Contents

Chapter 1 • About the SAS/GRAPH Java Applets and ActiveX Control
- Displaying SAS/GRAPH Output with the ActiveX Control and Java Applets 1
- SAS/GRAPH ActiveX Control Display Features ... 2
- SAS/GRAPH Java Applet Display Features .. 3
- The SAS/GRAPH ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices 7
- The DS2TREE and DS2CONST Macros ... 11
- Data Tip and Drill-Down Support in Java and ActiveX ... 11
- Requirements for Viewing Java and ActiveX Output .. 12

Chapter 2 • Generating Interactive ActiveX Output
- Overview of Creating Interactive Output for ActiveX ... 15
- Installing the SAS/GRAPH ActiveX Control .. 17
- Generating Output for ActiveX .. 20
- About Languages in ACTIVEX ... 21
- About Special Fonts and Symbols in ACTIVEX ... 22
- SAS Formats Supported by ACTIVEX ... 23
- Configuring Drill-Down Links with ACTIVEX ... 24
- Configuring Data Tips with ACTIVEX ... 25
- Examples: Creating Interactive ActiveX Output ... 25

Chapter 3 • Generating Interactive Java Output
- Overview of Creating Interactive Output for Java ... 35
- Generating Output for Java ... 36
- Configuring Drill-Down Links for Java ... 42
- Configuring Data Tips with JAVA .. 42
- Examples: Creating Interactive Java Output ... 42

Chapter 4 • Generating Interactive Metagraphics Output
- Developing Web Presentations for the Metaview Applet .. 51
- Advantages of Using the JAVAMETA Device .. 52
- Using ODS with the JAVAMETA Device .. 52
- Enhancing Web Presentations for the Metaview Applet ... 53
- Specifying Non-English Resource Files and Fonts .. 54
- Example: Generating Metacode Output with the JAVAMETA Driver 55

Chapter 5 • Controlling Drill-Down Behavior for ActiveX and Java Using Parameters
- Using ODS Parameter Tags ... 59
- Using Drill-Down Tags ... 60
- Specifying the Drill-Down Mode ... 61
- Understanding Variable Roles ... 62
- Removing Blank Spaces from Data Values in Substitution Strings 63
- Using Variables as Substitution Strings ... 63
- Configuring HTML Drill-Down Mode ... 64
- Configuring the Drill-Down Response in HTML and URL Modes 67
- Configuring Script Drill-Down Mode .. 68
- Disabling Drill-Down Functionality .. 70

Chapter 6 • Generating Interactive Treview Diagrams Using the DS2TREE Macro
- Creating Treview Diagrams ... 71
- Enhancing Presentations Displayed with the Treview Applet .. 75
- DS2TREE Macro Arguments ... 75
Examples: Creating Interactive Treeview Diagrams

Chapter 7 • Generating Interactive Constellation Diagrams Using the DS2CONST Macro

Creating Constellation Diagrams
Enhancing Presentations Displayed with the Constellation Applet
DS2CONST Macro Arguments
Examples: Creating Interactive Constellation Diagrams

Chapter 8 • Troubleshooting Java and ActiveX Output

Overview
Checking Browser Permissions
Using HTML Character Entities
Connecting to Web Servers That Require Authentication
Removing CLASSPATH Environment Variables
Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX
Correcting Text Fonts
Resolving Differences between Graphs Generated with Different Technologies

Chapter 9 • ActiveX Control and Java Applet Parameter Dictionary

Specifying Parameters and Attributes for Java and ActiveX
Parameters That Apply to the ActiveX Control, and the Contour, Graph, and Map Applets
Parameters That Apply to the Metaview and Tile Chart Applets
Dictionary

Chapter 10 • DS2CONST and DS2TREE Macro Argument Dictionary

About the DS2CONST and DS2TREE Macro Arguments
Arguments for the APPLET Tag
Arguments for Data Definition
Arguments for HTML and XML File Information
Arguments for Diagram Appearance
Arguments for Page Formatting
Arguments for Style Sheets
Arguments for the SAS TITLE and FOOTNOTE Tags
Arguments for Character Transcoding
Reserved Names
Dictionary

Recommended Reading
Glossary
Index
Chapter 1
About the SAS/GRAPH Java Applets and ActiveX Control

Displaying SAS/GRAPH Output with the ActiveX Control and Java Applets . . . 1
SAS/GRAPH ActiveX Control Display Features 2
SAS/GRAPH Java Applet Display Features .. 3
Java Applets That SAS/GRAPH Generates 3
Graph, Map, Tile Chart, and Contour Applets 3
Treeview Applet ... 4
Constellation Applet .. 5
Metaview Applet ... 6

The SAS/GRAPH ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices
About the ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices 7
When to Use the ACTIVEX Graphics Output Device 8
When to Use the JAVA Graphics Output Device 9
When to Use the JAVAMETA Graphics Output Device 10
The Output Process for the ACTIVEX and JAVA Graphics Output Devices . 10
Device Catalog Entries for the ACTIVEX, JAVA, and
JAVAMETA Graphics Output Devices .. 10
Controlling the Appearance of the ACTIVEX, JAVA, and
JAVAMETA Graphics Output Device Output 11

The DS2TREE and DS2CONST Macros .. 11
Data Tip and Drill-Down Support in Java and ActiveX 11
Requirements for Viewing Java and ActiveX Output 12

Displaying SAS/GRAPH Output with the ActiveX Control and Java Applets

In SAS/GRAPH, Java applets and the SAS/GRAPH ActiveX Control are used to provide
an interactive display of graph output. The ActiveX control displays the output of
various SAS/GRAPH procedures and many of the SAS/GRAPH annotate functions. It is
used to display SAS/GRAPH output when the ACTIVEX graphics output device is used
with the ODS HTML, HTML3, HTMLCSS, or RTF destination. The SAS/GRAPH
ActiveX Control enables such features as data tips, drill-down links, and interactive
features available through pop-up menus. Later versions of the SAS/GRAPH ActiveX
Control are typically backward compatible with the earlier versions. Output that is
generated with the ACTIVEX graphics output device can usually be displayed using a later version of the SAS/GRAPH ActiveX Control.

The Java applets display the output of various SAS/GRAPH procedures and macros. A Java applet is used to display SAS/GRAPH output in the following cases:

- when the JAVA or JAVAMETA graphics output device is used with the ODS HTML, HTML3, or HTMLCSS destination
- when the DS2TREE macro is used to generate a tree view diagram
- when the DS2CONST macro is used to generate a constellation diagram

Depending on the applet, it can enable such features as data tips, drill-down links, or interactive features available through pop-up menus. As with the SAS/GRAPH ActiveX Control, later versions of the JRE are typically backward compatible with the earlier versions. Output that is generated with the JAVA or JAVAMETA graphics output device can usually be displayed using a later version of the JRE.

SAS/GRAPH ActiveX Control Display Features

The SAS/GRAPH ActiveX control displays the output of most of the SAS/GRAPH procedures and many of the annotate functions. It enables extensive interactive features via a pop-up menu. The pop-up menus enable you to move, rotate (3-D graphs only), and zoom, and to control the properties of graphs such as its colors, legends, and axes.

You can enable data tips and drill-down links with presentations created for the ActiveX control. Figure 1.1 on page 2 shows output from the GCONTOUR procedure as displayed by the ActiveX control. (You can open the pop-up menu for the ActiveX control by right-clicking the graph.)

Figure 1.1 Sample ActiveX Presentation

![Sample ActiveX Presentation](image)

The ActiveX control can be viewed only in Windows operating environments with Microsoft Internet Explorer on a PC with the ActiveX control installed.
The ActiveX control displays output from the G3D, GAREABAR, GBARLINE, GCHART, GCONTOUR, GMAP, GPLOT, GRADAR, and GTILE procedures.

To create a graph to be displayed by ActiveX, specify DEVICE=ACTIVEX on your GOPTIONS statement. See Chapter 2, “Generating Interactive ActiveX Output,” on page 15 for more information.

SAS/GRAPH Java Applet Display Features

Java Applets That SAS/GRAPH Generates

If you want to deliver your presentation to more operating environments than just Windows, you can use one of the following Java applets:

Graph, Map, Tile Chart, and Contour applets
These applets display the output of SAS/GRAPH procedures and offer many interactive features.

Treeview and Constellation applets
These applets generate hierarchical treeview diagrams and constellation diagrams, respectively, and are generated with the DS2TREE and DS2CONST macros.

Metaview applet
The Metaview applet displays the output of SAS/GRAPH procedures, and it enables data tips, drill-down links, panning, and zooming.

Graph, Map, Tile Chart, and Contour Applets

Like the SAS/GRAPH ActiveX Control, the Graph, Map, Tile Chart, and Contour applets display the output of SAS/GRAPH procedures and enable extensive interactive features. The Graph, Map, Tile Chart, and Contour applets enable interactive features such as data tips and drill-down links. They also provide pop-up menus, which enable the user to change properties such as the graph's colors, legends, and axes.

Figure 1.2 on page 4 shows PROC GCHART output displayed by the Java Graph applet showing data tips and drill-down capability.
These applets display the output of the following SAS/GRAPH procedures:

Graph Applet
 G3D Scatter Plots, GCHART, GPLOT

Contour Applet
 G3D Surface Plots, GCONTOUR

Map Applet
 GMAP

Tile Chart Applet
 GTILE

To create a graph to be displayed by one of these applets, specify DEVICE=JAVA on your GOPTIONS statement. For more information, see Chapter 3, “Generating Interactive Java Output,” on page 35.

Treeview Applet

This applet displays a treeview diagram that shows the parent-child relationships in a tree structure. In a treeview diagram, each child node has exactly one parent, and each parent node has zero or more children. In other words, the relationships in a treeview diagram are one-to-many. A treeview diagram is ideal for displaying such data as organizational charts or the hierarchical relationships of the pages of a website.

By default, the Treeview applet zooms in on the portion of the tree that is in the center of the display, as if you were looking through a fish-eye lens. Nodes in the center of the display are spread apart and shown with more detail, including node labels. Nodes near the periphery of the display are compressed and shown with less detail. Initially, the Treeview applet places the root node in the center of the display. You can click and drag the diagram to change the portion of the diagram that is in the center of the display.

The Treeview applet supports a pop-up menu that enables you to search for nodes, select or hide subtrees, and so on. You can add hotspots that link to web pages when the user clicks on a node.

For example, Figure 1.3 on page 5 shows a treeview diagram (with the pop-up menu opened) displaying the structure of an XML Document Type Definition.
To generate a treeview diagram, use the DS2TREE macro. For more information, see Chapter 6, “Generating Interactive Treeview Diagrams Using the DS2TREE Macro,” on page 71.

Figure 1.3 Sample Treeview Diagram

![Sample Treeview Diagram](image)

Constellation Applet

The Constellation applet displays a general node-link diagram. Each node can be linked to one or more other nodes. Unlike the Treeview applet, the Constellation applet does not require a hierarchical relationship between the nodes. (Although it can be used to display hierarchical relationships, the Constellation applet does not automatically place the root node at the center of the display.)

The Constellation applet supports node and link properties that determine the color and size of the nodes and the color and thickness of the link joining the nodes. These properties indicate the relative strength of the relationship between the nodes.

Like the Treeview applet, by default, the Constellation applet zooms in on the portion of the diagram that is in the center of the display, as if you were looking through a fish-eye lens. Nodes in the center of the display are spread apart and shown with more detail, including node labels. Nodes near the periphery of the display are compressed and shown with less detail. You can click and drag the diagram to change the portion of the diagram that is in the center of the display.
The Constellation applet has a pop-up menu that supports several functions such as highlighting specific links and searching for specific nodes. You can add hotspots that link to web pages when the user clicks on a node.

Figure 1.4 on page 6 shows a constellation diagram (with the Mouse Help window displayed).

To generate the Constellation applet, use the DS2CONST macro. For more information, see Chapter 7, “Generating Interactive Constellation Diagrams Using the DS2CONST Macro,” on page 81.

Figure 1.4 Sample Constellation Diagram

Metaview Applet

The Metaview applet displays the output of SAS/GRAPH procedures and enables interactive features that are not available with static images such as GIFs or PNGs. It enables zooming and scrolling and supports pop-up menus with customized user-selectable links. When you generate a graph with the Metaview applet, you can specify background colors and text fonts, and enable drill-down links to HTML files, metagraphics files, and sets of metacodes.
Figure 1.5 on page 7 shows the zoom control and a stick-type data tip that the Metaview applet provides.

Figure 1.5 Sample Metaview Applet

The Metaview applet displays output from the G3D, GANNO, GBARLINE, GCHART, GCONTOUR, GPLOT, GMAP, GRADAR, GREPLAY, and GSLIDE procedures. To create a graph to be displayed by the Metaview applet, specify DEVICE=JAVAMETA on your GOPTIONS statement.

For more information, see Chapter 4, “Generating Interactive Metagraphics Output,” on page 51.

The **SAS/GRAPH ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices**

About the ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices

The SAS/GRAPH ACTIVEX, JAVA, and JAVAMETA graphics output devices are used to generate interactive graphs. The ACTIVEX graphics output device output uses the SAS/GRAPH ActiveX Control to display graphs in Internet Explorer web browser on Windows. The JAVA and JAVAMETA graphics output device output use Java applets to display graphs in any supported web browser. The following table provides a summary of these graphics output devices.
Table 1.1 Summary of the ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices

<table>
<thead>
<tr>
<th>Graphics Output Device Name</th>
<th>SAS/GRAPH Graphics Output Device Category</th>
<th>Valid ODS Destinations</th>
<th>SAS/GRAPH Procedures Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVEX</td>
<td>ActiveX and Java</td>
<td>ODS HTML</td>
<td>G3D, GAREABAR, GBARLINE, GCHART, GCONTOUR, GMAP, GPLOT, GRADAR, and GTILE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS HTML3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS HTMLCSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS RTF</td>
<td></td>
</tr>
<tr>
<td>JAVA</td>
<td>ActiveX and Java</td>
<td>ODS HTML</td>
<td>G3D, GCHART, GPLOT, GMAP, and GTILE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS HTML3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS HTMLCSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS RTF</td>
<td></td>
</tr>
<tr>
<td>JAVAMETA</td>
<td>Native</td>
<td>ODS HTML</td>
<td>G3D, GANNO, GBARLINE, GCHART, GCONTOUR, GMAP, GPLOT, GRADAR, GREPLAY, and GSLIDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS HTML3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS HTMLCSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODS RTF</td>
<td></td>
</tr>
</tbody>
</table>

Note: Some SAS/GRAPH procedure options are not supported by ActiveX and Java. For information about SAS/GRAPH procedure option support, see “Summary of ActiveX and Java Support” in SAS/GRAPH: Reference.

For more information about SAS/GRAPH graphics output devices, see “Using Graphics Devices” in SAS/GRAPH: Reference.

When to Use the ACTIVEX Graphics Output Device

If your users use the Windows operating environment and the Internet Explorer web browser, you can use the SAS/GRAPH ActiveX Control to generate your graphs. In general, the interactive features of the SAS/GRAPH ActiveX Control are comparable to those that are provided in Java through the Java applets. Some features differ, as you can see in the comparison table that is presented in “Parameters That Apply to the ActiveX Control, and the Contour, Graph, and Map Applets” on page 108. Also, the JAVA graphics output device does not display output that is generated with the GAREABAR, GBARLINE, or GRADAR procedures. Unlike the JAVA graphics output device, you can use the ACTIVEX graphics output device to embed interactive graphics in Microsoft Word documents by using the ODS RTF statement, as shown in “Example: Generating an ActiveX Graph for a Microsoft Word Document” on page 26 and in “Importing Your Graphs into Microsoft Office” in SAS/GRAPH: Reference. You can also copy the ActiveX window out of Internet Explorer and paste it into a Microsoft Word, Excel, or PowerPoint document.

If you have created a graph with the ACTIVEX graphics output device, but you do not need the interactivity that it provides, then use the ACTXIMG graphics output device, as described in “Developing Web Presentations with the JA VAIMG and ACTXIMG...”
The ACTXIMG graphics output device creates a static snapshot of the graph in a PNG file. The graph has the same look as the graph that is produced with the ACTIVEX graphics output device, but the graph does not support interactivity. You can use the ACTXIMG graphics output device to create graphics output only on Windows systems. Although you do not need the SAS/GRAPH ActiveX Control when you are viewing the ACTXIMG output, to produce the output file, the SAS/GRAPH ActiveX Control must be installed on your computer. When SAS is installed on a Windows host, the SAS/GRAPH ActiveX Control is installed with the SAS software on that host. If you need to install the SAS/GRAPH ActiveX Control manually, see “Installing the SAS/GRAPH ActiveX Control” on page 17.

You can generate output for the SAS/GRAPH ActiveX Control even if you are not working in the Windows operating environment. For example, you can generate HTML output for ActiveX in the UNIX operating environment, even though you cannot run Internet Explorer in that environment. Opening the HTML in Internet Explorer on Windows displays the output as if it were generated in that operating environment. You can also run your SAS jobs in a stored process on UNIX and display the output in the Internet Explorer browser on Windows.

When you use the ACTIVEX graphics output device with an ODS destination that does not support the ACTIVEX graphics output device, SAS/GRAPH switches to the ACTXIMG graphics output device, which generates a PNG image. For example, the ODS PDF statement generates output for the Adobe Reader in a Portable Document Format (PDF) file. This format does not support embedded ActiveX applications. Specifying the ACTIVEX graphics output device with the ODS PDF statement generates a PDF output file that contains a static image of the graphics output. The ODS RTF destination creates an RTF file that contains a PNG image. The ODS PRINTER destinations use their native format.

The ACTXIMG graphics output device provides data tip support and drill-down functionality that is similar to the PNG graphics output device. See “Enhancing Web Presentations with Chart Descriptions, Data Tips, and Drill-Down Functionality” in SAS/GRAPH: Reference.

For more information about the using the ACTIVEX graphics output device, see Chapter 2, “Generating Interactive ActiveX Output,” on page 15.

When to Use the JAVA Graphics Output Device

If your users use a variety of web browsers, you can use the SAS/GRAPH JAVA graphics output device to generate your graphs. The JAVA graphics output device output can be viewed on any supported web browser with Java enabled. The JAVA graphics output device generates output for the Graph, Map, Tile, and Contour applets. These applets provide user interactivity in all of the supported web browsers. If you do not need interactivity, then use the JAVAIMG graphics output device, as described in “Developing Web Presentations with the JAVAIMG and ACTXIMG Devices” in SAS/GRAPH: Reference, or use the PNG graphics output device, as described in “Developing Web Presentations with the PNG, SVG, and GIF Devices” in SAS/GRAPH: Reference.

Note: The JAVA graphics output device does not support character values on the response axis. When generating plots with the JAVA graphics output device, at least one variable must be numeric. When a numeric value is specified for the category axis and a character variable is specified for the response axis, the axis values are swapped in order to place the character value on the category axis. If both values are character values, the plot is not generated.
For more information about using the JAVA graphics output device, see Chapter 3, “Generating Interactive Java Output,” on page 35.

When to Use the JAVAMETA Graphics Output Device

If your users use a variety of web browsers and you want to add panning and zooming features to your graph, the JAVAMETA graphics output device might be a better choice than the JAVA graphics output device. It is also a good choice for creating animated graphs and slide shows. Like the JAVA graphics output device, the JAVAMETA graphics output device output can be viewed on any supported web browser with Java enabled. The JAVAMETA graphics output device generates output for the G3D, GANNO, GBARLINE, GCHART, GCONTOUR, GPLOT, GMAP, GRADAR, GREPLAY, and GSLIDE procedures. The JAVAMETA output provides user interactivity in all web browsers, but it is limited to panning, zooming, data tips, and drill-down links. You cannot move the graph, or change the graph colors or the graph type.

For more information, see Chapter 4, “Generating Interactive Metagraphics Output,” on page 51.

The Output Process for the ACTIVEX and JAVA Graphics Output Devices

The following diagram illustrates the output process for the JAVA and ACTIVEX graphics output devices.

Device Catalog Entries for the ACTIVEX, JAVA, and JAVAMETA Graphics Output Devices

SAS/GRAPH provides device entries for your operating environment in the SASHELP.DEVICES catalog. Entries for the ACTIVEX, JAVA, and JAVAMETA graphics output devices are included. The ACTIVEX and JAVA graphics output devices do not honor the specifications in these device entries while the JAVAMETA graphics output device does. For the JAVAMETA graphics output device, you can use the QDEVICE procedure to view the JAVAMETA graphics output device entry or a custom metagraphics device entry. You can use the GDEVICE procedure to create and modify custom metagraphics device entries.

For more information about SAS/GRAPH graphics output devices and the device catalog entries, see “Using Graphics Devices” in SAS/GRAPH: Reference.
Controlling the Appearance of the ACTIVEX, JAVA, and JAVAMETA Graphics Output Device Output

You can use graphics options and ODS styles to control the appearance of your ACTIVEX, JAVA, and JAVAMETA graphics output device output. For information about controlling the appearance of your SAS/GRAPH output, see SAS/GRAPH: Reference.

You can also specify parameters in the ODS statement to affect the output. For information about the ActiveX and Java parameters, see Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103.

The DS2TREE and DS2CONST Macros

SAS/GRAPH provides the following macros that you can use to generate tree view and constellation diagrams from a SAS data set:

- DS2TREE, which generates tree view diagrams
- DS2CONST, which generates constellation diagrams

To use these macros, define your data, and then call one of these macros using the appropriate options. For these macros, you do not use ODS or call a SAS/GRAPH procedure. For additional information, see Chapter 6, “Generating Interactive Treeview Diagrams Using the DS2TREE Macro,” on page 71 and Chapter 7, “Generating Interactive Constellation Diagrams Using the DS2CONST Macro,” on page 81.

Data Tip and Drill-Down Support in Java and ActiveX

When generating graphs using the Java applet or the SAS/GRAPH ActiveX Control, you can enhance your graphs by doing the following:

- displaying pop-up text when the mouse pointer is over a portion of the diagram. See “Data Tips for Web Presentations” in SAS/GRAPH: Reference.
- adding drill-down links that enable you to link to other web resources. See “Adding Links and Enhancements with the URL=, HTML=, and HTML_LEGEND= Options” in SAS/GRAPH: Reference.

Note: The Java applet and SAS/GRAPH ActiveX Control do not support chart descriptions.
The following table lists the enhancements that are supported by the Java applet and the SAS/GRAPH ActiveX Control.

Table 1.2 Support for Data Tips and Drill-Down Functionality

<table>
<thead>
<tr>
<th>Graphics Device or Macro</th>
<th>Data Tips</th>
<th>Drill-down Links</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generated by default</td>
<td>Can be customized</td>
<td>Generated by default</td>
<td>Can be customized</td>
</tr>
<tr>
<td>ACTIVEX graphics output device</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>JAVA graphics output device</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>JAVAMETA graphics output device</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DS2CONST macro</td>
<td>Yes*</td>
<td>Yes**</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DS2TREE macro</td>
<td>Yes*</td>
<td>Yes**</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Node data tips only.
** Both node and link data tips.

Requirements for Viewing Java and ActiveX Output

To view your SAS/GRAPH Java applet or ActiveX control output, you must view the HTML file through a supported browser. For a list of supported browsers, refer to the SAS website Install Center at http://support.sas.com/documentation/installcenter

Select the System Requirements link for the appropriate operating system environment and search for the section about viewing HTML pages created for Java and ActiveX.

Note: It is recommended that graphs be displayed on a graphics output device that has at least 16-bit color (that is, more than 8-bit, 256 colors).

Depending on how the output is generated, there might be additional requirements. The following table shows what is required in addition to a supported browser.
Table 1.3 Additional Requirements

<table>
<thead>
<tr>
<th>Graphics Output Device or Macro</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVEX graphics output device</td>
<td>The presentation must be viewed with Internet Explorer on a Windows system with the SAS/GRAPH ActiveX Control installed locally. See “Installing the SAS/GRAPH ActiveX Control” on page 17.</td>
</tr>
<tr>
<td>JAVA and JAVAMETA graphics output devices</td>
<td>The Java applet JAR files must be installed locally or on a server accessible by the client machine at the path specified by the CODEBASE applet option. The Java plug-in must be installed on each client machine. On Windows systems, the user is prompted to install the plug-in if it is not already installed. On other systems, the plug-in must be installed manually. See “About the Java HTML Output and the Java Runtime Environment Plug-in” on page 38.</td>
</tr>
</tbody>
</table>

Note: Graphs generated with the ACTIVEX driver can be viewed only with Internet Explorer on any Windows PC with the SAS/GRAPH ActiveX Control installed locally.
Chapter 2
Generating Interactive ActiveX Output

Overview of Creating Interactive Output for ActiveX

Installing the SAS/GRAPH ActiveX Control
- About the ActiveX Control Installation
- Customizing the SAS/GRAPH ActiveX Control Installation Process
- Configuring Your ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network
- Configuring an Existing ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network
- Uninstalling the SAS/GRAPH ActiveX Control

Generating Output for ActiveX
- About Languages in ACTIVEX
- About Special Fonts and Symbols in ACTIVEX
- SAS Formats Supported by ACTIVEX
- Configuring Drill-Down Links with ACTIVEX
- Configuring Data Tips with ACTIVEX

Examples: Creating Interactive ActiveX Output
- About These Examples
- Example: Generating an ActiveX Graph for a Microsoft Word Document
- Example: Generating an Interactive Contour Plot in ActiveX
- Example: Providing JavaScript Drill-Down with ActiveX
- Example: Providing More JavaScript Drill-Down with ActiveX

Overview of Creating Interactive Output for ActiveX

The SAS/GRAPH ActiveX Control provides user interactivity in Microsoft Office products in the Windows operating environment. Interactive features include the ability to change graph types (a bar chart to a pie chart, for example), display data tips at the point of the cursor, rotate and zoom, reassign variable roles, and modify axes, legends, colors, and text fonts.

For your web users who have SAS installed locally, the control is run automatically when the HTML output file is displayed in Internet Explorer. For your web users who do not have the SAS system installed locally, and who have not already installed the
SAS/GRAPH ActiveX Control, you can configure your HTML output file to prompt them to install the control at display time, as described in “Installing the SAS/GRAPH ActiveX Control” on page 17.

You can enhance your ActiveX presentations by adding drill-down links (see “Configuring Drill-Down Links with ACTIVEX” on page 24) and configuring interactive features (see “Specifying Parameters and Attributes for Java and ActiveX” on page 105).

In addition to HTML output, you can use the SAS/GRAPH ActiveX Control to display interactive graphs in Object Linked Embedded (OLE) documents, and in applications written in Visual Basic, C++, and JavaScript. You can also include them in Microsoft Office Products, such as Word, Excel, and PowerPoint. See “Using SAS/GRAPH Output with Microsoft Office Products” in SAS/GRAPH: Reference.

The following table lists the procedures and statements that generate output that can be displayed in the SAS/GRAPH ActiveX Control.

Table 2.1 Procedures and Statements That Generate Output for the SAS/GRAPH ActiveX Control

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAREABAR</td>
<td>HBAR, VBAR</td>
</tr>
<tr>
<td>GBARLINE</td>
<td>BAR, PLOT</td>
</tr>
<tr>
<td>GCHART</td>
<td>BLOCK, HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D, DONUT</td>
</tr>
<tr>
<td>GCONTOUR</td>
<td>PLOT</td>
</tr>
<tr>
<td>GMAP</td>
<td>CHORO, BLOCK, PRISM</td>
</tr>
<tr>
<td>G PLOT</td>
<td>BUBBLE, BUBBLE2, PLOT, PLOT2</td>
</tr>
<tr>
<td>GRADAR</td>
<td>CHART</td>
</tr>
<tr>
<td>G3D</td>
<td>PLOT, SCATTER</td>
</tr>
<tr>
<td>GTILE</td>
<td>FLOW, TILE, TOGGLE</td>
</tr>
</tbody>
</table>

Note the following:

- Using PROC GMAP to generate a highly detailed map might create a large HTML output file, which might cause problems on certain web browsers. If this is the case, you can use PROC GREDUCE to remove some of the complexity and produce a more usable map.

- The SAS/GRAPH ActiveX Control does not enable 8-bit gray scale images. If you use images for backgrounds or chart elements, make sure that they are 24-bit images.

- The ACTIVEX device does not support character values on the response axis. When generating plots with the ACTIVEX device, at least one variable must be numeric. When a numeric value is specified for the category axis and a character variable is specified for the response axis, the axis values are swapped in order to place the
character value on the category axis. If both values are character values, the plot is not generated.

Installing the SAS/GRAPH ActiveX Control

About the ActiveX Control Installation

The SAS/GRAPH ActiveX Control is installed silently when you install SAS/GRAPH. When you create a web presentation using the SAS/GRAPH ACTIVEX device, by default, the resulting presentation is configured to prompt users to install the SAS/GRAPH ActiveX Control if it is not already installed. The SAS/GRAPH software configures the presentation by setting the CODEBASE= option in the HTML file as shown in the following example:

```
CODEBASE="http://www2.sas.com/codebase/graph/v94/sasgraph.exe#version=9,4"
```

No files are installed without the user's permission. Your users can refuse installation by refusing the licensing agreement at the beginning of the installation process. Also note that the installation program does not run if the control has already been installed. You can customize the installation process as described in “Customizing the SAS/GRAPH ActiveX Control Installation Process” on page 17.

Customizing the SAS/GRAPH ActiveX Control Installation Process

Rather than using the default installation process, you can customize the installation by downloading the installation program and running it manually on your local computers. You can also make the installation program available to all of your users on your local network for installation on an as-needed basis. To download the installation program, do the following:

1. Open the SAS All Downloads page in your web browser:
   ```
   http://support.sas.com/demosdownloads/
   ```
2. If you are not already logged on, enter your e-mail address into the **E-mail** field and your password into the **Password** field, and then click **Login**.

 Note: You must log on to download files. If you do not have an account, click **Create under New User?** to create an account.
3. In the SAS System Software Products category of the All Downloads Sorted by Product Category list, click **SAS/GRAPH Software**.
4. In the SAS/GRAPH Software list, click **SAS/GRAPH Control for ActiveX** under the appropriate SAS version.
5. In the SAS/GRAPH Control for ActiveX download table, click **Request Download** for your Windows platform. The License Agreement page appears.
6. On the License Agreement page, read the license agreement, and then click **I Accept**. The Downloads page appears.

 Note: If you want to cancel the download, click **Do Not Accept**.
7. In the table in task 1, click **Download**, and then select a location on your computer for the installation file.
To install the SAS/GRAPH ActiveX on a local computer, run the Control for ActiveX installation program that you downloaded and follow the installation prompts. The installation program installs the SAS/GRAPH ActiveX Control files in the folder shown in the following table.

<table>
<thead>
<tr>
<th>Computer Platform</th>
<th>ActiveX Control Platform</th>
<th>Installation Folder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win32</td>
<td>Win32</td>
<td>C:\Program Files\SASHome\Graph\V9</td>
</tr>
<tr>
<td>Win64</td>
<td>Win32</td>
<td>C:\Program Files\SASHome\x86\Graph\V9</td>
</tr>
<tr>
<td>Win64</td>
<td></td>
<td>C:\Program Files\SASHome\Graph\V9</td>
</tr>
</tbody>
</table>

Installation requires about 32 megabytes of disk space.

If you want to configure your SAS/GRAPH ActiveX web presentations to install the SAS/GRAPH ActiveX Control as-needed from your local network rather than the SAS website, copy the installation program to a shared location on your network. The shared location can be a shared directory or public folder on your file system, or a web server on your network. After you have made the installation program available to your users, you can then configure your new and existing ActiveX presentations to install the SAS/GRAPH ActiveX Control from your local network. See “Configuring Your ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network” on page 18 and “Configuring an Existing ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network” on page 19.

Configuring Your ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network

To configure a SAS/GRAPH ActiveX web presentation to install the SAS/GRAPH ActiveX control from your local network, do the following:

1. If you have not already done so, download the SAS/GRAPH ActiveX Control installation program and copy it to a shared location as described in “Customizing the SAS/GRAPH ActiveX Control Installation Process” on page 17.

2. In the SAS program for your presentation, use the CODEBASE= option with the ODS HTML statement to configure the HTML output file to reference the installation program when the HTML file is opened. For example:

   ```
   ods html body="myGraph.html"
   codebase="http://www.ourco.com/sasweb/graph/
   installation-filename.exe#version=9,4";
   ```

 where `installation-filename.exe` is the name of the Control for ActiveX installation program.

 If the installation program is stored on your file system rather than on a web server, then you can use a file specification as the value of the CODEBASE attribute. For example:

   ```
   ods html body="myGraph.html"
   codebase="/sasweb/graph/installation-filename.exe#version=9,4";
   ```
3. (Optional) On a local computer that does not have SAS or the SAS/GRAPH ActiveX Control installed, open your web presentation and verify the following:
 - A prompt to install the SAS/GRAPH ActiveX control appears.
 - The installation is successful.
 - The presentation is displayed properly.

 Note: If you want to remove the SAS/GRAPH ActiveX Control after the test, follow the instructions in “Uninstalling the SAS/GRAPH ActiveX Control” on page 19.

Configuring an Existing ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network

To configure an existing SAS/GRAPH ActiveX web presentation so that it installs the SAS/GRAPH ActiveX Control from your local network, do the following:

1. If you have not already done so, download the SAS/GRAPH ActiveX Control installation program and copy it to a shared location as described in “Customizing the SAS/GRAPH ActiveX Control Installation Process” on page 17.

2. In a text editor, open the initial HTML file of your web presentation.

3. In the OBJECT tag, insert the CODEBASE= attribute. The attribute references the location of the installation program. The following CODEBASE value references a public directory:

   ```html
   CODEBASE="/sasweb/graph/installation-filename.exe#version=9,4"
   ```

 If the installation program is stored on a web server, use an HTTP reference. For example:

   ```html
   CODEBASE="http://www.ourco.com/sasweb/graph/
   installation-filename.exe#version=9,4"
   ```

4. Save the HTML file and close the editor.

5. (Optional) On a local computer that does not have SAS or the SAS/GRAPH ActiveX Control installed, open the modified web presentation and verify the following:
 - A prompt to install the SAS/GRAPH ActiveX control appears.
 - The installation is successful.
 - The presentation is displayed properly.

 Note: If you want to remove the SAS/GRAPH ActiveX Control after the test, see “Uninstalling the SAS/GRAPH ActiveX Control” on page 19.

With the file thus modified, displaying the HTML file gives users who need it the option of installing the control in the default location on their local computers.

Uninstalling the SAS/GRAPH ActiveX Control

If the SAS/GRAPH ActiveX Control was installed with the SAS/GRAPH software, you cannot manually uninstall the SAS/GRAPH ActiveX Control separately from the SAS/GRAPH software. In that case, to uninstall the SAS/GRAPH ActiveX Control, you must uninstall the SAS/GRAPH software. If you manually installed the SAS/GRAPH ActiveX Control, you can manually uninstall it.
To manually uninstall the SAS/GRAPH ActiveX Control on Windows 7, for example, do the following:

1. Click **Start**, and then select **Control Panel** in the Start menu to open the Control Panel window.
2. Under Programs, click **Uninstall a program**.
3. Click **SAS/Graph ActiveX Control version 9.4** in the list of currently installed programs.
4. Click **Uninstall/Change**, and then follow the prompts to remove the program.
5. Close the Control Panel window.

For information about how to manually uninstall this program on other versions of Microsoft Windows, refer to the Microsoft documentation.

Generating Output for ActiveX

The SAS/GRAPH ActiveX Control displays interactive charts, maps, and plots. The following table lists the various ways that you can deliver ActiveX output to your audience.

Table 2.2 Primary Delivery Choices for SAS/GRAPH ActiveX Control Output

<table>
<thead>
<tr>
<th>Application</th>
<th>ODS Statement</th>
<th>Output File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Explorer</td>
<td>ODS HTML</td>
<td>HTML</td>
</tr>
<tr>
<td>Microsoft Word</td>
<td>ODS RTF</td>
<td>Rich text format</td>
</tr>
<tr>
<td>Adobe Acrobat Reader</td>
<td>ODS PDF</td>
<td>Portable document format</td>
</tr>
<tr>
<td>Ghostview, and so on</td>
<td>ODS PS</td>
<td>PostScript format</td>
</tr>
</tbody>
</table>

Note: These choices also apply to the JAVA device.

Table 2.1 on page 16 lists the SAS/GRAPH procedures that generate output for ActiveX.

Follow these steps to generate a default web presentation that runs the SAS/GRAPH ActiveX Control.

1. Reset the graphics options and specify the ACTIVEX device:
   ```
   goptions reset=all device=activex;
   ```
2. Close the current ODS HTML destination:
   ```
   ods html close;
   ```
3. Open an ODS destination that is listed in *Table 2.2 on page 20*. Use the STYLE= option to specify an ODS style (see “Using ODS Styles, Device Parameters, and Options” in *SAS/GRAPH: Reference*), and use the PATH= and BODY= options to specify an output filename other than the default. Use the NOGTITLE option to write the graph title outside the graph borders.
Note: When the ACTIVEX device is used, the graph title is always written outside the graph border. The GTITLE option is ignored in that case.

For example:

```plaintext
donhtml style=analysis path="." body="your_file.htm"
    nogtitle;
```

4. Run a procedure or procedures that are supported by the ACTIVEX device (see Table 2.1 on page 16):

```plaintext
title "Chart of Average Weight and Height by Sex";
proc gchart data=sashelp.class;
    vbar sex / type=mean sumvar=height group=age subgroup=sex space=0;
run;
quit;
```

5. Close the ODS destination that you opened in step 3 to close the HTML file, and then reopen the ODS HTML destination. For example:

```plaintext
ods html close;
ods html;
```

The preceding program assumes that your web users have installed the SAS/GRAPH ActiveX Control in advance. If the SAS/GRAPH ActiveX Control is not already installed on a user's computer, your web presentation automatically prompts the user to install the SAS/GRAPH ActiveX Control. For information about prompting new users to start the SAS/GRAPH ActiveX Control installation process, see “Configuring Your ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network” on page 18. For further troubleshooting information, see Chapter 8, “Troubleshooting Java and ActiveX Output,” on page 97. For information about enhancing the default web presentation, see “Configuring Drill-Down Links with ACTIVEX” on page 24.

About Languages in ACTIVEX

For international audiences, the SAS/GRAPH ActiveX Control has a graphical user interface that can appear in the following languages:

- Arabic
- Chinese, simplified
- Chinese, traditional
- Danish
- Dutch
- English
- French
- German
- Hebrew
- Hungarian
- Italian
- Japanese
- Korean
- Polish
- Russian
- Spanish
- Swedish
- Turkish

In general, web-based ActiveX devices must use a language-specific operating environment and web browser in order to display a translated graphical user interface. For further information, contact your on-site SAS support personnel.
About Special Fonts and Symbols in ACTIVEX

The ACTIVEX device supports only system fonts. You can also use characters from many of the fonts that you have installed on your computer. The ACTIVEX device supports most of the symbols that you can use with the VALUE= option in the SYMBOL statement. (See “SYMBOL Statement” in SAS/GRAPH: Reference.) The following figure shows the symbols that are supported by the ACTIVEX device and the value that you must specify in the SYMBOL statement VALUE= option for each.

The following table lists the symbols that are not supported by the ACTIVEX device.

Table 2.3 Symbols That Are Not Supported by the ACTIVEX Device

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAW</td>
<td>less than</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>_</td>
<td>underscore</td>
<td>,</td>
<td>comma</td>
</tr>
<tr>
<td>&</td>
<td>ampersand</td>
<td>/</td>
<td>forward slash</td>
</tr>
<tr>
<td>'</td>
<td>single quotation mark</td>
<td>?</td>
<td>question mark</td>
</tr>
<tr>
<td>-</td>
<td>hyphen</td>
<td>(</td>
<td>open parenthesis</td>
</tr>
</tbody>
</table>
SAS Formats Supported by ACTIVEX

The ActiveX devices support the SAS character, numeric, and date and time formats that are listed in the following tables. For more information about the formats, see the SAS System Options: Reference.

Table 2.4 Character Formats Supported by ActiveX

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>at</td>
<td>)</td>
<td>close parenthesis</td>
</tr>
<tr>
<td>.</td>
<td>period</td>
<td>:</td>
<td>colon</td>
</tr>
</tbody>
</table>

Table 2.5 Numeric Formats Supported by ActiveX

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ASCII</td>
<td>$BINARY</td>
</tr>
<tr>
<td>$BINARY</td>
<td>$BYVAL</td>
</tr>
<tr>
<td>$CHAR</td>
<td>$QUOTE</td>
</tr>
<tr>
<td>$REVERJ</td>
<td>$REVERS</td>
</tr>
<tr>
<td>$UPCASE</td>
<td>$XPORTCH</td>
</tr>
<tr>
<td>$DOLLAR</td>
<td>$DOLLARX</td>
</tr>
<tr>
<td>$EURO</td>
<td>$EUROX</td>
</tr>
<tr>
<td>$IB</td>
<td>$IBR</td>
</tr>
<tr>
<td>$IEEE</td>
<td>$IEEEER</td>
</tr>
<tr>
<td>$LOGPROB</td>
<td>$NUMX</td>
</tr>
<tr>
<td>$OCTAL</td>
<td>$PERCENTN</td>
</tr>
<tr>
<td>$PERCENT</td>
<td>$PERCENT</td>
</tr>
<tr>
<td>$PIB</td>
<td>$PIBR</td>
</tr>
<tr>
<td>$PK</td>
<td>$PVALUE</td>
</tr>
<tr>
<td>$RB</td>
<td>$S370FF</td>
</tr>
<tr>
<td>$S370FHEX</td>
<td>$S370FIB</td>
</tr>
<tr>
<td>$S370FIBU</td>
<td>$S370FZD</td>
</tr>
<tr>
<td>$S370FPDU</td>
<td>$S370FRB</td>
</tr>
<tr>
<td>$S370FZDS</td>
<td>$S370FZDU</td>
</tr>
<tr>
<td>$S370FZDU</td>
<td>$SIZEK</td>
</tr>
<tr>
<td>$SIZEKMG</td>
<td>$SSN</td>
</tr>
<tr>
<td>$VAXRB</td>
<td>$WORDF</td>
</tr>
<tr>
<td>$YEN</td>
<td>$Z</td>
</tr>
</tbody>
</table>

Note: The ACTIVEX and ACTXIMG devices do not honor a numeric format that is applied to the values of a base 10 logarithmic axis.
Table 2.6 Date and Time Formats Supported by ActiveX

<table>
<thead>
<tr>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>DATEAMPM</td>
<td>DATETIME</td>
<td>DAY</td>
<td>DDMYY</td>
</tr>
<tr>
<td>DDMMYYB</td>
<td>DDMMYYC</td>
<td>DDMMYYD</td>
<td>DDMMYYN</td>
<td>DDMMYYP</td>
</tr>
<tr>
<td>DDMMYYS</td>
<td>DOWNAME</td>
<td>DTDATE</td>
<td>DTMONYY</td>
<td>DTWKDATX</td>
</tr>
<tr>
<td>DTYEAR</td>
<td>DTYYQC</td>
<td>HHMM</td>
<td>HOUR</td>
<td>JULDATE</td>
</tr>
<tr>
<td>JULDAY</td>
<td>JULIAN</td>
<td>MDYAMPM</td>
<td>MMDDYY</td>
<td>MMDDYYB</td>
</tr>
<tr>
<td>MMDDYYC</td>
<td>MMDDYYD</td>
<td>MMDDYYN</td>
<td>MMDDYYP</td>
<td>MMDDYYS</td>
</tr>
<tr>
<td>MMSS</td>
<td>MMYY</td>
<td>MMYYC</td>
<td>MMYYD</td>
<td>MMYYN</td>
</tr>
<tr>
<td>MMYYP</td>
<td>MMYYS</td>
<td>MONNAME</td>
<td>MONTH</td>
<td>MONYY</td>
</tr>
<tr>
<td>NENGO</td>
<td>PDJULG</td>
<td>PDJULI</td>
<td>QTR</td>
<td>QTRR</td>
</tr>
<tr>
<td>TIME</td>
<td>TIMEAMPM</td>
<td>TOD</td>
<td>WEEKDATE</td>
<td>WEEKDAX</td>
</tr>
<tr>
<td>WEEKDAY</td>
<td>WORDDATE</td>
<td>WORDDATX</td>
<td>XYYMMDD</td>
<td>YEAR</td>
</tr>
<tr>
<td>YYMM</td>
<td>YYMMC</td>
<td>YYMMD</td>
<td>YYMDDDD</td>
<td>YYMDDDB</td>
</tr>
<tr>
<td>YYMDDDC</td>
<td>YYMDDDD</td>
<td>YYMDDN</td>
<td>YYMDDP</td>
<td>YYMDDS</td>
</tr>
<tr>
<td>YYMMN</td>
<td>YYMMP</td>
<td>YYMMS</td>
<td>YYMON</td>
<td>YYQ</td>
</tr>
<tr>
<td>YYQC</td>
<td>YYQD</td>
<td>YYQN</td>
<td>YYQP</td>
<td>YYQR</td>
</tr>
<tr>
<td>YYQRC</td>
<td>YYQRD</td>
<td>YYQRN</td>
<td>YYRP</td>
<td>YYQRS</td>
</tr>
<tr>
<td>YYQS</td>
<td>YYQZ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The ACTIVEX and ACTXIMG devices do not support nested formats that include user-defined formats in the nesting. If you want to use a custom format with these devices and the custom format nests other formats, make sure that it nests only the formats that are provided by SAS.

Note: The ACTIVEX and ACTXIMG devices do not honor the DATATYPE=DATE option in the FORMAT procedure PICTURE statement.

Configuring Drill-Down Links with ACTIVEX

ActiveX parameters provide a way to implement drill-down functionality and to configure interactive features. The purpose and syntax of these parameters are defined in Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103. In the ODS HTML statement, ActiveX parameters are specified with the PARAMETERS= option, as described in Chapter 5, “Controlling Drill-Down Behavior for ActiveX and Java Using Parameters,” on page 59.

The SAS/GRAPH ActiveX Control enables the URL, HTML, and Script drill-down modes for charts and maps. Drill-down functionality is not enabled for contour plots.
These drill-down modes are implemented in ActiveX in the same way that they are implemented in Java. For information about implementing these drill-down modes, see “Specifying the Drill-Down Mode” on page 61.

