Gsas

SAS/ETS ${ }^{\circledR} 9.2$ User's Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/ETS ${ }^{\circledR} 9.2$ User's Guide. Cary, NC: SAS Institute Inc.

SAS/ETS ${ }^{\circledR} 9.2$ User's Guide

Copyright © 2008, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-949-0
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
2nd electronic book, February 2009
1st printing, March 2009
SAS ${ }^{\oplus}$ Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS ${ }^{\oplus}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. © indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

I General Information 1
Chapter 1. What's New in SAS/ETS 3
Chapter 2. Introduction 15
Chapter 3. Working with Time Series Data 63
Chapter 4. Date Intervals, Formats, and Functions 129
Chapter 5. SAS Macros and Functions 149
Chapter 6. Nonlinear Optimization Methods 165
II Procedure Reference 187
Chapter 7. The ARIMA Procedure 189
Chapter 8. The AUTOREG Procedure 313
Chapter 9. The COMPUTAB Procedure 429
Chapter 10. The COUNTREG Procedure 483
Chapter 11. The DATASOURCE Procedure 519
Chapter 12. The ENTROPY Procedure (Experimental) 615
Chapter 13. The ESM Procedure 681
Chapter 14. The EXPAND Procedure 719
Chapter 15. The FORECAST Procedure 773
Chapter 16. The LOAN Procedure 827
Chapter 17. The MDC Procedure 869
Chapter 18. The MODEL Procedure 943
Chapter 19. The PANEL Procedure 1261
Chapter 20. The PDLREG Procedure 1349
Chapter 21. The QLIM Procedure 1375
Chapter 22. The SIMILARITY Procedure (Experimental) 1441
Chapter 23. The SIMLIN Procedure 1511
Chapter 24. The SPECTRA Procedure 1541
Chapter 25. The STATESPACE Procedure 1567
Chapter 26. The SYSLIN Procedure 1613
Chapter 27. The TIMESERIES Procedure 1679
Chapter 28. The TSCSREG Procedure 1727
Chapter 29. The UCM Procedure 1741
Chapter 30. The VARMAX Procedure 1855
Chapter 31. The X11 Procedure 2033
Chapter 32. The X12 Procedure 2101
III Data Access Engines 2187
Chapter 33. The SASECRSP Interface Engine 2189
Chapter 34. The SASEFAME Interface Engine 2289
Chapter 35. The SASEHAVR Interface Engine 2339
IV Time Series Forecasting System 2377
Chapter 36. Overview of the Time Series Forecasting System 2379
Chapter 37. Getting Started with Time Series Forecasting 2383
Chapter 38. Creating Time ID Variables 2439
Chapter 39. Specifying Forecasting Models 2453
Chapter 40. Choosing the Best Forecasting Model 2491
Chapter 41. Using Predictor Variables 2511
Chapter 42. Command Reference 2545
Chapter 43. Window Reference 2553
Chapter 44. Forecasting Process Details 2661
V Investment Analysis 2695
Chapter 45. Overview 2697
Chapter 46. Portfolios 2701
Chapter 47. Investments 2709
Chapter 48. Computations 2753
Chapter 49. Analyses 2765
Chapter 50. Details 2781
Subject Index 2793
Syntax Index 2835

Credits and Acknowledgments

Credits

Documentation

Editing Ed Huddleston, Anne Jones
Technical Review
Jackie Allen, Evan L. Anderson, Ming-Chun Chang, Jan Chvosta, Brent Cohen, Allison Crutchfield, Paige Daniels, Gül Ege, Bruce Elsheimer, Donald J. Erdman, Kelly Fellingham, Laura Jackson, Wilma S. Jackson, Wen Ji, Kurt Jones, Kathleen Kiernan, Jennifer Sloan, Michael J. Leonard, Mark R. Little, Kevin Meyer, Gina Marie Mondello, Steve Morrison, Youngjin Park, David Schlotzhauer, Jim Seabolt, Rajesh Selukar, Arthur Sinko, Michele A. Trovero, Charles Sun, Donna E. Woodward

Documentation Production
Michele A. Trovero, Tim Arnold

Software

The procedures in SAS/ETS software were implemented by members of the Advanced Analytics department. Program development includes design, programming, debugging, support, documentation, and technical review. In the following list, the names of the developers who currently support the procedure are listed first.

AUTOREG	Xilong Chen, Arthur Sinko, Jan Chvosta, John P. Sall
COMPUTAB	Michael J. Leonard, Alan R. Eaton, David F. Ross
COUNTREG	Jan Chvosta, Laura Jackson
DATASOURCE	Kelly Fellingham, Meltem Narter
ENTROPY	Xilong Chen, Arthur Sinko, Greg Sterijevski, Donald J. Erdman
ESM	Michael J. Leonard
EXPAND	Marc Kessler, Michael J. Leonard, Mark R. Little
FORECAST	Michael J. Leonard, Mark R. Little, John P. Sall
LOAN	Gül Ege
MDC	Jan Chvosta
MODEL	Donald J. Erdman, Mark R. Little, John P. Sall
PANEL	Jan Chvosta, Greg Sterijevski
PDLREG	Xilong Chen, Arthur Sinko, Jan Chvosta, Leigh A. Ihnen
QLIM	Jan Chvosta
SIMILARITY	Michael J. Leonard
SIMLIN	Mark R. Little, John P. Sall
SPECTRA	Rajesh Selukar, Donald J. Erdman, John P. Sall
STATESPACE	Donald J. Erdman, Michael J. Leonard
SYSLIN	Donald J. Erdman, Leigh A. Ihnen, John P. Sall
TIMESERIES	Marc Kessler, Michael J. Leonard
TSCSREG	Jan Chvosta, Meltem Narter
UCM	Rajesh Selukar
VARMAX	Youngjin Park
X11	Wilma S. Jackson, R. Bart Killam, Leigh A. Ihnen,

	Richard D. Langston
X12	Wilma S. Jackson
Time Series Investment Analysis System	Evan L. Anderson, Michael J. Leonard, Meltem Narter, Gül Ege Gül Ege, Scott Gray, Michael J. Leonard
Compiler and Symbolic Differentiation	Stacey Christian
SASEHAVR	Kelly Fellingham
SASECRSP	Kelly Fellingham, Peng Zang
SASEFAME	Kelly Fellingham Testing
	Jackie Allen, Ming-Chun Chang, Bruce Elsheimer, Kelly Felling- carella, Peng Zang

Technical Support

Members Paige Daniels, Wen Ji, Kurt Jones, Kathleen Kiernan, Kevin Meyer, Gina Marie Mondello, David Schlotzhauer, Donna E. Woodward

Acknowledgments

Hundreds of people have helped the SAS System in many ways since its inception. The following individuals have been especially helpful in the development of the procedures in SAS/ETS software. Acknowledgments for the SAS System generally appear in Base SAS ${ }^{\circledR}$ software documentation and SAS/ETS software documentation.

David Amick	Idaho Office of Highway Safety
David M. DeLong	Duke University
David Dickey	North Carolina State University
Douglas J. Drummond	Center for Survey Statistics
William Fortney	Boeing Computer Services
Wayne Fuller	Iowa State University
A. Ronald Gallant	The University North Carolina at Chapel Hill
Phil Hanser	Sacramento Municipal Utilities District
Marvin Jochimsen	Mississippi R\&O Center
Jeff Kaplan	Sun Guard
Ken Kraus	Center for Research in Security Prices
George McCollister	San Diego Gas \& Electric
Douglas Miller	Purdue University
Brian Monsell	U.S. Census Bureau
Robert Parks	Washington University
Gregory Sali	Idaho Office of Highway Safety
Bob Spatz	Center for Research in Security Prices
Mary Young	Salt River Project

The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.

Part I

General Information

Chapter 1

What's New in SAS/ETS

Contents

What's New in SAS/ETS for SAS 9.2 3
Overview 3
AUTOREG Procedure 4
COUNTREG Procedure 5
DATASOURCE Procedure 5
New ESM Procedure 5
MODEL Procedure 5
PANEL Procedure 6
QLIM Procedure 6
SASECRSP Engine 7
SASEFAME Engine 7
SASEHAVR Engine 8
New SIMILARITY Procedure (Experimental) 9
UCM Procedure 9
VARMAX Procedure 10
X12 Procedure 12
References 13

This chapter summarizes the new features available in SAS/ETS software with SAS 9.2. It also describes other new features that were added with SAS 9.1.

What's New in SAS/ETS for SAS 9.2

Overview

Many SAS/ETS procedures now produce graphical output using the SAS Output Delivery System. This output is produced when you turn on ODS graphics with the following ODS statement:

```
ods graphics on;
```

Several procedures now support the PLOTS= option to control the graphical output produced. (See the chapters for individual SAS/ETS procedures for details on the plots supported.)

With SAS 9.2, SAS/ETS offers three new modules:

- The new ESM procedure provides forecasting using exponential smoothing models with optimized smoothing weights.
- The SASEHAVR interface engine is now production and available to Windows users for accessing economic and financial data residing in a HAVER ANALYTICS Data Link Express (DLX) database.
- The new SIMILARITY (experimental) procedure provides similarity analysis of time series data.

New features have been added to the following SAS/ETS components:

- PROC AUTOREG
- PROC COUNTREG
- PROC DATASOURCE
- PROC MODEL
- PROC PANEL
- PROC QLIM
- SASECRSP Interface Engine
- SASEFAME Interface Engine
- SASEHAVR Interface Engine
- PROC UCM
- PROC VARMAX
- PROC X12

AUTOREG Procedure

Two new features have been added to the AUTOREG procedure.

- An alternative test for stationarity, proposed by Kwiatkowski, Phillips, Schmidt, and Shin (KPSS), is implemented. The null hypothesis for this test is a stationary time series, which is a natural choice for many applications. Bartlett and quadratic spectral kernels for estimating long-run variance can be used. Automatic bandwidth selection is an option.
- Corrected Akaike information criterion (AICC) is implemented. This modification of AIC corrects for small-sample bias. Along with the corrected Akaike information criterion, the mean absolute error (MAE) and mean absolute percentage error (MAPE) are now included in the summary statistics.

COUNTREG Procedure

Often the data that is being analyzed take the form of nonnegative integer (count) values. The new COUNTREG procedure implements count data models that take this discrete nature of data into consideration. The dependent variable in these models is a count that represents various discrete events (such as number of accidents, number of doctor visits, or number of children). The conditional mean of the dependent variable is a function of various covariates. Typically, you are interested in estimating the probability of the number of event occurrences using maximum likelihood estimation. The COUNTREG procedure supports the following types of models:

- Poisson regression
- negative binomial regression with linear (NEGBIN1) and quadratic (NEGBIN2) variance functions (Cameron and Trivedi 1986)
- zero-inflated Poisson (ZIP) model (Lambert 1992)
- zero-inflated negative binomial (ZINB) model

DATASOURCE Procedure

PROC DATASOURCE now supports the newest Compustat Industrial Universal Character Annual and Quarterly data by providing the new filetypes CSAUCY3 for annual data and CSQUCY3 for quarterly data.

New ESM Procedure

The ESM (Exponential Smoothing Models) procedure provides a quick way to generate forecasts for many time series or transactional data in one step. All parameters associated with the forecast model are optimized based on the data.

MODEL Procedure

The t copula and the normal mixture copula have been added to the MODEL procedure. Both copulas support asymmetric parameters. The copula is used to modify the correlation structure of
the model residuals for simulation.
Starting with SAS 9.2, the MODEL procedure stores MODEL files in SAS datasets using an XMLlike format instead of in SAS catalogs. This makes MODEL files more readily extendable in the future and enables Java-based applications to read the MODEL files directly. More information is stored in the new format MODEL files; this enables some features that are not available when the catalog format is used.

The MODEL procedure continues to read and write old-style catalog MODEL files, and model files created by previous releases of SAS/ETS continue to work, so you should experience no direct impact from this change.

The CMPMODEL= option can be used in an OPTIONS statement to modify the behavior of the MODEL when reading and writing MODEL files. The values allowed are CMPMODEL=BOTH I XML I CATALOG. For example, the following statements restore the previous behavior:

```
options cmpmodel=catalog;
```

The CMPMODEL= option defaults to BOTH in SAS 9.2; this option is intended for transitional use while customers become accustomed to the new file format. If CMPMODEL=BOTH, the MODEL procedure writes both formats; when loading model files, PROC MODEL attempts to load the XML version first and the CATALOG version second (if the XML version is not found). If CMPMODEL=XML the MODEL procedure reads and writes only the XML format. If CMPMODEL=CATALOG, only the catalog format is used.

PANEL Procedure

The PANEL procedure expands the estimation capability of the TSCSREG procedure in the timeseries cross-sectional framework. The new methods include: between estimators, pooled estimators, and dynamic panel estimators using GMM method. Creating lags of variables in a panel setting is simplified by the LAG statement. Because the presence of heteroscedasticity can result in inefficient and biased estimates of the variance covariance matrix in the OLS framework, several methods that produce heteroscedasticity-corrected covariance matrices (HCCME) are added. The new RESTRICT statement specifies linear restrictions on the parameters. New ODS Graphics plots simplify model development by providing visual analytical tools.

QLIM Procedure

Stochastic frontier models are now available in the QLIM procedure. Specification of these models allows for random shocks of production or cost along with technological or cost inefficiencies. The nonnegative error-term component that represents technological or cost inefficiencies has halfnormal, exponential, or truncated normal distributions.

SASECRSP Engine

The SASECRSP interface now supports reading of CRSP stock, indices, and combined stock/indices databases by using a variety of keys, not just CRSP's primary key PERMNO.

In addition, SASECRSP can now read the CRSP/Compustat Merged (CCM) database and fully supports cross-database access, enabling you to access the CCM database by CRSP's main identifiers PERMNO and PERMCO, as well as to access the CRSP Stock databases by Compustat's GVKEY identifier.

A list of other new features follows:

- SASECRSP now fully supports access of fiscal CCM data members by both fiscal and calendar date range restrictions. Fiscal to calendar date shifting has been added as well.
- New date fields have been added for CCM fiscal members. Now fiscal members have three different dates: a CRSP date, a fiscal integer date, and a calendar integer date.
- An additional date function has been added which enables you to convert from fiscal to calendar dates.
- Date range restriction for segment members has also been added.

SASEFAME Engine

The SASEFAME interface enables you to access and process financial and economic time series data that resides in a FAME database. SASEFAME for SAS 9.2 supports Windows, Solaris, AIX, Linux, Linux Opteron, and HP-UX hosts. You can now use the SAS windowing environment to view FAME data and use the SAS viewtable commands to navigate your FAME data base. You can select the time span of data by specifying a range of dates in the RANGE= option. You can use an input SAS data set with a WHERE clause to specify selection of variables based on BY variables, such as tickers or issues stored in a FAME string case series. You can use a FAME crosslist to perform selection based on the crossproduct of two FAME namelists. The new FAMEOUT= option now supports the following classes and types of data series objects: FORMULA, TIME, BOOLEAN, CASE, DATE, and STRING.

It is easy to use a SAS input data set with the INSET= option to create a specific view of your FAME data. Multiple views can be created by using multiple LIBNAME statements with customized options tailored to the unique view that you want to create. See "Example 34.10: Selecting Time Series Using CROSSLIST= Option with INSET = and WHERE=TICK" on page 2325 in Chapter 34, "The SASEFAME Interface Engine."

The INSET variables define the BY variables that enable you to view cross sections or slices of your data. When used in conjunction with the WHERE clause and the CROSSLIST= option, SASEFAME can show any or all of your BY groups in the same view or in multiple views. The INSET= option is invalid without a WHERE that clause specifies the BY variables you want to use in your view, and it must be used with the CROSSLIST=option.

The CROSSLIST= option provides a more efficient means of selecting cross sections of financial time series data. This option can be used without using the INSET= option. There are two methods for performing the crosslist selection function. The first method uses two FAME namelists, and the second method uses one namelist and one BY group specified in the WHERE= clause of the INSET=option. See "Example 34.9: Selecting Time Series Using CROSSLIST= Option with a FAME Namelist of Tickers" on page 2322 in Chapter 34, "The SASEFAME Interface Engine."

The FAMEOUT= option provides efficient selection of the class and type of the FAME data series objects you want in your SAS output data set. The possible values for fame_data_object_class_type are FORMULA, TIME, BOOLEAN, CASE, DATE, and STRING. If the FAMEOUT=option is not specified, numeric time series are output to the SAS data set. FAMEOUT=CASE defaults to case series of numeric type, so if you want another type of case series in your output, then you must specify it. Scalar data objects are not supported. See "Example 34.6: Reading Other FAME Data Objects with the FAMEOUT= Option" on page 2316 in Chapter 34, "The SASEFAME Interface Engine."

SASEHAVR Engine

The SASEHAVR interface engine is now production, giving Windows users random access to economic and financial data that resides in a Haver Analytics Data Link Express (DLX) database. You can now use the SAS windowing environment to view HAVERDLX data and use the SAS viewtable commands to navigate your Haver database. You can use the SQL procedure to create a view of your resulting SAS data set. You can limit the range of data that is read from the time series and specify a desired conversion frequency. Start dates are recommended in the LIBNAME statement to help you save resources when processing large databases or when processing a large number of observations. You can further subset your data by using the WHERE, KEEP, or DROP statements in your DATA step. New options are provided for more efficient subsetting by time series variables, groups, or sources. You can force the aggregation of all variables selected to be of the frequency specified by the $\mathrm{FREQ}=$ option if you also specify the FORCE=FREQ option. Aggregation is supported only from a more frequent time interval to a less frequent time interval, such as from weekly to monthly.

A list of other new features follows:

- You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment by selecting the SASEHAVR libref in the LIBNAME window that you have previously used in your LIBNAME statement. You can view your SAS output observations by double clicking on the desired output data set libref in the libname window of the SAS windowing environment. You can type Viewtable on the SAS command line to view any of your SASEHAVR tables, views, or librefs, both for input and output data sets.
- By default, the SASEHAVR engine reads all time series in the Haver database that you reference by using your SASEHAVR libref. The START= option is specified in the form YYYYMMDD, as is the END= option. The start and end dates are used to limit the time span of data; they can help you save resources when processing large databases or when processing a large number of observations.
- It is also possible to select specific variables to be included or excluded from the SAS data set by using the KEEP= or the DROP= option. When the KEEP= or the DROP= option is used, the resulting SAS data set keeps or drops the variables that you select in that option. There are three wildcards currently available: '*', '?', and ' $\#$ '. The '*' wildcard corresponds to any character string and will include any string pattern that corresponds to that position in the matching variable name. The '?' means that any single alphanumeric character is valid. The '\#' wildcard corresponds to a single numeric character.
- You can also select time series in your data by using the GROUP= or the SOURCE= option to select on group name or on source name. Alternatively, you can deselect time series by using the DROPGROUP= or the DROPSOURCE= option. These options also support the wildcards '*’, '?’, and '\#'.
- By default, SASEHAVR selects only the variables that are of the specified frequency in the FREQ= option. If this option is not specified, SASEHAVR selects the variables that match the frequency of the first selected variable. If no other selection criteria are specified, the first selected variable is the first physical DLXRecord read from the Haver database. The FORCE=FREQ option can be specified to force the aggregation of all variables selected to be of the frequency specified by the $\mathrm{FREQ}=$ option. Aggregation is supported only from a more frequent time interval to a less frequent time interval, such as from weekly to monthly. The FORCE $=$ option is ignored if the $\mathrm{FREQ}=$ option is not specified.

New SIMILARITY Procedure (Experimental)

The new SIMILARITY procedure provides similarity analysis between two time series and other sequentially ordered numeric data. The SIMILARITY procedure computes similarity measures between an input sequence and target sequence, as well as similarity measures that "slide" the target sequence with respect to the input sequence. The "slides" can be by observation index (sliding-sequence similarity measures) or by seasonal index (seasonal-sliding-sequence similarity measures).

UCM Procedure

The following features are new to the UCM procedure:

- The new RANDOMREG statement enables specification of regressors with time-varying regression coefficients. The coefficients are assumed to follow independent random walks. Multiple RANDOMREG statements can be specified, and each statement can specify multiple regressors. The regression coefficient random walks for regressors specified in the same RANDOMREG statement are assumed to have the same disturbance variance parameter. This arrangement enables a very flexible specification of regressors with time-varying coefficients.
- The new SPLINEREG statement enables specification of a spline regressor that can optionally have time-varying coefficients. The spline specification is useful when the series being forecast depends on a regressor in a nonlinear fashion.
- The new SPLINESEASON statement enables parsimonious modeling of long and complex seasonal patterns using the spline approximation.
- The SEASON statement now has options that enable complete control over the constituent harmonics that make up the trigonometric seasonal model.
- It is now easy to obtain diagnostic test statistics useful for detecting structural breaks such as additive outliers and level shifts.
- As an experimental feature, you can now model the irregular component as an autoregressive moving-average (ARMA) process.
- The memory management and numerical efficiency of the underlying algorithms have been improved.

VARMAX Procedure

The VARMAX procedure now enables independent (exogenous) variables with their distributed lags to influence dependent (endogenous) variables in various models, such as VARMAX, BVARX, VECMX, BVECMX, and GARCH-type multivariate conditional heteroscedasticity models.

Multivariate GARCH Models—New GARCH Statement

Multivariate GARCH modeling is now a production feature of VARMAX.
To enable greater flexibility in specifying multivariate GARCH models, the new GARCH statement has been added to the VARMAX procedure. With the addition of the GARCH statement, the GARCH= option is no longer supported on the MODEL statement.

The OUTHT= option can be specified in the GARCH statement to write the estimated conditional covariance matrix to an output data set. See "GARCH Statement" on page 1907 in Chapter 30, "The VARMAX Procedure," for details.

The VARMAX Model

The VARMAX procedure provides modeling of a $\operatorname{VARMAX}(p, q, s)$ process which is written as

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}-\sum_{i=1}^{q} \Theta_{i} \boldsymbol{\epsilon}_{t-i}
$$

where $\Phi(B)=I_{k}-\sum_{i=1}^{p} \Phi_{i} B^{i}, \Theta^{*}(B)=\Theta_{0}^{*}+\Theta_{1}^{*} B+\cdots+\Theta_{s}^{*} B^{s}$, and $\Theta(B)=I_{k}-$ $\sum_{i=1}^{q} \Theta_{i} B^{i}$.

If the Kalman filtering method is used for the parameter estimation of the $\operatorname{VARMAX}(p, q, s)$ model, then the dimension of the state-space vector is large, which takes time and memory for computing. For convenience, the parameter estimation of the $\operatorname{VARMAX}(p, q, s)$ model uses the two-stage estimation method, which computes the estimation of deterministic terms and exogenous parameters and then maximizes the log-likelihood function of the $\operatorname{VARMA}(p, q)$ model.

Some examples of VARMAX modeling are:

```
model y1 y2 = x1 / q=1;
nloptions tech=qn;
model y1 y2 = x1 / p=1 q=1 xlag=1 nocurrentx;
nloptions tech=qn;
```


The BVARX Model

Bayesian modeling allows independent (exogenous) variables with their distributed lags. For example:

```
model y1 y2 = x1 / p=2 prior=(theta=0.2 lambda=5);
```


The VECMX Model

Vector error correction modeling now allows independent (exogenous) variables with their distributed lags. For example:

```
model y1 y2 = x1 / p=2 ecm=(rank=1);
```


The BVECMX Model

Bayesian vector error correction modeling allows independent (exogenous) variables with their distributed lags. For example:

```
model y1 y2 = x1 / p=2 prior=(theta=0.2 lambda=5) ecm=(rank=1);
```


The VARMAX-GARCH Model

VARMAX modeling now supports an error term that has a GARCH-type multivariate conditional heteroscedasticity model. For example:

```
model y1 y2 = x1 / p=1 q=1;
garch q=1;
```


New Printing Control Options

The PRINT= option can be used in the MODEL statement to control the results printed. See the description of the PRINT= option in Chapter 30, "The VARMAX Procedure," for details.

X12 Procedure

The X12 procedure has many new statements and options. Many of the new features are related to the regARIMA modeling, which is used to extend the series to be seasonally adjusted. A new experimental input and output data set has been added which describes the times series model fit to the series.

The following miscellaneous statements and options are new:

- The NOINT option on the AUTOMDL statement suppresses the fitting of a constant term in automatically identified models.
- The following tables are now available through the OUTPUT statement: A7, A9, A10, C20, D1, and D7.
- The TABLES statement enables you to display some tables that represent intermediate calculations in the X11 method and that are not displayed by default.

The following statements and options related to the regression component of regARIMA modeling are new:

- The SPAN= option on the OUTLIER statement can be used to limit automatic outlier detection to a subset of the time series observations.
- The following predefined variables have been added to the PREDEFINED option on the REGRESSION statement: EASTER(value), SCEASTER(value), LABOR(value), THANK (value), TDSTOCK(value), SINCOS(value ...).
- User-defined regression variables can be included on the regression model by specifying them in the USERVAR=(variables) option in the REGRESSION statement or the INPUT statement.
- Events can be included as user-defined regression variables in the regression model by specifying them in the EVENT statement. SAS predefined events do not require an INEVENT= data set, but an INEVENT = data set can be specified to define other events.
- You can now supply initial or fixed parameter values for regression variables by using the $\mathrm{B}=($ value $<F>\ldots$) option in the EVENT statement, the $\mathrm{B}=($ value $<F>\ldots$) option in the INPUT statement, the $\mathrm{B}=($ value $<F>\ldots$) option in the REGRESSION statement, or by using the MDLINFOIN= data set in the PROC X12 statement. Some regression variable parameters can be fixed while others are estimated.
- You can now assign user-defined regression variables to a group by the USERTYPE= option in the EVENT statement, the USERTYPE= option in the INPUT statement, the USERTYPE= option in the REGRESSION statement, or by using the MDLINFOIN= data set in the PROC X12 statement. Census Bureau predefined variables are automatically assigned to a regression group, and this cannot be modified. But assigning user-defined regression variables to a regression group allows them to be processed similarly to the predefined variables.
- You can now supply initial or fixed parameters for ARMA coefficients using the MDLINFOIN= data set in the PROC X12 statement. Some ARMA coefficients can be fixed while others are estimated.
- The INEVENT= option on the PROC X12 statement enables you to supply an EVENT definition data set so that the events defined in the EVENT definition data set can be used as user-defined regressors in the regARIMA model.
- User-defined regression variables in the input data set can be identified by specifying them in the USERDEFINED statement. User-defined regression variables specified in the USERVAR=(variables) option of the REGRESSION statement or the INPUT statement do not need to be specified in the USERDEFINED statement, but user-defined variables specified only in the MDLINFOIN= data set need to be identfied in the USERDEFINED statement.

The following new experimental options specify input and output data sets that describe the times series model:

- The MDLINFOIN= and MDLINFOOUT= data sets specified in the PROC X12 statement enable you to store the results of model identification and use the stored information as input when executing the X12 Procedure.

References

Center for Research in Security Prices (2003), CRSP/Compustat Merged Database Guide, Chicago: The University of Chicago Graduate School of Business, http://www.crsp.uchicago.edu/ support/documentation/pdfs/ccm_database_guide.pdf.

Center for Research in Security Prices (2003), CRSP Data Description Guide, Chicago: The University of Chicago Graduate School of Business, http://www.crsp.uchicago.edu/ support/documentation/pdfs/stock_indices_data_descriptions.pdf.

Center for Research in Security Prices (2002), CRSP Programmer's Guide, Chicago: The University of Chicago Graduate School of Business, http://www.crsp.uchicago.edu/support/ documentation/pdfs/stock_indices_programming.pdf.

Center for Research in Security Prices (2003), CRSPAccess Database Format Release Notes, Chicago: The University of Chicago Graduate School of Business, http://www.crsp. uchicago.edu/support/documentation/release_notes.html.

Center for Research in Security Prices (2003), CRSP Utilities Guide, Chicago: The University of Chicago Graduate School of Business, http://www.crsp.uchicago.edu/support/ documentation/pdfs/stock_indices_utilities.pdf.

Center for Research in Security Prices (2002), CRSP SFA Guide, Chicago: The University of Chicago Graduate School of Business.

Gomez, V. and Maravall, A. (1997a), "Program TRAMO and SEATS: Instructions for the User, Beta Version," Banco de Espana.

Gomez, V. and Maravall, A. (1997b), "Guide for Using the Programs TRAMO and SEATS, Beta Version," Banco de Espana.

Haver Analytics (2001), DLX API Programmer's Reference, New York, NY.
Stoffer, D. and Toloi, C. (1992), "A Note on the Ljung-Box-Pierce Portmanteau Statistic with Missing Data," Statistics \& Probability Letters 13, 391-396.

SunGard Data Management Solutions (1998), Guide to FAME Database Servers, 888 Seventh Avenue, 12th Floor, New York, NY 10106 USA, http://www.fame.sungard.com/support. html, http://www.data.sungard.com.

SunGard Data Management Solutions (1995), User's Guide to FAME, Ann Arbor, MI, http: / / www.fame.sungard.com/support.html.

SunGard Data Management Solutions (1995), Reference Guide to Seamless C HLI, Ann Arbor, MI, http://www.fame.sungard.com/support.html.

SunGard Data Management Solutions(1995), Command Reference for Release 7.6, Vols. 1 and 2, Ann Arbor, MI, http://www.fame.sungard.com/support.html.

Chapter 2
 Introduction

Contents

Overview of SAS/ETS Software 16
Uses of SAS/ETS Software 17
Contents of SAS/ETS Software 18
Experimental Software 20
About This Book 20
Chapter Organization 21
Typographical Conventions 22
Where to Turn for More Information 22
Accessing the SAS/ETS Sample Library 22
Online Help System 23
SAS Short Courses 23
SAS Technical Support Services 23
Major Features of SAS/ETS Software 23
Discrete Choice and Qualitative and Limited Dependent Variable Analysis 24
Regression with Autocorrelated and Heteroscedastic Errors 26
Simultaneous Systems Linear Regression 27
Linear Systems Simulation 28
Polynomial Distributed Lag Regression 29
Nonlinear Systems Regression and Simulation 29
ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) Modeling and Forecasting 31
Vector Time Series Analysis 32
State Space Modeling and Forecasting 33
Spectral Analysis 34
Seasonal Adjustment 35
Structural Time Series Modeling and Forecasting 36
Time Series Cross-Sectional Regression Analysis 37
Automatic Time Series Forecasting 37
Time Series Interpolation and Frequency Conversion 39
Trend and Seasonal Analysis on Transaction Databases 41
Access to Financial and Economic Databases 42
Spreadsheet Calculations and Financial Report Generation 44
Loan Analysis, Comparison, and Amortization 44
Time Series Forecasting System 45
Investment Analysis System 46
ODS Graphics 47
Related SAS Software 48
Base SAS Software 48
SAS Forecast Studio 51
SAS High-Performance Forecasting 51
SAS/GRAPH Software 52
SAS/STAT Software 53
SAS/IML Software 54
SAS Stat Studio 54
SAS/OR Software 55
SAS/QC Software 56
MLE for User-Defined Likelihood Functions 56
JMP Software 57
SAS Enterprise Guide 58
SAS Add-In for Microsoft Office 59
Enterprise Miner-Time Series nodes 59
SAS Risk Products 60
References 61

Overview of SAS/ETS Software

SAS/ETS software, a component of the SAS System, provides SAS procedures for:

- econometric analysis
- time series analysis
- time series forecasting
- systems modeling and simulation
- discrete choice analysis
- analysis of qualitative and limited dependent variable models
- seasonal adjustment of time series data
- financial analysis and reporting
- access to economic and financial databases
- time series data management

In addition to SAS procedures, SAS/ETS software also includes seamless access to economic and financial databases and interactive environments for time series forecasting and investment analysis.

Uses of SAS/ETS Software

SAS/ETS software provides tools for a wide variety of applications in business, government, and academia. Major uses of SAS/ETS procedures are economic analysis, forecasting, economic and financial modeling, time series analysis, financial reporting, and manipulation of time series data.

The common theme relating the many applications of the software is time series data: SAS/ETS software is useful whenever it is necessary to analyze or predict processes that take place over time or to analyze models that involve simultaneous relationships.

Although SAS/ETS software is most closely associated with business, finance and economics, time series data also arise in many other fields. SAS/ETS software is useful whenever time dependencies, simultaneous relationships, or dynamic processes complicate data analysis. For example, an environmental quality study might use SAS/ETS software's time series analysis tools to analyze pollution emissions data. A pharmacokinetic study might use SAS/ETS software's features for nonlinear systems to model the dynamics of drug metabolism in different tissues.

The diversity of problems for which econometrics and time series analysis tools are needed is reflected in the applications reported by SAS users. The following listed items are some applications of SAS/ETS software presented by SAS users at past annual conferences of the SAS Users Group International (SUGI).

- forecasting college enrollment (Calise and Earley 1997)
- fitting a pharmacokinetic model (Morelock et al. 1995)
- testing interaction effect in reducing sudden infant death syndrome (Fleming, Gibson, and Fleming 1996)
- forecasting operational indices to measure productivity changes (McCarty 1994)
- spectral decomposition and reconstruction of nuclear plant signals (Hoyer and Gross 1993)
- estimating parameters for the constant-elasticity-of-substitution translog model (Hisnanick 1993)
- applying econometric analysis for mass appraisal of real property (Amal and Weselowski 1993)
- forecasting telephone usage data (Fishetti, Heathcote, and Perry 1993)
- forecasting demand and utilization of inpatient hospital services (Hisnanick 1992)
- using conditional demand estimation to determine electricity demand (Keshani and Taylor 1992)
- estimating tree biomass for measurement of forestry yields (Parresol and Thomas 1991)
- evaluating the theory of input separability in the production function of U.S. manufacturing (Hisnanick 1991)
- forecasting dairy milk yields and composition (Benseman 1990)
- predicting the gloss of coated aluminum products subject to weathering (Khan 1990)
- learning curve analysis for predicting manufacturing costs of aircraft (Le Bouton 1989)
- analyzing Dow Jones stock index trends (Early, Sweeney, and Zekavat 1989)
- analyzing the usefulness of the composite index of leading economic indicators for forecasting the economy (Lin and Myers 1988)

Contents of SAS/ETS Software

Procedures

SAS/ETS software includes the following SAS procedures:

ARIMA	ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) modeling and forecasting
AUTOREG	regression analysis with autocorrelated or heteroscedastic errors and ARCH and GARCH modeling
COMPUTAB	spreadsheet calculations and financial report generation
COUNTREG	regression modeling for dependent variables that represent counts
DATASOURCE	access to financial and economic databases
ENTROPY	maximum entropy-based regression forecasting by using exponential smoothing models with optimized smoothing weights
ESM	time series interpolation, frequency conversion, and transformation of time series
EXPAND	automatic forecasting
LOAN	loan analysis and comparison multinomial discrete choice analysis
MDC	nonlinear simultaneous equations regression and nonlinear systems modeling and simulation
MODEL	panel data models
PANEL	polynomial distributed lag regression qualitative and limited dependent variable analysis
QLIM	similarity analysis of time series data for time series data mining
SIMILARITY	linear systems simulation
SIMLIN	spectral and cross-spectral analysis
SPECTRA	state space modeling and automated forecasting of multivariate time series
STATESPACE	linear simultaneous equations models

TIMESERIES analysis of time-stamped transactional data
TSCSREG time series cross-sectional regression analysis
UCM unobserved components analysis of time series
VARMAX vector autoregressive and moving-average modeling and forecasting
X11 seasonal adjustment (Census X-11 and X-11 ARIMA)
X12
seasonal adjustment (Census X-12 ARIMA)

Macros

SAS/ETS software includes the following SAS macros:
\%AR generates statements to define autoregressive error models for the MODEL procedure
\%BOXCOXAR investigates Box-Cox transformations useful for modeling and forecasting a time series
\%DFPVALUE
\%DFTEST
\%LOGTEST
\%MA generates statements to define moving-average error models for the MODEL procedure
\%PDL generates statements to define polynomial distributed lag models for the MODEL procedure

These macros are part of the SAS AUTOCALL facility and are automatically available for use in your SAS program. Refer to SAS Macro Language: Reference for information about the SAS macro facility.

Access Interfaces to Economic and Financial Databases

In addition to PROC DATASOURCE, these SAS/ETS access interfaces provide seamless access to financial and economic databases:

SASECRSP LIBNAME engine for accessing time series and event data residing in CRSPAccess database.

SASEFAME LIBNAME engine for accessing time or case series data residing in a FAME database.

SASEHAVR LIBNAME engine for accessing time series residing in a HAVER ANALYTICS Data Link Express (DLX) database.

The Time Series Forecasting System

SAS/ETS software includes an interactive forecasting system, described in Part IV. This graphical user interface to SAS/ETS forecasting features was developed with SAS/AF software and uses PROC ARIMA and other internal routines to perform time series forecasting. The Time Series Forecasting System makes it easy to forecast time series and provides many features for graphical data exploration and graphical comparisons of forecasting models and forecasts. (You must have SAS/GRAPH ${ }^{\circledR}$ installed to use the graphical features of the system.)

The Investment Analysis System

The Investment Analysis System, described in Part V, is an interactive environment for analyzing the time-value of money in a variety of investments. Various analyses are provided to help analyze the value of investment alternatives: time value, periodic equivalent, internal rate of return, benefitcost ratio, and break-even analysis.

Experimental Software

Experimental software is sometimes included as part of a production-release product. It is provided to (sometimes targeted) customers in order to obtain feedback. All experimental uses are marked Experimental in this document. Whenever an experimental procedure, statement, or option is used, a message is printed to the SAS log to indicate that it is experimental.

The design and syntax of experimental software might change before any production release. Experimental software has been tested prior to release, but it has not necessarily been tested to productionquality standards, and so should be used with care.

About This Book

This book is a user's guide to SAS/ETS software. Since SAS/ETS software is a part of the SAS System, this book assumes that you are familiar with Base SAS software and have the books SAS Language Reference: Dictionary and Base SAS Procedures Guide available for reference. It also assumes that you are familiar with SAS data sets, the SAS DATA step, and with basic SAS procedures such as PROC PRINT and PROC SORT. Chapter 3, "Working with Time Series Data," in this book summarizes the aspects of Base SAS software that are most relevant to the use of SAS/ETS software.

Chapter Organization

Following a brief What's New, this book is divided into five major parts. Part I contains general information to aid you in working with SAS/ETS Software. Part II explains the SAS procedures of SAS/ETS software. Part III describes the available data access interfaces for economic and financial databases. Part IV is the reference for the Time Series Forecasting System, an interactive forecasting menu system that uses PROC ARIMA and other routines to perform time series forecasting. Finally, Part V is the reference for the Investment Analysis System.

The new features added to SAS/ETS software since the publication of SAS/ETS Software: Changes and Enhancements for Release 8.2 are summarized in Chapter 1, "What's New in SAS/ETS." If you have used SAS/ETS software in the past, you may want to skim this chapter to see what's new.

Part I contains the following chapters.
Chapter 2, the current chapter, provides an overview of SAS/ETS software and summarizes related SAS publications, products, and services.

Chapter 3, "Working with Time Series Data," discusses the use of SAS data management and programming features for time series data.

Chapter 4, "Date Intervals, Formats, and Functions," summarizes the time intervals, date and datetime informats, date and datetime formats, and date and datetime functions available in the SAS System.

Chapter 5, "SAS Macros and Functions," documents SAS macros and DATA step financial functions provided with SAS/ETS software. The macros use SAS/ETS procedures to perform Dickey-Fuller tests, test for the need for log transformations, or select optimal Box-Cox transformation parameters for time series data.

Chapter 6, "Nonlinear Optimization Methods," documents the NonLinear Optimization subsystem used by some ETS procedures to perform nonlinear optimization tasks.

Part II contains chapters that explain the SAS procedures that make up SAS/ETS software. These chapters appear in alphabetical order by procedure name.

Part III contains chapters that document the ETS access interfaces to economic and financial databases.

Each of the chapters that document the SAS/ETS procedures (Part II) and the SAS/ETS access interfaces (Part III) is organized as follows:

1. The "Overview" section gives a brief description of the procedure.
2. The "Getting Started" section provides a tutorial introduction on how to use the procedure.
3. The "Syntax" section is a reference to the SAS statements and options that control the procedure.
4. The "Details" section discusses various technical details.
5. The "Examples" section contains examples of the use of the procedure.
6. The "References" section contains technical references on methodology.

Part IV contains the chapters that document the features of the Time Series Forecasting System.
Part V contains chapters that document the features of the Investment Analysis System.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the typographical conventions used in this book:

roman	is the standard type style used for most text.
UPPERCASE ROMAN	is used for SAS statements, options, and other SAS language elements when they appear in the text. However, you can enter these elements in your own SAS programs in lowercase, uppercase, or a mixture of the two.
UPPERCASE BOLD	is used in the "Syntax" sections' initial lists of SAS statements and op- tions.
oblique	is used for user-supplied values for options in the syntax definitions. In the text, these values are written in italic.
helvetica	is used for the names of variables and data sets when they appear in the text.
bold	is used to refer to matrices and vectors and to refer to commands.
italic	is used for terms that are defined in the text, for emphasis, and for refer- ences to publications.
bold monospace	is used for example code. In most cases, this book uses lowercase type for SAS statements.

Where to Turn for More Information

This section describes other sources of information about SAS/ETS software.

Accessing the SAS/ETS Sample Library

The SAS/ETS Sample Library includes many examples that illustrate the use of SAS/ETS software, including the examples used in this documentation. To access these sample programs, select Help from the menu and then select SAS Help and Documentation. From the Contents list, select the section Sample SAS Programs under Learning to Use SAS.

Online Help System

You can access online help information about SAS/ETS software in two ways, depending on whether you are using the SAS windowing environment in the command line mode or the pulldown menu mode.

If you are using a command line, you can access the SAS/ETS help menus by typing help on the SAS windowing environment command line. Or you can issue the command help ARIMA (or another procedure name) to display the help for that particular procedure.

If you are using the SAS windowing environment pull-down menus, you can pull-down the Help menu and make the following selections:

- SAS Help and Documentation
- Learning to Use SAS in the Contents list
- SAS Products
- SAS/ETS

The content of the Online Help System follows closely that of this book.

SAS Short Courses

The SAS Education Division offers a number of training courses that might be of interest to SAS/ETS users. Please check the SAS web site for the current list of available training courses.

SAS Technical Support Services

As with all SAS products, the SAS Technical Support staff is available to respond to problems and answer technical questions regarding the use of SAS/ETS software.

Major Features of SAS/ETS Software

The following sections briefly summarize major features of SAS/ETS software. See the chapters on individual procedures for more detailed information.

Discrete Choice and Qualitative and Limited Dependent Variable Analysis

The MDC procedure provides maximum likelihood (ML) or simulated maximum likelihood estimates of multinomial discrete choice models in which the choice set consists of unordered multiple alternatives.

The MDC procedure supports the following models and features:

- conditional logit
- nested logit
- heteroscedastic extreme value
- multinomial probit
- mixed logit
- pseudo-random or quasi-random numbers for simulated maximum likelihood estimation
- bounds imposed on the parameter estimates
- linear restrictions imposed on the parameter estimates
- SAS data set containing predicted probabilities and linear predictor ($\mathbf{x}^{\prime} \boldsymbol{\beta}$) values
- decision tree and nested logit
- model fit and goodness-of-fit measures including
- likelihood ratio
- Aldrich-Nelson
- Cragg-Uhler 1
- Cragg-Uhler 2
- Estrella
- Adjusted Estrella
- McFadden's LRI
- Veall-Zimmermann
- Akaike Information Criterion (AIC)
- Schwarz Criterion or Bayesian Information Criterion (BIC)

The QLIM procedure analyzes univariate and multivariate limited dependent variable models where dependent variables take discrete values or dependent variables are observed only in a limited range of values. This procedure includes logit, probit, Tobit, and general simultaneous equations models. The QLIM procedure supports the following models:

- linear regression model with heteroscedasticity
- probit with heteroscedasticity
- logit with heteroscedasticity
- Tobit (censored and truncated) with heteroscedasticity
- Box-Cox regression with heteroscedasticity
- bivariate probit
- bivariate Tobit
- sample selection models
- multivariate limited dependent models

The COUNTREG procedure provides regression models in which the dependent variable takes nonnegative integer count values. The COUNTREG procedure supports the following models:

- Poisson regression
- negative binomial regression with quadratic and linear variance functions
- zero inflated Poisson (ZIP) model
- zero inflated negative binomial (ZINB) model
- fixed and random effect Poisson panel data models
- fixed and random effect NB (negative binomial) panel data models

The PANEL procedure deals with panel data sets that consist of time series observations on each of several cross-sectional units.

The models and methods the PANEL procedure uses to analyze are as follows:

- one-way and two-way models
- fixed and random effects
- autoregressive models
- the Parks method
- dynamic panel estimator
- the Da Silva method for moving-average disturbances

Regression with Autocorrelated and Heteroscedastic Errors

The AUTOREG procedure provides regression analysis and forecasting of linear models with autocorrelated or heteroscedastic errors. The AUTOREG procedure includes the following features:

- estimation and prediction of linear regression models with autoregressive errors
- any order autoregressive or subset autoregressive process
- optional stepwise selection of autoregressive parameters
- choice of the following estimation methods:
- exact maximum likelihood
- exact nonlinear least squares
- Yule-Walker
- iterated Yule-Walker
- tests for any linear hypothesis that involves the structural coefficients
- restrictions for any linear combination of the structural coefficients
- forecasts with confidence limits
- estimation and forecasting of ARCH (autoregressive conditional heteroscedasticity), GARCH (generalized autoregressive conditional heteroscedasticity), I-GARCH (integrated GARCH), E-GARCH (exponential GARCH), and GARCH-M (GARCH in mean) models
- combination of ARCH and GARCH models with autoregressive models, with or without regressors
- estimation and testing of general heteroscedasticity models
- variety of model diagnostic information including the following:
- autocorrelation plots
- partial autocorrelation plots
- Durbin-Watson test statistic and generalized Durbin-Watson tests to any order
- Durbin h and Durbin t statistics
- Akaike information criterion
- Schwarz information criterion
- tests for ARCH errors
- Ramsey's RESET test
- Chow and PChow tests
- Phillips-Perron stationarity test
- CUSUM and CUMSUMSQ statistics
- exact significance levels (p-values) for the Durbin-Watson statistic
- embedded missing values

Simultaneous Systems Linear Regression

The SYSLIN and ENTROPY procedures provide regression analysis of a simultaneous system of linear equations.

The SYSLIN procedure includes the following features:

- estimation of parameters in simultaneous systems of linear equations
- full range of estimation methods including the following:
- ordinary least squares (OLS)
- two-stage least squares (2SLS)
- three-stage least squares (3SLS)
- iterated 3SLS (IT3SLS)
- seemingly unrelated regression (SUR)
- iterated SUR (ITSUR)
- limited-information maximum likelihood (LIML)
- full-information maximum likelihood (FIML)
- minimum expected loss (MELO)
- general K-class estimators
- weighted regression
- any number of restrictions for any linear combination of coefficients, within a single model or across equations
- tests for any linear hypothesis, for the parameters of a single model or across equations
- wide range of model diagnostics and statistics including the following:
- usual ANOVA tables and R-square statistics
- Durbin-Watson statistics
- standardized coefficients
- test for overidentifying restrictions
- residual plots
- standard errors and t tests
- covariance and correlation matrices of parameter estimates and equation errors
- predicted values, residuals, parameter estimates, and variance-covariance matrices saved in output SAS data sets
- other features of the SYSLIN procedure that enable you to do the following:
- impose linear restrictions on the parameter estimates
- test linear hypotheses about the parameters
- write predicted and residual values to an output SAS data set
- write parameter estimates to an output SAS data set
- write the crossproducts matrix (SSCP) to an output SAS data set
- use raw data, correlations, covariances, or cross products as input

The ENTROPY procedure supports the following models and features:

- generalized maximum entropy (GME) estimation
- generalized cross entropy (GCE) estimation
- normed moment generalized maximum entropy
- maximum entropy-based seemingly unrelated regression (MESUR) estimation
- pure inverse estimation
- estimation of parameters in simultaneous systems of linear equations
- Markov models
- unordered multinomial choice problems
- weighted regression
- any number of restrictions for any linear combination of coefficients, within a single model or across equations
- tests for any linear hypothesis, for the parameters of a single model or across equations

Linear Systems Simulation

The SIMLIN procedure performs simulation and multiplier analysis for simultaneous systems of linear regression models. The SIMLIN procedure includes the following features:

- reduced form coefficients
- interim multipliers
- total multipliers
- dynamic multipliers
- multipliers for higher order lags
- dynamic forecasts and simulations
- goodness-of-fit statistics
- acceptance of the equation system coefficients estimated by the SYSLIN procedure as input

Polynomial Distributed Lag Regression

The PDLREG procedure provides regression analysis for linear models with polynomial distributed (Almon) lags. The PDLREG procedure includes the following features:

- entry of any number of regressors as a polynomial lag distribution and the use of any number of covariates
- use of any order lag length and degree polynomial for lag distribution
- optional upper and lower endpoint restrictions
- specification of any number of linear restrictions on covariates
- option to repeat analysis over a range of degrees for the lag distribution polynomials
- support for autoregressive errors to any lag
- forecasts with confidence limits

Nonlinear Systems Regression and Simulation

The MODEL procedure provides parameter estimation, simulation, and forecasting of dynamic nonlinear simultaneous equation models. The MODEL procedure includes the following features:

- nonlinear regression analysis for systems of simultaneous equations, including weighted nonlinear regression
- full range of parameter estimation methods including the following:
- nonlinear ordinary least squares (OLS)
- nonlinear seemingly unrelated regression (SUR)
- nonlinear two-stage least squares (2SLS)
- nonlinear three-stage least squares (3SLS)
- iterated SUR
- iterated 3SLS
- generalized method of moments (GMM)
- nonlinear full-information maximum likelihood (FIML)
- simulated method of moments (SMM)
- supports dynamic multi-equation nonlinear models of any size or complexity
- uses the full power of the SAS programming language for model definition, including left-hand-side expressions
- hypothesis tests of nonlinear functions of the parameter estimates
- linear and nonlinear restrictions of the parameter estimates
- bounds imposed on the parameter estimates
- computation of estimates and standard errors of nonlinear functions of the parameter estimates
- estimation and simulation of ordinary differential equations (ODE's)
- vector autoregressive error processes and polynomial lag distributions easily specified for the nonlinear equations
- variance modeling (ARCH, GARCH, and others)
- computation of goal-seeking solutions of nonlinear systems to find input values needed to produce target outputs
- dynamic, static, or n-period-ahead-forecast simulation modes
- simultaneous solution or single equation solution modes
- Monte Carlo simulation using parameter estimate covariance and across-equation residuals covariance matrices or user-specified random functions
- a variety of diagnostic statistics including the following
- model R-square statistics
- general Durbin-Watson statistics and exact p-values
- asymptotic standard errors and t tests
- first-stage R-square statistics
- covariance estimates
- collinearity diagnostics
- simulation goodness-of-fit statistics
- Theil inequality coefficient decompositions
- Theil relative change forecast error measures
- heteroscedasticity tests
- Godfrey test for serial correlation
- Hausman specification test
- Chow tests
- block structure and dependency structure analysis for the nonlinear system
- listing and cross-reference of fitted model
- automatic calculation of needed derivatives by using exact analytic formula
- efficient sparse matrix methods used for model solution; choice of other solution methods

Model definition, parameter estimation, simulation, and forecasting can be performed interactively in a single SAS session or models can also be stored in files and reused and combined in later runs.

ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) Modeling and Forecasting

The ARIMA procedure provides the identification, parameter estimation, and forecasting of autoregressive integrated moving-average (Box-Jenkins) models, seasonal ARIMA models, transfer function models, and intervention models. The ARIMA procedure includes the following features:

- complete ARIMA (Box-Jenkins) modeling with no limits on the order of autoregressive or moving-average processes
- model identification diagnostics including the following:
- autocorrelation function
- partial autocorrelation function
- inverse autocorrelation function
- cross-correlation function
- extended sample autocorrelation function
- minimum information criterion for model identification
- squared canonical correlations
- stationarity tests
- outlier detection
- intervention analysis
- regression with ARMA errors
- transfer function modeling with fully general rational transfer functions
- seasonal ARIMA models
- ARIMA model-based interpolation of missing values
- several parameter estimation methods including the following:
- exact maximum likelihood
- conditional least squares
- exact nonlinear unconditional least squares (ELS or ULS)
- prewhitening transformations
- forecasts and confidence limits for all models
- forecasting tied to parameter estimation methods: finite memory forecasts for models estimated by maximum likelihood or exact nonlinear least squares methods and infinite memory forecasts for models estimated by conditional least squares
- diagnostic statistics to help judge the adequacy of the model including the following:
- Akaike's information criterion (AIC)
- Schwarz's Bayesian criterion (SBC or BIC)
- Box-Ljung chi-square test statistics for white-noise residuals
- autocorrelation function of residuals
- partial autocorrelation function of residuals
- inverse autocorrelation function of residuals
- automatic outlier detection

Vector Time Series Analysis

The VARMAX procedure enables you to model the dynamic relationship both between the dependent variables and between the dependent and independent variables. The VARMAX procedure includes the following features:

- several modeling features:
- vector autoregressive model
- vector autoregressive model with exogenous variables
- vector autoregressive and moving-average model
- Bayesian vector autoregressive model
- vector error correction model
- Bayesian vector error correction model
- GARCH-type multivariate conditional heteroscedasticity models
- criteria for automatically determining AR and MA orders:
- Akaike information criterion (AIC)
- corrected AIC (AICC)
- Hannan-Quinn (HQ) criterion
- final prediction error (FPE)
- Schwarz Bayesian criterion (SBC), also known as Bayesian information criterion (BIC)
- AR order identification aids:
- partial cross-correlations
- Yule-Walker estimates
- partial autoregressive coefficients
- partial canonical correlations
- testing the presence of unit roots and cointegration:
- Dickey-Fuller tests
- Johansen cointegration test for nonstationary vector processes of integrated order one
- Stock-Watson common trends test for the possibility of cointegration among nonstationary vector processes of integrated order one
- Johansen cointegration test for nonstationary vector processes of integrated order two
- model parameter estimation methods:
- least squares (LS)
- maximum likelihood (ML)
- model checks and residual analysis using the following tests:
- Durbin-Watson (DW) statistics
- F test for autoregressive conditional heteroscedastic (ARCH) disturbance
- F test for AR disturbance
- Jarque-Bera normality test
- Portmanteau test
- seasonal deterministic terms
- subset models
- multiple regression with distributed lags
- dead-start model that does not have present values of the exogenous variables
- Granger-causal relationships between two distinct groups of variables
- infinite order AR representation
- impulse response function (or infinite order MA representation)
- decomposition of the predicted error covariances
- roots of the characteristic functions for both the AR and MA parts to evaluate the proximity of the roots to the unit circle
- contemporaneous relationships among the components of the vector time series
- forecasts
- conditional covariances for GARCH models

State Space Modeling and Forecasting

The STATESPACE procedure provides automatic model selection, parameter estimation, and forecasting of state space models. (State space models encompass an alternative general formulation of multivariate ARIMA models.) The STATESPACE procedure includes the following features:

- multivariate ARIMA modeling by using the general state space representation of the stochastic process
- automatic model selection using Akaike's information criterion (AIC)
- user-specified state space models including restrictions
- transfer function models with random inputs
- any combination of simple and seasonal differencing; input series can be differenced to any order for any lag lengths
- forecasts with confidence limits
- ability to save selected and fitted model in a data set and reuse for forecasting
- wide range of output options including the ability to print any statistics concerning the data and their covariance structure, the model selection process, and the final model fit

Spectral Analysis

The SPECTRA procedure provides spectral analysis and cross-spectral analysis of time series. The SPECTRA procedure includes the following features:

- efficient calculation of periodogram and smoothed periodogram using fast finite Fourier transform and Chirp-Z algorithms
- multiple spectral analysis, including raw and smoothed spectral and cross-spectral function estimates, with user-specified window weights
- choice of kernel for smoothing
- output of the following spectral estimates to a SAS data set:
- Fourier sine and cosine coefficients
- periodogram
- smoothed periodogram
- cospectrum
- quadrature spectrum
- amplitude
- phase spectrum
- squared coherency
- Fisher's Kappa and Bartlett's Kolmogorov-Smirnov test statistic for testing a null hypothesis of white noise

Seasonal Adjustment

The X11 procedure provides seasonal adjustment of time series by using the Census X-11 or X-11 ARIMA method. The X11 procedure is based on the U.S. Bureau of the Census X-11 seasonal adjustment program and also supports the X-11 ARIMA method developed by Statistics Canada. The X11 procedure includes the following features:

- decomposition of monthly or quarterly series into seasonal, trend, trading day, and irregular components
- both multiplicative and additive form of the decomposition
- all the features of the Census Bureau program
- support of the X-11 ARIMA method
- support of sliding spans analysis
- processing of any number of variables at once with no maximum length for a series
- computation of tests for stable, moving, and combined seasonality
- optional printing or storing in SAS data sets of the individual X11 tables that show the various components at different stages of the computation; full control over what is printed or output
- ability to project seasonal component one year ahead, which enables reintroduction of seasonal factors for an extrapolated series

The X12 procedure provides seasonal adjustment of time series using the X-12 ARIMA method. The X12 procedure is based on the U.S. Bureau of the Census X-12 ARIMA seasonal adjustment program (version 0.3). It also supports the X-11 ARIMA method developed by Statistics Canada and the previous X-11 method of the U.S. Census Bureau. The X12 procedure includes the following features:

- decomposition of monthly or quarterly series into seasonal, trend, trading day, and irregular components
- support of multiplicative, additive, pseudo-additive, and log additive forms of decomposition
- support of the X-12 ARIMA method
- support of regARIMA modeling
- automatic identification of outliers
- support of TRAMO-based automatic model selection
- use of regressors to process missing values within the span of the series
- processing of any number of variables at once with no maximum length for a series
- computation of tests for stable, moving, and combined seasonality
- spectral analysis of original, seasonally adjusted, and irregular series
- optional printing or storing in a SAS data set of the individual X11 tables that show the various components at different stages of the decomposition; full control over what is printed or output
- optional projection of seasonal component one year ahead, which enables reintroduction of seasonal factors for an extrapolated series

Structural Time Series Modeling and Forecasting

The UCM procedure provides a flexible environment for analyzing time series data using structural time series models, also called unobserved components models (UCM). These models represent the observed series as a sum of suitably chosen components such as trend, seasonal, cyclical, and regression effects. You can use the UCM procedure to formulate comprehensive models that bring out all the salient features of the series under consideration. Structural models are applicable in the same situations where Box-Jenkins ARIMA models are applicable; however, the structural models tend to be more informative about the underlying stochastic structure of the series. The UCM procedure includes the following features:

- general unobserved components modeling where the models can include trend, multiple seasons and cycles, and regression effects
- maximum-likelihood estimation of the model parameters
- model diagnostics that include a variety of goodness-of-fit statistics, and extensive graphical diagnosis of the model residuals
- forecasts and confidence limits for the series and all the model components
- Model-based seasonal decomposition
- extensive plotting capability that includes the following:
- forecast and confidence interval plots for the series and model components such as trend, cycles, and seasons
- diagnostic plots such as residual plot, residual autocorrelation plots, and so on
- seasonal decomposition plots such as trend, trend plus cycles, trend plus cycles plus seasons, and so on
- model-based interpolation of series missing values
- full sample (also called smoothed) estimates of the model components

Time Series Cross-Sectional Regression Analysis

The TSCSREG procedure provides combined time series cross-sectional regression analysis. The TSCSREG procedure includes the following features:

- estimation of the regression parameters under several common error structures:
- Fuller and Battese method (variance component model)
- Wansbeek-Kapteyn method
- Parks method (autoregressive model)
- Da Silva method (mixed variance component moving-average model)
- one-way fixed effects
- two-way fixed effects
- one-way random effects
- two-way random effects
- any number of model specifications
- unbalanced panel data for the fixed or random-effects models
- variety of estimates and statistics including the following:
- underlying error components estimates
- regression parameter estimates
- standard errors of estimates
- t-tests
- R-square statistic
- correlation matrix of estimates
- covariance matrix of estimates
- autoregressive parameter estimate
- cross-sectional components estimates
- autocovariance estimates
- F tests of linear hypotheses about the regression parameters
- specification tests

Automatic Time Series Forecasting

The ESM procedure provides a quick way to generate forecasts for many time series or transactional data in one step by using exponential smoothing methods. All parameters associated with the forecasting model are optimized based on the data.

You can use the following smoothing models:

- simple
- double
- linear
- damped trend
- seasonal
- Winters method (additive and multiplicative)

Additionally, PROC ESM can transform the data before applying the smoothing methods using any of these transformations:

- \log
- square root
- logistic
- Box-Cox

In addition to forecasting, the ESM procedure can also produce graphic output.
The ESM procedure can forecast both time series data, whose observations are equally spaced at a specific time interval (for example, monthly, weekly), or transactional data, whose observations are not spaced with respect to any particular time interval. (Internet, inventory, sales, and similar data are typical examples of transactional data. For transactional data, the data are accumulated based on a specified time interval to form a time series.)

The ESM procedure is a replacement for the older FORECAST procedure. ESM is often more convenient to use than PROC FORECAST but it supports only exponential smoothing models.

The FORECAST procedure provides forecasting of univariate time series using automatic trend extrapolation. PROC FORECAST is an easy-to-use procedure for automatic forecasting and uses simple popular methods that do not require statistical modeling of the time series, such as exponential smoothing, time trend with autoregressive errors, and the Holt-Winters method.

The FORECAST procedure supplements the powerful forecasting capabilities of the econometric and time series analysis procedures described previously. You can use PROC FORECAST when you have many series to forecast and you want to extrapolate trends without developing a model for each series.

The FORECAST procedure includes the following features:

- choice of the following forecasting methods:
- EXPO method-exponential smoothing: single, double, triple, or Holt two-parameter smoothing
- exponential smoothing as an ARIMA Model
- WINTERS method-using updating equations similar to exponential smoothing to fit model parameters
- ADDWINTERS method-like the WINTERS method except that the seasonal parameters are added to the trend instead of multiplied with the trend
- STEPAR method-stepwise autoregressive models with constant, linear, or quadratic trend and autoregressive errors to any order
- Holt-Winters forecasting method with constant, linear, or quadratic trend
- additive variant of the Holt-Winters method
- support for up to three levels of seasonality for Holt-Winters method: time-of-year, day-ofweek, or time-of-day
- ability to forecast any number of variables at once
- forecast confidence limits for all methods

Time Series Interpolation and Frequency Conversion

The EXPAND procedure provides time interval conversion and missing value interpolation for time series. The EXPAND procedure includes the following features:

- conversion of time series frequency; for example, constructing quarterly estimates from annual series or aggregating quarterly values to annual values
- conversion of irregular observations to periodic observations
- interpolation of missing values in time series
- conversion of observation types; for example, estimate stocks from flows and vice versa. All possible conversions are supported between any of the following:
- beginning of period
- end of period
- period midpoint
- period total
- period average
- conversion of time series phase shift; for example, conversion between fiscal years and calendar years
- identifying observations including the following:
- identification of the time interval of the input values
- validation of the input data set observations
- computation of the ID values for the observations in the output data set
- choice of four interpolation methods:
- cubic splines
- linear splines
- step functions
- simple aggregation
- ability to perform extrapolation by a linear projection of the trend of the cubic spline curve fit to the input data
- ability to transform series before and after interpolation (or without interpolation) by using any of the following:
- constant shift or scale
- sign change or absolute value
- logarithm, exponential, square root, square, logistic, inverse logistic
- lags, leads, differences
- classical decomposition
- bounds, trims, reverse series
- centered moving, cumulative, or backward moving average
- centered moving, cumulative, or backward moving range
- centered moving, cumulative, or backward moving geometric mean
- centered moving, cumulative, or backward moving maximum
- centered moving, cumulative, or backward moving median
- centered moving, cumulative, or backward moving minimum
- centered moving, cumulative, or backward moving product
- centered moving, cumulative, or backward moving corrected sum of squares
- centered moving, cumulative, or backward moving uncorrected sum of squares
- centered moving, cumulative, or backward moving rank
- centered moving, cumulative, or backward moving standard deviation
- centered moving, cumulative, or backward moving sum
- centered moving, cumulative, or backward moving median
- centered moving, cumulative, or backward moving t-value
- centered moving, cumulative, or backward moving variance
- support for a wide range of time series frequencies:
- YEAR
- SEMIYEAR
- QUARTER
- MONTH
- SEMIMONTH
- TENDAY
- WEEK
- WEEKDAY
- DAY
- HOUR
- MINUTE
- SECOND
- support for repeating of shifting the basic interval types to define a great variety of different frequencies, such as fiscal years, biennial periods, work shifts, and so forth

Refer to Chapter 3, "Working with Time Series Data," and Chapter 4, "Date Intervals, Formats, and Functions," for more information about time series data transformations.

Trend and Seasonal Analysis on Transaction Databases

The TIMESERIES procedure can accumulate transactional data to time series and perform trend and seasonal analysis on the accumulated time series.

Time series analyses performed by the TIMESERIES procedure include the follows:

- descriptive statistics relevant for time series data
- seasonal decomposition and seasonal adjustment analysis
- correlation analysis
- cross-correlation analysis

The TIMESERIES procedure includes the following features:

- ability to process large amounts of time-stamped transactional data
- statistical methods useful for large-scale time series analysis or (temporal) data mining
- output data sets stored in either a time series format (default) or a coordinate format (transposed)

The TIMESERIES procedure is normally used to prepare data for subsequent analysis that uses other SAS/ETS procedures or other parts of the SAS system. The time series format is most useful when the data are to be analyzed with SAS/ETS procedures. The coordinate format is most useful when the data are to be analyzed with SAS/STAT ${ }^{\circledR}$ procedures or SAS Enterprise Miner ${ }^{\mathrm{TM}}$. (For example, clustering time-stamped transactional data can be achieved by using the results of TIMESERIES procedure with the clustering procedures of SAS/STAT and the nodes of SAS Enterprise Miner.)

Access to Financial and Economic Databases

The DATASOURCE procedure and the SAS/ETS data access interface LIBNAME Engines (SASECRSP, SASEFAME and SASEHAVR) provide seamless, efficient access to time series data from data files supplied by a variety of commercial and governmental data vendors.

The DATASOURCE procedure includes the following features:

- support for data files distributed by the following data vendors:
- DRI/McGraw-Hill
- FAME Information Services
- HAVER ANALYTICS
- Standard \& Poors Compustat Service
- Center for Research in Security Prices (CRSP)
- International Monetary Fund
- U.S. Bureau of Labor Statistics
- U.S. Bureau of Economic Analysis
- Organization for Economic Cooperation and Development (OECD)
- ability to select the series, frequency, time range, and cross sections of extracted data
- ability to create an output data set containing descriptive information on the series available in the data file
- ability to read EBCDIC data on ASCII systems and vice versa

The SASECRSP interface LIBNAME engine includes the following features:

- enables random access to time series data residing in CRSPAccess databases
- provides a seamless interface between CRSP and SAS data processing
- uses the LIBNAME statement to enable you to specify which time series you would like to read from the CRSPAccess database, and how you would like to perform selection
- enables you access to CRSP Stock, CRSP/COMPUSTAT Merged (CCM) or CRSP Indices Data.
- provides convenient formats, informats, and functions for CRSP and SAS datetime conversions

The SASEFAME interface LIBNAME engine includes the following features:

- provides SAS and FAME users flexibility in accessing and processing time series data, case series, and formulas that reside in either a FAME database or a SAS data set
- provides a seamless interface between FAME and SAS data processing
- uses the LIBNAME statement to enable you to specify which time series you would like to read from the FAME database
- enables you to convert the selected time series to the same time scale
- works with the SAS DATA step to perform further subsetting and to store the resulting time series into a SAS data set
- performs more analysis if desired either in the same SAS session or in another session at a later time
- supports the FAME CROSSLIST function for subsetting via BYGROUPS using the CROSSLIST $=$ option
- you can use a FAME namelist that contains your BY variables for selection in the CROSSLIST
- you can use a SAS input dataset, INSET, that contains the BY selection variables along with the WHERE= option in your SASEFAME libref
- supports the use of FAME in a client/server environment that uses the FAME CHLI capability on your FAME server
- enables access to your FAME remote data when you specify the port number of the TCP/IP service that is defined for your FAME server and the node name of your FAME master server in your SASEFAME libref's physical path

The SASEHAVR interface LIBNAME engine includes the following features:

- enables Windows users random access to economic and financial data residing in a HAVER ANALYTICS Data Link Express (DLX) database
- the following types of HAVER data sets are available:
- United States Economic Indicators
- Specialized Databases
- Financial Indicators
- Industry
- Industrial Countries
- Emerging Markets
- International Organizations
- Forecasts and As Reported Data
- United States Regional
- enables you to limit the range of data that is read from the time series
- enables you to specify a desired conversion frequency. Start dates are recommended on the LIBNAME statement to help you save resources when processing large databases or when processing a large number of observations.
- enables you to use the WHERE, KEEP, or DROP statements in your DATA step to further subset your data
- supports use of the SQL procedure to create a view of your resulting SAS data set

Spreadsheet Calculations and Financial Report Generation

The COMPUTAB procedure generates tabular reports using a programmable data table.
The COMPUTAB procedure is especially useful when you need both the power of a programmable spreadsheet and a report-generation system and you want to set up a program to run in batch mode and generate routine reports. The COMPUTAB procedure includes the following features:

- report generation facility for creating tabular reports such as income statements, balance sheets, and other row and column reports for analyzing business or time series data
- ability to tailor report format to almost any desired specification
- use of the SAS programming language to provide complete control of the calculation and format of each item of the report
- ability to report definition in terms of a data table on which programming statements operate
- ability for a single reference to a row or column to bring the entire row or column into a calculation
- ability to create new rows and columns (such as totals, subtotals, and ratios) with a single programming statement
- access to individual table values when needed
- built-in features to provide consolidation reports over summarization variables

Loan Analysis, Comparison, and Amortization

The LOAN procedure provides analysis and comparison of mortgages and other installment loans; it includes the following features:

- ability to specify contract terms for any number of different loans and ability to analyze and compare various financing alternatives
- analysis of four different types of loan contracts including the following:
- fixed rate
- adjustable rate
- buy-down rate
- balloon payment
- full control over adjustment terms for adjustable rate loans: life caps, adjustment frequency, and maximum and minimum rates
- support for a wide variety of payment and compounding intervals
- ability to incorporate initialization costs, discount points, down payments, and prepayments (uniform or lump-sum) in loan calculations
- analysis of different rate adjustment scenarios for variable rate loans including the following:
- worst case
- best case
- fixed rate case
- estimated case
- ability to make loan comparisons at different points in time
- ability to make loan comparisons at each analysis date on the basis of five different economic criteria:
- present worth of cost (net present value of all payments to date)
- true interest rate (internal rate of return to date)
- current periodic payment
- total interest paid to date
- outstanding balance
- ability to base loan comparisons on either after-tax or before-tax analysis
- report of the best alternative when loans of equal amount are compared
- amortization schedules for each loan contract
- output that shows payment dates, rather than just payment sequence numbers, when starting date is specified
- optional printing or output of the amortization schedules, loan summaries, and loan comparison information to SAS data sets
- ability to specify rounding of payments to any number of decimal places

Time Series Forecasting System

SAS/ETS software includes the Time Series Forecasting System, a point-and-click application for exploring and analyzing univariate time series data. You can use the automatic model selection facility to select the best-fitting model for each time series, or you can use the system's diagnostic features and time series modeling tools interactively to develop forecasting models customized to
best predict your time series. The system provides both graphical and statistical features to help you choose the best forecasting method for each series.

The system can be invoked by selecting Analysis $\$ Solutions, by the FORECAST command, and by clicking the Forecasting icon in the Data Analysis folder of the SAS Desktop.

The following is a brief summary of the features of the Time Series Forecasting system. With the system you can:

- use a wide variety of forecasting methods, including several kinds of exponential smoothing models, Winters method, and ARIMA (Box-Jenkins) models. You can also produce forecasts by combining the forecasts from several models.
- use predictor variables in forecasting models. Forecasting models can include time trend curves, regressors, intervention effects (dummy variables), adjustments you specify, and dynamic regression (transfer function) models.
- view plots of the data, predicted versus actual values, prediction errors, and forecasts with confidence limits. You can plot changes or transformations of series, zoom in on parts of the graphs, or plot autocorrelations.
- use hold-out samples to select the best forecasting method
- compare goodness-of-fit measures for any two forecasting models side-by-side or list all models sorted by a particular fit statistic
- view the predictions and errors for each model in a spreadsheet or view and compare the forecasts from any two models in a spreadsheet
- examine the fitted parameters of each forecasting model and their statistical significance
- control the automatic model selection process: the set of forecasting models considered, the goodness-of-fit measure used to select the best model, and the time period used to fit and evaluate models
- customize the system by adding forecasting models for the automatic model selection process and for point-and-click manual selection
- save your work in a project catalog
- print an audit trail of the forecasting process
- save and print system output including spreadsheets and graphs

Investment Analysis System

The Investment Analysis System is an interactive environment for analyzing the time-value of money for a variety of investments:

- loans
- savings
- depreciations
- bonds
- generic cash flows

Various tools are provided to help analyze the value of investment alternatives: time value, periodic equivalent, internal rate of return, benefit-cost ratio, and breakeven analysis.

These analyses can help answer a number of questions you might have about your investments:

- Which option is more profitable or less costly?
- Is it better to buy or rent?
- Are the extra fees for refinancing at a lower interest rate justified?
- What is the balance of this account after saving this amount periodically for so many years?
- How much is legally tax-deductible?
- Is this a reasonable price?

Investment Analysis can be beneficial to users in many industries for a variety of decisions:

- manufacturing: cost justification of automation or any capital investment, replacement analysis of major equipment, or economic comparison of alternative designs
- government: setting funds for services
- finance: investment analysis and portfolio management for fixed-income securities

ODS Graphics

Many SAS/ETS procedures produce graphical output using the SAS Output Delivery System (ODS). The ODS Graphics system provides several advantages:

- Plots and graphs are output objects in the Output Delivery System (ODS) and can be manipulated with ODS commands.
- There is no need to write SAS/GRAPH statements or use special plotting macros.
- There are multiple formats to choose from: html, gif, and rtf.
- Templates control the appearance of plots.
- Styles control the color scheme.
- You can edit or create templates and styles for all graphs.

To enable graphical output from SAS/ETS procedures, you must use the following statement in your SAS program.
ods graphics on;
The graphical output produced by many $\mathrm{SAS} / \mathrm{ETS}$ procedures can be controlled using the $\mathrm{PLOTS}=$ option on the PROC statement.

For more information about the features of the ODS Graphics system, including the many ways that you can control or customize the plots produced by SAS procedures, refer to Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide). For more information about the SAS Output Delivery system, refer to the SAS Output Delivery System: User's Guide.

Related SAS Software

Many features not found in SAS/ETS software are available in other parts of the SAS System, such as Base SAS ${ }^{\circledR}$, SAS ${ }^{\circledR}$ Forecast Server, SAS/STAT ${ }^{\circledR}$ software, SAS/OR ${ }^{\circledR}$ software, SAS/QC ${ }^{\circledR}$ software, SAS ${ }^{\circledR}$ Stat Studio, and SAS/IML ${ }^{\circledR}$ software.

If you do not find something you need in SAS/ETS software, you might be able to find it in SAS/STAT software and in Base SAS software. If you still do not find it, look in other SAS software products or contact SAS Technical Support staff.

The following subsections summarize the features of other SAS products that might be of interest to users of SAS/ETS software.

Base SAS Software

The features provided by SAS/ETS software are extensions to the features provided by Base SAS software. Many data management and reporting capabilities you need are part of Base SAS software. Refer to SAS Language Reference: Dictionary and Base SAS Procedures Guide for documentation of Base SAS software. In particular, refer to Base SAS Procedures Guide: Statistical Procedures for information about statistical analysis features included with Base SAS.

The following sections summarize Base SAS software features of interest to users of SAS/ETS software. See Chapter 3, "Working with Time Series Data," for further discussion of some of these topics as they relate to time series data and SAS/ETS software.

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS System. The DATA step provides a powerful general purpose programming language that enables you to perform all kinds of data processing tasks. The DATA step is documented in SAS Language Reference: Dictionary.

Base SAS Procedures

Base SAS software includes many useful SAS procedures, which are documented in Base SAS Procedures Guide and Base SAS Procedures Guide: Statistical Procedures. The following is a list of Base SAS procedures you might find useful:

CATALOG	for managing SAS catalogs
CHART	for printing charts and histograms
COMPARE	for comparing SAS data sets
CONTENTS	for displaying the contents of SAS data sets
COPY	for copying SAS data sets
CORR	for computing correlations
CPORT	for moving SAS data libraries between computer systems
DATASETS	for deleting or renaming SAS data sets
FCMP	for compiling functions for use in SAS programs. The SAS Function Compiler Procedure (FCMP) enables you to create, test, and store SAS functions and sub- routines before you use them in other SAS procedures. PROC FCMP accepts slight variations of DATA step statements, and most features of the SAS pro- gramming language can be used in functions and subroutines that are processed by PROC FCMP.

FREQ for computing frequency crosstabulations
MEANS for computing descriptive statistics and summarizing or collapsing data over cross sections

PLOT for printing scatter plots
PRINT for printing SAS data sets
PROTO for accessing external functions from the SAS system. The PROTO procedure enables you to register external functions that are written in the C or $\mathrm{C}++$ programming languages. You can use these functions in SAS as well as in Clanguage structures and types. After the C-language functions are registered in PROC PROTO, they can be called from any SAS function or subroutine that is declared in the FCMP procedure, as well as from any SAS function, subroutine, or method block that is declared in the COMPILE procedure.
RANK for computing rankings or order statistics
SORT for sorting SAS data sets

SQL for processing SAS data sets with Structured Query Language
STANDARD
TABULATE for printing descriptive statistics in tabular format
TIMEPLOT for plotting variables over time
TRANSPOSE for transposing SAS data sets
UNIVARIATE for computing descriptive statistics

Global Statements

Global statements can be specified anywhere in your SAS program, and they remain in effect until changed. Global statements are documented in SAS Language Reference: Dictionary. You may find the following SAS global statements useful:

FILENAME	for accessing data files
FOOTNOTE	for printing footnote lines at the bottom of each page
\%INCLUDE	for including files of SAS statements
LIBNAME	for accessing SAS data libraries
OPTIONS	for setting various SAS system options
QUIT	for ending an interactive procedure step
RUN	for executing the preceding SAS statements
TITLE	for printing title lines at the top of each page
X	for issuing host operating system commands from within your SAS session

Some Base SAS statements can be used with any SAS procedure, including SAS/ETS procedures. These statements are not global, and they affect only the SAS procedure they are used with. These statements are documented in SAS Language Reference: Dictionary.

The following Base SAS statements are useful with SAS/ETS procedures:
BY for computing separate analyses for groups of observations
FORMAT for assigning formats to variables
LABEL for assigning descriptive labels to variables
WHERE for subsetting data to restrict the range of data processed or to select or exclude observations from the analysis

SAS Functions

SAS functions can be used in DATA step programs and in the COMPUTAB and MODEL procedures. The following kinds of functions are available:

- character functions for manipulating character strings
- date and time functions for performing date and calendar calculations
- financial functions for performing financial calculations such as depreciation, net present value, periodic savings, and internal rate of return
- lagging and differencing functions for computing lags and differences
- mathematical functions for computing data transformations and other mathematical calculations
- probability functions for computing quantiles of statistical distributions and the significance of test statistics
- random number functions for simulation experiments
- sample statistics functions for computing means, standard deviations, kurtosis, and so forth

SAS functions are documented in SAS Language Reference: Dictionary. Chapter 3, "Working with Time Series Data," discusses the use of date, time, lagging, and differencing functions. Chapter 4, "Date Intervals, Formats, and Functions," contains a reference list of date and time functions.

Formats, Informats, and Time Intervals

Base SAS software provides formats to control the printing of data values, informats to read data values, and time intervals to define the frequency of time series. See Chapter 4, "Date Intervals, Formats, and Functions," for more information.

SAS Forecast Studio

SAS Forecast Studio is part of the SAS Forecast Server product. It provides an interactive environment for modeling and forecasting very large collections of hierarchically organized time series, such as SKUs in product lines and sales regions of a retail business. Forecast Studio greatly extends the capabilities provided by the Time Series Forecasting System included with SAS/ETS and described in Part IV.

Forecast Studio is documented in SAS Forecast Server User's Guide.

SAS High-Performance Forecasting

SAS High-Performance Forecasting (HPF) software provides a system of SAS procedures for largescale automatic forecasting in business, government, and academic applications. Major uses of High-Performance Forecasting procedures include: forecasting, forecast scoring, market response modeling, and time series data mining.

The software includes the following automatic forecasting process:

- accumulates the time-stamped data to form a fixed-interval time series
- diagnoses the time series using time series analysis techniques
- creates a list of candidate model specifications based on the diagnostics
- fits each candidate model specification to the time series
- generates forecasts for each candidate fitted model
- selects the most appropriate model specification based on either in-sample or holdout-sample evaluation using a model selection criterion
- refits the selected model specification to the entire range of the time series
- creates a forecast score from the selected fitted model
- generate forecasts from the forecast score
- evaluates the forecast using in-sample analysis
- provides for out-of-sample forecast performance analysis
- performs top-down, middle-out, or bottom-up reconciliations of forecasts in the hierarchy

SAS/GRAPH Software

SAS/GRAPH software includes procedures that create two- and three-dimensional high resolution color graphics plots and charts. You can generate output that graphs the relationship of data values to one another, enhance existing graphs, or simply create graphics output that is not tied to data.

With the addition of ODS Graphics features to SAS/ETS procedures, there is now less need for the use of SAS/GRAPH procedures with SAS/ETS. However, SAS/GRAPH procedures allow you to create additional graphical displays of your results.

SAS/GRAPH software can produce the following types of output:

- charts
- plots
- maps
- text
- three-dimensional graphs

With SAS/GRAPH software you can produce high-resolution color graphics plots of time series data.

SAS/STAT Software

SAS/STAT software is of interest to users of SAS/ETS software because many econometric and other statistical methods not included in SAS/ETS software are provided in SAS/STAT software

SAS/STAT software includes procedures for a wide range of statistical methodologies including the following:

- logistic regression
- censored regression
- principal component analysis
- structural equation models using covariance structure analysis
- factor analysis
- survival analysis
- discriminant analysis
- cluster analysis
- categorical data analysis; log-linear and conditional logistic models
- general linear models
- mixed linear and nonlinear models
- generalized linear models
- response surface analysis
- kernel density estimation
- LOESS regression
- spline regression
- two-dimensional kriging
- multiple imputation for missing values
- survey data analysis

SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming language (Interactive Matrix Language) in a dynamic, interactive environment. The fundamental object of the language is a data matrix. You can use SAS/IML software interactively (at the statement level) to see results immediately, or you can store statements in a module and execute them later. The programming is dynamic because necessary activities such as memory allocation and dimensioning of matrices are done automatically.

You can access built-in operators and call routines to perform complex tasks such as matrix inversion or eigenvector generation. You can define your own functions and subroutines using SAS/IML modules. You can perform operations on an entire data matrix. You have access to a wide choice of data management commands. You can read, create, and update SAS data sets from inside SAS/IML software without ever using the DATA step.

SAS/IML software is of interest to users of SAS/ETS software because it enables you to program your own econometric and time series methods in the SAS System. It contains subroutines for time series operators and for general function optimization. If you need to perform a statistical calculation not provided as an automated feature by SAS/ETS or other SAS software, you can use SAS/IML software to program the matrix equations for the calculation.

Kalman Filtering and Time Series Analysis in SAS/IML

SAS/IML software includes CALL routines and functions for Kalman filtering and time series analysis, which perform the following:

- generate univariate, multivariate, and fractional time series
- compute likelihood function of ARMA, VARMA, and ARFIMA models
- compute an autocovariance function of ARMA, VARMA, and ARFIMA models
- check the stationarity of ARMA and VARMA models
- filter and smooth time series models using Kalman method
- fit AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA models
- handle Bayesian seasonal adjustment models

SAS Stat Studio

SAS Stat Studio is a highly interactive tool for data exploration and analysis. Stat Studio runs on a PC in the Microsoft Windows operating environment. You can use Stat Studio to do the following:

- explore data through graphs linked across multiple windows
- transform data
- subset data
- analyze univariate distributions
- discover structure and features in multivariate data
- fit and evaluate explanatory models
- create your own customized statistical graphics
- add legends, curves, maps, or other custom features to statistical graphics
- develop interactive programs that use dialog boxes
- extend the built-in analyses by calling SAS procedures
- create custom analyses
- repeat an analysis on different data
- extend the results of SAS procedures by using IML
- share analyses with colleagues who also use Stat Studio
- call functions from libraries written in C/C++, FORTRAN, or Java

See for more information.

