLORMODEL=` option.

`START=TOPLEFT | BOTTOMLEFT`

specifies whether to start populating the matrix from the top left or bottom left corner.

`SUBPIXEL=AUTO | OFF`

specifies whether subpixel rendering is used for image output when the scatter plots are rendered.

`WALLCOLOR=style-reference | color`

specifies the fill color of the plot wall area.

`WALLDISPLAY=STANDARD | ALL | NONE | (display-options)`

specifies whether the plot’s wall and wall outline are displayed.

Confidence options

`ELLIPSE=(<ellipse-suboptions>)`

specifies that a confidence ellipse be included in each cell containing a scatter plot.

Data tip options

`ROLENAME=(role-name-list)`

specifies user-defined roles that can be used to display information in the data tips.

`TIP=(role-list) | NONE`

specifies the information to display when the cursor is positioned over the scatter points.

`TIPFORMAT=(role-format-list)`
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Inset options

INSET=(info-options)
specifies what information is displayed in an inset.

INSETOPTS=(appearance-options)
specifies location and appearance options for the inset information.

Label options

DATALABEL=column
specifies a column for marker labels.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the markers.

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.

Midpoint options

GROUP=column | discrete-attr-var | expression
creates a distinct set of scatter markers, error bars, and data labels for each unique group value of the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Statistics options

CORROPTS=(correlation-options)
specifies options for computing measures of association between pairs of columns.

FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

ROWVARS=(numeric-column-list)
specifies a secondary list of numeric columns to be paired with the required column list that is specified by the SCATTERPLOTMATRIX statement.
Required Argument

numeric-column-list
specifies a list of numeric columns to plot.

Requirements
There must be at least two columns to produce a useful matrix.

All of the columns must be numeric.

Note
The default width is 640px, and the default height is 480px. The graph size is not automatically adjusted to accommodate a large number of columns.

Tips
To change the graph size for the current template, use the DESIGNHEIGHT= and DESIGNWIDTH= options in the BEINGRAPH statement.

To change the graph size for all templates in the current SAS session, use the HEIGHT= and WIDTH= options in the ODS GRAPHICS statement. Size settings in the ODS GRAPHICS statement override size settings in the BEINGRAPH statement.

You can also limit the number of columns in the matrix (perhaps to seven in each dimension, for example) so that the resulting graphs are not too small to be useful.

Optional Arguments

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= or MARKERCOLORGRADIENT= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies a color for the smallest data value of the COLORRESPONSE= or MARKERCOLORGRADIENT= column.

- **NEUTRALCOLOR** specifies a color for the midpoint of the range of the COLORRESPONSE= or MARKERCOLORGRADIENT= column.

- **ENDCOLOR** specifies a color for the highest data value of the COLORRESPONSE= or MARKERCOLORGRADIENT= column.

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

See
“color ” on page 1340
The ThreeColorAltRamp style element.

Interactions
For this option to take effect, the COLORRESPONSE= or MARKERCOLORGRADIENT= option must also be specified.

The REVERSECOLORMODEL= option can be used to reverse the start and end colors of the ramp assigned to the color model.

COLORRESPONSE=numeric-column | range-attr-var | expression
Starting with the second maintenance release of SAS 9.4, specifies the column or range attribute map variable to use to determine the marker colors.

Note: Starting with the second maintenance release of SAS 9.4, the COLORRESPONSE= option replaces the MARKERCOLORGRADIENT= option. The syntax and functionality are the same. The MARKERCOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is preferred.

range-attr-var
specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction
A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

Tip
For each range in the attribute map, the RANGEALTCOLOR= or RANGEALTCOLORMODEL= option in the RANGE statement determines the marker colors.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

You can use this option to add a second response variable to an analysis. For example, in an analysis of weight by height, you can specify an age column by using the COLORRESPONSE= or MARKERCOLORGRADIENT= option so that the change in the gradient color of the markers reflects the change in age.

Requirement
For a grouped plot, the COLORRESPONSE values should remain constant for each group value. If the COLORRESPONSE column has
multiple values for a single GROUP value, unexpected results might occur.

Interactions

When the GROUP= option is specified with the COLORRESPONSE= option, the color attributes are controlled by the COLORRESPONSE= option.

Suboption COLOR= in the DATALABELATTRS= option overrides this option for the data label color attribute.

Suboption COLOR= in the MARKERATTRS= option or in the MARKERCHARACTERATTRS= option overrides this option for the marker colors.

Note

You can use MARKERCOLORGRADIENT= as an alternative to COLORRESPONSE=. However, if you use MARKERCOLORGRADIENT=, be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options recognize MARKERCOLORGRADIENT as the color role, not COLORRESPONSE.

Tips

To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

If the MARKERCHARACTER= option is also specified, then the gradients that would be applied to the markers are applied to the text strings.

CORROPTS=(correlation-options)

specifies options for computing measures of association between pairs of columns. The following correlation-options are available:

EXCLNPWGT=TRUE | FALSE

specifies whether observations with non-positive weight values are excluded (TRUE) from the analysis.

Default FALSE (observations with negative weights are treated like those with zero weights and counted in the total number of observations).

See “boolean” on page 1339 for other Boolean values that you can use.

NOMISS=TRUE | FALSE

specifies whether observations with missing values are excluded (TRUE) from the analysis.

Default FALSE (correlation statistics are computed using all of the nonmissing pairs of columns).

Note Using NOMISS=TRUE is computationally more efficient.

See “boolean” on page 1339 for other Boolean values that you can use.

WEIGHT=numeric-column

specifies a weighting column to use in the calculation of Pearson weighted product-moment correlation.

The observations with missing weights are excluded from the analysis. If you use this WEIGHT correlation option, then consider which value of the VARDEF=correlation option is appropriate.
For observations with non-positive weights, the weights are set to zero and the observations are included in the analysis.

Tip
You can include EXCLNPWGT among the correlation options to exclude observations with negative or zero weights from the analysis.

VARDEF=DF | N | WDF | WEIGHT
specifies the variance divisor in the calculation of variances and covariances.

- DF: Degrees of Freedom (N – 1)
- N: number of observations
- WDF: sum of weights minus 1 (WEIGHT – 1)
- WEIGHT: sum of weights

Default: DF

Interaction
This option has effect only when the INSET= option is also used.

See
the CORR procedure information in Base SAS Procedures Guide: Statistical Procedures for the statistical and computational details of these options.

DATALABEL=column
specifies a column for marker labels. The label positions are adjusted to prevent the labels from overlapping.

Interactions
If a numeric column is specified and the column has no format, then a BEST6 format is applied.

Note
The position of the labels are adjusted to prevent the labels from overlapping.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

Defaults
For non-grouped data, the GraphDataText style element.

For grouped data, the GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

Interactions
For this option to take effect, the DATALABEL= option must also be specified.

Note
When the DATALABELPOSITION=AUTO option is in effect, in some cases, the data label font size might be reduced in order to avoid overlapping labels and markers.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.
DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT

specifies the location of the data labels relative to the markers.

Default AUTO

DATALABELSPLIT=TRUE | FALSE

specifies whether to split the data labels at the specified split characters.

Default FALSE. The data labels are not split.

Requirement The DATLABEL= option must also be specified.

Interactions The DATLABELESPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATLABELPOSITION=AUTO.

See “boolean” on page 1339 for other Boolean values that you can use.

DATLABELSPLITCHAR="character-list"

specifies one or more characters on which the data labels can be split if needed.

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATLABEL= is specified and DATLABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

databelsplitchar="abc"

The DATLABEL= option and the DATLABELSPLIT=TRUE option must also be specified.

Interactions This option has no effect if DATLABELPOSITION=AUTO.

The DATLABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
Tip Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATALABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the data labels.

TRUE

drops the split characters from the data label.

FALSE

includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"

When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default TRUE. The split characters are dropped from the data label.

Requirement The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction The DATALABELSPLITCHAR= option specifies the split characters.

See “boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

AUTO

justifies the labels based on the DATALABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>
DATALABELPOSITION= Value | Justification

<table>
<thead>
<tr>
<th>TOPRIGHT, RIGHT, or BOTTOMRIGHT</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

<table>
<thead>
<tr>
<th>AUTO</th>
<th>CENTER</th>
<th>LEFT</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Product Group A]</td>
<td>[Product Group A]</td>
<td>[Product Group A]</td>
<td>[Product Group A]</td>
</tr>
</tbody>
</table>

In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, then the bottom center of the text box is positioned at the top of the marker.

Default AUTO

Requirement The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction This option has no effect if DATALABELSPLIT=FALSE, or if DATALABELSPLIT=TRUE and DATALABELPOSITION=AUTO.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the plot markers. The following figure shows large CIRCLEFILLED markers with each of the skins applied.

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[marker]</td>
<td>[marker]</td>
<td>[marker]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>[marker]</td>
<td>[marker]</td>
<td>[marker]</td>
</tr>
</tbody>
</table>
Default The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Interactions This option overrides the BEGINGRAPH statement DATASKIN= option.

When a data skin is applied, all marker outlines are set by the skin, and the outline settings from the ODS style or from the MARKERATTRS= option are ignored.

DATATRANSPERCENCY= *number*

specifies the degree of the transparency of the markers and data labels.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

DIAGONAL= *LABEL | (graph-list)*

specifies whether the diagonal cells of the matrix are labeled with the labels (names) of the required arguments, or with a plot. The plot for each diagonal cell consists of an overlay combination of a histogram, normal, or kernel curves.

The *graph-list* is a space-separated list of one or more of the following:

- **HISTOGRAM** specifies a histogram
- **NORMAL** specifies a normal density curve
- **KERNEL** specifies a kernel density estimate.

Default LABEL. Column labels (or names) are displayed in the diagonal cells.

Requirement When specifying multiple graphs in the *graph-list*, you must separate the values with a space. For example, the following specification requests both a histogram and a normal density curve in each diagonal cell:

```
DIAGONAL=(HISTOGRAM NORMAL)
```

Interactions The computation for HISTOGRAM, NORMAL, and KERNEL is always computed on all the data for the current column (including the FREQ= column, if used). The GROUP= option is not considered in any of these computations.

This option is ignored if the ROWVARS= option is used.

Note When this option is specified, the labels are drawn around the outside of the matrix, and the matrix axes are dropped.
ELLIPSE=(*ellipse-suboptions*)
specifies that a confidence ellipse be included in each cell containing a scatter plot. The ellipse is always drawn behind the scatter points. The *ellipse-suboptions* include the following:

ALPHA=*positive-number*
specifies the confidence level to compute for each ellipse.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>$0 < \text{number} < 1$</td>
</tr>
<tr>
<td>Tip</td>
<td>ALPHA=0.05 represents a 95% confidence level.</td>
</tr>
</tbody>
</table>

CLIP=TRUE | FALSE
specifies whether the X and Y values for the ellipse are considered when determining the data ranges for the axes.

TRUE
the X and Y values for the ellipses are ignored when the axis ranges are determined. Clipping occurs if the X and Y values for an ellipse exceed the axis range.

FALSE
the X and Y values for the ellipses contribute to the data range for each axis. If necessary, each axis is extended in order to display the entire ellipse.

<table>
<thead>
<tr>
<th>Default</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>“boolean” on page 1339 for other Boolean values that you can use.</td>
</tr>
</tbody>
</table>

TYPE=MEAN | PREDICTED
specifies the type of ellipse.

MEAN specifies a confidence ellipse of the mean

PREDICTED specifies a prediction ellipse of the data

<table>
<thead>
<tr>
<th>Default</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>“ELLIPSE Statement” on page 422 for statistical details about how the ellipse is calculated.</td>
</tr>
</tbody>
</table>

Default
TYPE=MEAN ALPHA=0.05 You can set defaults by specifying the option without arguments: ELLIPSE=().

Interactions
The ellipse might be clipped by the data range for the scatter points.

The ellipse is always computed on all the data for the current pair of X and Y columns (including the FREQ= column, if used). The GROUP= option is not considered when computed the ellipse.

Tip
The display properties of each ellipse are controlled by the style elements. The GraphDataDefault element controls the outline and fill properties, and the GraphEllipse element controls whether the outline, fill, or both are shown.
FREQ=numeric-column | expression
specifies a numeric column that provides frequencies for each observation that is read.

Default
All observations have a frequency count of 1.

Restriction
If the value of the numeric-column is missing or is less than 1, then the observation is not used in the analysis. If the value is not an integer, then only the integer portion is used.

Note
If n is the value of the numeric column for a given observation, then that observation is used n times for the purposes of any statistical computation.

GROUP=column | discrete-attr-var | expression
creates a distinct set of scatter markers, error bars, and data labels for each unique group value of the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default
Each distinct group value might be represented in the graph by a different combination of color and marker symbol. Markers vary according to the ContrastColor and MarkerSymbol attributes of the GraphData1–GraphDataN and GraphMissing style elements.

Interactions
The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of markers and colors.

The marker size is set by the MARKERATTRS= option.

The MARKERCHARACTER=, COLORRESPONSE=, and MARKERCOLORGRADIENT= options override the group settings for the marker symbol and marker color.

The INCLUDEMISSINGGROUP= option controls whether missing group values are considered a distinct group value.

Tip
The representations that are used to identify the groups can be overridden. For example, each distinct group value is represented by a different marker symbol, but the MARKERATTRS=(SYMBOL=marker) option could be used to assign the same symbol to all of the plot’s marker symbols, letting marker color indicate group values. Likewise, MARKERATTRS=(COLOR=color) could be used to assign the same color to all markers, letting marker symbol indicate group values.

See
“DISCRETEATTRVAR Statement” on page 1297

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.
Default: TRUE

Interaction: For this option to take effect, the GROUP= option must also be specified.

Tip: The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See: “boolean” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression

specifies indices for mapping marker attributes (color and symbol) to one of the GraphData1–GraphDataN style elements.

Requirements: The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

- The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.
- All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interactions: For this option to take effect, the GROUP= option must also be specified.

- The MARKERCHARACTER=, COLORRESPONSE=, and MARKERCOLORGRADIENT= options override the group settings for the marker symbol and marker color.

Notes: The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

- If you do not use this option, then the group values are mapped in the order of the data.

Tip: You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

INSET=(info-options)

specifies what information is displayed in an inset. Insets appear in all cells of the matrix except the diagonal and are displayed as a small table of name-value pairs. The following info-options are available:

- **NOBS** displays the total number of observations where both the X and Y columns have nonmissing values. If the FREQ= option is used, then this number is adjusted accordingly. The value of NOBS can be further adjusted by the use of the...
NOMISS=, WEIGHT=, and EXCLNPWGT= suboptions of the CORROPTS= option.

PEARSON displays the Pearson product-moment correlation. The computation of the correlation is affected by the FREQ= and CORROPTS= options. The computation is not done on a per group value when GROUP= is used.

PEARSONPV AL displays the probability value for the Pearson product-moment correlation.

Tip The location and appearance of the inset is controlled by the INSETOPTS= option.

See PROC CORR in the documentation for Base SAS for statistical and computational details of these options.

Example Here is an example of a typical inset:

<table>
<thead>
<tr>
<th>N</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.96287</td>
</tr>
<tr>
<td>p(r)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

In this example, NOBS is represented by N, PEARSON is represented by r, and PEARSONPV AL is represented by p(r).

INSETOPTS=(appearance-options)
specifies location and appearance options for the inset information. The appearance options can be any one or more of the settings that follow. The options must be enclosed in parentheses, and each option is specified as a name=value pair.

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the inset is automatically aligned within the layout.

NONE does not automatically align the inset. The inset’s position is therefore set by the HALIGN= and V ALIGN= appearance-options.

AUTO attempts to center the inset in the area that is farthest from any surrounding markers. Data cells might have different inset placements.

(location-list) restricts the inset’s possible locations to those locations in the specified location-list, and uses the location-list position that least collides with the data cell’s other graphics features. The location-list is space-separated and can contain any of these locations: TOPLEFT TOP TOPRIGHT LEFT CENTER RIGHT BOTTOMLEFT BOTTOM BOTTOMRIGHT. Example: AUTOALIGN=(TOPRIGHT TOPLEFT)

Default NONE

Interaction When AUTOALIGN=AUTO or (location-list), the enclosing layout statement’s HALIGN= and VALIGN=appearance-options are ignored.

BACKGROUND COLOR=style-reference | color
specifies the color of the inset background
style-reference
specifies a style reference in the form style-element : style-attribute. Only the
style-attribute named COLOR or CONTRASTCOLOR is used.

Default GraphWalls:Color style reference

BORDER=TRUE | FALSE
specifies whether a border is displayed around the inset.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

HALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the inset.

Default LEFT

Interaction This option is ignored when AUTOALIGN= is not NONE and the
parent layout is an overlay-type layout.

OPAQUE=TRUE | FALSE
specifies whether the inset background is opaque (TRUE) or transparent
(FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the entire inset.

Default The GraphDataText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.

“Text Options” on page 1351 for available text-options.

TITLE="string"
specifies a title for the inset. The title is added at the top of the inset and spans
the full inset width.

Note Space is not reserved for the title when this option is not set

Tip Text properties for the title string can be set with TITLEATTRS=.

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the inset’s title string.

Default The GraphValueText style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.

“Text Options” on page 1351 for available text-options.
VALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the inset.

Default
TOP

Interaction
This option is ignored when AUTOALIGN= is not NONE and the parent layout is an overlay-type layout.

LABELSTRIP=TRUE | FALSE
specifies whether leading and trailing blanks are stripped from marker characters or data labels that have a fixed position before they are displayed in the plot. The MARKERCHARACTER= option specifies the column that provides the marker strings that are to be used in place of marker symbols.

Default
FALSE

Interactions
This option effects marker strings only when the MARKERCHARACTER= option is specified.

This option effects data labels only when DATALABEL= is specified and DATALABELPOSITION= is not AUTO.

Tip
Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

See
“boolean ” on page 1339 for other Boolean values that you can use.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the data markers.

Defaults
For non-grouped data, GraphDataDefault style element.

For grouped data, the MarkerSymbol and ContrastColor attributes of the GraphData1–GraphDataN style elements, and the GraphDataDefault:MarkerSize style reference.

Interactions
If the COLORRESPONSE= or MARKERCOLORGRADIENT= option is specified, then this option’s COLOR= suboption is ignored.

If the MARKERCHARACTER= option is specified, then this option’s SYMBOL= and WEIGHT= suboptions are ignored.

This option’s COLOR= suboption overrides the default behavior for grouped data. When the COLOR= suboption is specified in that case, all markers have the same color, and the marker symbol alone distinguishes the markers.

This option’s SYMBOL= suboption overrides the default behavior for grouped data. When the SYMBOL= suboption is specified in that case, all markers have the same symbol, and the symbol color alone distinguishes the markers.

The TRANSPARENCY= fill option overrides this option’s DATATRANSPARENCY= suboption.
Note When style-element is specified, only the style element’s MARKERSYMBOL, CONTRASTCOLOR, and MARKERSIZE attributes are used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

MARKERCHARACTER=column | expression

specifies a column that defines strings that are to be used instead of marker symbols.

Each string is centered horizontally and vertically at the data point. The data point positions are not adjusted to prevent text overlap.

Interactions This option overrides the DATALABEL= option.

If the GROUP= option is also used, then color is displayed for a DISCRETE legend, but the character is not displayed in the legend. For text strings, the same colors are applied to the text strings as would have been applied to markers.

Note If a numeric column is used, then its values are converted to strings using the format associated with the column or BEST6 if no format is defined.

Tips Lengthy strings might be clipped by the plot border. To reduce clipping, you can use the OFFSETMIN= and OFFSETMAX= suboptions of the XAXISOPTS= and YAXISOPTS= options to increase the axis offsets.

You can use the MARKERCHARACTERPOSITION= option to change the justification of the marker character.

You can use the LABELSTRIP= option to strip the leading and trailing blanks from numeric value strings in order to center each string on its data point.

MARKERCHARACTERATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the marker character specified on the MARKERCHARACTER= option.
Defaults

For non-grouped data, the GraphDataText style element.

For grouped data, GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

Interactions

For this option to take effect, the MARKERCHARACTER= option must also be used.

When the GROUP= option is also specified, each distinct group value might be represented by a different color (depending on the ODS style setting or the setting on the INDEX= option). The marker character that is associated with the group is assigned the group color.

This option’s COLOR= suboption can be used to specify a single color for all marker characters in a grouped plot, without affecting items that have a group color, such as error bars and marker symbols.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

MARKERCHARACTERPOSITION= CENTER | TOP | BOTTOM | LEFT | RIGHT | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT

specifies the justification of the marker characters. The following figure shows the effect of each of the values on the position of marker character M.

<table>
<thead>
<tr>
<th>CENTER</th>
<th>TOP</th>
<th>BOTTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>LEFT</td>
<td>RIGHT</td>
<td>TOPLEFT</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>TOPRIGHT</td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Note: The red dots represent the center in each case for reference.

Default

CENTER

Interaction

This option is ignored if the MARKERCHARACTER= option is not specified.

Tip

You can use the LABELSTRIP= option to strip the leading and trailing blanks from value strings in order to properly justify each string on its data point.

MARKERCOLORGRADIENT= numeric-column | range-attr-var | expression

in the first maintenance release of SAS 9.4 and earlier releases, specifies the column or range attribute map variable that is used to determine the marker colors.

Note: Starting with the second maintenance release of SAS 9.4, the MARKERCOLORGRADIENT= option is deprecated and replaced with the COLORRESPONSE= option. The syntax and functionality are the same. The
MARKERCOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is preferred.

Note Starting with the second maintenance release of SAS 9.4, if you use the MARKERCOLORGRADIENT= option, then be aware that the TIP=, TIPFORMAT=, and TIPLABEL= options recognize the MARKERCOLORGRADIENT role and not the COLORRESPONSE role.

See COLORRESPONSE= on page 719

MATRIXTYPE=FULL | UPPERTRIANGLE | LOWERTRIANGLE

specifies whether to display the full matrix, or just the upper or lower triangle of the matrix. By default, the full matrix is displayed. The cells in the grid are filled beginning with the cell that is specified by the START= option. When you display only the upper or lower triangle, you can use the START= option to control the orientation of the triangle. The following figure shows the effect of the MATRIXTYPE= option when START=TOPLEFT and DIAGONAL=(HISTOGRAM).

The next figure shows the effect of the START=BOTTOMLEFT option on the previous graph.

Default FULL

Interactions This option is ignored if the ROWVARS= option is used.

The START= option specifies the corner where the matrix fill begins.
The `DIAGONAL=` option specifies the content of the diagonal cells.

NAME='string'

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

REVERSECOLORMODEL=TRUE | FALSE

determines whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the `COLORMODEL=` option.

Default FALSE

See `COLORMODEL=`

“*boolean*” on page 1339 for other Boolean values that you can use.

ROLENAME=(role-name-list)

specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the `TIP=` option.

(role-name-list) a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:

`ROLENAME=(TIP1=OBS)`

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles X, Y, DATALABEL, MARKERCHARACTER, COLORRESPONSE or MARKERCOLORGRADIENT, GROUP, and INDEX.

ROWVARS=(numeric-column-list)

specifies a secondary list of numeric columns to be paired with the required column list that is specified by the SCATTERPLOTMATRIX statement. The labels for the columns appear vertically on the left side of the matrix.

Requirement All of the columns must be numeric.

Interaction When this option is specified, the `DIAGONAL=` and `MATRIXTYPE=` options are ignored.

START=TOPLEFT | BOTTOMLEFT

specifies whether to start populating the matrix from the top left or bottom left corner.

Default TOPLEFT
SUBPIXEL=AUTO | OFF

specifies whether subpixel rendering is used for image output when the scatter plots are rendered.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

AUTO

The system sets subpixel rendering OFF for this scatter-plot matrix, unless SUBPIXEL=ON is specified in the BEGINGRAPH statement or in an ODS GRAPHICS statement. In that case, subpixel rendering is ON for this scatter-plot matrix.

OFF

disables subpixel rendering for image output only for the scatter plots in this scatter-plot matrix.

Default AUTO

Restriction

This option applies only to the scatter plots in the matrix. It does not affect the confidence ellipses.

Requirement

Anti-aliasing must be enabled for this option to have any effect.

Notes

This option affects subpixel rendering for the scatter plots only in this scatter-plot matrix. Subpixel rendering for other plots in the graph is not affected.

For vector-graphics output, this option is ignored, and subpixel rendering is always enabled.

When subpixel rendering is used for the graph but is turned OFF for this scatter-plot matrix, some elements in the scatter plots such as the plot markers might be offset a half pixel, which can make them appear blurry in the image output.

Tips

Anti-aliasing is enabled by default. If anti-aliasing has been disabled, use the ANTIALIAS=ON option in the ODS GRAPHICS statement to re-enable it.

Anti-aliasing is disabled automatically for this plot when the resources required to anti-alias it exceed a preset threshold. When anti-aliasing is disabled for this or any other plot in the graph, subpixel rendering is disabled for the entire graph. A note is written to the SAS log that provides information about how to use the ANTIALIASMAX= option in an ODS GRAPHICS statement to re-enable anti-aliasing.

To disable subpixel rendering for the scatter plots and the ellipses, specify SUBPIXEL=OFF in the template’s BEGINGRAPH statement or in an ODS GRAPHICS statement.

See

“Using Subpixel Rendering” in *SAS Graph Template Language: User’s Guide*

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over the scatter points. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the scatter plot can be specified along with roles that do.

(role-list)
an ordered, space-separated list of unique SCATTERPLOTMATRIX and user-defined roles. SCATTERPLOT roles include: X, Y, GROUP, DATALABEL, MARKERCHARACTER, and COLORRESPONSE or MARKERCOLORGRADIENT.

User-defined roles are defined with the `ROLENAME=` option.

Requirement

If you use the COLORRESPONSE= option, you must specify the COLORRESPONSE role for the color values. Likewise, if you use the MARKERCOLORGRADIENT= option, you must specify the MARKERCOLORGRADIENT role for the color values. Although they are functionally the same, you cannot mix the COLORRESPONSE= and MARKERCOLORGRADIENT= options, and their corresponding roles.

Example

The following example displays data tips for the columns assigned to the roles TIP1, TIP2, TIP3, and TIP4:

```
ROLENAME=(TIP1=ID TIP2=AGE TIP3=HEIGHT TIP4=WEIGHT)
TIP=(TIP1 TIP2 TIP3 TIP4)
```

NONE

suppresses data tips from the plot.

Default

The columns assigned to these roles are automatically included in the data tip information: current X, current Y, DATALABEL, MARKERCHARACTER, COLORGROUP or MARKERCOLORGRADIENT, and GROUP.

Requirement

To enable data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip

The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example

```
ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
```
TIPFORMAT=(TIP1=DOLLAR12.)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default The column label or column name of the column assigned to the role.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

WALLCOLOR=style-reference | color
specifies the fill color of the plot wall area.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style- attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphWalls:Color style reference.

Interaction This option is ignored if WALLDISPLAY=NONE or WALLDISPLAY=(OUTLINE).

WALLDISPLAY=STANDARD | ALL | NONE | (display-options)
specifies whether the plot’s wall and wall outline are displayed.

STANDARD
displays a filled wall. The setting of the FRAMEBORDER=ON | OFF attribute of the GraphWalls style element determines whether the wall outline is displayed.

ALL
displays a filled, outlined wall.

NONE
displays no wall, no wall outline.

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

OUTLINE displays the wall outline.

FILL displays a filled wall area.
Tips

Use the WALLCOLOR= option to control the fill color of the wall.

The appearance attributes of the wall outline are set by the GraphAxisLine style element.

Details

By default, the SCATTERPLOTMATRIX statement produces a symmetric scatter plot matrix. For \(n \) columns, it produces an \(n \) columns by \(n \) rows matrix of scatter plots. By default, the columns of the matrix are in the same left-to-right order as the order of the numeric-column-list. The rows of the matrix are in the same bottom-to-top order as the numeric-column-list. You can reverse the direction of the diagonal by setting START=TOPLEFT.

To produce a rectangular matrix of scatter plots, use the ROWVARS= option. Specifying \(n \) columns in the SCATTERPLOTMATRIX statement and \(m \) columns on the ROWVARS= option produces an \(n \)-columns by \(m \)-rows matrix of scatter plots. For example, the following statement specifies 2 columns on SCATTERPLOTMATRIX and 3 columns on the ROWVARS= option to produce the 2-columns by 3-rows matrix:

```
SCATTERPLOTMATRIX Height Weight
   / ROWVARS=(Age Height Weight);
```

The SCATTERPLOTMATRIX statement cannot appear within an overlay-type layout. It generates its own matrix of plots and is typically placed in a LAYOUT GRIDDED block.

If there are missing values in a column or a row, then all of the points that can be plotted are plotted in each scatter plot.

Example: SCATTERPLOTMATRIX Statement

The following graph was generated by the “Example Program” on page 740:
Example Program

```sas
proc template;
  define statgraph scatterplotmatrix;
  begingraph;
    entrytitle "Scatter Plot Matrix";
    layout gridded;
    scatterplotmatrix
      sepallength sepalwidth petallength petalwidth /
      group=species name="matrix";
    discretelegend "matrix";
  endlayout;
  endgraph;
end;
run;

proc sgrender data=sashelp.iris template=scatterplotmatrix;
run;
```

SERIESPLOT Statement

Displays a series of line segments that connect observations of input data.

Tip: Starting with the third maintenance release of SAS 9.4, subpixel rendering is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see “ODS GRAPHICS Statement” in SAS ODS Graphics: Procedures Guide.
Syntax

SERIESPLOT X=column | expression
Y=column | expression <option(s)>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOSITION= NONE | START | END | BOTH | column
specifies a position for arrowheads.

ARROWHEADSCALE= positive-number | numeric-column | expression
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED | column
specifies a shape for arrowheads.

BREAK=TRUE | FALSE
breaks the plot line at missing values of the X or Y column.

CLUSTERWIDTH= number
on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

COLORRESPONSE= numeric-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the line and marker colors.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the series lines.

DATATRANSPARENCY= number
specifies the degree of the transparency of the line, markers, line label, and data labels, when displayed.

DISPLAY=STANDARD | ALL | display-options
specifies additional feature to display with the series line.

FILLEDOUTLINEDMARKERS=TRUE | FALSE
specifies whether markers are drawn with both fill and an outline.

INDEX= positive-integer-column | expression
specifies indices for mapping line attributes (color, marker symbol, and line pattern) to one of the GraphData1–GraphDataN style elements.

LINEATTRS= style-element | style-element (line-options) | (line-options)
specifies the attributes of the series line.

LINECOLORGROUP= column | discrete-attr-var | expression
specifies a column that determines the line colors for a grouped plot independently of the GROUP= column.

LINEPATTERNGROUP= column | discrete-attr-var | expression
specifies a column that determines the line patterns for a grouped plot independently of the GROUP= column.

LINETHICKNESSMAX= dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

LINETHICKNESSMAXRESPONSE= numeric | scalar-numeric-expression
specifies the response value that corresponds to the maximum line thickness.

LINETHICKNESSMIN= dimension
specifies the minimum line thickness when a response variable is used to
determine the line thickness.

LINETHICKNESSRESPONSE=numeric-column | range-attr-var | expression
specifies a response column or range attribute variable that is used to map a
line thickness to each group value.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the data markers.

MARKERCOLORGROUP=column | discrete-attr-var | expression
specifies a column that determines the marker colors for a grouped plot
independently of the GROUP= column.

MARKERFILLATTRS=style-element | (fill-options)
specifies the appearance of the filled markers.

MARKEROUTLINEATTRS=style-element | (line-options)
specifies the appearance of the marker outlines.

MARKERSYMBOLGROUP=column | discrete-attr-var | expression
specifies a column that determines the marker symbols for a grouped plot
independently of the GROUP= column.

SMOOTHCONNECT=TRUE | FALSE
specifies that a smoothed line passes through all vertices.

SPLINEPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the
INTERVAL= axis option.

SPLINETYPE=NONE | QUADRATICBEZIER
specifies the type of spline interpolation that is used to draw the series line.

Axes options

CLUSTERAXIS=AUTO | X | Y
specifies the axis to use for clustering groups when
GROUPDISPLAY=CLUSTER.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for
determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the
secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the
secondary Y2 (right) axis.

Connect options

CONNECTORDER=XVALUES | XAXIS
specifies how to connect the data points to form the series line.

Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the
series line.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.
TIPLABEL=(role-label-list)
 specifies display labels for tip columns.

Label options
CURVELABEL="string" | column | expression
 specifies a label for the series line.
CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
 specifies the color and font attributes of the series-line labels.
CURVELABELLOCATION=INSIDE | OUTSIDE
 specifies the location of the series-line label relative to the plot area.
CURVELABELPOSITION=AUTO | MAX | MIN | START | END
 specifies the position of the series-line label relative to the series line.
CURVELABELSPLIT=TRUE | FALSE
 specifies whether to split the series-line label at the specified split characters.
CURVELABELSPLITCHAR="character-list"
 specifies one or more characters on which the series-line label can be split if needed.
CURVELABELSPLITCHARDROP=TRUE | FALSE
 specifies whether the split characters are included in the series-line label text.
CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
 specifies the justification of the strings that are inside the series-line label block.
DATALABEL=column | expression
 specifies a column that supplies values for the data point labels.
DATALABELATTRS=style-element | style-element (text-options) | (text-options)
 specifies the color and font attributes of the data labels.
DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
 specifies the location of the data labels relative to the vertices of the series line and the markers, when displayed.
DATALABELSPLIT=TRUE | FALSE
 specifies whether to split the data labels at the specified split characters.
DATALABELSPLITCHAR="character-list"
 specifies one or more characters on which the data labels can be split if needed.
DATALABELSPLITCHARDROP=TRUE | FALSE
 specifies whether the split characters are included in the data labels.
DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
 specifies the justification of the strings that are inside the data label blocks.
LEGENDLABEL="string"
 specifies a label to be used in a discrete legend for this plot.

Midpoint options
DISCRETEOFFSET=number
 specifies an amount to offset all series lines and markers from discrete X values, or discrete Y values, or both.
GROUP=column | discrete-attr-var | expression
 creates a separate series plot for each unique group value in the specified column.
GROUPDISPLAY=OVERLAY | CLUSTER
 specifies how marker groups are positioned for the coordinate pairs.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

ODS options

URL=string-column
specifies an HTML page to display when a point or a segment of the curve is selected.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Required Arguments

X=column | expression
specifies the column for the X values.

Y=column | expression
specifies the column for the Y values.

Optional Arguments

ARROWHEADPOSITION= NONE | START | END | BOTH | column
specifies a position for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NONE no arrowheads are displayed
START an arrowhead is displayed at the starting point of each line
END an arrowhead is displayed at the ending point of each line.
BOTH an arrowhead is displayed at each end of each line.
column specifies a column that provides an arrowhead position for each group value.

Default: NONE

Restriction: When you specify a column and the GROUP= option is in effect, the arrowhead position values are assumed to be constant for each group value. If the column has multiple values for a single group value, then only one of the arrowhead position values is used for that group.

See: “Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

ARROWHEADSCALE=positive-number | numeric-column | expression
specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
The arrowhead scale values are assumed to be constant for each line. If a column or expression provides multiple values for a line, only one of the values is used.

This option is ignored when ARROWHEADPOSITION=NONE is in effect.

Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED | column
specifies a shape for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows each of the arrowhead shapes.

<table>
<thead>
<tr>
<th>OPEN</th>
<th>FILLED</th>
<th>BARBED</th>
</tr>
</thead>
</table>

Default OPEN

When you specify a column and the GROUP= option is in effect, the arrowhead shape values are assumed to be constant for each group value. If the column has multiple values for a single group value, only one of the arrowhead shape values is used for that group.

This option is ignored when ARROWHEADPOSITION=NONE is in effect.

“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

BREAK=TRUE | FALSE
breaks the plot line at missing values of the X or Y column.

Default FALSE

When this option is set to FALSE, missing values are skipped and a continuous line is drawn.

“boolean” on page 1339 for other Boolean values that you can use.

CLUSTERAXIS=AUTO | X | Y
specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

AUTO uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

X | Y uses the X or Y axis for clustering groups.
The \texttt{GROUPDISPLAY=} option must be set to \texttt{CLUSTER} for this option to have any effect.

\textbf{CLUSTERWIDTH=number}

\textit{on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.}

\begin{itemize}
 \item \textbf{Default} 0.85
 \item \textbf{Range} 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width.
\end{itemize}

\textbf{Interactions} For this option to take effect, the \texttt{GROUP=} option must also be specified, and the \texttt{GROUPDISPLAY=} option must be set to \texttt{CLUSTER}.

When markers are displayed for interval data and \texttt{GROUPDISPLAY=}\texttt{CLUSTER} and \texttt{CLUSTERWIDTH=} are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the \texttt{MARKERATTRS=} option to specify a larger marker size.

\textbf{COLORMODEL=}\texttt{color-ramp-style-element} | \texttt{(color-list)}

\textit{specifies a color ramp to use with the \texttt{COLORRESPONSE=} option.}

\texttt{color-ramp-style-element}

\textit{specifies the name of a color-ramp style element. The style element should contain these style attributes:}

\begin{itemize}
 \item \texttt{STARTCOLOR} specifies the color for the smallest data value of the \texttt{COLORRESPONSE=} column.
 \item \texttt{NEUTRALCOLOR} specifies the color for the midpoint of the range of the \texttt{COLORRESPONSE=} column.
 \item \texttt{ENDCOLOR} specifies the color for the highest data value of the \texttt{COLORRESPONSE=} column.
\end{itemize}

\texttt{(color-list)}

\textit{specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.}

\textbf{Requirement} The list of colors must be enclosed in parentheses.

\textbf{See} “color” on page 1340

\begin{itemize}
 \item \textbf{Default} The ThreeColorAltRamp style element.
 \item \textbf{Interaction} For this option to take effect, the \texttt{COLORRESPONSE=} option must also be specified.
\end{itemize}
COLORRESPONSE=numeric-column | range-attr-var | expression

specifies the column or range attribute variable to use to map the line and marker colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

range-attr-var

specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction

A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Requirement

The COLORRESPONSE values should remain constant for each group value in a grouped plot and for the entire plot in an ungrouped plot. If the COLORRESPONSE column has multiple values for a single GROUP value or for a non-grouped plot, unexpected results might occur.

Interactions

When this option is specified without the GROUP= option, only a single line is generated for the plot, and the line color is derived from the COLORRESPONSE= value.

When the GROUP= option, LINECOLORGROUP= option, and MARKERCOLORGROUP= options are used with the COLORRESPONSE= option, the COLORRESPONSE= option controls the color attributes.

Suboption COLOR= in the DATALABELATTRS= option overrides this option for the data label color attribute.

This option overrides suboption COLOR= in the LINEATTRS= option and varies the line color according to the color gradient or the attribute map.

Suboption COLOR= in the MARKERATTRS= option or in the FILLEDOUTLINEDMARKERS= option overrides this option for the marker colors.

Tips

To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

For a numeric column or expression, the ThreeColorAltRamp style element defines the line color gradient.

CONNECTORDER=XVALUES | XAXIS

specifies how to connect the data points to form the series line.

XVALUES

connects data points in the order read from the X column.
XAXIS
connects data points as they occur min-to-max along the X axis.

Default XVALUES

Tip For certain types of series lines (for example, time series) when the input data might not be sorted by the X column, set this option to XAXIS to assure the expected connect order.

CURVELABEL="string" | column | expression
specifies a label for the series line.

Default No series-line label is displayed

Restrictions When the GROUP= option is specified, "string" and expression are not valid. Use column in that case.

When the GROUP= option is not specified, column is not valid. Use "string" or expression in that case.

The line label for missing values is ignored.

Tip The font and color attributes for the label are specified by the CURVELABELATTRS= option.

See GROUP= on page 758

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the series-line labels. When the GROUP= option is used, each distinct group value might be represented by a different color. The series-line label that is associated with the group is assigned the group color. This option can be used to specify a single color for all series-line labels in a plot, without affecting items that have the group color, such as lines and marker symbols.

Defaults For non-grouped data, the GraphValueText style element.

For grouped data, text color is derived from the GraphData1:ContrastColor–GraphDataN:ContrastColor style references. The font is derived from the GraphValueText style element.

Interactions For this option to take effect, the CURVELABEL= option must also be used.

This option’s COLOR= setting overrides the colors indicated by the GROUP= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the series-line label relative to the plot area.

INSIDE
locates the labels inside the plot area
OUTSIDE
locates the labels outside the plot area

Default
INSIDE

Restriction
OUTSIDE cannot be used when the SERIESPLOT is used in multicell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes might be external to the grid.

Interactions
For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELPOSITION= option to determine where the series-line labels appear. For more information, see “Location and Position of Curve Labels” on page 185.

CURVELABELPOSITION=AUTO | MAX | MIN | START | END
specifies the position of the series-line label relative to the series line.

AUTO
automatically locates the series-line label near the end series line along unused axes whenever possible (typically Y2 or X2) in order to avoid collision with tick values.

Restriction
This option is used only when CURVELABELLOCATION=OUTSIDE.

MAX
forces the series-line label to appear near maximum series values (typically, to the right)

MIN
forces the series-line label to appear near minimum series values (typically, to the left)

START
forces the series-line label to appear near the beginning of the series line.

Restriction
This option is used only when CURVELABELLOCATION=INSIDE.

Tip
This option is particularly useful when the series line has a spiral shape.

END
forces the series-line label to appear near the end of the series line.

Restriction
This option is used only when CURVELABELLOCATION=INSIDE.

Tip
This option is particularly useful when the series line has a spiral shape.

Defaults
AUTO when CURVELABELLOCATION=OUTSIDE.

END when CURVELABELLOCATION=INSIDE.
Restriction

The AUTO setting is ignored if CURVELABELLOCATION=INSIDE is specified. The START and END settings are ignored if CURVELABELLOCATION=OUTSIDE is specified.

Interactions

For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELLOCATION= option to determine where the series-line label appears. For more information, see “Location and Position of Curve Labels” on page 185.

Note

When you specify TICKVALUELIST=, VIEWMAX=, or VIEWMIN= in an axis statement, the data points that are used to determine the position of the series-line label might fall outside of the graph area. In that case, the series-line label might not be displayed or might be positioned incorrectly.

CURVELABELSPLIT=TRUE | FALSE

specifies whether to split the series-line label at the specified split characters. When a series-line label is split, the label is split on each occurrence of the specified split characters.

Default FALSE. The series-line label is not split.

Requirement The CURVELABEL= option must also be specified.

Interactions The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.

See “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITCHAR="character-list"

specifies one or more characters on which the series-line label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the series-line label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the series-line label is split unconditionally at each occurrence of any of the specified split characters. If the series-line label does not contain any of the specified characters, then the label is not split.

"character-list"

one or more characters with no delimiter between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:
The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interactions

This option has no effect if CURVELABELPOSITION=AUTO.

The CURVELABELSPLITCHARDROP= option specifies whether the split characters are included in the series-line label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

Use the CURVELABELSPLITJUSTIFY= option to specify the justification of the strings in the series-line label block.

CURVELABELSPLITCHARDROP= TRUE | FALSE

specifies whether the split characters are included in the series-line label text.

TRUE

drops the split characters from the series-line label text.

FALSE

includes the split characters in the series-line label text. When CURVELABELSPLIT=TRUE and CURVELABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a series-line label with the following specifications:

- CURVELABELPOSITION=MAX
- CURVELABEL="Product*Group*A"
- CURVELABELSPLIT=TRUE
- CURVELABELSPLITCHARDROP=TRUE | FALSE
- CURVELABELSPLITCHAR="*"

Note: The horizontal line to the left of the label represents the maximum end of the series line for reference.

When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default

TRUE. The split characters are dropped from the series-line label.
Requirement: The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction: The CURVELABELSPLITCHAR= option specifies the split characters.

See: “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT specifies the justification of the strings that are inside the series-line label block.

- **AUTO** justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

- **CENTER | LEFT | RIGHT** justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the series line for reference.

In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default: AUTO

Requirement: The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction: This option has no effect if CURVELABELPOSITION=AUTO.

DATALABEL=column | expression specifies a column that supplies values for the data point labels.

Default: No data labels are displayed

Note: The label positions are adjusted to prevent the labels from overlapping.

DATALABELATTRS=style-element | style-element (text-options) | (text-options) specifies the color and font attributes of the data labels.

Defaults: For non-grouped data, the GraphDataText style element.
For grouped data, the GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

Interactions
For this option to take effect, the DATALABEL= option must also be specified.

This option’s COLOR= setting overrides the colors indicated by the GROUP= option.

Note
When the DATALABELPOSITION=AUTO option is in effect, in some cases, the data label font size might be reduced in order to avoid overlapping labels and markers.

Tip
When the GROUP= option is used, each distinct group value might be represented by a different color. The data label that is associated with the group is assigned the group color. This option can be used to specify a single color for all data labels in a plot, without affecting items that have the group color, such as error bars and marker symbols.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the vertices of the series line and the markers, when displayed.

Default
AUTO

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

Default
FALSE. The data labels are not split.

Requirement
The DATALABEL= option must also be specified.

Interactions
The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATALABELPOSITION=AUTO.

See
“boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.
"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

Default
A blank space

Requirements
The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

datalabelsplitchar="abc"

The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interactions
This option has no effect if DATALABELPOSITION=AUTO.

The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

TRUE
drops the split characters from the data label.

FALSE
includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"

The following figure shows an example of a data label with the following specifications:
When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default
TRUE. The split characters are dropped from the data label.

Requirement
The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction
The DATALABELSPLITCHAR= option specifies the split characters.

See
“boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.

AUTO
justifies the labels based on the DATALABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT
justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, then the bottom center of the text box is positioned at the top of the marker.

Default
AUTO

Requirement
The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction
This option has no effect if DATALABELPOSITION=AUTO.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the series lines. The following figure shows a grouped series plot with each of the skins applied.

Default
The DATASKIN= option value that is specified in the BEGINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Interactions
This option overrides the BEGINGRAPH statement DATASKIN= option.

The data skin appearance is based on the **LINEATTRS=** color.

DATATRANSPARENCY=number
specifies the degree of the transparency of the line, markers, line label, and data labels, when displayed.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

DISCRETEOFFSET=number
specifies an amount to offset all series lines and markers from discrete X values, or discrete Y values, or both. This option is useful when graphing multiple response variables side by side on a common axis

Default 0 (no offset, all series lines and markers are centered on the discrete X values, or discrete Y values, or both)

Range -0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is to the right on discrete X values and up on discrete Y values. If the layout’s axis options set REVERSE=TRUE, then the offset direction is also reversed.
Restriction: This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip: Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DISPLAY=STANDARD | ALL | display-options
specifies additional feature to display with the series line.

STANDARD
displays a series line without markers.

ALL
displays a series line with markers.

(display-options)
a space-separated list of one or more options enclosed in parentheses. Currently, only the MARKERS option is supported, which displays a series line with markers.

Default: STANDARD

Tip: Use the MARKERATTRS= and LINEATTRS= options to control the appearance of the line and markers.

FILLEDOUTLINEDMARKERS=TRUE | FALSE
specifies whether markers are drawn with both fill and an outline.

TRUE
draws filled markers (marker symbols with the suffix FILLED) using both fill and an outline. When this option is TRUE, the fill color and outline color for filled markers are determined in the following ways:

• If the GROUP= option is specified, then by default, the fill color is derived from the GraphData1–GraphDataN style elements Color attribute, and the marker outlined color is derived from the GraphData1–GraphDataN style elements ContrastColor attribute.

• If the GROUP= option is not specified, then the marker fill is drawn by using the MARKERFILLATTRS= specification, and the outline is drawn by using the MARKEROUTLINEATTRS= specification.

FALSE
draws the markers using fill or an outline, but not both.

Default: FALSE

Tip: To specify the marker fill and outline colors for a non-grouped plot, set this option to TRUE, and then use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify the colors.

See GROUP= on page 758
MARKERFILLATTRS= on page 766
MARKEROUTLINEATTRS= on page 766
“boolean ” on page 1339 for other Boolean values that you can use.

GROUP=column | discrete-attr-var | expression

creates a separate series plot for each unique group value in the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default
Each distinct group value might be represented in the plot by a different combination of color, line pattern, and marker symbol. Lines and markers vary according to the ContrastColor, LineStyle, and MarkerSymbol attributes of the GraphData1–GraphDataN and GraphMissing style elements. Line thickness (for grouped and ungrouped data) is controlled by the LINEATTRS= option.

Interactions
The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of marker symbols, colors, and line patterns.

The marker size is set by the MARKERATTRS= option.

The INCLUDEMISSINGGROUP= option controls whether missing group values are considered a distinct group value.

When both the GROUP= and the COLORRESPONSE= options are specified, the color attributes are controlled by the COLORRESPONSE= option.

Tips
The representations that are used to identify the groups can be overridden. For example, each distinct group value is often represented by a different line pattern, but you can use the LINEATTRS=(PATTERN=pattern) option to assign the same line pattern to all of the plot’s line patterns, letting line color indicate group values. Likewise, you could use LINEATTRS=(COLOR=color) to assign the same color to all lines, letting line pattern indicate group values.

Starting with the second maintenance release of SAS 9.4, you can use the LINECOLORGROUP=, LINEPATTERNGROUP=, MARKERCOLORGROUP=, and MARKERSYMBOL= options to assign line colors, line patterns, marker colors, and marker symbols based on a different group column.

See
“DISCRETEATTRVAR Statement” on page 1297

GROUPDISPLAY=OVERLAY | CLUSTER

specifies how marker groups are positioned for the coordinate pairs.

OVERLAY
draws markers for a given group value at the exact coordinate. Depending on the data, markers at a given coordinate might overlap.
CLUSTER

draws markers for a given group value adjacent to each other.

Interaction When markers are displayed and GROUPDISPLAY=CLUSTER is in effect for interval data, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

Tip Use the CLUSTERWIDTH= option to control the width of the clusters when CLUSTER is in effect.

Default OVERLAY

Interaction For this option to take effect, the GROUP= option must also be specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.

Default DATA

Interactions This option is ignored if the GROUP= option is not also specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tips Use the CLUSTERWIDTH= option to control the distance between the group markers in a cluster.
Use the INDEX= option to alter the default sequence of visual attributes that is assigned to the groups.

INCLUDEMISSINGGROUP=TRUE | FALSE

specifies whether missing values of the group variable are included in the plot.

- **Default**: TRUE
- **Interaction**: For this option to take effect, the GROUP= option must also be specified.
- **Tip**: The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

INDEX=positive-integer-column | expression

specifies indices for mapping line attributes (color, marker symbol, and line pattern) to one of the GraphData1–GraphDataN style elements.

- **Requirements**: The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.
 - The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.
 - All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.
- **Interaction**: For this option to take effect, the GROUP= option must also be specified.
- **Notes**: The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.
 - If you do not use this option, then the group values are mapped in the order of the data.
- **Tip**: You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

- **Default**: The Y-column label. If a label is not defined, then the Y-column name is used.
Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

LINEATTRS=

<table>
<thead>
<tr>
<th>style-element</th>
<th>style-element (line-options)</th>
<th>(line-options)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the attributes of the series line.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults

For non-grouped data, the GraphDataDefault style element.

For grouped data, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements, and the GraphDataDefault:LineThickness style reference.

Interactions

This option’s COLOR= suboption overrides the default behavior for grouped data when the LINECOLORGROUP= option and the COLORRESPONSE= option are not specified. When the COLOR= suboption is specified without the LINECOLORGROUP= and COLORRESPONSE= options, all lines have the same color.

The LINECOLORGROUP= option and the COLORRESPONSE= option override this option’s COLOR= suboption.

This option’s PATTERN= suboption overrides the default behavior for grouped data when the LINEPATTERNGROUP= option is not specified. When the PATTERN= suboption is specified without the LINEPATTERNGROUP= option, all lines have the same pattern.

The LINEPATTERNGROUP= option overrides this option’s PATTERN= suboption.

See

“General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

“Line Options” on page 1349 for available line-options.

LINECOLORGROUP=

<table>
<thead>
<tr>
<th>column</th>
<th>discrete-attr-var</th>
<th>expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a column that determines the line colors for a grouped plot independently of the GROUP= column.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

(discrete-attr-var)

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Note

A discrete attribute map variable is valid for this option starting with the third maintenance release of SAS 9.4.

When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphDataN style elements based on the LINECOLORGROUP= column instead of on the GROUP= column.
The line colors are selected based on the GROUP= column.

Requirement
- The column value must be the same for all of the points that define a series line.

Interactions
- The GROUP= option must be specified for this option to have any effect.
- This option overrides the COLOR= suboption of the LINEATTRS= option.
- The COLORRESPONSE= option overrides this option.

Tip
- Use the LINEATTRS= option to set the line thickness.

See
- GROUP= on page 758

LINEATTRS=

LINEPATTERNGROUP=column | discrete-attr-var | expression

specifies a column that determines the line patterns for a grouped plot independently of the GROUP= column.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
- A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Note
- A discrete attribute map variable is valid for this option starting with the third maintenance release of SAS 9.4.

When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphDataN style elements based on the LINECOLORGROUP= column instead of on the GROUP= column.

Default
- The line patterns are selected based on the GROUP= column.

Requirement
- The column value must be the same for all of the points that define a series line.

Interactions
- The GROUP= option must be specified for this option to have any effect.
- This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tip
- Use the LINEATTRS= option to set the line thickness.

See
- GROUP= on page 758

LINEATTRS=
LINETHICKNESSMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions
The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

The LINETHICKNESSMAXRESPONSE= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the LINETHICKNESSMAXRESPONSE= value are set to the value that is specified by this option.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

Tip
Use the LINETHICKNESSMIN= option to specify the minimum line thickness.

See
“dimension” on page 1340

“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

LINETHICKNESSMAXRESPONSE=numeric | scalar-numeric-expression
specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The maximum value in the response column that is specified in the LINETHICKNESSRESPONSE= option.

Interactions
The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the LINETHICKNESSMAX= option.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

LINETHICKNESSMIN=dimension
specifies the minimum line thickness when a response variable is used to determine the line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
The thickness specified by the GraphDataDefault style element LineThickness attribute.

Interactions
The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

Tip
Use the LINETHICKNESSMAX= option to specify the maximum line thickness.

See
“dimension” on page 1340

“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

LINETHICKNESSRESPONSE=numeric-column | range-attr-var | expression

specifies a response column or range attribute variable that is used to map a line thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

range-attr-var
specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction
A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

Tip
For each range in the attribute map, the RANGEALTCOLOR= or RANGEALTCOLORMODEL= option in the RANGE statement determines the marker colors.

Default
The GraphDataDefault style element LineThickness attribute.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In these cases, the default line thickness is used for all of the lines.

This option overrides suboption THICKNESS= in the LINEATTRS= option.

Note
The LINETHICKNESSRESPONSE= values are assumed to be constant for each group value in a grouped plot and for the entire plot in an ungrouped plot. If the LINETHICKNESSRESPONSE column has multiple values for a single GROUP value or ungrouped plot, unpredictable results might occur.

See
“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)

specifies the attributes of the data markers.
Defaults
For non-grouped data, GraphDataDefault style element.

For grouped data, the MarkerSymbol and ContrastColor attributes of the GraphData1–GraphDataN style elements, and the GraphDataDefault:MarkerSize style reference.

Interactions
If FILLEDOUTLINEDMARKERS=TRUE, then this option’s COLOR= suboption is ignored. In that case, to specify the marker fill color, use the MARKERFILLATTRS= option instead.

This option’s COLOR= suboption overrides the default behavior for grouped data when the MARKERCOLORGROUP= option is not specified. When the COLOR= suboption is specified without the MARKERCOLORGROUP option, all markers have the same color, and the marker symbol alone distinguishes the markers.

The MARKERCOLORGROUP= option and the COLORRESPONSE= option override this option’s COLOR= suboption.

This option’s SYMBOL= suboption overrides the default behavior for grouped data when the MARKERSYMBOLGROUP= option is not specified. When the SYMBOL= suboption is specified without the MARKERSYMBOLGROUP= option, all markers have the same symbol, and the symbol color alone distinguishes the markers.

The MARKERSYMBOLGROUP= option overrides this option’s SYMBOL= suboption.

The TRANSPARENCY= fill option overrides this option’s DATATRANSPARENCY= suboption.

This option is ignored if the DISPLAY= option disables the display of the markers.

If the DATASKIN= option is in effect, then the data skin determines the marker outlines. Any outline-related settings from the current ODS style or from the marker attribute options are ignored.

Note
When style-element is specified, only the style element’s MARKERSYMBOL, CONTRASTCOLOR, and MARKERSIZE attributes are used.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

MARKERCOLORGROUP=column | discrete-attr-var | expression
specifies a column that determines the marker colors for a grouped plot independently of the GROUP= column.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.
Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Note A discrete attribute map variable is valid for this option starting with the third maintenance release of SAS 9.4.

When this option is specified with the GROUP= option, the series line markers are selected from the GraphData1–GraphDataN style elements based on the MARKERCOLORGROUP= column instead of on the GROUP= column.

Default The line marker colors are selected based on the GROUP= column.

Requirement The column value must be the same for all of the points that define a series line.

Interactions The DISPLAY= option must enable the display of the series line markers for this option to have any effect.

The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

The COLORRESPONSE= option overrides this option.

Tip Use the MARKERATTRS= option to set the marker symbol size.

See GROUP= on page 758

MARKERATTRS= on page 764

MARKERFILLATTRS=style-element | (fill-options)

specifies the appearance of the filled markers.

Defaults For non-grouped data, the COLOR attribute of the GraphDataDefault style element

For grouped data, the COLOR attribute of a GraphData1–GraphDataN style element

Restriction The TRANSPARENCY= fill option is ignored. Use the MARKERATTRS= option to set the marker transparency.

Interaction This option is in effect only when FILLEDOUTLINEDMARKERS=TRUE and the DISPLAY= option enables fill display.

Note When style-element is specified, only the style element’s COLOR attribute is used.

See “General Syntax for Attribute Options” on page 1347

“Fill Options” on page 1348

MARKEROUTLINEATTRS=style-element | (line-options)

specifies the appearance of the marker outlines.
For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attribute of the GraphOutlines style element and the ContrastColor attribute of a GraphData1–GraphDataN style element.

The line style of the marker outline is always solid.

This option is ignored when a data skin is applied by the current style or by the DATASKIN= option. In the latter case, the outline is set by the data skin.

When style-element is specified, only the style element’s CONTRASTCOLOR and LINETHICKNESS attributes are used.

MARKERSYMBOLGROUP=column | discrete-attr-var | expression

specifies a column that determines the marker symbols for a grouped plot independently of the GROUP= column.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

discrete-attr-var

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

A discrete attribute map variable is valid for this option starting with the third maintenance release of SAS 9.4.

When this option is specified with the GROUP= option, the series line marker symbols are selected from the GraphData1–GraphDataN style elements based on the MARKERSYMBOLGROUP= column instead of on the GROUP= column.

The line marker symbols are selected based on the GROUP= column.

The column value must be the same for all of the points that define a series line.

The GROUP= option must be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTR= option.

The DISPLAY= option must enable the display of the series line markers for this option to have any effect.

Use the MARKERATTR= option to set the marker symbol size.

GROUP= on page 758
MARKERATTRS= on page 764

NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction The string is used as the default legend label if the LEGENDDLABEL= option is not used.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDDED or LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAMEN=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list) a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined role TIP:
ROLENAMEN=(TIP1=OBS)

Default No user-defined roles

Requirement The role names that you choose must be unique and different from the predefined roles X, Y, CURVELABEL, DATALABEL, GROUP, and INDEX.

SMOOTHCONNECT=TRUE | FALSE
specifies that a smoothed line passes through all vertices.

Default FALSE
Starting with the third maintenance release of SAS 9.4, this option is ignored when SPLINETYPE=QUADRATICBEZIER is in effect.

See “boolean” on page 1339 for other Boolean values that you can use.

SPLINEPOINTS=positive-integer

specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default 20

Interaction When this option is set to a non-default value, markers and data labels, when displayed, are positioned at their original data points.

SPLINETYPE=NONE | QUADRATICBEZIER

specifies the type of spline interpolation that is used to draw the series line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows an example of SPLINETYPE= values QUADRATICBEZIER and NONE.

Figure 6.2 Spline Types QUADRATICBEZIER and NONE

Default NONE

Interaction The SMOOTHCONNECT= option is ignored when this option is set to a value other than NONE.

Note Markers and data labels, when displayed, are positioned at their original data points as shown in *Figure 6.2 on page 769.*

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over the series line. If this option is used, then the information specified replaces all the information that is displayed by default. You can specify roles for columns that do not contribute to the series plot along with roles that do.

(role-list)

an ordered, space-separated list of unique SERIESPLOT roles and user-defined roles. SERIESPLOT roles include X, Y, CURVELABEL, DATALABEL, GROUP, and COLORRESPONSE.
Define user-defined roles with the ROLENAME= option.

Notes CURVELABEL is considered a role only when it is assigned a column of values. It is not considered a role and does not display data tips when it is assigned a string.

Starting with the third maintenance release of SAS 9.4, the COLORRESPONSE role is valid.

Example The following example displays data tips for the columns assigned to the roles X and Y as well as the column Obs, which is not assigned to any pre-defined SERIESPLOT role. The Obs column must first be assigned a role.

```
ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y)
```

NONE suppresses data tips and URLs (if requested) from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: X, Y, DATALABEL, COLORRESPONSE, and GROUP.

Requirement To generate data tips in the output, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip You can control the labels and formats for the TIP roles with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list) specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

```
(role-format-list)
a space-separated list of role-name = format pairs.
```

Example

```
ROLENAME=(TIP1=Salary)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)
```

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list) specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

```
(role-label-list)
a space-separated list of role-name = label pairs.
```

Example

```
ROLENAME=(TIP1=Salary)
TIP=(TIP1)
TIPLABEL=(TIP1=Year)
```
role-label-list
 a space-separated list of rolename = "string" pairs.

Example
 ROLENAME=(TIP1=PCT)
 TIP=(TIP1)
 TIPLABEL=(TIP1="Percent")

Default
 The column label or column name of the column assigned to the role.

Restriction
 Only the roles that appear in the TIP= option are used.

Requirement
 A column must be assigned to each of the specified roles. (See the ROLENAMESPACE option.)

URL=string-column
 specifies an HTML page to display when a point or a segment of the curve is selected.

string-column
 specifies a column that contains a valid HTML page reference (HREF) for each series line segment that is to have an active link.

Example
 http://www.sas.com/technologies/analytics/index.html

Requirement
 To generate selectable points or segments of the curve, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interactions
 This option has no effect when TIP=NONE.

Note
 When you select a portion of a segment that is not an endpoint, the nearest segment endpoint is used.

Tips
 The URL value can be blank for some X and Y pairs, meaning that no action is taken when the corresponding segment is selected.

 The URL value can be the same for any X and Y pair, meaning that the same action is taken when the segment for those X and Y pairs is selected.

XAXIS=X | X2
 specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default
 X

Interaction
 The overall plot specification and the layout type determine the axis display. For more information, see "How Axis Features Are Determined" on page 875.
YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default **Y**

Interaction
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details
The SERIESPLOT statement is typically used to show time-dependent data.

Examples

Example 1: Grouped Series Plot
The following graph was generated by the “Example Program” on page 772:

![Graph of Tech Stock Trends](image)

Example Program

```plaintext
proc template;
define statgraph seriesplot;
begingraph;
entrytitle "Tech Stock Trends";
layout overlay;
seriesplot x=date y=close / group=stock name="stocks";
discretelegend "stocks";
endlayout;
endgraph;
end;
```
proc sgrender data=sashelp.stocks template=seriesplot;
 where date > "31dec1999"d;
run;

Example 2: Series Plot with Line-Thickness Response and Arrowheads

Starting with the third maintenance release of SAS 9.4, you can specify a response variable to control the thickness of the lines in your grouped series plot. You can also add arrowheads to one or both ends of your grouped or ungrouped series lines. This example creates a grouped series plot that shows the monthly closing price for IBM, Intel, and Microsoft stock in 2001. The mean volume is computed for each stock and is used to control the thickness of the series line for each stock. The minimum line thickness is set to 2px, and the maximum line width is set to 7px. A barbed arrowhead, scaled to 1.25, is positioned at the end of each series line. In order to position the arrowheads properly, the data must be sorted in ascending order by date. The following figure shows the output.

Example Program

 /* Extract the 2001 data from Sashelp.Stocks and convert Volume to millions. */
 data stocks;
 set sashelp.stocks(where=
 (date between "1jan02"d and "31dec02"d));
 volume = volume / 1000000;
 format date MONNAME3. volume 6.2;
 ;

 /* Compute the average volume for each stock */
 proc means data=stocks noprint;
 by stock notsorted;
 var volume;
 output out=meanvolume(keep=stock meanvolume) mean=meanvolume;
 run;
/* Merge the average volume data with the stock data */
data stocks;
 merge stocks meanvolume;
 by stock;
run;

/* Sort the data by Date */
proc sort data=stocks;
 by date;
run;

/* Define the graph template */
proc template;
 define statgraph seriesplot;
 begingraph / drawspace=wallpercent;
 entrytitle "Stock Trends in 2001";
 entryfootnote "Line thickness reflects the average volume."
 layout overlay /
 xaxisopts=(griddisplay=on
gridattrs=(color=lightgray pattern=dot)
type=discrete label="Month")
yaxisopts=(griddisplay=on
gridattrs=(color=lightgray pattern=dot));
 seriesplot x=date y=close / group=stock name="stocks"
 arrowheadposition=end arrowheadshape=barbed
 arrowheadscale=1.25
 linethicknessresponse=meanvolume
 linethicknessmin=2px linethicknessmax=7px
 curvelabel=meanvolume;
 drawtext "Average Volume (Millions)" / x=94 y=90
 width=80 widthunit=pixel;
 discretelegend "stocks";
 endlayout;
 endgraph;
end;

/* Render the graph */
proc sgrender data=stocks template=seriesplot;
run;

STEPPLOT Statement

Displays a series of horizontal and vertical line segments that connect observations of input data.

Syntax

```plaintext
STEPPLOT X=column | expression
Y=numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options
ARROWHEADPOSITION=NONE | START | END | BOTH | column
 specifies a position for arrowheads.

ARROWHEADSCALE=positive-number | numeric-column | expression
 specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE=OPEN | FILLED | BARBED | column
 specifies a shape for arrowheads.

BREAK=TRUE | FALSE
 determines whether the plot line should show breaks at occurrences of
 missing values of the Y column.

CLUSTERWIDTH=number
 on a discrete axis, specifies the width of the group clusters as a fraction of the
 midpoint spacing. On an interval axis, specifies the width of the group
 clusters as a fraction of the minimum interval between adjacent data values.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 enhances the visual appearance of the step plot lines.

DATATRANSPARENCY=number
 specifies the degree of the transparency of the step lines, markers, error bars,
 step-line labels, and data labels, when displayed.

DISPLAY=STANDARD | ALL | (display-options)
 specifies whether to display markers on the step line.

ERRORBARCAPSHAPE=SERIF | NONE
 specifies whether the error bars have a serif cap.

ERRORLOWER=numeric-column | expression
 specifies the values of the lower endpoints on the Y error bars.

ERRORUPPER=numeric-column | expression
 specifies the values of the upper endpoints on the Y error bars.

FILLEDOUTLINEDMARKERS=TRUE | FALSE
 specifies whether markers are drawn with both fill and an outline.

INDEX=positive-integer-column | expression
 specifies indices for mapping line attributes (color, marker symbol, and line
 pattern) to one of the GraphData1–GraphDataN style elements.

JUSTIFY=(LEFT | CENTER | RIGHT)
 specifies the location of the data point relative to the step.

LINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the attributes of the step line connecting the data points.

LINETHICKNESSMAX=dimension
 specifies the maximum line thickness when a response variable is used to
 determine the line thickness.

LINETHICKNESSMAXRESPONSE=numeric | scalar-numeric-expression
 specifies the response value that corresponds to the maximum line thickness.

LINETHICKNESSMIN=dimension
 specifies the minimum line thickness when a response variable is used to
 determine the line thickness.

LINETHICKNESSRESPONSE=numeric-column | range-attr-var | expression
 specifies a response column or range attribute variable that is used to map a
 line thickness to each group value.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
 specifies the attributes of the data markers.

MARKERFILLATTRS=style-element | (fill-options)
 specifies the appearance of the filled markers.

MARKEROUTLINEATTRS=style-element | (line-options)
specifies the appearance of the marker outlines.

Axes options

- `CLUSTERAXIS=AUTO | X | Y`
 specifies the axis to use for clustering groups when `GROUPDISPLAY=CLUSTER`.

- `PRIMARY=TRUE | FALSE`
 specifies that the data columns for this plot and the plot type be used for determining default axis features.

- `XAXIS=X | X2`
 specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

- `YAXIS=Y | Y2`
 specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Connect options

- `CONNECTORDER=XVALUES | XAXIS`
 specifies how to connect the data points to form the step line.

- `JOIN=TRUE | FALSE`
 specifies whether the steps are connected.

Data tip options

- `ROLENAME=(role-name-list)`
 specifies user-defined roles that can be used to display information in the data tips.

- `TIP=(role-list) | NONE`
 specifies the information to display when the cursor is positioned over the step line.

- `TIPFORMAT=(role-format-list)`
 specifies display formats for tip columns.

- `TIPLABEL=(role-label-list)`
 specifies display labels for tip columns.

Error bar options

- `ERRORBARATTRS=style-element | style-element (line-options) | (line-options)`
 specifies the attributes of the error bars that are associated with the data points.

Label options

- `CURVELABEL="string" | column | expression`
 specifies a label for the step line.

- `CURVELABELATTRS=style-element | style-element (text-options) | (text-options)`
 specifies the color and font attributes of the step-line labels.

- `CURVELABELLOCATION=INSIDE | OUTSIDE`
 specifies the location of the step-line label relative to the plot area.

- `CURVELABELPOSITION=AUTO | MAX | MIN | START | END`
 specifies the position of the step-line labels relative to the step line.

- `CURVELABELSPLIT=TRUE | FALSE`
 specifies whether to split the step-line label at the specified split characters.
specifies one or more characters on which the step-line label can be split if needed.

CURVELABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the step-line label text.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the step-line label block.

DATALABEL=column | expression
specifies a column that supplies values for the data point labels.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the data points and markers, when displayed.

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

DISCRETEOFFSET=number
specifies an amount to offset all step lines and markers from discrete X values when graphing multiple response variables side by side on a common axis.

GROUP=column | discrete-attr-var | expression
creates a distinct set of lines, markers, and data labels for each unique group value of the specified column.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies whether grouped step lines and markers are overlaid or clustered around the category midpoints.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

ODS options

URL=string-column
specifies an HTML page to display when a step line segment is selected.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.
Required Arguments

\(X=\text{column | expression}\)

specifies the column of the X values.

\(Y=\text{numeric-column | expression}\)

specifies the numeric column of the Y values.

Optional Arguments

\text{ARROWHEADPOSITION=} \text{NONE | START | END | BOTH | column}

specifies a position for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

- **NONE**: no arrowheads are displayed
- **START**: an arrowhead is displayed at the starting point of each line
- **END**: an arrowhead is displayed at the ending point of each line.
- **BOTH**: an arrowhead is displayed at each end of each line.

\text{column}
specifies a column that provides an arrowhead position for each group value.

Default: NONE

Restriction: When you specify a column and the GROUP= option is in effect, the arrowhead position values are assumed to be constant for each group value. If the column has multiple values for a single group value, then only one of the arrowhead position values is used for that group.

See “Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

\text{ARROWHEADSCALE=} \text{positive-number | numeric-column | expression}

specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default: 1.0

Restriction: The arrowhead scale values are assumed to be constant for each line. If a column or expression provides multiple values for a line, only one of the values is used.

Interaction: This option is ignored when ARROWHEADPOSITION=NONE is in effect.

Tip: Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

\text{ARROWHEADSHAPE=} \text{OPEN | FILLED | BARBED | column}

specifies a shape for arrowheads.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows each of the arrowhead shapes.

<table>
<thead>
<tr>
<th>Default</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>When you specify a column and the GROUP= option is in effect, the arrowhead shape values are assumed to be constant for each group value. If the column has multiple values for a single group value, only one of the arrowhead shape values is used for that group.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option is ignored when ARROWHEADPOSITION=NONE is in effect.</td>
</tr>
<tr>
<td>See</td>
<td>“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.</td>
</tr>
</tbody>
</table>

BREAK=TRUE | FALSE
determines whether the plot line should show breaks at occurrences of missing values of the Y column.

Default	FALSE
Note	When this option is set to FALSE, missing values are skipped and the line continues through the missing value and to the next point.
See	“boolean ” on page 1339 for other Boolean values that you can use.

CLUSTERAXIS=AUTO | X | Y
specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

| Default | AUTO |
| Interaction | The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect. |

CLUSTERWIDTH=number
on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

| Default | 0.85 |
| Range | 0.1–1, where 0.1 is the narrowest possible width and 1 is the widest width. |
Interactions
For this option to take effect, the GROUP= option must also be specified, and the GROUPDISPLAY= option must be set to CLUSTER.

When markers are displayed for interval data and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

CONNECTORDER=XVALUES | XAXIS
specifies how to connect the data points to form the step line.

XVALUES
connects data points in the data order of the X column.

XAXIS
connects data points sorted by their X values.

Tip When the input data for the step lines is not sorted by the X column, you can use XAXIS to assure the expected connect order.

Default XVALUES

CURVELABEL="string" | column | expression
specifies a label for the step line.

Restrictions When the GROUP= option is specified, "string" and expression are not valid. Use column in that case.

When the GROUP= option is not specified, column is not valid. Use "string" or expression in that case.

The line label for missing values is ignored.

Tip The font and color attributes for the label are specified by the CURVELABELATTRS= option.

See GROUP= on page 791

CURVELABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the step-line labels. When the GROUP= option is used, each distinct group value might be represented by a different color. The series label that is associated with the group is assigned the group color. This option can be used to specify a single color for all series labels in a plot, without affecting items that have the group color, such as lines and marker symbols.

Defaults For non-grouped data, the GraphValueText style element.

For grouped data, text color is derived from the GraphData1:ContrastColor–GraphDataN:ContrastColor style references. The font is derived from the GraphValueText style element.

Interactions For this option to take effect, the CURVELABEL= option must also be used.
This option’s COLOR= setting overrides the colors indicated by the GROUP= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

CURVELABELLOCATION=INSIDE | OUTSIDE
specifies the location of the step-line label relative to the plot area.

INSIDE
locates the labels inside the plot area

OUTSIDE
locates the labels outside the plot area

Default INSIDE

Restriction OUTSIDE cannot be used when the STEPPLOT is used in multicell layouts such as LATTICE, DATAPANEL, or DATALATTICE, where axes are external to the grid.

Interactions For this option to take effect, the CURVELABEL= option must also be specified.

This option is used in conjunction with the CURVELABELPOSITION= option to determine where the step-line labels appear. For more information, see “Location and Position of Curve Labels” on page 185.

CURVELABELPOSITION=AUTO | MAX | MIN | START | END
specifies the position of the step-line labels relative to the step line.

AUTO
automatically positions the step-line label near the step boundary along unused axes whenever possible (typically Y2 and X2) in order to avoid collision with tick values.

Restriction This option is used only when CURVELABELPOSITION=OUTSIDE.

MAX
forces the step-line label to appear near maximum step values (typically, upper right)

MIN
forces the step-line label to appear near minimum step values (typically, lower left)

START
forces the step-line label to appear near the beginning of the steps.

Restriction This option is used only when CURVELABELLOCATION=INSIDE.

Tip This option is particularly useful when the step line spirals around.
CURVELABELSPLIT=TRUE | FALSE

specifies whether to split the step-line label at the specified split characters. When a step-line label is split, the label is split on each occurrence of the specified split characters.

Default FALSE. The step-line label is not split.

Requirement The CURVELABEL= option must also be specified.

Interactions The CURVELABELSPLITCHAR= option specifies one or more characters on which the splits occur.

This option has no effect when CURVELABELPOSITION=AUTO.

CURVELABELSPLITCHAR="character-list"

specifies one or more characters on which the step-line label can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the step-line label. In that case, all of the specified split characters together are treated as a single split character.

When CURVELABEL= is specified and CURVELABELSPLIT=TRUE, the step-line label is split unconditionally at each occurrence of any of the specified split characters. If the step-line label does not contain any of the specified characters, then the label is not split.
"character-list"
 one or more characters with no delimiter between each character and enclosed in
 quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the split characters a, b, and c, use the following option:

 curvelabelsplitchar="abc"

The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interactions This option has no effect if CURVELABELPOSITION=AUTO.

The CURVELABELSPLITCHARDROP= option specifies whether the split characters are included in the step-line label or are dropped.

Notes When multiple characters are specified, the order of the characters
 in the list is not significant.

The split characters are case sensitive.

Tip Use the CURVELABELSPLITJUSTIFY= option to specify the
 justification of the strings in the step-line label block.

CURVELABELSPLITCHARDROP=TRUE | FALSE
 specifies whether the split characters are included in the step-line label text.

TRUE
 drops the split characters from the step-line label text.

FALSE
 includes the split characters in the step-line label text. When
 CURVELABELSPLIT=TRUE and
 CURVELABELSPLITCHARDROP=FALSE, each split character remains as the
 last character in the current line. The characters that follow the split character, up
to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a step-line label with the following
specifications:

- CURVELABELPOSITION=MAX
- CURVELABEL="Product*Group*A"
- CURVELABELSPLIT=TRUE
- CURVELABELSPLITCHARDROP=TRUE | FALSE
- CURVELABELSPLITCHAR="*"

Note: The horizontal line to the left of the label represents the maximum end of the
step line for reference.
When CURVELABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When CURVELABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default: TRUE. The split characters are dropped from the step-line label.

Requirement: The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.

Interaction: The CURVELABELSPLITCHAR= option specifies the split characters.

See: “boolean” on page 1339 for other Boolean values that you can use.

CURVELABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the step-line label block.

AUTO

justifies the labels based on the CURVELABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>CURVELABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX or END</td>
<td>LEFT</td>
</tr>
<tr>
<td>MIN or START</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which CURVELABELPOSITION=MAX.

Note: The horizontal line to the left of each label represents the maximum end of the step line for reference.

In this case, because CURVELABELPOSITION=MAX, AUTO left-justifies the lines of text.

Default: AUTO

Requirement: The CURVELABEL= option and the CURVELABELSPLIT=TRUE option must also be specified.
Interaction
This option has no effect if CURVELABELPOSITION=AUTO.

DATALABEL=column | expression
specifies a column that supplies values for the data point labels.

Note
The label positions are adjusted to prevent the labels from overlapping.

DATALABELATTRS=
style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels. When the GROUP= option is used, each distinct group value might be represented by a different color. The data label that is associated with the group is assigned the group color. This option can be used to specify a single color for all data labels in a plot, without affecting items that have the group color, such as error bars and marker symbols.

Defaults
For non-grouped data, the GraphDataText style element.

For grouped data, the GraphData1:ContrastColor–GraphDataN:ContrastColor style references.

Interactions
For this option to take effect, the DATALABEL= option must also be specified.

This option’s COLOR= setting overrides the colors indicated by the GROUP= option.

Note
When the DATALABELPOSITION=AUTO option is in effect, in some cases, the data label font size might be reduced in order to avoid overlapping labels and markers.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the data points and markers, when displayed.

Default
AUTO

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at the specified split characters.

Default
FALSE. The data labels are not split.

Requirement
The DATALABEL= option must also be specified.

Interactions
The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATALABELPOSITION=AUTO.

See
“boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

<table>
<thead>
<tr>
<th>Default</th>
<th>A blank space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>The list of characters must be enclosed in quotation marks.</td>
</tr>
<tr>
<td></td>
<td>Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:</td>
</tr>
<tr>
<td></td>
<td>datalabelsplitchar="abc"</td>
</tr>
<tr>
<td></td>
<td>The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.</td>
</tr>
<tr>
<td>Interactions</td>
<td>This option has no effect if DATALABELPOSITION=AUTO.</td>
</tr>
<tr>
<td></td>
<td>The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.</td>
</tr>
<tr>
<td>Notes</td>
<td>When multiple characters are specified, the order of the characters in the list is not significant.</td>
</tr>
<tr>
<td></td>
<td>The split characters are case sensitive.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.</td>
</tr>
</tbody>
</table>

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

TRUE
drops the split characters from the data label.

FALSE
includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"
When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default

TRUE. The split characters are dropped from the data label.

Requirement
The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction
The DATALABELSPLITCHAR= option specifies the split characters.

See

“boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.

AUTO

justifies the labels based on the DATALABELPOSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLSFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, the bottom center of the text box is positioned at the top of the marker.
The `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` option enhances the visual appearance of the step plot lines. The following figure shows a step plot with each of the skins applied.

![Step Plot with Different Skins](image)

Default
The `DATASKIN=` option value that is specified in the `BEGINGRAPH` statement. If that value is not specified, then the `GraphSkins:DataSkin` style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the `DATASKINMAX=` option in your ODS GRAPHICS statement to increase the maximum limit.

Interaction
This option overrides the `BEGINGRAPH` statement `DATASKIN=` option.

DATATRANSPARENCY=number
specifies the degree of the transparency of the step lines, markers, error bars, step-line labels, and data labels, when displayed.

Default
0

Range
0–1, where 0 is opaque and 1 is entirely transparent

DISCRETEOFFSET=number
specifies an amount to offset all step lines and markers from discrete X values when graphing multiple response variables side by side on a common axis.

Default
0 (no offset, all step lines and markers are centered on the discrete X values)
Range

-0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. A positive offset is to the right. If the layout’s axis options set REVERSE=TRUE, then the offset direction is also reversed.

Restriction

This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip

Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DISPLAY=STANDARD | ALL | (display-options)

specifies whether to display markers on the step line.

STANDARD

displays a step line without markers.

ALL

displays a step line with markers.

(display-options)

a space-separated list of one or more options enclosed in parentheses. Currently, only the MARKERS option is supported, which displays a step line with markers.

Default STANDARD

Tip

Use the MARKERATTRS= and LINEATTRS= options to control the appearance of the line and markers.

ERRORBARATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the error bars that are associated with the data points.

Defaults

For non-grouped data, the GraphError style element.

For grouped data, the LineStyle and LineThickness attributes of the GraphError style element and the ContrastColor attribute of the GraphData1–GraphDataN style elements. The LineStyle does not apply to the "serif" parts of the error bars.

Interaction

For this option to take effect, error bars must be displayed by the ERRORLOWER= or ERRORUPPER= options.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

ERRORBARCAPSHAPE=SERIF | NONE

specifies whether the error bars have a serif cap.
Defaults

SERIF in the first maintenance release of SAS 9.4 and earlier releases.

Starting with the second maintenance release of SAS 9.4, GraphError:CapStyle style reference. If attribute CapStyle is not defined in the active style, then SERIF is the default value.

Tip

The appearance of the error bars is controlled by the ERRORBARATTRS= option.

ERRORLOWER=numeric-column | expression

specifies the values of the lower endpoints on the Y error bars.

Default

The lower segment of the error bars is not drawn.

Requirement

The error bar values must be absolute data values, not data values relative to the value of the bar.

Interaction

If the GROUP= option is specified and GROUPDISPLAY= STACK, then this option is ignored.

Tip

You can use the ERRORBARATTRS= option to control the appearance of the error bars.

ERRORUPPER=numeric-column | expression

specifies the values of the upper endpoints on the Y error bars.

Default

The upper segment of the error bars is not drawn.

Requirement

The error bar values must be absolute data values, not data values relative to the value of the bar.

Interaction

This option is ignored when the GROUP= option is specified.

Tip

You can use the ERRORBARATTRS= option to control the appearance of the error bars.

FILLEDOUTLINEDMARKERS=TRUE | FALSE

specifies whether markers are drawn with both fill and an outline.

TRUE

draws filled markers (marker symbols with the suffix FILLED) using both fill and an outline. When this option is TRUE, the fill color and outline color for filled markers are determined in the following ways:

• If the GROUP= option is specified, then by default, the fill color is derived from the GraphData1–GraphDataN style elements Color attribute, and the marker outlined color is derived from the GraphData1–GraphDataN style elements ContrastColor attribute.

• If the GROUP= option is not specified, then the marker fill is drawn by using the MARKERFILLATTRS= specification, and the outline is drawn by using the MARKEROUTLINEATTRS= specification.

FALSE

draws the markers using fill or an outline, but not both.

Default

FALSE
Tip To specify the marker fill and outline colors for a non-grouped plot, set this option to TRUE, and then use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify the colors.

See GROUP= on page 791
MARKERFILLATTRS= on page 797
MARKEROUTLINEATTRS= on page 797
“boolean” on page 1339 for other Boolean values that you can use.

GROUP=column | discrete-attr-var | expression
creates a distinct set of lines, markers, and data labels for each unique group value of the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default Each distinct group value might be represented in the plot by a different combination of color, line pattern, and marker symbol. Lines and markers vary according to the ContrastColor, LineStyle, and MarkerSymbol attributes of the GraphData1–GraphDataN and GraphMissing style elements. Line thickness (for grouped and ungrouped data) is controlled by the LINEATTRS= option.

Interactions The group values are mapped in the order of the data, unless the INDEX= option is used to alter the default sequence of marker symbols, colors, and line patterns.

The marker size is set by the MARKERATTRS= option.

The INCLUDEMISSINGGROUP= option controls whether missing group values are considered a distinct group value.

Tip The representations that are used to identify the groups can be overridden. For example, each distinct group value is often represented by a different line pattern, but the LINEATTRS=(PATTERN=pattern) option could be used to assign the same line pattern to all of the plot’s line patterns, letting line color indicate group values. Likewise, LINEATTRS=(COLOR=color) could be used to assign the same color to all lines, letting line pattern indicate group values.

See “DISCRETEATTRVAR Statement” on page 1297

GROUPDISPLAY=OVERLAY | CLUSTER
specifies whether grouped step lines and markers are overlaid or clustered around the category midpoints.

OVERLAY
centers the step lines and markers for matching category values on the midpoints. The step lines in each set of group values are superimposed on each other.
CLUSTER
clusters the step lines and markers for matching category values around the midpoints on a discrete axis or around the intervals on an interval axis. Each cluster of group values is centered at the midpoint for the category.

Default
OVERLAY

Restriction
For this option to take effect, the GROUP= option must also be specified.

Interaction
When markers are displayed and GROUPDISPLAY=CLUSTER is in effect for interval data, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in the group-column data order.

REVERSEDATA
orders the groups within a category in the reverse group-column data order.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip
This option is useful when you want to reverse the category axis.

ASCENDING
orders the groups within a category in ascending order.

DESCENDING
orders the groups within a category in descending order.

Default
DATA

Interactions
This option is ignored if the GROUP= option is not also specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category (or X value) for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

Tip
Use the INDEX= option to alter the default sequence of visual attributes that is assigned to the groups.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.
INDEX=positive-integer-column | expression

specifies indices for mapping line attributes (color, marker symbol, and line pattern) to one of the GraphData1–GraphDataN style elements.

Requirements

- The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.
- The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.
- All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction

For this option to take effect, the GROUP= option must also be specified.

Notes

The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip

You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

JOIN=TRUE | FALSE

specifies whether the steps are connected.

Default

TRUE

See

“boolean” on page 1339 for other Boolean values that you can use.

JUSTIFY=(LEFT | CENTER | RIGHT)

specifies the location of the data point relative to the step.
LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default The Y-column label. If a label is not defined, then the Y-column name is used.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

LINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the step line connecting the data points.

Defaults For non-grouped data, the GraphDataDefault style element.

For grouped data, the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN style elements, and the GraphDataDefault:LineThickness style reference.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

LINETHICKNESSMAX=dimension

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

The LINETHICKNESSMAXRESPONSE= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the LINETHICKNESSMAXRESPONSE= value are set to the value that is specified by this option.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and
LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

Tip
Use the LINETHICKNESSMIN= option to specify the minimum line thickness.

See
“dimension” on page 1340

“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.

LINETHICKNESSMAXRESPONSE=numeric | scalar-numeric-expression
specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The maximum value in the response column that is specified in the LINETHICKNESSRESPONSE= option.

Interactions
The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the LINETHICKNESSMAX= option.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=: and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

LINETHICKNESSMIN=dimension
specifies the minimum line thickness when a response variable is used to determine the line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The thickness specified by the GraphDataDefault style element LineThickness attribute.

Interactions
The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=: and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

Tip
Use the LINETHICKNESSMAX= option to specify the maximum line thickness.

See
“dimension” on page 1340

“Example 2: Series Plot with Line-Thickness Response and Arrowheads” on page 773 for an example of how to use this option.
LINETHICKNESSRESPONSE=numeric-column | range-attr-var | expression
specifies a response column or range attribute variable that is used to map a line
thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

range-attr-var
specifies a range attribute map variable that is defined in a RANGENAVAR
statement.

Restriction A range attribute map variable specification must be a direct
reference to the attribute map variable. It cannot be set as a
dynamic variable.

Tip For each range in the attribute map, the RANGEALTCOLOR= or
RANGEALTCOLOREMODEL= option in the RANGE statement
determines the marker colors.

Default The GraphDataDefault style element LineThickness attribute.

Interactions When the column values are all zero, all negative, or all missing, this
option is ignored. In these cases, the default line thickness is used for
all of the lines.

This option overrides suboption THICKNESS= in the LINEATTRS=
option.

Note The LINETHICKNESSRESPONSE= values are assumed to be
constant for each group value in a grouped plot and for the entire plot
in an ungrouped plot. If the LINETHICKNESSRESPONSE column
has multiple values for a single GROUP value or ungrouped plot,
unpredictable results might occur.

See “Example 2: Series Plot with Line-Thickness Response and
Arrowheads” on page 773 for an example of how to use this option.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the attributes of the data markers.

Defaults For non-grouped data, GraphDataDefault style element.

For grouped data, the MarkerSymbol and ContrastColor attributes of
the GraphData1–GraphDataN style elements, and the
GraphDataDefault:MarkerSize style reference.

Interactions If FILLEDOUTLINEDMARKERS=TRUE, then this option’s
COLOR= suboption is ignored. In that case, to specify the marker fill
color, use the MARKERFILLATTRS= option instead.

This option’s COLOR= suboption overrides the default behavior for
grouped data. When the COLOR= suboption is specified in that case,
all markers have the same color, and the marker symbol alone
distinguishes the markers.

This option’s SYMBOL= suboption overrides the default behavior for
grouped data. When the SYMBOL= suboption is specified in that
In the case, all markers have the same symbol, and the symbol color alone distinguishes the markers.

The TRANSPARENCY= fill option overrides this option’s DATATRANSparency= suboption.

This option is ignored if the DISPLAY= option disables the display of the markers.

If the DATASKIN= option is in effect, then the data skin determines the marker outlines. Any outline-related settings from the current ODS style or from the marker attribute options are ignored.

Note When **style-element** is specified, only the style element’s MARKERSYMBOL, CONTRASTCOLOR, and MARKERSIZE attributes are used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a **style-element**.

“Marker Options” on page 1350 for available marker-options.

MARKERFILLATTRS= **style-element| (fill-options)**

specifies the appearance of the filled markers.

Defaults

For non-grouped data, the COLOR attribute of the GraphDataDefault style element

For grouped data, the COLOR attribute of a GraphData1–GraphDataN style element

Restriction

The TRANSPARENCY= fill option is ignored. Use the MARKERATTRS= option to set the marker transparency.

Interaction

This option is in effect only when FILLEDOUTLINEDMARKERS=TRUE and the DISPLAY= option enables fill display.

Note When **style-element** is specified, only the style element’s COLOR attribute is used.

See “General Syntax for Attribute Options” on page 1347

“Fill Options” on page 1348

MARKEROUTLINEATTRS= **style-element| (line-options)**

specifies the appearance of the marker outlines.

Defaults

For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attribute of the GraphOutlines style element and the ContrastColor attribute of a GraphData1–GraphDataN style element.

Restriction

The line style of the marker outline is always solid.
Interaction

This option is ignored when a data skin is applied by the current style or by the DATASKIN= option. In the latter case, the outline is set by the data skin.

Note

When style-element is specified, only the style element’s CONTRASTCOLOR and LINETHICKNESS attributes are used.

See

“General Syntax for Attribute Options” on page 1347
“Line Options” on page 1349

NAME="string"

assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction

The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

Interaction

The string is used as the default legend label if the LEGENDLABEL= option is not used.

PRIMARY=TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an overlay-type layout contribute to a common axis.

Default

FALSE

Restriction

This option is ignored if the plot is placed under a GRIDDED or LATTICE layout block.

Note

In an OVERLAY layout, only one plot in an overlay can be the primary plot on a per-axis basis. When no plot is designated as the primary plot, the first plot that can be a primary plot is considered the primary plot. If multiple plots specify PRIMARY=TRUE for the same axis, then the last such plot encountered is considered the primary plot.

See

“When Plots Share Data and a Common Axis” on page 880
“boolean ” on page 1339 for other Boolean values that you can use.

ROLENAMESPACE=(role-name-list)

specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)

a space-separated list of role-name = column pairs.

Example

The following example assigns the column Obs to the user-defined role TIP:
ROLENAMESPACE=(TIP1=OBS)

Default

No user-defined roles
Requirement: The role names that you choose must be unique and different from the predefined roles X, Y, CURVELABEL, DATALABEL, ERRORLOWER, ERRORUPPER, GROUP, and INDEX.

TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over the step line. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the step plot can be specified along with roles that do.

(role-list)

an ordered, space-separated list of unique STEPPLOT and user-defined roles. STEPPLOT roles include X, Y, CURVELABEL, DATALABEL, ERRORLOWER, ERRORUPPER, and GROUP.

User-defined roles are defined with the ROLENAME= option.

Note: CURVELABEL is considered a role only when it is assigned a column of values. It is not considered a role and does not display data tips when assigned a string.

Example: The following example displays data tips for the columns assigned to the roles X and Y as well as the column Obs, which is not assigned to any pre-defined STEPPLOT role. The Obs column must first be assigned a role.

```
ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y)
```

NONE

suppresses data tips and URLs (if requested) from the plot.

Default: The columns assigned to these roles are automatically included in the data tip information: X, Y, DATALABEL, ERRORLOWER, ERRORUPPER, and GROUP.

Requirement: To generate data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction: This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip: The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)

a space-separated list of role-name = format pairs.

Example: ROLENAME=(TIP1=SALARY)

```
TIP=(TIP1)
```
TIPFORMAT=(TIP1=DOLLAR12.)

Default
The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction
Only the roles that appear in the TIP= option are used.

Requirement
A column must be assigned to each of the specified roles. (See the RoleName= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example
ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default
The column label or column name of the column assigned to the role.

Restriction
Only the roles that appear in the TIP= option are used.

Requirement
A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

URL=string-column
specifies an HTML page to display when a step line segment is selected.

string-column
specifies a column that contains a valid HTML page reference (HREF) for each step line segment that is to have an active link.

Example
http://www.sas.com/technologies/analytics/index.html

Requirement
To generate selectable segments, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interactions
This option has no effect when TIP=NONE.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPT= or TIMEOPT= option for either axis.

Note
When selecting a portion of a segment that is not an endpoint, the nearest segment endpoint is used.

Tips
The URL value can be blank for some X and Y pairs, meaning that no action is taken when the corresponding segment is selected.
The URL value can be the same for any X and Y pairs, meaning that the same action is taken when the segment for those X and Y pairs are selected.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.</td>
</tr>
</tbody>
</table>

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.</td>
</tr>
</tbody>
</table>

Details

For character columns, the X-axis is always of TYPE=DISCRETE. For numeric columns, both the X- and the Y-axis are of TYPE=LINEAR by default. You can change the axis type for numeric axes with the XAXISOPTS= and YAXISOPTS= options of the containing overlay layout.

By default, the STEPPLOT statement uses the X values in data order. You can use the CONNECTORDER= option to change the order.

Example: STEPPLOT Statement

The following graph was generated by the “Example Program” on page 802:
Example Program

Here is the program code for this example.

```sas
proc template;
   define statgraph stepplot;
      begingraph;
         entrytitle "Kaplan-Meier Survival Plot";
         layout overlay /
            yaxisopts=(linearopts=(viewmin=0 viewmax=1));
         stepplot x=Time y=Survival /
            group=Stratum name="step";
         scatterplot x=Time y=Censored / name="scat"
            legendlabel="Censored" markerattrs=(symbol=plus);
         discretelegend "step" / location=inside
            halign=right valign=top across=1;
         discretelegend "scat" / location=inside halign=center valign=top;
         endlayout;
      endgraph;
   end;
run;

data Study;
   input Group : $10. Time Status @@;
   label Time="Time (Days)";
   datalines;
   ... [datalines shown below]
   run;

ods graphics;
```
ods exclude all;
ods output survivalplot=plotdata;
proc lifetest data=Study plots=(survival);
 time Time * Status(0);
 survival;
 strata Group;
run;
ods select all;
proc sgrender data=plotdata template=stepplot;
run;

Here are the data lines for the example program:

Low-Risk 2569 0 Low-Risk 2506 0 Low-Risk 2409 0
Low-Risk 218 0 Low-Risk 1857 0 Low-Risk 1829 0
Low-Risk 1562 0 Low-Risk 1470 0 Low-Risk 1363 0
Low-Risk 1030 0 Low-Risk 860 0 Low-Risk 1258 0
Low-Risk 2264 0 Low-Risk 1870 0 Low-Risk 1799 0
Low-Risk 1709 0 Low-Risk 1674 0 Low-Risk 1568 0
Low-Risk 1527 0 Low-Risk 1324 0 Low-Risk 957 0
Low-Risk 932 0 Low-Risk 847 0 Low-Risk 848 0
Low-Risk 1850 0 Low-Risk 1843 0 Low-Risk 1535 0
Low-Risk 1447 0 Low-Risk 1384 0 Low-Risk 414 1
Low-Risk 2204 1 Low-Risk 1063 1 Low-Risk 481 1
Low-Risk 105 1 Low-Risk 641 1 Low-Risk 390 1
Low-Risk 288 1 Low-Risk 421 1 Low-Risk 79 1
Low-Risk 748 1 Low-Risk 486 1 Low-Risk 48 1
Low-Risk 272 1 Low-Risk 1074 1 Low-Risk 381 1
Low-Risk 10 1 Low-Risk 53 1 Low-Risk 80 1
Low-Risk 35 1 Low-Risk 248 1 Low-Risk 704 1
Low-Risk 211 1 Low-Risk 219 1 Low-Risk 606 1
High-Risk 2640 0 High-Risk 2430 0 High-Risk 2252 0
High-Risk 2140 0 High-Risk 2133 0 High-Risk 1238 0
High-Risk 1631 0 High-Risk 2024 0 High-Risk 1345 0
High-Risk 1136 0 High-Risk 845 0 High-Risk 422 1
High-Risk 162 1 High-Risk 84 1 High-Risk 100 1
High-Risk 2 1 High-Risk 47 1 High-Risk 242 1
High-Risk 456 1 High-Risk 268 1 High-Risk 318 1
High-Risk 32 1 High-Risk 467 1 High-Risk 47 1
High-Risk 390 1 High-Risk 183 1 High-Risk 105 1
High-Risk 115 1 High-Risk 164 1 High-Risk 93 1
High-Risk 120 1 High-Risk 80 1 High-Risk 677 1
High-Risk 64 1 High-Risk 168 1 High-Risk 74 1
High-Risk 16 1 High-Risk 157 1 High-Risk 625 1
High-Risk 48 1 High-Risk 273 1 High-Risk 63 1
High-Risk 76 1 High-Risk 113 1 High-Risk 363 1

SURFACEPLOTPARM Statement

Creates a three-dimensional surface representing a response variable evaluated over a grid of X and Y values.

Restriction: The SURFACEPLOTPARM statement does not support data tips.
Requirements: For surface plots, the input data should form an evenly spaced grid of horizontal values (X and Y) and one or more vertical values (Z) for each combination. The input data must be sorted by Y and X in order to obtain the correct lighting.

Syntax
SURFACEPLOTPARM X=numeric-column | expression
Y=numeric-column | expression
Z=numeric-column | expression <option(s)>;

Summary of Optional Arguments

Appearance options
- **COLORMODEL=**style-element | (color-list)
 - Specifies a color ramp that is to be used with the COLORRESPONSE= or SURFACECOLORGRADIENT= option.
- **COLORRESPONSE=**numeric-column | range-attr-var | expression
 - Starting with the second maintenance release of SAS 9.4, specifies the column or range attribute map variable to use to determine the surface colors.
- **DATATRANSPARENCY=**number
 - Specifies the degree of the transparency of the surface.
- **FILLATTRS=**style-element | style-element (fill-options) | (fill-options)
 - Specifies the color of the filled surface or the wire-frame mesh.
- **REVERSECOLORMODEL=**TRUE | FALSE
 - Specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.
- **SURFACECOLORGRADIENT=**numeric-column | range-attr-var
 - Specifies the column or range attribute map variable that is used to determine the surface colors (in the first maintenance release of SAS 9.4 and earlier releases).
- **SURFACETYPE=**FILLGRID | FILL | WIREFRAME
 - Specifies how the surface is displayed.

Axes options
- **PRIMARY=**TRUE | FALSE
 - Specifies that the data columns for this plot and the plot type be used for determining default axis features.

Label options
- **LEGENDLABEL=**"string"
 - Specifies a label to be used in a discrete legend for this plot.

Plot reference options
- **NAME=**"string"
 - Assigns a name to this plot statement for reference in other template statements.

Required Arguments
X=numeric-column | expression
- Specifies the X coordinates of the grid.
Y=numeric-column | expression
specifies the Y coordinates of the grid.

Z=numeric-column | expression
specifies the height of response values.

Note The input data should be sorted by both 1) the Y column and 2) the X column. The sort direction for Y should be ascending. The sort direction of X be either ascending or descending.

Optional Arguments

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= or SURFACECOLORGRADIENT= option.

- **style-element**
specifies the name of a style element. The style element should contain these style attributes:
 - **STARTCOLOR** specifies a color for the smallest data value of the COLORRESPONSE= or SURFACECOLORGRADIENT= column.
 - **NEUTRALCOLOR** specifies a color for the midpoint of the range of the COLORRESPONSE= or SURFACECOLORGRADIENT= column.
 - **ENDCOLOR** specifies a color for the highest data value of the COLORRESPONSE= or SURFACECOLORGRADIENT= column.

- **(color-list)** specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

 Requirement The list of colors must be enclosed in parentheses.

 See “color” on page 1340

- **Default** The ThreeColorRamp style element.

 Interaction For this option to have any effect, the COLORRESPONSE= or SURFACECOLORGRADIENT= option must also be used.

- **Tip** The REVERSECOLORMODEL= option can be used to reverse the start and end colors of the ramp assigned to the color model.

COLORRESPONSE=numeric-column | range-attr-var | expression
starting with the second maintenance release of SAS 9.4, specifies the column or range attribute map variable to use to determine the surface colors.

 Note: Starting with the second maintenance release of SAS 9.4, the COLORRESPONSE= option replaces the SURFACECOLORGRADIENT= option. The syntax and functionality are the same. The SURFACECOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is preferred.
range-attr-var
specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

You can use this option to add a second response variable to an analysis. For an example, see “Example: SURFACEPLOTPARM Statement” on page 810.

Interaction Suboption COLOR= in the FILLATTRS= option overrides this option for the fill colors.

Tip To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

DATATRANSPARENCY=number
specifies the degree of the transparency of the surface.

Default 0
Range 0–1, where 0 is opaque and 1 is entirely transparent

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the color of the filled surface or the wire-frame mesh.

Default The GraphDataDefault:Color style reference.

Interaction The COLORRESPONSE= or SURFACECOLORGRADIENT= option is ignored if this option is specified.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default The Z-column label. If a label is not defined, then the Z-column name is used.

Restriction This option applies only to an associated DISCRETELEGEND statement.

NAME="string"
assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a unique name within the template.
Interaction

The string is used as the default legend label if the LEGENDLABEL= option is not used.

PRIMARY=TRUE | FALSE

specifies that the data columns for this plot and the plot type be used for determining default axis features. This option is needed only when two or more plots within an OVERLAY3D layout contribute to a common axis.

Default FALSE

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.

REVERSECOLORMODEL=TRUE | FALSE

specifies whether to reverse the gradient (color ramp) that is defined by either the ODS style that is in effect or by the COLORMODEL= option.

Default FALSE

See COLORMODEL= on page 1339 for other Boolean values that you can use.

SURFACECOLORGRADIENT=numeric-column | range-attr-var

specifies the column or range attribute map variable that is used to determine the surface colors (in the first maintenance release of SAS 9.4 and earlier releases).

Note: Starting with the second maintenance release of SAS 9.4, the SURFACECOLORGRADIENT= option is deprecated and replaced with the COLORRESPONSE= option. The syntax and functionality are the same. The SURFACECOLORGRADIENT= option is still honored, but the COLORRESPONSE= option is preferred.

See COLORRESPONSE= on page 805

SURFACETYPE=FILLGRID | FILL | WIREFRAME

specifies how the surface is displayed.

FILLGRID specifies a filled surface with superimposed grid lines

FILL specifies a filled surface without grid lines

WIREFRAME specifies an unfilled surface with grid lines

Default FILLGRID

Details

The SURFACEPLOTPARM statement assumes that the Z response values have been provided for a uniform X-Y grid. Missing Z values leave a “hole” in the surface. The observations in the input data set should form an evenly spaced grid of horizontal (X and Y) values and one vertical (Z) value for each of these combinations. The observations should be in sorted order of Y and X to obtain an accurate plot.
The G3GRID procedure (requires a SAS/GRAPH license) can be used to interpolate the necessary values to produce a data set with nonmissing Z values for every combination of X and Y. The G3GRID procedure can also smooth data with spline interpolations. For further details, see the documentation for PROC G3GRID in the SAS/GRAPH: Reference.

Using PROC G3GRID, the following code performs a Spline interpolation and generates this figure:

```sas
data nums;
  do i=1 to 30;
    X=10*ranuni(33)-5;
    Y=10*ranuni(35)-5;
    Z=sin(sqrt(x*x+y*y));
    output;
  end;
run;
proc g3grid data=nums out=gridded;
  grid y*x=z / spline
    axis1=-5 to 5 by 0.1
    axis2=-5 to 5 by 0.1;
run;
proc sort data=gridded; by y x; run;
proc template;
  define statgraph g3grid_surface;
  begingraph;
    entrytitle "Spline Interpolation";
    layout overlay3d;
      surfaceplotparm x=x y=y z=z / surfacetype=fill;
  endlayout;
  endgraph;
```
The KDE procedure can produce an output data set of gridded X-Y values where the Z value is computed to be a Kernel Density Estimate of the distribution of X and Y. For further details, see the documentation for PROC KDE in the SAS/STAT user’s guide.

Using PROC KDE on the `nums` data generated in the previous example, the following code computes a Kernel Density Estimate and generates this figure:

```sas
/* use the nums data generated in the previous example */
proc kde data=nums;
   bivar x y / ngrid=100
       out=binned(rename=(value1=X value2=Y));
run;
proc sort data=binned; by y x;
   label x="X" y="Y";
run;
proc template;
   define statgraph kde_surface;
      begingraph;
         entrytitle "Kernel Density Estimate";
         layout overlay3d;
            surfaceplotparm x=x y=y z=density /
                surfacetype=fill;
         endlayout;
      endgraph;
   end;
run;
```

```sas
class=headings
PROC SGRENDER DATA=gridded TEMPLATE=g3grid_surface;
RUN;
```

```
SURFACEPLOTPARM Statement
```

![Kernel Density Estimate](image)

```sas
/* use the nums data generated in the previous example */
proc kde data=nums;
   bivar x y / ngrid=100
       out=binned(rename=(value1=X value2=Y));
run;
proc sort data=binned; by y x;
   label x="X" y="Y";
run;
proc template;
   define statgraph kde_surface;
      begingraph;
         entrytitle "Kernel Density Estimate";
         layout overlay3d;
            surfaceplotparm x=x y=y z=density /
                surfacetype=fill;
         endlayout;
      endgraph;
   end;
run;
```
proc sgrender data=binned template=kde_surface;
run;

The SURFACEPLOTPARM does not support the data tips that are enabled by the IMAGEMAP= option in the ODS GRAPHICS statement.

Example: SURFACEPLOTPARM Statement

The following graph was generated by the "Example Program" on page 810:

![Surface Plot of Lake Bed]

Example Program

Here is the code for this example. The COLORRESPONSE= option is valid starting with the second maintenance release of SAS 9.4. For prior releases, use the SURFACECOLORGRADIENT= option instead.

```
proc template;
define statgraph surfaceplotparm;
begingraph;
entrytitle "Surface Plot of Lake Bed";
layout overlay3d / cube=false;
surfaceplotparm x=length y=width z=depth / reversecolormodel=true
colorresponse=depth
colormodel=twocoloraltramp;
endlayout;
endgraph;
end;
```

/* create gridded data for surface
TEXTPLOT Statement

Displays text values at specific X and Y locations in the graph.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip: Use the TEXTPLOT statement, rather than the SCATTERPLOT statement with the MARKERCHARACTER= option, when you want more control over the appearance of the text. The TEXTPLOT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

Syntax

```
TEXTPLOT X=column | expression
   Y=column | expression
   TEXT=column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **BACKLIGHT=number | AUTO**
 - specifies a back-light effect for the marker text.

- **CLUSTERWIDTH=number**
 - on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

- **COLORMODEL=color-ramp-style-element | (color-list)**
 - specifies a color ramp to use with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column | range-attr-var | expression**
 - specifies the column or range attribute map variable to use to determine the text-marker text colors.

- **CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)**
 - specifies whether space requirements for this plot contribute to the calculation of the axis offsets.

- **DATATRANSPARENCY=number**
 - specifies the degree of the transparency of the text.

- **DISPLAY=STANDARD | ALL | (display-options)**
 - specifies the features to display.

- **FILLATTRS=style-element | (fill-options)**
 - specifies the appearance of the filled areas of the text.

- **INDEX=positive-integer-column | expression**
specifies indices for mapping marker text color to one of the GraphData1–GraphDataN style elements.

OUTLINEATTRS=style-element | style-element(line-options) | (line-options)
specifies the appearance of the text-marker outlines.

PAD=dimension | (pad-options)
specifies the amount of extra space to add inside the text-marker border.

REVERSECOLORMODEL=TRUE | FALSE
specifies whether to reverse the gradient (color ramp) that is defined by either
the ODS style that is in effect or by the COLORMODEL= option.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the text-marker text.

Axes options

CLUSTERAXIS=AUTO | X | Y
specifies the axis to use for clustering groups when
GROUPDISPLAY=CLUSTER.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for
determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the
secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the
secondary Y2 (right) axis.

Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over the
text values.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Experimental options

OUTFILE=fileref | "filename"
specifies a file for storing information about the text bounding-box for each
text value in the column specified in the OUTID= option.

OUTID=column | expression
specifies a column that contains text values to write to the file specified in the
OUTFILE= option.

Label options

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

DISCRETEOFFSET=number
specifies the distance to offset all text values from discrete X values, discrete Y values, or both.

GROUP=column | discrete-attr-var | expression
creates a separate text value for each unique group value in the specified column.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how marker groups are positioned for the coordinate pairs.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

ODS options

URL=string-column
specifies an HTML page to display when a text value is selected.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Text options

FORMAT=format
specifies a SAS format or a user-defined format for the TEXT= column.

POSITION=position-option
specifies the position of the text value with respect to the location of the data point.

ROTATE=number | numeric-column
specifies the angle of rotation, in degrees, for the text values.

SIZEMAX=dimension
specifies the maximum font size for a text marker when a response variable is used to size the text-marker font.

SIZEMAXRESPONSE=numeric | scalar-numeric-expression
specifies the response value that corresponds to the maximum font size for text markers.

SIZEMIN=dimension
specifies the minimum font size for text markers when a response variable is used to size the font for text values.

SIZERESPONSE=numeric-column | numeric-expression
specifies a response column that is used to determine the font size for each text value.

SPLITCHAR="character-list"
specifies one or more characters on which the text-marker text can be split.

SPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the text-marker text.

SPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the lines of text in the text-marker text blocks.

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text values.

SPLITWIDTH=AUTO | width-in-characters
specifies the maximum width of each split line.

STRIP=TRUE | FALSE
specifies whether leading and trailing blanks should be stripped from the text-marker text before it is displayed.

\texttt{VCENTER=BBBOX | BASELINE}

specifies whether the text is vertically centered with respect to the text bounding box or to the text baseline.

\textbf{Required Arguments}

\texttt{X=column}

specifies the column for the X values.

\texttt{Y=column}

specifies the column for the Y values.

\texttt{TEXT=column}

specifies the column for the text values that are to be used for the markers.

\textbf{Optional Arguments}

\texttt{BACKLIGHT=number | AUTO}

specifies a back-light effect for the marker text. The effect is applied only to the marker text.

\texttt{number}

specifies the degree of the back-light effect.

\textit{Range} \hspace{1em} 0–1, where 0 specifies no effect and 1 specifies maximum effect

\texttt{AUTO}

the system selects an appropriate level for the back-light effect. If the \texttt{GROUP=} or \texttt{COLORRESPONSE=} option is in effect, \texttt{BACKLIGHT}=0.75. Otherwise, \texttt{BACKLIGHT}=0.5.

The following figure shows the effect on the text of an outlined, filled text marker.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>AUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Text</td>
<td>Text</td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a contrasting white back-light effect is used. For lighter colors, a contrasting black back-light effect is used. The following figure shows the two back-light types when \texttt{BACKLIGHT}=1.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Light-Gray Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Text</td>
</tr>
</tbody>
</table>

\textbf{Default} \hspace{1em} 0 (no back-light effect)

\textbf{Restriction} \hspace{1em} Vector graphics output cannot be generated when the back-light effect is applied. If you request vector graphics output and enable the back-light effect, an image is generated instead.
The BACKLIGHT= option is most effective when the text color has a low level of contrast with the background or when the background is cluttered.

COLORMODEL=\textit{color-ramp-style-element | (color-list)}
specifies a color ramp to use with the COLORRESPONSE= option.

\textit{color-ramp-style-element}
specifies the name of a color-ramp style element. The style element should contain these style attributes:

- \textit{STARTCOLOR} specifies the color for the smallest data value of the COLORRESPONSE= column.
- \textit{NEUTRALCOLOR} specifies the color for the midpoint of the range of the COLORRESPONSE= column.
- \textit{ENDCOLOR} specifies the color for the highest data value of the COLORRESPONSE= column.

\textit{(color-list)}
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See \textit{“color ” on page 1340}

Default The ThreeColorAltRamp style element.

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

Tip To reverse the start and end colors of the ramp that is assigned to the color model, use the REVERSECOLORMODEL= option.

COLORRESPONSE=\textit{numeric-column | range-attr-var | expression}
specifies the column or range attribute map variable to use to determine the text-marker text colors.

\textit{range-attr-var}
specifies a range attribute map variable that is defined in a RANGEATTRVAR statement.

Restriction A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

Tip For each range in the attribute map, the RANGECOLOR= or RANGECOLORMODEL= option in the RANGE statement determines the bounding-box fill colors. The RANGEALTCOLOR= or RANGEALTCOLORMODEL= option determines the text colors and the bounding-box outline colors.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the
COLORMODEL= option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

You can use this option to add a second response variable to an analysis.

Interactions

When the GROUP= option is specified with the COLORRESPONSE= option, the GROUP= option is ignored.

Prior to the third maintenance release of SAS 9.4, suboption COLOR= in the TEXTATTRS=, FILLATTRS=, and OUTLINEATTRS= options overrides the color attributes that are normally determined by this option.

Starting with the third maintenance release of SAS 9.4, interactions between this option and suboption COLOR= in the TEXTATTRS=, FILLATTRS=, and OUTLINEATTRS= options depend on the DISPLAY= option settings. See “Response Colors in a Text Plot” on page 833.

Note

The gradient in a continuous legend for this plot reflects the text colors.

Tips

To display a legend with this option in effect, use a CONTINUOUSLEGEND statement.

Use the OUTLINEATTRS= option to set the text bounding-box color to a fixed color.

Use the FILLATTRS= option to set the text bounding-box fill color to a fixed color or to modify the fill transparency.

Prior to the third maintenance release of SAS 9.4, when fill is displayed and the COLORRESPONSE= option is in effect, the text color and the fill color are derived from the color gradient, which makes the text unreadable. In that case, use the BACKLIGHT= option to add a backlight effect to the text, or use the TEXTATTRS= or FILLATTRS= option to specify a different text or fill color.

CLUSTERAXIS= AUTO | X | Y

specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

AUTO uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

X | Y uses the X or Y axis for clustering groups.

Default AUTO

Interaction

The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect.

CLUSTERWIDTH= number

on a discrete axis, specifies the width of the group clusters as a fraction of the midpoint spacing. On an interval axis, specifies the width of the group clusters as a fraction of the minimum interval between adjacent data values.

Default 0.85
CONTRIBUTE OFFSETS=ALL | NONE | (axis-offset-list)
specifies whether space requirements for this plot contribute to the calculation of the axis offsets. This plot’s layout container queries each of its plots for a preferred offset and includes all of the offsets in the axis offset calculations. If the DATALABEL= or MARKERCHARACTER= option is specified for this plot, this plot might request a preferred offset that prevents the clipping of any data labels or marker character strings that appear at the ends of the axes. The requested offset is based on the longest string. If the label or marker character lengths vary significantly, the result is wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTE OFFSETS= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

ALL
the space requirements for this plot are contributed to the axis offset calculations.

NONE
the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)
a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values, enclosed in parentheses:

XMAX the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.

XMIN the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.

YMAX the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.

YMIN the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default ALL

Interaction Offsets that are set in the layout axis options are always honored, regardless of the setting on this option.

Note This option does not affect offset requests from other plots.

DATATRANSPARENCY=number
specifies the degree of the transparency of the text.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent
DISCRETEOFFSET=number
specifies the distance to offset all text values from discrete X values, discrete Y values, or both.

Default
0 (no offset, all text values are centered on the discrete X values, or discrete Y values, or both)

Range
–0.5 to +0.5, where 0.5 represents half the distance between discrete tick marks. A positive offset is to the right on discrete X values and is up on discrete Y values. If the layout’s axis options set REVERSE=TRUE, then the offset direction is also reversed.

Restriction
This option applies to discrete axes only. For nondiscrete axes, this option is ignored.

Tip
Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DISPLAY=STANDARD | ALL | (display-options)
specifies the features to display.

STANDARD
displays the text only.