Note: You can convert the Java examples to ActiveX by changing the DEVICE=JAVA graphics option in the GOPTIONS statement to DEVICE=ACTIVEX.

The following table lists the procedures and statements that generate output that can be used in ActiveX presentations with drill-down functionality.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBARLINE</td>
<td>BAR, PLOT</td>
</tr>
<tr>
<td>GCHART</td>
<td>HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D, DONUT</td>
</tr>
<tr>
<td>GPLOT</td>
<td>PLOT, BUBBLE</td>
</tr>
<tr>
<td>GMAP</td>
<td>CHORO, BLOCK, PRISM</td>
</tr>
<tr>
<td>G3D</td>
<td>PLOT, SCATTER</td>
</tr>
</tbody>
</table>

Configuring Data Tips with ACTIVEX

For output generated with the ACTIVEX graphics output device, data tips are created by default. The data tips are displayed when the mouse pointer is positioned over a graph data element. Use the TIPS=NONE parameter to suppress data tips for ActiveX. For example:

```ods html parameters="Tips=NONE"
```

For SAS/GRAPH procedures that support the HTML= option, you can add custom data tips to the output as described in “Adding Custom Data Tips with the HTML= Option” in SAS/GRAPH: Reference. To determine whether a procedure supports the HTML= option, refer to the description for that procedure in SAS/GRAPH: Reference.

Note: The output from the ACTIVEX graphics output device does not display custom data tips when the number of observations in the graph data exceeds 5000.

Examples: Creating Interactive ActiveX Output

About These Examples

The examples in this section describe how to create interactive graphs using the ACTIVEX device. The examples include:
Here is an example that demonstrates how the ODS RTF statement can be combined with the ACTIVEX device to generate interactive graphs inside Microsoft Word files.

Here is the example program code.

```sas
options reset=all device=activex
   hsize=4.5in vsize=3.5in;
ods _all_ close;
ods rtf path="." file="vehicles.rtf" style=statistical;
title1 "Types of Vehicles Produced Worldwide (Details)";
proc gchart data=sashelp.cars;
pie type / detail=drivetrain
   detail_percent=best
   detail_value=none
   detail_slice=best
   detail_threshold=2
   legend;
run;
quit;
ods rtf close;
ods html;
```

The following display shows the resulting graph.
The SAS/GRAPH ActiveX Control provides a pop-up menu that enables you to change many aspects of the graph, including the chart type. For example, to change the pie chart to a bar chart, right-click the graph, and then select ChartType ⇒ VerticalBar in the pop-up menu. The chart changes from a pie chart to a vertical bar chart.

Note: The SAS/GRAPH ActiveX pop-up menu does not display if the SAS/GRAPH ActiveX Control is in the design mode in Microsoft Word. If the ActiveX object is in the design mode, in Microsoft Word, click the Exit Design Mode icon in the Control Toolbox.
Example: Generating an Interactive Contour Plot in ActiveX

Here is an example that displays a contour plot of water depth in a lake. The SAS/GRAPH ActiveX Control lets you manipulate many of the aspects of the plot using the pop-up menu that is displayed when you right-click.

Here is the example program code.

```plaintext
goptions reset=all border device=activex;
ods html style=default;
proc gcontour data=sashelp.lake;
  plot width * length = depth;
run;
quit;
```

The following display shows the result.
Example: Providing JavaScript Drill-Down with ActiveX

Here is an example that shows you how to implement the Script drill-down mode using the MAP procedure and the ACTIVEX device. By default, SAS/GRAPH provides data tips for graphs that are generated with the ACTIVEX device. These data tips are displayed when the cursor is over a portion of the map. To implement JavaScript drill-down functionality, PUT statements are used to insert JavaScript code into the HTML file. The JavaScript, in the example, opens an alert window that displays the state abbreviation.

This example is available in the Sample Library under the name GWBDRACT.

Here is the example program code.

```/* Change the following line to specify your output file. */
filename odsout "states.htm" ;```
/* If your site has already installed the map data sets and defined the MAPS libref, then you can delete the LIBNAME statement below and the sample code should work. */
/* If not, contact your on-site SAS support personnel to determine how to define the MAPS libref. */
limestone maps 'SAS-MAPS-library';
/* Create a data set that contains the US states. */
proc sql;
create table work.mydata as
select unique state from maps.us;
quit;
/* Add state abbreviations to the new data set. */
data work.mydata;
length Statename $2;
set work.mydata;
Statename=trim(left(upcase(fipstate(state))));
run;
/* Specify the ACTIVEX device. */
goptions reset=all device=activex;
/* Close the current ODS HTML destination. */
ods html close;
/* Open ODS HTML and specify the HTML output file, the Script drill-down mode, and the callback method. */
ods html file=odsout
parameters=("DRILLDOWNMODE"="Script"
  "EXTERNALNAME"="GIDX"
  "DRILLTARGET"="_self"
  "DRILLFUNC"="MapDrill")
attributes=("NAME"="GIDX");
/* Specify a map title and generate the map. */
title "State Abbreviations";
proc gmap map=maps.us data=work.mydata all;
id state;
choro statename / nolegend;
run;
quit;
/* Close ODS HTML to close the output file, and then reopen ODS HTML. */
ods html close;
ods html;
/* Create the MapDrill script that is specified on the ODS HTML statement's DRILLFUNC parameter. */
/* Write the script to the same file that contains the HTML output from the GMAP procedure. */
data _null_;
file odsout mod; /* modify rather than replace file */
put " ";
put "<SCRIPT LANGUAGE='JavaScript'>";
}
Example: Providing More JavaScript Drill-Down with ActiveX

Here is an example that is similar to the example shown in “Example: Providing JavaScript Drill-Down with ActiveX” on page 29 but involves slightly more JavaScript coding. The program generates a map of the United States showing the states in which stores have been closed. If you click on a state in which no stores have been closed, then no action is performed. If you click on a state in which stores have been closed, a JavaScript alert window is displayed that shows the state abbreviation. In a real application, the JavaScript could be modified to display a list of the closed stores. This example is available in the Sample Library under the name GWBDRAC2.

For additional information about the script drill-down mode, see Chapter 5, “Controlling Drill-Down Behavior for ActiveX and Java Using Parameters,” on page 59.

Here is the example program code.

```javascript
/* Change the following line to specify your output file. */
%let odsout html-output-file2.htm;

goptions reset=all device=activex;

data stores;
 length stateabbrev $ 2;
 input state closedstore stateabbrev $ @@;
 datalines;
```

![Map Drill-Down Example](image)

Here is the example program code.

```javascript
/* Change the following line to specify your output file. */
%let odsout html-output-file2.htm;

goptions reset=all device=activex;

data stores;
 length stateabbrev $ 2;
 input state closedstore stateabbrev $ @@;
 datalines;
```
1  1  AL  2  0  AK  3  0  --  4  0  AZ  5  0  AR  6  0  CA
7  0  --  8  0  CO  9  0  CT 10  0  DE 11  0  DC 12  1  FL
13  0  GA 14  0  -- 15  0  HI 16  0  ID 17  0  IL 18  0  IN
19  0  IA 20  0  KS 21  0  KY 22  0  LA 23  0  ME 24  0  MD
25  0  MA 26  0  MI 27  0  MN 28  0  MS 29  0  MO 30  0  MT
31  0  NE 32  0  NV 33  0  NH 34  1  NJ 35  0  NM 36  1  NY
37  0  NC 38  0  ND 39  1  OH 40  0  OK 41  0  OR
42  0  PA 43  0  -- 44  0  RI 45  1  SC 46  0  SD 47  1  TN
48  0  TX 49  0  UT 50  0  VT 51  1  VA 52  0  -- 53  0  WA
54  0  WV 55  0  WI 56  0  WY 57  0  -- 58  0  -- 59  0  --
60  0  AS 61  0  PQ 62  0  EQ 63  0  -- 64  0  PW 65  0  --
66  0  GU 67  0  JQ 68  0  MH 69  0  MP 70  0  PW 71  0  MQ
72  0  PR
;
run;

/* create own custom maps dataset where id is 2 letter state abbreviation(statecode) not state fips number(state) */
data cus_map;
  length stateabbrev $2;
  set maps.us;
  stateabbrev=fipstate(state);
run;

/* close the current ODS HTML destination */
ods html close;

/* specify the ODS HTML output filename, parameters, and attributes */
ods html body="&odsout" nogtitle
  parameters=("DRILLDOWNMODE"="Script"
              "EXTERNALNAME"="GIDX"
              "DRILLTARGET"="_self"
              "DRILLFUNC"="MapDrill")
  attributes=("NAME"="GIDX");

/* generate the map */
proc gmap map=cus_map(where=(state ^in(2, 15))) data=stores;
  id stateabbrev;
  choro closedstore / discrete statistic=first missing
    empty=cx2254C2 coutline=black
    legend=legend1;
  legend1 label=("Closed Stores")
    value=(t=1 j=1 'No' t=2 j=1 'Yes') frame;
  pattern1 c=cx08804A v=solid;
  pattern2 c=cxE8B0018 v=solid;
run;
quit;

/* close ODS HTML to close the output file, then reopen ODS HTML */
ods html close;
ods html;

/* add the MapDrill JavaScript function to the HTML output file */
data _null_;
  file "&odsout" mod;
put "<SCRIPT LANGUAGE='JavaScript'>" ;
put " var isclosed = null; ";
put " var newWin; ";
put " var stateabbrev; ";
put " stateabbrev = ''; ";

put "function MapDrill( appletref )" ;
put "{" ;
put " /* Open an alert box to show the abbreviated state name. */";
put " for(i = 2; i < MapDrill.arguments.length; i += 2 )";
put " { ";
put " if (MapDrill.arguments[i] == 'G_DEPV,f' )
    {isclosed=MapDrill.arguments[i+1]; }";
put " if (MapDrill.arguments[i] == 'G_LABELV,f')
    {stateabbrev =MapDrill.arguments[i+1] + ' '; }";
put " } ";
put " if (isclosed == 1.000000){ alert(stateabbrev) }";
put "}" ;

put "</SCRIPT>";
run;
Overview of Creating Interactive Output for Java

Chapter 3
Generating Interactive Java Output

Overview of Creating Interactive Output for Java

Generating Output for Java

- Overview of Creating Interactive Output for Java
- Generating Output for Java
  - About Generating Output for the Graph and Map Applets
  - About the Java HTML Output and the Java Runtime Environment Plug-in
  - About Languages in JAVA
  - About Special Fonts and Symbols in JAVA
  - SAS Formats Supported for Java

Configuring Drill-Down Links for Java

Examples: Creating Interactive Java Output

- Configuring Data Tips with JAVA
- About These Examples
- Example: Local Drill-Down Mode with Java
- Example: Script Drill-Down Mode with Java
- Example: URL Drill-Down Mode with Java
- Example: HTML Drill-Down Mode

Overview of Creating Interactive Output for Java

The JAVA graphics output device generates interactive presentations that run in the Graph, Map, Tile, and Contour applets. These applets can display the output of certain SAS/GRAPH procedures as follows:

Graph applet
  - G3D scatter plots, GCHART, G PLOT

Map applet
  - GMAP

Tile Chart applet
  - GTILE

Contour applet
  - G3D surface plots, GCONTOUR

The Java applets enable web users to display data tips, to change the graph type, to pan, rotate, and zoom, and to change colors, fonts, axes, legends, and variable roles.

Note: The Java applets do not support the GAREABAR, GBARLINE, or GRADAR procedures. To provide interactivity with the output of these procedures, use the
ACTIVEX graphics output device instead, as described in Chapter 2, “Generating Interactive ActiveX Output,” on page 15. ActiveX output can also appear in Microsoft Word documents or other OLE applications.

You can enhance Java graphs by setting applet parameters and specifying Output Delivery System (ODS) options. Applet parameters let you configure drill-down links and override default values in the user interface. Information about parameters is provided in Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103.

You can use ODS styles to enhance the appearance of Java graphs, as described in “Using ODS Styles, Device Parameters, and Options” in SAS/GRAPH: Reference.

To generate a web presentation that runs the Graph, Map, or Contour applet, you generally specify the JAVA graphics output device in a GOPTIONS statement, open the HTML destination, generate one or more graphs, and then close the HTML destination, as described in “Generating Output for Java” on page 36.

You can generate the same graphs as static images using the DEVICE=JAVAIMG graphics option. Static images can be displayed without requiring that the web user install the applets or Java Runtime Environment (JRE). For details, see “SVG, PNG, GIF, and TIFF Devices Compared to ACTXIMG and JAVAIMG Devices” in SAS/GRAPH: Reference.

You can also use the JAVAMETA graphics output device to create interactive metagraphics output. See Chapter 4, “Generating Interactive Metagraphics Output,” on page 51.

---

**Generating Output for Java**

**About Generating Output for the Graph and Map Applets**

To develop a SAS/GRAPH program that generates output for the Graph applet or Map applet, follow these steps:

1. Reset graphics options and specify the JAVA graphics output device:
   
   ```
 goptions reset=all device=java;
   ```

2. Close the current ODS HTML destination:
   
   ```
 ods html close;
   ```

3. Open the ODS HTML destination. You can use the STYLE= option to specify an ODS style and the FILE= option to specify the HTML filename. See “Using ODS Styles, Device Parameters, and Options” in SAS/GRAPH: Reference. Use the PARAMETERS= option to configure the applet. See “Specifying Parameters and Attributes for Java and ActiveX” on page 105. Use the NOGTITLE option to write the graph title outside the graph border.

   **Note:** When the JAVA device is used, the graph title is always written outside the graph border. The GTITLE option is ignored in that case.

   For example:

   ```
 ods html
 style=statistical
 file="your_file.htm"
 nogtitle
   ```
parameters=\{"tips":"none"\};

Note: To run an applet, your users must be able access the appropriate Java archive files. Two archives are referenced by default: one is the Java plug-in from Oracle, and the other is the SAS Java archive.

In the HTML output file, the location of the Java plug-in from Oracle is specified in the CODEBASE attribute of the OBJECT tag. If you need to change this default value, then use the ATTRIBUTES= option of the ODS statement, as described in “Specifying Parameters and Attributes for Java and ActiveX” on page 105. On Windows systems, the user is prompted to install the plug-in if it is not already installed. On other systems, the plug-in can be installed from the SAS Third-Party Software Requirements web page.

The location of the SAS Java archive is specified in the JAVA_CODEBASE and ARCHIVE parameters in the body of the APPLET tag. The default JAVA_CODEBASE is specified by the APPLETLOC= system option. If the default value of this system option specifies a widely accessible URL, then you do not need to change this value. If you need to specify a different location, then you can change the value of the system option. Another alternative is to override the APPLETLOC= system option by specifying a value for the ODS statement option CODEBASE=, as described in “Specifying Parameters and Attributes for Java and ActiveX” on page 105.

Note: When specifying a location for the SAS Java archive, you can use an HTTP address, or you can use a UNC path, such as //sasjava, with forward slashes instead of backward slashes. If you use an HTTP address, the HTML file can be viewed through a web server or directly from the file system. However, if use a UNC path, the HTML file can be viewed from the file system only.

4. Run a procedure or procedures that are used by the JAVA graphics output device (see Table 2.1 on page 16):

```sas
 title "Chart of Average Weight and Height by Sex";
 proc gchart data=sashelp.class;
 vbar sex / type=mean sumvar=height group=age subgroup=sex space=0;
 run;
 quit;
```

5. Close ODS HTML to close the output file, and then reopen ODS HTML:

```sas
 ods html close;
 ods html;
```

Running your program starts the applet and displays the initial graph. If a large amount of data is used to generate the graph, the Java Virtual Machine (JVM) default heap size might not be sufficient to generate the graph. In that case, the chart fails to display in your web browser, and the following error appears in the Java Console:

```
java.lang.OutOfMemoryError: Java heap space
```

To correct the problem, include the PARAMETERS= option in your ODS HTML statement to increase the heap size as described in “Specifying the Java Virtual Machine Maximum Heap Size” on page 108.

If the browser display differs from what you see in SAS, then ensure that your SAS/GRAPH procedure is fully enabled in the applet. See “Summary of ActiveX and Java Support” in SAS/GRAPH: Reference for details.

Note: Using the GMAP procedure to generate a highly detailed map might create a large HTML output file, which might cause problems on certain browsers. If this is the
case, you can run the GREDUCE procedure to remove some of the complexity and produce a more usable map.

For further information about troubleshooting web output, see Chapter 8, “Troubleshooting Java and ActiveX Output,” on page 97.

About the Java HTML Output and the Java Runtime Environment Plug-in

The Java Runtime Environment (JRE) plug-in is required to open HTML output that is generated by the JAVA graphics output device. When the JRE plug-in is required, Internet Explorer prompts you to install it if it is not already installed. For all other browsers, you must manually install the plug-in if it is not already installed. Refer to the browser documentation for information about installing the Java plug-in for your browser. Your users must also install the Java plug-in if it is not already installed on their computer.

The 9.4 SAS/GRAPH Java applets will work with the JRE versions that are listed on the SAS Third-Party Software Requirements web page. If you need to install the JRE, download and install the version that is listed for your SAS version and your platform. If future JREs are backward compatible, then the applets should work without any issues.

About Languages in JAVA

For international audiences, the Java applets have graphical user interfaces that can appear in the following languages: Chinese (simplified), Czech, Danish, English, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Russian, Spanish, and Swedish. Generally, to display a translated graphical user interface, web-based JAVA devices must use a language-specific operating environment and web browser. This requires the all-languages version of the JRE. For further information, contact your on-site SAS support personnel.

About Special Fonts and Symbols in JAVA

The Java devices support only system fonts. The following figure shows the special symbols that the Java devices support and the value that you must specify in the SYMBOL statement VALUE= option for each.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂</td>
<td>*</td>
</tr>
<tr>
<td>+</td>
<td>×</td>
</tr>
<tr>
<td>&gt;</td>
<td>CIRCLE</td>
</tr>
<tr>
<td>◊</td>
<td>CIRCLE</td>
</tr>
<tr>
<td>◦</td>
<td>CIRCLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋈</td>
<td>DIAMOND</td>
</tr>
<tr>
<td>⋈</td>
<td>DOT</td>
</tr>
<tr>
<td>⋈</td>
<td>PLUS</td>
</tr>
<tr>
<td>⋈</td>
<td>SQUARE</td>
</tr>
<tr>
<td>⋈</td>
<td>STAR</td>
</tr>
<tr>
<td>⋈</td>
<td>TRIANGLE</td>
</tr>
</tbody>
</table>

See “SYMBOL Statement” in SAS/GRAPH: Reference for more information.

SAS Formats Supported for Java

The JAVA devices support the SAS character, numeric, and the date and time formats that are listed in the following tables. For a description of these formats, see SAS System Options: Reference.
### Table 3.1  Character Formats Supported by Java

<table>
<thead>
<tr>
<th>$</th>
<th>$ASCII</th>
<th>$BINARY</th>
<th>$CHAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>$HEX</td>
<td>$OCTAL</td>
<td></td>
</tr>
</tbody>
</table>

### Table 3.2  Numeric Formats Supported by Java

<table>
<thead>
<tr>
<th>BEST</th>
<th>BINARY</th>
<th>COMMA</th>
<th>COMMAX</th>
<th>COMMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>DOLLAR</td>
<td>DOLLARX</td>
<td>E</td>
<td>EURO</td>
</tr>
<tr>
<td>EUROX</td>
<td>F</td>
<td>HEX</td>
<td>LOGPROB</td>
<td>NEGPAREN</td>
</tr>
<tr>
<td>NLBEST</td>
<td>NLD</td>
<td>NLMNIAED</td>
<td>NLMNIAUD</td>
<td>NLMNIBGN</td>
</tr>
<tr>
<td>NLMNIBRL</td>
<td>NLMNICAD</td>
<td>NLMNICF</td>
<td>NLMNICNY</td>
<td>NLMNICZK</td>
</tr>
<tr>
<td>NLMNIDKK</td>
<td>NLMNIEEK</td>
<td>NLMNIEGP</td>
<td>NLMNIEUR</td>
<td>NLMNIGBP</td>
</tr>
<tr>
<td>NLMNIHKD</td>
<td>NLMNIHRK</td>
<td>NLMNIHUF</td>
<td>NLMNIIDR</td>
<td>NLMNIILS</td>
</tr>
<tr>
<td>NLMNIINR</td>
<td>NLMNIJPY</td>
<td>NLMNIKRW</td>
<td>NLMNILTL</td>
<td>NLMNILVL</td>
</tr>
<tr>
<td>NLMNIMOP</td>
<td>NLMNIMXN</td>
<td>NLMNIMYR</td>
<td>NLMNINOK</td>
<td>NLMNINZD</td>
</tr>
<tr>
<td>NLMNIPLN</td>
<td>NLMNIROL</td>
<td>NLMNIRUB</td>
<td>NLMNIRUR</td>
<td>NLMNISEK</td>
</tr>
<tr>
<td>NLMNISGD</td>
<td>NLMNISKK</td>
<td>NLMNITHB</td>
<td>NLMNITRY</td>
<td>NLMNITWD</td>
</tr>
<tr>
<td>NLMNIUSD</td>
<td>NLMNIZAR</td>
<td>NLMNLAED</td>
<td>NLMNLAUD</td>
<td>NLMNLBGN</td>
</tr>
<tr>
<td>NLMNLBRL</td>
<td>NLMNLCAD</td>
<td>NLMNLCHF</td>
<td>NLMNLNCY</td>
<td>NLMNLCKZ</td>
</tr>
<tr>
<td>NLMNLDKK</td>
<td>NLMNLEEK</td>
<td>NLMNLEG</td>
<td>NLMNLEUR</td>
<td>NLMNLGBP</td>
</tr>
<tr>
<td>NLMNLHKD</td>
<td>NLMNIHRK</td>
<td>NLMNLHUF</td>
<td>NLMNLIDR</td>
<td>NLMNLILS</td>
</tr>
<tr>
<td>NLMNLINR</td>
<td>NLMNIJPY</td>
<td>NLMNKRW</td>
<td>NLMNLLTL</td>
<td>NLMNLLVL</td>
</tr>
<tr>
<td>NLMNLMOP</td>
<td>NLMNLMXN</td>
<td>NLMNMYR</td>
<td>NLMNOK</td>
<td>NLMNLDZ</td>
</tr>
<tr>
<td>NLMNLPLN</td>
<td>NLMNROR</td>
<td>NLMNRUB</td>
<td>NLMNRUR</td>
<td>NLMNLEK</td>
</tr>
<tr>
<td>NLMNLSDG</td>
<td>NLMNLSDK</td>
<td>NLMNLTHB</td>
<td>NLMNLTRY</td>
<td>NLMNLTDW</td>
</tr>
<tr>
<td>NLMNLUSD</td>
<td>NLMNLZAR</td>
<td>NLMNY</td>
<td>NLMNYI</td>
<td>NLNUM</td>
</tr>
<tr>
<td>NLMNI</td>
<td>NLPCT</td>
<td>NLPCTI</td>
<td>NLPVALUE</td>
<td>NUMX</td>
</tr>
<tr>
<td>OCTAL</td>
<td>PERCENT</td>
<td>PERCENTN</td>
<td>PVALUE</td>
<td>ROMAN</td>
</tr>
<tr>
<td>RSTDOCNY</td>
<td>RSTDOCYY</td>
<td>RSTDONYN</td>
<td>RSTDOPNY</td>
<td>RSTDOPYN</td>
</tr>
<tr>
<td>RSTDOPYY</td>
<td>YEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.3  Date and Time Formats Supported by Java

<table>
<thead>
<tr>
<th>Format Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRDFDD</td>
<td>AFRDFDE AFRDFDN AFRDFDT AFRDFDWN</td>
</tr>
<tr>
<td>AFRDFMN</td>
<td>AFRDFMY AFRDFWX AFRDFWKX CATDFDD</td>
</tr>
<tr>
<td>CATDFDE</td>
<td>CATDFDN CATDFDT CATDFDWN CATDFMN</td>
</tr>
<tr>
<td>CATDFMY</td>
<td>CATDFWX WCATDFKX CRODFDD CRODFDE</td>
</tr>
<tr>
<td>CRODFDN</td>
<td>CRODFDT CRODFWN CRODFMN CRODFMY</td>
</tr>
<tr>
<td>CRODFWX</td>
<td>CRODFWXX CSYDFDD CSYDFDE CSYDFDN</td>
</tr>
<tr>
<td>CSYDFDT</td>
<td>CSYDFDN CSYDFMN CSYDFMY CSYDFWX</td>
</tr>
<tr>
<td>CSYDFWX</td>
<td>DANDFDD DANDFDE DANDFDM DANDFDT</td>
</tr>
<tr>
<td>DANDFDMN</td>
<td>DANDFMY DANDFWDX DANDFWKX</td>
</tr>
<tr>
<td>DATE</td>
<td>DATEAMPM DATETIME DAY DDMMYY</td>
</tr>
<tr>
<td>DDMMYYN</td>
<td>DESDFDD DESDFE DESDFDN DESDFDT</td>
</tr>
<tr>
<td>DESDFDMN</td>
<td>DESDFMY DESDFWX DESDFWX DESDFWKX</td>
</tr>
<tr>
<td>DEUDFDD</td>
<td>DEUDFDE DEUDFDN DEUDFDT DEUDFDMN</td>
</tr>
<tr>
<td>DEUDFMN</td>
<td>DEUDFMY DEUDFWDX DEUDFWKX DOWNNAME</td>
</tr>
<tr>
<td>DTDATX</td>
<td>DTMONYY DTWКDATX DTYEAR DTYYQC</td>
</tr>
<tr>
<td>ENGDFDD</td>
<td>ENGFDE ENGFDN ENGFDT ENGFDMN</td>
</tr>
<tr>
<td>ENGDFMN</td>
<td>ENGDFMY ENGFWDX ENGFWKX ESPDFDD</td>
</tr>
<tr>
<td>ESPDFDE</td>
<td>ESPDFDN ESPDFET ESPDFWN ESPDFMN</td>
</tr>
<tr>
<td>ESPDFMY</td>
<td>ESPFWDX ESPFWKX EURDFDD EURDFDE</td>
</tr>
<tr>
<td>EURDFDN</td>
<td>EURFDT EURFDWN EURDFMN EURDFMY</td>
</tr>
<tr>
<td>EURFWDX</td>
<td>EURFWKX FINDFDD FINDFDE FINDFDMN</td>
</tr>
<tr>
<td>FINDFDT</td>
<td>FINDFDW FINDFMN FINDFMY FINDFWDX</td>
</tr>
<tr>
<td>FINDFWKX</td>
<td>FRADFDD FRADFDE FRADFDN FRADFDT</td>
</tr>
<tr>
<td>FRADFDMN</td>
<td>FRADFMY FRADFWX FRADFWKX</td>
</tr>
<tr>
<td>FRSDFDD</td>
<td>FRSDFDE FRSDFDN FRSDFDT FRSDFWDX</td>
</tr>
<tr>
<td>FRSDFMN</td>
<td>FRSDFMY FRSDFWDX FRSDFWKX HHMM</td>
</tr>
<tr>
<td>HOUR</td>
<td>HUNDFDD HUNDFE HUNDFMN HUNDFDT</td>
</tr>
<tr>
<td>HUNDFDMN</td>
<td>HUNDFMY HUNDFWX HUNDFWKX</td>
</tr>
<tr>
<td>ITADFDD</td>
<td>ITADFDE ITADFDM ITADFDT ITADFDMN</td>
</tr>
<tr>
<td>ITADFMN</td>
<td>ITADFMY</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>JDATEMON</td>
<td>JDATEQRW</td>
</tr>
<tr>
<td>JULDATE</td>
<td>JULDAY</td>
</tr>
<tr>
<td>MACDFDN</td>
<td>MACDFDT</td>
</tr>
<tr>
<td>MACDFWDX</td>
<td>MACDFWX</td>
</tr>
<tr>
<td>MMYY</td>
<td>MMYYN</td>
</tr>
<tr>
<td>NLDATE</td>
<td>NLDATEMD</td>
</tr>
<tr>
<td>NLDATEYM</td>
<td>NLDATEYQ</td>
</tr>
<tr>
<td>NLDATEYM</td>
<td>NLDATMDT</td>
</tr>
<tr>
<td>NLDATM</td>
<td>NLDATMW</td>
</tr>
<tr>
<td>NLDATMYR</td>
<td>NLDATMYWN</td>
</tr>
<tr>
<td>NLDFFDN</td>
<td>NLDFFDT</td>
</tr>
<tr>
<td>NLDFFWX</td>
<td>NLDFFWX</td>
</tr>
<tr>
<td>NLTIMAP</td>
<td>NLTIME</td>
</tr>
<tr>
<td>NORDFDT</td>
<td>NORDFDTW</td>
</tr>
<tr>
<td>NORDFWX</td>
<td>NORDFWD</td>
</tr>
<tr>
<td>POLDFDN</td>
<td>POLDFMN</td>
</tr>
<tr>
<td>PTGDFDD</td>
<td>PTGDFDE</td>
</tr>
<tr>
<td>PTGDFMN</td>
<td>PTGDFMY</td>
</tr>
<tr>
<td>QTRR</td>
<td>RUSDFFD</td>
</tr>
<tr>
<td>RUSDFFFN</td>
<td>RUSDFFMN</td>
</tr>
<tr>
<td>RUSDFFW</td>
<td>RUSDFFW</td>
</tr>
<tr>
<td>SLODFDW</td>
<td>SLODFMW</td>
</tr>
<tr>
<td>SLODFWN</td>
<td>SLODFWXX</td>
</tr>
<tr>
<td>SLODFXM</td>
<td>SLODFMN</td>
</tr>
<tr>
<td>SLODFW</td>
<td>SLODFW</td>
</tr>
<tr>
<td>SVEDFFDT</td>
<td>SVEDFFDWX</td>
</tr>
<tr>
<td>TOD</td>
<td>WEEKDATE</td>
</tr>
<tr>
<td>WEEKV</td>
<td>WEEKW</td>
</tr>
<tr>
<td>YYMM</td>
<td>YYMMDD</td>
</tr>
<tr>
<td>YYQ</td>
<td>YYQH</td>
</tr>
<tr>
<td>YYWEEKV</td>
<td>YYWEEKW</td>
</tr>
</tbody>
</table>
Note: The JAVA and JAVAIMG devices do not support nested formats that include user-defined formats. If you want to use a custom format with these devices and the custom format nests other formats, make sure that it nests only the formats that are provided by SAS.

Note: The JAVA and JAVAIMG devices do not honor the DATATYPE=DATE and NOEDIT options in the FORMAT procedure PICTURE statement.

Configuring Drill-Down Links for Java

You can configure your Java applet to add drill-down links to your graph in one of the following modes:

- Local mode
- Script mode
- URL mode

See Chapter 5, “Controlling Drill-Down Behavior for ActiveX and Java Using Parameters,” on page 59. See also “Examples: Creating Interactive Java Output” on page 42.

Configuring Data Tips with JAVA

For output generated with the JAVA graphics output device, data tips are created by default. The data tips are displayed when the mouse pointer is positioned over a graph data element. Use the TIPS=NONE parameter to suppress data tips for Java. For example:

```ods HTML parameters=("Tips"="NONE")```

For SAS/GRAPH procedures that support the HTML= option, you can add custom data tips to the output as described in “Adding Custom Data Tips with the HTML= Option” in SAS/GRAPH: Reference. To determine whether a procedure supports the HTML= option, refer to the description for that procedure in SAS/GRAPH: Reference.

Examples: Creating Interactive Java Output

About These Examples

The examples in this section demonstrate how to generate interactive graphs using the JAVA graphics output device. The examples include:

- “Example: Local Drill-Down Mode with Java” on page 43
- “Example: Script Drill-Down Mode with Java” on page 45
- “Example: URL Drill-Down Mode with Java” on page 47
- “Example: HTML Drill-Down Mode” on page 49
Additional examples are available in the Sample Library:

- GWBJABAR—Generating a Bar Chart for the web
- GWBJACON—Generating a Contour Plot for the web

Example: Local Drill-Down Mode with Java

Here is an example that generates an HTML output file that runs the Graph applet. If the graph contains a group or subgroup, then by default the applet automatically provides drill-down functionality. When a user clicks on an element in the graph, the applet generates and displays a new graphic based on the selected elements. In the example, note how variable roles are assigned in the VBAR3D statement.

This example is available in the Sample Library under the name GWBJALOC. For further information, see “Links in ACTIVEX Presentations” in *SAS/GRAPH: Reference*.

The following figure shows output produced by the sample program.

Company Sales, Mid Year

When the mouse pointer is positioned on a bar, the mouse pointer indicates an active link, and a data tip displays the information for that bar. Clicking the NC bar for 1999, for example, displays the drill-down graph shown in the following figure.
Here is the example program code.

```plaintext
filename odsout "sales.htm";

/* Close the current ODS HTML destination. */
ods html close;

data sales;
    length Region $ 4 State $ 2;
    format Sales dollar8.;
    input Region State Sales Year Qtr;
    datalines;
West CA 13636 1999 1
West OR 18988 1999 1
West CA 14523 1999 2
West OR 18988 1999 2
East MA 18038 1999 1
East NC 13611 1999 1
East MA 11084 1999 2
East NC 19660 1999 2
West CA 12536 1998 1
West OR 17888 1998 1
West CA 15623 1998 2
West OR 17963 1998 2
East NC 17638 1998 1
East MA 12811 1998 1
East NC 12184 1998 2
East MA 12760 1998 2
;
goptions reset=all border device=java;

ods html file=odsout style=listing;

title "Company Sales, Mid Year";
```
proc gchart data=sales;
 vbar3d region / sumvar=sales
 group=year subgroup=state;
run; quit;
ods html close;
ods html;

You can also use the URL= procedure option to implement local drill-down links in your graphs. See “Adding Links and Enhancements with the URL=, HTML=, and HTML_LEGEND= Options” in SAS/GRAPH: Reference.

Example: Script Drill-Down Mode with Java

Here is an example that shows how to implement the script drill-down mode in the Graph applet or Map applet. SAS/GRAPH provides data tips by default. These data tips are displayed when the cursor is over a portion of the map. To implement JavaScript drill-down functionality, PUT statements are used to insert JavaScript code into the HTML file. The JavaScript, in the example, opens an alert window that displays the state abbreviation.

This example is available in the Sample Library under the name GWBSCDRL. For further information, see “Links in ACTIVEX Presentations” in SAS/GRAPH: Reference.

Here is the example program code.

```sql
/* Change the next two lines to run this program. */
filename odsout "states.htm" ;

/* If your site has already installed the map data sets and defined the MAPS libref, then you can delete the LIBNAME statement * /
/* below and the sample code will work. */
/* If not, contact your on-site SAS support personnel */
/* to determine how to define the MAPS libref. */
*libname maps 'SAS-MAPS-library';

/* Create a data set that contains the US states. */
proc sql;
create table work.mydata as
select unique state from maps.us;
```

/* Add state abbreviations to the new data set. */
data work.mydata;
 length Statename $2;
 set work.mydata;
 Statename=trim(left(upcase(fipstate(state))));
run;

/* Specify the JAVA device. */
goptions reset=all device=java;

/* Close the current ODS HTML destination. */
ods html close;

/* Open ODS HTML and specify the HTML output file, the script drill-down mode, and the callback method. */
ods html file=odsout
 parameters=('DRILLDOWNMODE'="Script"
 'DRILLFUNC'="MapDrill");

/* Specify a map title and generate the map. */
title1 "State Abbreviations";
proc gmap map=maps.us data=work.mydata all;
 id state;
 choro statename / nolegend;
run;
quit;

/* Close ODS HTML to close the output file, and then reopen ODS HTML. */
ods html close;
ods html;

/* Create the MapDrill script that is specified on */
/* the ODS HTML statement's DRILLFUNC parameter. */
/* Write the script to the same file that contains */
/* the HTML output from the GMAP procedure. */
data _null_
 file odsout mod; /* Modify the file rather than replacing it. */
 put " " ;
 put "<SCRIPT LANGUAGE='JavaScript'>" ;
 put "function MapDrill(appletref)" ;
 put "{" ;
 put "" ;
 put "/* Open an alert box to show the abbreviated state name. */" ;
 put "for(i = 2; i < MapDrill.arguments.length; i += 2)" ;
 put "{" ;
 put "if (MapDrill.arguments[i] == 'G_DEPV,f')" ;
 put "alert(MapDrill.arguments[i+1]);" ;
 put "}" ;
 put "" ;
 put "}" ;
 put "</SCRIPT>" ;
run ;
Example: URL Drill-Down Mode with Java

Here is an example that demonstrates the URL drill-down mode. This example is available in the SAS sample library under the name GWBURDLDR. For further information, see “Links in JAVA Presentations” in SAS/GRAPH: Reference. This example generates a drill-down bar chart of regional sales data as shown in the following figure.

![Company Sales Chart](image)

When the mouse pointer is positioned on a bar, the mouse pointer indicates an active link, and a data tip is displayed for that bar. Clicking the West bar, for example, opens the corresponding HTML file that displays a table further breaking down the sales data for the Western region as shown in the following figure.

![Western Sales Table](image)

To create the drill-down chart, a link information variable, RPT, is added to the data set to contain the HREF= and TITLE= attributes for each region bar in the chart. ODS inserts these attributes into the image map for the graph when it generates the HTML output. Because the RPT variable includes the HREF= and TITLE= attributes, the HTML= option must be used in the GPLOT statement to specify the RPT variable. The URL= option cannot be used in this case.

Here is the example program code.
/* Change the output path as needed */
%let outpath=.;

/* Define the output directory and file references */
filename urldrill "&outpath"; /* Path to the output files */
filename sales "&outpath/sales.html";
filename central "&outpath/central.html";
filename south "&outpath/south.html";
filename west "&outpath/west.html";

/* Close the current ODS HTML destination. */
ods html close;

/* Specify the device. */
goptions reset=all border device=java;

/* Create the data set REGSALES. */
data regsales;
 length Region State $ 8;
 format Sales dollar8.;
 input Region State Sales;

/* Initialize the link variable. */
 length rpt $150;

/* Assign values to the HTML variable. */
 if Region="Central" then
 rpt='href="central.html" title="Click to see Central sales data"';
 else if Region="South" then
 rpt='href="south.html" title="Click to see Southern sales data"';
 else if Region="West" then
 rpt='href="west.html" title="Click to see Western sales data"';

datalines;
West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

/* Open the HTML output file and specify the URL drill-down mode. */
ods html body=sales
 path=urldrill
 style=listing
 parameters=("drilldownmode"="url");

/* Create a chart that uses the link variable. */
title "Company Sales";
proc gchart data=regsales;
vbar3d region / sumvar=sales
 patternid=midpoint
Example: HTML Drill-Down Mode

Here is an example that generates an HTML output file that displays the Map applet. The applet is configured for the HTML drill-down mode, where URLs are dynamically generated based on the data in the graph element that was selected in the drill-down action. In this example, the value of the STATENAME variable is used to complete the URLs. For additional information, see “Links in ACTIVEX Presentations” in SAS/GRAPH: Reference.

In the resulting HTML page, clicking on a state in the U.S. map activates a URL. This example is available in the SAS Sample Library under the name GWBJAMAP. Here is the example program code.

```sas
/* Close the current ODS HTML destination. */
ods html close;

/* Specify a path and name for the HTML output file. */
ods html
  file="your_HTML_file.htm"
  style=default
  parameters=("DRILLDOWNMODE"="HTML")
```
parameters="DRILLPATTERN"="http://www.state.{&statename}.us"
parameters="BACKCOLOR"="FFFFFF";

/* Specify the JAVA device and set up customizations. */
goptions reset=all device=java;

/* Create data for the graph. */
proc sql;
create table work.mydata as
 select unique state from maps.us;
quit;
run;
data work.mydata;
 length statename $1020;
 set work.mydata;
/* Place the state name in the data set. */
 statename=trim(left(lowcase(fipstate(state))));
run;
title1
 "Click on a state to go to that state's home page";
/* Generate the graph. */
proc gmap map=maps.us
data=work.mydata all;
id state;
choro statename / levels=1 discrete
 coutline=black
 nolegend;
run; quit;
/* Close ODS HTML to close the output file, and then reopen ODS HTML. */
ods html close;
ods html;
Chapter 4
Generating Interactive Metagraphics Output

Developing Web Presentations for the Metaview Applet

Advantages of Using the JAVAMETA Device

Using ODS with the JAVAMETA Device

Enhancing Web Presentations for the Metaview Applet

Specifying Non-English Resource Files and Fonts

Example: Generating Metacode Output with the JAVAMETA Driver

Developing Web Presentations for the Metaview Applet

The JAVAMETA device driver generates graphs that are stored in metagraphics format and displayed by the SAS Metaview applet to create interactive graphical web presentations. The metacodes that comprise the metagraphics format are simple ASCII codes that look like the following:

```
37  8 106 97 118 97 109 101 116 97 30 0 10 1 13 5
0 0 0 50 8 32 32 32 32 32 32 32 32 32 51 18 57
46 48 46 48 48 77 48 68 48 56 48 49 50 48 48
```

You can use a GOPTIONS statement with the DEVICE=JAVAMETA option to create metacode output from one or more SAS/GRAPH procedures. When the graph is viewed, the browser passes the metacodes as a parameter to the Metaview applet. The Metaview applet renders the output defined by the metacodes, and displays the interactive graph to the user.

Most SAS/GRAPH procedures that generate GSEG catalog entries, as well as some other SAS procedures such as the GANTT procedure, can be used with the JAVAMETA device to generate metagraphics output. For a list of these procedures, see “Metaview Applet” on page 6.

Interactive features of the Metaview applet include pan and a play mode for animations. You can add data tips, specify resource files for language translation, specify background colors and text fonts, and drill down to HTML files, metagraphics files, and sets of metacodes. You can also provide a list of selectable drill-down URLs in the pop-up menu. Whereas regular HTML drill-down allows only a single drill-down, the metaview applet allows a selection list of multiple drill-downs per each chart element. For
information about these enhancements, see “Enhancing Web Presentations for the Metaview Applet” on page 53.

For information about how to generate a Metaview applet presentation, see “Using ODS with the JAVAMETA Device” on page 52.

To see examples of programs that generate a web presentation for the Metaview applet, see “Example: Generating Metacode Output with the JAVAMETA Driver” on page 55.

Advantages of Using the JAVAMETA Device

The Metaview applet offers these advantages:

- The images produced by the Metaview applet are vector graphics, so the zooming capability provided by the Metaview applet allows the user to zoom in on a graph without degrading the graph's appearance. The zoom control is included by default. You can disable it with the ZOOMCONTROLENABLED= on page 147 parameter.

- Compared to raster images (GIF, JPEG, PNG), the Metaview applet offers faster data tips, and the data tips stay up as long as you hold your mouse over them. Also, for animations and slide shows, data tips are displayed for each graph in the sequence.

Note: The MetaView applet does not support the High Contrast Black color scheme.

Using ODS with the JAVAMETA Device

The following steps use ODS to develop a web presentation for the Metaview applet. This particular example displays a single graph. The metacodes for that graph are embedded in the body of the HTML output file.

1. Specify the JAVAMETA device driver.
   ```
   goptions reset=all device=javameta;
   ```

2. Close all open ODS destinations to conserve resources.
   ```
   ods _all_ close;
   ```

3. Open the HTML destination. You can also specify an HTML filename with the BODY= option. If you do not specify an HTML output filename, the default filename is `sashtml.htm`. The APPLETLOC= system option specifies the default location of the applet JAR files. If necessary, you can specify another location with the CODEBASE= option in the SAS program.
   ```
   ods html body="filename.htm" codebase="location-of-jar-files">;
   ```

 You can enhance your web presentation by specifying other applet parameters, as described in “Parameters That Apply to the Metaview and Tile Chart Applets” on page 112.

4. Include the SAS/GRAPH procedure code.
   ```
   proc gchart data=sashelp.class; vbar height / group=age; run;
   ```
5. Close the HTML destination. You must close the HTML destination to generate output. (You might also want to reopen the HTML destination.)

``` Sas
ods html close;
ods html;
```

Submit the program to generate the HTML output file, which includes the metacodes generated by the JAVAMETA device.

When you view the HTML file in a web browser, the Metaview applet renders the graph defined by the metacodes.

Enhancing Web Presentations for the Metaview Applet

Programming for the default configuration of the Metaview applet consists of specifying the JAVAMETA device driver, specifying an HTML output file, and generating a graph, as described in “Developing Web Presentations for the Metaview Applet” on page 51.

You can enhance the default configuration as follows:

- Specify a non-English resource file and font for Java 1.02 presentations. See “Specifying Non-English Resource Files and Fonts” on page 54.
- Display and configure a zoom control. See the applet parameters that begin with ZOOM, in “Parameters That Apply to the Metaview and Tile Chart Applets” on page 112.
- Display and configure a play button to display multiple graphs or to produce an animation effect.
- Set the background color by setting the applet parameter BACKGROUNDCOLOR.
- If you specify an ODS style, do not specify a style that uses a background image (such as Dtree, Netdraw, or BlockPrint) or specify the NOIMAGEPRINT option in the GOPTIONS statement.

Note that you can combine almost all of the available enhancements.

To learn how to specify applet parameters, see “Specifying Parameters and Attributes for Java and ActiveX” on page 105. Reference information about applet parameters is provided in Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103.

You can also add data tips and drill-down links to your graphs in many cases. Many of the SAS/GRAPH procedure statements support the HTML= option, which enables you to add data tips and drill-down links to your graphs. To determine whether a SAS/GRAPH procedure supports the HTML= option, see SAS/GRAPH: Reference.

Using the HTML= option, you can add data tips and drill-down links to your graphs as follows:

- Create a variable in your plot data that contains the ALT= tag or HREF= tag for each observation as shown in the following examples.

``` Sas
alt="data-tip-text"
href="url-string"
```
Note: You must specify the data-tip text in an ALT= tag. The JAVAMETA device does not support the TITLE= tag. The variable can contain one or both tags in any order. In the latter case, a data tip and a drill-down link are added. If the value is blank, no action is taken for that observation.

- Use the HTML= option in your plot statement to specify the name of the variable that contains the ALT text or URL strings.