SAS/OR Software

SAS/OR software provides SAS procedures for operations research and project planning and includes a menu driven system for project management. SAS/OR software has features for the following:

- solving transportation problems
- linear, integer, and mixed-integer programming
- nonlinear programming and optimization
- scheduling projects
- plotting Gantt charts
- drawing network diagrams
- solving optimal assignment problems
- network flow programming

SAS/OR software might be of interest to users of SAS/ETS software for its mathematical programming features. In particular, the NLP and OPTMODEL procedures in SAS/OR software solve nonlinear programming problems and can be used for constrained and unconstrained maximization of user-defined likelihood functions.

See SAS/OR User's Guide: Mathematical Programming for more information.

SAS/QC Software

SAS/QC software provides a variety of procedures for statistical quality control and quality improvement. SAS/QC software includes procedures for the following:

- Shewhart control charts
- cumulative sum control charts
- moving average control charts
- process capability analysis
- Ishikawa diagrams
- Pareto charts
- experimental design

SAS/QC software also includes the SQC menu system for interactive application of statistical quality control methods and the ADX Interface for experimental design.

MLE for User-Defined Likelihood Functions

There are several SAS procedures that enable you to do maximum likelihood estimation of parameters in an arbitrary model with a likelihood function that you define: PROC MODEL, PROC NLP, PROC OPTMODEL and PROC IML.

The MODEL procedure in SAS/ETS software enables you to minimize general log-likelihood functions for the error term of a model.

The NLP and OPTMODEL procedures in SAS/OR software are general nonlinear programming procedures that can maximize a general function subject to linear equality or inequality constraints. You can use PROC NLP or OPTMODEL to maximize a user-defined nonlinear likelihood function.

You can use the IML procedure in SAS/IML software for maximum likelihood problems. The optimization routines used by PROC NLP are available through IML subroutines. You can write the likelihood function in the SAS/IML matrix language and call the constrained and unconstrained nonlinear programming subroutines to maximize the likelihood function with respect to the parameter vector.

JMP ${ }^{\circledR}$ Software

JMP software uses a flexible graphical interface to display and analyze data. JMP dynamically links statistics and graphics so you can easily explore data, make discoveries, and gain the knowledge you need to make better decisions. JMP provides a comprehensive set of statistical tools as well as design of experiments (DOE) and advanced quality control (QC and SPC) tools for Six Sigma in a single package. JMP is software for interactive statistical graphics and includes:

- a data table window for editing, entering, and manipulating data
- a broad range of graphical and statistical methods for data analysis
- a facility for grouping data and computing summary statistics
- JMP scripting language (JSL)—a scripting language for saving and creating frequently used routines
- JMP automation
- Formula Editor-a formula editor for each table column to compute values as needed
- linear models, correlations, and multivariate
- design of experiments module
- options to highlight and display subsets of data
- statistical quality control and variability charts-special plots, charts, and communication capability for quality-improvement techniques
- survival analysis
- time series analysis, which includes the following:
- Box-Jenkins ARIMA forecasting
- seasonal ARIMA forecasting
- transfer function modeling
- smoothing models: Winters method, single, double, linear, damped trend linear, and seasonal exponential smoothing
- diagnostic charts (autocorrelation, partial autocorrelation, and variogram) and statistics of fit
- a model comparison table to compare all forecasts generated
- spectral density plots and white noise tests
- tools for printing and for moving analyses results between applications

SAS Enterprise Guide ${ }^{\circledR}$

SAS Enterprise Guide has the following features:

- integration with the SAS9 platform:
- open metadata repository (OMR) integration
- SAS report integration
* create report interface
* ODS support
* Web report studio integration
- access to information maps
- ETL studio impact analysis
- ESRI integration within the OLAP analyzer
- data mining scoring task
- the user interface and workflow
- process flow
- ability to create stored processes from process flows
- SAS folders window
- project parameters
- query builder interface
- code node
- OLAP analyzer
* ESRI integration
* tree-diagram-based OLAP explorer
* SAS report snapshots
* SAS Web OLAP viewer for .NET ability to create EG projects
- workspace maximization

With Enterprise Guide, you can perform time series analysis with the following EG procedures:

- prepare time series data-the Prepare Time Series Data task can be used to make data more suitable for analysis by other time series tasks.
- create time series data-the Create Time Series Data wizard helps you convert transactional data into fixed-interval time series. Transactional data are time-stamped data collected over time with irregular or varied frequency.
- ARIMA Modeling and Forecasting task
- Basic Forecasting task
- Regression Analysis with Autoregressive Errors
- Regression Analysis of Panel Data

SAS ${ }^{\circledR}$ Add-In for Microsoft Office

The main time series tasks in SAS Add-in for Microsoft Office (AMO) are as follows:

- Prepare Time Series Data
- Basic Forecasting
- ARIMA Modeling and Forecasting
- Regression Analysis with Autoregressive Errors
- Regression Analysis of Panel Data
- Create Time Series Data
- Forecast Studio Create Project
- Forecast Studio Open Project
- Forecast Studio Submit Overrides

SAS Enterprise Miner ${ }^{\text {TM }}$ —Time Series Node

SAS Enterprise Miner ${ }^{\text {TM }}$ is the SAS solution for data mining, streamlining the data mining process to create highly accurate predictive and descriptive models. Enterprise Miner's process flow diagram eliminates the need for manual coding and reduces the model development time for both business analysts and statisticians. The system is customizable and extensible; users can integrate their code and build new nodes for redistribution.

The Time Series node is a method of investigating time series data. It belongs to the Modify category of the SAS SEMMA (sample, explore, modify, model, assess) data mining process. The Time Series node enables you to understand trends and seasonal variation in large amounts of time series and transactional data.

The Time Series node in SAS Enterprise Miner enables you to do the following:

- perform time series analysis
- perform forecasting
- work with transactional data

SAS Risk Products

The SAS Risk products include SAS Risk Dimensions ${ }^{\circledR}$, SAS Credit Risk Management for Banking, SAS OpRisk VaR, and SAS OpRisk Monitor.

The analytical methods of SAS Risk Dimensions measure market risk and credit risk. SAS Risk Dimensions creates an environment where market and position data are staged for analysis using SAS data access and warehousing methodologies. SAS Risk Dimensions delivers a full range of modern credit, market and operational risk analysis techniques including:

- mark-to-market
- scenario analysis
- profit/loss curves and surfaces
- sensitivity analysis
- delta normal VaR
- historical simulation VaR
- Monte Carlo VaR
- current exposure
- potential exposure
- credit VaR
- optimization

SAS Credit Risk Management for Banking is a complete end-to-end application for measuring, exploring, managing, and reporting credit risk. SAS Credit Risk Management for Banking integrates data access, mapping, enrichment, and aggregation with advanced analytics and flexible reporting, all in an open, extensible, client-server framework.

SAS Credit Risk Management for Banking enables you to do the following:

- access and aggregate credit risk data across disparate operating systems and sources
- seamlessly integrate credit scoring/internal rating with credit portfolio risk assessment
- accurately measure, monitor, and report potential credit risk exposures within entities of an organization and aggregated across the entire organization, both on the counterparty level and the portfolio level
- evaluate alternative strategies for pricing, hedging, or transferring credit risk
- optimize the allocation of credit risk mitigants or assign the mitigants to lower the regulatory capital requirement
- optimize the allocation of regulatory capital and economic capital
- facilitate regulatory compliance and risk disclosure requirements for a wide variety of regulations such as Basel I, Basel II, and the Capital Requirements Directive (CAD III)

References

Amal, S. and Weselowski, R. (1993), "Practical Econometric Analysis for Assessment of Real Property: Using the SAS System on Personal Computers," Proceedings of the Eighteenth Annual SAS Users Group International Conference, 385-390. Cary, NC: SAS Institute Inc.

Benseman, B. (1990), "Better Forecasting with SAS/ETS Software," Proceedings of the Fifteenth Annual SAS Users Group International Conference, 494-497. Cary, NC: SAS Institute Inc.

Calise, A. and Earley, J. (1997), "Forecasting College Enrollment Using the SAS System," Proceedings of the Twenty-Second Annual SAS Users Group International Conference, 1326-1329. Cary, NC: SAS Institute Inc.

Early, J., Sweeney, J., and Zekavat, S. M. (1989), "PROC ARIMA and the Dow Jones Stock Index," Proceedings of the Fourteenth Annual SAS Users Group International Conference, 371-375. Cary, NC: SAS Institute Inc.

Fischetti, T., Heathcote, S. and Perry, D. (1993), "Using SAS to Create a Modular Forecasting System," Proceedings of the Eighteenth Annual SAS Users Group International Conference, 580585. Cary, NC: SAS Institute Inc.

Fleming, N. S., Gibson, E. and Fleming, D. G. (1996), "The Use of PROC ARIMA to Test an Intervention Effect," Proceedings of the Twenty-First Annual SAS Users Group International Conference, 1317-1326. Cary, NC: SAS Institute Inc.

Hisnanick, J. J. (1991), "Evaluating Input Separability in a Model of the U.S. Manufacturing Sector," Proceedings of the Sixteenth Annual SAS Users Group International Conference, 688-693. Cary, NC: SAS Institute Inc.

Hisnanick, J. J. (1992), "Using PROC ARIMA in Forecasting the Demand and Utilization of Inpatient Hospital Services," Proceedings of the Seventeenth Annual SAS Users Group International Conference, 383-391. Cary, NC: SAS Institute Inc.

Hisnanick, J. J. (1993), "Using SAS/ETS in Applied Econometrics: Parameters Estimates for the CES-Translog Specification," Proceedings of the Eighteenth Annual SAS Users Group International Conference, 275-279. Cary, NC: SAS Institute Inc.

Hoyer, K. K. and Gross, K. C. (1993), "Spectral Decomposition and Reconstruction of Nuclear Plant Signals," Proceedings of the Eighteenth Annual SAS Users Group International Conference, 1153-1158. Cary, NC: SAS Institute Inc.

Keshani, D. A. and Taylor, T. N. (1992), "Weather Sensitive Appliance Load Curves; Conditional Demand Estimation," Proceedings of the Annual SAS Users Group International Conference, 422430. Cary, NC: SAS Institute Inc.

Khan, M. H. (1990), "Transfer Function Model for Gloss Prediction of Coated Aluminum Using the ARIMA Procedure," Proceedings of the Fifteenth Annual SAS Users Group International Conference, 517-522. Cary, NC: SAS Institute Inc.

Le Bouton, K. J. (1989), "Performance Function for Aircraft Production Using PROC SYSLIN and L ${ }^{2}$ Norm Estimation," Proceedings of the Fourteenth Annual SAS Users Group International Conference, 424-426. Cary, NC: SAS Institute Inc.

Lin, L. and Myers, S. C. (1988), "Forecasting the Economy using the Composite Leading Index, Its Components, and a Rational Expectations Alternative," Proceedings of the Thirteenth Annual SAS Users Group International Conference, 181-186. Cary, NC: SAS Institute Inc.

McCarty, L. (1994), "Forecasting Operational Indices Using SAS/ETS Software," Proceedings of the Nineteenth Annual SAS Users Group International Conference, 844-848. Cary, NC: SAS Institute Inc.

Morelock, M. M., Pargellis, C. A., Graham, E. T., Lamarre, D., and Jung, G. (1995), "TimeResolved Ligand Exchange Reactions: Kinetic Models for Competitive Inhibitors with Recombinant Human Renin," Journal of Medical Chemistry, 38, 1751-1761.

Parresol, B. R. and Thomas, C. E. (1991), "Econometric Modeling of Sweetgum Stem Biomass Using the IML and SYSLIN Procedures," Proceedings of the Sixteenth Annual SAS Users Group International Conference, 694-699. Cary, NC: SAS Institute Inc.

Chapter 3

Working with Time Series Data

Contents

Overview . 64
Time Series and SAS Data Sets . 65
Introduction . 65
Reading a Simple Time Series . 66
Dating Observations . 67
SAS Date, Datetime, and Time Values . 68
Reading Date and Datetime Values with Informats 69
Formatting Date and Datetime Values . 70
The Variables DATE and DATETIME . 72
Sorting by Time . 72
Subsetting Data and Selecting Observations . 73
Subsetting SAS Data Sets . 73
Using the WHERE Statement with SAS Procedures 74
Using SAS Data Set Options . 75
Storing Time Series in a SAS Data Set . 75
Standard Form of a Time Series Data Set 76
Several Series with Different Ranges . 77
Missing Values and Omitted Observations 78
Cross-Sectional Dimensions and BY Groups 79
Interleaved Time Series . 80
Output Data Sets of SAS/ETS Procedures 82
Time Series Periodicity and Time Intervals . 84
Specifying Time Intervals . 84
Using Intervals with SAS/ETS Procedures 85
Time Intervals, the Time Series Forecasting System, and the Time Series Viewer 86
Plotting Time Series . 86
Using the Time Series Viewer . 86
Using PROC SGPLOT . 87
Using PROC PLOT . 92
Using PROC TIMEPLOT . 93
Using PROC GPLOT . 94
Calendar and Time Functions . 95
Computing Dates from Calendar Variables 96
Computing Calendar Variables from Dates 96
Converting between Date, Datetime, and Time Values 97
Computing Datetime Values 97
Computing Calendar and Time Variables 98
Interval Functions INTNX and INTCK 98
Incrementing Dates by Intervals 99
Alignment of SAS Dates 100
Computing the Width of a Time Interval 101
Computing the Ceiling of an Interval 102
Counting Time Intervals 102
Checking Data Periodicity 103
Filling In Omitted Observations in a Time Series Data Set 104
Using Interval Functions for Calendar Calculations 104
Lags, Leads, Differences, and Summations 105
The LAG and DIF Functions 105
Multiperiod Lags and Higher-Order Differencing 109
Percent Change Calculations 110
Leading Series 112
Summing Series 113
Transforming Time Series 115
Log Transformation 115
Other Transformations 117
The EXPAND Procedure and Data Transformations 118
Manipulating Time Series Data Sets 118
Splitting and Merging Data Sets 118
Transposing Data Sets 119
Time Series Interpolation 124
Interpolating Missing Values 124
Interpolating to a Higher or Lower Frequency 125
Interpolating between Stocks and Flows, Levels and Rates 125
Reading Time Series Data 125
Reading a Simple List of Values 126
Reading Fully Described Time Series in Transposed Form 126

Overview

This chapter discusses working with time series data in the SAS System. The following topics are included:

- dating time series and working with SAS date and datetime values
- subsetting data and selecting observations
- storing time series data in SAS data sets
- specifying time series periodicity and time intervals
- plotting time series
- using calendar and time interval functions
- computing lags and other functions across time
- transforming time series
- transposing time series data sets
- interpolating time series
- reading time series data recorded in different ways

In general, this chapter focuses on using features of the SAS programming language and not on features of SAS/ETS software. However, since SAS/ETS procedures are used to analyze time series, understanding how to use the SAS programming language to work with time series data is important for the effective use of SAS/ETS software.

You do not need to read this chapter to use SAS/ETS procedures. If you are already familiar with SAS programming you might want to skip this chapter, or you can refer to sections of this chapter for help on specific time series data processing questions.

Time Series and SAS Data Sets

Introduction

To analyze data with the SAS System, data values must be stored in a SAS data set. A SAS data set is a matrix (or table) of data values organized into variables and observations.

The variables in a SAS data set label the columns of the data matrix, and the observations in a SAS data set are the rows of the data matrix. You can also think of a SAS data set as a kind of file, with the observations representing records in the file and the variables representing fields in the records. (See SAS Language Reference: Concepts for more information about SAS data sets.)

Usually, each observation represents the measurement of one or more variables for the individual subject or item observed. Often, the values of some of the variables in the data set are used to identify the individual subjects or items that the observations measure. These identifying variables are referred to as ID variables.

For many kinds of statistical analysis, only relationships among the variables are of interest, and the identity of the observations does not matter. ID variables might not be relevant in such a case.

However, for time series data the identity and order of the observations are crucial. A time series is a set of observations made at a succession of equally spaced points in time.

For example, if the data are monthly sales of a company's product, the variable measured is sales of the product and the unit observed is the operation of the company during each month. These observations can be identified by year and month. If the data are quarterly gross national product, the variable measured is final goods production and the unit observed is the economy during each quarter. These observations can be identified by year and quarter.

For time series data, the observations are identified and related to each other by their position in time. Since SAS does not assume any particular structure to the observations in a SAS data set, there are some special considerations needed when storing time series in a SAS data set.

The main considerations are how to associate dates with the observations and how to structure the data set so that SAS/ETS procedures and other SAS procedures recognize the observations of the data set as constituting time series. These issues are discussed in following sections.

Reading a Simple Time Series

Time series data can be recorded in many different ways. The section "Reading Time Series Data" on page 125 discusses some of the possibilities. The example below shows a simple case.

The following SAS statements read monthly values of the U.S. Consumer Price Index for June 1990 through July 1991. The data set USCPI is shown in Figure 3.1.

```
data uscpi;
    input year month cpi;
datalines;
1990 6 129.9
1990 7 130.4
... more lines ...
proc print data=uscpi;
run;
```

Figure 3.1 Time Series Data

| Obs | year | month | cpi |
| ---: | :--- | ---: | :--- | :--- |
| | | | |
| 1 | 1990 | 6 | 129.9 |
| 2 | 1990 | 7 | 130.4 |
| 3 | 1990 | 8 | 131.6 |
| 4 | 1990 | 9 | 132.7 |
| 5 | 1990 | 10 | 133.5 |
| 6 | 1990 | 11 | 133.8 |
| 7 | 1990 | 12 | 133.8 |
| 8 | 1991 | 1 | 134.6 |
| 9 | 1991 | 2 | 134.8 |
| 10 | 1991 | 3 | 135.0 |
| 11 | 1991 | 4 | 135.2 |
| 12 | 1991 | 5 | 135.6 |
| 13 | 1991 | 6 | 136.0 |
| 14 | 1991 | 7 | 136.2 |

When a time series is stored in the manner shown by this example, the terms series and variable can be used interchangeably. There is one observation per row and one series/variable per column.

Dating Observations

The SAS System supports special date, datetime, and time values, which make it easy to represent dates, perform calendar calculations, and identify the time period of observations in a data set.

The preceding example uses the ID variables YEAR and MONTH to identify the time periods of the observations. For a quarterly data set, you might use YEAR and QTR as ID variables. A daily data set might have the ID variables YEAR, MONTH, and DAY. Clearly, it would be more convenient to have a single ID variable that could be used to identify the time period of observations, regardless of their frequency.

The following section, "SAS Date, Datetime, and Time Values" on page 68, discusses how the SAS System represents dates and times internally and how to specify date, datetime, and time values in a SAS program. The section "Reading Date and Datetime Values with Informats" on page 69 discusses how to read in date and time values from data records and how to control the display of date and datetime values in SAS output. Later sections discuss other issues concerning date and datetime values, specifying time intervals, data periodicity, and calendar calculations.

SAS date and datetime values and the other features discussed in the following sections are also described in SAS Language Reference: Dictionary. Reference documentation on these features is also provided in Chapter 4, "Date Intervals, Formats, and Functions."

SAS Date, Datetime, and Time Values

SAS Date Values

SAS software represents dates as the number of days since a reference date. The reference date, or date zero, used for SAS date values is 1 January 1960. For example, 3 February 1960 is represented by SAS as 33 . The SAS date for 17 October 1991 is 11612.

SAS software correctly represents dates from the year 1582 to the year 20,000 .
Dates represented in this way are called SAS date values. Any numeric variable in a SAS data set whose values represent dates in this way is called a SAS date variable.

Representing dates as the number of days from a reference date makes it easy for the computer to store them and perform calendar calculations, but these numbers are not meaningful to users. However, you never have to use SAS date values directly, since SAS automatically converts between this internal representation and ordinary ways of expressing dates, provided that you indicate the format with which you want the date values to be displayed. (Formatting of date values is explained in the section "Formatting Date and Datetime Values" on page 70.)

Century of Dates Represented with Two-Digit Year Values

SAS software informats, functions, and formats can process dates that are represented with twodigit year values. The century assumed for a two-digit year value can be controlled with the YEARCUTOFF $=$ option in the OPTIONS statement. The YEARCUTOFF= system option controls how dates with two-digit year values are interpreted by specifying the first year of a 100-year span. The default value for the YEARCUTOFF= option is 1920 . Thus by default the year ' 17 ' is interpreted as 2017, while the year ' 25 ' is interpreted as 1925. (See SAS Language Reference: Dictionary for more information about YEARCUTOFF=.)

SAS Date Constants

SAS date values are written in a SAS program by placing the dates in single quotes followed by a D. The date is represented by the day of the month, the three letter abbreviation of the month name, and the year.

For example, SAS reads the value '17OCT1991'D the same as 11612, the SAS date value for 17 October 1991. Thus, the following SAS statements print DATE=11612:

```
data _null_;
    date = '17oct1991'd;
    put date=;
run;
```

The year value can be given with two or four digits, so '17OCT91'D is the same as '17OCT1991'D.

SAS Datetime Values and Datetime Constants

To represent both the time of day and the date, SAS uses datetime values. SAS datetime values represent the date and time as the number of seconds the time is from a reference time. The reference time, or time zero, used for SAS datetime values is midnight, 1 January 1960. Thus, for example, the SAS datetime value for 17 October 1991 at 2:45 in the afternoon is 1003329900.

To specify datetime constants in a SAS program, write the date and time in single quotes followed by DT. To write the date and time in a SAS datetime constant, write the date part using the same syntax as for date constants, and follow the date part with the hours, the minutes, and the seconds, separating the parts with colons. The seconds are optional.

For example, in a SAS program you would write 17 October 1991 at $2: 45$ in the afternoon as '17OCT91:14:45'DT. SAS reads this as 1003329900 . Table 3.1 shows some other examples of datetime constants.

Table 3.1 Examples of Datetime Constants

Datetime Constant	Time
'17OCT1991:14:45:32'DT	32 seconds past 2:45 p.m., 17 October 1991
'17OCT1991:12:5'DT	12:05 p.m., 17 October 1991
'17OCT1991:2:0'DT	2:00 a.m., 17 October 1991
'17OCT1991:0:0'DT	midnight, 17 October 1991

SAS Time Values

The SAS System also supports time values. SAS time values are just like datetime values, except that the date part is not given. To write a time value in a SAS program, write the time the same as for a datetime constant, but use T instead of DT. For example, 2:45:32 p.m. is written '14:45:32’ T . Time values are represented by a number of seconds since midnight, so SAS reads ' $14: 45: 32$ ' T as 53132.

SAS time values are not very useful for identifying time series, since usually both the date and the time of day are needed. Time values are not discussed further in this book.

Reading Date and Datetime Values with Informats

SAS provides a selection of informats for reading SAS date and datetime values from date and time values recorded in ordinary notations.

A SAS informat is an instruction that converts the values from a character-string representation into the internal numerical value of a SAS variable. Date informats convert dates from ordinary notations used to enter them to SAS date values; datetime informats convert date and time from ordinary notation to SAS datetime values.

For example, the following SAS statements read monthly values of the U.S. Consumer Price Index. Since the data are monthly, you could identify the date with the variables YEAR and MONTH, as in the previous example. Instead, in this example the time periods are coded as a three-letter month abbreviation followed by the year. The informat MONYY. is used to read month-year dates coded this way and to express them as SAS date values for the first day of the month, as follows:

```
data uscpi;
    input date : monyy7. cpi;
    format date monyy7.;
    label cpi = "US Consumer Price Index";
datalines;
jun1990 129.9
jul1990 130.4
... more lines ...
```

The SAS System provides informats for most common notations for dates and times. See Chapter 4 for more information about the date and datetime informats available.

Formatting Date and Datetime Values

SAS provides formats to convert the internal representation of date and datetime values used by SAS to ordinary notations for dates and times. Several different formats are available for displaying dates and datetime values in most of the commonly used notations.

A SAS format is an instruction that converts the internal numerical value of a SAS variable to a character string that can be printed or displayed. Date formats convert SAS date values to a readable form; datetime formats convert SAS datetime values to a readable form.

In the preceding example, the variable DATE was set to the SAS date value for the first day of the month for each observation. If the data set USCPI were printed or otherwise displayed, the values shown for DATE would be the number of days since 1 January 1960. (See the "DATE with no format" column in Figure 3.2.) To display date values appropriately, use the FORMAT statement.

The following example processes the data set USCPI to make several copies of the variable DATE and uses a FORMAT statement to give different formats to these copies. The format cases shown are the MONYY7. format (for the DATE variable), the DATE9. format (for the DATE1 variable), and no format (for the DATE0 variable). The PROC PRINT output in Figure 3.2 shows the effect of the different formats on how the date values are printed.

```
data fmttest;
    set uscpi;
    date0 = date;
    date1 = date;
    label date = "DATE with MONYY7. format"
            date1 = "DATE with DATE9. format"
            dateO = "DATE with no format";
    format date monyy7. date1 date9.;
```

```
    run;
proc print data=fmttest label;
run;
```

Figure 3.2 SAS Date Values Printed with Different Formats

US				
	DATE with	Consumer		DATE with
	MONYY7	Price	DATE with	DATE9
Obs	format	Index	no format	format
1	JUN1990	129.9	11109	01JUN1990
2	JUL1990	130.4	11139	01JUL1990
3	AUG1990	131.6	11170	01AUG1990
4	SEP1990	132.7	11201	01SEP1990
5	OCT1990	133.5	11231	010CT1990
6	NOV1990	133.8	11262	01NOV1990
7	DEC1990	133.8	11292	01DEC1990
8	JAN1991	134.6	11323	01JAN1991
9	FEB1991	134.8	11354	01FEB1991
10	MAR1991	135.0	11382	01MAR1991
11	APR1991	135.2	11413	01APR1991
12	MAY1991	135.6	11443	01MAY1991
13	JUN1991	136.0	11474	01 JUN1991
14	JUL1991	136.2	11504	01 JUL1991

The appropriate format to use for SAS date or datetime valued ID variables depends on the sampling frequency or periodicity of the time series. Table 3.2 shows recommended formats for common data sampling frequencies and shows how the date '17OCT1991'D or the datetime value '17OCT1991:14:45:32'DT is displayed by these formats.

Table 3.2 Formats for Different Sampling Frequencies

ID values	Periodicity	FORMAT	Example
SAS date	annual	YEAR4.	1991
	quarterly	YYQC6.	$1991: 4$
	monthly	MONYY7.	OCT1991
	weekly	WEEKDATX23.	Thursday, 17 Oct 1991
	daily	DATE9.	17OCT1991
SAS datetime	hourly	DATETIME10.	17OCT91:14
	minutes	DATETIME13.	17OCT91:14:45
	seconds	DATETIME16.	17OCT91:14:45:32

See Chapter 4, "Date Intervals, Formats, and Functions," for more information about the date and datetime formats available.

The Variables DATE and DATETIME

SAS/ETS procedures enable you to identify time series observations in many different ways to suit your needs. As discussed in preceding sections, you can use a combination of several ID variables, such as YEAR and MONTH for monthly data.

However, using a single SAS date or datetime ID variable is more convenient and enables you to take advantage of some features SAS/ETS procedures provide for processing ID variables. One such feature is automatic extrapolation of the ID variable to identify forecast observations. These features are discussed in following sections.

Thus, it is a good practice to include a SAS date or datetime ID variable in all the time series SAS data sets you create. It is also a good practice to always give the date or datetime ID variable a format appropriate for the data periodicity. (For information about creating SAS date and datetime values from multiple ID variables, see the section "Computing Dates from Calendar Variables" on page 96.)

You can assign a SAS date- or datetime-valued ID variable any name that conforms to SAS variable name requirements. However, you might find working with time series data in SAS easier and less confusing if you adopt the practice of always using the same name for the SAS date or datetime ID variable.

This book always names the date- or datetime-values ID variable DATE if it contains SAS date values or DATETIME if it contains SAS datetime values. This makes it easy to recognize the ID variable and also makes it easy to recognize whether this ID variable uses SAS date or datetime values.

Sorting by Time

Many SAS/ETS procedures assume the data are in chronological order. If the data are not in time order, you can use the SORT procedure to sort the data set. For example,

```
proc sort data=a;
    by date;
run;
```

There are many ways of coding the time ID variable or variables, and some ways do not sort correctly. If you use SAS date or datetime ID values as suggested in the preceding section, you do not need to be concerned with this issue. But if you encode date values in nonstandard ways, you need to consider whether your ID variables will sort.

SAS date and datetime values always sort correctly, as do combinations of numeric variables such as YEAR, MONTH, and DAY used together. Julian dates also sort correctly. (Julian dates are numbers of the form $y y d d d$, where $y y$ is the year and $d d d$ is the day of the year. For example, 17 October 1991 has the Julian date value 91290.)

Calendar dates such as numeric values coded as mmddyy or ddmmyy do not sort correctly. Character variables that contain display values of dates, such as dates in the notation produced by SAS date formats, generally do not sort correctly.

Subsetting Data and Selecting Observations

It is often necessary to subset data for analysis. You might need to subset data to do the following:

- restrict the time range. For example, you want to perform a time series analysis using only recent data and ignoring observations from the distant past.
- select cross sections of the data. (See the section "Cross-Sectional Dimensions and BY Groups" on page 79.) For example, you have a data set with observations over time for each of several states, and you want to analyze the data for a single state.
- select particular kinds of time series from an interleaved-form data set. (See the section "Interleaved Time Series" on page 80.) For example, you have an output data set produced by the FORECAST procedure that contains both forecast and confidence limits observations, and you want to extract only the forecast observations.
- exclude particular observations. For example, you have an outlier in your time series, and you want to exclude this observation from the analysis.

You can subset data either by using the DATA step to create a subset data set or by using a WHERE statement with the SAS procedure that analyzes the data.

A typical WHERE statement used in a procedure has the following form:

```
proc arima data=full;
    where '31dec1993'd < date < '26mar1994'd;
    identify var=close;
run;
```

For complete reference documentation on the WHERE statement, see SAS Language Reference: Dictionary.

Subsetting SAS Data Sets

To create a subset data set, specify the name of the subset data set in the DATA statement, bring in the full data set with a SET statement, and specify the subsetting criteria with either subsetting IF statements or WHERE statements.

For example, suppose you have a data set that contains time series observations for each of several states. The following DATA step uses a WHERE statement to exclude observations with dates before 1970 and uses a subsetting IF statement to select observations for the state NC:

```
data subset;
    set full;
    where date >= '1jan1970'd;
    if state = 'NC';
run;
```

In this case, it makes no difference logically whether the WHERE statement or the IF statement is used, and you can combine several conditions in one subsetting statement. The following statements produce the same results as the previous example:

```
data subset;
    set full;
    if date >= '1jan1970'd & state = 'NC';
run;
```

The WHERE statement acts on the input data sets specified in the SET statement before observations are processed by the DATA step program, whereas the IF statement is executed as part of the DATA step program. If the input data set is indexed, using the WHERE statement can be more efficient than using the IF statement. However, the WHERE statement can refer only to variables in the input data set, not to variables computed by the DATA step program.

To subset the variables of a data set, use KEEP or DROP statements or use KEEP= or DROP= data set options. See SAS Language Reference: Dictionary for information about KEEP and DROP statements and SAS data set options.

For example, suppose you want to subset the data set as in the preceding example, but you want to include in the subset data set only the variables DATE, X, and Y. You could use the following statements:

```
data subset;
    set full;
    if date >= '1jan1970'd & state = 'NC';
    keep date x y;
run;
```


Using the WHERE Statement with SAS Procedures

Use the WHERE statement with SAS procedures to process only a subset of the input data set. For example, suppose you have a data set that contains monthly observations for each of several states, and you want to use the AUTOREG procedure to analyze data since 1970 for the state NC. You could use the following statements:

```
proc autoreg data=full;
    where date >= '1jan1970'd & state = 'NC';
    ... additional statements ...
run;
```

You can specify any number of conditions in the WHERE statement. For example, suppose that a strike created an outlier in May 1975, and you want to exclude that observation. You could use the
following statements:

```
proc autoreg data=full;
    where date >= '1jan1970'd & state = 'NC'
        & date ^= '1may1975'd;
    ... additional statements ...
run;
```


Using SAS Data Set Options

You can use the $\mathrm{OBS}=$ and FIRSTOBS $=$ data set options to subset the input data set.
For example, the following statements print observations 20 through 25 of the data set FULL:

```
proc print data=full(firstobs=20 obs=25);
run;
```

Figure 3.3 Partial Listing of Data Set FULL

Obs	date	state	i	\mathbf{x}	Y	close
20	$210 С T 1993$	NC	20	0.44803	0.35302	0.44803
21	220CT1993	NC	21	0.03186	1.67414	0.03186
22	$230 C T 1993$	NC	22	-0.25232	-1.61289	-0.25232
23	$240 \mathrm{CT1993}$	NC	23	0.42524	0.73112	0.42524
24	$250 C T 1993$	NC	24	0.05494	-0.88664	0.05494
25	$260 C T 1993$	NC	25	-0.29096	-1.17275	-0.29096

You can use KEEP= and DROP= data set options to exclude variables from the input data set. See SAS Language Reference: Dictionary for information about SAS data set options.

Storing Time Series in a SAS Data Set

This section discusses aspects of storing time series in SAS data sets. The topics discussed are the standard form of a time series data set, storing several series with different time ranges in the same data set, omitted observations, cross-sectional dimensions and BY groups, and interleaved time series.

Any number of time series can be stored in a SAS data set. Normally, each time series is stored in a separate variable. For example, the following statements augment the USCPI data set read in the previous example with values for the producer price index:

```
data usprice;
    input date : monyy7. cpi ppi;
```

```
    format date monyy7.;
    label cpi = "Consumer Price Index"
        ppi = "Producer Price Index";
datalines;
jun1990 129.9 114.3
jul1990 130.4 114.5
... more lines ...
proc print data=usprice;
run;
```

Figure 3.4 Time Series Data Set Containing Two Series

Obs	date	cpi	ppi
1	JUN1990	129.9	114.3
2	JUL1990	130.4	114.5
3	AUG1990	131.6	116.5
4	SEP1990	132.7	118.4
5	OCT1990	133.5	120.8
6	NOV1990	133.8	120.1
7	DEC1990	133.8	118.7
8	JAN1991	134.6	119.0
9	FEB1991	134.8	117.2
10	MAR1991	135.0	116.2
11	APR1991	135.2	116.0
12	MAY1991	135.6	116.5
13	JUN1991	136.0	116.3
14	JUL1991	136.2	116.0

Standard Form of a Time Series Data Set

The simple way the CPI and PPI time series are stored in the USPRICE data set in the preceding example is termed the standard form of a time series data set. A time series data set in standard form has the following characteristics:

- The data set contains one variable for each time series.
- The data set contains exactly one observation for each time period.
- The data set contains an ID variable or variables that identify the time period of each observation.
- The data set is sorted by the ID variables associated with date time values, so the observations are in time sequence.
- The data are equally spaced in time. That is, successive observations are a fixed time interval apart, so the data set can be described by a single sampling interval such as hourly, daily,
monthly, quarterly, yearly, and so forth. This means that time series with different sampling frequencies are not mixed in the same SAS data set.

Most SAS/ETS procedures that process time series expect the input data set to contain time series in this standard form, and this is the simplest way to store time series in SAS data sets. (The EXPAND and TIMESERIES procedures can be helpful in converting your data to this standard form.) There are more complex ways to represent time series in SAS data sets.

You can incorporate cross-sectional dimensions with BY groups, so that each BY group is like a standard form time series data set. This method is discussed in the section "Cross-Sectional Dimensions and BY Groups" on page 79.

You can interleave time series, with several observations for each time period identified by another ID variable. Interleaved time series data sets are used to store several series in the same SAS variable. Interleaved time series data sets are often used to store series of actual values, predicted values, and residuals, or series of forecast values and confidence limits for the forecasts. This is discussed in the section "Interleaved Time Series" on page 80.

Several Series with Different Ranges

Different time series can have values recorded over different time ranges. Since a SAS data set must have the same observations for all variables, when time series with different ranges are stored in the same data set, missing values must be used for the periods in which a series is not available.

Suppose that in the previous example you did not record values for CPI before August 1990 and did not record values for PPI after June 1991. The USPRICE data set could be read with the following statements:

```
data usprice;
    input date : monyy7. cpi ppi;
    format date monyy7.;
datalines;
jun1990 . 114.3
jul1990 . 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990 133.8 120.1
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0 116.2
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2
;
```

The decimal points with no digits in the data records represent missing data and are read by SAS as missing value codes.

In this example, the time range of the USPRICE data set is June 1990 through July 1991, but the time range of the CPI variable is August 1990 through July 1991, and the time range of the PPI variable is June 1990 through June 1991.

SAS/ETS procedures ignore missing values at the beginning or end of a series. That is, the series is considered to begin with the first nonmissing value and end with the last nonmissing value.

Missing Values and Omitted Observations

Missing data can also occur within a series. Missing values that appear after the beginning of a time series and before the end of the time series are called embedded missing values.

Suppose that in the preceding example you did not record values for CPI for November 1990 and did not record values for PPI for both November 1990 and March 1991. The USPRICE data set could be read with the following statements:

```
data usprice;
    input date : monyy. cpi ppi;
    format date monyy.;
datalines;
jun1990 . 114.3
jul1990 . 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2
;
```

In this example, the series CPI has one embedded missing value, and the series PPI has two embedded missing values. The ranges of the two series are the same as before.

Note that the observation for November 1990 has missing values for both CPI and PPI; there is no data for this period. This is an example of a missing observation.

You might ask why the data record for this period is included in the example at all, since the data record contains no data. However, deleting the data record for November 1990 from the example would cause an omitted observation in the USPRICE data set. SAS/ETS procedures expect input data sets to contain observations for a contiguous time sequence. If you omit observations from a time series data set and then try to analyze the data set with SAS/ETS procedures, the omitted
observations will cause errors. When all data are missing for a period, a missing observation should be included in the data set to preserve the time sequence of the series.

If observations are omitted from the data set, the EXPAND procedure can be used to fill in the gaps with missing values (or to interpolate nonmissing values) for the time series variables and with the appropriate date or datetime values for the ID variable.

Cross-Sectional Dimensions and BY Groups

Often, time series in a collection are related by a cross sectional dimension. For example, the national average U.S. consumer price index data shown in the previous example can be disaggregated to show price indexes for major cities. In this case, there are several related time series: CPI for New York, CPI for Chicago, CPI for Los Angeles, and so forth. When these time series are considered as one data set, the city whose price level is measured is a cross sectional dimension of the data.

There are two basic ways to store such related time series in a SAS data set. The first way is to use a standard form time series data set with a different variable for each series.

For example, the following statements read CPI series for three major U.S. cities:

```
data citycpi;
    input date : monyy7. cpiny cpichi cpila;
    format date monyy7.;
datalines;
nov1989 133.200 126.700 130.000
dec1989 133.300 126.500 130.600
... more lines ...
```

The second way is to store the data in a time series cross-sectional form. In this form, the series for all cross sections are stored in one variable and a cross section ID variable is used to identify observations for the different series. The observations are sorted by the cross section ID variable and by time within each cross section.

The following statements indicate how to read the CPI series for U.S. cities in time series crosssectional form:

```
data cpicity;
    length city $11;
    input city $11. date : monyy. cpi;
    format date monyy.;
datalines;
New York JAN1990 135.100
New York FEB1990 135.300
... more lines ...
```

```
proc sort data=cpicity;
    by city date;
run;
```

When processing a time series cross sectional form data set with most SAS/ETS procedures, use the cross section ID variable in a BY statement to process the time series separately. The data set must be sorted by the cross section ID variable and sorted by date within each cross section. The PROC SORT step in the preceding example ensures that the CPICITY data set is correctly sorted.

When the cross section ID variable is used in a BY statement, each BY group in the data set is like a standard form time series data set. Thus, SAS/ETS procedures that expect a standard form time series data set can process time series cross sectional data sets when a BY statement is used, producing an independent analysis for each cross section.

It is also possible to analyze time series cross-sectional data jointly. The PANEL procedure (and the older TSCSREG procedure) expects the input data to be in the time series cross-sectional form described here. See Chapter 19, "The PANEL Procedure," for more information.

Interleaved Time Series

Normally, a time series data set has only one observation for each time period, or one observation for each time period within a cross section for a time series cross-sectional-form data set. However, it is sometimes useful to store several related time series in the same variable when the different series do not correspond to levels of a cross-sectional dimension of the data.

In this case, the different time series can be interleaved. An interleaved time series data set is similar to a time series cross-sectional data set, except that the observations are sorted differently and the ID variable that distinguishes the different time series does not represent a cross-sectional dimension.

Some SAS/ETS procedures produce interleaved output data sets. The interleaved time series form is a convenient way to store procedure output when the results consist of several different kinds of series for each of several input series. (Interleaved time series are also easy to process with plotting procedures. See the section "Plotting Time Series" on page 86.)

For example, the FORECAST procedure fits a model to each input time series and computes predicted values and residuals from the model. The FORECAST procedure then uses the model to compute forecast values beyond the range of the input data and also to compute upper and lower confidence limits for the forecast values.

Thus, the output from PROC FORECAST consists of up to five related time series for each variable forecast. The five resulting time series for each input series are stored in a single output variable with the same name as the series that is being forecast. The observations for the five resulting series are identified by values of the variable _TYPE_. These observations are interleaved in the output data set with observations for the same date grouped together.

The following statements show how to use PROC FORECAST to forecast the variable CPI in the USCPI data set. Figure 3.5 shows part of the output data set produced by PROC FORECAST and illustrates the interleaved structure of this data set.

```
proc forecast data=uscpi interval=month lead=12
    out=foreout outfull outresid;
    var cpi;
    id date;
run;
proc print data=foreout(obs=6);
run;
```

Figure 3.5 Partial Listing of Output Data Set Produced by PROC FORECAST

Obs	date	TYPE	LEAD	cpi
1	JUN1990	ACTUAL	0	129.900
2	JUN1990	FORECAST	0	130.817
3	JUN1990	RESIDUAL	0	-0.917
4	JUL1990	ACTUAL	0	130.400
5	JUL1990	FORECAST	0	130.678
6	JUL1990	RESIDUAL	0	-0.278

Observations with _TYPE_=ACTUAL contain the values of CPI read from the input data set. Observations with _TYPE_=FORECAST contain one-step-ahead predicted values for observations with dates in the range of the input series and contain forecast values for observations for dates beyond the range of the input series. Observations with _TYPE_=RESIDUAL contain the difference between the actual and one-step-ahead predicted values. Observations with _TYPE_=U95 and _TYPE_=L95 contain the upper and lower bounds, respectively, of the 95% confidence interval for the forecasts.

Using Interleaved Data Sets as Input to SAS/ETS Procedures

Interleaved time series data sets are not directly accepted as input by SAS/ETS procedures. However, it is easy to use a WHERE statement with any procedure to subset the input data and select one of the interleaved time series as the input.

For example, to analyze the residual series contained in the PROC FORECAST output data set with another SAS/ETS procedure, include a WHERE _TYPE_='RESIDUAL' statement. The following statements perform a spectral analysis of the residuals produced by PROC FORECAST in the preceding example:

```
proc spectra data=foreout out=spectout;
    var cpi;
    where _type_='RESIDUAL';
run;
```


Combined Cross Sections and Interleaved Time Series Data Sets

Interleaved time series output data sets produced from BY-group processing of time series crosssectional input data sets have a complex structure that combines a cross-sectional dimension, a time dimension, and the values of the _TYPE_ variable. For example, consider the PROC FORECAST output data set produced by the following statements:

```
title "FORECAST Output Data Set with BY Groups";
proc forecast data=cpicity interval=month
    method=expo lead=2
    out=foreout outfull outresid;
    var cpi;
    id date;
    by city;
run;
proc print data=foreout(obs=6);
run;
```

The output data set FOREOUT contains many different time series in the single variable CPI. (The first few observations of FOREOUT are shown in Figure 3.6.) BY groups that are identified by the variable CITY contain the result series for the different cities. Within each value of CITY, the actual, forecast, residual, and confidence limits series are stored in interleaved form, with the observations for the different series identified by the values of _TYPE_.

Figure 3.6 Combined Cross Sections and Interleaved Time Series Data

FORECAST Output Data Set with BY Groups					
Obs	city	date	_TYPE	LEAD	cpi
1	Chicago	JAN90	ACTUAL	0	128.100
2	Chicago	JAN90	FORECAST	0	128.252
3	Chicago	JAN90	RESIDUAL	0	-0.152
4	Chicago	FEB90	ACTUAL	0	129.200
5	Chicago	FEB90	FORECAST	0	128.896
6	Chicago	FEB90	RESIDUAL	0	0.304

Output Data Sets of SAS/ETS Procedures

Some SAS/ETS procedures (such as PROC FORECAST) produce interleaved output data sets, and other SAS/ETS procedures produce standard form time series data sets. The form a procedure uses depends on whether the procedure is normally used to produce multiple result series for each of many input series in one step (as PROC FORECAST does).

For example, the ARIMA procedure can output actual series, forecast series, residual series, and confidence limit series just as the FORECAST procedure does. The PROC ARIMA output data set
uses the standard form because PROC ARIMA is designed for the detailed analysis of one series at a time and so forecasts only one series at a time.

The following statements show the use of the ARIMA procedure to produce a forecast of the USCPI data set. Figure 3.7 shows part of the output data set that is produced by the ARIMA procedure's FORECAST statement. (The printed output from PROC ARIMA is not shown.) Compare the PROC ARIMA output data set shown in Figure 3.7 with the PROC FORECAST output data set shown in Figure 3.6.

```
title "PROC ARIMA Output Data Set";
proc arima data=uscpi;
    identify var=cpi(1);
    estimate q=1;
    forecast id=date interval=month
                lead=12 out=arimaout;
run;
proc print data=arimaout(obs=6);
run;
```

Figure 3.7 Partial Listing of Output Data Set Produced by PROC ARIMA

Obs	PROC ARIMA Output Data Set						
	date	cpi	FORECAST	STD	L95	U95	RESIDUAL
1	JUN1990	129.9
2	JUL1990	130.4	130.368	0.36160	129.660	131.077	0.03168
3	AUG1990	131.6	130.881	0.36160	130.172	131.590	0.71909
4	SEP1990	132.7	132.354	0.36160	131.645	133.063	0.34584
5	OCT1990	133.5	133.306	0.36160	132.597	134.015	0.19421
6	NOV1990	133.8	134.046	0.36160	133.337	134.754	-0.24552

The output data set produced by the ARIMA procedure's FORECAST statement stores the actual values in a variable with the same name as the response series, stores the forecast series in a variable named FORECAST, stores the residuals in a variable named RESIDUAL, stores the 95% confidence limits in variables named L95 and U95, and stores the standard error of the forecast in the variable STD.

This method of storing several different result series as a standard form time series data set is simple and convenient. However, it works well only for a single input series. The forecast of a single series can be stored in the variable FORECAST. But if two series are forecast, two different FORECAST variables are needed.

The STATESPACE procedure handles this problem by generating forecast variable names FOR1, FOR2, and so forth. The SPECTRA procedure uses a similar method. Names such as FOR1, FOR2, RES1, RES2, and so forth require you to remember the order in which the input series are listed. This is why PROC FORECAST, which is designed to forecast a whole list of input series at once, stores its results in interleaved form.

Other SAS/ETS procedures are often used for a single input series but can also be used to process several series in a single step. Thus, they are not clearly like PROC FORECAST nor clearly like PROC ARIMA in the number of input series they are designed to work with. These procedures use a third method for storing multiple result series in an output data set. These procedures store output time series in standard form (as PROC ARIMA does) but require an OUTPUT statement to give names to the result series.

Time Series Periodicity and Time Intervals

A fundamental characteristic of time series data is how frequently the observations are spaced in time. How often the observations of a time series occur is called the sampling frequency or the periodicity of the series. For example, a time series with one observation each month has a monthly sampling frequency or monthly periodicity and so is called a monthly time series.

In SAS, data periodicity is described by specifying periodic time intervals into which the dates of the observations fall. For example, the SAS time interval MONTH divides time into calendar months.

Many SAS/ETS procedures enable you to specify the periodicity of the input data set with the INTERVAL= option. For example, specifying INTERVAL=MONTH indicates that the procedure should expect the ID variable to contain SAS date values, and that the date value for each observation should fall in a separate calendar month. The EXPAND procedure uses interval name values with the $\mathrm{FROM}=$ and $\mathrm{TO}=$ options to control the interpolation of time series from one periodicity to another.

SAS also uses time intervals in several other ways. In addition to indicating the periodicity of time series data sets, time intervals are used with the interval functions INTNX and INTCK and for controlling the plot axis and reference lines for plots of data over time.

Specifying Time Intervals

Intervals are specified in SAS by using interval names such as YEAR, QTR, MONTH, DAY, and so forth. Table 3.3 summarizes the basic types of intervals.

Table 3.3 Basic Interval Types

Name	Periodicity
YEAR	yearly
SEMIYEAR	semiannual
QTR	quarterly
MONTH	monthly
SEMIMONTH	1st and 16th of each month
TENDAY	1st, 11th, and 21st of each month
WEEK	weekly
WEEKDAY	daily ignoring weekend days
DAY	daily
HOUR	hourly
MINUTE	every minute
SECOND	every second

Interval names can be abbreviated in various ways. For example, you could specify monthly intervals as MONTH, MONTHS, MONTHLY, or just MON. SAS accepts all these forms as equivalent.

Interval names can also be qualified with a multiplier to indicate multi-period intervals. For example, biennial intervals are specified as YEAR2.

Interval names can also be qualified with a shift index to indicate intervals with different starting points. For example, fiscal years starting in July are specified as YEAR.7.

Intervals are classified as either date or datetime intervals. Date intervals are used with SAS date values, while datetime intervals are used with SAS datetime values. The interval types YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK, WEEKDAY, and DAY are date intervals. HOUR, MINUTE, and SECOND are datetime intervals. Date intervals can be turned into datetime intervals for use with datetime values by prefixing the interval name with 'DT'. Thus DTMONTH intervals are like MONTH intervals but are used with datetime ID values instead of date ID values.

See Chapter 4, "Date Intervals, Formats, and Functions," for more information about specifying time intervals and for a detailed reference to the different kinds of intervals available.

Using Intervals with SAS/ETS Procedures

SAS/ETS procedures use the date or datetime interval and the ID variable in the following ways:

- to validate the data periodicity. The ID variable is used to check the data and verify that successive observations have valid ID values that correspond to successive time intervals.
- to check for gaps in the input observations. For example, if INTERVAL=MONTH and an input observation for January 1990 is followed by an observation for April 1990, there is a gap in the input data with two omitted observations.
- to label forecast observations in the output data set. The values of the ID variable for the forecast observations after the end of the input data set are extrapolated according to the frequency specifications of the INTERVAL= option.

Time Intervals, the Time Series Forecasting System, and the Time Series Viewer

Time intervals are used in the Time Series Forecasting System and Time Series Viewer to identify the number of seasonal cycles or seasonality associated with a DATE, DATETIME, or TIME ID variable. For example, monthly time series have a seasonality of 12 because there are 12 months in a year; quarterly time series have a seasonality of 4 because there are four quarters in a year. The seasonality is used to analyze seasonal properties of time series data and to estimate seasonal forecasting methods.

Plotting Time Series

This section discusses SAS procedures that are available for plotting time series data, but it covers only certain aspects of the use of these procedures with time series data.

The Time Series Viewer displays and analyzes time series plots for time series data sets that do not contain cross sections. See Chapter 37, "Getting Started with Time Series Forecasting."

The SGPLOT procedure produces high resolution color graphics plots. See the SAS/GRAPH: Statistical Graphics Procedures Guide and SAS/GRAPH Software: Reference for more information.

The PLOT procedure and the TIMEPLOT procedure produce low-resolution line-printer type plots. See the Base SAS Procedures Guide for information about these procedures.

Using the Time Series Viewer

The following command starts the Time Series Viewer to display the plot of CPI in the USCPI data set against DATE. (The USCPI data set was shown in the previous example; the time series used in the following example contains more observations than previously shown.)
tsview data=uscpi var=cpi timeid=date

The TSVIEW DATA= option specifies the data set to be viewed; the VAR= option specifies the variable that contains the time series observations; the TIMEID= option specifies the time series ID variable.

The Time Series Viewer can also be invoked by selecting Solutions Analyze Time Series Viewer from the menu in the SAS Display Manager.

Using PROC SGPLOT

The following statements use the SGPLOT procedure to plot CPI in the USCPI data set against DATE. (The USCPI data set was shown in a previous example; the data set plotted in the following example contains more observations than shown previously.)

```
title "Plot of USCPI Data";
proc sgplot data=uscpi;
    series x=date y=cpi / markers;
run;
```

The plot is shown in Figure 3.8.
Figure 3.8 Plot of Monthly CPI Over Time

Controlling the Time Axis: Tick Marks and Reference Lines

It is possible to control the spacing of the tick marks on the time axis. The following statements use the XAXIS statement to tell PROC SGPLOT to mark the axis at the start of each quarter:

```
proc sgplot data=uscpi;
    series x=date y=cpi / markers;
    format date yyqc.;
    xaxis values=('1jan90'd to '1jul91'd by qtr);
run;
```

The plot is shown in Figure 3.9.
Figure 3.9 Plot of Monthly CPI Over Time

Overlay Plots of Different Variables

You can plot two or more series stored in different variables on the same graph by specifying multiple plot requests in one SGPLOT statement.

For example, the following statements plot the CPI, FORECAST, L95, and U95 variables produced by PROC ARIMA in a previous example. A reference line is drawn to mark the start of the forecast
period. Quarterly tick marks with YYQC format date values are used.

```
title "ARIMA Forecasts of CPI";
proc arima data=uscpi;
    identify var=cpi(1);
    estimate q=1;
    forecast id=date interval=month lead=12 out=arimaout;
run;
title "ARIMA forecasts of CPI";
proc sgplot data=arimaout noautolegend;
    scatter x=date y=cpi;
    scatter x=date y=forecast / markerattrs=(symbol=asterisk);
    scatter x=date y=195 / markerattrs=(symbol=asterisk color=green);
    scatter x=date y=u95 / markerattrs=(symbol=asterisk color=green);
    format date yyqc4.;
    xaxis values=('1jan90'd to '1jul92'd by qtr);
    refline '15jul91'd / axis=x;
run;
```

The plot is shown in Figure 3.10.
Figure 3.10 Plot of ARIMA Forecast

Overlay Plots of Interleaved Series

You can also plot several series on the same graph when the different series are stored in the same variable in interleaved form. Plot interleaved time series by using the values of the ID variable in GROUP $=$ option to distinguish the different series.

The following example plots the output data set produced by PROC FORECAST in a previous example. Since the residual series has a different scale than the other series, it is excluded from the plot with a WHERE statement.

The _TYPE_ variable is used in the PLOT statement to identify the different series and to select the SCATTER statements to use for each plot.

```
title "Plot of Forecasts of USCPI Data";
proc forecast data=uscpi interval=month lead=12
    out=foreout outfull outresid;
        var cpi;
        id date;
run;
proc sgplot data=foreout;
    where _type_ ^= 'RESIDUAL';
    scatter x=date y=cpi / group=_type_ markerattrs=(symbol=asterisk);
    format date yyqc4.;
    xaxis values=('1jan90'd to '1jul92'd by qtr);
    refline '15jul91'd / axis=x;
run;
```

The plot is shown in Figure 3.11.

Figure 3.11 Plot of Forecast

Residual Plots

The following example plots the residuals series that was excluded from the plot in the previous example. The NEEDLE statement specifies a needle plot, so that each residual point is plotted as a vertical line showing deviation from zero.

```
proc sgplot data=foreout;
    where _type_ = 'RESIDUAL';
    needle x=date y=cpi / markers;
    format date yyqc4.;
    xaxis values=('1jan90'd to '1jul91'd by qtr);
run;
```

The plot is shown in Figure 3.12.

Figure 3.12 Plot of Residuals

Using PROC PLOT

The following statements use the PLOT procedure in Base SAS to plot CPI in the USCPI data set against DATE. (The data set plotted contains more observations than shown in the previous examples.) The plotting character used is a plus sign (+).

```
title "Plot of USCPI Data";
    proc plot data=uscpi;
    plot cpi * date = '+' / vaxis= 129 to 137 by 1;
run;
```

The plot is shown in Figure 3.13.

Figure 3.13 Plot of Monthly CPI Over Time

Using PROC TIMEPLOT

The TIMEPLOT procedure in Base SAS plots time series data vertically on the page instead of horizontally across the page as the PLOT procedure does. PROC TIMEPLOT can also print the data values as well as plot them.

The following statements use the TIMEPLOT procedure to plot CPI in the USCPI data set. Only the last 14 observations are included in this example. The plot is shown in Figure 3.14.

```
title "Plot of USCPI Data";
proc timeplot data=uscpi;
    plot cpi;
    id date;
    where date >= '1jun90'd;
run;
```

Figure 3.14 Output Produced by PROC TIMEPLOT

The TIMEPLOT procedure has several interesting features not discussed here. See "The TIMEPLOT Procedure" in the Base SAS Procedures Guide for more information.

Using PROC GPLOT

The GPLOT procedure in SAS/GRAPH software can also be used to plot time series data, although the newer SGPLOT procedure is easier to use.

The following is an example of how GPLOT can be used to produce a plot similar to the graph produced by PROC SGPLOT in the preceding section.

```
title "Plot of USCPI Data";
proc gplot data=uscpi;
    symbol i=spline v=circle h=2;
    plot cpi * date;
run;
```

The plot is shown in Figure 3.15.

Figure 3.15 Plot of Monthly CPI Over Time

For more information about the GPLOT procedure, see SAS/GRAPH Software: Reference.

Calendar and Time Functions

Calendar and time functions convert calendar and time variables such as YEAR, MONTH, DAY, and HOUR, MINUTE, SECOND into SAS date or datetime values, and vice versa.

The SAS calendar and time functions are DATEJUL, DATEPART, DAY, DHMS, HMS, HOUR, JULDATE, MDY, MINUTE, MONTH, QTR, SECOND, TIMEPART, WEEKDAY, YEAR, and YYQ. See SAS Language Reference: Dictionary for more details about these functions.

Computing Dates from Calendar Variables

The MDY function converts MONTH, DAY, and YEAR values to a SAS date value. For example, MDY $(2010,17,91)$ returns the SAS date value '17OCT2010'D.

The YYQ function computes the SAS date for the first day of a quarter. For example, YYQ(2010,4) returns the SAS date value '1OCT2010'D.

The DATEJUL function computes the SAS date for a Julian date. For example, DATEJUL(91290) returns the SAS date '17OCT2010'D.

The YYQ and MDY functions are useful for creating SAS date variables when the ID values recorded in the data are year and quarter; year and month; or year, month, and day.

For example, the following statements read quarterly data from records in which dates are coded as separate year and quarter values. The YYQ function is used to compute the variable DATE.

```
data usecon;
    input year qtr gnp;
    date = yyq( year, qtr );
    format date yyqc.;
datalines;
1990 1 5375.4
1990 2 5443.3
... more lines ...
```

The monthly USCPI data shown in a previous example contained time ID values represented in the MONYY format. If the data records instead contain separate year and month values, the data can be read in and the DATE variable computed with the following statements:

```
data uscpi;
    input month year cpi;
    date = mdy( month, 1, year );
    format date monyy.;
datalines;
    6 90 129.9
    7 90 130.4
    ... more lines ...
```


Computing Calendar Variables from Dates

The functions YEAR, MONTH, DAY, WEEKDAY, and JULDATE compute calendar variables from SAS date values.

Returning to the example of reading the USCPI data from records that contain date values represented in the MONYY format, you can find the month and year of each observation from the SAS dates of the observations by using the following statements.

```
data uscpi;
    input date monyy7. cpi;
    format date monyy7.;
    year = year( date );
    month = month( date );
datalines;
jun1990 129.9
jul1990 130.4
... more lines ...
```


Converting between Date, Datetime, and Time Values

The DATEPART function computes the SAS date value for the date part of a SAS datetime value. The TIMEPART function computes the SAS time value for the time part of a SAS datetime value.

The HMS function computes SAS time values from HOUR, MINUTE, and SECOND time variables. The DHMS function computes a SAS datetime value from a SAS date value and HOUR, MINUTE, and SECOND time variables.

See the section "Date, Time, and Datetime Functions" on page 143 for more information about these functions.

Computing Datetime Values

To compute datetime ID values from calendar and time variables, first compute the date and then compute the datetime with DHMS.

For example, suppose you read tri-hourly temperature data with time recorded as YEAR, MONTH, DAY, and HOUR. The following statements show how to compute the ID variable DATETIME:

```
data weather;
    input year month day hour temp;
    datetime = dhms( mdy( month, day, year ), hour, 0, 0 );
    format datetime datetime10.;
datalines;
91 10 16 21 61
91 10 17 0 56
91 10 17 3 53
... more lines ...
```


Computing Calendar and Time Variables

The functions HOUR, MINUTE, and SECOND compute time variables from SAS datetime values. The DATEPART function and the date-to-calendar variables functions can be combined to compute calendar variables from datetime values.

For example, suppose the date and time of the tri-hourly temperature data in the preceding example were recorded as datetime values in the datetime format. The following statements show how to compute the YEAR, MONTH, DAY, and HOUR of each observation and include these variables in the SAS data set:

```
data weather;
    input datetime : datetime13. temp;
    format datetime datetime10.;
    hour = hour( datetime );
    date = datepart( datetime );
    year = year( date );
    month = month( date );
    day = day( date );
datalines;
16oct91:21:00 61
17oct91:00:00 56
17oct91:03:00 53
... more lines ...
```


Interval Functions INTNX and INTCK

The SAS interval functions INTNX and INTCK perform calculations with date values, datetime values, and time intervals. They can be used for calendar calculations with SAS date values to increment date values or datetime values by intervals and to count time intervals between dates.

The INTNX function increments dates by intervals. INTNX computes the date or datetime of the start of the interval a specified number of intervals from the interval that contains a given date or datetime value.

The form of the INTNX function is

```
INTNX ( interval, from, n< , alignment > );
```

The arguments to the INTNX function are as follows:

interval

is a character constant or variable that contains an interval name
from
is a SAS date value (for date intervals) or datetime value (for datetime intervals)
n
is the number of intervals to increment from the interval that contains the from value

alignment

controls the alignment of SAS dates, within the interval, used to identify output observations. Allowed values are BEGINNING, MIDDLE, END, and SAMEDAY.

The number of intervals to increment, n, can be positive, negative, or zero.
For example, the statement NEXTMON=INTNX('MONTH',DATE,1) assigns to the variable NEXTMON the date of the first day of the month following the month that contains the value of DATE. Thus INTNX('MONTH','21OCT2007'D,1) returns the date 1 November 2007.

The INTCK function counts the number of interval boundaries between two date values or between two datetime values.

The form of the INTCK function is
INTCK (interval, from, to);
The arguments of the INTCK function are as follows:

interval

is a character constant or variable that contains an interval name

from

is the starting date value (for date intervals) or datetime value (for datetime intervals)
to
is the ending date value (for date intervals) or datetime value (for datetime intervals)
For example, the statement NEWYEARS=INTCK('YEAR',DATE1,DATE2) assigns to the variable NEWYEARS the number of New Year's Days between the two dates.

Incrementing Dates by Intervals

Use the INTNX function to increment dates by intervals. For example, suppose you want to know the date of the start of the week that is six weeks from the week of 17 October 1991. The function INTNX('WEEK','17OCT91'D,6) returns the SAS date value '24NOV1991'D.

One practical use of the INTNX function is to generate periodic date values. For example, suppose the monthly U.S. Consumer Price Index data in a previous example were recorded without any time identifier on the data records. Given that you know the first observation is for June 1990, the following statements use the INTNX function to compute the ID variable DATE for each observation:

```
data uscpi;
    input cpi;
    date = intnx( 'month', '1jun1990'd, _n_-1 );
    format date monyy7.;
datalines;
129.9
130.4
... more lines ...
```

The automatic variable _N_ counts the number of times the DATA step program has executed; in this case _N_ contains the observation number. Thus _N_-1 is the increment needed from the first observation date. Alternatively, you could increment from the month before the first observation, in which case the INTNX function in this example would be written INTNX('MONTH','1MAY1990'D,_N_).

Alignment of SAS Dates

Any date within the time interval that corresponds to an observation of a periodic time series can serve as an ID value for the observation. For example, the USCPI data in a previous example might have been recorded with dates at the 15th of each month. The person recording the data might reason that since the CPI values are monthly averages, midpoints of the months might be the appropriate ID values.

However, as far as SAS/ETS procedures are concerned, what is important about monthly data is the month of each observation, not the exact date of the ID value. If you indicate that the data are monthly (with an INTERVAL=MONTH) option, SAS/ETS procedures ignore the day of the month in processing the ID variable. The MONYY format also ignores the day of the month.

Thus, you could read in the monthly USCPI data with mid-month DATE values by using the following statements:

```
data uscpi;
    input date : date9. cpi;
    format date monyy7.;
datalines;
15jun1990 129.9
15jul1990 130.4
... more lines ...
```

The results of using this version of the USCPI data set for analysis with SAS/ETS procedures would be the same as with first-of-month values for DATE. Although you can use any date within the interval as an ID value for the interval, you might find working with time series in SAS less confusing if you always use date ID values normalized to the start of the interval.

For some applications it might be preferable to use end of period dates, such as 31Jan1994, 28Feb1994, 31Mar1994, ..., 31Dec 1994. For other applications, such as plotting time series, it might be more convenient to use interval midpoint dates to identify the observations.
(Some SAS/ETS procedures provide an ALIGN= option to control the alignment of dates for output time series observations. In addition, the INTNX library function supports an optional argument to specify the alignment of the returned date value.)

To normalize date values to the start of intervals, use the INTNX function with a 0 increment. The INTNX function with an increment of 0 computes the date of the first day of the interval (or the first second of the interval for datetime values).

For example, INTNX('MONTH','17OCT1991'D,0,'BEG') returns the date '1OCT1991'D.
The following statements show how the preceding example can be changed to normalize the midmonth DATE values to first-of-month and end-of-month values. For exposition, the first-of-month value is transformed back into a middle-of-month value.

```
data uscpi;
    input date : date9. cpi;
    format date monyy7.;
    monthbeg = intnx( 'month', date, 0, 'beg' );
    midmonth = intnx( 'month', monthbeg, 0, 'mid' );
    monthend = intnx( 'month', date, 0, 'end' );
datalines;
15jun1990 129.9
15jul1990 130.4
... more lines ...
```

If you want to compute the date of a particular day within an interval, you can use calendar functions, or you can increment the starting date of the interval by a number of days. The following example shows three ways to compute the seventh day of the month:

```
data test;
    set uscpi;
    mon07_1 = mdy( month(date), 7, year(date) );
    mon07_2 = intnx( 'month', date, 0, 'beg' ) + 6;
    mon07_3 = intnx( 'day', date, 6 );
run;
```


Computing the Width of a Time Interval

To compute the width of a time interval, subtract the ID value of the start of the next interval from the ID value of the start of the current interval. If the ID values are SAS dates, the width is in days. If the ID values are SAS datetime values, the width is in seconds.

For example, the following statements show how to add a variable WIDTH to the USCPI data set
that contains the number of days in the month for each observation:

```
data uscpi;
    input date : date9. cpi;
    format date monyy7.;
    width = intnx( 'month', date, 1 ) - intnx( 'month', date, 0 );
datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6
... more lines ...
```


Computing the Ceiling of an Interval

To shift a date to the start of the next interval if it is not already at the start of an interval, subtract 1 from the date and use INTNX to increment the date by 1 interval.

For example, the following statements add the variable NEWYEAR to the monthly USCPI data set. The variable NEWYEAR contains the date of the next New Year's Day. NEWYEAR contains the same value as DATE when the DATE value is the start of year and otherwise contains the date of the start of the next year.

```
data test;
    set uscpi;
    newyear = intnx( 'year', date - 1, 1 );
    format newyear date.;
run;
```


Counting Time Intervals

Use the INTCK function to count the number of interval boundaries between two dates.
Note that the INTCK function counts the number of times the beginning of an interval is reached in moving from the first date to the second. It does not count the number of complete intervals between two dates. Following are two examples:

- The function INTCK('MONTH','1JAN1991'D,'31JAN1991'D) returns 0 , since the two dates are within the same month.
- The function INTCK('MONTH','31JAN1991'D,'1FEB1991'D) returns 1 , since the two dates lie in different months that are one month apart.

When the first date is later than the second date, INTCK returns a negative count. For example, the function INTCK('MONTH','1FEB1991'D,'31JAN1991'D) returns -1.

The following example shows how to use the INTCK function with shifted interval specifications to count the number of Sundays, Mondays, Tuesdays, and so forth, in each month. The variables NSUNDAY, NMONDAY, NTUESDAY, and so forth, are added to the USCPI data set.

```
data uscpi;
    set uscpi;
    dO = intnx( 'month', date, 0 ) - 1;
    d1 = intnx( 'month', date, 1 ) - 1;
    nSunday = intck( 'week.1', d0, d1 );
    nMonday = intck( 'week.2', do, d1 );
    nTuesday = intck( 'week.3', d0, d1 );
    nWedday = intck( 'week.4', d0, d1 );
    nThurday = intck( 'week.5', d0, d1 );
    nFriday = intck( 'week.6', d0, d1 );
    nSatday = intck( 'week.7', d0, d1 );
    drop dO d1;
run;
```

Since the INTCK function counts the number of interval beginning dates between two dates, the number of Sundays is computed by counting the number of week boundaries between the last day of the previous month and the last day of the current month. To count Mondays, Tuesdays, and so forth, shifted week intervals are used. The interval type WEEK. 2 specifies weekly intervals starting on Mondays, WEEK. 3 specifies weeks starting on Tuesdays, and so forth.

Checking Data Periodicity

Suppose you have a time series data set and you want to verify that the data periodicity is correct, the observations are dated correctly, and the data set is sorted by date. You can use the INTCK function to compare the date of the current observation with the date of the previous observation and verify that the dates fall into consecutive time intervals.

For example, the following statements verify that the data set USCPI is a correctly dated monthly data set. The RETAIN statement is used to hold the date of the previous observation, and the automatic variable N_{N} is used to start the verification process with the second observation.

```
data _null_;
    set uscpi;
    retain prevdate;
    if _n_ > 1 then
        if intck( 'month', prevdate, date ) ^= 1 then
            put "Bad date sequence at observation number " _n_;
    prevdate = date;
run;
```


Filling In Omitted Observations in a Time Series Data Set

Most SAS/ETS procedures expect input data to be in the standard form, with no omitted observations in the sequence of time periods. When data are missing for a time period, the data set should contain a missing observation, in which all variables except the ID variables have missing values.

You can replace omitted observations in a time series data set with missing observations with the EXPAND procedure.

The following statements create a monthly data set, OMITTED, from data lines that contain records for an intermittent sample of months. (Data values are not shown.) The OMITTED data set is sorted to make sure it is in time order.

```
data omitted;
    input date : monyy7. x y z;
    format date monyy7.;
datalines;
jan1991
mar1991 ...
apr1991 ...
jun1991 ...
    ... etc. ...
;
proc sort data=omitted;
    by date;
run;
```

This data set is converted to a standard form time series data set by the following PROC EXPAND step. The $\mathrm{TO}=$ option specifies that monthly data is to be output, while the METHOD=NONE option specifies that no interpolation is to be performed, so that the variables X, Y, and Z in the output data set STANDARD will have missing values for the omitted time periods that are filled in by the EXPAND procedure.

```
proc expand data=omitted
    out=standard
    to=month
    method=none;
    id date;
run;
```


Using Interval Functions for Calendar Calculations

With a little thought, you can come up with a formula that involves INTNX and INTCK functions and different interval types to perform almost any calendar calculation.

For example, suppose you want to know the date of the third Wednesday in the month of October 1991. The answer can be computed as

```
intnx( 'week.4', '1oct91'd - 1, 3 )
```

which returns the SAS date value '160CT91'D.
Consider this more complex example: how many weekdays are there between 17 October 1991 and the second Friday in November 1991, inclusive? The following formula computes the number of weekdays between the date value contained in the variable DATE and the second Friday of the following month (including the ending dates of this period):

```
n = intck( 'weekday', date - 1,
    intnx( 'week.6', intnx( 'month', date, 1 ) - 1, 2 ) + 1 );
```

Setting DATE to '17OCT91'D and applying this formula produces the answer, $\mathrm{N}=17$.

Lags, Leads, Differences, and Summations

When working with time series data, you sometimes need to refer to the values of a series in previous or future periods. For example, the usual interest in the consumer price index series shown in previous examples is how fast the index is changing, rather than the actual level of the index. To compute a percent change, you need both the current and the previous values of the series. When you model a time series, you might want to use the previous values of other series as explanatory variables.

This section discusses how to use the DATA step to perform operations over time: lags, differences, leads, summations over time, and percent changes.

The EXPAND procedure can also be used to perform many of these operations; see Chapter 14, "The EXPAND Procedure," for more information. See also the section "Transforming Time Series" on page 115.

The LAG and DIF Functions

The DATA step provides two functions, LAG and DIF, for accessing previous values of a variable or expression. These functions are useful for computing lags and differences of series.

For example, the following statements add the variables CPILAG and CPIDIF to the USCPI data set. The variable CPILAG contains lagged values of the CPI series. The variable CPIDIF contains the changes of the CPI series from the previous period; that is, CPIDIF is CPI minus CPILAG. The new data set is shown in part in Figure 3.16.

```
data uscpi;
    set uscpi;
    cpilag = lag( cpi );
    cpidif = dif( cpi );
run;
proc print data=uscpi;
run;
```

Figure 3.16 USCPI Data Set with Lagged and Differenced Series

Plot of USCPI Data				
Obs	date	cpi	cpilag	cpidif
1	JUN1990	129.9	-	.
2	JUL1990	130.4	129.9	0.5
3	AUG1990	131.6	130.4	1.2
4	SEP1990	132.7	131.6	1.1
5	OCT1990	133.5	132.7	0.8
6	NOV1990	133.8	133.5	0.3
7	DEC1990	133.8	133.8	0.0
8	JAN1991	134.6	133.8	0.8
9	FEB1991	134.8	134.6	0.2
10	MAR1991	135.0	134.8	0.2
11	APR1991	135.2	135.0	0.2
12	MAY1991	135.6	135.2	0.4
13	JUN1991	136.0	135.6	0.4
14	JUL1991	136.2	136.0	0.2

Understanding the DATA Step LAG and DIF Functions

When used in this simple way, LAG and DIF act as lag and difference functions. However, it is important to keep in mind that, despite their names, the LAG and DIF functions available in the DATA step are not true lag and difference functions.

Rather, LAG and DIF are queuing functions that remember and return argument values from previous calls. The LAG function remembers the value you pass to it and returns as its result the value you passed to it on the previous call. The DIF function works the same way but returns the difference between the current argument and the remembered value. (LAG and DIF return a missing value the first time the function is called.)

A true lag function does not return the value of the argument for the "previous call," as do the DATA step LAG and DIF functions. Instead, a true lag function returns the value of its argument for the "previous observation," regardless of the sequence of previous calls to the function. Thus, for a true lag function to be possible, it must be clear what the "previous observation" is.

If the data are sorted chronologically, then LAG and DIF act as true lag and difference functions. If in doubt, use PROC SORT to sort your data before using the LAG and DIF functions. Beware of missing observations, which can cause LAG and DIF to return values that are not the actual lag and difference values.

The DATA step is a powerful tool that can read any number of observations from any number of input files or data sets, can create any number of output data sets, and can write any number of output observations to any of the output data sets, all in the same program. Thus, in general, it is not clear what "previous observation" means in a DATA step program. In a DATA step program, the "previous observation" exists only if you write the program in a simple way that makes this concept meaningful.

Since, in general, the previous observation is not clearly defined, it is not possible to make true lag or difference functions for the DATA step. Instead, the DATA step provides queuing functions that make it easy to compute lags and differences.

Pitfalls of DATA Step LAG and DIF Functions

The LAG and DIF functions compute lags and differences provided that the sequence of calls to the function corresponds to the sequence of observations in the output data set. However, any complexity in the DATA step that breaks this correspondence causes the LAG and DIF functions to produce unexpected results.

For example, suppose you want to add the variable CPILAG to the USCPI data set, as in the previous example, and you also want to subset the series to 1991 and later years. You might use the following statements:

```
data subset;
    set uscpi;
    if date >= '1jan1991'd;
    cpilag = lag( cpi ); /* WRONG PLACEMENT! */
run;
```

If the subsetting IF statement comes before the LAG function call, the value of CPILAG will be missing for January 1991, even though a value for December 1990 is available in the USCPI data set. To avoid losing this value, you must rearrange the statements to ensure that the LAG function is actually executed for the December 1990 observation.

```
data subset;
    set uscpi;
    cpilag = lag( cpi );
    if date >= '1jan1991'd;
run;
```

In other cases, the subsetting statement should come before the LAG and DIF functions. For example, the following statements subset the FOREOUT data set shown in a previous example to select only _TYPE_=RESIDUAL observations and also to compute the variable LAGRESID:

```
data residual;
    set foreout;
    if _type_ = "RESIDUAL";
    lagresid = lag( cpi );
run;
```

Another pitfall of LAG and DIF functions arises when they are used to process time series crosssectional data sets. For example, suppose you want to add the variable CPILAG to the CPICITY data set shown in a previous example. You might use the following statements:

```
data cpicity;
    set cpicity;
    cpilag = lag( cpi );
run;
```

However, these statements do not yield the desired result. In the data set produced by these statements, the value of CPILAG for the first observation for the first city is missing (as it should be), but in the first observation for all later cities, CPILAG contains the last value for the previous city. To correct this, set the lagged variable to missing at the start of each cross section, as follows:

```
data cpicity;
    set cpicity;
    by city date;
    cpilag = lag( cpi );
    if first.city then cpilag = .;
run;
```


Alternatives to LAG and DIF Functions

You can also use the EXPAND procedure to compute lags and differences. For example, the following statements compute lag and difference variables for CPI:

```
proc expand data=uscpi out=uscpi method=none;
    id date;
    convert cpi=cpilag / transform=( lag 1 );
    convert cpi=cpidif / transform=( dif 1 );
run;
```

You can also calculate lags and differences in the DATA step without using LAG and DIF functions. For example, the following statements add the variables CPILAG and CPIDIF to the USCPI data set:

```
data uscpi;
    set uscpi;
    retain cpilag;
    cpidif = cpi - cpilag;
    output;
    cpilag = cpi;
run;
```

The RETAIN statement prevents the DATA step from reinitializing CPILAG to a missing value at the start of each iteration and thus allows CPILAG to retain the value of CPI assigned to it in the last statement. The OUTPUT statement causes the output observation to contain values of the variables before CPILAG is reassigned the current value of CPI in the last statement. This is the approach that must be used if you want to build a variable that is a function of its previous lags.

LAG and DIF Functions in PROC MODEL

The preceding discussion of LAG and DIF functions applies to LAG and DIF functions available in the DATA step. However, LAG and DIF functions are also used in the MODEL procedure.

The MODEL procedure LAG and DIF functions do not work like the DATA step LAG and DIF functions. The LAG and DIF functions supported by PROC MODEL are true lag and difference functions, not queuing functions.

Unlike the DATA step, the MODEL procedure processes observations from a single input data set, so the "previous observation" is always clearly defined in a PROC MODEL program. Therefore, PROC MODEL is able to define LAG and DIF as true lagging functions that operate on values from the previous observation. See Chapter 18, "The MODEL Procedure," for more information about LAG and DIF functions in the MODEL procedure.

Multiperiod Lags and Higher-Order Differencing

To compute lags at a lagging period greater than 1, add the lag length to the end of the LAG keyword to specify the lagging function needed. For example, the LAG2 function returns the value of its argument two calls ago, the LAG3 function returns the value of its argument three calls ago, and so forth.

To compute differences at a lagging period greater than 1, add the lag length to the end of the DIF keyword. For example, the DIF2 function computes the differences between the value of its argument and the value of its argument two calls ago. (The maximum lagging period is 100.)

The following statements add the variables CPILAG12 and CPIDIF12 to the USCPI data set. CPILAG12 contains the value of CPI from the same month one year ago. CPIDIF12 contains the change in CPI from the same month one year ago. (In this case, the first 12 values of CPILAG12 and CPIDIF12 are missing.)

```
data uscpi;
    set uscpi;
    cpilag12 = lag12( cpi );
    cpidif12 = dif12( cpi );
run;
```

To compute second differences, take the difference of the difference. To compute higher-order differences, nest DIF functions to the order needed. For example, the following statements compute the second difference of CPI:

```
data uscpi;
    set uscpi;
    cpi2dif = dif( dif( cpi ) );
run;
```

Multiperiod lags and higher-order differencing can be combined. For example, the following statements compute monthly changes in the inflation rate, with inflation rate computed as percent change
in CPI from the same month one year ago:

```
data uscpi;
    set uscpi;
    infchng = dif( 100 * dif12( cpi ) / lag12( cpi ) );
run;
```


Percent Change Calculations

There are several common ways to compute the percent change in a time series. This section illustrates the use of LAG and DIF functions by showing SAS statements for various kinds of percent change calculations.

Computing Period-to-Period Change

To compute percent change from the previous period, divide the difference of the series by the lagged value of the series and multiply by 100.

```
data uscpi;
    set uscpi;
    pctchng = dif( cpi ) / lag( cpi ) * 100;
    label pctchng = "Monthly Percent Change, At Monthly Rates";
run;
```

Often, changes from the previous period are expressed at annual rates. This is done by exponentiation of the current-to-previous period ratio to the number of periods in a year and expressing the result as a percent change. For example, the following statements compute the month-over-month change in CPI as a percent change at annual rates:

```
data uscpi;
    set uscpi;
    pctchng = ( ( cpi / lag( cpi ) ) ** 12 - 1 ) * 100;
    label pctchng = "Monthly Percent Change, At Annual Rates";
run;
```


Computing Year-over-Year Change

To compute percent change from the same period in the previous year, use LAG and DIF functions with a lagging period equal to the number of periods in a year. (For quarterly data, use LAG4 and DIF4. For monthly data, use LAG12 and DIF12.)

For example, the following statements compute monthly percent change in CPI from the same month one year ago:

```
data uscpi;
    set uscpi;
```

```
    pctchng = dif12( cpi ) / lag12( cpi ) * 100;
    label pctchng = "Percent Change from One Year Ago";
run;
```

To compute year-over-year percent change measured at a given period within the year, subset the series of percent changes from the same period in the previous year to form a yearly data set. Use an IF or WHERE statement to select observations for the period within each year on which the year-over-year changes are based.

For example, the following statements compute year-over-year percent change in CPI from December of the previous year to December of the current year:

```
data annual;
    set uscpi;
    pctchng = dif12( cpi ) / lag12( cpi ) * 100;
    label pctchng = "Percent Change: December to December";
    if month( date ) = 12;
    format date year4.;
run;
```


Computing Percent Change in Yearly Averages

To compute changes in yearly averages, first aggregate the series to an annual series by using the EXPAND procedure, and then compute the percent change of the annual series. (See Chapter 14, "The EXPAND Procedure," for more information about PROC EXPAND.)

For example, the following statements compute percent changes in the annual averages of CPI :

```
proc expand data=uscpi out=annual from=month to=year;
    convert cpi / observed=average method=aggregate;
run;
data annual;
    set annual;
    pctchng = dif( cpi ) / lag( cpi ) * 100;
    label pctchng = "Percent Change in Yearly Averages";
run;
```

It is also possible to compute percent change in the average over the most recent yearly span. For example, the following statements compute monthly percent change in the average of CPI over the most recent 12 months from the average over the previous 12 months:

```
data uscpi;
    retain sum12 0;
    drop sum12 ave12 cpilag12;
    set uscpi;
    sum12 = sum12 + cpi;
    cpilag12 = lag12( cpi );
    if cpilag12 ^= . then sum12 = sum12 - cpilag12;
    if lag11( cpi ) ^= . then ave12 = sum12 / 12;
    pctchng = dif12( ave12 ) / lag12( ave12 ) * 100;
```

```
    label pctchng = "Percent Change in 12 Month Moving Ave.";
run;
```

This example is a complex use of LAG and DIF functions that requires care in handling the initialization of the moving-window averaging process. The LAG12 of CPI is checked for missing values to determine when more than 12 values have been accumulated, and older values must be removed from the moving sum. The LAG11 of CPI is checked for missing values to determine when at least 12 values have been accumulated; AVE12 will be missing when LAG11 of CPI is missing. The DROP statement prevents temporary variables from being added to the data set.