ALL
displays filled, outlined bounding boxes around the text.

display-options
a space-separated list of one or more of the following options, enclosed in parentheses:

FILL
displays filled bounding boxes around the text.

Tip
Use the FILLATTRS= option to modify the appearance of the bounding-box fill.

OUTLINE
displays outlined bounding boxes around the text.

Tip
Use the OUTLINEATTRS= option to modify the appearance of the bounding-box outline.

Default
STANDARD

Restriction
Vector graphics output cannot be generated when FILL or OUTLINE is displayed. If you request vector graphics output and specify DISPLAY=FILL or DISPLAY=OUTLINE, an image is generated instead.

Tip
When fill is displayed and the COLORRESPONSE= option is in effect, a low contrast between the fill color and the text color can make some of the text difficult to read or unreadable. In that case, use the TRANSPARENCY= suboption to adjust the fill transparency or use the BACKLIGHT= option to add a backlight effect to the text.
FILLATTRS=style-element | (fill-options)
specifies the appearance of the filled areas of the text. When fill options are specified, only the COLOR= and TRANSPARENCY= suboptions are honored.

Defaults
- For non-grouped data, the Color attribute of the GraphDataDefault style element.
- For grouped data, the Color attribute of the GraphData1–GraphDataN style elements.

Interactions
- For this option to have any effect, the fill must be enabled by the ODS style or by the DISPLAY= option.
- When this option’s COLOR= suboption is specified with the GROUP= or COLORRESPONSE= option, the bounding-box fill color is set to the COLOR= specification for all of the text values.

Tip
The DATATRANSPARENCY= option sets the transparency for the text-marker text, fill, and outlines. You can combine this option with DATATRANSPARENCY= to set one transparency for the text and outlines but a different transparency for the fills. Example:
```
datatransparency=0.2 fillattrs=(transparency=0.6)
```

See
- “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.
- “Fill Options” on page 1348 for available fill-options.

FORMAT=format
specifies a SAS format or a user-defined format for the TEXT= column.

Default
The format that is in effect for the column that is specified in the TEXT= argument. If no format is in effect, BEST6 is used for numeric columns.

Note
Not all of the SAS formats are supported. See Appendix 4, “SAS Formats Not Supported,” on page 1353.

GROUP=column | discrete-attr-var | expression
creates a separate text value for each unique group value in the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Tip
For each value in the discrete attribute map, the VALUE statement TEXTATTRS= option determines the text color, the LINEATTRS= option determines the bounding-box outline color, and the FILLATTRS= option determines the bounding-box fill color and transparency.

Interactions
The group values are mapped in the order in which they appear in the data.
The INCLUDEMISSINGGROUP option controls whether missing group values are considered a distinct group value.

The COLORRESPONSE= option overrides the group settings for the text color of the text value. In that case, text color is set according to the gradient.

The COLOR= suboption of the TEXTATTRS= option overrides the group settings for the text color of the text value. In that case, the text color for all of the text values is set to the COLOR= specification.

Notes
The legend entries for this plot reflect the text colors.

By default, for each text value, the bounding-box outline color is set to the text color.

Tip
Use the OUTLINEATTRS= option to set the text bounding-box color to a fixed color.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how marker groups are positioned for the coordinate pairs.

OVERLAY
draws text values for a given group value at the exact coordinate. Depending on the data, markers at a given coordinate might overlap.

CLUSTER
draws text values for a given group value adjacent to each other.

Restriction
CLUSTER is supported only when at least one axis is discrete.

Default
OVERLAY

Tip
Use the CLUSTERWIDTH= option to control the width of the clusters when CLUSTER is in effect.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the plot.

Default
TRUE

Interaction
For this option to take effect, the GROUP= option must also be specified.

Tip
The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the INDEX= option is used, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See
“boolean” on page 1339 for other Boolean values that you can use.

INDEX=positive-integer-column | expression
specifies indices for mapping marker text color to one of the GraphData1–GraphDataN style elements.
Requirements
The column or expression value must be an integer value of 1 or
greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values.
Otherwise, the entire column is invalidated and this option is
ignored.

All of the indexes for a specific group value must be the same.
Otherwise, the results are unpredictable.

Interaction
For this option to take effect, the GROUP= option must also be
specified.

Notes
The index values are 1-based indices. For the style attributes in
GraphData1–GraphDataN, if the index value is greater than N, then
a modulo operation remaps that index value to a number less than N
to determine which style to use.

If you do not use this option, then the group values are mapped in
the order of the data.

Tip
You can use indexing to collapse the number of groups that are
represented in a graph. For more information, see “Remapping
Groups for Grouped Data” on page 183.

LEGENDLABEL="string"

specifies a label to be used in a discrete legend for this plot.

Default
The TEXT-column label. If a label is not defined, then the TEXT-
column name is used.

Restriction
This option applies only to an associated DISCRETELEGEND
statement.

Interaction
If the GROUP= option is specified, then this option is ignored.

NAME="string"

assigns a name to this plot statement for reference in other template statements. The
specified name is used primarily in legend statements to coordinate the use of colors
and line patterns between the plot and the legend.

Restriction
The string is case sensitive, cannot contain spaces, and must define a
unique name within the template.

**OUTFILE=fileref | "filename"

specifies a file for storing information about the text bounding-box for each text
value in the column specified in the OUTID= option. The information is written in
the comma-separated value (CSV) format.

CAUTION:
OUTFILE= is an experimental option that is available in the third
maintenance release of SAS 9.4. Do not use this option in production jobs.

Interaction
The OUTID= option must be specified for this option to have any
effect.
This option is a specialized feature for users who want to customize the placement of the text in a text plot.

Use the IMPORT procedure to import the CSV values into a SAS data set.

See “Customizing Text Marker Placement (Experimental)” on page 834

OUTID=column | expression
 specifies a column that contains text values to write to the file specified in the OUTFILE= option.

CAUTION:
OUTID= is an experimental option that is available in the third maintenance release of SAS 9.4. Do not use this option in production jobs.

The OUTFILE= option must be specified for this option to have any effect.

This option is a specialized feature for users who want to customize the placement of the text in a text plot.

See “Customizing Text Marker Placement (Experimental)” on page 834

OUTLINEATTRS=style-element | style-element(line-options) | (line-options)
 specifies the appearance of the text-marker outlines.

Defaults
For non-grouped data, the ContrastColor attribute of the GraphOutlines style element.

For grouped data, text values use the ContrastColor attribute of the GraphData1–GraphDataN style elements. If the COLORRESPONSE= option is specified, the outline colors vary according to the color gradient.

Restriction
This option uses only the color specification in the style element or line options. The line pattern and line thickness specifications are ignored.

Interactions
For this option to have any effect, outlines must be enabled by the ODS style or by the DISPLAY= option.

When the COLOR= suboption is specified with the GROUP= option or with the COLORRESPONSE= option, for all of the text values, the bounding-box border color is set to the COLOR= specification.

This plot’s legend entries reflect the marker text color.

See “General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

COLOR= on page 1349

PAD=dimension | (pad-options)
 specifies the amount of extra space to add inside the text-marker border.
dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the text-marker border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

```
LEFT=dimension    TOP=dimension
RIGHT=dimension   BOTTOM=dimension
```

Default Padding is a fraction of the font height.

Note

Sides that are not assigned padding are padded with the default amount.

Tips

This option is meaningful only when the DISPLAY= option displays fills, outlines, or both.

Use *pad-options* to create non-uniform padding.

Note

The default units for *dimension* are pixels.

See “*dimension*” on page 1340

POSITION=position-option

specifies the position of the text value with respect to the location of the data point. Specify one of the following position options:

```
BOTTOM    CENTER    TOP
BOTTOMLEFT    LEFT    TOPLEFT
BOTTOMRIGHT    RIGHT    TOPRIGHT
```

The VCENTER= option specifies whether the position is relative to the text bound box or the text baseline. See the VCENTER= option. By default, the positions are relative to the text bounding box. The following figure shows the effect of each of these values on the position of an outlined text value when VCENTER=BBOX is in effect. The red dot indicates the marker data-point location.

![POSITION= When VCENTER=BBOX](image)

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline, as shown in the following figure.
PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining
default axis features. This option is needed only when two or more plots within an
overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or
LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary
plot on a per-axis basis. When no plot is designated as the primary plot,
the first plot that can be a primary plot is considered the primary plot. If
multiple plots specify PRIMARY=TRUE for the same axis, then the
last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880
 “boolean ” on page 1339 for other Boolean values that you can use.

REVERSECOLORMODEL=TRUE | FALSE
specifies whether to reverse the gradient (color ramp) that is defined by either the
ODS style that is in effect or by the COLORMODEL= option.

Default FALSE

See COLORMODEL=
 “boolean ” on page 1339 for other Boolean values that you can use.

ROTATE=number | numeric-column
specifies the angle of rotation, in degrees, for the text values. Positive angles are
measured in a counter-clockwise direction, and negative angles are measured in a
clockwise direction. You can use an angle that exceeds 360 degrees in absolute
value.

Default 0

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.
This option provides a way to add to the data columns that appear in data tips that are
specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example The following example assigns the column Obs to the user-defined
role TIP:
ROLENAME=(TIP1=OBS)
Default: No user-defined roles

Requirement: The role names that you choose must be unique and different from the predefined roles X, Y, GROUP, and COLORRESPONSE.

SIZEMAX= *dimension*

specifies the maximum font size for a text marker when a response variable is used to size the text-marker font. By default, the font size of the text values that are associated with the maximum response column value is set to the value specified by this option.

Default: Three times the size specified in the GraphDataText style element for the maximum response column value marker.

Interactions: The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips: Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached.

Use the SIZEMIN= option to specify the minimum font size for text markers.

See: “*dimension*” on page 1340

SIZEMAXRESPONSE= *numeric | scalar-numeric-expression*

specifies the response value that corresponds to the maximum font size for text markers.

Default: The maximum value in the response column specified in the SIZERESPONSE= option.

Interaction: The SIZERESPONSE= option must be specified for this option to have any effect.

Note: The font size for all text values that exceed the maximum response value is set to the value specified in the SIZEMAX= option.

SIZEMIN= *dimension*

specifies the minimum font size for text markers when a response variable is used to size the font for text values.

Default: The size specified in the GraphDataText style element for the minimum response column value marker.

Interaction: The SIZERESPONSE= option must be specified for this option to have any effect.

Tip: Use the SIZEMAX= option to specify the maximum text size.

See: “*dimension*” on page 1340
SIZERESPONSE=numeric-column | numeric-expression

specifies a response column that is used to determine the font size for each text value.

Default The size specified in the GraphDataText style element for all text values.

Notes When the column value for an observation is 0, the font size for the text value for that observation is set to the SIZEMIN= option value.

When the column value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on.

When all the column values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

Tip Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.

SPLITCHAR="character-list"

specifies one or more characters on which the text-marker text can be split.

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When SPLITPOLICY=SPLIT and a text value collision is detected, the text-marker text is split on a specified split character only if a split is needed at that point in order to make the text fit. In that case, a split might not occur on every split character.

When SPLITPOLICY=SPLITALWAYS, the text-marker text is split unconditionally on every occurrence of a split character. If the text-marker text does not contain any of the specified split characters, then the text is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

\texttt{splitchar=\"abc\"}

The SPLITPOLICY= option must specify SPLIT or SPLITALWAYS.

Interaction The SPLITCHARDROP= option specifies whether the split characters are included in the displayed data label or are dropped.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
SPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the text-marker text.

TRUE
drops a split character from the text-marker text when a split occurs at that character. Split characters at which a split does not occur are left in place. The SPLITPOLICY= option determines where the text is split. When SPLITPOLICY=SPLIT, the text for each text value is split at a split character only where a split is needed to fit the text in the available space. At each split point, the split character is dropped, and the characters that follow the split character, up to but not including the split character at the next split point, are wrapped to the following line.

When SPLITPOLICY=SPLITALWAYS, the text-marker text is split at every instance of a split character. All of the split characters are dropped. The characters that follow each split character, up to but not including the next split character, are wrapped to the next line.

FALSE
includes the split characters in the data label display. The SPLITPOLICY= option determines how the split characters are displayed. When SPLITPOLICY=SPLIT, each data label is split at a split character only where a split is needed in order to make the label fit the available space. A split might not occur at every split character in the label. At each split point, the split character remains as the last character in the current line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until all of the text is displayed.

When SPLITPOLICY=SPLITALWAYS, the text for each marker is split at every instance of a split character in the text regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line.

Default TRUE. A split character is dropped from the text-marker text when a split occurs at that character.

Requirement The SPLITPOLICY= option must specify SPLIT or SPLITALWAYS.

See “boolean” on page 1339 for other Boolean values that you can use.

SPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the lines of text in the text-marker text blocks.

AUTO
justifies the text based on the POSITION= option, as shown in the following table.

<table>
<thead>
<tr>
<th>POSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>
CENTER | LEFT | RIGHT
justifies the text center, left, or right, as specified.

Default AUTO

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text values.

NONE
does not split the text for text values that collide.

SPLIT
splits the text-marker text at a split character only if a split is needed at that
character in order to make the text fit the available space. No split occurs at split
characters that occur where a split is not needed. If the text does not contain any
of the specified split characters, then a split does not occur. In that case, if the
text does not fit the available space, then it might collide with the adjoining text
values.

See the SPLITCHAR= option for information about specifying the split
characters

SPLITALWAYS
splits the text-marker text at every occurrence of a split character. If the text does
not contain any of the specified split characters, then a split does not occur.

See the SPLITCHAR= option for information about specifying the split
characters

Default NONE

SPLITWIDTH=AUTO | width-in-characters
specifies the maximum width of each split line.

AUTO
uses the width of the longest inter-split-character substring.

width-in-characters
specifies a fixed width, expressed as a character count.

Note When you specify a fixed width, the text-marker text is split
unconditionally every n characters, where n is the value of width-in-
characters.

Restriction This option has an effect only when SPLITPOLICY=SPLIT.

STRIP=TRUE | FALSE
specifies whether leading and trailing blanks should be stripped from the text-marker
text before it is displayed.

Default FALSE

Tip Stripping the blanks from the numeric value strings helps center each string
relative to its data point.

See “boolean ” on page 1339 for other Boolean values that you can use.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the text-marker text.
Defaults
For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions
When this option’s COLOR= suboption is used with the GROUP= option, the COLOR= suboption specifies the color for all of the text values.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

Note
If one or more text options are specified and they do not include all the font properties (color, family, size, weight, and style), the properties that are not specified are derived from the GraphDataText style element.

See
“General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element.

“Text Options” on page 1351 for available text-options.

<table>
<thead>
<tr>
<th>TIP=(role-list)</th>
<th>NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the information to display when the cursor is positioned over the text values. If you use this option, it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the scatter plot can be specified along with roles that do.</td>
<td></td>
</tr>
</tbody>
</table>

(role-list)
an ordered, space-separated list of unique TEXTPLOT roles and user-defined roles. TEXTPLOT roles include X, Y, GROUP, and COLORRESPONSE.

User-defined roles are defined with the ROLENAME= option.

Example
The following example displays data tips for the columns assigned to the roles X and Y, as well as the column Obs, which is not assigned to any pre-defined TEXTPLOT role. The Obs column must first be assigned a role.

```
ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y)
```

NONE
suppresses data tips and URLs (if requested) from the plot.

Default
The columns assigned to the following roles are automatically included in the data tip information: X, Y, GROUP, and COLORRESPONSE.

Requirement
To generate data tips in the output, you must include an ODS GRAPHICS ON statement with the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction
This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is
specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip You can control the labels and formats for the TIP roles with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example ROLENAMES=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)

Default The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)
specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list
a space-separated list of rolename ="string" pairs.

Example ROLENAMES=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default The column label or column name of the column assigned to the role.

Restriction Only the roles that appear in the TIP= option are used.

Requirement A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

URL=string-column
specifies an HTML page to display when a text value is selected.

string-column
specifies a column that contains a valid HTML page reference (HREF) for each text value that is an active link.

Example http://www.sas.com/technologies/analytics/index.html

Requirement To generate selectable text values, you must include an ODS GRAPHICS ON statement with the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.
Interactions

This option has no effect when `TIP=NONE`. This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tips

The URL value can be blank for some X and Y pairs, meaning that no action is taken when the corresponding point is selected. The URL value can be the same for any X and Y pair. In that case, the same action is taken when the points for that X and Y pair are selected.

VCENTER=BBOX | BASELINE

specifies whether the text is vertically centered with respect to the text bounding box or to the text baseline.

BBOX

vertically centers the text with respect to its bounding box.

BASELINE

vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

Restriction

This option is valid only when `POSITION=` is set to CENTER, LEFT, or RIGHT. If `POSITION=` is set to any other value, `VCENTER=BBOX` is used instead.

Default

BBOX

Tip

Use the `POSITION=` option to specify the text position with respect to the text bounding box or to the text baseline.

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default

X

Interaction

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2

specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default

Y

Interaction

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.
Details

About Text Plots
A text plot is basically a scatter plot that uses text as markers. To generate a text plot, you can use the SCATTERPLOT statement with the MARKERCHARACTER= option or you can use the TEXTPLOT statement. However, the TEXTPLOT statement provides more control over the marker text. With the TEXTPLOT statement, the plot data provides the marker location as X and Y coordinates, and the marker text. Each marker consists of the marker text enclosed in a bounding box that is centered on its X and Y coordinates. By default, the bounding box is not visible. You can specify options in the TEXTPLOT statement to add an outline, background fill, or both, to the bounding box. The following figure shows a simple example of a text marker with a filled and outlined bounding box.

![Bounding Box](image)

Using additional options in the TEXTPLOT statement, you can rotate the text around its anchor point to any angle, manage the text position, split the text into multiple lines, add a back-light effect to the text, and so on. If you currently use the SCATTERPLOT statement and the MARKERCHARACTER= option to generate text plots, SAS recommends that you use the TEXTPLOT statement instead.

Using Colors in a Text Plot

Text Marker Color Attributes
The TEXTPLOT statement enables you to control the following color attributes for the text markers:

- text color
- bounding-box fill color
- bounding-box outline color

By default, only the marker text is displayed. Use the DISPLAY= option to specify whether the bounding-box fill, bounding-box outline, or both are displayed.

The following table lists the options that you can use to control the color attributes.

<table>
<thead>
<tr>
<th>Option</th>
<th>Color Attribute</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXTATTRS=(COLOR=)</td>
<td>text color</td>
<td>For non-grouped data, the GraphDataText:color style reference.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For grouped data, the GraphDataN:ContrastColor style reference.</td>
</tr>
</tbody>
</table>
When a response variable is used, in some cases, an attribute option is overridden by the response color. See “Response Colors in a Text Plot” on page 833.

Group Colors in a Text Plot
The TEXTPLOT statement supports the GROUP= option, which enables you to create a separate text marker for each unique value in a specified column. When the GROUP= option is in effect, by default, the text marker color attributes are controlled by the GraphData1–GraphDataN style elements. You can use the TEXTATTRS=, FILLATTRS=, and OUTLINEATTRS= options to set one or more color attributes to a fixed color. However, when you specify fixed colors, the contrast between the fixed colors and the remaining variable colors might not be sufficient for some group values. When both the GROUP= and COLORRESPONSE= options are in effect, the COLORRESPONSE= option controls the color attributes.

Response Colors in a Text Plot
The TEXTPLOT statement supports the COLORRESPONSE= option, which enables you to specify a numeric column or range attribute map variable that is used to determine the text-marker colors. When a numeric column is specified, each unique value is assigned a color from a color ramp that is specified in the COLORMODEL= option. When a range attribute map variable is specified, each unique value is assigned the attributes for that value that are defined in the attribute map. If the attribute map does not define the color attributes for a value, that value is assigned a color from the color ramp.

The TEXTPLOT statement COLORRESPONSE= option controls the color of the marker text, fill, and outline, depending on which bounding-box attributes are displayed. Prior to the third maintenance release of SAS 9.4, when the bounding-box fill and outline are displayed, COLORRESPONSE= determines the color of the text and the bounding-box fill. The bounding-box outline color in that case is determined by suboption COLOR= in the OUTLINEATTRS= option. When only the outline is displayed, the COLORRESPONSE= option determines the color of the text and the bounding-box outline. You can use suboption COLOR= in the FILLATTRS=, OUTLINEATTRS=, and TEXTATTRS= options to override the individual attributes.

Starting with the third maintenance release of SAS 9.4, when the bounding-box fill and outline are displayed, the COLORRESPONSE= option determines the color of the text and of the bounding-box outline. The bounding-box fill color in that case is determined by suboption COLOR= in the FILLATTRS= option. You can use suboption COLOR= in the FILLATTRS=, OUTLINEATTRS=, and TEXTATTRS= options to override the
individual attributes, depending on which bounding-box attributes are displayed. The following table lists the results for some common color attribute option settings when the COLORRESPONSE= option is in effect.

<table>
<thead>
<tr>
<th>COLOR= Specified in Attribute Option:</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXTATTRS=</td>
<td>The result depends on the bounding-box display as follows:</td>
</tr>
<tr>
<td></td>
<td>• If the bounding-box fill, outline, or both are displayed, the text color is set to its COLOR= specification. The bounding-box outline color is determined by the GraphDataDefault style element, and the bounding-box fill is assigned a color from the color ramp.</td>
</tr>
<tr>
<td></td>
<td>• If no bounding-box attributes are displayed, suboption COLOR= in TEXTATTRS= is ignored, and the text is assigned a color from the color ramp.</td>
</tr>
<tr>
<td>TEXTATTRS= and FILLATTRS=</td>
<td>The result depends on the bounding-box display as follows:</td>
</tr>
<tr>
<td></td>
<td>• If the fill and outline are displayed, the text and fill colors are set to their COLOR= specification. The bounding-box outline is assigned a color from the color ramp.</td>
</tr>
<tr>
<td></td>
<td>• If only the fill is displayed, the text color is set to its COLOR= specification. Suboption COLOR= in FILLATTRS= is ignored, and the bounding-box fill is assigned a color from the color ramp.</td>
</tr>
<tr>
<td>TEXTATTRS= and OUTLINEATTRS=</td>
<td>The result depends on the bounding-box display as follows:</td>
</tr>
<tr>
<td></td>
<td>• If the fill and outline are displayed, the text and outline colors are set to their COLOR= specification. The bounding-box fill is assigned a color from the color ramp.</td>
</tr>
<tr>
<td></td>
<td>• If only the outline is displayed, the outline color is set to its COLOR= specification. Suboption COLOR= in TEXTATTRS= is ignored, and the text is assigned a color from the color ramp.</td>
</tr>
<tr>
<td>TEXTATTRS=, FILLATTRS=, and OUTLINEATTRS=</td>
<td>When the bounding-box fill and outline are displayed, suboption COLOR= in TEXTATTRS= is ignored, and the text is assigned a color from the color ramp. The fill and outline colors are set to their COLOR= specification.</td>
</tr>
</tbody>
</table>

Customizing Text Marker Placement (Experimental)

Starting with the third maintenance release of SAS 9.4, you can use the TEXTPLOT statement OUTFILE= and OUTID= options to write information about the bounding box size and position for each text marker to a comma-separated values (CSV) file.

CAUTION:

OUTFILE= and OUTID= are experimental options that are available in the third maintenance release of SAS 9.4. Do not use these options in production jobs.

These options are for users who want to customize the placement of the text in a text plot. After you write the attributes to a CSV file, you can import the data into a SAS data set, and then use the data to customize the placement of the text markers.

The following table lists the information that is written to the CSV file.
<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDescent</td>
<td>Numeric</td>
<td>The descent, in y-axis units, of this observation's text string. For a discrete axis, one unit is the distance between adjacent discrete category ticks.</td>
</tr>
<tr>
<td>DataHeight</td>
<td>Numeric</td>
<td>The height, in y-axis units, of this observation's text string. For a discrete axis, one unit is the distance between adjacent discrete category ticks.</td>
</tr>
<tr>
<td>DataWidth</td>
<td>Numeric</td>
<td>The width, in x-axis units, of this observation's text string. For a discrete axis, one unit is the distance between adjacent discrete category ticks.</td>
</tr>
<tr>
<td>Descent</td>
<td>Numeric</td>
<td>The descent, in pixels, of this observation's text string.</td>
</tr>
<tr>
<td>Height</td>
<td>Numeric</td>
<td>The height, in pixels, of the bounding box for this observation's text string.</td>
</tr>
<tr>
<td>Name</td>
<td>Character</td>
<td>The name that is specified in the NAME= option in this TEXTPLOT statement. The name associates this CSV file with a specific TEXTPLOT statement. This column is useful when multiple CSV files from different TEXTPLOT statements are merged into a single SAS data set.</td>
</tr>
<tr>
<td>OutID</td>
<td>Character</td>
<td>The value for this observation from the column specified in the OUTID= option in this TEXTPLOT statement. The ID is used as a unique identifier for this observation's text string.</td>
</tr>
<tr>
<td>RelativeDescent</td>
<td>Numeric</td>
<td>The relative descent of this observation's bounding box as a proportion of the plot area width.</td>
</tr>
<tr>
<td>RelativeHeight</td>
<td>Numeric</td>
<td>The relative height of this observation's text string as a proportion of the plot area height.</td>
</tr>
<tr>
<td>RelativeWidth</td>
<td>Numeric</td>
<td>The relative width of this observation's bounding box as a proportion of the plot area width.</td>
</tr>
<tr>
<td>Width</td>
<td>Numeric</td>
<td>The width, in pixels, of the bounding box for this observation's text string.</td>
</tr>
</tbody>
</table>

Here is an example of using the OUTFILE= and OUTID= options in a TEXTPLOT statement to write text bounding-box information to CSV file textboxdata.csv. It also shows how to import the CSV file into SAS data set Work.TextBoxData.

```sas
filename csvout "textboxdata.csv";
/* Write the text bound-box data to file textboxdata.csv */
proc template;
define statgraph textplot;
  begingraph;
  layout overlay;
  textplot x=weight y=height text=name / name="textboxdata"
```
Here is a partial listing of data set Work.TextBoxData.

<table>
<thead>
<tr>
<th>Obs</th>
<th>NAME</th>
<th>OUTID</th>
<th>WIDTH</th>
<th>HEIGHT</th>
<th>DESCENT</th>
<th>RELATIVEWIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>textboxdata Alfred</td>
<td>34.045307</td>
<td>19.028384</td>
<td>5.004367</td>
<td>0.060364</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>textboxdata Alice</td>
<td>31.040453</td>
<td>19.028384</td>
<td>5.004367</td>
<td>0.055036</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>textboxdata Barbara</td>
<td>43.059872</td>
<td>19.028384</td>
<td>5.004367</td>
<td>0.076347</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>RELATIVEHEIGHT</th>
<th>RELATIVEDESCENT</th>
<th>DATAWIDTH</th>
<th>DATAHEIGHT</th>
<th>DATADESCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.046411</td>
<td>0.012206</td>
<td>6.489479</td>
<td>1.062499</td>
<td>0.279432</td>
</tr>
<tr>
<td>2</td>
<td>0.046411</td>
<td>0.012206</td>
<td>5.916715</td>
<td>1.062499</td>
<td>0.279432</td>
</tr>
<tr>
<td>3</td>
<td>0.046411</td>
<td>0.012206</td>
<td>8.207772</td>
<td>1.062499</td>
<td>0.279432</td>
</tr>
</tbody>
</table>

After you import the CSV file into a SAS data set, you can then use the data to position the text values as needed.
Example: TEXTPLOT Statement

This example creates a text plot of weight by age and sex. Column Name provides the text for filled, outlined markers. The following figure shows the output.

Here is the SAS code for this example.

```sas
proc template;
    define statgraph textplot;
    begingraph;
        entrytitle "Weight by Age and Sex";
        layout overlay / yaxisopts=(offsetmin=0.05 offsetmax=0.05);
        textplot x=age y=weight text=name / name='textplot1'
            display=all
            textattrs=(weight=bold) fillattrs=(transparency=0.9)
            group=sex groupdisplay=cluster clusterwidth=1;
        discretelegend 'textplot1';
    endlayout;
    endgraph;
end;
run;

proc sgrender data=sashelp.class template=textplot;
run;
```

VECTORPLOT Statement

Creates a plot of vectors (directed line segments).
Syntax

VECTORPLOT X=numeric-column | expression
Y=numeric-column | expression
XORIGIN=numeric-constant | numeric-column | expression
YORIGIN=numeric-constant | numeric-column | expression <option(s)>;

Summary of Optional Arguments

Appearance options

CLIP=TRUE | FALSE
specifies whether the origin is considered when determining the data ranges for the axes.

COLORMODEL=color-ramp-style-element | (color-list)
specifies a color ramp to use with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies the column or range attribute variable to use to map the line colors to a continuous color gradient.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
enhances the visual appearance of the vector plot lines.

DATATRANSPARENCY=number
specifies the degree of the transparency of the vector line and arrowhead, and the vector labels.

INDEX=positive-integer-column | expression
specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the vector line and arrowhead.

LINETHICKNESSMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

LINETHICKNESSMAXRESPONSE=numeric | scalar-numeric-expression
specifies the response value that corresponds to the maximum line thickness.

LINETHICKNESSMIN=dimension
specifies the minimum line thickness when a response variable is used to determine the line thickness.

LINETHICKNESSRESPONSE=numeric-column | range-attr-var | expression
specifies a response column or range attribute variable that is used to map a line thickness to each group value.

Axes options

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining default axis features.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options
ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data
tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a
vector line.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

DATALABEL=column | expression
specifies the labels at the ends of the vectors.

DATALABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the data labels.

DATALABELPOSITION= AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies the location of the data labels relative to the end points and arrow
heads.

DATALABELSPLIT=TRUE | FALSE
specifies whether to split the data labels at specified split characters.

DATALABELSPLITCHAR="character-list"
specifies one or more characters on which the data labels can be split if
needed.

DATALABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the data labels.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT
specifies the justification of the strings that are inside the data label blocks.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Midpoint options

GROUP=column | discrete-attr-var | expression
creates a distinct set of vector lines and data label colors for each unique
group value in the specified column.

INCLUDEMISSINGGROUP=TRUE | FALSE
specifies whether missing values of the group variable are included in the
plot.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template
statements.

Vector options

ARROWDIRECTION=OUT | IN | BOTH
specifies the placement of the arrowhead(s) at the end of the vector.

ARROWHEADS=TRUE | FALSE
specifies whether arrowheads are displayed on the vectors.

ARROWHEADSHAPE=OPEN | CLOSED | FILLED | BARBED
specifies the shape of the arrowheads.
SCALE=number
specifies the scale factor of the vector length.

Required Arguments

X=numeric-column | expression
specifies the column for the X values of the vector endpoints.

Y=numeric-column | expression
specifies the column for the Y values of the vector endpoints.

XORIGIN=numeric-constant | numeric-column | expression
specifies the X data coordinate of the vector origin.

YORIGIN=numeric-constant | numeric-column | expression
specifies the Y data coordinate of the vector origin.

Optional Arguments

ARROWDIRECTION=OUT | IN | BOTH
specifies the placement of the arrowhead(s) at the end of the vector.

OUT
specifies a single arrowhead, pointing away from the origin, at the end of the vector away from the origin.

IN
specifies a single arrowhead, pointing toward the origin, at the end of the vector near the origin.

BOTH
specifies two arrowheads. One arrowhead points away from the origin, at the end of the vector opposite from the origin. The other arrowhead points toward the origin, at the end of the vector near the origin.

Default OUT

Interaction If ARROWHEADS= FALSE, then this option is ignored.

Tip Use the ARROWHEADSHAPE= option to control arrowhead appearance.

ARROWHEADS=TRUE | FALSE
specifies whether arrowheads are displayed on the vectors.

Default TRUE

Interaction When this option is set to FALSE, the ARROWDIRECTION= and ARROWHEADSHAPE= options are ignored and all vectors are displayed as undirected line segments.

See “boolean ” on page 1339 for other Boolean values that you can use.

ARROWHEADSHAPE=OPEN | CLOSED | FILLED | BARBED
specifies the shape of the arrowheads.
VECTORPLOT Statement

<table>
<thead>
<tr>
<th>Default</th>
<th>Interaction</th>
<th>Note</th>
<th>Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td>This option is ignored if ARROWHEADS= FALSE.</td>
<td>No arrowhead is drawn for a zero-length vector. A zero-length vector is represented as a dot at its starting point.</td>
<td>Use the ARROWDIRECTION= option to control arrow direction.</td>
</tr>
</tbody>
</table>

CLIP=TRUE | FALSE

specifies whether the origin is considered when determining the data ranges for the axes.

- **FALSE**
 - includes the origin when establishing the axis scales. Each axis might be extended to force the display of the origin.

- **TRUE**
 - ignores the origin when establishing axis scales. Each axis scale is determined by the other plots in the overlay. This might result in the origin not being displayed if its data range is not within the data ranges of tips of the vectors.

Default FALSE

COLORMODEL=color-ramp-style-element | (color-list)

specifies a color ramp to use with the COLORRESPONSE= option.

- **color-ramp-style-element**
 - specifies the name of a color-ramp style element. The style element should contain these style attributes:

 - **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column.
 - **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

- **(color-list)**
 - specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

 Requirement The list of colors must be enclosed in parentheses.

See

- “boolean” on page 1339 for other Boolean values that you can use.
- “color” on page 1340
The ThreeColorAltRamp style element.

Interaction
For this option to take effect, the `COLORRESPONSE=` option must also be specified.

COLORRESPONSE= `numeric-column | range-attr-var | expression`

specifies the column or range attribute variable to use to map the line colors to a continuous color gradient.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

range-attr-var
specifies a range attribute map variable that is defined in a `RANGEATTRVAR` statement.

Restriction
A range attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set as a dynamic variable.

When a numeric column or expression is specified, the range of column or expression values are linearly mapped to the color ramp that is specified by the `COLORMODEL=` option. When a range attribute map variable is specified, the colors that are defined in the associated range attribute map are used instead.

Requirement
For a grouped plot, the `COLORRESPONSE` values should remain constant for each group value. If the `COLORRESPONSE` column has multiple values for a single `GROUP` value, unexpected results might occur.

Interactions
When the `GROUP=` option is specified with the `COLORRESPONSE=` option, the color attributes are controlled by the `COLORRESPONSE=` option.

Suboption `COLOR=` in the `DATALABELATTRS=` option overrides this option for the data label color attribute.

This option overrides suboption `COLOR=` in the `LINEATTRS=` option and varies the line color according to the color gradient or the attribute map.

Tips
To display a legend with this option in effect, use a `CONTINUOUSLEGEND` statement.

For a numeric column or expression, the ThreeColorAltRamp style element defines the line color gradient.

DATALABEL= `column | expression`

specifies the labels at the ends of the vectors.

Default
No data labels are displayed

Note
The label positions are automatically adjusted to prevent the labels from colliding with other labels and other arrows.

DATALABELATTRS= `style-element | style-element (text-options) | (text-options)`

specifies the color and font attributes of the data labels.
Defaults

For non-grouped data, the GraphDataText style element.

For grouped data, the GraphData1:ContrastColor=GraphDataN:ContrastColor style references.

Interaction

For this option to take effect, the DATALABEL= option must also be specified.

Note

When the DATALABELPOSITION=AUTO option is in effect, in some cases, the data label font size might be reduced in order to avoid overlapping labels and markers.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

DATALABELPOSITION=AUTO | TOPRIGHT | TOP | TOPLEFT | LEFT | CENTER | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT

specifies the location of the data labels relative to the end points and arrow heads.

Default AUTO

DATALABELSPLIT=TRUE | FALSE

specifies whether to split the data labels at specified split characters.

Default FALSE. The data labels are not split.

Requirement The DATALABEL= option must also be specified.

Interactions The DATALABELSPLITCHAR= option specifies one or more characters on which splits can occur.

This option has no effect when DATALABELPOSITION=AUTO.

See “boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITCHAR="character-list"

specifies one or more characters on which the data labels can be split if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the data label. In that case, all of the specified split characters together are treated as a single split character.

When DATALABEL= is specified and DATALABELSPLIT=TRUE, the data label is split unconditionally at each occurrence of any of the specified split characters. If the data label does not contain any of the specified characters, then the label is not split.

"character-list" one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:
The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interactions

This option has no effect if DATALABELPOSITION=AUTO.

The DATALABELSPLITCHARDROP= option specifies whether the split characters are included in the data label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

Use the DATALABELSPLITJUSTIFY= option to specify the justification of the strings in the data label block.

DATALABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the data labels.

TRUE

drops the split characters from the data label.

FALSE

includes the split characters in the data label. When DATALABELSPLIT=TRUE and DATALABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

The following figure shows an example of a data label with the following specifications:

- the data label text for this label is Product*Group*A
- DATALABELSPLIT=TRUE
- DATALABELSPLITCHARDROP=TRUE | FALSE
- DATALABELSPLITCHAR="*"

When DATALABELSPLITCHARDROP=TRUE, the asterisks are removed from the label. When DATALABELSPLITCHARDROP=FALSE, each asterisk remains as the last character in the line prior to the new line.

Default

TRUE. The split characters are dropped from the data label.

Requirement

The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction

The DATALABELSPLITCHAR= option specifies the split characters.
See “boolean” on page 1339 for other Boolean values that you can use.

DATALABELSPLITJUSTIFY=AUTO | CENTER | LEFT | RIGHT

specifies the justification of the strings that are inside the data label blocks.

AUTO

justifies the labels based on the DATALABELPOSITION= option as shown in the following table.

<table>
<thead>
<tr>
<th>DATALABELPOSITION= Value</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPLEFT, LEFT, or BOTTOMLEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOPRIGHT, RIGHT, or BOTTOMRIGHT</td>
<td>LEFT</td>
</tr>
<tr>
<td>TOP, CENTER, or BOTTOM</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

CENTER | LEFT | RIGHT

justifies the labels center, left, or right, as specified.

The following figure shows an example in which DATALABELPOSITION=TOP.

Note: The gray vertical line at the bottom of each label represents the horizontal center of the text box for reference.

In this case, because DATALABELPOSITION=TOP, AUTO centers the lines of text. The text box is anchored the same way that the unsplit text is anchored. For example, if DATALABELPOSITION=TOP, then the bottom center of the text box is positioned at the top of the marker.

Default

AUTO

Requirement

The DATALABEL= option and the DATALABELSPLIT=TRUE option must also be specified.

Interaction

This option has no effect if DATALABELPOSITION=AUTO.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the vector plot lines. The following figure shows a vector plot with each of the skins applied.
The DATASKIN= option value that is specified in the BEINGRAPH statement. If that value is not specified, then the GraphSkins:DataSkin style element value is used.

Restriction
Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

Interaction
This option overrides the BEINGRAPH statement DATASKIN= option.

DATATRANSPARENCY= number
specifies the degree of the transparency of the vector line and arrowhead, and the vector labels.

| Default | 0 |
| Range | 0–1, where 0 is opaque and 1 is entirely transparent |

GROUP= column | discrete-attr-var | expression
creates a distinct set of vector lines and data label colors for each unique group value in the specified column.

discrete-attr-var
specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction
A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Default
Each distinct group value might be represented in the plot by a different combination of color and line pattern. Lines vary according to the ContrastColor and LineStyle attributes of the GraphData1–GraphDataN and GraphMissing style elements.
Interactions

The group values are mapped in the order of the data, unless the `INDEX=` option is used to alter the default sequence of line patterns and colors.

The `INCLUDEMISSINGGROUP=` option controls whether missing group values are considered a distinct group value.

When both the `GROUP=` and the `COLORRESPONSE=` options are specified, the color attributes are controlled by the `COLORRESPONSE=` option.

Tip

You can use the `LINEATTRS=` option to override the representations that are used to identify the groups. For example, you can use `LINEATTRS=(PATTERN=SOLID)` to assign the same pattern to all of the lines, letting the line color distinguish group values. Likewise, you can use `LINEATTRS=(COLOR=BLACK)` to assign the same color to all of the lines, letting the line pattern distinguish group values.

See

“DISCRETEATTRVAR Statement” on page 1297

`INCLUDEMISSINGGROUP=TRUE | FALSE`

specifies whether missing values of the group variable are included in the plot.

Default TRUE

Interaction For this option to take effect, the `GROUP=` option must also be specified.

Tip

The attributes of the missing group value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the `INDEX=` option is used, the `MISSING=` system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

See “boolean ” on page 1339 for other Boolean values that you can use.

`INDEX=positive-integer-column | expression`

specifies indices for mapping line attributes (color and line pattern) to one of the GraphData1–GraphDataN style elements.

Requirements The column or expression value must be an integer value of 1 or greater. Otherwise, this option is ignored.

The positive-integer column must not contain missing values. Otherwise, the entire column is invalidated and this option is ignored.

All of the indexes for a specific group value must be the same. Otherwise, the results are unpredictable.

Interaction For this option to take effect, the `GROUP=` option must also be specified.

Notes The index values are 1-based indices. For the style attributes in GraphData1–GraphDataN, if the index value is greater than N, then
a modulo operation remaps that index value to a number less than N to determine which style to use.

If you do not use this option, then the group values are mapped in the order of the data.

Tip You can use indexing to collapse the number of groups that are represented in a graph. For more information, see “Remapping Groups for Grouped Data” on page 183.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

Default The string specified on the NAME= option.

Restriction This option applies only to an associated DISCRETELEGEND statement.

Interaction If the GROUP= option is specified, then this option is ignored.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the vector line and arrowhead.

Defaults For non-grouped data, the GraphDataDefault style element.

For grouped data, the ContrastColor, LineStyle, and LineThickness attributes of the GraphData1–GraphDataN style elements.

Interactions The COLORRESPONSE= option overrides this option’s COLOR= suboption.

The LINETHICKNESSRESPONSE= option overrides this option’s THICKNESS= suboption.

Note The arrow head size is nonlinearly proportional to the line thickness in order to maintain appropriately sized arrow heads for thicker lines.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element

“Line Options” on page 1349 for available line-options.

LINETHICKNESSMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

The LINETHICKNESSMAXRESPONSE= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the
LINETHICKNESSMAXRESPONSE= value are set to the value that is specified by this option.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

Tip

Use the LINETHICKNESSMIN= option to specify the minimum line thickness.

See

“dimension” on page 1340

LINETHICKNESSMAXRESPONSE= *numeric | scalar-numeric-expression*

specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

The maximum value in the response column that is specified in the LINETHICKNESSRESPONSE= option.

Interactions

The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the LINETHICKNESSMAX= option.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

LINETHICKNESSMIN= *dimension*

specifies the minimum line thickness when a response variable is used to determine the line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

The thickness specified by the GraphDataDefault style element LineThickness attribute.

Interactions

The LINETHICKNESSRESPONSE= option must be specified for this option to have any effect.

If the line thickness that is calculated from the LINETHICKNESSMIN=, LINETHICKNESSMAX=, and LINETHICKNESSMAXRESPONSE= option values is less than 0.5 for a line, that line is not drawn.

Tip

Use the LINETHICKNESSMAX= option to specify the maximum line thickness.

See

“dimension” on page 1340
LINETHICKNESSRESPONSE=numeric-column | range-attr-var | expression
specifies a response column or range attribute variable that is used to map a line
thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

range-attr-var
specifies a range attribute map variable that is defined in a RANGEATTRVAR
statement.

Restriction A range attribute map variable specification must be a direct
reference to the attribute map variable. It cannot be set as a
dynamic variable.

Tip For each range in the attribute map, the RANGECOLORT= or
RANGECOLORMODEL= option in the RANGE statement
determines the marker colors.

Default The GraphDataDefault style element LineThickness attribute.

Interactions When the column values are all zero, all negative, or all missing, this
option is ignored. In these cases, the default line thickness is used for
all of the lines.

This option overrides suboption THICKNESS= in the LINEATR= option.

NAME="string"
assigns a name to this plot statement for reference in other template statements. The
specified name is used primarily in legend statements to coordinate the use of colors
and line patterns between the plot and the legend.

Restriction The string is case sensitive, cannot contain spaces, and must define a
unique name within the template.

Interaction The string is used as the default legend label if the LEGENDLABEL= option is not used.

PRIMARY=TRUE | FALSE
specifies that the data columns for this plot and the plot type be used for determining
default axis features. This option is needed only when two or more plots within an
overlay-type layout contribute to a common axis.

Default FALSE

Restriction This option is ignored if the plot is placed under a GRIDDED or
LATTICE layout block.

Note In an OVERLAY layout, only one plot in an overlay can be the primary
plot on a per-axis basis. When no plot is designated as the primary plot,
the first plot that can be a primary plot is considered the primary plot. If
multiple plots specify PRIMARY=TRUE for the same axis, then the
last such plot encountered is considered the primary plot.

See “When Plots Share Data and a Common Axis” on page 880

“boolean ” on page 1339 for other Boolean values that you can use.
ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

(role-name-list)
a space-separated list of role-name = column pairs.

Example
The following example assigns the column Obs to the user-defined role TIP:
ROLENAME=(TIP1=OBS)

Default
No user-defined roles

Requirement
The role names that you choose must be unique and different from the predefined roles X, Y, DATALABEL, XORIGIN, YORIGIN, GROUP, and INDEX.

SCALE=number
specifies the scale factor of the vector length.

Default
1.0

Restriction
The number specified must be greater than 0.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a vector line. If this option is used, then the information specified replaces all of the information that is displayed by default. You can specify roles for columns that do not contribute to the vector plot along with roles that do.

(role-list)
an ordered, space-separated list of unique VECTORPLOT roles and user-defined roles. VECTORPLOT roles include X, Y, DATALABEL, XORIGIN, YORIGIN, GROUP, INDEX, and COLORRESPONSE.

Define user-defined roles with the ROLENAME= option.

Note
Starting with the third maintenance release of SAS 9.4, the COLORRESPONSE role is valid.

Example
The following example displays data tips for the columns assigned to the roles X, Y, GROUP, and the column Obs, which is not assigned to any pre-defined VECTORPLOT role. The Obs column must first be assigned a role.

ROLENAME=(TIP1=OBS)
TIP=(TIP1 X Y GROUP)

NONE
suppresses data tips from the plot.

Default
The columns assigned to these roles are automatically included in the data tip information: X, Y, DATALABEL, XORIGIN, YORIGIN, GROUP, and COLORRESPONSE.
Requirement

To generate data tips in the output, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

Interaction

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip

You can control the labels and formats for the TIP roles with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)

specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)

a space-separated list of role-name = format pairs.

Example

ROLENAME=(TIP1=SALARY)
TIP=(TIP1)
TIPFORMAT=(TIP1=DOLLAR12.)

Default

The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

TIPLABEL=(role-label-list)

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list

a space-separated list of rolename = "string" pairs.

Example

ROLENAME=(TIP1=PCT)
TIP=(TIP1)
TIPLABEL=(TIP1="Percent")

Default

The column label or column name of the column assigned to the role.

Restriction

Only the roles that appear in the TIP= option are used.

Requirement

A column must be assigned to each of the specified roles. (See the ROLENAME= option.)

XAXIS=X | X2

specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

Default

X
Interaction

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Default

Y

Interaction

The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details

By default in a VECTORPLOT, each vector starts at 0, 0 in the data space and is terminated with an open arrowhead. Zero-length vectors are represented by a dot at the starting point. To specify alternative coordinates for the starting point, use the XORIGIN= and YORIGIN= arguments.

Example: VECTORPLOT Statement

The following graph was generated by the “Example Program” on page 853:

Example Program

data CarPref;
 input Make $11. Model $13. (S1-S25) (1.);
datalines;
Cadillac Deville 8007990491240508971093809
Chevrolet Aveo 0051200423451043003515698
Chevrolet Cavalier 405330581416164354477795
Chevrolet Malibu 6027400723121345545668658
Dodge Intrepid 7006000434110117333458708
Dodge Stratus 3005005635461302444675655
Dodge Neon 4005003614021602754476555
Ford Taurus 2024006715021443530648655
Ford Mustang 5007197705021101850657555
Ford Focus 0021000303021500514078
Honda Accord 5956897609699529989975078
Honda Civic 48367095074882567765075
Lincoln LS 7008990592230409962091909
Pontiac Firebird 0107895613201206958265907
Volkswagen Jetta 4858696508877957789500
Volkswagen Beetle 4858509709695795487885000
Volvo S40 99899990999987989919000
;
run;
* Compute Two Component Model;
ods graphics;
ods exclude all;
ods output mdprefplot=plotdata;
proc prinqual data=CarPref n=2 replace mdpref method=mgv;
id model;
transform monotone(S1-S25);
run;
ods select all;
proc template;
define statgraph vectorplot;
begingraph;
entrytitle "Multidimensional Preference Analysis";
entrytitle "of Preference Ratings for Automobiles";
layout overlayequated / equatetype=fit cycleattrs=true;
referenceline y=0 / datatransparency=0.7;
referenceline x=0 / datatransparency=0.7;
vectorplot y=vec2 x=vec1 xorigin=0 yorigin=0 /
datalabel=label2var;
scatterplot y=prin2 x=prin1 /
datalabel=idlab1 primary=true
markerattrs=(symbol=circlefilled);
endlayout;
endgraph;
end;
run;
proc sgrender data=plotdata template=vectorplot;
run;

WATERFALLCHART Statement
Creates a waterfall chart that is computed from input data.
Interaction: A Waterfall chart accumulates response values in data order. Any change in the order of the X-axis values from the data order can adversely affect the waterfall chart. The X-axis value order can change when the Waterfall chart is overlaid with other plots or when it is used in a Lattice with uniform axes. It can also change when certain options are applied to the X axis.

Tip: Starting with the third maintenance release of SAS 9.4, you can use subpixel rendering with this statement. It is enabled by default. To disable subpixel rendering, specify SUBPIXEL=OFF in the BEGINGRAPH statement or in an ODS GRAPHICS statement. For information about the BEGINGRAPH statement SUBPIXEL= option, see SUBPIXEL= on page 33. For information about the ODS GRAPHICS statement SUBPIXEL= option, see "ODS GRAPHICS Statement" in SAS ODS Graphics: Procedures Guide.

Syntax

```
WATERFALLCHART CATEGORY=column | expression
RESPONSE=numeric-column | expression <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `BARWIDTH=number` specifies the width of a bar as a ratio of the maximum possible width.
- `BASELINEATTRS=style-element | (line-options)` specifies the appearance of the baseline.
- `COLORGROUP=column | discrete-attr-var | expression` specifies a column that is used to discretely color the transaction bars.
- `COLORMODEL=color-ramp-style-element | (color-list)` specifies a color ramp to use with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column | range-attr-var | expression` specifies the numeric column or range attribute map variable that is used to determine the transaction-bar colors.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` enhances the visual appearance of the filled bars.
- `DATATRANSPARENCY=number` specifies the degree of the transparency of the bar fill, bar outline, bar labels, and trend lines, if displayed.
- `DISPLAY=STANDARD | ALL | (display-options)` specifies which bar features to display.
- `FILLATTRS=style-element | style-element (fill-options) | (fill-options)` specifies the appearance of the filled transaction bars.
- `FILLTYPE=SOLID | GRADIENT` determines whether a solid or gradient fill is used in the bars.
- `FINALBARATTRS=style-element | style-element (fill-options) | (fill-options)` specifies the appearance of the “final” bar, if displayed.
- `INITIALBARATTRS=style-element | style-element (fill-options) | (fill-options)` specifies the appearance of the “initial” bar, if displayed.
- `INITIALBARVALUE=number` specifies a value for the initial bar.
- `OUTLINEATTRS=style-element | style-element (line-options) | (line-options)` specifies the appearance of the bar outlines.
Axes options

BASELINEINTERCEPT=number
specifies the response axis intercept for the baseline.

FINALBARTICKVALUE="string"
specifies a tick value to use on the category axis when the “final” bar is displayed.

INITIALBARTICKVALUE="string"
specifies a tick value to use on the category axis when the “initial” bar is displayed.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

Data tip options

ROLENAME=(role-name-list)
specifies user-defined roles that can be used to display information in the data tips.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a bar.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns.

TIPLABEL=(role-label-list)
specifies display labels for tip columns.

Label options

BARLABEL=TRUE | FALSE
specifies whether the bar statistic value is displayed at the end of the bar.

BARLABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the text properties of the bar label text.

BARLABELFITPOLICY=AUTO | NONE
specifies a policy for avoiding collisions among the bar labels when labels are displayed.

BARLABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="string"
specifies a label to be used in a discrete legend for this plot.

ODS options

URL=string-column
specifies an HTML page to display when a bar is selected.

Plot reference options

NAME="string"
assigns a name to this plot statement for reference in other template statements.

Statistics options

COLORSTAT=SUM | MEAN
specifies the statistic to use for computing the response colors.
STAT=S\text{UM} \mid \text{MEAN}

specifies the statistic to be computed for the RESPONSE axis.

Trend line options

\text{CONNECT=START} \mid \text{END}

determines whether trend lines connect to the adjacent bar’s starting or ending value.

\text{CONNECTATTRS=} \text{style-element} \mid \text{style-element (line-options)} \mid (\text{line-options})

specifies the appearance of the trend lines that connect the bars.

\text{CONNECTDECREASINGATTRS=} \text{style-element} \mid \text{style-element (line-options)} \mid (\text{line-options})

specifies the appearance of trend lines that denote a decreasing value between bars.

\text{CONNECTINCREASINGATTRS=} \text{style-element} \mid \text{style-element (line-options)} \mid (\text{line-options})

specifies the appearance of trend lines that denote an increasing value between bars.

Required Arguments

\text{CATEGORY=} \text{column} \mid \text{expression}

specifies the column or expression for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.

\text{RESPONSE=} \text{numeric-column} \mid \text{expression}

specifies the numeric column or expression for the response values.

Optional Arguments

\text{BARLABEL=} \text{TRUE} \mid \text{FALSE}

specifies whether the bar statistic value is displayed at the end of the bar.

Default \text{FALSE}

Tip The font and color attributes for the label are specified by the \text{BARLABELATTRS=} option. The text format is specified by the \text{BARLABELFORMAT=} option.

See “\text{boolean}” on page 1339 for other Boolean values that you can use.

\text{BARLABELATTRS=} \text{style-element} \mid \text{style-element (text-options)} \mid (\text{text-options})

specifies the text properties of the bar label text.

Default The GraphDataText style element.

Requirement For this option to take effect, \text{BARLABEL=} \text{TRUE} must be specified.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a \text{style-element}.

“Text Options” on page 1351 for available \text{text-options}.

\text{BARLABELFITPOLICY=} \text{AUTO} \mid \text{NONE}

specifies a policy for avoiding collisions among the bar labels when labels are displayed.
AUTO

rotates the bar labels if the labels exceed the midpoint spacing. If the labels collide horizontally due to thin bars, then AUTO drops all of the labels. The following figure shows an example.

See the **BARWIDTH=** option for more information about the bar spacing.

NONE

does not rotate the bar labels. Labels that are too long overlap.

Default AUTO

Requirement For this option to take effect, **BARLABEL=TRUE** must be specified.

BARLABELFORMAT= *format*

specifies the text format used to display the bar label.

Default The column format assigned to the **RESPONSE=** column or **BEST6** if no format is assigned.

Requirement For this option to take effect, **BARLABEL=TRUE** must be specified.

BARWIDTH= *number*

specifies the width of a bar as a ratio of the maximum possible width.

Default 0.85

Range 0.1–1, where 0.1 is the narrowest and 1 is the widest

Notes This option is needed only to change the default behavior.

Tip To remove any inter-bar gap, set **BARWIDTH=1**.

BASELINEATTRS= *style-element | (line-options)*

specifies the appearance of the baseline.
The baseline is always drawn by default.

When `style-element` is specified, only the style element’s `COLOR`, `LINESTYLE`, and `LINETHICKNESS` attributes are used.

To suppress the baseline, set the line thickness to 0:
```plaintext```
baselineattrs=(thickness=0)
```plaintext```

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Line Options” on page 1349 for available `line-options`.

BASELINEINTERCEPT=number

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, whether for a specified value or for the default value. When this option is used, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default

0

Interactions

The value set by this option affects only the chart’s initial and final bars. If no initial bar value is specified, then the first transaction bar is drawn from 0, no matter what is set for the baseline value.

If necessary, the response axis data range is extended to include the baseline intercept. When a logarithmic response axis is requested and `BASELINEINTERCEPT=` specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set `BASELINEINTERCEPT=` to a positive value.
Note Label positions are automatically adjusted to prevent the labels from overlapping.

Tips Control the appearance of the baseline with the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

COLORGROUP= column | discrete-attr-var | expression

specifies a column that is used to discretely color the transaction bars.

discrete-attr-var

specifies a discrete attribute map variable that is defined in a DISCRETEATTRVAR statement.

Restriction

A discrete attribute map variable specification must be a direct reference to the attribute map variable. It cannot be set by a dynamic variable.

Interactions

This option is ignored if the COLORRESPONSE= option is also specified.

If a column or expression is specified, then the unique column values are found and the transaction bar colors are derived from the GraphData1–GraphDataN style elements. The COLOR attribute is used for the bar fill colors and the CONTRASTCOLOR attribute is used for the bar outline colors.

If a variable that is associated with an attribute map is specified, then the color mapping defined by the associated DISCRETEATTRMAP statement is used for the transaction bars.

Notes

All of the COLORGROUP values for a specific category value must be the same. Otherwise, the results are unpredictable.

All the transaction bars have only one fill and one outline color, determined by the ODS style or set by the FILLATTRS= and OUTLINEATTRS= options.

Tip

To manage the color of the “initial” bar, use the INITIALBARATTRS= option. To manage the color of the “final” bar, use the FINALBARATTRS= option.

See

“DISCRETEATTRMAP Statement” on page 1287

“DISCRETEATTRVAR Statement” on page 1297

COLORMODEL= color-ramp-style-element | (color-list)

specifies a color ramp to use with the COLORRESPONSE= option.

color-ramp-style-element

specifies the name of a color-ramp style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the
COLORRESPONSE= column.

ENDCOLOR specifies the color for the highest data value of the
COLORRESPONSE= column.

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use
style attribute references such as GraphData3:Color, color names, or RGB,
CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can
contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

See “color ” on page 1340

Default The ThreeColorRamp style element

Interactions For this option to take effect, the COLORRESPONSE= option must also be specified.

When FILLTYPE=GRADIENT and a color list is specified, the
middle color in the list is treated as the NEUTRAL color.

Tip To manage the color of the initial bar, use the INITIALBARATTRS= option. To manage the color of the final bar, use the FINALBARATTRS= option.

COLORRESPONSE=numeric-column | range-attr-var | expression
specifies the numeric column or range attribute map variable that is used to
determine the transaction-bar colors.

range-attr-var
specifies a range attribute map variable that is defined in a RANGEATTRVAR
statement.

Restriction A range attribute map variable specification must be a direct
reference to the attribute map variable. It cannot be set as a
dynamic variable.

When a numeric column or expression is specified, the range of column or
expression values are linearly mapped to the color ramp that is specified by the
COLORMODEL= option. When a range attribute map variable is specified, the
colors that are defined in the associated range attribute map are used instead.

Restriction This option affects only the fill colors. When only the bar outlines are
displayed, this option has no effect.

Interactions When the COLORGROUP= option is specified with this option, the
COLORGROUP= option is ignored.

This option overrides suboption COLOR= in the FILLATTRS= option.

Tips To display a legend with this option in effect, use a
CONTINUOUSLEGEND statement.
Use the COLORSTAT= option to specify the statistic to compute for the COLORRESPONSE= column.

To produce discrete color mapping, the RANGEATTRMAP statement can define an attribute map that maps a single color to all values greater than 0, and another color to all values less than 0.

Use the FILLTYPE= option to indicate whether the color mapping is used to produce solid or gradient fills. When FILLTYPE=GRADIENT is in effect, the color at the end of the bar is based on the color mapping, and the neutral color of the color ramp is used as the starting color of each bar.

COLORSTAT=SUM | MEAN

specifies the statistic to use for computing the response colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default SUM

Interaction This option is ignored when the COLORRESPONSE= option is not specified.

Tip This option might affect existing SAS programs. For programs written before the third maintenance release of SAS 9.4, if STAT= and COLORRESPONSE= are specified in a WATERFALLCHART statement, the chart colors and color statistic might change from the previous SAS releases. To restore the original colors and color statistic in that case, set COLORSTAT= in the WATERFALLCHART statement to the same statistic that is specified in STAT=.

CONNECT=START | END

determines whether trend lines connect to the adjacent bar’s starting or ending value.

START

draws the trend lines horizontally and connects each to the adjacent bar’s starting value. Each connecting line extends from the right corner of one bar’s ending value to the left corner of the adjacent bar’s starting value.

END

draws the trend lines diagonally and connects each to the adjacent bar’s ending value. Each connecting line extends from the right corner of one bar’s ending value to the left corner of the adjacent bar’s ending value.

Default START

Restriction The last connect line is always drawn horizontally, extending from the right corner of the last data bar’s ending value to the left corner of the “final” bar’s starting value.

CONNECTATTRS=style-element | style-element (line-options) | (line-options)

specifies the appearance of the trend lines that connect the bars.

Default The GraphConnectLine style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
CONNECT DECREASING ATTRS= style-element | style-element (line-options) | (line-options)

specifies the appearance of trend lines that denote a decreasing value between bars.

Default: The appearance specified by the CONNECTATTRS= option.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

CONNECT INCREASING ATTRS= style-element | style-element (line-options) | (line-options)

specifies the appearance of trend lines that denote an increasing value between bars.

Default: The appearance specified by the CONNECTATTRS= option.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

DATASKIN = NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

enhances the visual appearance of the filled bars. The following figure shows bars with each of the skins applied.

Default: The DATASKIN= option value that is specified in the BEGINGRAPH statement. If not specified, then the GraphSkins:DataSkin style element value is used.

Restriction: Starting with the first maintenance release of SAS 9.4, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.
Requirement For this option to have any effect, the fill must be enabled by the ODS style or the DISPLAY= option.

Interactions This option overrides the BEGINGRAPH statement DATASKIN= option.

The skin appearance is based on the FILLATTRS= color.

When a data skin is applied, all bar outlines are set by the skin, and the OUTLINEATTRS= option is ignored.

DATATRANSPARENCY=number

specifies the degree of the transparency of the bar fill, bar outline, bar labels, and trend lines, if displayed.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

Tip The FILLATTRS= option can be used to set transparency for just the filled bar area. The INITIALBARATTRS= and FINALBARATTRS= options can be used to specify transparency for the initial and final bars. You can combine this option with FILLATTRS=, INITIALBARATTRS=, and FINALBARATTRS= to set one transparency for the bar outlines and trend lines but a different transparency for the bar fills. Example:

```plaintext
data trasparency=0.2 fillatts=(transparency=0.6)
```

DISPLAY=STANDARD | ALL | (display-options)

specifies which bar features to display.

STANDARD

displays outlined, filled bars; connect lines; and the “final” bar.

ALL

same as STANDARD

(*display-options*)

a space-separated list of one or more of the following options enclosed in parentheses:

- **FILL** displays filled bars
- **FINALBAR** displays the “final” bar
- **OUTLINE** displays outlined bars
- **CONNECT** Displays line segments (trend lines) connecting adjacent bar. The connection point is determined by the CONNECT= option.

Default STANDARD

Tips

To control the appearance of the bars, use the COLORMODEL=, FILLATTRS=, and OUTLINEATTRS= options.

To control the appearance of the trend lines, use the CONNECTATTRS=, CONNECTDECREASINGATTRS=, and CONNECTINCREASINGATTRS= options.
FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the filled transaction bars.

Defaults
If the COLORGROUP= option is not specified, then the
GraphDataDefault:Color style reference.

If the COLORGROUP= option is specified, then the
GraphData1:Color–GraphDataN:Color style references.

Interaction
This option’s color specification is ignored if either the
COLORMODEL= or COLORRESPONSE= option is specified. The
transparency specification is honored in that case.

Tip
The DATATRANSPARENCY= option sets the transparency for the bar
fill, bar outline, and trend lines. You can combine this option with
DATATRANSPARENCY= to set one transparency for the bar outlines
and trend lines but a different transparency for the bar fills. Example:
datatransparency=0.2 fillattrs=(transparency=0.6)

See
“General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.

“Fill Options” on page 1348 for available fill-options.

FILLTYPE=SOLID | GRADIENT
determines whether a solid or gradient fill is used in the bars.

Default
SOLID

Tip
The colors that are used depend on whether the COLORGROUP= option
or the COLORRESPONSE= option is also specified.

FINALBARATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the “final” bar, if displayed.

Default
the GraphFinal style element

Interaction
This option is ignored if the DISPLAY= option does not display the
“final” bar.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.

“Fill Options” on page 1348 for available fill-options.

FINALBARTICKVALUE="string"
specifies a tick value to use on the category axis when the “final” bar is displayed

Default
"Final"

Interaction
This option is ignored if the DISPLAY= option does not display the
“final” bar.

INITIALBARATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the appearance of the “initial” bar, if displayed.

Default
the GraphInitial style element
Interaction

For this option to take effect, the INITIALBARVALUE= option must also be specified.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

INITIALBARTICKVALUE="string"

specifies a tick value to use on the category axis when the “initial” bar is displayed.

Default "Initial"

Interaction

For this option to take effect, the INITIALBARVALUE= option must also be specified.

INITIALBARVALUE=number

specifies a value for the initial bar. The initial bar’s value is used as the starting response value for the first transaction bar.

Note

The first transaction bar starts at response value 0.
LEGENDLABEL="string"
 specifies a label to be used in a discrete legend for this plot.

 Default: The response-variable label. If a label is not defined, then the response-variable name is used.

 Restriction: This option applies only to an associated DISCRETELEGEND statement.

 Interaction: If the COLORGROUP= option is in effect, then this option is ignored.

NAME="string"
 assigns a name to this plot statement for reference in other template statements. The specified name is used primarily in legend statements to coordinate the use of colors and line patterns between the plot and the legend.

 Restriction: The string is case sensitive, cannot contain spaces, and must define a unique name within the template.

 Interaction: The string is used as the default legend label if the LEGENDLABEL= option is not used.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the appearance of the bar outlines.

 Default: The ContrastColor and LineThickness attributes of the GraphOutlines style element.

 Interactions: For this option to have any effect, outlines must be enabled by the ODS style or the DISPLAY= option.

 If the DATASKIN= option applies a data skin, then this option is ignored.

 See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
 “Line Options” on page 1349 for available line-options.

ROLENAME=(role-name-list)
 specifies user-defined roles that can be used to display information in the data tips. This option provides a way to add to the data columns that appear in data tips that are specified by the TIP= option.

 (role-name-list)
 a space-separated list of role-name = column pairs.

 Example: The following example assigns the column Obs to the user-defined role TIP:
 ROLENAME=(TIP1=OBS)

 Default: No user-defined roles

 Requirement: The role names that you choose must be unique and different from the predefined roles CATEGORY, RESPONSE, COLORGROUP, and COLORRESPONSE.
STAT=SUM | MEAN
specifies the statistic to be computed for the RESPONSE axis.

Default SUM

Tip If you use this option with COLORRESPONSE= in SAS programs that were written before the third maintenance release of SAS 9.4, the chart colors and color statistic might change from the previous SAS releases. To restore the original colors and color statistic in that case, set COLORSTAT= in the WATERFALLCHART statement to the same statistic that is specified in STAT=.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a bar. If this option is used, then it replaces all of the information that is displayed by default. Roles for columns that do not contribute to the waterfall chart can be specified along with roles that do.

(role-list)
an ordered, space-separated list of unique WATERFALLCHART and user-defined roles. WATERFALLCHART roles include CATEGORY , RESPONSE , COLORGROUP , and COLORRESPONSE .

Example The following example displays data tips only for the column that is assigned to the RESPONSE role:

TIP=(RESPONSE)

NONE
suppresses data tips and URLs (if requested) from the plot.

Default The columns assigned to these roles are automatically included in the data tip information: CATEGORY and RESPONSE .

Requirement To enable data tips in the output, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

Interaction This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tip The labels and formats for the TIP roles can be controlled with the TIPLABEL= and TIPFORMAT= options.

TIPFORMAT=(role-format-list)
specifies display formats for tip columns. This option provides a way to control the formats of columns that appear in data tips.

(role-format-list)
a space-separated list of role-name = format pairs.

Example TIP=(RESPONSE)
TIPFORMAT=(RESPONSE=DOLLAR12.)
Default: The column format of the column assigned to the role or BEST6 if no format is assigned to a numeric column.

Restriction: Only the roles that appear in the TIP= option are used.

Requirement: A column must be assigned to each of the specified roles.

TIPLABEL=(role-label-list)

specifies display labels for tip columns. This option provides a way to control the labels of columns that appear in data tips.

role-label-list

a space-separated list of rolename = "string" pairs.

Example

```
TIP=(RESPONSE)
TIPLABEL=(RESPONSE="Average Sales")
```

Default: The column label or column name of the column assigned to the role.

Restriction: Only the roles that appear in the TIP= option are used.

Requirement: A column must be assigned to each of the specified roles.

URL=string-column

specifies an HTML page to display when a bar is selected.

string-column

specifies a column that contains a valid HTML page reference (HREF) for each bar that is to have an active link.

Example

```
http://www.sas.com/technologies/analytics/index.html
```

Requirements: To generate selectable bars, you must include an ODS GRAPHICS ON statement that has the IMAGEMAP option specified, and you must write the output to the ODS HTML destination.

For non-grouped data, the values of the column are expected to be the same for each unique RESPONSE value. If they are not, then the results might be unpredictable.

For grouped data, the values of the column are expected to be the same for each unique RESPONSE and group combination.

Interactions: This option has no effect when `TIP=NONE`.

This option is ignored when the plot statement is in an OVERLAY or PROTOTYPE layout and the INCLUDERANGES= option is specified in the LINEAROPTS= or TIMEOPTS= option for either axis.

Tips: The URL value can be blank for some RESPONSE values, meaning that no action is taken when the bars for those RESPONSE values are selected.
The URL value can be the same for different RESPONSE values, meaning that the same action is taken when the bars for those RESPONSE values are selected.

XAXIS=X | X2
specifies whether data are mapped to the primary X (bottom) axis or to the secondary X2 (top) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>X</th>
</tr>
</thead>
</table>

Interaction
The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

YAXIS=Y | Y2
specifies whether data are mapped to the primary Y (left) axis or to the secondary Y2 (right) axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>Y</th>
</tr>
</thead>
</table>

Interaction
This option is ignored if the RESPONSE= argument is not specified. The overall plot specification and the layout type determine the axis display. For more information, see “How Axis Features Are Determined” on page 875.

Details
The input data for the WATERFALLCHART statement is raw, unsummarized input data, and the statement calculates appropriate summarization statistics (sum or mean). By default, the bars in the chart appear in the order in which the CATEGORY values are present in the input data. A waterfall chart is typically used to show credit and debit transactions or successive changes to a given state.

In a waterfall chart, the bars that are calculated from the data are called “transaction” bars. The transaction bars represent the values of the RESPONSE variable across a series of intermediate values for the specified CATEGORY variable. You can manage the color of the transaction bars using the COLORGROUP, COLORMODEL, or COLORRESPONSE= option.

A waterfall chart can also display an “initial” bar and a “final” bar. The value of the initial bar determines the starting response value for the first transaction bar. To set the initial value, use the INITIALBARVALUE= option. If the initial bar is not displayed, then the first transaction bar has a starting response value of 0. The value of the final bar is set automatically to the ending value of the last transaction bar.

Example: WATERFALLCHART Statement

The following graph was generated by the “Example Program” on page 871:
Example Program

```sas
data transactions;
input ID $ Amount type $;
datalines;
Alpha 2000 credit
Beta -2500 debit
Gamma -2000 debit
Delta -500 debit
Epsilon 2250 credit
;
proc template;
define statgraph waterfallchart;
  begingraph;
  layout overlay;
  waterfallchart category=id response=amount /
    colorgroup=type
    initialbarvalue=1000
    name="waterfall";
  discretelegend "waterfall";
  endlayout;
  endgraph;
end;
run;
```

```sas
proc sgrender data=transactions template=waterfallchart;
run;
```
Part 5

Plot Axes

Chapter 7
Axis Features in Layouts .. 875

Chapter 8
Axis Options in Layouts .. 889
Chapter 7
Axis Features in Layouts

Overview

GTL plots are specified within layout blocks that enable you to control the graph display features, including the display of the axes for the plots within the layout. For example, the LAYOUT OVERLAY statement has XAXISOPTS= and YAXISOPTS= options that enable you to specify axis features for the plots within the layout.

The following sections explain how the axis features are determined in a layout. The sections also discuss the issues that you must consider when setting the axis type or adjusting the appearance of the axis display.

How Axis Features Are Determined

Overview

The GTL uses various criteria to determine the displayed axis features for a graph. Generally, axis features are based on the following criteria:

• the layout type
• the order of plot statements in the layout and the options specified on those statements
the use of primary and secondary axes on the plots (when secondary axes are supported)
• the plot type
• the column or columns of data that contribute to defining the axis range
• the data formats for the contributing data columns

Because the default axis features depend on a combination of the factors above, it is useful to understand how the axis features are determined in the templates that you build:
• how the data are mapped to the plot axes
• how the various layout types manage the axes.

Plot Data Are Mapped to a Designated Axis

Overview for Axis Mapping
Depending on the layout type and the plots that you specify within the layout, you can manage up to four axes for two-dimensional plots:
• a primary X (bottom) axis
• a primary Y (left) axis
• a secondary X axis (X2 or “top” axis)
• a secondary Y axis (Y2 or “right” axis)

Within single-cell layouts (for example, OVERLAY layout), there can be just one each of these four axes. However, within multi-cell layouts (for example, LATTICE layouts), each cell can display the four axes. Thus, there can be multiple X, X2, Y, and Y2 axes across the columns and rows in the layout grid. In a lattice-type layout, you might have to use layout options to specify how the data ranges and axis display should be managed. This section discusses the simpler case for axis mapping, and “Axis Mapping in Lattice-type Layouts” on page 877 discusses the case for lattice-type layouts.

Note: GRIDDED layouts can be used to create a grid of cells, but the cells are independent. Thus, axes in the grid cannot be managed across columns and rows, so the simpler case applies to GRIDDED layouts.

Primary and Secondary Axes
By default, plot data are mapped to the primary axes. To enable you to override the default, plot statements that support a secondary X2 axis provide an XAXIS= option that can map data to the X or X2 axis. Plot statements that support a Y axis provide a YAXIS= option that can map data to the Y or Y2 axis.

To determine the axis features within a layout, the GTL must first determine what data must be mapped to a particular axis. Thus, your use of primary and secondary axes on plot specifications affects the GTL’s determination of default axis features for the layout.

For example, the plot statements in the following template specify Y-data mappings to the Y2 and Y axes:

```plaintext
proc template;
  define statgraph y2axis;
  begingraph;
    layout overlay;
      histogram weight / scale=count yaxis=y2;
  endgraph;
end;
```
In this example, the first HISTOGRAM maps its Y-axis data to the Y2 axis, and the second HISTOGRAM maps its Y-axis data to the Y axis. The DENSITY plot does not explicitly map its Y-axis data, so the default Y axis is used. None of the plots explicitly maps X-data, so the default X axis is used for all three plots. Thus, the GTL must manage any interactions that result from representing multiple plots on the X and Y axes. For example, on the X axis, it must determine an appropriate data range for representing the data values of all three plots.

When establishing axis features for each axis, the GTL determines which plot specifications map data to the axis. The GTL also collects the data for all of the plots that must be represented and maps that data to the designated axis. “When Plots Share Data and a Common Axis” on page 880 discusses the criteria the GTL uses to determine the axis features for the axes after this mapping has been done for each axis.

Axis Mapping in Lattice-type Layouts

Lattice-type layouts (LAYOUT LATTICE, LAYOUT DATALATTICE, and LAYOUT DATAPANEL) present a grid of graphs that automatically aligns plot areas and tick display areas across grid cells. This alignment facilitates data comparisons among graphs, and for those comparisons to be meaningful, the graph axes must be coordinated across the columns and rows in the grid. All of the principles discussed in “Overview for Axis Mapping” on page 876 apply to the lattice-type layouts. In addition, because there can be multiple X, X2, Y, and Y2 axes across grid cells, you might have to use layout options to specify how the data ranges and axis display should be managed.
For example, the following template uses a LAYOUT LATTICE to generate a grid that displays a height analysis next to a weight analysis. By default in a LAYOUT LATTICE statement, the options ROWDATARANGE= and ROW2DATARANGE= are set to DATA. The DATA setting scales the Y-axis and Y2-axis data ranges separately for each cell in the layout. To ensure that the Y-axis data range is the same in both cells, the example specifies ROWDATARANGE=UNION. Similarly, to ensure that the Y2-axis data range is the same in both cells, the example specifies ROW2DATARANGE=UNION:

```sas
proc template;
   define statgraph y2axis;
   begingraph;
      layout lattice / columns=2 column2gutter=10
         rowdatarange=union row2datarange=union ;
      layout overlay;
         histogram height / scale=count yaxis=y2;
         histogram height / scale=percent yaxis=y;
         densityplot height / normal();
      endlayout;
      layout overlay;
         histogram weight / scale=count yaxis=y2;
         histogram weight / scale=percent yaxis=y;
         densityplot weight / normal();
      endlayout;
      endlayout;
   endgraph;
end;
proc sgrender data=sashelp.class template=y2axis;
run;
```

By default in a LAYOUT LATTICE statement, the options COLUMNDATARANGE= and COLUMN2DATARANGE= are also set to DATA. But in this analysis, the height is
a separate measure from the weight, so the separate scales are appropriate for the X-axes across cells. If the X-axes were displaying the same measure (for example, comparing the height of female subjects to the height of male subjects), then you could specify COLUMNNDATARANGE=UNIONALL. This would set the same scaling to the X-axis data ranges across the two layout columns. In this example you would not bother changing the default COLUMN2DATARANGE= setting because the X2 axis is not needed.

Note: For DATALATTICE and DATAPANEL statements, UNIONALL is the default value for the data ranges. Thus, you would not have to change the data ranges unless you wanted to set UNION to scale data ranges per row or per column in the layout.

In the example, scaling the data ranges across the row ensures proper axis scaling. However, the graph display is cluttered by the duplicate display of ticks, axis values, and axis labels on both the Y and Y2 axes. To simplify the display, you can consolidate the axes. To do so, use a ROWAXES block to display a single Y axis for both cells, and a ROW2AXES block to display a single Y2 axis for both cells. The consolidated view removes the internal axes from the grid and displays only the external axes:

```sas
proc template;
define statgraph y2axis;
begingroup;
layout lattice / columns=2 columngutter=10
  rowdatarange=union row2datarange=union;
rowaxes;
  rowaxis / griddisplay=on;
endrowaxes;
row2axes;
  rowaxis;
endrow2axes;
layout overlay;
  histogram height / scale=count yaxis=y2;
  histogram height / scale=percent yaxis=y;
  densityplot height / normal();
endlayout;
layout overlay;
  histogram weight / scale=count yaxis=y2;
  histogram weight / scale=percent yaxis=y;
  densityplot weight / normal();
endlayout;
endlayout;
endgroup;
end;
```

proc sgrender data=sashelp.class template=y2axis;
run;

```
How Axis Features Are Determined
879
```
When using ROWAXES or ROW2AXES blocks in a LATTICE layout, you nest within the block one ROWAXIS statement for each row in the layout grid. The ROWAXIS statements are applied sequentially to the rows, and each ROWAXIS statement specifies the axis options for the Y or Y2 axes in its corresponding row. ROWAXIS statements within the ROWAXES block apply to the Y axes, and ROWAXIS statements within the ROW2AXES block apply to the Y2 axes. This example has just a single row in the grid, so each block specifies only one ROWAXIS statement. Notice that the ROWAXIS statement in the ROW2AXES block does not use any options. Thus, it consolidates Y2 axes in the row into a single, external Y2 axis, but it does not alter the default features of that axis. For columns in the grid, the LATTICE layout provides COLUMNAXES and COLUMN2AXES blocks. These blocks use COLUMNAXIS statements to externalize X and X2 axes and specify their features.

When you use DATALATTICE and DATAPANEL layouts, the layout dynamically generates a grid that contains as many cells as can be produced from the combination of classification values. In those layouts the axes are always external, and you can use the COLUMNAXISOPTS=, COLUMN2AXISOPTS=, ROWAXISOPTS=, and ROW2AXISOPTS= options to specify the features for the axes. The settings on each option apply across the entire grid. For example, if you specify the ROWAXISOPTS= option in a DATALATTICE layout, then the specified settings apply to the external Y axes in every row.

When Plots Share Data and a Common Axis

Overview

If a layout block contains multiple plots that share data and a common axis, then the plot settings often interact in ways that affect the axis features. Axis features include the axis type, axis label, tick-mark layout, and so on. The GTL resolves these interactions in ways that vary according to the layout block and plot statements.

Note: Axis interactions might not occur if other settings in the template prevent them. As discussed in “Plot Data Are Mapped to a Designated Axis” on page 876, if two
plot statements are within an OVERLAY layout, then one of them might map its data to the X axis and the other might map its data to the X2 (top) axis. Mapping to separate axes can avoid the interactions that might occur if they both mapped their data to the X axis.

Axis Features in Overlay-type Layouts

Overlay-type layouts (OVERLAY, OVERLAYEQUATED, and PROTOTYPE, for example) build a composite from one or more GTL-statements.

Within overlay-type layouts, if you do not explicitly set axis features in your template statements, then the GTL automatically determines them. It sets the axis features based on the layouts and plots in the layout block and the data that are associated with the template at run time.

If only one plot statement within an overlay-type layout generates an axis, then determining axis features is straightforward: the features are derived directly from the plot type and the columns that are used for the plot data. For example, if a LAYOUT OVERLAY block contains a single SCATTERPLOT and the X= argument specifies a numeric column of children’s weights, then the default X-axis type is LINEAR. The default X-axis label is the column label of the Weight column. If the Weight column has no defined label, then the column name is used as a label.

When an overlay-type layout contains multiple plots that generate axes, the GTL can determine default axis features for the shared axes. Alternatively, you can use the PRIMARY= option on one of the plot statements to specify which plot you want the GTL to use. The following code fragment explicitly specifies that the SCATTERPLOT of children’s weights be used to determine axis features within the layout:

```plaintext
layout overlay;
  scatterplot x=weight ... / primary=true;
...
```

- If no plot in an overlay-type layout is designated as primary, then the first plot that generates an axis is considered primary on a per-axis basis.
- If PRIMARY=TRUE for a plot within an overlay-type layout, then that plot’s data columns, data type, and plot type determine the default axis features. An explicitly specified primary plot determines the default axis features regardless of where that plot statement occurs within the layout block.
- Only one plot can be primary on a per-axis basis. If multiple plots specify PRIMARY=TRUE for the same axis, then the last one encountered is considered primary.

The following SCATTERPLOT specifies a character column on the X= argument:

```plaintext
layout overlay;
  scatterplot x=name ... / primary=true;
...
```

In this case, the default X-axis type is DISCRETE and the X-axis label is the label that is assigned to column Name, or Name if no label is assigned to column Name.

Note: The SAS format on the primary plot’s column determines the axis format, although the axis might not use that SAS format “as-is” from the column.

If a SCATTERPLOT’s X= argument specifies a column that has a SAS DATETIME format, then the default X-axis type is TIME. The default X-axis label is the column label or name of the DateTime column:

```plaintext
layout overlay;
  scatterplot x=date ... / primary=true;
```
For some plot types, the default axis type does not directly correlate to the specified column’s data type. For example, the following code fragment specifies a BARCHART for the numeric column Age:

```
layout overlay;
  barchart category=age ... / primary=true;
```

Because a BARCHART requires a discrete X axis, the default X-axis type in this case is DISCRETE, in spite of the fact that column Age is numeric. The X-axis label is the column label of Age, or the column name if no label exists.

Finally, consider a HISTOGRAM that is set as the primary plot in the layout and that bins data values:

```
layout overlay;
  histogram weight / binaxis=true primary=true;
```

In this case, the default X-axis type is LINEAR, but the histogram’s data bins are used by default as the basis for the axis tick marks.

Axis Features in Data Panel and Data Lattice Layouts

The criteria discussed in “Axis Features in Overlay-type Layouts” on page 881 apply to determining the default axis features for the plots within DATAPANEL and DATALATTICE layouts. Both of these layout types nest a LAYOUT PROTOTYPE statement within their layout blocks. In both cases, the plot statements within the LAYOUT PROTOTYPE block—an overlay-type layout—determine the axis features for the plot display.

Axis Features in Lattice-type Layouts

The LAYOUT LATTICE statement can create a grid of graphs that automatically aligns plot areas, data display areas, labels, and headers across the columns and rows in the layout. The layout gives you the option of unifying the scale of the data ranges that are displayed in the graphs.

If a LAYOUT LATTICE specification generates only one cell, then no competition exists between cells for determining axis features in the display. In this case, the axis features are derived directly from the plot type and the columns used for the plot data.

Similarly, for multi-cell displays, if any or all of the options COLUMNDATARANGE=, COLUMN2DATARANGE=, ROWDATARANGE=, or ROW2DATARANGE= use the DATA setting to scale axis data ranges separately for each cell in the layout, then the layout cells are data-independent. The data-independent cells do not interact with each other for determining the axis features in the display.

Axes are shared in the layout when one of the options COLUMNDATARANGE=, COLUMN2DATARANGE=, ROWDATARANGE=, or ROW2DATARANGE= is used to unite axis data ranges for layout cells. By default in those cases, the first cell that is drawn (by default, the top left cell) determines the axis features in the display. When UNIONALL is in effect, those same features are used in all of the grid’s layout cells. When UNION is in effect, those same features are used on a per-row or per-column basis. If you specify external axes for the columns or rows in the layout, you can specify desired axis features on the appropriate COLUMNSAXIS or ROWAXIS statements used in the layout.

For an example LATTICE layout with external axes, see “Axis Mapping in Lattice-type Layouts” on page 877.
Axis Features in Gridded Layouts

In a GRIDDED layout the layout cells are independent of one another. Plot statements within the layout cells do not share data and are not represented on a common axis. Thus, no competition exists among layout cells for determining the axis features.

Plot Axis Types Must Agree on Common Axes

The GTL is extremely flexible and enables you to generate a wide variety of plot displays. However, if you request incompatible plot displays within the same layout, then the results are unpredictable.

“When Plots Share Data and a Common Axis” on page 880 discusses the criteria GTL uses to determine the default axis features. After the axis type has been determined, the GTL expects that all plots that share that axis will have the assigned axis type. The expectation applies whether you specify axis features in your template or let GTL determine default features.

For example, a BOXPLOT cannot be overlaid by a LINEPARM: the two types of plot cannot share axes because the plot types are incompatible within the same set of axes. Thus, if you were to use both a BOXPLOT statement and a LINEPARM statement within a LAYOUT OVERLAY block, then only one of them can be displayed. The GTL therefore displays the primary plot (the first specified plot by default, or the plot designated as primary by setting PRIMARY=TRUE). The other plot is not displayed.

Similarly, a BARCHART requires a discrete X-axis, whereas a HISTOGRAM cannot be displayed on a discrete axis. If you specify both a BARCHART and a HISTOGRAM within the same overlay-type layout, then only the primary plot is displayed and the other plot is rejected from the display.

Axis types must also be the same for plots that must share an axis across the columns or rows in a multi-cell layout. For example, in a LAYOUT LATTICE, the GTL expects that plots have the same axis type and data ranges if they are to share an external axis. Otherwise, the external axis cannot be displayed for that row or column.

Controlling Axis Features

Overview

To enable you to control axis features within each of the layout types, there are different sets of axis options for the different types of axes:

<table>
<thead>
<tr>
<th>Option Category</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-dimensional axis options</td>
<td>LAYOUT OVERLAY statement</td>
</tr>
<tr>
<td>Three-dimensional axis options</td>
<td>LAYOUT OVERLAY3D statement</td>
</tr>
<tr>
<td>Equated axis options</td>
<td>LAYOUT OVERLAYEQUATED statement</td>
</tr>
<tr>
<td>Lattice axis options</td>
<td>LAYOUT LATTICE statement</td>
</tr>
<tr>
<td>DataLattice and DataPanel axes</td>
<td>LAYOUT DATALATTICE and LAYOUT DATAPANEL statements</td>
</tr>
</tbody>
</table>
The options that are available for each layout are documented separately, but it is worth discussing the following tasks in general for all of the layout types:

- Setting the Axis Type
- Adjusting the Axis View
- Adjusting Axis Thresholds
- Adjusting Axis Offsets

Setting the Axis Type

Within any given layout in the graph display, each plot axis is always of a particular type. In the default cases, the axis type is always LINEAR, DISCRETE, or TIME.

The axis options for each layout statement include a TYPE= option that enables you to specify an axis type that overrides the default selection mechanisms. When you override the default axis type, you must be sure to specify the correct axis type for the plots that you are defining. For every plot in the template language, the documentation indicates what axis types it supports. Plots statements that are specified in the template are ignored if they are incompatible with the axis type.

Each axis type has features specific to that type, and the following axis options enable you to specify features for the different types:

- **LINEAROPTS=** (linear-suboptions)
- **DISCRETEOPTS=** (discrete-suboptions)
- **TIMEOPTS=** (time-suboptions)
- **LOGOPTS=** (log-suboptions)

One or more of these options can be specified for an axis, but the specified settings are applied only to the axis type that supports them.

For example, a bar chart has two axes – a TYPE=DISCRETE axis for the X axis and a TYPE=LINEAR axis for the Y axis. If a numeric column (for example, Age) is assigned to the X role, then this column’s values are always treated as discrete values, never as a continuous range of values. You cannot request another axis type for the X axis, but you can request a different axis type for the Y axis.

Sometimes you want a specialized axis type depending on the nature of the data. For example, if the data have a very large range of values (orders of magnitude apart), then you could request that the values be displayed on a logarithmic scale. To set a logarithmic scale, use the TYPE=LOG axis option.

Time series data benefit from displaying the X axis with a TYPE=TIME axis. A TIME axis type requires that the column values are SAS Date, Time, or Datetime values.

Three-dimensional plots such as BIHISTOGRAM3DPARM and SURFACEPLOTPARM always use TYPE=LINEAR for X, Y, and Z axes.

Note: Certain plot types or layouts might impose restrictions on what type of axis can be assigned. The documentation for each plot and layout type identifies any restrictions that might apply to the axes.

Adjusting the Axis View

The VIEWMIN= and VIEWMAX= axis options can be used to adjust the view of an axis. You can specify minimum data values to include in the display, maximum data values, or both (the specified values might be adjusted by the threshold calculation). By
default, the VIEWMIN= value is the minimum data value for the specified axis and the VIEWMAX= value is the maximum data value for the specified axis.

A VIEWMIN= value that is greater than the data minimum or a VIEWMAX= value that is less than the data maximum acts like a “zoom in” operation. The adjusted view reduces the range of values represented on the axis and can sometimes exclude markers, lines, or fills that would normally appear.

A VIEWMIN= value that is less than the data minimum or a VIEWMAX= value that is greater than the data maximum acts like a “zoom out” operation. The adjusted view extends the range of values represented on the axis and sometimes compresses the markers, lines, or fills into a smaller area.

The following figure shows how the view settings can affect the tick and data displays.

![Adjusting Axis Thresholds](image)

Adjusting Axis Thresholds

On a continuous, linear axis, the THRESHOLDMIN= and THRESHOLDMAX= axis options can be used to set a bias for including one more tick mark outside of either end of the data range (or VIEWMIN to VIEWMAX range). The threshold range is from 0 (do not include the tick mark) to 1 (include the tick mark). The default is 0.30. The bias at the minimum end of the axis is calculated using the THRESHOLDMIN= value and the minimum data value (by default) or the VIEWMIN= value (if set).

The bias at the maximum end of the axis is calculated using the THRESHOLDMAX= value and the maximum data value (by default) or the VIEWMAX= value (if set).

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range. Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

The following figure shows how the threshold settings can affect the tick display on an axis. In the figure, 8 is the minimum value for the display and 29 is the maximum value.
Adjusting Axis Offsets

The OFFSETMIN= and OFFSETMAX= axis options can be used to reserve an area at the minimum end of an axis, the maximum end, or both ends. No tick marks are displayed in the reserved areas.

The offset range is from 0 to 1, and the specified value is used to calculate the offset as a percentage of the full axis length. The larger the offset area that is reserved, the less space is available for the tick display area. The default offset reserves just enough area to fully display markers and other graphical features near the ends of an axis.

The following figure shows how offset values of 0.08 might compare with the default offsets for a continuous axis.

This next figure shows how offset values might affect the discrete axis of a bar chart.
Controlling Axis Features

Default Offset

Offset

Tick Display Area

Offset

xaxisopts=(offsetmin=0.08 offsetmax=0.08)

Offset

Tick Display Area

Offset
Chapter 8
Axis Options in Layouts

Dictionary

Axis Options for LAYOUT OVERLAY

The OVERLAY's axis options are ignored when the LAYOUT OVERLAY statement is nested within another layout type that has external axes in effect. For example, the axis options are ignored when the OVERLAY is nested in a LAYOUT LATTICE with a COLUMNAXIS= or ROWAXIS= option in effect.

Note: Unless otherwise indicated in an option description, each axis option is available for the X, Y, X2, and Y2 axis.

See: “LAYOUT OVERLAY Statement” on page 136

Syntax

Axis options for the plots within an OVERLAY layout are specified with the following options on a LAYOUT OVERLAY statement:

\[\text{XAXISOPTS}=(\text{axis-options}) \]
\[\text{YAXISOPTS}=(\text{axis-options}) \]
\[\text{X2AXISOPTS}=(\text{axis-options}) \]
\[\text{Y2AXISOPTS}=(\text{axis-options}) \]

General Options for All Axes in an Overlay

The options that are documented in this section can be used with any of the axis types that are supported within an OVERLAY layout. Subsequent sections in the chapter
document the axis options that are available only for specific axis types: discrete, linear, log, or time axes. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCRETEOPTS</td>
<td>Specifies options for a discrete axis.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Controls which axis features are displayed on the primary axis.</td>
</tr>
<tr>
<td>DISPLAYSECONDARY</td>
<td>Controls which axis features are displayed on the secondary axis.</td>
</tr>
<tr>
<td>GRIDATTRS</td>
<td>Specifies the attributes of the grid lines.</td>
</tr>
<tr>
<td>GRIDDISPLAY</td>
<td>Specifies whether axis grid lines are displayed.</td>
</tr>
<tr>
<td>LABEL</td>
<td>Specifies the axis label.</td>
</tr>
<tr>
<td>LABELATTRS</td>
<td>Specifies the color and font attributes of the axis label.</td>
</tr>
<tr>
<td>LABELFITPOLICY</td>
<td>Specifies a policy for fitting axis labels in the available space.</td>
</tr>
<tr>
<td>LABELPOSITION</td>
<td>Specifies the position of the axis label.</td>
</tr>
<tr>
<td>LABELSPLITCHAR</td>
<td>Specifies one or more characters on which the axis labels can be split, if needed.</td>
</tr>
<tr>
<td>LABELSPLITCHARDROP</td>
<td>Specifies whether the split characters should be included in the displayed axis labels.</td>
</tr>
<tr>
<td>LABELSPLITJUSTIFY</td>
<td>Specifies the justification of the strings that are inside the axis label blocks.</td>
</tr>
<tr>
<td>LINEAROPTS</td>
<td>Specifies features for a standard numeric interval axis.</td>
</tr>
<tr>
<td>LINEEXTENT</td>
<td>Specifies the extent of the axis line.</td>
</tr>
<tr>
<td>LOGOPTS</td>
<td>Specifies features for a log axis.</td>
</tr>
<tr>
<td>NAME</td>
<td>Assigns a name to an axis for reference in other statements.</td>
</tr>
<tr>
<td>OFFSETMAX</td>
<td>Reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>OFFSETMIN</td>
<td>Reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
</tbody>
</table>
Statement Option Description

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVERSE</td>
<td>Specifies whether the tick values should appear in the reverse order.</td>
</tr>
<tr>
<td>SHORTLABEL</td>
<td>Specifies an alternate axis label to use if the default or specified axis label is too long for the axis length.</td>
</tr>
<tr>
<td>TICKSTYLE</td>
<td>Specifies the placement of tick marks in relation to the axis line.</td>
</tr>
<tr>
<td>TICKVALUEATTRS</td>
<td>Specifies the color and font attributes of the axis tick values.</td>
</tr>
<tr>
<td>TICKVALUEHALIGN</td>
<td>Specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.</td>
</tr>
<tr>
<td>TICKVALUEVALIGN</td>
<td>Specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.</td>
</tr>
<tr>
<td>TIMEOPTS</td>
<td>Specifies features for a TIME axis.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Specifies the type of axis to use.</td>
</tr>
</tbody>
</table>

DISCRETEOPTS=(discrete-axis-options)

specifies one or more options for a discrete axis. Options must be enclosed in parentheses. Each option is specified as a `name = value` pair and each pair is space separated.

Interaction

This option is ignored if the axis type is not DISCRETE.

See

“Options for Discrete Axes Only” on page 903 for the options that you can use for `discrete-axis-options`.

DISPLAY=STANDARD | ALL | NONE | (display-options)

controls which axis features are displayed on the primary axis.

- **STANDARD**
 specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed

- **ALL**
 specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed

- **NONE**
 specifies that no axis features are displayed

Display-options

a space-separated list of one or more of the following options enclosed in parentheses:

- **LABEL** displays the axis label
- **LINE** displays the axis line
- **TICKS** displays the tick marks
TICKVALUES displays the values that are represented by the major tick marks

Default STANDARD

Tips The default line attributes for the axis line and axis tick marks are defined in the GraphAxisLine style element.

Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.

When LINE is excluded from the DISPLAY= option, the layout wall outline or the default baseline of a bar chart, needle plot, or waterfall chart can appear to be an axis line. To suppress the wall outline, use the WALLDISPLAY= option in the layout statement. To suppress the plot baseline, use the BASELINEATTRS= option in the plot statement.

DISPLAYSECONDARY=NONE | ALL | STANDARD | (display-options)
controls which axis features are displayed on the secondary axis. A secondary axis is not an independent axis. Rather, it mirrors the primary axis. Thus, for this option to take effect, all plot statements in the layout must map data to the same primary axis. For example, a secondary X2 axis can be displayed on top in the layout, provided all plot statements set XAXIS=X to map data to the primary X axis (bottom). Similarly, a secondary Y2 axis can be displayed to the right in the layout, provided all plot statements set YAXIS=Y to map data to the primary Y axis (left).

NONE
specifies that no axis features are displayed

STANDARD
specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

ALL
specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

LABEL displays the axis label
LINE displays the axis line
TICKS displays the tick marks
TICKVALUES displays the values that are represented by the major tick marks

Default NONE

Restriction If some plot statements set XAXIS=X and others set XAXIS=X2, both the X and X2 axis are primary and a secondary X axis cannot be displayed. In that case, this option is ignored. The same applies for the Y axes.

Tip Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.
GRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the grid lines.

Default The GraphGridLines style element.

Interaction This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tip On a log axis, this option affects the appearance of the major grid lines only. It does not affect the appearance of the minor grid lines. To control the appearance of the minor grid lines on a log axis, use the MINORGRIDATTRS= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

GRIDDISPLAY=AUTO_OFF | AUTO_ON | ON | OFF
specifies whether axis grid lines are displayed. This option enables the template to absolutely control the display of grid lines or to allow interaction with the current style to decide whether grid lines are displayed.

AUTO_OFF specifies that grid lines are not displayed unless the GraphGridLines element in the current style contains DisplayOpts="ON."

AUTO_ON specifies that grid lines are displayed unless the GraphGridLines element in the current style contains DisplayOpts="OFF."

ON specifies that grid lines are always displayed. The current style has no override.

OFF specifies that grid lines are never displayed. The current style has no override.

The following table shows the end results for various combinations of the GRIDDISPLAY= option and the DisplayOpts= attribute of the GraphGridLines style element. Most supplied templates use the default setting AUTO_OFF to indicate a preference for not displaying grid lines, but allowing the style to override.

<table>
<thead>
<tr>
<th>GRIDDISPLAY= option</th>
<th>DisplayOpts= style attribute</th>
<th>Grid Lines Shown?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_OFF</td>
<td>AUTO</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>AUTO</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>ON</td>
<td>any value</td>
<td>yes</td>
</tr>
<tr>
<td>GRIDDISPLAY= option</td>
<td>DisplayOpts= style attribute</td>
<td>Grid Lines Shown?</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>OFF</td>
<td>any value</td>
<td>no</td>
</tr>
</tbody>
</table>

Default
AUTO_OFF

Note
Supplied styles use DisplayOpts="AUTO," which means that the style has no preference about grid lines and the graphics template setting for grid lines is always used.

LABEL="string" | ("string" ..."string")
specifies the axis label. The string can be either a string literal or a dynamic. The list form implies that all included string literals or dynamics will be concatenated.

Default
The default label is derived from the primary plot in the layout. For more information, see “When Plots Share Data and a Common Axis” on page 880.

Interaction
This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the axis label.

Note
If the axis label is too long to fit along the axis, then it is truncated by default.

Tip
Use the SHORTLABEL= option to specify an alternate axis label to be used whenever truncation would normally occur.

LABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the axis label.

Default
The GraphLabelText style element.

Interaction
This option is ignored if the DISPLAY= or DISPLAYSECONDARY= option does not display the axis label.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

LABELFITPOLICY=AUTO | SPLIT | SPLITALWAYS
specifies a policy for fitting axis labels in the available space.

AUTO
uses the short label, when specified, instead of the original label. If the short label does not fit, then it is clipped. When no short label is specified, the original label is clipped.

SPLIT
splits the axis label at a split character, which is specified by the LABELSPLITCHAR= option, only when necessary in order to make the label fit the available space. The short label is not used. A split does not occur at a split character if a split is not needed at that location. If the label does not contain any of the specified split characters, then it is not split. A label that cannot be split or
that does not fit the available space even after splitting might overlap the adjoining space.

SPLITALWAYS
always split the axis label at every occurrence of a split character, which is specified by the LABELSPLITCHAR= option. If the label cannot be split, then it is clipped.

<table>
<thead>
<tr>
<th>Default</th>
<th>AUTO</th>
</tr>
</thead>
</table>

Interactions
This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

When the overlay layout is nested in a lattice layout, SPLIT is ignored and AUTO is used instead.

| Note | When LABELPOSITION=CENTER, the available area is the full axis, including the axis offsets. When LABELPOSITION=DATACENTER, the available area is the tick display area, excluding the axis offsets. |

LABELPOSITION= CENTER | DATACENTER | TOP | BOTTOM | LEFT | RIGHT

specifies the position of the axis label.

CENTER
centers the axis label in the axis area. For the Y and Y2 axes, the label is oriented vertically and is centered in the axis area (including the offsets). The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis. For the X and X2 axes, the label is centered in the axis area (including the offsets). It is positioned below the tick values for the X axis or above the axis values for the X2 axis.

DATACENTER
centers the axis label in the axis tick display area. For the Y and Y2 axes, the label is oriented vertically and is centered in the axis tick display area (excluding the offsets). It is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis. For the X and X2 axes, the label is centered in the axis tick display area (excluding the offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.

TOP | BOTTOM
orient the label horizontally at the top or bottom of the axis area. The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, then the label grows to the right for the Y axis and to the left for the Y2 axis.

| Restriction | These options are valid for the Y and Y2 axes only. |
| Note | When TOP or BOTTOM is used, the label might collide with other graphical features. |

LEFT | RIGHT
positions the label to the left or right of the axis area. The label is centered vertically in the axis area.

| Restriction | These options are valid for the X and X2 axes only. |
Note When LEFT or RIGHT is used, the label might collide with other graphical features.

The following figure shows the CENTER and DATACENTER positions for a blue Y axis label Type and a red X axis label MPG.

In this example, an axis offset is applied to the maximum end of both axes in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

The next figure shows the TOP and LEFT positions, and the BOTTOM and RIGHT positions for the same axis labels.

Default CENTER

Restriction This option does not support collision avoidance. In some cases, axis label collisions can occur in the axis area.

Interaction When LEFT, RIGHT, TOP, or BOTTOM is in effect, the SHORTLABEL= option is ignored.

See SHORTLABEL= on page 900 for information about how short labels are used.

LABELSPLITCHAR="character-list" specifies one or more characters on which the axis labels can be split, if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the axis label. In that case, all of the specified split characters together are treated as a single split character.
When LABELFITPOLICY=SPLIT, if the axis label does not fit the available space, then it is split on a specified split character only if a split is needed at that point to make the label fit. In this case, a split might not occur on every split character. When LABELFITPOLICY=SPLITALWAYS, the axis label is split unconditionally on every occurrence of a split character. If the axis label does not contain any of the specified split characters, the label is not split.

"character-list"
one or more characters with no space between each character and enclosed in quotation marks.

<table>
<thead>
<tr>
<th>Default</th>
<th>A blank space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>The list of characters must be enclosed in quotation marks.</td>
</tr>
</tbody>
</table>

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

```
labelsplitchar="abc"
```

The LABELSPLIT=TRUE option must also be specified.

<table>
<thead>
<tr>
<th>Interactions</th>
<th>This option has effect only when LABELPOSITION= is CENTER or DATACENTER.</th>
</tr>
</thead>
</table>

The LABELSPLITCHARDROP= option specifies whether the split characters are included in the displayed data label or are dropped.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>The LABELSPLITCHARDROP= option specifies whether the split characters are included in the displayed data label or are dropped.</th>
</tr>
</thead>
</table>

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

<table>
<thead>
<tr>
<th>Tip</th>
<th>Use the LABELSPLITJUSTIFY= option to specify the justification of the strings in the axis label block.</th>
</tr>
</thead>
</table>

LABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the displayed axis labels.

TRUE
drops the split characters from the axis label display.

FALSE
includes the split characters in the axis label display. When LABELSPLIT=TRUE and LABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

<table>
<thead>
<tr>
<th>Default</th>
<th>TRUE. The split characters are dropped from the axis label.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>The LABELSPLIT=TRUE option must also be specified.</td>
</tr>
<tr>
<td>Interactions</td>
<td>This option has effect only when LABELPOSITION= is CENTER or DATACENTER.</td>
</tr>
</tbody>
</table>

The LABELSPLITCHAR= option specifies the split characters.
See “boolean” on page 1339 for other Boolean values that you can use.

LABELSPLITJUSTIFY= *justification*

specifies the justification of the strings that are inside the axis label blocks.

justification

`CENTER | LEFT | RIGHT`

specifies the justification for the X or X2 axis label.

`CENTER | TOP | BOTTOM`

specifies the justification for the Y or Y2 axis label.

Default

CENTER

Requirement

LABELSPLIT=TRUE option must also be specified.

Interaction

This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

LINEAROPTS= *(linear-axis-options)*

specifies one or more options for a numeric interval axis. Options must be enclosed in parentheses. Each option is specified as a `name = value` pair and each pair is space separated.

Interaction

This option is ignored if the axis type is not LINEAR.

See

“Options for Linear Axes Only” on page 912 for the options that you can use for *linear-axis-options*.

LINEEXTENT= *FULL | DATA | number*

specifies the extent of the axis line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

FULL

specifies an axis line that extends along the entire length of the axis.

DATA

specifies an axis line that extends through the data range from the minimum offset to the maximum offset.

number

specifies how much the axis line extends from DATA toward FULL as a decimal proportion. A value of 0 is equivalent to DATA, and a value of 1 is equivalent to FULL.

Range

0–1

Tip

A numeric value is useful for bar charts when DATA terminates the axis line at the midpoint positions of the minimum and maximum bars. In that case, you can specify a numeric value to lengthen the axis line so that it extends to the full width of both bars.
The following figure shows a simple example of each value for the X and Y axis lines. The light-blue dashed lines depict the minimum and maximum offsets that are set on the axes.

Default: FULL

Restriction: This option is valid only in OVERLAY and OVERLAYEQUATED layouts.

Interaction: This option overrides the AXISLINEEXTENT= option in the BEGINGRAPH statement.

Tip: The graph wall outline might appear to be an axis line. In that case, use the WALLDISPLAY=NONE or WALLDISPLAY=(FILL) option in the layout statement to suppress the wall outline.

LOGOPTS=(log-axis-options)

specifies one or more options for a log axis. Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.

Interaction: This option is ignored if the axis type is not LOG.

See: “Options for Log Axes Only” on page 925 for the options that you can use for log-axis-options.

NAME="string"

assigns a name to an axis for reference in other statements. Currently, it is used only in an AXISLEGEND statement.

Interactions: This option is ignored unless the axis is discrete. The axis can be discrete by default, or explicitly set to discrete with a TYPE=DISCRETE setting.

For this option to take effect, an axis legend must be enabled. To enable an axis legend, the DISCRETEOPTS= option must set the TICKVALUEFITPOLICY to either EXTRACT or EXTRACTALWAYS. In addition, an AXISLEGEND statement must be specified to generate the axis legend.

OFFSETMAX=AUTO | AUTOCOMPRESS | number

reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.

AUTO

reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.
AUTOCOMPRESS
 applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

 number
 specifies the offset as a decimal proportion of the full axis length.

 Default AUTO
 Range 0–1. The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.
 See “Adjusting Axis Offsets” on page 886

OFFSETMIN= AUTO | AUTOCOMPRESS | number
reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.

 AUTO
 reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

 AUTOCOMPRESS
 applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

 number
 specifies the offset as a decimal proportion of the full axis length.

 Default AUTO
 Range 0–1. The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.
 See “Adjusting Axis Offsets” on page 886.

REVERSE=TRUE | FALSE
specifies whether tick values should appear in the reverse order.

 Default FALSE
 See “boolean ” on page 1339 for other Boolean values that you can use.

SHORTLABEL="string"
specifies an alternate axis label to display when the default label or the label specified by the LABEL= option is too long to fit the available space.

 When LABELPOSITION=CENTER (default), the available space for an axis label is the full axis, including the axis offsets. When LABELPOSITION=DATACENTER, the available space for an axis label is the axis tick display area, which excludes the axis offsets. If the label length exceeds the available space, then the label is anchored at the left or bottom offset. It extends beyond the opposing offset until it reaches the end of the axis where it is truncated. An ellipsis designates the truncation.

 Interactions This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the axis label.
 This option has effect only when the LABELPOSITION= option is set to CENTER or DATACENTER.
Note: If the specified label is itself too long for the axis, it is truncated in the display.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS

specifies the placement of tick marks in relation to the axis line. The figure shows the tick display for each value.

- **OUTSIDE** displays tick marks outside of the axis frame.
- **INSIDE** displays tick marks inside the axis frame.
- **ACROSS** displays tick marks across the axis line.

Default: The GraphAxisLines:TickDisplay style reference.

Interaction: This option is ignored if the `DISPLAY=` or `DISPLAYSECONDARY=` option does not display tick marks.

Notes: This option has no affect on the placement of the tick values, which are always outside the axis frame.

This option applies to both major ticks and minor ticks.

TICKVALUEATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the axis tick values.

Default: The GraphValueText style element.

Interaction: This option is ignored if the `DISPLAY=` or `DISPLAYSECONDARY=` option does not display tick values.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Text Options” on page 1351 for available `text-options`.

TICKVALUEALIGN=LEFT | CENTER | RIGHT

specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.
Defaults

<table>
<thead>
<tr>
<th>LEFT</th>
<th>CENTER</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebooks</td>
<td>Notebooks</td>
<td>Notebooks</td>
</tr>
<tr>
<td>Ink</td>
<td>Ink</td>
<td>Ink</td>
</tr>
<tr>
<td>Printer paper</td>
<td>Printer paper</td>
<td>Printer paper</td>
</tr>
<tr>
<td>Staples</td>
<td>Staples</td>
<td>Staples</td>
</tr>
<tr>
<td>Pens</td>
<td>Pens</td>
<td>Pens</td>
</tr>
</tbody>
</table>

Restriction

This option is valid for the Y and Y2 axes only.

TICKVALUEALIGN=TOP | CENTER | BOTTOM

specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.

Defaults

<table>
<thead>
<tr>
<th>TOP</th>
<th>CENTER</th>
<th>BOTTOM</th>
</tr>
</thead>
</table>

- TOP
 - Staples
 - Paper Clips
 - Calendar
 - Toner Cartridges
 - Large Desk Blotters

- CENTER
 - Staples
 - Paper Clips
 - Calendar
 - Toner Cartridges
 - Large Desk Blotters

- BOTTOM
 - Staples
 - Paper Clips
 - Calendar
 - Toner Cartridges
 - Large Desk Blotters

Restriction

This option is valid for the X and X2 axes only.

TIMEOPTS=(time-axis-options)

specifies one or more options for a time axis.

Requirements

Columns associated with a time axis must be in SAS time, SAS date, or SAS datetime units and have an associated SAS time, date, or datetime format.

Options must be enclosed in parentheses. Each option is specified as a `name = value` pair and each pair is space separated.

Interaction

This option is ignored if the axis type is not TIME.

See

“Options for Time Axes Only” on page 934 for the options that you can use for `time-axis-options`.
TYPE=AUTO | DISCRETE | LINEAR | TIME | LOG
specifies the type of axis to use.

AUTO
requests that the axis type be automatically determined, based on the overlay contents. For more information, see “When Plots Share Data and a Common Axis” on page 880.

DISCRETE
uses a DISCRETE axis if possible. The data for discrete axes can be character or numeric. You can add a DISCRETEOPTS= option list to customize this axis type.

LINEAR
uses a LINEAR axis if possible. You can add a LINEAROPTS= option list to customize this axis type.

TIME
uses a TIME axis if possible. Data for this axis must be SAS time, SAS date, or SAS datetime values. You can add a TIMEOPTS= option list to customize this axis type.

LOG
uses a LOG axis if possible. You can add a LOGOPTS= option list to customize this axis type.

Interaction
If a log axis is requested and the axis data contains 0 or negative values, the axis reverts to a linear axis. This outcome can occur for the response axis of a bar chart, line chart, needle plot, or waterfall chart when a baseline intercept of 0 or less is specified. It can also occur for the response axis of a waterfall chart when an initial bar value of 0 or less is specified. To get a log response axis in those cases, set the baseline intercept or initial bar value to a positive value.

Default
AUTO

Interactions
If this option is set to anything other than AUTO, then plots within the layout are dropped from the display if their data types or data ranges do not match the axis type requirements. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

After the axis type is determined (whether you set a specific type or AUTO is in effect), you can use only options that are supported by that axis type. For example, if TYPE=TIME, then only the general OVERLAY axis options and those available on TIMEOPTS= are supported.

Options for Discrete Axes Only
The options that are documented in this section can be used with the DISCRETEOPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Discrete Axis Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORBANDS</td>
<td>Specifies the display of alternating wall-color bands corresponding to the discrete axis bins.</td>
</tr>
<tr>
<td>Discrete Axis Options</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>COLORBANDSATTRS</td>
<td>Specifies the appearance of the alternating wall-color bands.</td>
</tr>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>TICKTYPE</td>
<td>Specifies the position of the axis tick mark.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision on an axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the list of tick values that are displayed on the axis.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
<tr>
<td>TICKVALUESPLITCHAR</td>
<td>Specifies whether the split characters are included in the displayed tick values.</td>
</tr>
<tr>
<td>TICKVALUESPLITCHARDROP</td>
<td>Specifies whether the split characters are included in or dropped from the displayed tick value.</td>
</tr>
<tr>
<td>TICKVALUESPLITJUSTIFY</td>
<td>Specifies justification of the strings that are inside the tick value block.</td>
</tr>
</tbody>
</table>

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

- **Default** NONE
- **Restriction** This option applies to discrete axes only.
- **Interaction** Specifying this option for more than one axis in the layout might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.
- **Note** The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.
- **Tips** Borders for the color bands can be added by setting TICKTYPE=INBETWEEN in the DISCRETEOPTS= option, and by setting GRIDDISPLAY= ON.
Because alternating color bands are drawn on top of the plot wall, this option can be coordinated with the LAYOUT OVERLAY statement’s WALLCOLOR= option.

COLORBANDSATTRS

specifies the appearance of the alternating wall-color bands. For the alternating colors, one set uses the WALLCOLOR= colors that are set in the LAYOUT OVERLAY statement, and the other set uses the colors set on this option.

Default
The GraphBlock style element.

Restriction
This option applies to discrete axes only.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

TICKDISPLAYLIST

specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the TICKVALUELIST= option. The strings map one-to-one positionally with the values that are listed in the TICKVALUELIST= option.

Default
Determined by the system or by the TICKVALUELIST= option.

Requirements
The list of values must be enclosed in parentheses.

Each value (character and numeric) must be enclosed in quotation marks and separated from adjacent values by a blank space.

Tip
This option should be used with the TICKVALUELIST= option. The number of items in the list for this option should equal the number of items in the list for the TICKVALUELIST= option.

Example
The following example specifies the axis tick values 10, 20, 30, and 40, and the tick display values A, B, C, and D:

```sas
tickvalueclist=('10' '20' '30' '40');
tickdisplaylist=('A' 'B' 'C' 'D');
```

TICKTYPE

specifies the position of the axis tick marks.

MIDPOINT
places the tick marks at the midpoint value location.

INBETWEEN
places the tick marks half way between adjacent midpoint locations.

Default
MIDPOINT

Restriction
This option applies to discrete axes only.

Note
Starting with the second maintenance release of SAS 9.4, when TICKTYPE=INBETWEEN, the outermost tick marks and grid lines at each end of the axis are not drawn.
TICKVALUEFITPOLICY=\textit{policy}

specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:

\textbf{EXTRACT}

displays consecutive integers along the axis instead of the actual tick values in order to represent those tick values. In most cases, this policy is implemented if the system estimates that a collision might occur. If no collision occurs, then the actual tick values are displayed on the axis in the normal manner.

\textbf{Requirement}
The EXTRACT policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in \textit{SAS Graph Template Language: User's Guide}.

\textbf{EXTRACTALWAYS}
same as EXTRACT, except that the extraction is implemented regardless of whether collision occurs.

\textbf{Requirement}
The EXTRACTALWAYS policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in \textit{SAS Graph Template Language: User's Guide}.

\textbf{NONE}
makes no attempt to avoid collisions between tick values. Tick values are displayed even when they collide.

\textbf{SPLIT}

splits the tick value at a split character, which is specified by the TICKVALUESPLITCHAR= option, only when necessary in order to make the value fit the available space. A split does not occur at a split character if a split is not needed at that location. If the value does not contain any of the specified split characters, then the value is not split. Values that are not split or that do not fit the available space even after splitting might overlap the adjoining space.

\textbf{See}
TICKVALUESPLITCHAR=

\textbf{SPLITALWAYS}
always splits the axis tick value at every occurrence of a split character that is specified by the TICKVALUESPLITCHAR= option.

\textbf{See}
TICKVALUESPLITCHAR=

\textbf{SPLITALWAYSTHIN}
same as SPLITALWAYS, except that thinning is performed when long words do not fit the available space.

\textbf{SPLITTHIN}
same as SPLIT, except that thinning is performed when long words do not fit the available space.

\textbf{THIN}
eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:
EXTRACT
 display consecutive integers along the axis instead of the actual tick values to represent those tick values. In most cases, this policy is implemented if the system estimates that a collision might occur. If no collision occurs, then the actual tick values are displayed on the axis in the normal manner.

Requirement The EXTRACT policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in SAS Graph Template Language: User's Guide.

EXTRACTALWAYS
 same as EXTRACT, except that the extraction is implemented regardless of whether collision occurs.

Requirement The EXTRACTALWAYS policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in SAS Graph Template Language: User's Guide.

NONE
 does not attempt to fit tick values that collide.

ROTATE
 rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTALEWAYS
 rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTALEWAYSDROP
 attempts the ROTATEALWAYS policy, and then drops the tick values if collisions still occur.

ROTATEETHIN
 attempts the ROTATE policy, and then the THIN policy.

SPLIT
 splits the tick value at a split character, which is specified by the TICKVALUESPLITCHAR= option, only when necessary in order to make the value fit the available space. A split does not occur at a split character if a split is not needed at that location. If the value does not contain any of the specified split characters, then the value is not split. Values that are not split or that do not fit the available space even after splitting might overlap the adjoining space.

See TICKVALUESPLITCHAR=

SPLITALWAYS
 always splits the axis tick value at every occurrence of a split character that is specified by the TICKVALUESPLITCHAR= option.

See TICKVALUESPLITCHAR=
SPLITROTATE
attempts the SPLIT policy, and then the ROTATE policy.

STAGGER
alternates the tick values between two rows.

STAGGERROTATE
attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN
attempts the STAGGER policy, and then the THIN policy.

STAGGERTRUNCATE
attempts the STAGGER policy, and then the TRUNCATE policy.

THIN
eliminates alternate tick values.

TRUNCATE
shortens the tick values when they exceed a certain number of characters.

TRUNCATEROTATE
attempts the TRUNCATE policy, and then the ROTATE policy.

TRUNCATESTAGGER
attempts the TRUNCATE policy, and then the STAGGER policy.

TRUNCATETHIN
attempts the TRUNCATE policy, and then the THIN policy.

Defaults
ROTATE for the X and X2 axes

THIN for the Y and Y2 axes

Note
A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=format
specifies how to format the values for major tick marks.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Restrictions
This option applies only to discrete axes.

Only character formats are supported.

Interaction
This option is ignored when the axis tick values are extracted to an axis legend. See **TICKVALUEFITPOLICY=**EXTRACT | EXTRACTALWAYS on page 906.

Tip
Use this option when you want to duplicate tick values on an axis.

TICKVALUELIST=(string-list**)**
specifies the list of tick values that are to be displayed on the axis.

string-list
a space-separated list of values, enclosed in parentheses. You must enclose each value in the list in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain
values that are not included in the actual data. A tick value that is not included in the
data appears on the axis, but no data is represented at its tick mark.

Requirements
The list of values must be enclosed in parentheses.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes
If the string list contains duplicate values, then the first occurrence of the duplicated value in the list is honored and the remaining instances are ignored.

When the values specified in the list are compared with the actual data values, leading blanks are honored and trailing blanks are ignored.

Tips
You can use this option to subset the axis values or to display the values in a specific order.

You can use this option to display values on the axis that are not contained in the data.

Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```
tickvaluelist=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```
tickvaluelist=("10" "20" "30" "40")
```

TICKVALUEROTATION=DIAGONAL | VERTICAL

specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL
rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL
rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default
DIAGONAL

Restriction
This option is valid for XAXISOPTS= and X2AXISOPTS= only.