Tip Use the DATATIPSTYLE and DATATIPHIGHLIGHTCOLOR applet parameters to configure the appearance of the data tips. See “Parameters That Apply to the Metaview and Tile Chart Applets” on page 112.

For an example, see “Example: Generating Metacode Output with the JAVAMETA Driver ” on page 55.

Specifying Non-English Resource Files and Fonts

The Metaview applet supports Java 1.02, which is good in that it runs in most browsers. Unfortunately, Java 1.02 does not support the use of resource files and fonts, which would enable the automated use of translated text and localized formats as supported by Java 1.2. To overcome this limitation, the Metaview applet enables you to name a resource file and a resource font by specifying applet parameters. In this resource file, you can hardcode translated versions of the text that the Metaview applet uses.

Follow these steps to manually translate the text in the Metaview applet:

1. Specify the LOGRESOURCES parameter in your SAS job, generate the HTML, and view it in a browser. (See “Parameters That Apply to the Metaview and Tile Chart Applets” on page 112.) The Metaview applet will then write its tag/value pairs to the Java console.

2. Copy the tag/value pairs that you want to translate out of the Java console and paste them into your resources file. Then translate those values to your language. You do not need to translate all of the tag/value pairs. The defaults will be used where translations are not provided.

3. Name your resources file *MVAResources.properties*.

4. Store your resources file in the same directory as either the HTML output file or the *sas.graph.metaviewapplet.jar* file.

5. In the SAS program, remove the LOGRESOURCES parameter specification.

6. If your resources file requires a non-English text font, then specify that font as the value of the parameter RESOURCESFONTNAME. To display this font, your web audience must have this font installed.

7. Run your program and test your web output.

For information about specifying applet parameters, see “Specifying Parameters and Attributes for Java and ActiveX” on page 105. For reference information about the Metaview applet parameters, see “Parameters That Apply to the Metaview and Tile Chart Applets” on page 112.
Example: Generating Metacode Output with the JAVAMETA Driver

The following example uses the JAVAMETA device and the GCHART procedure to generate a sales chart that shows total sales by year and quarter. The chart is grouped by country and product. The JAVAMETA device generates metacodes that are to be displayed by the Metaview applet. The ODS HTML destination is used to generate an HTML file that passes the metacodes to the Metaview applet, which displays the output in the browser.

When you use DEVICE=JAVAMETA with ODS, only one graph can be passed to an instance of the Metaview applet at a time. ODS generates a separate invocation of the Metaview applet for each SAS/GRAFHPROC procedure that it runs. If a procedure includes BY GROUP processing, it generates another separate invocation of the Metaview applet for each BY-group chart. In this example, the data contains quarterly sales figures for the years 1993 and 1994. Because BY-group processing is used for both year and quarter, eight invocations of the Metaview applet are required.

Metaview applet presentations generated by ODS that contain multiple graphs do not contain a slider page control or drop-down list graph control that allows a user to select a graph to display. Although an HTML page generated by ODS can contain multiple instances of the Metaview applet, each instance can display one graph only. A user must scroll the HTML page to see all of the graphs.

Note: If you want to place multiple graphs in a single metaview applet so that you can use the slider page control or the play/pause buttons, you must script out your own HTML with the PUT statement rather than using ODS.

This example also uses Java parameters in the ODS HTML statement to configure the Metaview applet as follows:

- Set the applet background color to blue (0x7f7ff0).
- Set the data tip format to STICK.
- Set the zoom range to 75%–150%.

The following figure shows the first graph of the eight graphs that are generated by this example. To see all eight of the graphs, you must scroll the page in the browser.
As shown in the figure, a data tip shows the product that is associated with a bar segment when the mouse pointer is positioned on that segment. Notice that the data tip is displayed in the stick style. The zoom control shown at the bottom can be used to zoom the graph 75%–150%.

The following is the complete SAS code to generate a web presentation.

```sas
/* Close all open ODS destinations */
ods _all_ close;

/* Add a column to the data that displays the product in a data tip */
data prdsummary;
  length tip $60;
  set sashelp.prdsale;
  tip='alt="'||strip(product)||'"';
run;

/* Sort the data by year and quarter. */
proc sort data=prdsummary;
  by year quarter;
run;

/* Set the graphics options */
goptions reset=all device=javameta
  ftext="Trebuchet" htext=1.5 hby=2;

/* Open ODS HTML and specify applet parameters */
ods html file="meta.html" parameters=(
  "BACKGROUNDCOLOR"="0x7f7ff0" /* Applet background color */
  "DATATIPSTYLE"="STICK" /* Stick data tips */
  "ZOOMCONTROLMIN"="75" /* Zoom 75%-150% */
  "ZOOMCONTROLMAX"="150");

/* Generate the graph */
```
The statement GOPTIONS DEVICE=JAVAMETA causes PROC GCHART to produce metacodes that are embedded in the HTML file that is produced by ODS and passed to the Metaview applet as parameters. The ODS HTML statement is used to generate the presentation file, meta.html. The PARAMETER= option in the ODS HTML statement configures the Metaview applet. The HTML= option in the GCHART statement specifies the variable that contains the data-tip text.
Chapter 5
Controlling Drill-Down Behavior for ActiveX and Java Using Parameters

Using ODS Parameter Tags ... 59
Using Drill-Down Tags .. 60
Specifying the Drill-Down Mode 61
Understanding Variable Roles .. 62
Removing Blank Spaces from Data Values in Substitution Strings 63
Using Variables as Substitution Strings 63
Configuring HTML Drill-Down Mode 64
 Using the DRILLDOWNMODE, DRILLPATTERN,
 PATTERNSTRIP, and DRILLTARGET Parameters 64
 Specifying Graphs for Each Drill-Down Level 65
Configuring the Drill-Down Response in HTML and URL Modes 67
Configuring Script Drill-Down Mode 68
 Using the DRILLDOWNMODE, DRILLFUNC,
 PATTERNSTRIP, and DRILLTARGET Parameters 68
 Working with the Array of Elements 69
 Implementing Script Drill-Down Mode 69
 Formatting Data Values in Script Drill-Down Mode 70
Disabling Drill-Down Functionality 70

Using ODS Parameter Tags

You can use parameter tags in the ODS HTML statement to specify drill-down behavior for the ActiveX control, the Graph applet, or the Map applet, in the ODS HTML statement. Parameters are specified in the ODS destination statement with the PARAMETERS= option as follows:

ODS HTML PARAMETERS=(options);

See “Specifying Parameters and Attributes for Java and ActiveX” on page 105 for a detailed description of the parameter tags and attributes that are available for use with ActiveX and Java.
Using Drill-Down Tags

You can use the following tags to specify drill-down behavior for the Graph applet, Map applet, or ActiveX control. The following table defines the drill-down tags and explains the types of graphs to which the tags can be applied.

Table 5.1 Drill-Down Tags Used by the Graph Applet, Map Applet, and ActiveX Control

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Description</th>
<th>Definition of the Value That Follows the Tag</th>
<th>Applied in</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_COLOR</td>
<td>Use new colors for the graph elements</td>
<td>Name of the new color variable</td>
<td>Scatter plots</td>
</tr>
<tr>
<td>G_COLORV</td>
<td>Use the color variable from the preceding level</td>
<td>None</td>
<td>Scatter plots</td>
</tr>
<tr>
<td>G_DEP</td>
<td>Use a new dependent variable</td>
<td>Name of the new dependent variable</td>
<td>All charts</td>
</tr>
<tr>
<td>G_DEPV</td>
<td>Use the dependent variable from the previous level</td>
<td>None</td>
<td>All charts</td>
</tr>
<tr>
<td>G_DEPTH</td>
<td>Use a new depth variable</td>
<td>Name of the new depth variable</td>
<td>Vertical bar charts and scatter plots</td>
</tr>
<tr>
<td>GDEPTHV</td>
<td>Use the depth variable that was used in the previous level</td>
<td>None</td>
<td>Vertical bar charts and scatter plots</td>
</tr>
<tr>
<td>G_GROUP</td>
<td>Use a new group variable</td>
<td>Name of the new group variable</td>
<td>Bar charts</td>
</tr>
<tr>
<td>G_GROUPV</td>
<td>Use the group variable that was used in the previous level</td>
<td>None</td>
<td>Bar charts</td>
</tr>
<tr>
<td>G_INDEP</td>
<td>Use a new independent variable</td>
<td>Name of the new independent variable</td>
<td>Charts and maps</td>
</tr>
<tr>
<td>G_INDEPV</td>
<td>Use the independent variable that was used in the previous level</td>
<td>None</td>
<td>Charts and maps</td>
</tr>
<tr>
<td>G_LABEL</td>
<td>Use a new label</td>
<td>Name of the new label (mapID) variable</td>
<td>Maps</td>
</tr>
</tbody>
</table>
When you specify a variable name after a tag, the name must be specified exactly how it appears in the data set. Variable names are case-sensitive in JavaScript. To find out how a variable was defined in the data set, use the CONTENTS procedure.

Specifying the Drill-Down Mode

To enable a given drill-down mode, specify a value for the parameter DRILLDOWNMODE. The DRILLDOWNMODE parameter is specified in an ODS statement. The following syntax sets the DRILLDOWNMODE parameter in the ODS statement:

```ods html parameters= ("drilldownmode"=
    "local" | "script" | "url" | "html");```

**Local mode**

responds to drill-down actions by dynamically generating and displaying new graphs. The data in the initial graph is subset based on the graph element that was selected in the drill-down action. The user can select another graph element to generate another graph. Another graph is generated as long as the data can still be subset, or you have configured your own levels of drill-down functionality.

To configure a graph at a given level, you specify the applet parameter DDLEVELn. The value of this parameter determines the graph type, data subset, variable roles, and colors. Local is the default drill-down mode for the Graph applet.

**Restriction**

Supported by the Graph applet only.

**See**

“Links in JAVA Presentations” in SAS/GRAPH: Reference

**Example**

“Example: Local Drill-Down Mode with Java” on page 43

**Script mode**

calls a JavaScript method that you specify in your SAS/GRAPH program. You provide the JavaScript that responds to the selected area. The data passed to the JavaScript method determines the graphic portion selected, and the appropriate action.

**Restriction**

Supported by the Map applet and ActiveX control only.
Understanding Variable Roles

The assignment of roles to variables determines the appearance of the resulting graph. The assignment of roles takes place in the SAS/GRAPH statement that generates the graph. One variable is always assigned the role of independent variable, and another is
always assigned the role of dependent variable. Once the initial graph has been displayed in the applet or control, web users can change the variable roles using menu options.

Variable roles are used to configure the Local, HTML, and Script drill-down modes. The roles are assigned with parameters, using the PARAMETERS= option in the ODS statement. In the specification of a parameter, the assignment of roles is done with drill-down tags.

Removing Blank Spaces from Data Values in Substitution Strings

The drill-down modes Script (see “Configuring Script Drill-Down Mode” on page 68) and HTML (see “Configuring the Drill-Down Response in HTML and URL Modes” on page 67) use substitution strings to generate a response to drill-down actions. The substitution strings are replaced with data values. Blank spaces in those data values can produce unexpected results. To remove blank spaces from data values when those values are to be used in a substitution string, specify the PATTERNSTRIP= parameter as follows in the ODS statement:

```ods html file=fileref-or-external-file
parameters="drilldownmode"="script" | "url"
"patternstrip"="none" | "yes" | "compress";
```

NONE
is the default value. Any blank spaces in the data value are inserted into the substitution string.

YES
removes all blank spaces from the end of the data value, but retains blank spaces elsewhere.

COMPRESS
removes all blank spaces from the data value, wherever they occur.

Using Variables as Substitution Strings

When you specify a variable name as a substitution string in the HTML drill-down mode, the applet or control replaces the entire string with the value of the variable as it is specified in the selected graph element. The syntax of the substitution string is as follows:

```
{&variable_name}
```

Because JavaScript is case sensitive, the name of the variable must be exactly the same as it is in the data set.

A variable name substitution string might look like this:

```
http://ourweb.com/uspop/{&statename}/poptable.htm
```

The substitution string above could be used in a web presentation that begins with a map of the United States. In response to a drill-down action in HTML mode, the value of the STATENAME variable for the selected state would be substituted into the URL. The
resulting URL would point to a web page that contains a table of population information for the selected state.

In the HTML drill-down mode, you can specify variable roles or labels as substitution strings, using drill-down tags, as described in “Understanding Variable Roles” on page 62. The syntax of these substitution strings is as follows:

```
{&drill-down-tag}
```

where `drill-down-tag` specifies a variable role or label in the initial graph. The applet or control replaces the substitution string by deriving a variable name from the role or label, and applying the value of that variable to the URL. The value is taken from the data that is associated with the selected graph element.

For example, a web presentation could be configured using this URL:

```
```

When a web user selects a data element with the independent variable `REGION`, if the value of `REGION` is East, the applet displays this URL:

```
```

The default value for the DRILLPATTERN parameter is as follows:

```
{&G_INDEPV,f}{&G_GROUPV,f}{&G_SUBGRV,f}.html
```

The URL that is created points to an HTML file that is in the same directory as the top level HTML file. The name of the file is a concatenation of formatted values for the first independent, group, and subgroup variables defined in the data set.

See “Example: URL Drill-Down Mode with Java” on page 47 for more information.

---

### Configuring HTML Drill-Down Mode

**Using the DRILLDOWNMODE, DRILLPATTERN, PATTERNSTRIP, and DRILLTARGET Parameters**

You can use the parameters DRILLDOWNMODE, DRILLPATTERN, PATTERNSTRIP, and DRILLTARGET to configure the HTML drill-down mode for the ActiveX control, the Graph applet, and the Map applet.

In the HTML drill-down mode, the applet or control responds to drill-down actions by constructing a uniform resource locator (URL) using the data in the selected graph element. The URL is passed to the web browser for display.

The parameter DRILLDOWNMODE (see Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103) establishes the HTML drill-down mode. The PATTERNSTRIP parameter (see “Removing Blank Spaces from Data Values in Substitution Strings” on page 63) can be used to selectively remove blank spaces from data values before those values are applied to the URL. The DRILLTARGET parameter (see “Using Variables as Substitution Strings” on page 63) enables you to specify where you want the drill-down graph to appear in the browser.

Specify the DRILLPATTERN parameter in the ODS statement as shown in the following example:

```
ODS HTML

PARAMETERS=("DRILLDOWNMODE"="HTML"
 "DRILLPATTERN"="URL-with-substitution-strings");
```
An example of this statement might look like this:

```ods html file=statepop.htm
 parameters=('DRILLDOWNMODE'='HTML'
 'DRILLPATTERN'=http://www.state.{&statename}.us);
```

In this example, the value of the data set variable STATENAME completes the drill-down URL.

When ODS is configured as shown above, the applet or control dynamically generates URLs in response to drill-down actions. The applet or control replaces the substitution strings with data values from the graph element that was selected in the drill-down action. The URL-with-substitution-strings value can include multiple substitution strings. Substitution strings can include combinations of variable names, variable roles or labels, and drill-down tags. For details, see “Using Variables as Substitution Strings” on page 63. All substitution strings are enclosed in braces ( { and } ) and begin with an ampersand character (&).

If a variable name is specified as a substitution string in drill-down mode; the applet and the control replace the string with the value of the selected data item.

### Specifying Graphs for Each Drill-Down Level

The DDLEVEL\(n\) parameter lets you specify the graphs that are generated at each drill-down level.

**Note:** The ActiveX Control does not support the DDLEVEL\(n\) parameter.

The DDLEVEL\(n\) parameter is specified in the ODS statement as shown in the following example:

```ods html
 PARAMETERS=('DDLEVEL\(n\)'='string');
```

\(n\) represents the number of the drill-down level that is being configured.

**string**

- specifies the graph type.
- names the variable roles.
- specifies the color of the data elements.
- names the variable to subset, to create the next graph.

The syntax of the **string** argument is as follows:

```
{CHART} {chart_type} {tag_{1}} {variable_{1}...} {...tag_{n}} {variable_{n}} |
{subset_tag_{1}...} <{...subset_tag_{n}}>
```

**{CHART}** identifies the type or style of the graph. This tag is case sensitive: it must always be specified in uppercase. The values of the tag (chart types) are not case sensitive. To use the same chart type as the preceding drill-down level, do not specify the CHART tag. When the **{CHART}** is specified in the DDLEVEL\(n\) parameter, the chart type can be completely changed, but not the chart orientation. For example:

- a vertical or horizontal bar chart can be changed to a pie chart
- a horizontal bar chart cannot be changed to a vertical bar chart
- vertical bar chart cannot be changed to a horizontal bar chart
Available chart types are as follows:

BAR
  generates a two-dimensional bar chart.

BAR3D
  generates a three-dimensional bar chart.

PIE
  generates a two-dimensional pie chart.

PIE3D
  generates a three-dimensional pie chart.

PLOT
  generates a two-dimensional scatter plot that is similar in appearance to the plot shown in “Scatter Plots” in SAS/GRAPH: Reference.

SCATTER
  generates a scatter plot that is similar in appearance to the plot shown in “Generating a Scatter Plot” in SAS/GRAPH: Reference.

LINE
  generates a line or needle plot that is similar in appearance to “Needle Plot” in SAS/GRAPH: Reference.

BOX
  generates a box plot that is similar in appearance to “Box Plot” in SAS/GRAPH: Reference.

HILO
  generates a high-low chart that is similar in appearance to “High-Low Plot” in SAS/GRAPH: Reference.

For BAR and BAR3D charts, the orientation from the previous chart is used. If the previous chart does not have an orientation, the vertical orientation is used by default.

\{tag_1\} \{variable_1...\} \{...tag_n\} \{variable_n\}

associates drill-down tags with data set variables, to specify roles for variables in the new graph, and to determine the color of the elements in the new graph (optional). For definitions of the drill-down tags, see Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103.

\{subset_tag_1...\} <\{...subset_tag_n\}>

specifies one or more variable roles from the original graph whose values are used to subset the data in the preceding graph. If you specify G\_GROUPV, then the data that is used to draw the new graph, is only the data that is associated with the group variable in the preceding graph. If the group variable in the preceding graph is REGION, and the data element labeled East is selected, only observations where REGION=EAST are represented in the next graph.

At least one of the following tags must be specified as the subset variable: G\_INDEPV, G\_GROUPV, G\_SUBGRV, or G\_DEPTHV. For definitions of these tags, see Chapter 9, “ActiveX Control and Java Applet Parameter Dictionary,” on page 103.

Specifying multiple subset variables means that two or more values must match the value in the selected graph element in order for that observation to be used in the new graph. For example, assuming that you specify \{G\_INDEPV\} \{G\_SUBGRV\} as the subset variables, and that the selected graph element has an independent variable of YEAR and a subgroup variable of STATE. Also assume that the values for these variables in the selected graph element were 2000 and NC. The observations that
would be used in the drill-down graph would include those with YEAR=2000 and STATE=NC.

The following example shows how the DDLEVELn parameter can be used to specify the default behavior for the first drill-down level.

```ods html file=odsout
parameters=("drilldownmode"="local"
 "ddlevel1"="{chart}{vbar3d}
 {g_dep}{sales}
 {g_indep}{year} |
 {g_indepv}*");
```

As the example shows, the value of the DDLEVELn parameter is divided into two halves, which are separated by a vertical bar character. The drill-down graph is configured in the syntax that appears before the vertical bar character ( | ). After the vertical bar, drill-down tags specify how the data from the previous drill-down level is to be subset for use in the current drill-down graph.

The first drill-down level (DDLEVEL1) is configured as a three-dimensional vertical bar chart. The dependent variable is SALES and the independent variable is YEAR. The G_INDEPV tag specifies that the data is to be based on the values of the independent variable. In our example the independent variable in the initial graph is REGION. If the web user selects a graph element that describes the WEST region, the graph has only observations where the value of REGION is WEST.

If you do not specify a role for a variable, then that variable does not appear in the drill-down graph. If you do not specify variables for the G_DEP and G_INDEP tags, then the Graph applet uses the independent and dependent variables of the graph in the preceding drill-down level.

You can explicitly remove a variable role from the drill-down graph by specifying a $ character as the drill-down value, as in the following code:

```{g_group} {$}
```

web users can make this change in the Graph applet menus by selecting the None option from the list of variables that can be applied to a given variable role.

Note: Note that you cannot assign a $ to the G_INDEP and G_DEP variables, because they must always be present in the drill-down graph.

---

### Configuring the Drill-Down Response in HTML and URL Modes

In the HTML and URL drill-down modes, you can specify the parameter DRILLTARGET to specify where you want the web browser to display drill-down graphs. By default, the applet or control displays drill-down graphs in a new web browser window.

Specify the DRILLTARGET parameter in the ODS statement as shown in the following example:

```ODS HTML
PARAMETERS=(PARAMETERS=("DRILLDOWNMODE"="HTML"
 "DRILLTARGET"="_blank" | "_self" | "_parent" | "_top" | any_named_target))
```
Configuring Script Drill-Down Mode

Using the DRILLDOWNMODE, DRILLFUNC, PATTERNSTRIP, and DRILLTARGET Parameters

You can use the parameters DRILLDOWNMODE, DRILLFUNC, PATTERNSTRIP, and DRILLTARGET to configure the Script drill-down mode for the ActiveX control, the Graph applet, and the Map applet. The Script drill-down mode enables you to execute a JavaScript callback method in response to drill-down actions. You use PUT statements to write the callback method into the HTML output file. Some experience with JavaScript is therefore required.

The syntax used to implement the Script drill-down mode is specified in the ODS statement as shown in the following example:

```
ODS HTML
 PARAMETERS=("DRILLDOWNMODE"="SCRIPT" "DRILLFUNC"="method");
```

The applet parameter DRILLDOWNMODE (see “Specifying the Drill-Down Mode” on page 61) establishes the Script drill-down mode. The DRILLFUNC parameter specifies the name of the JavaScript callback method that is executed in response to drill-down actions.

In response to a drill-down mode. The DRILLFUNC parameter specifies the name of the JavaScript callback method that is executed in response to drill-down actions.

In response to a drill-down action, the applet or control generates an array of arguments that is to be passed into the callback method. The array contains all of the data in the array as it generates its output. As the callback method terminates, it might return an object. The applet or control ignores this object.

To invoke the callback method, the applet or control issues `netscape.javaScript.JSObject.call()` in the following form:

```
PUBLIC OBJECT CALL(STRING method-name, OBJECT argument-array-name[])`
```
The method-name argument is the name of the callback method that you define in JavaScript in your program. The applet or control supplies the argument-array-name.

**Working with the Array of Elements**

Understanding the structure of the array of arguments is important for you to be able to access those elements in your callback method. The elements in the array represent all of the variables and values that are represented by the graph element that was selected in the drill-down action. The data is labeled in the array using drill-down tags. The tags identify variable roles or labels and values. For details, see “Using Drill-Down Tags” on page 60 and “Understanding Variable Roles” on page 62.

The first element in the array of arguments is the name of the applet or control. The second element in the array is the name of a file. The name of that file is derived from the variable roles in the graph at the preceding drill-down level, using the following substitution string:

\{&G_INDEPV,f\}
\{&G_GROUPV,f\}
\{&G_SUBGRV,f\}.html

The filename is a concatenation of the formatted values of the independent, group, and subgroup variables in the graph at the preceding drill-down level.

*Note:* The filename and file type are provided as a convenience. If you use this filename and file type, then you must create the actual file and provide its content.

The remaining elements in the array consist of drill-down tags, and the data that is associated with those tags in the graph element that was selected in the drill-down action. Each variable is represented by triplet pairs of arguments in the array:

*tag variable_name*

*tagV variable_value*

*tagV,F formatted_value*

For example, assume that each graph data element selected is represented by six arguments in the array.

The graph shown in “Example: Script Drill-Down Mode with Java” on page 45 is configured for Script drill-down mode. Selecting the east region sales figures for the state of North Carolina generates the following array:

[appletName East1998NC.html
G_DEP Sales G_DEPV 10000 G_DEPV,F $10,000
G_INDEP Region G_INDEPV East G_INDEPV,F East
G_GROUP Year G_GROUPV 1998 G_GROUPV,F 1998
G_SUBGR State G_SUBGRV NC G_SUBGRV,F NC]

The output filename is East1998NC.html. The remaining triplet pairs capture the roles, and values of the variables that make up the selected data element. All variable names are case sensitive as they appear in the array. For example, the value Region is capitalized. This is the case only if the variable name is defined as Region in the DATA step.

**Implementing Script Drill-Down Mode**

To implement Script drill-down mode, use PUT statements in a DATA step to write a JavaScript callback method into the HTML output file.
For an example of implementing script drill-down mode, see “Example: Script Drill-Down Mode with Java” on page 45. For information about writing JavaScript, refer to JavaScript tutorials that are available on the Internet.

**Formatting Data Values in Script Drill-Down Mode**

For Script drill-down mode only, you can specify that data values are to be formatted or not formatted. By default, the values of the variables are not formatted. If the characters ,f are appended to the end of the tag, then those values are presented in formatted form. This parameter tag specifies that the values of the independent variable cost are to appear in formatted form.

\{g_incp,f\}{cost}

The format is applied using the FORMAT statement in the DATA step or graphics procedure that generated the data for the graph. Formatted values are specified in the statement that generated the original graph. Formatted values are used for axis labels, legends, and data tips that are displayed when the mouse is positioned over a graph data element.

**Disabling Drill-Down Functionality**

For the Graph applet, you can specify the DISABLEDRILLDOWN parameter to disable the drill-down functionality. Specify the DRILLDOWNMODE parameter in the ODS statement as shown in the following example:

**ODS HTML**

```
PARAMETERS=("DISABLEDRILLDOWN"="TRUE");
```
Chapter 6
Generating Interactive Treeview Diagrams Using the DS2TREE Macro

Creating Treeview Diagrams

About the Treeview Applet

The Treeview applet generates node and link diagrams for hierarchical data, with optional fish-eye distortion that highlights the central area of interest, as shown in the following figure:
You can scroll across the diagram by selecting off-center nodes or by searching for nodes. Positioning the cursor over a node can display optional data tips. If you then right-click, you access a pop-up menu. The menu enables you to highlight or hide subtrees or drill-down to an optional URL. The menu also enables you to select all nodes, display all previously hidden nodes, reset the view, display applet help, and search for nodes using various search parameters.

SAS/GRAPH programming for the Treeview applet differs from some of the other applets in that it does not use ODS, a graphics output device specification, or a SAS/GRAPH procedure. Instead, the DS2TREE macro references data sets to generate and configure an HTML output file that runs the Treeview applet.

**When to Use the Treeview Applet**

The Treeview applet is suitable for the illustration of hierarchical data sets. The fish-eye distortion factor, coupled with extensive node selection features, means that a single node and link diagram can accommodate large data sets. Applet parameters can be set to specify the layout of the diagram. You specify a starting node, and then you specify how the other nodes are to be drawn in relation to that node. The resulting diagram can be as complex as the web link diagram in Figure 6.1 on page 72, or as simple as an organizational tree for a department in a corporation.

If you need a higher degree of configurability to illustrate weighted relationships between the nodes and links in your diagram, then the Constellation applet might be a better choice than the Treeview applet, as described in “Creating Constellation Diagrams” on page 81.
**Interactivity Enabled by the Treeview Applet**

The Treeview applet provides a pop-up menu that enables you to interact with the applet. You can also use your mouse to interact with the applet. To open the pop-up menu, right-click on the tree diagram. The pop-up menu appears as shown in the following picture.

To display information about how to use the menu to interact with the applet, select **Help** ⇒ **Treeview Applet Help** from the pop-up menu. To display information about how to use your mouse to interact with the applet, select **Help** ⇒ **Mouse Help** from the pop-up menu.

---

**Programming with the DS2TREE Macro for the Treeview Applet**

The DS2TREE macro generates HTML output files for the Treeview applet. Macro arguments enable you to generate and format an HTML file and to customize the appearance of your node and link diagram.

Follow the steps shown in the following code to generate a web presentation that runs the Treeview applet. (Note that the ODS LISTING destination must be open when you run the DS2TREE macro.)

```sas
/* 1. Define the name and storage location of the HTML output file. */
/* and the location of the jar files. */
%let htmlfile = your_path_and_filename.htm;
%let jarfiles = http://your_path_to_archive;

/* 2. Define a data set that contains parent-child relationships. */
data myorg;
input name $ empno mgrno deptname $22. deptcode $;
cards;
 Peter 2620 1420 Documentation DOC
 Linda 6915 1420 Research & Development R&D
 Maria 1320 1420 Legal LGL
 Vince 1420 1750 Executive EXE
 Jim 6710 6915 Quality Assurance QA
 Nancy 22560 6915 Quality Assurance QA
```

---
Patrick  28470   6915   Quality Assurance        QA
Elsa      33075   6915   Development              DEV
Clement   22010   6915   Development              DEV
Murielle  3020    6915   Development              DEV
David     11610   6915   Research                 RES
;
run;

/***/ 3. Specify titles and footnotes: (optional). */
title1 'Organizational Chart';
footnote1 'To display the department name, place the cursor over a node.';
footnote2 'To rotate the chart, click and drag a node.';

/***/ 4. Close ODS HTML and open ODS LISTING. You must use the */
// ODS LISTING destination. */
ods html close;
ods listing;

/***/ 5. Run the DS2TREE macro. */
// You must change the CODEBASE= argument (using either http://  */
// or a directory path such as C:/) to specify the location of your */
// sas.graph.treeview.jar file and its associated jar files  */
// {sas.graph.nld.jar, sas.graph.j2d.jar}. */
%ds2tree(ndata=myorg,  /* data sets and files */
   codebase=&jarfiles,
   xmltype=inline,
   htmlfile=&htmlfile,
   nid=empno,        /* roles of variables */
   nparent=mgrno,
   ntip=deptname,
   nlabel=name,
   height=500,       /* appearance */
   width=600,
   tcolor=navy,
   fcolor=black);

/***/ 6. Close ODS LISTING and open ODS HTML. */
ods listing close;
ods html;

Display the resulting HTML file in a web browser to run the Treeview applet and
display the node and link diagram.

The preceding example shows how the arguments of the DS2TREE macro identify a
data set and specify how the variables in that data set are to be interpreted to generate the
diagram. Appearance arguments define the size of the diagram and the color of the text
in the title and footnotes.

For information about generating more complex diagrams for the Treeview applet, see
“Enhancing Presentations Displayed with the Treeview Applet” on page 75.

For definitions of all DS2TREE macro arguments, see “DS2TREE Macro Arguments”
on page 75.
Enhancing Presentations Displayed with the Treeview Applet

The Treeview applet displays interactive node and link diagrams. The diagrams are generated in SAS using a hierarchical data set and the DS2TREE macro, as described in “Programming with the DS2TREE Macro for the Treeview Applet” on page 73.

To enhance Treeview applet presentations, specify additional arguments for the DS2TREE macro. The following table describes some of the available enhancements and identifies the DS2TREE arguments that implement them. For a complete list of macro arguments, see Chapter 10, “DS2CONST and DS2TREE Macro Argument Dictionary,” on page 149.

Table 6.1  Treeview Applet Enhancements

<table>
<thead>
<tr>
<th>Enhancement</th>
<th>DS2TREE Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify a style sheet to format your HTML output file.</td>
<td>SSFILE, SSFREF, SSHREF, SSMEDIA, SSREL, SSREV, SSTITLE, SSTYPE</td>
</tr>
<tr>
<td>Specify dash patterns for link lines.</td>
<td>LSTIP, LSTIPFAC</td>
</tr>
<tr>
<td>Specify a background color, image, or drill-down URL.</td>
<td>IBACKPOS, IBACKLOC, IBACKURL</td>
</tr>
<tr>
<td>Add pop-up data tips to nodes.</td>
<td>NTIP, TIPS</td>
</tr>
<tr>
<td>Add drill-down URLs to nodes.</td>
<td>NURL</td>
</tr>
<tr>
<td>Specify an action for the menu.</td>
<td>ACTION, NACTION</td>
</tr>
<tr>
<td>Change the amount of fisheye distortion.</td>
<td>FACTOR, FISHEYE</td>
</tr>
<tr>
<td>Determine layout of diagram.</td>
<td>SPREAD, TREEDIR, TREESPAN</td>
</tr>
</tbody>
</table>

DS2TREE Macro Arguments

The DS2TREE macro uses the following syntax:

```
%DS2TREE(argument1=value1, argument2=value2,...);
```

The macro arguments specify the configuration of the HTML output file, the location of the data that is used to generate the diagram, and the configuration of the applet's interactive features. The arguments can be grouped as follows:

- “Arguments for the APPLET Tag” on page 152
- “Arguments for Data Definition” on page 153
Examples: Creating Interactive Treeview Diagrams

About These Examples

This section includes examples of how to generate interactive Treeview diagrams. The examples include:

- “Example: Treeview Diagram with XML Embedded in the HTML File” on page 76
- “Example: Treeview Diagram with XML Written to an External File” on page 78
- “Example: Treeview Diagram with Custom Actions” on page 79

Example: Treeview Diagram with XML Embedded in the HTML File

This example generates a very simple Treeview diagram. The following figure shows the Treeview diagram that is generated by the sample code in a web browser. Notice the pop-up menu, which appears when you right-click in the diagram. Because the diagram is displayed by the Treeview applet, it is not just a static picture. You can manipulate the diagram, for example, by bringing selected nodes to the center, spreading out the nodes, and searching for nodes. You can also access the Help information for the Treeview applet as shown in the following figure. See “Interactivity Enabled by the Treeview Applet” on page 73.
Here is the example program code. As you review the code, notice the following:

- The parameter XMLTYPE=INLINE tells the DS2TREE macro that the XML that it generates from the SAS data set should be included inline in the HTML file.
- The parameter HTMLFILE= specifies the complete path and name of the HTML file to be created by the DS2TREE macro. If you want to run this sample, then change the values of HTMLFILE and CODEBASE to the locations that you want to use.
- The parameter CUTOFF=1 specifies that every node on the graph be labeled. Use this parameter to suppress node labels for diagrams with numerous nodes.

```sas
data father_and_sons;
input id $8. name $15. father $8.;
cards;
aaron Aaron Parker
bob Bob Parker aaron
charlie Charlie Parker aaron
david David Parker aaron
david David Parker aaron
edward Edward Parker david
;
run;

/* close ODS HTML and open ODS LISTING */
ods html close;
ods listing;

/* run the macro */
%ds2tree{ndata=father_and_sons, /* data set */
 /* specify complete url if jar files are not in same directory as html file */
 codebase=http://your_path_to_archive,
 xmltype=inline,
 htmlfile=your_path_and_filename.htm,
 nid=id, /* use this variable as the id */
 cutoff=1, /* display the name on every node */
}```
nparent=father, /* this identifies the parent of each node */
nlabel=name, /* display this on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black);

/* close ODS LISTING and open ODS HTML */
ods listing close;
ods html;

Example: Treeview Diagram with XML Written to an External File

This example generates the same Treeview as the previous example, “Example: Treeview Diagram with XML Embedded in the HTML File” on page 76, with the difference that the XML is written to an external file instead of being embedded in the HTML file. Here is the example program code. As you review the code, notice the following:

• The parameter HTMLFILE= specifies the complete path and name of the HTML file to be created by the DS2TREE macro. If you want to run this sample, then change the value of HTMLFILE to something that makes sense for you.
• The parameter XMLTYPE=EXTERNAL tells the DS2TREE that the XML that it generates from the SAS data set should be written to an external file.
• The parameter XMLURL= specifies how the XML file is to be addressed from within the HTML file.
• The parameter XMLFILE= specifies the path and filename of the XML file to be created.
• The parameter CUTOFF=1 specifies that every node on the graph be labeled. Use this parameter with a value between 0 and 1 to suppress node labels for diagrams with numerous nodes.

data father_and_sons;
input id $8. name $15. father $8.;
cards;
aaron Aaron Parker
bob Bob Parker aaron
charlie Charlie Parker aaron
david David Parker aaron
edward Edward Parker david
;
run;
goptions reset=all;

/* close ODS HTML and open ODS LISTING */
ods html close;
ods listing;

/* run the macro */
%ds2treendata=father_and_sons, /* data set */
 codebase=http://your_path_to_archive,
 htmlfile=your_path_and_filename.htm,
 xmltype=external,
 makexml=y,
Example: Treeview Diagram with Custom Actions

This example generates the same Treeview as the previous example, “Example: Treeview Diagram with XML Embedded in the HTML File” on page 76, with the difference that two custom actions are associated with each node in the tree. Each custom action is a link to a web page. Here are the URLs.

- Link 1: http://www.sas.com
- Link 2: http://www.support.sas.com

The custom actions are listed as the node’s first name (link 1) and last name (link 2) in the pop-up menu. To open the Charlie URL, for example, the user right-clicks the Charlie Parker node, and then selects Custom Action ⇒ Charlie from the pop-up menu as shown below.

Here is the example program code. As you review the code, notice the following:
• The URL and ACTION columns in the node data set contain the URLs and action names. A semicolon separates each URL string and name. In this example, the URLs are the same for each node. You can use different URLs for each node.

 Note: Because the column values contain a semicolon, the DATALINES4 statement is used in the DATA step instead of the DATALINES statement. Four semicolons are required to terminate the DATALINES4 statement.

• The parameter NURL= specifies the column in the node data set that contains the link URLs.

• The parameter NACTION= specifies the column in the node data set that contains the name of each action as it appears under the Custom Action item in the pop-up menu.

• The parameter DRILTARG=_TOP specifies that the HTML file is to be opened in the same window as the Treeview diagram instead of in a new window, as is the default.

data father_and_sons;
input id $8. name $15. father $8. url $42. action $20.;
datalines4;
aaron Aaron Parker http://www.sas.com;http://support.sas.com Aaron;Parker
bob Bob Parker aaron http://www.sas.com;http://support.sas.com Bob;Parker
charlie Charlie Parker aaron http://www.sas.com;http://support.sas.com Charlie;Parker
david David Parker aaron http://www.sas.com;http://support.sas.com David;Parker
edward Edward Parker david http://www.sas.com;http://support.sas.com Edward;Parker
;;;;
run;

/* close ODS HTML and open ODS LISTING */
ods html close;
ods listing;

/* run the macro */
%ds2tree(ndata=father_and_sons, /* data set */
 /* specify complete url if jar files are not in same directory as html file */
 codebase=http://your_path_to_archive,
 xmltype=inline,
 htmlfile=your_path_and_filename.htm,
 nid=id, /* as the id, use the variable specified here */
 cutoff=1, /* display the name on every node */
 nparent=father,/* this identifies the parent of each node */
 nlabel=name, /* display the value of this variable on each node */
 height=400,
 width=400,
 tcolor=navy,
 fcolor=black,
 url=url,
 naction=action,
 driltarg=_top);

/* close ODS LISTING and open ODS HTML */
ods listing close;
ods html;
Chapter 7
Generating Interactive Constellation Diagrams Using the DS2CONST Macro

Creating Constellation Diagrams

About the Constellation Applet
The Constellation applet provides interactivity for node and link diagrams that illustrate data that is associative or requires an arc list. Node and link color and size can be associated with specified data values.
Figure 7.1 A Constellation Diagram

Interactive features of the Constellation applet include pop-up data tips for links and nodes, subsetting of links via an embedded scroll bar, pan and zoom, and several node and link selection modes. You can define drill-down URLs for nodes, specify menu text for the drill-down action, insert a background image, and specify a drill-down URL for the background image, among other enhancements. You can also specify your own JavaScript methods to define responses to drill-down actions.

The Constellation applet, like the Treeview applet, differs from the other applets in that the diagrams that they display are not generated by SAS/GRAPH procedures. The DS2CONST macro generates and formats an HTML output file, and specifies the appearance and behavior of the node and link diagram based on values in a data set.

When to Use the Constellation Applet

The Constellation applet is best used to illustrate relationships between links and nodes, which can be shown in affinity, sequence, and web-click path diagrams, for example. Colors, link line widths, and link directional indicators can be specified to illustrate relationships. Pop-up data tips can be specified for nodes and links, along with drill-down URLs for nodes and for an optional background image. For diagrams that illustrate associative data, an embedded scroll bar subsets the data in the diagram dynamically.

The Constellation applet cannot be used to display hierarchical data. To create hierarchical diagrams such as organizational trees, use the Treeview Applet. For information about the Treeview Applet, see “Creating Treeview Diagrams” on page 71.
Programming with the DS2CONST Macro for the Constellation Applet

The DS2CONST macro enables you to generate complete web presentations for the Constellation applet. The macro has a large number of arguments that you can use to generate and format an HTML output file, configure the diagram, and describe how data sets and variables are to be applied to the diagram.

The macro arguments are structured so that you can associate a variable with an aspect of the diagram. The values of the variable are then used for that part of the diagram. For example, the NLABEL argument specifies the name of the variable whose values define the text labels that are to be applied to the nodes. Other arguments provide default values that are used when no variable value is provided.

Descriptions of all of the arguments of the DS2CONST macro are provided in “DS2CONST Macro Arguments” on page 88.

Run the following code to use the DS2CONST macro to generate the web presentation for the Constellation applet shown in the picture above. (Note that the ODS LISTING destination must be open when you run the DS2CONST macro.)

```sas
/* Define the path to the archive file, the HTML output file, and the SAS library */
%let jarfiles = path-to-archive-files;
%let htmlfile = html-filename.htm;
%let lib = WORK; /* put everything in the WORK library */

/* Define the node names and locations. */
data &lib..regions;
  length regionName $80            /* Node text label */
    regionId $4               /* Node identifying string */
    xLoc yLoc 8;              /* Pixel position of node */
  input regionID xLoc yLoc reserve RegionName $ &;
cards;
PNW 30 30 8.5 Western Systems Coordinating Council - Pacific Northwest
NWPE 100 60 8.5 Western Systems Coordinating Council - Northwest Power Pool East
CALI 40 220 9.5 Western Systems Coordinating Council - California
RMPA 140 180 10.8 Western Systems Coordinating Council - Rocky Mountain Power Area
AZNM 110 310 12.9 Western Systems Coordinating Council - AZNMSNV
MAPP 180 80 15 Mid-continent Area Power Pool
SPPN 185 200 13.6 Southwest Power Pool - North
SPPS 170 270 13.6 Southwest Power Pool - South
ERCT 180 400 15 Electric Reliability Council of Texas
WUMS 270 90 17 Wisconsin - Upper Michigan
MANO 290 240 17 Mid-Americas Interconnected Network - South
ENTG 290 360 12.4 Entergy
MECS 350 130 15 Michigan Electric Coordination System
ECAO 360 200 15 East Central Area Reliability Coordination Agreement - South
TVA 360 300 12.4 Tennessee Valley Authority
SOU 390 400 12.4 Southern Company
FRCC 420 460 15 Florida Reliability Coordinating Council
VACA 450 340 12.4 Virginia and Carolinas
MACS 460 280 19 Mid-Atlantic Area Council - South
MACE 495 235 19 Mid-Atlantic Area Council - East
MACW 430 220 19 Mid-Atlantic Area Council - West
UPNY 450 160 18 Upstate New York
```
/* Define the node connections. */
data &lib..links;
length from to l$4 ltip l$12 lcolor l$8;
format capacity comma.;
input from to capacity;
lcolor = "#BBBBBB"; /* Light gray lines */
ltip = left(put(capacity, comma.) || " MW"); /* Define the tool tips */
if capacity < 500 then width = 1; /* Define the line widths */
else if capacity < 1000 then width = 2;
else if capacity < 2000 then width = 3;
else if capacity < 3000 then width = 4;
else width = 5;
cards;
MECS ECAO 2250
ECAO MECS 2250
ECAO MACW 2957
ECAO MANO 1655
ECAO TVA 1890
ECAO VACA 2334
ERCT SPPS 635
MACE MACW 1500
MACE DSNY 1130
MACS MACW 1800
MACS VACA 3075
MACW ECAO 2612
MACW MACE 3368
MACW MACS 3075
MACW UPNY 481
MANO ECAO 3033
MANO WUMS 608
MANO MAPP 531
MANO SPPN 1191
MANO TVA 2207
MANO ENTG 1245
WUMS MANO 1080
WUMS MAPP 676
MAPP MANO 1150
MAPP WUMS 324
MAPP SPPN 1172
MAPP ENTG 1000
MAPP NWPE 150
MAPP RMPA 233
NENG DSNY 1425
UPNY MACW 1418
UPNY DSNY 3750
DSNY LILC 788
DSNY MACE 308
DSNY NENG 1125
DSNY UPNY 3750
/* Close the ODS HTML destination and open the ODS LISTING destination. */
ods html close;

/* Close the ODS HTML destination and open the ODS LISTING destination. */
ods html close;

/* Close the ODS HTML destination and open the ODS LISTING destination. */
ods html close;
ods listing;
/* Set chart title. */
title1 "Electric Power Regional Interconnections";
title2 "Created with SAS/GRAPH Constellation Applet";
footnote1 "Link: Base Electricity Transfer Capacity";
footnote2 "Node: Generation Reserve Margin";

/* Use the DS2CONST macro to generate the chart. */
%ds2const(/* Arguments for the Applet Tag */
codebase=&jarfiles, /* Path to archive file */
height=520, /* Applet window height */
width=600, /* Applet window width */

/* Arguments for Data Definition */
datatype=assoc, /* Size nodes by nvalue var */
nsize=reserve, /* Node sizes */
colval=reserve, /* Node colors */
layout=lxLoc, /* Use nx/ny to position nodes */
x=xLoc, /* x-coordinate of node */
y=yLoc, /* y-coordinate of node */
lcolor=lcolor, /* Link color */
lvalue=width, /* Link values */
lwidth=width, /* Link widths */
minlnkwt=0, /* Sets minimum link weight displayed*/
lbl=y, /* Display node labels */
ltype=line, /* Do not show flow direction */
data=&lib..regions, /* Node data */
data=&lib..links, /* Node linkage data */
label=nid, /* Var for node ID string */
label=regionID, /* Var for node label string */
lfrom=from, /* Var for from-node ID */
lto=to, /* Var for to-node ID */
ltip=RegionName, /* Var for popup node text */
ltip=ltip, /* Var for popup line text */

/* Arguments for Generating HTML and XML Files */
htmlfile=&htmlfile, /* Output file name */
openmode=replace, /* Create a new html file */

/* Arguments for Diagram Appearance */
nodeshape=circle, /* Node shape */
border=y, /* Enclose diagram */
colormap=y, /* Use colormap for link/node colors */
fntsize=14, /* Node label font size */
fntstyl=plain, /* Node label font style */

/* Arguments for Page Formatting */
bgtype=color, /* Use page background color */
bgs=#DDDDDD, /* The page background color */
center=y, /* Center chart on the page */
septype=none, /* No separator line */

/* Arguments for the SAS TITLE and FOOTNOTE Tags */
tcolor=#0000FF, /* Title text color */
fcolor=#0000FF, /* Footnote text color */
Display the resulting HTML file in a web browser to run the applet and generate the diagram.