Note that the DIF and LAG functions must execute for every observation, or the queues of remembered values will not operate correctly. The CPILAG12 calculation must be separate from the IF statement. The PCTCHNG calculation must not be conditional on the IF statement.

The EXPAND procedure provides an alternative way to compute moving averages.

Leading Series

Although the SAS System does not provide a function to look ahead at the "next" value of a series, there are a couple of ways to perform this task.

The most direct way to compute leads is to use the EXPAND procedure. For example:

```
proc expand data=uscpi out=uscpi method=none;
    id date;
    convert cpi=cpilead1 / transform=( lead 1 );
    convert cpi=cpilead2 / transform=( lead 2 );
run;
```

Another way to compute lead series in SAS software is by lagging the time ID variable, renaming the series, and merging the result data set back with the original data set.

For example, the following statements add the variable CPILEAD to the USCPI data set. The variable CPILEAD contains the value of CPI in the following month. (The value of CPILEAD is missing for the last observation, of course.)

```
data temp;
    set uscpi;
    keep date cpi;
    rename cpi = cpilead;
    date = lag( date );
    if date ^= .;
run;
data uscpi;
    merge uscpi temp;
    by date;
run;
```

To compute leads at different lead lengths, you must create one temporary data set for each lead length. For example, the following statements compute CPILEAD1 and CPILEAD2, which contain leads of CPI for 1 and 2 periods, respectively:

```
data temp1(rename=(cpi=cpilead1))
        temp2(rename=(cpi=cpilead2));
    set uscpi;
    keep date cpi;
    date = lag( date );
    if date ^= . then output temp1;
    date = lag( date );
    if date ^= . then output temp2;
run;
data uscpi;
    merge uscpi temp1 temp2;
    by date;
run;
```


Summing Series

Simple cumulative sums are easy to compute using SAS sum statements. The following statements show how to compute the running sum of variable X in data set A , adding XSUM to the data set.

```
data a;
    set a;
    xsum + x;
run;
```

The SAS sum statement automatically retains the variable XSUM and initializes it to 0 , and the sum statement treats missing values as 0 . The sum statement is equivalent to using a RETAIN statement and the SUM function. The previous example could also be written as follows:

```
data a;
    set a;
    retain xsum;
    xsum = sum( xsum, x );
run;
```

You can also use the EXPAND procedure to compute summations. For example:

```
proc expand data=a out=a method=none;
    convert x=xsum / transform=( sum );
run;
```

Like differencing, summation can be done at different lags and can be repeated to produce higherorder sums. To compute sums over observations separated by lags greater than 1, use the LAG and

SUM functions together, and use a RETAIN statement that initializes the summation variable to zero.

For example, the following statements add the variable XSUM2 to data set A. XSUM2 contains the sum of every other observation, with even-numbered observations containing a cumulative sum of values of X from even observations, and odd-numbered observations containing a cumulative sum of values of X from odd observations.

```
data a;
    set a;
    retain xsum2 0;
    xsum2 = sum( lag( xsum2 ), x );
run;
```

Assuming that A is a quarterly data set, the following statements compute running sums of X for each quarter. XSUM4 contains the cumulative sum of X for all observations for the same quarter as the current quarter. Thus, for a first-quarter observation, XSUM4 contains a cumulative sum of current and past first-quarter values.

```
data a;
    set a;
    retain xsum4 0;
    xsum4 = sum( lag3( xsum4 ), x );
run;
```

To compute higher-order sums, repeat the preceding process and sum the summation variable. For example, the following statements compute the first and second summations of X:

```
data a;
    set a;
    xsum + x;
    x2sum + xsum;
run;
```

The following statements compute the second order four-period sum of X:

```
data a;
    set a;
    retain xsum4 x2sum4 0;
    xsum4 = sum( lag3( xsum4 ), x );
    x2sum4 = sum( lag3( x2sum4 ), xsum4 );
run;
```

You can also use PROC EXPAND to compute cumulative statistics and moving window statistics. See Chapter 14, "The EXPAND Procedure," for details.

Transforming Time Series

It is often useful to transform time series for analysis or forecasting. Many time series analysis and forecasting methods are most appropriate for time series with an unrestricted range, a linear trend, and a constant variance. Series that do not conform to these assumptions can often be transformed to series for which the methods are appropriate.

Transformations can be useful for the following:

- range restrictions. Many time series cannot have negative values or can be limited to a maximum possible value. You can often create a transformed series with an unbounded range.
- nonlinear trends. Many economic time series grow exponentially. Exponential growth corresponds to linear growth in the logarithms of the series.
- series variability that changes over time. Various transformations can be used to stabilize the variance.
- nonstationarity. The \%DFTEST macro can be used to test a series for nonstationarity which can then be removed by differencing.

Log Transformation

The logarithmic transformation is often useful for series that must be greater than zero and that grow exponentially. For example, Figure 3.17 shows a plot of an airline passenger miles series. Notice that the series has exponential growth and the variability of the series increases over time. Airline passenger miles must also be zero or greater.

Figure 3.17 Airline Series

The following statements compute the logarithms of the airline series:

```
data lair;
    set sashelp.air;
    logair = log( air );
run;
```

Figure 3.18 shows a plot of the log-transformed airline series. Notice that the \log series has a linear trend and constant variance.

Figure 3.18 Log Airline Series

The \%LOGTEST macro can help you decide if a log transformation is appropriate for a series. See Chapter 5, "SAS Macros and Functions," for more information about the \%LOGTEST macro.

Other Transformations

The Box-Cox transformation is a general class of transformations that includes the logarithm as a special case. The \%BOXCOXAR macro can be used to find an optimal Box-Cox transformation for a time series. See Chapter 5 for more information about the \%BOXCOXAR macro.

The logistic transformation is useful for variables with both an upper and a lower bound, such as market shares. The logistic transformation is useful for proportions, percent values, relative frequencies, or probabilities. The logistic function transforms values between 0 and 1 to values that can range from $-\infty$ to $+\infty$.

For example, the following statements transform the variable SHARE from percent values to an unbounded range:

```
    set a;
    lshare = log( share / ( 100 - share ) );
run;
```

Many other data transformation can be used. You can create virtually any desired data transformation using DATA step statements.

The EXPAND Procedure and Data Transformations

The EXPAND procedure provides a convenient way to transform series. For example, the following statements add variables for the logarithm of AIR and the logistic of SHARE to data set A:

```
proc expand data=a out=a method=none;
    convert air=logair / transform=( log );
    convert share=lshare / transform=( / 100 logit );
run;
```

See Table 14.2 in Chapter 14, "The EXPAND Procedure," for a complete list of transformations supported by PROC EXPAND.

Manipulating Time Series Data Sets

This section discusses merging, splitting, and transposing time series data sets and interpolating time series data to a higher or lower sampling frequency.

Splitting and Merging Data Sets

In some cases, you might want to separate several time series that are contained in one data set into different data sets. In other cases, you might want to combine time series from different data sets into one data set.

To split a time series data set into two or more data sets that contain subsets of the series, use a DATA step to create the new data sets and use the KEEP= data set option to control which series are included in each new data set. The following statements split the USPRICE data set shown in a previous example into two data sets, USCPI and USPPI:

```
data uscpi(keep=date cpi)
    usppi(keep=date ppi);
    set usprice;
run;
```

If the series have different time ranges, you can subset the time ranges of the output data sets accordingly. For example, if you know that CPI in USPRICE has the range August 1990 through the end of the data set, while PPI has the range from the beginning of the data set through June 1991, you could write the previous example as follows:

```
data uscpi(keep=date cpi)
    usppi(keep=date ppi);
    set usprice;
    if date >= 'laug1990'd then output uscpi;
    if date <= '1jun1991'd then output usppi;
run;
```

To combine time series from different data sets into one data set, list the data sets to be combined in a MERGE statement and specify the dating variable in a BY statement. The following statements show how to combine the USCPI and USPPI data sets to produce the USPRICE data set. It is important to use the BY DATE statement so that observations are matched by time before merging.

```
data usprice;
    merge uscpi usppi;
    by date;
run;
```


Transposing Data Sets

The TRANSPOSE procedure is used to transpose data sets from one form to another. The TRANSPOSE procedure can transpose variables and observations, or transpose variables and observations within BY groups. This section discusses some applications of the TRANSPOSE procedure relevant to time series data sets. See the Base SAS Procedures Guide for more information about PROC TRANSPOSE.

Transposing from Interleaved to Standard Time Series Form

The following statements transpose part of the interleaved-form output data set FOREOUT, produced by PROC FORECAST in a previous example, to a standard form time series data set. To reduce the volume of output produced by the example, a WHERE statement is used to subset the input data set.

Observations with _TYPE_=ACTUAL are stored in the new variable ACTUAL; observations with _TYPE_=FORECAST are stored in the new variable FORECAST; and so forth. Note that the method used in this example works only for a single variable.

```
title "Original Data Set";
proc print data=foreout(obs=10);
    where date > '1may1991'd & date < 'loct1991'd;
run;
proc transpose data=foreout out=trans(drop=_name_);
```

```
    var cpi;
    id _type_;
    by date;
    where date > '1may1991'd & date < 'loct1991'd;
run;
title "Transposed Data Set";
proc print data=trans(obs=10);
run;
```

The TRANSPOSE procedure adds the variables _NAME_ and _LABEL_ to the output data set. These variables contain the names and labels of the variables that were transposed. In this example, there is only one transposed variable, so _NAME_ has the value CPI for all observations. Thus, _NAME_ and _LABEL_ are of no interest and are dropped from the output data set by using the DROP= data set option. (If none of the variables transposed have a label, PROC TRANSPOSE does not output the _LABEL_ variable and the DROP=_LABEL_ option produces a warning message. You can ignore this message, or you can prevent the message by omitting _LABEL_ from the DROP= list.)

The original and transposed data sets are shown in Figure 3.19 and Figure 3.20. (The observation numbers shown for the original data set reflect the operation of the WHERE statement.)

Figure 3.19 Original Data Sets

Original Data Set				
Obs	date	_TYPE	_LEAD_	cpi
37	JUN1991	ACTUAL	0	136.000
38	JUN1991	FORECAST	0	136.146
39	JUN1991	RESIDUAL	0	-0.146
40	JUL1991	ACTUAL	0	136.200
41	JUL1991	FORECAST	0	136.566
42	JUL1991	RESIDUAL	0	-0.366
43	AUG1991	FORECAST	1	136.856
44	AUG1991	L95	1	135.723
45	AUG1991	U95	1	137.990
46	SEP1991	FORECAST	2	137.443

Figure 3.20 Transposed Data Sets

Transposing Cross-Sectional Dimensions

The following statements transpose the variable CPI in the CPICITY data set shown in a previous example from time series cross-sectional form to a standard form time series data set. (Only a subset of the data shown in the previous example is used here.) Note that the method shown in this example works only for a single variable.

```
title "Original Data Set";
proc print data=cpicity;
run;
proc sort data=cpicity out=temp;
    by date city;
run;
proc transpose data=temp out=citycpi (drop=_name_);
    var cpi;
    id city;
    by date;
run;
title "Transposed Data Set";
proc print data=citycpi;
run;
```

The names of the variables in the transposed data sets are taken from the city names in the ID variable CITY. The original and the transposed data sets are shown in Figure 3.21 and Figure 3.22.

Figure 3.21 Original Data Sets

Figure 3.22 Transposed Data Sets

Transposed Data Set				
Obs	date	Chicago	Los_	
Angeles	New_York			
1	JAN90	128.1	132.1	135.1
2	FEB90	129.2	133.6	135.3
3	MAR90	129.5	134.5	136.6
4	APR90	130.4	134.2	137.3
5	MAY90	130.4	134.6	137.2
6	JUN90	131.7	135.0	137.1
7	JUL90	132.0	135.6	138.4

The following statements transpose the CITYCPI data set back to the original form of the CPICITY data set. The variable _NAME_ is added to the data set to tell PROC TRANSPOSE the name of the variable in which to store the observations in the transposed data set. (If the (DROP=_NAME_ _LABEL_) option were omitted from the first PROC TRANSPOSE step, this would not be necessary. PROC TRANSPOSE assumes ID _NAME_ by default.)

The NAME=CITY option in the PROC TRANSPOSE statement causes PROC TRANSPOSE to store the names of the transposed variables in the variable CITY. Because PROC TRANSPOSE recodes the values of the CITY variable to create valid SAS variable names in the transposed data set, the values of the variable CITY in the retransposed data set are not the same as in the original.

The retransposed data set is shown in Figure 3.23.

```
data temp;
    set citycpi;
        _name_ = 'CPI';
run;
proc transpose data=temp out=retrans name=city;
    by date;
run;
proc sort data=retrans;
    by city date;
run;
title "Retransposed Data Set";
proc print data=retrans;
run;
```

Figure 3.23 Data Set Transposed Back to Original Form

	Retran	osed Data Set	
Obs	date	city	CPI
1	JAN90	Chicago	128.1
2	FEB90	Chicago	129.2
3	MAR90	Chicago	129.5
4	APR90	Chicago	130.4
5	MAY90	Chicago	130.4
6	JUN90	Chicago	131.7
7	JUL90	Chicago	132.0
8	JAN90	Los_Angeles	132.1
9	FEB90	Los_Angeles	133.6
10	MAR90	Los_Angeles	134.5
11	APR90	Los_Angeles	134.2
12	MAY90	Los_Angeles	134.6
13	JUN90	Los_Angeles	135.0
14	JUL90	Los_Angeles	135.6
15	JAN90	New_York	135.1
16	FEB90	New_York	135.3
17	MAR90	New_York	136.6
18	APR90	New_York	137.3
19	MAY90	New_York	137.2
20	JUN90	New_York	137.1
21	JUL90	New_York	138.4

Time Series Interpolation

The EXPAND procedure interpolates time series. This section provides a brief summary of the use of PROC EXPAND for different kinds of time series interpolation problems. Most of the issues discussed in this section are explained in greater detail in Chapter 14.

By default, the EXPAND procedure performs interpolation by first fitting cubic spline curves to the available data and then computing needed interpolating values from the fitted spline curves. Other interpolation methods can be requested.

Note that interpolating values of a time series does not add any real information to the data because the interpolation process is not the same process that generated the other (nonmissing) values in the series. While time series interpolation can sometimes be useful, great care is needed in analyzing time series that contain interpolated values.

Interpolating Missing Values

To use the EXPAND procedure to interpolate missing values in a time series, specify the input and output data sets in the PROC EXPAND statement, and specify the time ID variable in an ID statement. For example, the following statements cause PROC EXPAND to interpolate values for missing values of all numeric variables in the data set USPRICE:

```
proc expand data=usprice out=interpl;
    id date;
run;
```

Interpolated values are computed only for embedded missing values in the input time series. Missing values before or after the range of a series are ignored by the EXPAND procedure.

In the preceding example, PROC EXPAND assumes that all series are measured at points in time given by the value of the ID variable. In fact, the series in the USPRICE data set are monthly averages. PROC EXPAND can produce a better interpolation if this is taken into account. The following example uses the FROM=MONTH option to tell PROC EXPAND that the series is monthly and uses the CONVERT statement with the OBSERVED=AVERAGE to specify that the series values are averages over each month:

```
proc expand data=usprice out=interpl
    from=month;
    id date;
    convert cpi ppi / observed=average;
run;
```


Interpolating to a Higher or Lower Frequency

You can use PROC EXPAND to interpolate values of time series at a higher or lower sampling frequency than the input time series. To change the periodicity of time series, specify the time interval of the input data set with the FROM= option, and specify the time interval for the desired output frequency with the $\mathrm{TO}=$ option. For example, the following statements compute interpolated weekly values of the monthly CPI and PPI series:

```
proc expand data=usprice out=interpl
    from=month to=week;
    id date;
    convert cpi ppi / observed=average;
run;
```


Interpolating between Stocks and Flows, Levels and Rates

A distinction is made between variables that are measured at points in time and variables that represent totals or averages over an interval. Point-in-time values are often called stocks or levels. Variables that represent totals or averages over an interval are often called flows or rates.

For example, the annual series Gross National Product represents the final goods production of over the year and also the yearly average rate of that production. However, the monthly variable Inventory represents the cost of a stock of goods at the end of the month.

The EXPAND procedure can convert between point-in-time values and period average or total values. To convert observation characteristics, specify the input and output characteristics with the OBSERVED= option in the CONVERT statement. For example, the following statements use the monthly average price index values in USPRICE to compute interpolated estimates of the price index levels at the midpoint of each month.

```
proc expand data=usprice out=midpoint
    from=month;
    id date;
    convert cpi ppi / observed=(average,middle);
run;
```


Reading Time Series Data

Time series data can be coded in many different ways. The SAS System can read time series data recorded in almost any form. Earlier sections of this chapter show how to read time series data coded in several commonly used ways. This section shows how to read time series data from data records coded in two other commonly used ways not previously introduced.

Several time series databases distributed by major data vendors can be read into SAS data sets by the DATASOURCE procedure. See Chapter 11, "The DATASOURCE Procedure," for more information.

The SASECRSP, SASEFAME, and SASEHAVR interface engines enable SAS users to access and process time series data in CRSPAccess data files, FAME databases, and Haver Analytics Data Link Express (DLX) data bases, respectively. See Chapter 33, "The SASECRSP Interface Engine," Chapter 34, "The SASEFAME Interface Engine," and Chapter 35, "The SASEHAVR Interface Engine," for more details.

Reading a Simple List of Values

Time series data can be coded as a simple list of values without dating information and with an arbitrary number of observations on each data record. In this case, the INPUT statement must use the trailing "@@" option to retain the current data record after reading the values for each observation, and the time ID variable must be generated with programming statements.

For example, the following statements read the USPRICE data set from data records that contain pairs of values for CPI and PPI. This example assumes you know that the first pair of values is for June 1990.

```
data usprice;
    input cpi ppi @@;
    date = intnx( 'month', '1jun1990'd, _n_-1 );
    format date monyy7.;
datalines;
129.9 114.3 130.4 114.5 131.6 116.5
132.7 118.4 133.5 120.8 133.8 120.1 133.8 118.7
134.6 119.0 134.8 117.2 135.0 116.2 135.2 116.0
135.6 116.5 136.0 116.3 136.2 116.0
;
```


Reading Fully Described Time Series in Transposed Form

Data for several time series can be coded with separate groups of records for each time series. Data files coded this way are transposed from the form required by SAS procedures. Time series data can also be coded with descriptive information about the series included with the data records.

The following example reads time series data for the USPRICE data set coded with separate groups of records for each series. The data records for each series consist of a series description record and one or more value records. The series description record gives the series name, starting month and year of the series, number of values in the series, and a series label. The value records contain the observations of the time series.

The data are first read into a temporary data set that contains one observation for each value of each series.

```
data temp;
    length _name_ $8 _label_ $40;
    keep _name_ _label_ date value;
    format date monyy.;
    input _name_ month year nval _label_ &;
    date = mdy( month, 1, year );
    do i = 1 to nval;
        input value @;
        output;
        date = intnx( 'month', date, 1 );
    end;
datalines;
cpi 8 90 12 Consumer Price Index
131.6 132.7 133.5 133.8 133.8 134.6 134.8 135.0
135.2 135.6 136.0 136.2
ppi 6 90 13 Producer Price Index
114.3 114.5 116.5 118.4 120.8 120.1 118.7 119.0
117.2 116.2 116.0 116.5 116.3
;
```

The following statements sort the data set by date and series name, and the TRANSPOSE procedure is used to transpose the data into a standard form time series data set.

```
proc sort data=temp;
    by date _name_;
run;
proc transpose data=temp out=usprice(drop=_name_);
    by date;
    var value;
run;
proc contents data=usprice;
run;
proc print data=usprice;
run;
```

The final data set is shown in Figure 3.25.
Figure 3.24 Contents of USPRICE Data Set

Retransposed Data Set					
The CONTENTS Procedure					
Alphabetic List of Variables and Attributes					
\#	Variable	Type	Len	Format	Label
3	cpi	Num	8		Consumer Price Index
1	date	Num	8	MONYY .	
2	ppi	Num	8		Producer Price Index

Figure 3.25 Listing of USPRICE Data Set

| Retransposed Data Set | | | |
| :---: | :---: | :---: | :---: | :---: |
| Obs | date | ppi | cpi |
| | | | |
| 1 | JUN90 | 114.3 | . |
| 2 | JUL90 | 114.5 | . |
| 3 | AUG90 | 116.5 | 131.6 |
| 4 | SEP90 | 118.4 | 132.7 |
| 5 | OCT90 | 120.8 | 133.5 |
| 6 | NOV90 | 120.1 | 133.8 |
| 7 | DEC90 | 118.7 | 133.8 |
| 8 | JAN91 | 119.0 | 134.6 |
| 9 | FEB91 | 117.2 | 134.8 |
| 10 | MAR91 | 116.2 | 135.0 |
| 11 | APR91 | 116.0 | 135.2 |
| 12 | MAY91 | 116.5 | 135.6 |
| 13 | JUN91 | 116.3 | 136.0 |
| 14 | JUL91 | . | 136.2 |
| | | | |

Chapter 4

Date Intervals, Formats, and Functions

Contents

Overview 129
Time Intervals 129
Constructing Interval Names 130
Shifted Intervals 131
Beginning Dates and Datetimes of Intervals 132
Summary of Interval Types 132
Examples of Interval Specifications 135
Date and Datetime Informats 136
Date, Time, and Datetime Formats 137
Date Formats 138
Datetime and Time Formats 142
Alignment of SAS Dates 142
Date, Time, and Datetime Functions 143
SAS Date, Time, and Datetime Functions 144
References 148

Overview

This chapter summarizes the time intervals, date and datetime informats, date and datetime formats, and date, time, and datetime functions available in SAS software. The use of these features is explained in Chapter 3, "Working with Time Series Data." The material in this chapter is also contained in SAS Language Reference: Concepts and SAS Language Reference: Dictionary. Because these features are useful for work with time series data, documentation of these features is consolidated and repeated here for easy reference.

Time Intervals

This section provides a reference for the different kinds of time intervals supported by SAS but does not cover how they are used. For an introduction to the use of time intervals see Chapter 3.

Some interval names are used with SAS date values, while other interval names are used with SAS datetime values. The interval names used with SAS date values are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK, WEEKDAY, DAY, YEARV, R445YR, R454YR, R544YR, R445QTR, R454QTR, R544QTR, R445MON, R454MON, R544MON, and WEEKV. The interval names used with SAS datetime or time values are HOUR, MINUTE, and SECOND. Various abbreviations of these names are also allowed, as described in the section "Summary of Interval Types" on page 132.

Interval names for use with SAS date values can be prefixed with 'DT' to construct interval names for use with SAS datetime values. The interval names DTYEAR, DTSEMIYEAR, DTQTR, DTMONTH, DTSEMIMONTH, DTTENDAY, DTWEEK, DTWEEKDAY, DTDAY, DTYEARV, DTR445YR, DTR454YR, DTR544YR, DTR445QTR, DTR454QTR, DTR544QTR, DTR445MON, DTR454MON, DTR544MON, and DTWEEKV are used with SAS datetime or time values.

Constructing Interval Names

Multipliers and shift indexes can be used with the basic interval names to construct more complex interval specifications. The general form of an interval name is as follows:

NAMEn.s
The three parts of the interval name are shown below:

NAME the name of the basic interval type. For example, YEAR specifies yearly intervals.
$n \quad$ an optional multiplier that specifies that the interval is a multiple of the period of the basic interval type. For example, the interval YEAR2 consists of two-year, or biennial, periods.
S an optional starting subperiod index that specifies that the intervals are shifted to later starting points. For example, YEAR. 3 specifies yearly periods shifted to start on the first of March of each calendar year and to end in February of the following year.

Both the multiplier n and the shift index s are optional and default to 1 . For example, YEAR, YEAR1, YEAR.1, and YEAR1.1 are all equivalent ways of specifying ordinary calendar years.

To test for a valid interval specification, use the INTTEST function:

```
interval = 'MONTH3.2';
valid = INTTEST( interval );
valid = INTTEST( 'YEAR4');
```

INTTEST returns a value of 0 if the argument is not a valid interval specification and 1 if the argument is a valid interval specification. The INTTEST function can also be used in a DATA step to test an interval before calling an interval function:

```
valid = INTTEST( interval );
if ( valid = 1 ) then do;
    end = INTNX( interval, date, 0, 'E' );
end;
```

For more information about the INTTEST function, see SAS Language Reference: Dictionary.

Shifted Intervals

Different kinds of intervals are shifted by different subperiods.

- YEAR, SEMIYEAR, QTR, and MONTH intervals are shifted by calendar months.
- WEEK and DAY intervals are shifted by days.
- SEMIMONTH intervals are shifted by semi-monthly periods.
- TENDAY intervals are shifted by 10-day periods.
- YEARV intervals are shifted by WEEKV intervals.
- R445YR, R445QTR, and R445MON intervals are shifted by R445MON intervals.
- R454YR, R454QTR, and R454MON intervals are shifted by R454MON intervals.
- R544YR, R544QTR, and R544MON intervals are shifted by R544MON intervals.
- WEEKV intervals are shifted by days.
- WEEKDAY intervals are shifted by weekdays.
- HOUR intervals are shifted by hours.
- MINUTE intervals are shifted by minutes.
- SECOND intervals are shifted by seconds.

The INTSHIFT function returns the shift interval:

```
interval = 'MONTH3.2';
shift_interval = INTSHIFT( interval );
```

In this example, the value of shift_interval is 'MONTH'. For more information about the INTSHIFT function see SAS Language Reference: Dictionary.

If a subperiod is specified, the shift index cannot be greater than the number of subperiods in the whole interval. For example, you could use YEAR2.24, but YEAR2.25 would be an error because there is no 25th month in a two-year interval. For interval types that shift by subperiods that are the same as the basic interval type, only multiperiod intervals can be shifted.

For example, MONTH type intervals shift by MONTH subintervals; thus, monthly intervals cannot be shifted because there is only one month in MONTH. However, bimonthly intervals can be shifted because there are two MONTH intervals in each MONTH2 interval. The interval name MONTH2.2 specifies bimonthly periods that start on the first day of even-numbered months.

Beginning Dates and Datetimes of Intervals

Intervals that represent divisions of a year begin with the start of the year (1 January). YEARV, R445YR, R454YR, and R544YR intervals begin with the first week of the International Organization for Standardization (ISO) year, the Monday on or immediately preceding January 4th. R445QTR, R454QTR, and R544QTR intervals begin with the 1st, 14th, 27th, and 40th weeks of the ISO year. MONTH2 periods begin with odd-numbered months (January, March, May, and so on).

Likewise, intervals that represent divisions of a day begin with the start of the day (midnight). Thus, HOUR8.7 intervals divide the day into the periods $06: 00$ to $14: 00,14: 00$ to 22:00, and 22:00 to 06:00.

Intervals that do not nest within years or days begin relative to the SAS date or datetime value 0 . The arbitrary reference time of midnight on January 1, 1960, is used as the origin for nonshifted intervals, and shifted intervals are defined relative to that reference point. For example, MONTH13 defines the intervals January 1, 1960, February 1, 1961, March 1, 1962, and so forth, and the intervals December 1, 1959, November 1, 1958, and so on before the base date January 1, 1960.

Similarly, the WEEK2 interval begins relative to the Sunday of the week of January 1, 1960. The interval specification WEEK6.13 defines six-week periods starting on second Fridays, and the convention of counting relative to the period containing January 1, 1960, indicates the starting date or datetime of the interval closest to January 1, 1960, that corresponds to the second Fridays of six-week intervals.

Intervals always begin on the date or datetime defined by the base interval name, the multiplier, and the shift value. The end of the interval immediately precedes the beginning of the next interval. However, an interval can be identified by any date or datetime value between its starting and ending values, inclusive. See the section "Alignment of SAS Dates" on page 142 for more information about generating identifying dates for intervals.

Summary of Interval Types

The interval types are summarized as follows.
YEAR
specifies yearly intervals. Abbreviations are YEAR, YEARS, YEARLY, YR, ANNUAL, ANNUALLY, and ANNUALS. The starting subperiod s is in months (MONTH).

YEARV

specifies ISO 8601 yearly intervals. The ISO 8601 year starts on the Monday on or immediately preceding January 4th. Note that it is possible for the ISO 8601 year to start in December of the preceding year. Also, some ISO 8601 years contain a leap week. For further discussion of ISO weeks, see Technical Committee ISO/TC 154, Documents in Commerce, and Administration (2004). The starting subperiod s is in ISO 8601 weeks (WEEKV).

R445YR

is the same as YEARV except that the starting subperiod s is in retail 4-4-5 months (R445MON).

R454YR

is the same as YEARV except that the starting subperiod s is in retail $4-5-4$ months (R454MON). For a discussion of the retail 4-5-4 calendar, see Federation (2007).

R544YR

is the same as YEARV except that the starting subperiod s is in retail 5-4-4 months (R544MON).

SEMIYEAR

specifies semiannual intervals (every six months). Abbreviations are SEMIYEAR, SEMIYEARS, SEMIYEARLY, SEMIYR, SEMIANNUAL, and SEMIANN.

The starting subperiod s is in months (MONTH). For example, SEMIYEAR. 3 intervals are March-August and September-February.

QTR

specifies quarterly intervals (every three months). Abbreviations are QTR, QUARTER, QUARTERS, QUARTERLY, QTRLY, and QTRS. The starting subperiod s is in months (MONTH).

R445QTR

specifies retail 4-4-5 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters will contain a leap week. The starting subperiod s is in retail 4-4-5 months (R445MON).

R454QTR

specifies retail 4-5-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters will contain a leap week. For a discussion of the retail 4-5-4 calendar, see Federation (2007). The starting subperiod s is in retail 4-5-4 months (R454MON).

R544QTR

specifies retail 5-4-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters will contain a leap week. The starting subperiod s is in retail 5-4-4 months (R544MON).

MONTH

specifies monthly intervals. Abbreviations are MONTH, MONTHS, MONTHLY, and MON.
The starting subperiod s is in months (MONTH). For example, MONTH2.2 intervals are February-March, April-May, June-July, August-September, October-November, and December-January of the following year.

R445MON

specifies retail 4-4-5 monthly intervals. The 3rd, 6th, 9th, and 12th months are five ISO 8601 weeks long with the exception that some 12th months contain leap weeks. All other months are four ISO 8601 weeks long. R445MON intervals begin with the 1st, 5th, 9th, 14th, 18th, 22 nd , $27 \mathrm{th}, 31 \mathrm{st}$, 35 th, $40 \mathrm{th}, 44 \mathrm{th}$, and 48 th weeks of the ISO year. The starting subperiod s is in retail 4-4-5 months (R445MON).

R454MON

specifies retail 4-5-4 monthly intervals. The 2nd, 5th, 8th, and 11th months are five ISO 8601 weeks long. All other months are four ISO 8601 weeks long with the exception that some 12th months contain leap weeks. R454MON intervals begin with the 1st, 5th, 10th, 14th, 18th, 23 rd, 27 th, 31 st, 36 th, 40th, 44th, and 49th weeks of the ISO year. For a discussion of the retail 4-5-4 calendar, see Federation (2007). The starting subperiod s is in retail 4-5-4 months (R454MON).

R544MON

specifies retail 5-4-4 monthly intervals. The 1st, 4th, 7th, and 10th months are five ISO 8601 weeks long. All other months are four ISO 8601 weeks long with the exception that some 12th months contain leap weeks. R544MON intervals begin with the 1st, 6th, 10th, 14th, 19th, 23rd, 27th, 32nd, 36th, 40th, 45th, and 49th weeks of the ISO year. The starting subperiod s is in retail 5-4-4 months (R544MON).

SEMIMONTH

specifies semimonthly intervals. SEMIMONTH breaks each month into two periods, starting on the 1st and 16th days. Abbreviations are SEMIMONTH, SEMIMONTHS, SEMIMONTHLY, and SEMIMON. The starting subperiod s is in SEMIMONTH periods. For example, SEMIMONTH2.2 specifies intervals from the 16th of one month through the 15th of the next month.

TENDAY

specifies 10 -day intervals. TENDAY breaks the month into three periods, the 1 st through the 10th day of the month, the 11th through the 20th day of the month, and the remainder of the month. (TENDAY is a special interval typically used for reporting automobile sales data.) The starting subperiod s is in TENDAY periods. For example, TENDAY4.2 defines 40-day periods that start at the second TENDAY period.

WEEK

specifies weekly intervals of seven days. Abbreviations are WEEK, WEEKS, and WEEKLY. The starting subperiod s is in days (DAY), with the days of the week numbered as $1=$ Sunday, $2=$ Monday, $3=$ Tuesday, $4=$ Wednesday, $5=$ Thursday, $6=$ Friday, and 7=Saturday. For example, WEEK. 7 means weekly with Saturday as the first day of the week.

WEEKV

specifies ISO 8601 weekly intervals of seven days. Each week starts on Monday. The starting subperiod s is in days (DAY). Note that WEEKV differs from WEEK in that WEEKV. 1 starts on Monday, WEEKV. 2 starts on Tuesday, and so forth.

WEEKDAY

WEEKDAY dW
WEEKDAY ddW

WEEKDAY dddW

specifies daily intervals with weekend days included in the preceding weekday. Note that for a five-day work week that starts on Monday, the appropriate interval is WEEKDAY5.2. Abbreviations are WEEKDAY and WEEKDAYS. The starting subperiod s is in weekdays (WEEKDAY).

The WEEKDAY interval is the same as DAY except that weekend days are absorbed into the preceding weekday. Thus there are five WEEKDAY intervals in a calendar week: Monday, Tuesday, Wednesday, Thursday, and the three-day period Friday-Saturday-Sunday.

The default weekend days are Saturday and Sunday, but any one to six weekend days can be listed after the WEEKDAY string and followed by a W. Weekend days are specified as ' 1 ' for Sunday, '2' for Monday, and so forth. For example, WEEKDAY67W specifies a FridaySaturday weekend. WEEKDAY1W specifies a six-day work week with a Sunday weekend. WEEKDAY17W is the same as WEEKDAY.

DAY
specifies daily intervals. Abbreviations are DAY, DAYS, and DAILY. The starting subperiod s is in days (DAY).

HOUR

specifies hourly intervals. Abbreviations are HOUR, HOURS, HOURLY, and HR. The starting subperiod s is in hours (HOUR).

MINUTE

specifies minute intervals. Abbreviations are MINUTE, MINUTES, and MIN. The starting subperiod s is in minutes (MINUTE).

SECOND

specifies second intervals. Abbreviations are SECOND, SECONDS, and SEC. The starting subperiod s is in seconds (SECOND).

Examples of Interval Specifications

Table 4.1 shows examples of different kinds of interval specifications.

Table 4.1 Examples of Intervals

Name	Kind of Interval
YEAR	years that start in January
fiscal years that start in October	
YEAR.10	biennial intervals that start in July of even years
biennial intervals that start in July of odd years	
YEAR2.19	four-year intervals that start in November of leap years (frequency of U.S. presidential elections) four-year intervals that start in November of even years between leap years (frequency of U.S. midterm elections)
YEAR4.35	weekly intervals that start on Sundays biweekly intervals that start on first Sundays
WEEK	same as WEEK
WEEEK2 2	

Date and Datetime Informats

Table 4.2 lists some of the SAS date and datetime informats available in SAS to read date, time, and datetime values. See Chapter 3, "Working with Time Series Data," for a discussion of the use of date and datetime informats. See SAS Language Reference: Concepts for a complete description of these informats.

For each informat, Table 4.2 shows an example of a date or datetime value written in the style that the informat is designed to read. The date 17 October 1991 and the time 2:25:32 p.m. are used for the example in all cases. Table 4.2 shows the width range allowed by the informat and the default width.

Informat Example	Description	Width Range	Default Width
DATE w. 17oct91	day, month abbreviation, and year: ddmonyy	7-32	7
DATETIME $w . d$ 17oct91:14:45:32	date and time: ddmonyy:hh:mm:ss	13-40	18
$\begin{aligned} & \text { DDMMYYw. } \\ & \text { 17/10/91 } \end{aligned}$	day, month, year: $d d m m y y, d d / m m / y y$, $d d-m m-y y$, or $d d m m y$	6-32	6
$\begin{aligned} & \text { JULIAN } w \text {. } \\ & 91290 \end{aligned}$	year and day of year (Julian dates): yyddd	5-32	5
$\begin{aligned} & \text { MMDDYYw. } \\ & \text { 10/17/91 } \end{aligned}$	month, day, year: $m m d d y y, m m / d d / y y$, $m m-d d-y y$, or $m m d d y y$	6-32	6
$\begin{aligned} & \text { MONYYw. } \\ & \text { Oct91 } \end{aligned}$	month abbreviation and year	5-32	5
NENGO w. H.03/10/17	Japanese Nengo notation	7-32	10
$\begin{aligned} & \text { TIME } w . d \\ & \text { 14:45:32 } \end{aligned}$	hours, minutes, seconds: hh:mm:ss or hours, minutes: hh:mm.	5-32	8
WEEKV w. 1991-W42-04	ISO 8601 year, week, day of week: yyyy-Www-dd	3-200	11
YYMMDD w. 91/10/17	year, month, day: $y y m m d d, y y / m m / d d$, yy-mm-dd, or yy mm dd	6-32	6
$\begin{aligned} & \text { YYQw. } \\ & \text { 91Q4 } \end{aligned}$	year and quarter of year: $y y Q q$	4-32	4

Date, Time, and Datetime Formats

Some of the SAS date and datetime formats commonly used to write out SAS date and datetime values are listed in Table 4.3 and Table 4.4. A width value can be specified with each format. The tables list the range of width values allowed and the default width value for each format.

The notation used by a format is abbreviated in different ways depending on the width option used.

For example, the format MMDDYY8. writes the date 17 October 1991 as $10 / 17 / 91$, while the format MMDDYY6. writes this date as 101791. In particular, formats that display the year show two-digit or four-digit year values depending on the width option. The examples shown in the tables are for the default width.

The interval function INTFMT returns a recommended format for time ID values based on the interval that describes the frequency of the values. The following example uses INTFMT to select a format to display the quarterly time ID variable qtrDate. This selected format is stored in a macro variable created by the CALL SYMPUT statement. The macro variable \&FMT is then used in the FORMAT statement in the PROC PRINT step.

```
data b(keep=qtrDate);
    interval = 'QTR';
    form = INTFMT( interval, 'long' );
    call symput('fmt',form);
    do i=1 to 4;
        qtrDate = INTNX( interval, '01jan00'd, i-1 );
        output;
    end;
run;
proc print;
    format qtrDate &fmt;
run;
```

The second argument to INTFMT is 'long,' ' 1 ,' 'short,' or 's' and controls the width of the year (2 or 4) for date formats. For more information about the INTFMT function, see SAS Language Reference: Dictionary.

See SAS Language Reference: Concepts for a complete description of these formats, including the variations of the formats produced by different width options. See Chapter 3, "Working with Time Series Data," for a discussion of the use of date and datetime formats.

Date Formats

Table 4.3 lists some of the date formats available in SAS. For each format, an example is shown of a date value in the notation produced by the format. The date ' 170 OT 91 'D is used as the example.

Table 4.3 Frequently Used SAS Date Formats

Format Example	Description	Width Range	Default Width
DATE w. 17OCT91	day, month abbreviation, year: ddmonyy	5-9	7
$\begin{aligned} & \text { DAY } w . \\ & 17 \end{aligned}$	day of month	2-32	2

Table 4.3 continued

Format Example	Description	Width Range	Default Width
$\begin{aligned} & \text { DDMMYY } w \text {. } \\ & \text { 17/10/91 } \end{aligned}$	day, month, year: d / $/ \mathrm{mm} / \mathrm{y}$ y	2-8	8
DOWNAME w. Thursday	name of day of the week	1-32	9
$\begin{aligned} & \text { JULDAY } w \text {. } \\ & 290 \end{aligned}$	day of year	3-32	3
$\begin{aligned} & \text { JULIAN } w \text {. } \\ & 91290 \end{aligned}$	year and day of year: y yddd	5-7	5
$\begin{aligned} & \text { MMDDYYw. } \\ & \text { 10/17/91 } \end{aligned}$	month, day, year: mm/dd/yy	2-8	8
MMYYw. 10M1991	month and year: mmMyy	5-32	7
$\begin{aligned} & \text { MMYYCw. } \\ & \text { 10:1991 } \end{aligned}$	month and year: mm:yy	5-32	7
MMYYD w. 10-1991	month and year: mm-yy	5-32	7
$\begin{aligned} & \text { MMYYPw. } \\ & 10.1991 \end{aligned}$	month and year: mm.yy	5-32	7
MMYYSw. 10/1991	month and year: $m m / y y$	5-32	7
MMYYN w. 101991	month and year: mmyy	5-32	6
MONNAME w. October	name of month	1-32	9
MONTH w. 10	month of year	1-32	2
MONYYw. OCT91	month abbreviation and year: monyy	5-7	5

Table 4.3 continued

Format Example	Description	Width Range	Default Width
$\begin{aligned} & \text { QTR } w . \\ & 4 \end{aligned}$	quarter of year	1-32	1
QTRRw. IV	quarter in roman numerals	3-32	3
NENGO w. H.03/10/17	Japanese Nengo notation	2-10	10
WEEKDATE w. Thursday, October 17, 1991	day-of-week, month-name dd, yy	3-37	29
WEEKDATX w. Thursday, 17 October 1991	day-of-week, dd month-name yy	3-37	29
WEEKDAY w. 5	day of week	1-32	1
WEEKV w. 1991-W42-04	ISO 8601 year, week, day of week: yyyy-Www-dd	3-200	11
WORDDATE w. October 17, 1991	month-name dd, yy	3-32	18
WORDDATX w. 17 October 1991	dd month-name yy	3-32	18
$\begin{aligned} & \text { YEAR } w \text {. } \\ & 1991 \end{aligned}$	year	2-32	4
$\begin{aligned} & \text { YYMM } w \text {. } \\ & \text { 1991M10 } \end{aligned}$	year and month: yyMmm	5-32	7
$\begin{aligned} & \text { YYMMC } w . \\ & \text { 1991:10 } \end{aligned}$	year and month: yy:mm	5-32	7
YYMMD w. 1991-10	year and month: yy -mm	5-32	7
$\begin{aligned} & \text { YYMMP } w . \\ & 1991.10 \end{aligned}$	year and month: yy.mm	5-32	7
YYMMSw. 1991/10	year and month: $\mathrm{yy} / \mathrm{mm}$	5-32	7

Table 4.3 continued

Format Example	Description	Width Range	Default Width
$\begin{aligned} & \text { YYMMNw. } \\ & 199110 \end{aligned}$	year and month: yymm	5-32	7
YYMONw. 1991OCT	year and month abbreviation: yyMON	5-32	7
YYMMDD w. 91/10/17	year, month, day: $\mathrm{yy} / \mathrm{mm} / \mathrm{dd}$	2-8	8
$\begin{aligned} & \text { YYQ } w . \\ & \text { 91Q4 } \end{aligned}$	year and quarter: $y y Q q$	4-6	4
$\begin{aligned} & \text { YYQCw. } \\ & \text { 1991:4 } \end{aligned}$	year and quarter: y y:q	4-32	6
$\begin{aligned} & \text { YYQD } w . \\ & \text { 1991-4. } \end{aligned}$	year and quarter: $y y-q$	4-32	6
$\begin{aligned} & \text { YYQPw. } \\ & 1991.4 \end{aligned}$	year and quarter: y y.q	4-32	6
$\begin{aligned} & \text { YYQSw. } \\ & \text { 1991/4 } \end{aligned}$	year and quarter: $y y / q$	4-32	6
$\begin{aligned} & \text { YYQNw. } \\ & 19914 \end{aligned}$	year and quarter: yyq	3-32	5
YYQRw. 1991QIV	year and quarter in roman numerals: $y y Q r r$	6-32	8
$\begin{aligned} & \text { YYQRCw. } \\ & \text { 1991:IV } \end{aligned}$	year and quarter in roman numerals: y y:rr	6-32	8
YYQRD w. 1991-IV	year and quarter in roman numerals: $y y-r r$	6-32	8
$\begin{aligned} & \text { YYQRPw. } \\ & \text { 1991.IV } \end{aligned}$	year and quarter in roman numerals: y y. $r r$	6-32	8
YYQRSw. 1991/IV	year and quarter in roman numerals: $y y / r r$	6-32	8
YYQRNw.	year and quarter in roman	6-32	8

Table 4.3 continued

Format Example	Description	Width Range	Default Width
1991IV	numerals: $y y r r$		

Datetime and Time Formats

Table 4.4 lists some of the datetime and time formats available in the SAS system. For each format, an example is shown of a datetime value in the notation produced by the format. The datetime value ' $170 \mathrm{OCT} 91: 14: 25: 32$ 'DT is used as the example.

Table 4.4 Frequently Used SAS Datetime and Time Formats

Format Example	Description	Width Range	Default Width
DATETIME $w . d$ 17ОСТ91:14:25:32	ddMONyy:hh:mm:ss	7-40	16
DTWKDATX w. Thursday, 17 October 1991	day-of-week, dd month yyyy	3-37	29
$\begin{aligned} & \text { HHMM } w \cdot d \\ & 14: 25 \end{aligned}$	hour and minute: hh :mm	2-20	5
$\begin{aligned} & \text { HOUR } w . d \\ & 14 \end{aligned}$	hour	2-20	2
$\begin{aligned} & \text { MMSS } w . d \\ & 25: 32 \end{aligned}$	minutes and seconds: mm:ss	2-20	5
$\begin{aligned} & \text { TIME } w . d \\ & \text { 14:25:32 } \end{aligned}$	time of day: hh:mm:ss	2-20	8
$\begin{aligned} & \text { TODw.d } \\ & \text { 14:25:32 } \end{aligned}$	time of day: hh:mm:ss	2-20	8

Alignment of SAS Dates

SAS date values used to identify time series observations produced by SAS/ETS and SAS HighPerformance Forecasting procedures are normally aligned with the beginning of the time intervals
that correspond to the observations. For example, for monthly data for 1994, the date values that identify the observations are 1Jan94, 1Feb94, 1Mar94, ..., 1Dec94.

However, for some applications it might be preferable to use end-of-period dates, such as 31Jan94, 28Feb94, 31Mar94, ..., 31Dec94. For other applications, such as plotting time series, it might be more convenient to use interval midpoint dates to identify the observations.

Many SAS/ETS and SAS High-Performance Forecasting procedures provide an ALIGN=option to control the alignment of dates for outputting time series observations. SAS/ETS procedures that support the ALIGN= option are ARIMA, DATASOURCE, ESM, EXPAND, FORECAST, SIMILARITY, TIMESERIES, UCM, and VARMAX. SAS High-Performance Forecasting procedures that support the ALIGN= option are HPFRECONCILE, HPF, HPFDIAGNOSE, HPFENGINE, and HPFEVENTS.

ALIGN=

The ALIGN= option can have the following values:
BEGINNING specifies that dates be aligned to the start of the interval. This is the default. BEGINNING can be abbreviated as BEGIN, BEG, or B.

MIDDLE specifies that dates be aligned to the interval midpoint, the average of the beginning and ending values. MIDDLE can be abbreviated as MID or M.
ENDING specifies that dates be aligned to the end of the interval. ENDING can be abbreviated as END or E.

For information about the calculation of the beginning and ending values of intervals, see the section "Beginning Dates and Datetimes of Intervals" on page 132.

Date, Time, and Datetime Functions

SAS provides functions to perform calculations with SAS date, time, and datetime values. SAS date, time, and datetime functions are used to perform the following tasks:

- compute date, time, and datetime values from calendar and time-of-day values
- compute calendar and time-of-day values from date and datetime values
- convert between date, time, and datetime values
- perform calculations that involve time intervals
- provide information about time intervals
- provide information about seasonality

SAS date, time, and datetime functions are listed in alphabetical order in the following section. The intervals and other character arguments for interval functions can be supplied either directly as a
quoted string or as a SAS character variable. However, when you use a character variable, you should set the length of the character variable to at least the length of the longest string for that variable used in the DATA step.

Also, to ensure correct results when using interval functions, use date intervals with date values and datetime intervals with datetime values.

See SAS Language Reference: Dictionary for a complete description of these functions.

SAS Date, Time, and Datetime Functions

DATE()

returns today's date as a SAS date value.

DATEJUL(yyddd)

returns the SAS date value given the Julian date in yyddd or yyyyddd format. For example, DATE = DATEJUL (99001); assigns the SAS date value '01JAN99'D to DATE, and DATE = DATEJUL (1999365) ; assigns the SAS date value '31DEC1999'D to DATE.

DATEPART(datetime)

returns the date part of a SAS datetime value as a date value.

DATETIME()

returns the current date and time of day as a SAS datetime value.

DAY(date)

returns the day of the month from a SAS date value.
DHMS(date, hour, minute, second)
returns a SAS datetime value for date, hour, minute, and second values.
HMS(hour, minute, second)
returns a SAS time value for hour, minute, and second values.

HOLIDAY(‘holiday’, year)

returns a SAS date value for the holiday and year specified. Valid values for holiday are 'BOXING', ‘CANADA', ‘CANADAOBSERVED', ‘CHRISTMAS', ‘COLUMBUS', 'EASTER', 'FATHERS', 'HALLOWEEN', ‘LABOR', 'MLK', 'MEMORIAL', 'MOTHERS', 'NEWYEAR','THANKSGIVING', 'THANKSGIVINGCANADA', 'USINDEPENDENCE', ‘USPRESIDENTS', ‘VALENTINES', ‘VETERANS', 'VETERANSUSG’, 'VETERANSUSPS', and 'VICTORIA'. For example: EASTER2000 = HOLIDAY('EASTER', 2000);

HOUR(datetime)

returns the hour from a SAS datetime or time value.

INTCINDEX('date-interval', date)

INTCINDEX('datetime-interval', datetime)
returns the index of the seasonal cycle given an interval and an appropriate SAS date, datetime, or time value. For example, the seasonal cycle for INTERVAL='DAY' is 'WEEK', so intcindex ('DAY', 01SEP78'D) ; returns 35 since September 1, 1978, is the sixth day of the 35th week of the year. For correct results, date intervals should be used with date values, and datetime intervals should be used with datetime values.

```
INTCK( 'date-interval', date1, date2 )
INTCK( 'datetime-interval', datetime1, datetime2 )
```

returns the number of boundaries of intervals of the given kind that lie between the two date or datetime values.

INTCYCLE('interval’)

returns the interval of the seasonal cycle, given a date, time, or datetime interval. For example, INTCYCLE('MONTH') returns 'YEAR' since the months January, February, ..., December constitute a yearly cycle. INTCYCLE('DAY') returns 'WEEK' since Sunday, Monday, ..., Saturday is a weekly cycle.

```
INTFIT( date1, date2, 'D` )
```

INTFIT(datetime1, datetime2, ‘DT’)
INTFIT(obs1, obs2, ‘OBS') returns an interval that fits exactly between two SAS date, datetime, or observation values, in the sense of the INTNX function uses SAMEDAY alignment. In the following example, result1 is the same as date1 and result2 is the same as date2.

```
FitInterval = INTFIT( date1, date2, 'D' );
result1 = INTNX( FitInterval, date1, 0, 'SAMEDAY');
result2 = INTNX( FitInterval, date1, 1, 'SAMEDAY');
```

More than one interval can fit the preceding definition. For instance, two SAS date values that are seven days apart could be fit with either 'DAY7' or 'WEEK'. The INTFIT algorithm chooses the more common interval, so 'WEEK' is the result when the dates are seven days apart. The INTFIT function can be used to detect the possible frequency of the time series or to analyze frequencies of other events in a time series, such as outliers or missing values.

INTFMT('interval' ',size’)

returns a recommended format, given a date, time, or datetime interval for displaying the time ID values associated with a time series of the given interval. The valid values of size ('long,' 'l,' 'short,' 's') specify whether the returned format uses a two-digit or four-digit year to display the SAS date value.

```
INTGET( date1, date2, date3)
INTGET( datetime1, datetime2, datetime3 )
```

returns an interval that fits three consecutive SAS date or datetime values. The INTGET function examines two intervals: the first interval between date 1 and date 2 , and the second interval between date 2 and date 3 . In order for an interval to be detected, either the two intervals must be the same or one interval must be an integer multiple of the other interval. That is, INTGET assumes that at least two of the dates are consecutive points in the time series, and that the other two dates are also consecutive or represent the points before and after
missing observations. The INTGET algorithm assumes that large values are SAS datetime values, which are measured in seconds, and that smaller values are SAS date values, which are measured in days. The INTGET function can be used to detect the possible frequency of the time series or to analyze frequencies of other events in a time series, such as outliers or missing values.

INTINDEX('date-interval', date)
 INTINDEX('datetime-interval', datetime)

returns the seasonal index, given a date, time, or datetime interval and an appropriate date, time, or datetime value. The seasonal index is a number that represents the position of the date, time, or datetime value in the seasonal cycle of the specified interval. For example, INTINDEX('MONTH', $01 \mathrm{DEC2000} \mathrm{D}$); returns 12 because monthly data is yearly periodic and DECEMBER is the 12 th month of the year. However, INTINDEX('DAY','01DEC2000'D); returns 6 because daily data is weekly periodic and December 01, 2000, is a Friday, the sixth day of the week. To correctly identify the seasonal index, the interval specification should agree with the date, time, or datetime value. For example, INTINDEX('DTMONTH', $01 \mathrm{DEC2000}$,); and INTINDEX('MONTH','01DEC2000:00:00:00'DT); do not return the expected value of 12. However, both INTINDEX('MONTH', 'O1DEC2000'D); and INTINDEX ('DTMONTH' , O1DEC2000:00:00:00'DT); return the expected value of 12 .

INTNX('date-interval', date, $n<$, 'alignment' >)
INTNX('datetime-interval', datetime, $n<$, 'alignment' >)
returns the date or datetime value of the beginning of the interval that is n intervals from the interval that contains the given date or datetime value. The optional alignment argument specifies that the returned date is aligned to the beginning, middle, or end of the interval. Beginning is the default. In addition, you can specify SAME (or S) alignment. The SAME alignment bases the alignment of the calculated date or datetime value on the alignment of the input date or datetime value. As illustrated in the following example, the SAME alignment can be used to calculate the meaning of "same day next year" or "same day 2 weeks from now."

```
nextYear = INTNX( 'YEAR', '15Apr2007'D, 1, 'S' );
TwoWeeks = INTNX( 'WEEK', '15Apr2007'D, 2, 'S' );
```

The preceding example returns '15Apr2008'D for nextYear and '29Apr2007'D for TwoWeeks. For all values of alignment, the number of intervals n between the input date and the resulting date agrees with the input value.

```
date2 = INTNX( interval, date1, n1, align );
n2 = INTCK( interval, date1, date2 );
```

The result is always that $\mathrm{n} 2=\mathrm{n} 1$.

INTSEAS('interval')

returns the length of the seasonal cycle, given a date, time, or datetime interval. The length of a seasonal cycle is the number of intervals in a seasonal cycle. For example, when the interval for a time series is described as monthly, many procedures use the option INTERVAL=MONTH to indicate that each observation in the data then corresponds to a particular month. Monthly data are considered to be periodic for a one-year seasonal cycle. There are

12 months in one year, so the number of intervals (months) in a seasonal cycle (year) is 12 . For quarterly data, there are 4 quarters in one year, so the number of intervals in a seasonal cycle is 4 . The periodicity is not always one year. For example, INTERVAL=DAY is considered to have a seasonal cycle of one week, and because there are 7 days in a week, the number of intervals in a seasonal cycle is 7 .

INTSHIFT('interval')

returns the shift interval that applies to the shift index if a subperiod is specified. For example, YEAR intervals are shifted by MONTH, so INTSHIFT('YEAR') returns 'MONTH'.

INTTEST('interval')

returns 1 if the interval name is a valid interval, 0 otherwise. For example, valid = inttest (' Month') ; should set VALID to 1, while Valid = inttest (' ${ }^{\text {notaninterval') ; }}$ should set VALID to 0 . The INTTEST function can be useful in verifying which values of multiplier n and the shift index s are valid in constructing an interval name.

JULDATE(date)

returns the Julian date from a SAS date value. The format of the Julian date is either yyddd or yyyyddd depending on the value of the system option YEARCUTOFF=. For example, using the default system option values, JULDATE ('31DEC1999'D) ; returns 99365, while JULDATE ('31DEC1899'D); returns 1899365.

MDY(month, day, year)

returns a SAS date value for month, day, and year values.

MINUTE(datetime)

returns the minute from a SAS time or datetime value.

MONTH(date)

returns the numerical value for the month of the year from a SAS date value. For example, MONTH=MONTH (' 01 JAN2000'D) ; returns 1 , the numerical value for January.

NWKDOM(n, weekday, month, year)

returns a SAS date value for the nth weekday of the month and year specified. For example, Thanksgiving is always the fourth $(n=4)$ Thursday (weekday $=5$) in November (month $=11$). Thus thanks2000 $=$ NwKDOM (4, 5, 11, 2000) ; returns the SAS date value for Thanksgiving in the year 2000. The last weekday of a month can be specified using $n=5$. Memorial Day in the United States is the last $(n=5)$ Monday (weekday $=2$) in May (month $=5$), and SO MEMORIAL2002 $=$ NwKDOM (5, 2, 5, 2002) ; returns the SAS date value for Memorial Day in 2002. Because $n=5$ always specifies the last occurrence of the month and most months have only 4 instances of each day, the result for $n=5$ is often the same as the result for $n=4$. NWKDOM is useful for calculating the SAS date values of holidays that are defined in this manner.

QTR(date)

returns the quarter of the year from a SAS date value.

SECOND(date)

returns the second from a SAS time or datetime value.

TIME()

returns the current time of day.

TIMEPART(datetime)

returns the time part of a SAS datetime value.
TODAY()
returns the current date as a SAS date value. (TODAY is another name for the DATE function.)

WEEK(date < , 'descriptor’>)

returns the week of year from a SAS date value. The algorithm used to calculate the week depends on the descriptor.

If the descriptor is ' U,' weeks start on Sunday and the range is 0 to 53 . If weeks 0 and 53 exist, they are only partial weeks. Week 52 can be a partial week.

If the descriptor is ' V ', the result is equivalent to the ISO 8601 week of year definition. The range is 1 to 53 . Week 53 is a leap week. The first week of the year, Week 1, and the last week of the year, Week 52 or 53, can include days in another Gregorian calendar year.

If the descriptor is ' W ', weeks start on Monday and the range is 0 to 53 . If weeks 0 and 53 exist, they are only partial weeks. Week 52 can be a partial week.

WEEKDAY(date)

returns the day of the week from a SAS date value. For example weekday=weekday ('170CT1991' D) ; returns 5, the numerical value for Thursday.

YEAR(date)

returns the year from a SAS date value.
YYQ(year, quarter)
returns a SAS date value for year and quarter values.

References

Federation, N. R. (2007), National Retail Federation 4-5-4 Calendar, Washington, DC: NRF.
Technical Committee ISO/TC 154, D. E., Processes, Documents in Commerce, I., and Administration (2004), ISO 8601:2004 Data Elements and Interchange Formats-Information InterchangeRepresentation of Dates and Times, 3rd Edition, Technical report, International Organization for Standardization.

Chapter 5

SAS Macros and Functions

Contents

SAS Macros 149
BOXCOXAR Macro 150
DFPVALUE Macro 153
DFTEST Macro 154
LOGTEST Macro 156
Functions 158
PROBDF Function for Dickey-Fuller Tests 158
References 163

SAS Macros

This chapter describes several SAS macros and the SAS function PROBDF that are provided with SAS/ETS software. A SAS macro is a program that generates SAS statements. Macros make it easy to produce and execute complex SAS programs that would be time-consuming to write yourself.

SAS/ETS software includes the following macros:
\%AR generates statements to define autoregressive error models for the MODEL procedure.
\%BOXCOXAR investigates Box-Cox transformations useful for modeling and forecasting a time series.
\%DFPVALUE computes probabilities for Dickey-Fuller test statistics.
\%DFTEST
\%LOGTEST
performs Dickey-Fuller tests for unit roots in a time series process.
tests to see if a log transformation is appropriate for modeling and forecasting a time series.
\%MA generates statements to define moving-average error models for the MODEL procedure.
\%PDL generates statements to define polynomial-distributed lag models for the MODEL procedure.

These macros are part of the SAS AUTOCALL facility and are automatically available for use in your SAS program. See SAS Macro Language: Reference for information about the SAS macro facility.

Since the \%AR, \%MA, and \%PDL macros are used only with PROC MODEL, they are documented with the MODEL procedure. See the sections on the $\% \mathrm{AR}, \% \mathrm{MA}$, and $\% \mathrm{PDL}$ macros in Chapter 18, "The MODEL Procedure," for more information about these macros. The \%BOXCOXAR, \%DFPVALUE, \%DFTEST, and \%LOGTEST macros are described in the following sections.

BOXCOXAR Macro

The \%BOXCOXAR macro finds the optimal Box-Cox transformation for a time series.
Transformations of the dependent variable are a useful way of dealing with nonlinear relationships or heteroscedasticity. For example, the logarithmic transformation is often used for modeling and forecasting time series that show exponential growth or that show variability proportional to the level of the series.

The Box-Cox transformation is a general class of power transformations that include the log transformation and no transformation as special cases. The Box-Cox transformation is

$$
Y_{t}= \begin{cases}\frac{\left(X_{t}+c\right)^{\lambda}-1}{\lambda} & \text { for } \lambda \neq 0 \\ \ln \left(X_{t}+c\right) & \text { for } \lambda=0\end{cases}
$$

The parameter λ controls the shape of the transformation. For example, $\lambda=0$ produces a log transformation, while $\lambda=0.5$ results in a square root transformation. When $\lambda=1$, the transformed series differs from the original series by $c-1$.

The constant c is optional. It can be used when some X_{t} values are negative or 0 . You choose c so that the series X_{t} is always greater than $-c$.

The $\%$ BOXCOXAR macro tries a range of λ values and reports which of the values tried produces the optimal Box-Cox transformation. To evaluate different λ values, the \%BOXCOXAR macro transforms the series with each λ value and fits an autoregressive model to the transformed series. It is assumed that this autoregressive model is a reasonably good approximation to the true time series model appropriate for the transformed series. The likelihood of the data under each autoregressive model is computed, and the λ value that produces the maximum likelihood over the values tried is reported as the optimal Box-Cox transformation for the series.

The $\%$ BOXCOXAR macro prints and optionally writes to a SAS data set all of the λ values tried, the corresponding log-likelihood value, and related statistics for the autoregressive model.

You can control the range and number of λ values tried. You can also control the order of the autoregressive models fit to the transformed series. You can difference the transformed series before the autoregressive model is fit.

Note that the Box-Cox transformation might be appropriate when the data have a common distribution (apart from heteroscedasticity) but not when groups of observations for the variable are quite
different. Thus the \%BOXCOXAR macro is more often appropriate for time series data than for cross-sectional data.

Syntax

The form of the \%BOXCOXAR macro is

```
%BOXCOXAR ( SAS-data-set, variable < , options > );
```

The first argument, SAS-data-set, specifies the name of the SAS data set that contains the time series to be analyzed. The second argument, variable, specifies the time series variable name to be analyzed. The first two arguments are required.

The following options can be used with the \%BOXCOXAR macro. Options must follow the required arguments and are separated by commas.

AR=n

specifies the order of the autoregressive model fit to the transformed series. The default is $\mathrm{AR}=5$.

CONST=value

specifies a constant c to be added to the series before transformation. Use the CONST= option when some values of the series are 0 or negative. The default is CONST $=0$.

DIF=(differencing-list)

specifies the degrees of differencing to apply to the transformed series before the autoregressive model is fit. The differencing-list is a list of positive integers separated by commas and enclosed in parentheses. For example, $\mathrm{DIF}=(1,12)$ specifies that the transformed series be differenced once at lag 1 and once at lag 12. For more details, see the section "IDENTIFY Statement" on page 228 in Chapter 7, "The ARIMA Procedure."

LAMBDAHI=value

specifies the maximum value of lambda for the grid search. The default is LAMBDAHI=1. A large (in magnitude) LAMBDAHI= value can result in problems with floating point arithmetic.

LAMBDALO=value

specifies the minimum value of lambda for the grid search. The default is LAMBDALO=0. A large (in magnitude) LAMBDALO= value can result in problems with floating point arithmetic.

NLAMBDA=value

specifies the number of lambda values considered, including the LAMBDALO= and LAMBDAHI $=$ option values. The default is NLAMBDA=2.

OUT=SAS-data-set

writes the results to an output data set. The output data set includes the lambda values tried (LAMBDA), and for each lambda value, the log likelihood (LOGLIK), residual mean squared error (RMSE), Akaike Information Criterion (AIC), and Schwarz's Bayesian Criterion (SBC).

PRINT=YES | NO

specifies whether results are printed. The default is PRINT=YES. The printed output contains the lambda values, log likelihoods, residual mean square errors, Akaike Information Criterion (AIC), and Schwarz's Bayesian Criterion (SBC).

Results

The value of λ that produces the maximum \log likelihood is returned in the macro variable \&BOXCOXAR. The value of the variable \&BOXCOXAR is "ERROR" if the \%BOXCOXAR macro is unable to compute the best transformation due to errors. This might be the result of large lambda values. The Box-Cox transformation parameter involves exponentiation of the data, so that large lambda values can cause floating-point overflow.

Results are printed unless the PRINT=NO option is specified. Results are also stored in SAS data sets when the OUT= option is specified.

Details

Assume that the transformed series Y_{t} is a stationary p th order autoregressive process generated by independent normally distributed innovations.

$$
\begin{aligned}
& (1-\Theta(B))\left(Y_{t}-\mu\right)=\epsilon_{t} \\
& \epsilon_{t} \sim \text { iid } \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Given these assumptions, the log-likelihood function of the transformed data Y_{t} is

$$
\begin{aligned}
l_{Y}(\cdot)= & -\frac{n}{2} \ln (2 \pi)-\frac{1}{2} \ln (|\Sigma|)-\frac{n}{2} \ln \left(\sigma^{2}\right) \\
& -\frac{1}{2 \sigma^{2}}(\mathbf{Y}-\mathbf{1} \mu)^{\prime} \Sigma^{-1}(\mathbf{Y}-\mathbf{1} \mu)
\end{aligned}
$$

In this equation, n is the number of observations, μ is the mean of $Y_{t}, \mathbf{1}$ is the n-dimensional column vector of $1 \mathrm{~s}, \sigma^{2}$ is the innovation variance, $\mathbf{Y}=\left(Y_{1}, \cdots, Y_{n}\right)^{\prime}$, and Σ is the covariance matrix of Y. The log-likelihood function of the original data X_{1}, \cdots, X_{n} is

$$
l_{X}(\cdot)=l_{Y}(\cdot)+(\lambda-1) \sum_{t=1}^{n} \ln \left(X_{t}+c\right)
$$

where c is the value of the CONST= option.
For each value of λ, the maximum log-likelihood of the original data is obtained from the maximum log-likelihood of the transformed data given the maximum likelihood estimate of the autoregressive model.

The maximum log-likelihood values are used to compute the Akaike Information Criterion (AIC) and Schwarz's Bayesian Criterion (SBC) for each λ value. The residual mean squared error based
on the maximum likelihood estimator is also produced. To compute the mean squared error, the predicted values from the model are transformed again to the original scale (Pankratz 1983, pp. 256-258, and Taylor 1986).

After differencing as specified by the DIF= option, the process is assumed to be a stationary autoregressive process. You can check for stationarity of the series with the \%DFTEST macro. If the process is not stationary, differencing with the DIF= option is recommended. For a process with moving-average terms, a large value for the $\mathrm{AR}=$ option might be appropriate.

DFPVALUE Macro

The \%DFPVALUE macro computes the significance of the Dickey-Fuller test. The \%DFPVALUE macro evaluates the p-value for the Dickey-Fuller test statistic τ for the test of H_{0} : "The time series has a unit root" versus H_{a} : "The time series is stationary" using tables published by Dickey (1976) and Dickey, Hasza, and Fuller (1984).

The \%DFPVALUE macro can compute p-values for tests of a simple unit root with lag 1 or for seasonal unit roots at lags 2,4 , or 12 . The $\%$ DFPVALUE macro takes into account whether an intercept or deterministic time trend is assumed for the series.

The \%DFPVALUE macro is used by the \%DFTEST macro described later in this chapter.
Note that the \%DFPVALUE macro has been superseded by the PROBDF function described later in this chapter. It remains for compatibility with past releases of SAS/ETS.

Syntax

The \%DFPVALUE macro has the following form:
\%DFPVALUE (tau, nobs < , options >);
The first argument, tau, specifies the value of the Dickey-Fuller test statistic.
The second argument, nobs, specifies the number of observations on which the test statistic is based.
The first two arguments are required. The following options can be used with the \%DFPVALUE macro. Options must follow the required arguments and are separated by commas.

DLAG=1|2|4|12

specifies the lag period of the unit root to be tested. DLAG=1 specifies a one-period unit root test. DLAG=2 specifies a test for a seasonal unit root with lag 2. DLAG=4 specifies a test for a seasonal unit root with lag 4 . DLAG= 12 specifies a test for a seasonal unit root with lag 12. The default is DLAG=1.

TREND=0|1|2

specifies the degree of deterministic time trend included in the model. TREND $=0$ specifies no trend and assumes the series has a zero mean. TREND $=1$ includes an intercept term.

TREND $=2$ specifies both an intercept and a deterministic linear time trend term. The default is TREND $=1$. TREND $=2$ is not allowed with $\operatorname{DLAG}=2,4$, or 12 .

Results

The computed p-value is returned in the macro variable \&DFPVALUE. If the p-value is less than 0.01 or larger than 0.99 , the macro variable \&DFPVALUE is set to 0.01 or 0.99 , respectively.

Minimum Observations

The minimum number of observations required by the \%DFPVALUE macro depends on the value of the DLAG= option. The minimum observations are as follows:

DLAG=	Minimum Observations
1	9
2	6
4	4
12	12

DFTEST Macro

The \%DFTEST macro performs the Dickey-Fuller unit root test. You can use the \%DFTEST macro to decide whether a time series is stationary and to determine the order of differencing required for the time series analysis of a nonstationary series.

Most time series analysis methods require that the series to be analyzed is stationary. However, many economic time series are nonstationary processes. The usual approach to this problem is to difference the series. A time series that can be made stationary by differencing is said to have a unit root. For more information, see the discussion of this issue in the section "Getting Started: ARIMA Procedure" on page 191 of Chapter 7, "The ARIMA Procedure."

The Dickey-Fuller test is a method for testing whether a time series has a unit root. The \%DFTEST macro tests the hypothesis H_{0} : "The time series has a unit root" versus H_{a} : "The time series is stationary" based on tables provided in Dickey (1976) and Dickey, Hasza, and Fuller (1984). The test can be applied for a simple unit root with lag 1 , or for seasonal unit roots at lag 2,4 , or 12 .

Note that the \%DFTEST macro has been superseded by the PROC ARIMA stationarity tests. See Chapter 7, "The ARIMA Procedure," for details.

Syntax

The \%DFTEST macro has the following form:

```
%DFTEST ( SAS-data-set, variable < , options > ) ;
```

The first argument, $S A S$-data-set, specifies the name of the SAS data set that contains the time series variable to be analyzed.

The second argument, variable, specifies the time series variable name to be analyzed.
The first two arguments are required. The following options can be used with the \%DFTEST macro. Options must follow the required arguments and are separated by commas.

AR=n

specifies the order of autoregressive model fit after any differencing specified by the DIF= and $\mathrm{DLAG}=$ options. The default is $\mathrm{AR}=3$.

DIF=(differencing-list)

specifies the degrees of differencing to be applied to the series. The differencing list is a list of positive integers separated by commas and enclosed in parentheses. For example, DIF=(1,12) specifies that the series be differenced once at lag 1 and once at lag 12. For more details, see the section "IDENTIFY Statement" on page 228 in Chapter 7, "The ARIMA Procedure."

If the option $\operatorname{DIF}=\left(d_{1}, \cdots, d_{k}\right)$ is specified, the series analyzed is $\left(1-B^{d_{1}}\right) \cdots\left(1-B^{d_{k}}\right) Y_{t}$, where Y_{t} is the variable specified, and B is the backshift operator defined by $B Y_{t}=Y_{t-1}$.

DLAG=1 | 2 | 4 | 12

specifies the lag to be tested for a unit root. The default is $\mathrm{DLAG}=1$.

OUT=SAS-data-set

writes residuals to an output data set.

OUTSTAT=SAS-data-set

writes the test statistic, parameter estimates, and other statistics to an output data set.

TREND=0 | 1 | 2

specifies the degree of deterministic time trend included in the model. TREND=0 includes no deterministic term and assumes the series has a zero mean. TREND=1 includes an intercept term. TREND $=2$ specifies an intercept and a linear time trend term. The default is TREND=1. TREND $=2$ is not allowed with $\operatorname{DLAG}=2,4$, or 12 .

Results

The computed p-value is returned in the macro variable \&DFTEST. If the p-value is less than 0.01 or larger than 0.99 , the macro variable \&DFTEST is set to 0.01 or 0.99 , respectively. (The same value is given in the macro variable \&DFPVALUE returned by the \%DFPVALUE macro, which is used by the $\%$ DFTEST macro to compute the p-value.)

Results can be stored in SAS data sets with the OUT= and OUTSTAT= options.

Minimum Observations

The minimum number of observations required by the \%DFTEST macro depends on the value of the DLAG= option. Let s be the sum of the differencing orders specified by the DIF=option, let t be
the value of the TREND= option, and let p be the value of the $\mathrm{AR}=$ option. The minimum number of observations required is as follows:

DLAG $=$	Minimum Observations
1	$1+p+s+\max (9, p+t+2)$
2	$2+p+s+\max (6, p+t+2)$
4	$4+p+s+\max (4, p+t+2)$
12	$12+p+s+\max (12, p+t+2)$

Observations are not used if they have missing values for the series or for any lag or difference used in the autoregressive model.

LOGTEST Macro

The \%LOGTEST macro tests whether a logarithmic transformation is appropriate for modeling and forecasting a time series. The logarithmic transformation is often used for time series that show exponential growth or variability proportional to the level of the series.

The \%LOGTEST macro fits an autoregressive model to a series and fits the same model to the log of the series. Both models are estimated by the maximum-likelihood method, and the maximum log-likelihood values for both autoregressive models are computed. These log-likelihood values are then expressed in terms of the original data and compared.

You can control the order of the autoregressive models. You can also difference the series and the log-transformed series before the autoregressive model is fit.

You can print the log-likelihood values and related statistics (AIC, SBC, and MSE) for the autoregressive models for the series and the log-transformed series. You can also output these statistics to a SAS data set.

Syntax

The \%LOGTEST macro has the following form:
\%LOGTEST (SAS-data-set, variable, < options >);
The first argument, SAS-data-set, specifies the name of the SAS data set that contains the time series variable to be analyzed. The second argument, variable, specifies the time series variable name to be analyzed.

The first two arguments are required. The following options can be used with the \%LOGTEST macro. Options must follow the required arguments and are separated by commas.

AR=n
specifies the order of the autoregressive model fit to the series and the log-transformed series. The default is $\mathrm{AR}=5$.

CONST=value

specifies a constant to be added to the series before transformation. Use the CONST= option when some values of the series are 0 or negative. The series analyzed must be greater than the negative of the CONST $=$ value. The default is CONST $=0$.

DIF=(differencing-list)

specifies the degrees of differencing applied to the original and log-transformed series before fitting the autoregressive model. The differencing-list is a list of positive integers separated by commas and enclosed in parentheses. For example, $\mathrm{DIF}=(1,12)$ specifies that the transformed series be differenced once at lag 1 and once at lag 12. For more details, see the section "IDENTIFY Statement" on page 228 in Chapter 7, "The ARIMA Procedure."

OUT=SAS-data-set

writes the results to an output data set. The output data set includes a variable TRANS that identifies the transformation (LOG or NONE), the log-likelihood value (LOGLIK), residual mean squared error (RMSE), Akaike Information Criterion (AIC), and Schwarz's Bayesian Criterion (SBC) for the log-transformed and untransformed cases.

PRINT=YES | NO

specifies whether the results are printed. The default is PRINT=NO. The printed output shows the log-likelihood value, residual mean squared error, Akaike Information Criterion (AIC), and Schwarz's Bayesian Criterion (SBC) for the log-transformed and untransformed cases.

Results

The result of the test is returned in the macro variable \&LOGTEST. The value of the \&LOGTEST variable is 'LOG' if the model fit to the log-transformed data has a larger log likelihood than the model fit to the untransformed series. The value of the \&LOGTEST variable is 'NONE' if the model fit to the untransformed data has a larger log likelihood. The variable \&LOGTEST is set to 'ERROR' if the \%LOGTEST macro is unable to compute the test due to errors.

Results are printed when the PRINT=YES option is specified. Results are stored in SAS data sets when the OUT= option is specified.

Details

Assume that a time series X_{t} is a stationary p th order autoregressive process with normally distributed white noise innovations. That is,

$$
(1-\Theta(B))\left(X_{t}-\mu_{\mathbf{x}}\right)=\epsilon_{t}
$$

where μ_{x} is the mean of X_{t}.
The \log likelihood function of X_{t} is

$$
\begin{aligned}
l_{1}(\cdot)= & -\frac{n}{2} \ln (2 \pi)-\frac{1}{2} \ln \left(\left|\Sigma_{\mathbf{x x}}\right|\right)-\frac{n}{2} \ln \left(\sigma_{\mathbf{e}}^{2}\right) \\
& -\frac{1}{2 \sigma_{\mathbf{e}}^{2}}\left(\mathbf{X}-\mathbf{1} \mu_{\mathbf{x}}\right)^{\prime} \Sigma_{\mathbf{x x}}^{-1}\left(\mathbf{X}-\mathbf{1} \mu_{\mathbf{x}}\right)
\end{aligned}
$$

where n is the number of observations, $\mathbf{1}$ is the n-dimensional column vector of $1 \mathrm{~s}, \sigma_{\mathbf{e}}^{2}$ is the variance of the white noise, $\mathbf{X}=\left(X_{1}, \cdots, X_{n}\right)^{\prime}$, and $\Sigma_{\mathbf{x x}}$ is the covariance matrix of \mathbf{X}.

On the other hand, if the log-transformed time series $Y_{t}=\ln \left(X_{t}+c\right)$ is a stationary p th order autoregressive process, the log-likelihood function of X_{t} is

$$
\begin{aligned}
l_{0}(\cdot)= & -\frac{n}{2} \ln (2 \pi)-\frac{1}{2} \ln \left(\left|\Sigma_{\mathbf{y} \mathbf{y}}\right|\right)-\frac{n}{2} \ln \left(\sigma_{\mathbf{e}}^{2}\right) \\
& -\frac{1}{2 \sigma_{\mathbf{e}}^{2}}\left(\mathbf{Y}-\mathbf{1} \mu_{\mathbf{y}}\right)^{\prime} \Sigma_{\mathbf{y y}}^{-1}\left(\mathbf{Y}-\mathbf{1} \mu_{\mathbf{y}}\right)-\sum_{t=1}^{n} \ln \left(X_{t}+c\right)
\end{aligned}
$$

where $\mu_{\mathbf{y}}$ is the mean of $Y_{t}, \mathbf{Y}=\left(Y_{1}, \cdots, Y_{n}\right)^{\prime}$, and $\Sigma_{\mathbf{y y}}$ is the covariance matrix of \mathbf{Y}.
The \%LOGTEST macro compares the maximum values of $l_{1}(\cdot)$ and $l_{0}(\cdot)$ and determines which is larger.

The \%LOGTEST macro also computes the Akaike Information Criterion (AIC), Schwarz's Bayesian Criterion (SBC), and residual mean squared error based on the maximum likelihood estimator for the autoregressive model. For the mean squared error, retransformation of forecasts is based on Pankratz (1983, pp. 256-258).

After differencing as specified by the DIF=option, the process is assumed to be a stationary autoregressive process. You might want to check for stationarity of the series using the \%DFTEST macro. If the process is not stationary, differencing with the DIF= option is recommended. For a process with moving average terms, a large value for the $\mathrm{AR}=$ option might be appropriate.

Functions

PROBDF Function for Dickey-Fuller Tests

The PROBDF function calculates significance probabilities for Dickey-Fuller tests for unit roots in time series. The PROBDF function can be used wherever SAS library functions can be used, including DATA step programs, SCL programs, and PROC MODEL programs.

Syntax

```
PROBDF( x, n<,d< ,type > > )
```

$x \quad$ is the test statistic.
$n \quad$ is the sample size. The minimum value of n allowed depends on the value specified for the third argument d. For d in the set $(1,2,4,6,12), n$ must be an integer greater than or equal to $\max (2 d, 5)$; for other values of d the minimum value of n is 24 .
is an optional integer giving the degree of the unit root tested for. Specify $d=1$ for tests of a simple unit root $(1-\mathrm{B})$. Specify d equal to the seasonal cycle length for tests for a seasonal unit root $\left(1-\mathrm{B}^{d}\right)$. The default value of d is 1 ; that is, a test for a simple unit root $(1-\mathrm{B})$ is assumed if d is not specified. The maximum value of d allowed is 12 .
pe is an optional character argument that specifies the type of test statistic used. The values of type are the following:

SZM studentized test statistic for the zero mean (no intercept) case
RZM regression test statistic for the zero mean (no intercept) case
SSM studentized test statistic for the single mean (intercept) case
RSM regression test statistic for the single mean (intercept) case
STR studentized test statistic for the deterministic time trend case
RTR regression test statistic for the deterministic time trend case
The values STR and RTR are allowed only when $d=1$. The default value of type is SZM.

Details

Theoretical Background

When a time series has a unit root, the series is nonstationary and the ordinary least squares (OLS) estimator is not normally distributed. Dickey (1976) and Dickey and Fuller (1979) studied the limiting distribution of the OLS estimator of autoregressive models for time series with a simple unit root. Dickey, Hasza, and Fuller (1984) obtained the limiting distribution for time series with seasonal unit roots.

Consider the $(p+1)$ th order autoregressive time series

$$
Y_{t}=\alpha_{1} Y_{t-1}+\alpha_{2} Y_{t-2}+\cdots+\alpha_{p+1} Y_{t-p-1}+e_{t}
$$

and its characteristic equation

$$
m^{p+1}-\alpha_{1} m^{p}-\alpha_{2} m^{p-1}-\cdots-\alpha_{p+1}=0
$$

If all the characteristic roots are less than 1 in absolute value, Y_{t} is stationary. Y_{t} is nonstationary if there is a unit root. If there is a unit root, the sum of the autoregressive parameters is 1 , and hence you can test for a unit root by testing whether the sum of the autoregressive parameters is 1 or not. The no-intercept model is parameterized as

$$
\nabla Y_{t}=\delta Y_{t-1}+\theta_{1} \nabla Y_{t-1}+\cdots+\theta_{p} \nabla Y_{t-p}+e_{t}
$$

where $\nabla Y_{t}=Y_{t}-Y_{t-1}$ and

$$
\begin{aligned}
& \delta=\alpha_{1}+\cdots+\alpha_{p+1}-1 \\
& \theta_{k}=-\alpha_{k+1}-\cdots-\alpha_{p+1}
\end{aligned}
$$

The estimators are obtained by regressing ∇Y_{t} on $Y_{t-1}, \nabla Y_{t-1}, \cdots, \nabla Y_{t-p}$. The t statistic of the ordinary least squares estimator of δ is the test statistic for the unit root test.