Interaction
The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

TICKVALUESPLITCHAR="character-list"

specifies a list of characters on which the tick values can be split, if needed. When multiple characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the tick value. In that case, all of the specified split characters together are treated as a single split character.

When TICKVALUESPLITPOLICY=SPLIT, if a tick value collision is detected, then the tick value is split on a split character only if necessary at that point in order to avoid collision. In that case, a split might not occur on every split character. When TICKVALUEFITPOLICY=SPLITALWAYS, the tick value is split unconditionally
on every occurrence of a split character. If the tick value does not contain any of the
specified split characters, then it is not split.

"character-list"
one or more characters with no delimiter between each character.

Default
A blank space

Requirements
The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For
example, to specify the characters a, b, and c, use the following
option:

```
tickvaluesplitchar="abc"
```

Interactions
This option is ignored unless option TICKVALUEFITPOLICY= is
set to SPLIT, SPLITALWAYS, SPLITTHIN, or
SPLITALWAYSTHIN.

The TICKVALUEFITPOLICY= option sets the policy that is used
to manage the split behavior of the tick values.

The TICKVALUESPLITCHARDROP= option specifies whether
the split characters are displayed or dropped from the display.

Notes
When multiple characters are specified, the order of characters in
the list is not significant.

The split characters are case sensitive.

Tips
Use the TICKVALUESPLITJUSTIFY= option to specify the
justification of the strings in the tick value block.

For the X and X2 axis tick values, use the TICKVALUEVALIGN=
option to specify the vertical alignment of the tick values.

For the Y and Y2 axis tick values, use the TICKVALUEHALIGN=
option to specify the horizontal alignment of the tick values.

Example
The following example specifies a blank space, a comma, and an
underscore as split characters:

```
tickvaluesplitchar=" ,_"
```

TICKVALUESPLITCHARDROP=TRUE | FALSE
specifies whether the split characters should be included in the displayed tick values.
The split characters are specified by the TICKVALUESPLITCHAR= option.

TRUE
drops the split characters from the tick value display. The following figure shows
an example in which TICKVALUESPLITCHARDROP=TRUE and three-word,
asterisk-delimited tick values are split on the asterisk character by using the
SPLITALWAYS policy.
Notice that the asterisk delimiter is not displayed.

FALSE
includes the split characters in the tick value display. The fit policy determines how the characters are displayed. If the display policy is SPLIT or SPLITTHIN and TICKVALUESPLITCHARDROP=FALSE, then each tick value is split at a split character only where a split is necessary in order to make the value fit the available space. A split might not occur at every split character in the tick value. At each split point, the split character remains as the last character in the current line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until the entire data tick value is displayed. The following figure shows an example in which TICKVALUESPLITCHARDROP=FALSE and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLIT policy.

```
Product Group Product Group Product Group Product Group
A      B      C      D      E
```

Notice that a split occurs on the first asterisk and not at the second. In this case, a split is not needed at the second asterisk.

If the fit policy is SPLITALWAYS or SPLITALWAYSTHIN, and TICKVALUESPLITCHARDROP=FALSE, then each tick value is split at every instance of a split character in the value regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line. The following figure shows an example in which TICKVALUESPLITCHARDROP=FALSE and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLITALWAYS policy.

```
Product Group Product Group Product Group Product Group
A      B      C      D      E
```

Notice that a split occurs after each asterisk and each asterisk appears at the end of the line. In this case, three lines are displayed.

Default TRUE

Interactions
The TICKVALUESPLITCHAR= option specifies the split character or characters.

This option is ignored unless option TICKVALUEFITPOLICY= is set to SPLIT, SPLITALWAYS, SPLITTHIN, or SPLITALWAYSTHIN.

See
“boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUESPLITJUSTIFY=CENTERTLEFTRIGHT
specifies justification of the strings that are inside the tick value block. The justification is relative to an individual tick value’s display area and does not affect the display of tick values that are not split.
Defaults

CENTER for an X or X2 axis

RIGHT for a Y axis

LEFT for a Y2 axis

Interaction

This option is ignored unless option `TICKVALUEFITPOLICY=` is set to SPLIT, SPLITALWAYS, SPLITTHIN, or SPLITALWAYSTHIN.

Options for Linear Axes Only

The options that are documented in this section can be used only with the `LINEAROPTS=` axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Linear Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDERANGES on page 913</td>
<td>Specifies one or more ranges for a broken axis.</td>
</tr>
<tr>
<td>INTEGER</td>
<td>Specifies that evenly spaced integer values are used for tick marks.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINOR_TICK_COUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINOR_TICKS</td>
<td>Specifies whether the minor tick marks are displayed on the axis.</td>
</tr>
<tr>
<td>ORIGIN</td>
<td>Specifies that the axis perpendicular to the current axis be drawn at the indicated data value.</td>
</tr>
<tr>
<td>THRESHOLDMAX</td>
<td>Specifies a bias for including one more tick mark at the maximum end of the axis.</td>
</tr>
</tbody>
</table>
Linear Axis Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRESHOLDMIN</td>
<td>Specifies a bias for including one more tick mark at the minimum end of the axis.</td>
</tr>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined by the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision. Only the default policy (THIN) is available for a Y or Y2 axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the order of the tick values for a linear axis as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether an axis tick specification can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
<tr>
<td>TICKVALUESEQUENCE</td>
<td>Specifies the tick values for a linear axis by start, end, and increment.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

INCLUDERANGES=(start–end <start2–end2 startN–endN ...>) specifies the ranges for a broken axis.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

- **start** specifies a numeric value or the keyword MIN. MIN specifies the minimum data value.
- **end** specifies a numeric value or the keyword MAX. MAX specifies the maximum data value.
The following figure shows a linear axis, broken into ranges 50–52 and 56–73.

As shown in the figure, break lines are drawn to indicate the break in the axis.

Restrictions

This option is valid for linear and time axes in an OVERLAY layout only.

Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

When plots are associated with the X and X2 axes or with Y and Y2 axes, neither axis can be broken.

A binned heat map or histogram axis cannot be broken.

A broken axis is not supported in vector graphics output. When a broken axis is specified and vector graphics output is requested, the graph is converted into an image instead. A note indicating the conversion is written to the SAS log. To restore the vector graphics output in that case, remove the INCLUDERANGES= option from the LINEAROPTS= or TIMEOPTS= option.

Requirements

All of the ranges must be enclosed in parenthesis.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Each range must be nonzero. A zero range such as 12–12 is considered invalid.

Interactions

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, VIEWMIN=, VIEWMAX=, and TICKVALUEPRIORITY= are ignored. Suboption EXTRACTSCALE= of the TICKVALUEFORMAT= option is also ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.
When this option is specified, data-clipping might occur for the following: plot markers and marker characters, box-plot outlier markers, fixed-position data labels, needle plots and fringe plots in the X direction, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the contiguous axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Starting with the third maintenance release of SAS 9.4, you can use the `AXISBREAKTYPE=` and `AXISBREAKSYMBOL=` options in the `BEGINGRAPH` statement to display the break in the axis as only a symbol on the axis line.

```
integer=true | false
```

specifies that evenly spaced integer values are used for tick marks.

Default

FALSE

Interactions

This option is overridden by the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option.

This option overrides the `MAXDECIMALS=` and `PREFERREDDECIMALS=` suboptions of the `TICKVALUEFORMAT=` option.

INTEGER=TRUE is ignored for the X or X2 axis when a histogram plot is the primary plot and BINAXIS=TRUE is specified in the HISTOGRAM or HISTOGRAMPARM statement.

MINORGRID=TRUE | FALSE

specifies whether grid lines are displayed at the minor tick marks.

Default

FALSE in the first maintenance release of SAS 9.4 and earlier releases.
MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a linear axis. (See the example.)

![Minor Grid Lines Example]

MINORTICKCOUNT=positive-integer

specifies the number of minor ticks that are displayed on the axis.
Defaults

Four ticks with five intervals in the first maintenance release of SAS 9.4 and earlier releases.

One tick with two intervals starting with the second maintenance release of SAS 9.4.

Interactions

The `DISPLAY=` or `DISPLAYSECONDARY=` option specification must include `TICKS` for this option to have any effect.

The `MINORTICKS=` option must specify `TRUE` for this option to have any effect.

Tip

To display n intervals between major ticks, use `MINORTICKCOUNT=n-1`.

MINORTICKS=TRUE | FALSE

specifies whether minor ticks are displayed. When `MINORTICKS=TRUE`, the minor tick marks are displayed on the axis as shown in the following figure.

![MINORTICKS=TRUE | FALSE example](image)

Default FALSE

Tip Use the `MINORGRID=` option to display grid lines at the minor tick values.

See “boolean” on page 1339 for other Boolean values that you can use.

ORIGIN=number

specifies that the axis perpendicular to the current axis is drawn at the indicated data value.

For managing origin settings, the GTL treats the X and Y axes as a pair, and the X2 and Y2 axes as a separate pair. Thus, if you set the Y-axis origin to 200, then the X axis is drawn from that origin point. If the graph also displays an X2 axis, then it is unaffected and does not move. Similarly, if you set an origin for the Y2 axis, then the X2 axis moves to that origin point and the X axis is unaffected.

If you set an origin for the Y2 axis and there is no X2 axis, then the origin setting for Y2 does not affect the graph display. That is, the X axis does not move to that origin point.

If you set an origin for an axis and the axis has a tick value at that origin value, the tick value is not displayed. Suppressing the tick value at the origin prevents the value from colliding with the axis value on the perpendicular axis. However, it is possible that the tick values on the orthogonal axes will collide.

Default The axis perpendicular to the current axis is drawn at the minimum tick value minus the OFFSETMIN= value.

Restriction This option applies to linear axes only.

Interactions If the specified value is outside the data range for the current axis, then the data range is extended to include the value.
The axis line, ticks, and tick values of the “perpendicular” axis move to the location indicated by the origin. The axis label is not moved.

| Tip | This option is often used to create Cartesian axes (axes centered at ORIGIN=0). |

THRESHOLDMAX= _number_

specifies a bias for including one more tick mark at the maximum end of the axis.

Default	0.30
Range	0–1
Restriction	This option applies to linear axes only.
Interactions	This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is used.

This option is ignored when the INCLUDERANGES= option is specified.

Tips

If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= and THRESHOLDMAX= options to 0.

See

“Adjusting Axis Thresholds” on page 885

THRESHOLDMIN= _number_

specifies a bias for including one more tick mark at the minimum end of the axis.

Default	0.30
Range	0–1
Restriction	This option applies to linear axes only.
Interactions	This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is used.

This option is ignored when the INCLUDERANGES= option is specified.

Tips

If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.
For the minimum axis length, set the THRESHOLDMIN= and THRESHOLDMAX= options to 0.

See “Adjusting Axis Thresholds” on page 885

TICKDISPLAYLIST=(string-list)

specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the TICKVALUELIST= option. The strings map one-to-one positionally with the values that are listed in the TICKVALUELIST= option.

Default
The display of tick values is controlled by the TICKVALUEFORMAT= option.

Requirements
The list of values must be enclosed in parentheses.

Each value (character and numeric) must be enclosed in quotation marks and separated from adjacent values by a blank space.

Interaction
When this option is specified, the TICKVALUEFORMAT= option is ignored.

Tip
This option should be used with the TICKVALUELIST= option. The number of items in the list for this option should equal the number of items in the list for the TICKVALUELIST= option.

TICKVALUEFITPOLICY=policy
specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:

NONE
makes no attempt to avoid collisions between tick values. Tick values are display even when they collide.

THIN
eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:

ROTATE
rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYS
rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATETHIN
attempts the ROTATE policy, and then the THIN policy.

STAGGER
alternates the tick values between two rows.
STAGGERROTATE attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN attempts the STAGGER policy, and then the THIN policy.

THIN eliminates alternate tick values.

Default THIN

Note A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=(format-options) | DATA | format

specifies how to format the values for major tick marks.

(format-options)

specifies one or more formatting options for major tick values. Together, these options provide parameters for determining an optimal format (*w.d*, *Ew*., *BESTw*) for displaying major tick values.

MAXWIDTH=integer

specifies the maximum width for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 8

MAXDECIMALS=integer

specifies the maximum number of decimals for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 6

Note The MAXWIDTH= option value should be greater than the MAXDECIMALS= option value.

PREFERREDDECIMALS=integer

specifies the number of decimal places that you want to display for most values. The actual number might vary based on other constraints.

Default 2

EXTRACTSCALE=TRUE | FALSE

specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width. The scale can be a named scale or a scientific-notation scale. The EXTRACTSCALETYPE= option specifies the scale type. The scale that is used is appended to the axis label, as shown in the following example.

Total Sales (millions)

For long axis labels, if the scale does not fit the available space, then the label is truncated, and the scale is appended to the truncated label. Ellipses indicate that the label was truncated, as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases in which the scale does not fit even with truncation, the entire axis is dropped.

Default FALSE
<table>
<thead>
<tr>
<th>Restriction</th>
<th>The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale for all locales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>The scale type is determined by the EXTRACTSCALETYPE= option.</td>
</tr>
<tr>
<td></td>
<td>If the axis label is not displayed, then the EXTRACTSCALE=TRUE option is ignored.</td>
</tr>
<tr>
<td></td>
<td>The EXTRACTSCALE= suboption is ignored when the INCLUDERANGES= option is specified.</td>
</tr>
<tr>
<td>Note</td>
<td>When EXTRACTSCALE=TRUE and a scale is extracted, the tick values are formatted to provide the best fit on the axis. In that case, the tick value format might differ from the data format even when a named format is applied to the data values.</td>
</tr>
<tr>
<td></td>
<td>See “boolean” on page 1339 for other Boolean values that you can use.</td>
</tr>
</tbody>
</table>

EXTRACTSCALETYPE=_DEFAULT | _SCIENTIFIC

specifies whether to extract a named scale or a scientific-notation scale.

DEFAULT

extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as 10^n) for values over 999 trillion. For large tick values, the scale factor is set to ensure that the absolute value of the largest value is greater than 1. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of 1/10 (10^{-n}) for values less than 1 trillionth.

SCIENTIFIC

extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as 10^n for values greater than 1, or a multiple of 1/10 expressed as 10^{-n} for values less than 1.

Default DEFAULT

Restriction

The scale is derived from the English locale for all locales.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format

specifies a format to apply to the major tick values.

Restriction

GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Note

If you specify a format that significantly reduces precision, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.
Interaction
This option is ignored when the TICKDISPLAYLIST= option is specified.

TICKVALUENAME=(numeric-list)
specifies the tick values for a linear axis as a list.

Default
An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the VIEWMIN= and VIEWMAX= options. By default, when this option is used, the only tick values that appear are the tick values in numeric-list that fall within the explicit data range (set by VIEWMIN= and VIEWMAX=) or the implicit data range (set by the actual data minimum and data maximum).

Restriction
This option applies to linear axes only.

Requirement
The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

Interactions
This option overrides the INTEGER= option.

Tip
The values in the list are formatted according to the setting for the TICKVALUEFORMAT= option.

TICKVALUEPRIORITY=TRUE | FALSE
specifies whether an axis tick specification (TICKVALUENAME= or TICKVALUENAMESEQUENCE=) can extend the axis data range.

TRUE
extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by either the TICKVALUENAME= or TICKVALUENAMESEQUENCE= option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE
displays only the tick values that are specified by the TICKVALUENAME= option that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options.
options or by the implicit data range set by the actual data minimum and data maximum.

Default: FALSE

Restriction: This option applies to linear axes only.

Interactions: When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored. This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is not specified. This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values. This option is ignored when the INCLUDERANGES= option is specified.

Note: If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See: “boolean” on page 1339 for other Boolean values that you can use.

TICKVALUEROTATION=DIAGONAL | VERTICAL

specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL: rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL: rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default: DIAGONAL

Restriction: This option is valid for XAXISOPTS= and X2AXISOPTS= only.

Interaction: The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

TICKVALUESEQUENCE=(sequence-options)

specifies the tick values by start, end, and increment.

(sequence-options)

a space-separated list of the following name-value-pair options that control major tick values. You must provide all three options.

START=number

specifies the value for the first tick mark.

END=number

specifies the value for the last tick mark.

INCREMENT=number

specifies the increment for intermediate tick marks between the first and last tick marks. The END value always controls the last tick mark. The interval between the last tick mark and the previous tick mark might not necessarily be the INCREMENT value.
An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the `VIEWMIN=` and `VIEWMAX=` options. By default, when this option is used, the only tick values that appear are those that fall within the explicit data range (set by `VIEWMIN=` and `VIEWMAX=`) or the implicit data range (set by the actual data minimum and data maximum).

This option overrides the `INTEGER=` option.

The `VIEWMIN=` and `VIEWMAX=` options alter the axis data range. If the `VIEWMIN=` option is set to the `START=` option value and the `VIEWMAX=` option is set to the `END=` option value, then all ticks in the tick sequence are displayed.

If `TICKVALUEPRIORITY=TRUE`, then the tick sequence might extend the explicit data range of the axis, but never reduce it.

This option is ignored if the `DISPLAY=` option or the `DISPLAYSECONDARY=` option does not display tick marks.

The values in the sequence are formatted according to the setting for the `TICKVALUEFORMAT=` option.

The `VIEWMAX=number` specifies the maximum data value to include in the display. The value might be adjusted by the threshold calculation.

The maximum value in the data for the specified axis.

This option does not determine the maximum axis tick value that is displayed. The `THRESHOLDMAX=` value is used to determine the maximum tick value.

This option is ignored when `TICKVALUEPRIORITY=TRUE`.

This option is ignored when the `INCLUDEDRANGES=` option is specified.

Setting a `VIEWMAX=` or `VIEWMIN=` value does not alter the original data or any calculations on it.

The maximum axis tick value might differ from the `VIEWMAX=` value. The `VIEWMIN=` and `VIEWMAX=` values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

To display the `VIEWMAX=` value as the maximum tick value, use the `TICKVALUELIST=` option.

“Adjusting the Axis View” on page 884

The `VIEWMIN=number` specifies the minimum data value to include in the display. The value might be adjusted by the threshold calculation.
Default

The minimum value in the data for the specified axis.

Interactions

This option does not determine the minimum axis tick value that is displayed. The `THRESHOLDMIN=` value is used to determine the minimum tick value.

This option is ignored when `TICKVALUEPRIORITY=` TRUE.

This option is ignored when the `INCLUDERANGES=` option is specified.

Notes

Setting a `VIEWMAX=` or `VIEWMIN=` value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the `VIEWMIN=` value. The `VIEWMIN=` and `VIEWMAX=` values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip

To display the `VIEWMIN=` value as the minimum tick value, use the `TICKVALUELIST=` option.

See

“Adjusting the Axis View” on page 884

Options for Log Axes Only

The options that are documented in this section can be used with the `LOGOPTS=` axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Log Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>Specifies the base of the logarithmic scale for the axis values.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>THRESHOLDMAX</td>
<td>Specifies a bias for including one more tick mark at the maximum end of the axis.</td>
</tr>
<tr>
<td>THRESHOLDMIN</td>
<td>Specifies a bias for including one more tick mark at the minimum end of the axis.</td>
</tr>
<tr>
<td>TICKINTERVALSTYLE</td>
<td>Specifies how to scale and format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT=</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>Log Axis Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the tick values for a log axis as a space-separated list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether the TICKVALUELIST= specification can extend the axis data range.</td>
</tr>
<tr>
<td>VALUETYPE</td>
<td>Specifies the scale that the system uses when interpreting the TICKVALUELIST=, VIEWMAX=, and VIEWMIN= option values.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

BASE=10 | 2 | E
specifies the base of the logarithmic scale for the axis values.

Default: 10

Restriction: This option applies to log axes only.

MINORGRID=TRUE | FALSE
specifies whether grid lines are displayed at the minor tick marks.

![True and False Grid Lines](image)

Defaults: FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOptx style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOptx is not defined in the active style, then FALSE is the default value.

Interaction: This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips: The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.
MINORGRIDATTRS=\texttt{style-element} | \texttt{style-element (line-options)} | \texttt{(line-options)}

specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a base-10 log axis. (See the example.)

![Minor Grid Lines Example](image)

Defaults

The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction

This option is ignored when MINORTICKS=FALSE.

Note

When \texttt{style-element} is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

Use the GRIDATTRS= option to control the appearance of the major grid lines.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example

Here is an example that specifies light blue, dotted lines for the minor grid.

\begin{verbatim}
minorgenridattrs=(color=lightblue pattern=dot);
\end{verbatim}

MINORTICKCOUNT=positive-integer

specifies the number of minor ticks that are displayed on the axis.

Default

Eight ticks with nine intervals (BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.).

Restriction

Minor ticks can be displayed only when BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.

Interactions

The DISPLAY= or DISPLAYSECONDARY= option specification must include TICKS for this option to have any effect.

The MINORTICKS= option must specify TRUE for this option to have any effect.

Tip

To display \(n \) intervals between major ticks, use MINORTICKCOUNT=\(n-1 \).
MINORTICKS=TRUE | FALSE
specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.

![Minor Ticks Example](image)

Default FALSE
RestrictionMinor ticks can be displayed only when BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.
Tip Use the MINORGRID= option to display grid lines at the minor tick values.
See “boolean ” on page 1339 for other Boolean values that you can use.

THRESHOLDMAX=number
specifies a bias for including one more tick mark at the maximum end of the axis.

Default 0.30
Range 0–1
RestrictionThis option applies to log axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.
Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.
See “Adjusting Axis Thresholds” on page 885

THRESHOLDMIN=number
specifies a bias for including one more tick mark at the minimum end of the axis.

Default 0.30
Range 0–1
RestrictionThis option applies to log axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.
Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.
TICKINTERVALSTYLE=\texttt{AUTO} | \texttt{LOGEXPAND} | \texttt{LOGEXPONENT} | \texttt{LINEAR}

specifies how to scale and format the values for major tick marks.

\textbf{AUTO}

selects a \texttt{LOGEXPAND}, \texttt{LOGEXPONENT}, or \texttt{LINEAR} representation automatically based on the range of the data. When the data range is small (within an order of magnitude), a \texttt{LINEAR} representation is typically used. Data ranges that encompass several orders of magnitude typically use the \texttt{LOGEXPAND} or \texttt{LOGEXPONENT} representation.

\textbf{LOGEXPAND}

places the major tick marks at uniform intervals at integer powers of the base. The tick values are expanded as follows:

\begin{itemize}
 \item Base=10
 \begin{itemize}
 \item 1
 \item 10
 \item 100
 \item 1000
 \end{itemize}
 \item Base=2
 \begin{itemize}
 \item 1
 \item 2
 \item 4
 \item 8
 \item 16
 \item 32
 \item 64
 \item 128
 \item 256
 \item 512
 \item 1024
 \end{itemize}
 \item Base=E
 \begin{itemize}
 \item e^{0}
 \item e^{1}
 \item e^{2}
 \item e^{3}
 \item e^{4}
 \item e^{5}
 \item e^{6}
 \item e^{7}
 \end{itemize}
\end{itemize}

\textbf{LOGEXPONENT}

places the major tick marks at uniform intervals at integer powers of the base. The tick values are only the integer exponents for all bases.

\begin{itemize}
 \item Base=10
 \begin{itemize}
 \item 0
 \item 1
 \item 2
 \item 3
 \end{itemize}
\end{itemize}

\textbf{LINEAR}

places the major tick marks at non-uniform intervals that cover the range of the data.

\begin{itemize}
 \item Base=10
 \begin{itemize}
 \item 10
 \item 40
 \item 200
 \item 600
 \item 1200
 \end{itemize}
\end{itemize}

\textbf{Default} \texttt{AUTO}

\textbf{Restrictions}

This option applies to log axes only.

For \texttt{LOGEXPONENT}, formats on data columns contributing to the axis are ignored. For \texttt{LOGEXPAND}, formats on data columns contributing to the axis are ignored, although any "named format" on the column is retained. For \texttt{LINEAR}, ticks values are automatically formatted when the column format is not assigned or one of \texttt{w.d}, \texttt{Ew.}, or \texttt{BESTw}. Other formats (SAS defined or user-defined) are used if specified.

GTL currently honors most but not every SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.
When BASE=10 and LOGEXPAND or LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.

Tip

If you use TICKINTERVALSTYLE=LOGEXPONENT, then you might want to include information in the axis label about which base is used.

TICKVALUEFORMAT=DATA | format

specifies how to format the values for major tick marks.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format

specifies a format to apply to the major tick values.

Restriction

GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Restriction

This option applies to log axes only.

Interactions

This option is ignored when TICKINTERVALSTYLE=LOGEXPONENT.

When TICKINTERVALSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When TICKINTERVALSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

See

BASE=

TICKINTERVALSTYLE=

TICKVALUELIST=(numeric-list)

specifies the tick values for a linear axis as a list.

Default

Only the tick values specified in the list that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum are displayed. An internal algorithm determines the tick marks.

Requirements

The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

The values that you specify must be appropriate for the VALUETYPE= specification. Otherwise, unexpected results might occur. If VALUETYPE=EXPANDED is in effect (default), specify increments of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If VALUETYPE=EXPONENT
is in effect, specify integer increments of the log base power exponent such as 1, 2, 3, and so on.

Interactions

The `VALUETYPE=` option determines how the values in the list are interpreted.

The `VIEWMIN=` and `VIEWMAX=` options alter the axis data range. If the `VIEWMIN=` option is set to the minimum tick list value and the `VIEWMAX=` option is set to the maximum tick list value, then all ticks in the tick list are displayed. This might result in some data not being displayed. For example, data might not be displayed when the `VIEWMIN=` value is greater than the actual data minimum, or when the `VIEWMAX=` value is less than actual data maximum.

If the `VIEWMIN=` value is greater than the actual data minimum or the `VIEWMAX=` value is less than actual data maximum, some data might not be displayed.

This option is ignored if the `DISPLAY=` or the `DISPLAYSECONDARY=` option does not display the tick values.

See

`VIEWMIN=` and `VIEWMAX=` options for controlling the data range

`TICKINTERVALSTYLE=` for specifying the scale and format of the major tick values

`TICKVALUEPRIORITY=` for controlling the behavior of the `TICKVALUETYPE=` option

`BASE=` for specifying the log base

`TICKVALUEPRIORITY=TRUE | FALSE`

specifies whether the `TICKVALUETYPE=` specification can extend the axis data range.

TRUE

extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by the `TICKVALUETYPE=` option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE

displays only the tick values that are specified by the `TICKVALUETYPE=` option that fall within the explicit data range set by the `VIEWMIN=` and `VIEWMAX=` options or by the implicit data range set by the actual data minimum and data maximum.

Default **FALSE**

Interactions

When this option is set to `TRUE`, the `VIEWMIN=` and `VIEWMAX=` options are ignored.

This option is ignored if the `DISPLAY=` option or the `DISPLAYSECONDARY=` option does not display the tick values.
This option is ignored if the TICKVALUELIST= option is not specified.

Note

If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See

“boolean” on page 1339 for other Boolean values that you can use.

VALUETYPE=EXPANDED | EXPONENT

specifies the scale that the system uses when interpreting the TICKVALUELIST=, VIEWMAX=, and VIEWMIN= option values. Use this option to choose your preferred way of specifying log-axis values.

EXPANDED values are interpreted as powers of the base such as 0.1, 1, 10, 100, and so on, for base 10, for example.

EXPONENT values are interpreted as integer exponents of the base such as 1, 2, 3, and so on, for base 10, base 2, and base E.

Default EXPANDED

Note

This option does not change the style of the tick values that are displayed on the axis. It changes only how the VIEWMIN=, VIEWMAX=, and TICKVALUELIST= option values are interpreted by the system.

Tip

This option is particularly useful when BASE=E.

Examples

The following example specifies VIEWMIN= and VIEWMAX= as exponent values instead of as expanded values on an expanded Base 10 log axis. This results in X-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
xaxisopts=(type=log
    logopts=(base=10
        tickintervalstyle=logexpand
        valuetype=exponent
        viewmin=1 viewmax=5));
```

The following example specifies TICKVALUELIST= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxisopts=(type=log
    logopts=(base=10
        tickintervalstyle=logexponent
        tickvaluepriority=true
        valuetype=expanded
        tickvaluelist=(10 100 1000 10000 100000));
```

VIEWMAX=number

specifies the maximum data value to include in the display.

Default

The maximum value in the data for the specified axis.

Requirement

The value that you specify must be appropriate for the VALUETYPE= specification and the log base. Otherwise, unexpected results might occur. If VALUETYPE=EXPANDED is in effect (default), specify an increment of the log base power such as
0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If VALUETYPE=EXPONENT is in effect, specify an integer increment of the log base power exponent such as 1, 2, 3, and so on.

<table>
<thead>
<tr>
<th>Interactions</th>
<th>This option is ignored when TICKVALUEPRIORITY= TRUE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.</td>
</tr>
<tr>
<td></td>
<td>If an invalid value is specified for the VIEWMAX= option, the default value for VIEWMAX= is used instead. In that case, if the default value for VIEWMAX= is less than the value specified by the VIEWMIN= option, then the VIEWMIN= and VIEWMAX= values are swapped.</td>
</tr>
<tr>
<td></td>
<td>The maximum axis tick value might differ from the VIEWMAX= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.</td>
</tr>
<tr>
<td></td>
<td>When BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or TICKINTERVALSTYLE=LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.</td>
</tr>
<tr>
<td>Tip</td>
<td>To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Adjusting the Axis View” on page 884</td>
</tr>
<tr>
<td>Examples</td>
<td>The following example specifies a value of 100,000 as an expanded value on a base 10 log axis:</td>
</tr>
<tr>
<td></td>
<td>VIEWMAX=100000</td>
</tr>
<tr>
<td></td>
<td>The following example specifies a value of 100,000 as an exponent value on a base 10 log axis:</td>
</tr>
<tr>
<td></td>
<td>VIEWMAX=5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIEWMIN=number</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the minimum data value to include in the display.</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Requirement</td>
</tr>
<tr>
<td>Interactions</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

When BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or TICKINTERVALSTYLE=LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.

Tip
To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

Examples
The following example specifies a value of 0.1 as an expanded value on a base 10 log axis:
VIEWMIN=0.1

The following example specifies a value of 0.1 as an exponent value on a base 10 log axis:
VIEWMIN=-1

Options for Time Axes Only
The options that are documented in this section can be used with the TIMEOPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Time Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDERANGES on page 935</td>
<td>Specifies one or more ranges for a broken axis.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Specifies the time interval between major tick marks.</td>
</tr>
<tr>
<td>INTERVALMULTIPLIER</td>
<td>Specifies a multiplier to apply to the time interval that is in effect for the axis.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKINTERVAL</td>
<td>Specifies the time interval between minor ticks.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>SPLITTICKVALUE</td>
<td>Specifies whether to split the tick values on an X or X2 axis, if possible. This option is not available on a Y or Y2 axis.</td>
</tr>
</tbody>
</table>
Time Axis Option

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKVALUEFITPOLICY</td>
</tr>
<tr>
<td>Specifies a policy for avoiding tick value collision on an X or X2 axis. This option is not available on a Y or Y2 axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
</tr>
<tr>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
</tr>
<tr>
<td>Specifies the order of the tick values for a time axis as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
</tr>
<tr>
<td>Specifies whether an axis tick specification can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
</tr>
<tr>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
<tr>
<td>VIEWMAX</td>
</tr>
<tr>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
</tr>
<tr>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

INCLUDERANGES=(start–end <start2–end2 startN–endN …>)

Specifies the ranges for a broken axis.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

- **start** specifies a SAS time, date, or date-time constant, or the keyword MIN. MIN specifies the minimum data value.

- **end** specifies a SAS time, date, or date-time constant, or the keyword MAX. MAX specifies the maximum data value.
The following figure shows a time axis, broken into ranges '01Jan2001'd–'01May2003'd and '01Jan2005'd–'01Oct2005'd.

As shown in the figure, break lines are drawn to indicate the break in the axis.

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>This option is valid for linear and time axes in an OVERLAY layout only.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.</td>
</tr>
<tr>
<td></td>
<td>When plots are associated with the X and X2 axes or with Y and Y2 axes, neither axis can be broken.</td>
</tr>
<tr>
<td></td>
<td>A binned heat map or histogram axis cannot be broken.</td>
</tr>
<tr>
<td></td>
<td>A broken axis is not supported in vector graphics output. When a broken axis is specified and vector graphics output is requested, the graph is converted into an image instead. A note indicating the conversion is written to the SAS log. To restore the vector graphics output in that case, remove the INCLUDERANGES= option from the LINEAROPTS= or TIMEOPTS= option.</td>
</tr>
<tr>
<td>Requirements</td>
<td>All of the ranges must be enclosed in parenthesis.</td>
</tr>
<tr>
<td></td>
<td>You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.</td>
</tr>
<tr>
<td></td>
<td>Each range must be nonzero. A zero range such as 12–12 is considered invalid.</td>
</tr>
<tr>
<td>Interactions</td>
<td>When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, VIEWMIN=, VIEWMAX=, and TICKVALUEPRIORITY= are ignored. Suboption EXTRACTSCALE= of the TICKVALUEFORMAT= option is also ignored.</td>
</tr>
<tr>
<td></td>
<td>When this option is specified, the plot statement TIP= and URL= options are ignored.</td>
</tr>
<tr>
<td>Notes</td>
<td>When this option is specified, data-clipping might occur for the following: plot markers and marker characters, box-plot outlier markers, fixed-position</td>
</tr>
</tbody>
</table>
data labels, needle plots and fringe plots in the X direction, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the contiguous axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip
Starting with the third maintenance release of SAS 9.4, you can use the `AXISBREAKTYPE=` and `AXISBREAKSYMBOL=` options in the `BEGINGRAPH` statement to display the break in the axis as only a symbol on the axis line.

See
“Creating a Broken Time Axis” in *SAS Graph Template Language: User's Guide*

Example
includeranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)

INTERVAL=interval
specifies the time interval between major ticks. Valid *interval* keywords are AUTO, SECOND, MINUTE, HOUR, DAY, TENDAY, WEEK, SEMIMONTH, MONTH, QUARTER, SEMIYEAR, YEAR.

Table 8.1 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or</td>
<td>automatically</td>
<td>automatically</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td>chosen</td>
<td>chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td></td>
<td>DATETIME</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERVAL

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO. An appropriate interval is chosen based on the data and the column date, date-time, or time format.

Restriction This option applies to time axes only.

Requirement The data column(s) mapped to a time axis must be in the same duration units: TIME, DATE, or DATETIME. The selection of an interval must be consistent with the duration unit. For example, if the data are in time units, you can specify only AUTO, SECOND, MINUTE, HOUR.

Interaction This option is ignored if the TICKVALUENAME= option is used.

INTERVALMULTIPLIER=positive-integer

specifies a multiplier to apply to the time interval that is in effect for the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default 1

Restriction This option applies to time axes only.

Interaction This option is ignored if the TICKVALUENAME= option is used.

Tip Use the INTERVAL= option to specify a different time interval.

Examples To specify 3-month intervals:

```
INTERVAL=MONTH INTERVALMULTIPLIER=3
```

To specify 10-year intervals:

```
INTERVAL=YEAR INTERVALMULTIPLIER=10
```

MINORGRID=TRUE | FALSE

specifies whether grid lines are displayed at the minor tick marks.
Defaults
FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction
This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips
The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a time axis. (See the example.)

Defaults
The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction
This option is ignored when MINORTICKS=FALSE.

Note
When style-element is specified, only the style element’s CONTRASTCOLOR, LIFESTYLE, and LINETHICKNESS attributes are used.
Tip

Use the GRIDATTRS= option to control the appearance of the major grid lines.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example

Here is an example that specifies light blue, dotted lines for the minor grid.

\[\text{minorgridattrs=(color=lightblue pattern=dot);} \]

MINORTICKINTERVAL=\textit{interval}

specifies the time interval between minor ticks. See Table 8.1 on page 937 for information about the intervals that you can select. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, then you must specify AUTO, SECOND, MINUTE, or HOUR.

Default

AUTO

Interactions

This option is ignored if the TICKVALUELIST= option is used.

This option is ignored if the MINORTICKINTERVAL= setting is greater than the INTERVAL= setting.

MINORTICKS=\texttt{TRUE} | \texttt{FALSE}

specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.

\[\text{MINORTICKS=TRUE} \]

\[\text{MINORTICKS(FALSE)} \]

Default

FALSE

Interactions

The number of minor ticks is dependent on the value of the MINORTICKINTERVAL= option, if specified. If MINORTICKINTERVAL= is not specified, then it is dependent on the value of the INTERVAL= option.

This option is ignored if the TICKVALUELIST= option is used, or if the DISPLAY= or DISPLAYSECONDARY= option does not display the tick marks.

Tip

Use the MINORGRID= option to display grid lines at the minor tick values.

See

“\textbf{boolean}” on page 1339 for other Boolean values that you can use.

SPLITTIICKVALUE=\texttt{TRUE} | \texttt{FALSE}

specifies whether to split the tick values on an X or X2 axis, if possible. This option is not available for a Y or Y2 axis.
TRUE splits the axis tick values into two lines allowing more tick values to appear. For example, with \texttt{INTERVAL=MONTH}, this is how tick values are split:

\begin{verbatim}
2003 2004 2005 2006
\end{verbatim}

FALSE does not split the axis tick values. For example, when this option specifies FALSE, this is how the tick values in the previous example appear:

\begin{verbatim}
\end{verbatim}

Typically, fewer tick values fit, causing thinning, rotation, or staggering of the values. See the \texttt{TICKVALUEFITPOLICY=} option.

Default TRUE

Restriction This option applies to time axes only.

Interaction This option is ignored if the \texttt{TICKVALUETYPE=}, \texttt{TICKVALUEFORMAT=} or \texttt{TICKVALUELIST=} option is used.

See “\texttt{boolean}” on page 1339 for other Boolean values that you can use.

TICKVALUEFITPOLICY=\texttt{policy}

specifies a policy for avoiding tick value collision on an X or X2 axis. This option is not available for the Y and Y2 axes. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. The following policies are valid:

- **NONE** makes no attempt to avoid collisions between tick values. Tick values are display even when they collide.

- **ROTATE** rotates the tick values if a collision occurs. The \texttt{TICKVALUEROTATION=} option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

- **ROTATEALWAYS** rotates the tick values regardless of whether a collision occurs. The \texttt{TICKVALUEROTATION=} option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

- **ROTATETHIN** attempts the ROTATE policy, and then the THIN policy.

- **STAGGER** alternates the tick values between two rows.

- **STAGGERROTATE** attempts the STAGGER policy, and then the ROTATE policy.
STAGGERTHIN
attempts the STAGGER policy, and then the THIN policy.

THIN
eliminates alternate tick values.

Default THIN

Restriction This option is valid only for the X and X2 axes.

Interaction When SPLITTICKVALUE= TRUE, this option is ignored and only the THIN policy is used.

Note A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=format | DATA
specifies how to format the values for major tick marks.

format
specifies a SAS date, time, or datetime format to control how the major tick values are displayed. This format must be in the same duration units as the data column(s) mapped to a time axis: TIME, DATE, or DATETIME and should be appropriate for the value of the INTERVAL= option. For example, if INTERVAL=MONTH and there are two years of data displayed on the axis, then choosing TICKVALUEFORMAT=YEAR. would result in several ticks having the same year value.

DATA
specifies that the SAS date, time, or datetime format associated with the data column assigned to the axis be used to control how the major tick values are displayed.

Default The default format used by the INTERVAL= option. The default does not apply if TICKVALUELIST= is specified.

Restrictions This option applies to time axes only.

DATA
specifies that the SAS date, time, or datetime format associated with the data column assigned to the axis be used to control how the major tick values are displayed.

Default The default format used by the INTERVAL= option. The default does not apply if TICKVALUELIST= is specified.

Restrictions This option applies to time axes only.

GTL currently honors most but not every SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

TICKVALUELIST=(time-constant-list | date-constant-list | datetime-constant-list | numeric-list)
specifies the tick values for a time axis as list.

Default An internal algorithm determines the tick values.

Restrictions This option applies to time axes only.

If TICKVALUEPRIORITY= is set to FALSE, then this option does not extend the data range of the axis. If the values fall within the default data range or that specified by the VIEWMIN= or VIEWMAX= options, then they are used.

Requirement The tick values must be specified as a space-separated list of values enclosed in parentheses. The items in the list must be in the same duration units as the data mapped to the axis: TIME, DATE, or DATETIME. The values can be expressed as SAS TIME, DATE, or
DATETIME constants (for example, "13:23"T, "11MAY06"D, or "11MAY06:13:23"DT) or their numeric equivalents.

Interactions
The values in the list are formatted according to the format specified on the TICKVALUEFORMAT= option. If TICKVALUEFORMAT= is not used, then the values are formatted according to the column format (the default TICKVALUEFORMAT value is not applied to these values).

If this option is specified, the SPLITTICKVALUE= and INTERVAL= options are ignored.

TICKVALUEPRIORITY=TRUE | FALSE
specifies whether the TICKVALUELIST= specification can extend the axis data range.

TRUE
extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by the TICKVALUELIST= option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE
displays only the tick values that are specified by the TICKVALUELIST= option that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum.

Default FALSE

Interactions
When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

This option is ignored if the TICKVALUELIST= option is not specified.

This option is ignored when the INCLUDERANGES= option is specified.

Note
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See
“boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUEROTATION=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL
rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL
rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default DIAGONAL
Restriction
This option is valid for XAXISOPTS= and X2AXISOPTS= only.

Interaction
The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

VIEWMAX=number
specifies the maximum data value to include in the display.

Default
The maximum value in the data for the specified axis.

Interactions
This option is ignored when TICKVALUEPRIORITY= TRUE.

This option is ignored when the INCLUDERANGES= option is specified.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The maximum axis tick value might differ from the VIEWMAX= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip
To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

VIEWMIN=number
specifies the minimum data value to include in the display.

Default
The minimum value in the data for the specified axis.

Interactions
This option is ignored when TICKVALUEPRIORITY= TRUE.

This option is ignored when the INCLUDERANGES= option is specified.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip
To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

Details
The LAYOUT OVERLAY statement provides the XAXISOPTS=, YAXISOPTS=, X2AXISOPTS=, Y2AXISOPTS= options that enable you to manage the axis display separately for the X, Y, X2, and Y2 axes. The following example template uses the YAXISOPTS= option to manage the grid lines, tick marks, and tick values on a Y axis:
Within an OVERLAY layout block, each plot axis is always of a particular type. In the default cases, the axis type is always DISCRETE, LINEAR, or TIME. The TYPE= option enables you to specify an axis type that overrides the default. For example, when appropriate for the data, you can request a LOG axis. When you override the default axis type, you must be sure to specify the correct axis type for the plot(s) that you are defining.

Each axis type has features specific to that type, and the following axis options enable you to specify features for the different types: DISCRETEOPTS=, LINEAROPTS=, LOGOPTS=, and TIMEOPTS=. One or more of these options can be specified for an axis, but the specified settings are applied only to the axis type that supports them.

Axis Options for LAYOUT OVERLAY3D

Axis options for the plots within an OVERLAY3D layout.

Note: Unless otherwise indicated in an option description, each axis option is available for the X, Y, and Z axis.

See: “LAYOUT OVERLAY3D Statement” on page 152

Syntax

Axis options for the plots within an OVERLAY3D layout are specified with the following options on a LAYOUT OVERLAY3D statement:

- **XAXISOPTS=**(axis-options)
- **YAXISOPTS=**(axis-options)
- **ZAXISOPTS=**(axis-options)

General Options for All Axes in an Overlay3D

The options that are documented in this section can be used with either axis type that is supported within an OVERLAY3D layout. Subsequent sections in the chapter document the axis options that are available only for the specific axis type: linear or time.

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY</td>
<td>Controls which axis features are displayed.</td>
</tr>
<tr>
<td>GRIDATTRS</td>
<td>Specifies the attributes of the grid lines.</td>
</tr>
<tr>
<td>GRIDDISPLAY</td>
<td>Specifies whether axis grid lines are displayed.</td>
</tr>
<tr>
<td>Statement Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LABEL</td>
<td>Specifies the axis label.</td>
</tr>
<tr>
<td>LABELATTRS</td>
<td>Specifies the color and font attributes of the axis label.</td>
</tr>
<tr>
<td>LINEAROPTS</td>
<td>Specifies options for a standard numeric interval axis.</td>
</tr>
<tr>
<td>OFFSETMAX</td>
<td>Reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>OFFSETMIN</td>
<td>Reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>TICKVALUEATTRS</td>
<td>Specifies the color and font attributes of the axis tick values.</td>
</tr>
<tr>
<td>TIMEOPTS</td>
<td>Specifies options for a TIME axis.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Specifies the type of axis to use.</td>
</tr>
</tbody>
</table>

DISPLAY=STANDARD | ALL | NONE | (display-options)
controls which axis features are displayed on the primary axis.

STANDARD
specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed

ALL
specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed

NONE
specifies that no axis features are displayed

display-options
a space-separated list of one or more of the following options enclosed in parentheses:

- **LABEL** displays the axis label
- **LINE** displays the axis line
- **TICKS** displays the tick marks
- **TICKVALUES** displays the values that are represented by the major tick marks

Default **STANDARD**

Tips
The default line attributes for the axis line and axis tick marks are defined in the GraphAxisLine style element.

Use the **GRIDDISPLAY=** and **GRIDATTRS=** options to set the axis grid lines.
When LINE is excluded from the DISPLAY= option, the layout wall outline or the default baseline of a bar chart, needle plot, or waterfall chart can appear to be an axis line. To suppress the wall outline, use the WALLDISPLAY= option in the layout statement. To suppress the plot baseline, use the BASELINEATTRS= option in the plot statement.

GRIDATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the grid lines.

Default
The GraphGridLines style element.

Interaction
This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

GRIDDISPLAY=AUTO_OFF | AUTO_ON | ON | OFF
specifies whether axis grid lines are displayed. This option enables the template to absolutely control the display of grid lines or to allow interaction with the current style to decide whether grid lines are displayed.

AUTO_OFF
specifies that grid lines are not displayed unless the GraphGridLines element in the current style contains DisplayOpts="ON."

AUTO_ON
specifies that grid lines are displayed unless the GraphGridLines element in the current style contains DisplayOpts="OFF."

ON
specifies that grid lines are always displayed. The current style has no override.

OFF
specifies that grid lines are never displayed. The current style has no override.

The following table shows the end results for various combinations of the GRIDDISPLAY= option and the DisplayOpts= attribute of the GraphGridLines style element. Most supplied templates use the default setting AUTO_OFF to indicate a preference for not displaying grid lines, but allowing the style to override.

<table>
<thead>
<tr>
<th>GRIDDISPLAY= option</th>
<th>DisplayOpts= style attribute</th>
<th>Grid Lines Shown?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_OFF</td>
<td>AUTO</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>AUTO</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>GRIDDISPLAY= option</td>
<td>DisplayOpts= style attribute</td>
<td>Grid Lines Shown?</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ON</td>
<td>any value</td>
<td>yes</td>
</tr>
<tr>
<td>OFF</td>
<td>any value</td>
<td>no</td>
</tr>
</tbody>
</table>

Default AUTO_OFF

Note Supplied styles use DisplayOpts="AUTO," which means that the style has no preference about grid lines and the graphics template setting for grid lines is always used.

LABEL="string" | ("string" ..."string")

specifies the axis label. The string can be either a string literal or a dynamic. The list form implies that all included string literals or dynamics will be concatenated.

Default The default label is derived from the primary plot in the layout. For more information, see “When Plots Share Data and a Common Axis” on page 880.

Interaction This option is ignored if the DISPLAY= option does not display the axis label.

Note If the axis label is too long to fit along the axis, then it is truncated by default.

LABELATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the axis label.

Default The GraphLabelText style element.

Interaction This option is ignored if the DISPLAY= option does not display the axis label.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

LINEAROPTS=(linear-axis-options)**

specifies one or more options for a numeric interval axis. Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.

Interaction This option is ignored if the axis type is not LINEAR.

See “Options for Linear Axes Only” on page 950 for the options that you can use for linear-axis-options.

OFFSETMAX=AUTO | number

reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.
AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

number
 specifies the offset as a decimal proportion of the full axis length. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater.

Default **AUTO**

Range 0–1. The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.

See “Adjusting Axis Offsets” on page 886

OFFSETMIN=AUTO | *number*
reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.

AUTO
reserves just enough area to fully display markers and other graphical features near the minimum end of an axis.

number
 specifies the offset as a decimal proportion of the full axis length. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less.

Default **AUTO**

Range 0–1. The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.

See “Adjusting Axis Offsets” on page 886

TICKVALUEATTRS= *style-element | style-element (text-options) | (text-options)***
specifies the color and font attributes of the axis tick values.

Default The GraphValueText style element.

Interaction This option is ignored if the DISPLAY= option does not display tick values.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element.*

“Text Options” on page 1351 for available *text-options.*

TIMEOPTS=(*time-axis-options*)***
specifies one or more options for a time axis.

Requirements Columns associated with a time axis must be in SAS time, SAS date, or SAS datetime units and have an associated SAS time, date, or datetime format.

Options must be enclosed in parentheses. Each option is specified as a *name = value* pair and each pair is space separated.
Interaction

This option is ignored if the axis type is not TIME.

See

“Options for Time Axes Only” on page 958 for the options that you can use for time-axis-options.

TYPE=AUTO | LINEAR | TIME

specifies the type of axis to use.

AUTO

requests that the axis type be automatically determined by the plot or the overlay contents.

LINEAR

uses a LINEAR axis if possible. You can add a LINEAROPTS= option list to customize this axis type.

TIME

uses a TIME axis if possible. Data for this axis must be SAS time, SAS date, or SAS datetime values. You can add a TIMEOPS= option list to customize this axis type.

Default **AUTO**

Interactions

If this option is set to anything other than AUTO, then plots within the layout are dropped from the display if their data types or data ranges do not match the axis type requirements. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

After the axis type is determined (whether you set a specific type or AUTO is in effect), only options supported by that axis type can be used. For example, if TYPE=TIME, then only the general OVERLAY3D axis options and those available on TIMEOPS= are supported.

Options for Linear Axes Only

This section documents the options that can be used with the LINEAROPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Linear Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>Specifies that evenly spaced integer values are used for tick marks.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATRNS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>THRESHOLDMAX</td>
<td>Specifies a bias for including one more tick mark at the maximum end of the axis.</td>
</tr>
<tr>
<td>Linear Axis Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>THRESHOLDMIN</td>
<td>Specifies a bias for including one more tick mark at the minimum end of the axis.</td>
</tr>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the order of the tick values for a linear axis as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether an axis tick specification (TICKVALUELIST= or TICKVALUESEQUENCE=) can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUESEQUENCE</td>
<td>Specifies the tick values for a linear axis by start, end, and increment.</td>
</tr>
</tbody>
</table>

INTEGER=TRUE | FALSE

specifies that evenly spaced integer values are used for tick marks.

- **Default** FALSE
- **Interactions** This option is overridden by the TICKVALUELIST= or TICKVALUESEQUENCE= option.
- This option overrides the MAXDECIMALS= and PREFERREDDECIMALS= suboptions of the TICKVALUEFORMAT= option.
- INTEGER=TRUE is ignored for the X or X2 axis when a histogram plot is the primary plot and BINAXIS=TRUE is specified in the HISTOGRAM or HISTOGRAMPARM statement.
- **See** “boolean ” on page 1339 for other Boolean values that you can use.

MINORGRID=TRUE | FALSE

specifies whether grid lines are displayed at the minor tick marks.
Defaults
FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction
This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips
The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See
“boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a linear axis. (See the example.)

Defaults
The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction
This option is ignored when MINORTICKS=FALSE.

Note
When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
Use the GRIDATTRS= option to control the appearance of the major grid lines.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example
Here is an example that specifies light blue, dotted lines for the minor grid.

\[
\text{minorgridattrs}=(\text{color=lightblue \ pattern=dot});
\]

MINORTICKCOUNT=positive-integer
specifies the number of minor ticks that are displayed on the axis.
Defaults

Four ticks with five intervals in the first maintenance release of SAS 9.4 and earlier releases.

One tick with two intervals starting with the second maintenance release of SAS 9.4.

Interactions

The `DISPLAY=` option specification must include `TICKS` for this option to have any effect.

The `MINORTICKS=` option must specify `TRUE` for this option to have any effect.

Tip

To display n intervals between major ticks, use `MINORTICKCOUNT=n-1`.

MINORTICKS=TRUE | FALSE

specifies whether minor ticks are displayed. When `MINORTICKS=TRUE`, the minor tick marks are displayed on the axis as shown in the following figure.

```
<table>
<thead>
<tr>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0$</td>
<td>$0$</td>
</tr>
<tr>
<td>$50$</td>
<td>$50$</td>
</tr>
<tr>
<td>$100$</td>
<td>$100$</td>
</tr>
<tr>
<td>$150$</td>
<td>$150$</td>
</tr>
<tr>
<td>$200$</td>
<td>$200$</td>
</tr>
</tbody>
</table>
```

Default

`FALSE`

Interaction

This option is ignored if the `TICKVALUELIST=` or the `TICKVALUESEQUENCE=` option is used.

Tip

Use the `MINORGRID=` option to display grid lines at the minor tick values.

See

“`boolean`” on page 1339 for other Boolean values that you can use.

THRESHOLDMAX=number

specifies a bias for including one more tick mark at the maximum end of the axis.

Default

0.30

Range

0–1

Restriction

This option applies to linear axes only.

Interaction

This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is used.

Tips

If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.
For the minimum axis length, set the THRESHOLDMIN= and THRESHOLDMAX= options to 0.

See “Adjusting Axis Thresholds” on page 885

THRESHOLDMIN=number

specifies a bias for including one more tick mark at the minimum end of the axis.

Default	0.30
Range	0–1
Restriction	This option applies to linear axes only.
Interaction	This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is used.
Tips	If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.	
Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.	

For the minimum axis length, set the THRESHOLDMIN= and THRESHOLDMAX= options to 0.

See “Adjusting Axis Thresholds” on page 885

TICKDISPLAYLIST=(string-list)

specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the TICKVALUELIST= option. The strings map one-to-one positionally with the values that are listed in the TICKVALUELIST= option.

Default	The display of tick values is controlled by the TICKVALUEFORMAT= option.
Requirements	The list of values must be enclosed in parentheses.
	Each value (character and numeric) must be enclosed in quotation marks and separated from adjacent values by a blank space.
Interaction	When this option is specified, the TICKVALUEFORMAT= option is ignored.
Tip	This option should be used with the TICKVALUELIST= option. The number of items in the list for this option should equal the number of items in the list for the TICKVALUELIST= option.

TICKVALUEFORMAT=(format-options) | DATA | format

specifies how to format the values for major tick marks.
specifies one or more formatting options for major tick values. Together, these options provide parameters for determining an optimal format (w.d, Ew., BESTw.) for displaying major tick values.

MAXWIDTH=integer
specifies the maximum width for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 8

MAXDECIMALS=integer
specifies the maximum number of decimals for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 6

Note The MAXWIDTH= option value should be greater than the MAXDECIMALS= option value.

PREFEREDDECIMALS=integer
specifies the number of decimal places that you want to display for most values. The actual number might vary based on other constraints.

Default 2

EXTRACTSCALE=TRUE | FALSE
specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width. The scale can be a named scale or a scientific-notation scale. The EXTRACTSCALETYPE= option specifies the scale type. The scale that is used is appended to the axis label, as shown in the following example.

Total Sales (millions)

For long axis labels, if the scale does not fit the available space, then the label is truncated, and the scale is appended to the truncated label. Ellipses indicate that the label was truncated, as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases in which the scale does not fit even with truncation, the entire axis is dropped.

Default FALSE

Restriction The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale for all locales.

Interactions The scale type is determined by the EXTRACTSCALETYPE= option.

If the axis label is not displayed, then the EXTRACTSCALE=TRUE option is ignored.

Note When EXTRACTSCALE=TRUE and a scale is extracted, the tick values are formatted to provide the best fit on the axis. In that case, the tick value format might differ from the data format even when a named format is applied to the data values.
See “boolean” on page 1339 for other Boolean values that you can use.

EXTRACTSCALETYPE=DEFAULT | SCIENTIFIC
specifies whether to extract a named scale or a scientific-notation scale.

DEFAULT
events a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as 10^n) for values over 999 trillion. For large tick values, the scale factor is set to ensure that the absolute value of the largest value is greater than 1. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of 1/10 (10^{-n}) for values less than 1 trillionth.

SCIENTIFIC
events a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as 10^n for values greater than 1, or a multiple of 1/10 expressed as 10^{-n} for values less than 1.

Default **DEFAULT**

Restriction The scale is derived from the English locale for all locales.

DATA
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format
specifies a format to apply to the major tick values.

Restriction GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Note If you specify a format that significantly reduces precision, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Default (MAXWIDTH=8, MAXDECIMALS=6, PREFERREDDECIMALS=2, EXTRACTSCALE=FALSE, EXTRACTSCALETYPE=DEFAULT)

Interaction This option is ignored when the **TICKDISPLAYLIST** option is specified.

TICKVALUELIST=(*numeric-list*)
specifies the tick values for a linear axis as a list.

Default An internal algorithm determines the tick values.

Restriction This option applies to linear axes only.

Requirement The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

Interactions This option overrides the **INTEGER** option.
This option is ignored if the `TICKVALUESEQUENCE=` option is specified, or if the `DISPLAY=` option does not display tick values.

Tip
The values in the list are formatted according to the setting for the `TICKVALUEFORMAT=` option.

`TICKVALUEPRIORITY=TRUE | FALSE`

specifies whether an axis tick specification (TICKVALUELIST= or TICKVALUESEQUENCE=) can extend the axis data range.

TRUE
extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by either the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE
displays only the tick values that are specified by the `TICKVALUELIST=` option that fall within the explicit data range set by the actual data minimum and data maximum.

Default
FALSE

Restriction
This option applies to linear axes only.

Interactions
This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is not specified.

This option is ignored if the `DISPLAY=` option does not display the tick values.

Note
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See
“boolean ” on page 1339 for other Boolean values that you can use.

`TICKVALUESEQUENCE=(sequence-options)`
specifies the tick values by start, end, and increment.

sequence-options
a space-separated list of the following name-value-pair options that control major tick values. You must provide all three options.

START=number
specifies the value for the first tick mark.

END=number
specifies the value for the last tick mark.

INCREMENT=number
specifies the increment for intermediate tick marks between the first and last tick marks. The END value always controls the last tick mark. The interval between the last tick mark and the previous tick mark might not necessarily be the INCREMENT value.

Default
An internal algorithm determines the tick marks.

Interactions
This option overrides the `INTEGER=` option.
If `TICKVALUEPRIORITY= TRUE`, then the tick sequence might extend the explicit data range of the axis, but never reduce it. This option is ignored if the `DISPLAY=` option does not display tick marks.

Tip
The values in the sequence are formatted according to the setting for the `TICKVALUEFORMAT=` option.

See
`TICKVALUENLIST=` option as an alternative for customizing tick marks.

Options for Time Axes Only
This section documents the options that can be used with the `TIMEOPTS=` axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Time Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL</td>
<td>Specifies the time interval between major tick marks.</td>
</tr>
<tr>
<td>INTERVALMULTIPLIER</td>
<td>Specifies a multiplier to apply to the time interval that is in effect for the axis.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKINTERVAL</td>
<td>Specifies the time interval between minor ticks.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUENLIST</td>
<td>Specifies the order of the tick values for a time axis as list.</td>
</tr>
</tbody>
</table>

INTERVAL=interval
specifies the time interval between major ticks. Valid *interval* keywords are `AUTO`, `SECOND`, `MINUTE`, `HOUR`, `DAY`, `TENDAY`, `WEEK`, `SEMIMONTH`, `MONTH`, `QUARTER`, `SEMIYEAR`, `YEAR`.

Table 8.2 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
</tbody>
</table>
INTERVAL

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default
AUTO. An appropriate interval is chosen based on the data and the column date, date-time, or time format.

Restriction
This option applies to time axes only.

Requirement
The data column(s) mapped to a time axis must be in the same duration units: TIME, DATE, or DATETIME. The selection of an interval must be consistent with the duration unit. For example, if the data are in time units, you can specify only AUTO, SECOND, MINUTE, HOUR.

Interaction
This option is ignored if the TICKVALUELIST= option is used.

INTERVALMULTIPLIER=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
MINORGRID=TRUE | FALSE
specifies whether grid lines are displayed at the minor tick marks.

TRUE

FALSE

Defaults
FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction
This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips
The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See
“boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the minor grid lines. This option does not affect the major grid lines.
The following figure shows the minor grid lines set to light blue, dotted lines on a time axis. (See the example.)

![Diagram of minor grid lines](image)

Defaults
The `GraphGridLines` style element is used starting with SAS 9.4.
The `GraphMinorGridLines` style element is used starting with the second maintenance release of SAS 9.4.

Interaction
This option is ignored when MINORTICKS=FALSE.

Note
When `style-element` is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
Use the `GRIDATTRS=` option to control the appearance of the major grid lines.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example
Here is an example that specifies light blue, dotted lines for the minor grid.

```plaintext
minorgridattrs=(color=lightblue pattern=dot);
```

MINORTICKINTERVAL=interval
specifies the time interval between minor ticks. See Table 8.2 on page 958 for information about the intervals that you can select. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.

For example, if the axis data is in TIME units, then you must specify AUTO, SECOND, MINUTE, or HOUR.

Default
AUTO

Interactions
This option is ignored if the `TICKVALUELIST=` option is used.

This option is ignored if the MINORTICKINTERVAL= setting is greater than the INTERVAL= setting.

MINORTICKS=TRUE | FALSE
specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.

![Diagram of minor ticks](image)
Default FALSE

Interactions The number of minor ticks is dependent on the value of the MINORTICKINTERVAL= option, if specified. If MINORTICKINTERVAL= is not specified, then it is dependent on the value of the INTERVAL= option.

This option is ignored if the TICKVALUELIST= option is used or if the tick marks are not enabled by the DISPLAY= option.

Tip Use the MINORGRID= option to display grid lines at the minor tick values.

See “boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUEFORMAT=

specifies how to format the values for major tick marks.

format specifies a SAS date, time, or datetime format to control how the major tick values are displayed. This format must be in the same duration units as the data column(s) mapped to a time axis: TIME, DATE, or DATETIME and should be appropriate for the value of the INTERVAL= option. For example, if INTERVAL=MONTH and there are two years of data displayed on the axis, then choosing TICKVALUEFORMAT=YEAR. would result in several ticks having the same year value.

DATA specifies that the SAS date, time, or datetime format associated with the data column assigned to the axis be used to control how the major tick values are displayed.

Default The default format used by the INTERVAL= option. The default does not apply if TICKVALUELIST= is specified.

Restrictions This option applies to time axes only.

GTL currently honors most but not every SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

TICKVALUELIST=(time-constant-list | date-constant-list | datetime-constant-list | numeric-list)

specifies the tick values for a time axis as list.

Default An internal algorithm determines the tick values.

Restrictions This option applies to time axes only.

If TICKVALUEPRIORITY= is set to FALSE, then this option does not extend the data range of the axis. If the values fall within the default data range, then they are used.

Requirement The tick values must be specified as a space-separated list of values enclosed in parentheses. The items in the list must be in the same duration units as the data mapped to the axis: TIME, DATE, or DATETIME. The values can be expressed as SAS TIME, DATE, or DATETIME constants (for example, "13:23"T, "11MAY06"D, or "11MAY06:13:23"DT) or their numeric equivalents.
Interactions

The values in the list are formatted according to the format specified on the TICKVALUEFORMAT= option. If TICKVALUEFORMAT= is not used, then the values are formatted according to the column format (the default TICKVALUEFORMAT value is not applied to these values).

If this option is specified, then the INTERVAL= option is ignored.

Details

The LAYOUT OVERLAY3D statement provides XAXISOPTS=, YAXISOPTS=, and ZAXISOPTS= options that enable you to manage the axis display separately for the X, Y, and Z axes. The following example template uses the YAXISOPTS= option to manage the display of grid lines, tick marks, and tick values on a Y axis:

```
begingraph;
  layout overlay3d /
    yaxisopts=(
      griddisplay=on
      display=(ticks tickvalues)
    );
  bihistogram3dparm x=rater y=customer z=percent;
  endlayout;
endgraph;
```

Within an OVERLAY3D layout block, each plot axis is always either a linear or a time axis. The default axis-type setting is AUTO, which specifies that the axis type be automatically determined by the plot or the overlay contents. The TYPE= option enables you to explicitly specify either a LINEAR or a TIME axis type. When you override the default axis type, you must be sure to specify the correct axis type for the plot(s) that you are defining.

Each axis type has features specific to that type, and the axis options LINEAROPTS= and TIMEOPS= enable you to specify features for a linear or a time axis. You can combine one or more general axis options with the options for the specific axis type. However, specified settings are applied only to the axis type that supports them. For example, if you specify general axis options with time axis options and the generated graph produces a linear axis type, then the time axis options are ignored.

Axis Options for LAYOUT LATTICE

Axis options for the plots within a LATTICE layout.

See: “LAYOUT LATTICE Statement” on page 111

Syntax

Axis options for the plots within a LATTICE layout are specified with the following statements within a LAYOUT LATTICE statement block:

- COLUMNAXIS /external-axis-options
- ROWAXIS /external-axis-options
General Options for All Axes in a Lattice

The options that are documented in this section can be used with any of the axis types that are supported in a `LAYOUT LATTICE` statement. Subsequent sections in the chapter document the axis options that are available only for specific axis types: discrete, linear, log, or time axes.

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCRETEOPTS</td>
<td>Specifies features for a discrete axis.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Controls which axis features are displayed on the primary axis.</td>
</tr>
<tr>
<td>DISPLAYSECONDARY</td>
<td>Controls which axis features are displayed on the secondary axis.</td>
</tr>
<tr>
<td>GRIDATTRS</td>
<td>Specifies the attributes of the grid lines.</td>
</tr>
<tr>
<td>GRIDDISPLAY</td>
<td>Specifies whether axis grid lines are displayed.</td>
</tr>
<tr>
<td>LABEL</td>
<td>Specifies the axis label.</td>
</tr>
<tr>
<td>LABELATTRS</td>
<td>Specifies the color and font attributes of the axis label.</td>
</tr>
<tr>
<td>LABELFITPOLICY</td>
<td>Specifies a policy for fitting axis labels in the available space.</td>
</tr>
<tr>
<td>LABELPOSITION</td>
<td>Specifies the position of the axis label.</td>
</tr>
<tr>
<td>LABELSPLITCHAR</td>
<td>Specifies one or more characters on which the axis labels can be split, if needed.</td>
</tr>
<tr>
<td>LABELSPLITCHARDROP</td>
<td>Specifies whether the split characters should be included in the axis labels that are displayed.</td>
</tr>
<tr>
<td>LABELSPLITJUSTIFY</td>
<td>Specifies the justification of the strings that are inside the axis label blocks.</td>
</tr>
<tr>
<td>LINEAROPTS</td>
<td>Specifies features for a standard numeric interval axis.</td>
</tr>
<tr>
<td>LOGOPTS</td>
<td>Specifies features for a log axis.</td>
</tr>
<tr>
<td>NAME</td>
<td>Assigns a name to an axis for reference in other statements.</td>
</tr>
<tr>
<td>OFFSETMAX</td>
<td>Reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>Statement Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OFFSETMIN</td>
<td>Reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>REVERSE</td>
<td>Specifies whether the axis origin should be reversed.</td>
</tr>
<tr>
<td>SHORTLABEL</td>
<td>Specifies an alternate axis label to use if the default or specified axis label is too long for the axis length.</td>
</tr>
<tr>
<td>TICKVALUEATTRS</td>
<td>Specifies the color and font attributes of the axis tick values.</td>
</tr>
<tr>
<td>TICKVALUETHALIGN</td>
<td>Specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.</td>
</tr>
<tr>
<td>TICKVALUEVALIGN</td>
<td>Specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.</td>
</tr>
<tr>
<td>TIMEOPTS</td>
<td>Specifies features for a TIME axis.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Specifies the type of axis to use.</td>
</tr>
</tbody>
</table>

DISCRETEOPTS *(discrete-axis-options)*

specifies one or more options for a discrete axis. Options must be enclosed in parentheses. Each option is specified as a \texttt{name = value} pair and each pair is space separated.

Interaction

This option is ignored if the axis type is not DISCRETE.

See

“Options for Discrete Axes Only” on page 975 for the options that you can use for \texttt{discrete-axis-options}.

DISPLAY \texttt{=STANDARD | ALL | NONE | (display-options)}

controls which axis features are displayed on the primary axis.

STANDARD

specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed

ALL

specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed

NONE

specifies that no axis features are displayed

display-options

a space-separated list of one or more of the following options enclosed in parentheses:

- **LABEL** displays the axis label
- **LINE** displays the axis line
TICKS displays the tick marks

TICKVALUES displays the values that are represented by the major tick marks

Default STANDARD

Tips The default line attributes for the axis line and axis tick marks are defined in the GraphAxisLine style element.

Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.

When LINE is excluded from the DISPLAY= option, the layout wall outline or the default baseline of a bar chart, needle plot, or waterfall chart can appear to be an axis line. To suppress the wall outline, use the WALLDISPLAY= option in the layout statement. To suppress the plot baseline, use the BASELINEATTRS= option in the plot statement.

See “Details” on page 1009 for more information about the primary and secondary axes.

DISPLAYSECONDARY=NONE | ALL | STANDARD | (display-options)
controls which axis features are displayed on the secondary axis. A secondary axis is not an independent axis. Rather, it mirrors the primary axis. Thus, for this option to take effect, all plot statements in the layout must map data to the same primary axis. For example, a secondary X2 axis can be displayed on top in the layout, provided all plot statements set XAXIS=X to map data to the primary X axis (bottom). Similarly, a secondary Y2 axis can be displayed to the right in the layout, provided all plot statements set YAXIS=Y to map data to the primary Y axis (left).

NONE specifies that no axis features are displayed

STANDARD specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

ALL specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

LABEL displays the axis label
LINE displays the axis line
TICKS displays the tick marks
TICKVALUES displays the values that are represented by the major tick marks

Default NONE

Restriction If some plot statements set XAXIS=X and others set XAXIS=X2, both the X and X2 axis are primary and a secondary X axis cannot be
displayed. In that case, this option is ignored. The same applies for the Y axes.

Interactions

This option is ignored if the COLUMNAXIS statement appears within a COLUMNAXES block and COLUMN2DATARANGE=UNION or UNIONALL is in effect.

This option is ignored if the COLUMNAXIS statement appears within a COLUMN2AXES block and COLUMNNDATARANGE=UNION or UNIONALL is in effect.

Tip

Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.

See

“Details” on page 1009 for more information about the primary and secondary axes.

GRIDATTRS=

Specifies the attributes of the grid lines.

Default

The GraphGridLines style element.

Interaction

This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tip

On a log axis, this option affects the appearance of the major grid lines only. It does not affect the appearance of the minor grid lines. To control the appearance of the minor grid lines on a log axis, use the MINORGRIDATTRS= option.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

GRIDDISPLAY=

Specifies whether axis grid lines are displayed. This option enables the template to absolutely control the display of grid lines or to allow interaction with the current style to decide whether grid lines are displayed. When displayed, the grids appear in all cells.

AUTO_OFF

Specifies that grid lines are not displayed unless the GraphGridLines element in the current style contains DisplayOpts="ON."

AUTO_ON

Specifies that grid lines are displayed unless the GraphGridLines element in the current style contains DisplayOpts="OFF."

ON

Specifies that grid lines are always displayed. The current style has no override.

OFF

Specifies that grid lines are never displayed. The current style has no override.

The following table shows the end results for various combinations of the GRIDDISPLAY= option and the DisplayOpts= attribute of the GraphGridLines style element. Most supplied templates use the default setting AUTO_OFF to indicate a preference for not displaying grid lines, but allowing the style to override.
<table>
<thead>
<tr>
<th>GRIDDISPLAY= option</th>
<th>DisplayOpts= style attribute</th>
<th>Grid Lines Shown?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_OFF</td>
<td>AUTO</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>AUTO</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>ON</td>
<td>any value</td>
<td>yes</td>
</tr>
<tr>
<td>OFF</td>
<td>any value</td>
<td>no</td>
</tr>
</tbody>
</table>

Default: AUTO_OFF

Note: Supplied styles use DisplayOpts="AUTO," which means that the style has no preference about grid lines and the graphics template setting for grid lines is always used.

LABEL="string" | ("string" ..."string")

specifies the axis label. The string can be either a string literal or a dynamic. The list form implies that all included string literals or dynamics will be concatenated.

Default: The default label is derived from the primary plot in the layout. For more information, see “When Plots Share Data and a Common Axis” on page 880.

Interaction: This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the axis label.

Note: If the axis label is too long to fit along the axis, then it is truncated by default.

Tip: Use the SHORTLABEL= option to specify an alternate axis label to be used whenever truncation would normally occur.

LABELATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the axis label.

Default: The GraphLabelText style element.

Interaction: This option is ignored if the DISPLAY= option or DISPLAYSECONDARY= option does not display the axis label.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.
LABELFITPOLICY=AUTO | SPLIT | SPLITALWAYS
specifies a policy for fitting axis labels in the available space.

AUTO
uses the short label, when specified, instead of the original label. If the short label does not fit, then it is clipped. When no short label is specified, the original label is clipped.

SPLIT
splits the axis label at a split character, which is specified by the LABELSPLITCHAR= option, only when necessary in order to make the label fit the available space. The short label is not used. A split does not occur at a split character if a split is not needed at that location. If the label does not contain any of the specified split characters, then it is not split. A label that cannot be split or that does not fit the available space even after splitting might overlap the adjoining space.

SPLITALWAYS
always split the axis label at every occurrence of a split character, which is specified by the LABELSPLITCHAR= option. If the label cannot be split, then it is clipped.

Default AUTO

Interactions
This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

When the overlay layout is nested in a lattice layout, SPLIT is ignored and AUTO is used instead.

Note
When LABELPOSITION=CENTER, the available area is the full axis, including the axis offsets. When LABELPOSITION=DATACENTER, the available area is the tick display area, excluding the axis offsets.

LABELPOSITION=CENTER | DATACENTER
specifies the position of the axis label.

CENTER
centers each row or column axis label in its axis area. For the external Y and Y2 axes, the label is oriented vertically and is centered in the axis area (including the offsets) of its row. It is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis. For the external X and X2 axes, the label is centered in the axis area (including the offsets) of its column. It is positioned below the tick values for the X axis or above the axis values for the X2 axis.

DATACENTER
centers each row or column axis label in its axis tick display area. For the external Y and Y2 axes, each label is oriented vertically and is centered in the axis tick display area (excluding the offsets) of its row. The labels are positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis. For the external X and X2 axes, each label is centered in the axis tick display area (excluding the offsets) of its column. The labels are positioned below the tick values for the X axis or above the axis values for the X2 axis.

The following figure shows the CENTER and DATACENTER positions for external Y axis labels Open and Close, and external X axis label Month. An offset is applied to the maximum end of each axis for demonstration purposes.
LABELSPLITCHAR="character-list"

specifies one or more characters on which the axis labels can be split, if needed. When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the axis label. In that case, all of the specified split characters together are treated as a single split character.

When LABELFITPOLICY=SPLIT, if the axis label does not fit the available space, then it is split on a specified split character only if a split is needed at that point to make the label fit. In this case, a split might not occur on every split character. When LABELFITPOLICY=SPLITALWAYS, the axis label is split unconditionally on every occurrence of a split character. If the axis label does not contain any of the specified split characters, the label is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

```
labelsplitchar="abc"
```

The LABELSPLIT=TRUE option must also be specified.

Interactions

This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

The LABELSPLITCHARDROP= option specifies whether the split characters are included in the displayed data label or are dropped.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
Tip Use the LABELSPLITJUSTIFY= option to specify the justification of the strings in the axis label block.

LABELSPLITCHARDROP=TRUE | FALSE
specifies whether the split characters are included in the displayed axis labels.

TRUE
drops the split characters from the axis label display.

FALSE
includes the split characters in the axis label display. When LABELSPLIT=TRUE and LABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

Default TRUE. The split characters are dropped from the axis label.

Requirement The LABELSPLIT=TRUE option must also be specified.

Interactions This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

See “boolean” on page 1339 for other Boolean values that you can use.

LABELSPLITJUSTIFY=justification
specifies the justification of the strings that are inside the axis label blocks.

justification

CENTER | LEFT | RIGHT
specifies the justification for the X or X2 axis label.

CENTER | TOP | BOTTOM
specifies the justification for the Y or Y2 axis label.

Default CENTER

Requirement LABELSPLIT=TRUE option must also be specified.

Interaction This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

LINEAROPTS=(linear-axis-options)
specifies one or more options for a numeric interval axis. Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.

Interaction This option is ignored if the axis type is not LINEAR.

See “Options for Linear Axes Only” on page 983 for the options that you can use for linear-axis-options.

LOGOPTS=(log-axis-options)
specifies one or more options for a log axis. Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.
Interaction This option is ignored if the axis type is not LOG.

See “Options for Log Axes Only” on page 993 for the options that you can use for log-axis-options.

NAME="string"
assigns a name to an axis for reference in other statements. Currently, it is used only in an AXISLEGEND statement.

Interactions This option is ignored unless the axis is discrete. The axis can be discrete by default, or explicitly set to discrete with a TYPE=DISCRETE setting.

For this option to take effect, an axis legend must be enabled. To enable an axis legend, the DISCRETEOPTS= option must set the TICKVALUEFITPOLICY to either EXTRACT or EXTRACTALWAYS. In addition, an AXISLEGEND statement must be specified to generate the axis legend.

OFFSETMAX=AUTO | AUTOCOMPRESS | number
reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.

AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

AUTOCOMPRESS
applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

number
specifies the offset as a decimal proportion of the full axis length.

Default AUTO

Range 0–1. The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.

See “Adjusting Axis Offsets” on page 886

OFFSETMIN=AUTO | AUTOCOMPRESS | number
reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.

AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

AUTOCOMPRESS
applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

number
specifies the offset as a decimal proportion of the full axis length.

Default AUTO
Range 0–1. The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.

See “Adjusting Axis Offsets” on page 886.

REVERSE=TRUE | FALSE
specifies whether tick values should appear in the reverse order.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

SHORTLABEL="string"
specifies an alternate axis label to display when the default label or the label specified by the LABEL= option is too long to fit the available space.

Interaction This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the axis label.

Note If the specified label is itself too long for the axis, it is truncated in the display.

TICKVALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the axis tick values.

Default The GraphValueText style element.

Interaction This option is ignored if the DISPLAY= or DISPLAYSECONDARY= option does not display tick values.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

TICKVALUEHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.

<table>
<thead>
<tr>
<th>LEFT</th>
<th>CENTER</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebooks</td>
<td>Notebooks</td>
<td>Notebooks</td>
</tr>
<tr>
<td>Ink</td>
<td>Ink</td>
<td>Ink</td>
</tr>
<tr>
<td>Printer paper</td>
<td>Printer paper</td>
<td>Printer paper</td>
</tr>
<tr>
<td>Staples</td>
<td>Staples</td>
<td>Staples</td>
</tr>
<tr>
<td>Pens</td>
<td>Pens</td>
<td>Pens</td>
</tr>
</tbody>
</table>

Defaults RIGHT for a Y axis

LEFT for a Y2 axis

Restriction This option is valid for the Y and Y2 axes only.
TICKVALUEALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.

Defaults
- TOP for an X axis
- BOTTOM for an X2 axis

Restriction
This option is valid for the X and X2 axes only.

TIMEOPTS=(time-axis-options)
specifies one or more options for a time axis.

Requirements
Columns associated with a time axis must be in SAS time, SAS date, or SAS datetime units and have an associated SAS time, date, or datetime format.

Interaction
This option is ignored if the axis type is not TIME.

See
“Options for Time Axes Only” on page 1001 for the options that you can use for time-axis-options.

TYPE=AUTO | DISCRETE | LINEAR | TIME | LOG
specifies the type of axis to use.

AUTO
requests that the axis type be automatically determined, based on the overlay contents.

DISCRETE
uses a DISCRETE axis if possible. The data for discrete axes can be character or numeric. You can add a DISCRETEOPTS= option list to customize this axis type.

LINEAR
uses a LINEAR axis if possible. You can add a LINEAROPTS= option list to customize this axis type.
TIME
uses a TIME axis if possible. Data for this axis must be SAS time, SAS date, or SAS datetime values. You can add a TIMEOPTS= option list to customize this axis type.

LOG
uses a LOG axis if possible. You can add a LOGOPTS= option list to customize this axis type.

Interaction
If a log axis is requested and the axis data contains 0 or negative values, the axis reverts to a linear axis. This outcome can occur for the response axis of a bar chart, line chart, needle plot, or waterfall chart when a baseline intercept of 0 or less is specified. It can also occur for the response axis of a waterfall chart when an initial bar value of 0 or less is specified. To get a log response axis in those cases, set the baseline intercept or initial bar value to a positive value.

Default
AUTO

Interactions
If this option is set to anything other than AUTO, then plots within the layout are dropped from the display if their data types or data ranges do not match the axis type requirements. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

After the axis type is determined (whether you set a specific type or AUTO is in effect), you can use only options that are supported by that axis type. For example, if TYPE=TIME, then only the general OVERLAY axis options and those available on TIMEOPTS= are supported.

Options for Discrete Axes Only
The options that are documented in this section can be used with the DISCRETEOPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Discrete Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>TICKTYPE</td>
<td>Specifies the position of the axis tick mark.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision on an axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the text that is to be displayed for the tick values that are defined in the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
</tbody>
</table>
Discrete Axis Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKVALUESPLITCHAR</td>
<td>Specifies a list of characters on which the tick values can be split, if needed.</td>
</tr>
<tr>
<td>TICKVALUESPLITCHARDROP</td>
<td>Specifies whether the split characters are included in the displayed tick values.</td>
</tr>
<tr>
<td>TICKVALUESPLITJUSTIFY</td>
<td>Specifies justification of the strings that are inside the tick value block.</td>
</tr>
</tbody>
</table>

TICKDISPLAYLIST=(string-list)

Specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the TICKVALUELIST= option. The strings map one-to-one positionally with the values that are listed in the TICKVALUELIST= option.

- **Default**: Determined by the system or by the TICKVALUELIST= option.
- **Requirements**: The list of values must be enclosed in parentheses.
- **Tip**: This option should be used with the TICKVALUELIST= option. The number of items in the list for this option should equal the number of items in the list for the TICKVALUELIST= option.
- **Example**: The following example specifies the axis tick values 10, 20, 30, and 40, and the tick display values A, B, C, and D:
  ```
  tickvaluelist=("10" "20" "30" "40");
  tickdisplaylist=("A" "B" "C" "D");
  ```

TICKTYPE=MIDPOINT | INBETWEEN

Specifies the position of the axis tick marks.

- **MIDPOINT**: places the tick marks at the midpoint value location.
- **INBETWEEN**: places the tick marks half way between adjacent midpoint locations.

- **Default**: MIDPOINT
- **Restriction**: This option applies to discrete axes only.
- **Note**: Starting with the second maintenance release of SAS 9.4, when TICKTYPE=INBETWEEN, the outermost tick marks and grid lines at each end of the axis are not drawn.

TICKVALUEFITPOLICY=policy

Specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:
EXTRACT displays consecutive integers along the axis instead of the actual tick values in order to represent those tick values. In most cases, this policy is implemented if the system estimates that a collision might occur. If no collision occurs, then the actual tick values are displayed on the axis in the normal manner.

Requirement: The EXTRACT policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in SAS Graph Template Language: User's Guide.

EXTRACTALWAYS
same as EXTRACT, except that the extraction is implemented regardless of whether collision occurs.

Requirement: The EXTRACTALWAYS policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in SAS Graph Template Language: User's Guide.

NONE makes no attempt to avoid collisions between tick values. Tick values are displayed even when they collide.

SPLIT splits the tick value at a split character, which is specified by the TICKVALUESPLITCHAR= option, only when necessary in order to make the value fit the available space. A split does not occur at a split character if a split is not needed at that location. If the value does not contain any of the specified split characters, then the value is not split. Values that are not split or that do not fit the available space even after splitting might overlap the adjoining space.

See TICKVALUESPLITCHAR=

SPLITALWAYS
always splits the axis tick value at every occurrence of a split character that is specified by the TICKVALUESPLITCHAR= option.

See TICKVALUESPLITCHAR=

SPLITALWAYSTHIN
same as SPLITALWAYS, except that thinning is performed when long words do not fit the available space.

SPLITTHIN
same as SPLIT, except that thinning is performed when long words do not fit the available space.

THIN eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:

EXTRACT display consecutive integers along the axis instead of the actual tick values to represent those tick values. In most cases, this policy is implemented if the system estimates that a collision might occur. If no collision occurs, then the actual tick values are displayed on the axis in the normal manner.
The EXTRACT policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in SAS Graph Template Language: User's Guide.

EXTRACTALWAYS
same as EXTRACT, except that the extraction is implemented regardless of whether collision occurs.

NONE
does not attempt to fit tick values that collide.

ROTATE
rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYS
rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYSDROP
attempts the ROTATEALWAYS policy, and then drops the tick values if collisions still occur.

ROTATETHIN
attempts the ROTATE policy, and then the THIN policy.

SPLIT
splits the tick value at a split character, which is specified by the TICKVALUESPLITCHAR= option, only when necessary in order to make the value fit the available space. A split does not occur at a split character if a split is not needed at that location. If the value does not contain any of the specified split characters, then the value is not split. Values that are not split or that do not fit the available space even after splitting might overlap the adjoining space.

See TICKVALUESPLITCHAR=

SPLITALWAYS
always splits the axis tick value at every occurrence of a split character that is specified by the TICKVALUESPLITCHAR= option.

See TICKVALUESPLITCHAR=

STAGGER
alternates the tick values between two rows.

STAGGERROTATE
attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN
attempts the STAGGER policy, and then the THIN policy.
STAGGERTRUNCATE attempts the STAGGER policy, and then the TRUNCATE policy.

THIN eliminates alternate tick values.

TRUNCATE shortens the tick values when they exceed a certain number of characters.

TRUNCATEROTATE attempts the TRUNCATE policy, and then the ROTATE policy.

TRUNCATESTAGGER attempts the TRUNCATE policy, and then the STAGGER policy.

TRUNCATETHIN attempts the TRUNCATE policy, and then the THIN policy.

Defaults

<table>
<thead>
<tr>
<th>settings</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATE</td>
<td>for the X and X2 axes</td>
</tr>
<tr>
<td>THIN</td>
<td>for the Y and Y2 axes</td>
</tr>
</tbody>
</table>

Note A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT= format

specifies how to format the values for major tick marks.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Restrictions This option applies only to discrete axes.

Only character formats are supported.

Interaction This option is ignored when the axis tick values are extracted to an axis legend. See TICKVALUEFITPOLICY=EXTRACT | EXTRACTALWAYS on page 976.

Tip Use this option when you want to duplicate tick values on an axis.

TICKVALUELIST=(string-list)

specifies the list of tick values that are to be displayed on the axis.

string-list a space-separated list of values, enclosed in parentheses. You must enclose each value in the list in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Requirements The list of values must be enclosed in parentheses.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes If the string list contains duplicate values, then the first occurrence of the duplicated value in the list is honored and the remaining instances are ignored.
When the values specified in the list are compared with the actual data values, leading blanks are honored and trailing blanks are ignored.

Tips

You can use this option to subset the axis values or to display the values in a specific order.

You can use this option to display values on the axis that are not contained in the data.

Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```
tickvaluelist=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```
tickvaluelist=("10" "20" "30" "40")
```

TICKVALUE ROTATION=DIAGONAL | VERTICAL

specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL

rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL

rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default

DIAGONAL

Restriction

This option is valid for COLUMNAXIS statements only.

Interaction

The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

TICKVALUESPLITCHAR="character-list"

specifies a list of characters on which the tick values can be split, if needed. When multiple characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the tick value. In that case, all of the specified split characters together are treated as a single split character.

When a tick value collision is detected, the tick value is split at each occurrence of any of the characters in the character list or all. If all of the split characters occur consecutively in the tick value, then they are treated as a single split character. If the tick value does not contain any of the specified characters, then the value is not split.

```
"character-list"
```

one or more characters with no delimiter between each character.

Default

A blank space

Requirements

The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no delimiters. For example, to specify the characters a, b, and c, use the following option:
tickvaluesplitchar="abc"

Interactions

This option is ignored unless option **TICKVALUEFITPOLICY=** is set to SPLIT, SPLITALWAYS, SPLITTHIN, or SPLITALWAYSTHIN.

The **TICKVALUEFITPOLICY=** option sets the policy that is used to manage the split behavior of the tick values.

The **TICKVALUESPLITCHARDROP=** option specifies whether the split characters are displayed or dropped from the display.

Notes

When multiple characters are specified, the order of characters in the list is not significant.

The split characters are case sensitive.

Tips

Use the **TICKVALUESPLITJUSTIFY=** option to specify the justification of the strings in the tick value block.

For the X and X2 axis tick values, use the **TICKVALUEVALIGN=** option to specify the vertical alignment of the tick values.

For the Y and Y2 axis tick values, use the **TICKVALUEHALIGN=** option to specify the horizontal alignment of the tick values.

Example

The following example specifies a blank space, a comma, and an underscore as split characters:

```
tickvaluesplitchar=" ,_"
```

TICKVALUESPLITCHARDROP= **TRUE** | **FALSE**

specifies whether the split characters should be included in the displayed tick values. The split characters are specified by the **TICKVALUESPLITCHAR=** option.

TRUE

drops the split characters from the tick value display. The following figure shows an example in which **TICKVALUESPLITCHARDROP=** **TRUE** and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLITALWAYS policy.

```
+-------------------------------------+
| Product Group A | Product Group B | Product Group C | Product Group D | Product Group E |
+-------------------------------------+
```

Notice that the asterisk delimiter is not displayed.

FALSE

includes the split characters in the tick value display. The fit policy determines how the characters are displayed. If the display policy is SPLIT or SPLITTHIN and **TICKVALUESPLITCHARDROP=** **FALSE**, then each tick value is split at a split character only where a split is necessary in order to make the value fit the available space. A split might not occur at every split character in the tick value. At each split point, the split character remains as the last character in the current line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until the entire data tick value is displayed. The following figure shows an example in which **TICKVALUESPLITCHARDROP=** **FALSE** and
three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLIT policy.

\[
\begin{array}{cccccc}
\text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* \\
\text{Group}^*A & \text{Group}^*B & \text{Group}^*C & \text{Group}^*D & \text{Group}^*E \\
\end{array}
\]

Notice that a split occurs on the first asterisk and not at the second. In this case, a split is not needed at the second asterisk.

If the fit policy is SPLITALWAYS or SPLITALWAYSTHIN, and TICKVALUESPLITCHARDROP=FALSE, then each tick value is split at every instance of a split character in the value regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line. The following figure shows an example in which TICKVALUESPLITCHARDROP=FALSE and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLITALWAYS policy.

\[
\begin{array}{cccccc}
\text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* \\
\text{Group}^*A & \text{Group}^*B & \text{Group}^*C & \text{Group}^*D & \text{Group}^*E \\
\end{array}
\]

Notice that a split occurs after each asterisk and each asterisk appears at the end of the line. In this case, three lines are displayed.

Default **TRUE**

Interactions The **TICKVALUESPLITCHAR=** option specifies the split character or characters.

This option is ignored unless option **TICKVALUEFITPOLICY=** is set to SPLITALWAYS, SPLITCHAR, or SPLITTHIN.

See **"boolean " on page 1339** for other Boolean values that you can use.

TICKVALUESPLITJUSTIFY= specifies justification of the strings that are inside the tick value block. The justification is relative to an individual tick value’s display area and does not affect the display of tick values that are not split.

CENTER

\[
\begin{array}{cccccc}
\text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* \\
\text{Group}^*A & \text{Group}^*B & \text{Group}^*C & \text{Group}^*D & \text{Group}^*E \\
\end{array}
\]

LEFT

\[
\begin{array}{cccccc}
\text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* \\
\text{Group}^*A & \text{Group}^*B & \text{Group}^*C & \text{Group}^*D & \text{Group}^*E \\
\end{array}
\]

RIGHT

\[
\begin{array}{cccccc}
\text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* & \text{Product}^* \\
\text{Group}^*A & \text{Group}^*B & \text{Group}^*C & \text{Group}^*D & \text{Group}^*E \\
\end{array}
\]
Defaults

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>CENTER for an X or X2 axis</td>
</tr>
<tr>
<td>RIGHT</td>
<td>RIGHT for a Y axis</td>
</tr>
<tr>
<td>LEFT</td>
<td>LEFT for a Y2 axis</td>
</tr>
</tbody>
</table>

Interaction

This option is ignored unless option `TICKVALUEFITPOLICY=` is set to `SPLIT`, `SPLITALWAYS`, `SPLITTHIN`, or `SPLITALWAYSTHIN`.

Options for Linear Axes Only

The options that are documented in this section can be used with the `LINEAROPTS=` axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Linear Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>Specifies that evenly spaced integer values are used for tick marks.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether the minor tick marks are displayed on the axis.</td>
</tr>
<tr>
<td>THRESHOLDMAX</td>
<td>Specifies a bias for including one more tick mark at the maximum end of the axis.</td>
</tr>
<tr>
<td>THRESHOLDDMIN</td>
<td>Specifies a bias for including one more tick mark at the minimum end of the axis.</td>
</tr>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined in the <code>TICKVALUELIST=</code> option.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision on an X or X2 axis. This option is not available in the ROWAXIS statement.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the order of the tick values for a linear axis as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether an axis tick specification can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
</tbody>
</table>
Linear Axis Option

<table>
<thead>
<tr>
<th>Linear Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKVALUESEQUENCE</td>
<td>Specifies the tick values for a linear axis by start, end, and increment.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

INTEGER=TRUE | FALSE

Specifies that evenly spaced integer values are used for tick marks.

- **Default**: FALSE
- **Interactions**
 - This option is overridden by the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option.
 - This option overrides the `MAXDECIMALS=` and `PREFERREDDECIMALS=` suboptions of the `TICKVALUEFORMAT=` option.
 - `INTEGER=TRUE` is ignored for the X or X2 axis when a histogram plot is the primary plot and `BINAXIS=TRUE` is specified in the `HISTOGRAM` or `HISTOGRAMPARM` statement.

- **See**
 - “boolean” on page 1339 for other Boolean values that you can use.

MINORGRID=TRUE | FALSE

Specifies whether grid lines are displayed at the minor tick marks.

- **TRUE**
 - Grid lines are displayed at minor tick marks.
 - **Defaults**: FALSE in the first maintenance release of SAS 9.4 and earlier releases.
 - **Interaction**: This option is ignored if the `GRIDDISPLAY=` option does not display the grid lines.

- **FALSE**
 - No grid lines are displayed at minor tick marks.

- **Defaults**: FALSE in the first maintenance release of SAS 9.4 and earlier releases.

- **Interaction**: This option is ignored if the `GRIDDISPLAY=` option does not display the grid lines.
The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=\(\text{style-element \mid style-element (line-options) \mid (line-options)}\)

specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a linear axis. (See the example.)

![Minor Grid Lines Example](image)

Defaults

The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction

This option is ignored when MINORTICKS=FALSE.

Note

When **style-element** is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

Use the GRIDATTRS= option to control the appearance of the major grid lines.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example

Here is an example that specifies light blue, dotted lines for the minor grid.

\[
\text{minorgridattrs=(color=lightblue pattern=dot);}\
\]

MINORTICKCOUNT=\(\text{positive-integer}\)

specifies the number of minor ticks that are displayed on the axis.

Defaults

Four ticks with five intervals in the first maintenance release of SAS 9.4 and earlier releases.

One tick with two intervals starting with the second maintenance release of SAS 9.4.
Interactions

The `DISPLAY=` or `DISPLAYSECONDARY=` option specification must include `TICKS` for this option to have any effect.

The `MINORTICKS=` option must specify `TRUE` for this option to have any effect.

Tip

To display n intervals between major ticks, use `MINORTICKCOUNT=$n-1`.

MINORTICKS=TRUE | FALSE

specifies whether minor ticks are displayed. When `MINORTICKS=TRUE`, the minor tick marks are displayed on the axis as shown in the following figure.

```
TRUE
$0 \quad \$50 \quad \$100 \quad \$150 \quad \$200$

FALSE
$0 \quad \$50 \quad \$100 \quad \$150 \quad \$200$
```

Default FALSE

Tip

Use the `MINORGRID=` option to display grid lines at the minor tick values.

See

“boolean” on page 1339 for other Boolean values that you can use.

THRESHOLDMAX=number

specifies a bias for including one more tick mark at the maximum end of the axis.

Default 0.30

Range 0–1

Restriction This option applies to linear axes only.

Interaction This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is used.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` and `THRESHOLDMAX=` options to 0.

See

“Adjusting Axis Thresholds” on page 885

THRESHOLDMIN=number

specifies a bias for including one more tick mark at the minimum end of the axis.

Default 0.30
Range

0–1

Restriction

This option applies to linear axes only.

Interaction

This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is used.

Tips

If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` and `THRESHOLDMAX=` options to 0.

See

“Adjusting Axis Thresholds” on page 885

TICKDISPLAYLIST=(string-list)

specifies the text that is displayed for the tick values that are defined in the `TICKVALUELIST=` option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the `TICKVALUELIST=` option. The strings map one-to-one positionally with the values that are listed in the `TICKVALUELIST=` option.

Default

The display of tick values is controlled by the `TICKVALUEFORMAT=` option.

Requirements

The list of values must be enclosed in parentheses.

Each value (character and numeric) must be enclosed in quotation marks and separated from adjacent values by a blank space.

Interaction

When this option is specified, the `TICKVALUEFORMAT=` option is ignored.

Tip

This option should be used with the `TICKVALUELIST=` option. The number of items in the list for this option should equal the number of items in the list for the `TICKVALUELIST=` option.

TICKVALUEFITPOLICY=policy

specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:

NONE

makes no attempt to avoid collisions between tick values. Tick values are displayed even when they collide.

THIN

eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:
ROTATE
rotates the tick values if a collision occurs. The `TICKVALUEROTATION=` option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYS
rotates the tick values regardless of whether a collision occurs. The `TICKVALUEROTATION=` option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATETHIN
attempts the ROTATE policy, and then the THIN policy.

STAGGER
alternates the tick values between two rows.

STAGGERROTATE
attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN
attempts the STAGGER policy, and then the THIN policy.

THIN
eliminates alternate tick values.

Default THIN

Note A note is written to the SAS log when tick value thinning occurs.

`TICKVALUEFORMAT=(format-options) | DATA | format`
specifies how to format the values for major tick marks.

(format-options)
specifies one or more formatting options for major tick values. Together, these options provide parameters for determining an optimal format (\texttt{w.d}, \texttt{Ew.}, \texttt{BESTw.}) for displaying major tick values.

`MAXWIDTH=integer`
specifies the maximum width for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 8

`MAXDECIMALS=integer`
specifies the maximum number of decimals for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 6

Note The MAXWIDTH= option value should be greater than the MAXDECIMALS= option value.

`PREFERREDDECIMALS=integer`
specifies the number of decimal places that you want to display for most values. The actual number might vary based on other constraints.

Default 2
EXTRACTSCALE=TRUE | FALSE
specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width. The scale can be a named scale or a scientific-notation scale. The EXTRACTSCALETYPE= option specifies the scale type. The scale that is used is appended to the axis label, as shown in the following example.

Total Sales (millions)

For long axis labels, if the scale does not fit the available space, then the label is truncated, and the scale is appended to the truncated label. Ellipses indicate that the label was truncated, as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases in which the scale does not fit even with truncation, the entire axis is dropped.

Default FALSE

Restriction The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale for all locales.

Interactions The scale type is determined by the EXTRACTSCALETYPE= option.

If the axis label is not displayed, then the EXTRACTSCALE=TRUE option is ignored.

Note When EXTRACTSCALE=TRUE and a scale is extracted, the tick values are formatted to provide the best fit on the axis. In that case, the tick value format might differ from the data format even when a named format is applied to the data values.

See “boolean” on page 1339 for other Boolean values that you can use.

EXTRACTSCALETYPE=DEFAULT | SCIENTIFIC
specifies whether to extract a named scale or a scientific-notation scale.

DEFAULT
extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as 10^n) for values over 999 trillion. For large tick values, the scale factor is set to ensure that the absolute value of the largest value is greater than 1. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of 1/10 (10^{-n}) for values less than 1 trillionth.

SCIENTIFIC
extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as 10^n for values greater than 1, or a multiple of 1/10 expressed as 10^{-n} for values less than 1.

Default DEFAULT

Restriction The scale is derived from the English locale for all locales.
DATA
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format specifies a format to apply to the major tick values.

Restriction GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Note If you specify a format that significantly reduces precision, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Default (MAXWIDTH=8, MAXDECIMALS=6, PREFERREDDECIMALS=2, EXTRACTSCALE=FALSE, EXTRACTSCALETYPE=DEFAULT)

Interaction This option is ignored when the TICKDISPLAYLIST= option is specified.

TICKVALUELIST= *(numeric-list)*
specifies the tick values for a linear axis as a list.

Default An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the VIEWMIN= and VIEWMAX= options. By default, when this option is used, the only tick values that appear are the tick values in *numeric-list* that fall within the explicit data range (set by VIEWMIN= and VIEWMAX=) or the implicit data range (set by the actual data minimum and data maximum).

Restriction This option applies to linear axes only.

Requirement The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

Interactions This option overrides the INTEGER= option.

This option is ignored if the TICKVALUESSEQUENCE= option is specified, or if the DISPLAY= option or the DISPLAYSECONDARY= option does not display tick values.

The VIEWMIN= and VIEWMAX= options alter the axis data range. If the VIEWMIN= option is set to the minimum tick list value and the VIEWMAX= option is set to the maximum tick list value, then all ticks in the tick list are displayed. This might result in some data not being displayed. For example, data might not be displayed when the VIEWMIN= value is greater than the actual data minimum, or when the VIEWMAX= value is less than actual data maximum.

If TICKVALUEPRIORITY= TRUE, then the VIEWMIN= and VIEWMAX= options are ignored if they are fully enclosed by the *numeric-list*. The tick *numeric-list* can extend the implicit data range of the axis, but cannot reduce it.
Tip
The values in the list are formatted according to the setting for the `TICKVALUEFORMAT=` option.

TICKVALUEPRIORITY=TRUE | FALSE
specifies whether an axis tick specification (TICKVALUELIST= or TICKVALUESEQUENCE=) can extend the axis data range.

TRUE
extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by either the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE
displays only the tick values that are specified by the `TICKVALUELIST=` option that fall within the explicit data range set by the `VIEWMIN=` and `VIEWMAX=` options or by the implicit data range set by the actual data minimum and data maximum.

Default
FALSE

Restriction
This option applies to linear axes only.

Interactions
When this option is set to TRUE, the `VIEWMIN=` and `VIEWMAX=` options are ignored.

This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is not specified.

This option is ignored if the `DISPLAY=` option or the `DISPLAYSECONDARY=` option does not display the tick values.

Note
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See
“boolean” on page 1339 for other Boolean values that you can use.

TICKVALUEROTATION=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL
rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL
rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default
DIAGONAL

Restriction
This option is valid for COLUMNAXIS statements only.

Interaction
The `TICKVALUEFITPOLICY=` option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

TICKVALUESEQUENCE=(sequence-options)
specifies the tick values by start, end, and increment.
(sequence-options)
A space-separated list of the following name-value-pair options that control major
tick values. You must provide all three options.

START=number
specifies the value for the first tick mark.

END=number
specifies the value for the last tick mark.

INCREMENT=number
specifies the increment for intermediate tick marks between the first and last
tick marks. The END value always controls the last tick mark. The interval
between the last tick mark and the previous tick mark might not necessarily
be the INCREMENT value.

Default
An internal algorithm determines the tick marks, based on the actual
axis data range or the data range established by the VIEWMIN= and
VIEWMAX= options. By default, when this option is used, the only
tick values that appear are those that fall within the explicit data range
(set by VIEWMIN= and VIEWMAX=) or the implicit data range (set
by the actual data minimum and data maximum).

Interactions
This option overrides the INTEGER= option.

The VIEWMIN= and VIEWMAX= options alter the axis data range.
If the VIEWMIN= option is set to the START= option value and the
VIEWMAX= option is set to the END= option value, then all ticks in
the tick sequence are displayed.

If TICKVALUEPRIORITY= TRUE, then the tick sequence might
extend the explicit data range of the axis, but never reduce it.

This option is ignored if the DISPLAY= option or the
DISPLAYSECONDARY= option does not display tick marks.

Tip
The values in the sequence are formatted according to the setting for
the TICKVALUEFORMAT= option.

See
TICKVALUETYPE= option as an alternative for customizing tick
marks.

VIEWMAX=number
specifies the maximum data value to include in the display. The value might be
adjusted by the threshold calculation.

Default
The maximum value in the data for the specified axis.

Interactions
This option does not determine the maximum axis tick value that is
displayed. The THRESHOLDMAX= value is used to determine the
maximum tick value.

This option is ignored when TICKVALUEPRIORITY= TRUE.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the
original data or any calculations on it.

The maximum axis tick value might differ from the VIEWMAX=
value. The VIEWMIN= and VIEWMAX= values, and additional
factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip

To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.

See

“Adjusting the Axis View” on page 884

VIEWMIN=number

specifies the minimum data value to include in the display. The value might be adjusted by the threshold calculation.

Default

The minimum value in the data for the specified axis.

Interactions

This option does not determine the minimum axis tick value that is displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

Notes

This option is ignored when TICKVALUEPRIORITY= TRUE.

Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip

To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.

See

“Adjusting the Axis View” on page 884

Options for Log Axes Only

The options that are described in this section can be used with the LOGOPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Log Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>Specifies the base of the logarithmic scale for the axis values.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick marks.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>TICKINTERVALSTYLE</td>
<td>Specifies how to scale and format the values for major tick marks.</td>
</tr>
</tbody>
</table>

Axis Options for LAYOUT LATTICE 993
<table>
<thead>
<tr>
<th>Log Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKVALUEFORMAT=</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the tick values for a log axis as a space-separated list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether the TICKVALUELIST specification can extend the axis data range.</td>
</tr>
<tr>
<td>VALUESTYPE</td>
<td>Specifies the scale that the system uses when interpreting the TICKVALUELIST=, VIEWMAX=, and VIEWMIN= option values.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
<tr>
<td>BASE=10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Default: 10</td>
</tr>
<tr>
<td></td>
<td>Restriction: This option applies to log axes only.</td>
</tr>
<tr>
<td>MINORGRID=TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>Defaults: FALSE in the first maintenance release of SAS 9.4 and earlier releases.</td>
</tr>
<tr>
<td></td>
<td>Interaction: This option is ignored if the GRIDDISPLAY= option does not display the grid lines.</td>
</tr>
<tr>
<td></td>
<td>Tips: The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.</td>
</tr>
</tbody>
</table>
Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a base-10 log axis. (See the example.)

Defaults
The GraphGridLines style element is used starting with SAS 9.4.
The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction
This option is ignored when MINORTICKS=FALSE.

Note When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip Use the GRIDATTRS= option to control the appearance of the major grid lines.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example Here is an example that specifies light blue, dotted lines for the minor grid.
minorgridattrs=(color=lightblue pattern=dot);

MINORTICKCOUNT=positive-integer
specifies the number of minor ticks that are displayed on the axis.

Default Eight ticks with nine intervals (BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT).

Restriction Minor ticks can be displayed only when BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.

Interactions The DISPLAY= or DISPLAYSECONDARY= option specification must include TICKS for this option to have any effect.
The MINORTICKS= option must specify TRUE for this option to have any effect.
Tip To display n intervals between major ticks, use
MINORTICKCOUNT=$n-1$.

MINORTICKS=TRUE | FALSE
specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.

![Minor Ticks Figure]

Default FALSE

Restriction Minor ticks can be displayed only when BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.

Tip Use the MINORGRID= option to display grid lines at the minor tick values.

See “boolean” on page 1339 for other Boolean values that you can use.

TICKINTERVALSTYLE=AUTO | LOGEXPAND | LOGEXPONENT | LINEAR
specifies how to scale and format the values for major tick marks.

AUTO
selects a LOGEXPAND, LOGEXPONENT, or LINEAR representation automatically based on the range of the data. When the data range is small (within an order of magnitude), a LINEAR representation is typically used. Data ranges that encompass several orders of magnitude typically use the LOGEXPAND or LOGEXPONENT representation.

LOGEXPAND
places the major tick marks at uniform intervals at integer powers of the base. The tick values are expanded as follows:

<table>
<thead>
<tr>
<th>Base=10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base=2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>1024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base=E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e^0</td>
<td>e^1</td>
</tr>
<tr>
<td></td>
<td>e^2</td>
</tr>
<tr>
<td></td>
<td>e^3</td>
</tr>
<tr>
<td></td>
<td>e^4</td>
</tr>
<tr>
<td></td>
<td>e^5</td>
</tr>
<tr>
<td></td>
<td>e^6</td>
</tr>
<tr>
<td></td>
<td>e^7</td>
</tr>
</tbody>
</table>

LOGEXPONENT
places the major tick marks at uniform intervals at integer powers of the base. The tick values are only the integer exponents for all bases.

LINEAR
places the major tick marks at non-uniform intervals that cover the range of the data.
Default

AUTO

Restrictions

This option applies to log axes only.

For LOGEXPONENT, formats on data columns contributing to the axis are ignored. For LOGEXPAND, formats on data columns contributing to the axis are ignored, although any "named format" on the column is retained. For LINEAR, ticks values are automatically formatted when the column format is not assigned or one of w.d, Ew., or BESTw. Other formats (SAS defined or user-defined) are used if specified.

GTL currently honors most but not every SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Note

When BASE=10 and LOGEXPAND or LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.

Tip

If you use TICKINTERVALSTYLE=LOGEXPONENT, then you might want to include information in the axis label about which base is used.

TICKVALUEFORMAT=

DATA | format

specifies how to format the values for major tick marks.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format

specifies a format to apply to the major tick values.

Restriction

GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Restriction

This option applies to log axes only.

Interactions

This option is ignored when

TICKINTERVALSTYLE=LOGEXPONENT.

When TICKINTERVALSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When TICKINTERVALSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

See

BASE=

TICKINTERVALSTYLE=
TICKVALUELIST=(numeric-list)

specifies the tick values for a linear axis as a list.

Default

Only the tick values specified in the list that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum are displayed. An internal algorithm determines the tick marks.

Requirements

The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

The values that you specify must be appropriate for the VALUESTYPE= specification. Otherwise, unexpected results might occur. If VALUESTYPE=EXPANDED is in effect (default), specify increments of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If VALUESTYPE=EXPONENT is in effect, specify integer increments of the log base power exponent such as 1, 2, 3, and so on.

Interactions

The VALUESTYPE= option determines how the values in the list are interpreted.

The VIEWMIN= and VIEWMAX= options alter the axis data range. If the VIEWMIN= option is set to the minimum tick list value and the VIEWMAX= option is set to the maximum tick list value, then all ticks in the tick list are displayed. This might result in some data not being displayed. For example, data might not be displayed when the VIEWMIN= value is greater than the actual data minimum, or when the VIEWMAX= value is less than actual data maximum.

If the VIEWMIN= value is greater than the actual data minimum or the VIEWMAX= value is less than actual data maximum, some data might not be displayed.

This option is ignored if the DISPLAY= or the DISPLAYSECONDARY= option does not display the tick values.

See

TICKINTERVALSTYLE= for specifying the scale and format of the major tick values

TICKVALUEPRIORITY= for controlling the behavior of the TICKVALUELIST= option

BASE= for specifying the log base

TICKVALUEPRIORITY=TRUE | FALSE

specifies whether the TICKVALUELIST= specification can extend the axis data range.

TRUE

extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by the TICKVALUELIST= option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.
FALSE

displays only the tick values that are specified by the TICKVALUELIST= option that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum.

Default:
FALSE

Interactions:
When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

This option is ignored if the TICKVALUELIST= option is not specified.

Note:
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See:
“boolean” on page 1339 for other Boolean values that you can use.

VALUETYPE=EXPANDED | EXPONENT

specifies the scale that the system uses when interpreting the TICKVALUELIST=, VIEWMAX=, and VIEWMIN= option values. Use this option to choose your preferred way of specifying log-axis values.

EXPANDED values are interpreted as powers of the base such as 0.1, 1, 10, 100, and so on, for base 10, for example.

EXPONENT values are interpreted as integer exponents of the base such as 1, 2, 3, and so on, for base 10, base 2, and base E.

Default:
EXPANDED

Note:
This option does not change the style of the tick values that are displayed on the axis. It changes only how the VIEWMIN=, VIEWMAX=, and TICKVALUELIST= option values are interpreted by the system.

Tip:
This option is particularly useful when BASE=E.

Examples:
The following example specifies VIEWMIN= and VIEWMAX= as exponent values instead of as expanded values on an expanded Base 10 log axis. This results in X-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
xaxisopts=(type=log
    logopts=(base=10
        tickintervalstyle=logexpand
        valuestype=exponent
        viewmin=1 viewmax=5));
```

The following example specifies TICKVALUELIST= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxisopts=(type=log
    logopts=(base=10
        tickintervalstyle=logexponent
```
VIEWMAX=number
specifies the maximum data value to include in the display.

Default
The maximum value in the data for the specified axis.

Requirement
The value that you specify must be appropriate for the VALUETYPE= specification and the log base. Otherwise, unexpected results might occur. If VALUETYPE=EXPANDED is in effect (default), specify an increment of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If VALUETYPE=EXPONENT is in effect, specify an integer increment of the log base power exponent such as 1, 2, 3, and so on.

Interactions
This option is ignored when TICKVALUEPRIORITY= TRUE.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

If an invalid value is specified for the VIEWMAX= option, the default value for VIEWMAX= is used instead. In that case, if the default value for VIEWMAX= is less than the value specified by the VIEWMIN= option, then the VIEWMIN= and VIEWMAX= values are swapped.

The maximum axis tick value might differ from the VIEWMAX= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

When BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or TICKINTERVALSTYLE=LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.

Tip
To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

Examples
The following example specifies a value of 100,000 as an expanded value on a base 10 log axis:
VIEWMAX=100000

The following example specifies a value of 100,000 as an exponent value on a base 10 log axis:
VIEWMAX=5

VIEWMIN=number
specifies the minimum data value to include in the display.

Default
The minimum value in the data for the specified axis.
The value that you specify must be appropriate for the `VALUESTYPE=` specification and the log base. Otherwise, unexpected results might occur. If `VALUESTYPE=EXPANDED` is in effect (default), specify an increment of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If `VALUESTYPE=EXPONENT` is in effect, specify an integer increment of the log base power exponent such as 1, 2, 3, and so on.

This option is ignored when `TICKVALUEPRIORITY=TRUE`.

The `VALUESTYPE=` option determines how the value is interpreted.

Setting a `VIEWMAX=` or `VIEWMIN=` value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the `VIEWMIN=` value. The `VIEWMIN=` and `VIEWMAX=` values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

When `BASE=10` and `TICKINTERVALSTYLE=LOGEXPAND` or `TICKINTERVALSTYLE=LOGEXPONENT` is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.

To display the `VIEWMIN=` value as the minimum tick value, use the `TICKVALUELIST=` option.

“The Adjusting the Axis View” on page 884

The following example specifies a value of 0.1 as an expanded value on a base 10 log axis:

```
VIEWMIN=0.1
```

The following example specifies a value of 0.1 as an exponent value on a base 10 log axis:

```
VIEWMIN=-1
```

Options for Time Axes Only

The options that are documented in this section can be used with the `TIMEOPTS=` axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Time Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL</td>
<td>Specifies the time interval between major tick marks.</td>
</tr>
<tr>
<td>INTERVALMULTIPLIER</td>
<td>Specifies a multiplier to apply to the time interval that is in effect for the axis.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>Time Axis Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>MINORTICKINTERVAL</td>
<td>Specifies the time interval between minor ticks.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor tick marks are displayed.</td>
</tr>
<tr>
<td>SPLITTICKVALUE</td>
<td>Specifies whether to split the tick values on column axes, if possible. This option is not available in the ROWAXIS statement.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision on column axes. This option is not available in the ROWAXIS statement.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the order of the tick values for a time axis as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether an axis tick specification can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

INTERVAL=interval

specifies the time interval between major ticks. Valid *interval* keywords are AUTO, SECOND, MINUTE, HOUR, DAY, TENDAY, WEEK, SEMIMONTH, MONTH, QUARTER, SEMIYEAR, YEAR.

Table 8.3 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default
AUTO. An appropriate interval is chosen based on the data and the column date, date-time, or time format.

Restriction
This option applies to time axes only.

Requirement
The data column(s) mapped to a time axis must be in the same duration units: TIME, DATE, or DATETIME. The selection of an interval must be consistent with the duration unit. For example, if the data are in time units, you can specify only AUTO, SECOND, MINUTE, HOUR.

Interaction
This option is ignored if the `TICKVALUENAME=` option is used.

INTERVALMULTIPLIER= *positive-integer*
specifies a multiplier to apply to the time interval that is in effect for the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
1

Restriction
This option applies to time axes only.

Interaction
This option is ignored if the `TICKVALUENAME=` option is used.

Tip
Use the `INTERVAL=` option to specify a different time interval.

Examples
To specify 3-month intervals:
INTERVAL=MONTH INTERVALMULTIPLIER=3

To specify 10-year intervals:
INTERVAL=YEAR INTERVALMULTIPLIER=10

MINORGRID=TRUE | FALSE
specifies whether grid lines are displayed at the minor tick marks.

Defaults
FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction
This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips
The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See
“boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a time axis. (See the example.)

Defaults
The GraphGridLines style element is used starting with SAS 9.4.
The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction

This option is ignored when MINORTICKS=FALSE.

Note

When *style-element* is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

Use the GRIDATTRS= option to control the appearance of the major grid lines.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example

Here is an example that specifies light blue, dotted lines for the minor grid.