Arguments in the DS2CONST macro identify the name of the nodes and links data sets. In the nodes data set, arguments identify a node ID variable and a node label variable. Other arguments identify the links data set and the variables that define the nodes at the start and end of each link line.

For information about more complex presentations for the Constellation applet, see “Enhancing Presentations Displayed with the Constellation Applet” on page 87.

Enhancing Presentations Displayed with the Constellation Applet

The Constellation applet displays interactive node and link diagrams. These diagrams can show relationships between nodes and links. The Constellation applet displays affinity, sequence, and ring diagrams that are generated out of arc or associative data sets. The Constellation applet provides a number of interactive features by default, as described in “Creating Constellation Diagrams” on page 81.

Enhancements to Constellation applet presentations are configured in your SAS/GRAPH program by specifying arguments in the DS2CONST macro. The following table lists some of the available enhancements and the DS2CONST arguments that implement them. These enhancements enable you to provide data tips and drill-down URLs for nodes and links, and to increase the visible distinctions between the data values that are associated with the nodes and links.

<table>
<thead>
<tr>
<th>Table 7.1 Constellation Applet Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancements</td>
</tr>
<tr>
<td>Specify link weights and configure a scroll bar that controls the display of links based on weight.</td>
</tr>
<tr>
<td>Lay out the diagram automatically or as specified in a data set.</td>
</tr>
<tr>
<td>Specify a style sheet to format the HTML output file.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Add pop-up data tips to nodes and links.</td>
</tr>
<tr>
<td>Define drill-down URLs for nodes and links.</td>
</tr>
</tbody>
</table>
Enhancements | DS2CONST Arguments
--- | ---
Specify menu option text for a drill-down action. | ACTION, NACTION
Specify a browser window or frame that displays drill-down URLs. | DRILTARG
Add a background color, image, or drill-down URL. | IBACKLOC, IBACKPOS, IBACKURL,
Specify text colors, fonts, styles, and sizes. | NFNTNAME, NSFNTNAM, CTEXT, CATEXT
Specify colors for nodes and links. | NCOLVAL, NCOLOR, CNODE, LCOLVAL, LCOLOR, CLINK
Specify dashed link lines. | LSTIP and LSTIPFAC

Note that a number of enhancements apply only to associative data sets when you specify the macro argument DATATYPE=ASSOC. The macro argument definitions identify which features apply only to associative data.

The DS2CONST macro requires you to specify node and link data sets. As an enhancement, you can define a node styles data set that contains style information only. You can use the node styles data set to standardize the appearance of a series of diagrams, among other uses.

Reference information about the arguments of the DS2CONST macro is provided in “DS2CONST Macro Arguments” on page 88.

DS2CONST Macro Arguments

The DS2CONST macro uses the following syntax:

```
%DS2CONST(argument1=value1, argument2=value2, ...);
```

The macro arguments specify the configuration of the HTML output file, the location of the data that is used to generate the diagram, and the configuration of the applet's interactive features. The arguments can be grouped as follows:

- “Arguments for the APPLET Tag” on page 152
- “Arguments for Data Definition” on page 153
- “Arguments for HTML and XML File Information” on page 156
- “Arguments for Diagram Appearance” on page 157
- “Arguments for Page Formatting” on page 159
- “Arguments for Style Sheets” on page 160
- “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 161
Examples: Creating Interactive Constellation Diagrams

About These Examples

The examples in this section generate various types of constellation diagrams. The examples include:

- “Example: Constellation Chart with DATATYPE=ARCS” on page 89
- “Example: Constellation Chart with DATATYPE=ASSOC” on page 91
- “Example: Constellation Chart with XML Written to an External File” on page 93
- “Example: Constellation Chart with Hotspots” on page 95

Example: Constellation Chart with DATATYPE=ARCS

This sample program generates a very simple Constellation diagram. It displays a number of countries and the languages spoken in those countries. The following is the Constellation diagram that is generated by the sample code shown below. Notice the Mouse Help window. Because the diagram is displayed by the Constellation applet, it is not just a static picture. A user can manipulate the diagram, for example, by moving nodes and searching for nodes. The Mouse Help window in the following diagram documents for the user what interactivity is available (right-click a diagram to invoke the window).
Here is the example program code. As you review the code, notice the following:

- The parameter HTMLFILE= specifies the complete path and name of the HTML file to be created by the DS2CONST macro. If you want to run this sample, then change the value of HTMLFILE to the location where you want the HTML file stored.

- The parameter NSHAPE= specifies the variable in the SAS data set that encodes the shape of each node.

- The parameter NCOLOR= specifies the variable in the SAS data set that encodes the color of each node.

```sas
/* Define the path to the JAR files and the HTML output file name */
%let jarfiles = path-to-archive-files;
%let htmlfile = html-filename.htm;

/* Define a nodes data set of countries and languages */
data nodedata;
  input nodeLabel $15. shape $10. color $8. size;
cards;
  France   square  red   .1
  Germany  square  red   .1
  Italy    square  red   .1
  Belgium  square  red   .1
  Switzerland square red   .1
  Holland  square  red   .1
  German   triangle blue .1
  French   triangle blue .1
  Italian  triangle blue .1
  Flemish  triangle blue .1
  Dutch    triangle blue .1
;
r construction=htmlhtml;
run;

/* Define a links data set */
data linkdata;
  input from $15. to $15. ;
cards;
  France   French
  Germany  German
  Belgium  French
  Belgium  German
  Belgium  Flemish
  Belgium  Dutch
  Switzerland French
  Switzerland German
  Switzerland Italian
  Italy    Italian
  Italy    German
  Holland  Dutch
;
r run;
run;
goconstruction reset=all;

/* Close ODS HTML and open ODS LISTING */
ods html close;
ods listing;
```
Examples: Creating Interactive Constellation Diagrams

Example: Constellation Chart with DATATYPE=ASSOC

This sample program generates a very simple Constellation diagram with DATATYPE=ASSOC. The following figure shows Constellation diagram that is generated by the sample code. A Constellation diagram with DATATYPE=ASSOC depicts the strength of the relationships among variables. Variables in the SAS data set determine the size and color of nodes, as well as the width and color of the lines between nodes. At the bottom of the picture, notice the slider bar that enables a user to choose how many of the links on the diagram are displayed. Move the slider to the left, and only the most important links are displayed. Move the slider to the right, and all of the links are displayed.

Diagnosis Sequence Diagram.
Here is the example program code. As you review the code, notice the following:

- The parameter HTMLFILE= specifies the complete path and name of the HTML file to be created by DS2CONST. If you want to run this sample, then change the value of HTMLFILE to something that makes sense for you.
- The parameter NCOLVAL= specifies the data set variable that is used to determine the color of each node.
- The parameter NSIZE= specifies the data set variable that is used to determine the size of each node.
- The parameter LVALUE= specifies the data set variable that is used to determine the width and color of each line between nodes.

/* Define the path to the JAR files and the HTML output file name */
%let jarfiles = path-to-archive-files;
%let htmlfile = html-filename.htm;

/* Define the node data */
data nodedata;
length nodeID value 8 label $11 tip $25;
input nodeID value @11 label $char11. @25 tip $char25.;
cards;
0 6556 depression depression: #6556
1 6322 anxiety anxiety: #6322
2 5980 fatigue fatigue: #5980
3 5286 headache headache: #5286
4 4621 chest pain chest pain: #4621
6 3149 nausea nausea: #3149
;
run;

/* Define the link data */
data linkdata;
length from to linkvalue 8 tip $40;
input from to linkvalue @13 tip $char40.;
cards;
2 0 5978 #5978, Support:63.0790, Conf:99.9833
4 1 4621 #4621, Support:48.7602, Conf:100.0000
1 0 4307 #4307, Support:45.4469, Conf:68.1272
1 2 3964 #3964, Support:41.8276, Conf:62.7017
2 3 3010 #3010, Support:31.7611, Conf:50.3429
0 3 3009 #3009, Support:31.7506, Conf:47.5957
1 6 2772 #2772, Support:29.2498, Conf:43.8469
4 6 2609 #2609, Support:27.5298, Conf:56.4596
4 0 2606 #2606, Support:27.4982, Conf:56.3947
4 2 2263 #2263, Support:23.8789, Conf:48.9721
3 0 1980 #1980, Support:20.8927, Conf:40.6921
3 1 1701 #1701, Support:17.9487, Conf:34.9497
3 2 1701 #1701, Support:17.9487, Conf:34.9497
1 3 1593 #1593, Support:16.8091, Conf:25.1977
4 3 1152 #1152, Support:12.1557, Conf:24.9297
0 6 623 #623, Support:6.5738, Conf:9.8545
2 6 623 #623, Support:6.5738, Conf:10.4198
6 3 597 #597, Support:6.2995, Conf:20.0268
3 6 372 #372, Support:3.9253, Conf:7.6433
6 0 344 #344, Support:3.6298, Conf:11.5398

Examples: Creating Interactive Constellation Diagrams

Example: Constellation Chart with XML Written to an External File

This sample program generates the same Constellation diagram as the previous example, “Example: Constellation Chart with DATATYPE=ASSOC” on page 91, with the difference that the XML is written to an external file instead of being embedded in the HTML file.

Here is the example program code. As you review the code, notice the following:

- The parameter HTMLFILE= specifies the complete path and name of the HTML file to be created by DS2CONST. If you want to run this sample, then change the value of HTMLFILE to something that makes sense for you.

- The parameter XMLTYPE=EXTERNAL tells the DS2CONST macro that the XML that it generates from the SAS data set should be written to an external file.

- The parameter XMLURL= specifies how the XML file is to be addressed from within the HTML file.

- The parameter XMLFILE= specifies the path and filename of the XML file to be created.

```sas
%let jarfiles=path-to-archive-files; /* Path to the JAR files */
run;
/* Close ODS HTML and open ODS LISTING */
ods html close;
ods listing;

/* Run the ds2const macro */
title1 "Diagnosis Sequence Diagram.";
%ds2const(ndata=nodedata, /* Node parameters */
  ldata=linkdata, /* Node linkage parameters */
  datatype=assoc, /* Size nodes by nvalue var */
  minlnkwt=30, /* Minimum link display */
  height=450, /* Applet window height */
  width=600, /* Applet window width */
  codebase=&jarfiles, /* Path to archive file */
  htmlfile=&htmlfile, /* HTML output file name */
  colormap=y, /* Use colormap for link/node colors */
  nid=nodeID, /* Var for node ID string */
  nlabel=label, /* Var for node label */
  ncolval=value, /* Var for node color */
  nsize=value, /* Var for node size */
  fntsize=12, /* Node label font size */
  ntip=tip, /* Var for popup node text */
  lfrom=from, /* Var for from-node ID */
  lto=to, /* Var for to-node ID */
  lcolval=linkvalue, /* Var for link colors */
  lvalue=linkvalue, /* Var for link values */
  ltip=tip, /* Var for popup line text */
  linktype=arrow); /* Use arrows for links */

/* Close ODS LISTING and open ODS HTML */
ods listing close;
ods html;
```
%let htmlfile = html-filename.htm; /* HTML output file name */
%let xmlfile = xml-filename.xml; /* XML output file name */
%let xmlurl = url-to-xml-file; /* URL to the XML file */

/* Define the node data */
data nodedata;
 length nodeID value 8 label $11 tip $25;
 input nodeID value @11 label $char11. @25 tip $char25.;
cards;
 0 6556 depression depression: #6556
 1 6322 anxiety anxiety: #6322
 2 5980 fatigue fatigue: #5980
 3 5286 headache headache: #5286
 4 4621 chest pain chest pain: #4621
 6 3149 nausea nausea: #3149
run;

/* Define the link data */
data linkdata;
 length from to linkvalue 8 tip $40;
 input from to linkvalue @13 tip $char40.;
cards;
 2 0 5978 #5978, Support:63.0790, Conf:99.9833
 4 1 4621 #4621, Support:48.7602, Conf:100.0000
 1 0 4307 #4307, Support:45.4469, Conf:68.1272
 1 2 3964 #3964, Support:41.8276, Conf:62.7017
 2 3 3010 #3010, Support:31.7611, Conf:50.3429
 0 3 3009 #3009, Support:31.7506, Conf:47.5957
 1 6 2772 #2772, Support:29.2498, Conf:43.8469
 4 6 2609 #2609, Support:27.5298, Conf:56.4596
 4 0 2606 #2606, Support:27.4982, Conf:56.3947
 4 2 2263 #2263, Support:23.8789, Conf:48.9721
 3 0 1980 #1980, Support:20.8927, Conf:40.6821
 3 1 1701 #1701, Support:17.9487, Conf:34.9497
 3 2 1701 #1701, Support:17.9487, Conf:34.9497
 1 3 1593 #1593, Support:16.8091, Conf:25.1977
 4 3 1152 #1152, Support:12.1557, Conf:24.9297
 0 6 623 #623, Support:6.5738, Conf:9.8545
 2 6 623 #623, Support:6.5738, Conf:10.4198
 6 3 597 #597, Support:6.2995, Conf:20.0268
 3 6 372 #372, Support:3.9253, Conf:7.6433
 6 0 344 #344, Support:3.6298, Conf:11.5398
run;
title1 "Diagnosis Sequence Diagram."

/* Close ODS HTML and open ODS LISTING */
ods html close;
ods listing;
%ds2const(ndata=nodedata, /* Node parameters */
 ldata=linkdata, /* Node linkage parameters */
 datatype=assoc, /* Size nodes by nvalue var */
 minlnkwt=30, /* Minimum link display */
 height=450, /* Applet window height */
 width=600, /* Applet window width */
Example: Constellation Chart with Hotspots

This sample program generates the same Constellation diagram as in “Example: Constellation Chart with DATATYPE=ARCS” on page 89 and adds hotspots to the nodes of the diagram. Here is the example program code. As you review the code, notice that the parameter NURL= specifies the variable in the SAS data set that contains the URL to be linked to when a user double-clicks the node.

/* Define the path to the archive file and the HTML output file name */
%let jarfiles = path-to-archive-files;
%let htmlfile = html-filename.htm;

/* Define a node data set of countries and languages */
data nodedata;
input nodeLabel $15. shape $10. color $8. size $4. url $40.;
cards;
France square red .1 http://www.sas.com
Germany square red .1 http://www.sas.com/software
Italy square red .1 http://www.sas.com/success/
Belgium square red .1 http://www.sas.com/partners/
Switzerland square red .1 http://www.sas.com/company/
Holland square red .1 http://support.sas.com/
German triangle blue .1 http://support.sas.com/resources/
French triangle blue .1 http://support.sas.com/techsup/
Italian triangle blue .1 http://support.sas.com/learn/
Flemish triangle blue .1 http://support.sas.com/community/
Dutch triangle blue .1 http://support.sas.com/documentation/
;
run;

/* Define the link data */
data linkdata;
input from $15. to $15.;
cards;
France French
Germany German
Belgium French
Belgium German
Belgium Flemish
Belgium Dutch
Switzerland French
Switzerland German
Switzerland Italian
Italy Italian
Italy German
Holland Dutch
run;
goptions reset=all;
/* Close ODS HTML and open ODS LISTING */
ods html close;
ods listing;
/* Run the DS2CONST macro */
%ds2const(nodata=nodedata, /* Node parameters */
 ldata=linkdata, /* Node linkage parameters */
 nurl=url, /* Var for drill-down links */
 datatype=arcs, /* Use an arc list for data */
 height=400, /* Applet window height */
 width=500, /* Applet window width */
 code=ConstChart, /* Class name */
 codebase=&jarfiles, /* Path to archive file */
 htmlfile=&htmlfile, /* HTML output file name */
 nid=nodelabel, /* Var for node ID string */
 nlabel=nodelabel, /* Var for node label */
 lfrom=from, /* Var for from-node ID */
 lto=to, /* Var for to-node ID */
 fntsize=12, /* Node label font size */
 nshape=shape, /* Var for node shape */
 ncolor=color, /* Var for node color */
 ssize=size); /* Var for node size */
/* Close ODS LISTING and open ODS HTML */
ods listing close;
ods html;
Overview

This chapter contains information that you can use to resolve rendering problems on client workstations.

If you or a member of your audience cannot display your presentation, then refer to the following table for solutions.

Note: To ensure that software requirements have been met, see “Requirements for Viewing Java and ActiveX Output” on page 12.

Table 8.1 Symptom, Cause, and Remedy Chart

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot access the HTML file.</td>
<td>Incorrect URL.</td>
<td>Check the URL in the browser.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network access denied.</td>
<td>Check operating environment permissions for the HTML file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check firewall access permissions for Internet clients.</td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Browser cannot display the file.</td>
<td>Browser or Java plug-in might not meet requirements.</td>
<td>Check the requirements. See “Requirements for Viewing Java and ActiveX Output” on page 12.</td>
</tr>
<tr>
<td></td>
<td>ActiveX control might not have been installed or might be out of date.</td>
<td>Install the ActiveX control manually. See “Customizing the SAS/GRAPH ActiveX Control Installation Process” on page 17. Consider updating the presentation to prompt users to install the control. See “Configuring an Existing ActiveX Presentation to Install the SAS/GRAPH ActiveX Control from Your Local Network” on page 19.</td>
</tr>
<tr>
<td></td>
<td>User attempting to run the ActiveX control in a browser other than Internet Explorer.</td>
<td>Switch to the required version of the Internet Explorer web browser.</td>
</tr>
<tr>
<td></td>
<td>User has not been authenticated for that browser and that web page.</td>
<td>Check to see whether authentication is needed, and then authenticate. See “Connecting to Web Servers That Require Authentication” on page 101.</td>
</tr>
<tr>
<td></td>
<td>Browser does not recognize the file as HTML.</td>
<td>Ensure that the type of the HTML file is correctly specified.</td>
</tr>
<tr>
<td></td>
<td>Browser permissions too restrictive.</td>
<td>Check browser permissions. See “Checking Browser Permissions” on page 100.</td>
</tr>
<tr>
<td></td>
<td>Browser cannot run the applet or control.</td>
<td>For Java, ensure that the HTML file is correctly referencing the Java plug-in and SAS Java archive. See “Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options)” on page 106.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check browser permissions for running Java scripts. See “Checking Browser Permissions” on page 100.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>In the UNIX operating environment, remove any CLASSPATH environment variables. See “Removing CLASSPATH Environment Variables” on page 101.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open the browser's Java Console and trace the source of the error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graph is not rendering as specified by the ODS graph style.</td>
<td>A style attribute might not be enabled for your ODS destination.</td>
<td>Ensure that the attribute is enabled for your ODS destination. For example, the URL attribute is not enabled for the PS destination. Refer to the table of style attributes for the STYLE statement of the TEMPLATE procedure in SAS Output Delivery System: Procedures Guide.</td>
</tr>
</tbody>
</table>
| A style attribute might be overridden by a global option, global statement option, procedure option, or statement option. | Specify the minimum options needed for your graph, for example:
```
goptions reset=all
device=activex;
```
<p>| In ActiveX, the user gets the message There is a pending reboot for this machine... | 1. Virus-scanning software might be interfering with the installation of the control. 2. Other instances of the control might be running. | 1. Turn off any virus-scanning software before installing the control. 2. Be sure to close all instances of Internet Explorer before installing the control. |
| Text font is incorrect. | Java font is defined differently. | Change browser fonts or change the SAS/GRAPH program. See “Correcting Text Fonts” on page 102. |
| Text in browser shows incorrect characters. | Browser misinterpreting special characters. | Replace special characters with character entities. See “Using HTML Character Entities” on page 100. |
| Graph in browser differs from graph in SAS. | A graphics option or global statement might be unsupported or partially supported for that applet or control. See also “Resolving Differences between Graphs Generated with Different Technologies” on page 102. | Refer to the descriptions for the options that you are using and to “Summary of ActiveX and Java Support” in SAS/GRAPH: Reference for information about whether a statement or option is supported. |</p>
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A default value in the applet or control is overriding a default option value.</td>
<td>Specify a value for the option rather than relying on the default. See “Resolving Differences between Graphs Generated with Different Technologies” on page 102.</td>
<td></td>
</tr>
<tr>
<td>In ActiveX, black-and-white image is not displayed</td>
<td>ActiveX does not enable 8-bit grayscales images.</td>
<td>Convert the image to 24-bit monochrome.</td>
</tr>
<tr>
<td>Graph loses attributes after graph type is changed in the web browser.</td>
<td>Some attribute loss is inherent in graph type changes.</td>
<td>Select the Refresh button in the web browser to restore the original graph.</td>
</tr>
<tr>
<td>Changes made through the Data Options dialog box cause the graph to revert to its original view.</td>
<td>The graph discards subsetting information if you make changes through the Data Options dialog box.</td>
<td>Make any changes needed through the Data Options dialog box before subsetting the graph.</td>
</tr>
</tbody>
</table>

Checking Browser Permissions

Access permissions vary from browser to browser, but some form of access control is enforced in most browsers. To check your permissions, open the browser's Preferences or Internet Options window, and then look for the advanced options. Use your browser's Help system and contact your system support representative as needed to ensure that the browser permissions allow the following:

- Style sheets
- Java
- JavaScripts
- Java Console

In the Security tab of the Internet Explorer's Internet Options window, make sure that the selected web content zone enables access to the web presentation.

Using HTML Character Entities

If a special character in your web presentation does not resolve in the browser, that character might need to be changed to a character entity in the source file or in the SAS program. A character entity is a standardized string of characters that represents a special character. The browser recognizes the string and replaces it with the special character when it is formatting the display. One common character entity is `>`. This entity represents the greater-than symbol (`>`).

Lists of standard character entities are provided in HTML reference books and in online HTML references.
For presentations that run in the Constellation and Treeview applets, the macros DS2CONST and DS2TREE enable the ENCODE argument, which you can use to automatically replace or not replace angle brackets (“<” and “>”) in TITLE and FOOTNOTE statements.

Connecting to Web Servers That Require Authentication

If you are unable to run a Java applet or install the ActiveX control, then you might be trying to access a web server that requires authentication. To resolve this problem, access a different file on that server and enter your user ID and password. Redisplaying your web presentation should now enable you to access that web server.

Removing CLASSPATH Environment Variables

In the UNIX operating environment, if the Java applet does not run after you have verified that your Java archive is correctly specified, then you should remove any CLASSPATH environment variables that have been set. The Java archive files contain all the required classes to run the applets. Your CLASSPATH might point to old versions of the required classes (for example, for use with the webAF software). This can cause the applets to fail to load. Most applications enable you to specify a CLASSPATH at start-up, by using a start-up option. This is often safer for running multiple clients than using the environment variables.

Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX

You might need to define a special environment variable, SAS_ALT_DISPLAY, because some server features require a valid X Windows System graphics display. This environment variable will be used to locate a graphics display when the value of the environment variable commonly used by the X Window System, DISPLAY, has not been set. The value of SAS_ALT_DISPLAY must refer to a display that will always be available during the operation of a SAS server. For example, if the server machine on which SAS servers are running also runs an X server, then set the value of SAS_ALT_DISPLAY to the name of the server machine. To set the SAS_ALT_DISPLAY environment variable, edit the file /SASROOT/bin/sasenv and substitute your display name for value:0.0 in the line,

SAS_ALT_DISPLAY=value:0.0

If an X server is not available on the server machine, an alternative is to use the X virtual frame buffer (Xvfb) as supplied by the operating system vendor. Refer to your vendor-supplied documentation for information about the use of Xvfb.
Correcting Text Fonts

If your presentation displays an incorrect text font on a given client computer, then the cause might be that the client computer maps a logical font name such as Courier to a different physical font set. If the logical font is not mapped to any physical font, Java uses a default font.

When you are using the Java and ActiveX devices or the DS2TREE or DS2CONST macros, the actual fonts used are determined at run time. The fonts are resolved based on the fonts available on the system where the graph is viewed. When you use the JAVA or ACTIVEX device, the fonts specified by the styles are also specified in the HTML or RTF file that is generated. When the file is viewed, if a font is not available, the font mapper on the system where the file is viewed determines the font that is substituted.

It is recommended that you specify system fonts whenever possible. See “Determining What Fonts Are Available” in SAS/GRAPH: Reference and “TrueType Fonts That Are Supplied by SAS” in SAS/GRAPH: Reference for more information.

For programs that use the JAVAMETA device, specify one of these font names: Helvetica, TimesRoman, Courier, Dialog, DialogInput, or ZapfDingbats; or, specify one of these font styles: serif, sans-serif, or monospaced. You can also specify the bold, italic, or italic bold versions of any of these fonts except ZapfDingbats (for example, HelveticaBold, sansserifItalic, or DialogInputItalicBold). If you specify a font style instead of a specific font, the actual font used is determined at run time based on the fonts available on the system where the output is viewed.

Resolving Differences between Graphs Generated with Different Technologies

Graphics output that is rendered with one of the Java or ActiveX devices is rendered using Java or ActiveX technology, and graphics output that is rendered with other devices such as PNG, GIF, or SVG is rendered with SAS technology.

Because of technological differences between SAS, Java, and ActiveX, output generated with these different technologies might differ from each other even if the output is generated with the same SAS procedure code. The graphs might differ in appearance, in the default values used for certain options, or in the availability of certain features.

For example, differences might occur if you are using a global statement or procedure option that is not enabled for an applet or control. Most global statement and procedure options are fully supported by the Java and ActiveX device drivers. Exceptions are identified in the procedure and statement documentation and summarized in “Summary of ActiveX and Java Support” in SAS/GRAPH: Reference.

In certain cases, differences between graphs can occur when an applet or control overrides the default value of a procedure option. To resolve this issue, specify a value for the option rather than relying on the default. For example, consider a bubble plot that is being displayed in the Graph applet. The default bubble size is 5. The Graph applet overrides that default with a larger bubble size. To apply a bubble size of 5, specify BSIZE=5 in the BUBBLE statement, rather than relying on the default value of the BSIZE= option.
Chapter 9
ActiveX Control and Java Applet Parameter Dictionary

Specifying Parameters and Attributes for Java and ActiveX 105
 About Specifying Parameters in ODS Statements 105
 Specifying the Location of Control and Applet Files
 (CODEBASE= and ARCHIVE= Options) 106
 Specifying the Location of the Java Plug-in (CODEBASE= Attribute) 108
 Specifying the Java Virtual Machine Maximum Heap Size 108

Parameters That Apply to the ActiveX Control, and the
Contour, Graph, and Map Applets ... 108

Parameters That Apply to the Metaview and Tile Chart Applets 112

Dictionary ... 113
 AMBIENT ... 113
 BACKDROPCOLOR ... 113
 BACKGROUNDCOLOR ... 114
 BACKIMAGE .. 114
 CLIPTIPS ... 114
 COLORNAMELIST ... 115
 COLORNAMES ... 115
 COLORSHEME ... 115
 DATATIPHIGHLIGHTCOLOR ... 116
 DATATIPSTYLE ... 116
 DDLEVELn ... 117
 DEFAULTTARGET ... 117
 DIRECT ... 117
 DRAWIMAGE ... 118
 DRAWMISSING ... 118
 DRAWSIDES ... 119
 DRILLDOWNFUNCTION and DRILLFUNC 119
 DRILLDOWNMODE ... 119
 DRILLPATTERN ... 120
 DRILLTARGET .. 120
 DUPLICATEVALUES .. 120
 FILLPOLYGONEDGES .. 121
 FREQNAME ... 122
 G_COLOR ... 122
 G_COLORV ... 122
 G_DEP ... 122
 G_DEPTH ... 123
 G_DEPTHV ... 123
 G_DEPV ... 123
 G_GROUP ... 123
G_GROUPV 124
G_INDEP 124
G_INDEPV 124
G_LABEL 124
G_LABELV 125
G_SUBGR 125
G_SUBGRV 125
GRADIENTBACKGROUND 125
GRADIENTSTARTCOLOR and GRADIENTENDCOLOR 126
HONORASPECT 126
IMAGEPOSX and IMAGEPOSY 127
LEGENDFIT 127
LEGENDFONT 127
LEGENDFONTSIZE 128
LEGENDHEIGHTPERCENT 128
LEGENDPERCENT 128
LEGENDWIDTHPERCENT 128
LEVELOFDETAIL 129
LIGHTING 129
LOADFUNC 129
LOCALE 129
LODCOUNT 130
LOGRESOURCES 130
MENUnLABEL 131
MENUnVALUE 131
MENUn.mLABEL 132
MENUn.mVALUE 133
MENUREMOVE 133
METACODES 134
METACODES1–METACODESn 135
METACODESLABEL and METACODES1–METACODESnLABEL 135
MINLEGENDFONTSIZE 135
MISSINGCOLOR 135
NAME 136
NAVIGATERENDERMODE 136
NOJSOBJECT 136
OUTLINES 137
OVERFLOWCOLOR 137
PATTERNSTRIP 137
PROJECTION 137
PROJECTIONRATIO 138
RENDERMODE 138
RENDEROPTIMIZE 139
RENDERQUALITY 139
RESOURCESFONTNAME 140
SHOWBACKDROP 140
SIMPLEDEPTHSORT 140
SIMPLETHRESHOLD 141
STACKED 141
STACKPERCENT 141
SURFACESIDECOLOR 142
TIPBACKCOLOR 142
TIPBORDERCOLOR 142
TIPS 143
TIPMODE 143
TIPSTEMSIZE 144
You can specify attributes and parameters in ODS to override default values in Java and ActiveX. No attributes or parameters are required. SAS provides workable defaults.

Attributes can be any HTML name/value pair that is valid inside the initial (opening) OBJECT tag. Parameters are values that appear in the body of the OBJECT tag to configure the appearance or functionality of a Java applet or the ActiveX control.

Attributes and parameters are specified as options of one of the available ODS statements, such as ODS HTML:

```
ODS HTML
<ATTRIBUTES=("attr-name"="attr-value")>
<PARAMETERS=("param-name"="param-value")>
<other-options>;
```

The preceding syntax applies to all applicable ODS statements, such as HTML, MARKUP, PDF, PS, and RTF.

You can specify more than one "name"="value" pair (separated by blank spaces) inside the parenthesis of an ATTRIBUTES= or PARAMETERS= option. You can also specify multiple ATTRIBUTES= and PARAMETERS= options in a single ODS statement. These options can be specified in any order in the ODS statement.

You can remove a parameter tag by specifying a $ for its value, or by setting it to None using the menu of the applet or control. This removes the data and axis label that would otherwise be included in the graph.

You can also append ,n to tags that reference variables whose values are URLs. Normally, the substitution string is URL-encoded for browsers that do not support embedded white space in URL strings. Use ,f to prevent this encoding.

No intervening white space should be added between the primary tag and the appended ,f or ,n characters. For information about the ,f characters, see “Formatting Data Values in Script Drill-Down Mode” on page 70.

Note: Using ,n is not the same as using the applet parameter PATTERNSTRIP. The PATTERNSTRIP parameter removes blank spaces from data values before those values are applied to substitution strings.

Most of the examples in the following topics specify parameters:
"Examples: Creating Interactive Java Output" on page 42
"Examples: Creating Interactive ActiveX Output" on page 25
"Example: Generating Metacode Output with the JAVAMETA Driver" on page 55

For information about other ODS statement options, see the SAS Output Delivery System: User's Guide.

In HTML output that runs an applet or a control, all values of the ATTRIBUTES= option appear in the opening OBJECT tag. For example, a SAS/GRAPH program can specify the WIDTH attribute as follows:

```ods html file="C:\sashtml\piechart.htm"
  attributes=("width"="720");
```

In the HTML output file, the WIDTH attribute appears inside the beginning OBJECT tag as shown in the following:

```<script language="javascript" type="text/javascript">
<!--
  document.writeln("<OBJECT style="width: 720px; height: 480px;
    background-color: #4E5056; border-width: 0px;";
  document.writeln("ALIGN="baseline" class="Graph");
//-->
</script>
```

Valid attribute names are those that are enabled for the OBJECT tag in HTML. Valid attributes must also be specified as required by JAVA or ACTIVEX device drivers that run in the operating environment.

All of the name/value pairs that are specified in the ODS statement option PARAMETERS= appear in the body of the OBJECT tag. For example, a SAS program can disable the data tips and set the background color for a graph as follows:

```ods html file="test.html" parameters=(
  "tips"="none"
  "backdropcolor"="CXff0000"
);
```

Valid parameter values for the ActiveX control, Graph applet, Map applet, and Contour applet are defined in “Parameters That Apply to the ActiveX Control, and the Contour, Graph, and Map Applets” on page 108. Valid parameter values for the Metaview and Tile Chart applet are defined in “Parameters That Apply to the Metaview and Tile Chart Applets” on page 112.

Specifying the Location of Control and Applet Files (**CODEBASE=** and **ARCHIVE=** Options)

About the Control and Applet Files

When you generate web presentations with the JAVA and ACTIVEX device drivers, the SAS/GRAPH software generates HTML pages that automatically look for the Java archive files or the ActiveX control file in the default installation location. If you install the ActiveX control .exe file or the Java archive JAR files in a location other than the default or if you want to publish Output Delivery System (ODS) output containing the
SAS/GRAPH control or the applets in a web server, then you might need to specify the location of the .exe file or the JAR files when you generate your web presentation.

You can use the CODEBASE= option to specify the location of the ActiveX control or the Java applets. You can use the ARCHIVE= option to specify the name of the Java archive file.

Note: The ActiveX control must be installed locally on each PC where the web presentation is viewed.

Specifying the Location of the ActiveX Control

If you use the ACTIVEX device driver to generate output containing an ActiveX control, then specify the location and version of the .exe file with the CODEBASE= option in the ODS statement. Specify the directory and filename of the .exe file. The CODEBASE location can be specified as a pathname or as a URL. (See “Specifying the CODEBASE= URL” on page 107 for more information.) If previous versions of the ActiveX control have been installed, then you also need to specify the version that you want to use. For example, if your .exe file is sasgraph.exe in directory /sasweb/graph, specify the following:

```
ods html file="/path/to/mygraph.html" codebase="/sasweb/graph/sasgraph.exe#version=9,4";
```

Specifying the Location of the Java Applets

By default, the location of the SAS Java archive files is specified by the APPLETLOC= system option. This value is the default value of the CODEBASE= parameter. If the default location is accessible by users who are viewing your web presentation, and the SAS Java archive is installed at that location, then you do not need to change the value of the CODEBASE= parameter.

If you use the JAVA device driver to generate output containing a SAS/GRAPH applet, then specify the path to the JAR file with the CODEBASE= option in the ODS statement. Specify only the directory of the JAR file. The CODEBASE location can be specified as a pathname or as a URL. (See “Specifying the CODEBASE= URL” on page 107 for more information.) For example, if your JAR file is in directory /sasweb/graph, you would specify the following:

```
ods html body="/path/to/mygraph.html* codebase="/sasweb/graph";
```

The ARCHIVE= option specifies the filename of the JAR file or files. You do not need to specify the ARCHIVE= option in the ODS statement unless you have renamed the JAR files.

For applets generated with macros, specify the CODEBASE= argument for the macro. For example:

```
%ds2const (codebase=http://your_path_to_archive, htmlfile=your_path_and_filename.htm ...);
```

For the DS2TREE and DS2CONST macros, you do not need to specify the ARCHIVE= argument unless you have renamed the JAR files.

Specifying the CODEBASE= URL

If the value that you specify for CODEBASE= is a URL, it can be a full URL (for example, http://your_server/sasweb/graph), or it can be relative to your web server (/sasweb/graph). If you are publishing HTML only on web servers where the control
or the applets are installed in a common location, then it is generally recommended that you use the shorter, relative URL. A relative URL enables you to move the HTML to any web server without modifying the HTML (assuming the control or the applets are installed on that server). If you are creating HTML that will be viewed from an e-mail or copied to a web server on which the applets are not installed, then you should use a full URL to point to the applet JAR files at a known location.

Specifying the Location of the Java Plug-in (CODEBASE= Attribute)

The CODEBASE= attribute in the ODS statement specifies the location of the Java plug-in from Oracle. By default, SAS points to the website of the Java plug-in from Oracle. If necessary, you can change the location of the Java plug-in by specifying the CODEBASE= attribute in the ODS statement. For example:

```plaintext
ods html file="c:\myfile.htm" attributes=(
   "codebase"="http://ourco.com/Plugins/j2re-1_6_0-windows-i586.exe"
);
```

On Windows systems, the user is prompted to install the plug-in if it is not already installed. On other systems, the plug-in can be installed from the SAS Third-Party Software Requirements web page.

Specifying the Java Virtual Machine Maximum Heap Size

To change the Java Virtual Machine (JVM) maximum heap size from the default size, include the PARAMETERS= option in your ODS HTML statement and set applet parameter JAVA_PARAMETERS to Xmxnnnm, where nnn is the new heap size in megabytes. For example, to set the heap size to 256 megabytes, use the following ODS HTML statement:

```plaintext
ods html parameters=("JAVA_PARAMETERS"="Xmx256m");
```

For information about the ODS HTML statement PARAMETERS= option, see *SAS Output Delivery System: User's Guide*. For information about the Java parameters, visit the Oracle website.

Parameters That Apply to the ActiveX Control, and the Contour, Graph, and Map Applets

The following table lists the parameters that apply to the ActiveX Control, and the Contour, Graph, and Map applets.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBIENT (p. 113)</td>
<td>✓</td>
</tr>
</tbody>
</table>
Parameters That Apply to the ActiveX Control, and the Contour, Graph, and Map Applets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ActiveX Control</td>
</tr>
<tr>
<td>BACKDROPCOLOR (p. 113)</td>
<td>✓</td>
</tr>
<tr>
<td>BACKIMAGE (p. 114)</td>
<td>✓</td>
</tr>
<tr>
<td>CLIPTIPS (p. 114)</td>
<td></td>
</tr>
<tr>
<td>COLORNAMELIST (p. 115)</td>
<td>✓</td>
</tr>
<tr>
<td>COLORMAPES (p. 115)</td>
<td>✓</td>
</tr>
<tr>
<td>COLORSCHEME (p. 115)</td>
<td>✓</td>
</tr>
<tr>
<td>DDLEVELn (p. 117)</td>
<td>✓</td>
</tr>
<tr>
<td>DIRECT (p. 117)</td>
<td>✓</td>
</tr>
<tr>
<td>DRAWIMAGE (p. 118)</td>
<td>✓</td>
</tr>
<tr>
<td>DRAWMISSING (p. 118)</td>
<td></td>
</tr>
<tr>
<td>DRAWSIDES (p. 119)</td>
<td></td>
</tr>
<tr>
<td>DRILLDOWNFUNCTION (p. 119)</td>
<td>✓</td>
</tr>
<tr>
<td>DRILLDOWNMODE (p. 119)</td>
<td>✓</td>
</tr>
<tr>
<td>DRILLPATTERN (p. 120)</td>
<td>✓</td>
</tr>
<tr>
<td>DRILLTARGET (p. 120)</td>
<td>✓</td>
</tr>
<tr>
<td>DUPLICATEVALUES (p. 120)</td>
<td></td>
</tr>
<tr>
<td>FILLPOLYGONEDGES (p. 121)</td>
<td></td>
</tr>
<tr>
<td>FREQNAME (p. 122)</td>
<td></td>
</tr>
<tr>
<td>G_COLOR (p. 122)</td>
<td>✓</td>
</tr>
<tr>
<td>G_COLORV (p. 122)</td>
<td>✓</td>
</tr>
<tr>
<td>G_DEP (p. 122)</td>
<td>✓</td>
</tr>
<tr>
<td>G_DEPTH (p. 123)</td>
<td>✓</td>
</tr>
<tr>
<td>G_DEPTHV (p. 123)</td>
<td>✓</td>
</tr>
<tr>
<td>G_DEPV (p. 123)</td>
<td>✓</td>
</tr>
<tr>
<td>G_GROUP (p. 123)</td>
<td>✓</td>
</tr>
<tr>
<td>G_GROUPV (p. 124)</td>
<td>✓</td>
</tr>
<tr>
<td>G_INDEP (p. 124)</td>
<td>✓</td>
</tr>
<tr>
<td>Parameter</td>
<td>ActiveX Control</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>G_INDEPV (p. 124)</td>
<td>✓</td>
</tr>
<tr>
<td>G_LABEL (p. 124)</td>
<td></td>
</tr>
<tr>
<td>G_LABELV (p. 125)</td>
<td></td>
</tr>
<tr>
<td>G_SUBGR (p. 125)</td>
<td>✓</td>
</tr>
<tr>
<td>G_SUBGRV (p. 125)</td>
<td>✓</td>
</tr>
<tr>
<td>GRADIENTBACKGROUND (p. 125)</td>
<td>✓</td>
</tr>
<tr>
<td>GRADIENTENDCOLOR (p. 126)</td>
<td>✓</td>
</tr>
<tr>
<td>GRADIENTSTARTCOLOR (p. 126)</td>
<td>✓</td>
</tr>
<tr>
<td>HONORASPECT (p. 126)</td>
<td></td>
</tr>
<tr>
<td>IMAGEPOSX (p. 127)</td>
<td>✓</td>
</tr>
<tr>
<td>IMAGEPOSY (p. 127)</td>
<td>✓</td>
</tr>
<tr>
<td>LEGENDFIT (p. 127)</td>
<td></td>
</tr>
<tr>
<td>LEGENDFONT (p. 127)</td>
<td></td>
</tr>
<tr>
<td>LEGENDFONTSIZE (p. 128)</td>
<td></td>
</tr>
<tr>
<td>LEGENDHEIGHTPERCENT (p. 128)</td>
<td></td>
</tr>
<tr>
<td>LEGENDPERCENT (p. 128)</td>
<td></td>
</tr>
<tr>
<td>LEGENDWIDTHPERCENT (p. 128)</td>
<td></td>
</tr>
<tr>
<td>LEVELOFDETAIL (p. 129)</td>
<td></td>
</tr>
<tr>
<td>LIGHTING (p. 129)</td>
<td></td>
</tr>
<tr>
<td>LOADFUNC (p. 129)</td>
<td></td>
</tr>
<tr>
<td>LOCALE (p. 129)</td>
<td>✓</td>
</tr>
<tr>
<td>LODCOUNT (p. 130)</td>
<td></td>
</tr>
<tr>
<td>MENUREMOVE (p. 133)</td>
<td></td>
</tr>
<tr>
<td>MINLEGENDFONTSIZE (p. 135)</td>
<td></td>
</tr>
<tr>
<td>MISSINGCOLOR (p. 135)</td>
<td></td>
</tr>
<tr>
<td>NAME (p. 136)</td>
<td>✓</td>
</tr>
<tr>
<td>NAVIGATERENDERMODE (p. 136)</td>
<td></td>
</tr>
</tbody>
</table>
Parameters That Apply to the ActiveX Control, and the Contour, Graph, and Map Applets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ActiveX Control</td>
</tr>
<tr>
<td>NOJSOOBJECT (p. 136)</td>
<td></td>
</tr>
<tr>
<td>OUTLINES (p. 137)</td>
<td>✓</td>
</tr>
<tr>
<td>OVERFLOWCOLOR (p. 137)</td>
<td>✓</td>
</tr>
<tr>
<td>PATTERNSTRIP (p. 137)</td>
<td>✓</td>
</tr>
<tr>
<td>PROJECTION (p. 137)</td>
<td>✓</td>
</tr>
<tr>
<td>PROJECTIONRATIO (p. 138)</td>
<td>✓</td>
</tr>
<tr>
<td>RENDERMODE (p. 138)</td>
<td>✓</td>
</tr>
<tr>
<td>RENDEROPTIMIZE (p. 139)</td>
<td>✓</td>
</tr>
<tr>
<td>RENDERQUALITY (p. 139)</td>
<td>✓</td>
</tr>
<tr>
<td>SHOWBACKDROP (p. 140)</td>
<td>✓</td>
</tr>
<tr>
<td>SIMPELEDEPTHSORT (p. 140)</td>
<td>✓</td>
</tr>
<tr>
<td>SIMPLETHRESHOLD (p. 141)</td>
<td>✓</td>
</tr>
<tr>
<td>STACKED (p. 141)</td>
<td>✓</td>
</tr>
<tr>
<td>STACKPERCENT (p. 141)</td>
<td>✓</td>
</tr>
<tr>
<td>SURFACESIDECOLOR (p. 142)</td>
<td>✓</td>
</tr>
<tr>
<td>TIPBACKCOLOR (p. 142)</td>
<td>✓</td>
</tr>
<tr>
<td>TIPBORDERCOLOR (p. 142)</td>
<td>✓</td>
</tr>
<tr>
<td>TIPS (p. 143)</td>
<td>✓</td>
</tr>
<tr>
<td>TIPMODE (p. 143)</td>
<td>✓</td>
</tr>
<tr>
<td>TIPSTEMSIZE (p. 144)</td>
<td>✓</td>
</tr>
<tr>
<td>TIPTEXTCOLOR (p. 144)</td>
<td>✓</td>
</tr>
<tr>
<td>UNDERFLOWCOLOR (p. 144)</td>
<td>✓</td>
</tr>
<tr>
<td>USERFMTn (p. 144)</td>
<td>✓</td>
</tr>
<tr>
<td>VIEW2D (p. 145)</td>
<td>✓</td>
</tr>
<tr>
<td>VIEWPOINT (p. 145)</td>
<td>✓</td>
</tr>
<tr>
<td>XBINS (p. 146)</td>
<td></td>
</tr>
</tbody>
</table>
Parameters That Apply to the Metaview and Tile Chart Applets

The following table lists the parameters that apply to the Metaview and Tile Chart applets.