If the type argument value specifies a test for a nonzero mean (intercept case), the autoregressive model includes a mean term α_{0}. If the type argument value specifies a test for a time trend, the model also includes a time trend term and the model is as follows:

$$
\nabla Y_{t}=\alpha_{0}+\gamma t+\delta Y_{t-1}+\theta_{1} \nabla Y_{t-1}+\cdots+\theta_{p} \nabla Y_{t-p}+e_{t}
$$

For testing for a seasonal unit root, consider the multiplicative model

$$
\left(1-\alpha_{d} B^{d}\right)\left(1-\theta_{1} B-\cdots-\theta_{p} B^{p}\right) Y_{t}=e_{t}
$$

Let $\nabla^{d} Y_{t} \equiv Y_{t}-Y_{t-d}$. The test statistic is calculated in the following steps:

1. Regress $\nabla^{d} Y_{t}$ on $\nabla^{d} Y_{t-1} \cdots \nabla^{d} Y_{t-p}$ to obtain the initial estimators $\hat{\theta}_{i}$ and compute residuals \hat{e}_{t}. Under the null hypothesis that $\alpha_{d}=1, \hat{\theta}_{i}$ are consistent estimators of θ_{i}.
2. Regress \hat{e}_{t} on $\left(1-\hat{\theta}_{1} B-\cdots-\hat{\theta}_{p} B^{p}\right) Y_{t-d}, \nabla^{d} Y_{t-1}, \cdots, \nabla^{d} Y_{t-p}$ to obtain estimates of $\delta=\alpha_{d}-1$ and $\theta_{i}-\hat{\theta}_{i}$.

The t ratio for the estimate of δ produced by the second step is used as a test statistic for testing for a seasonal unit root. The estimates of θ_{i} are obtained by adding the estimates of $\theta_{i}-\hat{\theta}_{i}$ from the second step to $\hat{\theta}_{i}$ from the first step.

The series $\left(1-B^{d}\right) Y_{t}$ is assumed to be stationary, where d is the value of the third argument to the PROBDF function.

If the series is an ARMA process, a large value of p might be desirable in order to obtain a reliable test statistic. To determine an appropriate value for p, see Said and Dickey (1984).

Test Statistics

The Dickey-Fuller test is used to test the null hypothesis that the time series exhibits a lag d unit root against the alternative of stationarity. The PROBDF function computes the probability of observing a test statistic more extreme than x under the assumption that the null hypothesis is true. You should reject the unit root hypothesis when PROBDF returns a small (significant) probability value.

There are several different versions of the Dickey-Fuller test. The PROBDF function supports six versions, as selected by the type argument. Specify the type value that corresponds to the way that you calculated the test statistic x.

The last two characters of the type value specify the kind of regression model used to compute the Dickey-Fuller test statistic. The meaning of the last two characters of the type value are as follows:

ZM zero mean or no-intercept case. The test statistic x is assumed to be computed from the regression model

$$
y_{t}=\alpha_{d} y_{t-d}+e_{t}
$$

SM single mean or intercept case. The test statistic x is assumed to be computed from the regression model

$$
y_{t}=\alpha_{0}+\alpha_{d} y_{t-d}+e_{t}
$$

TR intercept and deterministic time trend case. The test statistic x is assumed to be computed from the regression model

$$
y_{t}=\alpha_{0}+\gamma t+\alpha_{1} y_{t-1}+e_{t}
$$

The first character of the type value specifies whether the regression test statistic or the studentized test statistic is used. Let $\hat{\alpha}_{d}$ be the estimated regression coefficient for the d th lag of the series, and let $\mathrm{se}_{\hat{\alpha}}$ be the standard error of $\hat{\alpha}_{d}$. The meaning of the first character of the type value is as follows:

R the regression-coefficient-based test statistic. The test statistic is

$$
x=n\left(\hat{\alpha}_{d}-1\right)
$$

S the studentized test statistic. The test statistic is

$$
x=\frac{\left(\hat{\alpha}_{d}-1\right)}{\operatorname{se}_{\hat{\alpha}}}
$$

See Dickey and Fuller (1979), Dickey, Hasza, and Fuller (1984), and Hamilton (1994) for more information about the Dickey-Fuller test null distribution. The preceding formulas are for the basic Dickey-Fuller test. The PROBDF function can also be used for the augmented Dickey-Fuller test, in which the error term e_{t} is modeled as an autoregressive process; however, the test statistic is computed somewhat differently for the augmented Dickey-Fuller test. See Dickey, Hasza, and Fuller (1984) and Hamilton (1994) for information about seasonal and nonseasonal augmented Dickey-Fuller tests.

The PROBDF function is calculated from approximating functions fit to empirical quantiles that are produced by a Monte Carlo simulation that employs 10^{8} replications for each simulation. Separate simulations were performed for selected values of n and for $d=1,2,4,6,12$ (where n and d are the second and third arguments to the PROBDF function).

The maximum error of the PROBDF function is approximately $\pm 10^{-3}$ for d in the set $(1,2,4,6,12)$ and can be slightly larger for other d values. (Because the number of simulation replications used to produce the PROBDF function is much greater than the 60,000 replications used by Dickey and Fuller (1979) and Dickey, Hasza, and Fuller (1984), the PROBDF function can be expected to produce results that are substantially more accurate than the critical values reported in those papers.)

Examples

Suppose the data set TEST contains 104 observations of the time series variable Y, and you want to test the null hypothesis that there exists a lag 4 seasonal unit root in the Y series. The following statements illustrate how to perform the single-mean Dickey-Fuller regression coefficient test using PROC REG and PROBDF.

```
data test1;
    set test;
    y4 = lag4(y);
run;
proc reg data=test1 outest=alpha;
    model y = y4 / noprint;
run;
data _null_;
    set alpha;
    x = 100 * ( y4 - 1 );
    p = probdf( x, 100, 4, "RSM" );
    put p= pvalue5.3;
run;
```

To perform the augmented Dickey-Fuller test, regress the differences of the series on lagged differences and on the lagged value of the series, and compute the test statistic from the regression coefficient for the lagged series. The following statements illustrate how to perform the single-mean augmented Dickey-Fuller studentized test for a simple unit root using PROC REG and PROBDF:

```
data test1;
    set test;
    yl = lag(y);
    yd = dif(y);
    yd1 = lag1 (yd); yd2 = lag2 (yd);
    yd3 = lag3(yd); yd4 = lag4 (yd);
run;
proc reg data=test1 outest=alpha covout;
    model yd = yl yd1-yd4 / noprint;
run;
data _null_;
    set alpha;
    retain a;
    if _type_ = 'PARMS' then a = yl - 1;
    if _type_ = 'COV' & _NAME_ = 'YL' then do;
        x = a / sqrt(yl);
        p = probdf( x, 99, 1, "SSM" );
        put p= pvalue5.3;
            end;
run;
```

The \%DFTEST macro provides an easier way to perform Dickey-Fuller tests. The following statements perform the same tests as the preceding example:

```
%dftest( test, y, ar=4 );
%put p=&dftest;
```


References

Dickey, D. A. (1976), "Estimation and Testing of Nonstationary Time Series," Unpublished Ph.D. Thesis, Iowa State University, Ames.

Dickey, D. A. and Fuller, W. A. (1979), "Distribution of the Estimation for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association, 74, 427-431.

Dickey, D. A., Hasza, D. P., and Fuller, W. A. (1984), "Testing for Unit Roots in Seasonal Time Series," Journal of the American Statistical Association, 79, 355-367.

Hamilton, J. D. (1994), Time Series Analysis, Princeton, NJ: Princeton University Press.
Microsoft Excel 2000 Online Help, Redmond, WA: Microsoft Corp.
Pankratz, A. (1983), Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. New York: John Wiley.

Said, S. E. and Dickey, D. A. (1984), "Testing for Unit Roots in ARMA Models of Unknown Order," Biometrika, 71, 599-607.

Taylor, J. M. G. (1986) "The Retransformed Mean After a Fitted Power Transformation," Journal of the American Statistical Association, 81, 114-118.

Chapter 6

Nonlinear Optimization Methods

Contents

Overview . 165
Options . 165
Details of Optimization Algorithms . 175
Overview . 175
Choosing an Optimization Algorithm . 176
Algorithm Descriptions . 177
Remote Monitoring . 181
ODS Table Names . 183
References . 185

Overview

Several SAS/ETS procedures (COUNTREG, ENTROPY, MDC, QLIM, UCM, and VARMAX) use the nonlinear optimization (NLO) subsystem to perform nonlinear optimization. This chapter describes the options of the NLO system and some technical details of the available optimization methods. Note that not all options have been implemented for all procedures that use the NLO susbsystem. You should check each procedure chapter for more details about which options are available.

Options

The following table summarizes the options available in the NLO system.
Table 6.1 NLO options

Option	Description
Optimization	Specifications
TECHNIQUE $=$	minimization technique
UPDATE $=$	update technique

Table 6.1 continued

Option	Description
LINESEARCH=	line-search method
LSPRECISION=	line-search precision
HESCAL=	type of Hessian scaling
INHESSIAN=	start for approximated Hessian
RESTART=	iteration number for update restart
Termination Criteria Specifications	
MAXFUNC=	maximum number of function calls
MAXITER=	maximum number of iterations
MINITER=	minimum number of iterations
MAXTIME=	upper limit seconds of CPU time
ABSCONV=	absolute function convergence criterion
ABSFCONV=	absolute function convergence criterion
ABSGCONV=	absolute gradient convergence criterion
ABSXCONV=	absolute parameter convergence criterion
FCONV=	relative function convergence criterion
FCONV2=	relative function convergence criterion
GCONV=	relative gradient convergence criterion
XCONV=	relative parameter convergence criterion
FSIZE=	used in FCONV, GCONV criterion
XSIZE=	used in XCONV criterion
Step Length Options	
DAMPSTEP=	damped steps in line search
MAXSTEP=	maximum trust region radius
INSTEP=	initial trust region radius
Printed Output Options	
PALL	display (almost) all printed optimization-related output
PHISTORY	display optimization history
PHISTPARMS	display parameter estimates in each iteration
PSHORT	reduce some default optimization-related output
PSUMMARY	reduce most default optimization-related output
NOPRINT	suppress all printed optimization-related output
Remote Monitoring Options	
SOCKET=	specify the fileref for remote monitoring

These options are described in alphabetical order.

ABSCONV= r

ABSTOL= r
specifies an absolute function convergence criterion. For minimization, termination requires $f\left(\theta^{(k)}\right) \leq r$. The default value of r is the negative square root of the largest double-precision value, which serves only as a protection against overflows.

ABSFCONV $=r[n]$
ABSFTOL $=r[n]$
specifies an absolute function convergence criterion. For all techniques except NMSIMP, termination requires a small change of the function value in successive iterations:

$$
\left|f\left(\theta^{(k-1)}\right)-f\left(\theta^{(k)}\right)\right| \leq r
$$

The same formula is used for the NMSIMP technique, but $\theta^{(k)}$ is defined as the vertex with the lowest function value, and $\theta^{(k-1)}$ is defined as the vertex with the highest function value in the simplex. The default value is $r=0$. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r[n]

ABSGTOL= $r[n]$
specifies an absolute gradient convergence criterion. Termination requires the maximum absolute gradient element to be small:

$$
\max _{j}\left|g_{j}\left(\theta^{(k)}\right)\right| \leq r
$$

This criterion is not used by the NMSIMP technique. The default value is $r=1 \mathrm{E}-5$. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

ABSXCONV $=r[n]$

ABSXTOL=r $[n]$
specifies an absolute parameter convergence criterion. For all techniques except NMSIMP, termination requires a small Euclidean distance between successive parameter vectors,

$$
\left\|\theta^{(k)}-\theta^{(k-1)}\right\|_{2} \leq r
$$

For the NMSIMP technique, termination requires either a small length $\alpha^{(k)}$ of the vertices of a restart simplex,

$$
\alpha^{(k)} \leq r
$$

or a small simplex size,

$$
\delta^{(k)} \leq r
$$

where the simplex size $\delta^{(k)}$ is defined as the L1 distance from the simplex vertex $\xi^{(k)}$ with the smallest function value to the other n simplex points $\theta_{l}^{(k)} \neq \xi^{(k)}$:

$$
\delta^{(k)}=\sum_{\theta_{l} \neq y}\left\|\theta_{l}^{(k)}-\xi^{(k)}\right\|_{1}
$$

The default is $r=1 \mathrm{E}-8$ for the NMSIMP technique and $r=0$ otherwise. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

DAMPSTEP[=r]

specifies that the initial step length value $\alpha^{(0)}$ for each line search (used by the QUANEW, HYQUAN, CONGRA, or NEWRAP technique) cannot be larger than r times the step length value used in the former iteration. If the DAMPSTEP option is specified but r is not specified, the default is $r=2$. The DAMPSTEP $=r$ option can prevent the line-search algorithm from repeatedly stepping into regions where some objective functions are difficult to compute or where they could lead to floating point overflows during the computation of objective functions and their derivatives. The DAMPSTEP $=r$ option can save time-costly function calls during the line searches of objective functions that result in very small steps.

FCONV=r[$n]$
FTOL=r n]
specifies a relative function convergence criterion. For all techniques except NMSIMP, termination requires a small relative change of the function value in successive iterations,

$$
\frac{\left|f\left(\theta^{(k)}\right)-f\left(\theta^{(k-1)}\right)\right|}{\max \left(\left|f\left(\theta^{(k-1)}\right)\right|, \text { FSIZE }\right)} \leq r
$$

where FSIZE is defined by the FSIZE= option. The same formula is used for the NMSIMP technique, but $\theta^{(k)}$ is defined as the vertex with the lowest function value, and $\theta^{(k-1)}$ is defined as the vertex with the highest function value in the simplex. The default value may depend on the procedure. In most cases, you can use the PALL option to find it.

FCONV2 $=r[n]$

FTOL2 $=r[n]$
specifies another function convergence criterion.
For all techniques except NMSIMP, termination requires a small predicted reduction

$$
d f^{(k)} \approx f\left(\theta^{(k)}\right)-f\left(\theta^{(k)}+s^{(k)}\right)
$$

of the objective function. The predicted reduction

$$
\begin{aligned}
d f^{(k)} & =-g^{(k) T} s^{(k)}-\frac{1}{2} s^{(k) T} H^{(k)} s^{(k)} \\
& =-\frac{1}{2} s^{(k) T} g^{(k)} \\
& \leq r
\end{aligned}
$$

is computed by approximating the objective function f by the first two terms of the Taylor series and substituting the Newton step

$$
s^{(k)}=-\left[H^{(k)}\right]^{-1} g^{(k)}
$$

For the NMSIMP technique, termination requires a small standard deviation of the function values of the $n+1$ simplex vertices $\theta_{l}^{(k)}, l=0, \ldots, n, \sqrt{\frac{1}{n+1} \sum_{l}\left[f\left(\theta_{l}^{(k)}\right)-\bar{f}\left(\theta^{(k)}\right)\right]^{2}} \leq r$ where $\bar{f}\left(\theta^{(k)}\right)=\frac{1}{n+1} \sum_{l} f\left(\theta_{l}^{(k)}\right)$. If there are $n_{\text {act }}$ boundary constraints active at $\theta^{(k)}$, the mean and standard deviation are computed only for the $n+1-n_{\text {act }}$ unconstrained vertices.

The default value is $r=1 \mathrm{E}-6$ for the NMSIMP technique and $r=0$ otherwise. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

FSIZE= r

specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The default value is $r=0$. For more details, see the $\mathrm{FCONV}=$ and $\mathrm{GCONV}=$ options.

GCONV=r[$n]$

GTOL $=r[n]$
specifies a relative gradient convergence criterion. For all techniques except CONGRA and NMSIMP, termination requires that the normalized predicted function reduction is small,

$$
\operatorname{fracg}\left(\theta^{(k)}\right)^{T}\left[H^{(k)}\right]^{-1} g\left(\theta^{(k)}\right) \max \left(\left|f\left(\theta^{(k)}\right)\right|, \text {, FSIZE }\right) \leq r
$$

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian estimate H is not available), the following criterion is used:

$$
\frac{\left\|g\left(\theta^{(k)}\right)\right\|_{2}^{2} \quad\left\|s\left(\theta^{(k)}\right)\right\|_{2}}{\left\|g\left(\theta^{(k)}\right)-g\left(\theta^{(k-1)}\right)\right\|_{2} \max \left(\left|f\left(\theta^{(k)}\right)\right|, \text { FSIZE }\right)} \leq r
$$

This criterion is not used by the NMSIMP technique. The default value is $r=1 E-8$. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

HESCAL=0|1|2|3
HS=0|1|2|3
specifies the scaling version of the Hessian matrix used in NRRIDG, TRUREG, NEWRAP, or DBLDOG optimization.

If HS is not equal to 0 , the first iteration and each restart iteration sets the diagonal scaling matrix $D^{(0)}=\operatorname{diag}\left(d_{i}^{(0)}\right)$:

$$
d_{i}^{(0)}=\sqrt{\max \left(\left|H_{i, i}^{(0)}\right|, \epsilon\right)}
$$

where $H_{i, i}^{(0)}$ are the diagonal elements of the Hessian. In every other iteration, the diagonal scaling matrix $D^{(0)}=\operatorname{diag}\left(d_{i}^{(0)}\right)$ is updated depending on the HS option:
$\mathrm{HS}=0 \quad$ specifies that no scaling is done.
$\mathrm{HS}=1 \quad$ specifies the Moré (1978) scaling update:

$$
d_{i}^{(k+1)}=\max \left[d_{i}^{(k)}, \sqrt{\max \left(\left|H_{i, i}^{(k)}\right|, \epsilon\right)}\right]
$$

HS=2 specifies the Dennis, Gay, \& Welsch (1981) scaling update:

$$
d_{i}^{(k+1)}=\max \left[0.6 * d_{i}^{(k)}, \sqrt{\max \left(\left|H_{i, i}^{(k)}\right|, \epsilon\right)}\right]
$$

$\mathrm{HS}=3 \quad$ specifies that d_{i} is reset in each iteration:

$$
d_{i}^{(k+1)}=\sqrt{\max \left(\left|H_{i, i}^{(k)}\right|, \epsilon\right)}
$$

In each scaling update, ϵ is the relative machine precision. The default value is $\mathrm{HS}=0$. Scaling of the Hessian can be time consuming in the case where general linear constraints are active.

INHESSIAN[= r]

INHESS[= r]
specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton techniques QUANEW and DBLDOG. There are two alternatives:

- If you do not use the r specification, the initial estimate of the approximate Hessian is set to the Hessian at $\theta^{(0)}$.
- If you do use the r specification, the initial estimate of the approximate Hessian is set to the multiple of the identity matrix $r I$.

By default, if you do not specify the option INHESSIAN $=r$, the initial estimate of the approximate Hessian is set to the multiple of the identity matrix $r I$, where the scalar r is computed from the magnitude of the initial gradient.

INSTEP=r

reduces the length of the first trial step during the line search of the first iterations. For highly nonlinear objective functions, such as the EXP function, the default initial radius of the trust-region algorithm TRUREG or DBLDOG or the default step length of the line-search algorithms can result in arithmetic overflows. If this occurs, you should specify decreasing values of $0<r<1$ such as INSTEP $=1 \mathrm{E}-1$, INSTEP $=1 \mathrm{E}-2$, INSTEP $=1 \mathrm{E}-4$, and so on, until the iteration starts successfully.

- For trust-region algorithms (TRUREG, DBLDOG), the INSTEP= option specifies a factor $r>0$ for the initial radius $\Delta^{(0)}$ of the trust region. The default initial trust-region radius is the length of the scaled gradient. This step corresponds to the default radius factor of $r=1$.
- For line-search algorithms (NEWRAP, CONGRA, QUANEW), the INSTEP= option specifies an upper bound for the initial step length for the line search during the first five iterations. The default initial step length is $r=1$.
- For the Nelder-Mead simplex algorithm, using TECH=NMSIMP, the INSTEP=r option defines the size of the start simplex.

LINESEARCH= i

LIS=i

specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization techniques. Refer to Fletcher (1987) for an introduction to line-search techniques. The value of i can be $1, \ldots, 8$. For CONGRA, QUANEW and NEWRAP, the default value is $i=2$.

LIS $=1$ specifies a line-search method that needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; this method is similar to one used by the Harwell subroutine library.
LIS=2 specifies a line-search method that needs more function than gradient calls for quadratic and cubic interpolation and cubic extrapolation; this method is implemented as shown in Fletcher (1987) and can be modified to an exact line search by using the LSPRECISION= option.

LIS $=3 \quad$ specifies a line-search method that needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; this method is implemented as shown in Fletcher (1987) and can be modified to an exact line search by using the LSPRECISION= option.
LIS=4 specifies a line-search method that needs the same number of function and gradient calls for stepwise extrapolation and cubic interpolation.
LIS $=5$ specifies a line-search method that is a modified version of LIS=4.
LIS=6 specifies golden section line search (Polak 1971), which uses only function values for linear approximation.
LIS=7 specifies bisection line search (Polak 1971), which uses only function values for linear approximation.
LIS $=8 \quad$ specifies the Armijo line-search technique (Polak 1971), which uses only function values for linear approximation.

LSPRECISION= r

LSP $=r$
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS $=2$ and LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization problems, a more precise and expensive line search may be necessary (Fletcher 1987). The second line-search method (which is the default for the NEWRAP, QUANEW, and CONGRA techniques) and the third linesearch method approach exact line search for small LSPRECISION= values. If you have numerical problems, you should try to decrease the LSPRECISION= value to obtain a more precise line search. The default values are shown in the following table.

Table 6.2 Line Search Precision Defaults

TECH $=$	UPDATE $=$	LSP default
QUANEW	DBFGS, BFGS	$r=0.4$
QUANEW	DDFP, DFP	$r=0.06$
CONGRA	all	$r=0.1$
NEWRAP	no update	$r=0.9$

For more details, refer to Fletcher (1987).

MAXFUNC= i

MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are

- TRUREG, NRRIDG, NEWRAP: 125
- QUANEW, DBLDOG: 500
- CONGRA: 1000
- NMSIMP: 3000

Note that the optimization can terminate only after completing a full iteration. Therefore, the number of function calls that is actually performed can exceed the number that is specified by the MAXFUNC= option.

MAXITER= i

MAXIT=i
specifies the maximum number i of iterations in the optimization process. The default values are

- TRUREG, NRRIDG, NEWRAP: 50
- QUANEW, DBLDOG: 200
- CONGRA: 400
- NMSIMP: 1000

These default values are also valid when i is specified as a missing value.

MAXSTEP=r[$n]$

specifies an upper bound for the step length of the line-search algorithms during the first n iterations. By default, r is the largest double-precision value and n is the largest integer available. Setting this option can improve the speed of convergence for the CONGRA, QUANEW, and NEWRAP techniques.

MAXTIME $=r$

specifies an upper limit of r seconds of CPU time for the optimization process. The default value is the largest floating-point double representation of your computer. Note that the time specified by the MAXTIME $=$ option is checked only once at the end of each iteration. Therefore, the actual running time can be much longer than that specified by the MAXTIME= option. The actual running time includes the rest of the time needed to finish the iteration and the time needed to generate the output of the results.

MINITER= i

MINIT= i
specifies the minimum number of iterations. The default value is 0 . If you request more iterations than are actually needed for convergence to a stationary point, the optimization algorithms can behave strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the required number of iterations.

NOPRINT

suppresses the output. (See procedure documentation for availability of this option.)

PALL

displays all optional output for optimization. (See procedure documentation for availability of this option.)

PHISTORY

displays the optimization history. (See procedure documentation for availability of this option.)

PHISTPARMS

display parameter estimates in each iteration. (See procedure documentation for availability of this option.)

PINIT

displays the initial values and derivatives (if available). (See procedure documentation for availability of this option.)

PSHORT

restricts the amount of default output. (See procedure documentation for availability of this option.)

PSUMMARY

restricts the amount of default displayed output to a short form of iteration history and notes, warnings, and errors. (See procedure documentation for availability of this option.)

RESTART $=i>0$
REST $=i>0$
specifies that the QUANEW or CONGRA algorithm is restarted with a steepest descent/ascent search direction after, at most, i iterations. Default values are as follows:

- CONGRA

UPDATE=PB: restart is performed automatically, i is not used.

- CONGRA

UPDATE $\neq \mathrm{PB}: i=\min (10 n, 80)$, where n is the number of parameters.

- QUANEW i is the largest integer available.

SOCKET=fileref

Specifies the fileref that contains the information needed for remote monitoring. See the section "Remote Monitoring" on page 181 for more details.

TECHNIQUE=value

TECH= value

specifies the optimization technique. Valid values are as follows:

- CONGRA
performs a conjugate-gradient optimization, which can be more precisely specified with the UPDATE= option and modified with the LINESEARCH= option. When you specify this option, UPDATE=PB by default.
- DBLDOG
performs a version of double-dogleg optimization, which can be more precisely specified with the UPDATE= option. When you specify this option, UPDATE=DBFGS by default.
- NMSIMP performs a Nelder-Mead simplex optimization.
- NONE does not perform any optimization. This option can be used as follows:
- to perform a grid search without optimization
- to compute estimates and predictions that cannot be obtained efficiently with any of the optimization techniques
- NEWRAP
performs a Newton-Raphson optimization that combines a line-search algorithm with ridging. The line-search algorithm LIS=2 is the default method.
- NRRIDG
performs a Newton-Raphson optimization with ridging.
- QUANEW
performs a quasi-Newton optimization, which can be defined more precisely with the UPDATE $=$ option and modified with the LINESEARCH $=$ option. This is the default estimation method.
- TRUREG
performs a trust region optimization.

UPDATE=method

UPD=method

specifies the update method for the QUANEW, DBLDOG, or CONGRA optimization technique. Not every update method can be used with each optimizer.

Valid methods are as follows:

- BFGS
performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse Hessian matrix.
- DBFGS
performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default update method.
- DDFP
performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the Hessian matrix.
- DFP
performs the original DFP update of the inverse Hessian matrix.
- PB
performs the automatic restart update method of Powell (1977) and Beale (1972).
- FR
performs the Fletcher-Reeves update (Fletcher 1987).
- PR
performs the Polak-Ribiere update (Fletcher 1987).
- CD
performs a conjugate-descent update of Fletcher (1987).
$\mathbf{X C O N V}=r[n]$
XTOL $=r[n]$
specifies the relative parameter convergence criterion. For all techniques except NMSIMP, termination requires a small relative parameter change in subsequent iterations.

$$
\frac{\max _{j}\left|\theta_{j}^{(k)}-\theta_{j}^{(k-1)}\right|}{\max \left(\left|\theta_{j}^{(k)}\right|,\left|\theta_{j}^{(k-1)}\right|, \text { XSIZE }\right)} \leq r
$$

For the NMSIMP technique, the same formula is used, but $\theta_{j}^{(k)}$ is defined as the vertex with the lowest function value and $\theta_{j}^{(k-1)}$ is defined as the vertex with the highest function value in the simplex. The default value is $r=1 \mathrm{E}-8$ for the NMSIMP technique and $r=0$ otherwise. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

XSIZE $=r>0$

specifies the XSIZE parameter of the relative parameter termination criterion. The default value is $r=0$. For more detail, see the XCONV $=$ option.

Details of Optimization Algorithms

Overview

There are several optimization techniques available. You can choose a particular optimizer with the TECH=name option in the PROC statement or NLOPTIONS statement.

Table 6.3 Optimization Techniques

Algorithm	TECH=
trust region Method	TRUREG
Newton-Raphson method with line search	NEWRAP
Newton-Raphson method with ridging	NRRIDG
quasi-Newton methods (DBFGS, DDFP, BFGS, DFP)	QUANEW
double-dogleg method (DBFGS, DDFP)	DBLDOG
conjugate gradient methods (PB, FR, PR, CD)	CONGRA
Nelder-Mead simplex method	NMSIMP

No algorithm for optimizing general nonlinear functions exists that always finds the global optimum for a general nonlinear minimization problem in a reasonable amount of time. Since no single optimization technique is invariably superior to others, NLO provides a variety of optimization techniques that work well in various circumstances. However, you can devise problems for which none of the techniques in NLO can find the correct solution. Moreover, nonlinear optimization can
be computationally expensive in terms of time and memory, so you must be careful when matching an algorithm to a problem.

All optimization techniques in NLO use $O\left(n^{2}\right)$ memory except the conjugate gradient methods, which use only $O(n)$ of memory and are designed to optimize problems with many parameters. These iterative techniques require repeated computation of the following:

- the function value (optimization criterion)
- the gradient vector (first-order partial derivatives)
- for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)

However, since each of the optimizers requires different derivatives, some computational efficiencies can be gained. Table 6.4 shows, for each optimization technique, which derivatives are required. (FOD means that first-order derivatives or the gradient is computed; SOD means that second-order derivatives or the Hessian is computed.)

Table 6.4 Optimization Computations

Algorithm	FOD	SOD
TRUREG	x	x
NEWRAP	x	x
NRRIDG	x	x
QUANEW	x	-
DBLDOG	x	-
CONGRA	x	-
NMSIMP	-	-

Each optimization method employs one or more convergence criteria that determine when it has converged. The various termination criteria are listed and described in the previous section. An algorithm is considered to have converged when any one of the convergence criterion is satisfied. For example, under the default settings, the QUANEW algorithm will converge if ABSGCONV< $1 \mathrm{E}-5, F C O N V<10^{-F D I G I T S}$, or GCONV $<1 \mathrm{E}-8$.

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimization technique for a particular problem are complex and might involve trial and error.

For many optimization problems, computing the gradient takes more computer time than computing the function value, and computing the Hessian sometimes takes much more computer time and memory than computing the gradient, especially when there are many decision variables. Unfortunately, optimization techniques that do not use some kind of Hessian approximation usually require many more iterations than techniques that do use a Hessian matrix, and as a result the total run time of these techniques is often longer. Techniques that do not use the Hessian also tend to be
less reliable. For example, they can more easily terminate at stationary points rather than at global optima.

A few general remarks about the various optimization techniques follow.

- The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best for small problems where the Hessian matrix is not expensive to compute. Sometimes the NRRIDG algorithm can be faster than the TRUREG algorithm, but TRUREG can be more stable. The NRRIDG algorithm requires only one matrix with $n(n+1) / 2$ double words; TRUREG and NEWRAP require two such matrices.
- The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the objective function and the gradient are much faster to evaluate than the Hessian. The QUANEW and DBLDOG algorithms, in general, require more iterations than TRUREG, NRRIDG, and NEWRAP, but each iteration can be much faster. The QUANEW and DBLDOG algorithms require only the gradient to update an approximate Hessian, and they require slightly less memory than TRUREG or NEWRAP (essentially one matrix with $n(n+1) / 2$ double words). QUANEW is the default optimization method.
- The first-derivative method CONGRA is best for large problems where the objective function and the gradient can be computed much faster than the Hessian and where too much memory is required to store the (approximate) Hessian. The CONGRA algorithm, in general, requires more iterations than QUANEW or DBLDOG, but each iteration can be much faster. Since CONGRA requires only a factor of n double-word memory, many large applications can be solved only by CONGRA.
- The no-derivative method NMSIMP is best for small problems where derivatives are not continuous or are very difficult to compute.

Algorithm Descriptions

Some details about the optimization techniques are as follows.

Trust Region Optimization (TRUREG)

The trust region method uses the gradient $g\left(\theta_{(k)}\right)$ and the Hessian matrix $H\left(\theta_{(k)}\right)$; thus, it requires that the objective function $f(\theta)$ have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function within a hyperelliptic trust region with radius Δ that constrains the step size that corresponds to the quality of the quadratic approximation. The trust region method is implemented using Dennis, Gay, and Welsch (1981), Gay (1983), and Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it does not need many function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)

The NEWRAP technique uses the gradient $g\left(\theta_{(k)}\right)$ and the Hessian matrix $H\left(\theta_{(k)}\right)$; thus, it requires that the objective function have continuous first- and second-order derivatives inside the feasible region. If second-order derivatives are computed efficiently and precisely, the NEWRAP method can perform well for medium-sized to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search is performed to compute successful steps. If the Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian matrix to make it positive definite.

In each iteration, a line search is performed along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)

The NRRIDG technique uses the gradient $g\left(\theta_{(k)}\right)$ and the Hessian matrix $H\left(\theta_{(k)}\right)$; thus, it requires that the objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied, a multiple of the identity matrix is added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it does not require many function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Since the NRRIDG technique uses an orthogonal decomposition of the approximate Hessian, each iteration of NRRIDG can be slower than that of the NEWRAP technique, which works with Cholesky decomposition. Usually, however, NRRIDG requires fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradient $g\left(\theta_{(k)}\right)$, and it does not need to compute secondorder derivatives since they are approximated. It works well for medium to moderately large optimization problems where the objective function and the gradient are much faster to compute than the Hessian; but, in general, it requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which compute second-order derivatives. QUANEW is the default optimization algorithm because it provides an appropriate balance between the speed and stability required for most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending upon the value of the UPDATE= option.

- the original quasi-Newton algorithm, which updates an approximation of the inverse Hessian
- the dual quasi-Newton algorithm, which updates the Cholesky factor of an approximate Hessian (default)

You can specify four update formulas with the UPDATE= option:

- DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky factor of the Hessian matrix. This is the default.
- DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the Hessian matrix.
- BFGS performs the original BFGS update of the inverse Hessian matrix.
- DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an approximate optimum. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size α satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive definiteness of the quasi-Newton update. In that case, either the update is skipped or the iterations are restarted with an identity matrix, resulting in the steepest descent or ascent search direction. You can specify line-search algorithms other than the default with the LIS= option.

The QUANEW algorithm performs its own line-search technique. All options and parameters (except the INSTEP= option) that control the line search in the other algorithms do not apply here. In several applications, large steps in the first iterations are troublesome. You can use the INSTEP= option to impose an upper bound for the step size α during the first five iterations. You can also use the INHESSIAN[$=r$] option to specify a different starting approximation for the Hessian. If you specify only the INHESSIAN option, the Cholesky factor of a (possibly ridged) finite difference approximation of the Hessian is used to initialize the quasi-Newton update process. The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the processing of linear and boundary constraints, are valid only for the quadratic programming subroutine used in each iteration of the QUANEW algorithm.

Double-Dogleg Optimization (DBLDOG)

The double-dogleg optimization method combines the ideas of the quasi-Newton and trust region methods. In each iteration, the double-dogleg algorithm computes the step $s^{(k)}$ as the linear combination of the steepest descent or ascent search direction $s_{1}^{(k)}$ and a quasi-Newton search direction $s_{2}^{(k)}$.

$$
s^{(k)}=\alpha_{1} s_{1}^{(k)}+\alpha_{2} s_{2}^{(k)}
$$

The step is requested to remain within a prespecified trust region radius; see Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. You can specify two update formulas with the UPDATE= option:

- DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of the Cholesky factor of the Hessian matrix. This is the default.
- DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky factor of the Hessian matrix.

The double-dogleg optimization technique works well for medium to moderately large optimization problems where the objective function and the gradient are much faster to compute than the Hessian. The implementation is based on Dennis and Mei (1979) and Gay (1983), but it is extended for dealing with boundary and linear constraints. The DBLDOG technique generally requires more iterations than the TRUREG, NEWRAP, or NRRIDG technique, which requires second-order derivatives; however, each of the DBLDOG iterations is computationally cheap. Furthermore, the DBLDOG technique requires only gradient calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not required by the CONGRA algorithm and are not even approximated. The CONGRA algorithm can be expensive in function and gradient calls, but it requires only $O(n)$ memory for unconstrained optimization. In general, many iterations are required to obtain a precise solution, but each of the CONGRA iterations is computationally cheap. You can specify four different update formulas for generating the conjugate directions by using the UPDATE= option:

- PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is the default.
- FR performs the Fletcher-Reeves update (Fletcher 1987).
- PR performs the Polak-Ribiere update (Fletcher 1987).
- CD performs a conjugate-descent update of Fletcher (1987).

The default, UPDATE=PB, behaved best in most test examples. You are advised to avoid the option UPDATE=CD, which behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with large n. For the unconstrained or boundary constrained case, CONGRA requires only $O(n)$ bytes of working memory, whereas all other optimization methods require order $O\left(n^{2}\right)$ bytes of working memory. During n successive iterations, uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle of n conjugate search directions. In each iteration, a line search is performed along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size α satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. Other line-search algorithms can be specified with the LIS= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective function has continuous derivatives. The objective function itself needs to be continuous. This technique is quite expensive in the number of function calls, and it might be unable to generate precise results for n much greater than 40 .

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This algorithm does not compute the objective for infeasible points, but it changes the shape of the simplex by adapting to the nonlinearities of the objective function, which contributes to an increased speed of convergence. It uses a special termination criteria.

Remote Monitoring

The SAS/EmMonitor is an application for Windows that enables you to monitor and stop from your PC a CPU-intensive application performed by the NLO subsystem that runs on a remote server.

On the server side, a FILENAME statement assigns a fileref to a SOCKET-type device that defines the IP address of the client and the port number for listening. The fileref is then specified in the SOCKET= option in the PROC statement to control the EmMonitor. The following statements show an example of server-side statements for PROC ENTROPY.

```
data one;
        do t = 1 to 10;
            x1 = 5 * ranuni(456);
            x2 = 10 * ranuni( 456);
            x3 = 2 * rannor(1456);
            e1 = rannor(1456);
            e2 = rannor(4560);
            tmp1 = 0.5 * e1 - 0.1 * e2;
            tmp2 = -0.1 * e1 - 0.3 * e2;
            y1 = 7 + 8.5*x1 + 2*x2 + tmp1;
            y2 = -3 + -2*x1 + x2 + 3*x3 + tmp2;
            output;
    end;
run;
filename sock socket 'your.pc.address.com:6943';
proc entropy data=one tech=tr gmenm gconv=2.e-5 socket=sock;
    model y1 = x1 x2 x3;
run;
```

On the client side, the EmMonitor application is started with the following syntax:
EmMonitor options
The options are:

$$
\begin{array}{ll}
\text {-p port_number } & \text { defines the port number } \\
-t \text { title } & \text { defines the title of the EmMonitor window } \\
-\mathrm{k} & \text { keeps the monitor alive when the iteration is completed }
\end{array}
$$

The default port number is 6943 .
The server does not need to be running when you start the EmMonitor, and you can start or dismiss the server at any time during the iteration process. You only need to remember the port number.

Starting the PC client, or closing it prematurely, does not have any effect on the server side. In other words, the iteration process continues until one of the criteria for termination is met.

Figure 6.1 through Figure 6.4 show screenshots of the application on the client side.
Figure 6.1 Graph Tab Group 0

Figure 6.2 Graph Tab Group 1

Figure 6.3 Status Tab

Figure 6.4 Options Tab

ODS Table Names

The NLO subsystem assigns a name to each table it creates. You can use these names when using the Output Delivery System (ODS) to select tables and create output data sets. Not all tables are created by all SAS/ETS procedures that use the NLO subsystem. You should check the procedure chapter for more details. The names are listed in the following table.

Table 6.5 ODS Tables Produced by the NLO Subsystem

ODS Table Name	Description
ConvergenceStatus	Convergence status
InputOptions	Input options
IterHist	Iteration history
IterStart	Iteration start
IterStop	Iteration stop
Lagrange	Lagrange multipliers at the solution
LinCon	Linear constraints
LinConDel	Deleted linear constraints
LinConSol	Linear constraints at the solution
ParameterEstimatesResults	Estimates at the results
ParameterEstimatesStart	Estimates at the start of the iterations
ProblemDescription	Problem description
ProjGrad	Projected gradients

References

Beale, E.M.L. (1972), "A Derivation of Conjugate Gradients," in Numerical Methods for Nonlinear Optimization, ed. F.A. Lootsma, London: Academic Press.

Dennis, J.E., Gay, D.M., and Welsch, R.E. (1981), "An Adaptive Nonlinear Least-Squares Algorithm," ACM Transactions on Mathematical Software, 7, 348-368.

Dennis, J.E. and Mei, H.H.W. (1979), "Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values,"J. Optim. Theory Appl., 28, 453-482.

Dennis, J.E. and Schnabel, R.B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood, NJ: Prentice-Hall.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester: John Wiley \& Sons, Inc.

Gay, D.M. (1983), "Subroutines for Unconstrained Minimization," ACM Transactions on Mathematical Software, 9, 503-524.

Moré, J.J. (1978), "The Levenberg-Marquardt Algorithm: Implementation and Theory," in Lecture Notes in Mathematics 630, ed. G.A. Watson, Berlin-Heidelberg-New York: Springer Verlag.

Moré, J.J. and Sorensen, D.C. (1983), "Computing a Trust-region Step," SIAM Journal on Scientific and Statistical Computing, 4, 553-572.

Polak, E. (1971), Computational Methods in Optimization, New York: Academic Press.
Powell, J.M.D. (1977), "Restart Procedures for the Conjugate Gradient Method," Math. Prog., 12, 241-254.

Part II

Procedure Reference

Chapter 7

The ARIMA Procedure

Contents

Overview: ARIMA Procedure 190
Getting Started: ARIMA Procedure 191
The Three Stages of ARIMA Modeling 191
Identification Stage 192
Estimation and Diagnostic Checking Stage 197
Forecasting Stage 204
Using ARIMA Procedure Statements 206
General Notation for ARIMA Models 207
Stationarity 210
Differencing 210
Subset, Seasonal, and Factored ARMA Models 211
Input Variables and Regression with ARMA Errors 213
Intervention Models and Interrupted Time Series 216
Rational Transfer Functions and Distributed Lag Models 218
Forecasting with Input Variables 219
Data Requirements 221
Syntax: ARIMA Procedure 221
Functional Summary 221
PROC ARIMA Statement 224
BY Statement 227
IDENTIFY Statement 228
ESTIMATE Statement 232
OUTLIER Statement 236
FORECAST Statement 237
Details: ARIMA Procedure 239
The Inverse Autocorrelation Function 239
The Partial Autocorrelation Function 240
The Cross-Correlation Function 240
The ESACF Method 241
The MINIC Method 243
The SCAN Method 244
Stationarity Tests 246
Prewhitening 246
Identifying Transfer Function Models 247
Missing Values and Autocorrelations 248
Estimation Details 248
Specifying Inputs and Transfer Functions 253
Initial Values 254
Stationarity and Invertibility 255
Naming of Model Parameters 256
Missing Values and Estimation and Forecasting 256
Forecasting Details 257
Forecasting Log Transformed Data 258
Specifying Series Periodicity 259
Detecting Outliers 260
OUT= Data Set 262
OUTCOV= Data Set 263
OUTEST= Data Set 264
OUTMODEL= SAS Data Set 267
OUTSTAT= Data Set 268
Printed Output 269
ODS Table Names 272
Statistical Graphics 273
Examples: ARIMA Procedure 277
Example 7.1: Simulated IMA Model 277
Example 7.2: Seasonal Model for the Airline Series 282
Example 7.3: Model for Series J Data from Box and Jenkins 289
Example 7.4: An Intervention Model for Ozone Data 298
Example 7.5: Using Diagnostics to Identify ARIMA Models 300
Example 7.6: Detection of Level Changes in the Nile River Data 305
Example 7.7: Iterative Outlier Detection 307
References 309

Overview: ARIMA Procedure

The ARIMA procedure analyzes and forecasts equally spaced univariate time series data, transfer function data, and intervention data by using the autoregressive integrated moving-average (ARIMA) or autoregressive moving-average (ARMA) model. An ARIMA model predicts a value in a response time series as a linear combination of its own past values, past errors (also called shocks or innovations), and current and past values of other time series.

The ARIMA approach was first popularized by Box and Jenkins, and ARIMA models are often referred to as Box-Jenkins models. The general transfer function model employed by the ARIMA procedure was discussed by Box and Tiao (1975). When an ARIMA model includes other time series as input variables, the model is sometimes referred to as an ARIMAX model. Pankratz (1991) refers to the ARIMAX model as dynamic regression.

The ARIMA procedure provides a comprehensive set of tools for univariate time series model identification, parameter estimation, and forecasting, and it offers great flexibility in the kinds of ARIMA or ARIMAX models that can be analyzed. The ARIMA procedure supports seasonal, subset, and factored ARIMA models; intervention or interrupted time series models; multiple regression analysis with ARMA errors; and rational transfer function models of any complexity.

The design of PROC ARIMA closely follows the Box-Jenkins strategy for time series modeling with features for the identification, estimation and diagnostic checking, and forecasting steps of the Box-Jenkins method.

Before you use PROC ARIMA, you should be familiar with Box-Jenkins methods, and you should exercise care and judgment when you use the ARIMA procedure. The ARIMA class of time series models is complex and powerful, and some degree of expertise is needed to use them correctly.

Getting Started: ARIMA Procedure

This section outlines the use of the ARIMA procedure and gives a cursory description of the ARIMA modeling process for readers who are less familiar with these methods.

The Three Stages of ARIMA Modeling

The analysis performed by PROC ARIMA is divided into three stages, corresponding to the stages described by Box and Jenkins (1976).

1. In the identification stage, you use the IDENTIFY statement to specify the response series and identify candidate ARIMA models for it. The IDENTIFY statement reads time series that are to be used in later statements, possibly differencing them, and computes autocorrelations, inverse autocorrelations, partial autocorrelations, and cross-correlations. Stationarity tests can be performed to determine if differencing is necessary. The analysis of the IDENTIFY statement output usually suggests one or more ARIMA models that could be fit. Options enable you to test for stationarity and tentative ARMA order identification.
2. In the estimation and diagnostic checking stage, you use the ESTIMATE statement to specify the ARIMA model to fit to the variable specified in the previous IDENTIFY statement and to estimate the parameters of that model. The ESTIMATE statement also produces diagnostic statistics to help you judge the adequacy of the model.
Significance tests for parameter estimates indicate whether some terms in the model might be unnecessary. Goodness-of-fit statistics aid in comparing this model to others. Tests for white noise residuals indicate whether the residual series contains additional information that might be used by a more complex model. The OUTLIER statement provides another useful tool to check whether the currently estimated model accounts for all the variation in the series. If the diagnostic tests indicate problems with the model, you try another model and then repeat the estimation and diagnostic checking stage.
3. In the forecasting stage, you use the FORECAST statement to forecast future values of the time series and to generate confidence intervals for these forecasts from the ARIMA model produced by the preceding ESTIMATE statement.

These three steps are explained further and illustrated through an extended example in the following sections.

Identification Stage

Suppose you have a variable called SALES that you want to forecast. The following example illustrates ARIMA modeling and forecasting by using a simulated data set TEST that contains a time series SALES generated by an $\operatorname{ARIMA}(1,1,1)$ model. The output produced by this example is explained in the following sections. The simulated SALES series is shown in Figure 7.1.

```
proc sgplot data=test;
    scatter y=sales x=date;
run;
```

Figure 7.1 Simulated ARIMA(1,1,1) Series SALES

Using the IDENTIFY Statement

You first specify the input data set in the PROC ARIMA statement. Then, you use an IDENTIFY statement to read in the SALES series and analyze its correlation properties. You do this by using the following statements:

```
proc arima data=test ;
    identify var=sales nlag=24;
run;
```


Descriptive Statistics

The IDENTIFY statement first prints descriptive statistics for the SALES series. This part of the IDENTIFY statement output is shown in Figure 7.2.

Figure 7.2 IDENTIFY Statement Descriptive Statistics Output

The ARIMA Procedure	
Name of Variable = sales	
Nam	
Mean of Working Series	137.3662
Standard Deviation	17.36385
Number of Observations	100

Autocorrelation Function Plots

The IDENTIFY statement next produces a panel of plots used for its autocorrelation and trend analysis. The panel contains the following plots:

- the time series plot of the series
- the sample autocorrelation function plot (ACF)
- the sample inverse autocorrelation function plot (IACF)
- the sample partial autocorrelation function plot (PACF)

This correlation analysis panel is shown in Figure 7.3.

Figure 7.3 Correlation Analysis of SALES

These autocorrelation function plots show the degree of correlation with past values of the series as a function of the number of periods in the past (that is, the lag) at which the correlation is computed.

The NLAG= option controls the number of lags for which the autocorrelations are shown. By default, the autocorrelation functions are plotted to lag 24.

Most books on time series analysis explain how to interpret the autocorrelation and the partial autocorrelation plots. See the section "The Inverse Autocorrelation Function" on page 239 for a discussion of the inverse autocorrelation plots.

By examining these plots, you can judge whether the series is stationary or nonstationary. In this case, a visual inspection of the autocorrelation function plot indicates that the SALES series is nonstationary, since the ACF decays very slowly. For more formal stationarity tests, use the STATIONARITY= option. (See the section "Stationarity" on page 210.)

White Noise Test

The last part of the default IDENTIFY statement output is the check for white noise. This is an approximate statistical test of the hypothesis that none of the autocorrelations of the series up to a
given lag are significantly different from 0 . If this is true for all lags, then there is no information in the series to model, and no ARIMA model is needed for the series.

The autocorrelations are checked in groups of six, and the number of lags checked depends on the NLAG= option. The check for white noise output is shown in Figure 7.4.

Figure 7.4 IDENTIFY Statement Check for White Noise

Autocorrelation Check for White Noise									
$\begin{gathered} \text { To } \\ \text { Lag } \end{gathered}$	ChiSquare	DF	$\operatorname{Pr}>$ ChiSq			Autocorr	lation		
6	426.44	6	$<.0001$	0.957	0.907	0.852	0.791	0.726	0.659
12	547.82	12	<. 0001	0.588	0.514	0.440	0.370	0.303	0.238
18	554.70	18	<. 0001	0.174	0.112	0.052	-0.004	-0.054	-0.098
24	585.73	24	<. 0001	-0.135	-0.167	-0.192	-0.211	-0.227	-0.240

In this case, the white noise hypothesis is rejected very strongly, which is expected since the series is nonstationary. The p-value for the test of the first six autocorrelations is printed as <0.0001, which means the p-value is less than 0.0001 .

Identification of the Differenced Series

Since the series is nonstationary, the next step is to transform it to a stationary series by differencing. That is, instead of modeling the SALES series itself, you model the change in SALES from one period to the next. To difference the SALES series, use another IDENTIFY statement and specify that the first difference of SALES be analyzed, as shown in the following statements:

```
proc arima data=test;
    identify var=sales(1);
run;
```

The second IDENTIFY statement produces the same information as the first, but for the change in SALES from one period to the next rather than for the total SALES in each period. The summary statistics output from this IDENTIFY statement is shown in Figure 7.5. Note that the period of differencing is given as 1 , and one observation was lost through the differencing operation.

Figure 7.5 IDENTIFY Statement Output for Differenced Series

| The ARIMA Procedure | |
| :--- | ---: | :--- |
| Name of Variable = sales | |
| | |
| | |
| Period(s) of Differencing | 1 |
| Mean of Working Series | 0.660589 |
| Standard Deviation | 2.011543 |
| Number of Observations | 99 |
| Observation(s) eliminated by differencing | 1 |

The autocorrelation plots for the differenced series are shown in Figure 7.6.
Figure 7.6 Correlation Analysis of the Change in SALES

The autocorrelations decrease rapidly in this plot, indicating that the change in SALES is a stationary time series.

The next step in the Box-Jenkins methodology is to examine the patterns in the autocorrelation plot to choose candidate ARMA models to the series. The partial and inverse autocorrelation function plots are also useful aids in identifying appropriate ARMA models for the series.

In the usual Box-Jenkins approach to ARIMA modeling, the sample autocorrelation function, inverse autocorrelation function, and partial autocorrelation function are compared with the theoretical correlation functions expected from different kinds of ARMA models. This matching of theoretical autocorrelation functions of different ARMA models to the sample autocorrelation functions computed from the response series is the heart of the identification stage of Box-Jenkins modeling. Most textbooks on time series analysis, such as Pankratz (1983), discuss the theoretical autocorrelation functions for different kinds of ARMA models.

Since the input data are only a limited sample of the series, the sample autocorrelation functions computed from the input series only approximate the true autocorrelation function of the process that generates the series. This means that the sample autocorrelation functions do not exactly match the theoretical autocorrelation functions for any ARMA model and can have a pattern similar to
that of several different ARMA models. If the series is white noise (a purely random process), then there is no need to fit a model. The check for white noise, shown in Figure 7.7, indicates that the change in SALES is highly autocorrelated. Thus, an autocorrelation model, for example an $\operatorname{AR}(1)$ model, might be a good candidate model to fit to this process.

Figure 7.7 IDENTIFY Statement Check for White Noise

Autocorrelation Check for White Noise									
To	Chi-		Pr >						
Lag	Square	DF	ChiSq	-	_--	Autocorr	lations	---	-
6	154.44	6	$<.0001$	0.828	0.591	0.454	0.369	0.281	0.198
12	173.66	12	<. 0001	0.151	0.081	-0.039	-0.141	-0.210	-0.274
18	209.64	18	<. 0001	-0.305	-0.271	-0.218	-0.183	-0.174	-0.161
24	218.04	24	<. 0001	-0.144	-0.141	-0.125	-0.085	-0.040	-0.032

Estimation and Diagnostic Checking Stage

The autocorrelation plots for this series, as shown in the previous section, suggest an $\operatorname{AR}(1)$ model for the change in SALES. You should check the diagnostic statistics to see if the $\operatorname{AR}(1)$ model is adequate. Other candidate models include an MA(1) model and low-order mixed ARMA models. In this example, the $\operatorname{AR}(1)$ model is tried first.

Estimating an AR(1) Model

The following statements fit an $\operatorname{AR}(1)$ model (an autoregressive model of order 1), which predicts the change in SALES as an average change, plus some fraction of the previous change, plus a random error. To estimate an AR model, you specify the order of the autoregressive model with the $\mathrm{P}=$ option in an ESTIMATE statement:

```
estimate p=1;
run;
```

The ESTIMATE statement fits the model to the data and prints parameter estimates and various diagnostic statistics that indicate how well the model fits the data. The first part of the ESTIMATE statement output, the table of parameter estimates, is shown in Figure 7.8.

Figure 7.8 Parameter Estimates for AR(1) Model

The ARIMA Procedure					
Conditional Least Squares Estimation					
		Standard		Approx	
Parameter	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$	Lag
MU	0.90280	0.65984	1.37	0.1744	0
AR1, 1	0.86847	0.05485	15.83	<. 0001	1

The table of parameter estimates is titled "Conditional Least Squares Estimation," which indicates the estimation method used. You can request different estimation methods with the METHOD= option.

The table of parameter estimates lists the parameters in the model; for each parameter, the table shows the estimated value and the standard error and t value for the estimate. The table also indicates the lag at which the parameter appears in the model.

In this case, there are two parameters in the model. The mean term is labeled MU; its estimated value is 0.90280 . The autoregressive parameter is labeled AR1, 1 ; this is the coefficient of the lagged value of the change in SALES, and its estimate is 0.86847 .

The t values provide significance tests for the parameter estimates and indicate whether some terms in the model might be unnecessary. In this case, the t value for the autoregressive parameter is 15.83 , so this term is highly significant. The t value for MU indicates that the mean term adds little to the model.

The standard error estimates are based on large sample theory. Thus, the standard errors are labeled as approximate, and the standard errors and t values might not be reliable in small samples.

The next part of the ESTIMATE statement output is a table of goodness-of-fit statistics, which aid in comparing this model to other models. This output is shown in Figure 7.9.

Figure 7.9 Goodness-of-Fit Statistics for AR(1) Model

	Constant Estimate
Variance Estimate	0.118749
Std Error Estimate	1.15794
AIC	297.4469
SBC	302.6372
Number of Residuals	99

The "Constant Estimate" is a function of the mean term MU and the autoregressive parameters. This estimate is computed only for AR or ARMA models, but not for strictly MA models. See the section "General Notation for ARIMA Models" on page 207 for an explanation of the constant estimate.

The "Variance Estimate" is the variance of the residual series, which estimates the innovation variance. The item labeled "Std Error Estimate" is the square root of the variance estimate. In general,
when you are comparing candidate models, smaller AIC and SBC statistics indicate the better fitting model. The section "Estimation Details" on page 248 explains the AIC and SBC statistics.

The ESTIMATE statement next prints a table of correlations of the parameter estimates, as shown in Figure 7.10. This table can help you assess the extent to which collinearity might have influenced the results. If two parameter estimates are very highly correlated, you might consider dropping one of them from the model.

Figure 7.10 Correlations of the Estimates for AR(1) Model

Correlations of Parameter Estimates		
Parameter	MU	AR1, 1
MU	1.000	0.114
AR1, 1	0.114	1.000

The next part of the ESTIMATE statement output is a check of the autocorrelations of the residuals. This output has the same form as the autocorrelation check for white noise that the IDENTIFY statement prints for the response series. The autocorrelation check of residuals is shown in Figure 7.11.

Figure 7.11 Check for White Noise Residuals for AR(1) Model

Autocorrelation Check of Residuals									
$\begin{aligned} & \text { To } \\ & \text { Lag } \end{aligned}$	Chi- Square	DF	$\operatorname{Pr}>$ ChiSq			Autocorr	lation		
6	19.09	5	0.0019	0.327	-0.220	-0.128	0.068	-0.002	-0.096
12	22.90	11	0.0183	0.072	0.116	-0.042	-0.066	0.031	-0.091
18	31.63	17	0.0167	-0.233	-0.129	-0.024	0.056	-0.014	-0.008
24	32.83	23	0.0841	0.009	-0.057	-0.057	-0.001	0.049	-0.015

The χ^{2} test statistics for the residuals series indicate whether the residuals are uncorrelated (white noise) or contain additional information that might be used by a more complex model. In this case, the test statistics reject the no-autocorrelation hypothesis at a high level of significance ($p=0.0019$ for the first six lags.) This means that the residuals are not white noise, and so the $\operatorname{AR}(1)$ model is not a fully adequate model for this series. The ESTIMATE statement output also includes graphical analysis of the residuals. It is not shown here. The graphical analysis also reveals the inadequacy of the $\operatorname{AR}(1)$ model.

The final part of the ESTIMATE statement output is a listing of the estimated model, using the backshift notation. This output is shown in Figure 7.12.

Figure 7.12 Estimated ARIMA(1, 1, 0) Model for SALES

This listing combines the differencing specification given in the IDENTIFY statement with the parameter estimates of the model for the change in SALES. Since the $\operatorname{AR}(1)$ model is for the change in SALES, the final model for SALES is an ARIMA $(1,1,0)$ model. Using B, the backshift operator, the mathematical form of the estimated model shown in this output is as follows:

$$
(1-B) \text { sales }_{t}=0.902799+\frac{1}{(1-0.86847 B)} a_{t}
$$

See the section "General Notation for ARIMA Models" on page 207 for further explanation of this notation.

Estimating an ARMA(1,1) Model

The IDENTIFY statement plots suggest a mixed autoregressive and moving-average model, and the previous ESTIMATE statement check of residuals indicates that an $\operatorname{AR}(1)$ model is not sufficient. You now try estimating an ARMA(1,1) model for the change in SALES.

An ARMA $(1,1)$ model predicts the change in SALES as an average change, plus some fraction of the previous change, plus a random error, plus some fraction of the random error in the preceding period. An $\operatorname{ARMA}(1,1)$ model for the change in SALES is the same as an $\operatorname{ARIMA}(1,1,1)$ model for the level of SALES.

To estimate a mixed autoregressive moving-average model, you specify the order of the movingaverage part of the model with the $\mathrm{Q}=$ option in an ESTIMATE statement in addition to specifying the order of the autoregressive part with the $\mathrm{P}=$ option. The following statements fit an $\operatorname{ARMA}(1,1)$ model to the differenced SALES series:

```
estimate p=1 q=1;
run;
```

The parameter estimates table and goodness-of-fit statistics for this model are shown in Figure 7.13.

Figure 7.13 Estimated ARMA(1, 1) Model for Change in SALES

Parameter	The ARIMA Procedure				
	Conditional Least Squares Estimation				
	Standard			Approx	
	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$	Lag
MU	0.89288	0.49391	1.81	0.0738	0
MA1, 1	-0.58935	0.08988	-6.56	$<.0001$	1
AR1, 1	0.74755	0.07785	9.60	<. 0001	1
	Consta	imate	0.225409		
	Varian	imate	0.904034		
	Std Er	timate	0.950807		
	AIC		273.9155		
	SBC		281.7009		
	Number	siduals	99		

The moving-average parameter estimate, labeled "MA1,1", is -0.58935 . Both the moving-average and the autoregressive parameters have significant t values. Note that the variance estimate, AIC, and SBC are all smaller than they were for the AR(1) model, indicating that the ARMA $(1,1)$ model fits the data better without over-parameterizing.

The graphical check of the residuals from this model is shown in Figure 7.14 and Figure 7.15. The residual correlation and white noise test plots show that you cannot reject the hypothesis that the residuals are uncorrelated. The normality plots also show no departure from normality. Thus, you conclude that the ARMA $(1,1)$ model is adequate for the change in SALES series, and there is no point in trying more complex models.

Figure 7.14 White Noise Check of Residuals for the ARMA(1,1) Model

Figure 7.15 Normality Check of Residuals for the ARMA(1,1) Model

The form of the estimated $\operatorname{ARIMA}(1,1,1)$ model for SALES is shown in Figure 7.16.
Figure 7.16 Estimated ARIMA(1,1,1) Model for SALES
Model for variable sales
Estimated Mean
Period(s) of Differencing $\quad 0.892875$
Autoregressive Factors
Factor 1: $1-0.74755 \mathrm{~B} \star *(1)$
Moving Average Factors
Factor 1: $1+0.58935 \mathrm{~B} * *(1)$

The estimated model shown in this output is

$$
\left(1-\text { B }^{\text {sales }_{t}}=0.892875+\frac{(1+0.58935 B)}{(1-0.74755 B)} a_{t}\right.
$$

In addition to the residual analysis of a model, it is often useful to check whether there are any changes in the time series that are not accounted for by the currently estimated model. The OUTLIER statement enables you to detect such changes. For a long series, this task can be computationally burdensome. Therefore, in general, it is better done after a model that fits the data reasonably well has been found. Figure 7.17 shows the output of the simplest form of the OUTLIER statement:

```
outlier;
run;
```

Two possible outliers have been found for the model in question. See the section "Detecting Outliers" on page 260, and the examples Example 7.6 and Example 7.7, for more details about modeling in the presence of outliers. In this illustration these outliers are not discussed any further.

Figure 7.17 Outliers for the ARIMA(1,1,1) Model for SALES

Since the model diagnostic tests show that all the parameter estimates are significant and the residual series is white noise, the estimation and diagnostic checking stage is complete. You can now proceed to forecasting the SALES series with this ARIMA(1,1,1) model.

Forecasting Stage

To produce the forecast, use a FORECAST statement after the ESTIMATE statement for the model you decide is best. If the last model fit is not the best, then repeat the ESTIMATE statement for the best model before you use the FORECAST statement.

Suppose that the SALES series is monthly, that you want to forecast one year ahead from the most recently available SALES figure, and that the dates for the observations are given by a variable DATE in the input data set TEST. You use the following FORECAST statement:

```
forecast lead=12 interval=month id=date out=results;
run;
```

The LEAD = option specifies how many periods ahead to forecast (12 months, in this case). The $\mathrm{ID}=$ option specifies the ID variable, which is typically a SAS date, time, or datetime variable, used to date the observations of the SALES time series. The INTERVAL= option indicates that data are monthly and enables PROC ARIMA to extrapolate DATE values for forecast periods. The OUT=
option writes the forecasts to the output data set RESULTS. See the section "OUT= Data Set" on page 262 for information about the contents of the output data set.

By default, the FORECAST statement also prints and plots the forecast values, as shown in Figure 7.18 and Figure 7.19. The forecast table shows for each forecast period the observation number, forecast value, standard error estimate for the forecast value, and lower and upper limits for a 95% confidence interval for the forecast.

Figure 7.18 Forecasts for $\operatorname{ARIMA}(1,1,1)$ Model for SALES

The ARIMA Procedure				
Forecasts for variable sales				
Obs	Forecast	Std Error	95\% Confidence Limits	
101	171.0320	0.9508	169.1684	172.8955
102	174.7534	2.4168	170.0165	179.4903
103	177.7608	3.9879	169.9445	185.5770
104	180.2343	5.5658	169.3256	191.1430
105	182.3088	7.1033	168.3866	196.2310
106	184.0850	8.5789	167.2707	200.8993
107	185.6382	9.9841	166.0698	205.2066
108	187.0247	11.3173	164.8433	209.2061
109	188.2866	12.5807	163.6289	212.9443
110	189.4553	13.7784	162.4501	216.4605
111	190.5544	14.9153	161.3209	219.7879
112	191.6014	15.9964	160.2491	222.9538

Figure 7.19 Forecasts for the $\operatorname{ARMA}(1,1,1)$ Model

Normally, you want the forecast values stored in an output data set, and you are not interested in seeing this printed list of the forecast. You can use the NOPRINT option in the FORECAST statement to suppress this output.

Using ARIMA Procedure Statements

The IDENTIFY, ESTIMATE, and FORECAST statements are related in a hierarchy. An IDENTIFY statement brings in a time series to be modeled; several ESTIMATE statements can follow to estimate different ARIMA models for the series; for each model estimated, several FORECAST statements can be used. Thus, a FORECAST statement must be preceded at some point by an ESTIMATE statement, and an ESTIMATE statement must be preceded at some point by an IDENTIFY statement. Additional IDENTIFY statements can be used to switch to modeling a different response series or to change the degree of differencing used.

The ARIMA procedure can be used interactively in the sense that all ARIMA procedure statements can be executed any number of times without reinvoking PROC ARIMA. You can execute ARIMA procedure statements singly or in groups by following the single statement or group of statements
with a RUN statement. The output for each statement or group of statements is produced when the RUN statement is entered.

A RUN statement does not terminate the PROC ARIMA step but tells the procedure to execute the statements given so far. You can end PROC ARIMA by submitting a QUIT statement, a DATA step, another PROC step, or an ENDSAS statement.

The example in the preceding section illustrates the interactive use of ARIMA procedure statements. The complete PROC ARIMA program for that example is as follows:

```
proc arima data=test;
    identify var=sales nlag=24;
    run;
    identify var=sales(1);
    run;
    estimate p=1;
    run;
    estimate p=1 q=1;
    run;
    outlier;
    run;
    forecast lead=12 interval=month id=date out=results;
    run;
quit;
```


General Notation for ARIMA Models

The order of an ARIMA (autoregressive integrated moving-average) model is usually denoted by the notation $\operatorname{ARIMA}(p, d, q)$, where
$p \quad$ is the order of the autoregressive part
$d \quad$ is the order of the differencing
$q \quad$ is the order of the moving-average process
If no differencing is done $(d=0)$, the models are usually referred to as $\operatorname{ARMA}(p, q)$ models. The final model in the preceding example is an $\operatorname{ARIMA}(1,1,1)$ model since the IDENTIFY statement specified $d=1$, and the final ESTIMATE statement specified $p=1$ and $q=1$.

Notation for Pure ARIMA Models

Mathematically the pure ARIMA model is written as

$$
W_{t}=\mu+\frac{\theta(B)}{\phi(B)} a_{t}
$$

where
$t \quad$ indexes time
$W_{t} \quad$ is the response series Y_{t} or a difference of the response series
$\mu \quad$ is the mean term
$B \quad$ is the backshift operator; that is, $B X_{t}=X_{t-1}$
$\phi(B) \quad$ is the autoregressive operator, represented as a polynomial in the backshift operator: $\phi(B)=1-\phi_{1} B-\ldots-\phi_{p} B^{p}$
$\theta(B) \quad$ is the moving-average operator, represented as a polynomial in the backshift operator: $\theta(B)=1-\theta_{1} B-\ldots-\theta_{q} B^{q}$
$a_{t} \quad$ is the independent disturbance, also called the random error
The series W_{t} is computed by the IDENTIFY statement and is the series processed by the ESTIMATE statement. Thus, W_{t} is either the response series Y_{t} or a difference of Y_{t} specified by the differencing operators in the IDENTIFY statement.

For simple (nonseasonal) differencing, $W_{t}=(1-B)^{d} Y_{t}$. For seasonal differencing $W_{t}=(1-B)^{d}\left(1-B^{s}\right)^{D} Y_{t}$, where d is the degree of nonseasonal differencing, D is the degree of seasonal differencing, and s is the length of the seasonal cycle.

For example, the mathematical form of the $\operatorname{ARIMA}(1,1,1)$ model estimated in the preceding example is

$$
(1-B) Y_{t}=\mu+\frac{\left(1-\theta_{1} B\right)}{\left(1-\phi_{1} B\right)} a_{t}
$$

Model Constant Term

The ARIMA model can also be written as

$$
\phi(B)\left(W_{t}-\mu\right)=\theta(B) a_{t}
$$

or

$$
\phi(B) W_{t}=\text { const }+\theta(B) a_{t}
$$

where

$$
\text { const }=\phi(B) \mu=\mu-\phi_{1} \mu-\phi_{2} \mu-\ldots-\phi_{p} \mu
$$

Thus, when an autoregressive operator and a mean term are both included in the model, the constant term for the model can be represented as $\phi(B) \mu$. This value is printed with the label "Constant Estimate" in the ESTIMATE statement output.

Notation for Transfer Function Models

The general ARIMA model with input series, also called the ARIMAX model, is written as

$$
W_{t}=\mu+\sum_{i} \frac{\omega_{i}(B)}{\delta_{i}(B)} B^{k_{i}} X_{i, t}+\frac{\theta(B)}{\phi(B)} a_{t}
$$

where
$X_{i, t} \quad$ is the i th input time series or a difference of the i th input series at time t
$k_{i} \quad$ is the pure time delay for the effect of the i th input series
$\omega_{i}(B) \quad$ is the numerator polynomial of the transfer function for the i th input series
$\delta_{i}(B) \quad$ is the denominator polynomial of the transfer function for the i th input series.
The model can also be written more compactly as

$$
W_{t}=\mu+\sum_{i} \Psi_{i}(B) X_{i, t}+n_{t}
$$

where
$\Psi_{i}(B) \quad$ is the transfer function for the i th input series modeled as a ratio of the ω and δ polynomials: $\Psi_{i}(B)=\left(\omega_{i}(B) / \delta_{i}(B)\right) B^{k_{i}}$
$n_{t} \quad$ is the noise series: $n_{t}=(\theta(B) / \phi(B)) a_{t}$
This model expresses the response series as a combination of past values of the random shocks and past values of other input series. The response series is also called the dependent series or output series. An input time series is also referred to as an independent series or a predictor series. Response variable, dependent variable, independent variable, or predictor variable are other terms often used.

Notation for Factored Models

ARIMA models are sometimes expressed in a factored form. This means that the ϕ, θ, ω, or δ polynomials are expressed as products of simpler polynomials. For example, you could express the pure ARIMA model as

$$
W_{t}=\mu+\frac{\theta_{1}(B) \theta_{2}(B)}{\phi_{1}(B) \phi_{2}(B)} a_{t}
$$

where $\phi_{1}(B) \phi_{2}(B)=\phi(B)$ and $\theta_{1}(B) \theta_{2}(B)=\theta(B)$.
When an ARIMA model is expressed in factored form, the order of the model is usually expressed by using a factored notation also. The order of an ARIMA model expressed as the product of two factors is denoted as $\operatorname{ARIMA}(p, d, q) \times(P, D, Q)$.

Notation for Seasonal Models

ARIMA models for time series with regular seasonal fluctuations often use differencing operators and autoregressive and moving-average parameters at lags that are multiples of the length of the seasonal cycle. When all the terms in an ARIMA model factor refer to lags that are a multiple of a constant s, the constant is factored out and suffixed to the $\operatorname{ARIMA}(p, d, q)$ notation.

Thus, the general notation for the order of a seasonal ARIMA model with both seasonal and nonseasonal factors is $\operatorname{ARIMA}(p, d, q) \times(P, D, Q)_{s}$. The term (p, d, q) gives the order of the nonseasonal part of the ARIMA model; the term $(P, D, Q)_{s}$ gives the order of the seasonal part. The value of s is
the number of observations in a seasonal cycle: 12 for monthly series, 4 for quarterly series, 7 for daily series with day-of-week effects, and so forth.

For example, the notation $\operatorname{ARIMA}(0,1,2) \times(0,1,1)_{12}$ describes a seasonal ARIMA model for monthly data with the following mathematical form:

$$
(1-B)\left(1-B^{12}\right) Y_{t}=\mu+\left(1-\theta_{1,1} B-\theta_{1,2} B^{2}\right)\left(1-\theta_{2,1} B^{12}\right) a_{t}
$$

Stationarity

The noise (or residual) series for an ARMA model must be stationary, which means that both the expected values of the series and its autocovariance function are independent of time.

The standard way to check for nonstationarity is to plot the series and its autocorrelation function. You can visually examine a graph of the series over time to see if it has a visible trend or if its variability changes noticeably over time. If the series is nonstationary, its autocorrelation function will usually decay slowly.

Another way of checking for stationarity is to use the stationarity tests described in the section "Stationarity Tests" on page 246.

Most time series are nonstationary and must be transformed to a stationary series before the ARIMA modeling process can proceed. If the series has a nonstationary variance, taking the \log of the series can help. You can compute the \log values in a DATA step and then analyze the \log values with PROC ARIMA.

If the series has a trend over time, seasonality, or some other nonstationary pattern, the usual solution is to take the difference of the series from one period to the next and then analyze this differenced series. Sometimes a series might need to be differenced more than once or differenced at lags greater than one period. (If the trend or seasonal effects are very regular, the introduction of explanatory variables can be an appropriate alternative to differencing.)

Differencing

Differencing of the response series is specified with the VAR= option of the IDENTIFY statement by placing a list of differencing periods in parentheses after the variable name. For example, to take a simple first difference of the series SALES, use the statement

```
identify var=sales(1);
```

In this example, the change in SALES from one period to the next is analyzed.
A deterministic seasonal pattern also causes the series to be nonstationary, since the expected value of the series is not the same for all time periods but is higher or lower depending on the season. When the series has a seasonal pattern, you might want to difference the series at a lag that corresponds to the length of the seasonal cycle. For example, if SALES is a monthly series, the statement

```
identify var=sales(12);
```

takes a seasonal difference of SALES, so that the series analyzed is the change in SALES from its value in the same month one year ago.

To take a second difference, add another differencing period to the list. For example, the following statement takes the second difference of SALES:

```
identify var=sales(1,1);
```

That is, SALES is differenced once at lag 1 and then differenced again, also at lag 1 . The statement

```
identify var=sales(2);
```

creates a 2-span difference-that is, current period SALES minus SALES from two periods ago. The statement

```
identify var=sales(1,12);
```

takes a second-order difference of SALES, so that the series analyzed is the difference between the current period-to-period change in SALES and the change 12 periods ago. You might want to do this if the series had both a trend over time and a seasonal pattern.

There is no limit to the order of differencing and the degree of lagging for each difference.
Differencing not only affects the series used for the IDENTIFY statement output but also applies to any following ESTIMATE and FORECAST statements. ESTIMATE statements fit ARMA models to the differenced series. FORECAST statements forecast the differences and automatically sum these differences back to undo the differencing operation specified by the IDENTIFY statement, thus producing the final forecast result.

Differencing of input series is specified by the CROSSCORR= option and works just like differencing of the response series. For example, the statement

```
identify var=y(1) crosscorr=(x1(1) x2(1));
```

takes the first difference of Y, the first difference of X1, and the first difference of X2. Whenever X1 and X2 are used in INPUT= options in following ESTIMATE statements, these names refer to the differenced series.

Subset, Seasonal, and Factored ARMA Models

The simplest way to specify an ARMA model is to give the order of the AR and MA parts with the $\mathrm{P}=$ and $\mathrm{Q}=$ options. When you do this, the model has parameters for the AR and MA parts for all lags through the order specified. However, you can control the form of the ARIMA model exactly as shown in the following section.

Subset Models

You can control which lags have parameters by specifying the $\mathrm{P}=$ or $\mathrm{Q}=$ option as a list of lags in parentheses. A model that includes parameters for only some lags is sometimes called a subset or additive model. For example, consider the following two ESTIMATE statements:

```
identify var=sales;
estimate p=4;
estimate p=(1 4);
```

Both specify $\operatorname{AR}(4)$ models, but the first has parameters for lags $1,2,3$, and 4 , while the second has parameters for lags 1 and 4 , with the coefficients for lags 2 and 3 constrained to 0 . The mathematical form of the autoregressive models produced by these two specifications is shown in Table 7.1.

Table 7.1 Saturated versus Subset Models

Option	Autoregressive Operator
$\mathrm{P}=4$	$\left(1-\phi_{1} B-\phi_{2} B^{2}-\phi_{3} B^{3}-\phi_{4} B^{4}\right)$
$\mathrm{P}=(14)$	$\left(1-\phi_{1} B-\phi_{4} B^{4}\right)$

Seasonal Models

One particularly useful kind of subset model is a seasonal model. When the response series has a seasonal pattern, the values of the series at the same time of year in previous years can be important for modeling the series. For example, if the series SALES is observed monthly, the statements

```
identify var=sales;
estimate p=(12);
```

model SALES as an average value plus some fraction of its deviation from this average value a year ago, plus a random error. Although this is an $\operatorname{AR}(12)$ model, it has only one autoregressive parameter.

Factored Models

A factored model (also referred to as a multiplicative model) represents the ARIMA model as a product of simpler ARIMA models. For example, you might model SALES as a combination of an $\operatorname{AR}(1)$ process that reflects short term dependencies and an $\operatorname{AR}(12)$ model that reflects the seasonal pattern.

It might seem that the way to do this is with the option $\mathrm{P}=\left(\begin{array}{ll}112\end{array}\right)$, but the $\operatorname{AR}(1)$ process also operates in past years; you really need autoregressive parameters at lags 1,12 , and 13 . You can specify a subset model with separate parameters at these lags, or you can specify a factored model that represents the model as the product of an $\operatorname{AR}(1)$ model and an $\operatorname{AR}(12)$ model. Consider the following two ESTIMATE statements:

```
identify var=sales;
estimate p=(1 12 13);
estimate p=(1)(12);
```

The mathematical form of the autoregressive models produced by these two specifications are shown in Table 7.2.

Table 7.2 Subset versus Factored Models

Option	Autoregressive Operator
$\mathrm{P}=(11213)$	$\left(1-\phi_{1} B-\phi_{12} B^{12}-\phi_{13} B^{13}\right)$
$\mathrm{P}=(1)(12)$	$\left(1-\phi_{1} B\right)\left(1-\phi_{12} B^{12}\right)$

Both models fit by these two ESTIMATE statements predict SALES from its values 1, 12, and 13 periods ago, but they use different parameterizations. The first model has three parameters, whose meanings may be hard to interpret.

The factored specification $\mathrm{P}=(1)(12)$ represents the model as the product of two different AR models. It has only two parameters: one that corresponds to recent effects and one that represents seasonal effects. Thus the factored model is more parsimonious, and its parameter estimates are more clearly interpretable.

Input Variables and Regression with ARMA Errors

In addition to past values of the response series and past errors, you can also model the response series using the current and past values of other series, called input series.

Several different names are used to describe ARIMA models with input series. Transfer function model, intervention model, interrupted time series model, regression model with ARMA errors, Box-Tiao model, and ARIMAX model are all different names for ARIMA models with input series. Pankratz (1991) refers to these models as dynamic regression models.

Using Input Series

To use input series, list the input series in a CROSSCORR= option on the IDENTIFY statement and specify how they enter the model with an INPUT= option on the ESTIMATE statement. For example, you might use a series called PRICE to help model SALES, as shown in the following statements:

```
proc arima data=a;
    identify var=sales crosscorr=price;
    estimate input=price;
run;
```

This example performs a simple linear regression of SALES on PRICE; it produces the same results as PROC REG or another SAS regression procedure. The mathematical form of the model estimated
by these statements is

$$
Y_{t}=\mu+\omega_{0} X_{t}+a_{t}
$$

The parameter estimates table for this example (using simulated data) is shown in Figure 7.20. The intercept parameter is labeled MU. The regression coefficient for PRICE is labeled NUM1. (See the section "Naming of Model Parameters" on page 256 for information about how parameters for input series are named.)

Figure 7.20 Parameter Estimates Table for Regression Model

Any number of input variables can be used in a model. For example, the following statements fit a multiple regression of SALES on PRICE and INCOME:

```
proc arima data=a;
    identify var=sales crosscorr=(price income);
    estimate input=(price income);
run;
```

The mathematical form of the regression model estimated by these statements is

$$
Y_{t}=\mu+\omega_{1} X_{1, t}+\omega_{2} X_{2, t}+a_{t}
$$

Lagging and Differencing Input Series

You can also difference and lag the input series. For example, the following statements regress the change in SALES on the change in PRICE lagged by one period. The difference of PRICE is specified with the CROSSCORR= option and the lag of the change in PRICE is specified by the $1 \$$ in the INPUT $=$ option.

```
proc arima data=a;
    identify var=sales(1) crosscorr=price(1);
    estimate input=( 1 $ price );
run;
```

These statements estimate the model

$$
(1-B) Y_{t}=\mu+\omega_{0}(1-B) X_{t-1}+a_{t}
$$

Regression with ARMA Errors

You can combine input series with ARMA models for the errors. For example, the following statements regress SALES on INCOME and PRICE but with the error term of the regression model (called the noise series in ARIMA modeling terminology) assumed to be an ARMA(1,1) process.

```
proc arima data=a;
    identify var=sales crosscorr=(price income);
    estimate p=1 q=1 input=(price income);
run;
```

These statements estimate the model

$$
Y_{t}=\mu+\omega_{1} X_{1, t}+\omega_{2} X_{2, t}+\frac{\left(1-\theta_{1} B\right)}{\left(1-\phi_{1} B\right)} a_{t}
$$

Stationarity and Input Series

Note that the requirement of stationarity applies to the noise series. If there are no input variables, the response series (after differencing and minus the mean term) and the noise series are the same. However, if there are inputs, the noise series is the residual after the effect of the inputs is removed.

There is no requirement that the input series be stationary. If the inputs are nonstationary, the response series will be nonstationary, even though the noise process might be stationary.

When nonstationary input series are used, you can fit the input variables first with no ARMA model for the errors and then consider the stationarity of the residuals before identifying an ARMA model for the noise part.

Identifying Regression Models with ARMA Errors

Previous sections described the ARIMA modeling identification process that uses the autocorrelation function plots produced by the IDENTIFY statement. This identification process does not apply when the response series depends on input variables. This is because it is the noise process for which you need to identify an ARIMA model, and when input series are involved the response series adjusted for the mean is no longer an estimate of the noise series.

However, if the input series are independent of the noise series, you can use the residuals from the regression model as an estimate of the noise series, then apply the ARIMA modeling identification process to this residual series. This assumes that the noise process is stationary.

The PLOT option in the ESTIMATE statement produces similar plots for the model residuals as the IDENTIFY statement produces for the response series. The PLOT option prints an autocorrelation function plot, an inverse autocorrelation function plot, and a partial autocorrelation function plot for the residual series. Note that if ODS Graphics is enabled, then the PLOT option is not needed and these residual correlation plots are produced by default.

The following statements show how the PLOT option is used to identify the ARMA $(1,1)$ model for the noise process used in the preceding example of regression with ARMA errors:

```
proc arima data=a;
    identify var=sales crosscorr=(price income) noprint;
    estimate input=(price income) plot;
    run;
    estimate p=1 q=1 input=(price income);
run;
```

In this example, the IDENTIFY statement includes the NOPRINT option since the autocorrelation plots for the response series are not useful when you know that the response series depends on input series.

The first ESTIMATE statement fits the regression model with no model for the noise process. The PLOT option produces plots of the autocorrelation function, inverse autocorrelation function, and partial autocorrelation function for the residual series of the regression on PRICE and INCOME.

By examining the PLOT option output for the residual series, you verify that the residual series is stationary and identify an $\operatorname{ARMA}(1,1)$ model for the noise process. The second ESTIMATE statement fits the final model.

Although this discussion addresses regression models, the same remarks apply to identifying an ARIMA model for the noise process in models that include input series with complex transfer functions.

Intervention Models and Interrupted Time Series

One special kind of ARIMA model with input series is called an intervention model or interrupted time series model. In an intervention model, the input series is an indicator variable that contains discrete values that flag the occurrence of an event affecting the response series. This event is an intervention in or an interruption of the normal evolution of the response time series, which, in the absence of the intervention, is usually assumed to be a pure ARIMA process.

Intervention models can be used both to model and forecast the response series and also to analyze the impact of the intervention. When the focus is on estimating the effect of the intervention, the process is often called intervention analysis or interrupted time series analysis.