```
minorgridattrs=(color=lightblue pattern=dot);
```

MINORTICKINTERVAL= *interval*

specifies the time interval between minor ticks. See Table 8.3 on page 1002 for information about the intervals that you can select. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, then you must specify AUTO, SECOND, MINUTE, or HOUR.

Default

AUTO

Interactions

This option is ignored if the TICKVALUELIST= option is used.

This option is ignored if the MINORTICKINTERVAL= setting is greater than the INTERVAL= setting.

MINORTICKS= TRUE | FALSE

specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.

```
TRUE
Jan   Feb   Mar   Apr   May   Jun
FALSE
Jan   Feb   Mar   Apr   May   Jun
```

Default

FALSE

Interactions

The number of minor ticks is dependent on the value of the MINORTICKINTERVAL= option, if specified. If MINORTICKINTERVAL= is not specified, then it is dependent on the value of the INTERVAL= option.

This option is ignored if the TICKVALUELIST= option is used, or if the DISPLAY= or DISPLAYSECONDARY= option does not display the tick marks.
Tip Use the MINORGRID= option to display grid lines at the minor tick values.

See “boolean” on page 1339 for other Boolean values that you can use.

SPLITICKVALUE=TRUE | FALSE
specifies whether to split the tick values on an X or X2 axis, if possible. This option is not available for a Y or Y2 axis.

TRUE
splits the axis tick values into two lines allowing more tick values to appear. For example, with INTERVAL=MONTH, this is how tick values are split:

```
2003  2004  2005  2006
```

FALSE
does not split the axis tick values. For example, when this option specifies FALSE, this is how the tick values in the previous example appear:

```
```

Typically, fewer tick values fit, causing thinning, rotation, or staggering of the values. See the TICKVALUEFITPOLICY= option.

Default TRUE

Restriction This option applies to time axes only.

Interaction This option is ignored if the TICKVALUELIST= or TICKVALUEFORMAT= option is used.

See “boolean” on page 1339 for other Boolean values that you can use.

TICKVALUEFITPOLICY= *policy*
specifies a policy for avoiding tick value collision on an X or X2 axis. This option is not available for the Y and Y2 axes. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. The following policies are valid:

THIN
eliminates alternate tick values.

ROTATE
rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYS
rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.
ROTATE
Attempts the ROTATE policy, and then the THIN policy.

STAGGER
Alternates the tick values between two rows.

STAGGERROTATE
Attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN
Attempts the STAGGER policy, and then the THIN policy.

Default
THIN

Restriction
This option is valid only for the X and X2 axes.

Interaction
When SPLITTICKVALUE= TRUE, this option is ignored and only the THIN policy is used.

Note
A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=

format | DATA
Specifies how to format the values for major tick marks.

- **format**
 Specifies a SAS date, time, or datetime format to control how the major tick values are displayed. This format must be in the same duration units as the data column(s) mapped to a time axis: TIME, DATE, or DATETIME and should be appropriate for the value of the INTERVAL= option. For example, if INTERVAL=MONTH and there are two years of data displayed on the axis, then choosing TICKVALUEFORMAT=YEAR. would result in several ticks having the same year value.

- **DATA**
 Specifies that the SAS date, time, or datetime format associated with the data column assigned to the axis be used to control how the major tick values are displayed.

Default
The default format used by the INTERVAL= option. The default does not apply if TICKVALUELIST= is specified.

Restrictions
This option applies to time axes only.

GTL currently honors most but not every SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

TICKVALUELIST=
(time-constant-list | date-constant-list | datetime-constant-list | numeric-list)
Specifies the tick values for a time axis as list.

Default
An internal algorithm determines the tick values.

Restrictions
This option applies to time axes only.

If TICKVALUEPRIORITY= is set to FALSE, then this option does not extend the data range of the axis. If the values fall within the default data range or that specified by the VIEWMIN= or VIEWMAX= options, then they are used.
The tick values must be specified as a space-separated list of values enclosed in parentheses. The items in the list must be in the same duration units as the data mapped to the axis: TIME, DATE, or DATETIME. The values can be expressed as SAS TIME, DATE, or DATETIME constants (for example, "13:23"T, "11MAY06"D, or "11MAY06:13:23"DT) or their numeric equivalents.

The values in the list are formatted according to the format specified on the TICKVALUEFORMAT= option. If TICKVALUEFORMAT= is not used, then the values are formatted according to the column format (the default TICKVALUEFORMAT value is not applied to these values).

If this option is specified, the SPLITTICKVALUE= and INTERVAL= options are ignored.

TICKVALUEPRIORITY=TRUE | FALSE
specifies whether the TICKVALUELIST= specification can extend the axis data range.

TRUE
extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by the TICKVALUELIST= option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE
displays only the tick values that are specified by the TICKVALUELIST= option that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum.

Default FALSE

Interactions
When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

This option is ignored if the TICKVALUELIST= option is not specified.

Note
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See “boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUEROTATION=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL
rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL
rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.
Default: DIAGONAL

Restriction: This option is valid for COLUMNAXIS statements only.

Interaction: The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

VIEWMAX= *number*

specifies the maximum data value to include in the display.

Default: The maximum value in the data for the specified axis.

Notes: Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The maximum axis tick value might differ from the VIEWMAX= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip: To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.

See: “Adjusting the Axis View” on page 884

VIEWMIN= *number*

specifies the minimum data value to include in the display.

Default: The minimum value in the data for the specified axis.

Notes: Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip: To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.

See: “Adjusting the Axis View” on page 884

Details

The LAYOUT LATTICE statement creates a grid of graphs that automatically aligns plot areas, data display areas, axis labels, and headers across the columns and rows of the layout. The axis data ranges can be scaled, and the axes for individual cells in the layout can be managed by row and by column using COLUMNAXIS and ROWAXIS statements. COLUMNAXIS statements are used within a COLUMNAXES or COLUMN2AXES block to externalize column axes for the layout. Similarly, ROWAXIS statements are used within a ROWAXES or ROW2AXES block to externalize row axes for the layout. Each axis block is used to manage the primary axis. The axis that is considered primary depends on the settings for the XAXIS= and YAXIS= options in plot statements that are specified within the layout:
Option Setting	Primary Axis	Axis Block to Use
XAXIS=X | X (bottom) | COLUMNAXES
XAXIS=X2 | X2 (top) | COLUMN2AXES
YAXIS=Y | Y (left) | ROWAXES
YAXIS=Y2 | Y (right) | ROW2AXES

For the specifications to take effect,

- UNION or UNIONALL data scaling must be set for the affected columns and rows. The data scaling is set with the LAYOUT LATTICE statement’s COLUMNDATARANGE=, COLUMN2DATARANGE=, ROWDATARANGE=, and ROW2DATARANGE= options.

- Within a COLUMNAXES or COLUMN2AXES block, one COLUMNAXIS statement should be specified for each column that contains axes that you need to manage. Both axes blocks can contain a COLUMNAXIS statement for the same column. For example, to manage the axes in the first column of the layout, the COLUMNAXES block can contain a COLUMNAXIS statement that manages the column’s X axes. The COLUMN2AXES block can contain a COLUMNAXIS statement that manages the column’s X2 axes.

- Within a ROWAXES or ROW2AXES block, one ROWAXIS statement should be specified for each row that contains axes that you need to manage. Both axes blocks can contain a ROWAXIS statement for the same row. For example, to manage the axes in the first row of the layout, the ROWAXES block can contain a ROWAXIS statement that manages the row’s Y axes. The ROW2AXES block can contain a ROWAXIS statement that manages the column’s Y2 axes.

In addition to managing the primary axes, you can also display “secondary” axes in the grid. A secondary axis is not an independent axis. Rather, it mirrors the primary axis, but it is displayed on the opposite side and can have different display options. For example, when the X axis (bottom) is primary, you can mirror that axis with a secondary X axis at the top of the grid. Similarly, when the Y2 axis (right) is primary, you can mirror that axis with a secondary Y2 axis on the left of the grid. A secondary axis makes it easier to interpolate values in the cells that are farthest away from the primary axis. To display a secondary axis, use the DISPLAYSECONDARY= option.

For general information about managing primary and secondary axes, see “Plot Data Are Mapped to a Designated Axis” on page 876. For details about managing the axes within a LAYOUT LATTICE, see the discussion about the LAYOUT LATTICE “Axis Statements” on page 129.

The following example shows COLUMNAXIS statements for a lattice with two columns:

```plaintext
layout lattice / columns=2 columndatarange=union;
columnaxes;
columnaxis / griddisplay=on displaysecondary=(ticks tickvalues);
columnaxis / griddisplay=on displaysecondary=(ticks tickvalues);
endcolumnaxes;
/* rest of lattice definition */
endlayout;
```
COLUMNAXIS and ROWAXIS statements are similar to the XAXISOPTS= and YAXISOPTS= options for LAYOUT OVERLAY, with the following differences:

- When COLUMNAXIS and ROWAXIS are used, any axis options specified on plots within the affected columns or rows are ignored. All axis features for the external axes must be specified on the COLUMNAXIS or ROWAXIS statement.
- When COLUMNAXIS and ROWAXIS are used, any LAYOUT OVERLAYEQUATED layouts specified for cells in the affected columns or rows are implemented as LAYOUT OVERLAY layouts. Equated axes are not supported on external axes.

In the default cases for each plot in the layout, the axis type is always DISCRETE, LINEAR, or TIME. The TYPE= option enables you to specify an axis type that overrides the default. For example, when appropriate for the data, you can request a LOG axis. When you override the default axis type, you must be sure to specify the correct axis type for the plot(s) that you are defining.

Each axis type has features specific to that type, and the following axis options enable you to specify features for the different types: DISCRETEOPTS=, LINEAROPTS=, LOGOPTS=, and TIMEOPTS=. One or more of these options can be specified for an axis, but the specified settings are applied only to the axis type that supports them.

Example: Axis Options for LAYOUT LATTICE

This example shows how to externalize axes in a LAYOUT LATTICE and manage the axis features on primary Y and Y2 axes.

- The first HISTOGRAM statement specifies YAXIS=Y2 to make the Y2 axis the primary axis for COUNT measures. The second HISTOGRAM statement specifies YAXIS=Y to make the Y axis the primary axis for PERCENT measures.
- In order to externalize the axes within the layout, the data ranges for the axes must be unified. In the LAYOUT LATTICE statement, the ROWDATARANGE= option unifies the data ranges for the Y axes across the row. The ROW2DATARANGE= option unifies the data ranges for the Y2 axes across the row.
- The ROWAXIS statement is used to manage axis features for the row axes. To manage the primary Y axis, a ROWAXIS statement is specified within a ROWAXES block. To manage the primary Y2 axis, another ROWAXIS statement is specified within a ROW2AXES block.
- Within the ROWAXES block, the ROWAXIS statement consolidates Y axes in the row into a single, external Y axis and also displays grid lines. Within the ROW2AXES block, the ROWAXIS statement consolidates Y2 axes in the row into a single, external Y2 axis, but it does not alter the default features of that axis.

The following graph was generated by the “Example Program” on page 1012:
Example Program

```sas
proc template;
  define statgraph y2axis;
  begingraph;
    layout lattice / columns=2 columngutter=10
       rowdatarange=union row2datarange=union;
    rowaxes;
      rowaxis / griddisplay=on;
    endrowaxes;
    row2axes;
      rowaxis;
    endrow2axes;
    layout overlay;
      histogram height / scale=count yaxis=y2;
      histogram height / scale=percent yaxis=y;
      densityplot height / normal();
    endlayout;
    layout overlay;
      histogram weight / scale=count yaxis=y2;
      histogram weight / scale=percent yaxis=y;
      densityplot weight / normal();
    endlayout;
  endgraph;
end;

proc sgrender data=sashelp.class template=y2axis;
run;
```
Axis Options for LAYOUT OVERLAYEQUATED

Axis options for the plots within an OVERLAYEQUATED layout.

Interaction: The OVERLAYEQUATED's axis options are ignored when the LAYOUT OVERLAYEQUATED statement is nested within another layout type that has external axes in effect. For example, the axis options are ignored when the statement is nested within a LAYOUT LATTICE with a COLUMNAXIS= or ROWAXIS= option in effect.

See: “LAYOUT OVERLAYEQUATED Statement” on page 144

Syntax

Axis options for the plots within an OVERLAYEQUATED layout are specified with the following options on a LAYOUT OVERLAYEQUATED statement:

- `COMMONAXISOPTS=(common-equated-axis-options)`
- `XAXISOPTS=(equated-axis-options)`
- `YAXISOPTS=(equated-axis-options)`

Options That Apply in Common to Both Equated Axes

The options that are documented in this section are specified with the COMMONAXISOPTS= option and are applied to both the X and Y axes. With the exception of VIEWMAX and VIEWMIN, these options cannot be applied separately to an X or Y axis using the XAXISOPTS= or YAXISOPTS= option. See “Options That Apply Separately to an X or Y Equated Axis” for a list of options that can be applied to a single axis. The following table provides a summary of the common options.

<table>
<thead>
<tr>
<th>Equated Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>Specifies that evenly spaced integer values are used for tick marks for all axes.</td>
</tr>
<tr>
<td>LINEEXTENT</td>
<td>Specifies the extent of the axis lines.</td>
</tr>
<tr>
<td>TICKSTYLE</td>
<td>Specifies the placement of tick marks in relation to the axis line.</td>
</tr>
<tr>
<td>TICKVALUETYPELIST</td>
<td>Specifies the order of the tick values as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether an axis tick specification can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUESEQUENCE</td>
<td>Specifies the tick values by start, end, and increment.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display on the X and Y axes when the axis lengths and major tick values are equal.</td>
</tr>
</tbody>
</table>
Equated Axis Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display on the X and Y axes when the axis lengths and major tick values are equal.</td>
</tr>
</tbody>
</table>

INTEGER=TRUE | FALSE

specifies that evenly spaced integer values are used for tick marks.

- **Default**: FALSE
- **Interactions**
 - This option is overridden by the TICKVALUELIST= or TICKVALUESEQUENCE= option.
 - This option overrides the MAXDECIMALS= and PREFERREDDECIMALS= suboptions of the TICKVALUEFORMAT= option.
 - INTEGER=TRUE is ignored for the X or X2 axis when a histogram plot is the primary plot and BINAXIS=TRUE is specified in the HISTOGRAM or HISTOGRAMPARM statement.

- **See**
 - “boolean ” on page 1339 for other Boolean values that you can use.

LINEEXTENT=FULL | DATA | number

specifies the extent of the axis lines.

- **Note**: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

 - **FULL**
 - specifies axis lines that extend along the entire length of the axis.

 - **DATA**
 - specifies axis lines that extend through the data range from the minimum offset to the maximum offset.

 - **number**
 - specifies how much the axis lines extend from DATA toward FULL as a decimal proportion. A value of 0 is equivalent to DATA, and a value of 1 is equivalent to FULL.

- **Range**: 0–1

- **Tip**
 - A numeric value is useful for bar charts when DATA terminates the axis line at the midpoint positions of the minimum and maximum bars. In that case, you can specify a numeric value to lengthen the axis line so that it extends to the full width of both bars.
The following figure shows a simple example of each value for the X and Y axis lines. The light-blue dashed lines depict the minimum and maximum offsets that are set on the axes.

![Diagram showing axis lines with different settings]

Default: FULL

Restriction: This option is valid only in OVERLAY and OVERLAYEQUATED layouts.

Interaction: This option overrides the `AXISLINEEXTENT=` option in the `BEGINGRAPH` statement.

Tip: The graph wall outline might appear to be an axis line. In that case, use the `WALLDISPLAY=NONE` or `WALLDISPLAY=(FILL)` option in the layout statement to suppress the wall outline.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS

specifies the placement of tick marks in relation to the axis line. The figure shows the tick display for each value.

![Diagram showing tick display settings]

OUTSIDE displays tick marks outside of the axis frame.

INSIDE displays tick marks inside the axis frame.

ACROSS displays tick marks across the axis line.

Default: The GraphAxisLines:TickDisplay style reference.

Interaction: This option is ignored if the `DISPLAY=` or `DISPLAYSECONDARY=` option does not display tick marks.

Notes: This option has no affect on the placement of the tick values, which are always outside the axis frame.

This option applies to both major ticks and minor ticks.

TICKVALUELIST=(numeric-list)

specifies the tick values for a linear axis as a list.
An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the `VIEWMIN=` and `VIEWMAX=` options. By default, when this option is used, the only tick values that appear are the tick values in *numeric-list* that fall within the explicit data range (set by `VIEWMIN=` and `VIEWMAX=`) or the implicit data range (set by the actual data minimum and data maximum).

Requirement
The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

Interactions
This option overrides the `INTEGER=` option.

This option is ignored if the LAYOUT OVERLAYEQUATED statement specifies `EQUATETYPE=FIT` (the default).

This option is ignored if the `TICKVALUESEQUENCE=` option is specified, or if the `DISPLAY=` option or the `DISPLAYSECONDARY=` option does not display tick values.

The `VIEWMIN=` and `VIEWMAX=` options alter the axis data range. If the `VIEWMIN=` option is set to the minimum tick list value and the `VIEWMAX=` option is set to the maximum tick list value, then all ticks in the tick list are displayed. This might result in some data not being displayed. For example, data might not be displayed when the `VIEWMIN=` value is greater than the actual data minimum, or when the `VIEWMAX=` value is less than actual data maximum.

If `TICKVALUEPRIORITY=TRUE`, then the `VIEWMIN=` and `VIEWMAX=` options are ignored if they are fully enclosed by the `numeric-list`. The tick `numeric-list` can extend the implicit data range of the axis, but cannot reduce it.

Tip
The values in the list are formatted according to the setting for the `TICKVALUEFORMAT=` option.

`TICKVALUEPRIORITY=TRUE | FALSE`
specifies whether an axis tick specification (`TICKVALUELIST=` or `TICKVALUESEQUENCE=`) can extend the axis data range.

TRUE
extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by either the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE
displays only the tick values that are specified by the `TICKVALUELIST=` option that fall within the explicit data range set by the `VIEWMIN=` and `VIEWMAX=` options or by the implicit data range set by the actual data minimum and data maximum.

Default
`FALSE`

Interactions
When this option is set to TRUE, the `VIEWMIN=` and `VIEWMAX=` options are ignored.
This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is not specified.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

Note
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See
“boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUESEQUENCE=(sequence-options)

specifies the tick values by start, end, and increment.

sequence-options

a space-separated list of the following name-value-pair options that control major tick values. You must provide all three options.

START=number
specifies the value for the first tick mark.

END=number
specifies the value for the last tick mark.

INCREMENT=number
specifies the increment for intermediate tick marks between the first and last tick marks. The END value always controls the last tick mark. The interval between the last tick mark and the previous tick mark might not necessarily be the INCREMENT value.

Default
An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the VIEWMIN= and VIEWMAX= options. By default, when this option is used, the only tick values that appear are those that fall within the explicit data range (set by VIEWMIN= and VIEWMAX=) or the implicit data range (set by the actual data minimum and data maximum).

Interactions
This option overrides the INTEGER= option.

The VIEWMIN= and VIEWMAX= options alter the axis data range. If the VIEWMIN= option is set to the START= option value and the VIEWMAX= option is set to the END= option value, then all ticks in the tick sequence are displayed.

If TICKVALUEPRIORITY= TRUE, then the tick sequence might extend the explicit data range of the axis, but never reduce it.

This option is ignored if the LAYOUT OVERLAYEQUATED statement specifies EQUATETYPE=FIT (the default), or if the DISPLAY= option or the DISPLAYSECONDARY= option does not display tick marks.

Tip
The values in the sequence are formatted according to the setting for the TICKVALUEFORMAT= option.

See
TICKVALUELIST= option as an alternative for customizing tick marks.
VIEWMAX=number
specifies the maximum data value to include in the display on the X and Y axes when the axis lengths and major tick values are equal. The value might be adjusted by the threshold calculation.

Default The maximum value in the data for the X and Y axes.
Restriction This option is honored only when EQUATETYPE=SQUARE.
Interactions This option does not determine the maximum axis tick value that is displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

Notes Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

Tip To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.
See “Adjusting the Axis View” on page 884

VIEWMIN=number
specifies the minimum data value to include in the display on the X and Y axes when the axis lengths and major tick values are equal. The value might be adjusted by the threshold calculation.

Default The minimum value in the data for the X and Y axes.
Restriction This option is honored only when EQUATETYPE=SQUARE.
Interactions This option does not determine the minimum axis tick value that is displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

Notes Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

Tip To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.
See “Adjusting the Axis View” on page 884
Options That Apply Separately to an X or Y Equated Axis

The options that are documented in this section can be applied to an X axis with the `XAXISOPTS=` option, or to the Y axis with the `YAXISOPTS=` option. See “Options That Apply in Common to Both Equated Axes” on page 1013 for a list of options that apply in common to both axes. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Equated Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY</td>
<td>Controls which axis features are displayed on the primary axis.</td>
</tr>
<tr>
<td>DISPLAYSECONDARY</td>
<td>Controls which axis features are displayed on the secondary axis.</td>
</tr>
<tr>
<td>GRIDATTRS</td>
<td>Specifies the attributes of the grid lines.</td>
</tr>
<tr>
<td>GRIDDISPLAY</td>
<td>Specifies when axis grid lines are displayed.</td>
</tr>
<tr>
<td>LABEL</td>
<td>Specifies the axis label.</td>
</tr>
<tr>
<td>LABELATTRS</td>
<td>Specifies the color and font attributes of the axis label.</td>
</tr>
<tr>
<td>LINEEXTENT</td>
<td>Specifies the extent of the axis line.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether the minor tick marks are displayed on the axis.</td>
</tr>
<tr>
<td>OFFSETMAX</td>
<td>Reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>OFFSETMIN</td>
<td>Reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>REVERSE</td>
<td>Specifies whether tick values should appear in the reverse order.</td>
</tr>
<tr>
<td>SHORTLABEL</td>
<td>Specifies an alternate axis label to use if the default or specified axis label is too long for the axis length.</td>
</tr>
<tr>
<td>THRESHOLDMAX</td>
<td>Specifies a bias for including one more tick mark at the maximum end of the axis.</td>
</tr>
<tr>
<td>Equated Axis Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>THRESHOLDMIN</td>
<td>Specifies a bias for including one more tick mark at the minimum end of the axis.</td>
</tr>
<tr>
<td>TICKVALUEATTRS</td>
<td>Specifies the color and font attributes of the axis tick values.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision. Only the default policy (THIN) is available for a Y or Y2 axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for tick marks.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display on the X or Y axis when the axis lengths and major tick values are not equal.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display on the X or Y axis when the axis lengths and major tick values are not equal.</td>
</tr>
</tbody>
</table>

DISPLAY=STANDARD | ALL | NONE | (display-options)

controls which axis features are displayed on the primary axis.

- **STANDARD**
 - specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed
- **ALL**
 - specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed
- **NONE**
 - specifies that no axis features are displayed

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

- **LABEL** displays the axis label
- **LINE** displays the axis line
- **TICKS** displays the tick marks
- **TICKVALUES** displays the values that are represented by the major tick marks

Default
STANDARD

Tips
The default line attributes for the axis line and axis tick marks are defined in the GraphAxisLine style element.

Use the **GRIDDISPLAY=** and **GRIDATTRS=** options to set the axis grid lines.
When LINE is excluded from the DISPLAY= option, the layout wall outline or the default baseline of a bar chart, needle plot, or waterfall chart can appear to be an axis line. To suppress the wall outline, use the WALLDISPLAY= option in the layout statement. To suppress the plot baseline, use the BASELINEATTRS= option in the plot statement.

DISPLAYSECONDARY=NONE | ALL | STANDARD | (display-options)
controls which axis features are displayed on the secondary axis. When data are mapped to the X or Y axis, you can display an X2 or Y2 (secondary) axis using this option. The secondary axis is a duplicate of the X or Y axis but can have different display options.

NONE
specifies that no axis features are displayed

STANDARD
specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

ALL
specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABEL</td>
<td>displays the axis label</td>
</tr>
<tr>
<td>LINE</td>
<td>displays the axis line</td>
</tr>
<tr>
<td>TICKS</td>
<td>displays the tick marks</td>
</tr>
<tr>
<td>TICKVALUES</td>
<td>displays the values that are represented by the major tick marks</td>
</tr>
</tbody>
</table>

Default: **NONE**

Tip: Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.

GRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the grid lines.

Default: The GraphGridLines style element.

Interaction: This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

See: “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

GRIDDISPLAY=AUTO_OFF | AUTO_ON | ON | OFF
specifies whether axis grid lines are displayed. This option enables the template to absolutely control the display of grid lines or to allow interaction with the current style to decide whether grid lines are displayed.
AUTO_OFF
specifies that grid lines are not displayed unless the GraphGridLines element in the current style contains DisplayOpts="ON."

AUTO_ON
specifies that grid lines are displayed unless the GraphGridLines element in the current style contains DisplayOpts="OFF."

ON
specifies that grid lines are always displayed. The current style has no override.

OFF
specifies that grid lines are never displayed. The current style has no override.

The following table shows the end results for various combinations of the GRIDDISPLAY= option and the DisplayOpts= attribute of the GraphGridLines style element. Most supplied templates use the default setting AUTO_OFF to indicate a preference for not displaying grid lines, but allowing the style to override.

<table>
<thead>
<tr>
<th>GRIDDISPLAY= option</th>
<th>DisplayOpts= style attribute</th>
<th>Grid Lines Shown?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_OFF</td>
<td>AUTO</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>AUTO</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>ON</td>
<td>any value</td>
<td>yes</td>
</tr>
<tr>
<td>OFF</td>
<td>any value</td>
<td>no</td>
</tr>
</tbody>
</table>

Default AUTO_OFF

Note Supplied styles use DisplayOpts="AUTO," which means that the style has no preference about grid lines and the graphics template setting for grid lines is always used.

LABEL="string" | ("string" ..."string")
specifies the axis label. The string can be either a string literal or a dynamic. The list form implies that all included string literals or dynamics will be concatenated.

Default The default label is derived from the primary plot in the layout. For more information, see “When Plots Share Data and a Common Axis” on page 880.

Note If the axis label is too long to fit along the axis, then it is truncated by default.
Tip Use the \texttt{SHORTLABEL=} option to specify an alternate axis label to be used whenever truncation would normally occur.

\textbf{LABELATTRS=}\texttt{style-element | style-element (text-options) | (text-options)}

specifies the color and font attributes of the axis label.

Default The GraphLabelText style element.

Interaction This option is ignored if the \texttt{DISPLAY=} or \texttt{DISPLAYSECONDARY=} option does not display the axis label.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a \texttt{style-element}.

“Text Options” on page 1351 for available \texttt{text-options}.

\textbf{LINEEXTENT=}\texttt{FULL | DATA | number}

specifies the extent of the axis line.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\texttt{FULL}

specifies an axis line that extends along the entire length of the axis.

\texttt{DATA}

specifies an axis line that extends through the data range from the minimum offset to the maximum offset.

\textit{number}

specifies how much the axis line extends from \texttt{DATA} toward \texttt{FULL} as a decimal proportion. A value of 0 is equivalent to \texttt{DATA}, and a value of 1 is equivalent to \texttt{FULL}.

Range 0–1

Tip A numeric value is useful for bar charts when \texttt{DATA} terminates the axis line at the midpoint positions of the minimum and maximum bars. In that case, you can specify a numeric value to lengthen the axis line so that it extends to the full width of both bars.

The following figure shows a simple example of each value for the X and Y axis lines. The light-blue dashed lines depict the minimum and maximum offsets that are set on the axes.
Restriction This option is valid only in OVERLAY and OVERLAYEQUATED layouts.

Interactions This option overrides the AXISLINEEXTENT= option in the BEGINGRAPH statement.

This option overrides the LINEEXTENT= option in COMMONAXISOPTS=.

Tip The graph wall outline might appear to be an axis line. In that case, use the WALLDISPLAY=NONE or WALLDISPLAY=(FILL) option in the layout statement to suppress the wall outline.

MINORGRID=TRUE | FALSE
specifies whether grid lines are displayed at the minor tick marks.

<table>
<thead>
<tr>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$50</td>
</tr>
<tr>
<td>$100</td>
</tr>
<tr>
<td>$150</td>
</tr>
<tr>
<td>$200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$50</td>
</tr>
<tr>
<td>$100</td>
</tr>
<tr>
<td>$150</td>
</tr>
<tr>
<td>$200</td>
</tr>
</tbody>
</table>

Defaults FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the minor grid lines. This option does not affect the major grid lines.
The following figure shows the minor grid lines set to light blue, dotted lines on a linear axis. (See the example.)

![Minor Grid Lines](image)

Defaults

The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction

This option is ignored when MINORTICKS=FALSE.

Note

When *style-element* is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

Use the **GRIDATTRS=** option to control the appearance of the major grid lines.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example

Here is an example that specifies light blue, dotted lines for the minor grid.

```plaintext
minorgridattrs=(color=lightblue pattern=dot);
```

MINORTICKCOUNT= *positive-integer*

specifies the number of minor ticks that are displayed on the axis.

Interactions

The **DISPLAY=** or **DISPLAYSECONDARY=** option specification must include **TICKS** for this option to have any effect.

The **MINORTICKS=** option must specify **TRUE** for this option to have any effect.

Tip

To display *n* intervals between major ticks, use **MINORTICKCOUNT=** *n*-1.

MINORTICKS= **TRUE | FALSE**

specifies whether minor ticks are displayed. When **MINORTICKS=** **TRUE**, the minor tick marks are displayed on the axis as shown in the following figure.

![Minor Ticks](image)

Default

FALSE
Tip Use the **MINORGRID=** option to display grid lines at the minor tick values.

See “**boolean**” on page 1339 for other Boolean values that you can use.

OFFSETMAX=AUTO | AUTOCOMPRESS | **number**
reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.

AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

AUTOCOMPRESS
applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

number
specifies the offset as a decimal proportion of the full axis length.

Default **AUTO**

Range 0–1. The sum of **OFFSETMAX**= and **OFFSETMIN**= should not be more than 1.

See “**Adjusting Axis Offsets**” on page 886.

OFFSETMIN=AUTO | AUTOCOMPRESS | **number**
reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.

AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

AUTOCOMPRESS
applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

number
specifies the offset as a decimal proportion of the full axis length.

Default **AUTO**

Range 0–1. The sum of **OFFSETMAX**= and **OFFSETMIN**= should not be more than 1.

See “**Adjusting Axis Offsets**” on page 886.

REVERSE=TRUE | FALSE
specifies whether tick values should appear in the reverse order.

Default **FALSE**

See “**boolean**” on page 1339 for other Boolean values that you can use.

SHORTLABEL="**string**"
specifies an alternate axis label to display when the default label or the label specified by the **LABEL=** option is too long to fit the available space.
THRESHOLDMAX=number

specifies a bias for including one more tick mark at the maximum end of the axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0–1</td>
</tr>
</tbody>
</table>

Restriction
This option applies to the LAYOUT OVERLAYEQUATED XAXISOPTS= and YAXISOPTS= options only.

Interaction
This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is used.

Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= and THRESHOLDMAX= options to 0.

See
“Adjusting Axis Thresholds” on page 885

THRESHOLDMIN=number

specifies a bias for including one more tick mark at the minimum end of the axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0–1</td>
</tr>
</tbody>
</table>

Restriction
This option applies to the LAYOUT OVERLAYEQUATED XAXISOPTS= and YAXISOPTS= options only.

Interaction
This option is ignored if the TICKVALUELIST= or TICKVALUESEQUENCE= option is used.

Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= and THRESHOLDMAX= options to 0.
See “Adjusting Axis Thresholds” on page 885

TICKVALUEATTRS= `style-element | style-element (text-options) | (text-options)`
specifies the color and font attributes of the axis tick values.

Default
The GraphValueText style element.

Interaction
This option is ignored if the `DISPLAY=` or `DISPLAYSECONDARY=` option does not display tick values.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Text Options” on page 1351 for available `text-options`.

TICKVALUEFITPOLICY= `policy`
specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:

- **NONE**
 makes no attempt to avoid collisions between tick values. Tick values are display even when they collide.

- **THIN**
 eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:

- **ROTATE**
 rotates the tick values if a collision occurs.

- **ROTADEALWAYS**
 rotates the tick values regardless of whether a collision occurs.

- **ROTATETHIN**
 attempts the ROTATE policy, and then the THIN policy.

- **STAGGER**
 alternates the tick values between two rows.

- **STAGGERROTATE**
 attempts the STAGGER policy, and then the ROTATE policy.

- **STAGGERTHIN**
 attempts the STAGGER policy, and then the THIN policy.

- **THIN**
 eliminates alternate tick values.

Default
THIN

Note
A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=(`format-options` **) | DATA | format**
specifies how to format the values for major tick marks.

- **(format-options)**
 specifies one or more formatting options for major tick values. Together, these options provide parameters for determining an optimal format (`w.d`, `Ew.`, `BESTw.`) for displaying major tick values.
MAXWIDTH=integer
specifies the maximum width for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 8

MAXDECIMALS=integer
specifies the maximum number of decimals for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 6

Note The MAXWIDTH= option value should be greater than the MAXDECIMALS= option value.

PREFERREDDECIMALS=integer
specifies the number of decimal places that you want to display for most values. The actual number might vary based on other constraints.

Default 2

EXTRACTSCALE=TRUE | FALSE
specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width. The scale can be a named scale or a scientific-notation scale. The EXTRACTSCALETYPE= option specifies the scale type. The scale that is used is appended to the axis label, as shown in the following example.

Total Sales (millions)

For long axis labels, if the scale does not fit the available space, then the label is truncated, and the scale is appended to the truncated label. Ellipses indicate that the label was truncated, as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases in which the scale does not fit even with truncation, the entire axis is dropped.

Default FALSE

Restriction The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale for all locales.

Interactions The scale type is determined by the EXTRACTSCALETYPE= option.

If the axis label is not displayed, then the EXTRACTSCALE=TRUE option is ignored.

Note When EXTRACTSCALE=TRUE and a scale is extracted, the tick values are formatted to provide the best fit on the axis. In that case, the tick value format might differ from the data format even when a named format is applied to the data values.

See “boolean ” on page 1339 for other Boolean values that you can use.

EXTRACTSCALETYPE=DEFAULT | SCIENTIFIC
specifies whether to extract a named scale or a scientific-notation scale.
extracts a named scale. A named scale can be millions, billions, or
trillions for values of 999 trillion or less, or a multiple of 10 (denoted as
10^n) for values over 999 trillion. For large tick values, the scale factor is
set to ensure that the absolute value of the largest value is greater than 1.
For small fractional tick values, the scale factor is set to ensure that the
absolute value of the smallest value is greater than 1. The scale can be
millionth, billionth, or trillionth for values of 1 trillionth or more, or a
multiple of 1/10 (10^{-n}) for values less than 1 trillionth.

extracts a scientific-notation scale. A scientific-notation scale is a
multiple of 10 expressed as 10^n for values greater than 1, or a multiple
of 1/10 expressed as 10^{-n} for values less than 1.

Default DEFAULT

Restriction The scale is derived from the English locale for all locales.

uses the format that has been assigned to the column that is contributing to the
axis (or BEST6 if no format is assigned) in order to control the formatting of the
major tick values.

format specifies a format to apply to the major tick values.

Restriction GTL currently honors most, but not every, SAS format. For details,
see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Note If you specify a format that significantly reduces precision, because
of tick-value rounding, the plot data elements might not align
properly with the axis tick values. In that case, specify a tick-value
format with a higher precision.

Default (MAXWIDTH=8, MAXDECIMALS=6, PREFERREDDECIMALS=2,
EXTRACTSCALE=FALSE, EXTRACTSCALETYPE=DEFAULT)

specifies the maximum data value to include in the display on the X or Y axes when
the axis lengths and major tick values are equal. The value might be adjusted by the
threshold calculation.

Default The maximum value in the data for the X and Y axes.

Restriction This option is ignored when EQUATETYPE=SQUARE.

Note Setting a VIEWMAX= or VIEWMIN= value does not alter the
original data or any calculations on it.

The maximum axis tick value might differ from the VIEWMAX=
value. The VIEWMIN= and VIEWMAX= values, and additional
factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip
To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

VIEWMIN=number
specifies the minimum data value to include in the display on the X or Y axes when the axis lengths and major tick values are equal. The value might be adjusted by the threshold calculation.

Default
The minimum value in the data for the X and Y axes.

Interactions
This option is ignored when EQUATETYPE=SQUARE.

This option does not determine the minimum axis tick value that is displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip
To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

Details
The LAYOUT OVERLAYEQUATED statement is used for equated layouts where the X and Y axes always have equal increments between tick values. Because the axes within the equated layout are so closely correlated, some axis adjustments cannot be applied to one axis without applying them to the other.

For example, the INTEGER= option sets evenly spaced integer values for the axis tick marks. That setting must be applied to both axes if the correlation between them is to be maintained. The LAYOUT OVERLAYEQUATED statement provides the COMMONAXISOPTS= option for specifying the INTEGER= option and other options whose settings apply in common to both axes.

Despite the close correlation between the axes, some axis adjustments can be made to one axis without affecting the other. For example, displaying grid lines on one axis has no impact on the other. The XAXISOPTS= and YAXISOPTS= options are available for applying settings separately to the X and Y axes.

The following example template sets evenly spaced integer values for the axis tick marks of both axes. It also specifies the display of grid lines, tick marks, and tick values for the Y axis:

begingraph;
layout overlayequated /
commonaxisopts=(integer=true);
Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL

Axis options for the plots within DATALATTICE and DATAPANEL layouts

See:
“LAYOUT DATALATTICE Statement” on page 45
“LAYOUT DATAPANEL Statement” on page 70

Syntax

The X and X2 axis options for the plots within DATALATTICE and DATAPANEL layouts are specified with the following options:

```
COLUMNAXISOPTS=(axis-option(s))
COLUMN2AXISOPTS=(axis-option(s))
```

The Y and Y2 axis options for the plots within DATALATTICE and DATAPANEL layouts are specified with the following options:

```
ROWAXISOPTS=(axis-option(s))
ROW2AXISOPTS=(axis-option(s))
```

General Options for All Axes in the Layout

The options that are documented in this section can be used with any of the axis types that are supported within a DATALATTICE or DATAPANEL layout. Subsequent sections in the chapter document the axis options that are available only for specific axis types: discrete, linear, log, or time axes. The following table provides a summary of the general options.

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTDISPLAY</td>
<td>Controls which axis features are displayed on second, fourth, and other even row or column occurrences of the primary axis.</td>
</tr>
<tr>
<td>ALTDISPLAYSECONDARY</td>
<td>Controls which features are displayed on second, fourth, and other even row or column occurrences of the secondary axis.</td>
</tr>
<tr>
<td>DISCRETEOPTS</td>
<td>Specifies options for a discrete axis.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Controls which axis features are displayed on first, third, and other odd row or column occurrences of the primary axis.</td>
</tr>
<tr>
<td>DISPLAYSECONDARY</td>
<td>Controls which axis features are displayed on first, third, and other odd row or column occurrences the secondary axis.</td>
</tr>
<tr>
<td>GRIDATTRS</td>
<td>Specifies the attributes of the grid lines.</td>
</tr>
<tr>
<td>Statement Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>GRIDDISPLAY</td>
<td>Specifies whether axis grid lines are displayed.</td>
</tr>
<tr>
<td>LABEL</td>
<td>Specifies the axis label.</td>
</tr>
<tr>
<td>LABELATTRS</td>
<td>Specifies the color and font attributes of the axis label.</td>
</tr>
<tr>
<td>LABELFITPOLICY</td>
<td>Specifies a policy for fitting axis labels in the available space.</td>
</tr>
<tr>
<td>LABELPOSITION</td>
<td>Specifies the position of the axis label.</td>
</tr>
<tr>
<td>LABELSPLITCHAR</td>
<td>Specifies one or more characters on which the axis labels can be split, if needed.</td>
</tr>
<tr>
<td>LABELSPLITCHARDROP</td>
<td>Specifies whether the split characters should be included in the axis labels that are displayed.</td>
</tr>
<tr>
<td>LABELSPLITJUSTIFY</td>
<td>Specifies the justification of the strings that are inside the axis label blocks.</td>
</tr>
<tr>
<td>LINEAROPTS</td>
<td>Specifies options for a standard numeric interval axis.</td>
</tr>
<tr>
<td>LOGOPTS</td>
<td>Specifies options for a log axis.</td>
</tr>
<tr>
<td>NAME</td>
<td>Assigns a name to an axis for reference in other statements.</td>
</tr>
<tr>
<td>OFFSETMAX</td>
<td>Reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>OFFSETMIN</td>
<td>Reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.</td>
</tr>
<tr>
<td>REVERSE</td>
<td>Specifies whether the tick values should appear in the reverse order.</td>
</tr>
<tr>
<td>SHORTLABEL</td>
<td>Specifies an alternate axis label.</td>
</tr>
<tr>
<td>TICKVALUEATTRS</td>
<td>Specifies the color and font attributes of the axis tick value labels.</td>
</tr>
<tr>
<td>TICKVALUEHALIGN</td>
<td>Specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.</td>
</tr>
<tr>
<td>Statement Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>TICKVALUEALIGN</td>
<td>Specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.</td>
</tr>
<tr>
<td>TIMEOPTS</td>
<td>Specifies options for a TIME axis.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Specifies the type of axis to use.</td>
</tr>
</tbody>
</table>

ALTDISPLAY=STANDARD | ALL | NONE | (display-options)

controls which axis features are displayed on second, fourth, and other even row or column occurrences of the primary axis.

STANDARD
specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed

ALL
specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed

NONE
specifies that no axis features are displayed

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

LABEL
displays the axis label. A common label is displayed at the center of the grid, and the label applies to all the primary axes in the row or column. This label is overridden by a label specified on the DISPLAY= option.

LINE
displays the axis line.

TICKS
displays the tick marks.

TICKVALUES
displays the values that are represented by the major tick marks.

Default
The settings on the DISPLAY= option.

Tips
The default line attributes for the axis line and axis tick marks are defined in the GraphAxisLine style element.

This option can be used to obtain the alternating axis information as seen in a ScatterPlotMatrix.

See
“Details” on page 1083 for more information about the primary and secondary axes.

GRIDDISPLAY= and **GRIDATTRS=** for setting axis grid lines.

ALTDISPLAYSECONDARY=NONE | ALL | STANDARD | (display-options)

controls which features are displayed on second, fourth, and other even row or column occurrences of the secondary axis. A secondary axis is not an independent axis. Rather, it mirrors the primary axis (though it can use different display features). Thus, for this option to take effect, all plot statements in the LAYOUT PROTOTYPE
must map data to the same primary axis. For example, a secondary X2 axis can be
displayed on top in the layout, provided all plot statements set XAXIS=X to map
data to the primary X axis (bottom). Similarly, a secondary Y2 axis can be displayed
to the right in the layout, provided all plot statements set YAXIS=Y to map data to
the primary Y axis (left).

NONE
 specifies that no axis features are displayed

STANDARD
 specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed on
 the secondary axis

ALL
 specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed on the
 secondary axis

((display-options))
 a space-separated list of one or more of the following options enclosed in
 parentheses:

 LABEL
 displays the axis label. A common label is displayed at the center of the grid,
 and the label applies to all the secondary axes in the row or column. This
 label is overridden by a label specified on the DISPLAY= option.

 LINE
 displays the axis line.

 TICKS
 displays the tick marks.

 TICKVALUES
 displays the values that are represented by the major tick marks.

Default
 The settings on the DISPLAYSECONDARY= option.

Restriction
 If some plot statements set XAXIS=X and others set XAXIS=X2, then
 both the X and X2 axis are primary and a secondary X axis cannot be
 displayed. In that case, this option is ignored. The same applies for the
 Y axes.

Tips
 The default line attributes for the axis line and axis tick marks are
 defined in the GraphAxisLine style element.

 This option can be used to obtain the alternating axis information as
 seen in a ScatterPlotMatrix.

See
 “Details” on page 1083 for more information about the primary and
 secondary axes.

 GRIDDISPLAY= and GRIDATTRS= for setting axis grid lines.

DISCRETEOPTS=(discrete-axis-options)
specifies one or more options for a discrete axis. Options must be enclosed in
parentheses. Each option is specified as a name = value pair and each pair is space
separated.

Interaction
 This option is ignored if the axis type is not DISCRETE.
See “Options for Discrete Axes Only” on page 1047 for the options that you can use for discrete-axis-options.

DISPLAY=STANDARD | ALL | NONE | (display-options)
controls which axis features are displayed on first, third, and other odd row or column occurrences of the primary axis.

STANDARD
specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed

ALL
specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed

NONE
specifies that no axis features are displayed

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

- **LABEL** displays the axis label
- **LINE** displays the axis line
- **TICKS** displays the tick marks
- **TICKVALUES** displays the values that are represented by the major tick marks

Default STANDARD

Note
When LABEL is specified, a common label is displayed at the center of the grid, and the label applies to all the primary axes in the row or column. This label overrides a label specified on the ALTDISPLAY= option.

Tips
The default line attributes for the axis line and axis tick marks are defined in the GraphAxisLine style element.

Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.

When LINE is excluded from the DISPLAY= option, the layout wall outline or the default baseline of a bar chart, needle plot, or waterfall chart can appear to be an axis line. To suppress the wall outline, use the WALLDISPLAY= option in the layout statement. To suppress the plot baseline, use the BASELINEATTRS= option in the plot statement.

See “Details” on page 1083 for more information about the primary and secondary axes.

DISPLAYSECONDARY=NONE | ALL | STANDARD | (display-options)
controls which axis features are displayed on first, third, and other odd row or column occurrences of the secondary axis. A secondary axis is not an independent axis. Rather, it mirrors the primary axis (though it can use different display features). Thus, for this option to take effect, all plot statements in the LAYOUT PROTOTYPE must map data to the same primary axis. For example, a secondary X2 axis can be displayed on top in the layout, provided all plot statements set XAXIS=X to map data to the primary X axis (bottom). Similarly, a secondary Y2 axis can be displayed to the right in the layout, provided all plot statements set YAXIS=Y to map data to the primary Y axis (left).
NONE
specifies that no axis features are displayed

STANDARD
specifies that the LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

ALL
specifies that LABEL, LINE, TICKS, and TICKVALUES are displayed on the secondary axis

(display-options)
a space-separated list of one or more of the following options enclosed in parentheses:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABEL</td>
<td>displays the axis label</td>
</tr>
<tr>
<td>LINE</td>
<td>displays the axis line</td>
</tr>
<tr>
<td>TICKS</td>
<td>displays the tick marks</td>
</tr>
<tr>
<td>TICKVALUES</td>
<td>displays the values that are represented by the major tick marks</td>
</tr>
</tbody>
</table>

Default NONE

Restriction If some plot statements set XAXIS=X and others set XAXIS=X2, both the X and X2 axis are primary and a secondary X axis cannot be displayed. In that case, this option is ignored. The same applies for the Y axes.

Note When LABEL is specified, a common label is displayed at the center of the grid, and the label applies to all the primary axes in the row or column. This label overrides a label specified on the ALTDISPLAY= option.

Tip Use the GRIDDISPLAY= and GRIDATTRS= options to set the axis grid lines.

See for more information about the primary and secondary axes. “Details” on page 1083.

GRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the grid lines.

Default The GraphGridLines style element.

Interaction This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tip On a log axis, this option affects the appearance of the major grid lines only. It does not affect the appearance of the minor grid lines. To control the appearance of the minor grid lines on a log axis, use the MINORGRIDATTRS= option.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.
GRIDDISPLAY=AUTO_OFF | AUTO_ON | ON | OFF
specifies whether axis grid lines are displayed. This option enables the template to absolutely control the display of grid lines or to allow interaction with the current style to decide whether grid lines are displayed.

AUTO_OFF
specifies that grid lines are not displayed unless the GraphGridLines element in the current style contains DisplayOpts="ON."

AUTO_ON
specifies that grid lines are displayed unless the GraphGridLines element in the current style contains DisplayOpts="OFF."

ON
specifies that grid lines are always displayed. The current style has no override.

OFF
specifies that grid lines are never displayed. The current style has no override.

The following table shows the end results for various combinations of the GRIDDISPLAY= option and the DisplayOpts= attribute of the GraphGridLines style element. Most supplied templates use the default setting AUTO_OFF to indicate a preference for not displaying grid lines, but allowing the style to override.

<table>
<thead>
<tr>
<th>GRIDDISPLAY= option</th>
<th>DisplayOpts= style attribute</th>
<th>Grid Lines Shown?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_OFF</td>
<td>AUTO</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_OFF</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>AUTO</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>ON</td>
<td>yes</td>
</tr>
<tr>
<td>AUTO_ON</td>
<td>OFF</td>
<td>no</td>
</tr>
<tr>
<td>ON</td>
<td>any value</td>
<td>yes</td>
</tr>
<tr>
<td>OFF</td>
<td>any value</td>
<td>no</td>
</tr>
</tbody>
</table>

Default AUTO_OFF

Note Supplied styles use DisplayOpts="AUTO," which means that the style has no preference about grid lines and the graphics template setting for grid lines is always used.

LABEL="string" | ("string" ..."string")
specifies the axis label. The string can be either a string literal or a dynamic. The list form implies that all included string literals or dynamics will be concatenated.

Default The default label is derived from the primary plot in the layout. For more information, see “When Plots Share Data and a Common Axis” on page 880.
This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the axis label.

If the axis label is too long to fit along the axis, then it is truncated by default.

Use the SHORTLABEL= option to specify an alternate axis label to be used whenever truncation would normally occur.

```
LABELATTRS=style-element | style-element (text-options) | (text-options)
```
specifies the color and font attributes of the axis label.

The GraphLabelText style element.

This option is ignored if the DISPLAY= or DISPLAYSECONDARY= option does not display the axis label.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

```
LABELFITPOLICY=AUTO | SPLIT | SPLITALWAYS
```
specifies a policy for fitting axis labels in the available space.

AUTO
uses the short label, when specified, instead of the original label. If the short label does not fit, then it is clipped. When no short label is specified, the original label is clipped.

SPLIT
splits the axis label at a split character, which is specified by the LABELSPLITCHAR= option, only when necessary in order to make the label fit the available space. The short label is not used. A split does not occur at a split character if a split is not needed at that location. If the label does not contain any of the specified split characters, then it is not split. A label that cannot be split or that does not fit the available space even after splitting might overlap the adjoining space.

SPLITALWAYS
always split the axis label at every occurrence of a split character, which is specified by the LABELSPLITCHAR= option. If the label cannot be split, then it is clipped.

Default AUTO

This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

When the overlay layout is nested in a lattice layout, SPLIT is ignored and AUTO is used instead.

When LABELPOSITION=CENTER, the available area is the full axis, including the axis offsets. When LABELPOSITION=DATACENTER, the available area is the tick display area, excluding the axis offsets.
LABELPOSITION=CENTER | DATACENTER | TOP | BOTTOM | LEFT | RIGHT
specifies the position of the axis label.

CENTER
centers the axis label in the axis area. For the Y and Y2 axes, the label is oriented vertically and is centered in the axis area (including the offsets). The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis. For the X and X2 axes, the label is centered in the axis area (including the offsets). It is positioned below the tick values for the X axis or above the axis values for the X2 axis.

DATACENTER
repeats the axis label for each row or column and centers each label in the axis tick display area of its row or column. For the Y and Y2 axes, each label is oriented vertically and is centered in the axis tick display area (excluding the offsets) of its row. The labels are positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis. For the X and X2 axes, each label is centered in the axis tick display area (excluding the offsets) of its column. The labels are positioned below the tick values for the X axis or above axis values for the X2 axis.

TOP | BOTTOM
orients the label horizontally at the top or bottom of the axis area. The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, then the label grows to the right for the Y axis and to the left for the Y2 axis.

Restriction These options are valid for the Y and Y2 axes only.

Note When TOP or BOTTOM is used, the label might collide with other graphical features.

LEFT | RIGHT
positions the label to the left or right of the axis area. The label is centered vertically in the axis area.

Restriction These options are valid for the X and X2 axes only.

Note When LEFT or RIGHT is used, the label might collide with other graphical features.
The following figure shows the CENTER and DATACENTER positions for a blue Y axis label Qtr and a red X axis label Close.

The next figure shows the TOP and LEFT positions, and the BOTTOM and RIGHT positions for the same axis labels.

Default

CENTER

Restriction

This option does not support collision avoidance. In some cases, axis label collisions can occur in the axis area.

Interaction

When LEFT, RIGHT, TOP, or BOTTOM is in effect, the SHORTLABEL= option is ignored.

See

SHORTLABEL= on page 1044 for information about how short labels are used.

LABELSPLITCHAR="character-list"

specifies one or more characters on which the axis labels can be split, if needed. When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the axis label. In that case, all of the specified split characters together are treated as a single split character.

When LABELFITPOLICY=SPLIT, if the axis label does not fit the available space, then it is split on a specified split character only if a split is needed at that point to make the label fit. In this case, a split might not occur on every split character. When LABELFITPOLICY=SPLITALWAYS, the axis label is split unconditionally on every occurrence of a split character. If the axis label does not contain any of the specified split characters, the label is not split.

"character-list"

one or more characters with no space between each character and enclosed in quotation marks.

Default A blank space

Requirements The list of characters must be enclosed in quotation marks.

Multiple characters must be specified with no space between them. For example, to specify the split characters a, b, and c, use the following option:

```
labelsplitchar="abc"
```

The LABELSPLIT=TRUE option must also be specified.

Interactions This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

The LABELSPLITCHARDROP= option specifies whether the split characters are included in the displayed data label or are dropped.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip Use the LABELSPLITJUSTIFY= option to specify the justification of the strings in the axis label block.

LABELSPLITCHARDROP=TRUE | FALSE

specifies whether the split characters are included in the displayed axis labels.

TRUE

drops the split characters from the axis label display.

FALSE

includes the split characters in the axis label display. When LABELSPLIT=TRUE and LABELSPLITCHARDROP=FALSE, each split character remains as the last character in the current line. The characters that follow the split character, up to and including the next split character, are then wrapped to the next line.

Default TRUE. The split characters are dropped from the axis label.

Requirement The LABELSPLIT=TRUE option must also be specified.

Interactions This option has effect only when LABELPOSITION= is CENTER or DATACENTER.
The LABELSPLITCHAR= option specifies the split characters. See “boolean” on page 1339 for other Boolean values that you can use.

LABELSPLITJUSTIFY=justification
specifies the justification of the strings that are inside the axis label blocks.

<table>
<thead>
<tr>
<th>justification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
</tr>
<tr>
<td>CENTER</td>
<td>TOP</td>
</tr>
</tbody>
</table>

Default: CENTER

Requirement
LABELSPLIT=TRUE option must also be specified.

Interaction
This option has effect only when LABELPOSITION= is CENTER or DATACENTER.

LINEAROPTS=(linear-axis-options)
specifies one or more options for a numeric interval axis. Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.

Interaction
This option is ignored if the axis type is not LINEAR.

See “Options for Linear Axes Only” on page 1055 for the options that you can use for linear-axis-options.

LOGOPTS=(log-axis-options)
specifies one or more options for a log axis. Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.

Interaction
This option is ignored if the axis type is not LOG.

See “Options for Log Axes Only” on page 1065 for the options that you can use for log-axis-options.

NAME="string"
assigns a name to an axis for reference in other statements. Currently, it is used only in an AXISLEGEND statement.

Interaction
This option is ignored unless the axis is discrete. The axis can be discrete by default, or explicitly set to discrete with a TYPE=DISCRETE setting.

For this option to take effect, an axis legend must be enabled. To enable an axis legend, the DISCRETEOPTS= option must set the TICKVALUEFITPOLICY to either EXTRACT or EXTRACTALWAYS. In addition, an AXISLEGEND statement must be specified to generate the axis legend.

OFFSETMAX=AUTO | AUTOCOMPRESS | number
reserves an area at the maximum end of the axis. No tick marks are displayed in the reserved area.
AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

AUTOCOMPRESS
applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

\textit{number}
specifies the offset as a decimal proportion of the full axis length. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater.

Default AUTO

Range \(0–1\). The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.

See “Adjusting Axis Offsets” on page 886.

OFFSETMIN=AUTO | AUTOCOMPRESS | \textit{number}
reserves an area at the minimum end of the axis. No tick marks are displayed in the reserved area.

AUTO
reserves just enough area to fully display markers and other graphical features near the maximum end of an axis.

AUTOCOMPRESS
applies an automatic offset that prevents axis labels and tick values from extending beyond the axis length.

\textit{number}
specifies the offset as a decimal proportion of the full axis length. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less.

Default AUTOCOMPRESS

Range \(0–1\). The sum of OFFSETMAX= and OFFSETMIN= should not be more than 1.

See “Adjusting Axis Offsets” on page 886.

REVERSE=TRUE | FALSE
specifies whether tick values should appear in the reverse order.

Default FALSE

See “boolean ” on page 1339 for other Boolean values that you can use.

SHORTLABEL="\textit{string}"
specifies an alternate axis label to display when the default label or the label specified by the \texttt{LABEL=} option is too long to fit the available space.

When \texttt{LABELPOSITION=}CENTER (default), the available space for an axis label is the full axis, including the axis offsets. When \texttt{LABELPOSITION=}DATACENTER, the available space for an axis label is the axis tick display area, which excludes the axis offsets. If the label length exceeds the available space, then the label is anchored
at the left or bottom offset. It extends beyond the opposing offset until it reaches the end of the axis where it is truncated. An ellipsis designates the truncation.

Interactions
This option is ignored if the \texttt{DISPLAY=} option or the \texttt{DISPLAYSECONDARY=} option does not display the axis label.

This option has effect only when the \texttt{LABELPOSITION=} option is set to \texttt{CENTER} or \texttt{DATACENTER}.

Note
If the specified label is itself too long for the grid length or the grid width, then it is truncated in the display.

\textbf{TICKVALUEATTRS=style-element | style-element (text-options) | (text-options)}
specifies the color and font attributes of the axis tick values.

Default
The GraphValueText style element.

Interaction
This option is ignored if the \texttt{DISPLAY=} or \texttt{DISPLAYSECONDARY=} option does not display tick values.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a \texttt{style-element}.

“Text Options” on page 1351 for available \texttt{text-options}.

\textbf{TICKVALUEHALIGN=LEFT | CENTER | RIGHT}
specifies the horizontal alignment for all of the tick values that are displayed on the Y and Y2 axes.

\begin{center}
\begin{tabular}{|l|l|l|}
\hline
\textbf{LEFT} & \textbf{CENTER} & \textbf{RIGHT} \\
\hline
Notebooks & Notebooks & Notebooks \\
Ink & Ink & Ink \\
Printer paper & Printer paper & Printer paper \\
Staples & Staples & Staples \\
Pens & Pens & Pens \\
\hline
\end{tabular}
\end{center}

Defaults
RIGHT for a Y axis

LEFT for a Y2 axis

Restriction
This option is valid for the Y and Y2 axes only.

\textbf{TICKVALUEVALIGN=TOP | CENTER | BOTTOM}
specifies the vertical alignment for all of the tick values that are displayed on the X and X2 axes.
Defaults

TOP for an X axis

BOTTOM for an X2 axis

Restriction

This option is valid for the X and X2 axes only.

TIMEOPTS=(time-axis-options)
specifies one or more options for a time axis.

Requirements

Columns associated with a time axis must be in SAS time, SAS date, or SAS datetime units and have an associated SAS time, date, or datetime format.

Options must be enclosed in parentheses. Each option is specified as a name = value pair and each pair is space separated.

Interaction

This option is ignored if the axis type is not TIME.

See

“Options for Time Axes Only” on page 1074 for the options that you can use for time-axis-options.

TYPE=AUTO | DISCRETE | LINEAR | TIME | LOG

specifies the type of axis to use.

AUTO

requests that the axis type be automatically determined, based on the overlay contents.

DISCRETE

uses a DISCRETE axis if possible. The data for discrete axes can be character or numeric. You can add a DISCRETEOPTS= option list to customize this axis type.

LINEAR

uses a LINEAR axis if possible. You can add a LINEAROPTS= option list to customize this axis type.

TIME

uses a TIME axis if possible. Data for this axis must be SAS time, SAS date, or SAS datetime values. You can add a TIMEOPTS= option list to customize this axis type.
LOG
uses a LOG axis if possible. You can add a LOGOPTS= option list to customize this axis type.

Interaction
If a log axis is requested and the axis data contains 0 or negative values, the axis reverts to a linear axis. This outcome can occur for the response axis of a bar chart, line chart, needle plot, or waterfall chart when a baseline intercept of 0 or less is specified. It can also occur for the response axis of a waterfall chart when an initial bar value of 0 or less is specified. To get a log response axis in those cases, set the baseline intercept or initial bar value to a positive value.

Default
AUTO

Interactions
If this option is set to anything other than AUTO, then plots within the layout are dropped from the display if their data types or data ranges do not match the axis type requirements. For more information, see “Plot Axis Types Must Agree on Common Axes” on page 883.

After the axis type is determined (whether you set a specific type or AUTO is in effect), you can use only options that are supported by that axis type. For example, if TYPE=TIME, then only the general OVERLAY axis options and those available on TIMEOPTS= are supported.

Options for Discrete Axes Only
The options that are documented in this section can be used with the DISCRETEOPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Discrete Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>TICKTYPE</td>
<td>Specifies the position of the axis tick mark.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the list of tick values that are displayed on the axis.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
<tr>
<td>TICKVALUESPLITCHAR</td>
<td>Specifies a list of characters on which the tick values can be split, if needed.</td>
</tr>
</tbody>
</table>
Discrete Axis Option | Description
--- | ---
TICKVALUESPLITCHARDROP | Specifies whether the split characters are included in the displayed tick values.
TICKVALUESPLITJUSTIFY | Specifies justification of the strings that are inside the tick value block.

TICKDISPLAYLIST(string-list)
specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the TICKVALUELIST= option. The strings map one-to-one positionally with the values that are listed in the TICKVALUELIST= option.

Default: Determined by the system or by the TICKVALUELIST= option.
Requirements: The list of values must be enclosed in parentheses.
Tip: Each value (character and numeric) must be enclosed in quotation marks and separated from adjacent values by a blank space.
Tip: This option should be used with the TICKVALUELIST= option. The number of items in the list for this option should equal the number of items in the list for the TICKVALUELIST= option.
Example: The following example specifies the axis tick values 10, 20, 30, and 40, and the tick display values A, B, C, and D:
```
tickvaluelist=(*10* *20* *30* *40*);
tickdisplaylist=(*A* *B* *C* *D*);
```

TICKTYPE=MIDPOINT | INBETWEEN
specifies the position of the axis tick marks.

MIDPOINT places the tick marks at the midpoint value location.
INBETWEEN places the tick marks half way between adjacent midpoint locations.
Default: MIDPOINT
Restriction: This option applies to discrete axes only.
Note: Starting with the second maintenance release of SAS 9.4, when TICKTYPE=INBETWEEN, the outermost tick marks and grid lines at each end of the axis are not drawn.

TICKVALUEFITPOLICY=policy
specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:

EXTRACT
displays consecutive integers along the axis instead of the actual tick values in order to represent those tick values. In most cases, this policy is implemented if...
the system estimates that a collision might occur. If no collision occurs, then the actual tick values are displayed on the axis in the normal manner.

Requirement
The EXTRACT policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in *SAS Graph Template Language: User's Guide*.

EXTRACTALWAYS
same as EXTRACT, except that the extraction is implemented regardless of whether collision occurs.

Requirement
The EXTRACTALWAYS policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in *SAS Graph Template Language: User's Guide*.

NONE
makes no attempt to avoid collisions between tick values. Tick values are display even when they collide.

SPLIT
splits the tick value at a split character, which is specified by the TICKVALUESPLITCHAR= option, only when necessary in order to make the value fit the available space. A split does not occur at a split character if a split is not needed at that location. If the value does not contain any of the specified split characters, then the value is not split. Values that are not split or that do not fit the available space even after splitting might overlap the adjoining space.

See
TICKVALUESPLITCHAR=

SPLITALWAYS
always splits the axis tick value at every occurrence of a split character that is specified by the TICKVALUESPLITCHAR= option.

See
TICKVALUESPLITCHAR=

SPLITALWAYSTHIN
same as SPLITALWAYS, except that thinning is performed when long words do not fit the available space.

SPLITTHIN
same as SPLIT, except that thinning is performed when long words do not fit the available space.

THIN
eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:

EXTRACT
display consecutive integers along the axis instead of the actual tick values to represent those tick values. In most cases, this policy is implemented if the system estimates that a collision might occur. If no collision occurs, then the actual tick values are displayed on the axis in the normal manner.

Requirement
The EXTRACT policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in *SAS Graph Template Language: User's Guide*.
EXTRACTALWAYS
same as EXTRACT, except that the extraction is implemented regardless of whether collision occurs.

Requirement The EXTRACTALWAYS policy must be used with an AXISLEGEND statement. For more information, see “Extracting Discrete Axis Tick Values into a Legend” in SAS Graph Template Language: User’s Guide.

NONE
does not attempt to fit tick values that collide.

ROTATE
rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYS
rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATEALWAYSDROP
attempts the ROTATEALWAYS policy, and then drops the tick values if collisions still occur.

ROTATETHIN
attempts the ROTATE policy, and then the THIN policy.

SPLIT
splits the tick value at a split character, which is specified by the TICKVALUESPLITCHAR= option, only when necessary in order to make the value fit the available space. A split does not occur at a split character if a split is not needed at that location. If the value does not contain any of the specified split characters, then the value is not split. Values that are not split or that do not fit the available space even after splitting might overlap the adjoining space.

See TICKVALUESPLITCHAR=

SPLITALWAYS
always splits the axis tick value at every occurrence of a split character that is specified by the TICKVALUESPLITCHAR= option.

See TICKVALUESPLITCHAR=

SPLITROTATE
attempts the SPLIT policy, and then the ROTATE policy.

STAGGER
alters the tick values between two rows.

STAGGERROTATE
attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN
attempts the STAGGER policy, and then the THIN policy.
STAGGERTRUNCATE
attempts the STAGGER policy, and then the TRUNCATE policy.

THIN
eliminates alternate tick values.

TRUNCATE
shortens the tick values when they exceed a certain number of characters.

TRUNCATERotate
attempts the TRUNCATE policy, and then the ROTATE policy.

TRUNCATESTAGGER
attempts the TRUNCATE policy, and then the STAGGER policy.

TRUNCATETHIN
attempts the TRUNCATE policy, and then the THIN policy.

Defaults
ROTATE for the X and X2 axes
THIN for the Y and Y2 axes

Note
A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=\texttt{format}
specifies how to format the values for major tick marks.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Restrictions
This option applies only to discrete axes.

Only character formats are supported.

Interaction
This option is ignored when the axis tick values are extracted to an axis legend. See \texttt{TICKVALUEFITPOLICY=EXTRACT | EXTRACTALWAYS} on page 1048.

Tip
Use this option when you want to duplicate tick values on an axis.

TICKVALUELIST=(\texttt{string-list})
specifies the list of tick values that are to be displayed on the axis.

\textit{string-list}
\hspace{1cm}a space-separated list of values, enclosed in parentheses. You must enclose each value in the list in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Requirements
The list of values must be enclosed in parentheses.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes
If the string list contains duplicate values, then the first occurrence of the duplicated value in the list is honored and the remaining instances are ignored.
When the values specified in the list are compared with the actual data values, leading blanks are honored and trailing blanks are ignored.

Tips

- You can use this option to subset the axis values or to display the values in a specific order.
- You can use this option to display values on the axis that are not contained in the data.

Examples

- The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
 `tickvaluelist=('Sedan' 'Sports' 'Wagon' 'SUV')`
- The following example specifies the axis tick values 10, 20, 30, and 40:
 `tickvaluelist=('10' '20' '30' '40')`

TICKVALUEROTATION=

- **DIAGONAL** rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.
- **VERTICAL** rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default

- **DIAGONAL**

Restriction

- This option is valid for COLUMNAXISOPTS= and COLUMN2AXISOPTS= only.

Interaction

- The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

TICKVALUESPLITCHAR="character-list"

- Specifies a list of characters on which the tick values can be split, if needed. When multiple characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the tick value. In that case, all of the specified split characters together are treated as a single split character.

- When TICKVALUESPLITPOLICY=SPLIT, if a tick value collision is detected, then the tick value is split on a split character only if necessary at that point in order to avoid collision. In that case, a split might not occur on every split character. When TICKVALUEFITPOLICY=SPLITALWAYS, the tick value is split unconditionally on every occurrence of a split character. If the tick value does not contain any of the specified split characters, then it is not split.

- **"character-list"**
 - one or more characters with no delimiter between each character.

Default

- A blank space

Requirements

- The list of characters must be enclosed in quotation marks.
Multiple characters must be specified with no delimiters. For example, to specify the characters a, b, and c, use the following option:

\[\text{tickvaluesplitchar} = "abc" \]

Interactions

This option is ignored unless option `TICKVALUEFITPOLICY=` is set to SPLIT, SPLITALWAYS, SPLITTHIN, or SPLITALWAYSTHIN.

The `TICKVALUEFITPOLICY=` option sets the policy that is used to manage the split behavior of the tick values.

The `TICKVALUESPLITCHARDROP=` option specifies whether the split characters are displayed or dropped from the display.

Notes

When multiple characters are specified, the order of characters in the list is not significant.

The split characters are case sensitive.

Tips

Use the `TICKVALUESPULLITJUSTIFY=` option to specify the justification of the strings in the tick value block.

For the X and X2 axis tick values, use the `TICKVALUEVALIGN=` option to specify the vertical alignment of the tick values.

For the Y and Y2 axis tick values, use the `TICKVALUEHALIGN=` option to specify the horizontal alignment of the tick values.

Example

The following example specifies a blank space, a comma, and an underscore as split characters:

\[\text{tickvaluesplitchar} = " ,_" \]

TICKVALUESPLITCHARDROP=TRUE | FALSE

specifies whether the split characters should be included in the displayed tick values. The split characters are specified by the `TICKVALUESPLITCHAR=` option.

TRUE

drops the split characters from the tick value display. The following figure shows an example in which `TICKVALUESPLITCHARDROP=TRUE` and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLITALWAYS policy.

<table>
<thead>
<tr>
<th>Product Group</th>
<th>Product Group</th>
<th>Product Group</th>
<th>Product Group</th>
<th>Product Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

Notice that the asterisk delimiter is not displayed.

FALSE

includes the split characters in the tick value display. The fit policy determines how the characters are displayed. If the display policy is SPLIT or SPLITTHIN and `TICKVALUESPLITCHARDROP=FALSE`, then each tick value is split at a split character only where a split is necessary in order to make the value fit the available space. A split might not occur at every split character in the tick value.

At each split point, the split character remains as the last character in the current
line. The characters that follow the split character, up to and including the split character at the next split point, are then wrapped to the following line. This process repeats until the entire data tick value is displayed. The following figure shows an example in which TICKVALUESPLITCHARDROP=FALSE and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLIT policy.

Notice that a split occurs on the first asterisk and not at the second. In this case, a split is not needed at the second asterisk.

If the fit policy is SPLITALWAYS or SPLITALWAYSTHIN, and TICKVALUESPLITCHARDROP=FALSE, then each tick value is split at every instance of a split character in the value regardless of whether a split is actually needed. Each split character remains as the last character in the current line. The characters that follow each split character, up to and including the next split character, are then wrapped to the next line. The following figure shows an example in which TICKVALUESPLITCHARDROP=FALSE and three-word, asterisk-delimited tick values are split on the asterisk character by using the SPLITALWAYS policy.

Notice that a split occurs after each asterisk and each asterisk appears at the end of the line. In this case, three lines are displayed.

Default

| TRUE |

Interactions

The TICKVALUESPLITCHAR= option specifies the split character or characters.

This option is ignored unless option TICKVALUEFITPOLICY= is set to SPLIT, SPLITALWAYS, SPLITTHIN, or SPLITALWAYSTHIN.

See

“boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUESPLITJUSTIFY= CENTER | LEFT | RIGHT

specifies justification of the strings that are inside the tick value block. The justification is relative to an individual tick value’s display area and does not affect the display of tick values that are not split.
Defaults

CENTER for an X or X2 axis

RIGHT for a Y axis

LEFT for a Y2 axis

Interaction

This option is ignored unless option TICKVALUEFITPOLICY= is set to SPLIT, SPLITALWAYS, SPLITTHIN, or SPLITALWAYSTHIN.

Options for Linear Axes Only

The options that are documented in this section can be used with the LINEAROPTS= axis option. The following table provides a summary of the options.

<table>
<thead>
<tr>
<th>Linear Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>Specifies that evenly spaced integer values are used for tick marks.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether the minor tick marks are displayed on the axis.</td>
</tr>
<tr>
<td>THRESHOLDMAX</td>
<td>Specifies a bias for including one more tick mark at the maximum end of the axis.</td>
</tr>
<tr>
<td>THRESHOLDMIN</td>
<td>Specifies a bias for including one more tick mark at the minimum end of the axis.</td>
</tr>
<tr>
<td>TICKDISPLAYLIST</td>
<td>Specifies the text that is displayed for the tick values that are defined in the TICKVALUELIST= option.</td>
</tr>
<tr>
<td>Linear Axis Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision. Only the default policy (THIN) is available for a Y or Y2 axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUENAME</td>
<td>Specifies the order of the tick values for a linear axis as list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether an axis tick specification can extend the axis data range.</td>
</tr>
<tr>
<td>TICKVALUESROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
<tr>
<td>TICKVALUESEQUENCE</td>
<td>Specifies the tick values for a linear axis by start, end, and increment.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

INTEGER=TRUE | FALSE

specifies that evenly spaced integer values are used for tick marks.

Default
FALSE

Interactions
This option is overridden by the TICKVALUENAME= or TICKVALUESEQUENCE= option.

This option overrides the MAXDECIMALS= and PREFERREDDECIMALS= suboptions of the TICKVALUEFORMAT= option.

INTEGER=TRUE is ignored for the X or X2 axis when a histogram plot is the primary plot and BINAXIS=TRUE is specified in the HISTOGRAMPARM statement.

See
“boolean ” on page 1339 for other Boolean values that you can use.

MINORGRID=TRUE | FALSE

specifies whether grid lines are displayed at the minor tick marks.
Defaults FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)

specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a linear axis. (See the example.)

Defaults The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction This option is ignored when MINORTICKS=FALSE.

Note When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.
Tip Use the `GRIDATRGS=` option to control the appearance of the major grid lines.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example Here is an example that specifies light blue, dotted lines for the minor grid.
```
minorgridattrs=(color=lightblue pattern=dot);
```

MINORTICKCOUNT= *positive-integer*

specifies the number of minor ticks that are displayed on the axis.

Defaults

Four ticks with five intervals in the first maintenance release of SAS 9.4 and earlier releases.

One tick with two intervals starting with the second maintenance release of SAS 9.4.

Interactions

The `DISPLAY=` or `DISPLAYSECONDARY=` option specification must include `TICKS` for this option to have any effect.

The `MINORTICKS=` option must specify `TRUE` for this option to have any effect.

Tip To display n intervals between major ticks, use `MINORTICKCOUNT=n-1`.

MINORTICKS= *TRUE | FALSE*

specifies whether minor ticks are displayed. When `MINORTICKS=TRUE`, the minor tick marks are displayed on the axis as shown in the following figure.

```
TRUE          0   50   100   150   200
FALSE         0   50   100   150   200
```

Default `FALSE`

Tip Use the `MINORGRID=` option to display grid lines at the minor tick values.

See “boolean” on page 1339 for other Boolean values that you can use.

THRESHOLDMAX= *number*

specifies a bias for including one more tick mark at the maximum end of the axis.

Default 0.30

Range 0–1

Restriction This option applies to linear axes only.
Interaction This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is used.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` and `THRESHOLDMAX=` options to 0.

See “Adjusting Axis Thresholds” on page 885

THRESHOLDMIN=number
specifies a bias for including one more tick mark at the minimum end of the axis.

Default 0.30

Range 0–1

Restriction This option applies to linear axes only.

Interaction This option is ignored if the `TICKVALUELIST=` or `TICKVALUESEQUENCE=` option is used.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` and `THRESHOLDMAX=` options to 0.

See “Adjusting Axis Thresholds” on page 885

TICKDISPLAYLIST=(string-list)
specifies the text that is displayed for the tick values that are defined in the `TICKVALUELIST=` option. The string list is a space-separated list of string values that are displayed on the axis in place of the values in the `TICKVALUELIST=` option. The strings map one-to-one positionally with the values that are listed in the `TICKVALUELIST=` option.

Default The display of tick values is controlled by the `TICKVALUEFORMAT=` option.

Requirements The list of values must be enclosed in parentheses.

Each value (character and numeric) must be enclosed in quotation marks and separated from adjacent values by a blank space.
Interaction

When this option is specified, the TICKVALUEFORMAT= option is ignored.

Tip

This option should be used with the TICKVALUELIST= option. The number of items in the list for this option should equal the number of items in the list for the TICKVALUELIST= option.

TICKVALUEFITPOLICY=\textit{policy}

specifies a policy for avoiding tick value collision on an axis. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. Which policies are valid depends on the axis on which this option is used. For the Y and Y2 axes, the following policies are valid:

\textbf{NONE}

makes no attempt to avoid collisions between tick values. Tick values are displayed even when they collide.

\textbf{THIN}

eliminates alternate tick values.

For the X and X2 axes, the following policies are valid:

\textbf{ROTATE}

rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

\textbf{ROTA TEALWAYS}

rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

\textbf{ROTA TETHIN}

attempts the ROTATE policy, and then the THIN policy.

\textbf{STAGGER}

alternates the tick values between two rows.

\textbf{STAGG ERROTATE}

attempts the STAGGER policy, and then the ROTATE policy.

\textbf{STAGGERTHIN}

attempts the STAGGER policy, and then the THIN policy.

\textbf{THIN}

eliminates alternate tick values.

Default \textbf{THIN}

Note

A note is written to the SAS log when tick value thinning occurs.

TICKVALUEFORMAT=(\textit{format-options}) | DATA | \textit{format}

specifies how to format the values for major tick marks.

\textit{(format-options)}

specifies one or more formatting options for major tick values. Together, these options provide parameters for determining an optimal format (\textit{w.d}, \textit{Ew.}, \textit{BESTw.}) for displaying major tick values.
MAXWIDTH=integer
specifies the maximum width for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 8

MAXDECIMALS=integer
specifies the maximum number of decimals for displayed tick values. Values might be rounded or converted to E notation to fit into this width.

Default 6

Note The MAXWIDTH= option value should be greater than the MAXDECIMALS= option value.

PREFERREDDECIMALS=integer
specifies the number of decimal places that you want to display for most values. The actual number might vary based on other constraints.

Default 2

EXTRACTSCALE=TRUE | FALSE
specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width. The scale can be a named scale or a scientific-notation scale. The EXTRACTSCALETYPE= option specifies the scale type. The scale that is used is appended to the axis label, as shown in the following example.

Total Sales (millions)
For long axis labels, if the scale does not fit the available space, then the label is truncated, and the scale is appended to the truncated label. Ellipses indicate that the label was truncated, as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)
In extreme cases in which the scale does not fit even with truncation, the entire axis is dropped.

Default FALSE

Restriction The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale for all locales.

Interactions The scale type is determined by the EXTRACTSCALETYPE= option.

If the axis label is not displayed, then the EXTRACTSCALE=TRUE option is ignored.

Note When EXTRACTSCALE=TRUE and a scale is extracted, the tick values are formatted to provide the best fit on the axis. In that case, the tick value format might differ from the data format even when a named format is applied to the data values.

See “boolean ” on page 1339 for other Boolean values that you can use.

EXTRACTSCALETYPE=DEFAULT | SCIENTIFIC
specifies whether to extract a named scale or a scientific-notation scale.
DEFAULT extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as \(10^n\)) for values over 999 trillion. For large tick values, the scale factor is set to ensure that the absolute value of the largest value is greater than 1. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of 1/10 (\(10^{-n}\)) for values less than 1 trillionth.

SCIENTIFIC extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as \(10^n\) for values greater than 1, or a multiple of 1/10 expressed as \(10^{-n}\) for values less than 1.

Default DEFAULT

Restriction The scale is derived from the English locale for all locales.

DATA uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format specifies a format to apply to the major tick values.

Restriction GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Note If you specify a format that significantly reduces precision, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Default (MAXWIDTH=8, MAXDECIMALS=6, PREFERREDDECIMALS=2, EXTRACTSCALE=FALSE, EXTRACTSCALETYPE=DEFAULT)

Interaction This option is ignored when the TICKDISPLAYLIST= option is specified.

TICKVALUESLIST=(numeric-list) specifies the tick values for a linear axis as a list.

Default An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the VIEWMIN= and VIEWMAX= options. By default, when this option is used, the only tick values that appear are the tick values in numeric-list that fall within the explicit data range (set by VIEWMIN= and VIEWMAX=) or the implicit data range (set by the actual data minimum and data maximum).

Restriction This option applies to linear axes only.

Requirement The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.
Interactions

This option overrides the INTEGER= option.

This option is ignored if the TICKVALUESEQUENCE= option is specified, or if the DISPLAY= option or the DISPLAYSECONDARY= option does not display tick values.

The VIEWMIN= and VIEWMAX= options alter the axis data range. If the VIEWMIN= option is set to the minimum tick list value and the VIEWMAX= option is set to the maximum tick list value, then all ticks in the tick list are displayed. This might result in some data not being displayed. For example, data might not be displayed when the VIEWMIN= value is greater than the actual data minimum, or when the VIEWMAX= value is less than actual data maximum.

If TICKVALUEPRIORITY= TRUE, then the VIEWMIN= and VIEWMAX= options are ignored if they are fully enclosed by the numeric-list. The tick numeric-list can extend the implicit data range of the axis, but cannot reduce it.

Tip

The values in the list are formatted according to the setting for the TICKVALUEFORMAT= option.

TICKVALUEPRIORITY=TRUE | FALSE

specifies whether an axis tick specification (TICKVALUENLIST= or TICKVALUESEQUENCE=) can extend the axis data range.

TRUE

extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by either the TICKVALUENLIST= or TICKVALUESEQUENCE= option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE

displays only the tick values that are specified by the TICKVALUENLIST= option that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum.

Default

FALSE

Restriction

This option applies to linear axes only.

Interactions

When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored.

This option is ignored if the TICKVALUENLIST= or TICKVALUESEQUENCE= option is not specified.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

Note

If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See

“boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUEROTATION=DIAGONAL | VERTICAL

specifies how the tick values are rotated on the X and X2 axes.
DIAGONAL rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default DIAGONAL

Restriction This option is valid for COLUMNAXISOPTS= and COLUMN2AXISOPTS= only.

Interaction The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

TICKVALUESEQUENCE=(sequence-options) specifies the tick values by start, end, and increment.

(sequence-options)
a space-separated list of the following name-value-pair options that control major tick values. You must provide all three options.

START=number specifies the value for the first tick mark.

END=number specifies the value for the last tick mark.

INCREMENT=number specifies the increment for intermediate tick marks between the first and last tick marks. The END value always controls the last tick mark. The interval between the last tick mark and the previous tick mark might not necessarily be the INCREMENT value.

Default An internal algorithm determines the tick marks, based on the actual axis data range or the data range established by the VIEWMIN= and VIEWMAX= options. By default, when this option is used, the only tick values that appear are those that fall within the explicit data range (set by VIEWMIN= and VIEWMAX=) or the implicit data range (set by the actual data minimum and data maximum).

Interactions This option overrides the INTEGER= option.

The VIEWMIN= and VIEWMAX= options alter the axis data range. If the VIEWMIN= option is set to the START= option value and the VIEWMAX= option is set to the END= option value, then all ticks in the tick sequence are displayed.

If TICKVALUEPRIORITY= TRUE, then the tick sequence might extend the explicit data range of the axis, but never reduce it.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display tick marks.

Tip The values in the sequence are formatted according to the setting for the TICKVALUEFORMAT= option.

See TICKVALUELIST= option as an alternative for customizing tick marks.
VIEWMAX=number
specifies the maximum data value to include in the display. The value might be
adjusted by the threshold calculation.

<table>
<thead>
<tr>
<th>Default</th>
<th>The maximum value in the data for the specified axis.</th>
</tr>
</thead>
</table>
| Interactions | This option does not determine the maximum axis tick value that is
 | displayed. The `THRESHOLDMAX=` value is used to determine the
 | maximum tick value. |
| Notes | This option is ignored when `TICKVALUEPRIORITY=TRUE`. |
| Tip | To display the `VIEWMAX=` value as the maximum tick value, use the
 | `TICKVALUELIST=` option. |
| See | “Adjusting the Axis View” on page 884 |

VIEWMIN=number
specifies the minimum data value to include in the display. The value might be
adjusted by the threshold calculation.

<table>
<thead>
<tr>
<th>Default</th>
<th>The minimum value in the data for the specified axis.</th>
</tr>
</thead>
</table>
| Interactions | This option does not determine the minimum axis tick value that is
 | displayed. The `THRESHOLDMIN=` value is used to determine the
 | minimum tick value. |
| Notes | This option is ignored when `TICKVALUEPRIORITY=TRUE`. |
| Tip | To display the `VIEWMIN=` value as the minimum tick value, use the
 | `TICKVALUELIST=` option. |
| See | “Adjusting the Axis View” on page 884 |

Options for Log Axes Only
The options that are documented in this section can be used with the `LOGOPTS=` axis
option. The following table provides a summary of the options.
Log Axis Option

<table>
<thead>
<tr>
<th>Log Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>Specifies the base of the logarithmic scale for the axis values.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick marks.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKCOUNT</td>
<td>Specifies the number of minor ticks that are displayed on the axis.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>TICKINTERVALSTYLE</td>
<td>Specifies how to scale and format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT=</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the tick values for a log axis as a space-separated list.</td>
</tr>
<tr>
<td>TICKVALUEPRIORITY</td>
<td>Specifies whether the TICKVALUELIST specification can extend the axis data range.</td>
</tr>
<tr>
<td>VALUESTYPE</td>
<td>Specifies the scale that the system uses when interpreting the TICKVALUELIST=, VIEWMAX=, and VIEWMIN= option values.</td>
</tr>
<tr>
<td>VIEWMAX</td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td>VIEWMIN</td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

BASE=10 | 2 | E
specifies the base of the logarithmic scale for the axis values.

| Default | 10 |

Restriction
This option applies to log axes only.

MINORGRID=TRUE | FALSE
specifies whether grid lines are displayed at the minor tick marks.
Defaults FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean ” on page 1339 for other Boolean values that you can use.

\[\text{MINORGRIDATTRS} = \text{style-element} | \text{style-element (line-options)} | (\text{line-options}) \]

specifies the attributes of the minor grid lines. This option does not affect the major grid lines.

The following figure shows the minor grid lines set to light blue, dotted lines on a base-10 log axis. (See the example.)

Defaults The GraphGridLines style element is used starting with SAS 9.4.

The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction This option is ignored when MINORTICKS=FALSE.

Note When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.
Tip Use the GRIDATRIS= option to control the appearance of the major grid lines.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example Here is an example that specifies light blue, dotted lines for the minor grid.

\[
\text{minorgridattr=(color=lightblue pattern=dot);}
\]

MINORTICKCOUNT=positive-integer

specifies the number of minor ticks that are displayed on the axis.

Default Eight ticks with nine intervals (BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.).

Restriction Minor ticks can be displayed only when BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.

Interactions The DISPLAY= or DISPLAYSECONDARY= option specification must include TICKS for this option to have any effect.

The MINORTICKS= option must specify TRUE for this option to have any effect.

Tip To display \(n \) intervals between major ticks, use MINORTICKCOUNT=\(n-1 \).

MINORTICKS=TRUE | FALSE

specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.

\[
\begin{align*}
\text{TRUE} & \\
1 & 10 & 100 & 1000 \\
\text{FALSE} & \\
1 & 10 & 100 & 1000
\end{align*}
\]

Default FALSE

Restriction Minor ticks can be displayed only when BASE=10 and TICKINTERVALSTYLE= is LOGEXPAND or LOGEXPONENT.

Tip Use the MINORGRID= option to display grid lines at the minor tick values.

See “boolean ” on page 1339 for other Boolean values that you can use.

TICKINTERVALSTYLE=AUTO | LOGEXPAND | LOGEXPONENT | LINEAR

specifies how to scale and format the values for major tick marks.

AUTO selects a LOGEXPAND, LOGEXPONENT, or LINEAR representation automatically based on the range of the data. When the data range is small (within an order of magnitude), a LINEAR representation is typically used. Data
ranges that encompass several orders of magnitude typically use the
LOGEXPAND or LOGEXPONENT representation.

LOGEXPAND

places the major tick marks at uniform intervals at integer powers of the base.
The tick values are expanded as follows:

- **Base=10**

 \[\begin{array}{cccc}
 1 & 10 & 100 & 1000 \\
 \end{array} \]

- **Base=2**

 \[\begin{array}{cccc}
 1 & 2 & 4 & 8 & 16 & 32 & 64 & 128 & 256 & 512 & 1024 \\
 \end{array} \]

- **Base=E**

 \[\begin{array}{cccc}
 e^0 & e^1 & e^2 & e^3 & e^4 & e^5 & e^6 & e^7 \\
 \end{array} \]

LOGEXPONENT

places the major tick marks at uniform intervals at integer powers of the base.
The tick values are only the integer exponents for all bases.

LINEAR

places the major tick marks at non-uniform intervals that cover the range of the
data.

Default AUTO

Restrictions

This option applies to log axes only.

For LOGEXPONENT, formats on data columns contributing to the
axis are ignored. For LOGEXPAND, formats on data columns
contributing to the axis are ignored, although any "named format" on
the column is retained. For LINEAR, ticks values are automatically
formatted when the column format is not assigned or one of \(w.d, Ew, \)
or BEST\(w \). Other formats (SAS defined or user-defined) are used if
specified.

GTL currently honors most but not every SAS format. For details, see

Note

When BASE=10 and LOGEXPAND or LOGEXPONENT is used, an
intermediate tick is added whenever the axis data range is less than or
equal to 1.5 powers of 10.

Tip

If you use TICKINTERVALSTYLE=LOGEXPONENT, then you
might want to include information in the axis label about which base
is used.

TICKVALUEFORMAT=DATA | format

specifies how to format the values for major tick marks.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

format

specifies a format to apply to the major tick values.

Restriction

GTL currently honors most, but not every, SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

Restriction

This option applies to log axes only.

Interactions

This option is ignored when **TICKINTERVALSTYLE=LOGEXPONENT**.

When **TICKINTERVALSTYLE=LOGEXPAND**, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When **TICKINTERVALSTYLE=LINEAR**, this option is honored for the base 10, base 2, and base E logarithmic scales.

See

BASE=

TICKINTERVALSTYLE=

TICKVALUelist=(numeric-list)

specifies the tick values for a linear axis as a list.

Default

Only the tick values specified in the list that fall within the explicit data range set by the **VIEWMIN=** and **VIEWMAX=** options or by the implicit data range set by the actual data minimum and data maximum are displayed. An internal algorithm determines the tick marks.

Requirements

The tick values must be specified as a space-separated list of numeric values, enclosed in parentheses.

The values that you specify must be appropriate for the **VALUESTYPE=** specification. Otherwise, unexpected results might occur. If **VALUESTYPE=EXPANDED** is in effect (default), specify increments of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If **VALUESTYPE=EXPONENT** is in effect, specify integer increments of the log base power exponent such as 1, 2, 3, and so on.

Interactions

The **VALUESTYPE=** option determines how the values in the list are interpreted.

The **VIEWMIN=** and **VIEWMAX=** options alter the axis data range. If the **VIEWMIN=** option is set to the minimum tick list value and the **VIEWMAX=** option is set to the maximum tick list value, then all ticks in the tick list are displayed. This might result in some data not being displayed. For example, data might not be
displayed when the VIEWMIN= value is greater than the actual data minimum, or when the VIEWMAX= value is less than actual data maximum.

If the VIEWMIN= value is greater than the actual data minimum or the VIEWMAX= value is less than actual data maximum, some data might not be displayed.

This option is ignored if the DISPLAY= or the DISPLAYSECONDARY= option does not display the tick values.

See

VIEWMIN= and VIEWMAX= options for controlling the data range

TICKINTERVALSTYLE= for specifying the scale and format of the major tick values

TICKVALUEPRIORITY= for controlling the behavior of the TICKVALUELIST= option

BASE= for specifying the log base

TICKVALUEPRIORITY=TRUE | FALSE

specifies whether the TICKVALUELIST= specification can extend the axis data range.

TRUE

extends the axis data range (but does not reduce it) to include the minimum and maximum values that are specified by the TICKVALUELIST= option. If the minimum and maximum of the user-specified values are within the data range, this option has no effect.

FALSE

displays only the tick values that are specified by the TICKVALUELIST= option that fall within the explicit data range set by the VIEWMIN= and VIEWMAX= options or by the implicit data range set by the actual data minimum and data maximum.

Default

FALSE

Interactions

When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored.

This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

This option is ignored if the TICKVALUELIST= option is not specified.

Note

If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See

“boolean ” on page 1339 for other Boolean values that you can use.

VALUESTYPE=EXPANDED | EXPONENT

specifies the scale that the system uses when interpreting the TICKVALUELIST=, VIEWMAX=, and VIEWMIN= option values. Use this option to choose your preferred way of specifying log-axis values.
values are interpreted as powers of the base such as 0.1, 1, 10, 100, and so on, for base 10, for example.

Values are interpreted as integer exponents of the base such as 1, 2, 3, and so on, for base 10, base 2, and base E.

Default EXPANDED

Note This option does not change the style of the tick values that are displayed on the axis. It changes only how the VIEWMIN=, VIEWMAX=, and TICKVALUELIST= option values are interpreted by the system.

Tip This option is particularly useful when BASE=E.

Examples The following example specifies VIEWMIN= and VIEWMAX= as exponent values instead of as expanded values on an expanded Base 10 log axis. This results in X-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
xaxisopts=(type=log
    logopts=(base=10
        tickintervalstyle=logexpand
        valuestype=exponent
        viewmin=1 viewmax=5));
```

The following example specifies TICKVALUELIST= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxisopts=(type=log
    logopts=(base=10
        tickintervalstyle=logexponent
        tickvaluepriority=true
        valuestype=expanded
        tickvaluelist=(10 100 1000 10000 100000));
```

VIEWMAX=number specifies the maximum data value to include in the display.

Default The maximum value in the data for the specified axis.

Requirement The value that you specify must be appropriate for the VALUESTYPE= specification and the log base. Otherwise, unexpected results might occur. If VALUESTYPE=EXPANDED is in effect (default), specify an increment of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If VALUESTYPE=EXPONENT is in effect, specify an integer increment of the log base power exponent such as 1, 2, 3, and so on.

Interactions This option is ignored when TICKVALUEPRIORITY= TRUE.

Notes Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

If an invalid value is specified for the VIEWMAX= option, the default value for VIEWMAX= is used instead. In that case, if the
default value for VIEWMAX= is less than the value specified by the VIEWMIN= option, then the VIEWMIN= and VIEWMAX= values are swapped.

The maximum axis tick value might differ from the VIEWMAX= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

When BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or TICKINTERVALSTYLE=LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.

Tip

To display the VIEWMAX= value as the maximum tick value, use the `TICKVALUELIST=` option.

See

“Adjusting the Axis View” on page 884

Examples

The following example specifies a value of 100,000 as an expanded value on a base 10 log axis:

```
VIEWMAX=100000
```

The following example specifies a value of 100,000 as an exponent value on a base 10 log axis:

```
VIEWMAX=5
```

VIEWMIN=number

specifies the minimum data value to include in the display.

Default

The minimum value in the data for the specified axis.

Requirement

The value that you specify must be appropriate for the `VALUESTYPE=` specification and the log base. Otherwise, unexpected results might occur. If `VALUESTYPE=EXPANDED` is in effect (default), specify an increment of the log base power such as 0.1, 1, 10, 100, and so on, on a base 10 log axis, for example. If `VALUESTYPE=EXPONENT` is in effect, specify an integer increment of the log base power exponent such as 1, 2, 3, and so on.

Interactions

This option is ignored when `TICKVALUEPRIORITY= TRUE`.

Notes

Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

When BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or TICKINTERVALSTYLE=LOGEXPONENT is used, an intermediate tick is added whenever the axis data range is less than or equal to 1.5 powers of 10.
Tip
To display the VIEWMIN= value as the minimum tick value, use the
TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

Examples
The following example specifies a value of 0.1 as an expanded value
on a base 10 log axis:
VIEWMIN=0.1

The following example specifies a value of 0.1 as an exponent value
on a base 10 log axis:
VIEWMIN=-1

Options for Time Axes Only
The options that are documented in this section can be used with the TIMEOPTS= axis
option. Some of the options are axis-specific. The following tables provide a summary of
the time-axes options based on the layout axis option in which it is used.

Table 8.4 Time-Axis Options for the COLUMNAXIS= or COLUMN2AXIS=Layout Option

<table>
<thead>
<tr>
<th>Time Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL</td>
<td>Specifies that evenly spaced integer values are used for tick marks.</td>
</tr>
<tr>
<td>INTERVALMULTIPLIER</td>
<td>Specifies a multiplier to apply to the time interval that is in effect for the axis.</td>
</tr>
<tr>
<td>MINORGRID</td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td>MINORGRIDATTRS</td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td>MINORTICKINTERVAL</td>
<td>Specifies the time interval between minor ticks.</td>
</tr>
<tr>
<td>MINORTICKS</td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td>SPLITTICKVALUE</td>
<td>Specifies whether to split the tick values on an X or X2 axis, if possible.</td>
</tr>
<tr>
<td>TICKVALUEFITPOLICY</td>
<td>Specifies a policy for avoiding tick value collision on an X or X2 axis.</td>
</tr>
<tr>
<td>TICKVALUEFORMAT</td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td>TICKVALUELIST</td>
<td>Specifies the order of the tick values for a time axis as list.</td>
</tr>
<tr>
<td>TICKVALUEROTATION</td>
<td>Specifies how the tick values are rotated on the X and X2 axes.</td>
</tr>
</tbody>
</table>
Table 8.5 Time-Axis Options for the ROWAXIS= or ROW2AXIS=Layout Option

<table>
<thead>
<tr>
<th>Time Axis Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>INTERVAL=</code>interval</td>
<td>Specifies that evenly spaced integer values are used for tick marks.</td>
</tr>
<tr>
<td><code>INTERVALMULTIPLIER</code></td>
<td>Specifies a multiplier to apply to the time interval that is in effect for the axis.</td>
</tr>
<tr>
<td><code>MINORGRID</code></td>
<td>Specifies whether grid lines are displayed at the minor tick values.</td>
</tr>
<tr>
<td><code>MINORGRIDATTRS</code></td>
<td>Specifies the attributes of the minor grid lines.</td>
</tr>
<tr>
<td><code>MINORTICKINTERVAL</code></td>
<td>Specifies the time interval between minor ticks.</td>
</tr>
<tr>
<td><code>MINORTICKS</code></td>
<td>Specifies whether minor ticks are displayed.</td>
</tr>
<tr>
<td><code>TICKVALUEFORMAT</code></td>
<td>Specifies how to format the values for major tick marks.</td>
</tr>
<tr>
<td><code>TICKVALUESLIST</code></td>
<td>Specifies the order of the tick values for a time axis as list.</td>
</tr>
<tr>
<td><code>TICKVALUEPRIORITY</code></td>
<td>Specifies whether an axis tick specification that is specified with the TICKVALUESLIST= option can extend the axis data range.</td>
</tr>
<tr>
<td><code>VIEWMAX</code></td>
<td>Specifies the maximum data value to include in the display.</td>
</tr>
<tr>
<td><code>VIEWMIN</code></td>
<td>Specifies the minimum data value to include in the display.</td>
</tr>
</tbody>
</table>

INTERVAL=interval

specifies the time interval between major ticks. Valid *interval* keywords are AUTO, SECOND, MINUTE, HOUR, DAY, TENDAY, WEEK, SEMIMONTH, MONTH, QUARTER, SEMIYEAR, YEAR.
Table 8.6 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default
AUTO. An appropriate interval is chosen based on the data and the column date, date-time, or time format.

Restriction
This option applies to time axes only.

Requirement
The data column(s) mapped to a time axis must be in the same duration units: TIME, DATE, or DATETIME. The selection of an interval must be consistent with the duration unit. For example, if the data are in time units, you can specify only AUTO, SECOND, MINUTE, HOUR.

Interaction
This option is ignored if the TICKVALUENAME= option is used.
INTERVALMULTIPLIER=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default 1
Restriction This option applies to time axes only.
Interaction This option is ignored if the TICKVALUELIST= option is used.
Tip Use the INTERVAL= option to specify a different time interval.
Examples To specify 3-month intervals:
INTERVAL=MONTH INTERVALMULTIPLIER=3
To specify 10-year intervals:
INTERVAL=YEAR INTERVALMULTIPLIER=10

MINORGRID=TRUE | FALSE
specifies whether grid lines are displayed at the minor tick marks.

Defaults FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphMinorGridLines:DisplayOpts style reference starting with the second maintenance release of SAS 9.4. If attribute DisplayOpts is not defined in the active style, then FALSE is the default value.

Interaction This option is ignored if the GRIDDISPLAY= option does not display the grid lines.

Tips The GRIDATTRS= option does not affect the appearance of the minor grid lines. To control the minor grid line appearance, use the MINORGRIDATTRS= option.

Use the MINORTICKS= option to display the minor tick marks on the axis.

See “boolean” on page 1339 for other Boolean values that you can use.

MINORGRIDATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the minor grid lines. This option does not affect the major grid lines.
The following figure shows the minor grid lines set to light blue, dotted lines on a time axis. (See the example.)

Defaults
The GraphGridLines style element is used starting with SAS 9.4.
The GraphMinorGridLines style element is used starting with the second maintenance release of SAS 9.4.

Interaction
This option is ignored when MINORTICKS=FALSE.

Note
When style-element is specified, only the style element’s CONTRASTCOLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
Use the GRIDATTRS= option to control the appearance of the major grid lines.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Line Options” on page 1349 for available line options.

Example
Here is an example that specifies light blue, dotted lines for the minor grid.

```
minorgridattrs=(color=lightblue pattern=dot);
```

MINORTICKINTERVAL= *interval*

specifies the time interval between minor ticks. See Table 8.6 on page 1076 for information about the intervals that you can select. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, then you must specify AUTO, SECOND, MINUTE, or HOUR.

Default
AUTO

Interactions
This option is ignored if the TICKVALUELIST= option is used.

This option is ignored if the MINORTICKINTERVAL= setting is greater than the INTERVAL= setting.

MINORTICKS= *TRUE | FALSE*

specifies whether minor ticks are displayed. When MINORTICKS=TRUE, the minor tick marks are displayed on the axis as shown in the following figure.
INTERVAl=

The number of minor ticks is dependent on the value of the MINORTICKINTERVAL= option, if specified. If MINORTICKINTERVAL= is not specified, then it is dependent on the value of the INTERVAL= option.

This option is ignored if the TICKVALUELIST= option is used, or if the DISPLAY= or DISPLAYSECONDARY= option does not display the tick marks.

Tip

Use the MINORGRID= option to display grid lines at the minor tick values.

See

“boolean ” on page 1339 for other Boolean values that you can use.

SPLITTICKVALUE=TRUE | FALSE

specifies whether to split the tick values on an X or X2 axis, if possible. This option is not available for a Y or Y2 axis.

TRUE

splits the axis tick values into two lines allowing more tick values to appear. For example, with INTERVAL= MONTH, this is how tick values are split:

FALSE

does not split the axis tick values. For example, when this option specifies FALSE, this is how the tick values in the previous example appear:

Typically, fewer tick values fit, causing thinning, rotation, or staggering of the values. See the TICKVALUEFITPOLICY= option.

Default

TRUE

Restrictions

This option applies to time axes only.

This option is valid only in the COLUMNAXIS= and COLUMN2AXIS= layout axis options.

Interaction

This option is ignored if the TICKVALUELIST= or TICKVALUEFORMAT= option is used.

See

“boolean ” on page 1339 for other Boolean values that you can use.

TICKVALUEFITPOLICY= policy

specifies a policy for avoiding tick value collision on an X or X2 axis. This option is not available for the Y and Y2 axes. The effectiveness of a collision-avoidance policy depends on the number of tick values, their length, and the length of the axis. The following policies are valid:
NONE
makes no attempt to avoid collisions between tick values. Tick values are display even when they collide.

ROTATE
rotates the tick values if a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTA TEALWAYS
rotates the tick values regardless of whether a collision occurs. The TICKVALUEROTATION= option specifies whether the values are rotated to a 45-degree diagonal or a 90-degree vertical position. By default, the values are rotated to a 45-degree diagonal position.

ROTATETHIN
attempts the ROTATE policy, and then the THIN policy.

STAGGER
alters the tick values between two rows.

STAGGERROTATE
attempts the STAGGER policy, and then the ROTATE policy.

STAGGERTHIN
attempts the STAGGER policy, and then the THIN policy.

THIN
eliminates alternate tick values.

Default THIN

Restriction This option is valid only for the X and X2 axes.

Interaction When SPLITTICKVALUE= TRUE, this option is ignored and only the THIN policy is used.

Note A note is written to the SAS log when tick value thinning occurs.

TICKVALUETFORMAT=format | DATA
specifies how to format the values for major tick marks.

format
specifies a SAS date, time, or datetime format to control how the major tick values are displayed. This format must be in the same duration units as the data column(s) mapped to a time axis: TIME, DATE, or DATETIME and should be appropriate for the value of the INTERVAL= option. For example, if INTERVAL=MONTH and there are two years of data displayed on the axis, then choosing TICKVALUETFORMAT=YEAR. would result in several ticks having the same year value.

DATA
specifies that the SAS date, time, or datetime format associated with the data column assigned to the axis be used to control how the major tick values are displayed.

Default The default format used by the INTERVAL= option. The default does not apply if TICKVALUESLIST= is specified.

Restrictions This option applies to time axes only.
GTL currently honors most but not every SAS format. For details, see Appendix 4, “SAS Formats Not Supported,” on page 1353.

TICKVALUELIST= (time-constant-list	date-constant-list	datetime-constant-list	numeric-list)	specifies the tick values for a time axis as list.
Default	An internal algorithm determines the tick values.			
Restrictions	This option applies to time axes only. If TICKVALUEPRIORITY= is set to FALSE, then this option does not extend the data range of the axis. If the values fall within the default data range or that specified by the VIEWMIN= or VIEWMAX= options, then they are used.			
Requirement	The tick values must be specified as a space-separated list of values enclosed in parentheses. The items in the list must be in the same duration units as the data mapped to the axis: TIME, DATE, or DATETIME. The values can be expressed as SAS TIME, DATE, or DATETIME constants (for example, "13:23"T, "11MAY06"D, or "11MAY06:13:23"DT) or their numeric equivalents.			
Interactions	The values in the list are formatted according to the format specified on the TICKVALUEFORMAT= option. If TICKVALUEFORMAT= is not used, then the values are formatted according to the column format (the default TICKVALUEFORMAT value is not applied to these values). If this option is specified, the SPLITTICKVALUE= and INTERVAL= options are ignored.			

TICKVALUEPRIORITY= TRUE	FALSE	specifies whether the TICKVALUELIST= specification can extend the axis data range.
Default	FALSE	
Restriction	This option is valid only in the ROWAXIS= and ROW2AXIS= layout axis options.	
Interactions	When this option is set to TRUE, the VIEWMIN= and VIEWMAX= options are ignored.	
This option is ignored if the DISPLAY= option or the DISPLAYSECONDARY= option does not display the tick values.

This option is ignored if the TICKVALUELIST= option is not specified.

Note
If the minimum and maximum of the specified values are within the data range, then this option has no effect.

See
“boolean” on page 1339 for other Boolean values that you can use.

TICKVALUEROTATION=DIAGONAL | VERTICAL

specifies how the tick values are rotated on the X and X2 axes.

DIAGONAL
rotates the tick values to a 45-degree diagonal position. The X labels read left to right in a downward direction. The X2 labels read left to right in an upward direction.

VERTICAL
rotates the labels to a 90-degree vertical position. The labels are always drawn from bottom to top.

Default
DIAGONAL

Restriction
This option is valid for COLUMNAXISOPTS= and COLUMN2AXISOPTS= only.

Interaction
The TICKVALUEFITPOLICY= option must be set to ROTATE or ROTATEALWAYS for this option to have any effect.

VIEWMAX=number
specifies the maximum data value to include in the display.

Default
The maximum value in the data for the specified axis.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The maximum axis tick value might differ from the VIEWMAX= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

Tip
To display the VIEWMAX= value as the maximum tick value, use the TICKVALUELIST= option.

See
“Adjusting the Axis View” on page 884

VIEWMIN=number
specifies the minimum data value to include in the display.

Default
The minimum value in the data for the specified axis.

Notes
Setting a VIEWMAX= or VIEWMIN= value does not alter the original data or any calculations on it.

The minimum axis tick value might differ from the VIEWMIN= value. The VIEWMIN= and VIEWMAX= values, and additional factors such as
thresholds and the tick values computed by the plot statement, are used to determine the axis tick values.

<table>
<thead>
<tr>
<th>Tip</th>
<th>To display the VIEWMIN= value as the minimum tick value, use the TICKVALUELIST= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>“Adjusting the Axis View” on page 884</td>
</tr>
</tbody>
</table>

Details

The LAYOUT DATALATTICE and LAYOUT DATAPANEL statements each create a grid of graphs based on the values of one or more classification variables. In the grid, the axes are always external and displayed on the “primary” axes by default. The axes that are considered primary depend on the settings for the XAXIS= and YAXIS= options in plot statements that are specified within the LAYOUT PROTOTYPE. For managing the primary axes, both the LAYOUT DATALATTICE and LAYOUT DATAPANEL statements have COLUMNAXISOPTS=, COLUMN2AXISOPTS=, ROWAXISOPTS=, and ROW2AXISOPTS= options that manage the axis features separately for columns and rows. The settings that are available can manage odd and even columns and rows separately, enabling you to simplify the axis display within the grid.

The following table shows which axis is primary for the XAXIS= and YAXIS= settings, and which axis option to use to manage that primary axis.

<table>
<thead>
<tr>
<th>Option Setting</th>
<th>Primary Axis</th>
<th>Axis Option to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAXIS=X</td>
<td>X (bottom)</td>
<td>COLUMNAXISOPTS=</td>
</tr>
<tr>
<td>XAXIS=X2</td>
<td>X2 (top)</td>
<td>COLUMN2AXISOPTS=</td>
</tr>
<tr>
<td>YAXIS=Y</td>
<td>Y (left)</td>
<td>ROWAXISOPTS=</td>
</tr>
<tr>
<td>YAXIS=Y2</td>
<td>Y2 (right)</td>
<td>ROW2AXISOPTS=</td>
</tr>
</tbody>
</table>

The settings that are available for the axis options can manage odd and even columns and rows separately, enabling you to simplify the axis display within the grid.

- To manage the first, third, and odd occurrences of a primary axis, use the DISPLAY= option.
- To manage the second, fourth, and even occurrences of a primary axis, use the ALTDISPLAY= option.

You can also display “secondary” axes in the grid. A secondary axis is not an independent axis. Rather, it mirrors the primary axis, but it is displayed on the opposite side and can have different display options. For example, when the X axis (bottom) is primary, you can mirror that axis with a secondary X axis at the top of the grid. Similarly, when the Y2 axis (right) is primary, you can mirror that axis with a secondary Y2 axis on the left of the grid. A secondary axis makes it easier to interpolate values in the cells that are farthest away from the primary axis.

Secondary axes can be displayed in the graph, provided all plot statements in the LAYOUT PROTOTYPE map data to the same primary axis. For example, a secondary X axis can be displayed at the top of the layout, provided all plot statements set XAXIS=X to map data to the primary X axis (bottom). Similarly, a secondary Y2 axis can be displayed to the left in the layout, provided all plot statements set YAXIS=Y2 to map data to the primary Y2 axis (right). If all plot statements in the LAYOUT...
PROTOTYPE do not map data to the same primary axis, then the secondary axes are not displayed.

To display secondary axes in the grid, use the DISPLAYSECONDARY= and ALTDISPLAYSECONDARY= options. As with the options for the primary axes, the DISPLAYSECONDARY= option manages the first, third, and odd occurrences of a secondary axis. The ALTDISPLAYSECONDARY= option manages the second, fourth, and even occurrences of a secondary axis.

In the default cases for the plots within the layout, the axis type is always DISCRETE, LINEAR, or TIME. The TYPE= option enables you to specify an axis type that overrides the default. For example, when appropriate for the data, you can request a LOG axis. When you override the default axis type, you must be sure to specify the correct axis type for the plot(s) that you are defining.

Each axis type has features specific to that type, and the following axis options enable you to specify features for the different types: DISCRETEOPTS=, LINEAROPTS=, LOGOPTS=, and TIMEOPTS=. One or more of these options can be specified for an axis, but the specified settings are applied only to the axis type that supports them.

Note: Certain plot types or layouts sometimes impose restrictions on what type of axis can be assigned. See the plot or layout documentation for default axis types and any restrictions that might apply.

Example: Axis Options for LAYOUT DATALATTICE and LAYOUT DATAPANEL

The following graph was generated by the “Example Program” on page 1085:
Example Program

This example shows how axis attributes can be managed separately for even and odd columns and rows in the layout grid. In this case, the ROWAXISOPTS= option is used to stagger the Y-axes attributes. On the primary (left) Y axis, DISPLAY= displays TICKS and TICKVALUES on the first and third rows while ALTDISPLAY= displays just TICKS on the second row. On the secondary (right) Y axis, DISPLAYSECONDARY= displays just TICKS on the first and third rows, while ALTDISPLAYSECONDARY= displays TICKS and TICKVALUES on the second row. This alternating pattern could also have been set for the column axes. The pattern is independent of the number of rows and columns.