Table 9.2 Parameters Enabled for the Metaview and Tile Chart Applets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metaview Applet</td>
</tr>
<tr>
<td>BACKGROUNDCOLOR (p. 114)</td>
<td>✓</td>
</tr>
<tr>
<td>DATATIPHIGHLIGHTCOLOR (p. 116)</td>
<td>✓</td>
</tr>
<tr>
<td>DATATIPSTYLE (p. 116)</td>
<td>✓</td>
</tr>
<tr>
<td>DEFAULTTARGET (p. 117)</td>
<td>✓</td>
</tr>
<tr>
<td>LOGRESOURCES (p. 130)</td>
<td>✓</td>
</tr>
<tr>
<td>MENU,LABEL (p. 131)</td>
<td></td>
</tr>
<tr>
<td>MENU,VALUE (p. 131)</td>
<td></td>
</tr>
<tr>
<td>MENU,m,LABEL (p. 132)</td>
<td></td>
</tr>
<tr>
<td>MENU,m,VALUE (p. 133)</td>
<td></td>
</tr>
<tr>
<td>METACODES (p. 134)</td>
<td></td>
</tr>
<tr>
<td>METACODES1-METACODES (p. 135)</td>
<td></td>
</tr>
<tr>
<td>METACODESLABEL (p. 135)</td>
<td></td>
</tr>
<tr>
<td>METACODESLABEL-METACODES (p. 135)</td>
<td></td>
</tr>
<tr>
<td>RESOURCESFONTNAME (p. 140)</td>
<td></td>
</tr>
</tbody>
</table>

* This option works only if STYLE=MINIMAL is specified in the ODS destination statement.
Dictionary

AMBIENT

specifies the intensity of non-directional ambient light in relation to direct light.

- **Default:** 0.4
- **Range:** 0.0–1.0
- **Applies to:** ActiveX Control, Contour applet
- **Restriction:** The sum of the AMBIENT= and DIRECT= parameter values cannot exceed 1.0.
- **Interaction:** If the sum of the AMBIENT= and DIRECT= parameter values exceeds 1.0, the AMBIENT= value is reduced so that the sum of the two values equals 1.0.

Syntax

`AMBIENT=light-level`

BACKDROPCOLOR

specifies the color of all of the walls and the floor as an RGB color in hexadecimal (0xrrrggbb).

- **Default:** 0xffffff (white)
- **Applies to:** Graph applet, Contour applet

Syntax

`BACKDROPCOLOR=color`
BACKGROUND COLOR

specifies the background color as an RGB color in hexadecimal (0xrrggbb).

- **Default:** 0xd3d3d3 (gray)
- **Applies to:** Metaview applet
- **Tip:** This parameter changes the background color for the applet only. To set the background color for the entire graph, use the CBACK= graphics option in a GOPTIONS statement. See “Graphics Options and Device Parameters Dictionary” in SAS/GRAPH: Reference.

Syntax

```
BACKGROUND COLOR=color
```

BACKIMAGE

specifies the URL of an image that is to be displayed as the background of the applet image area.

- **Default:** The background is drawn in a single solid color.
- **Applies to:** ActiveX Control, Graph applet, Map applet, Contour applet
- **Requirements:** For the ActiveX Control, the background image must be in GIF, JPEG, or BMP format.
 - For the Graph, Map, or Contour applet, the URL must be absolute and not relative.
- **Tip:** Use the DRAWIMAGE= parameter to specify how the image is applied to the background.

Syntax

```
BACKIMAGE=image-URL
```

CLIP TIPS

indicates whether data tips should be clipped.

- **Default:** TRUE
- **Applies to:** Contour applet
- **Note:** The data tips window hugs the boundary and displays the value of the element that is closest to the cursor along that edge of the plot.

Syntax

```
CLIP TIPS=TRUE | FALSE
```
Argument Values

TRUE
 does not display data tips when the cursor is outside of the plot area.

FALSE
 displays data tips when the cursor is outside of the plot area.

COLORNAMELIST

specifies which of two named color lists has priority when searching for named colors.

<table>
<thead>
<tr>
<th>Default:</th>
<th>Search the list of HTML 3.2 colors, then search the SAS name list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to:</td>
<td>Contour applet</td>
</tr>
<tr>
<td>Note:</td>
<td>Specifying SAS as the string reverses the default search priority, giving SAS names the higher priority.</td>
</tr>
</tbody>
</table>

Syntax

COLORNAMELIST=string | SAS

COLORNAMES

specifies the color names and associated 6-digit hexadecimal RGB values that are displayed in the Standard Colors list box in the Color dialog box.

<table>
<thead>
<tr>
<th>Default:</th>
<th>Aqua, Bisque, Black, Blue, Burlywood, Cornflowerblue, Cornsilk, Fuchsia, Gray, Green, Gold, Lightseagreen, Lime, Maroon, Navy, Olive, Purple, Red, Seagreen, Silver, Skyblue, Teal, White, and Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to:</td>
<td>Graph applet, Contour applet</td>
</tr>
<tr>
<td>Requirements:</td>
<td>The names and RGB values must be specified as a comma-separated list of name=value pairs with no spaces.</td>
</tr>
<tr>
<td></td>
<td>A value must be a valid 6-digit hexadecimal RGB code. The color names are displayed as specified in the list box.</td>
</tr>
<tr>
<td>Note:</td>
<td>A name can be any valid string.</td>
</tr>
<tr>
<td>See:</td>
<td>the applet Help for information about how to open the Color dialog box.</td>
</tr>
</tbody>
</table>

Syntax

COLORNAMES=name1=value1,name2=value2, ... nameN=valueN

COLORSCHEME

specifies the name of the color scheme that is applied to the graph.

<table>
<thead>
<tr>
<th>Default:</th>
<th>No color scheme is applied to the graph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to:</td>
<td>ActiveX Control, Graph applet</td>
</tr>
</tbody>
</table>
Syntax
COLORSCHEME=scheme-name

DATATIPHIGHLIGHTCOLOR
specifies the color of the outline that appears around a graph element when its data-tip information is being displayed.

Default: 0xff0000 (red)
Applies to: Metaview applet
Requirements: The color must be specified as an RGB hexadecimal value (0xrrggbb). The **DATATIPSTYLE=** parameter must be set to HIGHLIGHT. Otherwise, the **DATATIPHIGHLIGHTCOLOR=** parameter is ignored.

Syntax
DATATIPHIGHLIGHTCOLOR=color

DATATIPSTYLE
specifies the style of the data-tip pop-up window.

Default: HIGHLIGHT
Applies to: Metaview applet

Syntax
DATATIPSTYLE=HIGHLIGHT | STICK | STICK_FIXED

Argument Values

HIGHLIGHT
causes the data tip pop-up window to appear above the segment with no connecting line. The border of the graph element is highlighted. As long as the cursor remains in the element, the pop-up window displays the data tip, and the element outline is highlighted.

Tip Use the **DATATIPHIGHLIGHTCOLOR=** parameter to specify the highlight border color.

STICK
connects the data tip pop-up window to the graph element with a line. The pop-up window is positioned over the cursor. As long as the cursor remains in the element, when the cursor is moved, the pop-up window and the connecting line move with the cursor.

STICK_FIXED
connects a stationary data tip pop-up window to the graph element with a line drawn into the middle of the graph element. As long as the cursor remains in the element, the pop-up window displays the data tip.
Details

The following figure shows an example of each of the data-tip styles for a segment of a subgrouped bar.

DDLEVEL\textsubscript{n}

configures the drill-down graph that is generated at the drill-down level that is specified by the letter \textit{n}.

- **Applies to:** Graph applet
- **Tip:** The drill-down graph is configured using drill-down tags such as \texttt{G_INDEPV}.

Syntax

\texttt{DDLEVELn=configuration-string}

DEFAULTTARGET

specifies where the browser opens drill-down URLs by default.

- **Default:** _\texttt{blank}, which displays drill-down URLs in a new browser window.
- **Applies to:** Metaview applet
- **Interaction:** The drill-down tag TARGET attribute overrides this parameter.
- **Tip:** The value of this parameter can be an HTML target such as _\texttt{blank} or the name of a window or frame in the web presentation.

Syntax

\texttt{DEFAULTTARGET=target-name}

DIRECT

specifies the intensity of direct light (from a light source) in relation to the ambient (non-directional) light.

- **Default:** 0.6
- **Range:** 0.0–1.0
- **Applies to:** ActiveX Control, Contour applet
Restriction: The sum of AMBIENT= and DIRECT= parameter values cannot exceed 1.0.

Interaction: If the sum of the AMBIENT= and DIRECT= parameter values exceeds 1.0, the AMBIENT= value is reduced so that the sum of the two values equals 1.0.

Syntax
DIRECT=light-level

DRAWIMAGE

specifies how the image specified in the BACKIMAGE parameter is applied to the background of the applet window.

Default: SCALE
Applies to: Graph applet, Map applet, Contour applet
See: “BACKIMAGE” on page 114

Syntax
DRAWIMAGE=background-image-application

Argument Values
CENTER
centers a single instance of the image in the background, without resizing the image.

POSITION
places a single instance of the image at the location supplied by the IMAGEPOSX= and IMAGEPOSY= parameters, without resizing. If these parameters are not specified, then the image is centered in the applet window.

SCALE
fills the entire background of the applet window with a single instance of the specified image, which is resized as necessary.

TILE
fills the entire background of the applet window using multiple instances of the specified image, without resizing that image. The images are arranged in rows and columns.

DRAWMISSING

specifies whether missing values should be drawn.

Default: FALSE. Missing values are not drawn.
Applies to: Contour applet
Requirement: For DRAWMISSING=TRUE to have any effect, the Styles menu option must be set to Block, Smooth, or Surface.
Syntax
DRAWMISSING=TRUE | FALSE

DRAWSIDES
specifies that sides should be drawn when the value of the STACKED parameter is TRUE and when the Styles menu option is set to Surface, Areas, or LinesAndAreas.

Default: FALSE
Applies to: Contour applet
Tip: To override this parameter, you can specify an ODS style definition.

Syntax
DRAWSIDES=TRUE | FALSE

DRILLDOWNFUNCTION and DRILLFUNC
specifies the name of the JavaScript function that is called in Script drill-down mode.

Applies to: ActiveX Control, Graph applet, Map applet

Syntax
DRILLDOWNFUNCTION=function-name
DRILLFUNC=function-name

DRILLDOWNMODE
specifies the drill-down mode.

Defaults: LOCAL for the Graph applet
The Map applet and the ActiveX control do not enable user-selectable drill-down modes.

Applies to: ActiveX Control, Graph applet, Map applet

Syntax
DRILLDOWNMODE=HTML | LOCAL | SCRIPT | URL

Argument Values
HTML
uses a substitution string to dynamically generate a URL based on the selected chart elements, and then passes the URL to the browser.
LOCAL
constructs and displays a new graph based on the data in the previous level of a drill-down graph.

Note LOCAL applies to the Graph applet only.

SCRIPT
invokes the JavaScript function specified in the DRILLDOWNFUNCTION= parameter, and passes into the function data from the selected graph element.

URL
provides static drill-down functionality, using an image map in the HTML file. The image map is generated by ODS when you use the ODS HTML destination with the URL= or HTML= option in SAS/GRAPH.

DRILLPATTERN

specifies how to construct the drill-down URL when the drill-down mode is HTML.

Applies to: ActiveX Control, Graph applet, Map applet

Tip: The substitution string is constructed with drill-down tags, which are expressed in parameters such as G_DEPV, as described in “Configuring Drill-Down Links with ACTIVEX” on page 24. You can also use variable substitution as described in “Using Variables as Substitution Strings” on page 63.

Syntax

DRILLPATTERN= substitution-string

DRILLTARGET

specifies where the drill-down destination is displayed in the browser.

Default: _BLANK, which displays the drill-down destination in a new browser window.

Applies to: ActiveX Control, Graph applet, Map applet

Tip: The target can be specified as another reserved target name or as the name of a window or frame in your web presentation.

Syntax

DRILLTARGET=target

DUPLICATEVALUES

determines how the applet handles data values for grid positions that already have a data value.

Default: MEAN

Applies to: Contour applet
Syntax

DUPLICATEVALUES=string

Argument Values

COUNT
stores at each grid location the number of values found for that location.

FIRST
stores the first value found.

LAST
stores the last value found.

MAX
stores the maximum value found.

MEAN
stores the mean (average) of all values found.

MIN
stores the maximum value found.

NMISS
stores the number of missing values found.

RANGE
stores the range of values found. The range is computed as the maximum value minus the minimum value.

SUM
stores the sum of all values found.

FILLPOLYGONEDGES
specifies whether to adjust rendering to fix a temporary vendor rendering defect.

Applies to: Contour applet

Syntax

FILLPOLYGONEDGES=ALWAYS | NEVER | OS/2

Details

When you set the value to ALWAYS, the adjusted rendering is always performed, regardless of the operating system on which the applet is running. Similarly, if you set the value to NEVER, the adjusted rendering is never performed on any operating system. If the value of this parameter equals the os.name Java system property, then the Contour applet sets the default value of this parameter to OS/2, which enables the polygon edges to be properly rendered. However, this extra drawing effort slows performance. If you set this parameter to the value of the parameter of the name of the operating system returned in os.name, then the adjusted rendering is performed when the applet runs on that operating system because the applet notifies the Java console.
FREQNAME
specifies a name for a new variable that contains the frequency count when a frequency chart is produced.

Default: Frequency
Applies to: Graph applet
Interaction: This parameter might be overridden if you specify an ODS style definition.

Syntax
FREQNAME=variable-name

G_COLOR
specifies a new color variable for the current drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Syntax
G_COLOR=variable-name

G_COLORV
specifies that the current color variable is the same variable that was used to configure the previous drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Syntax
G_COLORV=variable-name

G_DEP
specifies a new dependent variable for the current drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: The value of the G_DEP tag cannot be set to None because it is always represented in the graph.

Syntax
G_DEP=variable-name
G_DEPTH

specifies a new depth variable for the current drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be vertical bar charts or scatter plots.

Syntax

G_DEPTH=variable-name

G_DEPTHV

specifies that the depth variable for the current drill-down level is the same depth variable that was used in the previous drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be vertical bar charts or scatter plots.

Syntax

G_DEPTHV=variable-name

G_DEPV

specifies that the drill-down graph at the specified drill-down level is to use the same dependent variable that was used in the previous drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Syntax

G_DEPV=variable-name

G_GROUP

specifies a new group variable for the current drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be bar charts.

Syntax

G_GROUP=variable-name
G_GROUPV

specifies that this group variable should be the same group variable that was used at the previous drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be bar charts.

Syntax

```
G_GROUPV=variable-name
```

G_INDEP

specifies a new independent variable for the current drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Restriction: The values of the G_INDEP tags cannot be set to *None* because it is always represented in the graph.

Note: Drill-down graphs that use this variable can be charts and maps.

Syntax

```
G_INDEP=variable-name
```

G_INDEPV

specifies that an independent variable at the current drill-down level is the same variable that was used at the previous drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be charts and maps.

Syntax

```
G_INDEPV=variable-name
```

G_LABEL

specifies a new label variable for the current drill-down level.

Applies to: Map applet

Note: Drill-down graphs that use this variable can be maps.
Syntax

G_LABEL=variable-name

G_LABELV

specifies that this label variable should be the same label variable that was used at the previous drill-down level.

Applies to: Map applet

Note: Drill-down graphs that use this variable can be maps.

Syntax

G_LABELV=variable-name

G_SUBGR

specifies a new subgroup variable for the current drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be bar charts and scatter plots.

Syntax

G_SUBGR=variable-name

G_SUBGRV

specifies that a subgroup variable at this drill-down level is the same subgroup variable that was used at the previous drill-down level.

Applies to: ActiveX Control, Graph applet, Map applet

Note: Drill-down graphs that use this variable can be bar charts and scatter plots.

Syntax

G_SUBGRV=variable-name

GRADIENTBACKGROUND

specifies whether a color gradient is displayed in the window background.

Default: FALSE

Applies to: Graph applet, Map applet, Contour applet

Interaction: This parameter is ignored when the BACKIMAGE parameter is specified.
Tips: To override this parameter, you can specify an ODS style definition. Use GRADIENTSTARTCOLOR= and GRADIENTENDCOLOR= parameters to specify the colors that are used to draw the color gradient.

Syntax

GRADIENTBACKGROUND=TRUE | FALSE | VERTICAL | HORIZONTAL

Argument Values

TRUE | VERTICAL | HORIZONTAL
specifies that a color gradient is shown in the window background. Both TRUE and VERTICAL specify a vertical color gradient, where color changes top to bottom from GRADIENTSTARTCOLOR to GRADIENTENDCOLOR. HORIZONTAL specifies a horizontal gradient, where color changes left to right from GRADIENTSTARTCOLOR to GRADIENTENDCOLOR.

FALSE
specifies that a color gradient is not displayed in the window background.

GRADIENTSTARTCOLOR and GRADIENTENDCOLOR
specify the start color and the end color when two colors are blended in a gradient across a wall, background, or graph element.

Applies to: Graph applet, Map applet, Contour applet

Requirement: The color must be an HTML 3.2 color name or a 6-digit hexadecimal RGB value.

Interaction: This parameter might be overridden if you specify an ODS style definition.

Syntax

GRADIENTSTARTCOLOR=\textit{color}
GRADIENTENDCOLOR=\textit{color}

HONORASPECT
specifies whether the aspect of the data being displayed is honored.

Used by: Contour applet

Default: FALSE

Notes: The value FALSE scales the shortest axis (x or y). When this parameter is set to FALSE, certain annotations, such as pies, might be displayed differently in the applet than in SAS.

Syntax

HONORASPECT=TRUE | FALSE
IMAGEPOSX and IMAGEPOSY

specifies the location of the upper left corner of the background image that is named in the BACKIMAGE= parameter.

- **Applies to:** Graph applet, Map applet, Contour applet
- **Requirement:** These options have effect only when `DRAWIMAGE=POSITION`.
- **Note:** Positive pixel values are measured from the top left corner of the applet window. Negative pixel values are measured from the bottom right corner of the applet window.

Syntax

```
IMAGEPOSX=horizontal-pixels
IMAGEPOSY=vertical-pixels
```

LEGENDFIT

specifies whether the legend should fit within the height of the contour plot area.

- **Default:** The legend occupies as much of the applet height as is feasible.
- **Applies to:** Contour applet
- **Interaction:** When this parameter is set to TRUE, the `LEGENDHEIGHTPERCENT=` argument is ignored.
- **Note:** When this parameter is set to TRUE, the height of the legend is restricted to the height of the contour plot within the legend.

Syntax

```
LEGENDFIT=TRUE | FALSE
```

LEGENDFONT

specifies which font to use in the legend.

- **Applies to:** Contour applet
- **Requirement:** Except for the case, the font name must match the name of a Java font available in the browser.

Syntax

```
LEGENDFONT=font
```
LEGENDFONTSIZE
specifies the default size of the font to be used in the legend.

Used by: Contour applet
Requirement: The font size specification must be a positive value.

Syntax

LEGENDFONTSIZE=font-size

LEGENDHEIGHTPERCENT
restricts the height of the legend to a specified percentage of the height of the Contour applet.

Default: 20
Range: $0 < percentage < 100
Applies to: Contour applet
Note: A vertical margin is always maintained.

Syntax

LEGENDHEIGHTPERCENT=percentage

LEGENDPERCENT
specifies how much of the Contour applet space (width) to use as the legend area.

Default: 20
Range: 0–80
Applies to: Contour applet

Syntax

LEGENDPERCENT=percentage

LEGENDWIDTHPERCENT
restricts the width of the legend to a specified percentage of the width of the Contour applet.

Default: 20
Range: 0–80
Applies to: Contour applet
Note: A horizontal margin is always maintained.
Syntax

LEGENDWIDTHPERCENT=\textit{percentage}

LEVELOFDETAIL

specifies whether the level-of-detail processing should be used when drawing plots.

- **Default:** TRUE
- **Applies to:** Contour applet
- **See:** LODCOUNT on page 130

Syntax

LEVELOFDETAIL=TRUE | FALSE

LIGHTING

specifies the position of the light source relative to the position of the graph.

- **Default:** HEADLIGHT, which directs two light sources at the graph from the front-center of the screen.
- **Applies to:** Contour applet

Syntax

LIGHTING=HEADLIGHT | OVERHEAD | NORTHEAST | SOUTHEAST

LOADFUNC

specifies the name of a JavaScript method in the HTML output file that loads values and specifications.

- **Applies to:** Graph applet
- **Restriction:** This parameter should not be specified if you are using ODS.

Syntax

LOADFUNC=\textit{Java-method}

LOCALE

specifies the language and country to use when displaying locale-sensitive text.

- **Applies to:** Graph applet, Map applet, Contour applet
Syntax

LOCALE=xx_yy<variant>

Argument Values
The values for this parameter are java.util locale specifiers, which are the following.

xx
represents the required two-digit ISO-639 language code, as defined at the following URL:
http://www.loc.gov/standards/iso639-2/

yy
represents the required two-digit ISO-3166 country code, as defined at the following URL:
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

<variant>
represents the optional variant code, which depends on the browser and operating environment. If a variant is specified, the initial underscore character is required.

LODCOUNT
specifies the number of cells to use as the level-of-detail threshold.

Default: 2000
Applies to: Contour applet
Interaction: When the number of cells involved in drawing a plot in the applet exceeds this value and level-of-detail processing is on, some cells are ignored when rendering the plot representation.
See: LEVELOFDETAIL on page 129

Syntax

LODCOUNT=number-of-cell(s)

LOGRESOURCES
specifies whether tag/value pairs in the key definition file are logged to a resource file.

Default: FALSE
Applies to: Metaview applet
See: RESOURCESFONTNAME on page 140

Syntax

LOGRESOURCES=TRUE | FALSE
Details

The tag/value pairs are copied out of the key definition file and modified to create a resource file. The resource file is named **MVAResources.properties**. It enables the Metaview applet text to be translated to another language.

MENU_n_LABEL

specifies the text of a custom menu item that is to appear in the pop-up menu at all drill-down levels of a tile chart.

Applies to: Tile Chart applet

Restriction: You cannot specify the MENU_n_LABEL= and MENU_n_VALUE= parameters together. You must specify one or the other. If you specify both, the MENU_n_LABEL= parameters take precedence and the MENU_n_VALUE= parameters are ignored.

Requirement: For each MENU_n_LABEL= parameter that you specify, you must also specify a corresponding MENU_n_VALUE= parameter.

Syntax

```
MENU\_n\_LABEL=string
```

Argument Values

\(n \)

specifies the position that this item appears in the pop-up menu.

Requirement The menu positions \(n \) must be numbered consecutively starting with 1.

\(string \)

specifies the menu item text. You can include variable value placeholders in the menu item text that are replaced with their variable value at run time. Use the `WEBLINK_LIST=` on page 145 parameter to specify variables that you want to use. Insert the appropriate `{&v}` placeholder in the text string value where you want each variable value to appear. At run time, each `{&v}` placeholder is replaced with its variable value.

MENU_n_VALUE

specifies the action for a MENU_n_LABEL= parameter.

Applies to: Tile Chart applet

See: “Specifying Custom Items in the Chart Pop-Up Menu” in *SAS/GRAPH: Reference*

Example: The following example specifies menu items “View Sales Chart” and “View Sales Report” in the pop-up menu at all drill-down levels. When selected, these items open the URL to the appropriate web resource.

```ods html file="filename" parameters=(
"MENU1LABEL"="View Sales Chart"
"MENU1VALUE"="http://www.xyz.com/sales/chart.html"
)```
"MENU2LABEL"="View Sales Report"
"MENU2VALUE"="http://www.xyz.com/sales/report.html"
);

Syntax

MENU\textit{n}VALUE=\textit{URL-string}

Argument Values

\textit{URL-string}

specifies the action for menu item \textit{n}. Typically, the action is the URL of a web resource.

\textbf{MENU\textit{n}.\textit{m}LABEL}

specifies the label for a custom menu item that is to appear in the pop-up menu at a specific drill-down level of a tile chart.

\textbf{Applies to:} Tile Chart applet

\textbf{Restriction:} You cannot specify the \textit{MENU\textit{n}.\textit{m}LABEL=} and \textit{MENU\textit{n}LABEL=} parameters together. You must specify one or the other. If you specify both, the \textit{MENU\textit{n}LABEL=} parameters take precedence and the \textit{MENU\textit{n}.\textit{m}LABEL=} parameters are ignored.

\textbf{Requirement:} For each \textit{MENU\textit{n}.\textit{m}LABEL=} parameter that you specify, you must also specify a corresponding \textit{MENU\textit{n}.VALUE=} parameter.

\textbf{See:} “Specifying Custom Items in the Chart Pop-Up Menu” in \textit{SAS/GRAPH: Reference}

Syntax

MENU\textit{n}.\textit{m}LABEL=\textit{string}

Argument Values

\textit{n}

specifies the position that this item appears in the pop-up menu.

\textbf{Requirement} The menu positions (\textit{n}) must be numbered consecutively starting with 1.

\textit{m}

specifies the drill-down level at which this menu item is to appear in the pop-up menu.

\textbf{Range} 1 to the number of actual drill-down levels in the chart, where 1 is the top-most level (initial view)

\textbf{Interaction} This parameter is ignored if \textit{m} is not valid for the chart.

\textit{string}

specifies the menu item text. You can include variable value placeholders in the menu item text that are replaced with their variable value at run time. Use the \textbf{WEBLINK\_LIST} on page 145 parameter to specify variables that you want to use.
Insert the appropriate {&v} placeholder in the text string value where you want each variable value to appear. At run time, each {&v} placeholder is replaced with its variable value.

**MENUn.m.VALUE**

specifies the action for a MENUn.m.LABEL= parameter.

**Applies to:** Tile Chart applet

**Interaction:** This parameter is ignored if m is not valid for the chart.

**See:** “Specifying Custom Items in the Chart Pop-Up Menu” in SAS/GRAPH: Reference

**Example:** The following example specifies two custom menu items in the pop-up menu for each of three drill-down levels in a tile chart. From level 1 down to level 3, the tile chart displays total sales data, regional sales data, and state sales data. At each level, the first menu item opens the URL to a sales chart, which summarizes the sales data at that level. The second item opens the URL to a corresponding detailed report.

```ods html file="filename" parameters={
 "MENUN.1LABEL"="View Sales Chart"
 "MENUN.1.VALUE"="http://www.xyz.com/total_chart.html"
 "MENUN.2LABEL"="View Sales Report"
 "MENUN.2.VALUE"="http://www.xyz.com/total_report.html"
 "MENUN.3LABEL"="View Regional Sales Chart"
 "MENUN.3.VALUE"="http://www.xyz.com/regional_chart.html"
 "MENUN.4LABEL"="View Regional Sales Report"
 "MENUN.4.VALUE"="http://www.xyz.com/regional_report.html"
 "MENUN.5LABEL"="View State Sales Chart"
 "MENUN.5.VALUE"="http://www.xyz.com/state_chart.html"
 "MENUN.6LABEL"="View State Sales Report"
 "MENUN.6.VALUE"="http://www.xyz.com/state_report.html"
};
```

**Syntax**

MENUN.m.VALUE=URL-string

**Argument Values**

**URL-string**

specifies the action for menu item n at drill-down level m. Typically, the action is the URL of a web resource.

---

**MENUREMOVE**

removes one or more items from the Graph applet or Map applet menu.

**Applies to:** Graph applet, Map applet
Syntax

MENUREMOVE=menu-item(s)

Argument Values

menu-item(s)

specifies the menu items that are to be removed. Here is the syntax of menu-item(s):

\[ \text{menu1-item.<.menu2-item... .menuN-item, menu-item2, ...menu-itemN>} \]

Menu items are specified using the text that is displayed by the applet, with the blank spaces removed. You do not need to match the case. A period ("."), separates menu levels in a menu path. The last item specified in a menu path is the item that is removed. Commas separate multiple menu items and menu paths.

Details

To remove one or more menu items, first, generate the graph without the MENUREMOVE= parameter. Next, open the applet menu and note the path to the menu items that you want to remove. Finally, specify the path to those items in the MENUREMOVE= parameter value. For example, suppose that you want to remove the Pie and Plot items from the Graph applet Chart Type menu shown in the following figure.

To remove these items, include the MENUREMOVE= parameter shown in the following example in your ODS HTML statement.

```ods html parameters=("MENUREMOVE="CHARTTYPE.PIE,
CHARTYPE.PLOT");```
Syntax

METACODES=codes-or-file-specification

METACODES1–METACODES\(n\)

identifies additional metacode specifications when you need to identify more than one file or more than one set of inline metagraphics codes.

Applies to: Metaview applet

Syntax

METACODES1–METACODES\(n\)=codes-or-file-specification

METACODESLABEL and METACODES1LABEL–METACODES\(n\)LABEL

names the text labels that are used to identify the graphs specified in the METACODES= and METACODES\(n\)= parameters.

Applies to: Metaview applet

Requirements: The METACODESLABEL parameters must be specified sequentially (METACODESLABEL, METACODES1LABEL, METACODES2LABEL, and so on). If the METACODES and METACODES\(n\) parameters are specified, there should be as many METACODESLABEL parameters as there are METACODES\(n\) parameters.

Note: The applet displays the labels in an embedded graph-selection control.

Syntax

METACODESLABEL=menu-label

METACODES1LABEL–METACODES\(n\)LABEL=menu-label

MINLEGENDFONTSIZE

specifies the minimum font to be used when attempting to fit the legend in the available applet area.

Applies to: Contour applet

Requirement: Values must be positive integers.

Syntax

MINLEGENDFONTSIZE=font-size

MISSINGCOLOR

specifies a color that is to be used to draw missing values.
NAME

specifies the name for this instance of the applet.

- **Default:** Graph applet, Map applet, Contour applet
- **Applies to:** Contour applet
- **Requirement:** This parameter might be overridden if you specify an ODS style definition.
- **Tip:** Use this parameter only if you have more than one instance of the APPLET tag in your HTML file, and if you have included your own scripts or DHTML that communicates with or acts on a particular instance of the applet.

Syntax

```
NAME=applet-name
```

NAVIGATERENDERMODE

specifies how to render the graph during pan, rotate, and zoom.

- **Default:** WIREFRAME
- **Applies to:** Contour applet
- **Requirement:** The `RENDERQUALITY=` parameter must be set to CUSTOM for this parameter to have any effect.
- **Interaction:** This parameter might be overridden if you specify an ODS style definition.

Syntax

```
NAVIGATERENDERMODE=NONE | POINT | SOLID | WIREFRAME
```

NOJSOBJECT

specifies that no JavaScript callback options can be created or used within the applet.

- **Applies to:** Graph applet
- **Interaction:** This parameter might be overridden if you specify an ODS style definition.
Syntax

NOJSOOBJECT

OUTLINES
specifies whether outlines should be drawn for the current contour style.

- **Applies to:** Contour applet
- **Requirement:** For OUTLINES=TRUE to have any effect, the **Styles** menu option must be set to Area, Block, or Surface.

Syntax

OUTLINES=TRUE | FALSE

OVERFLOWCOLOR
specifies a color that is assigned to data values that exceed the maximum range of colors that have been defined in the style or color list.

- **Default:** CYAN
- **Applies to:** Contour applet
- **Requirement:** The color value must be a valid HTML 3.2 color name or a 6-digit hexadecimal RGB color specification.

Syntax

OVERFLOWCOLOR=color

PATTERNSTRIP
removes preceding and trailing white space from drill-down substitution patterns before the substituted text is added into a dynamically generated drill-down URL.

- **Default:** FALSE
- **Applies to:** ActiveX Control, Graph applet, Map applet

Syntax

PATTERNSTRIP=TRUE | FALSE

PROJECTION
specifies the type of projection that is used to draw contours.

- **Default:** ORTHOGRAPHIC
Applies to: Contour applet

Syntax

\[\text{PROJECTION=} \text{ORTHOGRAPHIC} \mid \text{PERSPECTIVE} \]

PROJECTIONRATIO

specifies the ratio of the plot area (applet size minus legend reserve) to the longest dimension of the plot.

- **Default:** 1.5
- **Applies to:** Contour applet
- **Requirement:** Values must be greater than or equal to 1.0.
- **Example:** Specifying a value of 2.0 means that the area that contains the contour plot is twice the size of the longest plot dimension. This guarantees that the plot is surrounded by a space that measures half the length of the longest projection (not including axes).

Syntax

\[\text{PROJECTIONRATIO=} \text{plot-size-ratio} \]

RENDERMODE

specifies how to render the contours when you are not navigating (panning, rotating, or zooming) the Contour applet.

- **Default:** SOLID
- **Applies to:** Contour applet
- **Note:** In some cases, changing the representation can provide additional information about the image, such as more clearly displaying cell boundaries.

Syntax

\[\text{RENDERMODE=} \text{string} \]

Argument Values

Here are the valid values for the polygon representations that determine how the Contour applet image can be drawn:

- **POINT**
 - draws polygons using only single-pixel points at the polygon vertices.

- **SOLID**
 - draws filled polygons.

- **WIREFRAME**
 - draws polygons using only lines to represent their edges.
RENDEROPTIMIZE
sets the default for rendering optimization for the Contour applet.

Defaults:
- When RENDERQUALITY=BESTQUALITY, the default is NEVER.
- When RENDERQUALITY=FASTERNAVIGATION, the default is ONNAVIGATION.
- When RENDERQUALITY=BESTPERFORMANCE, the default is ALWAYS

Applies to: Contour applet
Requirement: The RENDERQUALITY= parameter must be set to CUSTOM for this parameter to have any effect.

Syntax
RENDEROPTIMIZE=ALWAYS | NAVIGATION | NEVER | ONNAVIGATION

Details
To correctly render images, the applet must first sort the polygons that comprise the image. Some polygons require additional sorting steps to ensure that they are correctly drawn. In many cases, these additional steps are unnecessary because they only slow applet performance and do not add to image quality. This parameter lets you specify if and when the applet should attempt to optimize or reduce the number of sorting operations to be performed.

RENDERQUALITY
specifies how two available rendering algorithms, one slower and one faster, are applied to the graph.

Default: FASTERNAVIGATION | NAVIGATION
Applies to: Map applet, Contour applet
Interaction: This parameter might be overridden if you specify an ODS style definition.

Syntax
RENDERQUALITY=value

Argument Values

BESTPERFORMANCE | PERFORMANCE
always uses the faster, less complex rendering algorithm.

BESTQUALITY | QUALITY
always uses the slower, more complex rendering algorithm.

FASTERNAVIGATION | NAVIGATION
uses the faster, less complex rendering algorithm during pan, rotate, and zoom, and uses the more complex algorithm otherwise.
CUSTOM

lets the user select individual elements that control speed and quality directly, rather than as a group when rendering an image.

Restriction CUSTOM applies to the Contour applet only.

RESOURCESFONTNAME

specifies the name of the font family that is used to display the resource values in a user-defined resource file.

Applies to: Metaview applet

See: LOGRESOURCES on page 130

Syntax

RESOURCESFONTNAME=font-name

Details

The applet first tries to use the specified font-name, then it tries to use the SansSerif font, then it tries to use the Serif font, then it uses the first font that is returned by the Java.Awt.Toolkit. The first font that is found is the font that is used.

SHOWBACKDROP

specifies whether all walls (including the floor) should be displayed.

Applies to: Graph applet, Contour applet

Interaction: This parameter overrides any ODS settings.

Syntax

SHOWBACKDROP=TRUE | FALSE

SIMPLEDEPTHSORT

specifies whether the simpler polygon sorting algorithm is used when rendering the plot.

Default: TRUE

Applies to: Contour applet

Syntax

SIMPLEDEPTHSORT=TRUE | FALSE
SIMPLETHRESHOLD

specifies an integer for the threshold that is used to determine whether the graph should be rendered using simple geometry.

- **Default:** 500
- **Applies to:** Graph applet
- **Note:** if you select and display a subset of the graph, and if the number of elements in the resulting graph drops below the value of the SIMPLETHRESHOLD parameter, regular markers are drawn and the **Shape** menu is made available.

Syntax

SIMPLETHRESHOLD=number-of-elements | NEVER

Details

For bar charts, simple geometry means that graphical elements are represented as lines. For plots, simple geometry means that graphical elements are represented as plus signs (+). If the graph contains a number of elements that is greater than the SIMPLETHRESHOLD= parameter value, simple geometry is used and the **Shape** menu is made unavailable.

NEVER specifies that simple geometry is never used and the **Shape** menu is always available.

STACKED

specifies whether the contours should be displayed in stacked form, where height is added to the contour plot based on the contour level.

- **Default:** FALSE
- **Applies to:** Contour applet
- **Requirement:** For this option to have any effect, the **Style** menu option must be set to **Areas** or **LinesAndAreas**.
- **See:** DRAWSIDES on page 119

Syntax

STACKED=TRUE | FALSE

STACKPERCENT

specifies the maximum stacking height as a percentage of the longest axis.

- **Default:** 30
- **Applies to:** Contour applet
Syntax
STACKPERCENT=height-percentage

SURFACESIDECOLOR
specifies the color of the sides of a contour plot when that plot uses multiple colors.

Default: The color of the minimum data value.
Applies to: Contour applet
Requirement: The value must be an HTML 3.2 color name or a 6-digit hexadecimal RGB value.
Interaction: The value of the parameter is ignored when drawing a surface plot in a single color.

Syntax
SURFACESIDECOLOR=color

TIPBACKCOLOR
specifies a color for the background of the data tips.

Default: YELLOW
Applies to: Contour applet
Requirement: The color value must be a valid HTML 3.2 color name or a 6-digit hexadecimal RGB value.

Syntax
TIPBACKCOLOR=color

TIPBORDERCOLOR
specifies a color for the border of the data tips.

Default: BLACK
Applies to: Contour applet
Requirement: The color value must be a valid HTML 3.2 color name or a 6-digit hexadecimal RGB value.

Syntax
TIPBORDERCOLOR=color
TIPS
specifies whether to display data tips.

Applies to: ActiveX Control, Graph applet, Map applet, Contour applet

Syntax

TIPS=NONE | STATIONARY | TRUE | FALSE

Argument Values

NONE | FALSE
specifies that data tips are to be disabled. NONE is valid for the Graph Applet and the Map applet. FALSE is valid for the Contour applet and the ActiveX Control.

STATIONARY | TRUE
specifies that data tips are to be enabled. STATIONARY is valid for the Graph Applet and the Map applet. TRUE is valid for the Contour applet and the ActiveX Control.

TIPMODE
specifies which of two types of data tips are to be displayed.

Default: STANDARD

Applies to: ActiveX Control

Syntax

TIPMODE=STANDARD | HTML | TABULAR | ALL

Argument Values

HTML
displays only the data tips that are indicated by the HTML= statement option.

TABULAR
display only the data tips that are indicated by the value of the TIPS parameter.

STANDARD | ALL
displays both sets of data tips.

Details

One set of data tips is specified with the TIPS parameter. The other set of data tips is specified with the HTML= statement option. The syntax of that option is HTML="TITLE="text | variable-name". For further information about data tips, see “Data Tips for Web Presentations” in SAS/GRAPH: Reference.
TIPSTEMSIZE

specifies the length in pixels of the line that connects the data tips to the graph element that uses that data.

Default: 20
Applies to: Contour applet

Syntax

TIPSTEMSIZE=line-length

TIPTEXTCOLOR

specifies a color for the text in the data tips.

Default: Black
Applies to: Contour applet
Requirement: The color value must be a valid HTML 3.2 color name or a 6-digit hexadecimal RGB value.

Syntax

TIPTEXTCOLOR=color

UNDERFLOWCOLOR

specifies a color that is assigned to data values that are smaller than the minimum range of colors that have been defined in the style or color list.

Default: White
Applies to: Contour applet
Requirement: The color value must be a valid HTML 3.2 color name or a 6-digit hexadecimal RGB value.

Syntax

UNDERFLOWCOLOR=color

USERFMT

defines the user format specification.

Applies to: Contour applet
Syntax
USERFMTn=string(s)

Details
The syntax is the same as that of the VALUE and PICTURE statements for PROC FORMAT. You can specify multiple USERFMTn parameters by replacing n with the appropriate number from 1 to n, where n is the number of format parameters to be defined. For example, to define a simple YESNO format, specify the parameter
<PARAM NAME="USERFMT1" VALUE="VALUE YESNO 1='Yes' 2='No' ">

VIEW2D
indicates whether the viewpoint should be locked to two dimensions.

Defaults: TRUE for the Contour applet
FALSE for the Graph applet and the ActiveX Control
Applies to: ActiveX Control, Graph applet, Contour applet
Interaction: This parameter might be overridden if you specify an ODS style definition.

Syntax
VIEW2D=TRUE | FALSE

VIEWPOINT
defines the initial viewpoint for the Contour applet.

Defaults: 2D for GCONTOUR statement output
SOUTHEAST for G3D statement output
Applies to: Contour applet
Note: The value SE or SOUTHEAST sets the initial viewpoint to Southeast, a three-dimensional viewpoint.
Tip: Setting this parameter unlocks the 2-D view.
See: VIEW2D

Syntax
VIEWPOINT=2D | SE | SOUTHEAST

WEBLINK_LIST
specifies the variables by name that are referenced in the MENUnVALUE and MENUMn.mVALUE parameter values.

Applies to: Tile Chart applet
Requirement: The variables listed in the WEBLINK_LIST= parameter must also be listed in the TILEBY= option in the PROC GTILE statement for the tile chart.

See: “MENUnLABEL” on page 131
 “MENUn.mLABEL” on page 132
 “Specifying Custom Items in the Chart Pop-Up Menu” in SAS/GRAPH: Reference

Example: The following example inserts the value of variable REGION in the WEBLINK_LIST= variable list into a custom menu value:

```sas
ods html file=filename.html parameters=(
   "WEBLINK_LIST" = "country, region, division"
   "MENU1VALUE" = "Total Sales for the \{&2\} Region"
);
```

Syntax

WEBLINK_LIST=variable-1<, variable-2, ...>

Details

The variables are one or more variables that are specified in the PROC GTILE statement TILEBY= option. See “GTILE” in SAS/GRAPH: Reference. For multiple variables, each variable is separated by a comma. The value of the variables can be inserted into the MENUnVALUE and MENUn.mVALUE parameter by inserting a \{&v\} variable placeholder in the label value where you want the variable value to appear. v is the position of the variable in the WEBLINK_LIST= list, which starts with 1. You can insert as many variable placeholders as you want. At run time, each \{&v\} placeholder is replaced with its variable value.

XBINS and YBINS

configures the bins uses to generate a contour plot.

Applies to: Contour applet

Requirement: When specifying a single integer, the value must be greater than 2.

Notes: Specifying a single integer uses that number of bins. Specifying multiple values uses multiple bins with those values.

Multiple values are real numbers that are separated by semicolons, as follows:

```sas
ods html file=filename.html parameters=(
   "XBINS"="-1;0;2.5;3.5;4"
   "YBINS"="1;2;3;4;5;6"
);
```

Syntax

XBINS=bin-number-or-values
YBINS=bin-number-or-values
ZOOMCONTROLENABLED
displays the embedded zoom control under the graph.