Impulse Interventions

The intervention can be a one-time event. For example, you might want to study the effect of a short-term advertising campaign on the sales of a product. In this case, the input variable has the value of 1 for the period during which the advertising campaign took place and the value 0 for all other periods. Intervention variables of this kind are sometimes called impulse functions or pulse functions.

Suppose that SALES is a monthly series, and a special advertising effort was made during the month of March 1992. The following statements estimate the effect of this intervention by assuming an ARMA(1,1) model for SALES. The model is specified just like the regression model, but the
intervention variable AD is constructed in the DATA step as a zero-one indicator for the month of the advertising effort.

```
data a;
    set a;
    ad = (date = '1mar1992'd);
run;
proc arima data=a;
    identify var=sales crosscorr=ad;
    estimate p=1 q=1 input=ad;
run;
```


Continuing Interventions

Other interventions can be continuing, in which case the input variable flags periods before and after the intervention. For example, you might want to study the effect of a change in tax rates on some economic measure. Another example is a study of the effect of a change in speed limits on the rate of traffic fatalities. In this case, the input variable has the value 1 after the new speed limit went into effect and the value 0 before. Intervention variables of this kind are called step functions.

Another example is the effect of news on product demand. Suppose it was reported in July 1996 that consumption of the product prevents heart disease (or causes cancer), and SALES is consistently higher (or lower) thereafter. The following statements model the effect of this news intervention:

```
data a;
    set a;
    news = (date >= '1jul1996'd);
run;
proc arima data=a;
    identify var=sales crosscorr=news;
    estimate p=1 q=1 input=news;
run;
```


Interaction Effects

You can include any number of intervention variables in the model. Intervention variables can have any pattern-impulse and continuing interventions are just two possible cases. You can mix discrete valued intervention variables and continuous regressor variables in the same model.

You can also form interaction effects by multiplying input variables and including the product variable as another input. Indeed, as long as the dependent measure is continuous and forms a regular time series, you can use PROC ARIMA to fit any general linear model in conjunction with an ARMA model for the error process by using input variables that correspond to the columns of the design matrix of the linear model.

Rational Transfer Functions and Distributed Lag Models

How an input series enters the model is called its transfer function. Thus, ARIMA models with input series are sometimes referred to as transfer function models.

In the preceding regression and intervention model examples, the transfer function is a single scale parameter. However, you can also specify complex transfer functions composed of numerator and denominator polynomials in the backshift operator. These transfer functions operate on the input series in the same way that the ARMA specification operates on the error term.

Numerator Factors

For example, suppose you want to model the effect of PRICE on SALES as taking place gradually with the impact distributed over several past lags of PRICE. This is illustrated by the following statements:

```
proc arima data=a;
    identify var=sales crosscorr=price;
    estimate input=( (1 2 3) price );
run;
```

These statements estimate the model

$$
Y_{t}=\mu+\left(\omega_{0}-\omega_{1} B-\omega_{2} B^{2}-\omega_{3} B^{3}\right) X_{t}+a_{t}
$$

This example models the effect of PRICE on SALES as a linear function of the current and three most recent values of PRICE. It is equivalent to a multiple linear regression of SALES on PRICE, LAG(PRICE), LAG2(PRICE), and LAG3(PRICE).

This is an example of a transfer function with one numerator factor. The numerator factors for a transfer function for an input series are like the MA part of the ARMA model for the noise series.

Denominator Factors

You can also use transfer functions with denominator factors. The denominator factors for a transfer function for an input series are like the AR part of the ARMA model for the noise series. Denominator factors introduce exponentially weighted, infinite distributed lags into the transfer function.

To specify transfer functions with denominator factors, place the denominator factors after a slash (/) in the INPUT= option. For example, the following statements estimate the PRICE effect as an infinite distributed lag model with exponentially declining weights:

```
proc arima data=a;
    identify var=sales crosscorr=price;
    estimate input=( / (1) price );
run;
```

The transfer function specified by these statements is as follows:

$$
\frac{\omega_{0}}{\left(1-\delta_{1} B\right)} X_{t}
$$

This transfer function also can be written in the following equivalent form:

$$
\omega_{0}\left(1+\sum_{i=1}^{\infty} \delta_{1}^{i} B^{i}\right) X_{t}
$$

This transfer function can be used with intervention inputs. When it is used with a pulse function input, the result is an intervention effect that dies out gradually over time. When it is used with a step function input, the result is an intervention effect that increases gradually to a limiting value.

Rational Transfer Functions

By combining various numerator and denominator factors in the INPUT= option, you can specify rational transfer functions of any complexity. To specify an input with a general rational transfer function of the form

$$
\frac{\omega(B)}{\delta(B)} B^{k} X_{t}
$$

use an INPUT= option in the ESTIMATE statement of the form
input $=(k \$(\omega$-lags $) /(\delta$-lags $) \mathrm{x})$
See the section "Specifying Inputs and Transfer Functions" on page 253 for more information.

Identifying Transfer Function Models

The CROSSCORR= option of the IDENTIFY statement prints sample cross-correlation functions that show the correlation between the response series and the input series at different lags. The sample cross-correlation function can be used to help identify the form of the transfer function appropriate for an input series. See textbooks on time series analysis for information about using cross-correlation functions to identify transfer function models.

For the cross-correlation function to be meaningful, the input and response series must be filtered with a prewhitening model for the input series. See the section "Prewhitening" on page 246 for more information about this issue.

Forecasting with Input Variables

To forecast a response series by using an ARIMA model with inputs, you need values of the input series for the forecast periods. You can supply values for the input variables for the forecast periods in the DATA = data set, or you can have PROC ARIMA forecast the input variables.

If you do not have future values of the input variables in the input data set used by the FORECAST statement, the input series must be forecast before the ARIMA procedure can forecast the response series. If you fit an ARIMA model to each of the input series for which you need forecasts before fitting the model for the response series, the FORECAST statement automatically uses the ARIMA models for the input series to generate the needed forecasts of the inputs.

For example, suppose you want to forecast SALES for the next 12 months. In this example, the change in SALES is predicted as a function of the change in PRICE, plus an $\operatorname{ARMA}(1,1)$ noise process. To forecast SALES by using PRICE as an input, you also need to fit an ARIMA model for PRICE.

The following statements fit an AR(2) model to the change in PRICE before fitting and forecasting the model for SALES. The FORECAST statement automatically forecasts PRICE using this AR(2) model to get the future inputs needed to produce the forecast of SALES.

```
proc arima data=a;
    identify var=price(1);
    estimate p=2;
    identify var=sales(1) crosscorr=price(1);
    estimate p=1 q=1 input=price;
    forecast lead=12 interval=month id=date out=results;
run;
```

Fitting a model to the input series is also important for identifying transfer functions. (See the section "Prewhitening" on page 246 for more information.)

Input values from the DATA= data set and input values forecast by PROC ARIMA can be combined. For example, a model for SALES might have three input series: PRICE, INCOME, and TAXRATE. For the forecast, you assume that the tax rate will be unchanged. You have a forecast for INCOME from another source but only for the first few periods of the SALES forecast you want to make. You have no future values for PRICE, which needs to be forecast as in the preceding example.

In this situation, you include observations in the input data set for all forecast periods, with SALES and PRICE set to a missing value, with TAXRATE set to its last actual value, and with INCOME set to forecast values for the periods you have forecasts for and set to missing values for later periods. In the PROC ARIMA step, you estimate ARIMA models for PRICE and INCOME before you estimate the model for SALES, as shown in the following statements:

```
proc arima data=a;
    identify var=price(1);
    estimate p=2;
    identify var=income(1);
    estimate p=2;
    identify var=sales(1) crosscorr=( price(1) income(1) taxrate );
    estimate p=1 q=1 input=( price income taxrate );
    forecast lead=12 interval=month id=date out=results;
run;
```

In forecasting SALES, the ARIMA procedure uses as inputs the value of PRICE forecast by its ARIMA model, the value of TAXRATE found in the DATA= data set, and the value of INCOME found
in the DATA= data set, or, when the INCOME variable is missing, the value of INCOME forecast by its ARIMA model. (Because SALES is missing for future time periods, the estimation of model parameters is not affected by the forecast values for PRICE, INCOME, or TAXRATE.)

Data Requirements

PROC ARIMA can handle time series of moderate size; there should be at least 30 observations. With fewer than 30 observations, the parameter estimates might be poor. With thousands of observations, the method requires considerable computer time and memory.

Syntax: ARIMA Procedure

The ARIMA procedure uses the following statements:

```
PROC ARIMA options;
    BY variables;
    IDENTIFY VAR=variable options;
    ESTIMATE options;
    OUTLIER options;
    FORECAST options;
```

The PROC ARIMA and IDENTIFY statements are required.

Functional Summary

The statements and options that control the ARIMA procedure are summarized in Table 7.3.

Table 7.3 Functional Summary

Description	Statement	Option
Data Set Options		
specify the input data set	PROC ARIMA	DATA=
	IDENTIFY	DATA=
specify the output data set	PROC ARIMA	OUT=
	FORECAST	OUT=
include only forecasts in the output data set	FORECAST	NOOUTALL
write autocovariances to output data set	IDENTIFY	OUTCOV=
write parameter estimates to an output data set	ESTIMATE	OUTEST=
write correlation of parameter estimates	ESTIMATE	OUTCORR
write covariance of parameter estimates	ESTIMATE	OUTCOV

Table 7.3 continued

Description	Statement	Option
write estimated model to an output data set	ESTIMATE	OUTMODEL=
write statistics of fit to an output data set	ESTIMATE	OUTSTAT=

Options for Identifying the Series

difference time series and plot
IDENTIFY autocorrelations
specify response series and differencing
IDENTIFY
specify and cross-correlate input series
center data by subtracting the mean
exclude missing values
IDENTIFY
IDENTIFY
IDENTIFY
delete previous models and start IDENTIFY
specify the significance level for tests
perform tentative ARMA order identification IDENTIFY by using the ESACF method perform tentative ARMA order identification

IDENTIFY by using the MINIC method perform tentative ARMA order identification

IDENTIFY
by using the SCAN method specify the range of autoregressive model orders for estimating the error series for the MINIC method
determine the AR dimension of the SCAN, ESACF, and MINIC tables determine the MA dimension of the SCAN, ESACF, and MINIC tables perform stationarity tests selection of white noise test statistic in the IDENTIFY presence of missing values

Options for Defining and Estimating the Model

specify and estimate ARIMA models specify autoregressive part of model specify moving-average part of model specify input variables and transfer functions drop mean term from the model specify the estimation method use alternative form for transfer functions suppress degrees-of-freedom correction in variance estimates
selection of white noise test statistic in the presence of missing values

ESTIMATE ESTIMATE $\quad \mathrm{P}=$ ESTIMATE \quad Q= ESTIMATE ESTIMATE ESTIMATE ESTIMATE ESTIMATE

ESTIMATE

STATIONARITY=

VAR= CROSSCORR= CENTER NOMISS
CLEAR ALPHA= ESACF

MINIC

SCAN

PERROR=

Table 7.3 continued

Description	Statement	Option
Options for Outlier Detection specify the significance level for tests identify detected outliers with variable limit the number of outliers limit the number of outliers to a percentage of the series specify the variance estimator used for testing specify the type of level shifts	OUTLIER OUTLIER OUTLIER	OUTLIER

Plotting Control Options
request plots associated with model
PROC ARIMA PLOTS= identification, residual analysis, and forecasting

Options to Specify Parameter Values

specify autoregressive starting values
specify moving-average starting values
specify a starting value for the mean

ESTIMATE	AR=
ESTIMATE	MA=
ESTIMATE	MU $=$

Options to Control the Iterative Estimation Process

specify convergence criterion
specify the maximum number of iterations specify criterion for checking for singularity suppress the iterative estimation process omit initial observations from objective specify perturbation for numerical derivatives omit stationarity and invertibility checks

ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE

CONVERGE= MAXITER= SINGULAR= NOEST
BACKLIM=
DELTA=
NOSTABLE

Table 7.3 continued

Description	Statement	Option
use preliminary estimates as starting values for ML and ULS	ESTIMATE	NOLS
Options for Forecasting forecast the response series specify how many periods to forecast specify the ID variable specify the periodicity of the series specify size of forecast confidence limits start forecasting before end of the input data specify the variance term used to compute forecast standard errors and confidence limits control the alignment of SAS date values	FORECAST	FORECAST

PROC ARIMA Statement

PROC ARIMA options ;
The following options can be used in the PROC ARIMA statement.
DATA=SAS-data-set
specifies the name of the SAS data set that contains the time series. If different DATA= specifications appear in the PROC ARIMA and IDENTIFY statements, the one in the IDENTIFY statement is used. If the DATA= option is not specified in either the PROC ARIMA or IDENTIFY statement, the most recently created SAS data set is used.

PLOTS< (global-plot-options) > < = plot-request < (options) >>
PLOTS< (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) \gg) > controls the plots produced through ODS Graphics. When you specify only one plot request, you can omit the parentheses around the plot request.
Here are some examples:

```
plots=none
plots=all
plots (unpack)=series (corr crosscorr)
plots(only)=(series(corr crosscorr) residual(normal smooth))
```

You must enable ODS Graphics before requesting plots as shown in the following statements. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide). If you have enabled ODS Graphics but do not specify any specific plot request, then the default plots associated with each of the PROC ARIMA statements used in the program are produced. The old line printer plots are suppressed when ODS Graphics is enabled.

```
ods graphics on;
proc arima;
    identify var=y(1 12);
    estimate q=(1) (12) noint;
run;
```

Since no specific plot is requested in this program, the default plots associated with the identification and estimation stages are produced.

Global Plot Options:

The global-plot-options apply to all relevant plots generated by the ARIMA procedure. The following global-plot-options are supported:

ONLY

suppresses the default plots. Only the plots specifically requested are produced.

UNPACK

breaks a graphic that is otherwise paneled into individual component plots.

Specific Plot Options:

The following list describes the specific plots and their options.
ALL
produces all plots appropriate for the particular analysis.

NONE

suppresses all plots.

SERIES(<series-plot-options >)

produces plots associated with the identification stage of the modeling. The panel plots corresponding to the CORR and CROSSCORR options are produced by default. The following series-plot-options are available:

ACF

produces the plot of autocorrelations.
ALL
produces all the plots associated with the identification stage.

CORR
produces a panel of plots that are useful in the trend and correlation analysis of the series. The panel consists of the following:

- the time series plot
- the series-autocorrelation plot
- the series-partial-autocorrelation plot
- the series-inverse-autocorrelation plot

CROSSCORR
produces panels of cross-correlation plots.
IACF
produces the plot of inverse-autocorrelations.
PACF
produces the plot of partial-autocorrelations.

RESIDUAL(< residual-plot-options >)

produces the residuals plots. The residual correlation and normality diagnostic panels are produced by default. The following residual-plot-options are available:

ACF
produces the plot of residual autocorrelations.
ALL
produces all the residual diagnostics plots appropriate for the particular analysis.
CORR
produces a summary panel of the residual correlation diagnostics that consists of the following:

- the residual-autocorrelation plot
- the residual-partial-autocorrelation plot
- the residual-inverse-autocorrelation plot
- a plot of Ljung-Box white-noise test p-values at different lags

HIST
produces the histogram of the residuals.
IACF
produces the plot of residual inverse-autocorrelations.

NORMAL

produces a summary panel of the residual normality diagnostics that consists of the following:

- histogram of the residuals
- normal quantile plot of the residuals

PACF

produces the plot of residual partial-autocorrelations.
QQ
produces the normal quantile plot of the residuals.
SMOOTH
produces a scatter plot of the residuals against time, which has an overlaid smooth fit.

WN
produces the plot of Ljung-Box white-noise test p-values at different lags.
FORECAST(< forecast-plot-options >)
produces the forecast plots in the forecasting stage. The forecast-only plot that shows the multistep forecasts in the forecast region is produced by default.

The following forecast-plot-options are available:

ALL

produces the forecast-only plot as well as the forecast plot.

FORECAST

produces a plot that shows the one-step-ahead forecasts as well as the multistepahead forecasts.

FORECASTONLY

produces a plot that shows only the multistep-ahead forecasts in the forecast region.

OUT=SAS-data-set

specifies a SAS data set to which the forecasts are output. If different OUT= specifications appear in the PROC ARIMA and FORECAST statements, the one in the FORECAST statement is used.

BY Statement

BY variables ;

A BY statement can be used in the ARIMA procedure to process a data set in groups of observations defined by the BY variables. Note that all IDENTIFY, ESTIMATE, and FORECAST statements specified are applied to all BY groups.

Because of the need to make data-based model selections, BY-group processing is not usually done with PROC ARIMA. You usually want to use different models for the different series contained in different BY groups, and the PROC ARIMA BY statement does not let you do this.

Using a BY statement imposes certain restrictions. The BY statement must appear before the first RUN statement. If a BY statement is used, the input data must come from the data set specified in the PROC statement; that is, no input data sets can be specified in IDENTIFY statements.

When a BY statement is used with PROC ARIMA, interactive processing applies only to the first BY group. Once the end of the PROC ARIMA step is reached, all ARIMA statements specified are executed again for each of the remaining BY groups in the input data set.

IDENTIFY Statement

IDENTIFY VAR=variable options;

The IDENTIFY statement specifies the time series to be modeled, differences the series if desired, and computes statistics to help identify models to fit. Use an IDENTIFY statement for each time series that you want to model.

If other time series are to be used as inputs in a subsequent ESTIMATE statement, they must be listed in a CROSSCORR $=$ list in the IDENTIFY statement.

The following options are used in the IDENTIFY statement. The VAR= option is required.

ALPHA=significance-level

The ALPHA= option specifies the significance level for tests in the IDENTIFY statement. The default is 0.05 .

CENTER

centers each time series by subtracting its sample mean. The analysis is done on the centered data. Later, when forecasts are generated, the mean is added back. Note that centering is done after differencing. The CENTER option is normally used in conjunction with the NOCONSTANT option of the ESTIMATE statement.

CLEAR

deletes all old models. This option is useful when you want to delete old models so that the input variables are not prewhitened. (See the section "Prewhitening" on page 246 for more information.)

CROSSCORR=variable ($d 11, d 12, \ldots, d 1 k$)
CROSSCORR $=($ variable $(d 11, d 12, \ldots, d 1 k) \ldots$ variable ($d 21, d 22, \ldots, d 2 k)$)
names the variables cross-correlated with the response variable given by the VAR= specification.

Each variable name can be followed by a list of differencing lags in parentheses, the same as for the VAR $=$ specification. If differencing is specified for a variable in the CROSSCORR= list, the differenced series is cross-correlated with the VAR= option series, and the differenced series is used when the ESTIMATE statement INPUT= option refers to the variable.

DATA=SAS-data-set

specifies the input SAS data set that contains the time series. If the DATA= option is omitted, the DATA= data set specified in the PROC ARIMA statement is used; if the DATA= option is omitted from the PROC ARIMA statement as well, the most recently created data set is used.

ESACF

computes the extended sample autocorrelation function and uses these estimates to tentatively identify the autoregressive and moving-average orders of mixed models.

The ESACF option generates two tables. The first table displays extended sample autocorrelation estimates, and the second table displays probability values that can be used to test the significance of these estimates. The $\mathrm{P}=\left(p_{\min }: p_{\max }\right)$ and $\mathrm{Q}=\left(q_{\min }: q_{\max }\right)$ options determine the size of the table.

The autoregressive and moving-average orders are tentatively identified by finding a triangular pattern in which all values are insignificant. The ARIMA procedure finds these patterns based on the IDENTIFY statement ALPHA= option and displays possible recommendations for the orders.

The following code generates an ESACF table with dimensions of $\mathrm{p}=(0: 7)$ and $\mathrm{q}=(0: 8)$.

```
proc arima data=test;
    identify var=x esacf p=(0:7) q=(0:8);
run;
```

See the section "The ESACF Method" on page 241 for more information.

MINIC

uses information criteria or penalty functions to provide tentative ARMA order identification. The MINIC option generates a table that contains the computed information criterion associated with various ARMA model orders. The PERROR $=\left(p_{\epsilon, \min }: p_{\epsilon, \text { max }}\right)$ option determines the range of the autoregressive model orders used to estimate the error series. The $\mathrm{P}=\left(p_{\min }: p_{\max }\right)$ and $\mathrm{Q}=\left(q_{\min }: q_{\max }\right)$ options determine the size of the table. The ARMA orders are tentatively identified by those orders that minimize the information criterion.

The following statements generate a MINIC table with default dimensions of $\mathrm{p}=(0: 5)$ and $\mathrm{q}=(0: 5)$ and with the error series estimated by an autoregressive model with an order, p_{ϵ}, that minimizes the AIC in the range from 8 to 11 .

```
proc arima data=test;
    identify var=x minic perror=(8:11);
run;
```

See the section "The MINIC Method" on page 243 for more information.

NLAG=number

indicates the number of lags to consider in computing the autocorrelations and crosscorrelations. To obtain preliminary estimates of an $\operatorname{ARIMA}(p, d, q)$ model, the $\operatorname{NLAG}=$ value must be at least $p+q+d$. The number of observations must be greater than or equal to the NLAG= value. The default value for NLAG= is 24 or one-fourth the number of observations, whichever is less. Even though the NLAG= value is specified, the NLAG= value can be changed according to the data set.

NOMISS

uses only the first continuous sequence of data with no missing values. By default, all observations are used.

NOPRINT

suppresses the normal printout (including the correlation plots) generated by the IDENTIFY statement.

OUTCOV=SAS-data-set
writes the autocovariances, autocorrelations, inverse autocorrelations, partial autocorrelations, and cross covariances to an output SAS data set. If the OUTCOV= option is not specified, no covariance output data set is created. See the section "OUTCOV= Data Set" on page 263 for more information.
$\mathbf{P}=\left(p_{\text {min }}: p_{\text {max }}\right)$
see the ESACF, MINIC, and SCAN options for details.

PERROR=($\left.p_{\epsilon, \text { min }}: p_{\epsilon, \max }\right)$

determines the range of the autoregressive model orders used to estimate the error series in MINIC, a tentative ARMA order identification method. See the section "The MINIC Method" on page 243 for more information. By default $p_{\epsilon, \min }$ is set to $p_{\max }$ and $p_{\epsilon, \max }$ is set to $p_{\max }+q_{\text {max }}$, where $p_{\text {max }}$ and $q_{\max }$ are the maximum settings of the $\mathrm{P}=$ and $\mathrm{Q}=$ options on the IDENTIFY statement.
$\mathbf{Q}=\left(q_{\min }: q_{\max }\right)$
see the ESACF, MINIC, and SCAN options for details.

SCAN

computes estimates of the squared canonical correlations and uses these estimates to tentatively identify the autoregressive and moving-average orders of mixed models.

The SCAN option generates two tables. The first table displays squared canonical correlation estimates, and the second table displays probability values that can be used to test the significance of these estimates. The $\mathrm{P}=\left(p_{\min }: p_{\max }\right)$ and $\mathrm{Q}=\left(q_{\min }: q_{\max }\right)$ options determine the size of each table.

The autoregressive and moving-average orders are tentatively identified by finding a rectangular pattern in which all values are insignificant. The ARIMA procedure finds these patterns based on the IDENTIFY statement ALPHA= option and displays possible recommendations for the orders.

The following code generates a SCAN table with default dimensions of $\mathrm{p}=(0: 5)$ and $\mathrm{q}=(0: 5)$. The recommended orders are based on a significance level of 0.1 .

```
proc arima data=test;
    identify var=x scan alpha=0.1;
run;
```

See the section "The SCAN Method" on page 244 for more information.

STATIONARITY=

performs stationarity tests. Stationarity tests can be used to determine whether differencing terms should be included in the model specification. In each stationarity test, the autoregressive orders can be specified by a range, test $=a r_{\text {max }}$, or as a list of values, test $=\left(a r_{1}, \ldots, a r_{n}\right)$, where test is ADF, PP, or RW. The default is $(0,1,2)$.

See the section "Stationarity Tests" on page 246 for more information.

STATIONARITY=(ADF= $A R$ orders DLAG= s)

STATIONARITY=(DICKEY= $A R$ orders DLAG= s)
performs augmented Dickey-Fuller tests. If the DLAG $=s$ option is specified with s is greater than one, seasonal Dickey-Fuller tests are performed. The maximum allowable value of s is 12. The default value of s is 1 . The following code performs augmented Dickey-Fuller tests with autoregressive orders 2 and 5 .

```
proc arima data=test;
    identify var=x stationarity=(adf=(2,5));
run;
```


STATIONARITY=(PP= AR orders)

STATIONARITY=(PHILLIPS= $A R$ orders)
performs Phillips-Perron tests. The following statements perform augmented Phillips-Perron tests with autoregressive orders ranging from 0 to 6 .

```
proc arima data=test;
    identify var=x stationarity=(pp=6);
run;
```


STATIONARITY=(RW=AR orders)

STATIONARITY=(RANDOMWALK=AR orders)
performs random-walk-with-drift tests. The following statements perform random-walk-with-drift tests with autoregressive orders ranging from 0 to 2 .

```
proc arima data=test;
    identify var=x stationarity=(rw);
run;
```


VAR=variable

VAR= variable ($d 1, d 2, \ldots, d k$)
names the variable that contains the time series to analyze. The VAR=option is required.
A list of differencing lags can be placed in parentheses after the variable name to request that the series be differenced at these lags. For example, VAR $=X(1)$ takes the first differences of X . VAR=X $(1,1)$ requests that X be differenced twice, both times with lag 1 , producing a second difference series, which is
$\left(X_{t}-X_{t-1}\right)-\left(X_{t-1}-X_{t-2}\right)=X_{t}-2 X_{t-1}+X_{t-2}$.
$\mathrm{VAR}=\mathrm{X}(2)$ differences X once at lag two $\left(X_{t}-X_{t-2}\right)$.
If differencing is specified, it is the differenced series that is processed by any subsequent ESTIMATE statement.

WHITENOISE=ST | IGNOREMISS

specifies the type of test statistic that is used in the white noise test of the series when the series contains missing values. If WHITENOISE=IGNOREMISS, the standard Ljung-Box test statistic is used. If WHITENOISE=ST, a modification of this statistic suggested by Stoffer and Toloi (1992) is used. The default is WHITENOISE=ST.

ESTIMATE Statement

< label:>ESTIMATE options;
The ESTIMATE statement specifies an ARMA model or transfer function model for the response variable specified in the previous IDENTIFY statement, and produces estimates of its parameters. The ESTIMATE statement also prints diagnostic information by which to check the model. The label in the ESTIMATE statement is optional. Include an ESTIMATE statement for each model that you want to estimate.

Options used in the ESTIMATE statement are described in the following sections.

Options for Defining the Model and Controlling Diagnostic Statistics

The following options are used to define the model to be estimated and to control the output that is printed.

ALTPARM

specifies the alternative parameterization of the overall scale of transfer functions in the model. See the section "Alternative Model Parameterization" on page 253 for details.

INPUT=variable

INPUT=(transfer-function variable ...)
specifies input variables and their transfer functions.
The variables used on the INPUT= option must be included in the CROSSCORR= list in the previous IDENTIFY statement. If any differencing is specified in the CROSSCORR= list, then the differenced series is used as the input to the transfer function.

The transfer function specification for an input variable is optional. If no transfer function is specified, the input variable enters the model as a simple regressor. If specified, the transfer function specification has the following syntax:
$S \$\left(L_{1,1}, L_{1,2}, \ldots\right)\left(L_{2,1}, \ldots\right) \ldots /\left(L_{j, 1}, \ldots\right) \ldots$
Here, S is a shift or lag of the input variable, the terms before the slash $(/)$ are numerator factors, and the terms after the slash (/) are denominator factors of the transfer function. All three parts are optional. See the section "Specifying Inputs and Transfer Functions" on page 253 for details.

METHOD=value

specifies the estimation method to use. METHOD=ML specifies the maximum likelihood
method. METHOD=ULS specifies the unconditional least squares method. METHOD=CLS specifies the conditional least squares method. METHOD=CLS is the default. See the section "Estimation Details" on page 248 for more information.

NOCONSTANT

NOINT

suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the parameter μ is omitted.)

NODF

estimates the variance by dividing the error sum of squares (SSE) by the number of residuals. The default is to divide the SSE by the number of residuals minus the number of free parameters in the model.

NOPRINT

suppresses the normal printout generated by the ESTIMATE statement. If the NOPRINT option is specified for the ESTIMATE statement, then any error and warning messages are printed to the SAS log.

$\mathbf{P}=$ order

$\mathbf{P}=(\operatorname{lag}, \ldots, \operatorname{lag}) \ldots(\operatorname{lag}, \ldots, \operatorname{lag})$
specifies the autoregressive part of the model. By default, no autoregressive parameters are fit.
$\mathrm{P}=\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ defines a model with autoregressive parameters at the specified lags. $\mathrm{P}=$ order is equivalent to $\mathrm{P}=(1,2, \ldots$, order $)$.

A concatenation of parenthesized lists specifies a factored model. For example, $\mathrm{P}=(1,2,5)(6,12)$ specifies the autoregressive model

$$
\left(1-\phi_{1,1} B-\phi_{1,2} B^{2}-\phi_{1,3} B^{5}\right)\left(1-\phi_{2,1} B^{6}-\phi_{2,2} B^{12}\right)
$$

PLOT

plots the residual autocorrelation functions. The sample autocorrelation, the sample inverse autocorrelation, and the sample partial autocorrelation functions of the model residuals are plotted.

Q=order

Q=(lag, ..., lag) ... (lag, . . . lag)
specifies the moving-average part of the model. By default, no moving-average part is included in the model.
$\mathrm{Q}=\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ defines a model with moving-average parameters at the specified lags. $\mathrm{Q}=$ order is equivalent to $\mathrm{Q}=(1,2, \ldots$, order $)$. A concatenation of parenthesized lists specifies a factored model. The interpretation of factors and lags is the same as for the $\mathrm{P}=$ option.

WHITENOISE=ST | IGNOREMISS

specifies the type of test statistic that is used in the white noise test of the series when the series contains missing values. If WHITENOISE=IGNOREMISS, the standard Ljung-Box test statistic is used. If WHITENOISE=ST, a modification of this statistic suggested by Stoffer and Toloi (1992) is used. The default is WHITENOISE=ST.

Options for Output Data Sets

The following options are used to store results in SAS data sets:

OUTEST=SAS-data-set

writes the parameter estimates to an output data set. If the OUTCORR or OUTCOV option is used, the correlations or covariances of the estimates are also written to the OUTEST= data set. See the section "OUTEST= Data Set" on page 264 for a description of the OUTEST= output data set.

OUTCORR

writes the correlations of the parameter estimates to the OUTEST= data set.

OUTCOV

writes the covariances of the parameter estimates to the OUTEST= data set.

OUTMODEL=SAS-data-set

writes the model and parameter estimates to an output data set. If OUTMODEL= is not specified, no model output data set is created. See the section "OUTMODEL= SAS Data Set" on page 267 for a description of the OUTMODEL= output data set.

OUTSTAT=SAS-data-set

writes the model diagnostic statistics to an output data set. If OUTSTAT= is not specified, no statistics output data set is created. See the section "OUTSTAT= Data Set" on page 268 for a description of the OUTSTAT= output data set.

Options to Specify Parameter Values

The following options enable you to specify values for the model parameters. These options can provide starting values for the estimation process, or you can specify fixed parameters for use in the FORECAST stage and suppress the estimation process with the NOEST option. By default, the ARIMA procedure finds initial parameter estimates and uses these estimates as starting values in the iterative estimation process.

If values for any parameters are specified, values for all parameters should be given. The number of values given must agree with the model specifications.

AR=value ...

lists starting values for the autoregressive parameters. See the section "Initial Values" on page 254 for more information.

INITVAL=(initializer-spec variable ...)
specifies starting values for the parameters in the transfer function parts of the model. See the section "Initial Values" on page 254 for more information.

MA=value ...
lists starting values for the moving-average parameters. See the section "Initial Values" on page 254 for more information.

MU=value

specifies the MU parameter.

NOEST

uses the values specified with the $\mathrm{AR}=, \mathrm{MA}=$, $\mathrm{INITVAL}=$, and $\mathrm{MU}=$ options as final parameter values. The estimation process is suppressed except for estimation of the residual variance. The specified parameter values are used directly by the next FORECAST statement. When NOEST is specified, standard errors, t values, and the correlations between estimates are displayed as 0 or missing. (The NOEST option is useful, for example, when you want to generate forecasts that correspond to a published model.)

Options to Control the Iterative Estimation Process

The following options can be used to control the iterative process of minimizing the error sum of squares or maximizing the log-likelihood function. These tuning options are not usually needed but can be useful if convergence problems arise.

BACKLIM=-n

omits the specified number of initial residuals from the sum of squares or likelihood function. Omitting values can be useful for suppressing transients in transfer function models that are sensitive to start-up values.

CONVERGE=value

specifies the convergence criterion. Convergence is assumed when the largest change in the estimate for any parameter is less that the CONVERGE= option value. If the absolute value of the parameter estimate is greater than 0.01 , the relative change is used; otherwise, the absolute change in the estimate is used. The default is CONVERGE=0.001.

DELTA=value

specifies the perturbation value for computing numerical derivatives. The default is DELTA=0.001.

GRID

prints the error sum of squares (SSE) or concentrated log-likelihood surface in a small grid of the parameter space around the final estimates. For each pair of parameters, the SSE is printed for the nine parameter-value combinations formed by the grid, with a center at the final estimates and with spacing given by the GRIDVAL= specification. The GRID option can help you judge whether the estimates are truly at the optimum, since the estimation process does not always converge. For models with a large number of parameters, the GRID option produces voluminous output.

GRIDVAL=number

controls the spacing in the grid printed by the GRID option. The default is GRIDVAL=0.005.

```
MAXITER=n
MAXIT=n
        specifies the maximum number of iterations allowed. The default is MAXITER=50.
```


NOLS

begins the maximum likelihood or unconditional least squares iterations from the preliminary estimates rather than from the conditional least squares estimates that are produced after four iterations. See the section "Estimation Details" on page 248 for more information.

NOSTABLE

specifies that the autoregressive and moving-average parameter estimates for the noise part of the model not be restricted to the stationary and invertible regions, respectively. See the section "Stationarity and Invertibility" on page 255 for more information.

PRINTALL

prints preliminary estimation results and the iterations in the final estimation process.

NOTFSTABLE

specifies that the parameter estimates for the denominator polynomial of the transfer function part of the model not be restricted to the stability region. See the section "Stationarity and Invertibility" on page 255 for more information.

SINGULAR=value

specifies the criterion for checking singularity. If a pivot of a sweep operation is less than the SINGULAR= value, the matrix is deemed singular. Sweep operations are performed on the Jacobian matrix during final estimation and on the covariance matrix when preliminary estimates are obtained. The default is SINGULAR=1E-7.

OUTLIER Statement

OUTLIER options ;

The OUTLIER statement can be used to detect shifts in the level of the response series that are not accounted for by the previously estimated model. An ESTIMATE statement must precede the OUTLIER statement. The following options are used in the OUTLIER statement:

TYPE=ADDITIVE

TYPE=SHIFT

TYPE=TEMP $\left(d_{1}, \ldots, d_{k}\right)$
TYPE=(<ADDITIVE ><SHIFT > < TEMP $\left.\left(d_{1}, \ldots, d_{k}\right)\right)$ >
specifies the types of level shifts to search for. The default is TYPE=(ADDITIVE SHIFT), which requests searching for additive outliers and permanent level shifts. The option $\operatorname{TEMP}\left(d_{1}, \ldots, d_{k}\right)$ requests searching for temporary changes in the level of durations d_{1}, \ldots, d_{k}. These options can also be abbreviated as AO, LS, and TC.

ALPHA=significance-level

specifies the significance level for tests in the OUTLIER statement. The default is 0.05 .

SIGMA=ROBUST | MSE

specifies the type of error variance estimate to use in the statistical tests performed during the outlier detection. SIGMA=MSE corresponds to the usual mean squared error (MSE) estimate,
and SIGMA=ROBUST corresponds to a robust estimate of the error variance. The default is SIGMA=ROBUST.

MAXNUM=number

limits the number of outliers to search. The default is MAXNUM=5.

MAXPCT=number

limits the number of outliers to search for according to a percentage of the series length. The default is MAXPCT=2. When both the MAXNUM= and MAXPCT= options are specified, the minimum of the two search numbers is used.

ID=Date-Time ID variable

specifies a SAS date, time, or datetime identification variable to label the detected outliers. This variable must be present in the input data set.

The following examples illustrate a few possibilities for the OUTLIER statement.
The most basic usage, shown as follows, sets all the options to their default values.

```
outlier;
```

That is, it is equivalent to

```
outlier type=(ao ls) alpha=0.05 sigma=robust maxnum=5 maxpct=2;
```

The following statement requests a search for permanent level shifts and for temporary level changes of durations 6 and 12 . The search is limited to at most three changes and the significance level of the underlying tests is 0.001 . MSE is used as the estimate of error variance. It also requests labeling of the detected shifts using an ID variable date.

```
outlier type=(ls tc(6 12)) alpha=0.001 sigma=mse maxnum=3 ID=date;
```


FORECAST Statement

FORECAST options;

The FORECAST statement generates forecast values for a time series by using the parameter estimates produced by the previous ESTIMATE statement. See the section "Forecasting Details" on page 257 for more information about calculating forecasts.

The following options can be used in the FORECAST statement:

ALIGN=option

controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the following values: BEGINNING|BEG|B, MIDDLEIMID|M, and ENDINGIENDIE. BEGINNING is the default.

ALPHA=n

sets the size of the forecast confidence limits. The ALPHA= value must be between 0 and

1. When you specify $\operatorname{ALPHA}=\alpha$, the upper and lower confidence limits have a $1-\alpha$ confidence level. The default is ALPHA=0.05, which produces 95% confidence intervals. ALPHA values are rounded to the nearest hundredth.

$B A C K=n$

specifies the number of observations before the end of the data where the multistep forecasts are to begin. The BACK= option value must be less than or equal to the number of observations minus the number of parameters.

The default is $\mathrm{BACK}=0$, which means that the forecast starts at the end of the available data. The end of the data is the last observation for which a noise value can be calculated. If there are no input series, the end of the data is the last nonmissing value of the response time series. If there are input series, this observation can precede the last nonmissing value of the response variable, since there may be missing values for some of the input series.

ID=variable

names a variable in the input data set that identifies the time periods associated with the observations. The $\mathrm{ID}=$ variable is used in conjunction with the INTERVAL= option to extrapolate ID values from the end of the input data to identify forecast periods in the OUT= data set.

If the INTERVAL= option specifies an interval type, the ID variable must be a SAS date or datetime variable with the spacing between observations indicated by the INTERVAL= value. If the INTERVAL= option is not used, the last input value of the $\mathrm{ID}=$ variable is incremented by one for each forecast period to extrapolate the ID values for forecast observations.

INTERVAL=interval

INTERVAL=n

specifies the time interval between observations. See Chapter 4, "Date Intervals, Formats, and Functions," for information about valid INTERVAL= values.

The value of the INTERVAL= option is used by PROC ARIMA to extrapolate the ID values for forecast observations and to check that the input data are in order with no missing periods. See the section "Specifying Series Periodicity" on page 259 for more details.

LEAD=n

specifies the number of multistep forecast values to compute. For example, if $\mathrm{LEAD}=10$, PROC ARIMA forecasts for ten periods beginning with the end of the input series (or earlier if $\mathrm{BACK}=$ is specified). It is possible to obtain fewer than the requested number of forecasts if a transfer function model is specified and insufficient data are available to compute the forecast. The default is $\mathrm{LEAD}=24$.

NOOUTALL

includes only the final forecast observations in the OUT= output data set, not the one-step forecasts for the data before the forecast period.

NOPRINT

suppresses the normal printout of the forecast and associated values.
OUT=SAS-data-set
writes the forecast (and other values) to an output data set. If OUT= is not specified, the OUT=
data set specified in the PROC ARIMA statement is used. If OUT= is also not specified in the PROC ARIMA statement, no output data set is created. See the section "OUT= Data Set" on page 262 for more information.

PRINTALL

prints the FORECAST computation throughout the whole data set. The forecast values for the data before the forecast period (specified by the BACK= option) are one-step forecasts.

SIGSQ=value

specifies the variance term used in the formula for computing forecast standard errors and confidence limits. The default value is the variance estimate computed by the preceding ESTIMATE statement. This option is useful when you wish to generate forecast standard errors and confidence limits based on a published model. It would often be used in conjunction with the NOEST option in the preceding ESTIMATE statement.

Details: ARIMA Procedure

The Inverse Autocorrelation Function

The sample inverse autocorrelation function (SIACF) plays much the same role in ARIMA modeling as the sample partial autocorrelation function (SPACF), but it generally indicates subset and seasonal autoregressive models better than the SPACF.

Additionally, the SIACF can be useful for detecting over-differencing. If the data come from a nonstationary or nearly nonstationary model, the SIACF has the characteristics of a noninvertible moving-average. Likewise, if the data come from a model with a noninvertible moving average, then the SIACF has nonstationary characteristics and therefore decays slowly. In particular, if the data have been over-differenced, the SIACF looks like a SACF from a nonstationary process.

The inverse autocorrelation function is not often discussed in textbooks, so a brief description is given here. More complete discussions can be found in Cleveland (1972), Chatfield (1980), and Priestly (1981).

Let W_{t} be generated by the $\operatorname{ARMA}(p, q)$ process

$$
\phi(B) W_{t}=\theta(B) a_{t}
$$

where a_{t} is a white noise sequence. If $\theta(B)$ is invertible (that is, if θ considered as a polynomial in B has no roots less than or equal to 1 in magnitude), then the model

$$
\theta(B) Z_{t}=\phi(B) a_{t}
$$

is also a valid ARMA (q, p) model. This model is sometimes referred to as the dual model. The autocorrelation function (ACF) of this dual model is called the inverse autocorrelation function (IACF) of the original model.

Notice that if the original model is a pure autoregressive model, then the IACF is an ACF that corresponds to a pure moving-average model. Thus, it cuts off sharply when the lag is greater than p; this behavior is similar to the behavior of the partial autocorrelation function (PACF).

The sample inverse autocorrelation function (SIACF) is estimated in the ARIMA procedure by the following steps. A high-order autoregressive model is fit to the data by means of the Yule-Walker equations. The order of the autoregressive model used to calculate the SIACF is the minimum of the $\mathrm{NLAG}=$ value and one-half the number of observations after differencing. The SIACF is then calculated as the autocorrelation function that corresponds to this autoregressive operator when treated as a moving-average operator. That is, the autoregressive coefficients are convolved with themselves and treated as autocovariances.

Under certain conditions, the sampling distribution of the SIACF can be approximated by the sampling distribution of the SACF of the dual model (Bhansali 1980). In the plots generated by ARIMA, the confidence limit marks (.) are located at $\pm 2 / \sqrt{n}$. These limits bound an approximate 95% confidence interval for the hypothesis that the data are from a white noise process.

The Partial Autocorrelation Function

The approximation for a standard error for the estimated partial autocorrelation function at lag k is based on a null hypothesis that a pure autoregressive Gaussian process of order $k-1$ generated the time series. This standard error is $1 / \sqrt{n}$ and is used to produce the approximate 95% confidence intervals depicted by the dots in the plot.

The Cross-Correlation Function

The autocorrelation and partial and inverse autocorrelation functions described in the preceding sections help when you want to model a series as a function of its past values and past random errors. When you want to include the effects of past and current values of other series in the model, the correlations of the response series and the other series must be considered.

The CROSSCORR= option in the IDENTIFY statement computes cross-correlations of the VAR= series with other series and makes these series available for use as inputs in models specified by later ESTIMATE statements.

When the CROSSCORR= option is used, PROC ARIMA prints a plot of the cross-correlation function for each variable in the CROSSCORR= list. This plot is similar in format to the other correlation plots, but it shows the correlation between the two series at both lags and leads. For example,

```
identify var=y crosscorr=x ...;
```

plots the cross-correlation function of Y and $\mathrm{X}, \operatorname{Cor}\left(y_{t}, x_{t-s}\right)$, for $s=-L$ to L, where L is the value of the NLAG= option. Study of the cross-correlation functions can indicate the transfer functions through which the input series should enter the model for the response series.

The cross-correlation function is computed after any specified differencing has been done. If differencing is specified for the VAR= variable or for a variable in the CROSSCORR= list, it is the differenced series that is cross-correlated (and the differenced series is processed by any following ESTIMATE statement).

For example,

```
identify var=y(1) crosscorr=x(1);
```

computes the cross-correlations of the changes in Y with the changes in X . When differencing is specified, the subsequent ESTIMATE statement models changes in the variables rather than the variables themselves.

The ESACF Method

The extended sample autocorrelation function (ESACF) method can tentatively identify the orders of a stationary or nonstationary ARMA process based on iterated least squares estimates of the autoregressive parameters. Tsay and Tiao (1984) proposed the technique, and Choi (1992) provides useful descriptions of the algorithm.

Given a stationary or nonstationary time series $\left\{z_{t}: 1 \leq t \leq n\right\}$ with mean corrected form $\tilde{z}_{t}=z_{t}-\mu_{z}$ with a true autoregressive order of $p+d$ and with a true moving-average order of q, you can use the ESACF method to estimate the unknown orders $p+d$ and q by analyzing the autocorrelation functions associated with filtered series of the form

$$
w_{t}^{(m, j)}=\hat{\Phi}_{(m, j)}(B) \tilde{z}_{t}=\tilde{z}_{t}-\sum_{i=1}^{m} \hat{\phi}_{i}^{(m, j)} \tilde{z}_{t-i}
$$

where B represents the backshift operator, where $m=p_{\min }, \ldots, p_{\max }$ are the autoregressive test orders, where $j=q_{\min }+1, \ldots, q_{\max }+1$ are the moving-average test orders, and where $\hat{\phi}_{i}^{(m, j)}$ are the autoregressive parameter estimates under the assumption that the series is an $\operatorname{ARMA}(m, j)$ process.

For purely autoregressive models $(j=0)$, ordinary least squares (OLS) is used to consistently estimate $\hat{\phi}_{i}^{(m, 0)}$. For ARMA models, consistent estimates are obtained by the iterated least squares recursion formula, which is initiated by the pure autoregressive estimates:

$$
\hat{\phi}_{i}^{(m, j)}=\hat{\phi}_{i}^{(m+1, j-1)}-\hat{\phi}_{i-1}^{(m, j-1)} \frac{\hat{\phi}_{m+1}^{(m+1, j-1)}}{\hat{\phi}_{m}^{(m, j-1)}}
$$

The j th lag of the sample autocorrelation function of the filtered series $w_{t}^{(m, j)}$ is the extended sample autocorrelation function, and it is denoted as $r_{j(m)}=r_{j}\left(w^{(m, j)}\right)$.

The standard errors of $r_{j(m)}$ are computed in the usual way by using Bartlett's approximation of the variance of the sample autocorrelation function, $\operatorname{var}\left(r_{j(m)}\right) \approx\left(1+\sum_{t=1}^{j-1} r_{j}^{2}\left(w^{(m, j)}\right)\right)$.

If the true model is an ARMA $(p+d, q)$ process, the filtered series $w_{t}^{(m, j)}$ follows an MA (q) model for $j \geq q$ so that

$$
\begin{array}{ll}
r_{j(p+d)} \approx 0 & j>q \\
r_{j(p+d)} \neq 0 & j=q
\end{array}
$$

Additionally, Tsay and Tiao (1984) show that the extended sample autocorrelation satisfies

$$
\begin{aligned}
& r_{j(m)} \approx 0 \quad j-q>m-p-d \leq 0 \\
& r_{j(m)} \neq c(m-p-d, j-q) \quad 0 \leq j-q \leq m-p-d
\end{aligned}
$$

where $c(m-p-d, j-q)$ is a nonzero constant or a continuous random variable bounded by -1 and 1.

An ESACF table is then constructed by using the $r_{j(m)}$ for $m=p_{\min , \ldots, p_{\max } \text { and }}$ $j=q_{\text {min }}+1, \ldots, q_{\max }+1$ to identify the ARMA orders (see Table 7.4). The orders are tentatively identified by finding a right (maximal) triangular pattern with vertices located at ($p+d, q$) and $\left(p+d, q_{\max }\right)$ and in which all elements are insignificant (based on asymptotic normality of the autocorrelation function). The vertex $(p+d, q)$ identifies the order. Table 7.5 depicts the theoretical pattern associated with an $\operatorname{ARMA}(1,2)$ series.

Table 7.4 ESACF Table

	MA					
AR	0	1	2	3	\cdot	\cdot
0	$r_{1(0)}$	$r_{2(0)}$	$r_{3(0)}$	$r_{4(0)}$	\cdot	\cdot
1	$r_{1(1)}$	$r_{2(1)}$	$r_{3(1)}$	$r_{4(1)}$	\cdot	\cdot
2	$r_{1(2)}$	$r_{2(2)}$	$r_{3(2)}$	$r_{4(2)}$	\cdot	\cdot
3	$r_{1(3)}$	$r_{2(3)}$	$r_{3(3)}$	$r_{4(3)}$	\cdot	\cdot
\cdot						
\cdot						

Table 7.5 Theoretical ESACF Table for an ARMA(1,2) Series

	MA							
AR	0	1	2	3	4	5	6	7
0	$*$	X	X	X	X	X	X	X
1	$*$	X	0	0	0	0	0	0
2	$*$	X	X	0	0	0	0	0
3	$*$	X	X	X	0	0	0	0
4	$*$	X	X	X	X	0	0	0
X = significant terms $0=$ insignificant terms a no pattern								

The MINIC Method

The minimum information criterion (MINIC) method can tentatively identify the order of a stationary and invertible ARMA process. Note that Hannan and Rissannen (1982) proposed this method, and Box, Jenkins, and Reinsel (1994) and Choi (1992) provide useful descriptions of the algorithm.

Given a stationary and invertible time series $\left\{z_{t}: 1 \leq t \leq n\right\}$ with mean corrected form $\tilde{z}_{t}=z_{t}-\mu_{z}$ with a true autoregressive order of p and with a true moving-average order of q, you can use the MINIC method to compute information criteria (or penalty functions) for various autoregressive and moving average orders. The following paragraphs provide a brief description of the algorithm.

If the series is a stationary and invertible $\operatorname{ARMA}(p, q)$ process of the form

$$
\Phi_{(p, q)}(B) \tilde{z}_{t}=\Theta_{(p, q)}(B) \epsilon_{t}
$$

the error series can be approximated by a high-order AR process

$$
\hat{\epsilon}_{t}=\hat{\Phi}_{\left(p_{\epsilon}, q\right)}(B) \tilde{z}_{t} \approx \epsilon_{t}
$$

where the parameter estimates $\hat{\Phi}_{\left(p_{\epsilon}, q\right)}$ are obtained from the Yule-Walker estimates. The choice of the autoregressive order p_{ϵ} is determined by the order that minimizes the Akaike information criterion (AIC) in the range $p_{\epsilon, \min } \leq p_{\epsilon} \leq p_{\epsilon, \max }$

$$
\operatorname{AIC}\left(p_{\epsilon}, 0\right)=\ln \left(\tilde{\sigma}_{\left(p_{\epsilon}, 0\right)}^{2}\right)+2\left(p_{\epsilon}+0\right) / n
$$

where

$$
\tilde{\sigma}_{\left(p_{\epsilon}, 0\right)}^{2}=\frac{1}{n} \sum_{t=p_{\epsilon}+1}^{n} \hat{\epsilon}_{t}^{2}
$$

Note that Hannan and Rissannen (1982) use the Bayesian information criterion (BIC) to determine the autoregressive order used to estimate the error series. Box, Jenkins, and Reinsel (1994) and Choi (1992) recommend the AIC.

Once the error series has been estimated for autoregressive test order $m=p_{\text {min }}, \ldots, p_{\text {max }}$ and for moving-average test order $j=q_{\min }, \ldots, q_{\max }$, the OLS estimates $\hat{\Phi}_{(m, j)}$ and $\hat{\Theta}_{(m, j)}$ are computed from the regression model

$$
\tilde{z}_{t}=\sum_{i=1}^{m} \phi_{i}^{(m, j)} \tilde{z}_{t-i}+\sum_{k=1}^{j} \theta_{k}^{(m, j)} \hat{\epsilon}_{t-k}+\text { error }
$$

From the preceding parameter estimates, the BIC is then computed

$$
B I C(m, j)=\ln \left(\tilde{\sigma}_{(m, j)}^{2}\right)+2(m+j) \ln (n) / n
$$

where

$$
\tilde{\sigma}_{(m, j)}^{2}=\frac{1}{n} \sum_{t=t_{0}}^{n}\left(\tilde{z}_{t}-\sum_{i=1}^{m} \phi_{i}^{(m, j)} \tilde{z}_{t-i}+\sum_{k=1}^{j} \theta_{k}^{(m, j)} \hat{\epsilon}_{t-k}\right)
$$

where $t_{0}=p_{\epsilon}+\max (m, j)$.
A MINIC table is then constructed using $\operatorname{BIC}(m, j)$; see Table 7.6. If $p_{\text {max }}>p_{\epsilon, \min }$, the preceding regression might fail due to linear dependence on the estimated error series and the mean-corrected series. Values of $B I C(m, j)$ that cannot be computed are set to missing. For large autoregressive and moving-average test orders with relatively few observations, a nearly perfect fit can result. This condition can be identified by a large negative $\operatorname{BIC}(m, j)$ value.

Table 7.6 MINIC Table

	MA					
AR	0	1	2	3	\cdot	\cdot
0	$B I C(0,0)$	$B I C(0,1)$	$B I C(0,2)$	$B I C(0,3)$	\cdot	\cdot
1	$B I C(1,0)$	$B I C(1,1)$	$B I C(1,2)$	$B I C(1,3)$	\cdot	\cdot
2	$B I C(2,0)$	$B I C(2,1)$	$B I C(2,2)$	$B I C(2,3)$	\cdot	\cdot
3	$B I C(3,0)$	$B I C(3,1)$	$B I C(3,2)$	$B I C(3,3)$	\cdot	\cdot
\cdot						
\cdot						

The SCAN Method

The smallest canonical (SCAN) correlation method can tentatively identify the orders of a stationary or nonstationary ARMA process. Tsay and Tiao (1985) proposed the technique, and Box, Jenkins, and Reinsel (1994) and Choi (1992) provide useful descriptions of the algorithm.

Given a stationary or nonstationary time series $\left\{z_{t}: 1 \leq t \leq n\right\}$ with mean corrected form $\tilde{z}_{t}=z_{t}-\mu_{z}$ with a true autoregressive order of $p+d$ and with a true moving-average order of q, you can use the SCAN method to analyze eigenvalues of the correlation matrix of the ARMA process. The following paragraphs provide a brief description of the algorithm.

For autoregressive test order $m=p_{\min }, \ldots, p_{\max }$ and for moving-average test order $j=q_{\min }, \ldots, q_{\max }$, perform the following steps.

1. Let $Y_{m, t}=\left(\tilde{z}_{t}, \tilde{z}_{t-1}, \ldots, \tilde{z}_{t-m}\right)^{\prime}$. Compute the following $(m+1) \times(m+1)$ matrix

$$
\begin{aligned}
\hat{\beta}(m, j+1) & =\left(\sum_{t} Y_{m, t-j-1} Y_{m, t-j-1}^{\prime}\right)^{-1}\left(\sum_{t} Y_{m, t-j-1} Y_{m, t}^{\prime}\right) \\
\hat{\beta}^{*}(m, j+1) & =\left(\sum_{t} Y_{m, t} Y_{m, t}^{\prime}\right)^{-1}\left(\sum_{t} Y_{m, t} Y_{m, t-j-1}^{\prime}\right) \\
\hat{A}^{*}(m, j) & =\hat{\beta}^{*}(m, j+1) \hat{\beta}(m, j+1)
\end{aligned}
$$

where t ranges from $j+m+2$ to n.
2. Find the smallest eigenvalue, $\hat{\lambda}^{*}(m, j)$, of $\hat{A}^{*}(m, j)$ and its corresponding normalized eigenvector, $\Phi_{m, j}=\left(1,-\phi_{1}^{(m, j)},-\phi_{2}^{(m, j)}, \ldots,-\phi_{m}^{(m, j)}\right)$. The squared canonical correlation estimate is $\hat{\lambda}^{*}(m, j)$.
3. Using the $\Phi_{m, j}$ as $\operatorname{AR}(m)$ coefficients, obtain the residuals for $t=j+m+1$ to n, by following the formula: $w_{t}^{(m, j)}=\tilde{z}_{t}-\phi_{1}^{(m, j)} \tilde{z}_{t-1}-\phi_{2}^{(m, j)} \tilde{z}_{t-2}-\ldots-\phi_{m}^{(m, j)} \tilde{z}_{t-m}$.
4. From the sample autocorrelations of the residuals, $r_{k}(w)$, approximate the standard error of the squared canonical correlation estimate by

$$
\operatorname{var}\left(\hat{\lambda}^{*}(m, j)^{1 / 2}\right) \approx d(m, j) /(n-m-j)
$$

where $d(m, j)=\left(1+2 \sum_{i=1}^{j-1} r_{k}\left(w^{(m, j)}\right)\right)$.
The test statistic to be used as an identification criterion is

$$
c(m, j)=-(n-m-j) \ln \left(1-\hat{\lambda}^{*}(m, j) / d(m, j)\right)
$$

which is asymptotically χ_{1}^{2} if $m=p+d$ and $j \geq q$ or if $m \geq p+d$ and $j=q$. For $m>p$ and $j<q$, there is more than one theoretical zero canonical correlation between $Y_{m, t}$ and $Y_{m, t-j-1}$. Since the $\hat{\lambda}^{*}(m, j)$ are the smallest canonical correlations for each (m, j), the percentiles of $c(m, j)$ are less than those of a χ_{1}^{2}; therefore, Tsay and Tiao (1985) state that it is safe to assume a χ_{1}^{2}. For $m<p$ and $j<q$, no conclusions about the distribution of $c(m, j)$ are made.
A SCAN table is then constructed using $c(m, j)$ to determine which of the $\hat{\lambda}^{*}(m, j)$ are significantly different from zero (see Table 7.7). The ARMA orders are tentatively identified by finding a (maximal) rectangular pattern in which the $\hat{\lambda}^{*}(m, j)$ are insignificant for all test orders $m \geq p+d$ and $j \geq q$. There may be more than one pair of values $(p+d, q)$ that permit such a rectangular pattern. In this case, parsimony and the number of insignificant items in the rectangular pattern should help determine the model order. Table 7.8 depicts the theoretical pattern associated with an ARMA $(2,2)$ series.

Table 7.7 SCAN Table

	MA					
AR	0	1	2	3	\cdot	\cdot
0	$c(0,0)$	$c(0,1)$	$c(0,2)$	$c(0,3)$	\cdot	\cdot
1	$c(1,0)$	$c(1,1)$	$c(1,2)$	$c(1,3)$	\cdot	\cdot
2	$c(2,0)$	$c(2,1)$	$c(2,2)$	$c(2,3)$	\cdot	\cdot
3	$c(3,0)$	$c(3,1)$	$c(3,2)$	$c(3,3)$	\cdot	\cdot
\cdot						
\cdot						

Table 7.8 Theoretical SCAN Table for an ARMA(2,2) Series

	MA							
AR	0	1	2	3	4	5	6	7
0	*	X	X	X	X	X	X	X
1	*	X	X	X	X	X	X	X
2	*	X	0	0	0	0	0	0
3	*	X	0	0	0	0	0	0
4	*	X	0	0	0	0	0	0
	$\begin{aligned} & \mathrm{X}=\text { significant terms } \\ & 0=\text { insignificant terms } \\ & *=\text { no pattern } \end{aligned}$							

Stationarity Tests

When a time series has a unit root, the series is nonstationary and the ordinary least squares (OLS) estimator is not normally distributed. Dickey (1976) and Dickey and Fuller (1979) studied the limiting distribution of the OLS estimator of autoregressive models for time series with a simple unit root. Dickey, Hasza, and Fuller (1984) obtained the limiting distribution for time series with seasonal unit roots. Hamilton (1994) discusses the various types of unit root testing.

For a description of Dickey-Fuller tests, see the section "PROBDF Function for Dickey-Fuller Tests" on page 158 in Chapter 5. See Chapter 8, "The AUTOREG Procedure," for a description of Phillips-Perron tests.

The random-walk-with-drift test recommends whether or not an integrated times series has a drift term. Hamilton (1994) discusses this test.

Prewhitening

If, as is usually the case, an input series is autocorrelated, the direct cross-correlation function between the input and response series gives a misleading indication of the relation between the input and response series.

One solution to this problem is called prewhitening. You first fit an ARIMA model for the input series sufficient to reduce the residuals to white noise; then, filter the input series with this model to get the white noise residual series. You then filter the response series with the same model and cross-correlate the filtered response with the filtered input series.

The ARIMA procedure performs this prewhitening process automatically when you precede the IDENTIFY statement for the response series with IDENTIFY and ESTIMATE statements to fit a model for the input series. If a model with no inputs was previously fit to a variable specified by the CROSSCORR $=$ option, then that model is used to prewhiten both the input series and the response series before the cross-correlations are computed for the input series.

For example,

```
proc arima data=in;
    identify var=x;
    estimate p=1 q=1;
    identify var=y crosscorr=x;
run;
```

Both X and Y are filtered by the $\operatorname{ARMA}(1,1)$ model fit to X before the cross-correlations are computed.

Note that prewhitening is done to estimate the cross-correlation function; the unfiltered series are used in any subsequent ESTIMATE or FORECAST statements, and the correlation functions of Y with its own lags are computed from the unfiltered Y series. But initial values in the ESTIMATE statement are obtained with prewhitened data; therefore, the result with prewhitening can be different from the result without prewhitening.

To suppress prewhitening for all input variables, use the CLEAR option in the IDENTIFY statement to make PROC ARIMA disregard all previous models.

Prewhitening and Differencing

If the VAR= and CROSSCORR= options specify differencing, the series are differenced before the prewhitening filter is applied. When the differencing lists specified in the VAR=option for an input and in the CROSSCORR= option for that input are not the same, PROC ARIMA combines the two lists so that the differencing operators used for prewhitening include all differences in either list (in the least common multiple sense).

Identifying Transfer Function Models

When identifying a transfer function model with multiple input variables, the cross-correlation functions can be misleading if the input series are correlated with each other. Any dependencies among two or more input series will confound their cross-correlations with the response series.

The prewhitening technique assumes that the input variables do not depend on past values of the response variable. If there is feedback from the response variable to an input variable, as evidenced by significant cross-correlation at negative lags, both the input and the response variables need to be prewhitened before meaningful cross-correlations can be computed.

PROC ARIMA cannot handle feedback models. The STATESPACE and VARMAX procedures are more appropriate for models with feedback.

Missing Values and Autocorrelations

To compute the sample autocorrelation function when missing values are present, PROC ARIMA uses only crossproducts that do not involve missing values and employs divisors that reflect the number of crossproducts used rather than the total length of the series. Sample partial autocorrelations and inverse autocorrelations are then computed by using the sample autocorrelation function. If necessary, a taper is employed to transform the sample autocorrelations into a positive definite sequence before calculating the partial autocorrelation and inverse correlation functions. The confidence intervals produced for these functions might not be valid when there are missing values. The distributional properties for sample correlation functions are not clear for finite samples. See Dunsmuir (1984) for some asymptotic properties of the sample correlation functions.

Estimation Details

The ARIMA procedure primarily uses the computational methods outlined by Box and Jenkins. Marquardt's method is used for the nonlinear least squares iterations. Numerical approximations of the derivatives of the sum-of-squares function are taken by using a fixed delta (controlled by the DELTA $=$ option).

The methods do not always converge successfully for a given set of data, particularly if the starting values for the parameters are not close to the least squares estimates.

Back-Forecasting

The unconditional sum of squares is computed exactly; thus, back-forecasting is not performed. Early versions of SAS/ETS software used the back-forecasting approximation and allowed a positive value of the BACKLIM= option to control the extent of the back-forecasting. In the current version, requesting a positive number of back-forecasting steps with the BACKLIM=option has no effect.

Preliminary Estimation

If an autoregressive or moving-average operator is specified with no missing lags, preliminary estimates of the parameters are computed by using the autocorrelations computed in the IDENTIFY stage. Otherwise, the preliminary estimates are arbitrarily set to values that produce stable polynomials.

When preliminary estimation is not performed by PROC ARIMA, then initial values of the coefficients for any given autoregressive or moving-average factor are set to 0.1 if the degree of the polynomial associated with the factor is 9 or less. Otherwise, the coefficients are determined by expanding the polynomial $(1-0.1 B)$ to an appropriate power by using a recursive algorithm.

These preliminary estimates are the starting values in an iterative algorithm to compute estimates of the parameters.

Estimation Methods

Maximum Likelihood

The METHOD = ML option produces maximum likelihood estimates. The likelihood function is maximized via nonlinear least squares using Marquardt's method. Maximum likelihood estimates are more expensive to compute than the conditional least squares estimates; however, they may be preferable in some cases (Ansley and Newbold 1980; Davidson 1981).

The maximum likelihood estimates are computed as follows. Let the univariate ARMA model be

$$
\phi(B)\left(W_{t}-\mu_{t}\right)=\theta(B) a_{t}
$$

where a_{t} is an independent sequence of normally distributed innovations with mean 0 and variance σ^{2}. Here μ_{t} is the mean parameter μ plus the transfer function inputs. The log-likelihood function can be written as follows:

$$
-\frac{1}{2 \sigma^{2}} \mathbf{x}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{x}-\frac{1}{2} \ln (|\boldsymbol{\Omega}|)-\frac{n}{2} \ln \left(\sigma^{2}\right)
$$

In this equation, n is the number of observations, $\sigma^{2} \boldsymbol{\Omega}$ is the variance of \mathbf{x} as a function of the ϕ and θ parameters, and $|\boldsymbol{\Omega}|$ denotes the determinant. The vector \mathbf{x} is the time series W_{t} minus the structural part of the model μ_{t}, written as a column vector, as follows:

$$
\mathbf{x}=\left[\begin{array}{c}
W_{1} \\
W_{2} \\
\vdots \\
W_{n}
\end{array}\right]-\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{n}
\end{array}\right]
$$

The maximum likelihood estimate (MLE) of σ^{2} is

$$
s^{2}=\frac{1}{n} \mathbf{x}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{x}
$$

Note that the default estimator of the variance divides by $n-r$, where r is the number of parameters in the model, instead of by n. Specifying the NODF option causes a divisor of n to be used.

The log-likelihood concentrated with respect to σ^{2} can be taken up to additive constants as

$$
-\frac{n}{2} \ln \left(\mathbf{x}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{x}\right)-\frac{1}{2} \ln (|\boldsymbol{\Omega}|)
$$

Let \mathbf{H} be the lower triangular matrix with positive elements on the diagonal such that $\mathbf{H H}^{\prime}=\boldsymbol{\Omega}$. Let \mathbf{e} be the vector $\mathbf{H}^{-1} \mathbf{x}$. The concentrated log-likelihood with respect to σ^{2} can now be written as

$$
-\frac{n}{2} \ln \left(\mathbf{e}^{\prime} \mathbf{e}\right)-\ln (|\mathbf{H}|)
$$

or

$$
-\frac{n}{2} \ln \left(|\mathbf{H}|^{1 / n} \mathbf{e}^{\prime} \mathbf{e}|\mathbf{H}|^{1 / n}\right)
$$

The MLE is produced by using a Marquardt algorithm to minimize the following sum of squares:

$$
|\mathbf{H}|^{1 / n} \mathbf{e}^{\prime} \mathbf{e}|\mathbf{H}|^{1 / n}
$$

The subsequent analysis of the residuals is done by using \mathbf{e} as the vector of residuals.

Unconditional Least Squares

The METHOD=ULS option produces unconditional least squares estimates. The ULS method is also referred to as the exact least squares (ELS) method. For METHOD=ULS, the estimates minimize

$$
\sum_{t=1}^{n} \tilde{a}_{t}^{2}=\sum_{t=1}^{n}\left(x_{t}-\mathbf{C}_{t} \mathbf{V}_{t}^{-1}\left(x_{1}, \cdots, x_{t-1}\right)^{\prime}\right)^{2}
$$

where \mathbf{C}_{t} is the covariance matrix of x_{t} and $\left(x_{1}, \cdots, x_{t-1}\right)$, and \mathbf{V}_{t} is the variance matrix of $\left(x_{1}, \cdots, x_{t-1}\right)$. In fact, $\sum_{t=1}^{n} \tilde{a}_{t}^{2}$ is the same as $\mathbf{x}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{x}$, and hence $\mathbf{e}^{\prime} \mathbf{e}$. Therefore, the unconditional least squares estimates are obtained by minimizing the sum of squared residuals rather than using the log-likelihood as the criterion function.

Conditional Least Squares

The METHOD=CLS option produces conditional least squares estimates. The CLS estimates are conditional on the assumption that the past unobserved errors are equal to 0 . The series x_{t} can be represented in terms of the previous observations, as follows:

$$
x_{t}=a_{t}+\sum_{i=1}^{\infty} \pi_{i} x_{t-i}
$$

The π weights are computed from the ratio of the ϕ and θ polynomials, as follows:

$$
\frac{\phi(B)}{\theta(B)}=1-\sum_{i=1}^{\infty} \pi_{i} B^{i}
$$

The CLS method produces estimates minimizing

$$
\sum_{t=1}^{n} \hat{a}_{t}^{2}=\sum_{t=1}^{n}\left(x_{t}-\sum_{i=1}^{\infty} \hat{\pi}_{i} x_{t-i}\right)^{2}
$$

where the unobserved past values of x_{t} are set to 0 and $\hat{\pi}_{i}$ are computed from the estimates of ϕ and θ at each iteration.

For METHOD=ULS and METHOD=ML, initial estimates are computed using the METHOD=CLS algorithm.

Start-up for Transfer Functions

When computing the noise series for transfer function and intervention models, the start-up for the transferred variable is done by assuming that past values of the input series are equal to the first value of the series. The estimates are then obtained by applying least squares or maximum likelihood to the noise series. Thus, for transfer function models, the ML option does not generate the full (multivariate ARMA) maximum likelihood estimates, but it uses only the univariate likelihood function applied to the noise series.

Because PROC ARIMA uses all of the available data for the input series to generate the noise series, other start-up options for the transferred series can be implemented by prefixing an observation to the beginning of the real data. For example, if you fit a transfer function model to the variable Y with the single input X , then you can employ a start-up using 0 for the past values by prefixing to the actual data an observation with a missing value for Y and a value of 0 for X .

Information Criteria

PROC ARIMA computes and prints two information criteria, Akaike's information criterion (AIC) (Akaike 1974; Harvey 1981) and Schwarz's Bayesian criterion (SBC) (Schwarz 1978). The AIC and SBC are used to compare competing models fit to the same series. The model with the smaller information criteria is said to fit the data better. The AIC is computed as

$$
-2 \ln (L)+2 k
$$

where L is the likelihood function and k is the number of free parameters. The SBC is computed as

$$
-2 \ln (L)+\ln (n) k
$$

where n is the number of residuals that can be computed for the time series. Sometimes Schwarz's Bayesian criterion is called the Bayesian information criterion (BIC).

If METHOD=CLS is used to do the estimation, an approximation value of L is used, where L is based on the conditional sum of squares instead of the exact sum of squares, and a Jacobian factor is left out.

Tests of Residuals

A table of test statistics for the hypothesis that the model residuals are white noise is printed as part of the ESTIMATE statement output. The chi-square statistics used in the test for lack of fit are computed using the Ljung-Box formula

$$
\chi_{m}^{2}=n(n+2) \sum_{k=1}^{m} \frac{r_{k}^{2}}{(n-k)}
$$

where

$$
r_{k}=\frac{\sum_{t=1}^{n-k} a_{t} a_{t+k}}{\sum_{t=1}^{n} a_{t}^{2}}
$$

and a_{t} is the residual series.
This formula has been suggested by Ljung and Box (1978) as yielding a better fit to the asymptotic chi-square distribution than the Box-Pierce Q statistic. Some simulation studies of the finite sample properties of this statistic are given by Davies, Triggs, and Newbold (1977) and by Ljung and Box (1978). When the time series has missing values, Stoffer and Toloi (1992) suggest a modification of this test statistic that has improved distributional properties over the standard Ljung-Box formula given above. When the series contains missing values, this modified test statistic is used by default.

Each chi-square statistic is computed for all lags up to the indicated lag value and is not independent of the preceding chi-square values. The null hypotheses tested is that the current set of autocorrelations is white noise.

t-values

The t values reported in the table of parameter estimates are approximations whose accuracy depends on the validity of the model, the nature of the model, and the length of the observed series. When the length of the observed series is short and the number of estimated parameters is large with respect to the series length, the t approximation is usually poor. Probability values that correspond to a t distribution should be interpreted carefully because they may be misleading.

Cautions during Estimation

The ARIMA procedure uses a general nonlinear least squares estimation method that can yield problematic results if your data do not fit the model. Output should be examined carefully. The GRID option can be used to ensure the validity and quality of the results. Problems you might encounter include the following:

- Preliminary moving-average estimates might not converge. If this occurs, preliminary estimates are derived as described previously in "Preliminary Estimation" on page 248. You can supply your own preliminary estimates with the ESTIMATE statement options.
- The estimates can lead to an unstable time series process, which can cause extreme forecast values or overflows in the forecast.
- The Jacobian matrix of partial derivatives might be singular; usually, this happens because not all the parameters are identifiable. Removing some of the parameters or using a longer time series might help.
- The iterative process might not converge. PROC ARIMA's estimation method stops after n iterations, where n is the value of the MAXITER= option. If an iteration does not improve the SSE, the Marquardt parameter is increased by a factor of ten until parameters that have a smaller SSE are obtained or until the limit value of the Marquardt parameter is exceeded.
- For METHOD=CLS, the estimates might converge but not to least squares estimates. The estimates might converge to a local minimum, the numerical calculations might be distorted by data whose sum-of-squares surface is not smooth, or the minimum might lie outside the region of invertibility or stationarity.
- If the data are differenced and a moving-average model is fit, the parameter estimates might try to converge exactly on the invertibility boundary. In this case, the standard error estimates that are based on derivatives might be inaccurate.

Specifying Inputs and Transfer Functions

Input variables and transfer functions for them can be specified using the INPUT= option in the ESTIMATE statement. The variables used in the INPUT= option must be included in the CROSSCORR= list in the previous IDENTIFY statement. If any differencing is specified in the CROSS$\operatorname{CORR}=$ list, then the differenced variable is used as the input to the transfer function.

General Syntax of the INPUT= Option

The general syntax of the INPUT= option is
ESTIMATE . . . INPUT=(transfer-function variable ...)
The transfer function for an input variable is optional. The name of a variable by itself can be used to specify a pure regression term for the variable.

If specified, the syntax of the transfer function is
$S \$\left(L_{1,1}, L_{1,2}, \ldots\right)\left(L_{2,1}, \ldots\right) \ldots /\left(L_{i, 1}, L_{i, 2}, \ldots\right)\left(L_{i+1,1}, \ldots\right) \ldots$
S is the number of periods of time delay (lag) for this input series. Each term in parentheses specifies a polynomial factor with parameters at the lags specified by the $L_{i, j}$ values. The terms before the slash (/) are numerator factors. The terms after the slash (/) are denominator factors. All three parts are optional.

Commas can optionally be used between input specifications to make the INPUT= option more readable. The $\$$ sign after the shift is also optional.

Except for the first numerator factor, each of the terms $L_{i, 1}, L_{i, 2}, \ldots, L_{i, k}$ indicates a factor of the form

$$
\left(1-\omega_{i, 1} B^{L_{i, 1}}-\omega_{i, 2} B^{L_{i, 2}}-\ldots-\omega_{i, k} B^{L_{i, k}}\right)
$$

The form of the first numerator factor depends on the ALTPARM option. By default, the constant 1 in the first numerator factor is replaced with a free parameter ω_{0}.

Alternative Model Parameterization

When the ALTPARM option is specified, the ω_{0} parameter is factored out so that it multiplies the entire transfer function, and the first numerator factor has the same form as the other factors.

The ALTPARM option does not materially affect the results; it just presents the results differently. Some people prefer to see the model written one way, while others prefer the alternative representation. Table 7.9 illustrates the effect of the ALTPARM option.

Table 7.9 The ALTPARM Option

INPUT $=$ Option	ALTPARM	Model
INPUT $=((12)(12) /(1) X) ;$	No	$\left(\omega_{0}-\omega_{1} B-\omega_{2} B^{2}\right)\left(1-\omega_{3} B^{12}\right) /\left(1-\delta_{1} B\right) X_{t}$
	Yes	$\omega_{0}\left(1-\omega_{1} B-\omega_{2} B^{2}\right)\left(1-\omega_{3} B^{12}\right) /\left(1-\delta_{1} B\right) X_{t}$

Differencing and Input Variables

If you difference the response series and use input variables, take care that the differencing operations do not change the meaning of the model. For example, if you want to fit the model

$$
Y_{t}=\frac{\omega_{0}}{\left(1-\delta_{1} B\right)} X_{t}+\frac{\left(1-\theta_{1} B\right)}{(1-B)\left(1-B^{12}\right)} a_{t}
$$

then the IDENTIFY statement must read

```
identify var=y(1,12) crosscorr=x(1,12);
estimate q=1 input=(/(1)x) noconstant;
```

If instead you specify the differencing as

```
identify var=y(1,12) crosscorr=x;
estimate q=1 input=(/(1)x) noconstant;
```

then the model being requested is

$$
Y_{t}=\frac{\omega_{0}}{\left(1-\delta_{1} B\right)(1-B)\left(1-B^{12}\right)} X_{t}+\frac{\left(1-\theta_{1} B\right)}{(1-B)\left(1-B^{12}\right)} a_{t}
$$

which is a very different model.
The point to remember is that a differencing operation requested for the response variable specified by the VAR= option is applied only to that variable and not to the noise term of the model.

Initial Values

The syntax for giving initial values to transfer function parameters in the INITVAL= option parallels the syntax of the INPUT= option. For each transfer function in the INPUT= option, the INITVAL= option should give an initialization specification followed by the input series name. The initialization specification for each transfer function has the form

$$
C \$\left(V_{1,1}, V_{1,2}, \ldots\right)\left(V_{2,1}, \ldots\right) \ldots /\left(V_{i, 1}, \ldots\right) \ldots
$$

where C is the lag 0 term in the first numerator factor of the transfer function (or the overall scale factor if the ALTPARM option is specified) and $V_{i, j}$ is the coefficient of the $L_{i, j}$ element in the transfer function.

To illustrate, suppose you want to fit the model

$$
Y_{t}=\mu+\frac{\left(\omega_{0}-\omega_{1} B-\omega_{2} B^{2}\right)}{\left(1-\delta_{1} B-\delta_{2} B^{2}-\delta_{3} B^{3}\right)} X_{t-3}+\frac{1}{\left(1-\phi_{1} B-\phi_{2} B^{3}\right)} a_{t}
$$

and start the estimation process with the initial values $\mu=10, \omega_{0}=1, \omega_{1}=0.5, \omega_{2}=0.03, \delta_{1}=0.8$, $\delta_{2}=-0.1, \delta_{3}=0.002, \phi_{1}=0.1, \phi_{2}=0.01$. (These are arbitrary values for illustration only.) You would use the following statements:

```
identify var=y crosscorr=x;
estimate p=(1,3) input=(3$(1,2)/(1,2,3)x)
    mu=10 ar=.1 .01
    initval=(1$(.5,.03)/(.8,-.1,.002)x);
```

Note that the lags specified for a particular factor are sorted, so initial values should be given in sorted order. For example, if the $\mathrm{P}=$ option had been entered as $\mathrm{P}=(3,1)$ instead of $\mathrm{P}=(1,3)$, the model would be the same and so would the $\mathrm{AR}=$ option. Sorting is done within all factors, including transfer function factors, so initial values should always be given in order of increasing lags.

Here is another illustration, showing initialization for a factored model with multiple inputs. The model is

$$
\begin{aligned}
Y_{t}=\mu & +\frac{\omega_{1,0}}{\left(1-\delta_{1,1} B\right)} W_{t}+\left(\omega_{2,0}-\omega_{2,1} B\right) X_{t-3} \\
& +\frac{1}{\left(1-\phi_{1} B\right)\left(1-\phi_{2} B^{6}-\phi_{3} B^{12}\right)} a_{t}
\end{aligned}
$$

and the initial values are $\mu=10, \omega_{1,0}=5, \delta_{1,1}=0.8, \omega_{2,0}=1, \omega_{2,1}=0.5, \phi_{1}=0.1, \phi_{2}=0.05$, and $\phi_{3}=0.01$. You would use the following statements:

```
identify var=y crosscorr=(w x);
estimate p=(1) (6,12) input=(/(1)w, 3$(1)x)
    mu=10 ar=.1 .05 .01
    initval=(5$/(.8)w 1$(.5)x);
```


Stationarity and Invertibility

By default, PROC ARIMA requires that the parameter estimates for the AR and MA parts of the model always remain in the stationary and invertible regions, respectively. The NOSTABLE option removes this restriction and for high-order models can save some computer time. Note that using the NOSTABLE option does not necessarily result in an unstable model being fit, since the estimates can leave the stable region for some iterations but still ultimately converge to stable values. Similarly, by default, the parameter estimates for the denominator polynomial of the transfer function part of the model are also restricted to be stable. The NOTFSTABLE option can be used to remove this restriction.

Naming of Model Parameters

In the table of parameter estimates produced by the ESTIMATE statement, model parameters are referred to by using the naming convention described in this section.

The parameters in the noise part of the model are named as ARi,j or MA i, j, where AR refers to autoregressive parameters and MA to moving-average parameters. The subscript i refers to the particular polynomial factor, and the subscript j refers to the j th term within the i th factor. These terms are sorted in order of increasing lag within factors, so the subscript j refers to the j th term after sorting.

When inputs are used in the model, the parameters of each transfer function are named NUMi,j and DEN i, j. The j th term in the i th factor of a numerator polynomial is named $\mathrm{NUM} i, j$. The j th term in the i th factor of a denominator polynomial is named DEN i, j.

This naming process is repeated for each input variable, so if there are multiple inputs, parameters in transfer functions for different input series have the same name. The table of parameter estimates shows in the "Variable" column the input with which each parameter is associated. The parameter name shown in the "Parameter" column and the input variable name shown in the "Variable" column must be combined to fully identify transfer function parameters.

The lag 0 parameter in the first numerator factor for the first input variable is named NUM1. For subsequent input variables, the lag 0 parameter in the first numerator factor is named NUM k, where k is the position of the input variable in the INPUT= option list. If the ALTPARM option is specified, the NUM k parameter is replaced by an overall scale parameter named SCALE k.

For the mean and noise process parameters, the response series name is shown in the "Variable" column. The lag and shift for each parameter are also shown in the table of parameter estimates when inputs are used.

Missing Values and Estimation and Forecasting

Estimation and forecasting are carried out in the presence of missing values by forecasting the missing values with the current set of parameter estimates. The maximum likelihood algorithm employed was suggested by Jones (1980) and is used for both unconditional least squares (ULS) and maximum likelihood (ML) estimation.

The CLS algorithm simply fills in missing values with infinite memory forecast values, computed by forecasting ahead from the nonmissing past values as far as required by the structure of the missing values. These artificial values are then employed in the nonmissing value CLS algorithm. Artificial values are updated at each iteration along with parameter estimates.

For models with input variables, embedded missing values (that is, missing values other than at the beginning or end of the series) are not generally supported. Embedded missing values in input variables are supported for the special case of a multiple regression model that has ARIMA errors. A multiple regression model is specified by an INPUT= option that simply lists the input variables
(possibly with lag shifts) without any numerator or denominator transfer function factors. One-stepahead forecasts are not available for the response variable when one or more of the input variables have missing values.

When embedded missing values are present for a model with complex transfer functions, PROC ARIMA uses the first continuous nonmissing piece of each series to do the analysis. That is, PROC ARIMA skips observations at the beginning of each series until it encounters a nonmissing value and then uses the data from there until it encounters another missing value or until the end of the data is reached. This makes the current version of PROC ARIMA compatible with earlier releases that did not allow embedded missing values.

Forecasting Details

If the model has input variables, a forecast beyond the end of the data for the input variables is possible only if univariate ARIMA models have previously been fit to the input variables or future values for the input variables are included in the DATA= data set.