```
proc template;
  define statgraph layoutdatalattice;
  begingraph;
    entrytitle "Annual Furniture Sales Comparisons";
    layout datalattice rowvar=country columnvar=year /
      rowdatarange=union
      headerlabellocation=inside
      headerlabeldisplay=value
      headerbackgroundcolor=GraphAltBlock:color
      rowaxisopts=(griddisplay=on
                   display=(tickvalues)
                   altdisplay=(ticks)
                   displaysecondary=(ticks)
                   altdisplaysecondary=(ticks tickvalues)
                   linearopts=(tickvalueformat=dollar12.))
    columnaxisopts=(display=(tickvalues)
                   timeopts=(tickvalueformat=monname3.));
    layout prototype / cycleattrs=true;
      seriesplot x=month y=TotalActual / name="Actual";
      seriesplot x=month y=TotalPredict / name="Predict";
    endlayout;
    sidebar / align=bottom;
      discretelegend "Actual" "Predict" / border=false;
    endsidebar;
  endlayout;
  endgraph;
end;
run;
```

```
proc summary data=sashelp.prdsal2 nway;
  class country year month;
  var actual predict;
  output out=prdsal2 sum=TotalActual TotalPredict;
run;
```

```
proc sgrender data=prdsal2 template=layoutdatalattice;
run;
```
Part 6

Legend Statements

Chapter 9

Legend Statements .. 1089
Chapter 9
Legend Statements

Dictionary

AXISLEGEND Statement .. 1089
CONTINUOUSLEGEND Statement 1098
DISCRETELEGEND and MERGEDLEGEND Statements 1109
LEGENDITEM Statement .. 1126
LEGENDTEXTITEMS Statement 1131

Dictionary

AXISLEGEND Statement
Generates consecutive integers for display as axis-tick values in the graph, and creates a legend that correlates those integers with the actual tick values that they represent.

Requirements:
The axis must be named with the axis NAME= option.
The axis must be a discrete axis (TYPE=DISCRETE).
The axis must use the TICKVALUEFITPOLICY=EXTRACT or TICKVALUEFITPOLICY=EXTRACTALWAYS suboption of the DISCRETEOPTS= axis option.

Interaction:
A legend might be dropped if the total legend area in the graph exceeds the percentage that is set by the MAXLEGENDAREA= option in an ODS GRAPHICS statement that is in effect for the output destination. A legend might also be dropped if DISPLAYCLIPPED= FALSE and the full legend cannot be displayed.

Syntax

AXISLEGEND "axis-name" </option(s)>;

Summary of Optional Arguments

Appearance options

ACROSS=positive-integer
specifies the number of legend entries that are placed horizontally before the next row begins.

BACKGROUND COLOR=style-reference | color
specifies the color of the legend background.

BORDER=TRUE | FALSE
specifies whether a border is displayed around the legend.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the legend.

DISPLAYCLIPPED=TRUE | FALSE
specifies whether the legend is displayed when any portion of the legend cannot be rendered entirely.

DOWN=positive-integer
specifies the number of legend entries that are placed vertically before the next column begins.

OPAQUE=TRUE | FALSE
specifies whether the legend background is opaque (TRUE) or transparent (FALSE).

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether legend entries are organized into rows or into columns.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the legend perimeter.

VALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend values.

Location options

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the legend is automatically aligned within its parent layout when nested within an overlay-type layout.

HALIGN=CENTER | LEFT | RIGHT | number
specifies the horizontal alignment of the legend within its parent layout when nested within an overlay-type or region layout.

LOCATION=OUTSIDE | INSIDE
specifies whether the legend appears inside or outside the plot area when the legend is specified within an overlay-type or region layout.

VALIGN=CENTER | TOP | BOTTOM | number
specifies the vertical alignment of the legend within its parent layout when nested within an overlay-type or region layout.

Text options

TITLE="string"
specifies the title of the legend.

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend title.

Required Argument

"**axis-name**"
references an axis’s name. The name controls which axis determines the legend entries.

Requirement The axis name must be enclosed in quotation marks.
Optional Arguments

ACROSS= *positive-integer*

specifies the number of legend entries that are placed horizontally before the next row begins.

Default
The entries are placed to best fit the available area. This “best fit” approach works only when the legend is nested in the template’s outermost layout.

Interaction
This option is ignored if ORDER= COLUMNMAJOR

AUTOALIGN= NONE | AUTO | *(location-list)*

specifies whether the legend is automatically aligned within its parent layout when nested within an overlay-type layout.

NONE
does not automatically align the legend within its parent layout. The legend’s position is set by the HALIGN= and VALIGN= options.

AUTO
within the parent layout, attempts to center the legend in the area that is farthest from any surrounding data point markers.

(location-list)
within the parent layout, restricts the legend’s possible locations to those locations in the specified location-list, and use the location-list position that least collides with the parent layout’s other graphics features. The location-list is space-separated and can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Default
NONE

Restriction
AUTO is available only when the parent layout contains a scatter plot. Otherwise, it is ignored.

Interactions
This option has no effect unless LOCATION= INSIDE.

When LOCATION= INSIDE and AUTOALIGN= is not NONE, the HALIGN= and VALIGN= options are ignored.

See
the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type layout.

BACKGROUNDCOLOR= *style-reference* | *color*

specifies the color of the legend background.

style-reference

specifies a style reference in the form *style-element:* *style-attribute*. Only the style-attribute named COLOR or CONTRASTCOLOR is used.

Default
The GraphLegendBackground:Color style reference.

Interaction
OPAQUE= TRUE must be in effect for the color to be seen. By default, OPAQUE= FALSE.

BORDER= TRUE | FALSE

specifies whether a border is displayed around the legend.
Defaults
TRUE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphLegendBackground:FrameBorder style reference starting with the second maintenance release of SAS 9.4. If attribute FrameBorder is not defined in the active style, then TRUE is the default value.

Tip
The BORDERATTRS= option controls the appearance of the legend border.

See
“boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS= *style-element | style-element (line-options) | (line-options)*

specifies the attributes of the border line around the legend.

Default
The GraphBorderLines style element.

Interaction
BORDER= TRUE must be set for this option to have any effect.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*

“Line Options” on page 1349 for available *line-options*.

DISPLAYCLIPPED= *TRUE | FALSE*

specifies whether the legend is displayed when any portion of the legend cannot be rendered entirely. Based on the legend contents and placement, or when the graph size is reduced, parts of the legend (title, legend symbol, or legend value) might be clipped (truncated). When clipping occurs and this option is set to FALSE, the entire legend is removed from the graph. The space for that legend is then reclaimed by the remainder of the graph. When this option is set to TRUE, the legend always appears, even if some parts of it have been clipped.

Default
FALSE

See
“boolean” on page 1339 for other Boolean values that you can use.

DOWN= *positive-integer*

specifies the number of legend entries that are placed vertically before the next column begins.

Default
The entries are placed to best fit the available area. This “best fit” approach works only when the legend is nested in the template’s outermost layout.

Restriction
This option is ignored if **ORDER=** ROWMAJOR

HALIGN= *CENTER | LEFT | RIGHT | number*

specifies the horizontal alignment of the legend within its parent layout when nested within an overlay-type or region layout.

number

specifies an explicit position in the containing layout.

Range
The *number* specification can range from 0 to 1. The *number* represents a fraction of the parent container’s width, where 0 is all the way to the left and 1 is all the way to the right.
Interaction
For a number setting to take effect, LOCATION=INSIDE must be set. A number setting is invalid on this option when LOCATION=OUTSIDE.

Default CENTER

Restriction This option is available only when this statement is nested within an overlay-type or region layout.

Interactions If LOCATION= OUTSIDE, then the HALIGN= and VALIGN= options cannot both be set to CENTER.

This option is ignored when LOCATION=INSIDE, the AUTOALIGN= option is not NONE, and the parent layout is an overlay-type layout.

See the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

LOCATION=OUTSIDE | INSIDE
specifies whether the legend appears inside or outside the plot area when the legend is specified within an overlay-type or region layout.

Default OUTSIDE

Restriction This option has effect only when the legend statement appears within an overlay-type or region layout and at least one stand-alone plot statement is referenced by the parent layout.

Interactions The actual position is determined by the settings for the LOCATION=, AUTOALIGN=, HALIGN=, and VALIGN= options.

If this option is set to OUTSIDE, then the HALIGN= and VALIGN= options must specify a keyword (LEFT, RIGHT, or CENTER). The number setting for the alignment is invalid when the legend is positioned outside of the plot area.

See the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

OPAQUE=TRUE | FALSE
specifies whether the legend background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean ” on page 1339 for other Boolean values that you can use.

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether legend entries are organized into rows or into columns.

Default ROWMAJOR
Interaction

If ORDER=ROWMAJOR, then use the ACROSS= option to limit the number of entries in a row. If ORDER=COLUMNMAJOR, then use the DOWN= option to limit the number of entries in a column.

OUTERPAD=AUTO | dimension | (pad-options)

specifies the amount of extra space that is added outside the legend border.

- **AUTO** specifies that the default outside padding for this component is used.
- **dimension** specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.
- **(pad-options)** a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:
 - **LEFT=dimension** specifies the amount of extra space added to the left side.
 - **RIGHT=dimension** specifies the amount of extra space added to the right side.
 - **TOP=dimension** specifies the amount of extra space added to the top.
 - **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Note The default units for dimension are pixels.

See “dimension” on page 1340

PAD=dimension | (pad-options)

specifies the amount of extra space that is reserved inside the legend perimeter.

- **dimension** specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend perimeter.
- **(pad-options)** a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:
 - **LEFT=dimension** specifies the amount of extra space added to the left side.
 - **RIGHT=dimension** specifies the amount of extra space added to the right side.
 - **TOP=dimension** specifies the amount of extra space added to the top.
BOTTOM=\textit{dimension} specifies the amount of extra space added to the bottom.

\textbf{Note} \hspace{1em} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} \hspace{1em} Use \textit{pad-options} to create non-uniform padding.

\textbf{Default} \hspace{1em} Padding for all sides is 0.

\textbf{Note} \hspace{1em} The default units for \textit{dimension} are pixels.

\textbf{See} \hspace{1em} “\textit{dimension}” on page 1340

\textbf{TITLE=}"\textit{string}"

specifies the title of the legend.

\textbf{Default} \hspace{1em} No title

\textbf{Requirement} \hspace{1em} \textit{string} must be enclosed in quotation marks.

\textbf{Interaction} \hspace{1em} When the title is placed to the left of the legend, if TITLEBORDER=TRUE is in effect, no separator is displayed between the title and the legend. If TITLEBORDER=FALSE is in effect in that case, a separator is displayed.

\textbf{TITLEATTRS=}\textit{style-element} \mid \textit{style-element} (\textit{text-options}) \mid (\textit{text-options})

specifies the color and font attributes of the legend title.

\textbf{Default} \hspace{1em} The GraphLabelText style element.

\textbf{Interactions} \hspace{1em} For this option to have any effect, the \textbf{TITLE=} option must also be specified.

\textbf{Note} \hspace{1em} If one or more text options are specified and they do not include all the font properties (color, family, size, weight, style), then non-specified properties will be derived from the GraphLabelText style element.

\textbf{Note} \hspace{1em} When you specify \textit{style-element}, only the style attributes COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT are used.

\textbf{See} \hspace{1em} “General Syntax for Attribute Options” on page 1347 for the syntax on using a \textit{style-element}.

\textbf{See} \hspace{1em} “Text Options” on page 1351 for available \textit{text-options}.

\textbf{V ALIGN=}\textit{CENTER} \mid \textit{TOP} \mid \textit{BOTTOM} \mid \textit{number}

specifies the vertical alignment of the legend within its parent layout when nested within an overlay-type or region layout.

\textit{number} \hspace{1em} specifies an explicit position in the containing layout.

\textbf{Range} \hspace{1em} The \textit{number} specification can range from 0 to 1. The \textit{number} represents a fraction of the parent container’s height, where 0 is on the bottom and 1 is on the top.
For a number setting to take effect, LOCATION=INSIDE must be set. A number setting is invalid on this option when LOCATION=OUTSIDE.

The legend is effectively anchored at its center. Zero corresponds to the containing layout's bottom edge plus half the legend height. Similarly, one corresponds to the containing layout's top edge minus half the legend height.

This option is available only when this statement is nested within an overlay-type or region layout. It is ignored if the parent layout is not an overlay-type or region layout.

If LOCATION=OUTSIDE, then the V ALIGN= and HALIGN= options cannot both be set to CENTER.

This option is ignored when LOCATION=INSIDE, the AUTOALIGN= option is not NONE, and the parent layout is an overlay-type layout.

The legend symbol is a positive integer that is generated to represent a specific axis tick position, and the legend value displays the axis tick value. In the “Example: AXISLEGEND Statement” on page 1097, the first legend symbol is the integer 1 and the first legend value is Neon SE 4dr.

To implement an axis legend, all of the following requirements must be met:
• The axis must be a discrete axis. The axis can be discrete by default, or explicitly set to discrete by setting TYPE=DISCRETE among the parent layout’s axis-option settings.

• The parent layout’s axis options must specify NAME= to assign a name to the axis.

• The parent layout’s axis options must use the DISCRETEOPTS= option to specify either TICKVALUEFITPOLICY=EXTRACT or TICKVALUEFITPOLICY=EXTRACTALWAYS. EXTRACT implements an axis legend if the system estimates that a collision might occur. EXTRACTALWAYS implements an axis legend regardless of whether a collision occurs.

• The AXISLEGEND statement must reference the axis name that was specified in the parent layout’s NAME= axis option.

When all of these requirements are satisfied, the tick values of the named discrete axis can be replaced with consecutive positive integers. The axis legend displays those integer values and the corresponding tick values that the integers represent.

Within an overlay-type layout, when an axis legend is placed inside the plot area with LOCATION= INSIDE,

• The axis legend is always placed on top of plot lines and markers.

• By default, its background is fully transparent (OPAQUE= FALSE), meaning that underlying lines, markers, and data labels show through the legend.

• Its position can be controlled with the AUTOALIGN= option, or with the HALIGN= and VALIGN= options.

Within an overlay-type layout, when an axis legend is placed outside the plot area with LOCATION=OUTSIDE,

• By default, its background is fully opaque (OPAQUE=TRUE).

• Its position can be controlled with the HALIGN= and VALIGN= options.

When an axis legend is placed within nested layouts, it might be necessary to do one of the following to obtain the desired legend organization:

• use the ACROSS= option and also set ORDER= ROWMAJOR

• use the DOWN= option and also set ORDER=COLUMNMAJOR

Example: AXISLEGEND Statement

The following graph was generated by the “Example Program” on page 1098. The LAYOUT OVERLAY statement’s XAXISOPTS= option uses NAME= to assign a name to the X axis so that it can be referenced in an AXISLEGEND statement. The LAYOUT OVERLAY statement’s DISCRETEOPTS= option specifies TICKVALUEFITPOLICY=EXTRACT, which implements the axis legend if a collision occurs in the tick-value display for the X axis. The AXISLEGEND statement references the name that was assigned to the X axis.
Example Program

```sas
proc template;
  define statgraph axislegend ;
  begingraph;
    entrytitle "Mileage for Vehicles Made by Dodge";
    layout overlay / xaxisopts=(name="xaxis"
                          discreteopts=(tickvaluefitpolicy=extract)) ;
    barchart category=model response=mpg_highway / stat=mean ;
    axislegend "xaxis";
  endlayout;
endgraph;
end;

proc sort data=sashelp.cars out=dodge; by descending mpg_highway;
  where make="Dodge";
run;
proc sgrender data=dodge template=axislegend;
run;
```

CONTINUOUSLEGEND Statement

Creates a legend with a color ramp corresponding to a range of values.

Syntax

```
CONTINUOUSLEGEND "graph-name" <option(s)>;
```
Summary of Optional Arguments

Appearance options

BACKGROUND COLOR = style-reference | color
specifies the color of the legend background.

BORDER = TRUE | FALSE
specifies whether a border is displayed around the legend.

BORDERATTS = style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the legend.

INTEGER = TRUE | FALSE
specifies whether only integer tick values are used in the continuous legend.

OPAQUE = TRUE | FALSE
specifies whether the legend background is opaque (TRUE) or transparent (FALSE).

ORIENT = VERTICAL | HORIZONTAL
specifies the orientation of the legend.

OUTERPAD = AUTO | dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

PAD = dimension | (pad-options)
specifies the amount of extra space that is reserved inside the legend perimeter.

VALUEATTS = style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend values.

Data range options

VALUECOUNTHINT = positive-integer
recommends a number of values for the continuous legend to use to label the data range.

Location options

AUTOALIGN = NONE | AUTO | (location-list)
specifies whether the legend is automatically aligned within its parent layout when nested within an overlay-type layout.

HALIGN = CENTER | LEFT | RIGHT | number
specifies the horizontal alignment of the legend within its parent layout when nested within an overlay-type or region layout.

LOCATION = OUTSIDE | INSIDE
specifies whether the legend appears inside or outside the plot area when the legend is specified within an overlay-type or region layout.

VALIGN = CENTER | TOP | BOTTOM | number
specifies the vertical alignment of the legend within its parent layout when nested within an overlay-type or region layout.

Scale options

EXTRACTSCALE = TRUE | FALSE

EXTRACTSCALETYPE = DEFAULT | SCIENTIFIC

Text options

TITLE = "string"
specifies the title of the legend.

TITLEATTS = style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend title.

Required Argument

"graph-name"

specifies the plot to be represented by the legend. The plot is identified by the name that is assigned to it on the plot statement’s NAME= option.

Restriction
Unlike the DISCRETELEGEND statement, only a single graph-name can be specified.

Requirement
graph-name must be enclosed in quotation marks.

Optional Arguments

AUTOALIGN=NONE | AUTO | (location-list)

specifies whether the legend is automatically aligned within its parent layout when nested within an overlay-type layout.

NONE
does not automatically align the legend within its parent layout. The legend’s position is set by the HALIGN= and VALIGN= options.

AUTO
within the parent layout, attempts to center the legend in the area that is farthest from any surrounding data point markers.

(location-list)
within the parent layout, restricts the legend’s possible locations to those locations in the specified location-list, and use the location-list position that least collides with the parent layout’s other graphics features. The location-list is space-separated and can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Default
NONE

Interactions
This option has no effect unless LOCATION=INSIDE.

When LOCATION=INSIDE and AUTOALIGN= is not NONE, the HALIGN= and VALIGN= options are ignored.

See
the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type layout.

BACKGROUNDCOLOR=style-reference | color

specifies the color of the legend background.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style-attribute named COLOR or CONTRASTCOLOR is used.

Default
The GraphLegendBackground:Color style reference.

Interaction
OPAQUE= TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.
BORDER=TRUE | FALSE
specifies whether a border is displayed around the legend.

Defaults
FALSE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphLegendBackground:FrameBorder style reference starting with the second maintenance release of SAS 9.4. If attribute FrameBorder is not defined in the active style, then FALSE is the default value.

Tip
The BORDERATTRS= option controls the appearance of the legend border.

See
“boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the legend.

Default
The GraphBorderLines style element.

Interaction
BORDER= TRUE must be set for this option to have any effect.

Tip
The color of the frame around the color ramp and the color ramp tick lines is controlled by the GraphAxisLines:contrastColor style attribute.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element

“Line Options” on page 1349 for available line-options.

EXTRACTSCALE=TRUE | FALSE
specifies whether to extract a scale factor from the tick values and use it to reduce the tick value width. The scale can be a named scale or a scientific-notation scale. The EXTRACTSCALETYPE= option specifies the scale type. The scale used is appended to the legend title as shown in the following example.

Total Sales (millions)

For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases where the title does not fit even with truncation, the title is dropped.

Restriction
The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.

Interactions
The scale type is determined by the EXTRACTSCALETYPE= option.

If the axis label is not displayed, then the EXTRACTSCALE=TRUE option is ignored.

See
“boolean ” on page 1339 for other Boolean values that you can use.

EXTRACTSCALETYPE=DEFAULT | SCIENTIFIC
specifies whether to extract a named scale or a scientific-notation scale.
DEFAULT extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as 10^n) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of $1/10$ (10^{-n}) for values less than 1 trillionth.

SCIENTIFIC extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as 10^n for values greater than 1, or a multiple of $1/10$ expressed as 10^{-n} for values less than 1.

HALIGN= CENTER | LEFT | RIGHT | **number**

specifies the horizontal alignment of the legend within its parent layout when nested within an overlay-type or region layout.

number

specifies an explicit position in the containing layout.

Range

The **number** specification can range from 0 to 1. The **number** represents a fraction of the parent container’s width, where 0 is all the way to the left and 1 is all the way to the right.

Interaction

For a **number** setting to take effect, LOCATION=INSIDE must be set. A **number** setting is invalid on this option when LOCATION=OUTSIDE.

Tip

The legend is effectively anchored at its center. HALIGN=0 corresponds to the containing layout's left edge plus half the legend width. Similarly, HALIGN=1 corresponds to the containing layout's right edge minus half the legend width.

Defaults

If LOCATION=OUTSIDE, then the default is RIGHT.

If LOCATION=INSIDE, then the default is CENTER.

Restriction

This option is available only when this statement is nested within an overlay-type or region layout.

Interactions

If LOCATION=OUTSIDE, then the HALIGN= and VALIGN= options cannot both be set to CENTER.

This option is ignored when LOCATION=INSIDE, the AUTOALIGN= option is not NONE, and the parent layout is an overlay-type layout.

See

the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

INTEGER= TRUE | FALSE

specifies whether only integer tick values are used in the continuous legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

FALSE
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Default</th>
<th>Interaction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>This option applies only to smooth color gradients. For leveled gradients such as those used with contour plots of type FILL, LINEFILL or LABELEDLINEFILL, this option is ignored. See CONTOUROTYPE=.</td>
<td></td>
<td>INTEGER=TRUE is ignored when there are no integer values between the minimum and maximum legend values.</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>Specifies whether the legend appears inside or outside the plot area when the legend is specified within an overlay-type or region layout.</td>
<td>OUTSIDE</td>
<td>The actual position is determined by the settings for the LOCATION=, AUTOALIGN=, HALIGN=, and VALIGN= options.</td>
<td>the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.</td>
</tr>
<tr>
<td>OPAQUE</td>
<td>Specifies whether the legend background is opaque (TRUE) or transparent (FALSE).</td>
<td>FALSE</td>
<td>When this option is set to FALSE, the background color is not used.</td>
<td>“boolean ” on page 1339 for other Boolean values that you can use.</td>
</tr>
<tr>
<td>ORIENT</td>
<td>Specifies the orientation of the legend.</td>
<td>VERTICAL</td>
<td>In order to use ORIENT=HORIZONTAL when the continuous legend is in an OVERLAY or REGION layout, you must place the legend inside the graph area (LOCATION=INSIDE).</td>
<td>To orient the legend horizontally outside of the graph area in an OVERLAY or REGION layout, use LOCATION=OUTSIDE and VALIGN=BOTTOM instead.</td>
</tr>
</tbody>
</table>
OUTERPAD=\(AUTO \mid \text{dimension} \mid (\text{pad-options})\)

specifies the amount of extra space that is added outside the legend border.

AUTO
specifies that the default outside padding for this component is used.

\(\text{dimension}\)
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

\(\text{pad-options}\)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

\[
\text{LEFT}=\text{dimension} \quad \text{RIGHT}=\text{dimension} \quad \text{TOP}=\text{dimension} \quad \text{BOTTOM}=\text{dimension}
\]

\(\text{LEFT} \in \text{dimension}\) specifies the amount of extra space added to the left side.

\(\text{RIGHT} \in \text{dimension}\) specifies the amount of extra space added to the right side.

\(\text{TOP} \in \text{dimension}\) specifies the amount of extra space added to the top.

\(\text{BOTTOM} \in \text{dimension}\) specifies the amount of extra space added to the bottom.

Note
Sides that are not assigned padding are padded with the default amount.

Tip
Use \text{pad-options} to create non-uniform padding.

Default \(\text{AUTO}\)

Note
The default units for \text{dimension} are pixels.

See
“\text{dimension}” on page 1340

PAD=\(\text{dimension} \mid (\text{pad-options})\)

specifies the amount of extra space that is reserved inside the legend perimeter.

\(\text{dimension}\)
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend perimeter.

\(\text{pad-options}\)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

\[
\text{LEFT}=\text{dimension} \quad \text{RIGHT}=\text{dimension} \quad \text{TOP}=\text{dimension} \quad \text{BOTTOM}=\text{dimension}
\]

\(\text{LEFT} \in \text{dimension}\) specifies the amount of extra space added to the left side.

\(\text{RIGHT} \in \text{dimension}\) specifies the amount of extra space added to the right side.

\(\text{TOP} \in \text{dimension}\) specifies the amount of extra space added to the top.

\(\text{BOTTOM} \in \text{dimension}\) specifies the amount of extra space added to the bottom.

Note
Sides that are not assigned padding are padded with the default amount.
Tip Use pad-options to create non-uniform padding.

Default Padding for all sides is 0.

Note The default units for dimension are pixels.

See “dimension” on page 1340

TITLE="string"

specifies the title of the legend. The title is placed below the legend body.

Default No title

Requirement *string* must be enclosed in quotation marks.

Interaction When the title is placed to the left of the legend, if TITLEBORDER=TRUE is in effect, no separator is displayed between the title and the legend. If TITLEBORDER=FALSE is in effect in that case, a separator is displayed.

TITLEATTRS=style-element | style-element (text-options) | (text-options)

specifies the color and font attributes of the legend title.

Default The GraphLabelText style element.

Interactions For this option to have any effect, the TITLE= option must also be specified.

If one or more text options are specified and they do not include all the font properties (color, family, size, weight, style), then non-specified properties will be derived from the GraphLabelText style element.

Note When you specify style-element, only the style attributes COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT are used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

VALIGN=CENTER | TOP | BOTTOM | number

specifies the vertical alignment of the legend within its parent layout when nested within an overlay-type or region layout.

number

specifies an explicit position in the containing layout.

Range The *number* specification can range from 0 to 1. The *number* represents a fraction of the parent container’s height, where 0 is on the bottom and 1 is on the top.

Interaction For a *number* setting to take effect, LOCATION=INSIDE must be set. A *number* setting is invalid on this option when LOCATION=OUTSIDE.

Tip The legend is effectively anchored at its center. Zero corresponds to the containing layout's bottom edge plus half the legend height.
Similarly, one corresponds to the containing layout’s top edge minus half the legend height.

Default

CENTER

Restriction

This option is available only when this statement is nested within an overlay-type or region layout. It is ignored if the parent layout is not an overlay-type or region layout.

Interactions

If LOCATION= OUTSIDE, then the VALIGN= and HALIGN= options cannot both be set to CENTER.

This option is ignored when LOCATION=INSIDE, the AUTOALIGN= option is not NONE, and the parent layout is an overlay-type layout.

See

the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

VALUENAME=

Specifies the color and font attributes of the legend values.

Default

The GraphValueText style element.

Interaction

If one or more text options are specified and they do not include all the font properties (color, family, size, weight, style), then non-specified properties will be derived from the GraphLabelText style element.

Note

When you specify style-element, only the style attributes COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT are used.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

VALUECOUNTHINT=

A continuous legend consists of a color ramp and a numeric scale indicating color values.

Default

6

Restriction

The associated plot must be displayed with smooth gradient for this option to have any effect. For example, in a contour plot, CONTOURTYPE must be set to GRADIENT or LINEGRADIENT.

Requirement

positive-integer must be greater than zero.

Note

The legend uses even intervals to label the range.

Details

A continuous legend consists of a color ramp and a numeric scale indicating color values.
In the following figure, the continuous legend references a contour plot with a fixed number of levels. The color ramp and legend values automatically reflect these discrete levels. The legend option `VALUECOUNTHINT=` has no effect.

![Contour Plot of Height and Weight](image1)

In this next figure, the continuous legend references a contour plot with a continuous gradient. The number of legend values displayed is automatically determined by the legend, or decided by the contributing plot, such as the CONTOURPLOTPARM with CONTOURTYPE=FILL. For plots with a continuous gradient, you can use the legend option `VALUECOUNTHINT=` to control how many legend values appear. (This option is ignored if there is no gradient.)

![Contour Plot of Height and Weight](image2)

Within an overlay-type layout, when a continuous legend is placed inside the plot area with `LOCATION= INSIDE`,

- It is always placed on top of plot lines and markers.
- By default, its background is fully transparent (`OPAQUE= FALSE`), meaning that underlying lines, markers, and data labels show through the legend.
• Its position can be controlled with the `AUTOALIGN=` option, or with the `HALIGN=` and `VALIGN=` options.

Within an overlay-type layout, when a continuous legend is placed outside the plot area with `LOCATION=OUTSIDE`,

• By default, its background is fully opaque (`OPAQUE=TRUE`).
• Its position can be controlled with the `HALIGN=` and `VALIGN=` options.

Example: CONTINUOUSLEGEND Statement

The following graph was generated by the “Example Program” on page 1108:

```
proc template;
   define statgraph continuouslegend;
   begingraph;
      entrytitle "Height and Weight Distribution";
      layout overlay;
         scatterplot x=height y=weight /
            markercolorgradient=density
            markerattrs=(symbol=squarefilled size=6px)
            name="scatter";
         continuouslegend "scatter" / orient=vertical
            location=outside valign=center halign=right
            valuecounthint=10 title="Density";
      endlayout;
   endgraph;
```

Example Program

The following graph was generated by the “Example Program” on page 1108:
DISCRETELEGEND and MERGEDLEGEND Statements

Creates a legend with entries that refer to plots, or group values, or both legend items.

Restrictions:
- The MERGEDLEGEND statement can be used for grouped plots only.
- The MERGEDLEGEND statement supports only line and marker overlays.

Notes:
- Often the data in a plot is classified by a group variable. Or, multiple columns of data are plotted in the same graph. These groups or columns are represented in the graph by different color or line patterns or marker symbols. In these cases, a DISCRETELEGEND can be added to the graph to help decode the data. The MERGEDLEGEND statement can be used to consolidate legend entries when the graph displays grouped data for two plots. The MERGEDLEGEND statement must specify exactly two names that reference the source for the legend entry values.
- Prior to the third maintenance release of SAS 9.4, when a discrete attribute map is used for group values in a plot that contributes to a discrete legend and attributes are overridden in the plot statement, the attributes of some plot features and their corresponding legend items might not match. Starting with the third maintenance release of SAS 9.4, the attributes of the legend items always match the attributes of the corresponding plot features.

See: "LEGENDITEM Statement" on page 1126

Summary of Optional Arguments

Syntax

DISCRETELEGEND "graph-name-1" | "legend-item-name-1" | "discrete-attr-name-1" <"graph-name-2" | "legend-item-name-2" | "discrete-attr-name-2" ... > </option(s)>;

MERGEDLEGEND "graph-name" | "legend-item-name" | "discrete-attr-name" "graph-name" | "legend-item-name" | "discrete-attr-name" </option(s)>;

Appearance options

ACROSS=positive-integer
- specifies the number of legend entries that are placed horizontally before the next row begins.

AUTOITEMSIZE=TRUE | FALSE
- specifies that all markers, lines, and filled symbols in the legend are sized in proportion to the font size used for the legend entry labels.

BACKGROUND=style-reference | color
- specifies the color of the legend background.

BORDER=TRUE | FALSE
- specifies whether a border is displayed around the legend.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the legend.

DISPLAYCLIPPED=TRUE | FALSE
specifies whether the legend is displayed when any portion of the legend cannot be rendered entirely.

DOWN=positive-integer
specifies the number of legend entries that are placed vertically before the next column begins.

FILLITEMOUTLINE=AUTO | ON
specifies whether the fill swatches are outlined only when enabled by the contributing statements or are always outlined.

ITEMSIZE=(size-options)
specifies the size of specific types of items that are in a discrete or merged legend.

OPAQUE=TRUE | FALSE
specifies whether the legend background is opaque (TRUE) or transparent (FALSE).

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether legend entries are organized into rows or into columns.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the legend perimeter.

SORTBY=LABEL | TEXT
specifies whether text legend items are sorted by label or by text.

SORTORDER=AUTO | ASCENDINGFORMATTED | DESCENDINGFORMATTED
specifies the sort order to use for the legend entry labels.

TITLEBORDER=TRUE | FALSE
specifies a border around the legend title that separates it from the legend body.

VALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend values.

Content options

**ADDITIONALNAMES=("graph-name" | "legend-item-name" | "discrete-attr-name" <"graph-name" | "legend-item-name" | "discrete-attr-name">…)
specifies additional legend items that are to be added to the two items that are required in the MERGEDLEGEND statement.

EXCLUDE=(item-names)
specifies a list of legend entries to exclude from the display.

TYPE=ALL | FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL | TEXT
specifies which visual attributes to display for legend entries in the legend.

Location options

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the legend is automatically aligned within its parent layout when nested within an overlay-type layout.

HALIGN=CENTER | LEFT | RIGHT | number
specifies the horizontal alignment of the legend within its parent layout when nested within an overlay-type or region layout.
LOCATION=OUTSIDE | INSIDE
specifies whether the legend appears inside or outside the plot area when the legend is specified within an overlay-type or region layout.

VALIGN=CENTER | TOP | BOTTOM | number
specifies the vertical alignment of the legend within its parent layout when nested within an overlay-type or region layout.

Text options

TITLE=String
specifies the title of the legend.

TITLEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend title.

Required Arguments

"graph-name"
references one or more unique names that are specified by the NAME= option of a plot statement. These names control which plots contribute to the legend, and the order in which the legend entries occur. If a contributing plot uses a GROUP= option, then there is a legend entry for each group value that is present in the data.

Requirements
Each graph-name must be enclosed in quotation marks.

Each plot that is referenced must be able to be identified by the legend entries. For example, a filled CONTOURPLOTPARM plot cannot be specified in the DISCRETELEGEND or MERGEDLEGEND statement because it requires a continuous legend.

"legend-item-name"
references one or more unique values specified by the NAME= option of a LEGENDITEM statement. Each legend-item-name must be enclosed in quotation marks.

"discrete-attr-name"
references one or more unique values that are specified by the NAME= option in a DISCRETEATTRMAP statement. The discrete attribute map that the name references contributes all of its value statements as legend items, regardless of whether they match the data.

Optional Arguments

ACROSS=positive-integer
specifies the number of legend entries that are placed horizontally before the next row begins. A legend entry typically consists of two parts, such as a marker symbol and an associated value.

Default
The entries are placed to best fit the available area. This “best fit” approach works only when the legend is nested in the template’s outermost layout.

Interactions
This option is ignored if ORDER= COLUMNMAJOR

This option is ignored when the DISCRETELEGEND statement is in a LAYOUT GLOBALLEGEND block and the TYPE=ROW option is in effect for the layout.
ADDITIONALNAMES=("graph-name" | "legend-item-name" | "discrete-attr-name" <"graph-name" | "legend-item-name" | "discrete-attr-name">…)
specifies additional legend items that are to be added to the two items that are required in the MERGEDLEGEND statement.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

The items from the sources that are specified in this option are not included in the merging of the legend items. They are appended to the legend after the items from the sources that are specified in the required arguments are merged.

Restriction This option applies to the MERGEDLEGEND statement only.

Requirements The list of names must be enclosed in parentheses.

Each name must be enclosed in quotation marks and separated from adjacent values by a blank space.

See “"graph-name”” on page 1111

“"legend-item-name”” on page 1111

“"discrete-attr-name”” on page 1111

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the legend is automatically aligned within its parent layout when nested within an overlay-type layout.

NONE
do not automatically align the legend within its parent layout. The legend’s position is set by the HALIGN= and VALIGN= options.

AUTO
within the parent layout, attempts to center the legend in the area that is farthest from any surrounding data point markers.

(location-list)
within the parent layout, restricts the legend’s possible locations to those locations in the specified location-list, and use the location-list position that least collides with the parent layout’s other graphics features. The location-list is space-separated and can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Default NONE

Restriction AUTO is available only when the parent layout contains a scatter plot. Otherwise, it is ignored.

Interactions This option has no effect unless LOCATION= INSIDE.

When LOCATION=INSIDE and AUTOALIGN= is not NONE, the HALIGN= and VALIGN= options are ignored.

See the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type layout.
AUTOITEMSIZE=TRUE | FALSE
specifies that all markers, lines, and filled symbols in the legend are sized in proportion to the font size used for the legend entry labels. These proportional sizes take effect regardless of the size reported by the plot or LEGENDITEM. The line segments are drawn as deemed appropriate by the legend, regardless of the line thickness reported by the plot.

Default FALSE
Interaction When set to TRUE, this setting considers the font size in effect from the VALUEATTRS= option.
See “boolean ” on page 1339 for other Boolean values that you can use.

BACKGROUNDCOLOR=style-reference | color
specifies the color of the legend background.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the style-attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphLegendBackground:Color style reference.
Interaction OPAQUE= TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=TRUE | FALSE
specifies whether a border is displayed around the legend.

Defaults TRUE in the first maintenance release of SAS 9.4 and earlier releases.

The GraphLegendBackground:FrameBorder style reference starting with the second maintenance release of SAS 9.4. If attribute FrameBorder is not defined in the active style, then TRUE is the default value.

Tip The BORDERATTRS= option controls the appearance of the legend border.

See “boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the legend.

Default The GraphBorderLines style element.
Interaction BORDER= TRUE must be set for this option to have any effect.
See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element

“Line Options” on page 1349 for available line-options.

DISPLAYCLIPPED=TRUE | FALSE
specifies whether the legend is displayed when any portion of the legend cannot be rendered entirely. Based on the legend contents and placement, or when the graph size is reduced, parts of the legend (title, legend symbol, or legend value) might be clipped (truncated). When clipping occurs and this option is set to FALSE, the entire legend is removed from the graph. The space for that legend is then reclaimed by the
remainder of the graph. When this option is set to TRUE, the legend always appears, even if some parts of it have been clipped.

Default FALSE

See “boolean ” on page 1339 for other Boolean values that you can use.

DOWN=positive-integer
specifies the number of legend entries that are placed vertically before the next column begins. A legend entry typically consists of two parts, such as a marker symbol and an associated value.

Default The entries are placed to best fit the available area. This “best fit” approach works only when the legend is nested in the template’s outermost layout.

Restriction This option is ignored if ORDER= ROWMAJOR

Interaction This option is ignored when the DISCRETELEGEND statement is in a LAYOUT GLOBALLEGEND block.

EXCLUDE=(item-names)
specifies a list of legend entries to exclude from the display.

Default No items are excluded.

Requirement Each item name must be enclosed in quotation marks and separated from adjacent names by a space.

Note When the specified names are compared with the legend entry names, leading blanks are honored and trailing blanks are ignored.

Tip For plots with groups, you can exclude specific group values.

Example The following example excludes items Truck and Wagon from the legend.
 exclude=("Truck" "Wagon")

FILLITEMOUTLINE=AUTO | ON
specifies whether the fill swatches are outlined only when enabled by the contributing statements or are always outlined.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

AUTO honors the DISPLAY= option settings for the contributing plot or the FILLDISPLAY= setting of the legend item.

ON always outlines the fill swatches.

Default AUTO

Restriction This option is valid only in the DISCRETELEGEND statement.

Interaction The legend must display fill entries for this option to have any effect.

Note The outlines are always 1 pixel wide with a solid pattern.
HALIGN= CENTER | LEFT | RIGHT | number

specifies the horizontal alignment of the legend within its parent layout when nested within an overlay-type or region layout.

number

specifies an explicit position in the containing layout.

<table>
<thead>
<tr>
<th>Range</th>
<th>The number specification can range from 0 to 1. The number represents a fraction of the parent container’s width, where 0 is all the way to the left and 1 is all the way to the right.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>For a number setting to take effect, LOCATION=INSIDE must be set. A number setting is invalid on this option when LOCATION=OUTSIDE.</td>
</tr>
<tr>
<td>Tip</td>
<td>The legend is effectively anchored at its center. HALIGN=0 corresponds to the containing layout's left edge plus half the legend width. Similarly, HALIGN=1 corresponds to the containing layout's right edge minus half the legend width.</td>
</tr>
</tbody>
</table>

Default

CENTER

Restriction

This option is available only when this statement is nested within an overlay-type or region layout.

Interactions

If LOCATION= OUTSIDE, then the HALIGN= and VALIGN= options cannot both be set to CENTER.

This option is ignored when LOCATION=INSIDE, the AUTOALIGN= option is not NONE, and the parent layout is an overlay-type layout.

See

the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

ITEMSIZE=(size-options)

specifies the size of specific types of items that are in a discrete or merged legend.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

The following size options are supported:

FILLASPECTRATIO=AUTO | GOLDEN | positive-number

specifies the aspect ratio for the fill swatches.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

AUTO

uses an equal width and height for color swatches with solid color fills, or uses the golden ratio for swatches with pattern fills.

GOLDEN

specifies the golden ratio of 1.618 (width = 1.618 * height) for both solid color and pattern fill swatches.

positive-number

specifies a custom aspect ratio.
Restrictions
This option is valid only in the DISCRETELEGEND statement.

This option does not apply to bubble plot fill color swatches (filled circle).

Interactions
The legend must display fill entries for this option to have any effect.

This option is ignored when AUTOITEMSIZE=FALSE.

When FILLASPECTRATIO= is specified but neither FILLHEIGHT= nor HEIGHTSCALE= is used, the height for color swatches with a solid fill and color swatches with a pattern fill differ.

Note
FILLHEIGHT=, HEIGHTSCALE=, and FILLASPECTRATIO= also apply to fill-pattern color swatches with no outline.

Tip
Use FILLHEIGHT= or HEIGHTSCALE= to specify the height.

FILLHEIGHT=AUTO | BIG | dimension | style-reference
specifies the height of the fill swatches.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

AUTO
enables the SAS system to determine the fill color swatch height.

BIG
specifies sizes that were developed as defaults for SAS Visual Analytics, which results in color swatches that are larger than the SAS system defaults.

dimension
specifies a custom height for the fill swatches.

See “dimension” on page 1340

style-reference
specifies a style attribute that controls the height of the fill swatches. The style reference must provide a valid dimensional value.

See “style-reference” on page 1342

Default
AUTO
HEIGHTSCALE=positive-number
specifies a scale factor that is to be applied to the fill swatch height. Values
greater than 1 increase the height of the fill swatches, and values less than 1
reduce the height.

Note: This feature applies to the third maintenance release of SAS 9.4 and to
later releases.

Default 1.5

Restriction This option is valid only in the DISCRETELEGEND statement.

Interactions The legend must display fill entries for this option to have any
effect.

This option is ignored when AUTOITEMSIZE=FALSE.

Tips Use FILLHEIGHT= to change the base height.
Use FILLASPECTRATIO= to specify the width.

LINELENGTH=dimension
specifies the length of the line glyph for line entries in the legend.

Default Determined by the system

Interaction The legend must display line entries for this option to have any
effect.

See “dimension” on page 1340

LOCATION=OUTSIDE | INSIDE
specifies whether the legend appears inside or outside the plot area when the legend
is specified within an overlay-type or region layout.

Default OUTSIDE

Restriction This option has effect only when the legend statement appears within
an overlay-type or region layout and at least one stand-alone plot
statement is referenced by the parent layout.

Interactions The actual position is determined by the settings for the LOCATION=,
AUTOALIGN=, HALIGN=, and VALIGN= options.

If this option is set to OUTSIDE, then the HALIGN= and VALIGN= options must specify a keyword (LEFT, RIGHT, or CENTER). The
number setting for the alignment is invalid when the legend is
positioned outside of the plot area.

See the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page
142 for more information about how child positions are determined in
an overlay-type or region layout..

OPAQUE=TRUE | FALSE
specifies whether the legend background is opaque (TRUE) or transparent (FALSE).

Default FALSE
Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

ORDER=ROWMAJOR | COLUMNMAJOR
specifies whether legend entries are organized into rows or into columns.

Default ROWMAJOR

Interaction If ORDER=ROWMAJOR, then use the ACROSS= option to limit the number of entries in a row. If ORDER=COLUMNMAJOR, then use the DOWN= option to limit the number of entries in a column.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

AUTO
specifies that the default outside padding for this component is used.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

RIGHT=dimension specifies the amount of extra space added to the right side.

TOP=dimension specifies the amount of extra space added to the top.

BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Notes The default units for dimension are pixels.

Starting with the first maintenance release of SAS 9.4, the default padding between the discrete legend and the plot area (including the axes) is increased to 10 pixels, depending on the context. If the new default padding is not desirable, then use the OUTERPAD= option to adjust it.

See “dimension” on page 1340

PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the legend perimeter.

dimension specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend perimeter.
(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.
RIGHT=dimension specifies the amount of extra space added to the right side.
TOP=dimension specifies the amount of extra space added to the top.
BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default Padding for all sides is 0.

Note The default units for dimension are pixels.

See “dimension” on page 1340

SORTBY=LABEL | TEXT
specifies whether text legend items are sorted by label or by text.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default LABEL

Restriction This option is valid only in the DISCRETELEGEND statement.

Interaction This option has an effect only when sorting is performed, TYPE=TEXT is specified in this DISCRETELEGEND statement, and the legend items are defined in either a LEGENDTEXTITEM statement or in a LEGENDITEM statement that specifies TYPE=TEXT.

SORTORDER=AUTO | ASCENDINGFORMATTED | DESCENDINGFORMATTED
specifies the sort order to use for the legend entry labels.

Default AUTO. Groups of legend entries are presented in the order in which they are listed in the legend statement. The internal ordering of the entries is derived from the constituent plot-statement options.

Interaction This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

If this option is set to ASCENDINGFORMATTED or DESCENDINGFORMATTED, then the entries from separate plots, and separate legend items are combined and ordered as a single list.
The ASCENDINGFORMATTED and DESCENDINGFORMATTED settings perform a linguistic sort on the group items and have the same effect as sorting the input data. However, the data is not changed.

TITLE="string"

specifies the title of the legend. The title is placed to the left of the legend body, except in the following cases:

- The legend contains two or more rows of items.
- The legend is in a nested layout.
- The legend is in an OVERLAYEQUATED layout.
- The legend title length exceeds the space that is available on the left side of the legend.

In those cases, the title is placed above the legend body.

Default

No title

Requirement

`string` must be enclosed in quotation marks.

Interaction

When the title is placed to the left of the legend, if TITLEBORDER=TRUE is in effect, no separator is displayed between the title and the legend. If TITLEBORDER=FALSE is in effect in that case, a separator is displayed.

TITLEATTRS=`style-element | style-element (text-options) | (text-options)`

specifies the color and font attributes of the legend title.

Default

The GraphLabelText style element.

Interactions

For this option to have any effect, the **TITLE=** option must also be specified.

If one or more text options are specified and they do not include all the font properties (color, family, size, weight, style), then non-specified properties will be derived from the GraphLabelText style element.

Note

When you specify `style-element`, only the style attributes COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT are used.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Text Options” on page 1351 for available `text-options`.

TITLEBORDER=`TRUE | FALSE`

specifies a border around the legend title that separates it from the legend body.

Default

FALSE

Interactions

Prior to the third maintenance release of SAS 9.4, when LOCATION=INSIDE, BORDER=TRUE and the **TITLE=** option must also be in effect for this option to have any effect. When LOCATION=OUTSIDE, the **TITLE=** option must also be in effect. The **BORDER=** option has no effect on the title border in that case.
Starting with the third maintenance release of SAS 9.4, BORDER=TRUE and the TITLE= option must also be in effect for this option to have any effect. The LOCATION= option has no effect on the title border in that case.

Tip

The line attributes of the title border are set by the **BORDERATTRS=** options.

See

“**boolean**” on page 1339 for other Boolean values that you can use.

TYPE= **ALL | FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL | TEXT

specifies which visual attributes to display for legend entries in the legend.

Note: TEXT is valid starting with the third maintenance release of SAS 9.4.

The **TYPE=** option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the **TYPE** specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords **FILLCOLOR** or **MARKERSYMBOL** result in the display of a single attribute. Other keywords (for example, **FILL**, **LINE**, or **MARKER**) result in legends that display a set of visual attributes. For example, keyword **LINE** results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to **LINEPATTERN** or **MARKERSYMBOL**, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically, as if the **AUTOITEMSIZE=** option is set to TRUE. For keywords **FILLCOLOR**, **LINECOLOR**, and **MARKERCOLOR**, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the **CONTRASTCOLOR** attribute of the **GraphOutlines** style element.

Default

ALL

Restrictions

This option is valid only in the **DISCRETELEGEND** statement.

A **LEGENDITEM** statement can be referenced only from a discrete legend of the same attribute type or of an overlapping attribute type. For legends that display multiple visual attributes (use both colors and marker symbols, for example), the default visual properties are derived from the **GraphDataDefault** style-element.

Starting with the third maintenance release of SAS 9.4, the **LEGENDTEXTITEMS** statement can be referenced only from a discrete legend of type **TEXT** or **ALL**.

VALIGN= **CENTER | TOP | BOTTOM | number

specifies the vertical alignment of the legend within its parent layout when nested within an overlay-type or region layout.

number

specifies an explicit position in the containing layout.

Range

The **number** specification can range from 0 to 1. The **number** represents a fraction of the parent container’s height, where 0 is on the bottom and 1 is on the top.
Interaction For a number setting to take effect, LOCATION=INSIDE must be set. A number setting is invalid on this option when LOCATION=OUTSIDE.

Tip The legend is effectively anchored at its center. Zero corresponds to the containing layout's bottom edge plus half the legend height. Similarly, one corresponds to the containing layout's top edge minus half the legend height.

Default CENTER

Restriction This option is available only when this statement is nested within an overlay-type or region layout. It is ignored if the parent layout is not an overlay-type or region layout.

Interactions If LOCATION= OUTSIDE, then the VALIGN= and HALIGN= options cannot both be set to CENTER.

This option is ignored when LOCATION=INSIDE, the AUTOALIGN= option is not NONE, and the parent layout is an overlay-type layout.

See the LAYOUT OVERLAY “LAYOUT OVERLAY Statement” on page 142 for more information about how child positions are determined in an overlay-type or region layout.

VALUEATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend values.

Default The GraphValueText style element.

Interaction If one or more text options are specified and they do not include all the font properties (color, family, size, weight, style), then non-specified properties will be derived from the GraphLabelText style element.

Note When you specify style-element, only the style attributes COLOR, FONTFAMILY, FONTSIZE, FONTSTYLE, and FONTWEIGHT are used.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

Details

A discrete legend consists of one or more units called legend entries. Each legend entry consists of a legend symbol and a legend value. The legend symbol is typically a marker, line, or filled symbol that represents a specific area in the plot. The legend value is descriptive text that is derived from group values, or that is assigned by the plot’s LEGENDLABEL= option or by the LEGENDITEM statement’s LABEL= option. To specify a discrete legend, you can use the DISCRETELEGEND statement. To consolidate legend entries for common grouped values that are represented by two separate plots, you can use the MERGEDLEGEND statement.

For grouped plots, a discrete legend represents all of the values that are present in the data. To ensure that legend entries are displayed for group values, regardless of whether
those values are present in the data, you can use a discrete attribute map as described in “Displaying Legend Entries for Group Values That Are Not in the Data” on page 1293.

In the DISCRETELEGEND statement, you can specify one or more names that reference the source for the legend entry values. You can use the TYPE= option to control the visual attributes for the legend display.

For legend items that represent fills or colors without a specific shape, a filled symbol with a one-pixel-wide, solid outline is used to represent the data values. If the feature being represented by the legend item has an outline, then the default outline color is derived from the feature’s outline color. If the feature being represented is an outline only or is a filled outlined marker, then the outline thickness is derived from the plot. If the feature does not have an outline, then the default outline color for its corresponding legend entry is derived from the GraphOutline style element.

You can use the MERGEDLEGEND statement to consolidate lines and marker symbols from discrete legend entries when a graph displays grouped values for exactly two plots. With a MERGEDLEGEND statement, the legend values from the group variables in two plots are compared. For each common value, the corresponding legend lines and marker symbols are combined, and only one legend entry is created for each matching set of group values. You can use the MERGEDLEGEND statement only for grouped plots. You must specify two names that reference the source for the legend entry values.

When a discrete legend is placed inside the plot area of an overlay type layout and LOCATION= INSIDE, the following conditions apply:

- The discrete legend is always placed on top of plot lines and markers.
- By default, the background of the discrete legend is fully transparent (OPAQUE= FALSE). Underlying lines, markers, and data labels show through the legend.
- You can control the position of the discrete legend with the AUTOALIGN= option, or with the HALIGN= and VALIGN= options. (The AUTOALIGN= option is not available in a LAYOUT OVERLAY3D statement.)

When a discrete legend is placed outside the plot area of an overlay type layout and LOCATION= OUTSIDE, the following conditions apply:

- By default, the background of the discrete legend is fully opaque (OPAQUE=TRUE).
- You can control the position of the discrete legend with the HALIGN= and VALIGN= options.

When a discrete legend is placed within nested layouts, you might need to do one of the following to obtain the legend organization that you want:

- use the ACROSS= option, and also set ORDER= ROWMAJOR
- use the DOWN= option, and also set ORDER= COLUMNMAJOR

A legend might be dropped if the total legend area in the graph exceeds the percentage that is set by the MAXLEGENDAREA= option in an ODS GRAPHICS ON statement that is in effect for the output destination. A legend might also be dropped if DISPLAYCLIPPED= FALSE and the full legend cannot be displayed.
Examples

Example 1: DISCRETELEGEND Statement
The following graph using the DISCRETELEGEND statement was generated by “Example Program”. It displays two discrete legends, one that shows the confidence limits for two ellipses and a second that shows the values for a GROUP= variable:

![Prediction Ellipses](image)

Example Program

```
proc template;
  define statgraph discretelegend;
  begingraph;
    entrytitle "Prediction Ellipses";
    layout overlayequated / equatetype=equate;
    scatterplot x=petallength y=petalwidth / group=species name="s";
    ellipse x=petallength y=petalwidth / type=predicted alpha=0.2
       name="p80" legendlabel="80%"
       outlineattrs=graphconfidence;
    ellipse x=petallength y=petalwidth / type=predicted alpha=0.05
       name="p95" legendlabel="95%"
       outlineattrs=graphconfidence2;
    discretelegend "s" / title="Species:"; 
    discretelegend "p80" "p95" / across=1
       autoalign=(topleft) location=inside;
  endlayout;
  entryfootnote halign=left "Fisher's Iris Data";
  endgraph;
end;
```
Example 2: MERGEDLEGEND Statement
The following graph using the MERGEDLEGEND statement was generated by “Example Program”. In the template definition, a grouped scatter plot is overlaid with a series plot for each group, and the two plots are referenced by a single merged legend:

Example Program

```sas
proc sort data=sashelp.class
    out =class;
    by sex;
run;

proc template;
    define statgraph mergedLegend;
    begingraph;
    entrytitle "Linear Regression By Gender";
    layout overlay;
        scatterplot x=height y=weight / group=sex name="scat";
        regressionplot x=height y=weight/ group=sex name="reg";
        mergedlegend "scat" "reg" / border=true;
    endlayout;
    endgraph;
end;

proc sgrender data=class template=mergedLegend;
run;
```
LEGENDITEM Statement

Creates the definition for a legend item that can be included in a discrete legend.

Restriction: The LEGENDITEM statement is used with the DISCRETELEGEND and MERGEDLEGEND statements only.

Requirement: The LEGENDITEM statement must appear in the global definition area of the template between the BEGINGRAPH statement and the first LAYOUT statement.

Note: The LEGENDITEM statement creates the definition for a legend item that can be included in a discrete legend.

See: "DISCRETELEGEND and MERGEDLEGEND Statements" on page 1109

Syntax

```plaintext
LEGENDITEM TYPE=type NAME="string" <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **FILLATTRS=**
 - `style-element` | `style-element (fill-options)` | `(fill-options)`
 - specifies the color of the fill when TYPE= is set to FILL.

- **FILLCOLOR=**
 - `STANDARD` | `ALL` | `(FILL | OUTLINE)`
 - specifies whether the fill swatch for this legend item displays fill only or displays fill and outline.

- **FILLEOFPRESLIZEDMARKERS=**
 - `TRUE` | `FALSE`
 - specifies whether markers are drawn with both fill and an outline.

- **LINEATTRS=**
 - `style-element` | `style-element (line-options)` | `(line-options)`
 - specifies the appearance of the line when TYPE= is set to LINE or MARKERLINE.

- **MARKERATTRS=**
 - `style-element` | `style-element (marker-options)` | `(marker-options)`
 - specifies the appearance of the marker when TYPE= is set to MARKER or MARKERLINE.

- **OUTLINEATTRS=**
 - `style-element` | `style-element (line-options)` | `(line-options)`
 - specifies the color of the outline when TYPE= is set to FILL.

- **TEXT=**
 - `"string"`
 - specifies the text to display when TYPE= is set to TEXT.

- **TEXTATTRS=**
 - `style-element` | `style-element (text-options)` | `(text-options)`
 - specifies the font and color attributes of the string that is specified on the TEXT= option when TYPE= is set to TEXT.

Label options

- **LABEL=**
 - `"string"`
 - specifies a label to be used for the legend item.

- **LABELATTRS**
 - specifies the color and font attributes of the legend item’s label.
Required Arguments

```
TYPE=FILL | MARKER | MARKERLINE | LINE | TEXT
```

specifies a type for the legend item.

- **FILL**
 specifies a fill (displayed as a filled square). The appearance can be managed with the FILLATTRS= and OUTLINEATTRS= options.

- **MARKER**
 specifies a marker. The appearance can be managed with the MARKERATTRS= option.

- **MARKERLINE**
 specifies a marker and a line. The appearance can be managed with the MARKERATTRS= and LINEATTRS= options.

- **LINE**
 specifies a line. The appearance can be managed with the LINEATTRS= option.

- **TEXT**
 specifies text that can be displayed in the legend area. The text string is defined with the TEXT= option, and the text appearance can be managed with the TEXTATTRS= option.

NAME=“string”
assigns a name to the legend item for reference in a DISCRETELEGEND or MERGEDLEGEND statement.

Restriction
The string is case sensitive and must define a unique name within the template.

Optional Arguments

```
FILLATTRS=style-element | style-element (fill-options) | (fill-options)
```

specifies the color of the fill when TYPE= is set to FILL.

Default
The GraphDataDefault style element.

Interaction
The TRANSPARENCY attribute cannot be derived from the style element, but it can be set with this option.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

```
FILLDISPLAY=STANDARD | ALL | (FILL | OUTLINE)
```

specifies whether the fill swatch for this legend item displays fill only or displays fill and outline.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

- **STANDARD | ALL**
 displays the fill and outline.

- **(FILL | OUTLINE)**
 displays only the fill (FILL) or displays the fill and outline (OUTLINE).

Default
STANDARD
You must specify TYPE=FILL for this option to have any effect.

FILLEDOUTLINEDMARKERS=TRUE | FALSE
specifies whether markers are drawn with both fill and an outline.

TRUE
draws filled markers (marker symbols with the suffix FILLED) using both fill and an outline.

Interaction When this option is TRUE, the marker fill is drawn using the FILLATTRS= specification, and the outline is drawn using the OUTLINEATTRS= specification.

FALSE
draws the markers using fill or an outline, but not both.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

LABEL="string"
specifies a label to be used for the legend item.

Default No label is displayed

Tip The font and color attributes for the label are specified by the LABELATTRS= option.

LABELATTRS specifies the color and font attributes of the legend item’s label.

Default The GraphValueText style element.

 Interaction For this option to take effect, the LABEL= option must also be specified.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

LINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the appearance of the line when TYPE= is set to LINE or MARKERLINE.

Default The GraphDataDefault style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)
specifies the appearance of the marker when TYPE= is set to MARKER or MARKERLINE.

Default The GraphDataDefault style element.
Interaction
The WEIGHT attribute cannot be derived from the style element, but it can be set with this option.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
specifies the color of the outline when TYPE= is set to FILL.

Default
The GraphDataDefault style element.

Restriction
This option uses only the color specification in the style element or line options. The line pattern and line thickness specifications are ignored.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

TEXT="string"
specifies the text to display when TYPE= is set to TEXT. The font and color attributes for the text are specified by the TEXTATTRS= option.

Default
a blank space

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the font and color attributes of the string that is specified on the TEXT= option when TYPE= is set to TEXT.

Default
The GraphValueText style element.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Text Options” on page 1351 for available text-options.

Details
The LEGENDITEM statement creates a definition for a legend item that can be included in a legend. The item that you define is independent of the data and enables you to customize the legend to enhance or replace a standard legend. For example, to display annotation text within the legend area, you can define a LEGENDITEM statement with TYPE=TEXT and specify the text in the TEXT= option.

As demonstrated in the “Example Program” on page 1130, multiple LEGENDITEM statements can be used to replace a plot statement’s data-driven legend by defining custom legend items to display in the legend. This use enables you to communicate information that is not in the data. For this use, you would define one or more LEGENDITEM statements to specify legend attributes, and then reference those items in your legend statement. You must not reference the plot statement itself in the legend statement. Although no direct connection would exist between the plot data and the legend, you could communicate the connection by managing the visual attributes in both the plot and the legend.

The LEGENDITEM statement must be located within the BEGINGRAPH block but outside of the outermost layout block. You can use multiple LEGENDITEM statements
to define multiple definitions. In that case, each definition specifies a single legend entry and each item name must be referenced in the legend statement.

Note: A single legend statement can reference multiple item names and also multiple plot names.

When specifying attribute options for a particular LEGENDITEM statement, options that do not apply to the specified TYPE= value are ignored. For example, the MARKERATTRS= option sets the attributes for a marker and is useful if you set TYPE=MARKER or TYPE=MARKERLINE. However, if TYPE= is set to a value that does not display a marker symbol, then the MARKERATTRS= option is ignored.

Example: LEGENDITEM Statement

The following graph was generated by the “Example Program” on page 1130. The example specifies three LEGENDITEM statements to define graphical properties for two marker symbols and a text string. The NAME= option in each LEGENDITEM statement assigns a name to the definition. Those names are referenced in a DISCRETELEGEND statement so that the definitions are displayed in the graph legend. To correlate the legend with the scatter plot, the example creates an attribute map that matches values M and F to the same graphical properties that are specified in the LEGENDITEM statements. That attribute map is referenced in the scatter plot.

Example Program

```sas
proc template;
  define statgraph scatterplot;
  begingraph;
    entrytitle "Team Tryouts: Height and Weight by Sex";
    discreteattrmap name="symbols" / ignorecase=true trimleading=true;
```
LEGENDTEXTITEMS Statement

Creates the definition for data-driven text items that can be included in a discrete legend.

Restrictions:
- The LEGENDTEXTITEMS statement is used only with the DISCRETELEGEND statement.
- Grouping is not supported.
- The maximum number of items that the LEGENDTEXTITEMS statement can contribute to the legend is 100. If this limit is exceeded, the LEGENDTEXTITEMS statement is dropped. If no other statements contribute to the legend in that case, the legend is not drawn.

Requirements:
- The LEGENDTEXTITEMS statement must appear in the global definition area of the template between the BEGINGRAPH statement and the first LAYOUT statement.
- The `TYPE=` option in the legend statement that references this statement must be set to ALL or TEXT.

Note:
- This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See: "DISCRETELEGEND and MERGEDLEGEND Statements" on page 1109

Syntax

```plaintext
LEGENDTEXTITEMS NAME="string" TEXT=column <option(s)>;
```

Required Arguments

`NAME="string"`
- assigns a name to the legend items for reference in a DISCRETELEGEND or MERGEDLEGEND statement.
TEXT=column
specifies the column in the plot data set that contains the text items.

Notes
One item is added for each observation. Grouping is not supported.

The TEXT column should not contain missing values. A missing TEXT column value is treated as if no text is specified. If an observation contains a missing TEXT column value and a valid LABEL column value, only the label value is added to the legend for that observation. If both values are missing, nothing is added to the legend.

Optional Arguments

LABEL=column
specifies the column that contains the labels for the legend items.

Default
No labels are displayed for the items

Note
Each observation that has a LABEL column value should have a corresponding TEXT column value. If an observation contains a valid LABEL column value and a missing TEXT column value, only the label value is added to the legend for that observation.

Tip
The font and color attributes for the label are specified by the LABELATTRS= option.

LABELATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font attributes of the legend item labels.

Default
The GraphValueText style element.

Note
Space is reserved in the legend for the height of the legend label text regardless of whether the LABEL= option is specified.

Tip
If you are not using the LABEL= option, specify LABELATTRS=(SIZE=0pt) to reclaim the space that is reserved for the label text height.

See
“General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element value.

“Text Options” on page 1351 for available text-options.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the font and color attributes of the text values that is specified on the TEXT= option.

Default
The GraphValueText style element.

See
“General Syntax for Attribute Options” on page 1347 for the syntax for using a style-element value.

“Text Options” on page 1351 for available text-options.
Details

The LEGENDTEXTITEMS statement creates a definition for data-driven text legend items that can be included in a discrete legend. The items that you define in the data are independent of the plot and enable you to customize the legend in order to enhance or replace a standard legend. The text items are stored in the plot data set in the column that is specified by the TEXT= option. The LEGENDTEXTITEMS statement must be located within the BEGINGRAPH block but outside of the outermost layout block. You reference the LEGENDTEXTITEMS statement in your legend statement by the name specified in the NAME= option. You must not reference the plot statement itself in the legend statement. To add items from multiple columns, specify one LEGENDTEXTITEMS statement for each column, and then reference all of the LEGENDTEXTITEMS statements in your legend statement. Although no direct connection would exist between the plot data and the legend, you could communicate the connection by managing the visual attributes in both the plot and the legend.

Example: LEGENDTEXTITEMS Statement

The following graph was generated by the “Example Program” on page 1133. The graph shows a scatter plot of height and weight by sex for 19 participants in a team tryout. To reduce clutter in the plot, a numeric ID is used to label the marker for each individual in the plot. A legend in the right margin of the graph displays the participant name for each ID.

Example Program

In this example program, a LEGENDTEXTITEMS statement is used to create the legend of IDs and names in the right margin of the graph. The name IDLEGEND is assigned to the LEGENDTEXTITEMS statement. The ID column provides the legend text items, and the Name column provides a name as the label for each text item. Here is the SAS code.

/* Assign a numeric ID to each name */
data class;
 set sashelp.class;
 id=_N_*;
run;

/* Define the template for the graph */
proc template;
define statgraph scatterplot;
 begingraph;
 entrytitle "Team Tryouts: Height and Weight by Sex";
 legendtextItems name="idlegend" text=id / label=name;
 layout lattice / columns=2 columnweights=(85 15);
 layout overlay /
 xaxisopts=(griddisplay=on
 gridattrs=(color=lightgray pattern=dot))
 yaxisopts=(griddisplay=on
 gridattrs=(color=lightgray pattern=dot));
 scatterplot x=height y=weight / name="scatter"
 group=sex datalabel=id;
 discretelegend "scatter" / location=inside
 autoalign=(bottom bottomright);
 endlayout;
 layout overlay;
 discretelegend "idlegend" /
 title="ID/Name" titleattrs=(weight=bold)
 valign=top border=false
 order=rowmajor across=1;
 endlayout;
endgraph;
end;

/* Render the graph */
proc sgrender data=class template=scatterplot;
run;
Part 7

Text Statements

Chapter 10
Managing Text Items ... 1137

Chapter 11
Text Statements .. 1147
Overview

The ENTRY, ENTRYTITLE, and ENTRYFOOTNOTE statements all use the same syntax for specifying one or more pieces of text called text items. For example, here is the ENTRYTITLE syntax:

ENTRYTITLE text-item <…<text-item>> </option(s)>;

Each text item can be specified using the following syntax:

<prefix-option…<prefix-option>> "string" | dynamic | character-expression | {text-command}

The simplest specification for each statement is to specify a string in quotation marks. For example, you might specify a graph title as follows:

entrytitle "Height and Weight by Sex";

In this example, the string “Height and Weight by Sex” is formatted as the graph title and displayed in the title position. If multiple strings are specified, then they are concatenated into a single line of text. This second specification generates the same title:

entrytitle "Height " "and " "Weight " "by " "Sex";
To provide control over the text, multiple prefix options can precede each text item, and the text item can be a string literal, a dynamic, or a text command. All text items with the same HALIGN= setting are concatenated into one string. Up to three strings with different horizontal alignment can result for each ENTRY statement. Leading and trailing blanks in the concatenated string are always used.

- a string must be enclosed in quotation marks.
- a character expression must be enclosed in an EVAL function.
- a text command must be enclosed in braces. (See “Using Text Commands” on page 1140).

Using Prefix Options

Available Prefix Options

The following prefix options are available on ENTRY, ENTRYTITLE, and ENTRYFOOTNOTE statements:

- **HALIGN**
 specifies the horizontal alignment of a text item.

- **TEXTATTRS**
 specifies font attributes for a text item.

When used, a prefix option applies not only to immediately following piece of text but also to ALL subsequent text strings and text-commands. If the same prefix option appears more than once, then each use overrides the last used prefix of the same name.

Managing Horizontal Alignment

For the ENTRY, ENTRYTITLE, and ENTRYFOOTNOTE statements, the default horizontal alignment is CENTER.

```plaintext
entry "One" " Two" " Three" " Four" " Five" " Six";
```

The HALIGN= option can be used to change the horizontal alignment to LEFT, CENTER, or RIGHT. The following specification left-justifies the text:

```plaintext
entry halign=left
 "One" " Two" " Three" " Four" " Five" " Six";
```

Text items are positionally concatenated by alignment area. For example, the following specification left-justifies the first three strings and right-justifies the last three strings:

```plaintext
entry halign=left
 "One" " Two" " Three" halign=right
 "Four" " Five" " Six";
```
Even if the HALIGN= specifications are jumbled, the final text is nevertheless positionally concatenated by alignment area:

| One | Two | Three | Four | Five | Six |

entry halign=right "Five" halign=left "One"
 halign=right " Six" halign=center "Three"
 halign=left " Two" halign=center " Four";

Note: When long strings are used or the bounding container is constrained, the alignment areas might overlap.

Managing Font Attributes

For the ENTRY, ENTRYTITLE, and ENTRYFOOTNOTE statements, the default font attributes are determined by the active ODS style. The TEXTATTRS= option can be used to change the default font attributes. The TEXTATTRS= option syntax is as follows (see “General Syntax for Attribute Options” on page 1347 for the syntax on using a style element and “Text Options” on page 1351 for available text options):

TEXTATTRS=style-element | style-element(text-options) | (text-options)

For example, the following ENTRYTITLE statement uses prefix options to create this title line:

| Left side | Center Text | Right side |

entrytitle textattrs=(color=black) "Center"
 textattrs=(color=red) " Text"
 halign=right textattrs=(color=black size=10pt) "Right "
 textattrs=(color=red size=10pt) "side"
 halign=left
 textattrs=(color=black style=italic size=10pt) "Left"
 textattrs=(color=red style=italic size=10pt) " side";

- The TEXTATTRS= options are reset each time a new TEXTATTRS= appears—there is no “carry over” or accumulation of the settings.
- Blanks (spaces) must be provided as needed to achieve the desired concatenation. When concatenating dynamics that are stripped of leading and trailing blanks, a literal space must be inserted to separate them, as shown in the following example:

entry _DYN1 " " _DYN2;

Alternatively, font attributes can be specified by overriding the style element defaults. The following specification overrides the settings of the GraphTitleText style element, which sets the default attributes for ENTRYTITLE text:

eventitle
 halign=left
 textattrs=GraphTitleText(color=black style=italic) "Left"
 textattrs=GraphTitleText(color=red style=italic) " side"
Dynamics can also be used in the text strings. In the following ENTRYTITLE statement, assume that _DEPLABEL and _MODELLABEL are dynamics that are specified on PROC TEMPLATE’s DYNAMIC statement:

```
entrytitle "Residual by Predicted for " _DEPLABEL
  halign=left textattrs=GraphTitleText _MODELLABEL / pad=(bottom=5);
```

- The default style element for ENTRYTITLE is GraphTitleText, so all three text items (one literal and two dynamics) get these font properties as a starting point.
- The text "Residual by Predicted for " _DEPLABEL is center-aligned by default.
- The prefix options HALIGN= and TEXTATTRS= override the center alignment and font properties for the text _MODELLABEL.

This could have been coded as follows:

```
entrytitle halign=left
  textattrs=GraphTitleText _MODELLABEL
  halign=center textattrs=()
  "Residual by Predicted for " _DEPLABEL;
```

In this example, the second HALIGN= and TEXTATTRS=() are necessary to reset alignment and font properties to their defaults.

The string length of the resolved dynamic _MODELLABEL does not affect the placement of the center-aligned text.

Using Text Commands

Available Text Commands

Text commands on ENTRY, ENTRYTITLE, and ENTRYFOOTNOTE statements are special in-line instructions that either modify the appearance of the text or script special characters. The following text commands are available:

- `{SUB}` specifies that the string or dynamic appears as a subscript.
- `{SUP}` specifies that the string or dynamic appears as a superscript.
- `{UNICODE}` specifies a glyph (graphical character) to be displayed using its Unicode specification or keyword equivalent.

The general form of a text command is

```
{command argument(s)}
```
The opening and closing braces are required to denote the scope of the command.

Subscripting and Superscripting Text

The {SUB} and {SUP} text commands are used to subscript and superscript text. Each of these text commands accepts a string or a dynamic for its argument(s).

In the following example, if _RSQUARE is an existing dynamic that resolves to the value 0.7434, then the following ENTRY specification superscripts the string value "2" to generate this text:

```plaintext
entry textattrs=(weight=bold) "R" {sup "2"}
textattrs=() "=" _RSQUARE;
```

The `textattrs=()` option cancels all style overrides and reverts to the default text properties.

Using UNICODE Text

The {UNICODE} text command places special characters into the text and accepts any of the following for its argument(s):

- a hexadecimal Unicode Code Point for a character (for example, "03B1"x)
- a reserved keyword for a commonly used code point (for example, BETA)
- a dynamic that resolves to a hexadecimal value or keyword.

The tables in “Reserved Keywords and Unicode Values” on page 1142 provide a list of the commonly used reserved keywords and Unicode values (the tables are not complete, but they provide an idea about what is possible).

Multiple arguments can be used within the scope of a single UNICODE text command. For example, the following two specifications are equivalent:

```plaintext
{unicode "03b1"x beta}
{unicode "03b1"x} {unicode beta}
```

The default formatting for the UNICODE text is derived from the GraphUnicodeText style element.

In the following example, if _ALPHAVAL is an existing dynamic that resolves to the value 0.05, then the following ENTRY specification generates this text:

```plaintext
α = 0.05
```

```plaintext
entry {unicode alpha} " = " _ALPHAVAL;
```

By combining the TEXTATTRS= prefix option with the {SUB} and {UNICODE} text commands, you can generate the following text:

```plaintext
E(\gamma) = \beta_0 + \beta_1x_1 + \beta_2x_2.
```
Rules for Unicode and Special Character Specifications

The following rules apply to Unicode and special character specifications in ODS graphics:

- Each character can be specified by looking up its code and specifying it as a hexadecimal constant. Example: `\texttt{\texttt{\texttt{unicode '221e'x}}}.

- Lowercase Greek letters can be specified by using names instead of hexadecimal constants. Example: `\texttt{\texttt{\texttt{unicode alpha}}}.

- Uppercase Greek letters can be specified by using names followed by \texttt{\texttt{\texttt{_u}}} instead of a hexadecimal constants. Example: `\texttt{\texttt{\texttt{unicode alpha_u}}}.

- Superscript and subscript have special abbreviations. Examples: `\texttt{\texttt{\texttt{sup 2}}} and `\texttt{\texttt{\texttt{sub 2}}}.

- The \texttt{\texttt{\texttt{SUP}}} and \texttt{\texttt{\texttt{SUB}}} specifications must not appear escaped and in quotation marks in the GTL. They must appear outside of quotation marks.

- Some characters overprint the character that comes before. Example: `\texttt{\texttt{'El nin'} \texttt{\texttt{\texttt{\texttt{tilde}}} 'o', which is equivalent to 'El nin'} \texttt{\texttt{\texttt{\texttt{unicode '0303'x}} \texttt{\texttt{'o'}} creates 'El niño'.}}

- Specifications inside quotation marks are escaped. Example: `\texttt{\texttt{\texttt{'(*ESC*){unicode beta}}}.

- Specifications outside quotation marks are not escaped. Example: `\texttt{\texttt{\texttt{unicode beta}}}.

For more information about using text throughout the GTL (for example, using Unicode values in labels), see \textit{SAS Graph Template Language: User's Guide}.

Reserved Keywords and Unicode Values

Overview

The tables in this section show some of the reserved keywords and Unicode values that can be used with the UNICODE text command. For information about rendering Unicode characters, see “Managing the String on Text Statements” in \textit{SAS Graph Template Language: User's Guide}.

Note the following:

- Keywords and Unicode values are not case-sensitive: "03B1"x is the same code point as "03b1"x.

- The word \texttt{blank} is the keyword for a blank space.
Lowercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>α</td>
<td>03B1</td>
<td>lowercase alpha</td>
</tr>
<tr>
<td>beta</td>
<td>β</td>
<td>03B2</td>
<td>lowercase beta</td>
</tr>
<tr>
<td>gamma</td>
<td>γ</td>
<td>03B3</td>
<td>lowercase gamma</td>
</tr>
<tr>
<td>delta</td>
<td>δ</td>
<td>03B4</td>
<td>lowercase delta</td>
</tr>
<tr>
<td>epsilon</td>
<td>ε</td>
<td>03B5</td>
<td>lowercase epsilon</td>
</tr>
<tr>
<td>zeta</td>
<td>ζ</td>
<td>03B6</td>
<td>lowercase zeta</td>
</tr>
<tr>
<td>eta</td>
<td>η</td>
<td>03B7</td>
<td>lowercase eta</td>
</tr>
<tr>
<td>theta</td>
<td>θ</td>
<td>03B8</td>
<td>lowercase theta</td>
</tr>
<tr>
<td>iota</td>
<td>ι</td>
<td>03B9</td>
<td>lowercase iota</td>
</tr>
<tr>
<td>kappa</td>
<td>κ</td>
<td>03BA</td>
<td>lowercase kappa</td>
</tr>
<tr>
<td>lambda</td>
<td>λ</td>
<td>03BB</td>
<td>lowercase lambda</td>
</tr>
<tr>
<td>mu</td>
<td>μ</td>
<td>03BC</td>
<td>lowercase mu</td>
</tr>
<tr>
<td>nu</td>
<td>ν</td>
<td>03BD</td>
<td>lowercase nu</td>
</tr>
<tr>
<td>xi</td>
<td>ξ</td>
<td>03BE</td>
<td>lowercase xi</td>
</tr>
<tr>
<td>omicron</td>
<td>ο</td>
<td>03BF</td>
<td>lowercase omicron</td>
</tr>
<tr>
<td>pi</td>
<td>π</td>
<td>03C0</td>
<td>lowercase pi</td>
</tr>
<tr>
<td>rho</td>
<td>ρ</td>
<td>03C1</td>
<td>lowercase rho</td>
</tr>
<tr>
<td>sigma</td>
<td>σ</td>
<td>03C3</td>
<td>lowercase sigma</td>
</tr>
<tr>
<td>tau</td>
<td>τ</td>
<td>03C4</td>
<td>lowercase tau</td>
</tr>
<tr>
<td>upsilon</td>
<td>υ</td>
<td>03C5</td>
<td>lowercase upsilon</td>
</tr>
<tr>
<td>phi</td>
<td>φ</td>
<td>03C6</td>
<td>lowercase phi</td>
</tr>
<tr>
<td>chi</td>
<td>χ</td>
<td>03C7</td>
<td>lowercase chi</td>
</tr>
<tr>
<td>psi</td>
<td>ψ</td>
<td>03C8</td>
<td>lowercase psi</td>
</tr>
</tbody>
</table>
Uppercase Greek Letters

Table 10.1 Uppercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha_u</td>
<td>A</td>
<td>0391</td>
<td>uppercase alpha</td>
</tr>
<tr>
<td>beta_u</td>
<td>B</td>
<td>0392</td>
<td>uppercase beta</td>
</tr>
<tr>
<td>gamma_u</td>
<td>Γ</td>
<td>0393</td>
<td>uppercase gamma</td>
</tr>
<tr>
<td>delta_u</td>
<td>Δ</td>
<td>0394</td>
<td>uppercase delta</td>
</tr>
<tr>
<td>epsilon_u</td>
<td>E</td>
<td>0395</td>
<td>uppercase epsilon</td>
</tr>
<tr>
<td>zeta_u</td>
<td>Z</td>
<td>0396</td>
<td>uppercase zeta</td>
</tr>
<tr>
<td>eta_u</td>
<td>H</td>
<td>0397</td>
<td>uppercase eta</td>
</tr>
<tr>
<td>theta_u</td>
<td>θ</td>
<td>0398</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>iota_u</td>
<td>I</td>
<td>0399</td>
<td>uppercase iota</td>
</tr>
<tr>
<td>kappa_u</td>
<td>K</td>
<td>039A</td>
<td>uppercase kappa</td>
</tr>
<tr>
<td>lambda_u</td>
<td>Λ</td>
<td>039B</td>
<td>uppercase lambda</td>
</tr>
<tr>
<td>mu_u</td>
<td>M</td>
<td>039C</td>
<td>uppercase mu</td>
</tr>
<tr>
<td>nu_u</td>
<td>N</td>
<td>039D</td>
<td>uppercase nu</td>
</tr>
<tr>
<td>xi_u</td>
<td>Ξ</td>
<td>039E</td>
<td>uppercase xi</td>
</tr>
<tr>
<td>omicron_u</td>
<td>O</td>
<td>039F</td>
<td>uppercase omicron</td>
</tr>
<tr>
<td>pi_u</td>
<td>Π</td>
<td>03A0</td>
<td>uppercase pi</td>
</tr>
<tr>
<td>rho_u</td>
<td>R</td>
<td>03A1</td>
<td>uppercase rho</td>
</tr>
<tr>
<td>sigma_u</td>
<td>Σ</td>
<td>03A3</td>
<td>uppercase sigma</td>
</tr>
<tr>
<td>tau_u</td>
<td>T</td>
<td>03A4</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>upsilon_u</td>
<td>Y</td>
<td>03A5</td>
<td>uppercase upsilon</td>
</tr>
</tbody>
</table>
Reserved Keywords and Unicode Values

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phi_u</td>
<td>Φ</td>
<td>03A6</td>
<td>uppercase phi</td>
</tr>
<tr>
<td>chi_u</td>
<td>Χ</td>
<td>03A7</td>
<td>uppercase chi</td>
</tr>
<tr>
<td>psi_u</td>
<td>Ψ</td>
<td>03A8</td>
<td>uppercase psi</td>
</tr>
<tr>
<td>omega_u</td>
<td>Ω</td>
<td>03A9</td>
<td>uppercase omega</td>
</tr>
</tbody>
</table>

Special Characters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime</td>
<td>’</td>
<td>00B4</td>
<td>single prime sign</td>
</tr>
<tr>
<td>bar</td>
<td>—</td>
<td>0305</td>
<td>combining overline</td>
</tr>
<tr>
<td>bar2</td>
<td>—</td>
<td>033F</td>
<td>combining double overline</td>
</tr>
<tr>
<td>tilde</td>
<td>~</td>
<td>0303</td>
<td>combining tilde</td>
</tr>
<tr>
<td>hat</td>
<td>~</td>
<td>0302</td>
<td>combining circumflex accent</td>
</tr>
</tbody>
</table>

* This is an overstriking character that requires a Unicode font to render properly.
Chapter 11
Text Statements

Dictionary

ENTRY Statement
Displays a line of text in the graphical area.

Requirement: An ENTRY statement must be specified within a LAYOUT, HEADER, SIDEBAR, or CELL statement block.

Syntax

```
ENTRY text-item <text-item ...> </option(s)>;
```

Summary of Optional Arguments

Appearance options

- `BACKGROUNDCOLOR=style-reference | color`
 specifies the color of the text background.
- `BORDER=TRUE | FALSE`
 specifies whether a border is displayed around the text.
- `BORDERATTRS=style-element | style-element (line-options) | (line-options)`
 specifies the attributes of the border line around the text.
- `OPAQUE=TRUE | FALSE`
 specifies whether the text background is opaque (TRUE) or transparent (FALSE).
- `OUTERPAD=AUTO | dimension | (pad-options)`
 specifies the amount of extra space to add outside the entry border.
- `PAD=dimension | (pad-options)`
 specifies the amount of extra space that is reserved inside the entry border.
specifies the angle of text rotation measured in degrees.

as a statement option, specifies the properties of the text. As a prefix-option, specifies the properties of individual text-items.

Location options

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the text is automatically aligned within its parent when nested within an overlay-type layout.

VALIGN=CENTER | TOP | BOTTOM
specifies the vertical alignment of the text.

Required Argument

text-item <…<text-item>>
specifies one or more pieces of text for the entry. Each text-item has the following form:

<prefix-option <… prefix-option>>"string" | dynamic | character-expression | {text-command}

Each piece of text can have multiple prefix settings that precede the piece of text. A piece of text is either a string literal, a dynamic, or a text command. All text-items with the same HALIGN= setting are concatenated into one string. Up to three strings can result for each ENTRY statement. Leading and trailing blanks in the concatenated string are always used.

When a prefix option is used, it applies not only to the text that immediately follows the prefix option, but also to all subsequent text strings and text commands. If the same prefix option appears more than once, then that prefix overrides the last used prefix of the same name for the subsequent text strings and text commands.

Restriction

The maximum length for the entry text is 512 characters in SAS 9.4 and earlier releases. Starting with the first maintenance release of SAS 9.4, this restriction is removed.

Requirements

string must be enclosed in quotation marks.

character-expression must be enclosed in an EVAL function.

text-command must be enclosed in braces.

Note

Leading spaces are preserved, and trailing spaces are stripped.

See

Chapter 10, “Managing Text Items,” on page 1137

Optional Arguments

AUTOALIGN=NONE | AUTO | (location-list)
specifies whether the text is automatically aligned within its parent when nested within an overlay-type layout. For more information about how child positions are determined in an overlay-type layout, see the “LAYOUT OVERLAY Statement” on page 142.
NONE
does not automatically align the text within the area. Alignment is set with
HALIGN= and VALIGN= options.

AUTO
within the parent layout, attempts to center the text in the area that is farthest
from any surrounding data point markers.

Restriction This option is available only if the parent layout contains a scatter
plot. Otherwise, it is ignored.

(location-list)
within the available area, restricts the text’s possible locations to those locations
in the specified location-list, and uses the location-list position that least collides
with the other graphics features in the area. The location-list is space-separated
and can contain any of these locations: TOPLEFT, TOP, TOPRIGHT, LEFT,
CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and BOTTOMRIGHT.

Example: (TOPRIGHT TOPLEFT)

Default NONE

Requirement For this option to take effect, the ENTRY statement must be in a
LAYOUT OVERLAY or LAYOUTOVERLAYEQUATED block.

Interaction When AUTOALIGN= is not NONE and the parent layout is an
overlay-type layout, the HALIGN= and the VALIGN= options are
ignored.

BACKGROUNDCOLOR=style-reference | color
specifies the color of the text background.

style-reference
specifies a style reference in the form style-element:style-attribute. Only the
style-attribute named COLOR or CONTRASTCOLOR is used.

Default The GraphBackground:Color style reference.

Interaction OPAQUE= TRUE must be in effect for the color to be seen. By default,
OPAQUE=FALSE.

BORDER=TRUE | FALSE
specifies whether a border is displayed around the text.

Default FALSE

See “boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the text.

Default The GraphBorderLines style element.

Interaction BORDER= TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.

“Line Options” on page 1349 for available line-options.
OPAQUE=TRUE | FALSE
specifies whether the text background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the entry border.

AUTO specifies that the default outside padding for this component is used.

dimension specifies a dimension to use for the extra space at the left, right, top, and bottom of the entry border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space to add to the left side.

RIGHT=dimension specifies the amount of extra space to add to the right side.

TOP=dimension specifies the amount of extra space to add to the top.

BOTTOM=dimension specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default AUTO

Note The default units for dimension are pixels.

See “dimension” on page 1340

PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the entry border.

dimension specifies a dimension to use for the extra space at the left, right, top, and bottom of the entry border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

RIGHT=dimension specifies the amount of extra space added to the right side.
TOP=\textit{dimension} specifies the amount of extra space added to the top.

BOTTOM=\textit{dimension} specifies the amount of extra space added to the bottom.

\textbf{Note} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} Use \textit{pad-options} to create non-uniform padding.

\textbf{Default} (LEFT=3 RIGHT=3 TOP=0 BOTTOM=0)

\textbf{Note} The default units for \textit{dimension} are pixels.

\textbf{See} “\textit{dimension}” on page 1340

\textbf{ROTATE=0 | 90 | 180 | 270} specifies the angle of text rotation measured in degrees. The angle is measured from a horizontal line passing through the middle of the bounding box of the text, counter-clockwise starting at the center of the bounding box.

\textbf{Default} 0. No rotation is performed.

\textbf{Restriction} Only angles of 0, 90, 180, or 270 degrees are allowed.

\textbf{Interaction} The bounding box is the determined by the size of the text in the current font plus any horizontal and vertical padding. See \textit{TEXTATTRS=} and \textit{PAD=}.

\textbf{TEXTATTRS=}\textit{style-element} | \textit{style-element (text-options)} | (text-options)

as a \textit{statement option}, specifies the properties of the text. As a \textit{prefix-option}, specifies the properties of individual text-items.

\textbf{Default} The GraphValueText style element.

\textbf{Notes} This option can be used as both a prefix option and a statement option. When used as a prefix option, it overrides the statement option.

When used as a prefix option, TEXTATTRS= cancels the last used TEXTATTRS= prefix option. It resets all text options to those set by 1) the TEXTATTRS= statement option or 2) the default style element for the statement (GraphValueText) if no TEXTATTRS= statement option is used.

\textbf{See} “General Syntax for Attribute Options” on page 1347 for the syntax on using a \textit{style-element}.

“Text Options” on page 1351 for available \textit{text-options}.

\textbf{VALIGN=CENTER | TOP | BOTTOM} specifies the vertical alignment of the text.

\textbf{Default} CENTER

\textbf{Interaction} This option is ignored when AUTOALIGN= is not NONE and the parent layout is an overlay-type layout.
Prefix Options

HALIGN=CENTER | LEFT | RIGHT

prefix-option that specifies the horizontal alignment of a text-item. Each text-item has a horizontal alignment, and text-items with the same alignment are always grouped together.

Default CENTER

Interaction This option is ignored when AUTOALIGN= is not NONE and the parent layout is an overlay-type layout.

TEXTATTRS=style-element | style-element (text-options) | (text-options)

See “TEXTATTRS=style-element | style-element (text-options) | (text-options)” on page 1151

Text Commands

{ SUB "string" | dynamic }

text-command that specifies that the string or dynamic is to appear as subscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142

Example entry "y = " b{sub "0"} " + b" {sub "1"} "x";

{ SUP "string" | dynamic }

text-command that specifies that the string or dynamic is to appear as superscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142

Example entry "R" {sup "2"} " = " {format (6.4) RSQUARED} ;

{ UNICODE "hex-string"x | keyword | dynamic }

text-command that specifies a glyph (character) to be displayed using its Unicode specification or keyword equivalent.

"hex-string"x

a four-byte hexadecimal constant that represents a UNICODE character in the current font. For a complete listing, see http://unicode.org/charts/charindex.html.

keyword

a SAS keyword for a UNICODE character. For a listing of SAS supplied keywords, see “Reserved Keywords and Unicode Values” on page 1142.

dynamic

a dynamic variable that resolves to either "hex-string"x or a keyword for a UNICODE character.

Note The UNICODE text command attempts to access a UNICODE value in the current font. Not all fonts support accessing characters through their UNICODE value. Some fonts support only a limited set of UNICODE values. If the UNICODE value is not accessible, then the command might be ignored or a nonprintable character might be substituted.

See “Using UNICODE Text” on page 1141

See “Rules for Unicode and Special Character Specifications” on page 1142
Example entry {unicode alpha} "=" CONF;
entry {unicode "03B1"x} "=" CONF;

Details

An ENTRY statement creates one line of text in the plot area. The statement must be specified within a LAYOUT, HEADER, SIDEBAR, or CELL statement block. It cannot be specified outside of one of these blocks, where global statements like ENTRYTITLE and ENTRYFOOTNOTE are used.

The text line specified in an ENTRY statement can be made of several pieces of the text called text-items. Statement options that are used establish properties for the entire line of text (that is, all text-items). These properties can be overridden with prefix-options that are specific to one or more text-items. See “Required Argument” on page 1148 for more information.

You can specify an ENTRY statement inside or outside of a nested statement block:

- When you specify an ENTRY statement inside a nested LAYOUT, HEADER, SIDEBAR, or CELL statement block, then, by default, the text is placed inside the bounding area of the results that the nested statement block creates.
- When you specify an ENTRY statement outside of a nested LAYOUT, HEADER, SIDEBAR, or CELL statement block, then the text is placed outside of the bounding area of the results that the nested statement block creates.

Example: ENTRY Statement

The following graph was generated by the “Example Program” on page 1148:
Example Program

```sas
proc template;
  define statgraph entry;
  begingraph;
    layout overlay;

      entry halign=right "First entry statement" / valign=top;

      histogram weight;

      entry halign=right "Second entry statement";

      entry halign=right "Third entry statement" / valign=bottom pad=(bottom=40px);

    endlayout;
  endgraph;
end;
run;

proc sgrender data=sashelp.cars template=entry;
run;
```

ENTRYFOOTNOTE Statement
Displays a footnote.
Syntax

ENTRYFOOTNOTE text-item <text-item ...> <option(s)>;

Summary of Optional Arguments

Appearance options

BACKGROUNDCOLOR=style-reference | color
specifies the color of the text background.

BORDER=TRUE | FALSE
specifies whether a border is displayed around the text.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the text.

OPAQUE=TRUE | FALSE
specifies whether the text background is opaque (TRUE) or transparent (FALSE).

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the entry border.

PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the entry border.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
as a statement option, specifies the properties of the text. As a prefix-option
specifies the properties of individual text-items.

Text options

HALIGNCENTER=AUTO | GRAPH
specifies whether the text is centered automatically by the system or is always centered in the graph area.

SHORTTEXT=(text-item <...text-item>)
specifies alternate text to use if the specified text is too long for the output width.

TEXTFITPOLICY=WRAP | SHORT | TRUNCATE
specifies how to handle text that is too long to fit in the output width.

Required Argument

text-item <...text-item>
specifies one or more pieces of text for the footnote. Each text-item has the following form:

<preference-option ...<prefix-option>>"string" | dynamic | character-expression | {text-command}

Each piece of text can have multiple prefix options that precede the piece of text. A piece of text is either a string literal, a dynamic, or a text command. All text-items with the same HALIGN= setting are concatenated into one string. Up to three strings can result for each ENTRY statement. Leading and trailing blanks in the concatenated string are always used.

When a prefix option is used, it applies not only to the text that immediately follows the prefix option, but also to all subsequent text strings and text commands. If the same prefix option appears more than once, then that prefix overrides the last used prefix of the same name for the subsequent text strings and text commands.
Restriction
The maximum length for the footnote text is 512 characters in SAS 9.4 and earlier releases. Starting with the first maintenance release of SAS 9.4, this restriction is removed.

Requirements
`string` must be enclosed in quotation marks.
`character-expression` must be enclosed in an EVAL function.
`text-command` must be enclosed in braces.

Note
Leading spaces are preserved, and trailing spaces are stripped.

See
Chapter 10, “Managing Text Items,” on page 1137

Optional Arguments

BACKGROUNDCOLOR=`style-reference | color`
specifies the color of the text background.

`style-reference`
specifies a style reference in the form `style-element:style-attribute`. Only the style-attribute named COLOR or CONTRASTCOLOR is used.

Default
The GraphBackground:Color style reference.

Interaction
`OPAQUE= TRUE` must be in effect for the color to be seen. By default, OPAQUE=FALSE.

BORDER=`TRUE | FALSE`
specifies whether a border is displayed around the text.

Default
FALSE

See
“boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=`style-element | style-element (line-options) | (line-options)`
specifies the attributes of the border line around the text.

Default
The GraphBorderLines style element.

Interaction
`BORDER= TRUE` must be set for this option to have any effect.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a `style-element`.

“Line Options” on page 1349 for available `line-options`.

HALIGNCENTER=`AUTO | GRAPH`
specifies whether the text is centered automatically by the system or is always centered in the graph area.

AUTO
specifies that the system determines how the text is centered, as follows:

- For LAYOUT GRIDDED, LAYOUT OVERLAY3D, and LAYOUT REGION layouts, and for LAYOUT LATTICE, LAYOUT DATAPANEL, and LAYOUT DATALATTICE layouts that have more than one column, center the text in the graph area.
• For LAYOUT OVERLAY and LAYOUT OVERLAYEQUATED layouts, and for LAYOUT LATTICE, LAYOUT DATAPANEL, and LAYOUT DATALATTICE layouts that have only one column, center the text in the graph wall area. If the length of the text exceeds the width of the graph wall area, then center the text in the graph area instead.

GRAPH

specifies that the text is always centered in the graph area.

Default AUTO

Interaction The prefix option **HALIGN=** must specify CENTER for this option to have any effect.

OPAQUE=TRUE | FALSE

specifies whether the text background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)

specifies the amount of extra space to add outside the entry border.

AUTO

specifies that the default outside padding for this component is used.

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the entry border.

(pad-options)

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space to add to the left side.
- **RIGHT=dimension** specifies the amount of extra space to add to the right side.
- **TOP=dimension** specifies the amount of extra space to add to the top.
- **BOTTOM=dimension** specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use **pad-options** to create non-uniform padding.

Default AUTO

Note The default units for **dimension** are pixels.

See “**dimension**” on page 1340
PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the entry border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the entry border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.
RIGHT=dimension specifies the amount of extra space added to the right side.
TOP=dimension specifies the amount of extra space added to the top.
BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default (LEFT=3 RIGHT=3 TOP=0 BOTTOM=0)

Note The default units for dimension are pixels.

See “dimension” on page 1340

SHORTTEXT=(text-item <...text-item>)
specifies alternate text to use if the specified text is too long for the output width. If the shortened text is itself too long, then it is truncated.

Interactions This option has no effect unless TEXTFITPOLICY= SHORT.

This option is ignored if any text-items include an HALIGN= prefix option.

The horizontal alignment of the shortened text is derived from the horizontal alignment of the text to be shortened.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
as a statement option, specifies the properties of the text. As a prefix-option, specifies the properties of individual text-items.

Default The GraphFootnoteText style element.

Notes This option can be used as both a prefix option and a statement option. When used as a prefix option, it overrides the statement option.

When used as a prefix option, TEXTATTRS= cancels the last used TEXTATTRS= prefix option. It resets all text options to those set by 1) the TEXTATTRS= statement option or 2) the default style element for the statement (GraphValueText) if no TEXTATTRS= statement option is used.
TEXTFITPOLICY=WRAP | SHORT | TRUNCATE
specifies how to handle text that is too long to fit in the output width.

WRAP specifies that the text wraps to the next line(s).

Restriction Text wrapping is available only for ENTRYFOOTNOTE statements that appear in the outermost layout.

SHORT specifies that the text indicated by the SHORTTEXT= option be substituted when the text does not fit.

Requirement You must specify the SHORTTEXT= option for this option to take effect.

Note If the short text is also too long, then it is truncated.

TRUNCATE specifies that the text is truncated to make it fit.

Default WRAP

Prefix Options

HALIGN=CENTER | LEFT | RIGHT
prefix-option that specifies the horizontal alignment of a text-item. Each text-item has a horizontal alignment, and text-items with the same alignment are always grouped together.

Default CENTER

TEXTATTRS=style-element | style-element (text-options) | (text-options)
See “TEXTATTRS=style-element | style-element (text-options) | (text-options)” on page 1158

Text Commands

{ SUB "string" | dynamic }
text-command that specifies that the string or dynamic is to appear as subscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142

Example entryfootnote "y = " b{sub "0"} " + b{sub "1"} "x";

{ SUP "string" | dynamic }
text-command that specifies that the string or dynamic is to appear as superscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142
Example
entryfootnote *R* \{sup "2"\} * = " RSQUARED;

{ UNICODE "hex-string"x | keyword | dynamic }

text-command that specifies a glyph (character) to be displayed using its Unicode specification or keyword equivalent.

"hex-string"x
a four-byte hexadecimal constant that represents a UNICODE character in the current font. For a complete listing, see http://unicode.org/charts/charindex.html.

keyword
a SAS keyword for a UNICODE character. For a listing of SAS supplied keywords, see “Reserved Keywords and Unicode Values” on page 1142.

dynamic
a dynamic variable that resolves to either "hex-string"x or a keyword for a UNICODE character.

Note
The UNICODE text command attempts to access a UNICODE value in the current font. Not all fonts support accessing characters through their UNICODE value. Some fonts support only a limited set of UNICODE values. If the UNICODE value is not accessible, then the command might be ignored or a nonprintable character might be substituted.

See
“Using UNICODE Text” on page 1141

“Rules for Unicode and Special Character Specifications” on page 1142

Example
entryfootnote \{unicode alpha\} *=" CONF;
entryfootnote \{unicode "03B1"x\} *=" CONF;

Details
The ENTRYFOOTNOTE statement places footnote text below the graphical area. More than one ENTRYFOOTNOTE statement can be used. Footnotes appear in the order of the ENTRYFOOTNOTE statements within the template.

When adding an ENTRYFOOTNOTE statement to a template definition, the statement must be located within the BEGINGRAPH block but outside of the outermost layout block.

• All ENTRYFOOTNOTE statements that appear in the template are gathered and placed in the ENTRYFOOTNOTE area.

• The placement of an ENTRYFOOTNOTE statement is relevant only in relation to other ENTRYFOOTNOTE statements.

• As the number of ENTRYFOOTNOTE statements increases the size of the graphical area is reduced.
Footnotes always span the entire width of the output. By default, footnotes are “center-aligned,” based on the type of the outermost layout. The meaning of “center-aligned” varies by layout type and the number of columns in the layout:

<table>
<thead>
<tr>
<th>Layout Type</th>
<th>Default horizontal centering of footnotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIDDED</td>
<td>Centered on width of entire graph</td>
</tr>
<tr>
<td>OVERLAY3D</td>
<td></td>
</tr>
<tr>
<td>LATTICE (COLUMNS > 1)</td>
<td></td>
</tr>
<tr>
<td>DATAPANEL (COLUMNS > 1)</td>
<td></td>
</tr>
<tr>
<td>DATALATTICE (COLUMNS > 1)</td>
<td></td>
</tr>
<tr>
<td>OVERLAY</td>
<td>Centered on the plot area</td>
</tr>
<tr>
<td>OVERLAYEQUATED</td>
<td></td>
</tr>
<tr>
<td>LATTICE (COLUMNS=1)</td>
<td></td>
</tr>
<tr>
<td>DATAPANEL (COLUMNS=1)</td>
<td></td>
</tr>
<tr>
<td>DATALATTICE (COLUMNS = 1)</td>
<td></td>
</tr>
</tbody>
</table>

Example: ENTRYFOOTNOTE Statement

The following graph was generated by the “Example Program” on page 1162:
Example Program

```sas
proc template;
  define statgraph entryfootnote;
  begingraph;
    entryfootnote "First entryfootnote statement" ;
    layout overlay;
      histogram weight;
    endlayout;
    entryfootnote "Second entryfootnote statement" ;
    entryfootnote "Third entryfootnote statement" ;
  endgraph;
end;
run;

proc sgrender data=sashelp.cars template=entryfootnote;
run;
```

ENTRYTITLE Statement
Displays a title.

Syntax

```
ENTRYTITLE text-item <text-item ...> </option(s)>;
```

Summary of Optional Arguments

Appearance options

- `BACKGROUNDCOLOR=style-reference | color`
 specifies the color of the text background.
- `BORDER=TRUE | FALSE`
 specifies whether a border is displayed around the text.
- `BORDERATTRS=style-element | style-element (line-options) | (line-options)`
 specifies the attributes of the border line around the text.
- `OPAQUE=TRUE | FALSE`
 specifies whether the text background is opaque (TRUE) or transparent (FALSE).
- `OUTERPAD=AUTO | dimension | (pad-options)`
 specifies the amount of extra space to add outside the entry border.
- `PAD=dimension | (pad-options)`
 specifies the amount of extra space that is reserved inside the entry border.
- `TEXTATTRS=style-element | style-element (text-options) | (text-options)`
 as a statement option, specifies the properties of the text. As a prefix-option, specifies the properties of individual text-items.

Text options

- `HALIGNCENTER=AUTO | GRAPH`
specifies whether the text is centered automatically by the system or is always centered in the graph area.

SHORTTEXT=(text-item <...text-item>)

specifies alternate text to use if the specified text is too long for the output width. If the shortened text is itself too long, then it is truncated.

TEXTFITPOLICY=WRAP | SHORT | TRUNCATE

specifies how to handle text that is too long to fit in the output width.

Required Argument

text-item <text-item ...>

specifies one or more pieces of text for the entry. Each text-item has the following form:

```plaintext
<prefix-option ...prefix-option>"string" | dynamic | character-expression | {text-command}
```

Each piece of text can have multiple prefix options that precede the piece of text. A piece of text is either a string literal, a dynamic, or a text command. All text-items with the same HALIGN= setting are concatenated into one string. Up to three strings can result for each ENTRY statement. Leading and trailing blanks in the concatenated string are always used.

When a prefix option is used, it applies not only to the text that immediately follows the prefix option, but also to all subsequent text strings and text commands. If the same prefix option appears more than once, then that prefix overrides the last used prefix of the same name for the subsequent text strings and text commands.

Restriction

The maximum length for the title text is 512 characters in SAS 9.4 and earlier releases. Starting with the first maintenance release of SAS 9.4, this restriction is removed.

Requirements

- string must be enclosed in quotation marks.
- character-expression must be enclosed in an EVAL function.
- text-command must be enclosed in braces.

Note

Leading spaces are preserved, and trailing spaces are stripped.

See

Chapter 10, “Managing Text Items,” on page 1137 for more information and several examples.

Optional Arguments

BACKGROUNDCOLOR=style-reference | color

specifies the color of the text background.

- **style-reference**

 specifies a style reference in the form style-element:style-attribute. Only the style-attribute named COLOR or CONTRASTCOLOR is used.

- **Default**

 The GraphBackground:Color style reference.

- **Interaction**

 OPAQUE= TRUE must be in effect for the color to be seen. By default, OPAQUE=FALSE.
BORDER=TRUE | FALSE
specifies whether a border is displayed around the text.

Default FALSE

See “boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the attributes of the border line around the text.

Default The GraphBorderLines style element.

Interaction **BORDER**= TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

HALIGN=CENTER | AUTO | GRAPH
specifies whether the text is centered automatically by the system or is always centered in the graph area.

AUTO
specifies that the system determines how the text is centered, as follows:

- For LAYOUT GRIDDED, LAYOUT OVERLAY3D, and LAYOUT REGION layouts, and for LAYOUT LATTICE, LAYOUT DATAPANEL, and LAYOUT DATALATTICE layouts that have more than one column, center the text in the graph area.
- For LAYOUT OVERLAY and LAYOUT OVERLAYEQUATED layouts, and for LAYOUT LATTICE, LAYOUT DATAPANEL, and LAYOUT DATALATTICE layouts that have only one column, center the text in the graph wall area. If the length of the text exceeds the width of the graph wall area, then center the text in the graph area instead.

GRAPH
specifies that the text is always centered in the graph area.

Default AUTO

Interaction The prefix option **HALIGN**= must specify CENTER for this option to have any effect.

OPAQUE=TRUE | FALSE
specifies whether the text background is opaque (TRUE) or transparent (FALSE).

Default FALSE

Interaction When this option is set to FALSE, the background color is not used.

See “boolean ” on page 1339 for other Boolean values that you can use.

OUTERPAD=AUTO | dimension | (pad-options)
specifies the amount of extra space to add outside the entry border.

AUTO
specifies that the default outside padding for this component is used.
ENTRYTITLE Statement

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the entry border.

(pad-options)

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space to add to the left side.
- **RIGHT=dimension** specifies the amount of extra space to add to the right side.
- **TOP=dimension** specifies the amount of extra space to add to the top.
- **BOTTOM=dimension** specifies the amount of extra space to add to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use *pad-options* to create non-uniform padding.

Default AUTO

Note The default units for *dimension* are pixels.

See “*dimension*” on page 1340

PAD=dimension | (pad-options)

specifies the amount of extra space that is reserved inside the entry border.

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the entry border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space added to the left side.
- **RIGHT=dimension** specifies the amount of extra space added to the right side.
- **TOP=dimension** specifies the amount of extra space added to the top.
- **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use *pad-options* to create non-uniform padding.

Default (LEFT=3 RIGHT=3 TOP=0 BOTTOM=0)

Note The default units for *dimension* are pixels.
See "dimension" on page 1340

SHORTTEXT=(text-item <...text-item>)
specifies alternate text to use if the specified text is too long for the output width. If the shortened text is itself too long, then it is truncated.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
as a statement option, specifies the properties of the text. As a prefix-option, specifies the properties of individual text-items.

TEXTFITPOLICY=WRAP | SHORT | TRUNCATE
 specifies how to handle text that is too long to fit in the output width.

WRAP
specifies that the text wraps to the next line(s).

Restriction
Text wrapping is available only for ENTRYTITLE statements that appear in the outermost layout.

SHORT
specifies that the text indicated by the SHORTTEXT= option be substituted when the title does not fit.

Requirement
You must specify the SHORTTEXT= option for this option to take effect.

Note
If the short text is also too long, then it is truncated.

TRUNCATE
specifies that the text is truncated to make it fit.

Default
WRAP
Prefix Options

HALIGN=\texttt{CENTER} \mid \texttt{LEFT} \mid \texttt{RIGHT}

\texttt{prefix-option} that specifies the horizontal alignment of a \textit{text-item}. Each \textit{text-item} has a horizontal alignment, and \textit{text-items} with the same alignment are always grouped together.

Default \texttt{CENTER}

\texttt{TEXTATTRS=style-element \mid style-element (text-options) \mid (text-options)}

See “\texttt{TEXTATTRS=style-element \mid style-element (text-options) \mid (text-options)}” on page 1166

Text Commands

\{ \texttt{SUB} "string" \mid \texttt{dynamic} \}

\texttt{text-command} that specifies that the string or dynamic is to appear as subscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142

Example entrytitle \texttt{"y = b}\{\texttt{sub} "0\"\} + b\{\texttt{sub} "1\"\} \texttt{x};

\{ \texttt{SUP} "string" \mid \texttt{dynamic} \}

\texttt{text-command} that specifies that the string or dynamic is to appear as superscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142

Example entrytitle \texttt{"R\" \{\texttt{sup} "2\"\} = \texttt{RSQUARED};}

\{ \texttt{UNICODE} "hex-string"\texttt{x} \mid \texttt{keyword} \mid \texttt{dynamic} \}

\texttt{text-command} that specifies a glyph (character) to be displayed using its Unicode specification or keyword equivalent.

"\hex-string\texttt{x}"

a four-byte hexadecimal constant that represents a UNICODE character in the current font. For a complete listing, see http://unicode.org/charts/charindex.html.

\texttt{keyword}

a SAS keyword for a UNICODE character. For a listing of SAS supplied keywords, see “Reserved Keywords and Unicode Values” on page 1142.

\texttt{dynamic}

a dynamic variable that resolves to either "\hex-string\texttt{x} or a keyword for a UNICODE character.

Note

The UNICODE text command attempts to access a UNICODE value in the current font. Not all fonts support accessing characters through their UNICODE value. Some fonts support only a limited set of UNICODE values. If the UNICODE value is not accessible, then the command might be ignored or a nonprintable character might be substituted.

See “Using UNICODE Text” on page 1141

“Rules for Unicode and Special Character Specifications” on page 1142

Example entrytitle \{\texttt{unicode alpha}\} \texttt{"\texttt{alpha} = \texttt{CONF;}\}
entrytitle \{\texttt{unicode "03B1"}\texttt{x}\} \texttt{"\texttt{alpha} = \texttt{CONF;}\}
Details

The ENTRYTITLE statement places title text above the graphical area. More than one ENTRYTITLE statement can be used. Titles appear in the order of the ENTRYTITLE statements within the template.

When adding an ENTRYTITLE statement to a template definition, the statement must be located within the BEGINGRAPH block but outside of the outermost layout block.

- All ENTRYTITLE statements that appear in the template are gathered and placed in the ENTRYTITLE area.
- The placement of an ENTRYTITLE statement is relevant only in relation to other ENTRYTITLE statements.
- As the number of ENTRYTITLE statements increases the size of the graphical area is reduced.

Titles always span the entire width of the output. By default, titles are “center-aligned,” based on the type of the outermost layout. The meaning of “center-aligned” varies by layout type and the number of columns in the layout:

<table>
<thead>
<tr>
<th>Layout Type</th>
<th>Default horizontal centering of titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIDDED</td>
<td>Centered on width of entire graph</td>
</tr>
<tr>
<td>OVERLAY3D</td>
<td></td>
</tr>
<tr>
<td>LATTICE (COLUMNS > 1)</td>
<td></td>
</tr>
<tr>
<td>DATAPANEL (COLUMNS > 1)</td>
<td></td>
</tr>
<tr>
<td>DATALATTICE (COLUMNS > 1)</td>
<td></td>
</tr>
<tr>
<td>OVERLAY</td>
<td>Centered on the plot area</td>
</tr>
<tr>
<td>OVERLAYEQUATED</td>
<td></td>
</tr>
<tr>
<td>LATTICE (COLUMNS=1)</td>
<td></td>
</tr>
<tr>
<td>DATAPANEL (COLUMNS= 1)</td>
<td></td>
</tr>
<tr>
<td>DATALATTICE (COLUMNS = 1)</td>
<td></td>
</tr>
</tbody>
</table>

Example: ENTRYTITLE Statement

The following graph was generated by the “Example Program” on page 1169:
Example Program

proc template;
 define statgraph entrytitle;
 begingraph;
 entrytitle "First entrytitle statement";
 layout overlay;
 histogram weight;
 endlayout;
 entrytitle "Second entrytitle statement"
 entrytitle "Third entrytitle statement"
 endgraph;
end;
run;

proc sgrender data=sashelp.cars template=entrytitle;
run;
Part 8

Custom Marker Definition Statements

Chapter 12
Custom Marker Definition Statements

1173
Chapter 12
Custom Marker Definition
Statements

Dictionary

SYMBOLCHAR Statement
Defines a marker symbol using a Unicode character so that the symbol can be referenced in other statements.

Note: This statement is valid in the first maintenance release of SAS 9.4 and later releases.

Syntax

SYMBOLCHAR NAME=marker-name CHAR="hex-string"x | keyword | dynamic </option(s)>;

Required Arguments

NAME=marker-name
specifies a name for the marker symbol. The name can be used in statements that support marker symbols.

Interaction
If the name matches one of the system-provided symbol names such as CIRCLE, then the system symbol is replaced by the user-defined symbol. See “Marker Options” on page 1350 for a list of the system-provided symbols.

Note
Do not enclose the name in quotation marks.

See
“Details” on page 1175

CHAR="hex-string"x | keyword | dynamic
specifies a glyph (character) to be used as the marker symbol. You specify the character by using its Unicode specification or its keyword equivalent.
"hex-string"x
specifies a four-byte hexadecimal constant that represents a Unicode character in
the current font. You can find a complete listing of the Unicode hexadecimal
constants at the following URL: http://www.unicode.org/charts/charindex.html

keyword
specifies a SAS keyword for a Unicode character. See Appendix 2, “Reserved
Keywords and Unicode Values,” on page 1343.

dynamic
specifies a reference to a dynamic variable that resolves to either a "hex-string"x
constant or a Unicode character keyword.

Tip This statement attempts to access the specified Unicode value in the current
font. Some fonts do not support accessing characters by using their Unicode
value. Other fonts support only a limited set of Unicode values. If the Unicode
value is not accessible, then this statement might be ignored or a nonprintable
character might be substituted.

Optional Arguments

HOFFSET=number
specifies a horizontal offset for the marker symbol.

Default 0. The marker symbol is centered on its data point.

Range -0.5–+0.5, where 0.5 represents one-half of the original marker size.

Interaction Starting with the third maintenance release of SAS 9.4, the specified
offset is also applied to the marker symbol that is displayed in the
legend.

Notes Prior to the third maintenance release of SAS 9.4, a positive offset
moves the marker symbol bounding box to the right. A negative offset
moves it to the left.

Starting with the third maintenance release of SAS 9.4, a positive offset
moves the marker symbol to the right within its bounding box, and a
negative offset moves it to the left. The bounding box remains centered
on the data point. After the offset, size, and rotation are applied to the
marker symbol, any portion of the symbol that falls outside of the
marker bounding box is clipped.

Tip If clipping occurs, use this option, the VOFFSET= and SCALE=
options, and the suboption SIZE= in the MARKERATTRS= option to
remove the clipping.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are
measured in the counter-clockwise direction, and negative angles are measured in the
clockwise direction.

Default 0. No rotation is performed.

Note An angle that exceeds 360 degrees in absolute value can be specified.
SCALE=number
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height and width.

Default 1.0 (100%)

Note
The outer edges of the image might be clipped by the bounding box when a large scale factor is specified.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the text attributes for the character symbol.

Default
The GraphUnicodeText style element.

Restriction
Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The COLOR= and SIZE= text attributes are derived from the plot statement's MARKERATTRS= option.

See
“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
“Text Options” on page 1351 for available text-options.

VOFFSET=number
specifies a vertical offset for the marker symbol.

Default
0. The marker symbol is centered on its data point.

Range
-0.5–+0.5, where 0.5 represents one-half of the original marker size.

Interaction
Starting with the third maintenance release of SAS 9.4, the specified offset is also applied to the marker symbol that is displayed in the legend.

Notes
Prior to the third maintenance release of SAS 9.4, a positive offset moves the marker symbol bounding box up. A negative offset moves it down.

Starting with the third maintenance release of SAS 9.4, a positive offset moves the marker symbol up within its bounding box, and a negative offset moves it down. The bounding box remains centered on the data point. After the offset, size, and rotation are applied to the marker symbol, any portion of the symbol that falls outside of the marker bounding box is clipped.

Tip
If clipping occurs, use this option, the HOFFSET= and SCALE= options, and the suboption SIZE= in the MARKERATTRS= option to remove the clipping.

Details

The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. You can use the marker symbol that is created in the following options:

- the DATASYMBOLS= option in the BEGINGRAPH statement
- the SYMBOL= suboption of the MARKERATTRS= option, which is supported by the following statements:
Symbol specifications are not checked for uniqueness. More than one SYMBOLCHAR statement can define the same character. Therefore, you can use SYMBOLCHAR statements in IF/ELSE statements. Symbol specifications also are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the COLOR=, SIZE=, and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOLCHAR statement. The WEIGHT= suboption has no effect on these markers.

The markers are clipped to the original marker size after rotation, scaling, and offsets are applied. If clipping occurs, then you can use the SIZE= suboptions of the MARKERATTRS= option in the plot statement and the SCALE= option in the SYMBOLCHAR statement to adjust the size and scaling to eliminate the clipping.