- **Default:** TRUE
- **Applies to:** Metaview applet
- **Note:** Specifying FALSE suppresses the display of the zoom control.
- **Example:** The following example suppresses the zoom control.

```ods html body="ncpop.htm" parameters=("DATATIPSTYLE"="STICK" "ZOOMCONTROLENABLED"="FALSE");```

**Syntax**

```
ZOOMCONTROLENABLED=TRUE | FALSE
```

**ZOOMCONTROLMIN**
specifies a new lower limit for the zoom feature.

- **Default:** 25
- **Range:** 1–99
- **Applies to:** Metaview applet

**Syntax**

```
ZOOMCONTROLMIN=minimum-percentage
```

**ZOOMCONTROLMAX**
specifies a new upper limit for the zoom feature.

- **Default:** 500
- **Range:** 100–25000
- **Applies to:** Metaview applet

**Syntax**

```
ZOOMCONTROLMAX=maximum-percentage
```
### Chapter 10

**DS2CONST and DS2TREE**

**Macro Argument Dictionary**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the DS2CONST and DS2TREE Macro Arguments</td>
<td>152</td>
</tr>
<tr>
<td>Arguments for the APPLET Tag</td>
<td>152</td>
</tr>
<tr>
<td>Arguments for Data Definition</td>
<td>152</td>
</tr>
<tr>
<td>Arguments for HTML and XML File Information</td>
<td>153</td>
</tr>
<tr>
<td>Arguments for Diagram Appearance</td>
<td>156</td>
</tr>
<tr>
<td>Arguments for Page Formatting</td>
<td>157</td>
</tr>
<tr>
<td>Arguments for Style Sheets</td>
<td>159</td>
</tr>
<tr>
<td>Arguments for the SAS TITLE and FOOTNOTE Tags</td>
<td>160</td>
</tr>
<tr>
<td>Arguments for Character Transcoding</td>
<td>161</td>
</tr>
<tr>
<td>Reserved Names</td>
<td>162</td>
</tr>
<tr>
<td>Dictionary</td>
<td>163</td>
</tr>
</tbody>
</table>

- **ACTION** | 163
- **AHUNITS** | 164
- **ALIGN** | 164
- **ALT** | 164
- **ANGLE** | 164
- **ARCHIVE** | 165
- **AWUNIT** | 166
- **BDCLASS** | 166
- **BG** | 166
- **BGTYPE** | 167
- **BORDER** | 167
- **BRTITLE** | 167
- **CATEXT** | 168
- **CBACK** | 168
- **CENTER** | 168
- **CHANDLE** | 169
- **CHARSET** | 169
- **CLINK** | 169
- **CNODE** | 169
- **CODEBASE** | 170
- **COLORMAP** | 170
- **CSELECT** | 171
- **CTEXT** | 171
- **CUTOFF** | 171
- **DATATYPE** | 172
DEPTH                                172
DOCTYPE                               172
DRILTARG                              173
DUPCHECK                              173
ENCODE                                173
FACTOR                                 174
FCLASS and TCLASS                     174
FCOLOR and TCOLOR                     175
FFACE and TFACE                       175
FISHEYE                                175
FNTNAME                               176
FNTSIZE                                176
FNTSTYL                                176
FSIZE and TSIZE                       176
FTAG and TTAG                         177
HEIGHT                                 183
HSSPACE                                183
HTMLFILE                               183
HTMLFREF                               184
IBACKLOC                               184
IBACKPOS                               184
IBACKURL                               185
IBACKX and IBACKY                      185
LABELS                                 185
LAYOUT                                 186
LCOLFMT                                186
LCOLOR                                 186
LCOLVAL                                187
LDATA                                  187
LFROM                                  187
LINKTYPE                               188
LPT                                     188
LSTIP                                  188
LSTIPFAC                               189
LTIP                                    189
LTIPFMT                                189
LTO                                     190
LVALUE                                 190
LWHERE                                 190
LWIDTH                                 191
MAKEHTML                               191
MAKEXML                                191
MINLNKWT                                192
NACTION                                192
NAME                                    193
NCOLFMT                                193
NCOLOR                                 193
NCOLVAL                                194
NDATA                                  194
NFNTNAME                               194
NFNTSIZE                               195
NFNTSTYL                               195
NID                                     195
NLABEL                                  196
NODEBDR                                 196
NODESHAP                               196
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPARENT</td>
<td>197</td>
</tr>
<tr>
<td>NPW</td>
<td>197</td>
</tr>
<tr>
<td>NSCBACK</td>
<td>197</td>
</tr>
<tr>
<td>NSCTEXT</td>
<td>198</td>
</tr>
<tr>
<td>NSDATA</td>
<td>198</td>
</tr>
<tr>
<td>NSFNTNAM</td>
<td>198</td>
</tr>
<tr>
<td>NSFNTSIZ</td>
<td>198</td>
</tr>
<tr>
<td>NSFNTSTY</td>
<td>199</td>
</tr>
<tr>
<td>NSHAPE</td>
<td>199</td>
</tr>
<tr>
<td>NSID</td>
<td>199</td>
</tr>
<tr>
<td>NSIZE</td>
<td>200</td>
</tr>
<tr>
<td>NSP</td>
<td>200</td>
</tr>
<tr>
<td>NSTYLE</td>
<td>200</td>
</tr>
<tr>
<td>NSWHERE</td>
<td>201</td>
</tr>
<tr>
<td>NTEXTCOL</td>
<td>201</td>
</tr>
<tr>
<td>NTIP</td>
<td>201</td>
</tr>
<tr>
<td>NTIPFMT</td>
<td>202</td>
</tr>
<tr>
<td>NURL</td>
<td>202</td>
</tr>
<tr>
<td>NVALUE</td>
<td>203</td>
</tr>
<tr>
<td>NWHERE</td>
<td>203</td>
</tr>
<tr>
<td>NX and NY</td>
<td>203</td>
</tr>
<tr>
<td>OPENMODE</td>
<td>204</td>
</tr>
<tr>
<td>PAGEPART</td>
<td>204</td>
</tr>
<tr>
<td>RBSIZING</td>
<td>205</td>
</tr>
<tr>
<td>RUNMODE</td>
<td>205</td>
</tr>
<tr>
<td>SASPOWER</td>
<td>205</td>
</tr>
<tr>
<td>SCLNKWT</td>
<td>206</td>
</tr>
<tr>
<td>SCLWIDTH</td>
<td>206</td>
</tr>
<tr>
<td>SCNSIZE</td>
<td>207</td>
</tr>
<tr>
<td>SECLASS</td>
<td>207</td>
</tr>
<tr>
<td>SELOC</td>
<td>207</td>
</tr>
<tr>
<td>SEPTYPE</td>
<td>208</td>
</tr>
<tr>
<td>SHOWLINKS</td>
<td>208</td>
</tr>
<tr>
<td>SPCLASS</td>
<td>208</td>
</tr>
<tr>
<td>SPREAD</td>
<td>209</td>
</tr>
<tr>
<td>SSFILE1–5</td>
<td>209</td>
</tr>
<tr>
<td>SSREF1–5</td>
<td>209</td>
</tr>
<tr>
<td>SSHREF1–5</td>
<td>209</td>
</tr>
<tr>
<td>SSMEDIA1–5</td>
<td>210</td>
</tr>
<tr>
<td>SSREL1–5</td>
<td>210</td>
</tr>
<tr>
<td>SSREV1–5</td>
<td>210</td>
</tr>
<tr>
<td>SSTITLE1–5</td>
<td>211</td>
</tr>
<tr>
<td>SSTYPE1–5</td>
<td>211</td>
</tr>
<tr>
<td>TCLASS</td>
<td>211</td>
</tr>
<tr>
<td>TCOLOR</td>
<td>211</td>
</tr>
<tr>
<td>TFACE</td>
<td>212</td>
</tr>
<tr>
<td>TIPS</td>
<td>212</td>
</tr>
<tr>
<td>TIPTYPE</td>
<td>212</td>
</tr>
<tr>
<td>TRANLST</td>
<td>212</td>
</tr>
<tr>
<td>TREEDIR</td>
<td>212</td>
</tr>
<tr>
<td>TREESPAN</td>
<td>213</td>
</tr>
<tr>
<td>TSIZE</td>
<td>213</td>
</tr>
<tr>
<td>TTAG</td>
<td>214</td>
</tr>
<tr>
<td>VSSPACE</td>
<td>214</td>
</tr>
<tr>
<td>WIDTH</td>
<td>214</td>
</tr>
<tr>
<td>XMLFILE</td>
<td>214</td>
</tr>
</tbody>
</table>
About the DS2CONST and DS2TREE Macro Arguments

The DS2CONST and DS2TREE macros use the following syntax:

```
%macroname(argument1=value1, argument2=value2, ...);
```

The macro arguments specify the configuration of the HTML output file, the location of the data that is used to generate the diagram, and the configuration of the applet's interactive features. The arguments can be grouped as follows:

- Arguments for the APPLET Tag
- Arguments for Data Definition
- Arguments for HTML and XML File Information
- Arguments for Diagram Appearance
- Arguments for Page Formatting
- Arguments for Style Sheets
- Arguments for the SAS TITLE and FOOTNOTE Tags
- Arguments for Character Transcoding

Arguments for the APPLET Tag

The following table lists the DS2CONST and DS2TREE macro arguments that apply to the APPLET tag.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DS2CONST</td>
</tr>
<tr>
<td>AHUNITS</td>
<td>Specifies the units of the HEIGHT= argument.</td>
<td>✓</td>
</tr>
<tr>
<td>ALIGN</td>
<td>Specifies the alignment of the applet window in the browser window or frame.</td>
<td>✓</td>
</tr>
<tr>
<td>ALT</td>
<td>Specifies the text that will be displayed on mouseover by browsers that understand the tag but cannot run Java applets.</td>
<td>✓</td>
</tr>
<tr>
<td>ARCHIVE</td>
<td>Specifies the name of the Java archive file or files.</td>
<td>✓</td>
</tr>
<tr>
<td>AWUNITS</td>
<td>Specifies the units of the WIDTH= argument.</td>
<td>✓</td>
</tr>
</tbody>
</table>
## Arguments for Data Definition

The following table lists the DS2CONST and DS2TREE macro arguments that apply to data definition.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (√):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODEBASE</td>
<td>Specifies the path of the SAS Java archives specified in the ARCHIVE= argument.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>Specifies the height of the applet window.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>HSPACE</td>
<td>Specifies the amount of horizontal space, in pixels, to the left and right of the graph or diagram.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>NAME</td>
<td>Specifies the name for this instance of the applet.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>VSPACE</td>
<td>Specifies the amount of vertical space, in pixels, to the top and bottom of the graph or diagram.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>WIDTH</td>
<td>Specifies the width of the applet window.</td>
<td>✓  ✓</td>
</tr>
</tbody>
</table>

### Arguments for Data Definition

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (√):</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATATYPE</td>
<td>Specifies the type of the XML data.</td>
<td>✓</td>
</tr>
<tr>
<td>LABELS</td>
<td>Indicates whether node labels are displayed in the diagram.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>LAYOUT</td>
<td>Specifies whether the Constellation applet lays out the diagram using stress and strain equations or the NX and NY arguments.</td>
<td>✓</td>
</tr>
<tr>
<td>LCOLFMT</td>
<td>Specifies the name of a user-defined SAS format that converts the values in the variable named in the LCOLOR= argument to valid HTML color names.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>LCOLOR</td>
<td>Specifies the name of the variable that determines the color of the link lines.</td>
<td>✓  ✓</td>
</tr>
<tr>
<td>LCOLVAL</td>
<td>Specifies the name of the variable that determines the color mapping of link lines.</td>
<td>✓</td>
</tr>
<tr>
<td>LDATA</td>
<td>Specifies the name of the SAS data set that contains the link data that is used to generate the diagram.</td>
<td>✓</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
<td>Applies To (✓):</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LFROM</td>
<td>Specifies the name of the variable whose values define the nodes at the start of link lines.</td>
<td>✓ DS2TREE</td>
</tr>
<tr>
<td>LINKTYPE</td>
<td>Specifies whether the links are drawn as lines or arrows that indicate the direction of flow.</td>
<td>✓</td>
</tr>
<tr>
<td>LPT</td>
<td>Specifies the password that is needed for accessing a password-protected link data set that is specified with the LDATA= argument.</td>
<td>✓</td>
</tr>
<tr>
<td>LSTIP</td>
<td>Specifies the name of the variable in the data set that determines the stipple mask.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>LSTIPFAC</td>
<td>Specifies the name of the variable in the data set whose value specifies a multiplier for the binary stipple mask.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>LTIP</td>
<td>Specifies the name of the variable in the data set that provides the text that is displayed in the pop-up data tips windows for links.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>LTIPFMT</td>
<td>Specifies the name of a user-defined SAS format that is applied to the values in the variable specified in the LTIP= argument to configure those values for display in the pop-up data tips window.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>LTO</td>
<td>Specifies the name of the variable whose values identify the nodes at the ends of link lines.</td>
<td>✓</td>
</tr>
<tr>
<td>LVALUE</td>
<td>Specifies the name of the variable whose values determine the weights of the link lines, which determines the color and relative thickness of link lines.</td>
<td>✓</td>
</tr>
<tr>
<td>LWHERE</td>
<td>Specifies a WHERE clause that subsets the link data for display in the diagram.</td>
<td>✓</td>
</tr>
<tr>
<td>LWIDTH</td>
<td>Specifies the name of the variable in the data set that determines the width of the link lines.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>MINLNKWT</td>
<td>Specifies the initial minimum link weight, which determines which links are initially displayed.</td>
<td>✓</td>
</tr>
<tr>
<td>NACTION</td>
<td>Specifies the name of the variable in the nodes data set that provides the menu text that is displayed for custom actions for each node.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>NCOLFMT</td>
<td>Specifies the name of a user-defined SAS format that converts the values in the variable named in the NCOLOR= argument to valid HTML color names.</td>
<td>✓</td>
</tr>
<tr>
<td>NCOLOR</td>
<td>Specifies the variable in the nodes data set that determines the background color of the nodes.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>NCOLVAL</td>
<td>Specifies the name of the variable in the nodes data set that determines the color mapping for the nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
<td>Applies To (✓):</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NDATA</td>
<td>Specifies the SAS data set that contains the node data.</td>
<td>✓</td>
</tr>
<tr>
<td>NFNTNAME</td>
<td>Specifies the name of the variable that determines the text font for the node labels.</td>
<td>✓</td>
</tr>
<tr>
<td>NFNTSIZE</td>
<td>Specifies the name of the variable in the nodes data set that determines the size of the text font used for node labels.</td>
<td>✓</td>
</tr>
<tr>
<td>NFNTSTYL</td>
<td>Specifies the name of the variable that determines the font style for the node label.</td>
<td>✓</td>
</tr>
<tr>
<td>NID</td>
<td>Specifies the name of the variable in the nodes data set whose values are to be illustrated as the nodes in the diagram.</td>
<td>✓</td>
</tr>
<tr>
<td>NLABEL</td>
<td>Specifies the name of the variable that represents the node labels.</td>
<td>✓</td>
</tr>
<tr>
<td>NPARENT</td>
<td>Specifies the name of the variable that represents the parent nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>NPW</td>
<td>Specifies the password that is needed for accessing a password-protected data set.</td>
<td>✓</td>
</tr>
<tr>
<td>NSCBACK</td>
<td>Specifies the name of the variable in the node styles data set that determines the background color of the nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>NSCTEXT</td>
<td>Specifies the name of the variable in the node styles data set that provides the colors for the node label text.</td>
<td>✓</td>
</tr>
<tr>
<td>NSDATA</td>
<td>Specifies the name of the node styles data set.</td>
<td>✓</td>
</tr>
<tr>
<td>NSFNTNAM</td>
<td>Specifies the name of the variable in the node styles data set that determines the text font that is to be used for node labels.</td>
<td>✓</td>
</tr>
<tr>
<td>NSFNTSIZ</td>
<td>Specifies the name of the variable in the node styles data set that determines the size of the node label text, in points.</td>
<td>✓</td>
</tr>
<tr>
<td>NSFNTSTY</td>
<td>Specifies the name of the variable in the node styles data set that determines the style of the node label text.</td>
<td>✓</td>
</tr>
<tr>
<td>NSHAPE</td>
<td>Specifies the name of the variable that determines the shape of the nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>NSID</td>
<td>Specifies the name of the variable in the node styles data set that represents the nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>NSIZE</td>
<td>Specifies the name of the variable that determines the size of the nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>NSPW</td>
<td>Specifies the password that is needed to access a password-protected node styles data set.</td>
<td>✓</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
<td>Applies To (✓):</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NSTYLE</td>
<td>Specifies the name of the variable that determines the style of the nodes.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NSWHERE</td>
<td>Specifies a WHERE clause that subsets the node styles data set for display in the diagram.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NTEXTCOL</td>
<td>Specifies the name of the variable that determines the color of the text for the node labels.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NTIP</td>
<td>Specifies the name of the variable that provides the data or text that is displayed in the pop-up data tips window.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NTIPFMT</td>
<td>Specifies the name of a user-defined SAS format that is applied to the data tips variable that is named in the NTIP= argument.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NURL</td>
<td>Specifies the name of the variable that provides the drill-down URLs for each node.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NVALUE</td>
<td>Specifies the name of the variable that determines the relative node size.</td>
<td>DS2CONST ✓</td>
</tr>
<tr>
<td>NWHERE</td>
<td>Specifies a WHERE clause that subsets the nodes data set for display in the diagram.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>NX</td>
<td>Specify the variables that determine the locations of the centers of the nodes.</td>
<td>DS2CONST ✓</td>
</tr>
</tbody>
</table>

**Arguments for HTML and XML File Information**

The following table lists the DS2CONST and DS2TREE macro arguments that specify HTML and XML file information.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTMLFILE</td>
<td>Specifies the name and storage location of the HTML output file.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>HTMLFREF</td>
<td>Specifies the SAS fileref that identifies the name and storage location of the HTML output file.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>MAKEHTML</td>
<td>Specifies whether an HTML file is to be generated.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>MAKEXML</td>
<td>Specifies whether an XML file is to be generated.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
</tbody>
</table>
**Arguments for Diagram Appearance**

The following table lists the DS2CONST and DS2TREE macro arguments that affect the appearance of the diagram.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION</td>
<td>Specifies the default text that is displayed in the pop-up menu that appears when the web user right-clicks a node.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>ANGLE</td>
<td>Used with the TREESPAN= argument to determine the direction of growth for the diagram.</td>
<td>DS2TREE ✓</td>
</tr>
<tr>
<td>BORDER</td>
<td>Specifies whether a border is drawn around the background area.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>CATEXT</td>
<td>Specifies a default color for the text in the diagram.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>CBACK</td>
<td>Specifies a background color for the Treeview applet.</td>
<td>DS2CONST ✓</td>
</tr>
<tr>
<td>CHANDLE</td>
<td>Specifies the color of the Collapse/Expand handle on the nodes.</td>
<td>DS2CONST ✓</td>
</tr>
<tr>
<td>CLINK</td>
<td>Specifies a default color for the links in the diagram.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>CNODE</td>
<td>Specifies the node background color.</td>
<td>DS2CONST ✓ DS2TREE ✓</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
<td>Applies To (%)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>COLORMAP</td>
<td>Specifies whether the NCOLOR= and LCOLOR= arguments determine node and link colors instead of the color map.</td>
<td>✓</td>
</tr>
<tr>
<td>CSELECT</td>
<td>Specifies a color for nodes that are selected by the mouse or as the result of a node search.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>Specifies the percentage of the nodes that will be displayed with node labels.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>DEPTH</td>
<td>Specifies a whole number greater than zero that determines the maximum number of links that are to be displayed in the node and link diagram.</td>
<td>✓</td>
</tr>
<tr>
<td>DRILTARG</td>
<td>Specifies the HTML target or the name of the browser window or frame where drill-down URLs are displayed.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>DUPCHECK</td>
<td>Specifies whether the applet will check for duplicate node IDs.</td>
<td>✓</td>
</tr>
<tr>
<td>FACTOR</td>
<td>Specifies the distortion factor for the fish-eye lens.</td>
<td>✓</td>
</tr>
<tr>
<td>FISHEYE</td>
<td>Specifies whether the diagram is to be displayed with the fish-eye distortion.</td>
<td>✓</td>
</tr>
<tr>
<td>FNTNAME</td>
<td>Specifies the default text font for node labels.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>FNTSIZE</td>
<td>Specifies the size of the node label text font, in points.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>FNTSTYL</td>
<td>Specifies the text font style for node labels.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>IBACKLOC</td>
<td>Specifies a URL for the image that you want to use in the background of the diagram.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>IBACKPOS</td>
<td>Specifies how to display the background image in the IBACKLOC= argument.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>IBACKURL</td>
<td>Specifies the URL that is displayed when you click on the background image.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>IBACKX and IBACKY</td>
<td>Specifies the x (horizontal) and y (vertical) pixel coordinates of the upper left corner of the background image.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>NODEBDR</td>
<td>Specifies the appearance of the node border line.</td>
<td>✓</td>
</tr>
<tr>
<td>NODESHAP</td>
<td>Specifies the shape of the nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>RBSIZING</td>
<td>Specifies whether the height and the width of the dialog box frames are read in from the resource bundle.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>SCLNKWT</td>
<td>Specifies whether the link weight values are to be scaled into the range of 0–1, which corresponds to 0–100%.</td>
<td>✓</td>
</tr>
</tbody>
</table>
Arguments for Page Formatting

The following table lists the DS2CONST and DS2TREE macro arguments that affect page formatting.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (√):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLWIDTH</td>
<td>Specifies whether the link width values are to be scaled into the range of 0–1.</td>
<td>✓</td>
</tr>
<tr>
<td>SCNSIZE</td>
<td>Specifies whether the node size values are to be scaled into the range of 0–1.</td>
<td>✓</td>
</tr>
<tr>
<td>SHOWLINKS</td>
<td>Specifies whether initially to display all arc lines between nodes.</td>
<td>✓</td>
</tr>
<tr>
<td>SPREAD</td>
<td>Specifies the angular spreading factor for the layout of the diagram.</td>
<td>✓</td>
</tr>
<tr>
<td>TIPS</td>
<td>Indicates whether pop-up data tips are displayed when the cursor is positioned over nodes or links or both.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>TIPTYPE</td>
<td>Specifies whether the pop-up data tip window moves with the cursor or remains stationary.</td>
<td>✓</td>
</tr>
<tr>
<td>TREEDIR</td>
<td>Determines the growth direction of the node and link diagram.</td>
<td>✓</td>
</tr>
<tr>
<td>TREESPAN</td>
<td>Specifies the angular width of the diagram in degrees.</td>
<td>✓</td>
</tr>
<tr>
<td>ZOOM</td>
<td>Specifies the zoom value that is used for the initial display of the diagram.</td>
<td>✓</td>
</tr>
</tbody>
</table>

Arguments for Page Formatting

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (√):</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDCLASS</td>
<td>Specifies the name of the style sheet that is to be applied to the body of the HTML output file.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>BG</td>
<td>Specifies the background color or image, based on the value of the BGTYPE= argument.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>BGTYPE</td>
<td>Specifies the background type.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>BRTITLE</td>
<td>Specifies the text that appears in the title bar of the browser window.</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>CENTER</td>
<td>Specifies whether the graph or diagram is centered in the browser window.</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>
### Arguments for Style Sheets

Style sheet arguments reference style information in one of two ways. Most of the arguments specify parameters in the HTML LINK tag:

```
<LINK HREF="1qtr98.css" TYPE="text/css" REL="stylesheet">
```

Use these arguments when you do not want to enter your style information directly into your HTML file when you create that file.

Other arguments embed the style information into the header of the HTML file. Use these arguments when you want to collect style information from multiple style sheets. The end result must create a complete STYLE tag in your HTML file.

You can combine LINK tag arguments with arguments that embed style information, but you cannot use the same ordinal number in two arguments. For example, you can specify the arguments SSHREF1= and SSFILE2=, but you cannot specify SSHREF1= and SSFILE1=.

The following arguments link to two different style sheets and include text comments for each style sheet.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTEXT</td>
<td>Specifies a default text color that replaces the default text color in the browser.</td>
<td>✓</td>
</tr>
<tr>
<td>DOCTYPE</td>
<td>Specifies the DOCTYPE tag.</td>
<td>✓</td>
</tr>
<tr>
<td>ENCODE</td>
<td>Specifies whether the angle bracket characters (&lt; and &gt;) in SAS TITLE and FOOTNOTE statements are replaced with the HTML character entities &lt; and &gt; respectively.</td>
<td>✓</td>
</tr>
<tr>
<td>PAGEPART</td>
<td>Specifies which part or parts of the HTML page are to be written into the HTML output file.</td>
<td>✓</td>
</tr>
<tr>
<td>SASPOWER</td>
<td>Specifies the path or URL, relative or absolute, to the image file of the SAS Powered logo.</td>
<td>✓</td>
</tr>
<tr>
<td>SEPCLASS</td>
<td>Specifies the path or URL, relative or absolute, to the style sheet that is used for the page separator.</td>
<td>✓</td>
</tr>
<tr>
<td>SEPLOC</td>
<td>Specifies the path or URL, relative or absolute, to the image that you want to use as the separator between the graphs in your presentation.</td>
<td>✓</td>
</tr>
<tr>
<td>SEPTYPE</td>
<td>Specifies the type of separator that is used between multiple applets in your presentation.</td>
<td>✓</td>
</tr>
<tr>
<td>SPCLASS</td>
<td>Specifies the name of the style sheet class that is to be used for the Powered by SAS logo.</td>
<td>✓</td>
</tr>
</tbody>
</table>
The following table lists the DS2CONST and DS2TREE macro arguments that apply to style sheets.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (√):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSFILE1–SSFILE5</td>
<td>Embeds in the HTML file the entire contents of the specified file.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSREF1–SSREF5</td>
<td>Embeds in the HTML file the entire contents of the file that is referenced by the SAS fileref.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSHREF1–SSHREF5</td>
<td>Specifies the URL of the style sheet in the HREF= attribute of the LINK tag.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSMEDIA1–5</td>
<td>Specifies the media for which the style sheet was designed.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSREL1–5</td>
<td>Specifies the REL= attribute of the LINK tag, which describes the relationship from the linked file to the HTML file.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSREV1–5</td>
<td>Specifies the REV= attribute of the LINK tag, which describes the relationship from the HTML file to the linked file.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSTITLE1–5</td>
<td>Specifies the TITLE= attribute of the LINK tag. The TITLE= attribute provides a title for the referenced page.</td>
<td>√    √</td>
</tr>
<tr>
<td>SSTYPE1–5</td>
<td>Specifies the TYPE= attribute of the LINK tag.</td>
<td>√    √</td>
</tr>
</tbody>
</table>

Arguments for the SAS TITLE and FOOTNOTE Tags

The following table lists the DS2CONST and DS2TREE macro arguments that apply to SAS TITLE and FOOTNOTE statements.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (√):</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCLASS and TCLASS</td>
<td>Specifies the name of the style sheet class that is to be used for the SAS TITLE or FOOTNOTE.</td>
<td>√    √</td>
</tr>
</tbody>
</table>
Arguments for Character Transcoding

The following table lists the DS2CONST and DS2TREE macro arguments that apply to character transcoding.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
<th>Applies To (✓):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DS2CONST</td>
</tr>
<tr>
<td>CHARSET</td>
<td>Specifies the character set name that will be written into the META tag of the HTML output file.</td>
<td>✓</td>
</tr>
<tr>
<td>TRANLIST</td>
<td>Specifies the name and location of an existing transcoding list, either user-defined or from SAS.</td>
<td>✓</td>
</tr>
</tbody>
</table>

Reserved Names

Do not use the following names as the value of a macro variable:

Librefs and Filerefs
- HTML
- CATENT
- HTMSS

Global Macro Variables
- _htmovp
- _htmcap
- _htmtitl
- _htmwher
**Data Sets or Views**
- WORK._BYGRP

**Catalogs**
- WORK._HTMLG_
- SASHELP.HTMLNLS

**Catalog Entries**
- SASHELP.HTMLGEN.DSPROP.SLIST
- SASHELP.HTMLGEN.IDENTITY.SLIST
- SASHELP.HTMLGEN.OUTPROP.SLIST
- SASHELP.HTMLGEN.TABPROP.SLIST
- SASHELP.HTMLGEN.TAGS.SLIST

---

## Dictionary

### ACTION

specifies the default text that is displayed in the pop-up menu that appears when the web user right-clicks a node.

**Category:** Diagram Appearance  
**Applies to:** DS2CONST and DS2TREE  
**Restriction:** For DS2TREE, the ACTION= argument can be used only when the NURL= argument specifies one URL. When the NURL= argument specifies multiple URLs, the ACTION= argument is ignored. To specify the menu item text for multiple URLs, use the NACTION= argument instead.  
**Interaction:** This argument is overridden by the NACTION= argument.  
**Tip:** This argument is useful when you want to use the same menu text for most of the nodes in your diagram. The default menu option text is Open URL (URL-string).

---

### Syntax

```
ACTION=text
```

### Details

For DS2CONST, the menu option text appears in the pop-up menu when a user right-clicks a node in the constellation diagram. Selecting the menu option text in the pop-up menu opens the URL that is specified by the NURL= argument. For DS2TREE, the menu option text appears in the pop-up menu when a user right-clicks a node in the treeview diagram, and then selects **Custom Action** in the pop-up menu. Selecting the menu option text in the **Custom Action** list opens the URL that is specified by the NURL= argument.
AHUNITS

specifies the units of the HEIGHT= argument.

Category: APPLET Tag  
Default: PIXELS  
Applies to: DS2CONST and DS2TREE  
See: AWUNITS on page 166

Syntax

AHUNITS=PIXELS | PERCENT

ALIGN

specifies the alignment of the applet window in the browser window or frame.

Category: APPLET Tag  
Applies to: DS2CONST and DS2TREE

Syntax

ALIGN=LEFT | RIGHT | TOP | BOTTOM | TEXTTOP | MIDDLE | ABSMIDDLE | BASELINE | ABSBOTTOM

ALT

specifies the text that is displayed on mouseover by browsers that understand the tag but cannot run Java applets.

Category: APPLET Tag  
Defaults: “SAS Institute Inc. Constellation Chart Applet  
“SAS Institute Inc. TreeView Applet  
Applies to: DS2CONST and DS2TREE

Syntax

ALT=text

ANGLE

used with the TREESPAN= argument to determine the direction of growth for the diagram.

Category: Diagram Appearance  
Default: 0
Range: 0–360
Applies to: DS2TREE

Syntax
ANGLE=link-angle

Details
The ANGLE= argument is valid only when you do not specify the TREEDIR= argument. The TREESPAN= argument defines the angular width of the tree (narrow or wide layout). The TREESPAN angle can be visualized as a V shape in which the starting node is positioned at the base of the V. The rest of the nodes are laid out between the spreading arms of the V. The ANGLE= argument specifies the angle of the V shape. By default, the value of the ANGLE= argument is zero (0) and the V shape opens to the right, as if the letter V was rotated 90 degrees clockwise, to the three-o’clock position. Values of the ANGLE= argument that are greater than zero rotate the V shape counterclockwise away from the three-o’clock position.

ARCHIVE specifies the name of the Java archive file or files.

Category: APPLET Tag
Applies to: DS2CONST and DS2TREE
Tip: Use the CODEBASE= argument to specify the path to the Java archive files.

Syntax
ARCHIVE=filename(s)

Argument Values
filename(s)
specifies the names of the JAR files that contain the applet classes. Multiple files must be separated by a comma. The JAR files listed in the following are required.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Applet JAR File</th>
<th>Auxiliary JAR Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2CONST</td>
<td>sas.graph.constapp.jar</td>
<td>sas.graph.nld.jar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sas.graph.j2d.jar</td>
</tr>
<tr>
<td>DS2TREE</td>
<td>sas.graph.treeview.jar</td>
<td>sas.graph.nld.jar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sas.graph.j2d.jar</td>
</tr>
</tbody>
</table>

In SAS releases prior to 9.1, the treeview.jar or constapp.jar JAR file is all that is required. Although you can continue to use the older JAR files by specifying ARCHIVE=treeview.jar or ARCHIVE=constapp.jar, future versions might not support these older JAR files.
Defaults

For DS2CONST: sas.graph.constapp.jar, sas.graph.nld.jar, and sas.graph.j2d.jar

For DS2TREE: sas.graph.treeview.jar, sas.graph.nld.jar, and sas.graph.j2d.jar

Examples

For DS2CONST:
archive=%str(sas.graph.constapp.jar, sas.graph.nld.jar, sas.graph.j2d.jar)

For DS2TREE:
archive=%str(sas.graph.treeview.jar, sas.graph.nld.jar, sas.graph.j2d.jar)

---

AWUNITS

specifies the units of the WIDTH= argument.

Category: APPLET Tag
Default: PIXELS
Applies to: DS2CONST and DS2TREE
See: HEIGHT on page 183 and AHUNITS on page 164

Syntax

AWUNITS=PIXELS | PERCENT

---

BDCLASS

specifies the name of the style sheet that is to be applied to the body of the HTML output file.

Category: Page Formatting
Applies to: DS2CONST and DS2TREE

Syntax

BDCLASS=body-stylesheet-name

---

BG

specifies the background color or image, based on the value of the BGTYPE= argument.

Category: Page Formatting
Applies to: DS2CONST and DS2TREE
Interaction: When BGTYPE=IMAGE, this argument specifies a background image, using a relative or absolute path or URL.
Tip: The color can be specified as an HTML 3.2 color name or as a six-digit hexadecimal RGB value.

**Syntax**

\[ \text{BG}=\text{color-or-image} \]

**BGTYPE**

specifies the background type.

<table>
<thead>
<tr>
<th>Category:</th>
<th>Page Formatting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>NONE</td>
</tr>
<tr>
<td>Applies to:</td>
<td>DS2CONST and DS2TREE</td>
</tr>
</tbody>
</table>

**Syntax**

\[ \text{BGTYPE}=\text{NONE | COLOR | IMAGE} \]

**Argument Values**

- **NONE**
  - causes the applet to display its default background color.

- **COLOR**
  - specifies that the value of the \( \text{BG=} \) argument must be an HTML 3.2 color name or hexadecimal RGB value.

- **IMAGE**
  - specifies that the value of the \( \text{BG=} \) argument must be the path or URL pointing to an image file that is displayed in the background of the applet window.

**BORDER**

specifies whether a border is drawn around the background area.

<table>
<thead>
<tr>
<th>Category:</th>
<th>Diagram Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>N</td>
</tr>
<tr>
<td>Applies to:</td>
<td>DS2CONST and DS2TREE</td>
</tr>
</tbody>
</table>

**Syntax**

\[ \text{BORDER}=\text{Y | N} \]

**BRTITLE**

specifies the text that appears in the title bar of the browser window.

<table>
<thead>
<tr>
<th>Category:</th>
<th>Page Formatting</th>
</tr>
</thead>
</table>
CATEGORIE

specifies a default color for the text in the diagram.

- **Category:** Diagram Appearance
- **Applies to:** DS2CONST and DS2TREE
- **Requirement:** The color specification must be an HTML 3.2 color name or a six-digit hexadecimal RGB value.
- **Interaction:** For DS2CONST, this argument is overridden by the FNTNAME= argument and the NTEXTCOL= argument.

**Syntax**

\[ \text{CATEGORIE} = \text{default-text-color} \]

CBACK

specifies a background color for the Treeview Applet.

- **Category:** Diagram Appearance
- **Applies to:** DS2TREE
- **Requirement:** The color specification must be a valid HTML 3.2 color name.

**Syntax**

\[ \text{CBACK} = \text{color} \]

CENTER

specifies whether the graph or diagram is centered in the browser window.

- **Category:** Page Formatting
- **Default:** N
- **Applies to:** DS2CONST and DS2TREE

**Syntax**

\[ \text{CENTER} = \text{Y} \mid \text{N} \]
**CHANDLE**

specifies the color of the Collapse/Expand handle on the nodes.

- **Category:** Diagram Appearance
- **Applies to:** DS2TREE
- **Requirement:** The color specification must be a valid HTML color name.
- **Note:** The handle is represented by a small plus sign (+) that is prefixed to the label of the node when its subtree is collapsed.

**Syntax**

CHANDLE=\_color\_

---

**Charset**

specifies the character set name that is written into the META tag of the HTML output file.

- **Category:** Character Transcoding
- **Applies to:** DS2CONST and DS2TREE
- **Note:** For information about available character set names, see [http://www.iana.org/assignments/character-sets/character-sets.xml](http://www.iana.org/assignments/character-sets/character-sets.xml).

**Syntax**

CHARSET=char-set-name

---

**CLINK**

specifies a default color for the links in the diagram.

- **Category:** Diagram Appearance
- **Applies to:** DS2CONST and DS2TREE
- **Requirement:** The color specification must be an HTML 3.2 color name or a six-digit RGB value.
- **Interaction:** For DS2CONST, this argument is overridden by the LCOLOR= and LCOLVAL= arguments.

**Syntax**

CLINK=default-link-color

---

**Cnode**

specifies the node background color.
**Category:** Diagram Appearance  
**Applies to:** DS2CONST and DS2TREE  
**Requirement:** The color specification must be a valid HTML color name. For the DS2CONST macro, the color specification can also be a six-digit RGB value.  
**Interactions:** For the DS2TREE macro, this argument is overridden by the NCOLOR= argument. For the DS2CONST macro, this argument is overridden by the NCOLOR=, NCOLVAL=, NVALUE=, or NSCBACK= argument.

**Syntax**

`CNODE=color`

---

**CODEBASE**

specifies the path of the SAS Java archives specified in the ARCHIVE= argument.

**Category:** APPLET Tag  
**Applies to:** DS2CONST and DS2TREE  
**Requirement:** You must specify this argument when you run the DS2CONST or DS2TREE macro.  
**Note:** The value of the APPLETLOC= system option is not used as the default value.  
**Tips:** You can specify CODEBASE="." if the HTML file and Java archive files are in the same directory. You can specify the location pointed to by the SAS system option APPLETLOC=, or you can specify a different location. To display the current value of the APPLETLOC= system option, run the following code:
```
proc options option=appletloc;
run;
```

**See:** The APPLETLOC= option in SAS System Options: Reference

**Syntax**

`CODEBASE=path-or-URL`

---

**COLORMAP**

specifies whether the NCOLOR= and LCOLOR= arguments determine node and link colors instead of the color map.

**Category:** Diagram Appearance  
**Default:** N  
**Applies to:** DS2CONST  
**See:** LCOLOR on page 186 and NCOLOR on page 193
Syntax

COLORMAP=N | Y

CSELECT

specifies a color for nodes that are selected by the mouse or as the result of a node search.

Category: Diagram Appearance
Applies to: DS2CONST and DS2TREE
Requirement: The color specification must be a valid HTML 3.2 color name.

Syntax

CSELECT=color

CTEXT

specifies a default text color that replaces the default text color in the browser.

Category: Page Formatting
Applies to: DS2CONST and DS2TREE
Requirement: The color specification must be an HTML 3.2 color name or as a six-digit hexadecimal RGB value.
Tip: Other color arguments can be used to override this new default.

Syntax

CTEXT=default-text-color

CUTOFF

specifies the percentage of the nodes that are displayed with node labels.

Category: Diagram Appearance
Default: 0.5
Range: 0.0–1.0
Applies to: DS2CONST and DS2TREE
Notes: The decimal values map to a percentage from 0% to 100%.
After the percentage has been reached, nodes are drawn as rectangles. The size of those rectangles decreases as the distance from the starting node increases.
See: DEPTH on page 172
**Syntax**

CUTOFF=detail-percentage

---

**DATATYPE**

specifies the type of the XML data.

- **Category:** Data Definition
- **Default:** ARCS
- **Applies to:** DS2CONST

**Syntax**

DATATYPE=ARCS | ASSOC

**Argument Values**

**ARCS**

indicates that the data set is in the form of an arc list.

**ASSOC**

indicates that the data set is associative. The links can be displayed based on their weighted values, and node size and link width can represent the relative size of the node and link values.

---

**DEPTH**

specifies a whole number greater than zero that determines the maximum number of links that are to be displayed in the node and link diagram.

- **Category:** Diagram Appearance
- **Applies to:** DS2TREE
- **Interaction:** This argument value is ignored when CUTOFF=1.0.
- **Notes:** This argument affects only the initial display of the diagram. Paths whose lengths exceed the limit are truncated. Nodes that are initially hidden can become visible as a user selects nodes and navigates around the diagram.

**Syntax**

DEPTH=max-path-length

---

**DOCTYPE**

specifies the DOCTYPE tag.

- **Category:** Page Formatting
Default: `<!DOCTYPE HTML PUBLIC "/-//W3C//DTD HTML 3.2 Final//EN">`

Applies to: DS2CONST and DS2TREE

Tips: To use a different DOCTYPE tag, specify the entire contents of the tag as the value of the DOCTYPE= argument, including the angle brackets.

If you specify DOCTYPE="", then no DOCTYPE tag is generated in the HTML output file.

---

**Syntax**

`DOCTYPE=DOCTYPE-tag`

---

**DRILTARG**

specifies the HTML target or the name of the browser window or frame where drill-down URLs are displayed.

- **Category:** Diagram Appearance
- **Default:** _BLANK
- **Applies to:** DS2CONST and DS2TREE

---

**Syntax**

`DRILTARG=target-window-or-frame`

---

**DUPCHECK**

specifies whether the applet checks for duplicate node IDs.

- **Category:** Diagram Appearance
- **Default:** FALSE
- **Applies to:** DS2TREE
- **Tip:** When this argument is set to TRUE, the applet updates an ID if a duplicate ID is found, instead of creating a new node with the same ID. This enables you to collect node information from different locations in the data set.

---

**Syntax**

`DUPCHECK=TRUE | FALSE`

---

**ENCODE**

specifies whether the angle bracket characters (< and >) in SAS TITLE and FOOTNOTE statements are replaced with the HTML character entities &lt; and &gt; respectively.

- **Category:** Page Formatting
- **Default:** Y
Applies to: DS2CONST and DS2TREE

Syntax
ENCODE=Y | N

Details
When this argument is set to Y (default), the angle bracket characters (< and >) in SAS TITLE and FOOTNOTE lines are replaced with the HTML character entities (&gt; and &lt;) respectively. Specifying ENCODE=N causes the browser to interpret the angle brackets as parts of HTML tags. For example, you would use ENCODE=N if you wanted to use the following TITLE statement:

```sql
title "Out of Range Data";
```

FACTOR
specifies the distortion factor for the fish-eye lens.

<table>
<thead>
<tr>
<th>Category:</th>
<th>Diagram Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>1.0 (the lowest amount of distortion)</td>
</tr>
<tr>
<td>Applies to:</td>
<td>DS2TREE</td>
</tr>
<tr>
<td>Requirement:</td>
<td>The value specified must be greater than or equal to 1.0.</td>
</tr>
<tr>
<td>Interaction:</td>
<td>This argument is valid only when the value of the FISHEYE= argument is Y.</td>
</tr>
</tbody>
</table>

Syntax
FACTOR=fish-eye-distortion-factor

Details
The distortion factor determines the amount that the central region of the display is to be expanded (or zoomed). The maximum effective value (beyond which no further distortion is visible) is variable depending on the number of nodes in the diagram.

FCLASS and TCLASS
specifies the name of the style sheet class that is to be used for the SAS TITLE or FOOTNOTE.

<table>
<thead>
<tr>
<th>Category:</th>
<th>SAS TITLE and FOOTNOTE Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to:</td>
<td>DS2CONST and DS2TREE.</td>
</tr>
</tbody>
</table>

Syntax
FCLASS=footnote-style-sheet-name
TCLASS=title-style-sheet-name
**FCOLOR and TCOLOR**

specifies the color of the text in the SAS TITLE or FOOTNOTE.

- **Category:** SAS TITLE and FOOTNOTE Tags
- **Applies to:** DS2CONST and DS2TREE.
- **Requirement:** The color specification must be an HTML 3.2 color name or a six-digit hexadecimal RGB value.

**Syntax**

```
FCOLOR=footnote-text-color
TCOLOR=title-text-color
```

**FFACE and TFACE**

specifies a text font for the SAS TITLE or FOOTNOTE.

- **Category:** SAS TITLE and FOOTNOTE Tags
- **Applies to:** DS2CONST and DS2TREE.
- **Note:** Valid values are browser-specific.

**Syntax**

```
FFACE=footnote-text-font
TFACE=title-text-font
```

**FISHEYE**

specifies whether the diagram is to be displayed with the fish-eye distortion.

- **Category:** Diagram Appearance
- **Default:** Y
- **Applies to:** DS2TREE
- **Tip:** Use the FACTOR= argument to specify the amount of distortion.

**Syntax**