If input variables are used, the forecast standard errors and confidence limits of the response depend on the estimated forecast error variance of the predicted inputs. If several input series are used, the forecast errors for the inputs should be independent; otherwise, the standard errors and confidence limits for the response series will not be accurate. If future values for the input variables are included in the DATA= data set, the standard errors of the forecasts will be underestimated since these values are assumed to be known with certainty.

The forecasts are generated using forecasting equations consistent with the method used to estimate the model parameters. Thus, the estimation method specified in the ESTIMATE statement also controls the way forecasts are produced by the FORECAST statement. If METHOD=CLS is used, the forecasts are infinite memory forecasts, also called conditional forecasts. If METHOD=ULS or METHOD=ML, the forecasts are finite memory forecasts, also called unconditional forecasts. A complete description of the steps to produce the series forecasts and their standard errors by using either of these methods is quite involved, and only a brief explanation of the algorithm is given in the next two sections. Additional details about the finite and infinite memory forecasts can be found in Brockwell and Davis (1991). The prediction of stationary ARMA processes is explained in Chapter 5, and the prediction of nonstationary ARMA processes is given in Chapter 9 of Brockwell and Davis (1991).

Infinite Memory Forecasts

If METHOD=CLS is used, the forecasts are infinite memory forecasts, also called conditional forecasts. The term conditional is used because the forecasts are computed by assuming that the unknown values of the response series before the start of the data are equal to the mean of the series. Thus, the forecasts are conditional on this assumption.

The series x_{t} can be represented as

$$
x_{t}=a_{t}+\sum_{i=1}^{\infty} \pi_{i} x_{t-i}
$$

where $\phi(B) / \theta(B)=1-\sum_{i=1}^{\infty} \pi_{i} B^{i}$.
The k-step forecast of x_{t+k} is computed as

$$
\hat{x}_{t+k}=\sum_{i=1}^{k-1} \hat{\pi}_{i} \hat{x}_{t+k-i}+\sum_{i=k}^{\infty} \hat{\pi}_{i} x_{t+k-i}
$$

where unobserved past values of x_{t} are set to zero and $\hat{\pi}_{i}$ is obtained from the estimated parameters $\hat{\phi}$ and $\hat{\theta}$.

Finite Memory Forecasts

For METHOD=ULS or METHOD=ML, the forecasts are finite memory forecasts, also called unconditional forecasts. For finite memory forecasts, the covariance function of the ARMA model is used to derive the best linear prediction equation.

That is, the k-step forecast of x_{t+k}, given $\left(x_{1}, \cdots, x_{t-1}\right)$, is

$$
\tilde{x}_{t+k}=\mathbf{C}_{k, t} \mathbf{V}_{t}^{-1}\left(x_{1}, \cdots, x_{t-1}\right)^{\prime}
$$

where $\mathbf{C}_{k, t}$ is the covariance of x_{t+k} and $\left(x_{1}, \cdots, x_{t-1}\right)$ and \mathbf{V}_{t} is the covariance matrix of the vector $\left(x_{1}, \cdots, x_{t-1}\right) . \mathbf{C}_{k, t}$ and \mathbf{V}_{t} are derived from the estimated parameters.

Finite memory forecasts minimize the mean squared error of prediction if the parameters of the ARMA model are known exactly. (In most cases, the parameters of the ARMA model are estimated, so the predictors are not true best linear forecasts.)

If the response series is differenced, the final forecast is produced by summing the forecast of the differenced series. This summation and the forecast are conditional on the initial values of the series. Thus, when the response series is differenced, the final forecasts are not true finite memory forecasts because they are derived by assuming that the differenced series begins in a steady-state condition. Thus, they fall somewhere between finite memory and infinite memory forecasts. In practice, there is seldom any practical difference between these forecasts and true finite memory forecasts.

Forecasting Log Transformed Data

The log transformation is often used to convert time series that are nonstationary with respect to the innovation variance into stationary time series. The usual approach is to take the log of the series in a DATA step and then apply PROC ARIMA to the transformed data. A DATA step is then used to transform the forecasts of the logs back to the original units of measurement. The confidence limits are also transformed by using the exponential function.

As one alternative, you can simply exponentiate the forecast series. This procedure gives a forecast for the median of the series, but the antilog of the forecast \log series underpredicts the mean of the original series. If you want to predict the expected value of the series, you need to take into account the standard error of the forecast, as shown in the following example, which uses an $\operatorname{AR}(2)$ model to forecast the \log of a series Y :

```
data in;
    set in;
    ylog = log( y );
run;
proc arima data=in;
    identify var=ylog;
    estimate p=2;
    forecast lead=10 out=out;
run;
data out;
    set out;
    y = exp( ylog );
    195 = exp(195 );
    u95 = exp( u95 );
    forecast = exp( forecast + std*std/2 );
run;
```


Specifying Series Periodicity

The INTERVAL= option is used together with the ID= variable to describe the observations that make up the time series. For example, INTERVAL=MONTH specifies a monthly time series in which each observation represents one month. See Chapter 4, "Date Intervals, Formats, and Functions," for details about the interval values supported.

The variable specified by the ID= option in the PROC ARIMA statement identifies the time periods associated with the observations. Usually, SAS date, time, or datetime values are used for this variable. PROC ARIMA uses the ID= variable in the following ways:

- to validate the data periodicity. When the INTERVAL= option is specified, PROC ARIMA uses the ID variable to check the data and verify that successive observations have valid ID values that correspond to successive time intervals. When the INTERVAL= option is not used, PROC ARIMA verifies that the ID values are nonmissing and in ascending order.
- to check for gaps in the input observations. For example, if INTERVAL=MONTH and an input observation for April 1970 follows an observation for January 1970, there is a gap in the input data with two omitted observations (namely February and March 1970). A warning message is printed when a gap in the input data is found.
- to label the forecast observations in the output data set. PROC ARIMA extrapolates the values of the ID variable for the forecast observations from the ID value at the end of the input data
according to the frequency specifications of the INTERVAL= option. If the INTERVAL= option is not specified, PROC ARIMA extrapolates the ID variable by incrementing the ID variable value for the last observation in the input data by 1 for each forecast period. Values of the ID variable over the range of the input data are copied to the output data set.

The ALIGN= option is used to align the ID variable to the beginning, middle, or end of the time ID interval specified by the INTERVAL= option.

Detecting Outliers

You can use the OUTLIER statement to detect changes in the level of the response series that are not accounted for by the estimated model. The types of changes considered are additive outliers (AO), level shifts (LS), and temporary changes (TC).

Let η_{t} be a regression variable that describes some type of change in the mean response. In time series literature η_{t} is called a shock signature. An additive outlier at some time point s corresponds to a shock signature η_{t} such that $\eta_{s}=1.0$ and η_{t} is 0.0 at all other points. Similarly a permanent level shift that originates at time s has a shock signature such that η_{t} is 0.0 for $t<s$ and 1.0 for $t \geq s$. A temporary level shift of duration d that originates at time s has η_{t} equal to 1.0 between s and $s+d$ and 0.0 otherwise.

Suppose that you are estimating the ARIMA model

$$
D(B) Y_{t}=\mu_{t}+\frac{\theta(B)}{\phi(B)} a_{t}
$$

where Y_{t} is the response series, $D(B)$ is the differencing polynomial in the backward shift operator B (possibly identity), μ_{t} is the transfer function input, $\phi(B)$ and $\theta(B)$ are the AR and MA polynomials, respectively, and a_{t} is the Gaussian white noise series.

The problem of detection of level shifts in the OUTLIER statement is formulated as a problem of sequential selection of shock signatures that improve the model in the ESTIMATE statement. This is similar to the forward selection process in the stepwise regression procedure. The selection process starts with considering shock signatures of the type specified in the TYPE= option, originating at each nonmissing measurement. This involves testing $H_{0}: \beta=0$ versus $H_{a}: \beta \neq 0$ in the model

$$
D(B)\left(Y_{t}-\beta \eta_{t}\right)=\mu_{t}+\frac{\theta(B)}{\phi(B)} a_{t}
$$

for each of these shock signatures. The most significant shock signature, if it also satisfies the significance criterion in ALPHA= option, is included in the model. If no significant shock signature is found, then the outlier detection process stops; otherwise this augmented model, which incorporates the selected shock signature in its transfer function input, becomes the null model for the subsequent selection process. This iterative process stops if at any stage no more significant shock signatures are found or if the number of iterations exceeds the maximum search number that results due to the MAXNUM = and MAXPCT= settings. In all these iterations, the parameters of the ARIMA model in the ESTIMATE statement are held fixed.

The precise details of the testing procedure for a given shock signature η_{t} are as follows:
The preceding testing problem is equivalent to testing $H_{0}: \beta=0$ versus $H_{a}: \beta \neq 0$ in the following "regression with ARMA errors" model

$$
N_{t}=\beta \zeta_{t}+\frac{\theta(B)}{\phi(B)} a_{t}
$$

where $N_{t}=\left(D(B) Y_{t}-\mu_{t}\right)$ is the "noise" process and $\zeta_{t}=D(B) \eta_{t}$ is the "effective" shock signature.

In this setting, under $H_{0}, N=\left(N_{1}, N_{2}, \ldots, N_{n}\right)^{T}$ is a mean zero Gaussian vector with variance covariance matrix $\sigma^{2} \boldsymbol{\Omega}$. Here σ^{2} is the variance of the white noise process a_{t} and $\boldsymbol{\Omega}$ is the variancecovariance matrix associated with the ARMA model. Moreover, under H_{a}, N has $\beta \zeta$ as the mean vector where $\zeta=\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)^{T}$. Additionally, the generalized least squares estimate of β and its variance is given by

$$
\begin{aligned}
\hat{\beta} & =\delta / \kappa \\
\operatorname{Var}(\hat{\beta}) & =\sigma^{2} / \kappa
\end{aligned}
$$

where $\delta=\zeta^{T} \boldsymbol{\Omega}^{-1} N$ and $\kappa=\zeta^{T} \boldsymbol{\Omega}^{-1} \zeta$. The test statistic $\tau^{2}=\delta^{2} /\left(\sigma^{2} \kappa\right)$ is used to test the significance of β, which has an approximate chi-squared distribution with 1 degree of freedom under H_{0}. The type of estimate of σ^{2} used in the calculation of τ^{2} can be specified by the SIGMA= option. The default setting is SIGMA=ROBUST, which corresponds to a robust estimate suggested in an outlier detection procedure in X-12-ARIMA, the Census Bureau's time series analysis program; see Findley et al. (1998) for additional information. The robust estimate of σ^{2} is computed by the formula

$$
\hat{\sigma}^{2}=\left(1.49 \times \operatorname{Median}\left(\left|\hat{a}_{t}\right|\right)\right)^{2}
$$

where \hat{a}_{t} are the standardized residuals of the null ARIMA model. The setting SIGMA=MSE corresponds to the usual mean squared error estimate (MSE) computed the same way as in the ESTIMATE statement with the NODF option.

The quantities δ and κ are efficiently computed by a method described in de Jong and Penzer (1998); see also Kohn and Ansley (1985).

Modeling in the Presence of Outliers

In practice, modeling and forecasting time series data in the presence of outliers is a difficult problem for several reasons. The presence of outliers can adversely affect the model identification and estimation steps. Their presence close to the end of the observation period can have a serious impact on the forecasting performance of the model. In some cases, level shifts are associated with changes in the mechanism that drives the observation process, and separate models might be appropriate to different sections of the data. In view of all these difficulties, diagnostic tools such as outlier detection and residual analysis are essential in any modeling process.

The following modeling strategy, which incorporates level shift detection in the familiar BoxJenkins modeling methodology, seems to work in many cases:

1. Proceed with model identification and estimation as usual. Suppose this results in a tentative ARIMA model, say M.
2. Check for additive and permanent level shifts unaccounted for by the model M by using the OUTLIER statement. In this step, unless there is evidence to justify it, the number of level shifts searched should be kept small.
3. Augment the original dataset with the regression variables that correspond to the detected outliers.
4. Include the first few of these regression variables in M, and call this model M1. Reestimate all the parameters of M1. It is important not to include too many of these outlier variables in the model in order to avoid the danger of over-fitting.
5. Check the adequacy of M1 by examining the parameter estimates, residual analysis, and outlier detection. Refine it more if necessary.

OUT= Data Set

The output data set produced by the OUT= option of the PROC ARIMA or FORECAST statements contains the following:

- the BY variables
- the ID variable
- the variable specified by the VAR= option in the IDENTIFY statement, which contains the actual values of the response series
- FORECAST, a numeric variable that contains the one-step-ahead predicted values and the multistep forecasts
- STD, a numeric variable that contains the standard errors of the forecasts
- a numeric variable that contains the lower confidence limits of the forecast. This variable is named L95 by default but has a different name if the ALPHA= option specifies a different size for the confidence limits.
- RESIDUAL, a numeric variable that contains the differences between actual and forecast values
- a numeric variable that contains the upper confidence limits of the forecast. This variable is named U95 by default but has a different name if the ALPHA= option specifies a different size for the confidence limits.

The ID variable, the BY variables, and the response variable are the only ones copied from the input to the output data set. In particular, the input variables are not copied to the OUT= data set.

Unless the NOOUTALL option is specified, the data set contains the whole time series. The FORECAST variable has the one-step forecasts (predicted values) for the input periods, followed by n forecast values, where n is the LEAD $=$ value. The actual and RESIDUAL values are missing beyond the end of the series.

If you specify the same OUT= data set in different FORECAST statements, the latter FORECAST statements overwrite the output from the previous FORECAST statements. If you want to combine the forecasts from different FORECAST statements in the same output data set, specify the OUT= option once in the PROC ARIMA statement and omit the OUT= option in the FORECAST statements.

When a global output data set is created by the OUT= option in the PROC ARIMA statement, the variables in the OUT= data set are defined by the first FORECAST statement that is executed. The results of subsequent FORECAST statements are vertically concatenated onto the OUT= data set. Thus, if no ID variable is specified in the first FORECAST statement that is executed, no ID variable appears in the output data set, even if one is specified in a later FORECAST statement. If an ID variable is specified in the first FORECAST statement that is executed but not in a later FORECAST statement, the value of the ID variable is the same as the last value processed for the ID variable for all observations created by the later FORECAST statement. Furthermore, even if the response variable changes in subsequent FORECAST statements, the response variable name in the output data set is that of the first response variable analyzed.

OUTCOV= Data Set

The output data set produced by the OUTCOV= option of the IDENTIFY statement contains the following variables:

- LAG, a numeric variable that contains the lags that correspond to the values of the covariance variables. The values of LAG range from 0 to N for covariance functions and from -N to N for cross-covariance functions, where N is the value of the $\mathrm{NLAG}=$ option.
- VAR, a character variable that contains the name of the variable specified by the VAR=option.
- CROSSVAR, a character variable that contains the name of the variable specified in the CROSSCORR= option, which labels the different cross-covariance functions. The CROSSVAR variable is blank for the autocovariance observations. When there is no CROSSCORR= option, this variable is not created.
- N , a numeric variable that contains the number of observations used to calculate the current value of the covariance or cross-covariance function.
- COV, a numeric variable that contains the autocovariance or cross-covariance function values. COV contains the autocovariances of the VAR= variable when the value of the CROSSVAR variable is blank. Otherwise COV contains the cross covariances between the VAR= variable and the variable named by the CROSSVAR variable.
- CORR, a numeric variable that contains the autocorrelation or cross-correlation function values. CORR contains the autocorrelations of the VAR= variable when the value of the CROSSVAR variable is blank. Otherwise CORR contains the cross-correlations between the VAR= variable and the variable named by the CROSSVAR variable.
- STDERR, a numeric variable that contains the standard errors of the autocorrelations. The standard error estimate is based on the hypothesis that the process that generates the time series is a pure moving-average process of order LAG-1. For the cross-correlations, STDERR contains the value $1 / \sqrt{n}$, which approximates the standard error under the hypothesis that the two series are uncorrelated.
- INVCORR, a numeric variable that contains the inverse autocorrelation function values of the VAR $=$ variable. For cross-correlation observations (that is, when the value of the CROSSVAR variable is not blank), INVCORR contains missing values.
- PARTCORR, a numeric variable that contains the partial autocorrelation function values of the VAR = variable. For cross-correlation observations (that is, when the value of the CROSSVAR variable is not blank), PARTCORR contains missing values.

OUTEST= Data Set

PROC ARIMA writes the parameter estimates for a model to an output data set when the OUTEST= option is specified in the ESTIMATE statement. The OUTEST= data set contains the following:

- the BY variables
- _MODLABEL_, a character variable that contains the model label, if it is provided by using the label option in the ESTIMATE statement (otherwise this variable is not created).
- _NAME_, a character variable that contains the name of the parameter for the covariance or correlation observations or is blank for the observations that contain the parameter estimates. (This variable is not created if neither OUTCOV nor OUTCORR is specified.)
- _TYPE_, a character variable that identifies the type of observation. A description of the _TYPE_ variable values is given below.
- variables for model parameters

The variables for the model parameters are named as follows:

ERRORVAR This numeric variable contains the variance estimate. The _TYPE_=EST observation for this variable contains the estimated error variance, and the remaining observations are missing.

MU This numeric variable contains values for the mean parameter for the model. (This variable is not created if NOCONSTANT is specified.)

MAj _ k	These numeric variables contain values for the moving-average parameters. The variables for moving-average parameters are named MA $_k$, where j is the factor-number and k is the index of the parameter within a factor.
ARj ${ }^{\prime} k$	These numeric variables contain values for the autoregressive parameters. The variables for autoregressive parameters are named AR $j _k$, where j is the factor number and k is the index of the parameter within a factor.
$\underline{\mathrm{I}}$ _ k	These variables contain values for the transfer function parameters. Variables for transfer function parameters are named $\mathrm{I} j _k$, where j is the number of the INPUT variable associated with the transfer function component and k is the number of the parameter for the particular INPUT variable. INPUT variables are numbered according to the order in which they appear in the INPUT= list.
STATUS	This variable describes the convergence status of the model. A value of 0_CONVERGED indicates that the model converged.
The value of the _TYPE_ variable for each observation indicates the kind of value contained in the variables for model parameters for the observation. The OUTEST= data set contains observations with the following _TYPE_ values:	
EST	The observation contains parameter estimates.
STD	The observation contains approximate standard errors of the estimates.
CORR	The observation contains correlations of the estimates. OUTCORR must be specified to get these observations.
COV	The observation contains covariances of the estimates. OUTCOV must be specified to get these observations.
FACTOR	The observation contains values that identify for each parameter the factor that contains it. Negative values indicate denominator factors in transfer function models.
LAG	The observation contains values that identify the lag associated with each parameter.
SHIFT	The observation contains values that identify the shift associated with the input series for the parameter.

The values given for _TYPE_=FACTOR, _TYPE_=LAG, or _TYPE_=SHIFT observations enable you to reconstruct the model employed when provided with only the OUTEST= data set.

OUTEST= Examples

This section clarifies how model parameters are stored in the OUTEST $=$ data set with two examples.
Consider the following example:

```
proc arima data=input;
    identify var=y cross=(x1 x2);
    estimate p=(1)(6) q=(1,3)(12) input=(x1 x2) outest=est;
```

```
run;
proc print data=est;
run;
```

The model specified by these statements is

$$
Y_{t}=\mu+\omega_{1,0} X_{1, t}+\omega_{2,0} X_{2, t}+\frac{\left(1-\theta_{11} B-\theta_{12} B^{3}\right)\left(1-\theta_{21} B^{12}\right)}{\left(1-\phi_{11} B\right)\left(1-\phi_{21} B^{6}\right)} a_{t}
$$

The OUTEST= data set contains the values shown in Table 7.10.

Table 7.10 OUTEST = Data Set for First Example

Obs	_TYPE_	Y	MU	MA1_1	MA1_2	MA2_1	AR1_1	AR2_1	I1_1	I2_1
1	EST	σ^{2}	μ	θ_{11}	θ_{12}	θ_{21}	ϕ_{11}	ϕ_{21}	$\omega_{1,0}$	$\omega_{2,0}$
2	STD	.	se μ	$\operatorname{se~} \theta_{11}$	$\operatorname{se~} \theta_{12}$	$\operatorname{se} \theta_{21}$	$\operatorname{se~} \phi_{11}$	$\operatorname{se} \phi_{21}$	se $\omega_{1,0}$	se $\omega_{2,0}$
3	FACTOR	.	0	1	1	2	1	2	1	1
4	LAG	.	0	1	3	12	1	6	0	0
5	SHIFT	.	0	0	0	0	0	0	0	0

Note that the symbols in the rows for _TYPE_=EST and _TYPE_=STD in Table 7.10 would be numeric values in a real data set.

Next, consider the following example:

```
proc arima data=input;
    identify var=y cross=(x1 x2);
    estimate p=1 q=1 input=(2 $ (1)/(1,2)x1 1 $ /(1)x2) outest=est;
run;
proc print data=est;
run;
```

The model specified by these statements is

$$
Y_{t}=\mu+\frac{\omega_{10}-\omega_{11} B}{1-\delta_{11} B-\delta_{12} B^{2}} X_{1, t-2}+\frac{\omega_{20}}{1-\delta_{21} B} X_{2, t-1}+\frac{\left(1-\theta_{1} B\right)}{\left(1-\phi_{1} B\right)} a_{t}
$$

The OUTEST = data set contains the values shown in Table 7.11.

Table 7.11 OUTEST= Data Set for Second Example

Obs	_TYPE_	Y	MU	MA1_1	AR1_1	I1_1	I1_2	I1_3	I1_4	I2_1	I2_2
1	EST	σ^{2}	μ	θ_{1}	ϕ_{1}	ω_{10}	ω_{11}	δ_{11}	δ_{12}	ω_{20}	δ_{21}
2	STD	\cdot	se μ	$\operatorname{se} \theta_{1}$	se ϕ_{1}	se ω_{10}	se ω_{11}	se δ_{11}	se δ_{12}	se ω_{20}	se δ_{21}
3	FACTOR	.	0	1	1	1	1	-1	-1	1	-1
4	LAG	\cdot	0	1	1	0	1	1	2	0	1
5	SHIFT	.	0	0	0	2	2	2	2	1	1

OUTMODEL= SAS Data Set

The OUTMODEL= option in the ESTIMATE statement writes an output data set that enables you to reconstruct the model. The OUTMODEL= data set contains much the same information as the OUTEST= data set but in a transposed form that might be more useful for some purposes. In addition, the OUTMODEL= data set includes the differencing operators.

The OUTMODEL data set contains the following:

- the BY variables
- _MODLABEL_, a character variable that contains the model label, if it is provided by using the label option in the ESTIMATE statement (otherwise this variable is not created).
- _NAME_, a character variable that contains the name of the response or input variable for the observation.
- _TYPE_, a character variable that contains the estimation method that was employed. The value of _TYPE_can be CLS, ULS, or ML.
- _STATUS_, a character variable that describes the convergence status of the model. A value of 0_CONVERGED indicates that the model converged.
- _PARM_, a character variable that contains the name of the parameter given by the observation. _PARM_ takes on the values ERRORVAR, MU, AR, MA, NUM, DEN, and DIF.
- _VALUE_, a numeric variable that contains the value of the estimate defined by the _PARM_ variable.
- _STD_, a numeric variable that contains the standard error of the estimate.
- _FACTOR_, a numeric variable that indicates the number of the factor to which the parameter belongs.
- _LAG_, a numeric variable that contains the number of the term within the factor that contains the parameter.
- _SHIFT_, a numeric variable that contains the shift value for the input variable associated with the current parameter.

The values of _FACTOR_ and _LAG_identify which particular MA, AR, NUM, or DEN parameter estimate is given by the _VALUE_ variable. The _NAME_ variable contains the response variable name for the MU, AR, or MA parameters. Otherwise, _NAME_ contains the input variable name associated with NUM or DEN parameter estimates. The _NAME_ variable contains the appropriate variable name associated with the current DIF observation as well. The _VALUE_ variable is 1 for all DIF observations, and the _LAG_ variable indicates the degree of differencing employed.

The observations contained in the OUTMODEL= data set are identified by the _PARM_ variable. A description of the values of the _PARM_ variable follows:

NUMRESID _VALUE_ contains the number of residuals.
NPARMS _VALUE_contains the number of parameters in the model.
NDIFS _VALUE_ contains the sum of the differencing lags employed for the response variable.

ERRORVAR
_VALUE_contains the estimate of the innovation variance.
MU
_VALUE_contains the estimate of the mean term.
AR
_VALUE_contains the estimate of the autoregressive parameter indexed by the _FACTOR_ and _LAG_ variable values.

MA _VALUE_ contains the estimate of a moving-average parameter indexed by the _FACTOR_ and _LAG_ variable values.

NUM _VALUE_ contains the estimate of the parameter in the numerator factor of the transfer function of the input variable indexed by the _FACTOR_, _LAG_, and _SHIFT_ variable values.
DEN _ VALUE_ contains the estimate of the parameter in the denominator factor of the transfer function of the input variable indexed by the _FACTOR_, _LAG_, and _SHIFT_ variable values.

DIF _VALUE_ contains the difference operator defined by the difference lag given by the value in the _LAG_ variable.

OUTSTAT= Data Set

PROC ARIMA writes the diagnostic statistics for a model to an output data set when the OUTSTAT = option is specified in the ESTIMATE statement. The OUTSTAT data set contains the following:

- the BY variables.
- _MODLABEL_, a character variable that contains the model label, if it is provided by using the label option in the ESTIMATE statement (otherwise this variable is not created).
- _TYPE_, a character variable that contains the estimation method used. _TYPE_ can have the value CLS, ULS, or ML.
- _STAT , a character variable that contains the name of the statistic given by the _VALUE_ variable in this observation. _STAT_ takes on the values AIC, SBC, LOGLIK, SSE, NUMRESID, NPARMS, NDIFS, ERRORVAR, MU, CONV, and NITER.
- _VALUE_, a numeric variable that contains the value of the statistic named by the _STAT_ variable.

The observations contained in the OUTSTAT= data set are identified by the _STAT_ variable. A description of the values of the _STAT_ variable follows:

AIC	Akaike's information criterion
SBC	Schwarz's Bayesian criterion
LOGLIK	the log-likelihood, if METHOD=ML or METHOD=ULS is specified
SSE	the sum of the squared residuals
NUMRESID	the number of residuals
NPARMS	the number of parameters in the model
NDIFS	the sum of the differencing lags employed for the response variable
ERRORVAR	the estimate of the innovation variance
MU	the estimate of the mean term
CONV	tells if the estimation converged. The value of 0 signifies that estimation con-
verged. Nonzero values reflect convergence problems.	
NITER	the number of iterations

Remark. CONV takes an integer value that corresponds to the error condition of the parameter estimation process. The value of 0 signifies that estimation process has converged. The higher values signify convergence problems of increasing severity. Specifically:

- $\mathrm{CONV}=0$ indicates that the estimation process has converged.
- $\mathrm{CONV}=1$ or 2 indicates that the estimation process has run into numerical problems (such as encountering an unstable model or a ridge) during the iterations.
- CONV $>=3$ indicates that the estimation process has failed to converge.

Printed Output

The ARIMA procedure produces printed output for each of the IDENTIFY, ESTIMATE, and FORECAST statements. The output produced by each ARIMA statement is described in the following sections. If ODS Graphics is enabled, the line printer plots mentioned below are replaced by the corresponding ODS plots.

IDENTIFY Statement Printed Output

The printed output of the IDENTIFY statement consists of the following:

- a table of summary statistics, including the name of the response variable, any specified periods of differencing, the mean and standard deviation of the response series after differencing, and the number of observations after differencing
- a plot of the sample autocorrelation function for lags up to and including the NLAG=option value. Standard errors of the autocorrelations also appear to the right of the autocorrelation
plot if the value of LINESIZE= option is sufficiently large. The standard errors are derived using Bartlett's approximation (Box and Jenkins 1976, p. 177). The approximation for a standard error for the estimated autocorrelation function at lag k is based on a null hypothesis that a pure moving-average Gaussian process of order $k-1$ generated the time series. The relative position of an approximate 95% confidence interval under this null hypothesis is indicated by the dots in the plot, while the asterisks represent the relative magnitude of the autocorrelation value.
- a plot of the sample inverse autocorrelation function. See the section "The Inverse Autocorrelation Function" on page 239 for more information about the inverse autocorrelation function.
- a plot of the sample partial autocorrelation function
- a table of test statistics for the hypothesis that the series is white noise. These test statistics are the same as the tests for white noise residuals produced by the ESTIMATE statement and are described in the section "Estimation Details" on page 248.
- a plot of the sample cross-correlation function for each series specified in the CROSSCORR= option. If a model was previously estimated for a variable in the CROSSCORR= list, the cross-correlations for that series are computed for the prewhitened input and response series. For each input variable with a prewhitening filter, the cross-correlation report for the input series includes the following:
- a table of test statistics for the hypothesis of no cross-correlation between the input and response series
- the prewhitening filter used for the prewhitening transformation of the predictor and response variables
- ESACF tables if the ESACF option is used
- MINIC table if the MINIC option is used
- SCAN table if the SCAN option is used
- STATIONARITY test results if the STATIONARITY option is used

ESTIMATE Statement Printed Output

The printed output of the ESTIMATE statement consists of the following:

- if the PRINTALL option is specified, the preliminary parameter estimates and an iteration history that shows the sequence of parameter estimates tried during the fitting process
- a table of parameter estimates that show the following for each parameter: the parameter name, the parameter estimate, the approximate standard error, t value, approximate probability ($\operatorname{Pr}>|t|$), the lag for the parameter, the input variable name for the parameter, and the lag or "Shift" for the input variable
- the estimates of the constant term, the innovation variance (variance estimate), the innovation standard deviation (Std Error Estimate), Akaike's information criterion (AIC), Schwarz's Bayesian criterion (SBC), and the number of residuals
- the correlation matrix of the parameter estimates
- a table of test statistics for hypothesis that the residuals of the model are white noise. The table is titled "Autocorrelation Check of Residuals."
- if the PLOT option is specified, autocorrelation, inverse autocorrelation, and partial autocorrelation function plots of the residuals
- if an INPUT variable has been modeled in such a way that prewhitening is performed in the IDENTIFY step, a table of test statistics titled "Crosscorrelation Check of Residuals." The test statistic is based on the chi-square approximation suggested by Box and Jenkins (1976, pp. 395-396). The cross-correlation function is computed by using the residuals from the model as one series and the prewhitened input variable as the other series.
- if the GRID option is specified, the sum-of-squares or likelihood surface over a grid of parameter values near the final estimates
- a summary of the estimated model that shows the autoregressive factors, moving-average factors, and transfer function factors in backshift notation with the estimated parameter values.

OUTLIER Statement Printed Output

The printed output of the OUTLIER statement consists of the following:

- a summary that contains the information about the maximum number of outliers searched, the number of outliers actually detected, and the significance level used in the outlier detection.
- a table that contains the results of the outlier detection process. The outliers are listed in the order in which they are found. This table contains the following columns:
- The Obs column contains the observation number of the start of the level shift.
- If an ID= option is specified, then the Time ID column contains the time identification labels of the start of the outlier.
- The Type column lists the type of the outlier.
- The Estimate column contains $\hat{\beta}$, the estimate of the regression coefficient of the shock signature.
- The Chi-Square column lists the value of the test statistic τ^{2}.
- The Approx Prob > ChiSq column lists the approximate p-value of the test statistic.

FORECAST Statement Printed Output

The printed output of the FORECAST statement consists of the following:

- a summary of the estimated model
- a table of forecasts with following columns:
- The Obs column contains the observation number.
- The Forecast column contains the forecast values.
- The Std Error column contains the forecast standard errors.
- The Lower and Uppers columns contain the approximate 95% confidence limits. The ALPHA= option can be used to change the confidence interval for forecasts.
- If the PRINTALL option is specified, the forecast table also includes columns for the actual values of the response series (Actual) and the residual values (Residual).

ODS Table Names

PROC ARIMA assigns a name to each table it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 7.12.

Table 7.12 ODS Tables Produced by PROC ARIMA

ODS Table Name	Description	Statement	Option
ChiSqAuto	chi-square statistics table for autocorrelation	IDENTIFY	
ChiSqCross	chi-square statistics table for cross-correlations	IDENTIFY	CROSSCORR
CorrGraph	Correlations graph	IDENTIFY	
DescStats	Descriptive statistics	IDENTIFY	
ESACF	Extended sample autocorrelation function	IDENTIFY	ESACF
ESACFPValues	ESACF probability values	IDENTIFY	ESACF
IACFGraph	Inverse autocorrelations graph	IDENTIFY	
InputDescStats	Input descriptive statistics	IDENTIFY	
MINIC	Minimum information criterion	IDENTIFY	MINIC
PACFGraph	Partial autocorrelations graph	IDENTIFY	
SCAN	Squared canonical correlation estimates	IDENTIFY	SCAN
SCANPValues	SCAN chi-square probability values	IDENTIFY	SCAN
StationarityTests	Stationarity tests	IDENTIFY	STATIONARITY
TentativeOrders	Tentative order selection	IDENTIFY	MINIC, ESACF, or SCAN
ARPolynomial	Filter equations	ESTIMATE	

Table 7.12 continued

ODS Table Name	Description	Statement	Option
ChiSqAuto	chi-square statistics table for autocorrelation	ESTIMATE	
ChiSqCross	chi-square statistics table for cross-correlations	ESTIMATE	
CorrB	Correlations of the estimates	ESTIMATE	
DenPolynomial	Filter equations	ESTIMATE	
FitStatistics	Fit statistics	ESTIMATE	
IterHistory	Iteration history	ESTIMATE	PRINTALL
InitialAREstimates	Initial autoregressive parameter estimates	ESTIMATE	
InitialMAEstimates	Initial moving-average parameter estimates	ESTIMATE	
InputDescription	Input description	ESTIMATE	
MAPolynomial	Filter equations	ESTIMATE	
ModelDescription	Model description	ESTIMATE	
NumPolynomial	Filter equations	ESTIMATE	
ParameterEstimates	Parameter estimates	ESTIMATE	
PrelimEstimates	Preliminary estimates	ESTIMATE	
ObjectiveGrid	Objective function grid matrix	ESTIMATE	GRID
OptSummary	ARIMA estimation optimization	ESTIMATE	PRINTALL
OutlierDetails	Detected outliers	OUTLIER	
Forecasts	Forecast	FORECAST	

Statistical Graphics

This section provides information about the basic ODS statistical graphics produced by the ARIMA procedure. To request graphics with PROC ARIMA, you must first enable ODS Graphics by specifying the ods Graphics on; statement. See Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide), for more information. The main types of plots available are as follows:

- plots useful in the trend and correlation analysis of the dependent and input series
- plots useful for the residual analysis of an estimated model
- forecast plots

You can obtain most plots relevant to the specified model by default if ODS Graphics is enabled. For finer control of the graphics, you can use the PLOTS $=$ option in the PROC ARIMA statement. The following example is a simple illustration of how to use the PLOTS= option.

Airline Series: Illustration of ODS Graphics

The series in this example, the monthly airline passenger series, is also discussed later, in Example 7.2.

The following statements specify an $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{12}$ model without a mean term to the logarithms of the airline passengers series, xlog. Notice the use of the global plot option only in the PLOTS $=$ option of the PROC ARIMA statement. It suppresses the production of default graphics and produces only the plots specified by the subsequent RESIDUAL and FORECAST plot options. The RESIDUAL (SMOOTH) plot specification produces a time series plot of residuals that has an overlaid loess fit; see Figure 7.21. The forecast (FORECAST) option produces a plot that shows the one-step-ahead forecasts, as well as the multistep-ahead forecasts; see Figure 7.22.

```
proc arima data=seriesg
    plots(only)=(residual(smooth) forecast (forecasts));
    identify var=xlog(1,12);
    estimate q=(1) (12) noint method=ml;
    forecast id=date interval=month;
run;
```

Figure 7.21 Residual Plot of the Airline Model

Figure 7.22 Forecast Plot of the Airline Model

ODS Graph Names

PROC ARIMA assigns a name to each graph it creates by using ODS. You can use these names to reference the graphs when you use ODS. The names are listed in Table 7.13.

Table 7.13 ODS Graphics Produced by PROC ARIMA

ODS Graph Name	Plot Description	Option
SeriesPlot	Time series plot of the dependent series	PLOTS(UNPACK)
SeriesACFPlot	Autocorrelation plot of the dependent series	PLOTS(UNPACK)
SeriesPACFPlot	Partial-autocorrelation plot of the dependent series	PLOTS(UNPACK)
SeriesIACFPlot	Inverse-autocorrelation plot of the dependent series	PLOTS(UNPACK)
SeriesCorrPanel	Series trend and correlation analysis panel	Default

Table 7.13 continued

ODS Graph Name	Plot Description	Option
CrossCorrPanel	Cross-correlation plots, either individual or paneled. They are numbered 1, 2, and so on as needed.	Default
ResidualACFPlot	Residual-autocorrelation plot ResidualPACFPlot Residual-partial- autocorrelation plot Residual-inverse- autocorrelation plot Residual-white-noise- probability plot Residual histogram	PLOTS(UNPACK)
ResidualIACFPlot	PLOTS(UNPACK)	
ResidualWNPlot	PLOTS(UNPACK)	
ResidualQQPlot	Residual normal Q-Q Plot ResidualPlot	Time series plot of residuals with a superimposed smoother
ForecastsOnlyPlot	Time series plot of multistep forecasts Time series plot of one-step-ahead as well as multistep forecasts	Default

Examples: ARIMA Procedure

Example 7.1: Simulated IMA Model

This example illustrates the ARIMA procedure results for a case where the true model is known. An integrated moving-average model is used for this illustration.

The following DATA step generates a pseudo-random sample of 100 periods from the $\operatorname{ARIMA}(0,1,1)$ process $u_{t}=u_{t-1}+a_{t}-0.8 a_{t-1}, a_{t}$ iid $\mathrm{N}(0,1)$:

```
title1 'Simulated IMA(1,1) Series';
data a;
    u1 = 0.9; a1 = 0;
    do i = -50 to 100;
```

```
            a = rannor( 32565 );
            u = u1 + a - . 8 * a1;
            if i > 0 then output;
            a1 = a;
            u1 = u;
    end;
run;
```

The following ARIMA procedure statements identify and estimate the model:

```
/*-- Simulated IMA Model --*/
proc arima data=a;
    identify var=u;
    run;
    identify var=u(1);
    run;
    estimate q=1 ;
    run;
quit;
```

The graphical series correlation analysis output of the first IDENTIFY statement is shown in Output 7.1.1. The output shows the behavior of the sample autocorrelation function when the process is nonstationary. Note that in this case the estimated autocorrelations are not very high, even at small lags. Nonstationarity is reflected in a pattern of significant autocorrelations that do not decline quickly with increasing lag, not in the size of the autocorrelations.

Output 7.1.1 Correlation Analysis from the First IDENTIFY Statement

The second IDENTIFY statement differences the series. The results of the second IDENTIFY statement are shown in Output 7.1.2. This output shows autocorrelation, inverse autocorrelation, and partial autocorrelation functions typical of MA(1) processes.

Output 7.1.2 Correlation Analysis from the Second IDENTIFY Statement

The ESTIMATE statement fits an $\operatorname{ARIMA}(0,1,1)$ model to the simulated data. Note that in this case the parameter estimates are reasonably close to the values used to generate the simulated data. ($\mu=0, \hat{\mu}=0.02 ; \quad \theta_{1}=0.8, \hat{\theta}_{1}=0.79 ; \sigma^{2}=1, \hat{\sigma}^{2}=0.82$.) Moreover, the graphical analysis of the residuals shows no model inadequacies (see Output 7.1.4 and Output 7.1.5).

The ESTIMATE statement results are shown in Output 7.1.3.
Output 7.1.3 Output from Fitting ARIMA $(0,1,1)$ Model

Parameter	Conditional Least Squares Estimation				
	Standard			Approx	
	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$	Lag
MU	0.02056	0.01972	1.04	0.2997	0
MA1, 1	0.79142	0.06474	12.22	$<.0001$	1

Output 7.1.3 continued

Output 7.1.4 Residual Correlation Analysis of the $\operatorname{ARIMA}(0,1,1)$ Model

Output 7.1.5 Residual Normality Analysis of the ARIMA($0,1,1$) Model

Example 7.2: Seasonal Model for the Airline Series

The airline passenger data, given as Series G in Box and Jenkins (1976), have been used in time series analysis literature as an example of a nonstationary seasonal time series. This example uses PROC ARIMA to fit the airline model, ARIMA $(0,1,1) \times(0,1,1)_{12}$, to Box and Jenkins' Series G. The following statements read the data and log-transform the series:

```
title1 'International Airline Passengers';
title2 '(Box and Jenkins Series-G)';
data seriesg;
    input x @@;
    xlog = log( x );
    date = intnx( 'month', '31dec1948'd, _n_ );
    format date monyy.;
datalines;
... more lines ...
```

The following PROC TIMESERIES step plots the series, as shown in Output 7.2.1:

```
proc timeseries data=seriesg plot=series;
    id date interval=month;
    var x;
run;
```

Output 7.2.1 Time Series Plot of the Airline Passenger Series

The following statements specify an $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{12}$ model without a mean term to the logarithms of the airline passengers series, xlog. The model is forecast, and the results are stored in the data set B.

```
/*-- Seasonal Model for the Airline Series --*/
proc arima data=seriesg;
    identify var=xlog(1,12);
    estimate q=(1)(12) noint method=ml;
    forecast id=date interval=month printall out=b;
run;
```

The output from the IDENTIFY statement is shown in Output 7.2.2. The autocorrelation plots shown are for the twice differenced series $(1-B)\left(1-B^{12}\right) X L O G$. Note that the autocorrelation functions have the pattern characteristic of a first-order moving-average process combined with a seasonal moving-average process with lag 12.

Output 7.2.2 IDENTIFY Statement Output

Output 7.2.3 Trand and Correlation Analysis for the Twice Differenced Series

The results of the ESTIMATE statement are shown in Output 7.2.4, Output 7.2.5, and Output 7.2.6. The model appears to fit the data quite well.

Output 7.2.4 ESTIMATE Statement Output

Maximum Likelihood Estimation					
Parameter		Standard	Approx		
	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$	Lag
MA1, 1	0.40194	0.07988	5.03	<. 0001	1
MA2 , 1	0.55686	0.08403	6.63	<. 0001	12
	Varian	timate	0.001369		
	Std Er	stimate	0.037		
	AIC		-485.393		
	SBC		-479.643		
	Number	esiduals	131		
	Model for variable xlog				
	Period(s) of Differencing 1,				
	Moving Average Factors				
	Factor 1: 1 - $0.40194 \mathrm{B**}(1)$				
	Factor 2: 1 - $0.55686 \mathrm{B**}(12)$				

Output 7.2.5 Residual Analysis of the Airline Model: Correlation

Output 7.2.6 Residual Analysis of the Airline Model: Normality

The forecasts and their confidence limits for the transformed series are shown in Output 7.2.7.
Output 7.2.7 Forecast Plot for the Transformed Series

The following statements retransform the forecast values to get forecasts in the original scales. See the section "Forecasting Log Transformed Data" on page 258 for more information.

```
data c;
    set b;
    x = exp( xlog );
    forecast = exp( forecast + std*std/2 );
    195 = exp( 195 );
    u95 = exp( u95 );
run;
```

The forecasts and their confidence limits are plotted by using the following PROC SGPLOT step. The plot is shown in Output 7.2.8.

```
proc sgplot data=c;
    where date >= '1jan58'd;
    band Upper=u95 Lower=195 x=date
        / LegendLabel="95% Confidence Limits";
    scatter x=date y=x;
    series x=date y=forecast;
run;
```

Output 7.2.8 Plot of the Forecast for the Original Series

Example 7.3: Model for Series J Data from Box and Jenkins

This example uses the Series J data from Box and Jenkins (1976). First, the input series X is modeled with a univariate ARMA model. Next, the dependent series Y is cross-correlated with the input series. Since a model has been fit to X, both Y and X are prewhitened by this model before the sample cross-correlations are computed. Next, a transfer function model is fit with no structure on the noise term. The residuals from this model are analyzed; then, the full model, transfer function and noise, is fit to the data.

The following statements read 'Input Gas Rate' and 'Output CO_{2} ' from a gas furnace. (Data values are not shown. The full example including data is in the SAS/ETS sample library.)

```
title1 'Gas Furnace Data';
title2 '(Box and Jenkins, Series J)';
data seriesj;
    input x y @@;
    label x = 'Input Gas Rate'
        y = 'Output CO2';
datalines;
```

```
... more lines ...
```

The following statements produce Output 7.3.1 through Output 7.3.11:

```
proc arima data=seriesj;
    /*--- Look at the input process ----------------------*/
    identify var=x;
    run;
    /*--- Fit a model for the input ----------------------*/
    estimate p=3 plot;
    run;
    /*--- Crosscorrelation of prewhitened series ------*/
    identify var=y crosscorr=(x) nlag=12;
    run;
    /*- Fit a simple transfer function - look at residuals -*/
    estimate input=( 3 $ (1,2)/(1) x );
    run;
    /*--- Final Model - look at residuals ---*/
    estimate p=2 input=( 3 $ (1,2)/(1) x );
    run;
quit;
```

The results of the first IDENTIFY statement for the input series X are shown in Output 7.3.1. The correlation analysis suggests an AR(3) model.

Output 7.3.1 IDENTIFY Statement Results for X

Output 7.3.2 IDENTIFY Statement Results for X: Trend and Correlation

The ESTIMATE statement results for the $\operatorname{AR}(3)$ model for the input series X are shown in Output 7.3.3.

Output 7.3.3 Estimates of the AR(3) Model for X

Parameter	Conditional Least Squares Estimation				
	Standard			Approx	
	Estimate	Error	t Value	Pr > $\|t\|$	Lag
MU	-0.12280	0.10902	-1.13	0.2609	0
AR1, 1	1.97607	0.05499	35.94	<. 0001	1
AR1, 2	-1.37499	0.09967	-13.80	<. 0001	2
AR1, 3	0.34336	0.05502	6.24	<. 0001	3
	Const	timate	-0.00682		
	Varia	timate	0.035797		
	Std E	stimate	0.1892		
	AIC		-141.667		
	SBC		-126.906		
	Numbe	esiduals	296		

Output 7.3.3 continued

The IDENTIFY statement results for the dependent series Y cross-correlated with the input series X are shown in Output 7.3.4, Output 7.3.5, Output 7.3.6, and Output 7.3.7. Since a model has been fit to X , both Y and X are prewhitened by this model before the sample cross-correlations are computed.

Output 7.3.4 Summary Table: Y Cross-Correlated with X

Correlation of y and x	
Number of Observations	296
Variance of transformed series y	0.131438
Variance of transformed series x	0.035357
Both series have been prewhitened.	

Output 7.3.5 Prewhitening Filter

Autoregressive Factors

Factor 1: 1 - $1.97607 B * *(1)+1.37499 B * *(2)-0.34336 B * *(3)$

Output 7.3.6 IDENTIFY Statement Results for Y: Trend and Correlation

Output 7.3.7 IDENTIFY Statement for Y Cross-Correlated with X

The ESTIMATE statement results for the transfer function model with no structure on the noise term are shown in Output 7.3.8, Output 7.3.9, and Output 7.3.10.

Output 7.3.8 Estimation Output of the First Transfer Function Model

Parameter	Conditional Least Squares Estimation						Shift	
	Estimate Standard			Approx		Variable		
				Pr > \|t		Lag		
MU	53.32256	0.04926	1082.51	<. 0001	0	y	0	
NUM1	-0.56467	0.22405	-2.52	0.0123	0	x	3	
NUM1, 1	0.42623	0.46472	0.92	0.3598	1	x	3	
NUM1, 2	0.29914	0.35506	0.84	0.4002	2	x	3	
DEN1,1	0.60073	0.04101	14.65	<. 0001	1	x	3	
		stant Est	mate	53.32256				
		iance Est	mate	0.702625				
		Error Es	imate	0.838227				
				728.0754				
				746.442				
		ber of Re	iduals	291				

Output 7.3.9 Model Summary: First Transfer Function Model

Output 7.3.10 Residual Analysis: First Transfer Function Model

The residual correlation analysis suggests an $\operatorname{AR}(2)$ model for the noise part of the model. The

ESTIMATE statement results for the final transfer function model with AR(2) noise are shown in Output 7.3.11.

Output 7.3.11 Estimation Output of the Final Model

Parameter	Conditional Least Squares Estimation						
	Standard Approx						
	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$	Lag	Variable	Shift
MU	53.26304	0.11929	446.48	$<.0001$	0	Y	0
AR1, 1	1.53291	0.04754	32.25	$<.0001$	1	Y	0
AR1, 2	-0.63297	0.05006	-12.64	$<.0001$	2	Y	0
NUM1	-0.53522	0.07482	-7.15	$<.0001$	0	x	3
NUM1, 1	0.37603	0.10287	3.66	0.0003	1	x	3
NUM1, 2	0.51895	0.10783	4.81	$<.0001$	2	x	3
DEN1, 1	0.54841	0.03822	14.35	$<.0001$	1	x	3
	Constant Estimate			5.329425			
	Variance Estimate			0.058828			
	Std Error Estimate			0.242544			
	AIC			8.292809			
	SBC			34.00607			
	Number of Residuals			291			

Output 7.3.12 Residual Analysis of the Final Model

Output 7.3.13 Model Summary of the Final Model

Example 7.4: An Intervention Model for Ozone Data

This example fits an intervention model to ozone data as suggested by Box and Tiao (1975). Notice that the response variable, OZONE, and the innovation, X 1 , are seasonally differenced. The final model for the differenced data is a multiple regression model with a moving-average structure assumed for the residuals.

The model is fit by maximum likelihood. The seasonal moving-average parameter and its standard error are fairly sensitive to which method is chosen to fit the model, in agreement with the observations of Davidson (1981) and Ansley and Newbold (1980); thus, fitting the model by the unconditional or conditional least squares method produces somewhat different estimates for these parameters.

Some missing values are appended to the end of the input data to generate additional values for the independent variables. Since the independent variables are not modeled, values for them must be available for any times at which predicted values are desired. In this case, predicted values are requested for 12 periods beyond the end of the data. Thus, values for X1, WINTER, and SUMMER must be given for 12 periods ahead.

The following statements read in the data and compute dummy variables for use as intervention inputs:

```
title1 'Intervention Data for Ozone Concentration';
title2 '(Box and Tiao, JASA 1975 P.70)';
data air;
    input ozone @@;
    label ozone = 'Ozone Concentration'
            x1 = 'Intervention for post }1960\mathrm{ period'
            summer = 'Summer Months Intervention'
            winter = 'Winter Months Intervention';
    date = intnx( 'month', '31dec1954'd, _n_ );
    format date monyy.;
    month = month( date );
    year = year( date );
    x1 = year >= 1960;
    summer = ( 5 < month < 11 ) * ( year > 1965 );
    winter = ( year > 1965 ) - summer;
datalines;
2.7 2.0 3.6 5.0 6.5 6.1 5.9 5.0
4.1
3.0
... more lines ...
```

The following statements produce Output 7.4.1 through Output 7.4.3:

```
proc arima data=air;
    /* Identify and seasonally difference ozone series */
    identify var=ozone(12)
```

```
crosscorr=( x1(12) summer winter ) noprint;
/* Fit a multiple regression with a seasonal MA model */
/* by the maximum likelihood method */
estimate q=(1) (12) input=( x1 summer winter )
    noconstant method=ml;
/* Forecast */
forecast lead=12 id=date interval=month;
run;
```

The ESTIMATE statement results are shown in Output 7.4.1 and Output 7.4.2.
Output 7.4.1 Parameter Estimates

Output 7.4.2 Model Summary

The FORECAST statement results are shown in Output 7.4.3.
Output 7.4.3 Forecasts

	Forecasts for variable ozone			
Obs	Forecast	Std Error	95\% Confidence Limits	
217	1.4205	0.7966	-0.1407	2.9817
218	1.8446	0.8244	0.2287	3.4604
219	2.4567	0.8244	0.8408	4.0725
220	2.8590	0.8244	1.2431	4.4748
221	3.1501	0.8244	1.5342	4.7659
222	2.7211	0.8244	1.1053	4.3370
223	3.3147	0.8244	1.6989	4.9306
224	3.4787	0.8244	1.8629	5.0946
225	2.9405	0.8244	1.3247	4.5564
226	2.3587	0.8244	0.7429	3.9746
227	1.8588	0.8244	0.2429	3.4746
228	1.2898	0.8244	-0.3260	2.9057

Example 7.5: Using Diagnostics to Identify ARIMA Models

Fitting ARIMA models is as much an art as it is a science. The ARIMA procedure has diagnostic options to help tentatively identify the orders of both stationary and nonstationary ARIMA processes.

Consider the Series A in Box, Jenkins, and Reinsel (1994), which consists of 197 concentration readings taken every two hours from a chemical process. Let Series A be a data set that contains these readings in a variable named X . The following SAS statements use the SCAN option of the IDENTIFY statement to generate Output 7.5.1 and Output 7.5.2. See "The SCAN Method" on page 244 for details of the SCAN method.

```
/*-- Order Identification Diagnostic with SCAN Method --*/
proc arima data=SeriesA;
    identify var=x scan;
run;
```

Output 7.5.1 Example of SCAN Tables

SERIES A: Chemical Process Concentration Readings The ARIMA Procedure						
Squared Canonical Correlation Estimates						
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	0.3263	0.2479	0.1654	0.1387	0.1183	0.1417
AR 1	0.0643	0.0012	0.0028	<. 0001	0.0051	0.0002
AR 2	0.0061	0.0027	0.0021	0.0011	0.0017	0.0079
AR 3	0.0072	<. 0001	0.0007	0.0005	0.0019	0.0021
AR 4	0.0049	0.0010	0.0014	0.0014	0.0039	0.0145
AR 5	0.0202	0.0009	0.0016	<. 0001	0.0126	0.0001
SCAN Chi-Square[1] Probability Values						
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	$<.0001$	$<.0001$	$<.0001$	0.0007	0.0037	0.0024
AR 1	0.0003	0.6649	0.5194	0.9235	0.3993	0.8528
AR 2	0.2754	0.5106	0.5860	0.7346	0.6782	0.2766
AR 3	0.2349	0.9812	0.7667	0.7861	0.6810	0.6546
AR 4	0.3297	0.7154	0.7113	0.6995	0.5807	0.2205
AR 5	0.0477	0.7254	0.6652	0.9576	0.2660	0.9168

In Output 7.5.1, there is one (maximal) rectangular region in which all the elements are insignificant with 95% confidence. This region has a vertex at (1,1). Output 7.5 .2 gives recommendations based on the significance level specified by the ALPHA=siglevel option.

Output 7.5.2 Example of SCAN Option Tentative Order Selection

Another order identification diagnostic is the extended sample autocorrelation function or ESACF method. See "The ESACF Method" on page 241 for details of the ESACF method.

The following statements generate Output 7.5.3 and Output 7.5.4:
/*-- Order Identification Diagnostic with ESACF Method --*/

```
proc arima data=SeriesA;
    identify var=x esacf;
run;
```


Output 7.5.3 Example of ESACF Tables

SERIES A: Chemical Process Concentration Readings The ARIMA Procedure						
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	0.5702	0.4951	0.3980	0.3557	0.3269	0.3498
AR 1	-0.3907	0.0425	-0.0605	-0.0083	-0.0651	-0.0127
AR 2	-0.2859	-0.2699	-0.0449	0.0089	-0.0509	-0.0140
AR 3	-0.5030	-0.0106	0.0946	-0.0137	-0.0148	-0.0302
AR 4	-0.4785	-0.0176	0.0827	-0.0244	-0.0149	-0.0421
AR 5	-0.3878	-0.4101	-0.1651	0.0103	-0.1741	-0.0231
		ESACF	Probabili	Values		
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	$<.0001$	$<.0001$	0.0001	0.0014	0.0053	0.0041
AR 1	$<.0001$	0.5974	0.4622	0.9198	0.4292	0.8768
AR 2	$<.0001$	0.0002	0.6106	0.9182	0.5683	0.8592
AR 3	$<.0001$	0.9022	0.2400	0.8713	0.8930	0.7372
AR 4	$<.0001$	0.8380	0.3180	0.7737	0.8913	0.6213
AR 5	<. 0001	<. 0001	0.0765	0.9142	0.1038	0.8103

In Output 7.5.3, there are three right-triangular regions in which all elements are insignificant at the 5% level. The triangles have vertices $(1,1),(3,1)$, and $(4,1)$. Since the triangle at $(1,1)$ covers more insignificant terms, it is recommended first. Similarly, the remaining recommendations are ordered by the number of insignificant terms contained in the triangle. Output 7.5.4 gives recommendations based on the significance level specified by the ALPHA=siglevel option.

Output 7.5.4 Example of ESACF Option Tentative Order Selection

(5\% Significance Level)

If you also specify the SCAN option in the same IDENTIFY statement, the two recommendations are printed side by side:

```
/*-- Combination of SCAN and ESACF Methods --*/
proc arima data=SeriesA;
    identify var=x scan esacf;
run;
```

Output 7.5.5 shows the results.
Output 7.5.5 Example of SCAN and ESACF Option Combined

From Output 7.5.5, the autoregressive and moving-average orders are tentatively identified by both SCAN and ESACF tables to be $(p+d, q)=(1,1)$. Because both the SCAN and ESACF indicate a $p+d$ term of 1 , a unit root test should be used to determine whether this autoregressive term is a unit root. Since a moving-average term appears to be present, a large autoregressive term is appropriate for the augmented Dickey-Fuller test for a unit root.

Submitting the following statements generates Output 7.5.6:

```
/*-- Augmented Dickey-Fuller Unit Root Tests --*/
proc arima data=SeriesA;
    identify var=x stationarity=(adf=(5,6,7,8));
run;
```

Output 7.5.6 Example of STATIONARITY Option Output

SERIES A: Chemical Process Concentration Readings The ARIMA Procedure Augmented Dickey-Fuller Unit Root Tests							
Type	Lags	Rho	$\mathrm{Pr}<\mathrm{Rho}$	Tau	Pr < Tau	F	Pr $>$ F
Zero Mean	5	0.0403	0.6913	0.42	0.8024		
	6	0.0479	0.6931	0.63	0.8508		
	7	0.0376	0.6907	0.49	0.8200		
	8	0.0354	0.6901	0.48	0.8175		
Single Mean	5	-18.4550	0.0150	-2.67	0.0821	3.67	0.1367
	6	-10.8939	0.1043	-2.02	0.2767	2.27	0.4931
	7	-10.9224	0.1035	-1.93	0.3172	2.00	0.5605
	8	-10.2992	0.1208	-1.83	0.3650	1.81	0.6108
Trend	5	-18.4360	0.0871	-2.66	0.2561	3.54	0.4703
	6	-10.8436	0.3710	-2.01	0.5939	2.04	0.7694
	7	-10.7427	0.3773	-1.90	0.6519	1.91	0.7956
	8	-10.0370	0.4236	-1.79	0.7081	1.74	0.8293

The preceding test results show that a unit root is very likely given that none of the p-values are small enough to cause you to reject the null hypothesis that the series has a unit root. Based on this test and the previous results, the series should be differenced, and an $\operatorname{ARIMA}(0,1,1)$ would be a good choice for a tentative model for Series A.

Using the recommendation that the series be differenced, the following statements generate Output 7.5.7:

```
/*-- Minimum Information Criterion --*/
proc arima data=SeriesA;
    identify var=x(1) minic;
run;
```

Output 7.5.7 Example of MINIC Table

	SERIES	Chemical Process Concentration The ARIMA Procedure				
Minimum Information Criterion						
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	-2.05761	-2. 3497	-2. 32358	-2.31298	-2. 30967	-2.28528
AR 1	-2.23291	-2.32345	-2.29665	-2.28644	-2.28356	-2.26011
AR 2	-2. 23947	-2. 30313	-2.28084	-2.26065	-2.25685	-2.23458
AR 3	-2.25092	-2.28088	-2. 25567	-2.23455	-2.22997	-2.20769
AR 4	-2.25934	-2.2778	-2.25363	-2.22983	-2. 20312	-2.19531
AR 5	-2. 2751	-2.26805	-2.24249	-2.21789	-2.19667	-2.17426

The error series is estimated by using an $\operatorname{AR}(7)$ model, and the minimum of this MINIC table is $B I C(0,1)$. This diagnostic confirms the previous result which indicates that an $\operatorname{ARIMA}(0,1,1)$ is a tentative model for Series A.

If you also specify the SCAN or MINIC option in the same IDENTIFY statement as follows, the BIC associated with the SCAN table and ESACF table recommendations is listed. Output 7.5.8 shows the results.

```
/*-- Combination of MINIC, SCAN, and ESACF Options --*/
proc arima data=SeriesA;
    identify var=x(1) minic scan esacf;
run;
```


Output 7.5.8 Example of SCAN, ESACF, MINIC Options Combined

Example 7.6: Detection of Level Changes in the Nile River Data

This example shows how to use the OUTLIER statement to detect changes in the dynamics of the time series being modeled. The time series used here is discussed in de Jong and Penzer (1998). The data consist of readings of the annual flow volume of the Nile River at Aswan from 1871 to 1970. These data have also been studied by Cobb (1978). These studies indicate that river flow levels in the years 1877 and 1913 are strong candidates for additive outliers and that there was a shift in the flow levels starting from the year 1899. This shift in 1899 is attributed partly to the weather changes and partly to the start of construction work for a new dam at Aswan. The following DATA step statements create the input data set.

```
data nile;
    input level @@;
    year = intnx( 'year', '1jan1871'd, _n_-1 );
    format year year4.;
datalines;
1120}101160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
... more lines ...
```

The following program fits an ARIMA model, ARIMA($0,1,1$), similar to the structural model suggested in de Jong and Penzer (1998). This model is also suggested by the usual correlation analysis of the series. By default, the OUTLIER statement requests detection of additive outliers and level shifts, assuming that the series follows the estimated model.

```
/*-- ARIMA(0, 1, 1) Model --*/
proc arima data=nile;
    identify var=level(1);
    estimate q=1 noint method=ml;
    outlier maxnum= 5 id=year;
run;
```

The outlier detection output is shown in Output 7.6.1.
Output 7.6.1 ARIMA(0, 1, 1) Model

Note that the first three outliers detected are indeed the ones discussed earlier. You can include the shock signatures that correspond to these three outliers in the Nile data set as follows:

```
data nile;
    set nile;
    A01877 = ( year = '1jan1877'd );
    A01913 = ( year = '1jan1913'd );
    LS1899 = ( year >= '1jan1899'd );
run;
```

Now you can refine the earlier model by including these outliers. After examining the parameter estimates and residuals (not shown) of the ARIMA $(0,1,1)$ model with these regressors, the following stationary MA1 model (with regressors) appears to fit the data well:

```
/*-- MA1 Model with Outliers --*/
proc arima data=nile;
    identify var=level
                crosscorr=( AO1877 AO1913 LS1899 );
    estimate q=1
            input=( A01877 A01913 LS1899 )
            method=ml;
    outlier maxnum=5 alpha=0.01 id=year;
run;
```

The relevant outlier detection process output is shown in Output 7.6.2. No outliers, at significance level 0.01 , were detected.

Output 7.6.2 MA1 Model with Outliers

SERIES A: Chemical Process Concentration Readings
The ARIMA Procedure

Outlier Detection Summary

Maximum number searched	5
Number found	0

Example 7.7: Iterative Outlier Detection

This example illustrates the iterative nature of the outlier detection process. This is done by using a simple test example where an additive outlier at observation number 50 and a level shift at observation number 100 are artificially introduced in the international airline passenger data used in Example 7.2. The following DATA step shows the modifications introduced in the data set:

```
data airline;
    set sashelp.air;
    logair = log(air);
    if _n_ = 50 then logair = logair - 0.25;
    if _n_ >= 100 then logair = logair + 0.5;
run;
```

In Example 7.2 the airline model, $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{12}$, was seen to be a good fit to the unmodified log-transformed airline passenger series. The preliminary identification steps (not shown) again suggest the airline model as a suitable initial model for the modified data. The following statements specify the airline model and request an outlier search.

```
/*-- Outlier Detection --*/
proc arima data=airline;
    identify var=logair( 1, 12 ) noprint;
    estimate q= (1)(12) noint method= ml;
```

outlier maxnum=3 alpha=0.01; run;

The outlier detection output is shown in Output 7.7.1.
Output 7.7.1 Initial Model

SERIES A: Chemical Process Concentration Readings				
The ARIMA Procedure				
Outlier Detection Summary				
Maximum number searched 3				
Number found 3				
Significance used			0.01	
Outlier Details				
				Approx
			Chi-	Prob>
Obs	Type	Estimate	Square	ChiSq
100	Shift	0.49325	199.36	$<.0001$
50	Additive	-0.27508	104.78	$<.0001$
135	Additive	-0.10488	13.08	0.0003

Clearly the level shift at observation number 100 and the additive outlier at observation number 50 are the dominant outliers. Moreover, the corresponding regression coefficients seem to correctly estimate the size and sign of the change. You can augment the airline data with these two regressors, as follows:

```
data airline;
    set airline;
    if _n_ = 50 then AO = 1;
    else AO = 0.0;
    if _n_ >= 100 then LS = 1;
    else LS = 0.0;
run;
```

You can now refine the previous model by including these regressors, as follows. Note that the differencing order of the dependent series is matched to the differencing orders of the outlier regressors to get the correct "effective" outlier signatures.

```
/*-- Airline Model with Outliers --*/
proc arima data=airline;
    identify var=logair(1, 12)
            crosscorr=( AO(1, 12) LS (1, 12) )
            noprint;
    estimate q= (1) (12) noint
            input=( AO LS )
            method=ml plot;
    outlier maxnum=3 alpha=0.01;
```

run;

The outlier detection results are shown in Output 7.7.2.
Output 7.7.2 Airline Model with Outliers

The output shows that a few outliers still remain to be accounted for and that the model could be refined further.

References

Akaike, H. (1974), "A New Look at the Statistical Model Identification," IEEE Transaction on Automatic Control, AC-19, 716-723.

Anderson, T. W. (1971), The Statistical Analysis of Time Series, New York: John Wiley \& Sons.
Andrews and Herzberg (1985), A Collection of Problems from Many Fields for the Student and Research Worker, New York: Springer-Verlag.

Ansley, C. (1979), "An Algorithm for the Exact Likelihood of a Mixed Autoregressive MovingAverage Process," Biometrika, 66, 59.

Ansley, C. and Newbold, P. (1980), "Finite Sample Properties of Estimators for Autoregressive Moving-Average Models," Journal of Econometrics, 13, 159.

Bhansali, R. J. (1980), "Autoregressive and Window Estimates of the Inverse Correlation Function," Biometrika, 67, 551-566.

Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, San

Francisco: Holden-Day.
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control, Third Edition, Englewood Cliffs, NJ: Prentice Hall, 197-199.

Box, G. E. P. and Tiao, G. C. (1975), "Intervention Analysis with Applications to Economic and Environmental Problems," JASA, 70, 70-79.

Brocklebank, J. C. and Dickey, D. A. (2003), SAS System for Forecasting Time Series, Second Edition, Cary, North Carolina: SAS Institute Inc.

Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, Second Edition, New York: Springer-Verlag.

Chatfield, C. (1980), "Inverse Autocorrelations," Journal of the Royal Statistical Society, A142, 363-377.

Choi, ByoungSeon (1992), ARMA Model Identification, New York: Springer-Verlag, 129-132.
Cleveland, W. S. (1972), "The Inverse Autocorrelations of a Time Series and Their Applications," Technometrics, 14, 277.

Cobb, G. W. (1978), "The Problem of the Nile: Conditional Solution to a Change Point Problem," Biometrika, 65, 243-251.

Davidson, J. (1981), "Problems with the Estimation of Moving-Average Models," Journal of Econometrics, 16, 295.

Davies, N., Triggs, C. M., and Newbold, P. (1977), "Significance Levels of the Box-Pierce Portmanteau Statistic in Finite Samples," Biometrika, 64, 517-522.
de Jong, P. and Penzer, J. (1998), "Diagnosing Shocks in Time Series," Journal of the American Statistical Association, Vol. 93, No. 442.

Dickey, D. A. (1976), "Estimation and Testing of Nonstationary Time Series," unpublished Ph.D. thesis, Iowa State University, Ames.

Dickey, D. A., and Fuller, W. A. (1979), "Distribution of the Estimators for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association, 74 (366), 427-431.

Dickey, D. A., Hasza, D. P., and Fuller, W. A. (1984), "Testing for Unit Roots in Seasonal Time Series," Journal of the American Statistical Association, 79 (386), 355-367.

Dunsmuir, William (1984), "Large Sample Properties of Estimation in Time Series Observed at Unequally Spaced Times," in Time Series Analysis of Irregularly Observed Data, Emanuel Parzen, ed., New York: Springer-Verlag.

Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., and Chen, B. C. (1998), "New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program," Journal of Business and Economic Statistics, 16, 127-177.

Fuller, W. A. (1976), Introduction to Statistical Time Series, New York: John Wiley \& Sons.

Hamilton, J. D. (1994), Time Series Analysis, Princeton: Princeton University Press.
Hannan, E. J. and Rissanen, J. (1982), "Recursive Estimation of Mixed Autoregressive MovingAverage Order," Biometrika, 69 (1), 81-94.

Harvey, A. C. (1981), Time Series Models, New York: John Wiley \& Sons.
Jones, Richard H. (1980), "Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations," Technometrics, 22, 389-396.

Kohn, R. and Ansley, C. (1985), "Efficient Estimation and Prediction in Time Series Regression Models," Biometrika, 72, 3, 694-697.

Ljung, G. M. and Box, G. E. P. (1978), "On a Measure of Lack of Fit in Time Series Models," Biometrika, 65, 297-303.

Montgomery, D. C. and Johnson, L. A. (1976), Forecasting and Time Series Analysis, New York: McGraw-Hill.

Morf, M., Sidhu, G. S., and Kailath, T. (1974), "Some New Algorithms for Recursive Estimation on Constant Linear Discrete Time Systems," IEEE Transactions on Automatic Control, AC-19, 315-323.

Nelson, C. R. (1973), Applied Time Series for Managerial Forecasting, San Francisco: Holden-Day.
Newbold, P. (1981), "Some Recent Developments in Time Series Analysis," International Statistical Review, 49, 53-66.

Newton, H. Joseph and Pagano, Marcello (1983), "The Finite Memory Prediction of Covariance Stationary Time Series," SIAM Journal of Scientific and Statistical Computing, 4, 330-339.

Pankratz, Alan (1983), Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, New York: John Wiley \& Sons.

Pankratz, Alan (1991), Forecasting with Dynamic Regression Models, New York: John Wiley \& Sons.

Pearlman, J. G. (1980), "An Algorithm for the Exact Likelihood of a High-Order Autoregressive Moving-Average Process," Biometrika, 67, 232-233.

Priestly, M. B. (1981), Spectra Analysis and Time Series, Volume 1: Univariate Series, New York: Academic Press

Schwarz, G. (1978), "Estimating the Dimension of a Model," Annals of Statistics, 6, 461-464.
Stoffer, D. and Toloi, C. (1992), "A Note on the Ljung-Box-Pierce Portmanteau Statistic with Missing Data," Statistics \& Probability Letters 13, 391-396.

Tsay, R. S. and Tiao, G. C. (1984), "Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models," JASA, 79 (385), 84-96.

Tsay, R. S. and Tiao, G. C. (1985), "Use of Canonical Analysis in Time Series Model Identification," Biometrika, 72 (2), 299-315.

Woodfield, T. J. (1987), "Time Series Intervention Analysis Using SAS Software," Proceedings of the Twelfth Annual SAS Users Group International Conference, 331-339. Cary, NC: SAS Institute Inc.

Chapter 8

The AUTOREG Procedure

Contents

Overview: AUTOREG Procedure 314
Getting Started: AUTOREG Procedure 315
Regression with Autocorrelated Errors 315
Forecasting Autoregressive Error Models 322
Testing for Autocorrelation 324
Stepwise Autoregression 327
Testing for Heteroscedasticity 329
Heteroscedasticity and GARCH Models 332
Syntax: AUTOREG Procedure 335
Functional Summary 336
PROC AUTOREG Statement 339
BY Statement 340
MODEL Statement 340
HETERO Statement 350
RESTRICT Statement 352
TEST Statement 353
OUTPUT Statement 354
Details: AUTOREG Procedure 357
Missing Values 357
Autoregressive Error Model 357
Alternative Autocorrelation Correction Methods 361
GARCH, IGARCH, EGARCH, and GARCH-M Models 362
R-Square Statistics and Other Measures of Fit 367
Generalized Durbin-Watson Tests 370
Testing 374
Predicted Values 381
OUT= Data Set 384
OUTEST= Data Set 384
Printed Output 385
ODS Table Names 386
ODS Graphics 388
Examples: AUTOREG Procedure 389
Example 8.1: Analysis of Real Output Series 389
Example 8.2: Comparing Estimates and Models 393
Example 8.3: Lack-of-Fit Study 397
Example 8.4: Missing Values 402
Example 8.5: Money Demand Model 407
Example 8.6: Estimation of ARCH(2) Process 411
Example 8.7: Illustration of ODS Graphics 415
References 424

Overview: AUTOREG Procedure

The AUTOREG procedure estimates and forecasts linear regression models for time series data when the errors are autocorrelated or heteroscedastic. The autoregressive error model is used to correct for autocorrelation, and the generalized autoregressive conditional heteroscedasticity (GARCH) model and its variants are used to model and correct for heteroscedasticity.

When time series data are used in regression analysis, often the error term is not independent through time. Instead, the errors are serially correlated or autocorrelated. If the error term is autocorrelated, the efficiency of ordinary least squares (OLS) parameter estimates is adversely affected and standard error estimates are biased.

The autoregressive error model corrects for serial correlation. The AUTOREG procedure can fit autoregressive error models of any order and can fit subset autoregressive models. You can also specify stepwise autoregression to select the autoregressive error model automatically.

To diagnose autocorrelation, the AUTOREG procedure produces generalized Durbin-Watson (DW) statistics and their marginal probabilities. Exact p-values are reported for generalized DW tests to any specified order. For models with lagged dependent regressors, PROC AUTOREG performs the Durbin t test and the Durbin h test for first-order autocorrelation and reports their marginal significance levels.

Ordinary regression analysis assumes that the error variance is the same for all observations. When the error variance is not constant, the data are said to be heteroscedastic, and ordinary least squares estimates are inefficient. Heteroscedasticity also affects the accuracy of forecast confidence limits. More efficient use of the data and more accurate prediction error estimates can be made by models that take the heteroscedasticity into account.

To test for heteroscedasticity, the AUTOREG procedure uses the portmanteau test statistics and the Engle Lagrange multiplier tests. Test statistics and significance p-values are reported for conditional heteroscedasticity at lags 1 through 12. The Bera-Jarque normality test statistic and its significance level are also reported to test for conditional nonnormality of residuals.

The family of GARCH models provides a means of estimating and correcting for the changing variability of the data. The GARCH process assumes that the errors, although uncorrelated, are not independent and models the conditional error variance as a function of the past realizations of the series.

The AUTOREG procedure supports the following variations of the GARCH models:

- generalized ARCH (GARCH)
- integrated GARCH (IGARCH)
- exponential GARCH (EGARCH)
- GARCH-in-mean (GARCH-M)

For GARCH-type models, the AUTOREG procedure produces the conditional prediction error variances as well as parameter and covariance estimates.

The AUTOREG procedure can also analyze models that combine autoregressive errors and GARCH-type heteroscedasticity. PROC AUTOREG can output predictions of the conditional mean and variance for models with autocorrelated disturbances and changing conditional error variances over time.

Four estimation methods are supported for the autoregressive error model:

- Yule-Walker
- iterated Yule-Walker
- unconditional least squares
- exact maximum likelihood

The maximum likelihood method is used for GARCH models and for mixed AR-GARCH models.
The AUTOREG procedure produces forecasts and forecast confidence limits when future values of the independent variables are included in the input data set. PROC AUTOREG is a useful tool for forecasting because it uses the time series part of the model as well as the systematic part in generating predicted values. The autoregressive error model takes into account recent departures from the trend in producing forecasts.

The AUTOREG procedure permits embedded missing values for the independent or dependent variables. The procedure should be used only for ordered and equally spaced time series data.

Getting Started: AUTOREG Procedure

Regression with Autocorrelated Errors

Ordinary regression analysis is based on several statistical assumptions. One key assumption is that the errors are independent of each other. However, with time series data, the ordinary regression residuals usually are correlated over time. It is not desirable to use ordinary regression analysis for
time series data since the assumptions on which the classical linear regression model is based will usually be violated.

Violation of the independent errors assumption has three important consequences for ordinary regression. First, statistical tests of the significance of the parameters and the confidence limits for the predicted values are not correct. Second, the estimates of the regression coefficients are not as efficient as they would be if the autocorrelation were taken into account. Third, since the ordinary regression residuals are not independent, they contain information that can be used to improve the prediction of future values.

The AUTOREG procedure solves this problem by augmenting the regression model with an autoregressive model for the random error, thereby accounting for the autocorrelation of the errors. Instead of the usual regression model, the following autoregressive error model is used:

$$
\begin{aligned}
& y_{t}=\mathbf{x}_{t}^{\prime} \beta+v_{t} \\
& v_{t}=-\varphi_{1} v_{t-1}-\varphi_{2} v_{t-2}-\ldots-\varphi_{m} v_{t-m}+\epsilon_{t} \\
& \epsilon_{t} \sim \operatorname{IN}\left(0, \sigma^{2}\right)
\end{aligned}
$$

The notation $\epsilon_{t} \sim \operatorname{IN}\left(0, \sigma^{2}\right)$ indicates that each ϵ_{t} is normally and independently distributed with mean 0 and variance σ^{2}.

By simultaneously estimating the regression coefficients β and the autoregressive error model parameters φ_{i}, the AUTOREG procedure corrects the regression estimates for autocorrelation. Thus, this kind of regression analysis is often called autoregressive error correction or serial correlation correction.

Example of Autocorrelated Data

A simulated time series is used to introduce the AUTOREG procedure. The following statements generate a simulated time series Y with second-order autocorrelation:

```
/* Regression with Autocorrelated Errors */
data a;
    ul = 0; ull = 0;
    do time = -10 to 36;
        u = + 1.3 * ul - . 5 * ull + 2*rannor(12346);
        y = 10 + . 5 * time + u;
        if time > 0 then output;
        ull = ul; ul = u;
    end;
run;
```

The series Y is a time trend plus a second-order autoregressive error. The model simulated is

```
\(y_{t}=10+0.5 t+v_{t}\)
\(v_{t}=1.3 v_{t-1}-0.5 v_{t-2}+\epsilon_{t}\)
\(\epsilon_{t} \sim \mathrm{IN}(0,4)\)
```

The following statements plot the simulated time series Y. A linear regression trend line is shown for reference.

```
title 'Autocorrelated Time Series';
proc sgplot data=a noautolegend;
```

```
    series x=time y=y / markers;
    reg x=time y=y/ lineattrs=(color=black);
run;
```

The plot of series Y and the regression line are shown in Figure 8.1.
Figure 8.1 Autocorrelated Time Series

Note that when the series is above (or below) the OLS regression trend line, it tends to remain above (below) the trend for several periods. This pattern is an example of positive autocorrelation.

Time series regression usually involves independent variables other than a time trend. However, the simple time trend model is convenient for illustrating regression with autocorrelated errors, and the series Y shown in Figure 8.1 is used in the following introductory examples.

Ordinary Least Squares Regression

To use the AUTOREG procedure, specify the input data set in the PROC AUTOREG statement and specify the regression model in a MODEL statement. Specify the model by first naming the dependent variable and then listing the regressors after an equal sign, as is done in other SAS regression procedures. The following statements regress Y on TIME by using ordinary least squares:

```
proc autoreg data=a;
    model y = time;
run;
```

The AUTOREG procedure output is shown in Figure 8.2.
Figure 8.2 PROC AUTOREG Results for OLS Estimation

The output first shows statistics for the model residuals. The model root mean square error (Root MSE) is 2.51 , and the model R^{2} is 0.82 . Notice that two R^{2} statistics are shown, one for the regression model (Reg Rsq) and one for the full model (Total Rsq) that includes the autoregressive error process, if any. In this case, an autoregressive error model is not used, so the two R^{2} statistics are the same.

Other statistics shown are the sum of square errors (SSE), mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), error degrees of freedom (DFE, the number of observations minus the number of parameters), the information criteria SBC, AIC, and AICC, and the Durbin-Watson statistic. (Durbin-Watson statistics, MAE, MAPE, SBC, AIC, and AICC are discussed in the section "R-Square Statistics and Other Measures of Fit" on page 367 later in this chapter.)

The output then shows a table of regression coefficients, with standard errors and t tests. The estimated model is
$y_{t}=8.23+0.502 t+\epsilon_{t}$
Est. $\operatorname{Var}\left(\epsilon_{t}\right)=6.32$

The OLS parameter estimates are reasonably close to the true values, but the estimated error variance, 6.32 , is much larger than the true value, 4 .

Autoregressive Error Model

The following statements regress Y on TIME with the errors assumed to follow a second-order autoregressive process. The order of the autoregressive model is specified by the NLAG=2 option. The Yule-Walker estimation method is used by default. The example uses the METHOD=ML option to specify the exact maximum likelihood method instead.

```
proc autoreg data=a;
    model y = time / nlag=2 method=ml;
run;
```

The first part of the results is shown in Figure 8.3. The initial OLS results are produced first, followed by estimates of the autocorrelations computed from the OLS residuals. The autocorrelations are also displayed graphically.

Figure 8.3 Preliminary Estimate for $\operatorname{AR}(2)$ Error Model

Figure 8.3 continued

Preliminary MSE	1.7943

The maximum likelihood estimates are shown in Figure 8.4. Figure 8.4 also shows the preliminary Yule-Walker estimates used as starting values for the iterative computation of the maximum likelihood estimates.

Figure 8.4 Maximum Likelihood Estimates of AR(2) Error Model

Estimates of Autoregressive Parameters						
Standard						
Lag		Coefficient	Error t Val			
		-1.169057	0.1481	-7.		
		0.545379	0.1481	3.		
Algorithm converged.						
Autocorrelated Time Series						
The AUTOREG Procedure						
Maximum Likelihood Estimates						
SSE		54.7493022	DFE		32	
MSE		1.71092	Root MSE		30802	
SBC		133.476508	AIC	12	42432	
MAE		0.98307236	AICC		432755	
MAPE		6.45517689	Regress R-S	are	. 7280	
Durbin-Watson		2.2761	Total R-Squ		. 9542	
Standard Approx						
Variable	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	7.8833	1.1693	6.74	$<.0001$	
time	1	0.5096	0.0551	9.25	<. 0001	
AR1	1	-1.2464	0.1385	-9.00	<. 0001	
AR2	1	0.6283	0.1366	4.60	$<.0001$	
Autoregressive parameters assumed given.						
Standard Approx						
Variable	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	7.8833	1.1678	6.75	$<.0001$	
time	1	0.5096	0.0551	9.26	<. 0001	

The diagnostic statistics and parameter estimates tables in Figure 8.4 have the same form as in the OLS output, but the values shown are for the autoregressive error model. The MSE for the autoregressive model is 1.71 , which is much smaller than the true value of 4 . In small samples, the
autoregressive error model tends to underestimate σ^{2}, while the OLS MSE overestimates σ^{2}.
Notice that the total R^{2} statistic computed from the autoregressive model residuals is 0.954 , reflecting the improved fit from the use of past residuals to help predict the next Y value. The Reg Rsq value 0.728 is the R^{2} statistic for a regression of transformed variables adjusted for the estimated autocorrelation. (This is not the R^{2} for the estimated trend line. For details, see the section "R-Square Statistics and Other Measures of Fit" on page 367 later in this chapter.)

The parameter estimates table shows the ML estimates of the regression coefficients and includes two additional rows for the estimates of the autoregressive parameters, labeled $\operatorname{AR}(1)$ and $\operatorname{AR}(2)$.

The estimated model is

$$
\begin{aligned}
& y_{t}=7.88+0.5096 t+v_{t} \\
& v_{t}=1.25 v_{t-1}-0.628 v_{t-2}+\epsilon_{t} \\
& \text { Est. } V a r\left(\epsilon_{t}\right)=1.71
\end{aligned}
$$

Note that the signs of the autoregressive parameters shown in this equation for v_{t} are the reverse of the estimates shown in the AUTOREG procedure output. Figure 8.4 also shows the estimates of the regression coefficients with the standard errors recomputed on the assumption that the autoregressive parameter estimates equal the true values.