Example: SYMBOLCHAR Statement

This example shows how to create marker symbols from the Unicode ballot X, heavy character (‘2718’x) and check mark, heavy character (‘2718’x). It also shows you how to use the symbols in a scatter plot and how to add them to a legend. In this example, a grouped bar chart shows the daily failure count for two processes, Process A and Process B. A scatter plot is overlaid on the bar chart in order to show the total failure count above each bar. Acceptable counts are indicated by a green Unicode check mark. High counts are indicated by a red Unicode ballot X. Finally, a legend is used to describe the custom symbols. The following figure shows the output.
Example Program

/* Summarize the data in SASHELP.FAILURE to compute the failure count by day and process */
proc sort data=sashelp.failure out=temp;
 by day process;
run;

proc summary data=temp;
 by day process;
 var count;
 output out=failure sum=count;
run;

/* Determine the daily status for each process: count at or under 120% of target is NORM, over is HIGH */
%let target=25;
data failure;
 length stat $20;
 set failure;
 if (count <= (&target*1.2)) then
 stat=strip(cat(substr(process,index(process,' '),2),"-NORM"));
 if (count > (&target*1.2)) then
 stat=strip(cat(substr(process,index(process,' '),2),"-HIGH"));
 label day="Weekday" count="Failure Count" stat="Status";
run;

/* Define the template */
proc template;
 define statgraph failures;
 begingraph;
 /* Define the norm/high marker symbols */
symbolchar name=norm char='2714'x;
symbolchar name=high char='2718'x;
 /* Create legend entries for the norm/high markers */
 legenditem type=marker name="norm" /
 markerattrs=(symbol=norm size=15pt color=green)
 label="Normal Failure Count";
 legenditem type=marker name="high" /
 markerattrs=(symbol=high size=15pt color=red)
 label="High Failure Count";
 /* Define an attribute map for the status markers */
discreteattrmap name="statsymmap";
 value "A-NORM" / markerattrs=(symbol=norm color=green);
 value "B-NORM" / markerattrs=(symbol=norm color=green);
 value "A-HIGH" / markerattrs=(symbol=high color=red);
 value "B-HIGH" / markerattrs=(symbol=high color=red);
enddiscreteattrmap;
discreteatrrvar attrvar=status var=stat attrmap="statsymmap";
 /* Define the graph */
 entrytitle "Daily Failure Report By Process";
 entryfootnote "A failure count that is more than 120% of the target is considered high.";
 layout overlay / yaxisopts=(offsetmax=0.1);
Program Description

Here is the SAS code for this example.

Create the graph data. The data in Sashelp.Failure is the source data. To get the daily counts, the data is summarized by weekday and process. The Stat column is then added to indicate whether the count is acceptable or high. Acceptable values are values that do not exceed 120% of the target value. Values over 120% are considered high. Acceptable values are A-NORM and B-NORM, and high values are A-HIGH and B-HIGH, where A and B identify the process.

```sas
/* Summarize the data in SASHELP.FAILURE to compute the failure count by day and process */
proc sort data=sashelp.failure out=temp;
   by day process;
run;
proc summary data=temp;
   by day process;
   var count;
   output out=failure sum=count;
run;
/* Determine the daily status for each process: count at or under 120% of target is NORM, over is HIGH */
%let target=25;
data failure;
   length stat $20;
   set failure;
   length stat $20;
   set failure;
   if (count <= (&target*1.2)) then
      stat=strip(cat(substr(process,index(process,' '),2),"-NORM"));
   if (count > (&target*1.2)) then
      stat=strip(cat(substr(process,index(process,' '),2),"-HIGH"));
   label day="Weekday" count="Failure Count" stat="Status";
run;
```

Open the template definition.

```sas
/* Define the template */
proc template;
   define statgraph failures;
```

```sas
barchartparm category=day response=count / name="barchart"
   group=process groupdisplay=cluster;
scatterplot x=day y=eval(count+2) / datalabel=count group=status
   groupdisplay=cluster markerattrs=(size=15pt);
referenceline y=&target / lineattrs=(color=lightred pattern=dot) curvelabel="Target";
discretelegend "barchart" "norm" "high" / down=2
   order=columnmajor;
endlayout;
endgraph;
run;
proc sgrender data=failure template=failures;
run;
Define the custom marker symbols. The NAME= option specifies an identifier for the markers, and the CHAR= option specifies the Unicode value. Unicode value '2714'x specifies a heavy check mark, and value '2718'x specifies a heavy ballot X.

```/* Define the norm/high marker symbols */
symbolchar name=norm char='2714'x;
symbolchar name=high char='2718'x;
```

Create legend entries for the custom markers. Suboption SYMBOL= in the MARKERATTRS= option specifies the identifier of the custom markers.

```/* Create legend entries for the norm/high markers */
legenditem type=marker name="norm" /
 markerattrs=(symbol=norm size=15pt color=green)
 label="Normal Failure Count";
legenditem type=marker name="high" /
 markerattrs=(symbol=high size=15pt color=red)
 label="High Failure Count";
```

Create a discrete attribute map to map the custom markers to the Stat column values. Suboption SYMBOL= in the MARKERATTRS= option specifies the identifier of the custom markers. Suboption COLOR= sets the color of the Unicode marker character and the associated data label. The DISCRETEATTRVAR statement creates attribute map variable STATUS.

```/* Define an attribute map for the status markers */
discreteattrmap name="statsymmap";
 value "A-NORM" / markerattrs=(symbol=norm color=green);
 value "B-NORM" / markerattrs=(symbol=norm color=green);
 value "A-HIGH" / markerattrs=(symbol=high color=red);
 value "B-HIGH" / markerattrs=(symbol=high color=red);
enddiscreteattrmap;
discreteattrvar attrvar=status var=stat attrmap="statsymmap";
```

Define the graph and close the template definition. The SCATTERPLOT statement GROUP= option references the STATUS attribute map variable. The EVAL statement in the Y= option positions each character just above the top of its bar. The SIZE= suboption of the MARKERATTRS= option sets the marker size. The custom markers are included in the DISCRETELEGEND statement.

```/* Define the graph */
entrytitle "Daily Failure Report By Process";
entryfootnote "A failure count that is more than 120% of the target is considered high."
layout overlay / yaxisopts=(offsetmax=0.1);
barchartparm category=day response=count / name="barchart"
group=process groupdisplay=cluster;
scatterplot x=day y=eval(count+2) / datalabel=count group=status
groupdisplay=cluster markerattrs=(size=15pt);
referenceline y=&target /
 lineattrs=(color=lightred pattern=dot) curvelabel="Target"
discretelegend "barchart" "norm" "high" / down=2
 order=columnmajor;
endlayout;
endgraph;```
Generate the graph.

```sas
proc sgrender data=failure template=failures;
run;
```

SYMBOLIMAGE Statement

Defines a marker symbol using an image file so that the image can be referenced in other statements.

Note:
This statement is valid in the first maintenance release of SAS 9.4 and later releases.

Syntax

```
SYMBOLIMAGE NAME=marker-name IMAGE="image-file-spec" </option(s)>;
```

Required Arguments

NAME=marker-name

specifies a name for the marker symbol. The name can be used in statements that support marker symbols.

Interaction
If the name matches one of the system-provided symbol names such as CIRCLE, then the system symbol is replaced by the user-defined symbol. See “Marker Options” on page 1350 for a list of the system-provided symbols.

Note
Do not enclose the name in quotation marks.

IMAGE="image-file-spec"

specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

Requirements
The image file specification must be enclosed in quotation marks.

The image file must be located on the local file system. URL access is not supported.

Example

```
image="c:\temp\saslogo.gif"
```

Optional Arguments

HOFFSET=number

specifies a horizontal offset for the marker symbol.

Default
0. The marker symbol is centered on its data point.

Range
-0.5 to +0.5, where 0.5 represents one-half of the original marker size.
A positive offset moves the marker symbol bounding box to the right. A negative offset moves it to the left.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default 0. No rotation is performed.

Note An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=number
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height and width.

Default 1.0 (100%)

Note The outer edges of the image might be clipped by the bounding box when a large scale factor is specified.

VOFFSET=number
specifies a vertical offset for the marker symbol.

Default 0. The marker symbol is centered on its data point.

Range -0.5—+0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol bounding box up. A negative offset moves it down.

Details
The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG. The marker symbol that is created can be used in the following options:

- the DATASYMBOLS= option in the BEGINGRAPH statement
- the SYMBOL= suboption of the MARKERATTRS= option, which is supported by the following statements:

 - DISCRETELEGEND (VALUE statement)
 - LEGENDITEM
 - SCATTERPLOT
 - SCATTERPLOTMATRIX
 - LINECHART
 - SERIESPLOT
 - NEEDLEPLOT
 - STEPPLOT

Symbol specifications are not checked for uniqueness. More than one SYMBOLIMAGE statement can define the same character. Therefore, you can use SYMBOLIMAGE statements in IF/ELSE statements.

The following options normally affect the appearance of markers. However, they have no effect on image marker symbols that are created by the SYMBOLIMAGE statement.

- the BEGINGRAPH statement DATACONTRASTCOLORS= option
- the COLOR= and WEIGHT= suboptions of the MARKERATTRS= option
• the FILLEDOUTLINEDMARKERS= option

The SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option do affect the appearance of markers that are created by the SYMBOLIMAGE statement. The markers are clipped to the original marker size after rotation, scaling, and offsets are applied. If clipping occurs, then you can use the SIZE= suboptions of the MARKERATTRS= option in the plot statement and the SCALE= option in the SYMBOLIMAGE statement to adjust the size and scaling to eliminate the clipping.

Example: SYMBOLIMAGE Statement

This example shows how to create marker symbols from GIF icon image files. It also shows you how to use the symbols in a scatter plot and how to add them to a legend. In this example, a grouped bar chart shows the daily failure count for two processes, Process A and Process B. A scatter plot is overlaid on the bar chart to show the total failure count above each bar. Acceptable counts are indicated by a green check mark icon. High counts are indicated by a caution icon. Finally, a legend is used to describe the custom symbols. The following figure shows the output.

![Daily Failure Report By Process](image)

A failure count that is 20% or more over target is considered high.

Example Program

/* Summarize the data in SASHELP.FAILURE to compute the failure count by day and process */
proc sort data=sashelp.failure out=temp;
 by day process;
run;

proc summary data=temp;
 by day process;
 var count;

output out=failure sum=count;
run;

/* Determine the daily status for each process:
 count at or under 120% of target is NORM, over is HIGH */
%let target=25;
data failure;
length stat $20;
set failure;
if (count <= (&target*1.2)) then
 stat=strip(cat(substr(process,index(process,' '),2),"-NORM"));
if (count > (&target*1.2)) then
 stat=strip(cat(substr(process,index(process,' '),2),"-HIGH"));
label day="Weekday" count="Failure Count" stat="Status";
run;

/* Define the template */
proc template;
define statgraph failures;
begingraph;
 /* Define the norm/high marker symbols */
symbolimage name=norm image="C:\temp\check_green.gif" /
voffset=0.5;
symbolimage name=high image="C:\temp\alert_orange.gif" /
voffset=0.5;
 /* Create legend entries for the norm/high markers */
legenditem type=marker name="norm" /
 markerattrs=(symbol=norm size=16px)
 label="Normal Failure Count";
legenditem type=marker name="high" /
 markerattrs=(symbol=high size=16px)
 label="High Failure Count";
 /* Define an attribute map for the status markers
 Note: COLOR= affects marker labels only in this case. */
discreteattrmap name="statsymmap";
 value "A-NORM" / markerattrs=(symbol=norm color=green);
 value "B-NORM" / markerattrs=(symbol=norm color=green);
 value "A-HIGH" / markerattrs=(symbol=high color=orange);
 value "B-HIGH" / markerattrs=(symbol=high color=orange);
enddiscreteattrmap;
discreteattrvar attrvar=status var=stat attrmap="statsymmap";
 /* Define the graph */
entrytitle "Daily Failure Report By Process";
entryfootnote "A failure count that is more than 120% of the
target is considered high."
layout overlay / yaxisopts=(offsetmax=0.1);
barchartparm category=day response=count / name="barchart"
 group=process groupdisplay=cluster;
scatterplot x=day y=count / datalabel=count group=status
 groupdisplay=cluster markerattrs=(size=16px);
referenceline y=&target /
 lineattrs=(color=lightred pattern=dot) curvelabel="Target";
discretelegend "barchart" "norm" "high" / down=2
 order=columnmajor;
Program Description

Here is the SAS code for this example.

Create the graph data. The data in Sashelp.Failure is the source data. To get the daily counts, the data is summarized by weekday and process. The Stat column is then added to indicate whether the count is acceptable or high. Acceptable values are values that do not exceed 120% of the target value. Values over 120% are considered high. Acceptable values are A-NORM and B-NORM, and high values are A-HIGH and B-HIGH, where A and B identify the process.

/* Summarize the data in SASHELP.FAILURE to compute the failure count by day and process */
proc sort data=sashelp.failure out=temp;
 by day process;
run;

proc summary data=temp;
 by day process;
 var count;
 output out=failure sum=count;
run;

/* Determine the daily status for each process: count at or under 120% of target is NORM, over is HIGH */
%let target=25;
data failure;
 length stat $20;
 set failure;
 length stat $20;
 set failure;
 if (count <= (&target*1.2)) then
 stat=strip(cat(substr(process,index(process,' '),2),"-NORM"));
 if (count > (&target*1.2)) then
 stat=strip(cat(substr(process,index(process,' '),2),"-HIGH"));
 label day="Weekday" count="Failure Count" stat="Status";
run;

Open the template definition.

/* Define the template */
proc template;
 define statgraph failures;
 begingraph;

Define the custom marker symbols. The NAME= option specifies an identifier for the markers, and the IMAGE= option specifies the image file. The VOFFSET= option raises the markers 50% from their data points in order to prevent them from overlapping the bars in the bar chart.

/* Define the norm/high marker symbols */
symbolimage name=norm image="C:\temp\check_green.gif" /
Create legend entries for the custom markers. Suboption SYMBOL= in the MARKERATTRS= option specifies the identifier of the custom markers.

```sas
/* Create legend entries for the norm/high markers */
legenditem type=marker name="norm" /
    markerattrs=(symbol=norm size=16px)
    label="Normal Failure Count";
legenditem type=marker name="high" /
    markerattrs=(symbol=high size=16px)
    label="High Failure Count";
```

Create a discrete attribute map to map the custom markers to the Stat column values. Suboption SYMBOL= in the MARKERATTRS= option specifies the identifier of the custom markers. Suboption COLOR= sets the color of the associated data label. It does not affect the color of the image. The DISCRETEATTRVAR statement creates attribute map variable STATUS.

```sas
/* Define an attribute map for the status markers */
discreteattrmap name="statsymmap";
    value "A-NORM" / markerattrs=(symbol=norm color=green);
    value "B-NORM" / markerattrs=(symbol=norm color=green);
    value "A-HIGH" / markerattrs=(symbol=high color=orange);
    value "B-HIGH" / markerattrs=(symbol=high color=orange);
enddiscreteattrmap;
discreteattrvar attrvar=status var=stat attrmap="statsymmap";
```

Define the graph and close the template definition. The SCATTERPLOT statement GROUP= option references the STATUS attribute map variable. The SIZE= suboption of the MARKERATTRS= option sets the marker size. The custom markers are included in the DISCRETELEGEND statement.

```sas
/* Define the graph */
entrytitle "Daily Failure Report By Process";
entryfootnote "A failure count that is more than 120% of the target is considered high."
layout overlay / yaxisopts=(offsetmax=0.1);
    barchartparm category=day response=count / name="barchart"
        group=process groupdisplay=cluster;
    scatterplot x=day y=count / datalabel=count group=status
        groupdisplay=cluster markerattrs=(size=16px);
    referenceline y=&target /
        lineattrs=(color=lightred pattern=dot) curvelabel="Target";
    discretelegend "barchart" "norm" "high" / down=2
        order=columnmajor;
endlayout;
endgraph;
run;
```

Generate the graph.

```sas
proc sgrender data=failure template=failures;
run;
```
Part 9

Draw Statements

Chapter 13
Key Concepts for Using Draw Statements 1189

Chapter 14
Draw Statements .. 1199
Chapter 13

Key Concepts for Using Draw Statements

Introduction

The draw statements enable you to customize a graph by drawing visual elements anywhere within the graph. The following sections provide a comprehensive example and a brief overview to the major drawing concepts. For more details about the individual draw statements and a simple example of each, see the discussion for each individual statement. For complete usage information for the draw statements, consult the *SAS Graph Template Language: User's Guide*.

Example

The following example shows a bar chart of the top global automobile makers in 2008. To focus the graph on the 2008 merger between Chrysler and Fiat, the example uses DRAWRECTANGLE to highlight the three bars in the chart that correspond to the unit sales for the two auto makers. The example also uses a DRAWARROW statement and two BEGINPOLYLINE blocks to point to the sales figures, and it uses a DRAWTEXT statement to explain the implications of the merger.

All of the draw statements in this example use the data space (see “About the Drawing Space and Drawing Units” on page 1192) to integrate the drawn elements into the graph’s data area.
/* Create the data and the macro variables for Chrysler, Fiat, and Chrysler+Fiat widths */
data mydata;
 length automaker $30;
 input automaker $ 1-30 million_units;
 FORMAT million_units 3.1;
 select (automaker);
 when ("Fiat") do;
 colorvar=1;
 call symput("fwidth", million_units);
 end;
 when ("Chrysler") do;
 colorvar=1;
 call symput("cwidth", million_units);
 end;
 when ("Fiat + Chrysler") do;
 colorvar=2;
 call symput("cfwidth", million_units);
 end;
 otherwise colorvar=3;
 end;
datalines;
Toyota 8.7
<table>
<thead>
<tr>
<th>Automaker</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>7.7</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>6.0</td>
</tr>
<tr>
<td>Renault-Nissan</td>
<td>5.8</td>
</tr>
<tr>
<td>Ford</td>
<td>5.4</td>
</tr>
<tr>
<td>Fiat + Chrysler</td>
<td>4.5</td>
</tr>
<tr>
<td>Hyundai</td>
<td>4.2</td>
</tr>
<tr>
<td>Honda</td>
<td>3.8</td>
</tr>
<tr>
<td>PSA</td>
<td>3.2</td>
</tr>
<tr>
<td>Fiat</td>
<td>2.5</td>
</tr>
<tr>
<td>Suzuki</td>
<td>2.4</td>
</tr>
<tr>
<td>Chrysler</td>
<td>2.0</td>
</tr>
<tr>
<td>Daimler</td>
<td>1.9</td>
</tr>
<tr>
<td>BMW</td>
<td>1.4</td>
</tr>
<tr>
<td>Mazda</td>
<td>1.4</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>1.1</td>
</tr>
</tbody>
</table>

/* Create template definition */
proc template;
define statgraph automerger;
begingraph / drawspace=datavalue;
entrytitle halign=center
'Top Global Automakers (2008 Annual Unit Sales)';
layout lattice / rowdatarange=data columndatarange=data rowgutter=10 columngutter=10;
layout overlay / xaxisopts=(label=('Units (millions)'))
yaxisopts=(reverse=true display=(ticks tickvalues line));
barchart category=automaker response=million_units / group=colorvar name='bar(h)' barlabel=true dataSkin=pressed orient=horizontal;
drawrectangle x=eval(&cwidth/2.0) y="Chrysler"
 width=&cwidth height=0.95 / widthunit=data heightunit=data
display=(outline) outlineattrs=(color=yellow);
drawrectangle x=eval(&fwidth/2.0) y="Fiat"
 width=&fwidth height=0.95 /
 widthunit=data heightunit=data
display=(outline) outlineattrs=(color=yellow);
drawrectangle x=eval(&cfwidth/2.0) y="Fiat + Chrysler"
 width=&cfwidth height=0.95 / widthunit=data heightunit=data
display=(outline) outlineattrs=(color=yellow);
beginpolyline x=eval(&cwidth + 0.5) y="Chrysler"
 draw x=eval(&cwidth + 1.5) y="Chrysler"
 draw x=eval(&cwidth + 1.5) y="Fiat"
 draw x=eval(&fwidth + 0.5) y="Fiat"
endpolyline;
beginpolyline x=eval(&cwidth + 1.5) y="Suzuki"
 draw x=eval(&cwidth + 1.5) y="Suzuki"
 draw x=eval(&cfwidth + 1.5) y="Fiat + Chrysler"
endpolyline;
drawarrow x1=eval(&cfwidth + 1.5) x2=eval(&cfwidth + 0.5)
y1="Fiat + Chrysler" y2="Fiat + Chrysler"
 / arrowheadscale=0.5 arrowheadshape=barbed;
drawtext "Alliance creates the #6 Global Automaker by volume" /
y="Honda" x=eval(&cfwidth+2.5) width=2 widthunit=data;
endlayout;
endlayout;
endgraph;
Types of Elements That Can Be Drawn

The GTL draw statements enable you to draw the following types of elements in a graph:

- text
- arrows and lines
- geometric shapes like ovals, rectangles, polygons, and polylines (a set of connecting lines)
- images

Using these elements individually and especially by combining them, you can describe the non-data aspects of your graph. For example, you can display a company logo in a specified location within the graph. Or you can create custom features that are difficult to create by other means—for example, you could draw a broken axis. Using the draw statements creatively, you can direct viewer attention to features of interest in the graph by drawing elements that highlight those features.

About the Drawing Space and Drawing Units

Each draw statement positions a drawn element using Cartesian coordinates that you specify as X and Y values in the statement. The coordinates that you specify are positioned relative to the drawing space that is in effect for the statement. The available drawing spaces are the data area, the wall area, the layout area, and the graph area. The coordinates can be specified in pixel units, percentage units, or as values that are in the units of the data (available only in the data area).

The images that accompany the following descriptions all use pixel data units. Each, however, was drawn in a different data space using this same LAYOUT OVERLAY definition block:

```plaintext
layout overlay /
  xaxisopts=(display=(line ticks tickvalues))
  yaxisopts=(display=(line ticks tickvalues));
scatterplot x=height y=weight;
drawrectangle x=0 y=0 width=50 height=50 /
  anchor=bottomleft display=(fill) fillattrs=(color=green)
  transparency=0.75 widthunit=pixel heightunit=pixel;
drawline x1=0 y1=0 x2=18 y2=18 / lineattrs=(color=red);
endlayout;
```

Drawing Space: Data Area

Drawing Units: VALUE, PERCENT, PIXEL
Drawing Space: Data Area

The area where data is displayed in the graph, honoring the offsets that are set for the axes. For a discussion on axis offsets, see “Adjusting Axis Offsets” on page 886.

The data area does not apply to graphs that do not have axes, such as pie charts, which must be drawn in a REGION layout.

For graphs produced within LAYOUTDATAPANEL and LAYOUTDATALATTICE layouts, drawn elements are clipped if they extend outside of the wall boundaries.

Drawing Space: Wall Area

Drawing Units: PERCENT, PIXEL

The area bounded by orthogonal axis pairs, ignoring the offsets that are set for the axes. In two-dimensional graphs, there is one wall bounded by the XY axes, including the secondary axes, if used. In three-dimensional graphs, there are three walls, bounded by the XY, YZ, and XZ axes.

The wall area does not apply to graphs that do not have axes, such as pie charts, which must be drawn in a REGION layout.

For graphs produced within LAYOUTDATAPANEL and LAYOUTDATALATTICE layouts, drawn elements that extend outside of the wall boundaries are clipped.

Drawing Space: Layout Area

Drawing Units: PERCENT, PIXEL

The entire area of the layout container that is the immediate parent container of the draw statement. The figure to the right shows the case where a LAYOUT OVERLAY is the draw statement’s layout container.

Titles and footnotes are always displayed outside of the outermost layout, so those areas are never part of the layout drawing space.

Drawing Space: Graph Area

Drawing Units: PERCENT, PIXEL
The entire area that is available to the graph display, whether a single-cell or multi-cell graph.

Because the graph drawing space spans the entire graph, the location of the drawn element in the graph is independent of the draw statement’s placement within the template definition, even if the draw statement is specified within a nested layout.

To specify the drawing space for both the X and the Y dimension, you use the DRAWSPACE= option. To specify the drawing space individually for either the X or the Y dimension, you use the options XSPACE=, X1SPACE=, X2SPACE=, YSPACE=, Y1SPACE=, or Y2SPACE=, depending on the draw statement. The value that you set on any of these options is a single composite value that specifies both the drawing space and the drawing units in the following format:

<DrawingSpace><Units>

For example, DRAWSPACE=GRAPHPIXEL specifies the GRAPH drawing space with PIXEL drawing units, indicating that the statement’s X,Y coordinates are expressed in pixels. Similarly, DRAWSPACE=LAYOUTPERCENT specifies the LAYOUT drawing space with PERCENT drawing units, indicating that the statement’s X,Y coordinates are expressed as percentages.

The global DRAWSPACE is LAYOUTPERCENT. The global DRAWSPACE= setting for all of the draw statements is LAYOUTPERCENT. The draw statements inherit the global setting from the DRAWSPACE= setting in the BEGINGRAPH statement.

If the specified axis does not exist in the plot or is not valid for the draw statement's layout container, then the draw statement is ignored.

For a discrete axis, if the statement’s specified X or Y value does not exist in the data, then the value is extrapolated.

When specifying the drawing space and drawing units, you can set a common setting for all of the X and Y coordinates. Or you can specify different settings for each individual coordinate. The DRAWSPACE= setting in the BEGINGRAPH statement applies the global space and unit settings to all of the draw statements within the BEGINGRAPH/ENDGRAPH block. The DRAWSPACE= setting in an individual draw statement applies...
the space and unit setting only to the coordinate(s) for that statement. Thus, for lines and arrows, the setting applies to both the X1, Y1 coordinate and the X2, Y2 coordinate.

To specify the drawing space and drawing units separately for the X coordinate and for the Y coordinate, use the XSPACE=, YSPACE=, X1SPACE=, Y1SPACE=, X2SPACE=, and Y2SPACE= options, as applicable, in each draw statement. These options override the DRAWSPACE= option.

How the Drawn Elements Are Anchored

When you specify the X and Y coordinates in a draw statement, the element is drawn from an anchor point that is placed in the drawing area at the X,Y coordinate point.

- For lines and arrows, the anchor point is the starting point of the line or arrow, which is specified with the draw statement’s X1= and Y1= values.

- For elements that have height and width, the anchor point can be one of the following points:

 ![Anchor Points Diagram]

 The default anchor position is CENTER. To change the anchor position, use the draw statement’s ANCHOR= option.

About Drawing Layers

A draw statement can draw its element in either of two “layers” in the graph: the front layer or the back layer. By default, the statement draws in the front layer, which places the element in front of all other graphics elements, including data points, data labels, axis labels, and so on. In some cases, this might cause the drawn element to block the view of other graphics elements in the graph.

To prevent a drawn element for blocking the view of other graphics elements in the graph, you can use the draw statement’s TRANSPARENCY= option to add transparency to the drawn element. With an appropriate transparency setting, you should be able to see any graphics elements that are behind the drawn element.

Alternatively, you can use the draw statement’s LAYER= option to draw the element in the back layer, which places the drawn element behind all other graphics elements in the graph. For example, the following figure shows two different versions of a graph that uses DRAWLINE to draw a diagonal line across the axis area. The version to the left draws the line in the front layer, which causes the line to cover some of the data labels in the graph and portions of the series line. The version to the right uses LAYER=BACK to draw the line in the back layer. This prevents the line from covering the data labels and the portions of the series line.
The following code fragment shows the code that positions the line in the back layer:

```
layout overlay / walldisplay=(outline)
  xaxisopts=(griddisplay=on display=(line ticks tickvalues))
  yaxisopts=(griddisplay=on display=(line ticks tickvalues));
seriesplot x=open y=close / datalabel=date;
drawline x1=0 y1=0 x2=100 y2=100 /
  x1space=wallpercent y1space=wallpercent
  x2space=wallpercent y2space=wallpercent
  lineattrs=(color=cyan thickness=6) layer=back ;
endlayout;
```

The Back Layer is Behind the Background. Although drawing elements in the back layer prevents them from obstructing other data elements in the graph, it is not always the right solution to the problem.

If a draw statement uses LAYER=BACK, then it draws the element behind all other graphics elements, such as the layout background or a discrete legend’s background. To ensure that the element is visible in the graph, you might have to do one or more of the following:

- In overlay-type layouts or in a SCATTERPLOTMATRIX, you can use the parent layout’s WALLDISPLAY= option to turn off the display of the plot wall. In the example code just shown, WALLDISPLAY=(OUTLINE) displays an outline around the graph wall but does not display the wall fill. Suppressing the fill ensures that the drawn line is visible behind the plot wall.

- If a layout container uses OPAQUE=TRUE so that it can set visual attributes for the background, then the opaque background covers and therefore hides any drawn element that is behind the background. When assigning visual attributes to a graph background, therefore, it might be better to use TRANSPARENCY= rather than LAYER= to prevent drawn elements from covering other graphics elements in the graph.

- If the results of a plot statement or other GTL-statement covers the drawn element, then you can use transparency to reveal the drawn element. For example, you could
use a plot statement’s DATATRANSPARENCY= option to set an appropriate transparency level for the plot.
Chapter 14

Draw Statements

Dictionary

BEGINPOLYGON Statement
Defines the starting point for drawing a polygon in the graph.

Syntax

BEGINPOLYGON X=constant | scalar-expression
Y=constant | scalar-expression </option(s)>;

DRAW X=constant | scalar-expression
Y=constant | scalar-expression </option(s)>;

<… more DRAW statements …>
ENDPOLYGON;

Summary of Optional Arguments

Appearance options

DISPLAY=STANDARD | ALL | (display-options)
specifies the features to display for the polygon.

FILLATTRS=style-element | style-element (fill-options) | (fill-options)
specifies the fill attributes for this BEGINPOLYGON block.

LAYER=FRONT | BACK
specifies the layer on which this BEGINPOLYGON block’s output is drawn.
OUTLINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the outline attributes for this BEGINPOLYGON block.

TRANSPARENCY=number
 specifies the degree of the transparency of this BEGINPOLYGON block’s output.

Axes options
 DISCRETEOFFSET=number
 specifies an amount to offset from the discrete X values, or the discrete Y values, or both.
 XAXIS=X | X2
 specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.
 YAXIS=Y | Y2
 specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options
 DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
 specifies a default drawing space and drawing units for this BEGINPOLYGON block.
 XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
 specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.
 YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
 specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

ODS options
 URL=string | string-expression
 specifies an HTML page that is displayed when the output of this draw statement is selected.

Required Arguments
The following options are required in the BEGINPOLYGON statement and the DRAW statement.

X=constant | scalar-expression
 specifies the X value for a point in the polygon. When used in the BEGINPOLYGON statement, it specifies the X value of the starting point of the polygon.

Interaction
 The value that is set for this argument is interpreted using the XSPACE= option. When XSPACE=DATAVALUE, the value is interpreted using the XAXIS= option.
Note When XSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y=constant | scalar-expression

Specifies the Y value for a point in the polygon. When used in the BEGINPOLYGON statement, it specifies the Y value of the starting point of the polygon.

Interaction The value that is set for this argument is interpreted using the YSPACE= option. When YSPACE=DATAVALUE, the value is interpreted using the YAXIS= option.

Note When YSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Optional Arguments

The following options can be used in the BEGINPOLYGON statement.

DISCRETEOFFSET=number

Specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

- **Default**: 0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)
- **Range**: –0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.
- **Restriction**: This option applies only when the options XSPACE= or YSPACE= use DATAVALUE, and when X or Y are values on a discrete axis. For nondiscrete axes, this option is ignored.
- **Tip**: Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DISPLAY=STANDARD | ALL | (display-options)

Specifies the features to display for the polygon.

- **STANDARD**: displays an outlined polygon.
- **ALL**: displays an outlined, filled polygon.
- **(display-options)**: a space-separated list of one or more of the following options enclosed in parentheses:
 - **OUTLINE**: displays an outlined polygon
 - **FILL**: displays a filled polygon
Use the OUTLINEATTRS= and FILLATTRS= options to control the appearance of the polygon.

specifies a default drawing space and drawing units for this BEGINPOLYGON block.

This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this BEGINPOLYGON statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the XSPACE= and YSPACE= options.

Tip

The TRANSPARENCY= option sets the transparency for the fill and the outline. You can combine this option with TRANSPARENCY= to set one transparency for the outlines but a different transparency for the fill. Example:

\[
\text{transparency}=0.2 \quad \text{fillattrs}=(\text{transparency}=0.6)
\]

Tip

For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195.

specifies the outline attributes for this BEGINPOLYGON block.
TRANSPARENCY=number

specifies the degree of the transparency of this BEGINPOLYGON block’s output.

Default 0

Range 0 (opaque) to 1 (entirely transparent)

Tip The FILLATTRS option can be used to set transparency for just the polygon's filled area. You can combine this option with FILLATTRS= to set one transparency for the outlines but a different transparency for the fill. Example:

```
transparency=0.2 fillattrs=(transparency=0.6)
```

URL=string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

```
string | string-expression
```

specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example

```
http://www.sas.com/technologies/analytics/index.html
```

XAXIS=X | X2

specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default X

Interaction This option has effect only if XSPACE=DATAVALUE.

XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

Default The setting that is in effect for the DRAWSPACE= option.
YAXIS=Y | Y2
specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default Y

Interaction This option has effect only if YSPACE=DATAVALUE.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Default The setting that is in effect for the DRAWSPACE= option.

DRAW Statement Optional Arguments
The following options can be used in the DRAW statement.

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWSPACE</td>
<td>Specifies a default drawing space and drawing units for the drawn lines.</td>
</tr>
<tr>
<td>XSPACE</td>
<td>Specifies the drawing space and drawing units for interpreting the X value.</td>
</tr>
<tr>
<td>YSPACE</td>
<td>Specifies the drawing space and drawing units for interpreting the Y value.</td>
</tr>
</tbody>
</table>

Details

Statement Description
A polygon is built by using the BEGINPOLYGON statement to specify the polygon’s starting X,Y coordinate, and then specifying the remaining points by nesting a series of DRAW statements (see “DRAW Statement” on page 1204) within the BEGINPOLYGON block. The block is closed with an ENDPOLYGON statement. To manage the location and drawing units for the polygon, you can use the XAXIS=, YAXIS=, XSPACE=, and YSPACE= options.

For general information about the types of elements that can be drawn with the draw statements, the drawing space and drawing units that they use, and how the drawn elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on page 1189. For detailed usage information, consult the SAS Graph Template Language: User's Guide.

DRAW Statement
The nested DRAW statements within a BEGINPOLYGON block specify a series of points for a polygon. Each DRAW statement draws a straight line from the previous point to the endpoint that is specified in the DRAW statement’s X and Y arguments. The first DRAW statement starts its line from the X,Y point that is specified in the BEGINPOLYGON statement.
You can specify as many DRAW statements as needed to complete the polygon. If the last DRAW statement does not end at the first point in the polygon (specified in BEGINPOLYGON), then a line is automatically generated to close the polygon shape. For a specific example, see the “Example Program” on page 1205.

Example: BEGINPOLYGON Statement

The following graph was generated by the “Example Program” on page 1205. The example uses a BEGINPOLYGON block to draw a polygon around the Setosa species of Iris in a plot that shows petal sizes for three Iris species. The DRAWSPACE= option in the BEGINGRAPH statements specifies that the polygon be drawn in the data space. The BEGINPOLYGON statement specifies the starting X,Y point. For the BEGINPOLYGON options, DISPLAY= displays only the fill for the polygon. TRANSPARENCY= adds a degree of transparency to the fill, and FILLATTRS= sets the fill color to yellow. The example also uses DRAWARROW and DRAWTEXT statements to draw an annotation for the polygon.

Example Program

```
proc template;
  define statgraph discretelegend;
  begingraph / drawspace=datavalue;
    entrytitle "Iris Petal Dimensions";
    layout overlayequated / equatetype=equate;
      scatterplot x=petallength y=petalwidth / group=species name="s";
      ellipse x=petallength y=petalwidth / type=predicted alpha=.2
        name="p80" legendlabel="80%" outlineattrs=graphconfidence;
      ellipse x=petallength y=petalwidth / type=predicted alpha=.05
        name="p95" legendlabel="95%" outlineattrs=graphconfidence2;
  endgraph;
enddefine;
```

BEGINPOLYLINE Statement

Defines the starting point for drawing a polyline in the graph.

Syntax

BEGINPOLYLINE X=constant | scalar-expression
 Y=constant | scalar-expression
 <option(s)>;

 DRAW X=constant | scalar-expression
 Y=constant | scalar-expression
 <option(s)>;

 <... more DRAW statements ...>

ENDPOLYLINE;

Summary of Optional Arguments

Appearance options

 LAYER=FRONT | BACK
 specifies the layer on which this BEGINPOLYLINE block’s output is drawn.

 LINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the line attributes for this BEGINPOLYLINE block.

 TRANSPARENCY=number
 specifies the degree of the transparency of the BEGINPOLYLINE block’s output.
Axes options

DISCRETEOFFSET=number
specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

XAXIS=X | X2
specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

YAXIS=Y | Y2
specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options

DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE
specifies a default drawing space and drawing units for this BEGINPOLYLINE block.

XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE
specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE
specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

ODS options

URL=string | string-expression
specifies an HTML page that is displayed when the output of this draw statement is selected.

Required Arguments

The following options are required in the BEGINPOLYLINE statement and the DRAW statement.

X=constant | scalar-expression
specifies the X value for the starting point in the polyline.

interaction
The value that is set for this argument is interpreted using the XSPACE= option. When XSPACE=DATAVALUE, the value is interpreted using the XAXIS= option.

Note
When XSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y=constant | scalar-expression
specifies the Y value for the starting point in the polyline.

interaction
The value that is set for this argument is interpreted using the YSPACE= option. When YSPACE=DATAVALUE, the value is interpreted using the YAXIS= option.
Note When YSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Optional Arguments
The following options can be used in the BEGINPOLYLINE statement.

DISCRETEOFFSET=number
specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

Default 0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)

Range –0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.

Restriction This option applies only when the options XSPACE= or YSPACE= use DATAVALUE, and when X or Y are values on a discrete axis. For nondiscrete axes, this option is ignored.

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DRAWSPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPixel | DATAVALUE
specifies a default drawing space and drawing units for this BEGINPOLYLINE block.

Default LAYOUTPERCENT

Interactions This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this BEGINPOLYLINE statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the XSPACE= and YSPACE= options.

See “About the Drawing Space and Drawing Units” on page 1192

LAYER=FRONT | BACK
specifies the layer on which this BEGINPOLYLINE block’s output is drawn.

FRONT draws the output on top of the graph.

BACK draws the output behind the background areas, such as a layout or legend background.
Tip
For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195.

LINEATTRS=
Specifies the line attributes for this `BEGINPOLYLINE` block.

TRANSPARENCY=
Specifies the degree of the transparency of the `BEGINPOLYLINE` block’s output.

URL=
Specifies an HTML page that is displayed when the output of this draw statement is selected.

XAXIS=
Specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

XSPACE=
Specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.
YAXIS=Y | Y2
specifies whether the data value for the arguments Y1 and Y2 are interpreted using
the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default Y

Interaction This option has effect only if YSPACE=DATAVALUE.

YSPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is
specified in the Y= option.

Default The setting that is in effect for the DRAWSPACE= option.

DRAW Statement Optional Arguments
The following options can be used in the DRAW statement.

<table>
<thead>
<tr>
<th>Statement Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWSPACE</td>
<td>Specifies a default drawing space and drawing units for the drawn lines.</td>
</tr>
<tr>
<td>XSPACE</td>
<td>Specifies the drawing space and drawing units for interpreting the X value.</td>
</tr>
<tr>
<td>YSPACE</td>
<td>Specifies the drawing space and drawing units for interpreting the Y value.</td>
</tr>
</tbody>
</table>

Details

Statement Description
A polyline is built by using the BEGINPOLYLINE statement to specify the polyline’s
starting X,Y coordinate, and then specifying the remaining points by nesting a series of
DRAW statements (see “DRAW Statement” on page 1210) within the
BEGINPOLYLINE block. The block is closed with an ENDPOLYLINE statement. To
manage the location and drawing units for the polyline, you can use the XAXIS=,
YAXIS=, XSPACE=, and YSPACE= options.

For general information about the types of elements that can be drawn with the draw
statements, the drawing space and drawing units that they use, and how the drawn
elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on
page 1189. For detailed usage information, consult the *SAS Graph Template Language:
User's Guide*.

DRAW Statement
The nested DRAW statements within a BEGINPOLYLINE block specify a series of
points for a polyline. Each DRAW statement draws a straight line from the previous
point to the endpoint that is specified in the DRAW statement's X and Y arguments. The
first DRAW statement starts its line from the X,Y point that is specified in the
BEGINPOLYLINE statement. You can specify as many DRAW statements as needed to
complete the polyline.
For a specific example, see the “Example Program” on page 1211.

Example: BEGINPOLYLINE Statement

The following graph was generated by the “Example Program” on page 1211. The example uses two BEGINPOLYLINE blocks to highlight two student data points. The DRAWSPACE= option in the BEGINGRAPH statements specifies that the polyline be drawn in the data space. The BEGINPOLYLINE statements specify the starting X,Y points for two polyline, and the DRAW statements complete the lines. The example also uses two DRAWTEXT statements to label the data points of interest.

Example Program

```sas
proc template;
define statgraph drawoval;
begingraph / drawspace=datavalue;
  entrytitle "Regression Fit Plot";
  layout overlay;
  modelband "myclm";
  scatterplot x=height y=weight;
  regressionplot x=height y=weight / alpha=0.01 clm="myclm";
  drawtext "Alfred" / x=69 y=112 anchor=top;
  drawtext "Barbara" / x=65.4 y=97 anchor=top width=15;
  beginpolyline x=69 y=105;
    draw x=69 y=85;
    draw x=65.3 y=85;
    draw x=65.3 y=90;
  endpolyline;
  beginpolyline x=67 y=85;
```
DRAWARROW Statement

Draws an arrow (a directed line segment) from one point to another point.

Syntax

DRAWARROW X1=constant | scalar-expression
 Y1=constant | scalar-expression
 X2=constant | scalar-expression
 Y2=constant | scalar-expression </option(s)>;

Summary of Optional Arguments

Appearance options

 LAYER=FRONT | BACK
 specifies the layer on which this draw statement’s output is drawn.
 LINEATTRS=style-element | style-element (line-options) | (line-options)
 specifies the line attributes for this draw statement.
 TRANSPARENCY=number
 specifies the degree of the transparency of this draw statement’s output.

Arrow options

 ARROWHEADDIRECTION=OUT | IN | BOTH
 specifies the direction of the arrowhead(s) at the end(s) of the arrow shaft.
 ARROWHEADSCALE=positive-number
 specifies an arrowhead scale factor based on the thickness of the arrow shaft.
 ARROWHEADSHAPE=OPEN | CLOSED | FILLED | BARBED
 specifies the shape of the arrowhead(s).

Axes options

 DISCRETEOFFSET=number
 specifies an amount to offset from the discrete X values, or the discrete Y values, or both.
 XAXIS=X | X2
 specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.
 YAXIS=Y | Y2
 specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options
DRAWSPACE= GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies a default drawing space and drawing units for this draw statement.

X1SPACE= GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the X1 value.

X2SPACE= GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the X2 value.

Y1SPACE= GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the Y1 value.

Y2SPACE= GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the Y2 value.

ODS options

URL= string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Required Arguments

X1= constant | scalar-expression

specifies the X value of one arrow-shaft endpoint.

Interactions

This value that is set for this option is interpreted using the X1SPACE= option.

When X1SPACE=DATAVALUE, the value is interpreted using the XAXIS= option.

Note

When X1SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y1= constant | scalar-expression

specifies the Y value of one arrow-shaft endpoint.

Interactions

This value that is set for this option is interpreted using the Y1SPACE= option.

When Y1SPACE=DATAVALUE, the value is interpreted using the YAXIS= option.

Note

When Y1SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

X2= constant | scalar-expression

specifies the X value of one arrow-shaft endpoint.
Interactions

This value that is set for this option is interpreted using the X2SPACE= option.

When X2SPACE=DATAVALUE, the value is interpreted using the XAXIS= option.

Note

When X2SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y2=constant | scalar-expression

specifies the Y value of one arrow-shaft endpoint.

Interactions

This value that is set for this option is interpreted using the Y2SPACE= option.

When Y2SPACE=DATAVALUE, the value is interpreted using the YAXIS= option.

Note

When Y2SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Optional Arguments

ARROWHEADDIRECTION=OUT | IN | BOTH

specifies the direction of the arrowhead(s) at the end(s) of the arrow shaft.

- **OUT** specifies a single arrowhead drawn at (X2,Y2) and pointing away from (X1,Y1)
- **IN** specifies a single arrowhead drawn at (X1,Y1) and pointing away from (X2,Y2)
- **BOTH** specifies two arrowheads, one at the IN position and one at the OUT position

Default OUT

Tip

Use the ARROWHEADSHAPE= option to control the arrowhead appearance.

ARROWHEADSHAPE=OPEN | CLOSED | FILLED | BARBED

specifies the shape of the arrowhead(s). The following figure shows the arrowhead shapes.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>FILLED</td>
<td></td>
</tr>
<tr>
<td>BARBED</td>
<td></td>
</tr>
</tbody>
</table>

Default OPEN
Tip Use the ARROWHEADDIRECTION= option to control the arrow direction.

ARROWHEADSCALE=positive-number

specifies an arrowhead scale factor based on the thickness of the arrow shaft.

Default 1.0

Restriction The minimum size for arrowheads is 8 pixels. If you specify a value for ARROWHEADSCALE= that scales the arrowhead below 8 pixels, an 8-pixel arrowhead is used instead. There is no restriction on the maximum size.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

DISCRETEOFFSET=number

specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

Default 0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)

Range –0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.

Restriction This option applies only when the options X1SPACE=, X2SPACE=, Y1SPACE=, or Y2SPACE= use DATAVALUE, and when X1, X2, Y1, or Y2 are values on a discrete axis. For nondiscrete axes, this option is ignored.

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE

specifies a default drawing space and drawing units for this draw statement.

Default LAYOUTPERCENT

Interactions This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this draw statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the options X1SPACE=, Y1SPACE=, X2SPACE=, or Y2SPACE=.

See “About the Drawing Space and Drawing Units” on page 1192
Layer=Front | Back

specifies the layer on which this draw statement’s output is drawn.

- **Front**
 - draws the output on top of the graph.
- **Back**
 - draws the output behind the background areas, such as a layout or legend background.

Default

Front

Tip

For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195.

Lineattrs=

Style-element | Style-element (Line-Options) | (Line-Options)

specifies the line attributes for this draw statement.

Default

The GraphAnnoLine style element.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a **Style-element**.

“Line Options” on page 1349 for available **Line-Options**.

Transparency=

Number

specifies the degree of the transparency of this draw statement’s output.

Default

0

Range

0–1, where 0 is opaque and 1 is entirely transparent

Url=

String | String-Expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

String | String-Expression

specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example

http://www.sas.com/technologies/analytics/index.html

Requirement

To generate selectable graphical elements, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

XAxis=X | X2

specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default

X

Interaction

This option has effect only if X1Space=DataValue.
X1SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPixel | WALLPERCENT | WALLPixel | DATAPERCENT | DATAPixel | DATAVALUE
specifies the drawing space and drawing units for interpreting the X1 value.

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the X1 value.

X2SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPixel | WALLPERCENT | WALLPixel | DATAPERCENT | DATAPixel | DATAVALUE
specifies the drawing space and drawing units for interpreting the X2 value

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the X2 value.

YAXIS=Y | Y2
specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default Y

Interaction This option has effect only if Y1SPACE=DATAVALUE.

Y1SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPixel | WALLPERCENT | WALLPixel | DATAPERCENT | DATAPixel | DATAVALUE
specifies the drawing space and drawing units for interpreting the Y1 value.

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the Y1 value.

Y2SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPixel | WALLPERCENT | WALLPixel | DATAPERCENT | DATAPixel | DATAVALUE
specifies the drawing space and drawing units for interpreting the Y2 value

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the Y2 value.

Details
A DRAWARROW statement draws a line (arrow shaft) from a specified starting point (X1,Y1) to a specified ending point (X2,Y2). It also displays an arrowhead at either or both ends of the line. DRAWARROW is similar to a DRAWLINE statement, using many of the same options, but it has additional options for controlling the arrowhead(s).

For general information about the types of elements that can be drawn with the draw statements, the drawing space and drawing units that they use, and how the drawn elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on page 1189. For detailed usage information, consult the SAS Graph Template Language: User's Guide.
Example: DRAWARROW Statement

The following graph was generated by the “Example Program” on page 1218. The example shows a common application of a DRAWARROW and DRAWTEXT statements to identify a specific part of the graph and add explanatory text.

Example Program

```sas
proc template;
  define statgraph arrow;
  begingraph;
    entrytitle "Microsoft Stock Prices between 2000 and 2002";
    layout overlay;
      seriesplot x=date y=close;
      drawarrow x1=’01NOV2001’d y1=75 x2=’01NOV2001’d y2=64.21 /
        x1space=datavalue y1space=wallpercent
        x2space=datavalue y2space=datavalue
        arrowheadshape=filled lineattrs=(color=red) ;
      drawtext "Introduction of Windows XP" / width=25 anchor=bottom
        border=true borderattrs=(color=red)
        x=’01NOV2001’d y=75 xspace=datavalue yspace=wallpercent;
    endlayout;
  endgraph;
end;

proc sgrender data=sashelp.stocks template=arrow;
  where stock="Microsoft" and Year(date) between 2000 and 2002;
run;
```
DRAWIMAGE Statement

Draws an image in the graph.

Syntax

```
DRAWIMAGE "image-file-spec" <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `BORDER=TRUE | FALSE`
 specifies whether a border is drawn around the image.

- `BORDERATTRS=style-element | style-element (line-options) | (line-options)`
 specifies the border line attributes for this draw statement.

- `LAYER=FRONT | BACK`
 specifies the layer on which this draw statement’s output is drawn.

- `ROTATE=number`
 specifies the angle of rotation for the image, measured in degrees.

- `TRANSPARENCY=number`
 specifies the degree of the transparency of this draw statement’s output.

Axes options

- `DISCRETEOFFSET=number`
 specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

- `XAXIS=X | X2`
 specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

- `YAXIS=Y | Y2`
 specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options

- `DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE`
 specifies a default drawing space and drawing units for this draw statement.

- `XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE`
 specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

- `YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE`
 specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.
Location options

ANCHOR=CENTEX | TOOLEFT | TOP | TOPRIGHT | LEFT | RIGHT |
BOTTOMLEFT | BOTTOM | BOTTOMRIGHT

specifies an anchor point for the image.

X=constant | scalar-expression

specifies the anchor point’s X coordinate.

Y=constant | scalar-expression

specifies the anchor point’s Y coordinate.

ODS options

URL=string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Size options

HEIGHT=positive-number

specifies the height of the image’s bounding box.

HEIGHTUNIT=PERCENT | PIXEL | DATA

specifies whether the positive-number that is specified in the HEIGHT= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

SCALE=FIT | FITHEIGHT | FITWIDTH | TILE

specifies how the image is scaled within the bounding box.

SIZEUNIT=PERCENT | PIXEL | DATA

specifies whether the default units for the size of the image’s bounding box are percentage values, or pixel values, or values that are in the unit of the data.

WIDTH=positive-number

specifies the width of the image’s bounding box.

WIDTHUNIT=PERCENT | PIXEL | DATA

specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Required Argument

image-file-spec

specifies the name, image type, and location of the image. The image-file-spec value must be enclosed in double quotation marks and must be specified as a local, physical file path (for example, "c:\temp\saslogo.gif"). The supported image types are GIF, JPEG, and PNG raster or bitmap format.

Restrictions

URL access to image files is not supported. The image file must exist on the file system.

In SAS 9.4 and in earlier releases, you cannot use a dynamic variable for the image-file-spec value. This restriction is removed starting with the first maintenance release of SAS 9.4.
Optional Arguments

ANCHOR=CENTER | TOPLEFT | TOP | TOPRIGHT | LEFT | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT

specifies an anchor point for the image. The anchor point is relative to the unrotated image. The anchor point can be at the center of the image or at eight points on the border of the image bounding box. The following figure shows the anchor points for TOPLEFT and LEFT.

![Anchor Points Diagram]

The coordinates of the anchor point are set by the X= and Y= options, and by the XSPACE= and YSPACE= options. The XAXIS= and YAXIS= option might affect positioning when the XSPACE= or YSPACE= options are set to DATAPIXEL, DATAPERCENT, or DATAVALE.

The image has a fixed height and a fixed width, determined by the HEIGHT=, HEIGHTUNIT=, WIDTH= and WIDTHUNIT= options. The height of the text grows in a direction that is related to the anchor point. For example, if ANCHOR=TOPLEFT, then the image height extends downward from the anchor point and its width extends to the right. If ANCHOR=CENTER, then half the image width and half the image height extend equally left and right, as well as top to bottom from the anchor point. If ANCHOR=BOTTOM, then the image height extends upward from the anchor point and the image width is centered at the anchor point.

When the image is rotated, the anchor point remains relative to the unrotated image while the image is rotated on its anchor point. See ROTATE= on page 1223.

Default CENTER

BORDER=TRUE | FALSE

specifies whether a border is drawn around the image.

Default FALSE

Tip Use the BORDERATTRS= option to control the appearance of the border.

See “boolean” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)

specifies the border line attributes for this draw statement.

Default The GraphBorderLines style element.

Interaction BORDER=TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.
DISCRETEOFFSET=number
specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

Default 0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)

Range –0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.

Restriction This option applies only when the options XSPACE= or YSPACE= use DATAVALUE, and when X or Y are values on a discrete axis. For nondiscrete axes, this option is ignored.

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies a default drawing space and drawing units for this draw statement.

Default LAYOUTPERCENT

Interactions This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this draw statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the options XSPACE=, YSPACE=, HEIGHTUNIT=, or WIDTHUNIT=.

See “About the Drawing Space and Drawing Units” on page 1192

HEIGHT=positive-number
specifies the height of the image’s bounding box.

Default The height of the image.

Interaction The interpretation of this height setting is determined by the combined settings of the HEIGHTUNIT= and YSPACE= options.

HEIGHTUNIT=PERCENT | PIXEL | DATA
specifies whether the positive-number that is specified in the HEIGHT= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default PERCENT

Interaction This setting combines with the YSPACE= setting to interpret the height that is set in the HEIGHT= option.
LAYER=FRONT | BACK
specifies the layer on which this draw statement’s output is drawn.

- **FRONT** draws the output on top of the graph.
- **BACK** draws the output behind the background areas, such as a layout or legend background.

Default FRONT

Tip For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195.

ROTATE=number
specifies the angle of rotation for the image, measured in degrees. The image is rotated around its anchor point. The angle is measured from a horizontal line passing through the anchor point of the image to the right. The following figure shows the rotation of an image around a top anchor point.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Positive angles rotate the image counter clockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0. No rotation is performed.

Note If you specify the SVG format for your graph and your graph includes a rotated image, then the graph is rendered as a bitmapped image rather than an SVG image. In that case, a note is written to the SAS log indicating the change in format.

See ANCHOR= on page 1221

SCALE=FIT | FITHEIGHT | FITWIDTH | TILE
specifies how the image is scaled within the bounding box.

- **FIT** scales the image to fit the bounding box. Aspect ratio is not maintained.
- **FITHEIGHT** scales the image to fit the height of the bounding box. The width is computed from the height and the image’s aspect ratio.
FITWIDTH
 scales the image to fit the width of the bounding box. The height is computed from the width and the image's aspect ratio.

TILE
 tiles the image as needed to fit the bounding image. The last tile in a row or column might be clipped by the bounding box.

Default FIT

SIZEUNIT=PERCENT | PIXEL | DATA
 specifies whether the default units for the size of the image’s bounding box are percentage values, or pixel values, or values that are in the unit of the data.

Default PERCENT

Interaction If the HEIGHTUNIT= or WIDTHUNIT= option is also used, then it overrides this option for that dimension.

TRANSPARENCY=number
 specifies the degree of the transparency of this draw statement’s output.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

Note This option also affects the image border.

URL=string | string-expression
 specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

string | string-expression
 specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example http://www.sas.com/technologies/analytics/index.html

Requirement To generate selectable graphical elements, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

WIDTH=positive-number
 specifies the width of the image’s bounding box.

Default The width of the image.

WIDTHUNIT=PERCENT | PIXEL | DATA
 specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default PERCENT
Interaction

This setting combines with the XSPACE= setting to interpret the width that is set in the WIDTH= option.

X=constant | scalar-expression

specifies the anchor point’s X coordinate.

Default

50

Interactions

The DRAWSPACE= option determines the default interpretation of the units for this setting. You can override the default with the XSPACE= option.

If XSPACE=DATAVALUE, then this option's value is interpreted using the XAXIS= option.

Note

When XSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

XAXIS=X | X2

specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default

X

Interaction

This option has effect only if XSPACE=DATAVALUE.

XSPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

Default

The setting that is in effect for the DRAWSPACE= option.

Y=constant | scalar-expression

specifies the anchor point’s Y coordinate.

Default

50

Interactions

The DRAWSPACE= option determines the default interpretation of the units for this setting. You can override the default with the YSPACE= option.

If YSPACE=DATAVALUE, then this option's value is interpreted using the YAXIS= option.

Note

When YSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

YAXIS=Y | Y2

specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default

Y
Interaction This option has effect only if YSPACE=DATAVALUE.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Default The setting that is in effect for the DRAWSPACE= option.

Details

A DRAWIMAGE statement draws an image in a graph. By default, the image is drawn in the center of the graph. You can change the default position with the options ANCHOR=, X=, Y=, XSPACE=, and YSPACE=. By default, the image is drawn in the actual image size. You can change the default size with the WIDTH= and HEIGHT= options.

For general information about the types of elements that can be drawn with the draw statements, the drawing space and drawing units that they use, and how the drawn elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on page 1189. For detailed usage information, consult the SAS Graph Template Language: User's Guide.

Example: DRAWIMAGE Statement

Example Graph

The following graph was generated by the “Example Program” on page 1227. The example shows how to display an image in the bottom right corner of the graph wall.
Example Program

```sas
proc template;
  define statgraph image;
  begingraph;
    entrytitle "Regression Fit Plot";
    layout overlay;
      modelband "myclm";
      scatterplot x=height y=weight / primary=true;
      regressionplot x=height y=weight / alpha=0.01 clm="myclm";
      drawimage "c:\temp\saslogo.gif" /
        anchor=bottomright x=98 y=2
drawspace=wallpercent ;
    endlayout;
  endgraph;
end;

proc sgrender data=sashelp.class template=image;
run;
```

DRAWLINE Statement

Draws a line from one point to another point.

Syntax

```
DRAWLINE X1=constant | scalar-expression
  Y1=constant | scalar-expression
  X2=constant | scalar-expression
  Y2=constant | scalar-expression </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **LAYER=FRONT | BACK**
 specifies the layer on which this draw statement’s output is drawn.

- **LINEATTRS=style-element | style-element (line-options) | (line-options)**
 specifies the line attributes for this draw statement.

- **TRANSPARENCY=number**
 specifies the degree of the transparency of this draw statement’s output.

Axes options

- **DISCRETEOFFSET=number**
 specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

- **XAXIS=X | X2**
 specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

- **YAXIS=Y | Y2**
 specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.
Drawing space options

DRAWSPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies a default drawing space and drawing units for this draw statement.

X1SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the X1 value.

X2SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the X2 value.

Y1SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the Y1 value.

Y2SPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the Y2 value.

ODS options

URL=string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Required Arguments

X1=constant | scalar-expression

specifies the X value of the starting point for the line.

Interactions

This value that is set for this option is interpreted using the X1SPACE= option.

Note

When X1SPACE=DATAVALUE, the value is interpreted using the XAXIS= option.

Note

When X1SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y1=constant | scalar-expression

specifies the Y value of the starting point for the line.

Interactions

This value that is set for this option is interpreted using the Y1SPACE= option.

Note

When Y1SPACE=DATAVALUE, the value is interpreted using the YAXIS= option.

Note

When Y1SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.
X2=constant | scalar-expression
specifies the X value of the endpoint for the line.

Interactions
This value that is set for this option is interpreted using the X2SPACE= option.

When X2SPACE=DATAVALUE, the value is interpreted using the XAXIS= option.

Note
When X2SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y2=constant | scalar-expression
specifies the Y value of the endpoint for the line.

Interactions
This value that is set for this option is interpreted using the Y2SPACE= option.

When Y2SPACE=DATAVALUE, the value is interpreted using the YAXIS= option.

Note
When Y2SPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Optional Arguments

DISCRETEOFFSET=number
specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

Default
0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)

Range
–0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.

Restriction
This option applies only when the options X1SPACE=, X2SPACE=, Y1SPACE=, or Y2SPACE= use DATAVALUE, and when X1, X2, Y1, or Y2 are values on a discrete axis. For nondiscrete axes, this option is ignored.

Tip
Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DRAWSPACE=GRAPHPERCENT | GRAPHPXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies a default drawing space and drawing units for this draw statement.

Default
LAYOUTPERCENT
Interactions

This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this draw statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the options X1SPACE=, Y1SPACE=, X2SPACE=, or Y2SPACE=.

See “About the Drawing Space and Drawing Units” on page 1192

LAYER=FRONT | BACK

specifies the layer on which this draw statement’s output is drawn.

FRONT draws the output on top of the graph.
BACK draws the output behind the background areas, such as a layout or legend background.

Default FRONT

Tip For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195.

LINEATTRS=style-element | style-element (line-options) | (line-options)

specifies the line attributes for this draw statement.

Default The GraphAnnoLine style element.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

TRANSPARENCY=number

specifies the degree of the transparency of this draw statement’s output.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

URL=string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

string | string-expression specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example http://www.sas.com/technologies/analytics/index.html
 Requirement To generate selectable graphical elements, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

\(\text{XAXIS=} \text{X | X2} \)
specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default X

Interaction This option has effect only if X1SPACE=DATAVALUE.

\(\text{X1SPACE=} \text{GRAPHPERCENT | GRAHPPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE} \)
specifies the drawing space and drawing units for interpreting the X1 value.

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the X1 value.

\(\text{YAXIS=} \text{Y | Y2} \)
specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default Y

Interaction This option has effect only if Y1SPACE=DATAVALUE.

\(\text{Y1SPACE=} \text{GRAPHPERCENT | GRAHPPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE} \)
specifies the drawing space and drawing units for interpreting the Y1 value.

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the Y1 value.

\(\text{Y2SPACE=} \text{GRAPHPERCENT | GRAHPPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE} \)
specifies the drawing space and drawing units for interpreting the Y2 value.

Default The setting that is in effect for the DRAWSPACE= option.

Interaction This option overrides the DRAWSPACE= setting only for the Y2 value.
Details

A DRAWLINE statement draws a line from a starting point that is specified with the X1 and Y1 arguments, to an ending point that is specified with the X2 and Y2 arguments. DRAWLINE is similar to a DRAWARROW statement, using many of the same options, but without the options for controlling the arrowhead(s).

For general information about the types of elements that can be drawn with the draw statements, the drawing space and drawing units that they use, and how the drawn elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on page 1189. For detailed usage information, consult the SAS Graph Template Language: User's Guide.

Example: DRAWLINE Statement

The following graph was generated by the “Example Program” on page 1232. The example shows how to draw a diagonal reference line. One endpoint is point 0,0 and the other is point 100,100. Both points are specified in the WALL area with PERCENT units, making it easy to position the line without regard to the axis data ranges or the axis offsets. To draw the line behind the series line and grid lines, you can set LAYER= BACK and use the parent layout statement to turn off the display of the wall.

Example Program

```sas
proc template;
  define statgraph diagonal;
  begingraph;
    entrytitle "Open vs. Close Price for Intel Stock 2003*";
    layout overlay / walldisplay=(outline)
      xaxisopts=(griddisplay=on)
    xaxisopts=(griddisplay=on)
```

DRAWOVAL Statement

Draws an oval in the graph.

Syntax

\texttt{DRAWOVAL} \texttt{X=constant} | \texttt{scalar-expression} \\
\texttt{Y=constant} | \texttt{scalar-expression} \\
\texttt{WIDTH=constant} | \texttt{scalar-expression} \\
\texttt{HEIGHT=constant} | \texttt{scalar-expression} \texttt{</option(s)>};

Summary of Optional Arguments

Appearance options

\texttt{DISPLAY=STANDARD} | \texttt{ALL} | (display-options) \\
specifies the features to display for the oval.

\texttt{FILLATTRS=style-element} | \texttt{style-element (fill-options)} | (fill-options) \\
specifies the fill attributes for this draw statement.

\texttt{LAYER=FRONT} | \texttt{BACK} \\
specifies the layer on which this draw statement’s output is drawn.

\texttt{OUTLINEATTRS=style-element} | \texttt{style-element (line-options)} | (line-options) \\
specifies the outline attributes for this draw statement.

\texttt{ROTATE=number} \\
specifies the angle of rotation for the oval, measured in degrees.

\texttt{TRANSPARENCY=number} \\
specifies the degree of the transparency of this draw statement’s output.

Axes options

\texttt{DISCRETEOFFSET=number} \\
specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

\texttt{XAXIS=X} | \texttt{X2} \\
specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

\texttt{YAXIS=Y} | \texttt{Y2}
specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options

\[
\text{DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE}
\]

specifies a default drawing space and drawing units for this draw statement.

\[
\text{XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE}
\]

specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

\[
\text{YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALE}
\]

specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Location options

\[
\text{ANCHOR=CENTER | TOLEFT | TOP | TOPRIGHT | LEFT | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT}
\]

specifies an anchor point for the oval.

ODS options

\[
\text{URL=string | string-expression}
\]

specifies an HTML page that is displayed when the output of this draw statement is selected.

Size options

\[
\text{HEIGHTUNIT=PERCENT | PIXEL | DATA}
\]

specifies whether the positive-number that is specified in the HEIGHT= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

\[
\text{WIDTHUNIT=PERCENT | PIXEL | DATA}
\]

specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Required Arguments

\[
\text{X=constant | scalar-expression}
\]

specifies the X value of the anchor point.

Interactions

The value that is set for this argument is interpreted using the XSPACE= option.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When XSPACE=DATAVALUE, the value is interpreted using the XAXIS= option.</td>
</tr>
</tbody>
</table>

Note

When XSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.
Y=constant | scalar-expression
specifies the Y value of the anchor point.

Interactions The value that is set for this argument is interpreted using the YSPACE= option.

When YSPACE=DATAVALUE, the value is interpreted using the YAXIS= option.

Note When YSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

WIDTH=constant | scalar-expression
specifies the width of the oval.

Interactions The value that is set for this argument is interpreted using the WIDTHUNIT= and XSPACE= options.

When WIDTHUNIT=DATA, the value is interpreted using the XAXIS= option.

HEIGHT=constant | scalar-expression
specifies the height of the oval.

Interactions The value that is set for this argument is interpreted using the HEIGHTUNIT= and YSPACE= options.

When HEIGHTUNIT=DATA, the value is interpreted using the YAXIS= option.

Optional Arguments
ANCHOR=CENTER | TOPLEFT | TOP | TOPRIGHT | LEFT | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies an anchor point for the oval. The anchor point is relative to the unrotated oval. The anchor point can be at the center of the oval or at eight points on the bounding box of the rectangle. The following figure shows the anchor points for TOPLEFT and CENTER.

The coordinates of the anchor point are set by the statement’s X and Y values, and by the settings for the XSPACE= and YSPACE= options. The XAXIS= and YAXIS= option might affect positioning when the XSPACE= or YSPACE= options are set to DATAPIXEL, DATAPERCENT, or DATAVALUE.

When the oval is rotated, the anchor point remains relative to the unrotated oval while the oval is rotated on its anchor point. See ROTATE= on page 1238.

Default CENTER
DISCRETEOFFSET=

specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

Default 0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)

Range –0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.

Restriction This option applies only when the options XSPACE= or YSPACE= use DATAVALUE, and when X or Y are values on a discrete axis. For nondiscrete axes, this option is ignored.

Tip Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

DISPLAY=STANDARD | ALL | (display-options)

specifies the features to display for the oval.

STANDARD displays an outlined oval.

ALL displays an outlined, filled oval.

(display-options)

a space-separated list of one or more of the following options enclosed in parentheses:

OUTLINE displays an outlined oval

FILL displays a filled oval

Default STANDARD

Tip Use the OUTLINEATTRS= and FILLATTRS= options to control the appearance of the oval.

DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies a default drawing space and drawing units for this draw statement.

Default LAYOUTPERCENT

Interactions This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this draw statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the options XSPACE=, YSPACE=, HEIGHTUNIT=, or WIDTHUNIT=.
FILLATTRRS=style-element | style-element (fill-options) | (fill-options)
specifies the fill attributes for this draw statement.

Default: The GraphAnnoShape style element.

Tip: The TRANSPARENCY= option sets the transparency for the fill and the outline. You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill.
Example:

```
transparency=0.2 fillattrs=(transparency=0.6)
```

See "General Syntax for Attribute Options" on page 1347 for the syntax on using a style-element.
"Fill Options" on page 1348 for available fill-options.

HEIGHTUNIT=PERCENT | PIXEL | DATA
specifies whether the positive-number that is specified in the HEIGHT= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default: PERCENT

Interaction: This setting combines with the YSPACE= setting to interpret the height that is set in the HEIGHT= option.

LAYER=FRONT | BACK
specifies the layer on which this draw statement’s output is drawn.

FRONT: draws the output on top of the graph.
BACK: draws the output behind the background areas, such as a layout or legend background.

Default: FRONT

Tip: For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see "About Drawing Layers" on page 1195.

OUTLINEATTRRS=style-element | style-element (line-options) | (line-options)
specifies the outline attributes for this draw statement.

Default: The GraphAnnoShape style element.

Interaction: For this option to have any effect, the outline must be enabled by the DISPLAY= option or by the ODS style that is in effect.

See "General Syntax for Attribute Options" on page 1347 for the syntax on using a style-element.
"Line Options" on page 1349 for available line-options.
ROTATE=number

specifies the angle of rotation for the oval, measured in degrees. The angle is measured as if a horizontal line extended to the right through the oval anchor point as shown in the following figure.

Positive angles rotate the oval counter clockwise, and negative angles rotate the oval clockwise. The angle specification can exceed 360 degrees in absolute value.

Default

0. No rotation is performed

See

ANCHOR= on page 1235

TRANSPARENCY=number

specifies the degree of the transparency of this draw statement’s output.

Default

0

Range

0–1, where 0 is opaque and 1 is entirely transparent

Tip

The FILLATTRS= option can be used to set transparency for just the filled area. You can combine this option with FILLATTRS= to set one transparency for the outline but a different transparency for the fill. Here is an example:

```
transparency=0.2 fillattrs=(transparency=0.6)
```

URL=string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

string | string-expression

specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example

```
http://www.sas.com/technologies/analytics/index.html
```

Requirement

To generate selectable graphical elements, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.
WIDTHUNIT=PERCENT | PIXEL | DATA
specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default
PERCENT

Interaction
This setting combines with the XSPACE= setting to interpret the width that is set in the WIDTH= option.

XAXIS=X | X2
specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default
X

Interaction
This option has effect only if XSPACE=DATAVALUE.

XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

Default
The setting that is in effect for the DRAWSPACE= option.

YAXIS=Y | Y2
specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default
Y

Interaction
This option has effect only if YSPACE=DATAVALUE.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Default
The setting that is in effect for the DRAWSPACE= option.

Details

A DRAWOVAL statement draws an oval in a graph. The oval position is determined by the X and Y anchor points, and the size is determined by the HEIGHT and WIDTH settings. You can manage the oval position with the options ANCHOR=, XSPACE=, and YSPACE=. You can manage the oval size with the HEIGHTUNIT= and WIDTHUNIT= options.

For general information about the types of elements that can be drawn with the draw statements, the drawing space and drawing units that they use, and how the drawn elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on page 1189. For detailed usage information, consult the SAS Graph Template Language: User's Guide.
Example: DRAWOVAL Statement

The following graph was generated by the “Example Program” on page 1240. The example uses DRAWOVAL to highlight a student’s data point. It draws an oval around the marker symbol that represents the student’s height and weight, and it displays the student’s name inside the oval. In the BEGINGRAPH statement, the setting for the DRAWSPACE= option sets the drawing space and drawing units for the DRAWOVAL and DRAWTEXT statements. In the DRAWOVAL statement, setting TRANSPARENCY=0.75 ensures that the marker for Alfred is visible behind the oval. The DRAWTEXT statement draws the text that identifies the student’s name, using the ANCHOR=, X=, and Y= options to position the text within the oval.

Example Program

```
proc template;
  define statgraph drawoval;
    begingraph / drawspace=datavalue;
      entrytitle "Regression Fit Plot";
      layout overlay;
        modelband "myclm";
        scatterplot x=height y=weight;
        regressionplot x=height y=weight / alpha=0.01 clm="myclm";
        drawoval x=69 y=112.5 width=15 height=20 /
          display=all fillattrs=(color=green)
          transparency=0.75 ;
        drawtext "Alfred" / x=69 y=112 anchor=top;
      endlayout;
    endgraph;
  endgraph;
```
DRAWRECTANGLE Statement

Draws a rectangle in the graph.

Syntax

```
DRAWRECTANGLE X=constant | scalar-expression
  Y=constant | scalar-expression
  WIDTH=constant | scalar-expression
  HEIGHT=constant | scalar-expression </option(s>>;
```

Summary of Optional Arguments

Appearance options

- **CORNERRADIUS=number**
 specifies the radius of the rectangle corners.

- **DISPLAY=STANDARD | ALL | (display-options)**
 specifies the features to display for the rectangle.

- **FILLATTRS=style-element | style-element (fill-options) | (fill-options)**
 specifies the fill attributes for this draw statement.

- **LAYER=FRONT | BACK**
 specifies the layer on which this draw statement’s output is drawn.

- **OUTLINEATTRS=style-element | style-element (line-options) | (line-options)**
 specifies the outline attributes for this draw statement.

- **ROTATE=number**
 specifies the angle of rotation for the rectangle, measured in degrees.

- **TRANSPARENCY=number**
 specifies the degree of the transparency of this draw statement’s output.

Axes options

- **DISCRETEOFFSET=number**
 specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

- **XAXIS=X | X2**
 specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

- **YAXIS=Y | Y2**
 specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options

- **DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE**
 specifies a default drawing space and drawing units for this draw statement.
XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Location options
ANCHOR=CENTER | TOLEFT | TOP | TOPRIGHT | LEFT | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies an anchor point for the rectangle.

ODS options
URL=string | string-expression
specifies an HTML page that is displayed when the output of this draw statement is selected.

Size options
HEIGHTUNIT=PERCENT | PIXEL | DATA
specifies whether the positive-number that is specified in the HEIGHT= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

WIDTHUNIT=PERCENT | PIXEL | DATA
specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Required Arguments

X=constant | scalar-expression
specifies the X value of the anchor point.

Interactions
The value that is set for this argument is interpreted using the XSPACE= option.

When XSPACE=DATAVALUE, the value is interpreted using the XAXIS= option.

Note
When XSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

Y=constant | scalar-expression
specifies the Y value of the anchor point.

Interactions
The value that is set for this argument is interpreted using the YSPACE= option.

When YSPACE=DATAVALUE, the value is interpreted using the YAXIS= option.
When YSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

WIDTH=constant | scalar-expression
specifies the width of the rectangle.

Interactions
The value that is set for this argument is interpreted using the WIDTHUNIT= and XSPACE= options.

When WIDTHUNIT=DATA, the value is interpreted using the XAXIS= option.

HEIGHT=constant | scalar-expression
specifies the height of the rectangle.

Interactions
The value that is set for this argument is interpreted using the HEIGHTUNIT= and YSPACE= options.

When HEIGHTUNIT=DATA, the value is interpreted using the YAXIS= option.

Optional Arguments

ANCHOR=CENTER | TOPLEFT | TOP | TOPRIGHT | LEFT | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies an anchor point for the rectangle. The anchor point is relative to the unrotated rectangle. The anchor point can be at the center of the rectangle or at eight points on the rectangle border. The following figure shows the anchor points for TOPLEFT and CENTER.

The coordinates of the anchor point are set by the statement’s X and Y values, and by the settings for the XSPACE= and YSPACE= options. The XAXIS= and YAXIS= option might affect positioning when the XSPACE= or YSPACE= options are set to DATAPIXEL, DATAPERCENT, or DATAVALUE.

When the rectangle is rotated, the anchor point remains relative to the unrotated rectangle while the rectangle is rotated on its anchor point. See **ROTATE=** on page 1246.

Default CENTER

CORNERRADIUS=number
specifies the radius of the rectangle corners.

Default 0

Range 0–1, where 0 specifies square corners and 1 specifies the most rounded corners
Example: \texttt{cornerradius=0.2}

\textbf{DISCRETEOFFSET=number}

specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

Default: 0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)

Range: \(-0.5\) to \(+0.5\), where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If \texttt{REVERSE=TRUE} on the X or Y axis, then the offset direction is also reversed.

Restriction: This option applies only when the options XSPACE= or YSPACE= use \texttt{DATAVALUE}, and when X or Y are values on a discrete axis. For nondiscrete axes, this option is ignored.

Tip: Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the \texttt{OFFSETMIN=} and \texttt{OFFSETMAX=} axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.

\textbf{DISPLAY=STANDARD | ALL | (display-options)}

specifies the features to display for the rectangle.

\texttt{STANDARD}

displays an outlined rectangle.

\texttt{ALL}

displays an outlined, filled rectangle.

\texttt{(display-options)}

a space-separated list of one or more of the following options enclosed in parentheses:

\texttt{OUTLINE} displays an outlined rectangle

\texttt{FILL} displays a filled rectangle

Default: \texttt{STANDARD}

Tip: Use the \texttt{OUTLINEATTRS=} and \texttt{FILLATTRS=} options to control the appearance of the rectangle.

\textbf{DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE}

specifies a default drawing space and drawing units for this draw statement.

Default: \texttt{LAYOUTPERCENT}

Interactions: This statement and all of the draw statements inherit the global \texttt{DRAWSPACE=} setting from the \texttt{DRAWSPACE=} option in the \texttt{BEGINGRAPH} statement. Setting this option changes the setting for only this draw statement.
This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the options XSPACE=, YSPACE=, HEIGHTUNIT=, or WIDTHUNIT=.

See “About the Drawing Space and Drawing Units” on page 1192

FILLATTRS=

specifies the fill attributes for this draw statement.

Default The GraphAnnoShape style element

Tip The TRANSPARENCY= option sets the transparency for the fill and the outline. You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

`transparency=0.2 fillattrs=(transparency=0.6)`

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Fill Options” on page 1348 for available fill-options.

HEIGHTUNIT=

specifies whether the positive-number that is specified in the HEIGHT= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default PERCENT

Interaction This setting combines with the YSPACE= setting to interpret the height that is set in the HEIGHT= option.

LAYER=

specifies the layer on which this draw statement’s output is drawn.

FRONT draws the output on top of the graph.

BACK draws the output behind the background areas, such as a layout or legend background.

Default FRONT

Tip For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195 .

OUTLINEATTRS=

specifies the outline attributes for this draw statement.

Default The GraphAnnoShape style element.

Interaction For this option to have any effect, the outline must be enabled by the DISPLAY= option or by the ODS style that is in effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.
“Line Options” on page 1349 for available line-options.

ROTATE=number
specifies the angle of rotation for the rectangle, measured in degrees. The angle is measured as if a horizontal line extended to the right through the rectangle anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation</th>
<th>ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the rectangle counter clockwise, and negative angles rotate the rectangle clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0. No rotation is performed

See ANCHOR= on page 1243

TRANSPARENCY=number
specifies the degree of the transparency of this draw statement’s output.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

Tip The FILLATTRS= option can be used to set transparency for just the filled area. You can combine this option with FILLATTRS= to set one transparency for the outline but a different transparency for the fill. Here is an example:

```
transparency=0.2 fillattrs=(transparency=0.6)
```

URL=string | string-expression
specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

string | string-expression specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example http://www.sas.com/technologies/analytics/index.html
Requirement

To generate selectable graphical elements, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

WIDTHUNIT=PERCENT | PIXEL | DATA

specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default PERCENT

Interaction This setting combines with the XSPACE= setting to interpret the width that is set in the WIDTH= option.

XAXIS=X | X2

specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default X

Interaction This option has effect only if XSPACE=DATAVALUE.

XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

Default The setting that is in effect for the DRAWSPACE= option.

YAXIS=Y | Y2

specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default Y

Interaction This option has effect only if YSPACE=DATAVALUE.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Default The setting that is in effect for the DRAWSPACE= option.

Details

A DRAWRECTANGLE statement draws a rectangle in a graph. The rectangle position is determined by the X and Y anchor points, and the size is determined by the HEIGHT and WIDTH settings. You can manage the rectangle position with the options ANCHOR=, XSPACE=, and YSPACE=. You can manage the rectangle size with the HEIGHTUNIT= and WIDTHUNIT= options.

For general information about the types of elements that can be drawn with the draw statements, the drawing space and drawing units that they use, and how the drawn elements are anchored, see Chapter 13, “Key Concepts for Using Draw Statements,” on
Example: DRAWRRECTANGLE Statement

The following graph was generated by the “Example Program” on page 1248. The example uses DRAWRRECTANGLE to highlight a student’s data point. It draws a rectangle around the marker symbol that represents the student’s height and weight, and it displays the student’s name inside the rectangle. In the BEGINGRAPH statement, the setting for the DRAWSPACE= option sets the drawing space and drawing units for the DRAWRRECTANGLE and DRAWRTEXT statements. In the DRAWRRECTANGLE statement, setting TRANSPARENCY=0.75 ensures that the marker for Alfred is visible behind the rectangle. The DRAWRTEXT statement draws the text that identifies the student's name, using the ANCHOR=, X=, and Y= options to position the text within the rectangle.

Example Program

```
proc template;
  define statgraph drawrectangle;
  begingroup / drawspace=datavalue;
  entrytitle "Regression Fit Plot";
  layout overlay;
  modelband "myclm";
  scatterplot x=height y=weight;
  regressionplot x=height y=weight / alpha=0.01 clm="myclm";
  drowrectangle x=69 y=112.5 width=10 height=15 /
    display=all fillattrs=(color=green)
    transparency=0.75 ;
```

DRAWTTEXT Statement

Draws and anchors in a graph a text box that contains one or more lines of formatted text.

Syntax

DRAWTTEXT text-item <text-item ...> <option(s)>;

Summary of Optional Arguments

Appearance options

- **BORDER=TRUE | FALSE**
 - specifies whether a border is drawn around the text box.
- **BORDERATTRS=style-element | style-element (line-options) | (line-options)**
 - specifies the border line attributes for this draw statement.
- **LAYER=FRONT | BACK**
 - specifies the layer on which this draw statement’s output is drawn.
- **PAD=dimension | (pad-options)**
 - specifies the amount of extra space that is reserved inside the text box’s border.
- **ROTATE=number**
 - specifies the angle of rotation of the text box, measured in degrees.
- **TRANSPARENCY=number**
 - specifies the degree of the transparency of this draw statement’s output.

Axes options

- **DISCRETEOFFSET=number**
 - specifies an amount to offset from the discrete X values, or the discrete Y values, or both.
- **XAXIS=X | X2**
 - specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.
- **YAXIS=Y | Y2**
 - specifies whether the data value for the arguments Y1 and Y2 are interpreted using the primary Y axis scale or to the secondary Y (Y2) axis scale.

Drawing space options

- **DRAWSPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE**
 - specifies a default drawing space and drawing units for this draw statement.
XSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is specified in the Y= option.

Location options
ANCHOR=CENTER | TOLEFT | TOP | TOPRIGHT | LEFT | RIGHT |
BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies an anchor point for the text box.

JUSTIFY=LEFT | CENTER | RIGHT
specifies the alignment of text that wraps within the text box.

X=constant | scalar-expression
specifies the anchor point’s X coordinate.

Y=constant | scalar-expression
specifies the anchor point’s Y coordinate.

ODS options
URL=string | string-expression
specifies an HTML page that is displayed when the output of this draw statement is selected.

Size options
WIDTH=positive-number
specifies the width of the text box.

WIDTHUNIT=PERCENT | PIXEL | DATA
specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Required Argument
text-item <…text-item>
specifies one or more pieces of text for the text box. Each text-item has the following form:

<prefix-option> "string" | dynamic | character-expression | {text-command}

Each piece of text can have a prefix setting that precedes the piece of text. A piece of text is either a string literal, a dynamic, or a text command. All text-items are concatenated into one string, which might be wrapped, based on the settings for the WIDTH= and WIDTHUNIT= settings. Leading and trailing blanks in the concatenated string are always used.

When used, a prefix option applies to the immediately following piece of text and also to all subsequent text strings and text-commands until another prefix option is specified.

Requirements string must be enclosed in quotation marks.
character-expression must be enclosed in an EVAL function.

text-command must be enclosed in braces.

Note
Leading a trailing spaces are preserved.

See
Chapter 10, “Managing Text Items,” on page 1137

Optional Arguments

ANCHOR=CENTER | TOPLEFT | TOP | TOPRIGHT | LEFT | RIGHT | BOTTOMLEFT | BOTTOM | BOTTOMRIGHT
specifies an anchor point for the text box. The anchor point is relative to the unrotated text. It can be at the center of the text box or at eight points on the border of the text box bounding box. The following figure shows the anchor points for TOPLEFT and LEFT.

The coordinates of the anchor point are set by the X= and Y= options, and by the XSPACE= and YSPACE= options. The XAXIS= and YAXIS= option might affect positioning when the XSPACE= or YSPACE= options are set to DATAPIXEL, DATAPERCENT, or DATAVALUE.

The text box has a fixed width, determined by the WIDTH= and WIDTHUNIT= options. The height of the text box is based on the amount of text specified and the font size. The height of the text grows in a direction that is related to the anchor point. For example, if ANCHOR=TOPLEFT, then the text box height extends downward from the anchor point and its width extends to the right. If ANCHOR=CENTER, then half the text box width and half the text box height extend equally left and right, as well as top to bottom from the anchor point. If ANCHOR=BOTTOM, the text box height extends upward from the anchor point and the text box width is centered at the anchor point.

When the text is rotated, the anchor point remains relative to the unrotated text box while the text box is rotated on its anchor point. See ROTATE= on page 1253.

Default CENTER

BORDER=TRUE | FALSE
specifies whether a border is drawn around the text box.

Default FALSE

Tip Use the BORDERATTRS= option to control the appearance of the border.

See “boolean ” on page 1339 for other Boolean values that you can use.

BORDERATTRS=style-element | style-element (line-options) | (line-options)
specifies the border line attributes for this draw statement.

Default The GraphBorderLines style element.
Interaction BORDER=TRUE must be set for this option to have any effect.

See “General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Line Options” on page 1349 for available line-options.

DISCRETEOFFSET=number

specifies an amount to offset from the discrete X values, or the discrete Y values, or both.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (no offset, output is centered on the discrete X values, or the discrete Y values, or both)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>−0.5 to +0.5, where 0.5 represents half the distance between discrete ticks. If the X axis is discrete, then a positive offset is to the right. If the Y axis is discrete, then a positive offset is up. If REVERSE=TRUE on the X or Y axis, then the offset direction is also reversed.</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies only when the options XSPACE= or YSPACE= use DATAVALUE, and when X or Y are values on a discrete axis. For nondiscrete axes, this option is ignored.</td>
</tr>
<tr>
<td>Tip</td>
<td>Setting the discrete offset for the plots does not affect the axis minimum and maximum offsets. In some cases, setting a discrete offset can cause clipping at each end of the axis. In those cases, use the OFFSETMIN= and OFFSETMAX= axis options to increase the axis minimum and maximum offsets to accommodate the discrete offset.</td>
</tr>
</tbody>
</table>

DRAWSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE

specifies a default drawing space and drawing units for this draw statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>LAYOUTPERCENT</th>
</tr>
</thead>
</table>

Interactions This statement and all of the draw statements inherit the global DRAWSPACE= setting from the DRAWSPACE= option in the BEGINGRAPH statement. Setting this option changes the setting for only this draw statement.

This option sets the default drawing space, but individual settings in the X or Y dimension can be overridden by the options XSPACE=, YSPACE=, HEIGHTUNIT=, or WIDTHUNIT=.

See “About the Drawing Space and Drawing Units” on page 1192

JUSTIFY=LEFT | CENTER | RIGHT

specifies the alignment of text that wraps within the text box.

LEFT

forces the first character of each line to appear at the left margin (distance from the left border plus the left pad amount).

CENTER

forces each line to be centered in the text box between the left and right pad amounts.
RIGHT
forces the last character of each line to appear at the right margin (distance from the right border minus the right pad amount).

Default LEFT

Interaction
Text is wrapped based on the width of the specified text, the font size, and the setting in the `PAD=` option.

LAYER=LEFT | BACK
specifies the layer on which this draw statement’s output is drawn.

- **FRONT** draws the output on top of the graph.
- **BACK** draws the output behind the background areas, such as a layout or legend background.

Default FRONT

Tip
For elements that are obstructed because they are in the back layer, you can suppress the display of filled areas in the graph. You can also use transparency to manage the element visibility. For more information, see “About Drawing Layers” on page 1195.

PAD=dimension | (pad-options)
specifies the amount of extra space that is reserved inside the text box’s border.

- **dimension** specifies a dimension to use for the extra space at the left, right, top, and bottom of the text box border.

- **(pad-options)** a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

 - **LEFT=dimension** specifies the amount of extra space added to the left side.
 - **RIGHT=dimension** specifies the amount of extra space added to the right side.
 - **TOP=dimension** specifies the amount of extra space added to the top.
 - **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use *pad-options* to create non-uniform padding.

Default (LEFT=3 RIGHT=3 TOP=0 BOTTOM=0)

Note The default units for *dimension* are pixels.

See “*dimension*” on page 1340

ROTATE=number
specifies the angle of rotation of the text box, measured in degrees. The text box is rotated around its anchor point. The angle is measured from a horizontal line passing
through the anchor point of the text box to the right. The following figure shows the rotation of text around a top anchor point.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=T0P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
</tbody>
</table>

Positive angles rotate the text box counter clockwise, and negative angles rotate the text box clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0. No rotation is performed

See ANCHOR= on page 1251

TRANSPARENCY=number

specifies the degree of the transparency of this draw statement’s output.

Default 0

Range 0–1, where 0 is opaque and 1 is entirely transparent

URL=string | string-expression

specifies an HTML page that is displayed when the output of this draw statement is selected.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

string | string-expression

specifies a valid HTML page reference (HREF) for the graphical element that is drawn by this draw statement.

Example http://www.sas.com/technologies/analytics/index.html

Requirement To generate selectable graphical elements, you must include an ODS GRAPHICS ON statement that specifies the IMAGEMAP option, and you must write the output to the ODS HTML destination.

WIDTH=positive-number

specifies the width of the text box.

Default 10

Interaction This option's value is interpreted using the WIDTHUNIT= option.
WIDTHUNIT=PERCENT | PIXEL | DATA

Specifies whether the positive-number that is specified in the WIDTH= option is interpreted as a percentage value, a pixel value, or a value that is in the units of the data.

Default

PERCENT

Interaction

This setting combines with the XSPACE= setting to interpret the width that is set in the WIDTH= option.

X=constant | scalar-expression

Specifies the anchor point’s X coordinate.

Default

50

Interactions

The DRAWSPACE= option determines the default interpretation of the units for this setting. You can override the default with the XSPACE= option.

If XSPACE=DATAVALUE, then this option's value is interpreted using the XAXIS= option.

Note

When XSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.

XAXIS=X | X2

Specifies whether the data value for the arguments X1 and X2 are interpreted using the primary X axis scale or to the secondary X (X2) axis scale.

Default

X

Interaction

This option has effect only if XSPACE=DATAVALUE.

XSPACE=GRAPHPERCENT | GRAPHPixel | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPixel | DATAVALUE

Specifies the drawing space and drawing units for interpreting the value that is specified in the X= option.

Default

The setting that is in effect for the DRAWSPACE= option.

Y=constant | scalar-expression

Specifies the anchor point’s Y coordinate.

Default

50

Interactions

The DRAWSPACE= option determines the default interpretation of the units for this setting. You can override the default with the YSPACE= option.

If YSPACE=DATAVALUE, then this option's value is interpreted using the YAXIS= option.

Note

When YSPACE=DATAVALUE and a character value is specified, leading blanks are honored and trailing blanks are ignored when the specified value is compared with the data values.
YAXIS=Y | Y2
specifies whether the data value for the arguments Y1 and Y2 are interpreted using
the primary Y axis scale or to the secondary Y (Y2) axis scale.

Default Y

Interaction This option has effect only if YSPACE=DATAVALUE.

YSPACE=GRAPHPERCENT | GRAPHPIXEL | LAYOUTPERCENT | LAYOUTPIXEL | WALLPERCENT | WALLPIXEL | DATAPERCENT | DATAPIXEL | DATAVALUE
specifies the drawing space and drawing units for interpreting the value that is
specified in the Y= option.

Default The setting that is in effect for the DRAWSPACE= option.

Prefix Option

TEXTATTRS=style-element | style-element (text-options) | (text-options)
prefix-option that specifies the color and font properties of the entire text string or
individual text-items.

Default The GraphValueText style element.

Interaction When multiple TEXTATTRS= prefix options are used, each one
cancels the last, resetting all text properties to the default set by the
GraphValueText style element. Subsequent text-items to the right are
then assigned the text properties specified in the closest TEXTATTRS=
setting to their left. Thus, to vary the text properties across text-items,
you do not have to override settings from a previous TEXTATTRS=
setting. Each TEXTATTRS= specification resets all text properties to
the default so that only the new settings are applied to subsequent text-items.

Tip To ensure that all text has the same text properties, use this prefix
option once only and place it before the first text-item.

See “General Syntax for Attribute Options” on page 1347 for the syntax on
using a style-element.

“Text Options” on page 1351 for available text-options.

Text Commands

{ SUB "string" | dynamic }
text-command that specifies that the string or dynamic is to appear as subscript text.

See “Rules for Unicode and Special Character Specifications” on page 1142

Example drawtext "y = b{sub "0"} + b{sub "1"} x";

{ SUP "string" | dynamic }
text-command that specifies that the string or dynamic is to appear as superscript
text.

See “Rules for Unicode and Special Character Specifications” on page 1142
Example: DRAWTExT Statement

The following graph was generated by the “Example Program” on page 1258. The first DRAWTExT statement shows how to draw multiple lines of text in a specific position within the graph. The second DRAWTExT statement shows how to create a watermark, which is achieved by applying transparency to text that is rotated within the graph.
Example Program

proc template;
 define statgraph modelfit;
 begingraph;
 entrytitle "Regression Fit Plot";
 layout lattice;
 layout overlay / xaxisopts=(offsetmin=0.1);
 drawtext textattrs=(style=italic size=8pt)
 "Band shows 99% Confidence Limit of Mean" /
 anchor=bottomleft width=15 widthunit=percent
 xspace=wallpercent yspace=wallpercent
 x=0 y=10 justify=center;
 modelband "myclm";
 scatterplot x=height y=weight / primary=true;
 regressionplot x=height y=weight / alpha=0.01 clm="myclm";
 endlayout;
 endlayout;
 drawtext textattrs=(color=gray size=52pt) "CONFIDENTIAL" /
 transparency=0.75 rotate=-35
 width=110 widthunit=percent justify=center;
 endgraph;
end;

proc sgrender data=sashelp.class template=modelfit;
run;
Part 10

GTL Annotation Facility

Chapter 15
 About the GTL Annotation Facility 1261

Chapter 16
 The ANNOTATE Statement 1267
Overview

The GTL supports data-set-driven annotations, which enables you to add the following graphics elements to your graphs:

- text
- lines and arrows
- circles and ovals
- squares and rectangles
- polygons and polylines
- images

Unlike graphics elements that are drawn using GTL draw statements in a GTL template, data-set-driven annotations are drawn from graphics instructions that are stored in a SAS data set. The GTL annotation facility is similar to the SAS/GRAPH Annotate facility. The GTL annotation facility enables you to separate your annotation instructions from your template statements. To change your annotations, you can specify a different annotation data set or modify the instructions in the original data set. You do not have to modify your template code.

The following items are required in order to use the GTL annotation facility:

- a SAS data set that contains the annotation instructions
- at least one ANNOTATE statement in your GTL template
• an SGRENDER statement that includes the SGANNO=data-set-name option, which specifies the name of the data set that contains the annotation instructions.

This section describes the requirements for using the GTL annotation facility. For examples of how to use the facility to annotate your graphs, see “Adding Data-Driven Annotations to Your Graph” in SAS Graph Template Language: User’s Guide.

The Annotation Data Set

Overview

The annotation data set contains the instructions for drawing annotations. Each observation in the data set contains columns for an annotation instruction. The following information is typically stored in these columns:

• the annotation function name
• the coordinates of the annotation location
• the drawing space
• the attributes of the annotation, such as color, font, and so on

The information that is required for each instruction is function-dependent. See “Annotation Data Requirements” on page 1262.

To create the annotation data set, you can use the same methods that you would use to create any SAS data set. The most common method is to use a DATA step. For more information about the DATA step, see SAS Language Reference: Concepts. Macros are available that you can run in your DATA step to create the observations for your annotations. See “Using the SGANNO Macros” on page 1265.

Annotation Data Requirements

Each observation in the annotation data set must provide sufficient information to complete an annotation instruction. To provide this information, certain columns must be included in each observation. All instructions require a Function column, which is a character column that stores the name of the function that is to be performed. An annotation function draws an annotation, such as a line, arrow, oval, and so on. The Function column can specify one of the following function names:

ARROW POLYGON TEXT
IMAGE POLYLINE TEXTCONT
LINE POLYCONT
OVAL RECTANGLE

For more information about these functions, see “SG Annotation Function Dictionary” in SAS ODS Graphics: Procedures Guide.

Each function requires one or more additional columns that provide required information such as the location coordinates, dimensions, and so on. The following table lists the additional columns that are required for each function. At a minimum, you must include the Function column and the columns listed in the following table in each observation in your annotation data set.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>Additional Columns Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARROW</td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the starting coordinates (numeric or character).</td>
</tr>
<tr>
<td></td>
<td>X2 or XC2, Y2 or YC2</td>
<td>These columns store the ending coordinates (numeric or character).</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Image</td>
<td>This column stores the path to the image file (character).</td>
</tr>
<tr>
<td>LINE</td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the starting coordinates (numeric or character).</td>
</tr>
<tr>
<td></td>
<td>X2 or XC2, Y2 or YC2</td>
<td>These columns store the ending coordinates (numeric or character).</td>
</tr>
<tr>
<td>OVAL</td>
<td>Height, Width</td>
<td>These columns store the oval dimensions (numeric).</td>
</tr>
<tr>
<td></td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the oval anchor coordinates (numeric or character).</td>
</tr>
<tr>
<td>POLYGON</td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the polygon starting coordinates (numeric or character).</td>
</tr>
<tr>
<td>POLYLINE</td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the polyline starting coordinates (numeric or character).</td>
</tr>
<tr>
<td>POLYCONT</td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the ending coordinates of a polygon or polyline segment (numeric or character).</td>
</tr>
<tr>
<td>RECTANGLE</td>
<td>Height, Width</td>
<td>These columns store the rectangle dimensions (numeric).</td>
</tr>
<tr>
<td></td>
<td>X1 or XC1, Y1 or YC1</td>
<td>These columns store the rectangle anchor coordinates (numeric).</td>
</tr>
<tr>
<td>TEXT and TEXTCONT</td>
<td>Label</td>
<td>This column stores the annotation text (character).</td>
</tr>
</tbody>
</table>

* See “About the Coordinate Columns” on page 1264.

For the remaining information such as LINECOLOR, TEXTFONT, and so on, default values are used. To change the default values, you can add the necessary columns to your instruction observations. For information about other columns that you can add for each function, see “SG Annotation Function Dictionary” in *SAS ODS Graphics: Procedures Guide*.
About the Coordinate Columns

The annotation coordinates specify the location of the annotation as X and Y values. In some cases, such as for a line or arrow, two sets of coordinates are required in order to specify the beginning and ending locations of the annotation. You can specify numeric or character columns for each coordinate value. For numeric coordinate values, the location or starting location coordinates are stored in the X1 and Y1 columns in the annotation data set. When ending coordinates are required, the numeric coordinates are stored in the X2 and Y2 columns. For character values, the coordinates are stored in the XC1 and YC1 columns, and when required, the XC2 and YC2 columns.

Note: If both the numeric and character columns are specified for a coordinate value, then the numeric column takes precedence and the character column is ignored.

About the Drawing Space

When you specify X and Y coordinates for an annotation, the coordinate values refer to a drawing space. By default, this space is a percentage of the graph area. Specifying X=50 and Y=50, for example, refers to a point in the center of the graph area. Here is a complete list of the drawing spaces that you can use.

<table>
<thead>
<tr>
<th>Drawing Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAPERCENT</td>
</tr>
<tr>
<td>GRAPHPERCENT</td>
</tr>
<tr>
<td>LAYOUTPIXEL</td>
</tr>
<tr>
<td>DATAPIXEL</td>
</tr>
<tr>
<td>GRAPHPixel</td>
</tr>
<tr>
<td>WALLPERCENT</td>
</tr>
<tr>
<td>DATAVALUE</td>
</tr>
<tr>
<td>LAYOUTPERCENT</td>
</tr>
<tr>
<td>WALLPIXEL</td>
</tr>
</tbody>
</table>

For more information about these drawing spaces, see “About the Drawing Space and Drawing Units” on page 1192.

To change the default drawing space for your annotations, you can add the columns shown in the following table to your annotation observations.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrawSpace</td>
<td>Specifies the drawing space for all coordinates. This value cannot be used with the POLYCONT function.</td>
</tr>
<tr>
<td>X1Space</td>
<td>Specifies the drawing space for the X1 coordinate. This value cannot be used with the TEXTCONT function.</td>
</tr>
<tr>
<td>X2Space</td>
<td>Specifies the drawing space for the ending X2 coordinate. This value can be used with the ARROW and LINE functions only.</td>
</tr>
<tr>
<td>Y1Space</td>
<td>Specifies the drawing space for the Y1 coordinate. This value cannot be used with the TEXTCONT function.</td>
</tr>
<tr>
<td>Y2Space</td>
<td>Specifies the drawing space for the ending Y2 coordinate. This value can be used with the ARROW and LINE functions only.</td>
</tr>
</tbody>
</table>

For information about these columns, see “SG Annotation Function Dictionary” in SAS ODS Graphics: Procedures Guide.
Using the SGANNO Macros

Starting with the first maintenance release of SAS 9.4, macros are available that you can run in a DATA step to simplify the process of creating your SG annotation data sets. The following table lists the available macros.

Table 15.1 SG Annotation Macros

<table>
<thead>
<tr>
<th>Macro Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%SGANNO</td>
<td>Compiles the available macros and makes them available for you to use.</td>
</tr>
<tr>
<td></td>
<td>Note: You must run the %SGANNO macro in your SAS session before you can use any of the other annotation macros that are listed in this table.</td>
</tr>
<tr>
<td>%SGANNO_HELP</td>
<td>Displays help information for a specified annotation macro.</td>
</tr>
<tr>
<td>%SGARROW</td>
<td>Creates an observation that draws an arrow.</td>
</tr>
<tr>
<td>%SGIMAGE</td>
<td>Creates an observation that displays an image.</td>
</tr>
<tr>
<td>%SGLINE</td>
<td>Creates an observation that draws a line.</td>
</tr>
<tr>
<td>%SGOVAL</td>
<td>Creates an observation that draws an oval.</td>
</tr>
<tr>
<td>%SGPOLYCONT</td>
<td>Creates an observation that draws a polygon or polyline segment.</td>
</tr>
<tr>
<td>%SGPOLYGON</td>
<td>Creates an observation that specifies the starting point of a polygon.</td>
</tr>
<tr>
<td></td>
<td>Note: Use the %SGPOLYCONT macro to draw the segments.</td>
</tr>
<tr>
<td>%SGPOLYLINE</td>
<td>Creates an observation that specifies the starting point of a polyline.</td>
</tr>
<tr>
<td></td>
<td>Note: Use the %SGPOLYCONT macro to draw the segments.</td>
</tr>
<tr>
<td>%SGRECTANGLE</td>
<td>Creates an observation that draws a rectangle.</td>
</tr>
<tr>
<td>%SGTEXT</td>
<td>Creates an observation that draws a single line of text or the first line of text in a multiline annotation.</td>
</tr>
<tr>
<td></td>
<td>Note: For multiple lines of text, use the %SGTEXTCONT macro for the subsequent lines.</td>
</tr>
<tr>
<td>%SGTEXTCONT</td>
<td>Creates an observation that draws a continuing line of text in a multiline annotation.</td>
</tr>
</tbody>
</table>

For more information about these macros, see *SAS ODS Graphics: Procedures Guide*.
The ANNOTATE Statement

To render the annotations in your annotation data set, you must include at least one ANNOTATE statement in the GTL template for your graph. You can place the ANNOTATE statement anywhere in the template to render your annotations. The annotations are drawn using the context in which the ANNOTATE statement is encountered. You can use the ANNOTATE statement with no options to render all of the annotations in your annotation data set. You can use the ID= option in the ANNOTATE statement to render only a subset of the annotations.

For more information about the ANNOTATE statement, see “ANNOTATE Statement” on page 1267.

The SGRENDER Statement SGANNO Option

The SGRENDER statement SGANNO= option specifies the name of a SAS data set that contains annotation instructions. To render your graph with annotations, you must use the SGANNO= option in the SGRENDER statement to specify the name of your annotation data set. When the ANNOTATE statement is encountered in the template, the annotation instructions are read from the annotation data set and are rendered in the current context in the graph. If the template does not include the ANNOTATE statement, the annotations in the annotation data set are ignored. See “SGANNO=annotation-data-set” in SAS ODS Graphics: Procedures Guide.
Chapter 16
The ANNOTATE Statement

Dictionary

ANNOTATE Statement

Draws annotations from annotation instructions that are stored in a SAS data set.

Requirements:
The annotation instructions must be stored in a SAS data set.
The annotation data set must be specified by the SGANNO= option in the SGRENDER statement.

Tips:
When the ANNOTATE statement is placed inside a LAYOUT container, the layout container is used as the context when DRAWSPACE for an annotation is specified as LAYOUT, WALL, or DATA.
When the DRAWSPACE for an annotation object is GRAPH, the context for drawing the object is the graph area regardless of where the ANNOTATE statement is located.
The LAYER option determines whether the annotations are drawn in front of the graph elements or behind them.

See:
“The Annotation Data Set” on page 1262
SGRENDER statement SGANNO= option
“Adding Data-Driven Annotations to Your Graph” in SAS Graph Template Language: User's Guide

Syntax

ANNOTATE </ID="annotation-ID">
Optional Argument

ID="annotation-identifier"

specifies the ID column value of the annotations that are to be drawn. The ID column of the annotation data set contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID column value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID column or if no ID column value matches the specified identifier, then no annotations are drawn.

Default
All of the annotations in the annotation data set are drawn.

Requirement
The annotation data set must contain an ID column, and at least one ID column value must match the specified identifier value.

Tips
The ID= option can be used with the annotation data set ID column to subset the annotations that are stored in an annotation data set.

The identifier value matching is case sensitive.

See
“Subsetting Annotations” in *SAS Graph Template Language: User's Guide*

Details

You can use the ANNOTATE statement anywhere in a GTL template to render annotation objects in the current context. The annotation objects are read from an annotation data set that is specified by the SGANNO= option in the SGRENDER statement. You must use at least one ANNOTATE statement in the template to draw the annotations. By default, all of the annotations in the annotation data set are drawn. You can use the ID column in the annotation data set with the ID= option in the ANNOTATE statement to draw only a subset of the annotations in the data set, if you want to. See “Subsetting Annotations” in *SAS Graph Template Language: User's Guide*.

Examples

Example 1: Adding Simple Text Annotations

Here is an example that uses the GTL annotation facility to place custom Y-axis labels inside the plot wall for each of two side-by-side plots. Each label is rotated 90 degrees and is placed on the inside edge of the plot wall near the plot’s Y axis. The default Y-axis labels are suppressed.
Example Program

/* Create the annotation data set */
data anno;
length label $30 $5 anchor $12;
drawspace="wallpercent";

/* Create the bar chart Y-axis label. */
id='BAR'; function='text'; x1=0;
textweight='bold'; anchor='top'; rotate=90;
width=1000; widthunit="pixel";
label="MPG (City)";
output;

/* Create the histogram Y-axis label. */
id='HIST'; anhcore='bottom'; x1=100;
label="Distribution of MPG (Percent)"
output;
run;

/* Define the template */
proc template;
define statgraph anno;
begingraph;
entrytitle "Vehicle Statistics"
layout lattice / columns=2 columnwidth=10;
layout overlay /
xaxisopts=(offsetmin=0.2 offsetmax=0.2)
yaxisopts=(display=(ticks tickvalues));

/* Draw the barchart of origin and MPG city */
barchart x=origin y=mpg_city / name="bar" stat=mean
 group=type groupdisplay=cluster clusterwidth=0.7
dataSkin=sheen;
discretelegend "bar";
annotate / id="BAR"; /* Draw the barchart label. */
endlayout;
layout overlay /
y2axisopts=(display=(ticks tickvalues));
/* Draw the histogram of MPG city */
histogram mpg_city / dataskin=sheen yaxis=y2;
densityplot mpg_city / yaxis=y2;
annotate / id="HIST"; /* Draw the histogram label. */
endlayout;
endgraph;
end;
run;
/* Render the graph with the annotation */
proc sgrender data=sashelp.cars template=anno
 sganno=anno
 where type in ('Sedan' "Sports" "SUV")
run;

Program Description

Create the annotation data set Anno. The annotation data set contains two observations, one for each label. The DRAWSPACE is set to WALLPERCENT for both labels. The ID column specifies an identifier for each label. The bar chart label is identified as BAR. It is rotated 90 degrees, anchored on TOP, and is placed at 0% of the wall space along the X axis. The default value 50% percent is used along the Y axis to center the label vertically. This places the label on inside left edge of the bar chart wall. This histogram label is identified as HIST. It is rotated 90 degrees, anchored on BOTTOM, and is placed at 100% of the wall space along the X axis. Like the bar chart label, the default 50% percent is used along the Y axis. This places the label on the right inside edge of the histogram plot wall.

/* Create the annotation data set */
data anno;
 length label $30 id $5 anchor $12;
drawspace="wallpercent";
/* Create the bar chart Y-axis label. */
id='BAR'; function='text'; x1=0;
textweight='bold'; anchor='top'; rotate=90;
width=1000; widthunit="pixel";
label="MPG (City)";
output;
/* Create the histogram Y-axis label. */
id='HIST'; anchor='bottom'; x1=100;
label="Distribution of MPG (Percent)";
output;
run;

Define the graph template. The template defines a two-column, one-row lattice for the two plots. For both plots, the DISPLAY= Y axis option suppresses the default axis label. For the bar chart, the OFFSETMIN= and OFFSETMAX= X axis options reserve space for the Y-axis label. The ANNOTATE statement draws the axis label. The ID="BAR" option in the ANNOTATE statement draws the bar chart Y-axis label in the context of
the bar chart’s overlay layout. For the histogram, the ANNOTATE statement draws the histogram Y-axis label (ID="HIST") in the context of the histogram’s overlay layout.

```sas
/* Define the template */
proc template;
  define statgraph anno;
  begingraph;
    entrytitle "Vehicle Statistics";
    layout lattice / columns=2 columngutter=10;
    layout overlay /
      xaxisopts=(offsetmin=0.2 offsetmax=0.2)
      yaxisopts=(display=(ticks tickvalues));
  /* Draw the barchart of origin and MPG city */
    barchart x=origin y=mpg_city / name="bar" stat=mean
      group=type groupdisplay=cluster clusterwidth=0.7
      dataskin=sheen;
    discretelegend "bar";
    annotate / id="BAR"; /* Draw the barchart label. */
  endlayout;
  layout overlay /
    y2axisopts=(display=(ticks tickvalues));
  /* Draw the histogram of MPG city */
    histogram mpg_city / dataskin=sheen yaxis=y2;
    densityplot mpg_city / yaxis=y2;
    annotate / id="HIST"; /* Draw the histogram label. */
  endlayout;
  endgraph;
end;
run;
```

Render the graph with the annotations. The SGANNO=ANNO option is included in the SGRENDER statement to specify the name of the annotation data set. When the graph is rendered, the ANNOTATE statements in the graph template cause the annotations to be drawn.

```sas
/* Render the graph with the annotation */
proc sgrender data=sashelp.cars template=anno sganno=anno
  where type in ("Sedan" "Sports" "SUV");
run;
```

Example 2: Using the SG Annotation Macros to Generate Your Annotation Data

In “Example 1: Adding Simple Text Annotations” on page 1268, standard SAS DATA step statements are used to create the observations for the text annotations. This example shows you how to use the SG annotation macros instead to create the same data set.

Example Program

```sas
/* Create the annotation data set */
data anno;
/* Compile the annotation macros */
%sganno;
/* Create the bar chart Y-axis label. */
```
Program Description

Here is the SAS code.

Open the DATA step and run the %SGANNO macro. After you open the DATA step, you must run the %SGANNO macro to compile the SG annotation macros and make them available for your use. You need to compile the macros only once during a SAS session.

/* Create the annotation data set */
data anno;
 /* Compile the annotation macros */
 %sganno;
run;

Create the observation for the bar chart Y-axis label. Use the %SGTEXT macro to generate the observation for the bar chart Y-axis label.

/* Create the bar chart Y-axis label. */
%sgtext(
 reset=all,
 id=BAR,
 drawspace=wallpercent,
 x1=0,
 label="MPG (City)",
 textweight=bold,
 anchor=top,
 rotate=90,
 width=1000,
 widthunit=pixel);

Create the histogram Y-axis label, and close the DATA step. Specify the new values for the ID, X1, Label, and Anchor columns. To carry over the remaining column values from the previous macro call, do not specify RESET=ALL.

/* Create the histogram Y-axis label. */
%sgtext(
 id=HIST,
 x1=100,
 label="Distribution of MPG (Percent)",
 anchor=bottom);
Example 2: Using the SG Annotation Macros to Generate Your Annotation Data

```sas
label="Distribution of MPG (Percent)",
anchor=bottom);
run;
```

See Also

- Chapter 15, “About the GTL Annotation Facility,” on page 1261
- “Adding Data-Driven Annotations to Your Graph” in SAS Graph Template Language: User's Guide
Part 11

Attribute Maps

Chapter 17
 Key Concepts for Using Attribute Maps .. 1277

Chapter 18
 Discrete Attribute Map Statements ... 1287

Chapter 19
 Range Attribute Map Statements .. 1301
Chapter 17

Key Concepts for Using Attribute Maps

About Attribute Maps

By default, many of the graphical attributes of a plot vary with the plot data. For example, when plots display grouped values, by default, the graphical attributes for each group value are selected from the GraphData1–GraphDataN style elements in data order. Changes in the data order can significantly change the appearance of the plot. When plots display a color gradient, by default, the colors assigned to the classification variable are derived from a color ramp based on the actual range of the data. The color assigned to each value can vary with the range of the classification values. Attribute maps enable you to assign the same graphical properties to specific values or ranges of values regardless of data order or the data range. They are useful when you want your graphs to have consistent visual properties when the data varies.

The GTL supports two types of attribute maps: discrete attribute maps and range attribute maps. A discrete attribute map maps discrete values to graphical properties. A range attribute map maps numeric values or ranges of numeric values to graphical properties.
Defining a Discrete Attribute Map

How to Define a Discrete Attribute Map

You define a discrete attribute map in the following way:

- Specify the attribute mapping information in a SAS data set or in a DISCRETEATTRMAP block in the template code. See “Specifying the Attribute Mapping Information in a DISCRETEATTRMAP Block” on page 1278 and “Specifying the Attribute Mapping Information in a SAS Data Set” on page 1279.

 Note: Defining a discrete attribute map in a SAS data set is valid in the first maintenance release of SAS 9.4 and later releases.

- Reference the attribute map in plot statements by using one of the following methods:
 - Include a DISCRETEATTRVAR statement in the template code to create an attribute map variable. The variable associates the attribute map with a classification column in the plot data. Then use the attribute map variable to reference the discrete attribute map in plot statements. This method applies to an attribute map that is defined in a SAS data set or in a DISCRETEATTRMAP block in the template code.
 - Specify the classification column, which is in the plot data, in the plot statements where needed. When the graph is rendered, the SGRENDER DATTRVAR statement is used to associate the attribute map that is defined in a SAS data set with the classification column in the plot data. This method applies only to an attribute map that is defined in a SAS data set.

 Note: The DATTRVAR statement is valid in the first maintenance release of SAS 9.4 and later releases. For information about the DATTRVAR statement, see SAS ODS Graphics: Procedures Guide.

Specifying the Attribute Mapping Information in a DISCRETEATTRMAP Block

Use a DISCRETEATTRMAP block to specify the attribute mapping information in the template code. Place the block in the global definition area of your template between the BEGINGRAPH statement and the first layout statement. The block contains one or more VALUE statements that specify the attribute mapping information. Each VALUE statement specifies a single discrete value and one or more graphical properties that are assigned to that value. The NAME= option in the DISCRETEATTRMAP statement specifies the name of the attribute map. The DISCRETEATTRVAR statement creates the reference variable for the attribute map. The following options are in the DISCRETEATTRVAR statement:

- The ATTRVAR= option specifies a unique name for the attribute-map-to-data-set-column association.
- The ATTRMAP= option specifies the value of the NAME= option that is specified in the DISCRETEATTRMAP statement.
- The VAR= option specifies the name of the numeric or character column in the plot data set, an expression, or the name of a dynamic variable.
Use the attribute map variable to reference the attribute map in plot statements.

Note: Do not use the attribute variable in an expression. Doing so might produce unexpected results.

Note: The values and graphical attributes that are defined in a discrete attribute map cannot be displayed by a CONTINUOUSLEGEND statement.

For more information, see “Defining a Discrete Attribute Map in a DISCRETEATTRMAP Block” on page 1292.

Specifying the Attribute Mapping Information in a SAS Data Set

Starting with the first maintenance release of SAS 9.4, you can specify the attribute mapping information for a discrete attribute map in a SAS data set instead of in a DISCRETEATTRMAP block in the template. Each observation in the data set maps a discrete value to one or more specific graphical properties. The following table lists the columns that you must include in your data set for each observation.