```
FISHEYE=Y | N
```

**Details**

Fish-eye distortion displays the central region of the diagram at a specified size and displays the rest of the diagram as if it were mapped onto a ball where the nodes and links disappear over a curved horizon. The web user can move the diagram past the
central region by scrolling or searching for nodes. The amount of distortion used in the fish-eye lens is determined by the \texttt{FACTOR=} argument.

**FNTNAME**

specifies the default text font for node labels.

- **Category:** Diagram Appearance
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** This argument is overridden by the \texttt{NFNTNAME=} and \texttt{NSFNTNAM=} arguments.

**Syntax**

\texttt{FNTNAME=SERIF | SANSERIF | DIALOG | DIALOGINPUT | MONOSPACED}

**FNTSIZE**

specifies the size of the node label text font, in points.

- **Category:** Diagram Appearance
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** This argument is overridden by the \texttt{NFNTSIZE=} argument.

**Syntax**

\texttt{FNTSIZE=\text{node-font-size}}

**FNTSTYL**

specifies the text font style for node labels.

- **Category:** Diagram Appearance
- **Default:** PLAIN
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** This argument is overridden by the \texttt{NFNTSTYL=} argument.

**Syntax**

\texttt{FNTSTYL=BOLD | ITALIC | PLAIN}

**FSIZE and TSIZE**

specifies the size of the text font that is to be used for the SAS TITLE or FOOTNOTE.

- **Category:** SAS TITLE and FOOTNOTE Tags
Applies to: DS2CONST and DS2TREE.

Requirement: The size specification \( n \) must be an integer value.

Note: Valid values are browser-specific depending on how the browser handles the SIZE attribute on the FONT tag.

Syntax

\[
\begin{align*}
\text{FSIZE} & = n \mid +n \mid -n \\
\text{TSIZE} & = n \mid +n \mid -n
\end{align*}
\]

FTAG and TTAG

specify a text string that the macro translates into one or more tags that will enclose the SAS TITLE or FOOTNOTE.

Category: SAS TITLE and FOOTNOTE Tags

Default: PREFORMATTED + HEADER 3

Applies to: DS2CONST and DS2TREE.

Syntax

\[
\begin{align*}
\text{FTAG} & = \text{tag-string} \\
\text{TTAG} & = \text{tag-string}
\end{align*}
\]

Details

For each possible value of the TTAG= and FTAG= arguments, the following table shows the HTML tags that are generated by the macro for the SAS TITLE and FOOTNOTE lines (the corresponding end tags are generated automatically).

<table>
<thead>
<tr>
<th>TTAG or FTAG Value</th>
<th>HTML Tag or Tags Enclosing the SAS TITLE or SAS FOOTNOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO FORMATTING</td>
<td>(none)</td>
</tr>
<tr>
<td>STRONG</td>
<td>&lt;STRONG&gt;</td>
</tr>
<tr>
<td>EMPHASIS</td>
<td>&lt;EM&gt;</td>
</tr>
<tr>
<td>HEADER 1</td>
<td>&lt;H1&gt;</td>
</tr>
<tr>
<td>HEADER 2</td>
<td>&lt;H2&gt;</td>
</tr>
<tr>
<td>HEADER 3</td>
<td>&lt;H3&gt;</td>
</tr>
<tr>
<td>HEADER 4</td>
<td>&lt;H4&gt;</td>
</tr>
<tr>
<td>TTAG or FTAG Value</td>
<td>HTML Tag or Tags Enclosing the SAS TITLE or SAS FOOTNOTE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>HEADER 5</td>
<td>&lt;H5&gt;</td>
</tr>
<tr>
<td>HEADER 6</td>
<td>&lt;H6&gt;</td>
</tr>
<tr>
<td>PREFORMATTED TEXT</td>
<td>&lt;PRE&gt;</td>
</tr>
<tr>
<td>CITATION TEXT</td>
<td>&lt;CITE&gt;</td>
</tr>
<tr>
<td>COMPUTER CODE TEXT</td>
<td>&lt;CODE&gt;</td>
</tr>
<tr>
<td>KEYBOARD INPUT TEXT</td>
<td>&lt;KBD&gt;</td>
</tr>
<tr>
<td>LITERAL TEXT</td>
<td>&lt;SAMP&gt;</td>
</tr>
<tr>
<td>VARIABLE TEXT</td>
<td>&lt;VAR&gt;</td>
</tr>
<tr>
<td>BOLD</td>
<td>&lt;B&gt;</td>
</tr>
<tr>
<td>ITALICIZED TEXT</td>
<td>&lt;I&gt;</td>
</tr>
<tr>
<td>UNDERLINE TEXT</td>
<td>&lt;U&gt;</td>
</tr>
<tr>
<td>TYPEWRITER</td>
<td>&lt;TT&gt;</td>
</tr>
<tr>
<td>BIG TEXT</td>
<td>&lt;BIG&gt;</td>
</tr>
<tr>
<td>SMALL TEXT</td>
<td>&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRIKE OUT TEXT</td>
<td>&lt;STRIKE&gt;</td>
</tr>
<tr>
<td>DEFINING INSTANCE TEXT</td>
<td>&lt;DFN&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + STRONG</td>
<td>&lt;PRE&gt;&lt;STRONG&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + EMPHASIS</td>
<td>&lt;PRE&gt;&lt;EM&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + HEADER 1</td>
<td>&lt;PRE&gt;&lt;H1&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + HEADER 2</td>
<td>&lt;PRE&gt;&lt;H2&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + HEADER 3</td>
<td>&lt;PRE&gt;&lt;H3&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + HEADER 4</td>
<td>&lt;PRE&gt;&lt;H4&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + HEADER 5</td>
<td>&lt;PRE&gt;&lt;H5&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + HEADER 6</td>
<td>&lt;PRE&gt;&lt;H6&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + CITATION</td>
<td>&lt;PRE&gt;&lt;CITE&gt;</td>
</tr>
<tr>
<td>TTAG or FTAG Value</td>
<td>HTML Tag or Tags Enclosing the SAS TITLE or SAS FOOTNOTE</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>PREFORMATTED + COMPUTER CODE</td>
<td>&lt;PRE&gt;&lt;CODE&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + KEYBOARD INPUT</td>
<td>&lt;PRE&gt;&lt;KBD&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + LITERAL</td>
<td>&lt;PRE&gt;&lt;SAMP&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + VARIABLE</td>
<td>&lt;PRE&gt;&lt;VAR&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + BOLD</td>
<td>&lt;PRE&gt;&lt;B&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + ITALICIZED</td>
<td>&lt;PRE&gt;&lt;I&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + TYPEWRITER</td>
<td>&lt;PRE&gt;&lt;TT&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + UNDERLINE</td>
<td>&lt;PRE&gt;&lt;U&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + BIG</td>
<td>&lt;PRE&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + SMALL</td>
<td>&lt;PRE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + STRIKE OUT</td>
<td>&lt;PRE&gt;&lt;STRIKE&gt;</td>
</tr>
<tr>
<td>PREFORMATTED + DEFINING INSTANCE</td>
<td>&lt;PRE&gt;&lt;DFN&gt;</td>
</tr>
<tr>
<td>STRONG + EMPHASIS</td>
<td>&lt;STRONG&gt;&lt;EM&gt;</td>
</tr>
<tr>
<td>STRONG + ITALICIZED</td>
<td>&lt;STRONG&gt;&lt;I&gt;</td>
</tr>
<tr>
<td>STRONG + CITATION</td>
<td>&lt;STRONG&gt;&lt;CITE&gt;</td>
</tr>
<tr>
<td>STRONG + COMPUTER CODE</td>
<td>&lt;STRONG&gt;&lt;CODE&gt;</td>
</tr>
<tr>
<td>STRONG + KEYBOARD INPUT</td>
<td>&lt;STRONG&gt;&lt;KBD&gt;</td>
</tr>
<tr>
<td>STRONG + LITERAL</td>
<td>&lt;STRONG&gt;&lt;SAMP&gt;</td>
</tr>
<tr>
<td>STRONG + VARIABLE</td>
<td>&lt;STRONG&gt;&lt;VAR&gt;</td>
</tr>
<tr>
<td>STRONG + TYPEWRITER</td>
<td>&lt;STRONG&gt;&lt;TT&gt;</td>
</tr>
<tr>
<td>STRONG + BIG</td>
<td>&lt;STRONG&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>STRONG + SMALL</td>
<td>&lt;STRONG&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>EMPHASIS + CITATION</td>
<td>&lt;EM&gt;&lt;CITE&gt;</td>
</tr>
<tr>
<td>EMPHASIS + COMPUTER CODE</td>
<td>&lt;EM&gt;&lt;CODE&gt;</td>
</tr>
<tr>
<td>EMPHASIS + KEYBOARD INPUT</td>
<td>&lt;EM&gt;&lt;KBD&gt;</td>
</tr>
<tr>
<td>TTAG or FTAG Value</td>
<td>HTML Tag or Tags Enclosing the SAS TITLE or SAS FOOTNOTE</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------------------------</td>
</tr>
<tr>
<td>EMPHASIS + LITERAL</td>
<td>&lt;EM&gt;&lt;SAMP&gt;</td>
</tr>
<tr>
<td>EMPHASIS + VARIABLE</td>
<td>&lt;EM&gt;&lt;VAR&gt;</td>
</tr>
<tr>
<td>EMPHASIS + TYPEWRITER</td>
<td>&lt;EM&gt;&lt;TT&gt;</td>
</tr>
<tr>
<td>EMPHASIS + BIG</td>
<td>&lt;EM&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>EMPHASIS + SMALL</td>
<td>&lt;EM&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + EMPHASIS</td>
<td>&lt;B&gt;&lt;EM&gt;</td>
</tr>
<tr>
<td>BOLD + ITALICIZED</td>
<td>&lt;B&gt;&lt;I&gt;</td>
</tr>
<tr>
<td>BOLD + CITATION</td>
<td>&lt;B&gt;&lt;CITE&gt;</td>
</tr>
<tr>
<td>BOLD + COMPUTER CODE</td>
<td>&lt;B&gt;&lt;CODE&gt;</td>
</tr>
<tr>
<td>BOLD + KEYBOARD INPUT</td>
<td>&lt;B&gt;&lt;KBD&gt;</td>
</tr>
<tr>
<td>BOLD + LITERAL</td>
<td>&lt;B&gt;&lt;SAMP&gt;</td>
</tr>
<tr>
<td>BOLD + VARIABLE</td>
<td>&lt;B&gt;&lt;VAR&gt;</td>
</tr>
<tr>
<td>BOLD + TYPEWRITER</td>
<td>&lt;B&gt;&lt;TT&gt;</td>
</tr>
<tr>
<td>BOLD + BIG</td>
<td>&lt;B&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>BOLD + SMALL</td>
<td>&lt;B&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>ITALICIZED + CITATION</td>
<td>&lt;I&gt;&lt;CITE&gt;</td>
</tr>
<tr>
<td>ITALICIZED + COMPUTER CODE</td>
<td>&lt;I&gt;&lt;CODE&gt;</td>
</tr>
<tr>
<td>ITALICIZED + KEYBOARD INPUT</td>
<td>&lt;I&gt;&lt;KBD&gt;</td>
</tr>
<tr>
<td>ITALICIZED + LITERAL</td>
<td>&lt;I&gt;&lt;SAMP&gt;</td>
</tr>
<tr>
<td>ITALICIZED + VARIABLE</td>
<td>&lt;I&gt;&lt;VAR&gt;</td>
</tr>
<tr>
<td>ITALICIZED + TYPEWRITER</td>
<td>&lt;I&gt;&lt;TT&gt;</td>
</tr>
<tr>
<td>ITALICIZED + BIG</td>
<td>&lt;I&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>ITALICIZED + SMALL</td>
<td>&lt;I&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + EMPHASIS + BIG</td>
<td>&lt;STRONG&gt;&lt;EM&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>STRONG + CITATION + BIG</td>
<td>&lt;STRONG&gt;&lt;CITE&gt;&lt;BIG&gt;</td>
</tr>
<tr>
<td>TTAG or FTAG Value</td>
<td>HTML Tag or Tags Enclosing the SAS TITLE or SAS FOOTNOTE</td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td><strong>STRONG + COMPUTER CODE + BIG</strong></td>
<td><code>&lt;STRONG&gt;</code>&lt;CODE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>STRONG + KEYBOARD INPUT + BIG</strong></td>
<td><code>&lt;STRONG&gt;</code>&lt;KBD&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>STRONG + LITERAL + BIG</strong></td>
<td><code>&lt;STRONG&gt;</code>&lt;SAMP&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>STRONG + VARIABLE + BIG</strong></td>
<td><code>&lt;STRONG&gt;</code>&lt;VAR&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>STRONG + TYPEWRITER + BIG</strong></td>
<td><code>&lt;STRONG&gt;</code>&lt;TT&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>EMPHASIS + CITATION + BIG</strong></td>
<td><code>&lt;EM&gt;</code>&lt;CITE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>EMPHASIS + COMPUTER CODE + BIG</strong></td>
<td><code>&lt;EM&gt;</code>&lt;CODE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>EMPHASIS + KEYBOARD INPUT + BIG</strong></td>
<td><code>&lt;EM&gt;</code>&lt;KBD&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>EMPHASIS + LITERAL + BIG</strong></td>
<td><code>&lt;EM&gt;</code>&lt;SAMP&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>EMPHASIS + VARIABLE + BIG</strong></td>
<td><code>&lt;EM&gt;</code>&lt;VAR&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>EMPHASIS + TYPEWRITER + BIG</strong></td>
<td><code>&lt;EM&gt;</code>&lt;TT&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + EMPHASIS + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;EM&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + ITALICIZED + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;I&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + CITATION + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;CITE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + COMPUTER CODE + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;CODE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + KEYBOARD INPUT + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;KBD&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + LITERAL + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;SAMP&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + VARIABLE + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;VAR&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>BOLD + TYPEWRITER + BIG</strong></td>
<td><code>&lt;BOLD&gt;</code>&lt;TT&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>ITALICIZED + CITATION + BIG</strong></td>
<td><code>&lt;I&gt;</code>&lt;CITE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>ITALICIZED + COMPUTER CODE + BIG</strong></td>
<td><code>&lt;I&gt;</code>&lt;CODE&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>ITALICIZED + KEYBOARD INPUT + BIG</strong></td>
<td><code>&lt;I&gt;</code>&lt;KBD&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>ITALICIZED + LITERAL + BIG</strong></td>
<td><code>&lt;I&gt;</code>&lt;SAMP&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>ITALICIZED + VARIABLE + BIG</strong></td>
<td><code>&lt;I&gt;</code>&lt;VAR&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td><strong>ITALICIZED + TYPEWRITER + BIG</strong></td>
<td><code>&lt;I&gt;</code>&lt;TT&gt;<code>&lt;BIG&gt;</code></td>
</tr>
<tr>
<td>TTAG or FTAG Value</td>
<td>HTML Tag or Tags Enclosing the SAS TITLE or SAS FOOTNOTE</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>STRONG + EMPHASIS + SMALL</td>
<td>&lt;STRONG&gt;&lt;EM&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + ITALICIZED + SMALL</td>
<td>&lt;STRONG&gt;&lt;I&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + CITATION + SMALL</td>
<td>&lt;STRONG&gt;&lt;CITE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + COMPUTER CODE + SMALL</td>
<td>&lt;STRONG&gt;&lt;CODE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + LITERAL + SMALL</td>
<td>&lt;STRONG&gt;&lt;samp&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + VARIABLE + SMALL</td>
<td>&lt;STRONG&gt;&lt;VAR&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>STRONG + TYPEWRITER + SMALL</td>
<td>&lt;STRONG&gt;&lt;TT&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>EMPHASIS + CITATION + SMALL</td>
<td>&lt;EM&gt;&lt;CITE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>EMPHASIS + COMPUTER CODE + SMALL</td>
<td>&lt;EM&gt;&lt;CODE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>EMPHASIS + KEYBOARD INPUT + SMALL</td>
<td>&lt;EM&gt;&lt;KBD&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>EMPHASIS + LITERAL + SMALL</td>
<td>&lt;EM&gt;&lt;SAMP&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>EMPHASIS + TYPEWRITER + SMALL</td>
<td>&lt;EM&gt;&lt;TT&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + EMPHASIS + SMALL</td>
<td>&lt;BOLD&gt;&lt;EM&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + ITALICIZED + SMALL</td>
<td>&lt;BOLD&gt;&lt;I&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + CITATION + SMALL</td>
<td>&lt;BOLD&gt;&lt;CITE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + COMPUTER CODE + SMALL</td>
<td>&lt;BOLD&gt;&lt;CODE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + KEYBOARD INPUT + SMALL</td>
<td>&lt;BOLD&gt;&lt;KBD&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + LITERAL + SMALL</td>
<td>&lt;BOLD&gt;&lt;SAMP&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + VARIABLE + SMALL</td>
<td>&lt;BOLD&gt;&lt;VAR&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>BOLD + TYPEWRITER + SMALL</td>
<td>&lt;BOLD&gt;&lt;TT&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>ITALICIZED + CITATION + SMALL</td>
<td>&lt;I&gt;&lt;CITE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>ITALICIZED + COMPUTER CODE + SMALL</td>
<td>&lt;I&gt;&lt;CODE&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>ITALICIZED + KEYBOARD INPUT + SMALL</td>
<td>&lt;I&gt;&lt;KBD&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>ITALICIZED + LITERAL + SMALL</td>
<td>&lt;I&gt;&lt;SAMP&gt;&lt;SMALL&gt;</td>
</tr>
<tr>
<td>ITALICIZED + VARIABLE + SMALL</td>
<td>&lt;I&gt;&lt;VAR&gt;&lt;SMALL&gt;</td>
</tr>
</tbody>
</table>
HEIGHT
specifies the height of the applet window.

Category: APPLET Tag
Default: 600
Applies to: DS2CONST and DS2TREE
Tip: The AHUNITS= argument determines the default unit of measure, which is pixels by default.

Syntax
HEIGHT=applet-height

HSPACE
specifies the amount of horizontal space, in pixels, to the left and right of the graph or diagram.

Category: APPLET Tag
Applies to: DS2CONST and DS2TREE

Syntax
HSPACE=pixels

HTMLFILE
specifies the name and storage location of the HTML output file.

Category: HTML and XML File Information
Applies to: DS2CONST and DS2TREE
Restriction: Do not specify both the HTMLFILE= and HTMLFREF= parameters. Use one or the other.
Note: If the external file does not exist, then it is created for you.

Syntax
HTMLFILE=external-filename
**HTMLFREF**

specifies the SAS fileref that identifies the name and storage location of the HTML output file.

**Category:** HTML and XML File Information

**Applies to:** DS2CONST and DS2TREE

**Restrictions:** Do not specify both the HTMLFREF= and HTMLFILE= parameters. Use one or the other.

Do not use a reserved name. See "Reserved Names" on page 162.

**Requirement:** When MAKEHTML=Y, you must specify either this argument or the HTMLFILE= argument.

**Note:** If the external file does not exist, then it is created for you.

**Syntax**

HTMLFREF=fileref

---

**IBACKLOC**

specifies a URL for the image that you want to use in the background of the diagram.

**Category:** Diagram Appearance

**Applies to:** DS2CONST and DS2TREE

**See:** IBACKPOS

**Syntax**

IBACKLOC=image-URL

---

**IBACKPOS**

specifies how to display the background image in the IBACKLOC= argument.

**Category:** Diagram Appearance

**Applies to:** DS2CONST and DS2TREE

**Syntax**

IBACKPOS=CENTER | SCALE | TILE | POSITION

**Argument Values**

**CENTER**

centers the image in the browser window without resizing the image.
SCALE
resizes the image to fit the browser window.

TILE
fills the browser window by replicating the image at its original size.

POSITION
positions the image without resizing at the values specified by the IBACKX= and IBACKY= arguments.

IBACKURL
specifies the URL that is displayed when you click on the background image.

Syntax
IBACKURL=background-drilldown-URL

IBACKX and IBACKY
specifies the x (horizontal) and y (vertical) pixel coordinates of the upper left corner of the background image.

Syntax
IBACKX=corner-coordinate
IBACKY=corner-coordinate

LABELS
indicates whether node labels are displayed in the diagram.

Default: Y
Applies to: DS2CONST and DS2TREE

Syntax
LABELS=Y | N

**LAYOUT**
specifies whether the Constellation applet lays out the diagram using stress and strain equations or the NX= and NY= arguments.

- **Category:** Data Definition
- **Default:** AUTO
- **Applies to:** DS2CONST
- **See:** NX and NY on page 203

**Syntax**
LAYOUT=AUTO | USER

**Argument Values**

- **AUTO**
  - uses the stress and strain equations to lay out the diagram.

- **USER**
  - uses the NX= and NY= arguments to lay out the diagram.

**LCOLFMT**
specifies the name of a user-defined SAS format that converts the values in the variable named in the LCOLOR= argument to valid HTML color names.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE
- **Note:** The SAS format does not change any values in the data set. The formatted values are applied to the diagram only.

**Syntax**
LCOLFMT= user-defined-format-name

**LCOLOR**
specifies the name of the variable that determines the color of the link lines.

- **Category:** Data Definition
**LFROM** specifies the name of the variable whose values define the nodes at the start of link lines.

- **Category:** Data Definition
- **Applies to:** DS2CONST
- **Requirement:** This argument must be specified for the DS2CONST macro.

**Syntax**

LFROM=variable-name

---

**LDATA** specifies the name of the SAS data set that contains the link data that is used to generate the diagram.

- **Category:** Data Definition
- **Applies to:** DS2CONST
- **Requirement:** This argument must be specified for the DS2CONST macro.

**Syntax**

LDATA=data-set-name

---

**LCOLVAL** specifies the name of the variable that determines the color mapping of link lines.

- **Category:** Data Definition
- **Applies to:** DS2CONST
- **Interaction:** This argument is valid only when DATATYPE=ASSOC and COLORMAP=Y.
- **Note:** If the LCOLVAL= argument is not specified, the link colors are determined by the following arguments in the following order: LCOLOR= and CLINK=.

**Syntax**

LCOLVAL=variable-name

---

**Default:** The value set by the CLINK= argument

**Applies to:** DS2CONST and DS2TREE

**Requirement:** The values of this argument must be valid HTML 3.2 color names. The LCOLFMT= argument can be used to specify a format that converts the values into valid HTML 3.2 color names, if necessary.

**Interaction:** For the DS2CONST macro, the LCOLOR= argument is overridden by the LCOLVAL= argument.

**Syntax**

LCOLOR=variable-name
The LFROM= variable values must be coordinated with the values of the variables that are named in the NID= and LTO= arguments.

**Syntax**

LFROM=variable-name

**LINKTYPE**

specifies whether the links are drawn as lines or arrows that indicate the direction of flow.

- **Category:** Data Definition
- **Default:** ARROW
- ** Applies to:** DS2CONST

**Syntax**

LINKTYPE=LINE | ARROW

**LPT**

specifies the password that is needed for accessing a password-protected link data set that is specified with the LDATA= argument.

- **Category:** Data Definition
- ** Applies to:** DS2CONST
- ** Note:** The LPT= argument is required if the data set has a READ or PW password. You do not need to specify this argument if the data set has a WRITE or ALTER password.

**Syntax**

LPT=password

**LSTIP**

specifies the name of the variable in the data set that determines the stipple mask.

- **Category:** Data Definition
- ** Applies to:** DS2CONST and DS2TREE
- ** See:** LSTIPFAC

**Syntax**

LSTIP=variable-name
Details

The stipple mask generates dashed or dotted link lines. The value of the variable must be an integer, which is then converted into a binary value. In the binary value, a “1” bit means that a pixel is to be drawn and a “0” bit means that no pixel is to be drawn. For example, if the variable has a value of 61680, the binary conversion of that value is 1111000011110000. This stipple mask generates a dashed link line with dashes and spaces that are four pixels wide.

LSTIPFAC

specifies the name of the variable in the data set whose value specifies a multiplier for the binary stipple mask.

Category: Data Definition
Applies to: DS2CONST and DS2TREE
Note: The multiplier lengthens the dashes in the base mask. For example, if the multiplier is 2, a stipple mask that specifies four-pixel dashes and four-pixel spaces generates link lines with eight-pixel dashes and spaces.
See: LSTIP

Syntax

LSTIPFAC=variable-name

LTIP

specifies the name of the variable in the data set that provides the text that is displayed in the pop-up data tips windows for links.

Category: Data Definition
Applies to: DS2CONST and DS2TREE

Syntax

LTIP=variable-name

LTIPFMT

specifies the name of a user-defined SAS format that is applied to the values in the variable specified in the LTIP= argument to configure those values for display in the pop-up data tips window.

Category: Data Definition
Applies to: DS2CONST and DS2TREE
Note: The SAS format does not change any values in the data set. The formatted values are applied to the diagram only.
**LTO**

specifies the name of the variable whose values identify the nodes at the ends of link lines.

- **Category:** Data Definition
- **Applies to:** DS2CONST
- **Requirements:** This argument must be specified for the DS2CONST macro. The LTO= variable values must be coordinated with the values of the variables that are named in the LFROM= and NID= arguments.

**Syntax**

LTO=variable-name

**LVALUE**

specifies the name of the variable whose values determine the weights of the link lines, which determines the color and relative thickness of link lines.

- **Category:** Data Definition
- **Applies to:** DS2CONST
- **Requirement:** The variable values must be real numbers.
- **Interaction:** The LVALUE= argument is valid only when DATATYPE=ASSOC.
- **Note:** The link weights are used with the MINLNKWT= argument and the SCLNKWT= argument to control the display of link lines.

**Syntax**

LVALUE=variable-name

**LWHERE**

specifies a WHERE clause that subsets the link data for display in the diagram.

- **Category:** Data Definition
- **Applies to:** DS2CONST
- **Note:** If the expression contains any special characters (for example, % or &), include %NRBQUOTE in the expression to process those characters correctly. The following example shows how to correctly specify INT%:

  LWHERE=%NRBQUOTE(value="Int%")

- **See:** NWHERE on page 203
Syntax

LWHERE=\textit{subset-expression}

\textbf{LWIDTH}

specifies the name of the variable in the data set that determines the width of the link lines.

\begin{itemize}
  \item \textbf{Category:} Data Definition
  \item \textbf{Defaults:} For DS2CONST, the width is determined by the \texttt{LVALUE=} argument. For DS2TREE, the width of all of the links is set to the minimum link width in the pixel range.
  \item \textbf{Applies to:} DS2CONST and DS2TREE
  \item \textbf{Interaction:} For DS2CONST, this argument is valid only when \texttt{DATATYPE=}ASSOC.
  \item \textbf{Note:} For DS2TREE, this option maps the range of values of the specified variable to a range of link widths. If only one link width value is provided for all of the links, then the width of all of the links is set to the minimum link width in the pixel range.
\end{itemize}

\textbf{MAKEHTML}

specifies whether an HTML file is to be generated.

\begin{itemize}
  \item \textbf{Category:} HTML and XML File Information
  \item \textbf{Default:} Y
  \item \textbf{Applies to:} DS2CONST and DS2TREE
  \item \textbf{Note:} If you specify \texttt{MAKEHTML=}N and \texttt{MAKEXML=}Y, then only an XML file is generated.
\end{itemize}

\textbf{Syntax}

\texttt{MAKEHTML=Y | N}

\textbf{MAKEXML}

specifies whether an XML file is to be generated.

\begin{itemize}
  \item \textbf{Category:} HTML and XML File Information
  \item \textbf{Default:} Y
  \item \textbf{Applies to:} DS2CONST and DS2TREE
  \item \textbf{Requirement:} If \texttt{MAKEXML=}N and \texttt{MAKEHTML=}Y, you must specify a value for the \texttt{XMLURL=} argument.
  \item \textbf{Note:} When you specify \texttt{MAKEXML=}N and \texttt{MAKEHTML=}Y, only an HTML file is generated.
\end{itemize}
Syntax
MAKEXML=Y | N

MINLNKWT
specifies the initial minimum link weight, which determines which links are initially displayed.

Category: Data Definition
Applies to: DS2CONST
Interaction: This argument is valid only when DATATYPE=ASSOC.
Note: Link weights are determined by the LVALUE= argument.

Syntax
MINLNKWT=minimum-link-weight

Details
The initial diagram shows only those links that have weights that are greater than or equal to the minimum weight. In the Constellation Applet, a scroll bar enables the web user to change the minimum link weight in order to change the number of links that are displayed. Selecting the browser's Refresh option restores the initial minimum link weight that is specified in the MINLNKWT= argument.

NACTION
specifies the name of the variable in the nodes data set that provides the menu text that is displayed for custom actions for each node.

Category: Data Definition
Default: Menu option text “Open URL (URL-string”
Applies to: DS2CONST and DS2TREE
Restriction: For DS2CONST, the variable can specify only one menu text string.
Requirement: For DS2TREE:
• When the variable specifies multiple menu text strings, each string must be separated by a semicolon.
• When the NURL= argument specifies multiple URLs, the number of menu text strings that are specified by the variable must match the number of URLs that are specified by the NURL= argument.
Interaction: This argument overrides the ACTION= argument.

Syntax
NACTION=variable-name
Details

The way in which this option is used differs between DS2CONST and DS2TREE. For DS2CONST, only one menu text string is specified. In the constellation diagram, the menu option text appears in the pop-up menu when a user right-clicks a node. Selecting the menu option text in the pop-up menu opens the URL that is specified by the NURL= argument.

For DS2TREE, one or more menu text strings can be specified, which correspond one-to-one with the URLs that are specified by the NURL= argument. When multiple menu text strings are specified in the variable value, each string is separated by a semicolon. When the user right-clicks a node in the treeview diagram and then selects Custom Action in the pop-up menu, the menu option text is displayed as a list of one or more actions. Selecting a menu item in the Custom Action menu opens the URL that is associated with that menu item.

NAME

specifies the name for this instance of the applet.

Category: APPLET Tag
Applies to: DS2CONST and DS2TREE
Note: Use this argument only if you have more than one instance of the APPLET tag in your HTML file, and if you have included your own scripts or DHTML that communicates with or acts on a particular instance of the applet.

Syntax

NAME=applet-name

NCOLFMT

specifies the name of a user-defined SAS format that converts the values in the variable named in the NCOLOR= argument to valid HTML color names.

Category: Data Definition
Applies to: DS2TREE
Note: The data in the data set is not altered; the formatted value is used in the hierarchical tree rather than the data value.

Syntax

NCOLFMT=SAS-format-name

NCOLOR

specifies the variable in the nodes data set that determines the background color of the nodes.

Category: Data Definition
Applies to: DS2CONST and DS2TREE

Requirement: The colors must be specified as HTML 3.2 color names or six-digit hexadecimal RGB values.

Tip: If the variable does not contain valid HTML color names, then you can use the NCOLFMT= argument to convert those values to the HTML color names.

See: NCOLVAL on page 194 and NVALUE on page 203

---

**Syntax**

NCOLOR=variable-name

---

**NCOLVAL**

specifies the name of the variable in the nodes data set that determines the color mapping for the nodes.

**Category:** Data Definition

**Default:** The value specified by the LVALUE= argument

**Applies to:** DS2CONST

**Interaction:** This argument is valid only when DATATYPE=ASSOC and COLORMAP=Y.

---

**Syntax**

NCOLVAL=variable-name

---

**NDATA**

specifies the SAS data set that contains the node data.

**Category:** Data Definition

**Applies to:** DS2CONST and DS2TREE

**Requirement:** This argument must be specified for the DS2CONST and DS2TREE macros.

---

**Syntax**

NDATA=SAS-data-set-name

---

**NFNTNAME**

specifies the name of the variable that determines the text font for the node labels.

**Category:** Data Definition

**Default:** The font specified by the FNTNAME= argument.

**Applies to:** DS2CONST and DS2TREE
**NFNTSIZE**

specifies the name of the variable in the nodes data set that determines the size of the text font used for node labels.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** This argument overrides the **FNTSIZE** argument.
- **Note:** This font size is expressed in points.

**Syntax**

NFNTSIZE=variable-name

---

**NFNTSTYL**

specifies the name of the variable that determines the font style for the node label.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE

**Syntax**

NFNTSTYL=BOLD | ITALIC | PLAIN

---

**NID**

specifies the name of the variable in the nodes data set whose values are to be illustrated as the nodes in the diagram.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE
- **Requirements:** You must specify a value for this argument.
  
  For the DS2CONST macro, the values of the NID= variable must be coordinated with the values of the LFROM= and LTO= variables.
- **Note:** The node ID variable type can be either numeric or character.

**Syntax**

NID=variable-name
**NLABEL**
specifies the name of the variable that represents the node labels.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE
- **Note:** This variable type can be either numeric or character.

**Syntax**

NLABEL=node-label-variable-name

**NODEBDR**
specifies the appearance of the node border line.

- **Category:** Diagram Appearance
- **Default:** OUTLINE
- **Applies to:** DS2TREE

**Syntax**

NODEBDR=LINE | NONE | FILL | OUTLINE

**Argument Values**

- **LINE**
  - show solid border lines around the nodes.
- **NONE**
  - show no border lines or background.
- **FILL**
  - show background but no border lines.
- **OUTLINE**
  - show a border line and background. This is the default value.

**NODESHAP**
specifies the shape of the nodes.

- **Category:** Diagram Appearance
- **Default:** SQUARE
- **Applies to:** DS2CONST
- **Interaction:** This argument is overridden by the NSHAPE= argument.
Tip: When DATATYPE=ASSOC, NODESHAP=NONE is ignored and square nodes are displayed. To hide the nodes in that case, use DATATYPE=ARCS and NODESHAP=NONE.

### Syntax

NODESHAP=CIRCLE | DIAMOND | NONE | SQUARE | TRIANGLE

---

**NPARENT**

specifies the name of the variable that represents the parent nodes.

- **Category:** Data Definition
- **Applies to:** DS2TREE
- **Note:** This variable type can be either numeric or character.

### Syntax

NPARENT=node-parent-variable-name

---

**NPW**

specifies the password that is needed for accessing a password-protected data set.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE
- **Requirement:** You must provide a value for this argument if the data set has a READ or PW password. You do not need to specify a value for this argument if the data set has only WRITE or ALTER passwords.

### Syntax

NPW=password

---

**NSCBACK**

specifies the name of the variable in the node styles data set that determines the background color of the nodes.

- **Category:** Data Definition
- **Default:** The value of the CNODE= argument.
- **Applies to:** DS2CONST and DS2TREE
- **Requirement:** The variable values must be valid HTML 3.2 color names.
**NSCBACK**

specifies the name of the variable in the node styles data set that provides the colors for the node label text.

- **Category:** Data Definition
- **Default:** The value of the **CATEXT**= argument
- **Applies to:** DS2CONST and DS2TREE
- **Requirement:** The variable values must be valid HTML 3.2 color names.

**NSCTEXT**

specifies the name of the variable in the node styles data set that provides the colors for the node label text.

- **Syntax:**
  
  NSCTEXT=variable-name

**NSDATA**

specifies the name of the node styles data set.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE

- **Syntax:**
  
  NSDATA=SAS-data-set-name

**NSFNTNAM**

specifies the name of the variable in the node styles data set that determines the text font that is to be used for node labels.

- **Category:** Data Definition
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** This argument overrides the **FNTNAME**= argument.

- **Syntax:**
  
  NSFNTNAM=SERIF | SANS|SERIF | DIALOG | DIALOGINPUT | MONOSPACE

**NSFNTSIZ**

specifies the name of the variable in the node styles data set that determines the size of the node label text, in points.
**Category:** Data Definition  
**Applies to:** DS2CONST and DS2TREE  
**Interaction:** This argument overrides the `FNTSIZE=` argument.

---

**Syntax**

```
NSFNTSIZ=variable-name
```

---

**NSFNTSTY**

specifies the name of the variable in the node styles data set that determines the style of the node label text.

**Category:** Data Definition  
**Default:** PLAIN  
**Applies to:** DS2CONST and DS2TREE  
**Interaction:** This argument overrides the `FNTSTYL=` argument.

---

**Syntax**

```
NSFNTSTY=BOLD | ITALIC | PLAIN
```

---

**NSHAPE**

specifies the name of the variable that determines the shape of the nodes.

**Category:** Data Definition  
**Default:** SQUARE  
**Applies to:** DS2CONST  
**Interaction:** This argument overrides the `NODESHAP=` argument.

---

**Syntax**

```
NSHAPE=CIRCLE | DIAMOND | NONE | SQUARE | TRIANGLE
```

---

**NSID**

specifies the name of the variable in the node styles data set that represents the nodes.

**Category:** Data Definition  
**Applies to:** DS2CONST and DS2TREE

---

**Syntax**

```
NSID=variable-name
```
NSIZE

specifies the name of the variable that determines the size of the nodes.

**Category:** Data Definition  
**Applies to:** DS2CONST  
**Interaction:** This argument is valid only when DATATYPE=ASSOC.  
**Note:** The values of this variable can be real numbers.

**Syntax**

NSIZE=variable-name

**Details**

Node sizes are determined based on the value of the LAYOUT= argument. When LAYOUT=USER, the values of the NSIZE variable are interpreted as literal pixel measurements. When LAYOUT=AUTO, the values of the NSIZE variable determine the size of the nodes based on the relative size of individual values. The values of the NSIZE variable can be scaled with the SCNSIZE= argument.

NSPW

specifies the password that is needed to access a password-protected node styles data set.

**Category:** Data Definition  
**Applies to:** DS2CONST and DS2TREE  
**Requirement:** You must specify a value for this argument if the data set has a READ or PW password. You do not need to specify a value for this argument if the data set has only WRITE or ALTER passwords.

**Syntax**

NSPW=password

NSTYLE

specifies the name of the variable that determines the style of the nodes.

**Category:** Data Definition  
**Applies to:** DS2CONST and DS2TREE  
**Requirement:** The values must correspond to the node identifiers specified in the NSID= argument.  
**Note:** This variable type can be either numeric or character.
NSWHERE

specifies a WHERE clause that subsets the node styles data set for display in the diagram.

Category: Data Definition
Applies to: DS2CONST and DS2TREE
Tip: If the expression contains any special characters (for example, % or &), then include %NRBQUOTE in the expression to process those characters correctly.
Example: The following example shows how to correctly specify INT%:
NSWHERE=%NRBQUOTE(value="Int%")

Syntax
NSWHERE=subset-expression

NTEXTCOL

specifies the name of the variable that determines the color of the text for the node labels.

Category: Data Definition
Applies to: DS2CONST and DS2TREE
Requirement: Variable values must be valid HTML 3.2 color names.

Syntax
NTEXTCOL=variable-name

NTIP

specifies the name of the variable that provides the data or text that is displayed in the pop-up data tips window.

Category: Data Definition
Applies to: DS2CONST and DS2TREE

Syntax
NTIP=variable-name
**NTIPFMT**

specifies the name of a user-defined SAS format that is applied to the data tips variable that is named in the NTIP= argument.

**Category:** Data Definition

**Applies to:** DS2CONST and DS2TREE

**Note:** The data set is not altered; the formatted value is used only in the diagram.

**See:** NTIP on page 201

**Syntax**

```
NTIPFMT=user-defined-format-name
```

**NURL**

specifies the name of the variable that provides the drill-down URLs for each node.

**Category:** Data Definition

**Default:** No URL is assigned to the nodes. The Open URL or Custom Action menu item is disabled.

**Applies to:** DS2CONST and DS2TREE

**Restriction:** For DS2CONST, the variable specifies only one URL for each node.

**Requirement:** For DS2TREE, when the variable specifies multiple URLs, each URL must be separated by a semicolon.

**Syntax**

```
NURL=drill-down-URL
```

**Details**

The way in which this option is used differs between DS2CONST and DS2TREE. For DS2CONST, the variable specifies only one URL for each node. In the constellation diagram, if a URL is assigned to a node, menu item Open URL is enabled in that node’s pop-up menu. To open the URL in a web browser window, you can double-click the node, or you can select Open URL in the node’s pop-up menu.

For DS2TREE, the variable specifies one or more URLs for each node. Multiple URLs are separated by a semicolon. In the treeview diagram, if one or more URLs are assigned to a node, menu item Custom Action is enabled in that node’s pop-up menu. To display a list of the URLs that are assigned to the node, select Custom Action in the pop-up menu. To open a URL in a web browser window, select the URL in the list.

By default, the URL appears in the pop-up menu as Open URL in a constellation diagram and as Open URL (URL-string) in a treeview diagram. You can use the NACTION= argument or the ACTION= argument to change the default menu text.
**NVALUE**
specifies the name of the variable that determines the relative node size.

**Category:** Data Definition  
**Default:** The largest value of NVALUE is mapped to red, the median value to green, and the lowest value to blue. Values in between result in interpolated colors.  
**Applies to:** DS2CONST  
**Interactions:** This argument is valid only when **DATATYPE=ASSOC.**  
If you do not specify a particular node color using either the **NCOLOR=** or **NCOLVAL=** argument (and if **COLORMAP=Y**), then this argument also determines a default node color.

**Syntax**

NVALUE=variable-name

**NWHERE**
specifies a WHERE clause that subsets the nodes data set for display in the diagram.

**Category:** Data Definition  
**Applies to:** DS2CONST and DS2TREE  
**Tip:** If the expression contains any special characters (for example, % or &), then include %NRBQUOTE in the expression to process those characters correctly.  
**See:** LWHERE on page 190  
**Example:** The following example shows how to correctly specify INT%:

NWHERE=%NRBQUOTE(value="Int%")

**Syntax**

NWHERE=subset-expression

**NX and NY**
specify the variables that determine the locations of the centers of the nodes.

**Category:** Data Definition  
**Applies to:** DS2CONST  
**Interaction:** These arguments are valid only when **LAYOUT=USER.**  
**Notes:** The values are expressed in pixels.  
Positive values are measured from the top left corner of the screen. Negative values are measured from the bottom right corner of the screen.
Syntax

NX=variable-name
NY=variable-name

OPENMODE

indicates whether the new HTML or XML output or both overwrites the information that is currently in the specified file or files, or whether the new output is appended to the end of the existing file or files.

Category: HTML and XML File Information
Default: REPLACE
Applies to: DS2CONST and DS2TREE
Note: APPEND is not valid if you are writing your resulting HTML to a partitioned data set (PDS) on z/OS.

Syntax

OPENMODE=REPLACE | APPEND

PAGEPART

specifies which part or parts of the HTML page are to be written into the HTML output file.

Category: Page Formatting
Default: ALL
Applies to: DS2CONST and DS2TREE
Tip: This argument is helpful when you are appending HTML output to the end of an existing HTML file, or when you are using separate files for the head, body, and foot of your web page.

Syntax

PAGEPART=ALL | HEAD | BODY | FOOT

Argument Values

ALL
writes the entire HTML file, including the XML tags for the DS2CONST and DS2TREE. Do not use this value if you are appending an existing HTML file.

HEAD
writes the HTML header information and or XML (for DS2CONST and DS2TREE) into the HTML file. The header information consists of the HEAD and BODY tags. HTML footer information is not included.

BODY
writes only the XML tags (for DS2CONST and DS2TREE) into the HTML output file. No head or foot information is generated in the HTML output file.
FOOT
writes metagraphics codes or XML tags and the </BODY> and </HTML> tags to conclude the HTML file.

RBSIZING
specifies whether the height and the width of the dialog box frames are read in from the resource bundle.

- **Category:** Diagram Appearance
- **Default:** N
- **Applies to:** DS2CONST and DS2TREE

**Syntax**

RBSIZING=Y | N

**Details**

the default value N indicates that size information from the resource bundle is not to be used for sizing the two dialog boxes that can be invoked from the pop-up menu that appears when a user right-clicks on a diagram. The two dialog boxes are the About dialog box and the Mouse Help dialog box.

Specify Y for this argument for languages other than English. If you specify Y, then the height and the width of the dialog box frames are read in from the resource bundle. This enables translators to set appropriate heights and widths for the frames in the resource bundle, based on the length of the message strings in each language.

RUNMODE
specifies whether you are running the DS2TREE macro in batch or server mode.

- **Category:** HTML and XML File Information
- **Applies to:** DS2CONST and DS2TREE
- **Note:** Batch mode (RUNMODE=B, the default) means that you are submitting the DS2TREE macro in the SAS Program Editor or you have included it in a SAS program. Server mode (RUNMODE=S) generates the HTTP header that is required by Application Dispatcher in the SAS/IntrNet software.

**Syntax**

RUNMODE=B | S

SASPOWER
specifies the path or URL, relative or absolute, to the image file of the SAS Powered logo.

- **Category:** Page Formatting
- **Default:** The logo is omitted
Applies to: DS2CONST and DS2TREE

Note: In the HTML file, the image appears at the bottom of the page. Selecting the image displays the SAS home page.

Tip: To obtain the logo image file, see http://www2.sas.com/dispatcher/index.html.

See: SPCLASS on page 208

Syntax

SASPOWER=\texttt{logo-image-file}

\textbf{SCLNKWT}

specifies whether the link weight values are to be scaled into the range of 0–1, which corresponds to 0–100%.

\begin{itemize}
  \item \textbf{Category:} Diagram Appearance
  \item \textbf{Default:} Y
  \item \textbf{Applies to:} DS2CONST
  \item \textbf{Interaction:} The SCLNKWT= argument is valid only when DATATYPE=ASSOC.
  \item \textbf{Note:} When SCLNKWT=N, the range of link weights (maximum minus minimum) must be greater than 2. Otherwise, the scroll bar does not correctly map the link weights.
\end{itemize}

Syntax

SCLNKWT=Y \mid N

Details

When the value is Y (default), specifies that the link weight values are to be scaled into the range of 0–1, which corresponds to 0–100%. When SCLNKWT=Y, the scroll bar in Constellation Applet displays a percentage of the range of the link weights. When SCLNKWT=N, the link weights are not scaled and the scroll bar reflects the actual link weight data values. These values are real numbers that are specified in the LVALUE= argument.

\textbf{SCLWIDTH}

specifies whether the link width values are to be scaled into the range of 0–1.

\begin{itemize}
  \item \textbf{Category:} Diagram Appearance
  \item \textbf{Applies to:} DS2CONST
  \item \textbf{Interaction:} This argument is valid only when DATATYPE=ASSOC.
  \item \textbf{Note:} When the value is Y (default), indicates that the link width values are to be scaled into the range of 0–1. Specifying N indicates that the link widths are already scaled into that range.
\end{itemize}
### Syntax

```
SCLWIDTH=Y | N
```

---

**SCNSIZE**

specifies whether the node size values are to be scaled into the range of 0–1.

- **Category:** Diagram Appearance
- **Applies to:** DS2CONST
- **Interaction:** This argument is valid only when DATATYPE=ASSOC.
- **Note:** When the value is Y (default), indicates that the node size values are to be scaled into the range of 0–1. Specifying N indicates that the node sizes are already scaled into that range.
- **Tip:** Use the NSIZE= argument to specify the node size.

---

### Syntax

```
SCNSIZE=Y | N
```

---

**SEPCLASS**

specifies the path or URL, relative or absolute, to the style sheet that is used for the page separator.

- **Category:** Page Formatting
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** If the value of the SEPTYPE= argument is RULE, then the value of the SEPCLASS= argument is used on the CLASS attribute of the HTML tag `<HR>`. If the value of the SEPTYPE= argument is IMAGE, then the value of SEPCLASS= argument is used on the CLASS attribute of the HTML tag `<IMG>`.

---

### Syntax

```
SEPCLASS=page-separator-stylesheet
```

---

**SEPLOC**

specifies the path or URL, relative or absolute, to the image that you want to use as the separator between the graphs in your presentation.

- **Category:** Page Formatting
- **Applies to:** DS2CONST and DS2TREE
- **Interaction:** This argument is valid only when SEPTYPE=IMAGE.

---

### Syntax