Predicted Values and Residuals

The AUTOREG procedure can produce two kinds of predicted values and corresponding residuals and confidence limits. The first kind of predicted value is obtained from only the structural part of the model, $\mathbf{x}_{t}^{\prime} \mathbf{b}$. This is an estimate of the unconditional mean of the response variable at time t. For the time trend model, these predicted values trace the estimated trend. The second kind of predicted value includes both the structural part of the model and the predicted values of the autoregressive error process. The full model (conditional) predictions are used to forecast future values.

Use the OUTPUT statement to store predicted values and residuals in a SAS data set and to output other values such as confidence limits and variance estimates. The $\mathrm{P}=$ option specifies an output variable to contain the full model predicted values. The $\mathrm{PM}=$ option names an output variable for the predicted mean. The $\mathrm{R}=$ and $\mathrm{RM}=$ options specify output variables for the corresponding residuals, computed as the actual value minus the predicted value.

The following statements store both kinds of predicted values in the output data set. (The printed output is the same as previously shown in Figure 8.3 and Figure 8.4.)

```
proc autoreg data=a;
    model y = time / nlag=2 method=ml;
    output out=p p=yhat pm=trendhat;
run;
```

The following statements plot the predicted values from the regression trend line and from the full model together with the actual values:

```
title 'Predictions for Autocorrelation Model';
proc sgplot data=p;
```

```
    scatter x=time y=y / markerattrs=(color=blue);
    series x=time y=yhat / lineattrs=(color=blue);
    series x=time y=trendhat / lineattrs=(color=black);
run;
```

The plot of predicted values is shown in Figure 8.5.
Figure 8.5 PROC AUTOREG Predictions

In Figure 8.5 the straight line is the autocorrelation corrected regression line, traced out by the structural predicted values TRENDHAT. The jagged line traces the full model prediction values. The actual values are marked by asterisks. This plot graphically illustrates the improvement in fit provided by the autoregressive error process for highly autocorrelated data.

Forecasting Autoregressive Error Models

To produce forecasts for future periods, include observations for the forecast periods in the input data set. The forecast observations must provide values for the independent variables and have missing values for the response variable.

For the time trend model, the only regressor is time. The following statements add observations for time periods 37 through 46 to the data set A to produce an augmented data set B:

```
data b;
    y = .;
    do time = 37 to 46; output; end;
run;
data b;
    merge a b;
    by time;
run;
```

To produce the forecast, use the augmented data set as input to PROC AUTOREG, and specify the appropriate options in the OUTPUT statement. The following statements produce forecasts for the time trend with autoregressive error model. The output data set includes all the variables in the input data set, the forecast values (YHAT), the predicted trend (YTREND), and the upper (UCL) and lower (LCL) 95\% confidence limits.

```
proc autoreg data=b;
    model y = time / nlag=2 method=ml;
    output out=p p=yhat pm=ytrend
        lcl=lcl ucl=ucl;
run;
```

The following statements plot the predicted values and confidence limits, and they also plot the trend line for reference. The actual observations are shown for periods 16 through 36, and a reference line is drawn at the start of the out-of-sample forecasts.

```
title 'Forecasting Autocorrelated Time Series';
proc sgplot data=p;
    band x=time upper=ucl lower=lcl;
    scatter x=time y=y;
    series x=time y=yhat;
    series x=time y=ytrend / lineattrs=(color=black);
run;
```

The plot is shown in Figure 8.6. Notice that the forecasts take into account the recent departures from the trend but converge back to the trend line for longer forecast horizons.

Figure 8.6 PROC AUTOREG Forecasts

Testing for Autocorrelation

In the preceding section, it is assumed that the order of the autoregressive process is known. In practice, you need to test for the presence of autocorrelation.

The Durbin-Watson test is a widely used method of testing for autocorrelation. The first-order Durbin-Watson statistic is printed by default. This statistic can be used to test for first-order autocorrelation. Use the DWPROB option to print the significance level (p-values) for the Durbin-Watson tests. (Since the Durbin-Watson p-values are computationally expensive, they are not reported by default.)

You can use the DW= option to request higher-order Durbin-Watson statistics. Since the ordinary Durbin-Watson statistic tests only for first-order autocorrelation, the Durbin-Watson statistics for higher-order autocorrelation are called generalized Durbin-Watson statistics.

The following statements perform the Durbin-Watson test for autocorrelation in the OLS residuals for orders 1 through 4. The DWPROB option prints the marginal significance levels (p-values) for the Durbin-Watson statistics.

```
/*-- Durbin-Watson test for autocorrelation --*/
proc autoreg data=a;
    model y = time / dw=4 dwprob;
run;
```

The AUTOREG procedure output is shown in Figure 8.7. In this case, the first-order Durbin-Watson test is highly significant, with $p<.0001$ for the hypothesis of no first-order autocorrelation. Thus, autocorrelation correction is needed.

Figure 8.7 Durbin-Watson Test Results for OLS Residuals

Using the Durbin-Watson test, you can decide if autocorrelation correction is needed. However, generalized Durbin-Watson tests should not be used to decide on the autoregressive order. The higherorder tests assume the absence of lower-order autocorrelation. If the ordinary Durbin-Watson test indicates no first-order autocorrelation, you can use the second-order test to check for second-order autocorrelation. Once autocorrelation is detected, further tests at higher orders are not appropriate.

In Figure 8.7, since the first-order Durbin-Watson test is significant, the order 2, 3, and 4 tests can be ignored.

When using Durbin-Watson tests to check for autocorrelation, you should specify an order at least as large as the order of any potential seasonality, since seasonality produces autocorrelation at the seasonal lag. For example, for quarterly data use $\mathrm{DW}=4$, and for monthly data use $\mathrm{DW}=12$.

Lagged Dependent Variables

The Durbin-Watson tests are not valid when the lagged dependent variable is used in the regression model. In this case, the Durbin h test or Durbin t test can be used to test for first-order autocorrelation.

For the Durbin h test, specify the name of the lagged dependent variable in the LAGDEP= option. For the Durbin t test, specify the LAGDEP option without giving the name of the lagged dependent variable.

For example, the following statements add the variable YLAG to the data set A and regress Y on YLAG instead of TIME:

```
data b;
    set a;
    ylag = lag1( y );
run;
proc autoreg data=b;
    model y = ylag / lagdep=ylag;
run;
```

The results are shown in Figure 8.8. The Durbin h statistic 2.78 is significant with a p-value of 0.0027 , indicating autocorrelation.

Figure 8.8 Durbin h Test with a Lagged Dependent Variable

Figure 8.8 continued

Miscellaneous Statistics					
Statistic		Value	Prob	Label	
Durbin h		2.7814	0.0027	$\mathrm{Pr}>$	
			Standard		Approx
Variable	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	1.5742	0.9300	1.69	0.0999
ylag	1	0.9376	0.0510	18.37	<. 0001

Stepwise Autoregression

Once you determine that autocorrelation correction is needed, you must select the order of the autoregressive error model to use. One way to select the order of the autoregressive error model is stepwise autoregression. The stepwise autoregression method initially fits a high-order model with many autoregressive lags and then sequentially removes autoregressive parameters until all remaining autoregressive parameters have significant t tests.

To use stepwise autoregression, specify the BACKSTEP option, and specify a large order with the NLAG= option. The following statements show the stepwise feature, using an initial order of 5:

```
/*-- stepwise autoregression --*/
proc autoreg data=a;
    model y = time / method=ml nlag=5 backstep;
run;
```

The results are shown in Figure 8.9.
Figure 8.9 Stepwise Autoregression

Forecasting Autocorrelated Time Series
The AUTOREG Procedure
Dependent Variable $\quad \mathrm{y}$

Figure 8.9 continued

The estimates of the autocorrelations are shown for 5 lags. The backward elimination of autoregressive terms report shows that the autoregressive parameters at lags 3,4 , and 5 were insignificant and eliminated, resulting in the second-order model shown previously in Figure 8.4. By default, retained autoregressive parameters must be significant at the 0.05 level, but you can control this with the SLSTAY= option. The remainder of the output from this example is the same as that in Figure 8.3 and Figure 8.4, and it is not repeated here.

The stepwise autoregressive process is performed using the Yule-Walker method. The maximum likelihood estimates are produced after the order of the model is determined from the significance tests of the preliminary Yule-Walker estimates.

When using stepwise autoregression, it is a good idea to specify an NLAG= option value larger than the order of any potential seasonality, since seasonality produces autocorrelation at the seasonal lag.

For example, for monthly data use NLAG=13, and for quarterly data use NLAG=5.

Subset and Factored Models

In the previous example, the BACKSTEP option dropped lags 3, 4, and 5, leaving a second-order model. However, in other cases a parameter at a longer lag may be kept while some smaller lags are dropped. For example, the stepwise autoregression method might drop lags 2, 3, and 5 but keep lags 1 and 4. This is called a subset model, since the number of estimated autoregressive parameters is lower than the order of the model.

Subset models are common for seasonal data and often correspond to factored autoregressive models. A factored model is the product of simpler autoregressive models. For example, the best model for seasonal monthly data may be the combination of a first-order model for recent effects with a 12th-order subset model for the seasonality, with a single parameter at lag 12. This results in a 13thorder subset model with nonzero parameters at lags 1,12 , and 13. See Chapter 7, "The ARIMA Procedure," for further discussion of subset and factored autoregressive models.

You can specify subset models with the NLAG= option. List the lags to include in the autoregressive model within parentheses. The following statements show an example of specifying the subset model resulting from the combination of a first-order process for recent effects with a fourth-order seasonal process:

```
/*-- specifying the lags --*/
proc autoreg data=a;
    model y = time / nlag=(1 4 5);
run;
```

The MODEL statement specifies the following fifth-order autoregressive error model:

$$
\begin{aligned}
& y_{t}=a+b t+v_{t} \\
& v_{t}=-\varphi_{1} v_{t-1}-\varphi_{4} v_{t-4}-\varphi_{5} v_{t-5}+\epsilon_{t}
\end{aligned}
$$

Testing for Heteroscedasticity

One of the key assumptions of the ordinary regression model is that the errors have the same variance throughout the sample. This is also called the homoscedasticity model. If the error variance is not constant, the data are said to be heteroscedastic.

Since ordinary least squares regression assumes constant error variance, heteroscedasticity causes the OLS estimates to be inefficient. Models that take into account the changing variance can make more efficient use of the data. Also, heteroscedasticity can make the OLS forecast error variance inaccurate since the predicted forecast variance is based on the average variance instead of the variability at the end of the series.

To illustrate heteroscedastic time series, the following statements re-create the simulated series Y. The variable Y has an error variance that changes from 1 to 4 in the middle part of the series. The length of the series is also extended 120 observations.

```
data a;
    ul = 0; ull = 0;
    do time = -10 to 120;
        s = 1 + (time >= 60 & time < 90);
        u = + 1.3 * ul - .5 * ull + s*rannor(12346);
        y = 10 + .5 * time + u;
        if time > O then output;
        ull = ul; ul = u;
        end;
run;
title 'Heteroscedastic Autocorrelated Time Series';
proc sgplot data=a noautolegend;
    series x=time y=y / markers;
    reg x=time y=y / lineattrs=(color=black);
run;
```

The simulated series is plotted in Figure 8.10.
Figure 8.10 Heteroscedastic and Autocorrelated Series

To test for heteroscedasticity with PROC AUTOREG, specify the ARCHTEST option. The following statements regress Y on TIME and use the ARCHTEST option to test for heteroscedastic OLS
residuals. The DWPROB option is also used to test for autocorrelation.

```
/*-- test for heteroscedastic OLS residuals --*/
proc autoreg data=a;
    model y = time / nlag=2 archtest dwprob;
    output out=r r=yresid;
run;
```

The PROC AUTOREG output is shown in Figure 8.11. The Q statistics test for changes in variance across time by using lag windows ranging from 1 through 12. (See the section "Heteroscedasticity and Normality Tests" on page 374 for details.) The p-values for the test statistics are given in parentheses. These tests strongly indicate heteroscedasticity, with $p<0.0001$ for all lag windows.

The Lagrange multiplier (LM) tests also indicate heteroscedasticity. These tests can also help determine the order of the ARCH model appropriate for modeling the heteroscedasticity, assuming that the changing variance follows an autoregressive conditional heteroscedasticity model.

Figure 8.11 Heteroscedasticity Tests

Heteroscedastic Autocorrelated Time Series				
The AUTOREG Procedure				
Dependent Variable $\quad \mathrm{y}$				
Heteroscedastic Autocorrelated Time Series				
The AUTOREG Procedure				
Ordinary Least Squares Estimates				
SSE	690.266	9 DFE		118
MSE	5.84	1 Root MS		2.41862
SBC	560.070	8 AIC		554.495484
MAE	3.72760	9 AICC		554.598048
MAPE	5.24916	4 Regress	R-Square	0.9814
Durbin-Watson	0.4	0 Total	Square	0.9814
Q and LM Tests for ARCH Disturbances				
Order	Q	$\operatorname{Pr}>\mathrm{Q}$	LM	Pr > LM
1	37.5445	$<.0001$	37.0072	$<.0001$
2	40.4245	<. 0001	40.9189	$<.0001$
3	41.0753	<. 0001	42.5032	<. 0001
4	43.6893	<. 0001	43.3822	<. 0001
5	55.3846	$<.0001$	48.2511	$<.0001$
6	60.6617	$<.0001$	49.7799	<. 0001
7	62.9655	$<.0001$	52.0126	$<.0001$
8	63.7202	$<.0001$	52.7083	$<.0001$
9	64.2329	$<.0001$	53.2393	$<.0001$
10	66.2778	$<.0001$	53.2407	<. 0001
11	68.1923	$<.0001$	53.5924	$<.0001$
12	69.3725	<. 0001	53.7559	<. 0001

Figure 8.11 continued

			Standard		
Variable	DF	Estimate	Error	t Value	Approx Pr It
Intercept	1	9.2217	0.4444	20.75	$<.0001$
time	1	0.5024	0.006374	78.83	$<.0001$

Heteroscedasticity and GARCH Models

There are several approaches to dealing with heteroscedasticity. If the error variance at different times is known, weighted regression is a good method. If, as is usually the case, the error variance is unknown and must be estimated from the data, you can model the changing error variance.

The generalized autoregressive conditional heteroscedasticity (GARCH) model is one approach to modeling time series with heteroscedastic errors. The GARCH regression model with autoregressive errors is

$$
\begin{aligned}
y_{t} & =\mathbf{x}_{t}^{\prime} \beta+v_{t} \\
v_{t} & =\epsilon_{t}-\varphi_{1} v_{t-1}-\ldots-\varphi_{m} v_{t-m} \\
\epsilon_{t} & =\sqrt{h_{t}} e_{t} \\
h_{t} & =\omega+\sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}^{2}+\sum_{j=1}^{p} \gamma_{j} h_{t-j} \\
e_{t} & \sim \operatorname{IN}(0,1)
\end{aligned}
$$

This model combines the m th-order autoregressive error model with the $\operatorname{GARCH}(p, q)$ variance model. It is denoted as the $\operatorname{AR}(m)-\operatorname{GARCH}(p, q)$ regression model.

The Lagrange multiplier (LM) tests shown in Figure 8.11 can help determine the order of the ARCH model appropriate for the data. The tests are significant ($p<.0001$) through order 12, which indicates that a very high-order ARCH model is needed to model the heteroscedasticity.

The basic $\operatorname{ARCH}(q)$ model $(p=0)$ is a short memory process in that only the most recent q squared residuals are used to estimate the changing variance. The GARCH model ($p>0$) allows long memory processes, which use all the past squared residuals to estimate the current variance. The LM tests in Figure 8.11 suggest the use of the GARCH model ($p>0$) instead of the ARCH model.

The $\operatorname{GARCH}(p, q)$ model is specified with the $\operatorname{GARCH}=(\mathrm{P}=p, \mathrm{Q}=q)$ option in the MODEL statement. The basic $\operatorname{ARCH}(q)$ model is the same as the $\operatorname{GARCH}(0, q)$ model and is specified with the GARCH=($\mathrm{Q}=q$) option.

The following statements fit an $\operatorname{AR}(2)-\operatorname{GARCH}(1,1)$ model for the Y series regressed on TIME. The $\operatorname{GARCH}=(\mathrm{P}=1, \mathrm{Q}=1)$ option specifies the $\operatorname{GARCH}(1,1)$ conditional variance model. The

NLAG=2 option specifies the AR(2) error process. Only the maximum likelihood method is supported for GARCH models; therefore, the METHOD $=$ option is not needed. The CEV= option in the OUTPUT statement stores the estimated conditional error variance at each time period in the variable VHAT in an output data set named OUT. The data set is the same as in the section "Testing for Heteroscedasticity" on page 329.

```
/*-- AR(2)-GARCH(1,1) model for the Y series regressed on TIME --*/
proc autoreg data=a;
    model y = time / nlag=2 garch=(q=1,p=1) maxit=50;
    output out=out cev=vhat;
run;
```

The results for the GARCH model are shown in Figure 8.12. (The preliminary estimates are not shown.)

Figure 8.12 AR(2)-GARCH(1, 1) Model

The normality test is not significant ($p=0.959$), which is consistent with the hypothesis that the residuals from the GARCH model, $\epsilon_{t} / \sqrt{h_{t}}$, are normally distributed. The parameter estimates table includes rows for the GARCH parameters. ARCH0 represents the estimate for the parameter ω, ARCH1 represents α_{1}, and GARCH1 represents γ_{1}.

The following statements transform the estimated conditional error variance series VHAT to the estimated standard deviation series SHAT. Then, they plot SHAT together with the true standard deviation S used to generate the simulated data.

```
data out;
```

```
    set out;
    shat = sqrt( vhat );
run;
title 'Predicted and Actual Standard Deviations';
proc sgplot data=out noautolegend;
    scatter x=time y=s;
    series x=time y=shat/ lineattrs=(color=black);
run;
```

The plot is shown in Figure 8.13.
Figure 8.13 Estimated and Actual Error Standard Deviation Series

Note that in this example the form of heteroscedasticity used in generating the simulated series Y does not fit the GARCH model. The GARCH model assumes conditional heteroscedasticity, with homoscedastic unconditional error variance. That is, the GARCH model assumes that the changes in variance are a function of the realizations of preceding errors and that these changes represent temporary and random departures from a constant unconditional variance. The data-generating process used to simulate series Y, contrary to the GARCH model, has exogenous unconditional heteroscedasticity that is independent of past errors.

Nonetheless, as shown in Figure 8.13, the GARCH model does a reasonably good job of approxi-
mating the error variance in this example, and some improvement in the efficiency of the estimator of the regression parameters can be expected.

The GARCH model may perform better in cases where theory suggests that the data-generating process produces true autoregressive conditional heteroscedasticity. This is the case in some economic theories of asset returns, and GARCH-type models are often used for analysis of financial market data.

EGARCH, IGARCH, and GARCH-M Models

The AUTOREG procedure supports several variations of the generalized conditional heteroscedasticity model.

Using the TYPE= suboption of the GARCH= option, you can control the constraints placed on the estimated GARCH parameters. You can specify unconstrained, nonnegativity constrained (default), stationarity constrained, or integration constrained. The integration constraint produces the integrated GARCH, or IGARCH, model.

You can also use the TYPE= option to specify the exponential form of the GARCH model, called the EGARCH model. The MEAN suboption of the GARCH= option specifies the GARCH-in-mean, or GARCH-M, model.

The following statements illustrate the use of the TYPE= option to fit an $\operatorname{AR}(2)-\operatorname{EGARCH}(1,1)$ model to the series Y. (Output is not shown.)

```
/*-- AR(2)-EGARCH (1,1) model --*/
proc autoreg data=a;
    model y = time / nlag=2 garch=(p=1,q=1,type=exp);
run;
```

See the section "GARCH, IGARCH, EGARCH, and GARCH-M Models" on page 362 later in this chapter for details.

Syntax: AUTOREG Procedure

The AUTOREG procedure is controlled by the following statements:

```
PROC AUTOREG options;
    BY variables;
    MODEL dependent = regressors / options ;
    HETERO variables / options;
    RESTRICT equation , ..., equation;
    TEST equation , ..., equation / option ;
    OUTPUT OUT = SAS data set options;
```

At least one MODEL statement must be specified. One OUTPUT statement can follow each MODEL statement. One HETERO statement can follow each MODEL statement.

Functional Summary

The statements and options used with the AUTOREG procedure are summarized in the following table.

Table 8.1 AUTOREG Functional Summary

Description	Statement	Option
Data Set Options		
specify the input data set	AUTOREG	DATA=
write parameter estimates to an output data set	AUTOREG	OUTEST=
include covariances in the OUTEST= data set	AUTOREG	COVOUT
requests that the procedure produce graphics via the Output Delivery System	AUTOREG	PLOTS $=$
write predictions, residuals, and confidence limits to an output data set	OUTPUT	OUT=
Declaring the Role of Variables specify BY-group processing	BY	
Printing Control Options		
request all printing options	MODEL	ALL
print transformed coefficients	MODEL	COEF
print correlation matrix of the estimates	MODEL	CORRB
print covariance matrix of the estimates	MODEL	COVB
print DW statistics up to order j	MODEL	DW=j
print marginal probability of the generalized	MODEL	DWPROB
Durbin-Watson test statistics for large sample sizes		
print the p-values for the Durbin-Watson test be computed using a linearized approximation of the design matrix	MODEL	LDW
print inverse of Toeplitz matrix	MODEL	GINV
print the Godfrey LM serial correlation test	MODEL	GODFREY=
print details at each iteration step	MODEL	ITPRINT
print the Durbin t statistic	MODEL	LAGDEP
print the Durbin h statistic	MODEL	LAGDEP=
print the \log likelihood value of the regression model	MODEL	LOGLIKL
print the Jarque-Bera normality test	MODEL	NORMAL
print tests for ARCH process	MODEL	ARCHTEST
print the Lagrange multiplier test	HETERO	TEST=LM
print the Chow test	MODEL	CHOW=
print the predictive Chow test	MODEL	PCHOW=
suppress printed output	MODEL	NOPRINT
print partial autocorrelations	MODEL	PARTIAL
print Ramsey's RESET test	MODEL	RESET

Table 8.1 continued

Description	Statement	Option
print Phillips-Perron tests for stationarity or unit roots	MODEL	STATIONARITY=(PHILLIPS=)
print KPSS tests for stationarity or unit roots	MODEL	STATIONARITY $=($ KPSS $=$)
print tests of linear hypotheses	TEST	
specify the test statistics to use	TEST	TYPE=
prints the uncentered regression R^{2}	MODEL	URSQ
Model Estimation Options		
specify the order of autoregressive process	MODEL	NLAG=
center the dependent variable	MODEL	CENTER
suppress the intercept parameter	MODEL	NOINT
remove nonsignificant AR parameters	MODEL	BACKSTEP
specify significance level for BACKSTEP	MODEL	SLSTAY=
specify the convergence criterion	MODEL	CONVERGE=
specify the type of covariance matrix	MODEL	COVEST=
set the initial values of parameters used by the iterative optimization algorithm	MODEL	INITIAL=
specify iterative Yule-Walker method	MODEL	ITER
specify maximum number of iterations	MODEL	MAXITER=
specify the estimation method	MODEL	METHOD=
use only first sequence of nonmissing data	MODEL	NOMISS
specify the optimization technique	MODEL	OPTMETHOD=
imposes restrictions on the regression estimates	RESTRICT	
estimate and test heteroscedasticity models	HETERO	
GARCH Related Options		
specify order of GARCH process	MODEL	GARCH=($\mathrm{Q}=, \mathrm{P}=$)
specify type of GARCH model	MODEL	GARCH=(. . , TYPE=)
specify various forms of the GARCH-M model	MODEL	GARCH=(. ., MEAN=)
suppress GARCH intercept parameter	MODEL	GARCH=(. . ,NOINT)
specify the trust region method	MODEL	GARCH=(. . .,TR)
estimate the GARCH model for the conditional t distribution	MODEL	GARCH=(...) DIST=
estimates the start-up values for the conditional variance equation	MODEL	GARCH=(. .,STARTUP=)
specify the functional form of the heteroscedasticity model	HETERO	LINK=
specify that the heteroscedasticity model does not include the unit term	HETERO	NOCONST
impose constraints on the estimated parameters the heteroscedasticity model	HETERO	COEF=
impose constraints on the estimated standard deviation of the heteroscedasticity model	HETERO	STD=
output conditional error variance	OUTPUT	$\mathrm{CEV}=$

Table 8.1 continued

Description	Statement	Option
output conditional prediction error variance specify the flexible conditional variance form of the GARCH model	OUTPUT HETERO	CPEV=
Output Control Options specify confidence limit size specify confidence limit size for structural predicted values	OUTPUT OUTPUT	ALPHACLI= ALPHACLM=
specify the significance level for the upper and lower bounds of the CUSUM and CUSUMSQ statistics	OUTPUT	ALPHACSM=
specify the name of a variable to contain the values of the Theil's BLUS residuals	OUTPUT	BLUS $=$
output the value of the error variance σ_{t}^{2}	OUTPUT	CEV=
output transformed intercept variable	OUTPUT	CONSTANT=
specify the name of a variable to contain the CUSUM statistics	OUTPUT	CUSUM=
specify the name of a variable to contain the CUSUMSQ statistics	OUTPUT	CUSUMSQ=
specify the name of a variable to contain the upper confidence bound for the CUSUM statistic	OUTPUT	CUSUMUB=
specify the name of a variable to contain the lower confidence bound for the CUSUM statistic	OUTPUT	CUSUMLB=
specify the name of a variable to contain the upper confidence bound for the CUSUMSQ statistic	OUTPUT	CUSUMSQUB=
option specify the name of a variable to contain the lower confidence bound for the	OUTPUT	CUSUMSQLB=
CUSUMSQ statistic		
output lower confidence limit	OUTPUT	LCL=
output lower confidence limit for structural predicted values	OUTPUT	LCLM $=$
output predicted values	OUTPUT	$\mathrm{P}=$
output predicted values of structural part	OUTPUT	$\mathrm{PM}=$
output residuals	OUTPUT	$\mathrm{R}=$
output residuals from structural predictions	OUTPUT	RM=
specify the name of a variable to contain the part of the predictive error variance $\left(v_{t}\right)$	OUTPUT	RECPEV=
specify the name of a variable to contain recursive residuals	OUTPUT	RECRES $=$
output transformed variables	OUTPUT	TRANSFORM=
output upper confidence limit	OUTPUT	UCL=
output upper confidence limit for structural predicted values	OUTPUT	UCLM=

PROC AUTOREG Statement

PROC AUTOREG options;

The following options can be used in the PROC AUTOREG statement:

DATA $=$ SAS-data-set

specifies the input SAS data set. If the DATA= option is not specified, PROC AUTOREG uses the most recently created SAS data set.

OUTEST= SAS-data-set

writes the parameter estimates to an output data set. See the section "OUTEST= Data Set" on page 384 later in this chapter for information on the contents of these data set.

COVOUT

writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid only if the OUTEST= option is specified.

PLOTS<(Global-Plot-Options)> < = (Specific Plot Options)>

requests that the AUTOREG procedure produce statistical graphics via the Output Delivery System, provided that the ODS GRAPHICS statement has been specified. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide). The global-plot-options apply to all relevant plots generated by the AUTOREG procedure. The global-plot-options supported by the AUTOREG procedure follow.

Global Plot Options

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL breaks a graphic that is otherwise paneled into individual component plots.

Specific Plot Options

ALL requests that all plots appropriate for the particular analysis be produced.
ACF produces the autocorrelation function plot.
IACF produces the inverse autocorrelation function plot of residuals.
PACF produces the partial autocorrelation function plot of residuals.
FITPLOT plots the predicted and actual values.
COOKSD produces the Cook's D plot.
QQ Q-Q plot of residuals.
RESIDUAL। RES plots the residuals.

STUDENTRESIDUAL plots the studentized residuals. For the models with the NLAG= or GARCH= options in the MODEL statement or with the HETERO statement, this option is replaced by the STANDARDRESIDUAL option.

STANDARDRESIDUAL plots the standardized residuals.
WHITENOISE plots the white noise probabilities.
RESIDUALHISTOGRAM \| RESIDHISTOGRAM plots the histogram of residuals.
NONE suppresses all plots.
In addition, any of the following MODEL statement options can be specified in the PROC AUTOREG statement, which is equivalent to specifying the option for every MODEL statement: ALL, ARCHTEST, BACKSTEP, CENTER, COEF, CONVERGE=, CORRB, COVB, DW=, DWPROB, GINV, ITER, ITPRINT, MAXITER=, METHOD=, NOINT, NOMISS, NOPRINT, and PARTIAL.

BY Statement

BY variables ;

A BY statement can be used with PROC AUTOREG to obtain separate analyses on observations in groups defined by the BY variables.

MODEL Statement

MODEL dependent = regressors / options ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression model. If no independent variables are specified in the MODEL statement, only the mean is fitted. (This is a way to obtain autocorrelations of a series.)

Models can be given labels of up to eight characters. Model labels are used in the printed output to identify the results for different models. The model label is specified as follows:
label : MODEL ...;
The following options can be used in the MODEL statement after a slash (/).

CENTER

centers the dependent variable by subtracting its mean and suppresses the intercept parameter from the model. This option is valid only when the model does not have regressors (explanatory variables).

NOINT

suppresses the intercept parameter.

Autoregressive Error Options

NLAG= number

NLAG= (number-list)
specifies the order of the autoregressive error process or the subset of autoregressive error lags to be fitted. Note that NLAG=3 is the same as NLAG=(1 123). If the NLAG=option is not specified, PROC AUTOREG does not fit an autoregressive model.

GARCH Estimation Options

DIST= value
specifies the distribution assumed for the error term in GARCH-type estimation. If no GARCH $=$ option is specified, the option is ignored. If EGARCH is specified, the distribution is always normal distribution. The values of the DIST= option are as follows:

T specifies Student's t distribution.
NORMAL specifies the standard normal distribution. The default is DIST=NORMAL.

GARCH= (option-list)

specifies a GARCH-type conditional heteroscedasticity model. The GARCH= option in the MODEL statement specifies the family of ARCH models to be estimated. The $\operatorname{GARCH}(1,1)$ regression model is specified in the following statement:

```
model y = x1 x2 / garch=(q=1,p=1);
```

When you want to estimate the subset of ARCH terms, such as $\operatorname{ARCH}(1,3)$, you can write the SAS statement as follows:

```
model y = x1 x2 / garch=(q=(1 3));
```

With the TYPE= option, you can specify various GARCH models. The $\operatorname{IGARCH}(2,1)$ model without trend in variance is estimated as follows:

```
model y = / garch=(q=2,p=1,type=integ,noint);
```

The following options can be used in the GARCH=() option. The options are listed within parentheses and separated by commas.
$\mathbf{Q}=$ number
$\mathbf{Q}=$ (number-list)
specifies the order of the process or the subset of ARCH terms to be fitted.
$\mathbf{P}=$ number
$\mathbf{P}=$ (number-list)
specifies the order of the process or the subset of GARCH terms to be fitted. If only the $\mathrm{P}=$ option is specified, $\mathrm{Q}=1$ is assumed.

TYPE= value
specifies the type of GARCH model. The values of the TYPE= option are as follows:

EXP specifies the exponential GARCH or EGARCH model.
INTEGRATED specifies the integrated GARCH or IGARCH model.

NELSON I NELSONCAO specifies the Nelson-Cao inequality constraints.
NONNEG specifies the GARCH model with nonnegativity constraints.
STATIONARY constrains the sum of GARCH coefficients to be less than 1.

The default is TYPE=NELSON.

MEAN= value

specifies the functional form of the GARCH-M model. The values of the MEAN= option are as follows:

LINEAR specifies the linear function:

$$
y_{t}=\mathbf{x}_{t}^{\prime} \beta+\delta h_{t}+\epsilon_{t}
$$

LOG
specifies the log function:

$$
y_{t}=\mathbf{x}_{t}^{\prime} \beta+\delta \ln \left(h_{t}\right)+\epsilon_{t}
$$

SQRT specifies the square root function:

$$
y_{t}=\mathbf{x}_{t}^{\prime} \beta+\delta \sqrt{h_{t}}+\epsilon_{t}
$$

NOINT
suppresses the intercept parameter in the conditional variance model. This option is valid only with the TYPE=INTEG option.

STARTUP= MSE | ESTIMATE
requests that the positive constant c for the start-up values of the GARCH conditional error variance process be estimated. By default or if STARTUP=MSE is specified, the value of the mean squared error is used as the default constant.

TR
uses the trust region method for GARCH estimation. This algorithm is numerically stable, though computation is expensive. The double quasi-Newton method is the default.

Printing Options

ALL

requests all printing options.

ARCHTEST

requests the Q and LM statistics testing for the absence of ARCH effects.

CHOW= $\left(o b s_{1} \ldots o b s_{n}\right)$
computes Chow tests to evaluate the stability of the regression coefficient. The Chow test is also called the analysis-of-variance test.

Each value $o b s_{i}$ listed on the CHOW= option specifies a break point of the sample. The sample is divided into parts at the specified break point, with observations before $o b s_{i}$ in the first part and $o b s_{i}$ and later observations in the second part, and the fits of the model in the two parts are compared to whether both parts of the sample are consistent with the same model.

The break points $o b s_{i}$ refer to observations within the time range of the dependent variable, ignoring missing values before the start of the dependent series. Thus, CHOW=20 specifies the 20th observation after the first nonmissing observation for the dependent variable. For example, if the dependent variable Y contains 10 missing values before the first observation with a nonmissing Y value, then $\mathrm{CHOW}=20$ actually refers to the 30 th observation in the data set.

When you specify the break point, you should note the number of presample missing values.

COEF

prints the transformation coefficients for the first p observations. These coefficients are formed from a scalar multiplied by the inverse of the Cholesky root of the Toeplitz matrix of autocovariances.

CORRB

prints the estimated correlations of the parameter estimates.

COVB

prints the estimated covariances of the parameter estimates.

COVEST= OP / HESSIAN / QML

specifies the type of covariance matrix for the GARCH or heteroscedasticity model. When COVEST $=$ OP is specified, the outer product matrix is used to compute the covariance matrix of the parameter estimates. The COVEST=HESSIAN option produces the covariance matrix by using the Hessian matrix. The quasi-maximum likelihood estimates are computed with COVEST=QML. The default is COVEST=OP.

DW = n

prints Durbin-Watson statistics up to the order n. The default is $\mathrm{DW}=1$. When the LAGDEP option is specified, the Durbin-Watson statistic is not printed unless the DW=option is explicitly specified.

DWPROB

now produces p-values for the generalized Durbin-Watson test statistics for large sample sizes. Previously, the Durbin-Watson probabilities were calculated only for small sample sizes. The new method of calculating Durbin-Watson probabilities is based on the algorithm of Ansley, Kohn, and Shively (1992).

GINV

prints the inverse of the Toeplitz matrix of autocovariances for the Yule-Walker solution. See the section "Computational Methods" on page 359 later in this chapter for details.

GODFREY
GODFREY= r
produces Godfrey's general Lagrange multiplier test against ARMA errors.

ITPRINT

prints the objective function and parameter estimates at each iteration. The objective function is the full \log likelihood function for the maximum likelihood method, while the error sum of squares is produced as the objective function of unconditional least squares. For the ML method, the ITPRINT option prints the value of the full log likelihood function, not the concentrated likelihood.

LAGDEP

LAGDV

prints the Durbin t statistic, which is used to detect residual autocorrelation in the presence of lagged dependent variables. See the section "Generalized Durbin-Watson Tests" on page 370 later in this chapter for details.

LAGDEP= name

LAGDV= name
prints the Durbin h statistic for testing the presence of first-order autocorrelation when regressors contain the lagged dependent variable whose name is specified as LAGDEP=name. If the Durbin h statistic cannot be computed, the asymptotically equivalent t statistic is printed instead. See the section "Generalized Durbin-Watson Tests" on page 370 for details.

When the regression model contains several lags of the dependent variable, specify the lagged dependent variable for the smallest lag in the LAGDEP= option. For example:

```
model y = x1 x2 ylag2 ylag3 / lagdep=ylag2;
```


LOGLIKL

prints the log likelihood value of the regression model, assuming normally distributed errors.

NOPRINT

suppresses all printed output.

NORMAL

specifies the Jarque-Bera's normality test statistic for regression residuals.

PARTIAL

prints partial autocorrelations.
$\mathrm{PCHOW}=\left(o b s_{1} \ldots o b s_{n}\right)$
computes the predictive Chow test. The form of the PCHOW= option is the same as the CHOW = option; see the discussion of the CHOW= option earlier in this chapter.

RESET

produces Ramsey's RESET test statistics. The RESET option tests the null model

$$
y_{t}=\mathbf{x}_{t} \beta+u_{t}
$$

against the alternative

$$
y_{t}=\mathbf{x}_{t} \beta+\sum_{j=2}^{p} \phi_{j} \hat{y}_{t}^{j}+u_{t}
$$

where \hat{y}_{t} is the predicted value from the OLS estimation of the null model. The RESET option produces three RESET test statistics for $p=2,3$, and 4 .

STATIONARITY= (PHILLIPS)
STATIONARITY= (PHILLIPS=(value \ldots. value))
STATIONARITY= ($K P S S$)
STATIONARITY= (KPSS=(KERNEL=TYPE))
STATIONARITY= (KPSS=(KERNEL=TYPE TRUNCPOINTMETHOD))
STATIONARITY $=($ PHILLIPS $<=(\ldots)>$, KPSS $<=(\ldots)>)$
specifies tests of stationarity or unit roots. The STATIONARITY= option provides PhillipsPerron, Phillips-Ouliaris, and KPSS tests.

The PHILLIPS or PHILLIPS= suboption of the STATIONARITY= option produces the Phillips-Perron unit root test when there are no regressors in the MODEL statement. When the model includes regressors, the PHILLIPS option produces the Phillips-Ouliaris cointegration test. The PHILLIPS option can be abbreviated as PP.

The PHILLIPS option performs the Phillips-Perron test for three null hypothesis cases: zero mean, single mean, and deterministic trend. For each case, the PHILLIPS option computes two test statistics, $\hat{\mathrm{Z}}_{\rho}$ and $\hat{\mathrm{Z}}_{t}$ (in the original paper they are referred to as $\hat{\mathrm{Z}}_{\alpha}$ and $\hat{\mathrm{Z}}_{t}$), and reports their p-values. These test statistics have the same limiting distributions as the corresponding Dickey-Fuller tests.

The three types of the Phillips-Perron unit root test reported by the PHILLIPS option are as follows.

Zero mean computes the Phillips-Perron test statistic based on the zero mean autoregressive model:

$$
y_{t}=\rho y_{t-1}+u_{t}
$$

Single mean computes the Phillips-Perron test statistic based on the autoregressive model with a constant term:

$$
y_{t}=\mu+\rho y_{t-1}+u_{t}
$$

Trend computes the Phillips-Perron test statistic based on the autoregressive model with constant and time trend terms:

$$
y_{t}=\mu+\rho y_{t-1}+\delta t+u_{t}
$$

You can specify several truncation points l for weighted variance estimators by using the PHILLIPS $=\left(l_{1} \ldots l_{n}\right)$ specification. The statistic for each truncation point l is computed as

$$
\sigma_{T l}^{2}=\frac{1}{T} \sum_{i=1}^{T} \hat{u}_{i}^{2}+\frac{2}{T} \sum_{s=1}^{l} w_{s l} \sum_{t=s+1}^{T} \hat{u}_{t} \hat{u}_{t-s}
$$

where $w_{s l}=1-s /(l+1)$ and \hat{u}_{t} are OLS residuals. If you specify the PHILLIPS option without specifying truncation points, the default truncation point is $\max (1, \sqrt{T} / 5)$, where T is the number of observations.

The Phillips-Perron test can be used in general time series models since its limiting distribution is derived in the context of a class of weakly dependent and heterogeneously distributed data. The marginal probability for the Phillips-Perron test is computed assuming that error disturbances are normally distributed.

When there are regressors in the MODEL statement, the PHILLIPS option computes the Phillips-Ouliaris cointegration test statistic by using the least squares residuals. The normalized cointegrating vector is estimated using OLS regression. Therefore, the cointegrating vector estimates might vary with the regressand (normalized element) unless the regression R -square is 1 .

The marginal probabilities for cointegration testing are not produced. You can refer to Phillips and Ouliaris (1990) tables Ia-Ic for the \hat{Z}_{α} test and tables IIa-IIc for the \hat{Z}_{t} test. The standard residual-based cointegration test can be obtained using the NOINT option in the MODEL statement, while the demeaned test is computed by including the intercept term. To obtain the demeaned and detrended cointegration tests, you should include the time trend variable in the regressors. Refer to Phillips and Ouliaris (1990) or Hamilton (1994, Tbl. 19.1) for information about the Phillips-Ouliaris cointegration test. Note that Hamilton (1994, Tbl. 19.1) uses Z_{ρ} and Z_{t} instead of the original Phillips and Ouliaris (1990) notation. We adopt the notation introduced in Hamilton. To distinguish from Student's t distribu
tion, these two statistics are named accordingly as ρ (rho) and τ (tau).
The KPSS, KPSS=(KERNEL=TYPE), or KPSS=(KERNEL=TYPE TRUNCPOINTMETHOD) specifications of the STATIONARITY= option produce the Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS) unit root test.

Unlike the null hypothesis of the Dickey-Fuller and Phillips-Perron tests, the null hypothesis of the KPSS states that the time series is stationary. As a result, it tends to reject a random walk more often. If the model does not have an intercept, the KPSS option performs the KPSS test for three null hypothesis cases: zero mean, single mean, and deterministic trend. Otherwise, it reports single mean and deterministic trend only. It computes a test statistic and tabulated p-values (see Hobijn, Franses, and Ooms (2004)) for the hypothesis that the random walk component of the time series is equal to zero in the following cases (for details, see "Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test" on page 378):

Zero mean computes the KPSS test statistic based on the zero mean autoregressive model. The p-value reported is used from Hobijn, Franses, and Ooms (2004).

$$
y_{t}=u_{t}
$$

Single mean computes the KPSS test statistic based on the autoregressive model with a constant term. The p-value reported is used from Kwiatkowski et al. (1992).

$$
y_{t}=\mu+u_{t}
$$

Trend computes the KPSS test statistic based on the autoregressive model with constant and time trend terms. The p-value reported is from Kwiatkowski et al. (1992).

$$
y_{t}=\mu+\delta t+u_{t}
$$

This test depends on the long-run variance of the series being defined as

$$
\sigma_{T l}^{2}=\frac{1}{T} \sum_{i=1}^{T} \hat{u}_{i}^{2}+\frac{2}{T} \sum_{s=1}^{l} w_{s l} \sum_{t=s+1}^{T} \hat{u}_{t} \hat{u}_{t-s}
$$

where $w_{s l}$ is a kernel, s is a maximum lag (truncation point), and \hat{u}_{t} are OLS residuals or original data series. You can specify two types of the kernel:

KERNEL=NWIBART Newey-West (or Bartlett) kernel

$$
w(s, l)=1-\frac{s}{l+1}
$$

KERNEL=QS Quadratic spectral kernel

$$
w(s / l)=w(x)=\frac{25}{12 \pi^{2} x^{2}}\left(\frac{\sin (6 \pi x / 5)}{6 \pi x / 5}-\cos (6 \pi x / 5)\right)
$$

You can set the truncation point s by using three different methods:
SCHW=c Schwert maximum lag formula

$$
s=\max \left\{1, \text { floor }\left[c\left(\frac{T}{100}\right)^{1 / 4}\right]\right\}
$$

$\mathrm{LAG}=s \quad \mathrm{LAG}=s$ manually defined number of lags.
AUTO Automatic bandwidth selection (Hobijn, Franses, and Ooms 2004) (for details, see "Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test" on page 378).

If STATIONARITY=KPSS is defined without additional parameters, the Newey-West kernel is used. For the Newey-West kernel the default is the Schwert truncation point method with $c=4$. For the quadratic spectral kernel the default is AUTO.

The KPSS test can be used in general time series models since its limiting distribution is derived in the context of a class of weakly dependent and heterogeneously distributed data. The limiting probability for the KPSS test is computed assuming that error disturbances are normally distributed.

The asymptotic distribution of the test does not depend on the presence of regressors in the MODEL statement.

The marginal probabilities for the test are reported. They are copied from Kwiatkowski et al. (1992) and Hobijn, Franses, and Ooms (2004). When there is an intercept in the model, results for mean and trend tests statistics are provided.

Examples: To test for stationarity of regression residuals, using default KERNEL= NW and SCHW=4, you can use the following code:

```
/*-- test for stationarity of regression residuals --*/
proc autoreg data=a;
    model y= / stationarity = (KPSS);
run;
```

To test for stationarity of regression residuals, using quadratic spectral kernel and automatic bandwidth selection, you can use:

```
/*-- test for stationarity using quadratic
    spectral kernel and automatic bandwidth selection --*/
proc autoreg data=a;
    model y= /
    stationarity = (KPSS=(KERNEL=QS AUTO));
run;
```

URSQ
prints the uncentered regression R^{2}. The uncentered regression R^{2} is useful to compute Lagrange multiplier test statistics, since most LM test statistics are computed as T *URSQ, where T is the number of observations used in estimation.

Stepwise Selection Options

BACKSTEP

removes insignificant autoregressive parameters. The parameters are removed in order of least significance. This backward elimination is done only once on the Yule-Walker estimates computed after the initial ordinary least squares estimation. The BACKSTEP option can be used with all estimation methods since the initial parameter values for other estimation methods are estimated using the Yule-Walker method.

SLSTAY= value

specifies the significance level criterion to be used by the BACKSTEP option. The default is SLSTAY=. 05 .

Estimation Control Options

CONVERGE= value

specifies the convergence criterion. If the maximum absolute value of the change in the autoregressive parameter estimates between iterations is less than this amount, then convergence is assumed. The default is CONVERGE=.001.

If the GARCH= option and/or the HETERO statement is specified, convergence is assumed when the absolute maximum gradient is smaller than the value specified by the CONVERGE= option or when the relative gradient is smaller than $1 \mathrm{E}-8$. By default, CONVERGE=1E-5.

INITIAL= (initial-values)
START= (initial-values)
specifies initial values for some or all of the parameter estimates. The values specified are
assigned to model parameters in the same order as the parameter estimates are printed in the AUTOREG procedure output. The order of values in the INITIAL= or START= option is as follows: the intercept, the regressor coefficients, the autoregressive parameters, the ARCH parameters, the GARCH parameters, the inverted degrees of freedom for Student's t distribution, the start-up value for conditional variance, and the heteroscedasticity model parameters η specified by the HETERO statement.

The following is an example of specifying initial values for an $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ model with regressors X1 and X2:

```
/*-- specifying initial values --*/
model y = w x / nlag=1 garch=(p=1,q=1)
    initial=(1 1 1 . 5 . 8 . 1 .6);
```

The model specified by this MODEL statement is

$$
\begin{aligned}
& y_{t}=\beta_{0}+\beta_{1} w_{t}+\beta_{2} x_{t}+v_{t} \\
& v_{t}=\epsilon_{t}-\phi_{1} v_{t-1} \\
& \epsilon_{t}=\sqrt{h_{t}} e_{t} \\
& h_{t}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\gamma_{1} h_{t-1} \\
& \epsilon_{t} \mathrm{~N}\left(0, \sigma_{t}^{2}\right)
\end{aligned}
$$

The initial values for the regression parameters, $\operatorname{INTERCEPT}\left(\beta_{0}\right)$, X1 $\left(\beta_{1}\right)$, and $\mathrm{X} 2\left(\beta_{2}\right)$, are specified as 1 . The initial value of the $\operatorname{AR}(1)$ coefficient $\left(\phi_{1}\right)$ is specified as 0.5 . The initial value of $\operatorname{ARCH} 0(\omega)$ is 0.8 , the initial value of $\operatorname{ARCH} 1\left(\alpha_{1}\right)$ is 0.1 , and the initial value of GARCH1 $\left(\gamma_{1}\right)$ is 0.6 .

When you use the RESTRICT statement, the initial values specified by the INITIAL= option should satisfy the restrictions specified for the parameter estimates. If they do not, the initial values you specify are adjusted to satisfy the restrictions.

LDW

specifies that p-values for the Durbin-Watson test be computed using a linearized approximation of the design matrix when the model is nonlinear due to the presence of an autoregressive error process. (The Durbin-Watson tests of the OLS linear regression model residuals are not affected by the LDW option.) Refer to White (1992) for Durbin-Watson testing of nonlinear models.

MAXITER= number

sets the maximum number of iterations allowed. The default is MAXITER=50.

METHOD= value

requests the type of estimates to be computed. The values of the METHOD= option are as follows:

METHOD=ML specifies maximum likelihood estimates.
METHOD=ULS specifies unconditional least squares estimates.

METHOD=YW specifies Yule-Walker estimates.
METHOD=ITYW specifies iterative Yule-Walker estimates.
If the GARCH= or LAGDEP option is specified, the default is METHOD=ML. Otherwise, the default is METHOD=YW.

NOMISS

requests the estimation to the first contiguous sequence of data with no missing values. Otherwise, all complete observations are used.

OPTMETHOD $=Q N / T R$
specifies the optimization technique when the GARCH or heteroscedasticity model is estimated. The OPTMETHOD=QN option specifies the quasi-Newton method. The OPTMETHOD=TR option specifies the trust region method. The default is OPTMETHOD=QN.

HETERO Statement

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the way these variables are used to model the error variance of the regression.

The syntax of the HETERO statement is
HETERO variables / options;
The heteroscedastic regression model supported by the HETERO statement is

$$
\begin{aligned}
& y_{t}=\mathbf{x}_{t} \beta+\epsilon_{t} \\
& \epsilon_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right) \\
& \sigma_{t}^{2}=\sigma^{2} h_{t} \\
& h_{t}=l\left(\mathbf{z}_{t}^{\prime} \eta\right)
\end{aligned}
$$

The HETERO statement specifies a model for the conditional variance h_{t}. The vector \mathbf{z}_{t} is composed of the variables listed in the HETERO statement, η is a parameter vector, and $l(\cdot)$ is a link function that depends on the value of the LINK= option. In the printed output, HET0 represents the estimate of sigma, while $H E T 1-H E T n$ are the estimates of parameters in the η vector.

The keyword XBETA can be used in the variables list to refer to the model predicted value $\mathbf{x}^{\prime}{ }_{t} \beta$. If XBETA is specified in the variables list, other variables in the HETERO statement will be ignored. In addition, XBETA cannot be specified in the GARCH process.

For heteroscedastic regression models without GARCH effects, the errors ϵ_{t} are assumed to be uncorrelated - the heteroscedasticity models specified by the HETERO statement cannot be combined with an autoregressive model for the errors. Thus, when a HETERO statement is used, the NLAG= option cannot be specified unless the GARCH= option is also specified.

You can specify the following options in the HETERO statement.

LINK= value

specifies the functional form of the heteroscedasticity model. By default, LINK=EXP. If you specify a GARCH model with the HETERO statement, the model is estimated using LINK= LINEAR only. For details, see the section "Using the HETERO Statement with GARCH Models" on page 364. Values of the LINK= option are as follows:

EXP specifies the exponential link function. The following model is estimated when you specify LINK=EXP:

$$
h_{t}=\exp \left(\mathbf{z}_{t}^{\prime} \eta\right)
$$

SQUARE specifies the square link function. The following model is estimated when you specify LINK=SQUARE:

$$
h_{t}=\left(1+\mathbf{z}_{t}^{\prime} \eta\right)^{2}
$$

LINEAR specifies the linear function; that is, the HETERO statement variables predict the error variance linearly. The following model is estimated when you specify LINK=LINEAR:

$$
h_{t}=\left(1+\mathbf{z}_{t}^{\prime} \eta\right)
$$

COEF= value

imposes constraints on the estimated parameters η of the heteroscedasticity model. The values of the COEF= option are as follows:

NONNEG specifies that the estimated heteroscedasticity parameters η must be nonnegative. When the HETERO statement is used in conjunction with the GARCH= option, the default is COEF=NONNEG.

UNIT constrains all heteroscedasticity parameters η to equal 1.
ZERO constrains all heteroscedasticity parameters η to equal 0 .
UNREST specifies unrestricted estimation of η. When the GARCH= option is not specified, the default is COEF=UNREST.

STD= value

imposes constraints on the estimated standard deviation σ of the heteroscedasticity model. The values of the STD= option are as follows:

NONNEG specifies that the estimated standard deviation parameter σ must be nonnegative.
UNIT constrains the standard deviation parameter σ to equal 1.
UNREST specifies unrestricted estimation of σ. This is the default.
TEST $=L M$
produces a Lagrange multiplier test for heteroscedasticity. The null hypothesis is homoscedasticity; the alternative hypothesis is heteroscedasticity of the form specified by the

HETERO statement. The power of the test depends on the variables specified in the HETERO statement.

The test may give different results depending on the functional form specified by the LINK= option. However, in many cases the test does not depend on the LINK= option. The test is invariant to the form of h_{t} when $h_{t}(0)=1$ and $h_{t}^{\prime}(0) \neq 0$. (The condition $h_{t}(0)=1$ is satisfied except when the NOCONST option is specified with LINK=SQUARE or LINK=LINEAR.)

NOCONST

specifies that the heteroscedasticity model does not include the unit term for the LINK=SQUARE and LINK=LINEAR options. For example, the following model is estimated when you specify the options LINK=SQUARE NOCONST:

$$
h_{t}=\left(\mathbf{z}_{t}^{\prime} \eta\right)^{2}
$$

RESTRICT Statement

The RESTRICT statement provides constrained estimation. The syntax of the RESTRICT statement is

RESTRICT equation , ..., equation ;

The RESTRICT statement places restrictions on the parameter estimates for covariates in the preceding MODEL statement. Any number of RESTRICT statements can follow a MODEL statement. Several restrictions can be specified in a single RESTRICT statement by separating the individual restrictions with commas.

Each restriction is written as a linear equation composed of constants and parameter names. Refer to model parameters by the name of the corresponding regressor variable. Each name used in the equation must be a regressor in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the intercept parameter in the model.

The following is an example of a RESTRICT statement:

```
model y = a b c d;
restrict a+b=0, 2*d-c=0;
```

When restricting a linear combination of parameters to be 0 , you can omit the equal sign. For example, the following RESTRICT statement is equivalent to the preceding example:

```
restrict a+b, 2*d-c;
```

The following RESTRICT statement constrains the parameters estimates for three regressors (X1, X 2 , and X 3) to be equal:

```
restrict x1 = x2, x2 = x3;
```

The preceding restriction can be abbreviated as follows.

```
restrict x1 = x2 = x3;
```

Only simple linear combinations of parameters can be specified in RESTRICT statement expressions; complex expressions involving parentheses, division, functions, or complex products are not allowed.

TEST Statement

The AUTOREG procedure now supports a TEST statement for linear hypothesis tests. The syntax of the TEST statement is

TEST equation , equation / option ;
The TEST statement tests hypotheses about the covariates in the model estimated by the preceding MODEL statement. Each equation specifies a linear hypothesis to be tested. If more than one equation is specified, the equations are separated by commas.

Each test is written as a linear equation composed of constants and parameter names. Refer to parameters by the name of the corresponding regressor variable. Each name used in the equation must be a regressor in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the intercept parameter in the model.

You can specify the following option in the TEST statement:

TYPE= value

specifies the test statistics to use, F or Wald. TYPE=F produces an F test. TYPE=WALD produces a Wald test. The default is TYPE=F.

The following example of a TEST statement tests the hypothesis that the coefficients of two regressors A and B are equal:

```
model y = a b c d;
test a = b;
```

To test separate null hypotheses, use separate TEST statements. To test a joint hypothesis, specify the component hypotheses on the same TEST statement, separated by commas.

For example, consider the following linear model:

$$
y_{t}=\beta_{0}+\beta_{1} x 1_{t}+\beta_{2} x 2_{t}+\epsilon_{t}
$$

The following statements test the two hypotheses $H_{0}: \beta_{0}=1$ and $H_{0}: \beta_{1}+\beta_{2}=0$:

```
model y = x1 x2;
test intercept = 1;
test x1 + x2 = 0;
```

The following statements test the joint hypothesis $H_{0}: \beta_{0}=1$ and $\beta_{1}+\beta_{2}=0$:

```
model y = x1 x2;
test intercept = 1, x1 + x2 = 0;
```


OUTPUT Statement

```
OUTPUT OUT=SAS-data-set keyword = options ...;;
```

The OUTPUT statement creates an output SAS data set as specified by the following options.

OUT= SAS-data-set

names the output SAS data set containing the predicted and transformed values. If the OUT= option is not specified, the new data set is named according to the DATA n convention.

ALPHACLI= number

sets the confidence limit size for the estimates of future values of the response time series. The ALPHACLI= value must be between 0 and 1 . The resulting confidence interval has 1 -number confidence. The default is ALPHACLI=.05, corresponding to a 95% confidence interval.

ALPHACLM= number

sets the confidence limit size for the estimates of the structural or regression part of the model. The ALPHACLI = value must be between 0 and 1 . The resulting confidence interval has 1 number confidence. The default is ALPHACLM $=.05$, corresponding to a 95% confidence interval.

ALPHACSM= . 01 / $.05 / .10$
specifies the significance level for the upper and lower bounds of the CUSUM and CUSUMSQ statistics output by the CUSUMLB=, CUSUMUB=, CUSUMSQLB=, and CUSUMSQUB= options. The significance level specified by the ALPHACSM= option can be $.01, .05$, or .10 . Other values are not supported.

The following options are of the form KEYWORD=name, where KEYWORD specifies the statistic to include in the output data set and name gives the name of the variable in the OUT= data set containing the statistic.

BLUS= variable

specifies the name of a variable to contain the values of the Theil's BLUS residuals. Refer to Theil (1971) for more information on BLUS residuals.

CEV= variable

HT= variable
writes to the output data set the value of the error variance σ_{t}^{2} from the heteroscedasticity model specified by the HETERO statement or the value of the conditional error variance h_{t} by the GARCH= option in the MODEL statement.

CPEV = variable

writes the conditional prediction error variance to the output data set. The value of conditional prediction error variance is equal to that of the conditional error variance when there are no
autoregressive parameters. For the exponential GARCH model, conditional prediction error variance cannot be calculated. See the section "Predicted Values" on page 381 later in this chapter for details.

CONSTANT= variable

writes the transformed intercept to the output data set. The details of the transformation are described in "Computational Methods" on page 359 later in this chapter.

CUSUM= variable

specifies the name of a variable to contain the CUSUM statistics.

CUSUMSQ= variable

specifies the name of a variable to contain the CUSUMSQ statistics.

CUSUMUB= variable

specifies the name of a variable to contain the upper confidence bound for the CUSUM statistic.

CUSUMLB= variable

specifies the name of a variable to contain the lower confidence bound for the CUSUM statistic.

CUSUMSQUB= variable

specifies the name of a variable to contain the upper confidence bound for the CUSUMSQ statistic.

CUSUMSQLB= variable

specifies the name of a variable to contain the lower confidence bound for the CUSUMSQ statistic.

LCL= name

writes the lower confidence limit for the predicted value (specified in the PREDICTED= option) to the output data set. The size of the confidence interval is set by the ALPHACLI= option. When a GARCH model is estimated, the lower confidence limit is calculated assuming that the disturbances have homoscedastic conditional variance. See the section "Predicted Values" on page 381 later in this chapter for details.

LCLM= name

writes the lower confidence limit for the structural predicted value (specified in the PREDICTEDM = option) to the output data set under the name given. The size of the confidence interval is set by the ALPHACLM= option.

PREDICTED= name

$\mathrm{P}=$ name

writes the predicted values to the output data set. These values are formed from both the structural and autoregressive parts of the model. See the section "Predicted Values" on page 381 later in this chapter for details.

PREDICTEDM= name

$\mathbf{P M}=$ name
writes the structural predicted values to the output data set. These values are formed from only the structural part of the model. See the section "Predicted Values" on page 381 later in this chapter for details.

RECPEV= variable

specifies the name of a variable to contain the part of the predictive error variance $\left(v_{t}\right)$ that is used to compute the recursive residuals.

RECRES= variable

specifies the name of a variable to contain recursive residuals. The recursive residuals are used to compute the CUSUM and CUSUMSQ statistics.

RESIDUAL= name

$\mathbf{R =}$ name

writes the residuals from the predicted values based on both the structural and time series parts of the model to the output data set.

RESIDUALM= name

$\mathbf{R M}=$ name
writes the residuals from the structural prediction to the output data set.

TRANSFORM= variables

transforms the specified variables from the input data set by the autoregressive model and writes the transformed variables to the output data set. The details of the transformation are described in "Computational Methods" on page 359 later in this chapter. If you need to reproduce the data suitable for reestimation, you must also transform an intercept variable. To do this, transform a variable that is all 1s or use the CONSTANT= option.

UCL= name

writes the upper confidence limit for the predicted value (specified in the PREDICTED= option) to the output data set. The size of the confidence interval is set by the ALPHACLI= option. When the GARCH model is estimated, the upper confidence limit is calculated assuming that the disturbances have homoscedastic conditional variance. See the section "Predicted Values" on page 381 later in this chapter for details.

UCLM= name
writes the upper confidence limit for the structural predicted value (specified in the PREDICTEDM = option) to the output data set. The size of the confidence interval is set by the ALPHACLM= option.

Details: AUTOREG Procedure

Missing Values

PROC AUTOREG skips any missing values at the beginning of the data set. If the NOMISS option is specified, the first contiguous set of data with no missing values is used; otherwise, all data with nonmissing values for the independent and dependent variables are used. Note, however, that the observations containing missing values are still needed to maintain the correct spacing in the time series. PROC AUTOREG can generate predicted values when the dependent variable is missing.

Autoregressive Error Model

The regression model with autocorrelated disturbances is as follows:

$$
\begin{aligned}
& y_{t}=\mathbf{x}_{t}^{\prime} \beta+v_{t} \\
& v_{t}=\epsilon_{t}-\varphi_{1} v_{t-1}-\ldots-\varphi_{m} v_{t-m} \\
& \epsilon_{t} \mathrm{~N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

In these equations, y_{t} are the dependent values, \mathbf{x}_{t} is a column vector of regressor variables, β is a column vector of structural parameters, and ϵ_{t} is normally and independently distributed with a mean of 0 and a variance of σ^{2}. Note that in this parameterization, the signs of the autoregressive parameters are reversed from the parameterization documented in most of the literature.

PROC AUTOREG offers four estimation methods for the autoregressive error model. The default method, Yule-Walker (YW) estimation, is the fastest computationally. The Yule-Walker method used by PROC AUTOREG is described in Gallant and Goebel (1976). Harvey (1981) calls this method the two-step full transform method. The other methods are iterated YW, unconditional least squares (ULS), and maximum likelihood (ML). The ULS method is also referred to as nonlinear least squares (NLS) or exact least squares (ELS).

You can use all of the methods with data containing missing values, but you should use ML estimation if the missing values are plentiful. See the section "Alternative Autocorrelation Correction Methods" on page 361 later in this chapter for further discussion of the advantages of different methods.

The Yule-Walker Method

Let φ represent the vector of autoregressive parameters,

$$
\varphi=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)^{\prime}
$$

and let the variance matrix of the error vector $\boldsymbol{v}=\left(\nu_{1}, \ldots, \nu_{N}\right)^{\prime}$ be $\boldsymbol{\Sigma}$,

$$
E\left(\nu v^{\prime}\right)=\boldsymbol{\Sigma}=\sigma^{2} \mathbf{V}
$$

If the vector of autoregressive parameters φ is known, the matrix \mathbf{V} can be computed from the autoregressive parameters. $\boldsymbol{\Sigma}$ is then $\sigma^{2} \mathbf{V}$. Given $\boldsymbol{\Sigma}$, the efficient estimates of regression parameters β can be computed using generalized least squares (GLS). The GLS estimates then yield the unbiased estimate of the variance σ^{2},

The Yule-Walker method alternates estimation of β using generalized least squares with estimation of φ using the Yule-Walker equations applied to the sample autocorrelation function. The YW method starts by forming the OLS estimate of β. Next, $\boldsymbol{\varphi}$ is estimated from the sample autocorrelation function of the OLS residuals by using the Yule-Walker equations. Then \mathbf{V} is estimated from the estimate of $\boldsymbol{\varphi}$, and $\boldsymbol{\Sigma}$ is estimated from \mathbf{V} and the OLS estimate of σ^{2}. The autocorrelation corrected estimates of the regression parameters β are then computed by GLS, using the estimated $\boldsymbol{\Sigma}$ matrix. These are the Yule-Walker estimates.

If the ITER option is specified, the Yule-Walker residuals are used to form a new sample autocorrelation function, the new autocorrelation function is used to form a new estimate of φ and \mathbf{V}, and the GLS estimates are recomputed using the new variance matrix. This alternation of estimates continues until either the maximum change in the $\widehat{\varphi}$ estimate between iterations is less than the value specified by the CONVERGE= option or the maximum number of allowed iterations is reached. This produces the iterated Yule-Walker estimates. Iteration of the estimates may not yield much improvement.

The Yule-Walker equations, solved to obtain $\widehat{\varphi}$ and a preliminary estimate of σ^{2}, are

$$
\mathbf{R} \hat{\varphi}=-\mathbf{r}
$$

Here $\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right)^{\prime}$, where r_{i} is the lag i sample autocorrelation. The matrix \mathbf{R} is the Toeplitz matrix whose i, j th element is $r_{|i-j|}$. If you specify a subset model, then only the rows and columns of \mathbf{R} and \mathbf{r} corresponding to the subset of lags specified are used.

If the BACKSTEP option is specified, for purposes of significance testing, the matrix $[\mathbf{R} \mathbf{r}]$ is treated as a sum-of-squares-and-crossproducts matrix arising from a simple regression with $N-k$ observations, where k is the number of estimated parameters.

The Unconditional Least Squares and Maximum Likelihood Methods

Define the transformed error, \mathbf{e}, as

$$
\mathbf{e}=\mathbf{L}^{-1} \mathbf{n}
$$

where $\mathbf{n}=\mathbf{y}-\mathbf{X} \beta$.
The unconditional sum of squares for the model, S, is

$$
S=\mathbf{n}^{\prime} \mathbf{V}^{-1} \mathbf{n}=\mathbf{e}^{\prime} \mathbf{e}
$$

The ULS estimates are computed by minimizing S with respect to the parameters β and φ_{i}.

The full \log likelihood function for the autoregressive error model is

$$
l=-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2} \ln (|\mathbf{V}|)-\frac{S}{2 \sigma^{2}}
$$

where $|\mathbf{V}|$ denotes determinant of \mathbf{V}. For the ML method, the likelihood function is maximized by minimizing an equivalent sum-of-squares function.

Maximizing l with respect to σ^{2} (and concentrating σ^{2} out of the likelihood) and dropping the constant term $-\frac{N}{2} \ln (2 \pi)+1-\ln (N)$ produces the concentrated log likelihood function

$$
l_{c}=-\frac{N}{2} \ln \left(S|\mathbf{V}|^{1 / N}\right)
$$

Rewriting the variable term within the logarithm gives

$$
S_{m l}=|\mathbf{L}|^{1 / N^{\prime}} \mathbf{e}^{\prime} \mathbf{e}|\mathbf{L}|^{1 / N}
$$

PROC AUTOREG computes the ML estimates by minimizing the objective function $S_{m l}=|\mathbf{L}|^{1 / N} \mathbf{e}^{\prime} \mathbf{e}|\mathbf{L}|^{1 / N}$.

The maximum likelihood estimates may not exist for some data sets (Anderson and Mentz 1980). This is the case for very regular data sets, such as an exact linear trend.

Computational Methods

Sample Autocorrelation Function

The sample autocorrelation function is computed from the structural residuals or noise $\mathbf{n}_{\mathbf{t}}=y_{t}-\mathbf{x}_{t}^{\prime} \mathbf{b}$, where \mathbf{b} is the current estimate of β. The sample autocorrelation function is the sum of all available lagged products of \mathbf{n}_{t} of order j divided by $\ell+j$, where ℓ is the number of such products.

If there are no missing values, then $\ell+j=N$, the number of observations. In this case, the Toeplitz matrix of autocorrelations, \mathbf{R}, is at least positive semidefinite. If there are missing values, these autocorrelation estimates of r can yield an \mathbf{R} matrix that is not positive semidefinite. If such estimates occur, a warning message is printed, and the estimates are tapered by exponentially declining weights until \mathbf{R} is positive definite.

Data Transformation and the Kalman Filter

The calculation of \mathbf{V} from $\boldsymbol{\varphi}$ for the general $\operatorname{AR}(m)$ model is complicated, and the size of \mathbf{V} depends on the number of observations. Instead of actually calculating \mathbf{V} and performing GLS in the usual way, in practice a Kalman filter algorithm is used to transform the data and compute the GLS results through a recursive process.

In all of the estimation methods, the original data are transformed by the inverse of the Cholesky root of \mathbf{V}. Let \mathbf{L} denote the Cholesky root of \mathbf{V} - that is, $\mathbf{V}=\mathbf{L} \mathbf{L}^{\prime}$ with \mathbf{L} lower triangular. For an $\operatorname{AR}(m)$ model, \mathbf{L}^{-1} is a band diagonal matrix with m anomalous rows at the beginning and the
autoregressive parameters along the remaining rows. Thus, if there are no missing values, after the first $m-1$ observations the data are transformed as

$$
z_{t}=x_{t}+\hat{\varphi}_{1} x_{t-1}+\ldots+\hat{\varphi}_{m} x_{t-m}
$$

The transformation is carried out using a Kalman filter, and the lower triangular matrix \mathbf{L} is never directly computed. The Kalman filter algorithm, as it applies here, is described in Harvey and Phillips (1979) and Jones (1980). Although \mathbf{L} is not computed explicitly, for ease of presentation the remaining discussion is in terms of \mathbf{L}. If there are missing values, then the submatrix of \mathbf{L} consisting of the rows and columns with nonmissing values is used to generate the transformations.

Gauss-Newton Algorithms

The ULS and ML estimates employ a Gauss-Newton algorithm to minimize the sum of squares and maximize the log likelihood, respectively. The relevant optimization is performed simultaneously for both the regression and AR parameters. The OLS estimates of β and the Yule-Walker estimates of φ are used as starting values for these methods.

The Gauss-Newton algorithm requires the derivatives of \mathbf{e} or $|\mathbf{L}|^{1 / N} \mathbf{e}$ with respect to the parameters. The derivatives with respect to the parameter vector β are

$$
\begin{aligned}
& \frac{\partial \mathbf{e}}{\partial \beta^{\prime}}=-\mathbf{L}^{-1} \mathbf{X} \\
& \frac{\partial|\mathbf{L}|^{1 / N} \mathbf{e}}{\partial \boldsymbol{\beta}^{\prime}}=-|\mathbf{L}|^{1 / N} \mathbf{L}^{-1} \mathbf{X}
\end{aligned}
$$

These derivatives are computed by the transformation described previously. The derivatives with respect to φ are computed by differentiating the Kalman filter recurrences and the equations for the initial conditions.

Variance Estimates and Standard Errors

For the Yule-Walker method, the estimate of the error variance, s^{2}, is the error sum of squares from the last application of GLS, divided by the error degrees of freedom (number of observations N minus the number of free parameters).

The variance-covariance matrix for the components of \mathbf{b} is taken as $s^{2}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}$ for the YuleWalker method. For the ULS and ML methods, the variance-covariance matrix of the parameter estimates is computed as $s^{2}\left(\mathbf{J}^{\prime} \mathbf{J}\right)^{-1}$. For the ULS method, \mathbf{J} is the matrix of derivatives of \mathbf{e} with respect to the parameters. For the ML method, \mathbf{J} is the matrix of derivatives of $|\mathbf{L}|^{1 / N} \mathbf{e}$ divided by $|\mathbf{L}|^{1 / N}$. The estimate of the variance-covariance matrix of \mathbf{b} assuming that φ is known is $s^{2}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}$.

Park and Mitchell (1980) investigated the small sample performance of the standard error estimates obtained from some of these methods. In particular, simulating an $\operatorname{AR}(1)$ model for the noise term, they found that the standard errors calculated using GLS with an estimated autoregressive parameter underestimated the true standard errors. These estimates of standard errors are the ones calculated by PROC AUTOREG with the Yule-Walker method.

The estimates of the standard errors calculated with the ULS or ML method take into account the joint estimation of the AR and the regression parameters and may give more accurate standard-error values than the YW method. At the same values of the autoregressive parameters, the ULS and ML standard errors will always be larger than those computed from Yule-Walker. However, simulations of the models used by Park and Mitchell (1980) suggest that the ULS and ML standard error estimates can also be underestimates. Caution is advised, especially when the estimated autocorrelation is high and the sample size is small.

High autocorrelation in the residuals is a symptom of lack of fit. An autoregressive error model should not be used as a nostrum for models that simply do not fit. It is often the case that time series variables tend to move as a random walk. This means that an AR(1) process with a parameter near one absorbs a great deal of the variation. See Example 8.3 later in this chapter, which fits a linear trend to a sine wave.

For ULS or ML estimation, the joint variance-covariance matrix of all the regression and autoregression parameters is computed. For the Yule-Walker method, the variance-covariance matrix is computed only for the regression parameters.

Lagged Dependent Variables

The Yule-Walker estimation method is not directly appropriate for estimating models that include lagged dependent variables among the regressors. Therefore, the maximum likelihood method is the default when the LAGDEP or LAGDEP= option is specified in the MODEL statement. However, when lagged dependent variables are used, the maximum likelihood estimator is not exact maximum likelihood but is conditional on the first few values of the dependent variable.

Alternative Autocorrelation Correction Methods

Autocorrelation correction in regression analysis has a long history, and various approaches have been suggested. Moreover, the same method may be referred to by different names.

Pioneering work in the field was done by Cochrane and Orcutt (1949). The Cochrane-Orcutt method refers to a more primitive version of the Yule-Walker method that drops the first observation. The Cochrane-Orcutt method is like the Yule-Walker method for first-order autoregression, except that the Yule-Walker method retains information from the first observation. The iterative CochraneOrcutt method is also in use.

The Yule-Walker method used by PROC AUTOREG is also known by other names. Harvey (1981) refers to the Yule-Walker method as the two-step full transform method. The Yule-Walker method can be considered as generalized least squares using the OLS residuals to estimate the covariances across observations, and Judge et al. (1985) use the term estimated generalized least squares (EGLS) for this method. For a first-order AR process, the Yule-Walker estimates are often termed Prais-Winsten estimates (Prais and Winsten 1954). There are variations to these methods that use different estimators of the autocorrelations or the autoregressive parameters.

The unconditional least squares (ULS) method, which minimizes the error sum of squares for all observations, is referred to as the nonlinear least squares (NLS) method by Spitzer (1979).

The Hildreth-Lu method (Hildreth and Lu 1960) uses nonlinear least squares to jointly estimate the parameters with an $\operatorname{AR}(1)$ model, but it omits the first transformed residual from the sum of squares. Thus, the Hildreth-Lu method is a more primitive version of the ULS method supported by PROC AUTOREG in the same way Cochrane-Orcutt is a more primitive version of Yule-Walker.

The maximum likelihood method is also widely cited in the literature. Although the maximum likelihood method is well defined, some early literature refers to estimators that are called maximum likelihood but are not full unconditional maximum likelihood estimates. The AUTOREG procedure produces full unconditional maximum likelihood estimates.

Harvey (1981) and Judge et al. (1985) summarize the literature on various estimators for the autoregressive error model. Although asymptotically efficient, the various methods have different small sample properties. Several Monte Carlo experiments have been conducted, although usually for the AR(1) model.

Harvey and McAvinchey (1978) found that for a one-variable model, when the independent variable is trending, methods similar to Cochrane-Orcutt are inefficient in estimating the structural parameter. This is not surprising since a pure trend model is well modeled by an autoregressive process with a parameter close to 1 .

Harvey and McAvinchey (1978) also made the following conclusions:

- The Yule-Walker method appears to be about as efficient as the maximum likelihood method. Although Spitzer (1979) recommended ML and NLS, the Yule-Walker method (labeled PraisWinsten) did as well or better in estimating the structural parameter in Spitzer's Monte Carlo study (table A2 in their article) when the autoregressive parameter was not too large. Maximum likelihood tends to do better when the autoregressive parameter is large.
- For small samples, it is important to use a full transformation (Yule-Walker) rather than the Cochrane-Orcutt method, which loses the first observation. This was also demonstrated by Maeshiro (1976), Chipman (1979), and Park and Mitchell (1980).
- For large samples (Harvey and McAvinchey used 100), losing the first few observations does not make much difference.

GARCH, IGARCH, EGARCH, and GARCH-M Models

Consider the series y_{t}, which follows the GARCH process. The conditional distribution of the series Y for time t is written

$$
y_{t} \mid \Psi_{t-1} \sim \mathrm{~N}\left(0, h_{t}\right)
$$

where Ψ_{t-1} denotes all available information at time $t-1$. The conditional variance h_{t} is

$$
h_{t}=\omega+\sum_{i=1}^{q} \alpha_{i} y_{t-i}^{2}+\sum_{j=1}^{p} \gamma_{j} h_{t-j}
$$

where

$$
\begin{aligned}
& p \geq 0, q>0 \\
& \omega>0, \alpha_{i} \geq 0, \gamma_{j} \geq 0
\end{aligned}
$$

The $\operatorname{GARCH}(p, q)$ model reduces to the $\operatorname{ARCH}(q)$ process when $p=0$. At least one of the ARCH parameters must be nonzero $(q>0)$. The GARCH regression model can be written

$$
\begin{aligned}
y_{t} & =\mathbf{x}_{t}^{\prime} \beta+\epsilon_{t} \\
\epsilon_{t} & =\sqrt{h_{t}} e_{t} \\
h_{t} & =\omega+\sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}^{2}+\sum_{j=1}^{p} \gamma_{j} h_{t-j}
\end{aligned}
$$

where $e_{t} \sim \operatorname{IN}(0,1)$.
In addition, you can consider the model with disturbances following an autoregressive process and with the GARCH errors. The $\operatorname{AR}(m)-\operatorname{GARCH}(p, q)$ regression model is denoted

$$
\begin{aligned}
& y_{t}=\mathbf{x}_{t}^{\prime} \beta+v_{t} \\
& v_{t}=\epsilon_{t}-\varphi_{1} v_{t-1}-\ldots-\varphi_{m} v_{t-m} \\
& \epsilon_{t}=\sqrt{h_{t}} e_{t} \\
& h_{t}=\omega+\sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}^{2}+\sum_{j=1}^{p} \gamma_{j} h_{t-j}
\end{aligned}
$$

GARCH Estimation with Nelson-Cao Inequality Constraints

The $\operatorname{GARCH}(p, q)$ model is written in $\operatorname{ARCH}(\infty)$ form as

$$
\begin{aligned}
h_{t} & =\left(1-\sum_{j=1}^{p} \gamma_{j} B^{j}\right)^{-1}\left[\omega+\sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}^{2}\right] \\
& =\omega^{*}+\sum_{i=1}^{\infty} \phi_{i} \epsilon_{t-i}^{2}
\end{aligned}
$$

where B is a backshift operator. Therefore, $h_{t} \geq 0$ if $\omega^{*} \geq 0$ and $\phi_{i} \geq 0, \forall i$. Assume that the roots of the following polynomial equation are inside the unit circle:

$$
\sum_{j=0}^{p}-\gamma_{j} Z^{p-j}
$$

where $\gamma_{0}=-1$ and Z is a complex scalar. $-\sum_{j=0}^{p} \gamma_{j} Z^{p-j}$ and $\sum_{i=1}^{q} \alpha_{i} Z^{q-i}$ do not share common factors. Under these conditions, $\left|\omega^{*}\right|<\infty,\left|\phi_{i}\right|<\infty$, and these coefficients of the $\operatorname{ARCH}(\infty)$ process are well defined.

Define $n=\max (p, q)$. The coefficient ϕ_{i} is written

$$
\begin{aligned}
\phi_{0} & =\alpha_{1} \\
\phi_{1} & =\gamma_{1} \phi_{0}+\alpha_{2} \\
\cdots & \\
\phi_{n-1} & =\gamma_{1} \phi_{n-2}+\gamma_{2} \phi_{n-3}+\cdots+\gamma_{n-1} \phi_{0}+\alpha_{n} \\
\phi_{k} & =\gamma_{1} \phi_{k-1}+\gamma_{2} \phi_{k-2}+\cdots+\gamma_{n} \phi_{k-n} \text { for } k \geq n
\end{aligned}
$$

where $\alpha_{i}=0$ for $i>q$ and $\gamma_{j}=0$ for $j>p$.
Nelson and Cao (1992) proposed the finite inequality constraints for $\operatorname{GARCH}(1, q)$ and $\operatorname{GARCH}(2, q)$ cases. However, it is not straightforward to derive the finite inequality constraints for the general $\operatorname{GARCH}(p, q)$ model.

For the $\operatorname{GARCH}(1, q)$ model, the nonlinear inequality constraints are

$$
\begin{aligned}
\omega & \geq 0 \\
\gamma_{1} & \geq 0 \\
\phi_{k} & \geq 0 \text { for } k=0,1, \cdots, q-1
\end{aligned}
$$

For the $\operatorname{GARCH}(2, q)$ model, the nonlinear inequality constraints are

$$
\begin{aligned}
\Delta_{i} & \in R \text { for } i=1,2 \\
\omega^{*} & \geq 0 \\
\Delta_{1} & >0 \\
\sum_{j=0}^{q-1} \Delta_{1}^{-j} \alpha_{j+1} & >0 \\
\phi_{k} & \geq 0 \text { for } k=0,1, \cdots, q
\end{aligned}
$$

where Δ_{1} and Δ_{2} are the roots of $\left(Z^{2}-\gamma_{1} Z-\gamma_{2}\right)$.
For the $\operatorname{GARCH}(p, q)$ model with $p>2$, only $\max (q-1, p)+1$ nonlinear inequality constraints ($\phi_{k} \geq 0$ for $k=0$ to $\max (q-1, p)$) are imposed, together with the in-sample positivity constraints of the conditional variance h_{t}.

Using the HETERO Statement with GARCH Models

The HETERO statement can be combined with the GARCH= option in the MODEL statement to include input variables in the GARCH conditional variance model. For example, the $\operatorname{GARCH}(1,1)$ variance model with two dummy input variables D1 and D2 is

$$
\begin{aligned}
\epsilon_{t} & =\sqrt{h_{t}} e_{t} \\
h_{t} & =\omega+\alpha_{1} \epsilon_{t-1}^{2}+\gamma_{1} h_{t-1}+\eta_{1} D 1_{t}+\eta_{2} D 2_{t}
\end{aligned}
$$

The following statements estimate this GARCH model:

```
proc autoreg data=one;
    model y = x z / garch=(p=1,q=1);
    hetero d1 d2;
run;
```

The parameters for the variables D1 and D2 can be constrained using the COEF= option. For example, the constraints $\eta_{1}=\eta_{2}=1$ are imposed by the following statements:

```
proc autoreg data=one;
    model y = x z / garch=(p=1,q=1);
    hetero d1 d2 / coef=unit;
run;
```


Limitations of GARCH and Heteroscedasticity Specifications

When you specify both the GARCH= option and the HETERO statement, the GARCH=(TYPE=EXP) option is not valid. The COVEST= option is not applicable to the EGARCH model.

IGARCH and Stationary GARCH ModeI

The condition $\sum_{i=1}^{q} \alpha_{i}+\sum_{j=1}^{p} \gamma_{j}<1$ implies that the GARCH process is weakly stationary since the mean, variance, and autocovariance are finite and constant over time. However, this condition is not sufficient for weak stationarity in the presence of autocorrelation. For example, the stationarity condition for an $\operatorname{AR}(1)-\operatorname{GARCH}(p, q)$ process is

$$
\frac{1}{1-\varphi_{1}^{2}} \sum_{i=1}^{q} \alpha_{i}+\sum_{j=1}^{p} \gamma_{j}<1
$$

When the GARCH process is stationary, the unconditional variance of ϵ_{t} is computed as

$$
\mathbf{V}\left(\epsilon_{t}\right)=\frac{\omega}{\left(1-\sum_{i=1}^{q} \alpha_{i}-\sum_{j=1}^{p} \gamma_{j}\right)}
$$

where $\epsilon_{t}=\sqrt{h_{t}} e_{t}$ and h_{t} is the $\operatorname{GARCH}(p, q)$ conditional variance.
Sometimes the multistep forecasts of the variance do not approach the unconditional variance when the model is integrated in variance; that is, $\sum_{i=1}^{q} \alpha_{i}+\sum_{j=1}^{p} \gamma_{j}=1$.