Table 17.1 Columns That Are Required in Each Observation

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Character</td>
<td>Specifies the name of the attribute map to which this observation is associated. The ID value must be a SAS name token and not a literal. A data set can define multiple attribute maps. All observations that are associated with a specific attribute map must have the same ID value. When you are creating an attribute map variable for this attribute map, specify the name that you specified in the ID column in the DISCRETEATTRVAR ATTRMAP= argument. The ID column can also be specified in an SGRENDER DATTRVAR statement when the graph is rendered. The ID value is case sensitive.</td>
</tr>
<tr>
<td>Value</td>
<td>Character</td>
<td>Specifies the discrete classification value that is to be mapped to the graphical properties that are specified in this observation. The value is case sensitive.</td>
</tr>
</tbody>
</table>

The following table lists the columns that you can use to specify the graphical properties for each classification value. Properties that you do not specify default to the properties that are normally used when an attribute map is not specified.

Table 17.2 Optional Columns That Specify Graphical Properties

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FillColor</td>
<td>Character</td>
<td>Specifies the color for the filled areas for this classification value. When FillStyleElement is also specified, this column overrides the specified style element’s color attribute.</td>
</tr>
<tr>
<td>FillStyleElement</td>
<td>Character</td>
<td>Specifies the name of a style element, such as GraphData3, that is to provide the fill attributes.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>FillTransparency</td>
<td>Numeric</td>
<td>Specifies the transparency of the fill color for this classification value. Values are in the range 0 (opaque) to 1 (completely transparent).</td>
</tr>
<tr>
<td>LineColor</td>
<td>Character</td>
<td>Specifies the line color for this classification value. When LineStyleElement is also specified, this column overrides the specified style element’s contrast color attribute.</td>
</tr>
<tr>
<td>LinePattern</td>
<td>Character or Numeric</td>
<td>Specifies the line pattern for this classification value. You can specify the pattern name or number. See “Available Line Patterns” on page 1352.</td>
</tr>
<tr>
<td>LineStyleElement</td>
<td>Character</td>
<td>Specifies the name of a style element, such as GraphData3, that is to provide the line attributes.</td>
</tr>
<tr>
<td>LineThickness</td>
<td>Numeric</td>
<td>Specifies the line thickness, in pixels, for this classification value. The values must be integers.</td>
</tr>
<tr>
<td>MarkerColor</td>
<td>Character</td>
<td>Specifies the color of the marker symbol for this classification value. When MarkerStyleElement is also specified, this column overrides the specified style element’s contrast color attribute.</td>
</tr>
<tr>
<td>MarkerSize</td>
<td>Numeric</td>
<td>Specifies the size of the marker, in pixels, for this classification value. The values must be integers.</td>
</tr>
<tr>
<td>MarkerStyleElement</td>
<td>Character</td>
<td>Specifies the name of a style element, such as GraphData3, that is to provide the marker attributes.</td>
</tr>
<tr>
<td>MarkerSymbol</td>
<td>Character</td>
<td>Specifies the marker symbol to use for this classification value. See SYMBOL= in “Marker Options” on page 1350. When MarkerStyleElement is also specified, this column overrides the specified style element’s marker symbol attribute.</td>
</tr>
<tr>
<td>MarkerTransparency</td>
<td>Numeric</td>
<td>Specifies the transparency of the marker for this classification value. Values are in the range 0 (opaque) to 1 (completely transparent).</td>
</tr>
<tr>
<td>NoCase</td>
<td>Character</td>
<td>Specifies whether the attribute-map value comparisons are case-insensitive. Valid values are TRUE and FALSE. When TRUE, value comparisons are case insensitive. The default is TRUE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: This column is valid starting with the third maintenance release of SAS 9.4.</td>
</tr>
<tr>
<td>TextColor</td>
<td>Character</td>
<td>Specifies the text color for this classification value.</td>
</tr>
<tr>
<td>TextFont</td>
<td>Character</td>
<td>Specifies the text font by name for this classification value.</td>
</tr>
</tbody>
</table>
Column Name | Type | Description
---|---|---
TextSize | Numeric | Specifies the text font size in points for this classification value. The values must be integers.
TextStyle | Character | Specifies the text style for this classification value. Valid values are `NORMAL` and `ITALIC`.
TextStyleElement | Character | Specifies the name of a style element, such as `GraphLabelText`, that is to provide the text attributes.
TextWeight | Character | Specifies the text weight for this classification value. Valid values are `NORMAL` and `BOLD`.
Show | Character | Specifies whether the legend displays only the attribute map values that appear in the data or always displays all of the values in the attribute map. Valid values are `DATA` and `ATTRMAP`. The default is `DATA`.

Note: This column is valid starting with the third maintenance release of SAS 9.4.

The ID column provides the name of the attribute map, which is specified in the ATTRMAP= option in the DISCRETEATTRVAR statement or in a DATTRVVAR statement. When the graph is rendered, the name of the attribute map data set must be specified in the DATTRMAP= option in the SGRENDER statement. For information about how to reference the attribute map in your plot statements, see “Referencing a Discrete Attribute Map in Plot Statements” on page 1282.

Defining a Range Attribute Map

A range attribute map is defined as follows:

- The attribute mapping information is specified in a RANGEATTRMAP block in the template code. It must be placed in the global definition area of your template between the BEGINGRAPH statement and the first layout statement. The NAME= option in the RANGEATTRMAP statement specifies the name of the attribute map. The block contains one or more RANGE statements that specify the attribute mapping information. Each RANGE statement specifies a numeric value or numeric value range, and one or more graphical properties that are assigned to that value or range. An ENDRANGEATTRMAP statement is used to close the block.

 Note: Range attribute maps do not support attribute map information that is stored in a SAS data set.

- The RANGEATTRVAR statement is used to create an attribute map variable that associates the attribute map with a column in the data that provides the classification values. In the RANGEATTRVAR statement:
 - The ATTRVAR= option specifies a unique name for range attribute map to data set column association.
 - The ATTRMAP= option specifies the value of the NAME= option that is specified in the RANGEATTRMAP statement.
The VAR= option specifies the name of the numeric column in the plot data set with which the range attribute map is to be associated.

Note: A RANGEATTRMAP can be used with a numeric column only.

- The attribute map variable is used to reference the discrete attribute map in plot statements.

Note: The values and graphical attributes defined in a range attribute map cannot be displayed by a DISCRETELEGEND statement.

For information about how to reference a range attribute map, see “Referencing a Discrete Attribute Map in Plot Statements” on page 1282.

The RANGE statements in the RANGEATTRMAP block can associate a range of values or a single value with a single color or a color ramp. The syntax of the RANGE statement is as follows:

```
RANGE low-value < < > – < < > high-value / options
```

The optional exclusion operator (<) can be placed after the low value or before the high value to exclude that value from the range endpoint. The low value and high value can be an unformatted numeric value or a range keyword. For the low value, keyword MIN, NEGMAX, or NEGMAXABS can be used instead of numeric value. For the high value, keyword MAX or MAXABS can be used. For information about the range keywords, see *SAS Graph Template Language: Reference*.

Note: If two ranges share a common endpoint, such as 10–20 and 20–30, and no exclusion operator (<) is used, then the common endpoint belongs to the lower range, which is 10–20 in this case.

For more information about how to create a range attribute map, see “Creating and Using a Range Attribute Map” on page 1305.

Referencing an Attribute Map in Your Plot Statements

Referencing a Discrete Attribute Map in Plot Statements

If you use a DISCRETEATTRVAR statement to create a variable for an attribute map, then reference the attribute map in a plot statement by specifying the name that is assigned in the DISCRETEATTRVAR statement’s ATTRVAR= argument. Each plot statement’s documentation in this reference indicates which options support a reference to a discrete attribute map variable as the specified value.

Note: A reference to a discrete attribute variable must be a direct reference to the attribute variable. It cannot be set by a dynamic variable.

When you use a DATTRVAR statement in the SGRENDER statement, the attribute map is referenced implicitly when a column that is assigned to the attribute map ID in the DATTRVAR statement is referenced in a plot statement. The following table lists the statement options that support a reference to a discrete attribute map.
Table 17.3 Statement Options That Support a Discrete Attribute Map

<table>
<thead>
<tr>
<th>Statement</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXISTABLE</td>
<td>COLORGROUP= on page 193</td>
</tr>
<tr>
<td></td>
<td>TEXTGROUP= on page 200</td>
</tr>
<tr>
<td>BANDPLOT</td>
<td>GROUP= on page 211</td>
</tr>
<tr>
<td>BARCHART</td>
<td>GROUP= on page 232</td>
</tr>
<tr>
<td>BARCHARPARM</td>
<td>GROUP= on page 267</td>
</tr>
<tr>
<td>BOXPLOT</td>
<td>GROUP= on page 317</td>
</tr>
<tr>
<td>BOXPLOTPARM</td>
<td>GROUP= on page 350</td>
</tr>
<tr>
<td>BUBBLEPLOT</td>
<td>GROUP= on page 377</td>
</tr>
<tr>
<td>ELLIPSEPARM</td>
<td>GROUP= on page 434</td>
</tr>
<tr>
<td>FRINGE PLOT</td>
<td>GROUP= on page 441</td>
</tr>
<tr>
<td>HEATMAP PARM</td>
<td>COLORGROUP= on page 461</td>
</tr>
<tr>
<td>HIGHLOW PLOT</td>
<td>GROUP= on page 480</td>
</tr>
<tr>
<td>LINE CHART</td>
<td>GROUP= on page 480</td>
</tr>
<tr>
<td>LINE PARM</td>
<td>GROUP= on page 549</td>
</tr>
<tr>
<td>LOESS PLOT</td>
<td>GROUP= on page 559</td>
</tr>
<tr>
<td>MOSAIC PLOT PARM</td>
<td>COLORGROUP= on page 575</td>
</tr>
<tr>
<td>NEEDLE PLOT</td>
<td>GROUP= on page 592</td>
</tr>
<tr>
<td>PBSPLINE PLOT</td>
<td>GROUP= on page 606</td>
</tr>
<tr>
<td>PIE CHART</td>
<td>CATEGORY= on page 615</td>
</tr>
<tr>
<td>POLYGON PLOT</td>
<td>GROUP= on page 636</td>
</tr>
<tr>
<td>REGRESSION PLOT</td>
<td>GROUP= on page 673</td>
</tr>
<tr>
<td>SCATTER PLOT</td>
<td>GROUP= on page 694</td>
</tr>
<tr>
<td>SCATTER PLOT MATRIX</td>
<td>GROUP= on page 727</td>
</tr>
<tr>
<td>SERIES PLOT</td>
<td>GROUP= on page 758</td>
</tr>
<tr>
<td>STEP PLOT</td>
<td>GROUP= on page 791</td>
</tr>
</tbody>
</table>
In a **DISCRETELEGEND** statement, reference the plot statement that uses the attribute map. The plot statement must have a **NAME=** option that assigns a name to the plot, because the **DISCRETELEGEND** statement references that name. Because the attribute map is referenced in the plot statement, the legend uses the attribute map to represent the group values that exist in the data.

TIP If the discrete attribute map is defined in a **DISCRETEATTRMAP** block, then you can use the **DISCRETELEGENDENTRYPOLICY=ATTRMAP** option in the **DISCRETEATTRMAP** statement to display all of the items that are defined in the attribute map regardless of whether the values appear in the data. See **DISCRETELEGENDENTRYPOLICY** on page 1288.

For an example of how to reference an attribute map variable that is created with the **DISCRETEATTRVAR** statement, see “Example: **DISCRETEATTRVAR** Statement with an Attribute Map Data Set” on page 1298.

The following code shows you how to reference an attribute map when a **DATTPAR** statement is used in the **SGRENDER** statement to associate discrete attribute map **SYMBOLS** with classification column **Sex**. The **SYMBOLS** attribute map is defined in a SAS data set, and the column **Sex** is referenced in a **SCATTERPLOT** statement.

```sas
/* Create the attribute map data set */
data attrds;
  input ID $1-7 VALUE $9 MARKERSYMBOL $11-23 MARKERCOLOR $25-30;
datalines;
symbols M diamondfilled blue
symbols F circlefilled red
; run;

/* Define the template for this graph */
proc template;
  define statgraph scatterplot;
    begingraph;
      entrytitle "Height and Weight by Sex";
      layout overlay;
        scatterplot x=height y=weight / name="scatter"
          group=sex;
        discretelegend "scatter";
      endlayout;
    endgraph;
  end;

/* Generate the graph */
proc sgrender data=sashelp.class dattrmap=attrds template=scatterplot;
  dattrvar sex="symbols";
run;
```

The output is shown in “Example: **DISCRETEATTRVAR** Statement with an Attribute Map Data Set” on page 1298.
Referencing a Range Attribute Map in Plot Statements

In a plot statement, you reference a range attribute map by specifying the name that is assigned in the RANGEATTRVAR statement’s ATTRVAR= argument. Each plot statement’s documentation in this reference indicates which options support a reference to a range attribute map variable as the specified value.

Note: A reference to a range attribute variable must be a direct reference to the attribute variable. It cannot be set by a dynamic variable.

The following table lists the statement options that support a reference to a range attribute map variable.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUBBLEPLOT</td>
<td>COLORRESPONSE=</td>
</tr>
<tr>
<td>HEATMAP</td>
<td>COLORRESPONSE=</td>
</tr>
<tr>
<td>HEATMAPPARM</td>
<td>COLORRESPONSE=</td>
</tr>
<tr>
<td>MOSAICPLOTPARM</td>
<td>COLORRESPONSE=</td>
</tr>
<tr>
<td>POLYGONPLOT</td>
<td>COLORRESPONSE=</td>
</tr>
<tr>
<td>SCATTERPLOT</td>
<td>COLORRESPONSE= or MARKERCOLORGRADIENT=</td>
</tr>
<tr>
<td>SCATTERPLOTMATRIX</td>
<td>COLORRESPONSE= or MARKERCOLORGRADIENT=</td>
</tr>
<tr>
<td>SURFACEPLOTPARM</td>
<td>COLORRESPONSE or SURFACECOLORGRADIENT=</td>
</tr>
<tr>
<td>WATERFALLCHART</td>
<td>COLORRESPONSE=</td>
</tr>
</tbody>
</table>

In a CONTINUOUSLEGEND statement, reference the plot statement that uses the attribute map. The plot statement must have a NAME= option that assigns a name to the plot, because the CONTINUOUSLEGEND statement references that name. Because the attribute map is referenced in the plot statement, the legend uses that attribute map to represent the numeric values that are present in the data.

For an example, see “Example: RANGEATTRMAP and RANGEATTRVAR Statements” on page 1307.
Chapter 18
Discrete Attribute Map Statements

Dictionary

DISCRETEATTRMAP Statement
Defines a set of graphical properties that can be associated with user-defined sets of values.

Restriction: The DISCRETEATTRMAP block cannot be nested within any other block.

Requirements: The DISCRETEATTRMAP block and the DISCRETEATTRVAR statement must appear in the global definition area of the template between the BEGINGRAPH statement and the first LAYOUT statement.
The DISCRETEATTRMAP block must contain at least one VALUE statement.
The DISCRETEATTRVAR statement must be used to associate the discrete attribute map with a data column.

Notes: The graphical properties for a discrete attribute map can also be defined in a SAS data set. See “Defining a Discrete Attribute Map” on page 1278.
Prior to the third release of SAS 9.4, when a discrete attribute map is used for group values in a plot that contributes to a discrete legend and attributes are overridden in the plot statement, the attributes of some plot features and their corresponding legend items might not match. Starting with the third maintenance release of SAS 9.4, the attributes of the legend items always match the attributes of the corresponding plot features.

See: “DISCRETEATTRVAR Statement” on page 1297

Syntax

DISCRETEATTRMAP NAME="string" <option(s)>;
 VALUE value-spec <option(s)>;
 <… more VALUE statements …>
ENDDISCRETEATTRMAP;
Required Argument

NAME="string"

assigns a name to the attribute definition. The name can be referenced in a DISCRETEATTRVAR statement, which is used to associate the attribute map with an input data column. The name can also be referenced in a DISCRETELEGEND statement to map the specified graphical properties directly to a discrete legend.

Restriction The string is case sensitive, must be enclosed in quotation marks, and must define a unique name within the template.

Optional Arguments

DISCRETELEGENDENTRYPOLICY=DATA | ATTRMAP

specifies whether the items that are contributed to a discrete legend by the plot associated with this attribute map are only items that appear in the data or only items that are defined in the attribute map.

Note: This option is valid in the first maintenance release of SAS 9.4 and later releases.

DATA
the associated plot contributes to a discrete legend only items that appear in the data.

ATTRMAP
the associated plot contributes to a discrete legend only items that are defined in the discrete attribute map.

Interaction If this option is set to ATTRMAP, then data skins, overrides from the DATATRANSPARENCY= option, and overrides from the TRANSPARENCY= suboption in the FILLATTRS= and MARKERATTRS= options are displayed in the discrete legend. Overrides from other options such as the COLOR= suboption in the FILLATTRS= option are not displayed.

Default DATA

IGNORECASE=TRUE | FALSE

specifies whether case is ignored when comparing the values that are specified in the attribute map with values from an input data column.

Default FALSE. Value comparisons are case-sensitive.

Tip The effect of this option can be achieved by applying a function like UPCASE to the data column and using only uppercase strings in each VALUE statement.

See “boolean ” on page 1339 for other Boolean values that you can use.

TRIMLEADING=TRUE | FALSE

specifies whether leading blanks are trimmed (removed) from both the attribute map values and the input data values before those values are compared. Trailing blanks are always trimmed.

Default TRUE. Leading blanks are trimmed.

See “boolean ” on page 1339 for other Boolean values that you can use.
VALUE Statement Required Argument

value-spec
specifies one or more formatted strings or the keyword OTHER. Strings are always quoted. Multiple strings must be separated by blanks, and each of the strings must be enclosed in its own set of quotation marks. The formatted strings must be equal to the formatted values of the classification column that is used with the DISCRETEATTRVAR statement.

OTHER
creates a category for all other column values that are not explicitly assigned with VALUE statements. This keyword is not quoted. The default attributes for these values are derived from the GraphOther style element.

Note If OTHER is not specified, then data values that are not explicitly assigned with VALUE statements are mapped to attributes as if a discrete attribute map is not in effect.

The following examples elaborate on the value-spec strings:

"Hybrid" By default, all string comparisons are case-sensitive. By default, the string Hybrid does not match the string HYBRID.

"HYBRID" If IGNORECASE=TRUE in the DISCRETEATTRMAP statement, then you can specify an upper-, lower-, or mixed-cased string for the value-spec string. When IGNORECASE=TRUE, the string Hybrid matches the string HYBRID.

"15JAN2011" If a numeric column is being mapped with a VALUE statement, then you must specify the formatted value of the column. This example shows how to specify the value of a numeric SAS date column that has a DATE9. format associated with it.

"." If a numeric column has a missing value, then you should use the formatted value for missing, which is "." by default. If the MISSING= system option is used to change the default string, then you should match that value. For example, if OPTIONS MISSING="M" is specified in the SAS program, then you should use "M" in the VALUE statement to represent missing values.

" " If a character column has a missing value, then you should use the formatted value for missing, which is " " by default.

"Truck" Multiple strings can be specified to indicate that each of the specified values matches to the same graphical properties. It does not mean that a single new category is formed. The list of strings is separated by blanks, and each string is enclosed in its own set of quotation marks.

Restriction If a user-defined format is associated with the classification column, then you should specify the same formatted strings that appear in the format definition.

Note When the specified value strings are compared with the data values, leading blanks are honored and trailing blanks are ignored.
Tip

In the first maintenance release of SAS 9.4 and earlier releases, if you create and use a format to display a special value for missing character values, in some cases, " " is returned instead of the formatted value. If your attribute map assigns attributes to the formatted missing value in that case, the attributes are not assigned to the missing values. To correct this problem, specify both " " and your formatted missing value in the VALUE statement for your missing-value attributes. This issue is resolved starting with the second maintenance release of SAS 9.4.

VALUE Statement Optional Arguments

The following options can be used in the VALUE statement.

FILLATTRS=

the fill attributes to be used when an attribute map is applied to filled areas in a graph.

Defaults

- When DISCRETELEGENDENTRYPOLICY=DATA, unspecified attributes receive the attributes that they would have if the attribute map were not defined.
- When DISCRETELEGENDENTRYPOLICY=ATTRMAP, unspecified attributes derive attributes from the GraphDataDefault style element.

Restriction

In SAS 9.4 and earlier releases, the TRANSPARENCY= fill option is ignored. Starting with the first maintenance release of SAS 9.4, the TRANSPARENCY= fill option is supported.

See

- “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.
- “Fill Options” on page 1348 for available *fill-options*.

LINEATTRS=

specifies the line attributes to be used when an attribute map is applied to lines in a graph.

Defaults

- When DISCRETELEGENDENTRYPOLICY=DATA, unspecified attributes receive the attributes that they would have if the attribute map were not defined.
- When DISCRETELEGENDENTRYPOLICY=ATTRMAP, unspecified attributes derive attributes from the GraphDataDefault style element.

Restriction

In SAS 9.4 and earlier releases, the THICKNESS= line option is ignored. Starting with the first maintenance release of SAS 9.4, the THICKNESS= line option is supported.

See

- “General Syntax for Attribute Options” on page 1347 for the syntax on using a *style-element*.
- “Line Options” on page 1349 for available *line-options*.

MARKERATTRS=

specifies the marker attributes to be used when an attribute map is applied to marker symbols in a graph.
Defaults

When DISCRETELEGENDENTRYPOLICY=DATA, unspecified attributes receive the attributes that they would have if the attribute map were not defined.

When DISCRETELEGENDENTRYPOLICY=ATTRMAP, unspecified attributes derive attributes from the GraphDataDefault style element.

Restrictions

The WEIGHT= marker option is ignored.

In SAS 9.4 and earlier releases, the SIZE=, TRANSPARENCY=, and WEIGHT= marker options are ignored. Starting with the first maintenance release of SAS 9.4, the SIZE=, TRANSPARENCY=, and WEIGHT= marker options are supported.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style-element.

“Marker Options” on page 1350 for available marker-options.

TEXTATTRS=style-element | style-element (text-options) | (text-options)

specifies the text attributes to use when an attribute map is applied to text in a graph.

Default

The GraphDataText style element.

Restriction

This option is honored only by the TEXTGROUP=option in the AXISTABLE statement and the GROUP= option in the TEXTPLOT statement.

See

“General Syntax for Attribute Options” on page 1347 for the syntax on using a style element.

“Text Options” on page 1351 for available text options.

Details

About Discrete Attribute Maps

Attribute maps can be useful for ensuring that a particular value (a company name, for example) is always represented by the same visual characteristics in your graphs, regardless of the value’s order in the input data. When specified directly in a discrete legend, an attribute map can be used to display legend entries for group values that are not in the data. (See “Displaying Legend Entries for Group Values That Are Not in the Data” on page 1293.)

If you do not want to manage the graphical properties that are associated with each unique discrete value, then you can simply specify an input column in the grouping option. In that case, each discrete value is represented by different graphical properties in the graph. The default properties are derived from options that are set in the plot statement or from the GraphData1–GraphDataN style elements that are defined in the ODS style that is in effect. However, to ensure that specific graphical properties are used to represent a discrete value in the graph, regardless of that value’s order in the data, you can use an attribute map to create that association. Any values in the data that are not accounted for in the attribute map are assigned the graphical properties that they would receive if the attribute map is not defined.
Defining a Discrete Attribute Map in a DISCRETEATTRMAP Block

A DISCRETEATTRMAP block creates an attribute map that matches graphical properties to discrete values. The attribute map can be associated with a data input column that is used as a classification variable in a graph. It can also be specified directly in a discrete legend.

To define a discrete attribute map in a DISCRETEATTRMAP block, do the following:

• Use the DISCRETEATTRMAP statement to start the attribute definition and assign a name to it. The DISCRETEATTRMAP statement must be located within the BEGINGRAPH block but outside of the outermost layout block. It cannot be nested in another DISCRETEATTRMAP statement or in a RANGEATTRMAP statement. The DISCRETEATTRMAP statement determines whether the data mapping is case-sensitive and whether leading blanks are trimmed from the data values during the mapping.

• Nest within the DISCRETEATTRMAP block at least one VALUE statement that specifies graphical properties to associate with a classification value. See “About the VALUE Statement” on page 1292. Use one VALUE statement for each classification value that you want to map. Values that are referenced in the attribute map can be character or numeric. Discrete values that are not accounted for in the attribute map are assigned the graphical properties that they would receive if the attribute map is not defined.

• Use the ENDDISCRETEATTRMAP statement to close the block.

For information about how to use the attribute map, see “Using a Discrete Attribute Map” on page 1293.

About the VALUE Statement

A VALUE statement within the DISCRETEATTRMAP block associates graphical properties with a discrete value in the attribute map. To associate graphical properties with multiple values, specify multiple VALUE statements in the attribute map using the following general syntax for each of the statements:

VALUE value-spec<option(s)>;

For a specific example, see the “Example Program” on page 1296.

If the discrete attribute map is referenced by a plot statement in the template, then the graphical properties that are defined in the VALUE statements are used in the plot. If a discrete legend is generated for the plot, then the graphical properties are represented in that legend.

If a discrete attribute map is referenced directly in a DISCRETELEGEND statement, then the graphical properties that are defined in the VALUE statement are mapped directly to the legend and are independent of the values in the data. For more information and an example, see the “Defining a Discrete Attribute Map in a DISCRETEATTRMAP Block” on page 1292.

If two or more VALUE statements define attributes to associate with the same classification values, then the last VALUE statement's settings are used.

By default when comparing a column's value to a string that is specified for the VALUE statement's value-spec,
• the column value is formatted to a string, using the format that is defined for the column or the default format if no format is defined for the column
• leading spaces are trimmed from the string that is specified in the VALUE statement
• a case-sensitive comparison is performed between the column string and the VALUE string.

To change the default behavior for the comparison, you can use the DISCRETEATTRMAP statement’s TRIMLEADING= and IGNORECASE= options.

Using a Discrete Attribute Map

To use a discrete attribute map that is defined in a DISCRETEATTRMAP block, do the following:

- Use the DISCRETEATTRVAR statement to create a named association between the defined attribute map and the input column that contains the classification values. The ATTRMAP= argument identifies the attribute map and the VAR= argument identifies the input column. Use the ATTRVAR= argument to assign a name that can be used to reference the named association in plot statements within the template.

- Reference the attribute map variable in the plot statements where needed. See “Referencing a Discrete Attribute Map in Plot Statements” on page 1282.

For an example, see “Example Program” on page 1296.

Displaying Legend Entries for Group Values That Are Not in the Data

To display legend entries for the values in a grouped plot, you typically use the plot statement’s NAME= option to assign a name to the plot, and then reference that name in the DISCRETELEGEND statement. In this usage case, the legend displays entries for the group values that exist in the data.

To represent all of the group values in the legend, regardless of whether they exist in the data, you can specify DISCRETELEGENDENTRYPOLICY=ATTRMAP in the DISCRETEATTRMAP statement for the attribute map. When the DISCRETELEGENDENTRYPOLICY=ATTRMAP option is in effect, the associated plot contributes all of the items in the attribute map to the discrete legend regardless of whether they exist in the data.

Displaying all of the items in a discrete attribute map in the legend can be useful for flagging data in the graph. For example, assume you have weight and height values for all students in an analysis group and you want to create a scatter plot of the data. However, some of the observations are incomplete and do not record the student’s sex. You want to include the incomplete observations in your plot, but you want to visually distinguish them from the others. In that case, you can do the following:

- Represent the unknown values in your data by entering the value U for sex.

- Define the discrete attribute map for the plot in a DISCRETEATTRMAP block. Include the DISCRETELEGENDENTRYPOLICY=ATTRMAP option in the DISCRETEATTRMAP statement. Include VALUE statements that specify the properties for the M, F, and U values.

- Use the DISCRETEATTRVAR statement to create a discrete attribute map variable that associates the attribute map with column Sex in the input data.

- In the SCATTERPLOT statement, specify the discrete attribute map variable name in the GROUP= option.

- In the DISCRETELEGEND statement, reference the scatter plot.

As a result, the legend displays the attribute-map definitions, and observations with the value U in column Sex are displayed as incomplete observations.
Here is an example of a template that uses a discrete attribute map to uniquely display observations with the value U in column Sex.

```sas
proc template;
define statgraph discreteattrmapdatapresent;
begingraph;
   entrytitle "Height and Weight by Sex";
   /* Define the attribute map and assign the name "symbols" */
discreteattrmap name="symbols" / trimleading=true ignorecase=true
   discretelegendentrypolicy=attrmap;
   value "M" / markerattrs=(color=blue symbol=diamondfilled);
   value "F" / markerattrs=(color=green symbol=circlefilled);
   value "U" / markerattrs=(color=red symbol=starfilled);
enddiscreteattrmap;

   /* Create attribute map variable GROUPMARKERS to associate attribute
    map SYMBOLS with column Sex */
discreteattrvar attrvar=groupmarkers var=sex attrmap="symbols";

   /* Use the attribute map by referencing GROUPMARKERS in a plot
    statement */
layout overlay;
   scatterplot x=height y=weight / name="scatter"
      group=groupmarkers;
   discretelegend "scatter";
endlayout;
endgraph;
end;
```

To test the template, you can generate test data set Testclass from Sashelp.Class by changing the value of column Sex to U for John and Carol as shown in the following code.

```sas
data testclass;
   set sashelp.class;
   if (name="John") then sex="U";
   if (name="Carol") then sex="U";
run;
```

The following figure shows the output of this template when it is run with the test data set Testclass.

![Height and Weight by Sex](image)

The two red stars in the plot indicate the observations with the value U in column Sex. The next figure shows the output of this template when it is run with the complete data in data set Sashelp.Class.
The absence of the red stars in the plot indicates that the value U is no longer present in the data. All of the observations are now complete. When DISCRETELEGENDENTRYPOLICY=ATTRMAP is specified for an attribute map, be aware that the legend entries that are contributed by an associated plot are defined entirely by the attribute map and are independent of the data.

Example: DISCRETEATTRMAP and DISCRETEATTRVAR Statements

The following graph was generated by the “Example Program” on page 1296. The example defines graphical properties to associate with classification values in an input column that is used in a scatter plot. The DISCRETEATTRMAP statement starts the attribute map definition, assigns a name to it, and ensures that the data mapping is not case sensitive. The VALUE statements define the colors and marker symbols to associate with the values M and F. The DISCRETEATTRVAR statement associates the attribute map with the data column Sex and assigns the name GROUPMARKERS to the association. The SCATTERPLOT statement references the named association in its GROUP= option.
Example Program

proc template;
 define statgraph scatterplot;
 begingraph;
 entrytitle "Height and Weight by Sex";

 /* define the attribute map and assign the name "symbols" */
 discreteattrmap name="symbols" / ignorecase=true;
 value "m" / markerattrs=(color=blue symbol=diamondfilled);
 value "f" / markerattrs=(color=red symbol=circlefilled);
 enddiscreteattrmap;

 /* associate the attribute map with input data column Sex and assign *
 * the name GROUPMARKERS to the named association */
 discreteattrvar attrvar=groupmarkers var=sex attrmap="symbols";

 /* reference GROUPMARKERS in a plot statement */
 layout overlay;
 scatterplot x=height y=weight / name="scatter"
 group=groupmarkers;
 discretelegend "scatter";
 endlayout;
 endgraph;
end;

proc sgrender data=sashelp.class template=scatterplot;
run;
DISCRETEATTRVAR Statement

Creates a named association between a user-defined discrete attribute map and an input data column.

Restriction: The DISCRETEATTRVAR statement cannot appear within a DISCRETEATTRMAP or RANGEATTRMAP block.

Requirement: A discrete attribute map must be created using the DISCRETEATTRMAP statement.

See: "Example: DISCRETEATTRMAP and DISCRETEATTRVAR Statements" for an example.

Syntax

DISCRETEATTRVAR ATTRVAR=attrvar-name
VAR=data-column | expression | dynamic
ATTRMAP="attrmap-name";

Required Arguments

ATTRVAR=attrvar-name

specifies a SAS name for this association between the attribute map and the input column. This name must be unique within the template and can be referenced by other statements that can be associated with the attribute map. The attribute map variable name should not be used in an expression. If it is, then the results are unpredictable.

Restriction: The name that is assigned in this argument is used to associate an attribute map with the discrete values in an input data column. Thus, it is not the name to reference when you want to display legend entries that are independent of the data. For that special use, a DISCRETELEGEND statement can reference the attribute map directly by the name that is assigned in the DISCRETEATTRMAP statement. For more information, see the DISCRETEATTRMAP statement's “Defining a Discrete Attribute Map in a DISCRETEATTRMAP Block” on page 1292.

Note: The assigned SAS name can be the same as the name of the data input column, but it is not recommended. If an assigned attrvar-name matches the name of an input data column, then the attrvar-name takes precedence.

VAR=data-column | expression | dynamic

specifies an input data column to be associated with an attribute map at run time. If an expression is used, a new column of transformed values is created and then matched with the attribute map.

Interaction: If the column is not found or the column is of the wrong type for the attribute map, then the DISCRETEATTRVAR statement is ignored.

Tip: The input data column can be character or numeric, but the values must match the type of the values that are specified in the attribute map. For numeric columns, all values are treated as discrete values.
ATTRMAP="\textit{attrmap-name}\" \\
\textbf{specifies the name of an existing discrete attribute map.}

\textbf{Restriction} \ The \textit{attrmap-name} is case sensitive, must be enclosed in quotation marks, and must be the name that was assigned to the attribute map in the DISCRETEATTRMAP statement’s NAME= argument.

\section*{Details}

The DISCRETEATTRVAR statement creates and names an association between graphical properties that are specified in a DISCRETEATTRMAP block and a classification column that is in the data. The name that is assigned to the association in the DISCRETEATTRVAR statement is the name that plot statements must reference to use the attribute map.

Defining and using a discrete attribute map requires you to coordinate settings on several statements. For more information, see the DISCRETEATTRMAP statement’s “Defining a Discrete Attribute Map in a DISCRETEATTRMAP Block” on page 1292.

The DISCRETEATTRVAR statement must be located within the BEGINGRAPH block but outside of the outermost layout block. It cannot be nested in a DISCRETEATTRMAP statement.

\section*{Example: DISCRETEATTRVAR Statement with an Attribute Map Data Set}

Starting with the first maintenance release of SAS 9.4, you can define an attribute map in a SAS data set. This example shows you how to use the DISCRETEATTRVAR statement with an attribute map that is defined in a SAS data set. It is the example in “Example: DISCRETEATTRMAP and DISCRETEATTRVAR Statements” on page 1295 modified to use a SAS data set instead of a DISCRETEATTRMAP block.
Example Program

Here is the SAS code for this example.

```sas
/* Create the attribute map data set */
data attrds;
  input ID $1-7 VALUE $9 MARKERSYMBOL $11-23 MARKERCOLOR $25-30;
datalines;
symbols M diamondfilled blue
symbols F circlefilled red
;run;

/* Define the template for this graph */
proc template;
define statgraph scatterplot;
begingraph;
  entrytitle "Height and Weight by Sex";

  /* Associate the attribute map with input data column Sex and assign
  * the name GROUPMARKERS to the named association */
discreteattrvar attrvar=groupmarkers var=sex attrmap="symbols";

  /* Reference GROUPMARKERS in a plot statement */
  layout overlay;
    scatterplot x=height y=weight / name="scatter"
      group=groupmarkers;
    discretelegend "scatter";
  endlayout;
endgraph;
end;
```

Example: DISCRETEATTRVAR Statement with an Attribute Map Data Set
/* Generate the graph */
proc sgrender data=sashelp.class dattrmap=attrds template=scatterplot;
run;

Details

The attribute map is defined in data set Attrds. The data set includes the required
columns ID and VALUE, which specify a name for this attribute map and the value of
the classification variable that is to be mapped. The MarkerSymbol and MarkerColor
columns specify the graphical properties that are mapped to each value. The values
specified in the Value column are case-sensitive. Unlike the DISCRETEATTRMAP
statement, when you define your attribute map in a data set, there is no option that you
can specify to ignore case. You must ensure that the case of the values in your attribute
map matches the case in the actual data.

The DISCRETEATTRVAR statement associates the attribute map with the data column
Sex and assigns the name GROUPMARKERS to the attribute map variable. The
ATTRMAP= option specifies the name in the ID column of the attribute map data set.
The value is case-sensitive. The attribute map variable name is specified in the GROUP=
option in the SCATTERPLOT statement.

Finally, in the SGRENDER statement, the DATTRMAP= option specifies the name of
the attribute map data set. When your attribute map is defined in a SAS data set, you
must specify the name of the data set in the DATTRMAP= option in the SGRENDER
statement that renders the graph.

You can also use the DATTRVAR= statement with the SGRENDER statement to
associate the attribute map with the data column Sex. See “Referencing an Attribute
Map in Your Plot Statements” on page 1282.
Chapter 19
Range Attribute Map Statements

Dictionary

RANGEATTRMAP Statement
Creates an attribute map that matches colors to numeric values or numeric ranges so that the colors can be associated with the values of an input data column.

Restriction: A RANGEATTRMAP cannot be directly referenced in a legend statement.

Requirements: The RANGEATTRMAP block must appear in the global definition area of the template between the BEGINGRAPH statement and the first LAYOUT statement. It cannot be nested within a RANGEATTRMAP or DISCRETEATTRMAP block. The RANGEATTRMAP block must contain at least one RANGE statement. The RANGEATTRVAR statement must be used to associate the range attribute map with a data column.

Note: The RANGEATTRMAP statement defines a set of graphical properties for ranges of data values.

See: "RANGEATTRVAR Statement" on page 1308

Syntax

RANGEATTRMAP NAME="string";
 RANGE range-spec <option(s)>;
 <… more-RANGE statements …>
ENDRANGEATTRMAP;

Required Argument

NAME="string"
 assigns a name to the attribute definition for reference in a RANGEATTRVAR statement.
Restriction The string is case sensitive, must be enclosed in quotation marks, and must define a name that is unique among RANGEATTRMAP names within the template.

RANGE Statement Required Argument

\textit{range-spec}

specifies a range of numeric values or a keyword, such as OTHER or MISSING.

A range of numeric values is specified in the form \textit{low-value - high-value}. Both the low value and the high value can be specified as an unformatted numeric value. A less-than symbol (<) can be placed after the low numeric value, before the high numeric value, or in both positions to exclude that value from the range endpoint (similar to the VALUE statement of PROC FORMAT). If you are excluding the first value in a range, then put the < after the low value. If you are excluding the last value in a range, then put the < before the high value. You can also exclude both the low and the high value.

For example, the following range does not include 0:

\begin{verbatim}
0 < - 100
\end{verbatim}

Likewise, the following range does not include 100:

\begin{verbatim}
0 - < 100
\end{verbatim}

If a value at the high end of one range also appears at the low end of another range and you do not use the < exclusion notation, then the value is assigned to the first range.

If two or more RANGE statements define colors to associate with the same numeric values or ranges, then the first RANGE statement's settings are used. If any RANGE statement's range overlaps another RANGE statement's range (for example, 10 - 20 and 15 - 25), then the entire attribute map is ignored and default coloring is used.

If two ranges share a common endpoint (for example, 10 - 20 and 20 - 30) and no exclusion operator is used, then the common endpoint belongs to the lower encountered range (10 - 20 in this case). The order of the specification does not matter.

To set a single numeric value, specify the same value for both the low value and the high value.

If the low value is not less than or equal to the high value, then the range specification is invalid, and the RANGE statement is ignored in the attribute map definition.

\textit{Note:} If a range is not defined for keyword OTHER, then gaps within the attribute map ranges are assigned the default color that is defined by the GraphOther:ContrastColor style reference.

Rather than using a numeric value, you can specify one of the following keywords as the low value or the high value:

\begin{verbatim}
MIN indicates the minimum data value for column values.
MAX indicates the highest data value for the column values.
MAXABS indicates max(abs(MIN), abs(MAX))
NEGMAX indicates -MAX
NEGMAXABS indicates -max(abs(MIN), abs(MAX))
\end{verbatim}
Rather than specifying a low-value-to-high-value range, you can use one of the following keywords for the range specification:

MISSING
indicates a mapping for missing values. The visual attributes for this setting are obtained from the GraphMissing style element. If one RANGE statement specifies this value and another RANGE statement specifies keyword OTHER, then the OTHER range does not include missing values.

UNDER
creates a range for all data values between the lowest mapped value and the lowest actual data value. The visual attributes for this setting are obtained from the GraphUnderflow style element. If one RANGE statement specifies this value and another RANGE statement specifies keyword OTHER, then the OTHER range does not include underflow values.

OVER
creates a range for all data between the highest mapped value and the highest actual data value. The visual attributes for this setting are obtained from the GraphOverflow style element. If one RANGE statement specifies this value and another RANGE statement specifies keyword OTHER, then the OTHER range does not include overflow values.

OTHER
creates a category for all other column values not explicitly assigned to a range. The OTHER values can be composed of several non-contiguous ranges. The visual attributes for this setting are obtained from the GraphOther style element.

RANGE Statement Optional Arguments

RANGEALTCOLOR=

- **style-reference**
- **color**
- **GRADIENTSTEPPER(color1, color2, num-steps, step)**

specifies a single contrast **color** to represent the defined value range.

GRADIENTSTEPPER (color1, color2, num-steps, step)
a gradient stepper that partitions a color range into equal-sized intervals and returns the **color** that is in the specified step position. The start and end colors for the range are specified in parameters **color1** and **color2**. The number of equal-sized intervals is specified in parameter **num-steps**, and the step position for the color to return is specified in parameter **step**.

Example:

```plaintext
rangeattrmap name="incomemap";
  range min - 13000   / rangealtcolor=gradientstepper(red,green,4,1);
  range 13000 < - 25000 / rangealtcolor=gradientstepper(red,green,4,2);
  range 25000 < - 50000 / rangealtcolor=gradientstepper(red,green,4,3);
  range 50000 < - max   / rangealtcolor=gradientstepper(red,green,4,4);
endrangeattrmap;
```

Default
The GraphDataDefault:ContrastColor style reference.

Interaction
If this option is specified, then the RANGEALTCOLORMODEL= option is ignored.

RANGECOLOR=

- **style-reference**
- **color**
- **GRADIENTSTEPPER(color1, color2, num-steps, step)**

specifies a single **color** to represent the defined value range.
GRADIENTSTEPPER (color1, color2, num-steps, step)
a gradient stepper that partitions a color range into equal-sized intervals and returns the color that is in the specified step position. The start and end colors for the range are specified in parameters color1 and color2. The number of equal-sized intervals is specified in parameter num-steps, and the step position for the color to return is specified in parameter step. Example:

```
rangeattrmap name="incomemap";
  range min - 13000    / rangecolor=gradientstepper(red,blue,4,1);
  range 13000 < - 25000 / rangecolor=gradientstepper(red,blue,4,2);
  range 25000 < - 50000 / rangecolor=gradientstepper(red,blue,4,3);
  range 50000 < - max   / rangecolor=gradientstepper(red,blue,4,4);
endrangeattrmap;
```

Default The GraphDataDefault:ContrastColor style reference.

Interaction If this option is specified, then the RANGECOLORMODEL= option is ignored.

RANGEALTCOLORMODEL=style-element | (list-of-colors)
specifies either a style element or a list of one or more specific contrast colors to represent the defined value range in this argument.

style-element specifies the name of a style element. To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp. The style element should contain the following style attributes:

- **STARTCOLOR** specifies a color for the smallest data value.
- **NEUTRALCOLOR** specifies a color for the midpoint of the data range. This attribute is not needed when defining a two-color ramp.
- **ENDCOLOR** specifies a color for the highest data value.

To display the range or single value contrast color as a color that is defined in a style, use a style-reference (for example, GraphData1:color) to refer to a color attribute. The following style references correspond to the keywords that are available in this statement’s range-spec argument:

<table>
<thead>
<tr>
<th>range-spec Keyword</th>
<th>Corresponding Style Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSING</td>
<td>GraphMissing:ContrastColor</td>
</tr>
<tr>
<td>OTHER</td>
<td>GraphOther:ContrastColor</td>
</tr>
<tr>
<td>UNDER</td>
<td>GraphUnderflow:ContrastColor</td>
</tr>
<tr>
<td>OVER</td>
<td>GraphOverflow:ContrastColor</td>
</tr>
</tbody>
</table>

(list-of-colors)
a space-separated list of two or more color keywords that is enclosed in parentheses.

Two colors create the endpoints of a ramp. The first color is assigned to the low value in the range specification, and the second color is assigned to the high
value. Three or more colors partition the range specification into \(n-1 \) equal-sized intervals where each adjacent color pair defines a two-color ramp.

Interaction This option is ignored if the RANGEALTCOLOR= option is specified.

RANGECOLORMODEL= \(\text{style-element} \mid \text{list-of-colors} \)

specifies either a style element or a list of one or more specific colors to represent the defined value range in this `range-spec` argument.

style-element

specifies the name of a style element. To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp. The style element should contain the following style attributes:

- **STARTCOLOR** specifies a color for the smallest data value.
- **NEUTRALCOLOR** specifies a color for the midpoint of the data range. This attribute is not needed when defining a two-color ramp.
- **ENDCOLOR** specifies a color for the highest data value.

To display the range or single value as a color that is defined in a style, use a `style-reference` (for example, `GraphData1:color`) to refer to a color attribute.

The following style references correspond to the keywords that are available in this statement’s `range-spec` argument:

<table>
<thead>
<tr>
<th><code>range-spec</code> Keyword</th>
<th>Corresponding Style Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSING</td>
<td>GraphMissing:ContrastColor</td>
</tr>
<tr>
<td>OTHER</td>
<td>GraphOther:ContrastColor</td>
</tr>
<tr>
<td>UNDER</td>
<td>GraphUnderflow:ContrastColor</td>
</tr>
<tr>
<td>OVER</td>
<td>GraphOverflow:ContrastColor</td>
</tr>
</tbody>
</table>

(list-of-colors)

a space-separated list of two or more color keywords that is enclosed in parentheses.

Two colors create the endpoints of a ramp. The first color is assigned to the low value in the range specification, and the second color is assigned to the high value. Three or more colors partition the range specification into \(n-1 \) equal-sized intervals, where each adjacent color pair defines a two-color ramp.

Interaction This option is ignored if the RANGECOLOR option is specified.

Details

Creating and Using a Range Attribute Map

The RANGEATTRMAP statement creates an attribute map that matches colors to numeric values or value ranges. The attribute map can be associated with a data input column that uses color to represent response values in a graph. Attribute maps can be useful for controlling the application of gradient color in a graph. In addition, they
enable you to map color to data values, independent of the actual data that is used in the graph. For example, for temperature data, you can set Blue for 0 and Red for 100, even if the values 0 and 100 are not in the data.

Defining and using the attribute map requires you to coordinate settings on several statements:

- Use the RANGEATTRMAP statement to start the attribute definition and assign a name to it.
- Nest within the RANGEATTRMAP block at least one RANGE statement that specifies a numeric value or numeric range and the color to associate with that value or range. Use one RANGE statement for each value range that you want to map. You can use keywords like MIN and MAX in the range specification. For complete details about the range specifications, see the RANGE statement.
- Use the RANGEATTRVAR statement to create a named association between the defined attribute map and the input column that contains the numeric values. The ATTRMAP= argument identifies the attribute map and the VAR= argument identifies the input column. Use the ATTRVAR= argument to assign a name that can be used to reference the named association in plot statements within the template.
- Reference the attribute map where needed. See “Referencing a Range Attribute Map in Plot Statements” on page 1285.

The RANGEATTRMAP statement must be located within the BEGINGRAPH block but outside of the outermost layout block. It cannot be nested in another RANGEATTRMAP statement or in a RANGEATTRMAP statement. The RANGEATTRMAP block must contain at least one RANGE statement. All values that are referenced in the attribute map must be numeric. Data values that are not accounted for in the attribute map receive the default color from the GraphOther, GraphOverflow, or GraphUnderflow style element, depending on where the unassigned values are relative to the specified data ranges.

Note: Unlike a DISCRETEATTRMAP statement, a RANGEATTRMAP statement cannot be directly referenced in a legend. This is because the RANGE statements can specify keywords like MIN and MAX that require a data association for interpretation.

About the RANGE Statement

A RANGE statement within the RANGEATTRMAP block matches color to a numeric value, or a color ramp to a numeric range. To match colors to multiple values or ranges, specify multiple RANGE statements using the following general syntax for each of the statements:

```
RANGE range-spec </option(s)>;
```

For a specific example, see the “Example Program” on page 1307.

When defining multiple RANGE statements, be careful not to define conflicting ranges. A RANGE statement might be syntactically correct by itself while nevertheless conflicting with settings in another RANGE statement.

Specifying Color in a RANGE Option

For specifying a color in one of the RANGE options, the color keywords can be any of the following:

- a SAS color name (for example, blue)
- an RGB name (for example, CX0000FF or x0000FF)
Example: RANGEATTRMAP and RANGEATTRVAR Statements

The following graph was generated by the “Example Program” on page 1307. The example defines colors to associate with data ranges in an input column that is used in a grouped scatter plot. The RANGEATTRMAP statement starts the attribute map definition and assigns a name to it. The RANGE statements define the value ranges and the colors to associate with those ranges. Because the SCATTERPLOT statement uses the ContrastColor style attribute for the marker colors in a grouped plot, the RANGEALTCOLOR= and RANGEALTCOLORMODEL= options are used in the RANGE statement to define the range colors.

The highest range value specified, which is 0.002 in this example, does not have to be an actual value in the data. The RANGEATTRVAR statement associates the attribute map with the data column Density and assigns the name RANGEVAR to the association. The SCATTERPLOT statement references the named association in its MARKERCOLORGRADIENT= option.

Example Program

```
proc template;
  define statgraph attrmap;
```

an HLS value (for example, H14E162D)
a gray-scale color code (for example, GRAYBB)
an HTML color name (for example, AZURE)
a SAS session color (for example, DMSBLUE).
begingraph;
entrytitle "Height and Weight Distribution";

/* define the attribute map and assign the name "densityrange" */
rangepattrmap name="densityrange";
 range MIN - 0.0004 / rangealtcolor=blue;
 range 0.0004 < -= 0.0014 / rangealtcolor=(lightpurple lightred);
 range 0.0014 < -= 0.002 / rangealtcolor=red;
endrangeattrmap;

/* associate the attribute map with input data column Density and assign variable name RANGEVAR to the named association */
rangepattrvar attrvar=rangevar var=density attrmap="densityrange";

/* reference the RANGEVAR attribute map in a plot statement */
layout overlay;
scatterplot x=height y=weight / markercolorgradient=rangevar
 markerattrs=(symbol=squarefilled size=6px) name="scatter";
 continuouslegend "scatter" / orient=vertical halign=right title="Density";
endlayout;
endgraph;
end;

ods graphics / reset width=475px;
proc sgendrender data=sashelp.gridded(where=(count>0)) template=attrmap;
run;

RANGEATTRVAR Statement

Creates a named association between a range attribute map of numeric values or value ranges and an input data column.

Requirement: A range attribute map must be created using the RANGEATTRMAP statement.

See: “Example: RANGEATTRMAP and RANGEATTRVAR Statements” on page 1307 for an example.

Syntax

```
RANGEATTRVAR ATTRVAR=attrvar-name
   VAR=data-column | expression | dynamic
   ATTRMAP="attrmap-name";
```

Required Arguments

- **ATTRVAR=attrvar-name**

 Specifies a SAS name for the map. This name must be unique among the RANGEATTRVAR statements within the template. The assigned name can be referenced by other statements that can be associated with the range attribute map.

- **VAR=data-column | expression | dynamic**

 Specifies the input data column or an expression that evaluates to a numeric value used to map the attribute values. Dynamic variables are not supported in this context.
VAR=\texttt{data-column} | \texttt{expression} | \texttt{dynamic}

specifies a numeric input data column to be associated with an attribute map at run time. If an \texttt{expression} is used, then a new column of transformed values is created and then matched with the attribute map.

\textbf{Interaction}\quad If the column is not found or the column is of the wrong type for the attribute map, then the RANGEATTRVAR statement is ignored.

\texttt{ATTRMAP}=\texttt{"attrmap-name "}

specifies the name of an existing range attribute map.

\textbf{Restriction}\quad The \texttt{attrmap-name} is case sensitive, must be enclosed in quotation marks, and must be the name that was assigned to the attribute map in the RANGEATTRMAP statement’s \texttt{NAME=} argument.

\section*{Details}

The RANGEATTRVAR statement creates and names an association between colors that are specified in a RANGEATTRMAP block and a numeric column that is in the data. Attribute maps can be useful for controlling the application of gradient color in a graph or specifying data values that are independent of the actual data. The name that is assigned to the association in the RANGEATTRVAR statement is the name that plot statements must reference to use the attribute map.

Defining and using a numeric-range attribute map requires you to coordinate settings on several statements. For more information, see the RANGEATTRMAP statement’s “Creating and Using a Range Attribute Map” on page 1305.

The RANGEATTRVAR statement must be located within the BEGINGRAPH block but outside of the outermost layout block. It cannot be nested in a RANGEATTRMAP statement.
Part 12

Run-Time Programming Features

Chapter 20
Dynamics and Macro Variables ... 1313

Chapter 21
Expressions ... 1317

Chapter 22
Functions ... 1321

Chapter 23
Conditional Logic ... 1333
Chapter 20
Dynamics and Macro Variables

Template Types on PROC TEMPLATE

PROC TEMPLATE supports different template types such as COLUMN, TABLE, HEADER, FOOTER, and STATGRAPH. All of these template types support run-time variable substitution via dynamics or macro variables. For STATGRAPH templates such variables should be declared within the scope of the template definition before the BEGINGRAPH block.

PROC TEMPLATE;
 DEFINE STATGRAPH template-name ;

 DYNAMIC variable-1"text-1" <... variable-n"text-n">;
 MVAR variable-1"text-1" <... variable-n"text-n">;
 NMVAR variable-1"text-1" <... variable-n"text-n">;
 NOTES "text";

 BEGINGRAPH;
 GTL statements;
 ENDDGRAPH;
 END;
RUN;

DYNAMIC, MVAR, and NMVAR Statements

Each of the DYNAMIC, MVAR, and NMVAR statements can define multiple variables and an optional text-string denoting its purpose or usage. For example:

DYNAMIC YVAR "required" YLABEL "optional";
MVAR LOCATE "INSIDE or OUTSIDE" SYSDATE;
NMVAR TRANS "transparency factor";

Note: For template readability, it is helpful to adopt a naming convention for these variables to distinguish them from actual option values or column names. Common conventions include capitalization, or adding leading or trailing underscores to their names.

Dynamics and macro variables can be referenced within the template definition as

- argument or option values. For example:

  ```plaintext
  seriesplot x=date y=YVAR / curvelabel=YLABEL
curvelabellocation=LOCATE datatransparency=TRANS;
  ```

- parts of some text strings. For example:

  ```plaintext
  entrytitle "Time Series for " YLABEL;
  entryfootnote "Created on " SYSDATE;
  ```

Dynamics and run-time macro variable references cannot resolve to statement or option keywords.

Note that macro variable references should not be prefaced with an ampersand (&) if you want them to resolve at run time.

Macro variables defined by MVAR are strings when they resolve, as with SYMGET() in the DATA step.

Macro variables defined by NMVAR are converted to numeric tokens when they resolve, as with SYMGETN() in the DATA step.

The values for a dynamic variable do not have to be provided by the data source. Rather, you can provide the values in the DYNAMIC statement in PROC SGRENDER, specifying the values as a space delimited list, enclosed in quotation marks. Do not use parentheses in the specification.

In the following example, the graph template specifies a dynamic variable named TICKS, which is referenced on the XAXISOPTS= option in LAYOUT OVERLAY. The DYNAMIC statement in PROC SGRENDER provides values for TICKS:

```plaintext
proc template;
define statgraph regress;
dynamic TICKS;
begingraph;
  layout overlay /xaxisopts=(linearopts=(tickvaluelist=TICKS));
  scatterplot x=age y=weight;
  endlayout;
endgraph;
end;
run;

proc sgrender data=sashelp.class template=regress;
dynamic TICKS="11 13 16";
run;
```

If your template uses a dynamic variable to specify a required attribute, such as a variable name, and the name is misspelled or is not provided in the SGRENDER procedure, then a warning is issued and the respective plot statement drops out of the
Dynamics Compared to Macro Variables

The main difference between dynamics and macro variables is how they are initialized.
For dynamics, use the DYNAMIC statement with PROC SGRENDER. For example,

```sas
proc sgrender data=sashelp.class template=timeseries;
  dynamic yvar="inflation" ylabel="Inflation Rate";
run;
```

Values for dynamics that resolve to column names or strings should be quoted. Numeric values should not be quoted.

For macro variables, use the current symbol table (local or global) to look up the macro variable values at run time. For example,

```sas
%let locate=inside;
%let trans=0.3;

proc sgrender data=sashelp.class template=timeseries;
  dynamic yvar="inflation" ylabel="Inflation Rate";
run;
```

No initialization is needed for system macro variables like SYSDATE.
Chapter 21
Expressions

Overview

In Graph Template Language (GTL), as in Base SAS, an expression is an arithmetic or logical expression that consists of a sequence of operators, operands, and functions. An operand is a dynamic, a macro variable, a column, a function, or a constant. An operator is a symbol that requests a comparison, logical operation, or arithmetic calculation. In GTL, the expression must be enclosed in an EVAL function.

Expressions can be used to set the following types of option values:

- a constant
- a column
- part of the text for ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY statements

Here is an example of computing constants:

```sas
/* create reference lines at computed positions */
referenceline y=eval(mean(height)+2*std(height)) / 
   curvelabel="+2 STD";
referenceline y=eval(mean(height));
referenceline y=eval(mean(height)-2*std(height)) / 
   curvelabel="-2 STD";
```

Here is an example of creating a new column:

```sas
/* create a new column as a log transformation */
scatterplot x=date y=eval(log10(amount));
```

Here is an example of building a footnote text string:

```sas
/* create a date and time stamp as a footnote */
entryfootnote eval(put(today(),date9.)||" : ".||put(time(),timeampm8.));
```
When you are building a text string, you can use the || operator to concatenate the substrings if none of the substrings are a numeric character value. If one or more of the substrings are a numeric character value such as “1.5”, then the || operator might produce unexpected results. In that case, use the CATS function to concatenate the strings instead. Here is an example of using the CATS function to build a footnote text string that includes the value of dynamic variable maxWeight, which stores a numeric character value:

```clojure
/* indicate the maximum weight in a footnote */
entryfootnote eval(cats("Maximum weight: ", maxWeight," lbs"));
```

GTL Expressions Compared to WHERE Expressions

Valid GTL expressions are identical to valid WHERE expressions. See the WHERE statement documentation in Base SAS for a comprehensive list of operators and operands. However, GTL expressions do not perform subset operations as WHERE expressions do. The major difference in the result of a logical GTL expression on a column is that a Boolean value is returned for each observation without changing the number of observations.

For example, in the following line of code, the expression for the Y= argument does not reduce the number of observations plotted.

```sas
scatterplot x=name y=eval(height between 40 and 60);
```

Instead, the computed numeric column for the Y= argument consists of 0s and 1s, based on whether each observation’s Height column value is between 40 and 60. Whenever expressions are used to create new columns, a new column name is internally manufactured so that it does not collide with other columns in use.

An Expression in Statement Syntax

Throughout GTL documentation, you see `expression` used in statement documentation:

```sas
BOXPLOT X=column | expression
    Y=numeric-column | expression < /option(s)>;
```

For the X= argument, `expression` means any EVAL(expression) that results in either a numeric or character column. An expression that yields a constant is not valid because the X= argument does not accept constants.

Similarly, for the Y= argument, `expression` means any EVAL(expression) that results in a numeric column. The expression cannot result in a character column or any constant because the Y= argument only accepts a numeric column.

On the following REFERENCELINE statement, the X= argument can be a constant (single line) or a column (multiple lines) that has the same data type as the axis. This means that EVAL(expression) can result in a numeric or character column or constant that agrees with the axis type.

```sas
REFERENCELINE X= x-axis-value | column | expression < /option(s)>;
```
Automatic Type Conversion. Although expressions that are used in a DATA step perform automatic type conversion, GTL expression evaluation does not. Thus, you must use function(s) to perform required type conversions in an expression. Otherwise, the expression generates an error condition without warning when the template is executed.

For example, consider the following GTL expression:

```gtl
if(substr(value, 1, 2) = "11")
```

This expression uses the SUBSTR function to determine whether the first two characters from VALUE evaluate to the string value "11". If VALUE is a string, then the expression works properly. However, if VALUE is numeric, then the expression generates an error condition. For a numeric, you must convert the value to a string before passing it to the SUBSTR function. The following modification uses the CATS function to perform the type conversion when necessary:

```gtl
if(substr(cats(value, 1, 2)) = "11")
```
Chapter 22
Functions

Overview

GTL supports a large number of functions, including:

- SAS functions that can be used in the context of a WHERE expression
- functions that are defined only in GTL
- summary statistic functions

SAS Functions

SAS Functions That Can Be Used in a GTL Template

Most of the SAS functions that are available in WHERE expressions can be used in a GTL template. These SAS functions include:

- character-handling functions
- date and time functions
- mathematical and statistical functions
Not all SAS functions are available in WHERE expressions. Call routines and other DATA-step-only functions (for example, LAG, VNAME, OPEN) are some examples of functions that cannot be used. Not all functions that are available in WHERE expressions are supported in GTL templates in all cases. The following form of the PUT function is an example:

```
markercharacter = eval(put(amount, dollar7.2 -L))
```

This form results in an error when the template is compiled. However, the following form is supported.

```
markercharacter = eval(put(amount, dollar7.2))
```

If you want to justify a string that is generated by the PUT function, use the LEFT or RIGHT function with the PUT function as shown in the following example:

```
markercharacter = eval(left(put(amount, dollar7.2)))
```

Functions that accept null parameter values also might not be supported when you specify a null parameter value.

For more information about SAS functions, see “Dictionary of SAS Functions and CALL Routines” in SAS Functions and CALL Routines: Reference.

SAS Functions That Can Be Used to Create Flexible Templates

The following table shows some of the SAS functions can be used to increase the flexibility of your template code.

<table>
<thead>
<tr>
<th>SAS Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>IFC(logical-expression, "true-value", "false-value" <,"missing-value">)</code></td>
<td>Returns the character value <code>true-value</code> if <code>logical-expression</code> resolves to TRUE, <code>false-value</code> if it resolves to FALSE, or <code>missing-value</code> if it resolves to a missing value. The TRUE, FALSE, and MISSING values must be enclosed in quotation marks.</td>
</tr>
<tr>
<td><code>IFN(logical-expression, true-value, false-value <.missing-value>)</code></td>
<td>Returns the numeric value <code>true-value</code> if <code>logical-expression</code> resolves to TRUE, <code>false-value</code> if it resolves to FALSE, or <code>missing-value</code> if it resolves to a missing value.</td>
</tr>
</tbody>
</table>

Examples of Using the IFC and IFN SAS Functions

The IFC and IFN functions return one of two character or numeric values based on whether a conditional expression resolves to TRUE or FALSE. They can also return an optional third value if the conditional expression resolves to a missing value. These functions enable you to specify a value based on a conditional expression, effectively creating a new data column. In some cases, these functions can be used in place of IF-THEN-ELSE statements in your template code. As with other functions, you must enclose the IFC and IFN functions in the EVAL function.

Here is an example that uses both the IFN and IFC functions for creating a sales-based commission chart for employees in a sales group. Each employee in the group works in one of two sales units: Products and Services. The data for this example includes the
employee ID, total sales, and sales unit code for each member of the sales group. Here is
the data.

data sales;
 input empID totalSales salesUnit $18;
 format totalSales dollar9.;
datalines;
 112876 129489.44 P
 112421 169842.97 S
 115331 108763.51 S
 110765 181009.22 P
 113722 147688.78 P
;

The TotalSales column contains the total sales for each employee. The SalesUnit column
contains a code that identifies the sales unit in which each employee works. The codes
are P for the Products unit and S for the Services unit.

Here is the output for this example.

The two bar charts show the total sales and earned commission for each employee. The
IFN function is used to compute commission for each employee based on his or her total
sales. Employees that achieved a sales total of $120,000 or more earn a commission of
5% of their total sales. All other employees earn a commission of 2.5% of their total
sales.

An axis table along the X axis shows the sales unit for each employee. The IFC function
is used to convert the P and S SalesUnit codes into more descriptive values in the axis
table. Because only two sales unit codes are used in this case, we can use the IFC
function for this purpose. This saves us from having to add a new column to the data in a
DATA step or having to create and apply a custom format to the SalesUnit column.

Here is the SAS code that defines the template and generates the graph.

 proc template;
Functions Defined Only in GTL

GTL Functions Used with the EVAL Function

The following table shows some functions that are used only in GTL. As with other functions, these must be enclosed within an EVAL. In all these functions, column can be either the name of a column in the input data set or a dynamic / macro variable that resolves to such a column.
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLC("string-1", "string-1"<,"string-n" ...>)</td>
<td>Converts a list of comma-separated string values into a temporary character column. Starting with the first maintenance release of SAS 9.4, you can use this function to specify values in options that accept a character column.</td>
</tr>
<tr>
<td>COLN(n-1, n-1<, n-N...)</td>
<td>Converts a list of comma-separated numeric values into a temporary numeric column. You can use this function to specify values in options that accept a numeric column.</td>
</tr>
<tr>
<td>COLNAME(column)</td>
<td>Returns the case-sensitive name of the column.</td>
</tr>
<tr>
<td>COLLABEL(column)</td>
<td>Returns the case-sensitive label of the column. If no label is defined for the column, then the case-sensitive name of the column is returned.</td>
</tr>
<tr>
<td>EXISTS(item)</td>
<td>Returns 1 if specified item exists, 0 otherwise. If item is a column, then it tests for the presence of the column in the input data set. If item is a dynamic / macro variable, then it tests whether there has been a run-time initialization of the variable.</td>
</tr>
<tr>
<td>EXPAND(numeric-column, freq-column)</td>
<td>Creates a new column as (numeric-column * frequency-column).</td>
</tr>
<tr>
<td>ASORT(column, RETAIN=ALL)</td>
<td>Sorts all columns of the data object by the values of column in ascending order. SORT is an alias for ASORT. Warning: if the RETAIN=ALL argument is not included, column alone is sorted, not the other columns, causing rowwise information to be lost. Limitation: only one sort operation (whether an ASORT() or DSORT() function) can be used within a single template definition.</td>
</tr>
<tr>
<td>DSORT(column, RETAIN=ALL)</td>
<td>Sorts all columns of the data object by the values of column in descending order. Warning: if the RETAIN=ALL argument is not included, column alone is sorted, not the other columns, causing rowwise information to be lost. Limitation: only one sort operation (whether an ASORT() or DSORT() function) can be used within a single template definition.</td>
</tr>
<tr>
<td>NUMERATE(column)</td>
<td>Returns a column that contains the ordinal position of each observation in the input data set (similar to an Obs column).</td>
</tr>
</tbody>
</table>
Examples

/* arrange bars in descending order of response values */
barchartparm category=region response=eval(dsort(amount,retain=all));

/* label outliers with their position in the data set */
/* it does not matter which column is used for NUMERATE() */
boxplot x=age y=weight / datalabel=eval(numerate(age));

/* add information about the column being processed,
 which is passed by a dynamic */
entrytitle "Distribution for " eval{colname(DYNVAR)};

Using the TYPEOF SAS Function

The TYPEOF function returns the type of a specified column at run time.

TYPEOF(column)

This function returns the character ‘C’ if the specified column is a character column or ‘N’ if it is a numeric column.

You can use the TYPEOF function to take specific actions in your template at run time based on the input data type. Here is an example that creates a graph of two columns and uses the TYPEOF function to select a graph type that is appropriate for the column types. The result returned by the TYPEOF function determines the graph type as follows:

- If both columns are numeric, then it creates a scatter plot.
- If the X column is character and the Y column is numeric, then it creates a vertical bar chart.
- If the X column is numeric and the Y column is character, then it swaps the category and response columns in the BARCHART statement and orients the chart horizontally.
Here is the output for the third case, a numeric X column and a character Y column.

![Graph of Type and MPG (City)](image)

Here is the SAS code.

```sas
/* Define the graph template. */
proc template;
    define statgraph plot;
        dynamic cat resp; /* Category and response columns. */
        begingraph;
            entrytitle "Graph of " eval(collabel(resp)) " and "
                eval(collabel(cat));
            layout overlay;
                /* If cat and resp are numeric, then generate a scatter plot.
                   Otherwise, generate a bar chart. */
                if (typeof(cat) = "N" and typeof(resp) = "N")
                    scatterplot x=cat y=resp;
                else
                    /* If cat is a character column, then generate a vertical bar
                       chart. Otherwise, generate a horizontal bar chart. */
                    if (typeof(cat) = "C")
                        barchart category=cat response=resp / stat=mean;
                    else
                        barchart category=resp response=cat /
                            stat=mean orient=horizontal;
                endif;
        endif;
    endgraph;
end;
run;

proc sgrender data=sashelp.cars template=plot;
    dynamic cat="MPG_CITY" resp="TYPE";
run;

Note: See “Functions Defined Only in GTL” on page 1324 for information about the COLLABEL function.
GTL Summary Statistic Functions

Commonly Used Summary Statistic Functions

The following functions return a numeric constant, based on a summary operation on a numeric column. The results are the same as if the corresponding statistics were requested with PROC SUMMARY. These functions take a single argument that resolves to the name of a numeric column. These functions take precedence over similar multi-argument DATA step functions.

\[
\text{number} = \text{EVAL(function-name(numeric-column))}
\]

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS</td>
<td>Corrected sum of squares</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>KURTOSIS</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>LCLM</td>
<td>One-sided confidence limit below the mean</td>
</tr>
<tr>
<td>MAX</td>
<td>Largest (maximum) value</td>
</tr>
<tr>
<td>MEAN</td>
<td>Mean</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>Median (50th percentile)</td>
</tr>
<tr>
<td>MIN</td>
<td>Smallest (minimum) value</td>
</tr>
<tr>
<td>N</td>
<td>Number of nonmissing values</td>
</tr>
<tr>
<td>NMISS</td>
<td>Number of missing values</td>
</tr>
<tr>
<td>P1</td>
<td>1st percentile</td>
</tr>
<tr>
<td>P5</td>
<td>5th percentile</td>
</tr>
<tr>
<td>P25</td>
<td>25th percentile</td>
</tr>
<tr>
<td>P50</td>
<td>50th percentile</td>
</tr>
<tr>
<td>P75</td>
<td>75th percentile</td>
</tr>
<tr>
<td>P90</td>
<td>90th percentile</td>
</tr>
<tr>
<td>P95</td>
<td>95th percentile</td>
</tr>
<tr>
<td>P99</td>
<td>99th percentile</td>
</tr>
</tbody>
</table>
### GTL Summary Statistic Functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBT</td>
<td>p-value for Student’s t statistic</td>
</tr>
<tr>
<td>Q1</td>
<td>First quartile</td>
</tr>
<tr>
<td>Q3</td>
<td>Third quartile</td>
</tr>
<tr>
<td>QRANGE</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>RANGE</td>
<td>Range</td>
</tr>
<tr>
<td>SKEWNESS</td>
<td>Skewness</td>
</tr>
<tr>
<td>STDDEV</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>STDERR</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SUM</td>
<td>Sum</td>
</tr>
<tr>
<td>SUMWGT</td>
<td>Sum of weights</td>
</tr>
<tr>
<td>T</td>
<td>Student’s t statistic</td>
</tr>
<tr>
<td>UCLM</td>
<td>One-sided confidence limit above the mean</td>
</tr>
<tr>
<td>USS</td>
<td>Uncorrected sum of squares</td>
</tr>
<tr>
<td>VAR</td>
<td>Variance</td>
</tr>
</tbody>
</table>

**Example**

The following example uses GTL summary statistic functions to dynamically construct reference lines and a table of statistics for a numeric variable, which is supplied at run time.
Here is the graph for this example.

![Graph of MRW Distribution]

Here is the SAS code.

```sas
proc template;
 define statgraph expression;
 dynamic NUMVAR "required";
 begingraph;
 entrytitle "Distribution of " eval(colname(NUMVAR));
 layout overlay / xaxisopts=(display=(ticks tickvalues line));
 histogram NUMVAR;

 /* create reference lines at computed positions */
 referenceline x=eval(mean(NUMVAR)+2*std(NUMVAR)) /
 lineattrs=(pattern=dash) curvelabel="+2 STD";
 referenceline x=eval(mean(NUMVAR)) /
 lineattrs=(thickness=2px) curvelabel="Mean";
 referenceline x=eval(mean(NUMVAR)-2*std(NUMVAR)) /
 lineattrs=(pattern=dash) curvelabel="-2 STD";

 /* create inset */
 layout gridded / columns=2 order=rowmajor
 autoalign=(topleft topright) border=true;
 entry halign=left "N";
 entry halign=left eval(strip(put(n(NUMVAR),12.0)));
 entry halign=left "Mean";
 entry halign=left eval(strip(put(mean(NUMVAR),12.2)));
 entry halign=left "Std Dev";
 entry halign=left eval(strip(put(stddev(NUMVAR),12.2)));
 endlayout;
 endgraph;
 end;
run;
```
proc sgrender data=sashelp.heart template=expression;
    dynamic numvar="MRW";
run;
Chapter 23
Conditional Logic

Overview

GTL supports conditional logic that enables you to include or exclude one or more GTL statements at run time:

\[
\text{IF (condition)}
\]

\[
GTL\text{-statement(s)}; \\
\text{ELSE}
\]

\[
GTL\text{-statement(s)}; \\
\text{ENDIF;}
\]

The IF statement requires an ENDIF statement. The IF block can be placed anywhere within the BEGINGRAPH / ENDGRAPH block.

The condition is an expression that evaluates to a numeric constant, where all numeric constants other than 0 and MISSING are true. There is an implied EVAL(condition), so it is not necessary to include an EVAL as part of the condition.

Examples:

/* test a computed value */
if {weekday(today()) in (1 7)}
  "entrytitle "Run during the work week";
else
  "entrytitle "Run during the weekend";
endif;

/* test for the value a numeric dynamic */
if {ADDRESS > 0}
  "referenceline y=1;"
  "referenceline y=0;"
  "referenceline y=-1;"
endif;
/* test for the value a character dynamic */
if (upcase(ADDREF) =: "Y")
  referenceline y=1;
  referenceline y=0;
  referenceline y=-1;
endif;

/* test whether a dynamic is initialized */
if (exists(ADDREF))
  referenceline y=1;
  referenceline y=0;
  referenceline y=-1;
endif;

---

**Conditional Logic Determines Statement Rendering**

The GTL conditional logic is used only to determine which statements are rendered, not to control what is in the data object. In the following example, the data object contains columns for Date, Amount, and LOG(AMOUNT), but only one scatter plot is created.

```gtdl
if (LOGFLAG)
 scatterplot x=date y=amount;
else
 scatterplot x=date y=log(amount);
endif;
```

Also, it is seldom necessary to test for the existence of option values set by columns or dynamics. Consider the following statement:

```gtdl
scatterplot x=date y=amount / group=GROUPVAR;
```

This SCATTERPLOT statement is equivalent to the following code because option values that are set by columns that do not exist or dynamics that are uninitialized simply “drop out” at run time and do not produce errors or warnings:

```gtdl
if (exists(GROUPVAR))
 scatterplot x=date y=amount / group=GROUPVAR;
else
 scatterplot x=date y=amount;
endif;
```

The GTL code that is conditional must be complete statements, or complete blocks of statements, or both. The following IF block produces a compile error because there are more LAYOUT statements than ENDLAYOUT statements:

```gtdl
/* this IF block produces a compile error */
if (exists(SQUAREPLOT))
 layout overlayequated / equatetype=square;
else
 layout overlay;
endif;
```
This is the correct conditional construct:

```ggtl
if (exists(SQUAREPLOT))
 layout overlayequated / equatetype=square;
 scatterplot x=XVAR y=YVAR;
 endlayout;
else
 layout overlay;
 scatterplot x=XVAR y=YVAR;
 endlayout;
endif;
```

---

**GTL Does Not Provide ELSE IF Syntax**

The GTL does not provide ELSE IF syntax, but you can create a nested IF/ELSE block as follows:

```ggtl
IF (condition-1)
 GTL-statement(s);
ELSE
 IF (condition-2)
 GTL-statement(s);
 ELSE
 GTL-statement(s);
 ENDIF;
ENDIF;
```
Part 13

Appendixes

Appendix 1
Syntax Conventions and Argument Value Types .................. 1339

Appendix 2
Reserved Keywords and Unicode Values ....................... 1343

Appendix 3
Display Attributes .................................................. 1347

Appendix 4
SAS Formats Not Supported .................................... 1353

Appendix 5
Generalized Macro for BOXPLOTPARM Data .................. 1357

Appendix 6
Memory Management for ODS Graphics ....................... 1363
**Appendix 1**

**Syntax Conventions and Argument Value Types**

---

**Syntax Conventions**

< > ==> optional

a | b ==> either a or b

---

**Value Types for Statement Options**

The default value of an option depends on the template definition that is in use, and the implementation of that option depends on the ODS destination that formats the output. In addition, if you are creating HTML output, then the implementation of an attribute depends on the browser that you use.

This section describes the value types that are available for GTL statement options.

*boolean*

specifies a literal value that resolves to true or false. The following table lists literal values that resolve to true or false.

<table>
<thead>
<tr>
<th>Values That Resolve To True</th>
<th>Values That Resolve To False</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td><em>ON</em></td>
<td><em>OFF</em></td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
color
specifies a string that identifies a color. A color can be one of the following:

• any of the color names that are supported by SAS. See “Color-Naming Schemes” in SAS Graph Template Language: User's Guide.

• one of the colors that exists in the SAS session when the style template is used, such as DMSBLACK or DMSCYAN. (Use these color specifications only if you are running SAS in the windowing environment.)

• an English description of an Hue/Light/Saturation (HLS) value. Such descriptions use a combination of words to describe the lightness, the saturation, and the hue (in that order). You can use the Color Naming System to form a color by doing one of the following:
  • combining a chromatic hue with a lightness, a saturation, or both
  • combining the achromatic hue gray with a lightness
  • combining the achromatic hue black or white without qualifiers.
  • combining words to form a wide variety of colors, such as light vivid green, dark vivid orange, or light yellow.
  • specify hues that are intermediate between two neighboring colors. To do so, combine one of the following adjectives with one of its neighboring colors: brownish, greenish, purplish, or yellowish (for example, bluish purple or reddish orange).

column
specifies a column variable that contains either double-precision values or string values, or a dynamic variable that refers to such a column.

See also: integer-column, numeric-column, and string-column.

dimension
specifies a nonnegative number. The number can be followed by one of the following optional units of measure:

Table A1.2 Units for Dimension

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size (72 points = 1 inch)</td>
</tr>
</tbody>
</table>
expression
specifies a selective, relational, or logical program structure that calculates values when those values are not stored in the data. The expression must be specified as an EVAL() argument. The following shows the structure of an EVAL() argument:

```plaintext
x = EVAL(expression)
```

The expression returns a number and can be formed with consonants, data columns, dynamic variables, functions, or other expressions. The following example uses the data column Time and the SGE functions MEAN and ACF:

```plaintext
EVAL(MEAN(Time) + ACF(Time, NLags=10))
```

For more information about expressions, see Chapter 21, “Expressions,” on page 1317.

format
specifies a SAS format or a user-defined format.

integer, integer-column
specifies a member of the set of positive whole numbers, negative whole numbers, and zero.

An integer column specifies a column that contains integer values, or a dynamic variable that refers to such a column.

line-pattern-name, line-pattern-number
specifies a string value of a line pattern, a numeric value of a line pattern, a dynamic variable that contains such a string or number, or a style reference to a line pattern. Line patterns are chosen for discriminability. Because of different densities, equal weighting is impossible for lines of the same thickness. Instead, line patterns are ordered to provide a continuum of weights, which is useful when displaying confidence bands.

For details about line attributes, see “Line Options” on page 1349.

marker-name
specifies a string value of a maker symbol, a dynamic variable that contains a marker symbol, or a style reference to a marker symbol.

For details about marker attributes, see “Marker Options” on page 1350.

number, numeric-column
specifies a value, a dynamic variable that contains a double-precision value, an expression that resolves to a double-precision value, or a style reference to a double-precision value.

A numeric-column specifies a column that contains double-precision values, or a dynamic variable that refers to such a column.

string, string-column
specifies a quoted character string.

A string-column specifies a column that contains string values, or a dynamic variable that refers to such a column.
Note: For quoted character string options in the GTL, a space enclosed in quotation marks (" " or ") and empty quotation marks ("" or ") are not equivalent. A space enclosed in quotation marks specifies a blank space or a missing string value. Empty quotation marks has the same effect as not setting the option. To specify a blank space or missing value in a quoted string option, use a space enclosed in quotation marks (" " or ").

*style-reference*

specifies a reference to an attribute that is defined in a style element.

In the ODS Graphics templates that SAS provides, options for plot features are specified with a style reference in the form `style-element:attribute`, rather than a specific value. For example, the symbol, color, and size of markers for a basic scatter plot is specified in a SCATTERPLOT statement as follows:

```plaintext
scatterplot x=X y=Y /
 markersymbol=GraphDataDefault:markersymbol
 markercolor=GraphDataDefault:contrastcolor
 markersize=GraphDataDefault:markersize
```

The above style references guarantee a common appearance for markers used in all basic scatter plots. For non-grouped data, the marker appearance is controlled by the GraphDataDefault style element in the style template that you specify.

In order to create your own style template, or to modify a style template to use with ODS Graphics, you need to understand the relationship between style elements and graph features. For more information, see the usage guide.
Appendix 2
Reserved Keywords and Unicode Values

Overview

The tables in this section show some of the reserved keywords and Unicode values that can be used with the UNICODE text command. For information about rendering Unicode characters, see “Managing the String on Text Statements” in *SAS Graph Template Language: User’s Guide*.

Note the following:

- Keywords and Unicode values are not case-sensitive: "03B1"x is the same code point as "03b1"x.
- The word blank is the keyword for a blank space.

Lowercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>α</td>
<td>03B1</td>
<td>lowercase alpha</td>
</tr>
<tr>
<td>beta</td>
<td>β</td>
<td>03B2</td>
<td>lowercase beta</td>
</tr>
<tr>
<td>gamma</td>
<td>γ</td>
<td>03B3</td>
<td>lowercase gamma</td>
</tr>
<tr>
<td>delta</td>
<td>δ</td>
<td>03B4</td>
<td>lowercase delta</td>
</tr>
<tr>
<td>epsilon</td>
<td>ε</td>
<td>03B5</td>
<td>lowercase epsilon</td>
</tr>
<tr>
<td>zeta</td>
<td>ζ</td>
<td>03B6</td>
<td>lowercase zeta</td>
</tr>
<tr>
<td>eta</td>
<td>η</td>
<td>03B7</td>
<td>lowercase eta</td>
</tr>
<tr>
<td>theta</td>
<td>θ</td>
<td>03B8</td>
<td>lowercase theta</td>
</tr>
<tr>
<td>iota</td>
<td>ι</td>
<td>03B9</td>
<td>lowercase iota</td>
</tr>
<tr>
<td>kappa</td>
<td>κ</td>
<td>03BA</td>
<td>lowercase kappa</td>
</tr>
<tr>
<td>lambda</td>
<td>λ</td>
<td>03BB</td>
<td>lowercase lambda</td>
</tr>
<tr>
<td>Keyword</td>
<td>Glyph</td>
<td>Unicode</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>mu</td>
<td>μ</td>
<td>03BC</td>
<td>lowercase mu</td>
</tr>
<tr>
<td>nu</td>
<td>ν</td>
<td>03BD</td>
<td>lowercase nu</td>
</tr>
<tr>
<td>xi</td>
<td>ξ</td>
<td>03BE</td>
<td>lowercase xi</td>
</tr>
<tr>
<td>omicron</td>
<td>o</td>
<td>03BF</td>
<td>lowercase omicron</td>
</tr>
<tr>
<td>pi</td>
<td>π</td>
<td>03C0</td>
<td>lowercase pi</td>
</tr>
<tr>
<td>rho</td>
<td>ρ</td>
<td>03C1</td>
<td>lowercase rho</td>
</tr>
<tr>
<td>sigma</td>
<td>σ</td>
<td>03C3</td>
<td>lowercase sigma</td>
</tr>
<tr>
<td>tau</td>
<td>τ</td>
<td>03C4</td>
<td>lowercase tau</td>
</tr>
<tr>
<td>upsilon</td>
<td>υ</td>
<td>03C5</td>
<td>lowercase upsilon</td>
</tr>
<tr>
<td>phi</td>
<td>ϕ</td>
<td>03C6</td>
<td>lowercase phi</td>
</tr>
<tr>
<td>chi</td>
<td>χ</td>
<td>03C7</td>
<td>lowercase chi</td>
</tr>
<tr>
<td>psi</td>
<td>ψ</td>
<td>03C8</td>
<td>lowercase psi</td>
</tr>
<tr>
<td>omega</td>
<td>ω</td>
<td>03C9</td>
<td>lowercase omega</td>
</tr>
</tbody>
</table>

**Uppercase Greek Letters**

Table A2.1  Uppercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha_u</td>
<td>A</td>
<td>0391</td>
<td>uppercase alpha</td>
</tr>
<tr>
<td>beta_u</td>
<td>B</td>
<td>0392</td>
<td>uppercase beta</td>
</tr>
<tr>
<td>gamma_u</td>
<td>Γ</td>
<td>0393</td>
<td>uppercase gamma</td>
</tr>
<tr>
<td>delta_u</td>
<td>Δ</td>
<td>0394</td>
<td>uppercase delta</td>
</tr>
<tr>
<td>epsilon_u</td>
<td>E</td>
<td>0395</td>
<td>uppercase epsilon</td>
</tr>
<tr>
<td>zeta_u</td>
<td>Z</td>
<td>0396</td>
<td>uppercase zeta</td>
</tr>
<tr>
<td>eta_u</td>
<td>H</td>
<td>0397</td>
<td>uppercase eta</td>
</tr>
<tr>
<td>theta_u</td>
<td>Θ</td>
<td>0398</td>
<td>uppercase theta</td>
</tr>
</tbody>
</table>
### Reserved Keywords and Unicode Values

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iota_u</td>
<td>I</td>
<td>0399</td>
<td>uppercase iota</td>
</tr>
<tr>
<td>kappa_u</td>
<td>K</td>
<td>039A</td>
<td>uppercase kappa</td>
</tr>
<tr>
<td>lambda_u</td>
<td>Λ</td>
<td>039B</td>
<td>uppercase lambda</td>
</tr>
<tr>
<td>mu_u</td>
<td>M</td>
<td>039C</td>
<td>uppercase mu</td>
</tr>
<tr>
<td>nu_u</td>
<td>N</td>
<td>039D</td>
<td>uppercase nu</td>
</tr>
<tr>
<td>xi_u</td>
<td>Ξ</td>
<td>039E</td>
<td>uppercase xi</td>
</tr>
<tr>
<td>omicron_u</td>
<td>Ο</td>
<td>039F</td>
<td>uppercase omicron</td>
</tr>
<tr>
<td>pi_u</td>
<td>Π</td>
<td>03A0</td>
<td>uppercase pi</td>
</tr>
<tr>
<td>rho_u</td>
<td>Ρ</td>
<td>03A1</td>
<td>uppercase rho</td>
</tr>
<tr>
<td>sigma_u</td>
<td>Σ</td>
<td>03A3</td>
<td>uppercase sigma</td>
</tr>
<tr>
<td>tau_u</td>
<td>Τ</td>
<td>03A4</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>upsilon_u</td>
<td>Υ</td>
<td>03A5</td>
<td>uppercase upsilon</td>
</tr>
<tr>
<td>phi_u</td>
<td>Φ</td>
<td>03A6</td>
<td>uppercase phi</td>
</tr>
<tr>
<td>chi_u</td>
<td>Χ</td>
<td>03A7</td>
<td>uppercase chi</td>
</tr>
<tr>
<td>psi_u</td>
<td>Ψ</td>
<td>03A8</td>
<td>uppercase psi</td>
</tr>
<tr>
<td>omega_u</td>
<td>Ω</td>
<td>03A9</td>
<td>uppercase omega</td>
</tr>
</tbody>
</table>

### Special Characters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime</td>
<td>′</td>
<td>00B4</td>
<td>single prime sign</td>
</tr>
<tr>
<td>bar</td>
<td>−</td>
<td>0305</td>
<td>combining overline</td>
</tr>
<tr>
<td>bar2</td>
<td>−</td>
<td>033F</td>
<td>combining double overline</td>
</tr>
<tr>
<td>tilde</td>
<td>~</td>
<td>0303</td>
<td>combining tilde</td>
</tr>
<tr>
<td>Keyword</td>
<td>Glyph</td>
<td>Unicode</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>hat</td>
<td>̂</td>
<td>0302</td>
<td>combining circumflex accent*</td>
</tr>
</tbody>
</table>

* This is an overstriking character that requires a Unicode font to render properly.
Appendix 3
Display Attributes

General Syntax for Attribute Options

Most statements provide options that enable you to specify attributes for the fills, lines, data markers, or text that is used in the display. For example, many plots provide a DATALABELATTRS= option that specifies the attributes of the data labels. This appendix discusses the general syntax for those options and the valid values for them.

A statement’s attribute options use the following general syntax:

\texttt{ATTRSOPTIONNAME=style-element | style-element (options) | (options)}

\textit{style-element}
Name of a style element. Only style attributes relevant for rendering the fill, line, data marker, or text are used.

\texttt{Example}
\begin{verbatim}
ATTRSOPTIONNAME=GRAPHVALUETEXT
\end{verbatim}

\textit{style-element (options)}
Name of a style element, plus individual options to be used as style overrides. Any options not specified are derived from the specified style element.

\texttt{Example}
\begin{verbatim}
ATTRSOPTIONNAME=GRAPHVALUETEXT(SIZE=10pt)
\end{verbatim}

\textit{(options)}
Individual options. Any options not specified are derived from the default style element.
Depending on the attribute option used, the options might be *fill options*, *line options*, *marker options*, or *text options*.

In general, any relevant attribute that is not specified defaults to an internal value, which is typically derived from the style element that you specify for the attributes. When choosing a style element, you should use an element of the correct type. See “Graph Style Elements Used by ODS Graphics” in *SAS Graph Template Language: User’s Guide* for a list of style elements and their types.

### Attributes Available for the Attribute Options

Depending on the attribute option used on a statement, the available attributes might be *fill options*, *line options*, *marker options*, or *text options*.

#### Fill Options

When specifying the attributes for an area fill, the fill options can be one or more of the following settings. The option must be enclosed in parentheses and specified as a `name=value` pair. The value can be a style reference in the form `style-element:style-attribute`.

**COLOR=** `style-reference | color`

specifies the fill color. If you use a style reference, then the style attribute should be a valid attribute such as COLOR, CONTRASTCOLOR, STARTCOLOR, NEUTRAL, ENDCOLOR. The convention is to use the COLOR attribute for fill areas.

If you use a color, then SAS accepts color names, such as RED, or color codes, such as CXFF0000 or #FF0000. Color names must not exceed 64 characters. Color codes must not exceed 8 characters and must be in a valid SAS color-naming scheme, such as RGB, CMYK, HLS, or HSV (HSB).

**TRANSPARENCY=** `number`

specifies the degree of the transparency of the filled area. This setting enables you to set the transparency for the filled elements of some graph types. You can set just this fill transparency, or set the fill independently of the other transparent elements in the graph. For example, you can use this setting to set the transparency level for the filled bars of a bar chart, and use the bar chart’s DATATRANSPARENCY= option to set a different transparency level for the bar outlines.

<table>
<thead>
<tr>
<th>Default</th>
<th>The same as the setting of the statement’s DATATRANSPARENCY= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0–1, where 0 is opaque and 1 is entirely transparent</td>
</tr>
<tr>
<td>Interaction</td>
<td>This setting overrides the statement’s DATATRANSPARENCY= setting for the fills but not for the outlines.</td>
</tr>
<tr>
<td>Example</td>
<td><code>fillattrs=(transparency=0.5)</code></td>
</tr>
</tbody>
</table>
**Line Options**

When specifying the attributes for a line, the available line options can be any one or more of the following settings. The options must be enclosed in parentheses, and each option is specified as a `name=value` pair. In all cases, the value can be a style reference in the form `style-element.style-attribute`.

**COLOR=** `style-reference` | `color`

specifies the line color. If you use a style reference, then the style attribute should be a valid attribute such as COLOR, CONTRASTCOLOR, STARTCOLOR, NEUTRAL, ENDCOLOR. The convention is to use CONTRASTCOLOR for lines. If you specify a style element that does not have a CONTRASTCOLOR attribute, then the element’s COLOR attribute is used.

If you use a color, then SAS accepts color names, such as RED, or color codes, such as CXFF0000 or #FF0000. Color names must not exceed 64 characters. Color codes must not exceed 8 characters and must be in a valid SAS color-naming scheme, such as RGB, CMYK, HLS, or HSV (HSB).

**PATTERN=** `style-reference` | `line-pattern-name` | `line-pattern-number`

specifies the line pattern. If you use a style reference, then the style attribute should be LINESTYLE.

Line patterns can be specified as a pattern name or pattern number.

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Pattern Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>1</td>
</tr>
<tr>
<td>ShortDash</td>
<td>2</td>
</tr>
<tr>
<td>MediumDash</td>
<td>4</td>
</tr>
<tr>
<td>LongDash</td>
<td>5</td>
</tr>
<tr>
<td>MediumDashShortDash</td>
<td>8</td>
</tr>
<tr>
<td>DashDashDot</td>
<td>14</td>
</tr>
<tr>
<td>DashDotDot</td>
<td>15</td>
</tr>
<tr>
<td>Dash</td>
<td>20</td>
</tr>
<tr>
<td>LongDashShortDash</td>
<td>26</td>
</tr>
<tr>
<td>Dot</td>
<td>34</td>
</tr>
<tr>
<td>ThinDot</td>
<td>35</td>
</tr>
<tr>
<td>ShortDashDot</td>
<td>41</td>
</tr>
<tr>
<td>MediumDashDotDot</td>
<td>42</td>
</tr>
</tbody>
</table>

Valid pattern numbers range from 1 to 46. Not all pattern numbers have names. See “Available Line Patterns” on page 1352 for a list of all possible line patterns. We recommend that you use the named patterns because they have been optimized to provide good discriminability when used in the same plot.

**Note**

Anti-aliasing might alter the appearance of some line patterns that have fine detail such as line patterns 33 through 46. For example, if you specify the color black and the pattern 33 for a line, and anti-aliasing is enabled, then the line might appear gray. In that case, you can use the following command to disable anti-aliasing in order to show the line detail:

```plaintext```
ods graphics / antialias=off;
```

**THICKNESS=** `style-reference` | `dimension`

specifies the line thickness. If you use a style reference, then the style attribute should be LINETHICKNESS.
Marker Options

When you specify the attributes for a data marker, the available marker options can be any one or more of the following settings. You must enclose the options in parentheses, and you specify each option as a name=value pair. In all cases, the value can be a style reference in the form style-element:style-attribute.

**COLOR=**style-reference | color

specifies the color of the marker. If you use a style reference, then the style attribute should be a valid attribute such as COLOR, CONTRASTCOLOR, STARTCOLOR, NEUTRAL, or ENDCOLOR. The convention is to use CONTRASTCOLOR for markers. For grouped data, this option keeps all markers the same color and the marker symbol alone distinguishes the group values.

If you use a color, then SAS accepts color names, such as RED, or color codes, such as CXFF0000 or #FF0000. Color names must not exceed 64 characters. Color codes must not exceed 8 characters and must be in a valid SAS color-naming scheme, such as RGB, CMYK, HLS, or HSV (HSB).

**Restriction** This option has no effect on marker symbols that are created with the SYMBOLIMAGE statement.

**SIZE=**style-reference | dimension

specifies the marker size (both width and height). If you use a style reference, then the style attribute should be MARKERSIZE.

**SYMBOL=**style-reference | marker-name

specifies the name of the marker. If you use a style reference, then the style attribute should be MARKERSYMBOL. The following SAS symbols are supported:

<table>
<thead>
<tr>
<th>Marker Name</th>
<th>Symbol Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrowDown</td>
<td>TriangleLeft</td>
</tr>
<tr>
<td>Asterisk</td>
<td>TriangleRight</td>
</tr>
<tr>
<td>Circle</td>
<td>Square</td>
</tr>
<tr>
<td>Diamond</td>
<td>Star</td>
</tr>
<tr>
<td>GreaterThan</td>
<td>X</td>
</tr>
<tr>
<td>Hash</td>
<td>Triangle</td>
</tr>
<tr>
<td>HomeDown</td>
<td>TriangleDown</td>
</tr>
</tbody>
</table>

You can also specify the names of symbols that are created by the SYMBOLCHAR and SYMBOLIMAGE statements.

**See**  
“SYMBOLCHAR Statement” on page 1173  
“SYMBOLIMAGE Statement” on page 1180
**TRANSPARENCY=number**  
specifies the degree of transparency for the plot markers.  

<table>
<thead>
<tr>
<th>Default</th>
<th>The transparency that is specified by the DATATRANSPARENCY= option, which is 0 by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0–1, where 0 is opaque and 1 is entirely transparent</td>
</tr>
<tr>
<td>Interaction</td>
<td>This suboption overrides the DATATRANSPARENCY= option for the plot markers only.</td>
</tr>
</tbody>
</table>

**WEIGHT=NORMAL | BOLD**  
specifies the marker weight.  

<table>
<thead>
<tr>
<th>Restriction</th>
<th>This option has no effect on marker symbols that are created with the SYMBOLCHAR and SYMBOLIMAGE statements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>“SYMBOLCHAR Statement” on page 1173 \</td>
</tr>
<tr>
<td></td>
<td>“SYMBOLIMAGE Statement” on page 1180</td>
</tr>
</tbody>
</table>

**Text Options**

When specifying the attributes for text, the available text options can be any one or more of the following settings. The options must be enclosed in parentheses, and each option is specified as a `name=value` pair. In all cases, the value can be a style reference in the form `style-element:style-attribute`.

**COLOR=style-reference | color**  
specifies the color of the text. If you use a style reference, then the style attribute should be a valid attribute such as COLOR, CONTRASTCOLOR, STARTCOLOR, NEUTRAL, ENDCOLOR. The convention is to use COLOR for text.  

If you use a color, then SAS accepts color names, such as RED, or color codes, such as CXFF0000 or #FF0000. Color names must not exceed 64 characters. Color codes must not exceed 8 characters and must be in a valid SAS color-naming scheme, such as RGB, CMYK, HLS, or HSV (HSB).

**FAMILY=style-reference | "string"**  
specifies the font family of the text. If you use a style reference, then the style attribute should be FONTFAMILY.

**SIZE=style-reference | dimension**  
specifies the font size of the text. If you use a style reference, then the style attribute should be FONTSIZE.  

<table>
<thead>
<tr>
<th>Restriction</th>
<th>The font size cannot be less than the minimum font size in SAS, which is determined by the SAS system. If you specify a font size that is less than the minimum font size, the minimum size is used instead.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>“dimension” on page 1340</td>
</tr>
</tbody>
</table>

**STYLE=style-reference | NORMAL | ITALIC**  
specifies the font style of the text. If you use a style reference, then the style attribute should be FONTSTYLE.
WEIGHT=style-reference | NORMAL | BOLD

specifies the font weight of the text. If you use a style reference, then the style
attribute should be FONTWEIGHT.

---

**Available Line Patterns**

The following line patterns can be used with the Graphics Template Language. A line
pattern can be specified by its number or name. Not all patterns have names. We
recommend that you use the named patterns because they have been optimized to
provide good discriminability when used in the same plot.

<table>
<thead>
<tr>
<th>Number</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solid</td>
</tr>
<tr>
<td>2</td>
<td>ShortDash</td>
</tr>
<tr>
<td>3</td>
<td>MediumDash</td>
</tr>
<tr>
<td>4</td>
<td>LongDash</td>
</tr>
<tr>
<td>5</td>
<td>MediumDashShortDash</td>
</tr>
<tr>
<td>6</td>
<td>DashDashDot</td>
</tr>
<tr>
<td>7</td>
<td>DashDotDot</td>
</tr>
<tr>
<td>8</td>
<td>Dash</td>
</tr>
<tr>
<td>9</td>
<td>LongDashShortDash</td>
</tr>
<tr>
<td>10</td>
<td>Dot</td>
</tr>
<tr>
<td>11</td>
<td>ThinDot</td>
</tr>
<tr>
<td>12</td>
<td>ShortDashDot</td>
</tr>
<tr>
<td>13</td>
<td>MediumDashDotDot</td>
</tr>
</tbody>
</table>

---
Using SAS Formats

SAS formats can be assigned to input data columns with the FORMAT statement of the SGRENDER procedure. Also, several GTL statement options enable a SAS format as an option value. Examples include the TICKVALUEFORMAT= option for formatting axis tick values, and the TIPFORMAT= option for formatting data tips.

Not all SAS formats are supported in the GTL or with the SGPLOT, SGSCATTER, SGPANEL, and SGRENDER procedures. The tables in the following sections show the character and numeric SAS formats that are not supported.

When the GTL encounters an unsupported format, a note similar to the following is written to the SAS log:

```
TICKVALUEFORMAT=bestx. is invalid. The format is invalid or unsupported. The default will be used.
```

Unsupported Numeric Formats

The following numeric formats are not supported in the GTL:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESTD</td>
<td>BESTX</td>
<td>D</td>
<td>FLOAT</td>
<td>FRACT</td>
</tr>
<tr>
<td>FREE</td>
<td>IB</td>
<td>IBR</td>
<td>IEEE</td>
<td>IEEER</td>
</tr>
</tbody>
</table>
### Unsupported Date and Time Formats Related to ISO 8601

The following date and time formats are not supported in the GTL:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N8601B</td>
<td>$N8601BA</td>
<td>$N8601E</td>
<td>$N8601EA</td>
<td>$N8601EH</td>
</tr>
<tr>
<td>$N8601EX</td>
<td>$N8601H</td>
<td>$N8601X</td>
<td>B8601DA</td>
<td>B8601DN</td>
</tr>
<tr>
<td>B8601DT</td>
<td>B8601DZ</td>
<td>B8601LZ</td>
<td>B8601TM</td>
<td>B8601TZ</td>
</tr>
<tr>
<td>E8601DA</td>
<td>E8601DN</td>
<td>E8601DT</td>
<td>E8601DZ</td>
<td>E8601LZ</td>
</tr>
<tr>
<td>E8601TM</td>
<td>E8601TZ</td>
<td>IS8601DA</td>
<td>IS8601DN</td>
<td>IS8601DT</td>
</tr>
<tr>
<td>IS8601DZ</td>
<td>IS8601LZ</td>
<td>IS8601TM</td>
<td>IS8601TZ</td>
<td></td>
</tr>
</tbody>
</table>

### Other Unsupported Date and Time Formats

The following date and time formats are not supported in the GTL:

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDATE</td>
<td>HEBDATE</td>
<td>JDATEMDW</td>
<td>JDATEMNW</td>
<td>JDATEWK</td>
</tr>
<tr>
<td>JDATEYDW</td>
<td>JDATEYM</td>
<td>JDATEYMD</td>
<td>JDATEYMW</td>
<td>JDATEYT</td>
</tr>
<tr>
<td>JDATEYTW</td>
<td>JNENGO</td>
<td>JNENGOT</td>
<td>JNENGOTW</td>
<td>JNENGOW</td>
</tr>
<tr>
<td>JTIMEH</td>
<td>JTIMEHM</td>
<td>JTIMEHMS</td>
<td>JTIMEHW</td>
<td>JTIMEMW</td>
</tr>
<tr>
<td>JTIMESW</td>
<td>MDYAMPM</td>
<td>MINGUO</td>
<td>NENGO</td>
<td>NLDATEYQ</td>
</tr>
<tr>
<td>NLDATEYR</td>
<td>NLDATEYW</td>
<td>NLDATMYQ</td>
<td>NLDATMYR</td>
<td>NLDATMYW</td>
</tr>
<tr>
<td>NLSTRMON</td>
<td>NLSTRQTR</td>
<td>NLSTRWK</td>
<td>PDJULG</td>
<td>PDJULI</td>
</tr>
<tr>
<td>TWMDY</td>
<td>XYYMMDD</td>
<td>YYQZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unsupported Currency Formats

The following currency formats are not supported in the GTL:

<table>
<thead>
<tr>
<th>EURFRATS</th>
<th>EURFRBEF</th>
<th>EURFRCHF</th>
<th>EURFRCZK</th>
<th>EURFRDEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURFRDKK</td>
<td>EURFRESP</td>
<td>EURFRFIM</td>
<td>EURFRFRF</td>
<td>EURFRGBP</td>
</tr>
<tr>
<td>EURFRGD</td>
<td>EURFRHUF</td>
<td>EURFRIEP</td>
<td>EURFRITL</td>
<td>EURFRLUF</td>
</tr>
<tr>
<td>EURFRNLG</td>
<td>EURFRNOK</td>
<td>EURFRPLZ</td>
<td>EURFRPTE</td>
<td>EURFRROL</td>
</tr>
<tr>
<td>EURFRRUR</td>
<td>EURFRSEK</td>
<td>EURFRSIT</td>
<td>EURFRTRL</td>
<td>EURFRYUD</td>
</tr>
<tr>
<td>EURTOATS</td>
<td>EURTOBEF</td>
<td>EURTOCHF</td>
<td>EURTOCZK</td>
<td>EURTODEM</td>
</tr>
<tr>
<td>EURTODKK</td>
<td>EURTOESP</td>
<td>EURTOFIM</td>
<td>EURTOFRF</td>
<td>EURTOGBP</td>
</tr>
<tr>
<td>EURTOGRD</td>
<td>EURTOHUF</td>
<td>EURTOIEP</td>
<td>EURTOITL</td>
<td>EURTOLUF</td>
</tr>
<tr>
<td>EURTONLG</td>
<td>EURTONOK</td>
<td>EURTOPLZ</td>
<td>EURTOPTE</td>
<td>EURTOROL</td>
</tr>
<tr>
<td>EURTORUR</td>
<td>EURTOSEK</td>
<td>EURTOSIT</td>
<td>EURTOTRL</td>
<td>EURTOYUD</td>
</tr>
</tbody>
</table>

Unsupported User-Defined Formats

In the second maintenance release of SAS 9.4 and in earlier releases, ODS Graphics does not support Unicode values in user-defined formats. Starting with the third maintenance release of SAS 9.4, ODS Graphics supports Unicode values in user-defined formats only if they are preceded by the (*ESC*) escape sequence as shown in the following example.

"{*ESC*}{unicode beta}"

ODS Graphics does not support the use of a user-defined ODS escape character to escape Unicode values in user-defined formats.

For an example of how to use Unicode values in user-defined formats with ODS Graphics, see “Formatting the Tick Values on a Discrete Axis” in SAS Graph Template Language: User’s Guide.
Appendix 5
Generalized Macro for BOXPLOTPARM Data

The following SAS code is a generalized macro for computing input data for BOXPLOTPARM.