```
SEPLOC=separator-image
```
SEPTYPE

specifies the type of separator that is used between multiple applets in your presentation.

**Category:** Page Formatting  
**Default:** RULE  
**Applies to:** DS2CONST and DS2TREE

**Syntax**

SEPTYPE= IMAGE | NONE | RULE

**Argument Values**

IMAGE  
specifies separate graphs using the image specified in the SEPLOC= argument.

NONE  
specifies not to use a separator between applets.

RULE  
inserts a line between applets. This is the default.

SHOWLINKS

specifies whether initially to display all arc lines between nodes.

**Category:** Diagram Appearance  
**Default:** Y  
**Applies to:** DS2CONST  
**Notes:** This argument affects only the initial display. A viewer can subsequently control which arc lines are displayed by right-clicking and selecting Show links from the pop-up menu. Specifying N suppresses all arc lines.

**Syntax**

SHOWLINKS=Y | N

SPCLASS

specifies the name of the style sheet class that is to be used for the Powered by SAS logo.

**Category:** Page Formatting  
**Applies to:** DS2CONST and DS2TREE
**Syntax**

SPCLASS=logo-stylesheet-name

**SPREAD**

specifies the angular spreading factor for the layout of the diagram.

- **Category:** Diagram Appearance
- **Default:** 1.25
- **Applies to:** DS2TREE
- **Requirement:** The value specified must be greater than or equal to 1.0.

**Syntax**

SPREAD=angular-factor

**SSFILE1–SSFILE5**

embeds in the HTML file the entire contents of the specified file.

- **Category:** Style Sheets
- **Applies to:** DS2CONST and DS2TREE

**Syntax**

SSFILE1–SSFILE5=file-specification

**SSFREF1–SSFREF5**

embeds in the HTML file the entire contents of the file that is referenced by the SAS fileref.

- **Category:** Style Sheets
- **Applies to:** DS2CONST and DS2TREE

**Syntax**

SSFREF1–SSFREF5=fileref

**SSHREF1–SSHREF5**

specifies the URL of the style sheet in the HREF= attribute of the LINK tag.

- **Category:** Style Sheets
- **Applies to:** DS2CONST and DS2TREE
Note: If you specify a relative URL, it must be relative to the location of the HTML output file.

Syntax

SSHREF1–SSHREF5=style-sheet-URL

SSMEDIA1–5

specifies the media for which the style sheet was designed.

Category: Style Sheets

Default: The value of SCREEN

Applies to: DS2CONST and DS2TREE

Notes: The value is applied to the MEDIA= attribute of the LINK tag.
Examples of other valid MEDIA values include BRAILLE for tactile feedback devices, and HANDHELD for small-screen devices.

Syntax

SSMEDIA1–5=media

SSREL1–5

specifies the REL= attribute of the LINK tag, which describes the relationship from the linked file to the HTML file.

Category: Style Sheets

Applies to: DS2CONST and DS2TREE

Syntax

SSREL1–5=relationship

Details

The value of this tag is generally STYLESHEET. The arguments SSREL1–5= can also be used with the arguments SSREV1–5= to link HTML pages in a series. For example, the SSREL1= argument can specify the next document in the series, and the SSREV2= argument can specify the reverse relationship, which would be the previous document in the series. Both arguments, SSRELn= and SSREVn=, can appear in the same LINK tag.

SSREV1–5

specifies the REV= attribute of the LINK tag, which describes the relationship from the HTML file to the linked file.

Category: Style Sheets
**Applies to:** DS2CONST and DS2TREE

**See:** SSREL1–5

---

### Syntax

SSREV1–5=relationship

---

**SSTITLE1–5**

specifies the TITLE= attribute of the LINK tag. The TITLE= attribute provides a title for the referenced page.

**Category:** Style Sheets

**Applies to:** DS2CONST and DS2TREE

**Tip:** Use this argument when you are using the SSRELn= and SSREVn= arguments to specify next and previous links in a series of web pages.

---

### Syntax

SSTITLE1–5=title-of-linked-page

---

**SSTYPE1–5**

specifies the TYPE= attribute of the LINK tag.

**Category:** Style Sheets

**Applies to:** DS2CONST and DS2TREE

**Tip:** For cascading style sheets, this value usually is TEXT/CSS. For JavaScript style sheets, this value is generally TEXT/JAVASCRIPT.

---

### Syntax

SSTYPE1–5=stylesheet-type

---

**TCLASS**

specifies the name of the style sheet class that is to be used for the SAS TITLE or FOOTNOTE.

**See:** FCLASS and TCLASS on page 174

---

**TCOLOR**

specifies the color of the text in the SAS TITLE or FOOTNOTE.

**See:** FCOLOR and TCOLOR on page 175
TFACE

specifies a text font for the SAS TITLE or FOOTNOTE.

See: FFACE and TFACE on page 175

TIPS

indicates whether pop-up data tips are displayed when the cursor is positioned over nodes or links or both.

Category: Diagram Appearance
Default: Y
Applies to: DS2CONST and DS2TREE

Syntax

TIPS=Y | N

TIPTYPE

specifies whether the pop-up data tip window moves with the cursor or remains stationary.

Category: Diagram Appearance
Default: TRACKING
Applies to: DS2CONST

Syntax

TIPTYPE=TRACKING | STATIONARY

TRANLIST

specifies the name and location of an existing transcoding list, either user-defined or from SAS.

Category: Character Transcoding
Applies to: DS2CONST and DS2TREE
Requirements: This argument is required if you are implementing character transcoding.
The transcoding list name must be a four-level name, and the fourth level must be SLIST, as in the following example:

TRANLIST=SASHELP.HTMLGEN.IDENTITY.SLIST

Tip: SAS provides a number of transcoding lists in the SASHELP.HTMLNLS catalog. For a description of these transcoding lists, and for information about generating your own transcoding lists, see the SAS website at http://support.sas.com/md/web/intmrt/format/lang2.html.
Syntax

TRANLIST=transcoding-list-name

TREEDIR

determines the growth direction of the node and link diagram.

- **Category:** Diagram Appearance
- **Default:** CIRCULAR
- **Applies to:** DS2TREE
- **Interaction:** The TREEDIR= argument overrides the ANGLE= argument.

Syntax

TREEDIR=C | D | L | R | U

**Argument Values**

- **C | CIRCULAR**
  
  grows the tree in a circular pattern. This is the default value.

- **D | DOWN**
  
  grows the tree from top to bottom using center alignment.

- **L | LEFT**
  
  grows the tree from left to right and top to bottom.

- **R | RIGHT**
  
  grows the tree from right to left and top to bottom.

- **U | UP**
  
  grows the tree from the bottom up using center alignment.

**Details**

If the value of the TREEDIR= argument is UP or DOWN, then the value of the TREESPAN= argument is used to set the angular width of the diagram. The starting node is aligned horizontally in the center of the applet. The diagram grows out of the starting node based on the angular width specified in the TREESPAN= argument. The wider the angle, the wider the layout of the diagram.

TREESPAN

specifies the angular width of the diagram in degrees.

- **Category:** Diagram Appearance
- **Default:** 60
- **Range:** 0 < angular-diagram-width < 360
- **Applies to:** DS2TREE
- **See:** TREEDIR and ANGLE on page 164
Syntax

TREESPAN=angular-diagram-width

TSIZE

specifies the size of the text font that is to be used for the SAS TITLE or FOOTNOTE.

See:  FSIZE and TSIZE on page 176

TTAG

specifies a text string that the macro translates into one or more tags that will enclose the SAS TITLE or FOOTNOTE.

See:  FTAG and TTAG on page 177

VSPACE

specifies the amount of vertical space, in pixels, to the top and bottom of the graph or diagram.

Category:  APPLET Tag
Applies to:  DS2CONST and DS2TREE

Syntax

VSPACE=ixels

WIDTH

specifies the width of the applet window.

Category:  APPLET Tag
Applies to:  DS2CONST and DS2TREE
Note:  The unit of measure defaults to pixels unless otherwise specified by the AWUNITs= argument.

Syntax

WIDTH=applet-width

XMLFILE

specifies the name and storage location of the XML output file.

Category:  HTML and XML File Information
Applies to:  DS2CONST and DS2TREE
Restriction: Do not specify both XMLFILE= and XMLFREF=. Specify one or the other.

Requirement: If you specify MAKEXML=Y and XMLTYPE=EXTERNAL, you must also specify the XMLFILE= argument or the XMLFREF= argument.

Note: If the external file does not exist, then it is created for you.

Syntax

XMLFILE=external-filename

XMLFREF

specifies the SAS fileref that identifies the name and storage location of the XML output file.

Category: HTML and XML File Information

Applies to: DS2CONST and DS2TREE

Restrictions: Do not specify both XMLFREF and XMLFILE. Specify one or the other.

Do not use a reserved name. See “Reserved Names” on page 162.

Requirement: If you specify MAKEXML=Y and XMLTYPE=EXTERNAL, you must also specify the XMLFREF= or XMLFILE= argument.

Note: If the external file does not exist, then it is created for you.

Syntax

XMLFREF=fileref

XMLTYPE

specifies whether the XML output file is to be written to an external file or included inline with the HTML.

Category: HTML and XML File Information

Default: INLINE

Applies to: DS2CONST and DS2TREE

Requirements: If you specify MAKEXML=Y, you must also specify the XMLTYPE= argument.

If you specify EXTERNAL=, you must also specify a value for the XMLFILE= argument or the XMLFREF= argument.

Syntax

XMLTYPE=INLINE | EXTERNAL

XMLURL

specifies the URL of the existing file that contains the XML tags that define the node and link diagram.

Category: HTML and XML File Information
Applies to: DS2CONST and DS2TREE

Requirement: If you specify XMLTYPE=EXTERNAL, you must also specify a value for the XMLURL= argument.

Syntax

XMLURL=URL

ZOOM

specifies the zoom value that is used for the initial display of the diagram.

Category: Diagram Appearance

Default: 100

Applies to: DS2CONST

Syntax

ZOOM=starting-percentage

Details

After the initial display, the web user can change the zoom percentage moving the mouse upward or downward while pressing Ctrl + left mouse button. Selecting the Refresh button on the browser runs the applet and restores the initial zoom setting. The default value is 100%. The initial diagram can be scaled up with a value greater than 100 or scaled down with a value less than 100.
Recommended Reading

- *SAS/GRAPH: Reference*

For a complete list of SAS publications, go to sas.com/store/books. If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books
absolute coordinate
a coordinate that is measured from the origin of a coordinate system.

ActiveX
a technology developed by Microsoft that is used to add interactivity to web pages.

ActiveX control
a type of web application that is developed specifically for the Windows operating environment. ActiveX controls can provide web users with interactive capabilities.

area bar chart
a bar chart that applies an additional magnitude of width to the bars that results in categorized bars. Each bar has both a height and a width measure that can be independent of each other.

aspect ratio
the ratio of a shape's width to its height in an output area such as a display, plotter, or film recorder.

axis
a line that represents the midpoints (for a discrete axis) or the scale (for a continuous or interval axis) for graphing variable or data values. An axis typically consists of an axis line with tick marks, tick values (or midpoint values), and a label.

axis area
an area bounded by axes, which might be enclosed by an axis line.

baseline
in a font, the imaginary line upon which the characters rest.

block map
a three-dimensional map that uses blocks of varying heights to represent the value of a variable for each map area.

boundary
in the GMAP procedure, a separating line or point that distinguishes between two or more unit areas or segments.
capline
the highest point of a normal uppercase letter. In some fonts, the capline might be above the top of the letter to allow room for an accent.

Cartesian coordinate system
the two- or three-dimensional coordinate system in which perpendicular axes meet at the origin (0,0) or (0,0,0). Typically, Cartesian coordinate axes are called X, Y, and Z.

cell
in device-based SAS/GRAPH procedures, a unit of measure whose size and shape is determined by both the size of the graphics output area and by the number of rows and columns in the graphics output area.

center point
the location in the GRAPH window that, in conjunction with a radius point, defines the placement and shape of an ellipse or a pie.

CGM
See computer graphics metafile

character up vector
the angle at which a character is positioned. The character up vector has two components, x and y, which determine the angle.

chart statistic
the statistical value calculated for the chart variable: frequency, cumulative frequency, percentage, cumulative percentage, sum, or mean.

chart variable
a variable in the input data set whose values are categories of data represented by bars, blocks, slices, or spines.

chart vertex
a point on a radar chart where a statistical value intersects the spokes.

choropleth map
a two-dimensional map that uses color and fill pattern combinations to represent different categories or levels of magnitude.

class variable
See classification variable

classification variable
a variable whose values are used to classify the observations in a data set into different groups that are meaningful for analysis. A classification variable can have either character or numeric values. Classification variables include group, subgroup, category, and BY variables.

CMYK
A color coding scheme that specifies a color in terms of the levels of cyan, magenta, yellow, and black components. The level of each component ranges from 0 to 255.
color list
the list of foreground colors available for the graphics output. The color list is either
the default list established from the style, the list created from the device entry, or the
list established from the colors specified with the COLORS= graphics option.

color map
in SAS/GRAPH software, a table that is used to translate the original colors in
graphics output to different colors when replaying graphics output using the
GREPLAY procedure. The table is contained in a catalog entry.

computer graphics metafile
a graphics output file written in the internationally recognized format for describing
computer graphics images. This standardization allows any image in a CGM to be
imported and exported among different systems without error or distortion.

confidence limits
the upper and lower values of a (usually 95%) confidence interval. In repeated
sampling, approximately (1-alpha)*100% of the resulting intervals would contain the
true value of the parameter that the interval estimates (where alpha is the confidence
level associated with the interval).

contour plot
a three-variable plot that uses line styles or patterns to represent levels of magnitude
of z corresponding to x and y coordinates.

coordinate
a value that represents the location of a data point or a graphics element with respect
to a coordinate system.

coordinate system
the context in which to interpret coordinates. Coordinate systems vary according to
their origin, limits, and units.

data area
the portion of the graphics output area in which data values are displayed. The data
area is bounded by axes or map areas. In the Annotate facility, the data area defines a
coordinate system.

data tip
data or other detailed information that is displayed when a user positions a mouse
pointer over an element in a graph. For example, a data tip typically displays the data
value that is represented by a bar, a plot point, or some other element.

density value
a value assigned to each observation in a map data set reflecting the amount of detail
(resolution) contributed by the observation.

device driver
in SAS/GRAPH software, a routine that generates the specific machine-language
commands needed to display graphics output on a particular device. SAS/GRAPH
device drivers take device-independent graphics information produced by
SAS/GRAPH procedures and create the commands required to produce the graph on
the particular device.
device entry
a SAS catalog entry of type DEV that stores the values of device parameters (or the characteristics) that are used with a particular output device.

device map
a catalog entry used to convert the SAS/GRAPH internal encoding for one or more characters to the device-specific encoding needed to display the characters in hardware text on a particular graphics output device.

device parameter
a value in a device entry that defines a default behavior or characteristic of a device driver. Some device parameters can be overridden by graphics options.

device-independent catalog entry
a SAS catalog entry that contains graphics output in a generic format (not device-specific). A device-independent catalog entry can be replayed on any device supported by SAS/GRAPH software.

device-resident font
a font stored in an output device.

document file
a file output by the Output Delivery System (ODS) that contains an image or is used to view an image. Examples include HTML, PDF, RTF, SVG, and PostScript files.

drill down
to explore data and access information by moving from summary information to more detailed data from which the summary is derived. For example, you could click folders in a hierarchy from the top downwards to find a specific file. Drilling down provides a method of exploring multidimensional data by moving from one level of detail to the next.

fill color
the color of a pattern in a filled, closed graphics object, such as a bar segment, a pie slice, or a map area.

font
a typeface with a specific character shape, spacing, weight, and size. The characters in a font can be figures, symbols, or alphanumeric.

font family
a set of one or more typefaces that share common design characteristics such as serifs, proportional or uniform spacing, or special symbols. For example, Helvetica, Arial, and Albany AMT are members of a sans-serif, proportional font family.

font maximum
in the GFONT procedure, the highest vertical coordinate in a font.

font minimum
in the GFONT procedure, the lowest vertical coordinate in a font.

font unit
in the GFONT procedure, a unit within a range that is defined by coordinates specified in the font data set. For example, a font in which the vertical coordinates range from 10 to 100 has 90 font units.
**FreeType font-rendering**
a method of rendering fonts that uses the FreeType engine to access the content of font files in order to render high-quality fonts for ODS and SAS/GRAPH. The FreeType engine can be used in all SAS operating environments.

**geo-variable**
in a feature table, the $GEOREF formatted variable that stores the spatial information as a geometry object.

**geocoding**
the process of assigning geographic coordinates (often expressed as latitude and longitude) to other geographic data such as street addresses, or postal codes.

**global statement**
a SAS statement that you can specify anywhere in a SAS program.

**graphics device**
See graphics output device

**graphics element**
a discrete visual part of a picture. For example, a bar in a chart and a plot's axis label are both graphics elements.

**graphics object**
a discrete visual element of a graph or picture (for example, a bar in a chart, a polygon, a plot's axis, and so on).

**graphics option**
in a SAS GOPTIONS statement, an option that controls some attribute of the graphics output. The specified value remains in effect only for the duration of the SAS session. Some graphics options override parameters that have been specified for a graphics output device.

**graphics output**
output from a graphics program that can be stored as a catalog GRSEG entry or as a graphics stream file.

**graphics output area**
the area of a graphics output device where the graphics output is displayed or drawn. Typically, the graphics output area occupies the full drawing area of the device, but the dimensions of the graphics output area can be changed with graphics options or device parameters.

**graphics output device**
any terminal, printer, or other output device that is capable of displaying or producing graphical output.

**graphics output file**
a file that contains bitmapped or vector graphic information.

**graphics primitive**
a function that draws a graphics element.
graphics stream file
a file that contains device-dependent graphics commands from a SAS/GRAPH device driver. This file can be sent to a graphics device or to other software applications.

graphics template
See ODS template

gray scale
a color-coding scheme that specifies a color in terms of gray components. Gray-scale color codes are commonly used with some laser printers and PostScript devices.

grid point
a grid location in the GRAPH window that is marked by a dot. Grid points are used for precision placement of objects.

grid request
in the G3GRID procedure, the request specified in a GRID statement that identifies the horizontal variables that identify the x, y plane and one or more z variables for the interpolation.

group variable
a variable in the input data set that is used to categorize chart variable values into groups. A group variable enables the data for each distinct group value to be rendered in a visually different manner. For example, a grouped scatter plot displays a distinct marker and color for each group value.

GRSEG
a SAS catalog entry that contains graphic output in a generic, rather than device-specific, format.

GSF
See graphics stream file

handshaking
the exchange of signals between two devices over an interface for control or synchronization purposes. Data flow control is needed to ensure that data are not sent faster than the receiving device can process them. Handshaking usually involves sending signals between the device and the host computer in order to start and stop transmission of data.

hardcopy device
See graphics output device

hardware character set
a set of character definitions held internally in a graphics output device. When a hardware character set is used, SAS/GRAPH software does not have to send the device all the commands to draw characters, only the corresponding character codes. Some devices have more than one hardware character set.

hardware handshaking
a method of data flow control in which the flow of data between the computer and device is regulated by signals sent over separate wires in the connecting cable.

hatch
a fill pattern consisting of parallel lines at any specified angle.
**HLS**
a color-coding scheme that specifies a color in terms of its hue, lightness, and saturation components. Hue is the color, lightness is the percentage of white, and saturation is the attribute of a color that determines its relative strength and its departure from gray. Lightness and saturation added to the hue produce a specific shade.

**host computer**
a workstation or minicomputer accessed by a terminal or another workstation.

**host font-rendering**
a method of rendering fonts that relies on the capabilities of the operating environment.

**HSV model**
a color-coding scheme that specifies a color in terms of its hue, saturation, and value components. Hue is the color. Saturation is the aspect of a color that determines its relative strength and departure from gray. And value, or brightness, is the color's departure from black.

**identification variable**
a variable common to both the map data set and the response data set that the GMAP procedure uses to associate each pair of map coordinates and each response value with a unique map area.

**image file**
a file that contains bitmapped graphic information. Examples include GIF, PNG, TIFF, and JPEG files. Image files are a subset of graphics output files.

**image map**
a diagram that associates graphic elements with HTML links to implement drill-down functionality. The graphic elements are represented by sets of coordinates.

**import**
to restore a SAS transport file to its original form (a SAS library, a SAS catalog, or a SAS data set) in the format that is appropriate for the host operating system. You use the CIMPORT procedure to import a SAS transport file that was created by the CPORT procedure.

**include**
in the graphics editor, to read in or link to a graph other than the one currently being edited.

**interactive graph**
output that features user controls such as menus, buttons, and pictures that a user can manipulate. The controls are driven by a Java applet or an ActiveX control.

**interpolate**
to estimate values that are between two or more known values.

**Joint Photographic Experts Group**
an industry-standard file format for compressed images. Saving an image in JPEG format typically provides 10:1 compression with little perceptible loss in image quality.
JPEG
See Joint Photographic Experts Group

justify
to position text in relation to the left or right margin or the center of the line.

key map
a SAS catalog entry used to translate the codes generated by the keys on a keyboard into their corresponding SAS/GRAPH internal character encoding.

label
descriptive text that is associated with a variable. By default, this text is the name of a variable or of a label previously assigned with the LABEL= option.

latitude
used with maps, the angular measure between the equator and the circle of parallel on which a point lies.

library reference
See libref

libref
a SAS name that is associated with the location of a SAS library. For example, in the name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS library.

link to
in the graphics editor, to include one graph into another by placing a template of that graph in the current graph. The template acts as a placeholder and can be resized; it creates a connection between the graph being edited and the linked-to graph such that any changes made to the linked-to graph are reflected in the graph where a template is placed.

longitude
used with maps, the angular measure between the reference meridian and the plane intersecting both poles and a point. The reference meridian, called the prime meridian, is assigned a longitude of 0, and other longitude values are measured from there in appropriate angular units (degrees or radians, for example).

major axis
in the graphics editor, the longest axis of a graphics object.

major tick mark
one of a series of points on an axis that mark the major divisions of the axis scale.

map
a graphic representation of an area. The area is often a geographic area, but it can also be any other area of any size.

map area
See unit area

map data set
a data set provided by SAS that contains variables whose values are coordinates that define the boundaries of map areas, such as a state or country.
mapping
the process of displaying data values on a map.

marker
a symbol such as a diamond, a circle, or a triangle that is used to indicate the location of, or annotate, a data point in a plot or graph.

meridian
an imaginary circle of constant longitude around the surface of the earth perpendicular to the equator.

metafile
a file, produced by the Metagraphics facility internal driver, that contains device-independent graphics commands in a special format. A user-written external driver routine is required to read and process the metafile.

**Metagraphics driver**
a type of SAS/GRAPH device driver that can be written by users. A Metagraphics driver consists of an internal driver (supplied with SAS/GRAPH software), which writes a metafile in a special format, and an external driver (written by the user), which decodes the metafile and writes device-specific commands.

midpoint
a value that represents the middle of a range of data values.

minor axis
in the graphics editor, the shortest axis of a graphics object.

minor tick mark
one of a series of points that fall between major tick marks on an axis scale.

needle plot
a plot in which data points are connected by a vertical line that connects to a horizontal baseline. The baseline intersects the 0 value, or the minimum value on the vertical axis.

node
a connection point between two or more links. In a node/link diagram, nodes are typically represented as a box and enable you to access information and possibly to traverse the graph by drilling up or down in the structure.

**ODS template**
a description of how output should appear when it is formatted. ODS templates are stored as compiled entries in a template store, also known as an item store. Common template types include STATGRAPH, STYLE, CROSSTABS, TAGSET, and TABLE.

offset
the distance between a graphics object's original position and its new position when it is moved. Offsets can be specified for legends, axes, an entire graph, or other graphics object.

origin
in a three-dimensional graph, the point at which the X, Y, and Z axes intersect. In a two-dimensional graph, the point at which the X and Y axes intersect.
parallel
an imaginary circle of constant latitude around the surface of the earth parallel to the equator.

pattern type
in SAS/GRAPH software, the set of fill patterns that are valid for a particular type of graph. The PATTERN statement supports three pattern types: bar and block patterns, map and plot patterns, and pie and star patterns.

pie chart
a circular chart that is divided into slices by radial lines. Each slice represents the relative contribution of each part to the whole.

pixel
an element of an electronic image. A pixel is the smallest element on a display that can be assigned a separate color.

plot
a visual representation of data such as a scatter plot, needle plot, or contour plot.

plot line
the line joining the data points in a plot.

plotter
a class of graphics devices that typically use pens to draw hard-copy output.

PNG
See Portable Network Graphic

polygon font
a SAS/GRAPH font in which the characters are drawn with enclosed areas that can be either filled or empty.

polyline
in SAS/GRAPH software, a graphics object composed of connected line segments that might have attributes. A polyline is not a closed object; therefore, it cannot be filled with a pattern.

Portable Network Graphic
a file format that returns the graphical output in separate files and that produces a non-interactive image. This format is similar to the GIF format, but has additional features, such as support for true-color images and better compression.

PostScript
a device-independent page description language for printing high-resolution integrated text and graphics.

predefined color
one of the set of colors for which SAS/GRAPH software defines and recognizes names (for example, BLACK, BLUE, and CYAN).

prism map
a three-dimensional map that uses prisms (polyhedrons with two parallel surfaces) of varying height to indicate the ordinal magnitude of a response variable.
**procedure output area**
the portion of the graphics output area where the output from a graphics procedure is displayed.

**projection**
a two-dimensional map representation of unit areas on the surface of a sphere (for example, geographic regions on the surface of the Earth).

**prompt character**
a character sent by the host computer to a device to signal that the host has finished transmitting data and is ready for a response from the device.

**protocol**
a set of rules that govern data communications between computers, between computers and peripheral devices, and between software applications. TCP/IP, FTP, and HTTP are examples of protocols.

**radar chart**
a chart that shows the relative frequency of data measures with statistics displayed along spokes that radiate from the center of the chart. The charts are often stacked on top of one another with circular reference lines, thus giving them the look of a radar screen.

**rasterizer**
a device that accepts commands (such as moves and draws) as input and that converts those commands into a bit-map. Rasterizers are connected between host computers and graphics output devices that require bitmapped input.

**regression analysis**
an analysis that models a dependent (or response) variable as a function of one or more independent (or predictor) variables. The regression line, which is the set of predictions from the model, appears as a line or curve in a plot of the dependent variable against an independent variable.

**relative coordinate**
a coordinate that is measured from a point other than the origin. In the Annotate facility, this point is usually the endpoint of the last graphics element that was drawn.

**replay**
in SAS/GRAPH software, to display graphics output that is stored in a catalog entry using the GREPLAY procedure.

**response data set**
a SAS data set used by the GMAP procedure that contains data values associated with map areas and one or more identification variables.

**response levels**
the individual values or ranges of values into which the GMAP or GCHART procedure divides the response variable.

**response values**
values of a response variable that the GMAP procedure represents on a map as different pattern/color combinations, or as raised map areas (prisms), spikes, or blocks of different heights. The GCHART procedure represents response values as bars, slices, spines, or blocks.
**response variable**

in the GMAP procedure, a variable in the response data set that contains data values that are associated with a map area.

**RGB color model**

a color-coding scheme that specifies a color in terms of amounts of red, green, and blue components.

**SAS/GRAPH font**

a font stored in the SASHELP.FONT catalog, and a font created by the user and stored in a GFONTn catalog. These fonts can be used only by SAS/GRAPH procedures or other procedures that generate GRSEG output files. Examples of SAS/GRAPH fonts include Swiss, Simulate, and Marker. These fonts are provided for specialized purposes only.

**scatter plot**

a two- or three-dimensional plot that shows the joint variation of two (or three) variables from a group of table rows. The coordinates of each point in the plot correspond to the data values for a single table row (observation).

**snap**

in the graphics editor, to automatically place graphics objects in the grid display area with precision.

**software handshaking**

a method of data flow control in which a device and a computer exchange predefined sequences of characters to indicate when data should be transmitted between the two.

**spine**

a line on a star chart used to represent the relative value of the chart statistic for a midpoint. Spines are drawn outward from the center of the chart.

**spline**

a method of interpolation in which a smooth line or surface connects data points.

**spoke**

any of a number of lines that radiate from the center of a radar chart or a star chart. These lines represent statistical information.

**standard deviation**

a statistical measure of the variability of a group of data values. This measure, which is the most widely used measure of the dispersion of a frequency distribution, is equal to the square root of the variance.

**star chart**

a chart that shows the values of chart statistics as either spines of varying lengths or slices of varying sizes. Star charts display statistics in a circle surrounding the spines or slices. See radar chart.

**stroked font**

in SAS/GRAPH software, a font in which the characters are drawn with discrete line segments or circular arcs.
**style attribute**
- a visual property, such as color, font properties, and line characteristics, that is defined in ODS with a reserved name and value. Style attributes are collectively referenced by a style element within a style template.

**subgroup variable**
- the variable in the input data set for a chart that is used to proportionally fill areas of the bars or blocks on a bar chart, or to identify separate rings of a pie chart.

**summary variable**
- a variable in an input data set whose values some SAS/GRAPH procedures total or average to produce the sum or mean statistics, respectively.

**surface map**
- a three-dimensional map that uses spikes of varying heights to indicate levels of relative magnitude.

**surface plot**
- a three-dimensional graph that displays values of a vertical Z variable based on gridded X and Y variables.

**system font**
- a font that can be used by any SAS procedure and by other software such as Microsoft Word. These fonts include TrueType and Type1 fonts. Examples of system fonts include Albany AMT, Monotype Sorts, and Arial.

**Tagged Image File Format**
- See TIFF

**template**
- a specification of an area or areas on a page. A GREPLAY template defines a layout in which you can display one or more graphs on a single page.

**template panel**
- in the GREPLAY procedure, a part of the template in which one or more graphics can be displayed. A template can contain one or more panels.

**thumbnail**
- a small image that can be selected in order to display a larger image.

**TIFF**
- An industry-standard file format for storing compressed images. The Tagged Image File Format specifies compression routines and file formats for a variety of image types, including bilevel, grayscale, and color.

**tile chart**
- See treemap

**tilt angle**
- the measure in degrees from the horizontal axis to the major axis of an object.

**tool palette**
- the collection of icons that represent functions in the interface.
tooltip

descriptive text that appears when a cursor is placed over certain elements of a graphical user interface, such as the tool icons in a toolbar.

translate

to change the location of a graphics object.

treemap

a graph that represents the relative values of data by using rectangular areas. The color of each area represents the value of one measure in the query. The size of each area represents the value of the another measure in the query. (In SAS/GRAPH a treemap is created with the GTILE procedure.)

typeface

a set of characters with a common design, represented by one or more fonts that differ in weight, orientation, width, size, and spacing. For example, Arial, Arial Bold, Arial Italic, and Arial Bold Italic share the same typeface (Arial), but differ in their orientation and weight.

unit

a single quantity of measurement. In SAS/GRAPH software, units can represent any of the following: centimeters, percentages, points, inches, or cells.

unit area

a polygon or group of polygons on a map. For example, states, provinces, and countries are typical map areas. In a map data set, a map area consists of all the observations that have the same values for the identification variable or variables.

view

a definition of a virtual data set that is named and stored for later use. A view contains no data; it merely describes or defines data that is stored elsewhere.

web server

a computer program that delivers (serves) content, such as web pages, over the World Wide Web. It can also refer to the computer or virtual machine that runs the program.

XON/XOFF handshaking

a method of data flow control in which the flow of data between a computer and a device is regulated by the transmission of XON (DC1) and XOFF (DC3) control characters between the device and the computer.
## Index

| A | access permissions, browsers 100 ACTION= macro argument 163 ActiveX Control 15 authentication 101 display features 2 displaying output with 1 drill-down tags 59, 60 embedded graphics in Microsoft Word 26 examples 25 formats supported by 23 generating interactive output for 15 generating output for 20 installing 17 interactive contour plots 28 internationalization 21 JavaScript drill-down with 29, 31 languages 21 procedures and statements generating output for 16 prompting users to install 19 prompts for installing 18 special fonts and symbols 22 uninstalling 19 ActiveX control file (.exe file) location of 106 ACTIVEX graphics output device 7 device catalog entry for 10 output process 10 statements supported by 16 when to use 8 ActiveX output configuring data tips 25 configuring drill-down 24 requirements for viewing 12 ActiveX parameters and attributes 105 ACTXIMG graphics output device 8 AHUNITS= macro argument 164 ALIGN= macro argument 164 ALT= macro argument 164 AMBIENT= parameter, Java and ActiveX 113 ANGLE= macro argument 164 Any drill-down mode 62 appearance controlling in output 11 appearance differences between devices 102 APPELTLOC= system option 107 ARCHIVE= macro argument 165 ARCHIVE= option 106 array of elements working with 69 attributes, Java and ActiveX parameters and attributes 105 ATTRIBUTES= option, ODS statements 105 AWUNITS= macro argument 166 B BACKDROPCOLOR= parameter Java and ActiveX 113 BACKGROUNDCOLOR= parameter, Metaview applet 114 BACKIMAGE= parameter Java and ActiveX 114 BDCLASS= macro argument 166 BG= macro argument 166 BGTTYPE= macro argument 167 blanks removing from data values 63 BORDER= macro argument 167 browser permissions 100 BRTITLE= macro argument 167 C CATEXT= macro argument 168 CBACK= macro argument 168 CENTER= macro argument 168 CHANDLE= macro argument 169 character formats supported by ACTIVEX 23 characters HTML entities 100 CHARSET= macro argument 169 |
chart descriptions
support in graphics output devices 12
CLASSPATH environmental variables 101
CLINK= macro argument 169
CLIP TIPS= parameter, JAVA 114
CNO DE= macro argument 169
CODEBASE attribute, OBJECT element (HTML) 108
CODEBASE= macro argument 170
CODEBASE= option 106
COLOR MAP= macro argument 170
COLOR N AMELIST= parameter, JAVA 115
COLOR N AMES= parameter, JAVA 115
COLORSCHEME= parameter, Java and ActiveX 115
Constellation applet 5, 81
chart with simple arcs 89
chart with weighted arcs 91
enhancing presentations displayed with 87
examples 89
hotspots 95
programming with DS2CONST macro 83
when to use 82
XML written to external file 93
constellation diagram
chart with simple arcs 89
chart with weighted arcs 91
XML written to external file 93
constellation diagrams 81
examples 89
hotspots 95
Contour applet 3, 35
contour plots
interactive, with ActiveX 28
CSELECT= macro argument 171
CTEXT= macro argument 171
CUTO FF= macro argument 171

D
data tips
configuring for ActiveX output 25
configuring for Java output 42
in ActiveX output 11
in Java output 11
support in graphics output devices 12
data values
formatting 70
DATATYPE= macro argument 172
date and time formats
supported by ACTIVEX 23
DDLEVEL= parameter, Java and ActiveX 117
DDLEVELn applet parameter 65
DEFAULTTARGET= graphics option 117
DEPTH= macro argument 172
device catalog entry
for ACTIVEX graphics output device 10
for JAVA graphics output device 10
for JAVAMETA graphics output device 10
devices
appearance differences among graphs 102
DIRECT= parameter, Java and ActiveX 117
DISABLEDRILLDOWN applet parameter 70
display features
ActiveX Control 2
Java applets 3
DOCTYPE= macro argument 172
drawimage= parameter, JAVA 118
drawmissing= parameter, JAVA 118
drawsides= parameter, JAVA 119
drill-down
configuring for ActiveX output 24
configuring for Java output 42
customizing levels for 65
disabling 70
HTML mode for Java 49
JavaScript, with ActiveX 29, 31
local mode for Java 43
script mode for Java 45
URL mode for Java 47
drill-down functionality
constellation diagrams 95
disabling 70
drill-down links
in ActiveX output 11
in Java output 11
support in graphics output devices 12
Drill-down mode
specifying in ODS HTML statement 61
drill-down tags 59, 60, 64
DRILLDOWN= parameter, Java and ActiveX 119
DRILLDOWNMODE parameter 61, 64, 68
DRILLDOWNMODE= parameter, Java and ActiveX 119
DRILLFUNC parameter 68
DRILLFUNC= parameter, Java and ActiveX 119
DRILLPATTERN parameter 64
DRILLPATTERN= parameter, Java and ActiveX 120
DRILLTARGET applet parameter 64, 67
DRILLTARGET parameter 64, 68
DRILLTARGET= parameter, Java and ActiveX 120
DRILTARG= macro argument 173
DS2CONST macro 11, 83 arguments 88, 152 chart with simple arcs 89 chart with weighted arcs 91 enhancing the presentation 87 examples 89 hotspots 95 stylesheets, macro arguments for 160 XML written to external file 93 DS2TREE macro 11 arguments 75, 152 enhancing the presentation 75 examples 76 hotspots 79 stylesheets, macro arguments for 160 XML written to external file 78 DUPCHECK= macro argument 173 DUPLICATEVALUES= parameter, JAVA 120

E
ENCODE= macro argument 173

F
FACTOR= macro argument 174
FCCLASS= macro argument 174
FCOLOR= macro argument 175
FFACE= macro argument 175
FILLPOLYGONEDGES= parameter, Java and ActiveX 121 FISHEYE= macro argument 175 FNNAME= macro argument 176 FNTSIZE= macro argument 176 FNTSTYL= macro argument 176 fonts ActiveX and 21 in ACTIVEX 22 special Java fonts 38 troubleshooting 102 formats supported by ACTIVEX 23 supported for Java 38 FREQNAME= parameter, Java and ActiveX 122
FSIZE= macro argument 176

G
G_COLOR= parameter, Java and ActiveX 122
G_COLORV= parameters, Java and ActiveX 122
G_DEP= parameter, Java and ActiveX 122
G_DEPTH= parameter, Java and ActiveX 123
G_DEPTHV= parameter, Java and ActiveX 123
G_DEPV= parameter, Java and ActiveX 123
G_GROUP= parameter, Java and ActiveX 123
G_GROUPV= parameter, Java and ActiveX 124
G_INDEP= parameter, Java and ActiveX 124
G_INDEPV= parameter, Java and ActiveX 124
G_LABEL= parameter, Java and ActiveX 124
G_LABELV= parameter, Java and ActiveX 125
G_SUBGR= parameter, Java and ActiveX 125
G_SUBGRV= parameter, Java and ActiveX 125
G_COLORV= parameter, Java and ActiveX 122
G_drill-down tags 59, 60 GRADIENTBACKGROUND= parameter, Java and ActiveX 125 GRADIENTENDCOLOR= parameter, Java and ActiveX 126 GRADIENTSTARTCOLOR= parameter, Java and ActiveX 126
Graph applet 3, 35 disabling drill-down 70 drill-down tags 59, 60 local drill-down mode 61, 65 graphics output 102 generating for ActiveX 20 generating output for Java 36 graphics output device ACTIVEX 7 JAVA 7 JAVAMETA 7 graphs appearance differences among devices 102
H
HEIGHT= macro argument 183
HONORASPECT= parameter, JAVA 126
hotspots
treeview diagrams 79
HSPACE 183
HTML character entities 100
HTML drill-down mode 49, 62
configuring 64
HTML output
Java 38
HTMLFILE= macro argument 183
HTMLFREF= macro argument 184
IBACKLOG= macro argument 184
IBACKPOS= macro argument 184
IBACKURL= macro argument 185
IBACKX=, IVBACKY= macro arguments 185
IMAGEPOSX= parameter, JAVA 127
IMAGEPOSY= parameter, JAVA 127
installation
ActiveX Control 17
installing Java plug-in 108
interactive contour plots
generating in ActiveX 28
interactive Metaview output 51
enhancing web presentations for 53
ODS with 52
sample programs 55
interactive output
Java 35
internationalization
ActiveX and 21
Java and 38
Metaview applet 54
J
Java applets
authentication 101
CLASSPATH environmental variables 101
display features 3
displaying output with 1
generated by SAS/GRAPH 3
Java archive files
location of 106
JAVA graphics output device 7
device catalog entry for 10
for interactive output 9
output process 10
special fonts and symbols 38
statements supported by 35
Java output
configuring data tips 42
configuring drill-down 42
elements of interactive output 42
generating 36
HTML 38
HTML drill-down mode 49
interactive 35
JAVA graphics output device for 9
languages and 38
local drill-down mode 43
requirements for viewing 12
SAS formats supported for 38
script drill-down mode 45
special fonts and symbols 38
URL drill-down mode 47
Java parameters and attributes 105
Java plug-in
installing 108
location of 108
Java Runtime Environment (JRE) plug-in
HTML output and 38
JAVAMETA device driver 51, 52
enhancing web presentations for 53
sample programs 55
JAVAMETA graphics output device 7
device catalog entry for 10
when to use 10
JavaScript
drill-down with ActiveX 29, 31
L
LABELS= macro argument 185
languages
ActiveX and 21
in Java 38
LAYOUT= macro argument 186
LCOLFMT= macro argument 186
LCOLOR= macro argument 186
LCOLVAL= macro argument 187
LDATA= macro argument 187
LEGENDFONT= parameter, JAVA 127
LEGENDFONTSIZE= parameter, JAVA 128
LEGENDHEIGHTPERCENT= parameter, JAVA 128
LEGENDIT= parameter, JAVA 127
LEGENDPERCENT= parameter, JAVA 128
LEGENDWIDTHPERCENT= parameter, JAVA 128
LEVELOFDETAIL= parameter, JAVA 129
LFROM= macro argument 187
LIGHTING= parameter, JAVA 129
LINK element (HTML) 160
LINKTYPE= macro argument 188
LOADFUNC= parameter, JAVA 129
local drill-down mode 43, 61
customizing levels 65
LOCALE= parameter, JAVA 129
LODINDEX= parameter, JAVA 130
LOGRESOURCE= parameter, Metaview applet 54
LOGRESOURCES= graphics option 130
LPT= macro argument 188
LSTIP= macro argument 188
LSTIPFAC= macro argument 189
LTip= macro argument 189
LTipFMT= macro argument 189
LTO= macro argument 190
LVALUE= macro argument 190
LWHERE= macro argument 190
LWIDTH= macro argument 191

M
macro arguments
   DS2CONST macro 88
   DS2TREE macro 75
macro variables, names for 162
   macros
   DS2CONST 11
   DS2TREE 11
MAKEHTML= macro argument 191
MAKEXML= macro argument 191
Map applet 3, 35
drill-down tags 59, 60
MENUREMOVE= parameter, JAVA 133
metacodes 51
outputting with HTML from ODS 55
metacodes zoom control 147
METACODES= graphics option 134
METACODESLABEL= graphics option 135
Metagraphics output, interactive 51
enhancing web presentations for 53
ODS with 52
sample programs 55
Metaview applet 6, 51, 52
enhancing web presentations for 53
non-English resources and fonts 54
sample programs 55
Microsoft Word
   generating ActiveX graphs for 26
MINILEGENDFONTSIZE= parameter, JAVA 135
MINLNKWK= macro argument 192
MISSINGCOLOR= parameter, JAVA 135

N
NACTION= macro argument 192
NAME= macro argument 193
NAME= parameter, JAVA 136
   names
   macro variables 162
NAVIGATERENDERMODE= parameter, JAVA 136
NCOLFMT= macro argument 193
NCOLOR= macro argument 193
NCOLVAL= macro argument 194
NDATA= macro argument 194
NFNTNAME= macro argument 194
NFNTSIZE= macro argument 195
NFNTSTY= macro argument 195
NID= macro argument 195
NLABEL= macro argument 196
node-link diagrams 5, 71, 81
chart with simple arcs 89
chart with weighted arcs 91
generating with DS2CONST macro 83
hotspots 95
when to use 82
XML written to external file 93
NODEBDR= macro argument 196
NOIDESHAPE= macro argument 196
NOJSOBJECT= parameter, JAVA 136
NPARENT= macro argument 197
NPW= macro argument 197
NSCBACK= macro argument 197
NSCTEXT= macro argument 198
NSDATA= macro argument 198
NSDATA= macro argument 198
NSDATA= macro argument 198
NFNTSIZ= macro argument 198
NFNTSTY= macro argument 199
NFNTSIZ= macro argument 199
NSID= macro argument 199
NSIZE= macro argument 200
NSPW= macro argument 200
NSTYLE= macro argument 200
NSWHERE= macro argument 201
NTEXTCOL= macro argument 201
NTIP= macro argument 201
NTIPFMT= macro argument 202
numeric formats
   supported by ACTIVEX 23
NURL= macro argument 202
NVALUE= macro argument 203
NWHERE= macro argument 203
NX=, NY= macro arguments 203

O
OBJECT element (HTML) 105
ODS output
   JAVAMETA driver with 52
metacodes 55
ODS statements
  Java and ActiveX parameters and attributes 105
of variables 62
OPENMODE= macro argument 204
OUTLINES= parameter, JAVA 137
output
  controlling the appearance of 11
  displaying with ActiveX Control and Java applets 1
Java interactive output 35
OVERFLOWCOLOR= parameters, Java and ActiveX 137

P
PAGEPART= macro argument 204
parameters
  Java and ActiveX 105
PARAMETERS= option, ODS statements 105
PATTERNSTRIP applet parameter 63, 64
PATTERNSTRIP parameter 64, 68
PATTERNSTRIP= parameters, Java and ActiveX 137
PROJECTION= parameter, JAVA 137
PROJECTIONRATIO= parameter, JAVA 138
prompts
  for installing ActiveX Control 18

R
RBSIZING= macro argument 205
RENDERMODE= parameter, JAVA 138
RENDEROPTIMIZE= parameter, JAVA 139
RENDERQUALITY= parameter, JAVA 139
reserved names, macro variables 162
RESOURCESFONTNAME= graphics option 140
roles 62
RUNMODE= macro argument 205

S
SAS_ALT_DISPLAY variable
  setting on UNIX 101
SASPOWER= macro argument 205
SCLNWKT= macro argument 206
SCLWIDTH= macro argument 206
SCNSIZE= macro argument 207
script drill-down mode 45, 61, 70
  configuring 68
formatting data values in 70
implementing 69
SEPCCLASS= macro argument 207
SEPOLOC= macro argument 207
SEPTYPE= macro argument 208
SHOWBACKDROP= parameter, JAVA 140
SHOWLINKS= macro argument 208
SIMPLEDEPTHSORT= parameter, JAVA 140
SIMPLETHRESHOLD= parameter, JAVA 141
SPCLASS= macro argument 208
special characters
  HTML entities 100
SPREAD= macro argument 209
SSFILE1=, ..., SSFILE5= macro arguments 209
SSFREF1=, ..., SSFREF5= macro arguments 209
SSHREF1=, ..., SSHREF5= macro arguments 209
SSMEDIA1=, ..., SSMEDIA5= macro arguments 210
SSREL1=, ..., SSREL5= macro arguments 210
SSREV1=, ..., SSREV5= macro arguments 211
SSTITLE1=, ..., SSTITLE5= macro arguments 211
SSTYPE1=, ..., SSTYPE5= macro arguments 211
STACKED= parameter, JAVA 141
STACKPERCENT= parameter, JAVA 141
static images in presentations 3
storing
  Java plug-in 108
stylesheets, macro arguments for 160
substitution strings
  drill-down tags as 64
  removing blanks from data values 63
  using variables as 63
  variables as 65
SURFACESIDECOLOR= parameter, JAVA 142
symbols
  in ACTIVEX 22
  special Java symbols 38

T
text
  HTML entities 100
Tile Chart applet 3, 35
Index 239

TIPBACKCOLOR= parameter, Java and ActiveX 142
TIPBORDERCOLOR= parameter, Java and ActiveX 142
TIPMODE= parameter, Java and ActiveX 143
TIPS= macro argument 212
TIPS= parameter, Java and ActiveX 143
TIPSTEMSIZE= parameter, Java and ActiveX 144
TIPPTEXTCOLOR= parameter, Java and ActiveX 144
TIPTYPE= macro argument 212
TRANLIST= macro argument 212
TREEDIR= macro argument 213
TREESPA N= macro argument 213
Treeview applet 4, 71
enhancing presentations displayed with 75
elements 76
hotspots 79
interactivity 73
programming with DS2TREE macro 73
when to use 72
XML embedded in HTML file 76
XML written to external file 78
treeview diagram
interactivity 73
XML written to external file 78
treeview diagrams 71
examples 76
troubleshooting
web output 97
TTYAG= macro argument 177

V
variables
as substitution strings 65
macro variable names 162
understanding roles of 62
using as substitution strings 63
VIEW2D= parameter, Java and ActiveX 145
VIEWPOINT=2D= parameter, Java and ActiveX 145
VSPACE= macro argument 214

W
web output
developing for Metaview applet 51
page formatting, macro arguments for 166
stylesheets, macro arguments for 160
troubleshooting 97
WIDTH= macro argument 214

X
XBINS= parameter, Java and ActiveX 146
XMLFILE= macro argument 214
XMLFREF= macro argument 215
XMLTYPE= macro argument 215
XMLURL= macro argument 215

Y
YBINS= parameter, Java and ActiveX 146

Z
zoom controls 147
ZOOM= macro argument 216
ZOOMCONTROLENABLED= graphics option 147
ZOOMCONTROLMAX= graphics option 147
ZOOMCONTROLMIN= graphics option 147
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.