```
%macro boxcompute(indsn=,x=,y=,outdsn=boxdata,datalabel=,
 qntldef=5,table=no);
/* NOTE: INDSN, X and Y are required parameters, where
INDSN = input SAS data set
X = categorical variable (num or char)
Y = response variable (num)
OUTDSN = output dataset. It contains these variables:
STAT: Statistic names for BOXPLOTPARM
VALUE: values for STAT type
X: X variable values
DATALABEL: outlier labels from the DATALABEL= variable
N, Mean, Median, Std if TABLE=YES
DATALABEL= variable used to label outliers (num or char)
QNTLDEF = 1|2|3|4|5
 (how to compute quantiles - see PROC SUMMARY)
TABLE = YES | NO
 (add additional data to build table of statistics)
*/
%macro varinfo(dsid,varname,role,rc);
/* utility macro for obtaining variable info */
%local varnum;
%if %length(&varname)=0 %then %do;
 %let &rc=0; %return;
%end;
%let varnum=%sysfunc(varnum(&dsid,&varname));
%if &varnum > 0 %then %do;
 %let &role.label=%sysfunc(varlabel(&dsid,&varnum));
 %if %length(&&&role.label)=0 %then
 %let &role.label=%sysfunc(varname(&dsid,&varnum));
 %let &role.fmt=%sysfunc(varfmt(&dsid,&varnum));
 %let &rc=0;
%end;
%else %do;
 %put ERROR: %upcase(&role) variable &varname not found.;
 %let &rc=1;
%end;
%mend varinfo;
/* validate dataset and variables */
%local dsid ylabel xlabel datalabellabel
 yfmt xfmt datalabelfmt rc_y rc_x rc_d;
```
%let dsid=%sysfunc(open(&indsn));
%if &dsid %then %do;
  %varinfo(&dsid,&y,Y,rc_y)
  %varinfo(&dsid,&x,X,rc_x)
  %if %length(&datalabel) %then
    %varinfo(&dsid,&datalabel,DATALABEL,rc_d);
  else %let rc_d=0;
  %let dsid=%sysfunc(close(&dsid));
%if &rc_y or &rc_x or &rc_d %then %return;
%end;
%else %do;
  %put ERROR: Input dataset &indsn not found.;
  %return;
%end;

/* compute basic summary statistics */
proc summary data=&indsn(rename=(&y=VALUE &x=X))
  nway qntldef=&qntldef;
  class x;
  var value;
  output out=summary(drop=_type_ _freq_) n=N mean=Mean
  median=Median q1=Q1 q3=Q3 std=STD / noinherit;
run;
proc sort data=&indsn(keep=&x &y &datalabel)
  %if %length(&datalabel) %then
  out=sorted(rename=(&x=X &y=VALUE &datalabel=DATALABEL));
  %else out=sorted(rename=(&x=X &y=VALUE));
  by &x;
run;
/* compute fences, MIN, MAX and any outliers for X values */
data outliers;
  length STAT $10;
  %if %length(&datalabel) %then
    %do;
      keep STAT X VALUE DATALABEL;
      label VALUE="&ylabel" X="&xlabel"
        DATALABEL="&datalabellabel";
      format VALUE &yfmt X &xfmt DATALABEL &datalabelfmt;
    %end;
  %else
    %do;
      keep STAT X VALUE;
      label VALUE="&ylabel" X="&xlabel";
      format VALUE &yfmt X &xfmt;
    %end;
  retain lowerFence upperFence farLowerFence farUpperFence
tempmin tempmax;
  merge sorted summary; by x;
/* perform computations for each X value */
if first.X then do;
  lowerFence=q1-((q3-q1)*1.5);
  upperFence=q3+((q3-q1)*1.5);
  farLowerFence=q1-((q3-q1)*3);
  farUpperFence=q3+((q3-q1)*3);
/* these computations for MIN and MAX result
in the same values produced by the Boxplot statement, however they can be modified to satisfy other statistical definitions */
if value <= upperFence then tempmax=value;
else tempmax=.;
if value => lowerFence then tempmin=value;
else tempmin=.;
end;
/* Recompute max and min for each obs */
if 0 <= sum(upperFence,-value) then 
tempmax=max(tempmax,value);
if 0 <= sum(value,-lowerFence) then 
tempmin=min(tempmin,value);
/* Write out both types of outliers */
if value < farLowerFence or value > farUpperFence then do;
  stat="FAROUTLIER"; output;
end;
else if value < LowerFence or value > UpperFence then do;
  stat="OUTLIER"; output;
end;
/* Write out min and max for each x value */
if last.X then do;
  value=tempmin; stat="MIN"; output;
  value=tempmax; stat="MAX"; output;
end;
run;
/* Transpose the stats into the columns required by boxplotparm */
data transpose(keep=x stat value);
length STAT $10;
set summary;
array stats{*} n--std;
do i=1 to dim(stats);
  stat=upcase(vname(stats{i}));
  VALUE=stats{i};
  output;
end;
run;
/* Interleave the obs by the x variable */
data &outdsn;
  set transpose outliers; by X;
run;
/* Merge the output stats for building a stat table */
%mend boxcompute;

Here is the macro invocation to produce the data for the graph shown in the section “Example: Boxplotparm Statement” on page 366.

%boxcompute(indsn=sashelp.cars,x=type,y=mpg_city,
datalabel=make);

proc template;
The following figure and code show an example of a “table” of statistics with BLOCKPLOT statements.

%boxcompute(indsn=sashelp.cars,x=type,y=mpg_highway,
           outdsn=boxdata2,table=yes);

proc template;
  define statgraph boxplotparm2;
  begingraph;
    entrytitle "Highway Mileage for Vehicle Types";
    layout overlay / xaxisOpts=(offsetMin=0.08 offsetMax=0.08);
    innerMargin / align=top;
    blockplot x=x block=n / display=(values label outline) valuealign=center
      labelattrs=graphdatatext valueattrs=graphdatatext;
    blockplot x=x block=std / display=(values label outline) valuealign=center
      labelattrs=graphdatatext valueattrs=graphdatatext;
    blockplot x=x block=mean /
proc sgrender data=boxdata2 template=boxplotparm2;
run;
Appendix 6
Memory Management for ODS Graphics

SAS Options Affecting Memory

ODS Graphics uses Java technology to produce its graphs. Most of the time this fact is transparent to you because the required Java Runtime Environment (JRE) and JAR files are included with SAS software installation. Also, the Java environment is automatically started and stopped for you. When Java is started, it allocates a fixed amount of memory. The memory can grow up to the value set for the -Xmx suboption in the JREOPTIONS option (discussed in a moment). This memory is independent of the memory limit that SAS sets for the SAS session with its MEMSIZE= option.

Normally, the memory limit for Java is sufficient for most ODS Graphics applications. However, some tasks are very memory intensive and might exhaust all available Java memory, resulting in an OutOfMemoryError condition. You might encounter Java memory limitations in the following cases:

- the product of the output size and the DPI setting results in very large output
- a classification panel has a very large number of classifier crossings
- a scatter plot matrix has a large number of variables
- creating 3-D plots and 2-D contours, which are memory intensive to generate
- a plot has a very large number of marker labels
- a plot uses many character variables or has a large number of GROUP values
- using the SG Editor to edit a graph with a large amount of data

Managing a Java Out of Memory Error

If you encounter a Java OutOfMemoryError, then you can try executing your program again by restarting SAS and specifying a larger amount of memory for Java at SAS invocation.
To determine what the current Java memory settings are, you can submit a PROC OPTIONS statement that shows the value of the JREOPTIONS option:

```sas
proc options option=jreoptions;
run;
```

After you submit this procedure code, a list of JREOPTIONS settings is written to the SAS log. The JREOPTIONS option has many suboptions that configure the SAS Java environment. Many of the suboptions are installation and host specific and should not be modified, especially the ones that provide installed file locations. For managing memory, look for the -Xmx and -Xms suboptions:

```
JREOPTIONS=(/* other Java suboptions */ -Xmx128m -Xms128m)
```

- **-Xms**
  Use this option to set the minimum Java memory (heap) size, in bytes. Set this value to a multiple of 1024 greater than 1MB. Append the letter k or K to indicate kilobytes, or m or M to indicate megabytes. The default is 2MB. Examples:

  - `-Xms6291456`
  - `-Xms6144k`
  - `-Xms6m`

- **-Xmx**
  Use this option to set the maximum size, in bytes, of the memory allocation pool. Set this value to a multiple of 1024 greater than 2MB. Append the letter k or K to indicate kilobytes, or m or M to indicate megabytes. The default is 64MB. Examples:

  - `-Xmx83886080`
  - `-Xmx81920k`
  - `-Xmx80m`

As a general rule, you should set the minimum heap size (-Xms) equal to the maximum heap size (-Xmx) to minimize garbage collections.

Typically, SAS sets both -Xms and -Xmx to be about 1/4 of the total available memory or a maximum of 128M. However, you can set a more aggressive maximum memory (heap) size, but it should never be more than 1/2 of physical memory.

You should be aware of the maximum amount of physical memory your computer has available. Let us assume that doubling the Java memory allocation is feasible. So when you start SAS from a system prompt, you can add the following option:

```
-jreoptions (-Xmx256m -Xms256m)
```

Alternatively, you might need to specify the setting in quotation marks:

```
-jreoptions '(-Xmx256m -Xms256m)'
```

The exact syntax varies for specifying Java options, depending on your operating system, and the amount of memory that you can allocate varies from system to system. The set of JRE options must be enclosed in parentheses. If you specify multiple JREOPTIONS system options, then SAS appends JRE options to JRE options that are currently defined. Incorrect JRE options are ignored.
If you choose to create a custom configuration file, then you would simply replace the existing -Xms and -Xmx suboption values in the JREOPTIONS=(all Java options) portion of the configuration file.

For more information, see the SAS Companion for your operating system.
Here is the recommended reading list for this title:

- *SAS Graph Template Language: User's Guide*
- *Getting Started with the Graph Template Language in SAS: Examples, Tips, and Techniques for Creating Custom Graphs*
- *PROC TEMPLATE Made Easy: A Guide for SAS(R) Users*
- *Statistical Graphics in SAS: An Introduction to the Graph Template Language and the Statistical Graphics Procedures*
- *Statistical Graphics Procedures by Example: Effective Graphs Using SAS*

For a complete list of SAS publications, go to [sas.com/store/books](http://sas.com/store/books). If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: [sas.com/store/books](http://sas.com/store/books)
anti-aliasing
a rendering technique for improving the appearance of text and curved lines in a graph by blurring the jagged edges normally present. The degree of improvement is relative to the nature of the graphical content (for example, vertical and horizontal lines do not benefit from anti-aliasing). Extra processing is required to perform anti-aliasing.

attribute bundle
a common collection of visual properties associated with a graphical primitive such as a line, marker, or text. For example, all lines have visual properties of pattern, thickness, and color. All markers have visual properties of symbol, size, weight, and color. Attribute bundles can be associated with style elements in order to indirectly assign visual properties.

axis
a line that represents the midpoints (for a discrete axis) or the scale (for a continuous or interval axis) for graphing variable or data values. An axis typically consists of an axis line with tick marks, tick values (or midpoint values), and a label.

axis offset
the gaps that normally appear at the ends of an axis line. The gaps enable markers, bars, and other graphic primitives that are drawn at extreme data values to be rendered without clipping. An offset can also be used to add extra space between an axis line and visual elements in the graph.

axis threshold
a numerical bias from 0 to 1 that determines whether an extra tick is added at either end of a non-discrete, interval axis. If the minimum and maximum thresholds are set to 0, then no ticks are added beyond the actual data range. If both minimum and maximum thresholds are set to 1, then the data range is completely bounded by the first and last ticks.

axis tick mark
a short line segment perpendicular to the axis line. A tick can cross the axis line, or be drawn from the axis inside or outside the wall.

axis tick value
a formatted data value represented by a tick mark.
**axis type**

A keyword that denotes axis functionality. For example, the axis type of interval axes can be LINEAR, TIME, or LOG. The axis type of a discrete axis is DISCRETE.

**band plot**

A plot that draws a horizontal band with two Y values for each X value, or that draws a vertical band with two X values for each Y value. A band plot is typically used to show confidence, error, prediction, or control limits. The points on the upper and lower band boundaries can be joined to create two outlines, or the area between the boundaries can be filled.

**bin**

One of multiple numeric intervals into which continuous numeric data can be categorized.

**binned data**

Data that has been summarized or transformed in some way to facilitate its rendering by a parameterized plot. Continuous numeric data is typically binned by setting a bin width (interval size) and then computing the number of bins, or by setting the number of bins and computing the bin width.

**block**

See statement block.

**block plot**

A plot that displays one or more rectangles (blocks) along an axis, where each rectangle identifies a block of consecutive observations having the same value for a specified block variable.

**category variable**

A classification variable with a finite number of distinct (discrete) values. These variables are typically used to split data into subsets. For example, in a bar chart, each unique value is displayed as a bar on a DISCRETE axis. In another example, the variable payment mode can have two values, prepaid and postpaid. Customers can be classified based on this variable as prepaid customers and postpaid customers.

**cell**

See graph cell.

**cell block**

A block beginning with a CELL statement and ending with an ENDCELL statement that defines the graphical content of a cell. The cell block is available only within a LATTICE layout.

**child block**

A block that is contained within another block when two or more blocks are nested. For example, a CELLHEADER block is always a child of a CELL block.

**class variable**

See classification variable.

**classification level**

For a single classification variable, each unique value is regarded as a classification level. For two or more variables, a classification level is one of the unique combinations (crossings) of the unique values of each variable. For example, if three variables have four, two, and three distinct values, there are 24 classification levels.
classification panel
a multi-cell graph in which the cell data is driven by the values of one or more classification variables. The number of the cells is determined by the unique values of the classification variables. Each cell of the panel has the same types of plots.

classification variable (class variable)
a variable whose values are used to classify the observations in a data set into different groups that are meaningful for analysis. A classification variable can have either character or numeric values. Classification variables include group, subgroup, category, and BY variables.

clip
to truncate a plot or graphical element (such as a line, marker, or band) when it reaches a boundary such as a plot wall.

column axis
an external axis appearing above or below a column of cells and serving as a common reference for the column of a multi-cell layout, such as a LATTICE, DATAPANEL, or DATALATTICE layout.

column gutter
the space between columns of cells in a multi-cell layout.

column header
text that labels the column contents in a multi-cell layout. This text can be aligned above or below the cells in a column. In a LATTICE layout, the column header is not restricted to text (it can contain a plot or a legend, for example).

column major order
an order for populating cells of a layout or entries in a legend when the number of rows is specified. By default, cells or entries are filled starting from the top left and moving down. When the bottom row of the first column is filled, a new column begins filling to the right of the previous column, and so on until all content items have been placed in cells or entries. There might be empty cells or entries in the last column.

column weight
in a LATTICE layout, the proportion of width allotted to a specific column of the layout. The sum of all column weights is 1.

computed plot
a plot in which input data is internally summarized or otherwise transformed to create new data that is actually rendered by the plot. Examples of computed plot statements are BARCHART, BOXPLOT, HISTOGRAM, ELLIPSE, and REGRESSIONPLOT.

conditional logic
syntax that enables one set of statements or an optional alternate set of statements to execute at run time.

continuous legend
a legend that shows a mapping between a color ramp or color segments and corresponding numeric values. Plots that support a COLORMODEL= option can use this type of legend.
crossing
a combination of the unique values of one or more classification variables.

cube
in three-dimensional graphics, the outlines formed by the intersection of three pairs of parallel planes; each pair is orthogonal to the primary X, Y, and Z axes. The display of the cube is optional.

data object
a transient version of a SAS data set created by ODS. When an input SAS data set is bound to a compiled graph template, an ODS data object is created, based on all the columns requested in the template definition and any new columns that have been directly or indirectly computed. A data object can persist when used with the ODS OUTPUT statement.

data tip
data or other detailed information that is displayed when a user positions a mouse pointer over an element in a graph. For example, a data tip typically displays the data value that is represented by a bar, a plot point, or some other element.

define block
in the TEMPLATE procedure, a define block (beginning with a DEFINE statement and ending with an END statement) creates various types of templates, including STATGRAPH, STYLE, and TABLE.

dependent plot
a plot that cannot be rendered by itself. Dependent plots must be overlaid with a stand-alone plot. Dependent plots do not provide data ranges to establish axes. REFERENCeline, DROPLINE, and LINEPARM statements produce dependent plots.

design size
the intended size of a graph that is specified in the graph template definition. The DESIGNHEIGHT and DESIGNWIDTH options of the BEGINGRAPH statement set the intended height and width, which are used to determine the scale factors when the graph is resized. The intended height and width are used unless overridden by the ODS Graphics statement HEIGHT or WIDTH options when the template is executed.

device-based graphic
a graph created with SAS/GRAPH software for which a user-specified or default device (DEVICE= option) controls certain aspects of the graphical output.

discrete axis
an axis for categorical data values. The distance between ticks has no significance. A bar chart always has a discrete axis.

discrete legend
a legend that provides values or descriptive information about graphical elements in a grouped or overlaid plot.

dots per inch (DPI)
a measure of the graph resolution by its dot density.

DPI
See dots per inch.
**drop line**

a line drawn from a point in the plot area perpendicular to an axis.

**dynamic variable**

a variable defined in a template with the DYNAMIC statement that can be initialized at template run time.

**equated axes**

in two-dimensional plots, axes that use the same drawing scale (ratio of display distance to data interval) on both axes. For example, an interval of 2 on the X axis maps to the same display distance as an interval of 2 on the Y axis. The aspect ratio of the plot display equals the aspect ratio of the plot data. In other words, a 45-degree slope in data will be represented by a 45-degree slope in the display. Equated axes are always of TYPE=LINEAR. The number of intervals displayed on each axis does not have to be the same.

**external axis**

an axis that is outside all cells of a layout. An external axis represents a common scale for all plots in a row or column of a multi-cell layout.

**fill**

to apply a color within a bounded area. Many plots, such as bar charts and band plots, have bounded areas that can be filled or unfilled. When filled, a color is applied. When unfilled, the areas are transparent.

**fit policy**

one of several algorithms for avoiding tick-value collision when space allotted to a predefined area does not permit all the text to fit. For example, an axis might have a THIN policy that eliminates the display of tick values for alternate ticks. A ROTATE policy would turn the tick values at a 45-degree angle. A TRUNCATE policy would truncate all long tick values to a fixed length and add an ellipsis ( . . . ) at the end to imply truncation. A STAGGER policy would create two rows of tick values with consecutive tick values alternating between rows. A compound policy such as STAGGERROTATE could be used to automatically choose the best fit policy for the situation.

**footnote area**

the region below the graph area where text produced by ENTRYFOOTNOTE statements appears.

**frequency variable**

in an input data set, a non-negative and non-zero integer variable that represents the frequency of occurrence of the current observation, essentially treating the data set as if each observation appeared n times, where n is the value of the FREQ variable for the observation.

**fringe plot**

a plot consisting of short, equal-length line segments drawn from and perpendicular to an axis. Each observation of a numeric variable corresponds to the location for a line segment.

**function**

See SAS function.
glyph
the most basic element (a grapheme or combination of graphemes) of a typeface or font that carries meaning in the text of a writing system. For example, the Z character can be represented by a number of different glyphs—boldface, italic, or in varying font styles, all of which represent the letter "Z."

graph cell (cell)
a distinct rectangular subregion of a graph that can contain plots, text, or legends.

graph panel
a graph with multiple cells.

graphics template
See ODS template.

grid
a uniform arrangement of the rows and columns of a multi-cell layout.

gridded data
input that contains at least three numeric variables. Two of the variables are treated as X and Y variables and the third variable Z is treated as if it were a function of X and Y. The X and Y variable values occur at uniformly spaced intervals (although the size and number of intervals might be different for X and Y). All X,Y pairs are unique, and Z values are interpolated so that every X,Y pair has a Z value. Raw data that has at least three numeric variables can be converted to gridded data with the G3GRID procedure (in SAS/GRAPH). The procedure offers both bivariate and spline interpolation methods for computing Z values.

group index
a numeric variable with positive integer values that correspond to values of a group variable. The index values are used to associate GraphData1 GraphDataN style elements with group values.

group variable
a variable in the input data set that is used to categorize chart variable values into groups. A group variable enables the data for each distinct group value to be rendered in a visually different manner. For example, a grouped scatter plot displays a distinct marker and color for each group value.

image format
a file format that displays a graphical representation. PNG, GIF, TIFF, and JPEG are examples of image formats, each with different characteristics.

inset
a graphical element such as a legend, line of text, or a table of text that is embedded inside of a graph's plot area.

interval axis
an axis where the distance between tick marks represents monotonically increasing or decreasing numeric units of some scale (like a ruler). The standard interval axis is called a LINEAR axis. Specialized interval axes include a TIME axis and a LOG axis.

layout
a generic term for a rectangular container that lays out the positions and sizes of its child components.
layout block
  a block beginning with a LAYOUT statement and ending with an ENDLAYOUT statement.

layout grid
  a multi-cell layout arranged as a grid of cells in rows and columns.

layout row (row)
  a set of layout cells that are side-by-side and share the same alignment.

layout type
  a keyword indicating the functionality of the layout. For example OVERLAY, LATTICE, and DATAPANEL are layout types.

legend entry
  a combination of a graphical element such as a marker or line along with text describing the value or use of the graphical element. A discrete legend can have several legend entries.

legend title
  text that explains how to interpret the legend.

line property
  a value that defines the pattern, thickness, or color of a line. By default, the value for a line property is derived from a style element in the current style.

linear axis
  an interval axis with ticks placed on a linear scale.

loess plot
  a curved line showing a loess fit for a set of points.

log axis
  an axis displaying a logarithmic scale. A log axis is useful when data values span orders of magnitude.

macro variable reference
  a string that contains the name of a macro variable that is referenced in order to substitute a value that is located or defined elsewhere.

marker
  a symbol such as a diamond, a circle, or a triangle that is used to indicate the location of, or annotate, a data point in a plot or graph.

marker property
  a value that defines the symbol used as a marker, or its size, weight, or color. By default, the value for a marker property is derived from a style element in the current style.

multi-cell layout
  a layout that supports a rectangular grid of cells, each of which can contain a graphical element, such as a plot, a legend, a nested layout, and so on.

nested layout
  a layout block that appears within the scope of another layout block.
ODS
See Output Delivery System.

ODS Graphics
an extension to ODS that is used to create analytical graphs using the Graph Template Language.

ODS Graphics Editor
an interactive application that can be used to edit and annotate ODS Graphics output.

ODS style (style)
a combination of colors, fonts, lines, marker symbols, and so on that provide a specific appearance for SAS output. A style is defined in ODS by a style template.

ODS template (graphics template)
a description of how output should appear when it is formatted. ODS templates are stored as compiled entries in a template store, also known as an item store. Common template types include STATGRAPH, STYLE, CROSSTABS, TAGSET, and TABLE.

opaque
a property of a background. Opaque backgrounds are filled with a color. Non-opaque backgrounds are transparent.

outlier
a data point that differs from the general trend of the data by more than is expected by chance alone. An outlier might be an erroneous data point or one that is not from the same sampling model as the rest of the data.

Output Delivery System (ODS)
a component of SAS software that can produce output in a variety of formats such as markup languages (HTML, XML), PDF, listing, RTF, PostScript, and SAS data sets.

overlay
a plot that can be superimposed on another plot when specified within an overlay-type layout. A common overlay combination is a fit line on a scatter plot.

overlay layout
a type of layout that supports the superimposition of graphical components, such as plots, legends, and nested layouts.

parameterized plot
a non-computed plot that requires parameterized data. The Graph Template Language offers several plots in both computed and parameterized versions, for example, BARCHART and BARCHARTPARM. Some computed plots such as REGRESSIONPLOT can be emulated with a SERIESPLOT if the input data represented points on a fit line.

parent block
when two or more blocks are nested, any layout block that contains one or more layout blocks is a parent of the contained blocks.

plot
a visual representation of data such as a scatter plot, needle plot, or contour plot.
**plot area**  
the space, bounded by the axes, where a visual representation of data, such as a scatter plot, a series line, or a histogram, is drawn.

**plot type**  
a plot family such as bar chart (which would include horizontal, vertical, and grouped bar charts), or a classification scheme for plots based on some useful criteria, such as whether the plots are computed or parameterized.

**primary axis**  
the X or Y axis contrasted to the X2 or Y2 secondary axis.

**primary plot**  
the plot in an overlay that determines axis features, such as axis type and axis label.

**prototype layout**  
an overlay plot composite that appears in each cell of a classification panel. Each instance of the prototype represents a different subset (classification level) of the data.

**regression plot**  
a straight or curved line showing a linear or higher order regression fit for a set of points.

**required argument**  
a variable or constant that must be specified in order to evaluate an expression or render a plot, legend, text, or a layout. For example, a scatter plot has two required arguments: X=column and Y=column.

**role**  
a description of the purpose that a variable serves in a plot. For example, a series plot has predefined roles named for X, Y, GROUP, and CURVELABEL.

**row**  
See layout row.

**row axis**  
an external axis appearing on the left or right of a row of cells in a multi-cell layout.

**row gutter**  
space between rows of cells of a multi-cell layout.

**row header**  
typically, the text that identifies the row contents in a multi-cell layout. This text can be aligned to the right or left of the cells in a row. The row header is not restricted to text (it can contain a plot or a legend, for example).

**row major order**  
an order for populating cells of a layout or entries of a legend when the number of columns is specified. For example, in the default case: Start at the top left and fill cells or entries left-to-right. When the right-most column is filled, begin a new row below the previous row. Continue this until all content items have been placed in cells or entries. There might be empty cells/entries in the last row.
row weight
in a LATTICE layout, the proportion of height allotted to a specific row of the layout. The sum of all row weights is 1.

SAS function (function)
a type of SAS language element that is used to process one or more arguments and then to return a result that can be used in either an assignment statement or an expression.

secondary axis
an X2 or Y2 axis, as contrasted with the primary axes X or Y.

SGE file
a file created in the ODS Graphics environment that contains an editable graph. Such files have a .sge file extension and can be edited only with the ODS Graphics Editor. You can edit SGE files from the SAS Results window or by opening the SGE file from within the ODS Graphics Editor.

sidebar
an area of certain multi-cell layouts external to the grid of cells where text or other graphical elements can appear. The LATTICE, DATAPANEL, and DATALATTICE layout support four sidebar areas (TOP, BOTTOM, LEFT, and RIGHT).

single-cell layout
a layout type that supports only one cell. The OVERLAY, OVERLAY3D, and OVERLAYEQUATED layouts are examples of single-cell layouts.

sparse data
in classification panels with two or more classifiers, some crossings of the classification values might not be present in the input data. Such input data is called sparse data. By default, a DATAPANEL layout does not generate cells for sparse data, but if requested, it can produce empty cells as place holders for the non-existent crossings.

stand-alone plot
a plot that has its own data range and can therefore appear by itself in a layout.

statement block (block)
a group of statements that has both a logical beginning and ending statement. For example, a LAYOUT statement along with its ENDLAYOUT statement and all contained statements are a block. Some blocks can be nested within other blocks.

style
See ODS style.

style attribute
a visual property, such as color, font properties, and line characteristics, that is defined in ODS with a reserved name and value. Style attributes are collectively referenced by a style element within a style template.

style element
a named collection of style attributes that affects specific parts of ODS output. For example, a style element might specify the color and font properties of title text or other text in a table or graph.
**style reference**
a part of the Graph Template Language syntax that indicates the current value of a specific attribute of a specific style element. For example, SIZE=GraphTitleText:FontSize means to assign to SIZE the value of the FontSize attribute of the GraphTitleText style element from the current style.

**surface plot**
a three-dimensional graph that displays values of a vertical Z variable based on gridded X and Y variables.

**template compile time**
the phase when the source program of a template definition is submitted. The syntax of the definition is evaluated for correctness. If no errors are detected, the definition is converted to a binary format and stored for later access.

**template definition (template source)**
the TEMPLATE procedure source program that creates a template. A template definition can be generated from a compiled template. Also called the template source.

**template run time**
the actions performed when a compiled template is bound to a data object and then rendered to produce a graph. Run-time errors can occur that prevent a graph from being produced.

**template source**
See template definition.

**template store**
an item store that contains definitions that were created by the TEMPLATE procedure. Definitions that SAS provides are in the item store Sashelp.Tmplmst. You can store definitions that you create in any template store to which you have Write access.

**template-based graphic**
graphical output produced by a compiled ODS template of the type STATGRAPH. That is, a graph that is produced within the ODS graphics environment rather than in the traditional device-based environment.

**text property**
any of a common set of characteristics that can be specified for any text string: color, family, size, weight, and style. By default, values for these properties are derived from a style element in the current style.

**threshold range**
a lower and upper value that specifies the first and last tick mark values for a continuous, linear axis.

**time axis**
an axis type that displays only SAS date, time, or datetime values. Axis tick value increments can be specified as time or date intervals, such as MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

**title area**
the region above the graph area where text produced by ENTRYTITLE statements appears.
transparency
the degree to which a graphic element (such as a marker or filled area) is opaque or transparent. Transparency is indicated with a number from 0 (completely opaque) to 1 (completely transparent).

Unicode
a 16-bit encoding that is the industry standard for supporting the interchange, processing, and display of characters and symbols from most of the world's writing systems.

wall
the area bounded by orthogonal axis pairs. In two-dimensional graphs, there is one wall bounded by the XY axes. In three-dimensional graphs, there are three walls, bounded by the XY, YZ, and XZ axes. A wall has an optional outline and can be opaque or transparent.

weight variable
a numeric variable that represents a weight (for example, costs) to be applied to observations.
## Index

<table>
<thead>
<tr>
<th>A</th>
<th>STEPPLOT statement 778</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACROSS= option</td>
<td>ARROWHEADS= option</td>
</tr>
<tr>
<td>AXISLEGEND statement 1091</td>
<td>VECTORPLOT statement 840</td>
</tr>
<tr>
<td>DISCRETELEGEND statement 1111</td>
<td>ARROWHEADSCALE= option</td>
</tr>
<tr>
<td>MERGEDLEGEND statement 1111</td>
<td>DRAWARROW statement 1215</td>
</tr>
<tr>
<td>ADDITIONALNAMES= option</td>
<td>SERIESPLOT statement 744</td>
</tr>
<tr>
<td>MERGEDLEGEND statement 1112</td>
<td>STEPPLOT statement 778</td>
</tr>
<tr>
<td>ALIGN=</td>
<td>ARROWHEADSHAPE= option</td>
</tr>
<tr>
<td>INNERMARGIN statement 166</td>
<td>DRAWARROW statement 1214</td>
</tr>
<tr>
<td>SIDEBAR statement, datalattice layout 65</td>
<td>SERIESPLOT statement 745</td>
</tr>
<tr>
<td>SIDEBAR statement, datatran layout 92</td>
<td>STEPPLOT statement 778</td>
</tr>
<tr>
<td>SIDEBAR statement, datapanel layout 92</td>
<td>VECTORPLOT statement 840</td>
</tr>
<tr>
<td>ALPH= option</td>
<td>ASPECTRATIO= option</td>
</tr>
<tr>
<td>ELLIPSE statement 424</td>
<td>LAYOUT OVERLAY statement 137</td>
</tr>
<tr>
<td>ALPHA= regression option</td>
<td>LAYOUT PROTOTYPE statement 160</td>
</tr>
<tr>
<td>LOESSPLOT statement 563</td>
<td>attribute maps</td>
</tr>
<tr>
<td>PBSPLINEPLOT statement 610</td>
<td>for discrete values 1287</td>
</tr>
<tr>
<td>REGRESSIONPLOT statement 676</td>
<td>for numeric ranges 1301, 1306</td>
</tr>
<tr>
<td>ALTDISPLAY= option</td>
<td>ATTRMAP= argument</td>
</tr>
<tr>
<td>data lattice, data panel axis options 1034</td>
<td>DISCRETEATTRVAR statement 1298</td>
</tr>
<tr>
<td>ALTDISPLAYSECONDARY= option</td>
<td>RANGEATTRVAR statement 1309</td>
</tr>
<tr>
<td>data lattice, data panel axis options 1034</td>
<td>ATTRVAR= argument</td>
</tr>
<tr>
<td>ALTFILLATTRS= option</td>
<td>DISCRETEATTRVAR statement 1297</td>
</tr>
<tr>
<td>BLOCKPLOT statement 291</td>
<td>RANGEATTRVAR statement 1308</td>
</tr>
<tr>
<td>ANCHOR= option</td>
<td>AUTOALIGN= option</td>
</tr>
<tr>
<td>DRAWIMAGE statement 1221</td>
<td>AXISLEGEND statement 1091</td>
</tr>
<tr>
<td>DRAWOVAL statement 1235</td>
<td>CONTINUOUSLEGEND statement 1100</td>
</tr>
<tr>
<td>DRAWRECTANGLE statement 1243</td>
<td>DISCRETELEGEND statement 1112</td>
</tr>
<tr>
<td>DRAWTTEXT statement 1251</td>
<td>ENTRY statement 1148</td>
</tr>
<tr>
<td>ANNOTATE statement</td>
<td>LAYOUT GRIDDED statement 103</td>
</tr>
<tr>
<td>TEMPLATE procedure 1267</td>
<td>LAYOUT LATTICE statement 113</td>
</tr>
<tr>
<td>area fill</td>
<td>MERGEDLEGEND statement 1112</td>
</tr>
<tr>
<td>remapping in grouped data 183</td>
<td>AUTOITEMSIZE= option</td>
</tr>
<tr>
<td>arrow</td>
<td>DISCRETELEGEND statement 1113</td>
</tr>
<tr>
<td>drawing an arrow 1212, 1219</td>
<td>MERGEDLEGEND statement 1113</td>
</tr>
<tr>
<td>ARROWDIRECTION= option</td>
<td>axis features</td>
</tr>
<tr>
<td>VECTORPLOT statement 840</td>
<td>axis types 883</td>
</tr>
<tr>
<td>ARROWHEADDIRECTION= option</td>
<td>COLUMN2AXES block 879</td>
</tr>
<tr>
<td>DRAWARROW statement 1214</td>
<td>COLUMN2DATARANGE= 877</td>
</tr>
<tr>
<td>ARROWHEADPOSITION= option</td>
<td>COLUMNAXES block 879</td>
</tr>
<tr>
<td>SERIESPLOT statement 744</td>
<td>COLUMNNDATARANGE= 877</td>
</tr>
<tr>
<td>controlling 883</td>
<td></td>
</tr>
</tbody>
</table>
data mapping 876
displayed axis features 875
in data lattice layouts 882
in data panel layouts 882
in gridded layouts 876, 883
in lattice-type layouts 877, 882
in layouts 875, 876
in overlay-type layouts 881
OFFSETMAX= 886
OFFSETMIN= 886
overview 10, 875
ROW2AXES block 879
ROW2DATARANGE= 877
ROWAXES block 879
ROWDATARANGE= 877
setting axis types 884
THRESHOLDMAX= 885
THRESHOLDMIN= 885
VIEWMAX= 884
VIEWMIN= 884
when plots share data 880
axis options
 LAYOUT DATALATTICE statement 1032
 LAYOUT DATAPANEL statement 1032
 LAYOUT LATTICE statement 963
 LAYOUT OVERLAY statement 889
 LAYOUT OVERLAY3D statement 945
 LAYOUT OVERLAYEQUATED statement 1013
axis statements in LATTICE layout
 COLUMN2HEADERS statement 133
 COLUMNHEADERS statement 133
 ROW2HEADERS statement 133
 ROWHEADERS statement 133
axis, defined 7
AXISBREAKSYMBOL= option
 BEGINGRAPH statement 23
AXISBREAKTYPE= option
 BEGINGRAPH statement 24
AXISLEGEND statement
 TEMPLATE procedure 1089
AXISLINEEXTENT= option
 BEGINGRAPH statement 25
AXISTABLE statement
 TEMPLATE procedure 190

B
BACKGROUNDCOLOR= argument
 INNERMARGIN statement 167
BACKGROUNDCOLOR= option
 AXISLEGEND statement 1091
 BEGINGRAPH statement 26
CONTINUOUSLEGEND statement 1100
DISCRETELEGEND statement 1113
ENTRY statement 1149
ENTRYFOOTNOTE statement 1156
ENTRYTITLE statement 1163
LAYOUT DATALATTICE statement 48
LAYOUT DATAPANEL statement 74
LAYOUT GRIDDED statement 104
LAYOUT LATTICE statement 114
LAYOUT OVERLAY statement 137
LAYOUT OVERLAY3D statement 154
LAYOUT OVERLAYEQUATED statement 145
LAYOUT REGION statement 162
MERGEDLEGEND statement 1113
BACKLIGHT= option
 POLYGONPLOT statement 631
TEXTPLOT statement 814
BANDPLOT statement
 TEMPLATE procedure 204
BARCHART statement
 TEMPLATE procedure 218
BARCHARTPARM statement
 TEMPLATE procedure 250
BARLABEL= option
 BARCHART statement 221
WATERFALLCHART statement 857
BARLABELATTRS= option
 BARCHART statement 221
WATERFALLCHART statement 857
BARLABELFITPOLICY= option
 BARCHART statement 221
WATERFALLCHART statement 857
BARLABELFORMAT= option
 BARCHART statement 222
WATERFALLCHART statement 858
BARWIDTH= option
 BARCHART statement 222
BARCHARTPARM statement
 TEMPLATE procedure 253
HIGHLOWPLOT statement 474
WATERFALLCHART statement 858
BASE=
 LOGOPTS= option, datalattice or datapanel axis 1066
 LOGOPTS= option, lattice axis 994
 LOGOPTS= option, overlay axis 926
BASELINEATTRS= option
 BARCHART statement 223
BARCHARTPARM statement 253
NEEDLEPLOT statement 587
WATERFALLCHART statement 858
BASELINEINTERCEPT= option
 BARCHART statement 223
BARCHARTPARM statement 254
LINECHART statement 524
NEEDLEPLOT statement 587
WATERFALLCHART statement 859
BEGINGRAPH statement 4
DESIGNHEIGHT= option 706
TEMPLATE procedure 21
BEGINPOLYGON statement
TEMPLATE procedure 1199
BEGINPOLYLINE statement
TEMPLATE procedure 1206
BIHISTOGRAM3DPARM statement
TEMPLATE procedure 284
BINAXIS= option
BIHISTOGRAM3DPARM statement 285
HISTOGRAM statement 495
HISTOGRAMPARM statement 508
BINSTART= option
HISTOGRAM statement 495
BINWIDTH= option
HISTOGRAM statement 496
BLOCK= argument
BLOCKPLOT statement 291
BLOCKINDEX= option
BLOCKPLOT statement 291
BLOCKPLOT statement
TEMPLATE procedure 289
border, specifying on a graph 16
BORDER= option
AXISLEGEND statement 1091
BEGINGRAPH statement 26
CONTINUOUSLEGEND statement 1101
DISCRETELEGEND statement 1113
DRAWIMAGE statement 1221
DRAWTXT statement 1251
ENTRY statement 1149
ENTRYFOOTNOTE statement 1156
ENTRYTITLE statement 1164
LAYOUT DATALATTICE statement 48
LAYOUT DATAPANEL statement 74
LAYOUT GLOBALLEGEND statement 97
LAYOUT GRIDDED statement 104
LAYOUT LATTICE statement 114
LAYOUT OVERLAY statement 138
LAYOUT OVERLAY3D statement 154
LAYOUT OVERLAYEQUATED statement 146
LAYOUT REGION statement 163
MERGEDLEGEND statement 1113
BOUNDARY= option
HISTOGRAM statement 496
BOXPLOT statement
TEMPLATE procedure 305
BOXPLOTPARM statement
TEMPLATE procedure 336
BOXWIDTH= option
BOXPLOT statement 308
BOXPLOTPARM statement 341
BREAK= option
LINECHART statement 524
SERIESPLOT statement 745
STEPPELOT statement 779
BUBBLEPLOT statement
TEMPLATE procedure 367
BUBBLERADIUSMAX= option
BUBBLEPLOT statement 370
BUBBLERADIUSMIN= option
BUBBLEPLOT statement 370

C
CAPSHAPE= option
BOXPLOT statement 308
BOXPLOTPARM statement 341
CATEGORY= argument
BARCHART statement 221
BARCHARTPARM statement 253
LINECHART statement 523
PIECHART statement 615
WATERFALLCHART statement 857
CATEGORY= option
MOSAICPLOTPARM statement 574
CATEGORYDIRECTION= option
PIECHART statement 615
CELL block
  in LAYOUT LATTICE 127
  cell, defined 7
CELLHEADER statement
  in LAYOUT LATTICE 128
CELLHEIGHTMIN= option
  LAYOUT DATALATTICE statement 49
  LAYOUT DATAPANEL statement 74
CELLWIDTHMIN= option
  LAYOUT DATALATTICE statement 49
  LAYOUT DATAPANEL statement 75
CENTERFIRSTSLICE= option
  PIECHART statement 615
CHAR= argument
  SYMBOLCHAR statement 1173
CLASS= argument
  AXISTABLE statement 192
CLASS= option
  AXISTABLE statement 192
  BLOCKPLOT statement 292
CLASSDISPLAY= option
  AXISTABLE statement 192
CLASSORDER= option
  AXISTABLE statement 192
CLASSVARS= argument
  LAYOUT DATAPANEL statement 73
CLI= regression option
  PBSPLINEPLOT statement 610
  REGRESSIONPLOT statement 676
CLIP= option
  DROPLINE statement 417
  ELLIPSE statement 424
  ELLIPSEPARM statement 433
  LINEPARM statement 544
  REFERENCESLINE statement 656
  VECTORPLOT statement 841
CLIPCAP= option
  HIGHLOWPLOT statement 474
CLIPCAPSHAPE= option
  HIGHLOWPLOT statement 476
CLM= regression option
  LOESSPLOT statement 563
  PBSPLINEPLOT statement 610
  REGRESSIONPLOT statement 676
CLOSE= option
  HIGHLOWPLOT statement 476
CLUSTERAXIS= option
  SCATTERPLOT statement 684
  SERIESPLOT statement 745
  STEPPLOT statement 779
  TEXTPLOT statement 816
CLUSTERHEIGHT= argument
  DENDROGRAM statement 396
CLUSTERS= option
  DENDROGRAM statement 396
CLUSTERWIDTH= option
  AXISTABLE statement 193
  BARCHARTPARM statement 254
  BOXPLOT statement 309
  BOXPLOTPARM statement 342
  HIGHLOWPLOT statement 476
  NEEDLEPLOT statement 587
  SCATTERPLOT statement 685
  SERIESPLOT statement 746
  STEPPLOT statement 779
  TEXTPLOT statement 816
  COLC function 1325
  COLLABEL function 1325
  COLN function 1325
  COLNAME function 1325
  color ramp
    attribute map for 1301
    color value type 1340
  COLOR= attribute
    for fills 1348
    for lines 1349
    for markers 1350
    for text 1351
  COLORBANDS=
    DISCRETEOPTS= option, overlay axis 904
  COLORBANDSATTRS=
    DISCRETEOPTS= option, overlay axis 905
  COLORBYFREQ= option
    BARCHART statement 224
  COLORGROUP= argument
    HEATMAPPARM statement 461
  COLORGROUP= option
    AXISTABLE statement 193
    MOSAICPLOTPARM statement 575
    WATERFALLCHART statement 860
  COLORMODEL= option
    BARCHART statement 224
    BARCHARTPARM statement 255
    BUBBLEPLOT statement 370
    CONTOURPLOTPARM statement 388
    HEATMAP statement 448
    HEATMAPPARM statement 462
    HIGHLOWPLOT statement 477
    LINECHART statement 525
    MOSAICPLOTPARM statement 575
    POLYGONPLOT statement 632
    SCATTERPLOT statement 682
    SCATTERPLOTMATRIX statement 718
    SERIESPLOT statement 746
    SURFACEPLOTPARM statement 805
    TEXTPLOT statement 815
    VECTORPLOT statement 841

Index
COLORRESPONSE= argument
HEATMAP statement 462
COLORRESPONSE= option
BARCHART statement 225
BARCHARTPARM statement 256
BUBBLEPLOT statement 371
HEATMAP statement 449
HIGHLOWPLOT statement 477
LINECHART statement 525
MOASICPLOTPARM statement 576
POLYGONPLOT statement 633
SCATTERPLOT statement 683
SCATTERPLOTMATRIX statement 719
SERIESPLOT statement 747
SURFACEPLOTPARM statement 805
TEXTPLOT statement 815
VECTORPLOT statement 842
WATERFALLCHART statement 860

COLORSTAT= option
BARCHART statement 226
HEATMAP statement 449
WATERFALLCHART statement 861

remapping in grouped data 183
with grouped data 179
with non-grouped data 177

COLUMN2AXES block
in LAYOUT LATTICE 132
COLUMN2AXISOPTS= option
LAYOUT DATALATTICE statement 49
LAYOUT DATAPANEL statement 75
COLUMN2DATARANGE= option
LAYOUT DATALATTICE statement 50
LAYOUT DATAPANEL statement 76
LAYOUT LATTICE statement 115, 130

COLUMN2HEADERS statement
LAYOUT LATTICE statement 133
COLUMNAXES block
in LAYOUT LATTICE 132
COLUMNAXIS statement
in LAYOUT LATTICE 132
LAYOUT LATTICE statement 963
COLUMNAXISOPTS= option
LAYOUT DATALATTICE statement 49, 1032
LAYOUT DATAPANEL statement 75, 1032
COLUMNNDATARANGE= option
LAYOUT DATALATTICE statement 50
LAYOUT DATAPANEL statement 75
LAYOUT LATTICE statement 114, 130

COLUMNGUTTER= option
LAYOUT DATAPANEL statement 51
LAYOUT DATAPANEL statement 77
LAYOUT GRIDDED statement 104
LAYOUT LATTICE statement 116
COLUMNHEADERS statement
LAYOUT LATTICE statement 133
COLUMNHEADERS= option
LAYOUT DATALATTICE statement 51

COLUMNVAR= argument
LAYOUT DATAPANEL statement 116

COLUMNWEIGHT= option
LAYOUT DATAPANEL statement 52
LAYOUT DATAPANEL statement 77
LAYOUT GRIDDED statement 104
LAYOUT LATTICE statement 116
COLUMNWEIGHTS= option
LAYOUT LATTICE statement 116
COMMONAXISOPTS= option
LAYOUT OVERLAYEQUATED statement 146, 1013
computed plots 10
conditional logic
example uses 1333
IF statement 14, 1333
overview 14
why used 1334
CONNECT= option
BOXPLOT statement 309
WATERFALLCHART statement 862
CONNECTATTRS= option
BARCHART statement 227
BARCHARTPARM statement 257
BOXPLOTPARM statement 343
WATERFALLCHART statement 862
CONNECTDECREASINGATTRS=
option
WATERFALLCHART statement 863
CONNECTINCREASINGATTRS=
option
WATERFALLCHART statement 863
CONNECTORDER= option
BANDPLOT statement 207
SERIESPLOT statement 747
<table>
<thead>
<tr>
<th>Short Description</th>
<th>Long Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPPLOT statement</td>
<td>780</td>
</tr>
<tr>
<td>CONTINUOUSLEGEND statement</td>
<td>LEGEND statement 1098</td>
</tr>
<tr>
<td>CONTOURPLOTPARM statement</td>
<td>TEMPLATE procedure 386</td>
</tr>
<tr>
<td>CONTOURTYPE= option</td>
<td>CONTOURPLOTPARM statement 389</td>
</tr>
<tr>
<td>CONTRIBUTOFFSETS= option</td>
<td>SCATTERPLOT statement 685, 817</td>
</tr>
<tr>
<td>CORROPTS= option</td>
<td>SCATTERPLOTMATRIX statement 720</td>
</tr>
<tr>
<td>COUNT= option</td>
<td>MOSAICPLOTPARM statement 575</td>
</tr>
<tr>
<td>CSS function</td>
<td>1328</td>
</tr>
<tr>
<td>CUBE= option</td>
<td>location and position in templates 185</td>
</tr>
<tr>
<td>curve labels</td>
<td>location relative to plot area 185</td>
</tr>
<tr>
<td>position relative to curve line 186</td>
<td></td>
</tr>
<tr>
<td>CURVELABEL= option</td>
<td>DENSITYPLOT statement 404</td>
</tr>
<tr>
<td>LINEPARM statement</td>
<td>544</td>
</tr>
<tr>
<td>LOESSPLOT statement</td>
<td>555</td>
</tr>
<tr>
<td>PBSPLINEPLOT statement</td>
<td>602</td>
</tr>
<tr>
<td>REFERENCESLINE statement</td>
<td>657</td>
</tr>
<tr>
<td>REGRESSIONPLOT statement</td>
<td>668</td>
</tr>
<tr>
<td>SERIESPLOT statement</td>
<td>748</td>
</tr>
<tr>
<td>STEPPLOT statement</td>
<td>780</td>
</tr>
<tr>
<td>CURVELABELATTRS= option</td>
<td>BANDPLOT statement 207</td>
</tr>
<tr>
<td>DENSITYPLOT statement</td>
<td>404</td>
</tr>
<tr>
<td>LINEPARM statement</td>
<td>544</td>
</tr>
<tr>
<td>LOESSPLOT statement</td>
<td>555</td>
</tr>
<tr>
<td>PBSPLINEPLOT statement</td>
<td>602</td>
</tr>
<tr>
<td>REFERENCESLINE statement</td>
<td>657</td>
</tr>
<tr>
<td>REGRESSIONPLOT statement</td>
<td>668</td>
</tr>
<tr>
<td>SERIESPLOT statement</td>
<td>748</td>
</tr>
<tr>
<td>STEPPLOT statement</td>
<td>780</td>
</tr>
<tr>
<td>CURVELABELLOCATION= option</td>
<td>BANDPLOT statement 208</td>
</tr>
<tr>
<td>DENSITYPLOT statement</td>
<td>404</td>
</tr>
<tr>
<td>LINEPARM statement</td>
<td>544</td>
</tr>
<tr>
<td>LOESSPLOT statement</td>
<td>556</td>
</tr>
<tr>
<td>PBSPLINEPLOT statement</td>
<td>603</td>
</tr>
<tr>
<td>REFERENCESLINE statement</td>
<td>658</td>
</tr>
<tr>
<td>REGRESSIONPLOT statement</td>
<td>669</td>
</tr>
<tr>
<td>SERIESPLOT statement</td>
<td>749</td>
</tr>
<tr>
<td>STEPPLOT statement</td>
<td>781</td>
</tr>
<tr>
<td>CURVELABELUPPER= option</td>
<td>BANDPLOT statement 208</td>
</tr>
<tr>
<td>DENSITYPLOT statement</td>
<td>404</td>
</tr>
<tr>
<td>LINEPARM statement</td>
<td>545</td>
</tr>
<tr>
<td>LOESSPLOT statement</td>
<td>556</td>
</tr>
<tr>
<td>PBSPLINEPLOT statement</td>
<td>603</td>
</tr>
<tr>
<td>REFERENCESLINE statement</td>
<td>658</td>
</tr>
<tr>
<td>REGRESSIONPLOT statement</td>
<td>669</td>
</tr>
<tr>
<td>SERIESPLOT statement</td>
<td>749</td>
</tr>
<tr>
<td>STEPPLOT statement</td>
<td>781</td>
</tr>
<tr>
<td>CURVELABELLOWER= option</td>
<td>MODELBAND statement 567</td>
</tr>
<tr>
<td>CV function</td>
<td>1328</td>
</tr>
<tr>
<td>CYCLEATTRS= option</td>
<td>LAYOUT OVERLAY statement 138</td>
</tr>
<tr>
<td>LAYOUT OVERLAY3D statement 154</td>
<td></td>
</tr>
<tr>
<td>LAYOUT OVERLAYEQUATED statement 146</td>
<td></td>
</tr>
<tr>
<td>LAYOUT PROTOTYPE statement 160</td>
<td></td>
</tr>
</tbody>
</table>

**D**

<table>
<thead>
<tr>
<th>Short Description</th>
<th>Long Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATALABEL= option</td>
<td>BARCHARTPARM statement 257</td>
</tr>
<tr>
<td>BOXPLOT statement</td>
<td>310</td>
</tr>
<tr>
<td>BOXPLOTPARM statement</td>
<td>343</td>
</tr>
<tr>
<td>BUBBLEPLOT statement</td>
<td>372</td>
</tr>
<tr>
<td>HISTOGRAMPARM statement</td>
<td>509</td>
</tr>
<tr>
<td>NEEDLEPLOT statement</td>
<td>588</td>
</tr>
<tr>
<td>SCATTERPLOT statement</td>
<td>686</td>
</tr>
<tr>
<td>SCATTERPLOTPARMATRIX statement</td>
<td>721</td>
</tr>
<tr>
<td>SERIESPLOT statement</td>
<td>752</td>
</tr>
<tr>
<td>STEPPLOT statement</td>
<td>785</td>
</tr>
<tr>
<td>VECTORPLOT statement</td>
<td>842</td>
</tr>
<tr>
<td>DATALABELATTRS= option</td>
<td>BARCHARTPARM statement 257</td>
</tr>
<tr>
<td>BOXPLOT statement</td>
<td>310</td>
</tr>
<tr>
<td>BOXPLOTPARM statement</td>
<td>343</td>
</tr>
<tr>
<td>BUBBLEPLOT statement</td>
<td>372</td>
</tr>
<tr>
<td>HISTOGRAMPARM statement</td>
<td>509</td>
</tr>
<tr>
<td>NEEDLEPLOT statement</td>
<td>588</td>
</tr>
<tr>
<td>PIECHART statement</td>
<td>616</td>
</tr>
<tr>
<td>SCATTERPLOT statement</td>
<td>687</td>
</tr>
<tr>
<td>SCATTERPLOTPARMATRIX statement</td>
<td>721</td>
</tr>
<tr>
<td>SERIESPLOT statement</td>
<td>752</td>
</tr>
<tr>
<td>STEPPLOT statement</td>
<td>785</td>
</tr>
<tr>
<td>VECTORPLOT statement</td>
<td>842</td>
</tr>
<tr>
<td>DATALABELCONTENT= option</td>
<td>PIECHART statement 616</td>
</tr>
</tbody>
</table>
DATALABELFITPOLICY= option
BARCHARTPARM statement  257
HISTOGRAMPARM statement  509
DATALABELLOCATION= option
PIECHART statement  616
DATALABELPOSITION= option
BUBBLEPLOT statement  372
NEEDLEPLOT statement  588
SCATTERPLOT statement  687
SCATTERPLOTMATRIX statement  722
SERIESPLOT statement  753
STEPPLT statement  785
VECTORPLOT statement  843
DATALABELSPLITCHAR= option
HISTOGRAMPARM statement  510
DATALABELSPLITCHARDROP= option
HISTOGRAMPARM statement  511
DATALABELSPLITJUSTIFY= option
BOXPLOT statement  312
BOXPLOTPARM statement  345
DATALABELTYPE= option
BARCHARTPARM statement  261
DATALATTICE layout  43, 45
DATAPANEL layout  43, 70
DATASKIN= option
BARCHART statement  227
BARCHARTPARM statement  262
BEGINGRAPH statement  27
BOXPLOT statement  312
BOXPLOTPARM statement  345
BUBBLEPLOT statement  375, 634
DROPLINE statement  418
HIGHLOWPLOT statement  478
HISTOGRAM statement  497
HISTOGRAMPARM statement  512
LINECHART statement  526
LINEPARM statement  549
LOESSPLOT statement  559
MODELBAND statement  569
MOSAICPLOTPARM statement  576
NEEDLEPLOT statement  591
PBSPLINEPLOT statement  606
PIECHART statement  618
POLYGONPLOT statement  634
REFERENCELINE statement  661
REGRESSIONPLOT statement  673
SCATTERPLOT statement  690
SCATTERPLOTMATRIX statement  725
SERIESPLOT statement  756
STEPPLT statement  788
SURFACEPLOTPARM statement  806
TEXTPLOT statement  817
VECTORPLOT statement  846
WATERFALLCHART statement  864
DEFINE STATGRAPH statement  4
DEGREE= regression option
LOESSPLOT statement  563
PBSPLINEPLOT statement  610
REGRESSIONPLOT statement  677
DENDROGRAM statement
TEMPLATE procedure  395
DENSITYPLOT statement
TEMPLATE procedure  402
DESIGNHEIGHT= option
BEGINGRAPH statement  28
BEGINGRAPH statement with datalattice layout  67
BEGINGRAPH statement with datapanel layout  73
DESIGNWIDTH= option
BEGINGRAPH statement  29
BEGINGRAPH statement with datalattice layout  67
DATASYMBOLS= option
BEGINGRAPH statement  28
DATATRANSPARENCY= option
and draw statements  1196
AXISTABLE statement  194
BANDPLOT statement  209
BARCHART statement  228
BARCHARTPARM statement  262
BIHISTOGRAM3DPARM statement  285
BLOCKPLOT statement  292
BOXPLOT statement  313
BOXPLOTPARM statement  346
BUBBLEPLOT statement  375
DENDROGRAM statement  397
DENSITYPLOT statement  408
DROPLINE statement  418
ELLIPSE statement  424
ELLIPSEPARM statement  433
FRINGEPILOT statement  441
HEATMAP statement  450
HEATMAPPARM statement  463
HIGHLOWPLOT statement  479
HISTOGRAM statement  497
HISTOGRAMPARM statement  513
LINECHART statement  527
LINEPARM statement  549
LOESSPLOT statement  559
MODELBAND statement  569
MOSAICPLOTPARM statement  576
NEEDLEPLOT statement  591
PBSPLINEPLOT statement  606
PIECHART statement  618
POLYGONPLOT statement  634
REFERENCELINE statement  661
REGRESSIONPLOT statement  673
SCATTERPLOT statement  690
SCATTERPLOTMATRIX statement  725
SERIESPLOT statement  756
STEPPLT statement  788
SURFACEPLOTPARM statement  806
TEXTPLOT statement  817
VECTORPLOT statement  846
WATERFALLCHART statement  864
DEFINE STATGRAPH statement  4
BEGIN GRAPH statement with datapanel layout 73
DIAGONAL= option
SCATTERPLOT MATRIX statement 725
dimension value type 1340
DISCRETEATTRMAP statement
TEMPLATE procedure 1287
DISCRETEATTRVAR statement
TEMPLATE procedure 1297
DISCRETEAXIOFFSETPAD= option
BEGIN GRAPH statement 29
DISCRETELEGEND statement
TEMPLATE procedure 1109
DISCRETELEGENDENTRYPOLICY=
option
DISCRETEATTRMAP statement 1288
DISCRETEMARKERSIZE= option
SCATTERPLOT statement 690
DISCRETEMAX= option
ODS GRAPHICS statement 396
DISCRETEOFFSET= option
BARCHART statement 228
BARCHART PARM statement 263
BEGIN POLYGON statement 1201
BEGIN POLYLINE statement 1208
BOX PLOT statement 313
BOX PLOT PARM statement 347
DRAW ARROW statement 1215
DRAW IMAGE statement 1222
DRAW LINE statement 1229
DRAW OVAL statement 1236
DRAW RECTANGLE statement 1244
DRAW TEXT statement 1252
DROP LINE statement 419
HIGH LOW PLOT statement 479
NEEDLE PLOT statement 592
POLYGON PLOT statement 635
REFERENCE LINE statement 662
SCATTER PLOT statement 691
SERIES PLOT statement 756
STEP PLOT statement 788
TEXT PLOT statement 818
DISPLAY= option
datalattice, datapanel axis options 1036
OVERLAY options 183
overlaid data 179
specifying display attributes 1352
specifying filling color 1348
specifying line attributes 177
specifying line color 1349
specifying line pattern 1349
specifying line thickness 1349
specifying marker attributes 178
specifying marker color 1350
specifying marker size 1350
specifying marker symbol 1350
specifying marker weight 1351
specifying text color 1351
specifying text font family 1351
specifying text size 1351
specifying text style 1351
specifying text weight 1352
specifying transparency 1348
DISPLAY= option
XAXISOPTS=, YAXISOPTS= options,
overlay equated axis 1020
DISPLAY= option
and attribute options 184
AXISTABLE statement 194
BAND PLOT statement 210
BARCHART statement 228
BARCHART PARM statement 263
BEGIN POLYGON statement 1201
BI HISTOGRAM 3D PARM statement 286
BLOCK PLOT statement 292
BOX PLOT statement 314
BOX PLOT PARM statement 347
BUBBLE PLOT statement 376
datalattice, datapanel axis options 1036
DRAW OVAL statement 1236
DRAW RECTANGLE statement 1244
ELLIPSE statement 425
ELLIPSE PARM statement 433
HEAT MAP statement 450
HEAT MAP PARM statement 463
HIGH LOW PLOT statement 479
HISTOGRAM statement 498
HISTOGRAM PARM statement 513
overlaid axis options 965
INDEX statement 527
MODEL BAND statement 569
MOSAIC PLOT PARM statement 576
NEEDLE PLOT statement 592
OVERLAY options 891
OVERLAY3D options 946
PIECHART statement 619
POLYGON PLOT statement 635
SERIES PLOT statement 757
STEP PLOT statement 789
TEXT PLOT statement 818
WATERFALL CHART statement 864
DISPLAY CLIPPED= option
AXISLEGEND statement 1092
DISCRETELEGEND statement 1113
LAYOUT GLOBALLEGEND statement 97
MERGEDLEGEND statement 1113
DISPLAYSECONDARY= lattice axis options 131
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1021
DISPLAYSECONDARY= option datalattice, datapanel axis options 1036
lattice axis options 966
overlay axis options 892
DISPLAYSTATS= option
BOXPLOT statement 315
BOXPLOT Parm statement 348
DISPLAYZEROLENGTHBAR= option
BARCHART statement 229
BARCHART Parm statement 264
DOWN= option
AXISLEGEND statement 1092
DISCRETELEGEND statement 1114
MERGEDLEGEND statement 1114
draw statements
anchor position 1195
and the graph wall 1196
and the layout background 1196
drawing layers 1195
drawing space 1192
drawing units 1192
e example 1189
DRAWARROW statement
  TEMPLATE procedure 1212
DRAWIMAGE statement
  TEMPLATE procedure 1219
DRAWLINE statement
  TEMPLATE procedure 1227
DRAWORDER= option
BUBBLEPLOT statement 376
DRAWOVAL statement
  TEMPLATE procedure 1233
DRAWRECTANGLE statement
  TEMPLATE procedure 1241
DRAWSPACE= option
BEGINGRAPH statement 30
BEGINPOLYGON statement 1202
BEGINPOLYLINE statement 1208
DRAWARROW statement 1215
DRAWIMAGE statement 1222
DRAHWLINE statement 1229
DRAWOVAL statement 1236
DRAWRECTANGLE statement 1244
DRAWTEXT statement 1252
DRAWTEXT statement
  TEMPLATE procedure 1249
DROPLINE statement
  TEMPLATE procedure 416
DROPONMISSING= option
AXISTABLE statement 194
DROPTO= option
DROPLINE statement 419
DSORT function 1325
DYNAMIC statement
  TEMPLATE procedure 13, 1313
dynamic variables
  See also dynamics
  compared to macro variables 1315
dynamics overview 13
  using on templates 1313

E
ELLIPSE = option
  SCATTERPLOTMATRIX statement 726
ELLIPSE statement
  TEMPLATE procedure 422
ELLIPSE Parm statement
  TEMPLATE procedure 431
ENDBEVEL= option
  BIHISTOGRAM3D Parm statement 286
HISTOGRAM statement 498
HISTOGRAMPARM statement 514
ENTRY statement
greek letters 1143, 1343
prefix options 1138
reserved keywords 1142, 1343
  TEMPLATE procedure 1147
text commands 1140
Unicode values 1142, 1343
ENTRYFOOTNOTE statement
greek letters 1143, 1343
prefix options 1138
reserved keywords 1142, 1343
  TEMPLATE procedure 1154
text commands 1140
Unicode values 1142, 1343
ENTRYTITLE statement
greek letters 1143, 1343
prefix options 1138
reserved keywords 1142, 1343
  TEMPLATE procedure 1162
text commands 1140
Unicode values 1142, 1343
EQUATETYPE= option
LAYOUT OVERLAYEQUATED statement 146
ERRORBARATTRs= option
  BARCHART Parm statement 264
SCATTERPLOT statement 692
INDEX

STEPPLOT statement 789
ERRORBARCAPSHAPE= option
BARCHARTPARM statement 265
SCATTERPLOT statement 692
STEPPLOT statement 789
ERRORLOWER= option
BARCHARTPARM statement 265
ERRORUPPER= option
BARCHARTPARM statement 265
STEPPLOT statement 790
ESC keyword
specifications inside quotation marks 1142
EVAL construct 12
with expressions 1317
with functions 1321
examples on the web 18
EXCLUDE= option
DISCRETELEGEND statement 1114
MERGEDLEGEND statement 1114
EXISTS function 1325
EXPAND function 1325
expression value type 1341
expressions
and data filtering 1318
and data subsetting 1318
and type conversion 1319
difference from WHERE expressions 1318
example uses 1317
on plot statement arguments 1318
overview 12
similarity to WHERE expressions 1318
why used 1317
EXTEND= option
BANDPLOT statement 210
LINEPARM statement 549
EXTRACTSCALE= option
CONTINUOUSLEGEND statement 1101
EXTRACTSCALETYPE= option
CONTINUOUSLEGEND statement 1101
EXTREME= option
BOXPLOT statement 316
BOXPLOTPARM statement 349
F
FAMILY= attribute
for text 1351
Fill attributes
remapping in grouped data 183
specifying fill color 1348
specifying transparency 1348
FILLATTRS= option
BANDPLOT statement 210
BARCHART statement 230
BARCHARTPARM statement 265
BEGINPOLYGON statement 1202
BIHISTOGRAM3DPARM statement 286
BLOCKPLOT statement 293
BOXPLOT statement 316
BOXPLOTPARM statement 350
BUBBLEPLOT statement 377
DRAWOVAL statement 1237
DRAWRECTANGLE statement 1245
ELLIPSE statement 425
ELLIPSEPARM statement 434
HEATMAP statement 451
HEATMAPPARM statement 464
HIGHLOWPLOT statement 480
HISTOGRAM statement 498
HISTOGRAMPARM statement 514
LEGENDITEM statement 1127
LINECHART statement 527
MODELBAND statement 570
MOSAICPLOTPARM statement 577
PIECHART statement 619
POLYGONPLOT statement 635
SURFACEPLOTPARM statement 806
TEXTPLOT statement 819
VALUE statement 1290
WATERFALLCHART statement 865
FILLDISPLAY= option
LEGENDITEM statement 1127
FILLEDOUTLINEDMARKERS= option
LEGENDITEM statement 1128
LINECHART statement 528
SCATTERPLOT statement 693
SERIESPLOT statement 757
STEPPLOT statement 790
FILLITEMOUTLINE= option
DISCRETELEGEND statement 1114
FILLPATTERNATTRS= option
BARCHART statement 230
BARCHARTPARM statement 266
HISTOGRAM statement 499
HISTOGRAMPARM statement 515
FILLTYPE= option
BARCHART statement 231, 267, 500, 515
BLOCKPLOT statement 294
WATERFALLCHART statement 865
FINALBARATTRS= option
WATERFALLCHART statement 865
FINALBARTICKVALUE= option
WATERFALLCHART statement 865
flexible templates, overview 12
fonts
See text attributes
footnote area, defined 7
format value type 1341
FORMAT= option
   TEXTPLOT statement 819
formats
   See SAS formats
Formats
   user-defined, with Unicode values 1355
FREQ= option
   BOXPLOT statement 317
   DENSITYPLOT statement 408
   ELLIPSE statement 425
   HEATMAP statement 451
   HISTOGRAM statement 500
   SCATTERPLOT statement 694
   SCATTERPLOTMATRIX statement 727
FREQ= regression option
   PBSPLINEPLOT statement 611
   REGRESSIONPLOT statement 677
FRINGEHEIGHT= option
   FRINGEPLOT statement 441
FRINGEPLOT statement
   TEMPLATE procedure 439
functions
   ASORT 1325
   COLC 1325
   COLLABEL 1325
   COLN 1325
   COLNAME 1325
   CSS 1328
   CV 1328
   DSORT 1325
   EXISTS 1325
   EXPAND 1325
   GTL only functions 1324
   IFC 1322
   IFN 1322
   KURTOSIS 1328
   LCLM 1328
   MAX 1328
   MEAN 1328
   MEDIAN 1328
   MIN 1328
   N 1328
   NMISS 1328
   NUMERATE 1325
overview 12
   P 1328
   P25 1328
   P5 1328
   P50 1328
   P75 1328
   P90 1328
   P95 1328
   P99 1328
   PROBT 1329
   Q1 1329
   Q3 1329
   ORANGE 1329
   RANGE 1329
   SKEWNESS 1329
   STDDEV 1329
   STDERR 1329
   SUM 1329
summary statistics functions 1328
   SUMWGT 1329
   T 1329
   TYPEOF 1326
   types available 1321
   UCLM 1329
   USS 1329
   VAR 1329

G
   glyphs
      lowercase Greek letters 1143, 1343
      special characters 1145, 1345
      uppercase Greek letters 1144, 1344
   graph template language
      See templates
      graph, defined 7
      GraphBox style element 330, 331
      Displayopts attribute 331
      GraphBoxMean style element 330
      GraphBoxMedian style element 330
      GraphBoxOutlier style element 330
      GraphBoxWhisker style element 331
   graphics environment
      ODS GRAPHICS statement 176
   GRIDATTRLRS=
      XAXISOPTS=, YAXISOPTS= options,
      overlayequated axis 1021
   GRIDATTRLRS= option
data lattice, datapanel axis options 1037
      lattice axis options 967
      overlay axis options 893
      overlay3d axis options 947
   GRIDDED layout 43, 102
   GRIDDED= option
      CONTOURPLOTPARM statement 390
   GRIDDISPLAY=
      XAXISOPTS=, YAXISOPTS= options,
      overlayequated axis 1021
   GRIDDISPLAY= option
data lattice, datapanel axis options 1038
      lattice axis options 967
      overlay axis options 893
      overlay3d axis options 947
   GROUP= option
LAYOUT DATALATTICE statement 53
LAYOUT DATAPANEL statement 78
HEADERPACK= option
LAYOUT DATALATTICE statement 54, 79
HEADERSEPARATOR= option
LAYOUT DATALATTICE statement 54, 79
HEADERSPLITCOUNT= option
LAYOUT DATALATTICE statement 54, 79
HEATMAP statement
TEMPLATE procedure 446
HEATMAPPARM statement
TEMPLATE procedure 459
height, specifying on a graph 16, 176
HEIGHT= argument
DRAWOVAL statement 1235
drawoval statement 1243
HEIGHT= option
drawimage statement 1222
ODS GRAPHICS statement 16
HEIGHT= option, ODS GRAPHICS statement 176
HEIGHTUNIT= option
drawimage statement 1222
drawoval statement 1237
drawrectangle statement 1245
HIGH= argument
HIGHLOWPLOT statement 474
HIGHCAP= option
HIGHLOWPLOT statement 483
HIGHLABEL= option
HIGHLOWPLOT statement 484
HIGHLOWPLOT statement
TEMPLATE procedure 471
HISTOGRAM statement
TEMPLATE procedure 493
HISTOGRAMPARM statement
TEMPLATE procedure 506
HOFFSET= option
SYMBOLCHAR statement 1174
SYMBOLIMAGE statement 1180

IMAGE= argument
SYMBOLIMAGE statement 1180
images
image format 176
image name 176
image size 176
INCLUDEMISSINGCLASS= option
AXISTABLE statement 195
BLOCKPLOT statement 294
LAYOUT DATALATTICE statement 55
LAYOUT DATAPANEL statement 80
INCLUDEMISSINGCOLOR= option
HEATMAPPARM statement 464
INCLUDEMISSINGDISCRETE= option
BEGINGRAPH statement 30
INCLUDEMISSINGGROUP= option
BANDPLOT statement 212
BARCHART statement 236
BARCHARTPARM statement 271
BOXPLOT statement 319
BOXPLOTPARM statement 353
BUBBLEPLOT statement 378
DENSITYPLOT statement 409, 502
ELLIPSE statement 427
ELLIPSEPARM statement 435
FRINGEPILOT statement 441
HIGHLOWPLOT statement 484
LINECHART statement 530
LINEPARM statement 550
LOESSPLOT statement 560
NEEDLEPLOT statement 594
PBSPLINEPLOT statement 607
PIECHART statement 621
POLYGONPLOT statement 636
REGRESSIONPLOT statement 673
SCATTERPLOT statement 696
SCATTERPLOTMATRIX statement 727
SERIESPLOT statement 760
STEPPILOT statement 792
TEXTPLOT statement 820
VECTORPLOT statement 847
INCLUDERANGES=
LINEAROPTS= option, overlay axis 913
TIMEOPTS= option, overlay axis 935
INDENT= option
AXISTABLE statement 196
INDENTWEIGHT= option
AXISTABLE statement 196
INDEX= option
BANDPLOT statement 212
BARCHART statement 236
BARCHARTPARM statement 272
BOXPLOT statement 320
LABEL= option
AXISTABLE statement 197
BLOCKPLOT statement 295
datalattice, datapanel axis options 1039
DROPLINE statement 419
lattice axis options 968
LEGENDITEM statement 1128
LEGENDTEXTITEMS statement 1132
overlay axis options 894
overlay3d axis options 948
POLYGONPLOT statement 637
LABELATTRS=
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1023
LABELATTRS= option
AXISTABLE statement 197
BLOCKPLOT statement 295
datalattice, datapanel axis options 1039
DROPLINE statement 420
HIGHLOWPLOT statement 485
lattice axis options 968
LEGENDITEM statement 1128
LEGENDTEXTITEMS statement 1132
overlay axis options 894
overlay3d axis options 948
LATTICE layout 43, 111
LABELFAR= option
BOXPLOT statement 320
BOXPLOTPARM statement 354
LABELFITPOLICY= option
datalattice, datapanel axis options 1039
PIECHART statement 622
PLOTPARM statement 578
PIECHART statement 622
overlay axis options 894
overlay3d axis options 948
POLYGONPLOT statement 637
LABELHALIGN= option
POLYGONPLOT statement 638
LABELJUSTIFY= option
POLYGONPLOT statement 638
LABELLOCATION= option
POLYGONPLOT statement 638
LABELPLACEMENT= option
BEGINGRAPH statement 30
LABELPOSITION= option
AXISTABLE statement 197
BLOCKPLOT statement 296
lattice axis options 969
overlay axis options 895, 1040
POLYGONPLOT statement 638
labels
location and position in templates 185
LABELSPLIT= option
POLYGONPLOT statement 640
LABELSPLITCHARDROP= option
datalattice, datapanel axis options 1042
lattice axis options 971
overlay axis options 897
POLYGONPLOT statement 640
LABELSPLITJUSTIFY= option
datalattice, datapanel axis options 1043
lattice axis options 971
overlay axis options 898
POLYGONPLOT statement 641
LABELSTRIP= option
SCATTERPLOT statement 699
SCATTERPLOTMATRIX statement 731
LAYOUT DATALATTICE statement 43
axis options 1032
TEMPLATE procedure 45
LAYOUT DATAPANEL statement 43
axis options 1032
TEMPLATE procedure 70
LAYOUT GLOBALLEGEND statement
TEMPLATE procedure 96
LAYOUT GRIDDED statement 43
TEMPLATE procedure 102
LAYOUT LATTICE statement 43
axis options 963
TEMPLATE procedure 111
LAYOUT OVERLAY statement 42
axis options 889
TEMPLATE procedure 136
LAYOUT OVERLAY3D statement 42
axis options 945
TEMPLATE procedure 152
LAYOUT OVERLAYEQUATED statement 42
axis options 1013
TEMPLATE procedure 144
LAYOUT PROTOTYPE statement 42
TEMPLATE procedure 159
with LAYOUT DATALATTICE 68
with LAYOUT DATAPANEL 93
LAYOUT REGION statement 42
TEMPLATE procedure 162
LAYOUT statement
conditional logic 14, 1333
multi-cell 8
overlay-type 8
summary 41
LCLM function 1328
LEGENDITEM statement
TEMPLATE procedure 1126
LEGENDLABEL= option
BANDPLOT statement 213
BARCHART statement 237
BARCHARTPARM statement 272
BIHISTOGRAM3DPARM statement 286
BOXPLOT statement 321
BOXPLOTPARM statement 354
BUBBLEPLOT statement 378
CONTOURPLOTPARM statement 390
DENDROGRAM statement 398
DENSITYPLOT statement 410
DROPLINE statement 420
ELLIPSE statement 427
ELLIPSEPARM statement 436
FRINGE PLOT statement 442
HISTOGRAM statement 502
HISTOGRAMPARM statement 516
LINECHART statement 531
LINEPARM statement 550
LOESS PLOT statement 561
MODEL BAND statement 570
MOSAIC PLOTPARM statement 579
NEEDLE PLOT statement 595
PBSPLINE PLOT statement 608
POLYGON PLOT statement 641
REFERENCE LINE statement 662
REGRESSION PLOT statement 674
SCATTERPLOT statement 700
SERIES PLOT statement 760
STEP PLOT statement 794
SURFACE PLOTPARM statement 806
TEXT PLOT statement 821
VECTOR PLOT statement 848
WATERFALL CHART statement 867

Legends
AXISLEGEND statement 1089
CONTINUOUSLEGEND statement 1098
defined 8
DISCRETELEGEND statement 1109
MERGEDLEGEND statement 1109
overview 11
LEGENDTEXTITEMS statement
TEMPLATE procedure 1131
LEGENDTITLEPOSITION= option
LAYOUT GLOBALLEGEND statement 98
LEVELS= option
CONTOURPLOTPARM statement 391
LIMITLOWER= argument
BANDPLOT statement 206
LIMITUPPER= argument
BANDPLOT statement 206
line
drawing a line 1227
line attributes
available line patterns 1352
specifying line color 1349
specifying line pattern 177, 1349
specifying line thickness 1349
with grouped data 179
with non-grouped data 177
line styles
remapping in grouped data 183
line-pattern-name value type 1341
line-pattern-number value type 1341
LINEAROPTS= option
datalattice, datapanel axis options 1043
lattice axis options 971
overlay axis options 898
overlay3d axis options 948
LINEATTRS= option
BEGINPOLYLINE statement 1209
CONTOURPLOTPARM statement 391
DENDROGRAM statement 398
DENSITYPLOT statement 410
DRAWARROW statement 1216
DRAWLINE statement 1230
DROPLINE statement 420
FRINGE PLOT statement 442
HIGHLOWPLOT statement 485
LEGENDITEM statement 1128
LINECHART statement 531
LINEPARM statement 551
LOESS PLOT statement 561
NEEDLE PLOT statement 595
PBSPLINE PLOT statement 608
REFERENCE LINE statement 662
REGRESSION PLOT statement 674
SERIES PLOT statement 761
STEP PLOT statement 794
VALUE statement 1290
VECTOR PLOT statement 848
LINECHART statement
TEMPLATE procedure 521
LINECOLORGROUP= option
SERIESPLOT statement 761
LINEEXTENT= option
COMMONAXISOPTS= option,
overlayequated axis 1014
overlay axis options 898
XAXISOPTS=, YAXISOPTS= options,
overlayequated axis 1023
LINELABELATTRS= option
CONTOURPLOTPARM statement 391
LINELABELBASELINE= option
CONTOURPLOTPARM statement 391
LINELABELFORMAT= option
CONTOURPLOTPARM statement 392
LINELABELPOSITION= option
CONTOURPLOTPARM statement 392
LINEPARM statement
TEMPLATE procedure 542
LINEPATTERNGROUP= option
SERIESPLOT statement 762
LINETHICKNESSMAX= option
SERIESPLOT statement 763
STEP PLOT statement 794
VECTORPLOT statement 848
LINETHICKNESSMAXRESPONSE= option
SERIESPLOT statement 763
STEP PLOT statement 795
VECTORPLOT statement 849
LINETHICKNESSMIN= option
SERIESPLOT statement 763
STEP PLOT statement 795
VECTORPLOT statement 849
LINETHICKNESSRESPONSE= option
SERIESPLOT statement 764
STEP PLOT statement 796
VECTORPLOT statement 850
LOCATION= option
AXISLEGEND statement 1093
CONTINUOUSLEGEND statement 1103
DISCRETELEGEND statement 1117
LAYOUT GRIDDED statement 105
MERGEDLEGEND statement 1117
LOESSPLOT statement
TEMPLATE procedure 553
LOGOPTS= option
datalattice, datapanel axis options 1043
lattice axis options 971
overlay axis options 899
LOW= argument
HIGHLOWPLOT statement 474
LOWCAP= option
HIGHLOWPLOT statement 485
LOWLABEL= option
HIGHLOWPLOT statement 486
specifying marker color 1350
specifying marker size 1350
specifying marker symbol 1350
specifying marker weight 1351
with grouped data 179
with non-grouped data 177
marker-name value type 1341
MARKERATTRS= option
LEGENDITEM statement 1128
LINECHART statement 532
NEE DLEPLOT statement 595
SCATTERPLOT statement 700
SCATTERPLOTMATRIX statement 731
SERIESPLOT statement 764
STEP PLOT statement 796
VALUE statement 1290
MARKERCHARACTER= option
SCATTERPLOT statement 702
SCATTERPLOTMATRIX statement 732
MARKERCHARACTERATTRS= option
SCATTERPLOT statement 701
SCATTERPLOTMATRIX statement 732
MARKERCHARACTERPOSITION= option
SCATTERPLOT statement 702, 733
MARKERCOLORGROUP= option
SERIESPLOT statement 765
MARKERCOLORGROUP= option
SERIESPLOT statement 765
MARKERFILLATTRS= option
LINECHART statement 532
SCATTERPLOT statement 703
SERIESPLOT statement 766
STEP PLOT statement 797
MARKEROUTLINEATTRS= option
LINECHART statement 533
SCATTERPLOT statement 703
SERIESPLOT statement 766
STEP PLOT statement 797
MARKERSIZEMAX= option
SCATTERPLOT statement 703
MARKERSIZEMAX= option
SCATTERPLOT statement 703
MARKERSIZEMIN= option
SCATTERPLOT statement 704
MARKERSIZERESPONSE= option
SCATTERPLOT statement 704
MARKERSIZERESPONSE= option
SCATTERPLOT statement 704
MARKERSYMBOLGROUP= option
SERIESPLOT statement 767
MATRIXTYPE= option
SCATTERPLOTMATRIX statement 734
MAX function 1328

M
macro variables
compared to dynamic variables 1315
overview 13
using on templates 1313
marker attributes
remapping in grouped data 183
specifying in a template 178
MAXPOINTS= regression option

LOESSPLOT statement 563
PBSPLINEPLOT statement 611
REGRESSIONPLOT statement 677
MEAN function 1328
MEANATTRS= option
BOXPLOT statement 321
BOXPLOTPARM statement 355
MEDIAN function 1328
MEDIANATTRS= option
BOXPLOT statement 321
BOXPLOTPARM statement 355
memory management
in java environment 1363
JREOPTIONS option
MERGEDLEGEND statement
TEMPLATE procedure 1109
MIN function 1328
MINORGRID=
LINEAROPTS= option, datalattice or datapanel axis 1056
LINEAROPTS= option, lattice axis 984
LINEAROPTS= option, overlay axis 915
LINEAROPTS= option, overlay3d axis 951
LOGOPTS= option, datalattice or datapanel axis 1066
LOGOPTS= option, lattice axis 994
LOGOPTS= option, overlay axis 926
TIMEOPTS= option, datalattice or datapanel axis 1077
TIMEOPTS= option, lattice axis 1004
TIMEOPTS= option, overlay axis 938
TIMEOPTS= option, overlay3d axis 960
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1024
MINORGRIDATTRS=
LINEAROPTS= option, datalattice or datapanel axis 1057
LINEAROPTS= option, lattice axis 985
LINEAROPTS= option, overlay axis 916
LINEAROPTS= option, overlay3d axis 952
LOGOPTS= option, datalattice or datapanel axis 1067
LOGOPTS= option, lattice axis 995
LOGOPTS= option, overlay axis 927
TIMEOPTS= option, datalattice or datapanel axis 1077
TIMEOPTS= option, lattice axis 1004
TIMEOPTS= option, overlay axis 939
TIMEOPTS= option, overlay3d axis 960
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1024
MINORTICKCOUNT=
LINEAROPTS= option, datalattice or datapanel axis 1058
LINEAROPTS= option, lattice axis 985
LINEAROPTS= option, overlay axis 916
LINEAROPTS= option, overlay3d axis 952
LOGOPTS= option, datalattice or datapanel axis 1068
LOGOPTS= option, lattice axis 995
LOGOPTS= option, overlay axis 927
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1025
MINORTICKINTERVAL=
TIMEOPTS= option, lattice axis 1005
TIMEOPTS= option, overlay axis 940
TIMEOPTS= option, overlay3d axis 961
TTIMEOPTS= option, datalattice or datapanel axis 1078
MINORTICKS=
LINEAROPTS= option, datalattice or datapanel axis 1058
LINEAROPTS= option, lattice axis 986
LINEAROPTS= option, overlay axis 917
LINEAROPTS= option, overlay3d axis 953
LOGOPTS= option, datalattice or datapanel axis 1068
LOGOPTS= option, lattice axis 996
LOGOPTS= option, overlay axis 928
TIMEOPTS= option, datalattice or datapanel axis 1078
TIMEOPTS= option, lattice axis 1005
TIMEOPTS= option, overlay axis 940
TIMEOPTS= option, overlay3d axis 961
MINORTICKS= option
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1025
MODELNAME= option
BANDPLOT statement 213
MOSAICPLOTPARM statement
TEMPLATE procedure 573
multi-cell layouts 8
MVAR statement
TEMPLATE procedure 13, 1313
N
N function 1328
NAME= argument
DISCRETEATTRMAP statement 1288
LEGENDITEM statement 1127
LEGENDTEXTITEMS statement 1131
RANGEATTRMAP statement 1301
SYMBOLCHAR statement 1173
SYMBOLIMAGE statement 1180
NAME= option
AXISTABLE statement 198
BANDPLOT statement 213
BARCHART statement 237
BARCHARTPARM statement 273
BIHISTOGRAM3DPARM statement 287
BLOCKPLOT statement 296
BOXPLOT statement 322
BOXPLOTPARM statement 355
BUBBLEPLOT statement 379
CONTOURPLOTPARM statement 392
datalattice, datapanel axis options 1043
DENDROGRAM statement 398
DENSITYPLOT statement 410
DROPLINE statement 420
ELLIPSE statement 427
ELLIPSEPARM statement 436
FRINGEPLLOT statement 443
HEATMAP statement 451
HEATMAPPARM statement 464
HIGHLOWPLOT statement 486
HISTOGRAM statement 502
HISTOGRAMAPRM statement 516
lattice axis options 899, 972
LINECHART statement 533
LINEPARM statement 551
LOESSPLOT statement 561
MODELBAND statement 570
MOASICPLOTPARM statement 579
NEEDLEPLOT statement 596
PBSPLINEPLOT statement 608
PIECHART statement 622
POLYGONPLOT statement 642
REFERENCECLINE statement 662
REGRESSIONPLOT statement 675
SCATTERPLOT statement 704
SCATTERPLOTMATRIX statement 735
SERIESPLOT statement 768
STEPPILOT statement 798
SURFACEPLOTPARM statement 806
TEXTPLOT statement 821
VECTORPLOT statement 850
WATERFALLCHART statement 867
NBINS= option
HISTOGRAM statement 503
NEEDLEPLOT statement
TEMPLATE procedure 584
NHINT= option
CONTOURPLOTPARM statement 392
NKNOTS= regression option
PBSPLINEPLOT statement 611
NLEVELS= option
CONTOURPLOTPARM statement 392
NMISS function 1328
NMVAR statement
TEMPLATE procedure 13, 1313
NODEID= argument
DENDROGRAM statement 396
non-grouped data
lines, colors, and marker symbols 177
NORMAL distribution option
DENSITYPLOT statement 413
NOTES statement
TEMPLATE procedure 13, 1313
number value type 1341
NUMERATE function 1325
numeric-column value type 1341
NXBINS= option
HEATMAP statement 451
NYBINS= option
HEATMAP statement 451

O
ODS Graphics
managing java memory 1363
ODS GRAPHICS statement
BORDER= option 16
DISCRETEMAX= option 396
HEIGHT= option 16, 176, 706
IMAGENAME= option 176
overview 15, 176
sizing a graph 16, 176
specifying a graph border 16
WIDTH= option 16, 176
ODS styles
customizing a style 180
defining a style for box plots 330
GraphBox style element 330
GraphBoxMean style element 330
GraphBoxMedian style element 330
GraphBoxOutlier style element 330
GraphBoxWhisker style element 331
overriding style element defaults 1139
use in templates 16
OFFSETMAX= option
datalattice, datapanel axis options 1043
lattice axis options 972
overlay axis options 972
overlay3d axis options 948
INDEX

**XAXISOPTS=, YAXISOPTS= options, overlayequated axis** 1026
OFFSETMIN= option
datalattice, datapanel axis options 1044
lattice axis options 972
overlay axis options 900
overlay3d axis options 949
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1026
OPAQUE= option
and draw statements 1196
AXISLEGEND statement 1093
CONTINUOUSLEGEND statement 1103
DISCRETELEGEND statement 1117
ENTRY statement 1150
ENTRYFOOTNOTE statement 1157
ENTRYTITLE statement 1164
INNERMARGIN statement 167
LAYOUT DATALATTICE statement 58
LAYOUT DATAPANEL statement 84
LAYOUT GRIDDLED statement 106
LAYOUT LATTICE statement 118
LAYOUT OVERLAY statement 139
LAYOUT OVERLAY3D statement 155
LAYOUT OVERLAYEQUATED statement 147
LAYOUT REGION statement 163
MERGEDLEGEND statement 1117
OPEN= option
HIGHOWPLOT statement 486
options
value types 1339
ORDER= option
AXISLEGEND statement 1093
DISCRETELEGEND statement 1118
LAYOUT DATAPANEL statement 84
LAYOUT GRIDDLED statement 106
LAYOUT LATTICE statement 118
MERGEDLEGEND statement 1118
ORIEN= option
BARCHART statement 237
BARCHARTPARM statement 273
BOXPLOT statement 322
BOXPLOTPARM statement 355
CONTINUOUSLEGEND statement 1103
DENDROGRAM statement 398
DENSITYPLOT statement 410
HISTOGRAM statement 503
HISTOGRAMPARM statement 516
LINECHART statement 533
ORIGIN=
LINEAROTPS= option, overlay axis 917
OTHERSLICE= option
PIECHART statement 622
OTHERSLICEOPTS= option
PIECHART statement 622
OUTERPA= option
AXISLEGEND statement 1094
CONTINUOUSLEGEND statement 1104
DISCRETELEGEND statement 1118
ENTRY statement 1150
ENTRYFOOTNOTE statement 1157
ENTRYTITLE statement 1164
LAYOUT DATALATTICE statement 59
LAYOUT DATAPANEL statement 84
LAYOUT GLOBALLEGEND statement 98
LAYOUT GRIDDLED statement 106
LAYOUT LATTICE statement 119
LAYOUT OVERLAY statement 139
LAYOUT OVERLAY3D statement 155
LAYOUT OVERLAYEQUATED statement 147
LAYOUT REGION statement 163
MERGEDLEGEND statement 1118
OUTLIERT= option
BOXPLOT statement 322
BOXPLOTPARM statement 356
OUTLIERTIP= option
BOXPLOT statement 322
BOXPLOTPARM statement 356
OUTLIERATS= option
BANDPLOT statement 213
BARCHART statement 238
BARCHARTPARM statement 273
BEGINPOLYGON statement 1202
BIHISTOGRAM3DPARM statement 287
BLOCKPLOT statement 296
BOXPLOT statement 323
BOXPLOTPARM statement 356
BUBBLEPLOT statement 379
DRAWOVAL statement 1237
DRAWRECTANGLE statement 1245
ELLIPSE statement 427
ELLIPSEPARM statement 436
HEATMAP statement 452
HEATMAPPARM statement 464
HIGHOWPLOT statement 486
HISTOGRAM statement 503
HISTOGRAMPARM statement 516
LEGENDITEM statement 1129
MODELBAND statement 570
MOSAICPLOTPARM statement 579
PIECHART statement 624
POLYGONPLOT statement 642
TEXTPLOT statement 822
WATERFALLCHART statement 867
OUTLINEDMARKERCHARACTERS= option
SCATTERPLOT statement 704
output on templates 15
oval
drawing an oval 1233
OVERLAY layout 42, 136, 144, 166
overlay-type layouts
cycling through group attributes 183
overview 8
OVERLAY3D layout 42, 152
OVERLAYEQUATED layout 42

P
P1 function 1328
P25 function 1328
P5 function 1328
P50 function 1328
P75 function 1328
P90 function 1328
P95 function 1328
P99 function 1328
PAD= option
AXISLEGEND statement 1094
AXISTABLE statement 198
BEGINGRAPH statement 31
CONTINUOUSLEGEND statement 1104
DISCRETELEGEND statement 1118
DRAWTEXT statement 1253
ENTRY statement 1150
ENTRYFOOTNOTE statement 1158
ENTRYTITLE statement 1165
INNERMARGIN statement 167
LAYOUT DATALATTICE statement 59
LAYOUT DATAPANEL statement 85
LAYOUT GLOBALLEGEND statement 99
LAYOUT GRIDDED statement 107
LAYOUT LATTICE statement 119
LAYOUT OVERLAY statement 139
LAYOUT OVERLAY3D statement 156
LAYOUT OVERLAYEQUATED statement 148
LAYOUT REGION statement 164
MERGEDLEGEND statement 1118
TEXTPLOT statement 822
PANELNUMBER= option
LAYOUT DATALATTICE statement 60
LAYOUT DATAPANEL statement 85
parameterized plots 10
PARENTID= argument
DENDROGRAM statement 396
PATTERN= attribute
for lines 1349
PBSPLINEPLOT statement
TEMPLATE procedure 600
PERCENTILE= option
BOXPLOT statement 323
percentiles
calculating 329
empirical distribution function 329
weighted average 329
PIECHART statement
TEMPLATE procedure 613
plot area
and curve label location 185
plot area, defined 7
plot statements
2D and 3D 10
computed 10
conditional logic 14, 1333
expressions on 1318
overview 10
parameterized 10
value types for options 1339
plot wall
and draw statements 1196
plots, defined 8
polygon
drawing a polygon 1199
POLYGONPLOT statement
TEMPLATE procedure 628
polyline
drawing a polyline 1206
POSITION= option
AXISTABLE statement 199
TEXTPLOT statement 823
PRIMARY= option
BARCHART statement 238
BARCHARTPARM statement 274
BIHISTOGRAM3DPARM statement 287
BOXPLOT statement 323
BOXPLOTPARM statement 357
BUBBLEPLOT statement 379
CONTOURPLOTPARM statement 392
DENDROGRAM statement 398
DENSITYPLOT statement 410
HEATMAP statement 452
HEATMAPPARM statement 465
HIGHLowPLOT statement 487
HISTOGRAM statement 503
HISTOGRAMPARm statement 517
LINECHART statement 533
Index

LOESSPLOT statement 562
NEEDLEPLOT statement 596
PBSPLINEPLOT statement 609
POLYGONPLOT statement 642
REGRESSIONPLOT statement 675
SCATTERPLOT statement 705
SERIESPLOT statement 768
STEPPLOT statement 798
SURFACEPLOTPARM statement 807
TEXTPLOT statement 824
VECTORPLOT statement 851

PROBT function 1329
PROC TEMPLATE
See TEMPLATE procedure programming features, runtime 12, 1313, 1317, 1321, 1333
PROTOTYPE layout 42, 159
with LAYOUT DATALATTICE 68
with LAYOUT DATAPANEL 93

Q
Q1 function 1329
Q3 function 1329
QRANGE function 1329
quantiles
empirical distribution function 329
weighted average 329

R
RANGE function 1329
RANGE statement 1306
RANGEALTCOLOR= option
  RANGE statement 1303
RANGEALTCOLORMODEL= option
  RANGE statement 1304
RANGEATTRMAP block 1282
RANGEATTRMAP statement
    TEMPLATE statement 1301
RANGEATTRVAR statement
    TEMPLATE procedure 1308
RANGECOLOR= option
    RANGE statement 1303
RANGECOLORMODEL= option
    RANGE statement 1305
rectangle
drawing a rectangle 1241
REFERENCELINE statement
    TEMPLATE procedure 654
REGION layout 42, 162
REGRESSIONPLOT statement
    TEMPLATE procedure 666
RELATIVESCALE= option
  BUBBLEPLOT statement 380
  RELATIVESCALETYPE= option
  BUBBLEPLOT statement 380
remapping colors, fills, markers, lines 183
REPEATEDVALUES= option
  BLOCKPLOT statement 296
RESPONSE= argument
  BARCHART statement 221
  BARCHARTPARM statement 253
  PIECHART statement 626
  WATERFALLCHART statement 857
RESPONSE= optional argument
  LINECHART statement 538
REVERSE=
  XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1026
REVERSE= option
data lattice, datapanel axis options 1044
lattice axis options 973
overlay axis options 900
REVERSECOLORMODEL= option
  BUBBLEPLOT statement 381
  CONTOURPLOTPARM statement 393
  HEATMAP statement 452
  HEATMAPPARM statement 465
  MOSAICPLOTPARM statement 579
  POLYGONPLOT statement 643
  SCATTERPLOT statement 705
  SCATTERPLOTMATRIX statement 735
  SURFACEPLOTPARM statement 807
  TEXTPLOT statement 824
REWIGHT= regression option
  LOESSPLOT statement 564
ROLENAMESPACE= option
  BANDPLOT statement 214
  BARCHARTPARM statement 274
  BOXPLOT statement 357
  BUBBLEPLOT statement 381
  FRINGEPLOT statement 443
  HEATMAP statement 452
  HEATMAPPARM statement 465
  HIGHLOWPLOT statement 487
  HISTOGRAMPARM statement 517
  LINECHART statement 534
  MOSAICPLOTPARM statement 579
  NEEDLEPLOT statement 597
  POLYGONPLOT statement 643
  SCATTERPLOT statement 706
  SCATTERPLOTMATRIX statement 735
  SERIESPLOT statement 768
  STEPPLOT statement 798
  TEXTPLOT statement 824
  VECTORPLOT statement 851
  WATERFALLCHART statement 867
  ROTATE= option
The provided page appears to be a section from a document discussing various programming features and options, specifically related to graphical layout and formatting. Here is a structured representation of the content:

- **DRAWIMAGE statement**: 1223
- **DRAWOVAL statement**: 1238
- **DRAWRECTANGLE statement**: 1246
- **DRAWTEXT statement**: 1253
- **ENTRY statement**: 1151
- **LAYOUT OVERLAY3D statement**: 156
- **POLYGONPLOT statement**: 643
- **SYMBOLCHAR statement**: 1174
- **SYMBOLIMAGE statement**: 1181
- **TEXTPLOT statement**: 824
- **ROW2AXES block** in **LAYOUT LATTICE**: 132
- **ROW2AXISOPTS= option**
- **ROW2DATARANGE= option**
- **ROW2HEADERS statement**
  - **LAYOUT LATTICE statement**: 133
- **ROWAXES block** in **LAYOUT LATTICE**: 132
- **ROWAXIS statement** in **LAYOUT LATTICE**: 132
- **ROWAXISOPTS= option**
- **ROWDATARANGE= option**
- **ROWWEIGHT= option**
- **ROWV AR= argument**
- **runtime programming features**: 12, 1313, 1317, 1321, 1333
- **SAS formats**
  - error message in log: 32
  - unsupported currency formats: 1355
  - unsupported date and time formats: 1354
  - unsupported numeric formats: 1353
  - using: 1353
- **SCALE= option**
- **SAPLACEMENTOPTS= option**
- **SEGMENTLABEL= option**
  - **BARCHART statement**: 238, 275
  - **SEGMENTLABELATTRS= option**
    - **BARCHART statement**: 239
    - **BARCHARTPARM statement**: 240
    - **SEGMENTLABELFORMAT= option**
      - **BARCHART statement**: 240
      - **BARCHARTPARM statement**: 275
  - **SEGMENTLABELFITPOLICY= option**
  - **SEMIMAJOR= argument**
  - **SEMIMINOR= argument**
  - **SEPARATOR= option**
    - **INNERMARGIN statement**: 168
  - **SEPARATORATTRS= option**

The document seems to be a comprehensive guide or reference for understanding and utilizing various programming features, likely within a statistical software context, given the mention of SAS formats. The page provides detailed listings of options and statements, each with a page number reference, indicating their location within the document.
INNERMARGIN statement 168
SERIESPLOT statement
  TEMPLATE procedure 740
SGRENDER procedure 4, 6
SHORTLABEL= XAXISOPTS=, YAXISOPTS= options,
  overlayequated axis 1026
SHORTLABEL= option
data lattice, datapanel axis options 1044
  lattice axis options 973
  overlay axis options 900
SHORTTEXT= option
ENTRYFOOTNOTE statement 1158
ENTRYTITLE statement 1166
SHOWMISSING= option
AXISTABLE statement 199
SHRINKFONTS= option
LAYOUT DATALATTICE statement 63
  LAYOUT DATAPANEL statement 89
  LAYOUT GRIDDED statement 108
  LAYOUT LATTICE statement 123
SIDEBAR statement
  with LAYOUT DATALATTICE 68
  with LAYOUT DATAPANEL 94
  with LAYOUT LATTICE 134
SIZE= argument
  BUBBLEPLOT statement 370
  TEXTPLOT statement 825
SIZE= attribute
  for markers 1350
  for text 1351
SIZEMAX= option
  SCATTERPLOT statement 706
  TEXTPLOT statement 825
SIZEMAXRESPONSE= option
  TEXTPLOT statement 825
SIZEMIN= option
  SCATTERPLOT statement 706
  TEXTPLOT statement 825
SIZERESPONSE= option
  SCATTERPLOT statement 707
  TEXTPLOT statement 826
SIZETHRESHOLDMAX= option
  BUBBLEPLOT statement 381
SIZEUNIT= option
  DRAWIMAGE statement 1224
sizing a graph 16, 176
SKEWNESS function 1329
SKIPEMPTYCELLS= option
  LAYOUT DATALATTICE statement 63
  LAYOUT DATAPANEL statement 89
  LAYOUT LATTICE statement 123
SLOPE= argument
  ELLIPSEPARAM statement 432
  LINEPARAM statement 544
SMOOTH= regression option
  LOESSPLOT statement 564
  PBSPLINEPLOT statement 611
SMOOTHCONNECT= option
  LINECHART statement 534
  SERIESPLOT statement 768
SORTBY= option
  DISCRETELEGEND statement 1119
  sorting functions 1325
SORTORDER= option
  DISCRETELEGEND statement 1119
  LAYOUT DATALATTICE statement 64
  LAYOUT DATAPANEL statement 90
  MERGEDLEGEND statement 1119
SPACEFILL= SIDEBAR statement, datalattice layout 66
  SIDEBAR statement, datapanel layout 93
  SIDEBAR statement, lattice layout 124
SPARSE= option
  LAYOUT DATAPANEL statement 90
special characters
  escaping 1142
SPLITCHAR= option
  TEXTPLOT statement 826
SPLITCHARDROP= option
  TEXTPLOT statement 827
SPLITJUSTIFY= option
  TEXTPLOT statement 827
SPLITPOLICY= option
  TEXTPLOT statement 828
SPLITTCICKVALUE=
  TIMEOPTS= option, datalattice or datapanel axis 1079
  TIMEOPTS= option, lattice axis 1006
  TIMEOPTS= option, overlay axis 940
SPLITWIDTH= option
  TEXTPLOT statement 828
SPREAD= option
  BOXPLOT statement 324
  BOXPLOTPARM statement 357
SQUARED= option
  MOSAICPLOTPARM statement 580
START= option
  LAYOUT DATALATTICE statement 65
  LAYOUT DATAPANEL statement 91
  PIECHART statement 624
  SCATTERPLOTMATRIX statement 735
STAT= argument
  BOXPLOTPARM statement 340
STAT= option
  AXISTABLE statement 200
BARCHART statement 240
LINECHART statement 534
PIECHART statement 624
WATERFALLCHART statement 868
statement arguments
expressions on 1318
statement options
value types 1339
STDDEV function 1329
STDERR function 1329
STEPLOT statement
TEMPLATE procedure 774
string value type 1341
string-column value type 1341
strings
special characters in 1142
STRIP= option
TEXTPLOT statement 828
style-reference
fill options 1348
line options 1349
marker options 1350
text options 1351
style-reference value type 1342
STYLE= attribute
for text 1351
styles
See ODS styles
SUB text command
DRAWTEXT statement 1256
ENTRY statement 1141, 1152
ENTRYFOOTNOTE statement 1141,
1159
ENTRYTITLE statement 1141, 1167
example uses 1141
SUBPIXEL= option
SCATTERPLOT statement 707, 736
subscript text
See SUB text command
SUM function 1329
SUMWGT function 1329
SUP text command
DRAWTEXT statement 1256
ENTRY statement 1141, 1152
ENTRYFOOTNOTE statement 1141,
1159
ENTRYTITLE statement 1141, 1167
example uses 1141
superscript text
See SUP text command
SURFACECOLORGRADIENT= option
SURFACEPLOT statement 807
SURFACEPLOT statement
TEMPLATE procedure 803
SURFACETYPE= option
SURFACEPLOT statement 807
SYMBOL= attribute
for markers 1350
SYMBOLCHAR statement
TEMPLATE procedure 1173
SYMBOLIMAGE statement
TEMPLATE procedure 1180

T
T function 1329
TARGET= option
BARCHART statement 241
BARCHART statement 276
TEMPLATE procedure 4
BEGINGRAPH statement 4
conditional logic on 14, 1333
DEFINE STATGRAPH statement 4
dynamics on 13, 1313
expressions 12
functions 12
macro variables on 13, 1313
MVAR statement 13, 1313
NMVAR statement 13, 1313
NOTES statement 13, 1313
types of templates 1313
templates
anatomy of a graph 7
attribute options 177
axes 7, 10
BEGINGRAPH statement 4
cell 7
compiling 5
conditional logic on 14, 1333
curve labels 185
DEFINE STATGRAPH statement 4
DISPLAY= option 184
dynamics on 13, 1313
expressions 12
flexible templates 12
footnote area 7
functions 12
graph 7
grouped data 179
image format 176
image name 176
image size 176
interactions between options 184
layout statements 8
legends 8, 11
macro variables on 13
minimum requirements for a plot 175
non-grouped data 177
ODS Graphics environment 176
ODS GRAPHICS statement 15
output 15
overview 3
plot area 7
plot display 177
plot types 10
plots 8
rendering a graph 4
runtime actions 6
SGRENDER procedure 4, 6
styles 16
title area 7
text
  drawing text 1249
  special characters 1145, 1345
  special characters in 1142
text attributes
  example uses 1139
  specifying text color 1351
  specifying text font family 1351
  specifying text size 1351
  specifying text style 1351
  specifying text weight 1352
text commands
  example uses 1140
  special characters in 1142
  TEXT= argument
    LEGENDTEXTITEMS statement 1132
    TEXTPLOT statement 814
  TEXT= option
    LEGENDITEM statement 1129
TEXTATTRS=
  SYMBOLCHAR statement 1175
TEXTATTRS= option
  LEGENDITEM statement 1129
  LEGENDTEXTITEMS statement 1132
  TEXTPLOT statement 828
VALUE statement 1291
TEXTATTRS= prefix option
  DRAWTEXT statement 1256
  ENTRY statement 1139, 1151, 1152
  ENTRYFOOTNOTE statement 1139, 1158, 1159
  ENTRYTITLE statement 1139, 1166, 1167
  example uses 1139
TEXTFITPOLICY= option
  ENTRYFOOTNOTE statement 1159
  ENTRYTITLE statement 1166
TEXTGROUP= option
  AXISTABLE statement 200
TEXTPLOT statement
  TEMPLATE procedure 811
THICKNESS= attribute
  for lines 1349
THRESHOLDMAX= LINEAROPTS= option, datalattice or datapanel axis 1058
LINEAROPTS= option, lattice axis 986
LINEAROPTS= option, overlay axis 918
LINEAROPTS= option, overlay3d axis 953
LOGOPTS= option, overlay axis 928
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1027
THRESHOLDMIN=
  LINEAROPTS= option, datalattice or datapanel axis 1059
LINEAROPTS= option, lattice axis 986
LINEAROPTS= option, overlay axis 918
LINEAROPTS= option, overlay3d axis 954
LOGOPTS= option, overlay axis 928
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1027
TICKDISPLAYLIST=
  DISCRETEOPTS= option, datalattice or datapanel axis axis 1048
DISCRETEOPTS= option, lattice axis 976
DISCRETEOPTS= option, overlay axis 905
LINEAROPTS= option, datalattice or datapanel axis 1059
LINEAROPTS= option, lattice axis 987
LINEAROPTS= option, overlay axis 919
LINEAROPTS= option, overlay3d axis 954
TICKINTERVALSTYLE=
  LOGOPTS= option, datalattice or datapanel axis 1068
LOGOPTS= option, lattice axis 996
LOGOPTS= option, overlay axis 929
TICKSTYLE=
  COMMONAXISOPTS= option, overlayequated axis 1015
overalay axis options 901
TICKTYPE=
  DISCRETEOPTS= option, datalattice or datapanel axis 1048
DISCRETEOPTS= option, lattice axis 976
DISCRETEOPTS= option, overlay axis 905
TICKVALUEATTRS=
  XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1028
TICKVALUEATTRS= option
datalattice, datapanel axis options 1045
lattice axis options  973
overlay axis options  901
overlay3d axis options  949
TICKVALUEFITPOLICY=
DISCRETEOPTS= option, datalattice or datapanel axis  1048
DISCRETEOPTS= option, lattice axis 976
DISCRETEOPTS= option, overlay axis 906
LINEAROPTS= option, datalattice or datapanel axis  1060
LINEAROPTS= option, lattice axis 987
LINEAROPTS= option, overlay axis 919
TIMEOPTS= option, datalattice or datapanel axis  1079
TIMEOPTS= option, lattice axis 1006
TIMEOPTS= option, overlay axis 941
XAXISOPTS=, YAXISOPTS= options, overlayequated axis  1028
TICKVALUEFORMAT=
DISCRETEOPTS= option, overlay axis  908, 979, 1051
LINEAROPTS= option, datalattice or datapanel axis  1060
LINEAROPTS= option, lattice axis 988
LINEAROPTS= option, overlay axis 920
LINEAROPTS= option, overlay3d axis 954
LOGOPTS= option, datalattice or datapanel axis 1069
LOGOPTS= option, lattice axis 997
LOGOPTS= option, overlay axis 930
TIMEOPTS= option, datalattice or datapanel axis  1080
TIMEOPTS= option, lattice axis 1007
TIMEOPTS= option, overlay axis 942
TIMEOPTS= option, overlay3d axis 962
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1028
TICKVALUEHALIGN= option
data lattice, datapanel axis options  1045
lattice axis options 973
overlay axis options 901
TICKVALUELIST=
COMMONAXISOPTS= option, overlayequated axis 1015
DISCRETEOPTS= option, datalattice or datapanel axis 1051
DISCRETEOPTS= option, lattice axis 979
DISCRETEOPTS= option, overlay axis 908
LINEAROPTS= option, datalattice or datapanel axis 1062
LINEAROPTS= option, lattice axis 990
LINEAROPTS= option, overlay axis 922
LINEAROPTS= option, overlay3d axis 956
LOGOPTS= option, datalattice or datapanel axis 1070
LOGOPTS= option, lattice axis 998
LOGOPTS= option, overlay axis 930
TIMEOPTS= option, datalattice or datapanel axis 1081
TIMEOPTS= option, lattice axis 1007
TIMEOPTS= option, overlay axis 942
TIMEOPTS= option, overlay3d axis 962
TICKVALUEPRIORITY=
COMMONAXISOPTS= option, overlayequated axis 1016
LINEAROPTS= option, datalattice or datapanel axis 1063
LINEAROPTS= option, lattice axis 991
LINEAROPTS= option, overlay axis 922
LINEAROPTS= option, overlay3d axis 957
LOGOPTS= option, datalattice or datapanel axis 1071
LOGOPTS= option, lattice axis 998
LOGOPTS= option, overlay axis 931
TICKVALUEPRIORITY= option, datalattice or datapanel axis 1081
TIMEOPTS= option, lattice axis 1008
TIMEOPTS= option, overlay axis 943
TICKVALUEROTATION=
DISCRETEOPTS= option, datalattice or datapanel axis 1052
DISCRETEOPTS= option, lattice axis 980
DISCRETEOPTS= option, overlay axis 909
LINEAROPTS= option, datalattice or datapanel axis 1063
LINEAROPTS= option, lattice axis 991
LINEAROPTS= option, overlay axis 923
TIMEOPTS= option, datalattice or datapanel axis 1082
TIMEOPTS= option, overlay axis 943
TIMEOPTS= option, lattice axis 1008
TICKVALUESEQUENCE=
COMMONAXISOPTS= option, overlayequated axis 1017
LINEAROPTS= option, datalattice or datapanel axis 1064
LINEAROPTS= option, lattice axis 991
LINEAROPTS= option, overlay axis 923
LINEAROPTS= option, overlay3d axis 957
TICKVALUESPLITCHAR=
  DISCRETEOPTS= option, datalattice or datapanel axis 1052
  DISCRETEOPTS= option, lattice axis 980
  DISCRETEOPTS= option, overlay axis 909
TICKVALUESPLITCHARDROP=
  DISCRETEOPTS= option, datalattice or datapanel axis 1053
  DISCRETEOPTS= option, lattice axis 981
  DISCRETEOPTS= option, overlay axis 910
TICKVALUEALIGN= data lattice, datapanel axis options 1045
  lattice axis options 974
  overlay axis options 902
TILT= option
  LAYOUT OVERLAY3D statement 156
TIMEOPTS= option
  datalattice, datapanel axis options 1046
  lattice axis options 974
  overlay axis options 902
  overlay3d axis options 949
TIP= option
  BANDPLOT statement 214
  BARCHART statement 242
  BARCHARTPARM statement 277
  BOXPLOT statement 324
  BOXPLOTPARM statement 358
  BUBBLEPLOT statement 382
  DENDROGRAM statement 398
  FRINGE PLOT statement 443
  HEATMAP statement 453
  HEATMAPPARM statement 466
  HIGHLOWPLOT statement 487
  HISTOGRAM statement 504
  HISTOGRAM PARM statement 518
  LINECHART statement 535
  LOESSPLOT statement 562
  MODELLBAND statement 571
  MOSAICPLOTPARM statement 580
  NEEDLEPLOT statement 598
  PBSPLINEPLOT statement 609
  PIECHART statement 625
  POLYGONPLOT statement 645
  REGRESSIONPLOT statement 675
  SCATTERPLOT statement 709
  SCATTERPLOTMATRIX statement 737
  SERIESPLOT statement 769
  STEPPLOT statement 799
  TEXTPLO T statement 829
  VECTORPLOT statement 851
  WATERFALLCHART statement 868
TIPFORMAT= option
  BANDPLOT statement 215
  BARCHART statement 243
  BARCHARTPARM statement 278
  BOXPLOT statement 325
  BOXPLOTPARM statement 358
  BUBBLEPLOT statement 382
  DENDROGRAM statement 399
  DENSITYPLOT statement 411
  FRINGE PLOT statement 444
  HEATMAP statement 453
  HEATMAPPARM statement 466
  HIGHLOWPLOT statement 488
  HISTOGRAM statement 504
  HISTOGRAM PARM statement 518
  LINECHART statement 535
  LOESSPLOT statement 562
  MODELLBAND statement 571
  MOSAICPLOTPARM statement 580
  NEEDLEPLOT statement 598
  PBSPLINEPLOT statement 609
  PIECHART statement 625
  POLYGONPLOT statement 645
  REGRESSIONPLOT statement 675
  SCATTERPLOT statement 709
  SCATTERPLOTMATRIX statement 737
  SERIESPLOT statement 770
  STEPPLOT statement 799
  TEXTPLO T statement 830
  VECTORPLOT statement 852
  WATERFALLCHART statement 868
TIPLABEL= option
  BANDPLOT statement 215
  BARCHART statement 243
  BARCHARTPARM statement 278
  BOXPLOT statement 325
  BOXPLOTPARM statement 358
  DENDROGRAM statement 399
  DENSITYPLOT statement 411
  FRINGE PLOT statement 444
  HEATMAP statement 453
  HEATMAPPARM statement 466
  HIGHLOWPLOT statement 488
  HISTOGRAM statement 504
  HISTOGRAM PARM statement 518
  LINECHART statement 535
  LOESSPLOT statement 562
  MODELLBAND statement 571
MOSAICPLOTPARM statement 581
NEEDLEPLOT statement 598
PBSPLINEPLOT statement 609
PIECHART statement 626
POLYGONPLOT statement 645
REGRESSIONPLOT statement 675
SCATTERPLOT statement 710
SCATTERPLOTMATRIX statement 738
SERIESPLOT statement 770
STEPPLOT statement 800
TEXTPLOT statement 830
VECTORPLOT statement 852
WATERFALLCHART statement 869
title area, defined 7
TITLE= option
AXISLEGEND statement 1095
AXISTABLE statement 200
CONTINUOUSLEGEND statement 1105
DISCRETELEGEND statement 1120
LAYOUT GLOBALLEGEND statement 99
MERGEDLEGEND statement 1120
TITLEATRFS= option
AXISLEGEND statement 1095
AXISTABLE statement 200
CONTINUOUSLEGEND statement 1105
DISCRETELEGEND statement 1120
LAYOUT GLOBALLEGEND statement 99
MERGEDLEGEND statement 1120
TITLEBORDER= option
DISCRETELEGEND statement 1120
MERGEDLEGEND statement 1120
TITLEHALIGN= option
AXISTABLE statement 201
TITLEJUSTIFY= option
AXISTABLE statement 201
TRANSPARENCY= attribute
for fills 1348
TRANSPARENCY= option
BEGINPOLYGON statement 1203
BEGINPOLYLINE statement 1209
DRAWARROW statement 1216
DRAWIMAGE statement 1224
DRAWLINE statement 1230
DRAWOVAL statement 1238
DRAWRECTANGLE statement 1246
DRAWTEXT statement 1254
TREETYPE= option
DENDROGRAM statement 399
TRIMLEADING= option
DISCRETEATTRMAP statement 1288
type conversion in expressions 1319
TYPE= argument
LEGENITEM statement 1127
TYPE= option
BANDPLOT statement 215
datalattice, datapanel axis options 1046
DISCRETELEGEND statement 1121
ELLIPSE statement 428
HIGHLOWPLOT statement 489
lattice axis options 974
LAYOUT GLOBALLEGEND statement 100
overlay axis options 903
overlay3d axis options 950
TYPEOF function 1326
U
UCLM function 1329
UNICODE text command
DRAWTEXT statement 1257
ENTRY statement 1141, 1152
ENTRYFOOTNOTE statement 1141, 1160
ENTRYTITLE statement 1141, 1167
example uses 1141
rule for specification 1142
Unicode values
greek letters, lower case 1143, 1343
greek letters, upper case 1144, 1344
hexadecimal values 1142, 1343
in user-defined formats 1355
keywords 1142, 1343
special characters 1145, 1345
URL= option
BARCHART statement 243
BARCHARTPARM statement 279
BEGINPOLYGON statement 1203
BEGINPOLYLINE statement 1209
BOXPLOTPARM statement 359
BUBBLEPLOT statement 383
DRAWARROW statement 1216
DRAWIMAGE statement 1224
DRAWLINE statement 1230
DRAWOVAL statement 1238
DRAWRECTANGLE statement 1246
DRAWTEXT statement 1254
HEATMAPPARM statement 467
LINECHART statement 536
MOSAICPLOTPARM statement 581
NEEDLEPLOT statement 598
PIECHART statement 626
POLYGONPLOT statement 645
SCATTERPLOT statement 710
SERIESPLOT statement 771
STEPPLT statement 800
TEXTPLOT statement  830
WATERFALLCHART statement  869
USEDISCRETESIZE= option
SCATTERPLOT statement  710
User-defined formats
  with Unicode values  1355
USS function  1329

V
VALIGN= option
AXISLEGEND statement  1095
CONTINUOUSLEGEND statement  1105
DISCRETELEGEND statement  1121
ENTRY statement  1151
LAYOUT GRIDDED statement  108
LAYOUT LATTICE statement  123
MERGEDLEGEND statement  1121
value types
  color  1340
  column  1340
  dimension  1340
  expression  1341
  for statement options  1339
  format  1341
  integer  1341
  integer-column  1341
  line-pattern-name  1341
  line-pattern-number  1341
  marker-name  1341
  number  1341
  numeric-column  1341
  string  1341
  string-column  1341
  style-reference  1342
VALUE= argument
AXISTABLE statement  192
VALUEATTRS= option
AXISLEGEND statement  1096
AXISTABLE statement  201
BLOCKPLOT statement  297
CONTINUOUSLEGEND statement  1106
DISCRETELEGEND statement  1122
MERGEDLEGEND statement  1122
MOSAICPLOTPARM statement  581
VALUECOUNTHINT= option
CONTINUOUSLEGEND statement  1106
VALUEFITPOLICY= option
BLOCKPLOT statement  297
VALUEFORMAT= option
AXISTABLE statement  202
VALUEHALIGN= option
AXISTABLE statement  202

VALUEJUSTIFY= option
AXISTABLE statement  202
VALUELOCATION= option
MOSAICPLOTPARM statement  582
VALUETYPE=
  LLOGOPTS= option, lattice axis  999
  LOGOPTS= option, datalattice or datapanel axis  1071
  LOGOPTS= option, overlay axis  932
  VALUEALIGN= option
  BLOCKPLOT statement  300
VAR function  1329
VAR= argument
DISCRETEATTRVAR statement  1297
RANGEATTRVAR statement  1309
VCENTER= option
TEXTPLOT statement  831
VECTORPLOT statement
  TEMPLATE procedure  837
VERTEXLABEL= option
LINECHART statement  537
VERTEXLABELATTRS= option
LINECHART statement  537
VIEWMAX=
  COMMONAXISOPTS= option, overlayequated axis  1018
  LINEAROPTS= option, datalattice or datapanel axis  1065
  LINEAROPTS= option, option, lattice axis  992
  LINEAROPTS= option, overlay axis  924
  LOGOPTS= option, datalattice or datapanel axis  1072
  LOGOPTS= option, lattice axis  1000
  LOGOPTS= option, overlay axis  932
  TIMEOPTS= option, datalattice or datapanel axis  1082
  TIMEOPTS= option, lattice axis  1009
  TIMEOPTS= option, overlay axis  944
  XAXISOPTS=, YAXISOPTS= options, overlayequated axis  1030
VIEWMIN=
  COMMONAXISOPTS= option, overlayequated axis  1018
  LINEAROPTS= option, datalattice or datapanel axis  1065
  LINEAROPTS= option, lattice axis  993
  LINEAROPTS= option, overlay axis  924
  LOGOPTS= option, datalattice or datapanel axis  1073
  LOGOPTS= option, lattice axis  1000
  LOGOPTS= option, overlay axis  933
TIMEOPTS= option, datalattice or datapanel axis 1082
TIMEOPTS= option, lattice axis 1009
TIMEOPTS= option, overlay axis 944
XAXISOPTS=, YAXISOPTS= options, overlayequated axis 1031
OFFSET= option
SYMBOLCHAR statement 1175
SYMBOLIMAGE statement 1181

W
WALLCOLOR= option
LAYOUT OVERLAY statement 140
LAYOUT OVERLAY3D statement 156
LAYOUT OVERLAYEQUATED statement 149
LAYOUT PROTOTYPE statement 161
SCATTERPLOTMATRIX statement 738
WALLDISPLAY= option
and draw statements 1196
LAYOUT OVERLAY statement 140
LAYOUT OVERLAY3D statement 157
LAYOUT OVERLAYEQUATED statement 149
LAYOUT PROTOTYPE statement 161
SCATTERPLOTMATRIX statement 738
WATERFALLCHART statement
TEMPLATE procedure 854
WEIGHT= attribute
for markers 1351
for text 1352
WEIGHT= option
HEATMAP statement 454
HISTOGRAM statement 325, 411, 505
WEIGHT= regression option
LOESSPLOT statement 564
PBSPLINEPLOT statement 611
REGRESSIONPLOT statement 677
WEIGHTS= option
LAYOUT GLOBALLEGEND statement 100
WHISKERATTRS= option
BOXPLOT statement 325
BOXPLOT Parm statement 360
WHISKERPERCENTILE= option
BOXPLOT statement 326
width, specifying on a graph 16, 176
WIDTH= argument
DRAWOVAL statement 1235
DRAWRECTANGLE statement 1243
WIDTH= option
DRAWIMAGe statement 1224
DRAWTEXT statement 1254

X
X= argument
AXISTABLE statement 192
BANDPLOT statement 206
BARCHART statement 221
BARCHART Parm statement 253
BEGINPOLYGON statement 1200
BEGINPOLYLINE statement 1207
BIHISTOGRAM3D Parm statement 285
BLOCKPLOT statement 290
BOXPLOT statement 308
BOXPLOT Parm statement 339
BUBBLEPLOT statement 370
CONTOURPLOT Parm statement 388
DRAW statement 1200, 1207
DRAWOVAL statement 1234
DRAWRECTANGLE statement 1242
DROPLINE statement 417
ELLIPSE statement 424
HEATMAP statement 448
HEATMAP Parm statement 461
HIGHLOWPLOT statement 474
LINEParm statement 543
LOESSPLOT statement 555
NEEDLEPLOT statement 586
PBSPLINEPLOT statement 602
POLYGONPLOT statement 631
REFERENCELINE statement 655
REGRESSIONPLOT statement 668
SCATTERPLOT statement 682
SERIESPLOT statement 744
STEP PLOT statement 778
SURFACEPLOT Parm statement 804
TEXTPLOT statement 814
VECTORPLOT statement 840
X= option
DRAWIMAGe statement 1225
DRAWTEXT statement 1255
X1= argument
DRAWARROW statement 1213
DRAWLINE statement 1228
X1SPACE= option
DRAWARROW statement 1217
DRAWLINE statement 1231
X2= argument
XAXISOPTS= option
LAYOUT OVERLAY statement 141, 889
XSPACE= option
DRAWARROW statement 1217
DRAWLINE statement 1231
XAXIS= option
AXISTABLE statement 202
BANDPLOT statement 216
BARCHART statement 244
BARCHARTPARM statement 279
BEGINPOLYGON statement 1203, 1209
BLOCKPLOT statement 300
BOXPLOT statement 326
BOXPLOTPARM statement 360
BUBBLEPLOT statement 383
CONTOURPLOTPARM statement 393
DENDROGRAM statement 400
DENSITYPLOT statement 412
DRAWARROW statement 1216
DRAWIMAGE statement 1225
DRAWLINE statement 1231
DRAWOVAL statement 1239
DRAWRECTANGLE statement 1247
DRAWTEXT statement 1255
DROPLINE statement 420
ELLIPSE statement 428
ELLIPSEPARM statement 436
FRINGEPILOT statement 444
HEATMAP statement 454
HEATMAPPARM statement 467
HIGHLOWPLOT statement 489
HISTOGRAM statement 505
HISTOGRAMPARM statement 519
LINECHART statement 537
LINEPARM statement 551
LOESSPILOT statement 562
MODELBAND statement 571
NEEDLEPLOT statement 599
PBSPLINEPLOT statement 609
POLYGONPLOT statement 646
REFERENCELINE statement 662
REGRESSIONPLOT statement 676
SCATTERPLOT statement 711
SERIESPLOT statement 771
STEPPLOT statement 801
TEXTPLOT statement 831
VECTORPLOT statement 852
WATERFALLCHART statement 870
XAXISOPTS= option
LAYOUT OVERLAY statement 141, 889

Y
Y= argument
AXISTABLE statement 192
BANDPLOT statement 206
BARCHART statement 221
BARCHARTPARM statement 253
BEGINPOLYGON statement 1201
BEGINPOLYLINE statement 1207

XBINAXIS= option
HEATMAP statement 454
HEATMAPPARM statement 468
XBINSIZE= option
HEATMAP statement 455
XBINSTART= option
HEATMAP statement 455
XBOUNDARIES= option
HEATMAPPARM statement 468
XBOUNDARY= option
HEATMAP statement 455
XENDLABELS= option
HEATMAP statement 455
XERRORLOWER= option
SCATTERPLOT statement 711
XERRORUPPER= option
SCATTERPLOT statement 711
XGAP= option
HEATMAP statement 455
HEATMAPPARM statement 468
XOFFSET= option
POLYGONPLOT statement 646
XORIGIN= argument
ELLIPSEPARM statement 433
VECTORPLOT statement 840
XSPACE= option
BEGINPOLYGON statement 1203, 1209
DRAWIMAGE statement 1225
DRAWOVAL statement 1239
DRAWRECTANGLE statement 1247
DRAWTEXT statement 1255
XVALUEFITPOLICY= option
MOSAICPLOTPARM statement 582
XVALUES= option
BIHISTOGRAM3DParm statement 287
HEATMAP statement 455
HEATMAPPARM statement 468
HISTOGRAM statement 505
HISTOGRAMPARM statement 519
YGAP= option
   HEATMAP statement 457
   HEATMAPPARM statement 470
YORIGIN= argument
   ELLIPSEPARM statement 433
   VECTORPLOT statement 840
YSPACE= option
   BEGINPOLYGON statement 1204, 1210
   DRAWIMAGE statement 1226
   DRAWOVAL statement 1239
   DRAWRECTANGLE statement 1247
   DRAWTEXT statement 1256
YVALUEFITPOLICY= option
   MOSAICPLOTPARM statement 582
YVALUES= option
   BIHISTOGRAM3DPARM statement 287

HEATMAP statement 457
HEATMAPPARM statement 470

Z
Z= argument
   BIHISTOGRAM3DPARM statement 285
   CONTOURPLOTPARM statement 388
   SURFACEPLOTPARM statement 805
ZAXISOPTS= option
   LAYOUT OVERLAY3D statement 158, 945
ZOOM= option
   LAYOUT OVERLAY3D statement 158
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.