The unconditional variance for the IGARCH model does not exist. However, it is interesting that the IGARCH model can be strongly stationary even though it is not weakly stationary. Refer to Nelson (1990) for details.

EGARCH Model

The EGARCH model was proposed by Nelson (1991). Nelson and Cao (1992) argue that the nonnegativity constraints in the linear GARCH model are too restrictive. The GARCH model imposes
the nonnegative constraints on the parameters, α_{i} and γ_{j}, while there are no restrictions on these parameters in the EGARCH model. In the EGARCH model, the conditional variance, h_{t}, is an asymmetric function of lagged disturbances ϵ_{t-i} :

$$
\ln \left(h_{t}\right)=\omega+\sum_{i=1}^{q} \alpha_{i} g\left(z_{t-i}\right)+\sum_{j=1}^{p} \gamma_{j} \ln \left(h_{t-j}\right)
$$

where

$$
\begin{aligned}
& g\left(z_{t}\right)=\theta z_{t}+\gamma\left[\left|z_{t}\right|-E\left|z_{t}\right|\right] \\
& z_{t}=\epsilon_{t} / \sqrt{h_{t}}
\end{aligned}
$$

The coefficient of the second term in $g\left(z_{t}\right)$ is set to be $1(\gamma=1)$ in our formulation. Note that $E\left|z_{t}\right|=(2 / \pi)^{1 / 2}$ if $z_{t} \sim \mathrm{~N}(0,1)$. The properties of the EGARCH model are summarized as follows:

- The function $g\left(z_{t}\right)$ is linear in z_{t} with slope coefficient $\theta+1$ if z_{t} is positive while $g\left(z_{t}\right)$ is linear in z_{t} with slope coefficient $\theta-1$ if z_{t} is negative.
- Suppose that $\theta=0$. Large innovations increase the conditional variance if $\left|z_{t}\right|-E\left|z_{t}\right|>0$ and decrease.
- the conditional variance if $\left|z_{t}\right|-E\left|z_{t}\right|<0$
- Suppose that $\theta<1$. The innovation in variance, $g\left(z_{t}\right)$, is positive if the innovations z_{t} are less than $(2 / \pi)^{1 / 2} /(\theta-1)$. Therefore, the negative innovations in returns, ϵ_{t}, cause the innovation to the conditional variance to be positive if θ is much less than 1 .

GARCH-in-Mean

The GARCH-M model has the added regressor that is the conditional standard deviation:

$$
\begin{aligned}
& y_{t}=\mathbf{x}_{t}^{\prime} \beta+\delta \sqrt{h_{t}}+\epsilon_{t} \\
& \epsilon_{t}=\sqrt{h_{t}} e_{t}
\end{aligned}
$$

where h_{t} follows the ARCH or GARCH process.

Maximum Likelihood Estimation

The family of GARCH models are estimated using the maximum likelihood method. The loglikelihood function is computed from the product of all conditional densities of the prediction errors.

When e_{t} is assumed to have a standard normal distribution $\left(e_{t} \sim \mathrm{~N}(0,1)\right)$, the log-likelihood function is given by

$$
l=\sum_{t=1}^{N} \frac{1}{2}\left[-\ln (2 \pi)-\ln \left(h_{t}\right)-\frac{\epsilon_{t}^{2}}{h_{t}}\right]
$$

where $\epsilon_{t}=y_{t}-\mathbf{x}_{t}^{\prime} \beta$ and h_{t} is the conditional variance. When the $\operatorname{GARCH}(p, q)$-M model is estimated, $\epsilon_{t}=y_{t}-\mathbf{x}_{t}^{\prime} \beta-\delta \sqrt{h_{t}}$. When there are no regressors, the residuals ϵ_{t} are denoted as y_{t} or $y_{t}-\delta \sqrt{h_{t}}$.

If e_{t} has the standardized Student's t distribution, the log-likelihood function for the conditional t distribution is

$$
\begin{aligned}
& \ell=\sum_{t=1}^{N}\left[\ln \left(\Gamma\left(\frac{v+1}{2}\right)\right)-\ln \left(\Gamma\left(\frac{v}{2}\right)\right)-\frac{1}{2} \ln \left((v-2) h_{t}\right)\right. \\
& \left.-\frac{1}{2}(v+1) \ln \left(1+\frac{\epsilon_{t}^{2}}{h_{t}(v-2)}\right)\right]
\end{aligned}
$$

where $\Gamma(\cdot)$ is the gamma function and v is the degree of freedom $(v>2)$. Under the conditional t distribution, the additional parameter $1 / v$ is estimated. The log-likelihood function for the conditional t distribution converges to the log-likelihood function of the conditional normal GARCH model as $1 / \nu \rightarrow 0$.

The likelihood function is maximized via either the dual quasi-Newton or trust region algorithm. The default is the dual quasi-Newton algorithm. The starting values for the regression parameters β are obtained from the OLS estimates. When there are autoregressive parameters in the model, the initial values are obtained from the Yule-Walker estimates. The starting value 1.0^{-6} is used for the GARCH process parameters.

The variance-covariance matrix is computed using the Hessian matrix. The dual quasi-Newton method approximates the Hessian matrix while the quasi-Newton method gets an approximation of the inverse of Hessian. The trust region method uses the Hessian matrix obtained using numerical differentiation. When there are active constraints, that is, $\mathbf{q}(\theta)=\mathbf{0}$, the variance-covariance matrix is given by

$$
\mathbf{V}(\hat{\theta})=\mathbf{H}^{-1}\left[\mathbf{I}-\mathbf{Q}^{\prime}\left(\mathbf{Q} \mathbf{H}^{-1} \mathbf{Q}^{\prime}\right)^{-1} \mathbf{Q} \mathbf{H}^{-1}\right]
$$

where $\mathbf{H}=-\partial^{2} l / \partial \theta \partial \theta^{\prime}$ and $\mathbf{Q}=\partial \mathbf{q}(\theta) / \partial \theta^{\prime}$. Therefore, the variance-covariance matrix without active constraints reduces to $\mathbf{V}(\hat{\theta})=\mathbf{H}^{-1}$.

R-Square Statistics and Other Measures of Fit

This section discusses various goodness-of-fit statistics produced by the AUTOREG procedure.

Total R-Square

The total R^{2} statistic (Total Rsq) is computed as

$$
R_{\mathrm{tot}}^{2}=1-\frac{S S E}{S S T}
$$

where $S S T$ is the sum of squares for the original response variable corrected for the mean and SSE is the final error sum of squares. The Total Rsq is a measure of how well the next value can be predicted using the structural part of the model and the past values of the residuals. If the NOINT option is specified, SST is the uncorrected sum of squares.

Regression R-Square

The regression R^{2} (Reg RSQ) is computed as

$$
R_{\mathrm{reg}}^{2}=1-\frac{T S S E}{T S S T}
$$

where TSST is the total sum of squares of the transformed response variable corrected for the transformed intercept, and TSSE is the error sum of squares for this transformed regression problem. If the NOINT option is requested, no correction for the transformed intercept is made. The Reg RSQ is a measure of the fit of the structural part of the model after transforming for the autocorrelation and is the R^{2} for the transformed regression.

The regression R^{2} and the total R^{2} should be the same when there is no autocorrelation correction (OLS regression).

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)

The mean absolute error (MAE) is computed as

$$
\text { MAE }=\frac{1}{T} \sum_{t=1}^{T}\left|e_{t}\right|
$$

where e_{t} are the estimated model residuals and T is the number of observations.
The mean absolute percentage error (MAPE) is computed as

$$
\text { MAPE }=\frac{1}{T^{\prime}} \sum_{t=1}^{T} \delta_{y_{t} \neq 0} \frac{\left|e_{t}\right|}{\left|y_{t}\right|}
$$

where e_{t} are the estimated model residuals, y_{t} are the original response variable observations, $\delta_{y_{t} \neq 0}=1$ if $y_{t} \neq 0, \delta_{y_{t} \neq 0}\left|e_{t} / y_{t}\right|=0$ if $y_{t}=0$, and T^{\prime} is the number of nonzero original response variable observations.

Calculation of Recursive Residuals and CUSUM Statistics

The recursive residuals w_{t} are computed as

$$
\begin{aligned}
& w_{t}=\frac{e_{t}}{\sqrt{v_{t}}} \\
& e_{t}=y_{t}-x_{t}^{\prime} \beta^{(t)} \\
& \beta^{(t)}=\left[\sum_{i=1}^{t-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right]^{-1}\left(\sum_{i=1}^{t-1} \mathbf{x}_{i} y_{i}\right) \\
& v_{t}=1+\mathbf{x}_{t}^{\prime}\left[\sum_{i=1}^{t-1} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right]^{-1} \mathbf{x}_{t}
\end{aligned}
$$

Note that the first $\beta^{(t)}$ can be computed for $t=p+1$, where p is the number of regression coefficients. As a result, first p recursive residuals are not defined. Note also that the forecast error variance of e_{t} is the scalar multiple of v_{t} such that $V\left(e_{t}\right)=\sigma^{2} v_{t}$.

The CUSUM and CUSUMSQ statistics are computed using the preceding recursive residuals.

$$
\begin{aligned}
& \operatorname{CUSUM}_{t}=\sum_{i=k+1}^{t} \frac{w_{i}}{\sigma_{w}} \\
& \text { CUSUMSQ }_{t}=\frac{\sum_{i=k+1}^{t} w_{i}^{2}}{\sum_{i=k+1}^{T} w_{i}^{2}}
\end{aligned}
$$

where w_{i} are the recursive residuals,

$$
\begin{aligned}
\sigma_{w} & =\sqrt{\frac{\sum_{i=k+1}^{T}\left(w_{i}-\hat{w}\right)^{2}}{(T-k-1)}} \\
\hat{w} & =\frac{1}{T-k} \sum_{i=k+1}^{T} w_{i}
\end{aligned}
$$

and k is the number of regressors.
The CUSUM statistics can be used to test for misspecification of the model. The upper and lower critical values for CUSUM $_{t}$ are

$$
\pm a\left[\sqrt{T-k}+2 \frac{(t-k)}{(T-k)^{\frac{1}{2}}}\right]
$$

where $a=1.143$ for a significance level $0.01,0.948$ for 0.05 , and 0.850 for 0.10 . These critical values are output by the CUSUMLB $=$ and CUSUMUB $=$ options for the significance level specified by the ALPHACSM= option.

The upper and lower critical values of $\mathrm{CUSUMSQ}_{t}$ are given by

$$
\pm a+\frac{(t-k)}{T-k}
$$

where the value of a is obtained from the table by Durbin (1969) if the $\frac{1}{2}(T-k)-1 \leq 60$. Edgerton and Wells (1994) provided the method of obtaining the value of a for large samples.

These critical values are output by the CUSUMSQLB= and CUSUMSQUB= options for the significance level specified by the ALPHACSM= option.

Information Criteria AIC, AICC, and SBC

Akaike's information criterion (AIC), the corrected Akaike's information criterion (AICC) and Schwarz's Bayesian information criterion (SBC) are computed as follows:

$$
\begin{aligned}
\mathrm{AIC} & =-2 \ln (L)+2 k \\
\mathrm{AICC} & =\mathrm{AIC}+2 \frac{k(k+1)}{N-k-1} \\
\mathrm{SBC} & =-2 \ln (L)+\ln (N) k
\end{aligned}
$$

In these formulas, L is the value of the likelihood function evaluated at the parameter estimates, N is the number of observations, and k is the number of estimated parameters. Refer to Judge et al. (1985), Hurvich and Tsai (1989) and Schwarz (1978) for additional details.

Generalized Durbin-Watson Tests

Consider the following linear regression model:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{v}
$$

where \mathbf{X} is an $N \times k$ data matrix, β is a $k \times 1$ coefficient vector, and \boldsymbol{v} is a $N \times 1$ disturbance vector. The error term \boldsymbol{v} is assumed to be generated by the j th-order autoregressive process $v_{t}=$ $\epsilon_{t}-\varphi_{j} \nu_{t-j}$ where $\left|\varphi_{j}\right|<1, \epsilon_{t}$ is a sequence of independent normal error terms with mean 0 and variance σ^{2}. Usually, the Durbin-Watson statistic is used to test the null hypothesis $H_{0}: \varphi_{1}=0$ against $H_{1}:-\varphi_{1}>0$. Vinod (1973) generalized the Durbin-Watson statistic:

$$
d_{j}=\frac{\sum_{t=j+1}^{N}\left(\hat{v}_{t}-\hat{v}_{t-j}\right)^{2}}{\sum_{t=1}^{N} \hat{v}_{t}^{2}}
$$

where \hat{v} are OLS residuals. Using the matrix notation,

$$
d_{j}=\frac{\mathbf{Y}^{\prime} \mathbf{M A}_{j}^{\prime} \mathbf{A}_{j} \mathbf{M Y}}{\mathbf{Y}^{\prime} \mathbf{M Y}}
$$

where $\mathbf{M}=\mathbf{I}_{N}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}$ and \mathbf{A}_{j} is a $(N-j) \times N$ matrix:

$$
\mathbf{A}_{j}=\left[\begin{array}{cccccccc}
-1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & -1 & 0 & \cdots & 0 & 1 & 0 & \cdots \\
\vdots & \vdots \\
0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

and there are $j-1$ zeros between -1 and 1 in each row of matrix \mathbf{A}_{j}.
The QR factorization of the design matrix \mathbf{X} yields a $N \times N$ orthogonal matrix \mathbf{Q} :

$$
\mathbf{X}=\mathbf{Q R}
$$

where R is an $N \times k$ upper triangular matrix. There exists an $N \times(N-k)$ submatrix of \mathbf{Q} such that $\mathbf{Q}_{1} \mathbf{Q}_{1}^{\prime}=\mathbf{M}$ and $\mathbf{Q}_{1}^{\prime} \mathbf{Q}_{1}=\mathbf{I}_{N-k}$. Consequently, the generalized Durbin-Watson statistic is stated as a ratio of two quadratic forms:

$$
d_{j}=\frac{\sum_{l=1}^{n} \lambda_{j l} \xi_{l}^{2}}{\sum_{l=1}^{n} \xi_{l}^{2}}
$$

where $\lambda_{j 1} \ldots \lambda_{j n}$ are upper n eigenvalues of $\mathbf{M A}^{\prime}{ }_{j} \mathbf{A}_{j} \mathbf{M}$ and ξ_{l} is a standard normal variate, and $n=\min (N-k, N-j)$. These eigenvalues are obtained by a singular value decomposition of $\mathbf{Q}^{\prime}{ }_{1} \mathbf{A}^{\prime}{ }_{j}$ (Golub and Van Loan 1989; Savin and White 1978).

The marginal probability (or p-value) for d_{j} given c_{0} is

$$
\operatorname{Prob}\left(\frac{\sum_{l=1}^{n} \lambda_{j l} \xi_{l}^{2}}{\sum_{l=1}^{n} \xi_{l}^{2}}<c_{0}\right)=\operatorname{Prob}\left(q_{j}<0\right)
$$

where

$$
q_{j}=\sum_{l=1}^{n}\left(\lambda_{j l}-c_{0}\right) \xi_{l}^{2}
$$

When the null hypothesis $H_{0}: \varphi_{j}=0$ holds, the quadratic form q_{j} has the characteristic function

$$
\phi_{j}(t)=\prod_{l=1}^{n}\left(1-2\left(\lambda_{j l}-c_{0}\right) i t\right)^{-1 / 2}
$$

The distribution function is uniquely determined by this characteristic function:

$$
F(x)=\frac{1}{2}+\frac{1}{2 \pi} \int_{0}^{\infty} \frac{e^{i t x} \phi_{j}(-t)-e^{-i t x} \phi_{j}(t)}{i t} d t
$$

For example, to test $H_{0}: \varphi_{4}=0$ given $\varphi_{1}=\varphi_{2}=\varphi_{3}=0$ against $H_{1}:-\varphi_{4}>0$, the marginal probability (p-value) can be used:

$$
F(0)=\frac{1}{2}+\frac{1}{2 \pi} \int_{0}^{\infty} \frac{\left(\phi_{4}(-t)-\phi_{4}(t)\right)}{i t} d t
$$

where

$$
\phi_{4}(t)=\prod_{l=1}^{n}\left(1-2\left(\lambda_{4 l}-\hat{d}_{4}\right) i t\right)^{-1 / 2}
$$

and \hat{d}_{4} is the calculated value of the fourth-order Durbin-Watson statistic.
In the Durbin-Watson test, the marginal probability indicates positive autocorrelation $\left(-\varphi_{j}>0\right)$ if it is less than the level of significance (α), while you can conclude that a negative autocorrelation $\left(-\varphi_{j}<0\right)$ exists if the marginal probability based on the computed Durbin-Watson statistic is greater than $1-\alpha$. Wallis (1972) presented tables for bounds tests of fourth-order autocorrelation, and Vinod (1973) has given tables for a 5\% significance level for orders two to four. Using the

AUTOREG procedure, you can calculate the exact p-values for the general order of Durbin-Watson test statistics. Tests for the absence of autocorrelation of order p can be performed sequentially; at the j th step, test $H_{0}: \varphi_{j}=0$ given $\varphi_{1}=\ldots=\varphi_{j-1}=0$ against $\varphi_{j} \neq 0$. However, the size of the sequential test is not known.

The Durbin-Watson statistic is computed from the OLS residuals, while that of the autoregressive error model uses residuals that are the difference between the predicted values and the actual values. When you use the Durbin-Watson test from the residuals of the autoregressive error model, you must be aware that this test is only an approximation. See "Autoregressive Error Model" on page 357 earlier in this chapter. If there are missing values, the Durbin-Watson statistic is computed using all the nonmissing values and ignoring the gaps caused by missing residuals. This does not affect the significance level of the resulting test, although the power of the test against certain alternatives may be adversely affected. Savin and White (1978) have examined the use of the Durbin-Watson statistic with missing values.

Enhanced Durbin-Watson Probability Computation

The Durbin-Watson probability calculations have been enhanced to compute the p-value of the generalized Durbin-Watson statistic for large sample sizes. Previously, the Durbin-Watson probabilities were only calculated for small sample sizes.

Consider the following linear regression model:

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{X} \beta+\mathbf{u} \\
& u_{t}+\varphi_{j} u_{t-j}=\epsilon_{t}, \quad t=1, \ldots, N
\end{aligned}
$$

where \mathbf{X} is an $N \times k$ data matrix, β is a $k \times 1$ coefficient vector, \mathbf{u} is a $N \times 1$ disturbance vector, and ϵ_{t} is a sequence of independent normal error terms with mean 0 and variance σ^{2}.

The generalized Durbin-Watson statistic is written as

$$
\mathrm{DW}_{j}=\frac{\hat{\mathbf{u}}^{\prime} \mathbf{A}_{j}^{\prime} \mathbf{A}_{j} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}}
$$

where $\hat{\mathbf{u}}$ is a vector of OLS residuals and \mathbf{A}_{j} is a $(T-j) \times T$ matrix. The generalized Durbin-Watson statistic DW_{j} can be rewritten as

$$
\mathrm{DW}_{j}=\frac{\mathbf{Y}^{\prime} \mathbf{\mathbf { M A } _ { j } ^ { \prime } \mathbf { A } _ { j } \mathbf { M Y }}}{\mathbf{Y}^{\prime} \mathbf{M Y}}=\frac{\eta^{\prime}\left(\mathbf{Q}_{1}^{\prime} \mathbf{A}_{j}^{\prime} \mathbf{A}_{j} \mathbf{Q}_{1}\right) \eta}{\eta^{\prime} \eta}
$$

where $\mathbf{Q}_{1}^{\prime} \mathbf{Q}_{1}=\mathbf{I}_{T-k}, \mathbf{Q}_{1}^{\prime} \mathbf{X}=0$, and $\eta=\mathbf{Q}_{1}^{\prime} \mathbf{u}$.
The marginal probability for the Durbin-Watson statistic is

$$
\operatorname{Pr}\left(\mathrm{DW}_{j}<c\right)=\operatorname{Pr}(h<0)
$$

where $h=\eta^{\prime}\left(\mathbf{Q}_{1}^{\prime} \mathbf{A}_{j}^{\prime} \mathbf{A}_{j} \mathbf{Q}_{1}-c \mathbf{I}\right) \eta$.
The p-value or the marginal probability for the generalized Durbin-Watson statistic is computed by numerical inversion of the characteristic function $\phi(u)$ of the quadratic form $h=\eta^{\prime}\left(\mathbf{Q}_{1}^{\prime} \mathbf{A}_{j}^{\prime} \mathbf{A}_{j} \mathbf{Q}_{1}-\right.$
$c \mathbf{I}) \eta$. The trapezoidal rule approximation to the marginal probability $\operatorname{Pr}(h<0)$ is

$$
\operatorname{Pr}(h<0)=\frac{1}{2}-\sum_{k=0}^{K} \frac{\operatorname{Im}\left[\phi\left(\left(k+\frac{1}{2}\right) \Delta\right)\right]}{\pi\left(k+\frac{1}{2}\right)}+\mathrm{E}_{I}(\Delta)+\mathrm{E}_{T}(K)
$$

where $\operatorname{Im}[\phi(\cdot)]$ is the imaginary part of the characteristic function, $\mathrm{E}_{I}(\Delta)$ and $\mathrm{E}_{T}(K)$ are integration and truncation errors, respectively. Refer to Davies (1973) for numerical inversion of the characteristic function.

Ansley, Kohn, and Shively (1992) proposed a numerically efficient algorithm that requires $\mathbf{O}(N)$ operations for evaluation of the characteristic function $\phi(u)$. The characteristic function is denoted as

$$
\begin{aligned}
\phi(u) & =\left|\mathbf{I}-2 i u\left(\mathbf{Q}_{1}^{\prime} \mathbf{A}_{j}^{\prime} \mathbf{A}_{j} \mathbf{Q}_{1}-c \mathbf{I}_{N-k}\right)\right|^{-1 / 2} \\
& =|\mathbf{V}|^{-1 / 2}\left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|^{-1 / 2}\left|\mathbf{X}^{\prime} \mathbf{X}\right|^{1 / 2}
\end{aligned}
$$

where $\mathbf{V}=(1+2 i u c) \mathbf{I}-2 i u \mathbf{A}_{j}^{\prime} \mathbf{A}_{j}$ and $i=\sqrt{-1}$. By applying the Cholesky decomposition to the complex matrix \mathbf{V}, you can obtain the lower triangular matrix \mathbf{G} that satisfies $\mathbf{V}=\mathbf{G G}^{\prime}$. Therefore, the characteristic function can be evaluated in $\mathrm{O}(N)$ operations by using the following formula:

$$
\phi(u)=|\mathbf{G}|^{-1}\left|\mathbf{X}^{* /} \mathbf{X}^{*}\right|^{-1 / 2}\left|\mathbf{X}^{\prime} \mathbf{X}\right|^{1 / 2}
$$

where $\mathbf{X}^{*}=\mathbf{G}^{-1} \mathbf{X}$. Refer to Ansley, Kohn, and Shively (1992) for more information on evaluation of the characteristic function.

Tests for Serial Correlation with Lagged Dependent Variables

When regressors contain lagged dependent variables, the Durbin-Watson statistic $\left(d_{1}\right)$ for the firstorder autocorrelation is biased toward 2 and has reduced power. Wallis (1972) shows that the bias in the Durbin-Watson statistic $\left(d_{4}\right)$ for the fourth-order autocorrelation is smaller than the bias in d_{1} in the presence of a first-order lagged dependent variable. Durbin (1970) proposes two alternative statistics (Durbin h and t) that are asymptotically equivalent. The h statistic is written as

$$
h=\hat{\rho} \sqrt{N /(1-N \hat{V})}
$$

where $\hat{\rho}=\sum_{t=2}^{N} \hat{v}_{t} \hat{v}_{t-1} / \sum_{t=1}^{N} \hat{v}_{t}^{2}$ and \hat{V} is the least squares variance estimate for the coefficient of the lagged dependent variable. Durbin's t test consists of regressing the OLS residuals \hat{v}_{t} on explanatory variables and $\hat{\nu}_{t-1}$ and testing the significance of the estimate for coefficient of $\hat{\nu}_{t-1}$.

Inder (1984) shows that the Durbin-Watson test for the absence of first-order autocorrelation is generally more powerful than the h test in finite samples. Refer to Inder (1986) and King and Wu (1991) for the Durbin-Watson test in the presence of lagged dependent variables.

Testing

Heteroscedasticity and Normality Tests

Portmanteau Q Test

For nonlinear time series models, the portmanteau test statistic based on squared residuals is used to test for independence of the series (McLeod and Li 1983):

$$
Q(q)=N(N+2) \sum_{i=1}^{q} \frac{r\left(i ; \hat{v}_{t}^{2}\right)}{(N-i)}
$$

where

$$
\begin{aligned}
& r\left(i ; \hat{v}_{t}^{2}\right)=\frac{\sum_{t=i+1}^{N}\left(\hat{v}_{t}^{2}-\hat{\sigma}^{2}\right)\left(\hat{v}_{t-i}^{2}-\hat{\sigma}^{2}\right)}{\sum_{t=1}^{N}\left(\hat{v}_{t}^{2}-\hat{\sigma}^{2}\right)^{2}} \\
& \hat{\sigma}^{2}=\frac{1}{N} \sum_{t=1}^{N} \hat{v}_{t}^{2}
\end{aligned}
$$

This Q statistic is used to test the nonlinear effects (for example, GARCH effects) present in the residuals. The $\operatorname{GARCH}(p, q)$ process can be considered as an ARMA(max $(p, q), p)$ process. See the section "Predicting the Conditional Variance" on page 383 later in this chapter. Therefore, the Q statistic calculated from the squared residuals can be used to identify the order of the GARCH process.

Lagrange Multiplier Test for ARCH Disturbances

Engle (1982) proposed a Lagrange multiplier test for ARCH disturbances. The test statistic is asymptotically equivalent to the test used by Breusch and Pagan (1979). Engle's Lagrange multiplier test for the q th order ARCH process is written

$$
L M(q)=\frac{N \mathbf{W}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{W}}{\mathbf{W}^{\prime} \mathbf{W}}
$$

where

$$
\mathbf{W}=\left(\frac{\hat{v}_{1}^{2}}{\hat{\sigma}^{2}}, \ldots, \frac{\hat{v}_{N}^{2}}{\hat{\sigma}^{2}}\right)^{\prime}
$$

and

$$
\mathbf{Z}=\left[\begin{array}{cccc}
1 & \hat{v}_{0}^{2} & \cdots & \hat{v}_{-q+1}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
1 & \hat{v}_{N-1}^{2} & \cdots & \hat{v}_{N-q}^{2}
\end{array}\right]
$$

The presample values $\left(v_{0}^{2}, \ldots, v_{-q+1}^{2}\right)$ have been set to 0 . Note that the $\mathrm{LM}(q)$ tests may have different finite-sample properties depending on the presample values, though they are asymptotically equivalent regardless of the presample values. The LM and Q statistics are computed from the OLS residuals assuming that disturbances are white noise. The Q and LM statistics have an approximate $\chi_{(q)}^{2}$ distribution under the white-noise null hypothesis.

Normality Test

Based on skewness and kurtosis, Jarque and Bera (1980) calculated the test statistic

$$
T_{N}=\left[\frac{N}{6} b_{1}^{2}+\frac{N}{24}\left(b_{2}-3\right)^{2}\right]
$$

where

$$
\begin{aligned}
& b_{1}=\frac{\sqrt{N} \sum_{t=1}^{N} \hat{u}_{t}^{3}}{\left(\sum_{t=1}^{N} \hat{u}_{t}^{2}\right)^{\frac{3}{2}}} \\
& b_{2}=\frac{N \sum_{t=1}^{N} \hat{u}_{t}^{4}}{\left(\sum_{t=1}^{N} \hat{u}_{t}^{2}\right)^{2}}
\end{aligned}
$$

The $\chi^{2}(2)$ distribution gives an approximation to the normality test T_{N}.
When the GARCH model is estimated, the normality test is obtained using the standardized residuals $\hat{u}_{t}=\hat{\epsilon}_{t} / \sqrt{h_{t}}$. The normality test can be used to detect misspecification of the family of ARCH models.

Computation of the Chow Test

Consider the linear regression model

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{u}
$$

where the parameter vector β contains k elements.
Split the observations for this model into two subsets at the break point specified by the CHOW= option, so that

$$
\begin{aligned}
\mathbf{y} & =\left(\mathbf{y}_{1}^{\prime}, \mathbf{y}_{2}^{\prime}\right)^{\prime} \\
\mathbf{X} & =\left(\mathbf{X}_{1}^{\prime}, \mathbf{X}_{2}^{\prime}\right)^{\prime} \\
\mathbf{u} & =\left(\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right)^{\prime}
\end{aligned}
$$

Now consider the two linear regressions for the two subsets of the data modeled separately,

$$
\mathbf{y}_{1}=\mathbf{X}_{1} \beta_{1}+\mathbf{u}_{1}
$$

$$
\mathbf{y}_{2}=\mathbf{X}_{2} \beta_{2}+\mathbf{u}_{2}
$$

where the number of observations from the first set is n_{1} and the number of observations from the second set is n_{2}.

The Chow test statistic is used to test the null hypothesis $H_{0}: \beta_{1}=\beta_{2}$ conditional on the same error variance $V\left(\mathbf{u}_{1}\right)=V\left(\mathbf{u}_{2}\right)$. The Chow test is computed using three sums of square errors:

$$
\mathrm{F}_{\text {chow }}=\frac{\left(\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}-\hat{\mathbf{u}}_{1}^{\prime} \hat{\mathbf{u}}_{1}-\hat{\mathbf{u}}_{2}^{\prime} \hat{\mathbf{u}}_{2}\right) / k}{\left(\hat{\mathbf{u}}_{1}^{\prime} \hat{\mathbf{u}}_{1}+\hat{\mathbf{u}}_{2}^{\prime} \hat{\mathbf{u}}_{2}\right) /\left(n_{1}+n_{2}-2 k\right)}
$$

where $\hat{\mathbf{u}}$ is the regression residual vector from the full set model, $\hat{\mathbf{u}}_{1}$ is the regression residual vector from the first set model, and $\hat{\mathbf{u}}_{2}$ is the regression residual vector from the second set model. Under the null hypothesis, the Chow test statistic has an F distribution with k and $\left(n_{1}+n_{2}-2 k\right)$ degrees of freedom, where k is the number of elements in β.

Chow (1960) suggested another test statistic that tests the hypothesis that the mean of prediction errors is 0 . The predictive Chow test can also be used when $n_{2}<k$.

The PCHOW= option computes the predictive Chow test statistic

$$
\mathrm{F}_{\text {pchow }}=\frac{\left(\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}-\hat{\mathbf{u}}_{1}^{\prime} \hat{\mathbf{u}}_{1}\right) / n_{2}}{\hat{\mathbf{u}}_{1}^{\prime} \hat{\mathbf{u}}_{1} /\left(n_{1}+k\right)}
$$

The predictive Chow test has an F distribution with n_{2} and $\left(n_{1}-k\right)$ degrees of freedom.

Phillips-Perron Unit Root and Cointegration Testing

Consider the random walk process

$$
y_{t}=y_{t-1}+u_{t}
$$

where the disturbances might be serially correlated with possible heteroscedasticity. Phillips and Perron (1988) proposed the unit root test of the OLS regression model,

$$
y_{t}=\rho y_{t-1}+u_{t}
$$

Let $s^{2}=\frac{1}{T-k} \sum_{t=1}^{T} \hat{u}_{t}^{2}$ and let $\hat{\sigma}^{2}$ be the variance estimate of the OLS estimator $\hat{\rho}$, where \hat{u}_{t} is the OLS residual. You can estimate the asymptotic variance of $\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{t}^{2}$ by using the truncation lag l.

$$
\hat{\lambda}=\sum_{j=0}^{l} \kappa_{j}[1-j /(l+1)] \hat{\gamma}_{j}
$$

where $\kappa_{0}=1, \kappa_{j}=2$ for $j>0$, and $\hat{\gamma}_{j}=\frac{1}{T} \sum_{t=j+1}^{T} \hat{u}_{t} \hat{u}_{t-j}$.
Then the Phillips-Perron $\hat{\mathrm{Z}}_{\alpha}$ (defined here as $\hat{\mathrm{Z}}_{\rho}$) test (zero mean case) is written

$$
\hat{\mathrm{Z}}_{\rho}=T(\hat{\rho}-1)-\frac{1}{2} T^{2} \hat{\sigma}^{2}\left(\hat{\lambda}-\hat{\gamma}_{0}\right) / s^{2}
$$

and has the following limiting distribution:

$$
\frac{\frac{1}{2}\left\{B(1)^{2}-1\right\}}{\int_{0}^{1}[B(x)]^{2} d x}
$$

where $B(\cdot)$ is a standard Brownian motion. Note that the realization z from the stochastic process $B(x)$ is distributed as $N(0, x)$ and thus $B(1)^{2} \sim \chi_{1}^{2}$.

Note that $\mathrm{P}(\hat{\rho}<1) \approx 0.68$ as $T \rightarrow \infty$, which shows that the limiting distribution is skewed to the left.
Let τ_{ρ} be the τ statistic for $\hat{\rho}$. The Phillips-Perron \hat{Z}_{t} (defined here as $\hat{\mathrm{Z}}_{\tau}$) test is written

$$
\hat{\mathrm{Z}}_{\tau}=\left(\hat{\gamma}_{0} / \hat{\lambda}\right)^{1 / 2} t_{\hat{\rho}}-\frac{1}{2} T \hat{\sigma}\left(\hat{\lambda}-\hat{\gamma}_{0}\right) /\left(s \hat{\lambda}^{1 / 2}\right)
$$

and its limiting distribution is derived as

$$
\frac{\frac{1}{2}\left\{[B(1)]^{2}-1\right\}}{\left\{\int_{0}^{1}[B(x)]^{2} d x\right\}^{1 / 2}}
$$

When you test the regression model $y_{t}=\mu+\rho y_{t-1}+u_{t}$ for the true random walk process (single mean case), the limiting distribution of the statistic \hat{Z}_{ρ} is written

$$
\frac{\frac{1}{2}\left\{[B(1)]^{2}-1\right\}-B(1) \int_{0}^{1} B(x) d x}{\int_{0}^{1}[B(x)]^{2} d x-\left[\int_{0}^{1} B(x) d x\right]^{2}}
$$

while the limiting distribution of the statistic $\hat{\mathrm{Z}}_{\tau}$ is given by

$$
\frac{\frac{1}{2}\left\{[B(1)]^{2}-1\right\}-B(1) \int_{0}^{1} B(x) d x}{\left\{\int_{0}^{1}[B(x)]^{2} d x-\left[\int_{0}^{1} B(x) d x\right]^{2}\right\}^{1 / 2}}
$$

Finally, the limiting distribution of the Phillips-Perron test for the random walk with drift process $y_{t}=\mu+y_{t-1}+u_{t}$ (trend case) can be derived as

$$
\left[\begin{array}{lll}
0 & c & 0
\end{array}\right] V^{-1}\left[\begin{array}{c}
B(1) \\
\frac{B(1)^{2}-1}{2} \\
B(1)-\int_{0}^{1} B(x) d x
\end{array}\right]
$$

where $c=1$ for \hat{Z}_{ρ} and $c=\frac{1}{\sqrt{Q}}$ for \hat{Z}_{τ},

$$
\begin{aligned}
& V=\left[\begin{array}{ccc}
1 & \int_{0}^{1} B(x) d x & \frac{1}{2} \\
\int_{0}^{1} B(x) d x & \int_{0}^{1} B(x)^{2} d x & \int_{0}^{1} x B(x) d x \\
\frac{1}{2} & \int_{0}^{1} x B(x) d x & \frac{1}{3}
\end{array}\right] \\
& Q=\left[\begin{array}{lll}
0 & c & 0
\end{array}\right] V^{-1}\left[\begin{array}{l}
0 \\
c \\
0
\end{array}\right]
\end{aligned}
$$

When several variables $\mathbf{z}_{t}=\left(z_{1 t}, \cdots, z_{k t}\right)^{\prime}$ are cointegrated, there exists a $(k \times 1)$ cointegrating vector \mathbf{c} such that $\mathbf{c}^{\prime} \mathbf{z}_{t}$ is stationary and \mathbf{c} is a nonzero vector. The residual based cointegration test assumes the following regression model:

$$
y_{t}=\beta_{1}+\mathbf{x}_{t}^{\prime} \beta+u_{t}
$$

where $y_{t}=z_{1 t}, \mathbf{x}_{t}=\left(z_{2 t}, \cdots, z_{k t}\right)^{\prime}$, and $\beta=\left(\beta_{2}, \cdots, \beta_{k}\right)^{\prime}$. You can estimate the consistent cointegrating vector by using OLS if all variables are difference stationary - that is, I(1). The PhillipsOuliaris test is computed using the OLS residuals from the preceding regression model, and it performs the test for the null hypothesis of no cointegration. The estimated cointegrating vector is $\hat{\mathbf{c}}=\left(1,-\hat{\beta}_{2}, \cdots,-\hat{\beta}_{k}\right)^{\prime}$.

You need to refer to the tables by Phillips and Ouliaris (1990) to obtain the p-value of the cointegration test. Before you apply the cointegration test, you may want to perform the unit root test for each variable (see the option STATIONARITY= (PHILLIPS)).

Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test

The KPSS test was introduced in Kwiatkowski et al. (1992) to test the null hypothesis that an observable series is stationary around a deterministic trend. Please note, that for consistency reasons, the notation used here is different from the notation used in the original paper. The setup of the problem is as follows: it is assumed that the series is expressed as the sum of the deterministic trend, random walk r_{t}, and stationary error u_{t}; that is,

$$
y_{t}=\mu+\delta t+r_{t}+u_{t}
$$

with $r_{t}=r_{t-1}+e_{t}, e_{t} \sim \operatorname{iid}\left(0, \sigma_{e}^{2}\right)$, and an intercept μ (in the original paper, the authors use r_{0} instead of μ.) Under stronger assumptions of normality and iid of u_{t} and e_{t}, a one-sided LM test of the null that there is no random walk $\left(e_{t}=0, \forall t\right)$ can be constructed as follows:

$$
\begin{aligned}
\widehat{L M} & =\frac{1}{T^{2}} \sum_{t=1}^{T} \frac{S_{t}^{2}}{s^{2}(l)} \\
s^{2}(l) & =\frac{1}{T} \sum_{t=1}^{T} u_{t}^{2}+\frac{2}{T} \sum_{s=1}^{l} w(s, l) \sum_{t=s+1}^{T} u_{t} u_{t-s} \\
S_{t} & =\sum_{\tau=1}^{t} u_{\tau}
\end{aligned}
$$

Following the original work of Kwiatkowski, Phillips, Schmidt, and Shin, under the null ($\sigma_{e}^{2}=0$), $\widehat{L M}$ statistic converges asymptotically to three different distributions depending on whether the model is trend-stationary, level-stationary ($\delta=0$), or zero-mean stationary ($\delta=0, \mu=0$). The trend-stationary model is denoted by subscript τ and the level-stationary model is denoted by subscript μ. The case when there is no trend and zero intercept denoted as 0 . The last case is
considered in Hobijn, Franses, and Ooms (2004).

$$
\begin{gathered}
y_{t}=u_{t}: \quad \widehat{L M}_{0} \xrightarrow{D} \int_{0}^{1} B^{2}(r) d r \\
y_{t}=\mu+u_{t}: \quad \widehat{L M}_{\mu} \xrightarrow{D} \int_{0}^{1} V^{2}(r) d r \\
y_{t}=\mu+\delta t+u_{t}: \quad \widehat{L M}_{\tau} \xrightarrow{D} \int_{0}^{1} V_{2}^{2}(r) d r \\
\text { with: } \quad V(r)=B(r)-r B(1) \\
V_{2}(r)=B(r)+\left(2 r-3 r^{2}\right) B(1)+\left(-6 r+6 r^{2}\right) \int_{0}^{1} B(s) d s
\end{gathered}
$$

where $V(r)$ is a standard Brownian bridge, $V_{2}(r)$ is a Brownian bridge of a second-level, $B(r)$ is a Brownian motion (Wiener process), and \xrightarrow{D} is convergence in distribution.

Using the notation of Kwiatkowski et al. (1992) the $\widehat{L M}$ statistic is named as $\hat{\eta}$. This test depends on the computational method used to compute the long-run variance $s(l)$ - that is, the window width l and the kernel type $w($.$) . You can specify the kernel used in the test, using the KERNEL option:$

- Newey-West/Bartlett (KERNEL=NW | BART), default

$$
w(s, l)=1-\frac{s}{l+1}
$$

- Quadratic spectral (KERNEL=QS)

$$
w(s / l)=w(x)=\frac{25}{12 \pi^{2} x^{2}}\left(\frac{\sin (6 \pi x / 5)}{6 \pi x / 5}-\cos (6 \pi x / 5)\right)
$$

You can specify the number of lags, l, in three different ways:

- Schwert $($ SCHW $=c)$ (default for NW, $c=4)$

$$
l=\text { floor }\left\{c\left(\frac{T}{100}\right)^{1 / 4}\right\}
$$

- Manual (LAG = l)
- Automatic selection (AUTO) (default for QS) Hobijn, Franses, and Ooms (2004)

The last option (AUTO) needs more explanation, summarized in the following table.

$$
\begin{gathered}
\frac{\text { NW Kernel }}{} \begin{array}{c}
l=\min \left(T, \text { floor }\left(\hat{\gamma} T^{1 / 3}\right)\right) \quad l=\min \left(T, \text { floor }\left(\hat{\gamma} T^{1 / 5}\right)\right) \\
\text { where } T-\text { number of observations, }
\end{array} \\
\hat{\gamma}=1.1447\left\{\left(\frac{\hat{S}^{(1)}}{\hat{s}^{(0)}}\right)^{2}\right\}^{1 / 3} \quad \hat{\gamma}=1.3221\left\{\left(\left(\frac{\hat{S}^{(2)}}{\hat{s}^{(0)}}\right)^{2}\right\}^{1 / 5}\right. \\
\hat{s}^{(j)}=\delta_{0, j} \hat{\gamma}_{0}+2 \sum_{i=1}^{n} i^{j} \hat{\gamma}_{i} \\
n=\operatorname{floor}\left(T^{2 / 9}\right) \\
\delta_{0, j}=\left\{\begin{array}{cc}
1 & n=\text { floor }\left(T^{2 / 25}\right) \\
0 & j=0 \\
\text { otherwise }
\end{array}\right. \\
\hat{\gamma}_{i}=\frac{1}{T} \sum_{t=1}^{T-i} u_{t} u_{t+i}
\end{gathered}
$$

Ramsey's Reset Test

Ramsey's reset test is a misspecification test associated with the functional form of models to check whether power transforms need to be added to a model. The original linear model, henceforth called the restricted model, is

$$
y_{t}=\mathbf{x}_{\mathbf{t}} \beta+u_{t}
$$

To test for misspecification in the functional form, the unrestricted model is

$$
y_{t}=\mathbf{x}_{\mathbf{t}} \beta+\sum_{j=2}^{p} \phi_{j} \hat{y}_{t}^{j}+u_{t}
$$

where \hat{y}_{t} is the predicted value from the linear model and p is the power of \hat{y}_{t} in the unrestricted model equation starting from 2 . The number of higher-ordered terms to be chosen depends on the discretion of the analyst. The RESET opti
on produces test results for $p=2,3$, and 4 .
The reset test is an F statistic for testing $H_{0}: \phi_{j}=0, \forall j=2, \ldots, p$, against $H_{1}: \phi_{j} \neq 0$ for at least one $j=2, \ldots, p$ in the unrestricted model and is computed as follows:

$$
F_{(p-1, n-k-p+1)}=\frac{\left(S S E_{R}-S S E_{U}\right) /(p-1)}{S S E_{U} /(n-k-p+1)}
$$

where $S S E_{R}$ is the sum of squared errors due to the restricted model, $S S E_{U}$ is the sum of squared errors due to the unrestricted model, n is the total number of observations, and k is the number of parameters in the original linear model.

Ramsey's test can be viewed as a linearity test that checks whether any nonlinear transformation of the specified independent variables has been omitted, but it need not help in identifying a new relevant variable other than those already specified in the current model.

Predicted Values

The AUTOREG procedure can produce two kinds of predicted values for the response series and corresponding residuals and confidence limits. The residuals in both cases are computed as the actual value minus the predicted value. In addition, when GARCH models are estimated, the AUTOREG procedure can output predictions of the conditional error variance.

Predicting the Unconditional Mean

The first type of predicted value is obtained from only the structural part of the model, $\mathbf{x}_{t}^{\prime} \mathbf{b}$. These are useful in predicting values of new response time series, which are assumed to be described by the same model as the current response time series. The predicted values, residuals, and upper and lower confidence limits for the structural predictions are requested by specifying the PREDICTEDM=, RESIDUALM $=$, UCLM $=$, or LCLM $=$ option in the OUTPUT statement. The ALPHACLM= option controls the confidence level for UCLM= and LCLM=. These confidence limits are for estimation of the mean of the dependent variable, $\mathbf{x}_{t}^{\prime} \mathbf{b}$, where \mathbf{x}_{t} is the column vector of independent variables at observation t.

The predicted values are computed as

$$
\hat{y}_{t}=\mathbf{x}_{t}^{\prime} \mathbf{b}
$$

and the upper and lower confidence limits as

$$
\begin{aligned}
& \hat{u}_{t}=\hat{y}_{t}+t_{\alpha / 2} \mathrm{v} \\
& \hat{l}_{t}=\hat{y}_{t}-t_{\alpha / 2} \mathrm{v}
\end{aligned}
$$

where v^{2} is an estimate of the variance of \hat{y}_{t} and $t_{\alpha / 2}$ is the upper $\alpha / 2$ percentage point of the t distribution.

$$
\operatorname{Prob}\left(T>t_{\alpha / 2}\right)=\alpha / 2
$$

where T is an observation from a t distribution with q degrees of freedom. The value of α can be set with the ALPHACLM= option. The degrees of freedom parameter, q, is taken to be the number of observations minus the number of free parameters in the regression and autoregression parts of the model. For the YW estimation method, the value of v is calculated as

$$
\mathrm{v}=\sqrt{s^{2} \mathbf{x}_{t}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{x}_{t}}
$$

where s^{2} is the error sum of squares divided by q. For the ULS and ML methods, it is calculated as

$$
\mathrm{v}=\sqrt{s^{2} \mathbf{x}_{t}^{\prime} \mathbf{W} \mathbf{x}_{t}}
$$

where \mathbf{W} is the $k \times k$ submatrix of $\left(\mathbf{J}^{\prime} \mathbf{J}\right)^{-1}$ that corresponds to the regression parameters. For details, see the section "Computational Methods" on page 359 earlier in this chapter.

Predicting Future Series Realizations

The other predicted values use both the structural part of the model and the predicted values of the error process. These conditional mean values are useful in predicting future values of the current response time series. The predicted values, residuals, and upper and lower confidence limits for future observations conditional on past values are requested by the PREDICTED=, RESIDUAL=, UCL=, or LCL= option in the OUTPUT statement. The ALPHACLI= option controls the confidence level for $\mathrm{UCL}=$ and $\mathrm{LCL}=$. These confidence limits are for the predicted value,

$$
\tilde{y}_{t}=\mathbf{x}_{t}^{\prime} \mathbf{b}+v_{t \mid t-1}
$$

where \mathbf{x}_{t} is the vector of independent variables and $v_{t \mid t-1}$ is the minimum variance linear predictor of the error term given the available past values of $v_{t-j}, j=1,2, \ldots, t-1$, and the autoregressive model for v_{t}. If the m previous values of the structural residuals are available, then

$$
v_{t \mid t-1}=-\hat{\varphi}_{1} v_{t-1}-\ldots-\hat{\varphi}_{m} v_{t-m}
$$

where $\hat{\varphi}_{1}, \ldots, \hat{\varphi}_{m}$ are the estimated AR parameters. The upper and lower confidence limits are computed as

$$
\begin{aligned}
& \tilde{u}_{t}=\tilde{y}_{t}+t_{\alpha / 2} \mathrm{v} \\
& \tilde{l}_{t}=\tilde{y}_{t}-t_{\alpha / 2} \mathrm{v}
\end{aligned}
$$

where v , in this case, is computed as

$$
\mathrm{v}=\sqrt{s^{2}\left(\mathbf{x}_{t}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{x}_{t}+r\right)}
$$

where the value $r s^{2}$ is the estimate of the variance of $v_{t \mid t-1}$. At the start of the series, and after missing values, r is generally greater than 1 . See the section "Predicting the Conditional Variance" on page 383 for computational details of r. The plot of residuals and confidence limits in Example 8.4 later in this chapter illustrates this behavior.

Except to adjust the degrees of freedom for the error sum of squares, the preceding formulas do not account for the fact that the autoregressive parameters are estimated. In particular, the confidence limits are likely to be somewhat too narrow. In large samples, this is probably not an important effect, but it may be appreciable in small samples. Refer to Harvey (1981) for some discussion of this problem for $\operatorname{AR}(1)$ models.

Note that at the beginning of the series (the first m observations, where m is the value of the NLAG= option) and after missing values, these residuals do not match the residuals obtained by using OLS on the transformed variables. This is because, in these cases, the predicted noise values must be based on less than a complete set of past noise values and, thus, have larger variance. The GLS transformation for these observations includes a scale factor as well as a linear combination of past values. Put another way, the \mathbf{L}^{-1} matrix defined in the section "Computational Methods" on page 359 has the value 1 along the diagonal, except for the first m observations and after missing values.

Predicting the Conditional Variance

The GARCH process can be written

$$
\epsilon_{t}^{2}=\omega+\sum_{i=1}^{n}\left(\alpha_{i}+\gamma_{i}\right) \epsilon_{t-i}^{2}-\sum_{j=1}^{p} \gamma_{j} \eta_{t-j}+\eta_{t}
$$

where $\eta_{t}=\epsilon_{t}^{2}-h_{t}$ and $n=\max (p, q)$. This representation shows that the squared residual ϵ_{t}^{2} follows an $\operatorname{ARMA}(n, p)$ process. Then for any $d>0$, the conditional expectations are as follows:

$$
\mathbf{E}\left(\epsilon_{t+d}^{2} \mid \Psi_{t}\right)=\omega+\sum_{i=1}^{n}\left(\alpha_{i}+\gamma_{i}\right) \mathbf{E}\left(\epsilon_{t+d-i}^{2} \mid \Psi_{t}\right)-\sum_{j=1}^{p} \gamma_{j} \mathbf{E}\left(\eta_{t+d-j} \mid \Psi_{t}\right)
$$

The d-step-ahead prediction error, $\xi_{t+d}=y_{t+d}-y_{t+d \mid t}$, has the conditional variance

$$
\mathbf{V}\left(\xi_{t+d} \mid \Psi_{t}\right)=\sum_{j=0}^{d-1} g_{j}^{2} \sigma_{t+d-j \mid t}^{2}
$$

where

$$
\sigma_{t+d-j \mid t}^{2}=\mathbf{E}\left(\epsilon_{t+d-j}^{2} \mid \Psi_{t}\right)
$$

Coefficients in the conditional d-step prediction error variance are calculated recursively using the following formula:

$$
g_{j}=-\varphi_{1} g_{j-1}-\ldots-\varphi_{m} g_{j-m}
$$

where $g_{0}=1$ and $g_{j}=0$ if $j<0 ; \varphi_{1}, \ldots, \varphi_{m}$ are autoregressive parameters. Since the parameters are not known, the conditional variance is computed using the estimated autoregressive parameters. The d-step-ahead prediction error variance is simplified when there are no autoregressive terms:

$$
\mathbf{V}\left(\xi_{t+d} \mid \Psi_{t}\right)=\sigma_{t+d \mid t}^{2}
$$

Therefore, the one-step-ahead prediction error variance is equivalent to the conditional error variance defined in the GARCH process:

$$
h_{t}=\mathbf{E}\left(\epsilon_{t}^{2} \mid \Psi_{t-1}\right)=\sigma_{t \mid t-1}^{2}
$$

Note that the conditional prediction error variance of the EGARCH and GARCH-M models cannot be calculated using the preceding formula. Therefore, the confidence intervals for the predicted values are computed assuming the homoscedastic conditional error variance. That is, the conditional prediction error variance is identical to the unconditional prediction error variance:

$$
\mathbf{V}\left(\xi_{t+d} \mid \Psi_{t}\right)=\mathbf{V}\left(\xi_{t+d}\right)=\sigma^{2} \sum_{j=0}^{d-1} g_{j}^{2}
$$

since $\sigma_{t+d-j \mid t}^{2}=\sigma^{2}$. You can compute $s^{2} r$, which is the second term of the variance for the predicted value \tilde{y}_{t} explained previously in the section "Predicting Future Series Realizations" on page 382 using the formula $\sigma^{2} \sum_{j=0}^{d-1} g_{j}^{2} ; r$ is estimated from $\sum_{j=0}^{d-1} g_{j}^{2}$ by using the estimated autoregressive parameters.

Consider the following conditional prediction error variance:

$$
\mathbf{V}\left(\xi_{t+d} \mid \Psi_{t}\right)=\sigma^{2} \sum_{j=0}^{d-1} g_{j}^{2}+\sum_{j=0}^{d-1} g_{j}^{2}\left(\sigma_{t+d-j \mid t}^{2}-\sigma^{2}\right)
$$

The second term in the preceding equation can be interpreted as the noise from using the homoscedastic conditional variance when the errors follow the GARCH process. However, it is expected that if the GARCH process is covariance stationary, the difference between the conditional prediction error variance and the unconditional prediction error variance disappears as the forecast horizon d increases.

OUT= Data Set

The output SAS data set produced by the OUTPUT statement contains all the variables in the input data set and the new variables specified by the OUTPUT statement options. See the section "OUTPUT Statement" on page 354 earlier in this chapter for information on the output variables that can be created. The output data set contains one observation for each observation in the input data set.

OUTEST= Data Set

The OUTEST= data set contains all the variables used in any MODEL statement. Each regressor variable contains the estimate for the corresponding regression parameter in the corresponding model. In addition, the OUTEST= data set contains the following variables:

_A_i	the i th order autoregressive parameter estimate. There are m such variables _A_1 through _A_m, where m is the value of the NLAG= option.
_AH_i	the i th order ARCH parameter estimate, if the GARCH= option is specified. There are q such variables _AH_1 through _AH_q, where q is the value of the $\mathrm{Q}=$ option. The variable _AH_0 contains the estimate of ω.
DELTA	the estimated mean parameter for the GARCH-M model, if a GARCH-in-mean model is specified
DEPVAR	the name of the dependent variable
_GH_i	the i th order GARCH parameter estimate, if the GARCH= option is specified. There are p such variables _GH_1 through _GH_p, where p is the value of the $\mathrm{P}=$ option.

\(\left.$$
\begin{array}{ll}\text { INTERCEPT } & \begin{array}{l}\text { the intercept estimate. INTERCEP contains a missing value for models for } \\
\text { which the NOINT option is specified. }\end{array}
$$

the estimation method that is specified in the METHOD= option

the label of the MODEL statement if one is given, or blank otherwise

the value of the mean square error for the model

the name of the row of covariance matrix for the parameter estimate, if the COV-

OUT option is specified

the log-likelihood value of the GARCH model\end{array}\right]\)| MODEL_ |
| :--- |
| the value of the error sum of squares |

The OUTEST= data set contains one observation for each MODEL statement giving the parameter estimates for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations for each MODEL statement giving the rows of the covariance of parameter estimates matrix. For covariance observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter associated with that row of the covariance matrix.

Printed Output

The AUTOREG procedure prints the following items:

1. the name of the dependent variable
2. the ordinary least squares estimates
3. Estimates of autocorrelations, which include the estimates of the autocovariances, the autocorrelations, and (if there is sufficient space) a graph of the autocorrelation at each LAG
4. if the PARTIAL option is specified, the partial autocorrelations
5. the preliminary MSE, which results from solving the Yule-Walker equations. This is an estimate of the final MSE.
6. the estimates of the autoregressive parameters (Coefficient), their standard errors (Std Error), and the ratio of estimate to standard error (t Ratio)
7. the statistics of fit for the final model. These include the error sum of squares (SSE), the degrees of freedom for error (DFE), the mean square error (MSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (Root MSE), the Schwarz information criterion (SBC), the Akaike information criterion (AIC), the corrected Akaike information criterion (AICC), the regression R^{2} (Reg Rsq), and the total R^{2} (Total Rsq). For GARCH models, the following additional items are printed:

- the value of the log-likelihood function
- the number of observations that are used in estimation (OBS)
- the unconditional variance (UVAR)
- the normality test statistic and its p-value

8. the parameter estimates for the structural model (B Value), a standard error estimate (Std Error), the ratio of estimate to standard error (t Ratio), and an approximation to the significance probability for the parameter being 0 (Approx Prob)
9. If the $\mathrm{NLAG}=$ option is specified with $\mathrm{METHOD}=\mathrm{ULS}$ or METHOD=ML, the regression parameter estimates are printed again, assuming that the autoregressive parameter estimates are known. In this case, the Std Error and related statistics for the regression estimates will, in general, be different from the case when they are estimated. Note that from a standpoint of estimation, Yule-Walker and iterated Yule-Walker methods (NLAG= with METHOD=YW, ITYW) generate only one table, assuming AR parameters are given.
10. If you specify the NORMAL option, the Bera-Jarque normality test statistics are printed. If you specify the LAGDEP option, Durbin's h or Durbin's t is printed.

ODS Table Names

PROC AUTOREG assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the Table 8.2.

Table 8.2 ODS Tables Produced in PROC AUTOREG

ODS Table Name	Description	Option
ODS Tables Created by the MODEL Statement		
FitSummary	Summary of regression	default
SummaryDepVarCen	Summary of regression (centered de- 	CENTER

Table 8.2 continued

ODS Table Name	Description	Option
SummaryNoIntercept	Summary of regression (no intercept)	NOINT
YWIterSSE	Yule-Walker iteration sum of squared error	METHOD=ITYW
PreMSE	Preliminary MSE	NLAG=
Dependent	Dependent variable	default
DependenceEquations	Linear dependence equation	
ARCHTest	Q and LM tests for ARCH disturbances	ARCHTEST
ChowTest	Chow test and predictive Chow test	$\begin{aligned} & \text { CHOW= } \\ & \text { PCHOW= } \end{aligned}$
Godfrey	Godfrey's serial correlation test	GODFREY<=>
PhilPerron	Phillips-Perron unit root test	STATIONARITY= (PHILIPS<=()>) (no regressor)
PhilOul	Phillips-Ouliaris cointegration test	STATIONARITY= (PHILIPS<=()>) (has regressor)
KPSS	Kwiatkowski, Phillips, Schmidt, and Shin test	$\begin{aligned} & \text { STATIONARITY= } \\ & (\text { KPSS<=()>) } \end{aligned}$
ResetTest	Ramsey's RESET test	RESET
ARParameterEstimates	Estimates of autoregressive parameters	NLAG=
CorrGraph	estimates of autocorrelations	NLAG=
BackStep	Backward elimination of autoregressive terms	BACKSTEP
ExpAutocorr	Expected autocorrelations	NLAG=
IterHistory	Iteration history	ITPRINT
ParameterEstimates	Parameter estimates	default
ParameterEstimatesGivenAR	Parameter estimates assuming AR parameters are given	NLAG=, METHOD= ULS I ML
PartialAutoCorr	Partial autocorrelation	PARTIAL
CovB	Covariance of parameter estimates	COVB
CorrB	Correlation of parameter estimates	CORRB
CholeskyFactor	Cholesky root of gamma	ALL
Coefficients	Coefficients for first NLAG observations	COEF
GammaInverse	Gamma inverse	GINV
ConvergenceStatus	Convergence status table	default
MiscStat	Durbin t or Durbin h, Bera-Jarque normality test	LAGDEP=; NORMAL
DWTest	Durbin-Watson statistics	DW=
ODS Tables Created by the RESTRICT Statement		
Restrict	Restriction table	default

Table 8.2 continued

ODS Table Name	Description	Option
ODS Tables Created by the TEST Statement		
FTest	F test	default
WaldTest	Wald test	TYPE=WALD

ODS Graphics

This section describes the use of ODS for creating graphics with the AUTOREG procedure.
To request these graphs, you must specify the ODS GRAPHICS statement. By default, only the residual, predicted versus actual, and autocorrelation of residuals plots are produced. If, in addition to the ODS GRAPHICS statement, you also specify the ALL option in either the PROC AUTOREG statement or MODEL statement, all plots are created. For HETERO, GARCH, and AR models studentized residuals are replaced by standardized residuals. For the autoregressive models, the conditional variance of the residuals is computed as described in the section "Predicting Future Series Realizations" on page 382. For the GA

RCH and HETERO models, residuals are assumed to have h_{t} conditional variance invoked by the HT $=$ option of the OUTPUT statement. For all these cases, the Cook's D plot is not produced.

ODS Graph Names

PROC AUTOREG assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 8.3.

Table 8.3 ODS Graphics Produced by PROC AUTOREG

ODS Graph Name	Plot Description	Option
ACFPlot	Autocorrelation of residuals	ACF
FitPlot	Predicted versus actual plot	Default
CooksD	Cook's D plot	ALL (no NLAG=)
IACFPlot	Inverse autocorrelation of residuals	ALL
QQPlot	Q-Q plot of residuals	ALL
PACFPlot	Partial autocorrelation of residuals	ALL
ResidualHistogram	Histogram of the residuals	ALL
ResidualPlot	Residual plot	Default
StudentResidualPlot	Studentized residual plot	ALL (no NLAG=/HETERO=/GARCH=)
StandardResidualPlot	Standardized residual plot	ALL
WhiteNoiseLogProbPlot	Tests for white noise residuals	ALL

Examples: AUTOREG Procedure

Example 8.1: Analysis of Real Output Series

In this example, the annual real output series is analyzed over the period 1901 to 1983 (Balke and Gordon 1986, pp. 581-583). With the following DATA step, the original data are transformed using the natural logarithm, and the differenced series DY is created for further analysis. The log of real output is plotted in Output 8.1.1.

```
title 'Analysis of Real GNP';
data gnp;
    date = intnx( 'year', '01jan1901'd, _n_-1 );
    format date year4.;
    input x @@;
    y = log(x);
    dy = dif(y);
    t = _n_;
    label y = 'Real GNP'
            dy = 'First Difference of Y'
            t = 'Time Trend';
datalines;
... more lines ...
proc sgplot data=gnp noautolegend;
    scatter x=date y=y;
    xaxis grid values=('01jan1901'd '01jan1911'd '01jan1921'd '01jan1931'd
        '01jan1941'd '01jan1951'd '01jan1961'd '01jan1971'd
        '01jan1981'd '01jan1991'd);
run;
```

Output 8.1.1 Real Output Series: 1901 - 1983

The (linear) trend-stationary process is estimated using the following form:

$$
y_{t}=\beta_{0}+\beta_{1} t+v_{t}
$$

where

$$
\begin{aligned}
& \nu_{t}=\epsilon_{t}-\varphi_{1} \nu_{t-1}-\varphi_{2} \nu_{t-2} \\
& \epsilon_{t} \sim \operatorname{IN}\left(0, \sigma_{\epsilon}\right)
\end{aligned}
$$

The preceding trend-stationary model assumes that uncertainty over future horizons is bounded since the error term, v_{t}, has a finite variance. The maximum likelihood AR estimates from the statements that follow are shown in Output 8.1.2:

```
proc autoreg data=gnp;
    model y = t / nlag=2 method=ml;
run;
```

Output 8.1.2 Estimating the Linear Trend Model

Nelson and Plosser (1982) failed to reject the hypothesis that macroeconomic time series are nonstationary and have no tendency to return to a trend line. In this context, the simple random walk process can be used as an alternative process:

$$
y_{t}=\beta_{0}+y_{t-1}+v_{t}
$$

where $\nu_{t}=\epsilon_{t}$ and $y_{0}=0$. In general, the difference-stationary process is written as

$$
\phi(L)(1-L) y_{t}=\beta_{0} \phi(1)+\theta(L) \epsilon_{t}
$$

where L is the lag operator. You can observe that the class of a difference-stationary process should have at least one unit root in the AR polynomial $\phi(L)(1-L)$.

The Dickey-Fuller procedure is used to test the null hypothesis that the series has a unit root in the AR polynomial. Consider the following equation for the augmented Dickey-Fuller test:

$$
\Delta y_{t}=\beta_{0}+\delta t+\beta_{1} y_{t-1}+\sum_{i=1}^{m} \gamma_{i} \Delta y_{t-i}+\epsilon_{t}
$$

where $\Delta=1-L$. The test statistic τ_{τ} is the usual t ratio for the parameter estimate $\hat{\beta}_{1}$, but the τ_{τ} does not follow a t distribution.

The \%DFTEST macro in the following statements computes the test statistic τ_{τ} and its p-value to perform the Dickey-Fuller test. The default value of m is 3 , but you can specify m with the AR= option. The option TREND=2 implies that the Dickey-Fuller test equation contains linear time trend. See Chapter 5, "SAS Macros and Functions," for details.

```
%dftest(gnp,y,trend=2,outstat=stat1);
proc print data=stat1;
run;
```

The augmented Dickey-Fuller test indicates that the output series may have a difference-stationary process. The statistic _TAU_ has a value of -2.61903 and its p-value is 0.29104 . (See Output 8.1.3.)

Output 8.1.3 Augmented Dickey-Fuller Test Results

The AR(1) model for the differenced series DY is estimated using the maximum likelihood method for the period 1902 to 1983. The difference-stationary process is written

$$
\begin{aligned}
& \Delta y_{t}=\beta_{0}+v_{t} \\
& v_{t}=\epsilon_{t}-\varphi_{1} v_{t-1}
\end{aligned}
$$

The estimated value of φ_{1} is -0.297 and that of β_{0} is 0.0293 . All estimated values are statistically significant. The PROC step follows:

```
proc autoreg data=gnp;
    model dy = / nlag=1 method=ml;
run;
```

The printed output produced by the PROC step is shown in Output 8.1.4.
Output 8.1.4 Estimating the Differenced Series with AR(1) Error

Example 8.2: Comparing Estimates and Models

In this example, the Grunfeld series are estimated using different estimation methods. Refer to Maddala (1977) for details of the Grunfeld investment data set. For comparison, the Yule-Walker method, ULS method, and maximum likelihood method estimates are shown. With the DWPROB
option, the p-value of the Durbin-Watson statistic is printed. The Durbin-Watson test indicates the positive autocorrelation of the regression residuals. The DATA and PROC steps follow:

```
title 'Grunfeld''s Investment Models Fit with Autoregressive Errors';
data grunfeld;
    input year gei gef gec;
    label gei = 'Gross investment GE'
            gec = 'Lagged Capital Stock GE'
            gef = 'Lagged Value of GE shares';
datalines;
... more lines ...
proc autoreg data=grunfeld;
    model gei = gef gec / nlag=1 dwprob;
    model gei = gef gec / nlag=1 method=uls;
    model gei = gef gec / nlag=1 method=ml;
run;
```

The printed output produced by each of the MODEL statements is shown in Output 8.2.1 through Output 8.2.4.

Output 8.2.1 OLS Analysis of Residuals

Output 8.2.1 continued

Output 8.2.2 Regression Results Using Default Yule-Walker Method

Output 8.2.3 Regression Results Using Unconditional Least Squares Method

Algorithm converged.

Output 8.2.3 continued

Grunfeld's Investment Models Fit with Autoregressive Errors						
The AUTOREG Procedure						
Unconditional Least Squares Estimates						
	SSE		10220.8455	DFE	16	
	MSE		638.80284	Root MSE	25.27455	
	SBC		193.756692	AIC	189.773763	
	MAE		18.1317764	AICC	192.44043	
	MAPE		21.149176	Regress R-Square	0.5511	
	Durbin-W	atson	1. 3523	Total R-Square	0.7721	
			Standard	Approx		
Variable	DF	Estimate	Error	Value Pr > \|t	Var	ble Label
Intercept	t 1	-18.6582	34.8101	-0.54 0.5993		
gef	1	0.0339	0.0179	1.89 0.0769 Lag	d Value of GE shares	
gec	1	0.1369	0.0449	3.050 .0076 Lag	d Capital Stock GE	
AR1	1	-0.4996	0.2592	-1.93 0.0718		
Autoregressive parameters assumed given.						
Standard Approx						
Variable	DF	Estimate	Error	Value Pr > \|t	Var	ble Label
Intercept	t 1	-18.6582	33.7567	-0.55 0.5881		
gef	1	0.0339	0.0159	2.130 .0486 Lag	d Value of GE shares	
gec	1	0.1369	0.0404	3.39 0.0037 Lag	d Capital Stock GE	

Output 8.2.4 Regression Results Using Maximum Likelihood Method

Estimates of Autoregressive Parameters			
		Standard	
Lag	Coefficient	Error	t Value
1	-0.460867	0.221867	-2.08
Algorithm converged.			
Grunfeld's Investment Models Fit with Autoregressive Errors			
The AUTOREG Procedure			
Maximum Likelihood Estimates			
SSE	10229.2303	DFE	16
MSE	639.32689	Root MSE	25.28491
SBC	193.738877	AIC	189.755947
MAE	18.0892426	AICC	192.422614
MAPE	21.0978407	Regress R-Square	0.5656
Durbin-Watson	1.3385	Total R-Square	0.7719

Output 8.2.4 continued

Example 8.3: Lack-of-Fit Study

Many time series exhibit high positive autocorrelation, having the smooth appearance of a random walk. This behavior can be explained by the partial adjustment and adaptive expectation hypotheses.

Short-term forecasting applications often use autoregressive models because these models absorb the behavior of this kind of data. In the case of a first-order AR process where the autoregressive parameter is exactly 1 (a random walk), the best prediction of the future is the immediate past.

PROC AUTOREG can often greatly improve the fit of models, not only by adding additional parameters but also by capturing the random walk tendencies. Thus, PROC AUTOREG can be expected to provide good short-term forecast predictions.

However, good forecasts do not necessarily mean that your structural model contributes anything worthwhile to the fit. In the following example, random noise is fit to part of a sine wave. Notice that the structural model does not fit at all, but the autoregressive process does quite well and is very nearly a first difference $(\operatorname{AR}(1)=-.976)$. The DATA step, PROC AUTOREG step, and PROC SGPLOT step follow:

```
title1 'Lack of Fit Study';
title2 'Fitting White Noise Plus Autoregressive Errors to a Sine Wave';
data a;
    pi=3.14159;
    do time = 1 to 75;
        if time > 75 then y = .;
        else y = sin( pi * ( time / 50 ) );
        x = ranuni( 1234567 );
        output;
    end;
run;
```

```
proc autoreg data=a plots;
    model y = x / nlag=1;
    output out=b p=pred pm=xbeta;
run;
proc sgplot data=b;
    scatter y=y x=time / markerattrs=(color=black);
    series y=pred x=time / lineattrs=(color=blue);
    series y=xbeta x=time / lineattrs=(color=red);
run;
```

The printed output produced by PROC AUTOREG is shown in Output 8.3.1 and Output 8.3.2. Plots of observed and predicted values are shown in Output 8.3.3 and Output 8.3.4. Note: the plot Output 8.3.3 can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting View $>$ Results.

Output 8.3.1 Results of OLS Analysis: No Autoregressive Model Fit

Output 8.3.2 Regression Results with AR(1) Error Correction

Estimates of Autoregressive Parameters			
Standard			
1	-0.976386	0.025460	-38.35
Lack of Fit Study			
Fitting White Noise Plus Autoregressive Errors to a Sine Wave			
The AUtOREG Procedure			
Yule-Walker Estimates			
SSE	0.18304264	DFE	72
MSE	0.00254	Root MSE	0.05042
SBC	-222.30643	AIC	-229.2589
MAE	0.04551667	AICC	-228.92087
MAPE	29145.3526	Regress R-Square	- 0.0001
Durbin-Watson	0.0942	Total R-Square	0.9947
		Standard	Approx
Variable	Estimate	Error t	Value $\operatorname{Pr}>\|t\|$
Intercept	-0.1473	0.1702	-0.87 0.3898
x	-0.001219	0.0141	-0.09 0.9315

Output 8.3.3 Diagnostics Plots

Output 8.3.4 Plot of Autoregressive Prediction

Example 8.4: Missing Values

In this example, a pure autoregressive error model with no regressors is used to generate 50 values of a time series. Approximately 15% of the values are randomly chosen and set to missing. The following statements generate the data:

```
title 'Simulated Time Series with Roots:';
title2 ' (X-1.25)(X**4-1.25)';
title3 'With 15% Missing Values';
data ar;
    do i=1 to 550;
        e = rannor(12345);
        n = sum( e, . 8*n1, . 8*n4, -. 64*n5 ); /* ar process */
        y = n;
        if ranuni (12345) > . }85\mathrm{ then y = .; /* 15% missing */
        n5=n4; n4=n3; n3=n2; n2=n1; n1=n; /* set lags */
        if i>500 then output;
    end;
run;
```

The model is estimated using maximum likelihood, and the residuals are plotted with 99% confidence limits. The PARTIAL option prints the partial autocorrelations. The following statements fit the model:

```
proc autoreg data=ar partial;
    model y = / nlag=(1 4 5) method=ml;
    output out=a predicted=p residual=r ucl=u lcl=l alphacli=.01;
run;
```

The printed output produced by the AUTOREG procedure is shown in Output 8.4.1 and Output 8.4.2. Note: the plot Output 8.4.2 can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting View $>$ Results.

Output 8.4.1 Autocorrelation-Corrected Regression Results

Output 8.4.1 continued

Preliminary MSE 0.7609				
Estimates of Autoregressive Parameters				
Lag		Standard		
	Coefficient	Error $\quad t$ Val		
1	-0.733182	0.0899	-8.	
4	-0.803754	0.0718	-11.	
5	0.821179	0.0938		
Expected				
Autocorrelations				
Lag Autocorr				
	0	1.0000		
	1	0.4204		
	2	0.2480		
	3	0.3160		
	4	0.6903		
	5	0.0228		
Algorithm converged.				
Simulated Time Series with Roots:$(X-1.25)(X * * 4-1.25)$				
With 15\% Missing Values				
The AUTOREG Procedure				
Maximum Likelihood Estimates				
SSE	48.4396756	DFE		37
MSE	1.30918	Root MSE		. 14419
SBC	146.879013	AIC	14	024725
MAE	0.88786192	AICC	14	135836
MAPE	141.377721	Regress R-S	are	0.0000
Durbin-Watson	2.9457	Total R-Squ		0.7353
	Standard			Approx
Variable D	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	-2.2370	0.5239	-4.27	0.0001
AR1	-0.6201	0.1129	-5.49	$<.0001$
AR4	-0.7237	0.0914	-7.92	$<.0001$
AR5	0.6550	0.1202	5.45	$<.0001$

Output 8.4.1 continued

Expected Autocorrelations					
		Lag	Autocorr		
		0	1.0000		
		1	0.4204		
		2	0.2423		
		3	0.2958		
		4	0.6318		
		5	0.0411		
Autoregressive parameters assumed given.					
			Standard		Approx
Variable	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	-2. 2370	0.5225	-4.28	0.0001

Output 8.4.2 Diagnostic Plots

The following statements plot the residuals and confidence limits:

```
data reshape1;
    set a;
    miss = .;
    if r=. then do;
        miss = p;
        p = .;
    end;
run;
title 'Predicted Values and Confidence Limits';
proc sgplot data=reshape1 NOAUTOLEGEND;
    band x=i upper=u lower=l;
    scatter y=miss x=i/ MARKERATTRS =(symbol=x color=red);
    series y=p x=i/markers MARKERATTRS =(color=blue) lineattrs=(color=blue);
run;
```

The plot of the predicted values and the upper and lower confidence limits is shown in Output 8.4.3. Note that the confidence interval is wider at the beginning of the series (when there are no past noise values to use in the forecast equation) and after missing values where, again, there is an incomplete set of past residuals.

Output 8.4.3 Plot of Predicted Values and Confidence Interval

Example 8.5: Money Demand Model

This example estimates the log-log money demand equation by using the maximum likelihood method. The money demand model contains four explanatory variables. The lagged nominal money stock M1 is divided by the current price level GDF to calculate a new variable M1CP since the money stock is assumed to follow the partial adjustment process. The variable M1CP is then used to estimate the coefficient of adjustment. All variables are transformed using the natural logarithm with a DATA step. Refer to Balke and Gordon (1986) for a data description.

The first eight observations are printed using the PRINT procedure and are shown in Output 8.5.1. Note that the first observation of the variables M1CP and INFR are missing. Therefore, the money demand equation is estimated for the period 1968:2 to 1983:4 since PROC AUTOREG ignores the first missing observation. The DATA step that follows generates the transformed variables.

```
data money;
    date = intnx( 'qtr', '01jan1968'd, _n_-1 );
    format date yyqc6.;
    input ml gnp gdf ycb @@;
    m = log( 100 * m1 / gdf );
    m1cp = log( 100 * lag(m1) / gdf );
    y = log( gnp );
    intr = log( ycb );
    infr = 100 * log( gdf / lag(gdf) );
    label m = 'Real Money Stock (M1)'
            m1cp = 'Lagged M1/Current GDF'
            y = 'Real GNP'
            intr = 'Yield on Corporate Bonds'
            infr = 'Rate of Prices Changes';
datalines;
... more lines ...
```

Output 8.5.1 Money Demand Data Series - First 8 Observations

Predicted Values and Confidence Limits										
Obs	date	m1	gnp	gdf	ycb	m	m1cp	Y	intr	infr
1	1968:1	187.15	1036.22	81.18	6.84	5.44041		6.94333	1.92279	.
2	1968:2	190.63	1056.02	82.12	6.97	5.44732	5.42890	6.96226	1.94162	1.15127
3	1968:3	194.30	1068.72	82.80	6.98	5.45815	5.43908	6.97422	1.94305	0.82465
4	1968:4	198.55	1071.28	84.04	6.84	5.46492	5.44328	6.97661	1.92279	1.48648
5	1969:1	201.73	1084.15	84.97	7.32	5.46980	5.45391	6.98855	1.99061	1.10054
6	1969:2	203.18	1088.73	86.10	7.54	5.46375	5.45659	6.99277	2.02022	1. 32112
7	1969:3	204.18	1091.90	87.49	7.70	5.45265	5.44774	6.99567	2.04122	1.60151
8	1969:4	206.10	1085.53	88.62	8.22	5.44917	5.43981	6.98982	2.10657	1.28331

The money demand equation is first estimated using OLS. The DW=4 option produces generalized Durbin-Watson statistics up to the fourth order. Their exact marginal probabilities (p-values) are also calculated with the DWPROB option. The Durbin-Watson test indicates positive first-order
autocorrelation at, say, the 10% confidence level. You can use the Durbin-Watson table, which is available only for 1% and 5% significance points. The relevant upper $\left(d_{U}\right)$ and lower $\left(d_{L}\right)$ bounds are $d_{U}=1.731$ and $d_{L}=1.471$, respectively, at 5% significance level. However, the bounds test is inconvenient, since sometimes you may get the statistic in the inconclusive region while the interval between the upper and lower bounds becomes smaller with the increasing sample size. The PROC step follows:

```
title 'Partial Adjustment Money Demand Equation';
title2 'Quarterly Data - 1968:2 to 1983:4';
proc autoreg data=money outest=est covout;
    model m = mlcp y intr infr / dw=4 dwprob;
run;
```


Output 8.5.2 OLS Estimation of the Partial Adjustment Money Demand Equation

Output 8.5.2 continued

Variable		Estimate	Standard		Approx		
			Error	Value	> \|t		Variable Label
Intercept	1	0.3084	0.2359	1.31	0.1963		
m1cp	1	0.8952	0.0439	20.38	<. 0001	Lagged M1/Current GDF	
Y	1	0.0476	0.0122	3.89	0.0003	Real GNP	
intr	1	-0.0238	0.007933	-3.00	0.0040	Yield on Corporate Bonds	
infr		-0.005646	0.001584	-3.56	0.0007	Rate of Prices Changes	

The autoregressive model is estimated using the maximum likelihood method. Though the DurbinWatson test statistic is calculated after correcting the autocorrelation, it should be used with care since the test based on this statistic is not justified theoretically. The PROC step follows:

```
proc autoreg data=money;
    model m = m1cp y intr infr / nlag=1 method=ml maxit=50;
    output out=a p=p pm=pm r=r rm=rm ucl=ucl lcl=lcl
                uclm=uclm lclm=lclm;
run;
proc print data=a(obs=8);
    var p pm r rm ucl lcl uclm lclm;
run;
```

A difference is shown between the OLS estimates in Output 8.5.2 and the AR(1)-ML estimates in Output 8.5.3. The estimated autocorrelation coefficient is significantly negative (-0.88345). Note that the negative coefficient of $\operatorname{AR}(1)$ should be interpreted as a positive autocorrelation.

Two predicted values are produced: predicted values computed for the structural model and predicted values computed for the full model. The full model includes both the structural and errorprocess parts. The predicted values and residuals are stored in the output data set A , as are the upper and lower 95% confidence limits for the predicted values. Part of the data set A is shown in Output 8.5.4. The first observation is missing since the explanatory variables, M1CP and INFR, are missing for the corresponding observation.

Output 8.5.3 Estimated Partial Adjustment Money Demand Equation

Algorithm converged.

Output 8.5.3 continued

Output 8.5.4 Partial List of the Predicted Values

Partial Adjustment Money Demand Equation Quarterly Data - 1968:2 to 1983:4								
Obs	p	pm	r	rm	ucl	lcl	uclm	lclm
1
2	5.45962	5.45962	-. 005763043	-0.012301	5.49319	5.42606	5.47962	5.43962
3	5.45663	5.46750	0.001511258	-0.009356	5.47987	5.43340	5.48700	5.44800
4	5.45934	5.46761	0.005574104	-0.002691	5.48267	5.43601	5.48723	5.44799
5	5.46636	5.46874	0.003442075	0.001064	5.48903	5.44369	5.48757	5.44991
6	5.46675	5.46581	-. 002994443	-0.002054	5.48925	5.44424	5.48444	5.44718
7	5.45672	5.45854	-. 004074196	-0.005889	5.47882	5.43462	5.47667	5.44040
8	5.44404	5.44924	0.005136019	-0.000066	5.46604	5.42203	5.46726	5.43122

Example 8.6: Estimation of ARCH(2) Process

Stock returns show a tendency for small changes to be followed by small changes while large changes are followed by large changes. The plot of daily price changes of IBM common stock (Box and Jenkins 1976, p. 527) is shown in Output 8.6.1. The time series look serially uncorrelated, but the plot makes us skeptical of their independence.

With the following DATA step, the stock (capital) returns are computed from the closing prices. To forecast the conditional variance, an additional 46 observations with missing values are generated.

```
title 'IBM Stock Returns (daily)';
title2 '29jun1959 - 30jun1960';
data ibm;
    infile datalines eof=last;
    input x @@;
    r = dif( log( x ) );
    time = _n_-1;
    output;
    return;
last:
    do i = 1 to 46;
        r = .;
            time + 1;
            output;
    end;
    return;
datalines;
... more lines ...
proc sgplot data=ibm;
    series y=r x=time/lineattrs=(color=blue);
            refline 0/ axis = y LINEATTRS = (pattern=ShortDash);
            run;
```

Output 8.6.1 IBM Stock Returns: Daily

The simple ARCH(2) model is estimated using the AUTOREG procedure. The MODEL statement option $\operatorname{GARCH}=(\mathrm{Q}=2)$ specifies the $\operatorname{ARCH}(2)$ model. The OUTPUT statement with the $\mathrm{CEV}=$ option produces the conditional variances V . The conditional variance and its forecast are calculated using parameter estimates:

$$
\begin{aligned}
& h_{t}=\hat{\omega}+\hat{\alpha}_{1} \epsilon_{t-1}^{2}+\hat{\alpha}_{2} \epsilon_{t-2}^{2} \\
& \mathbf{E}\left(\epsilon_{t+d}^{2} \mid \Psi_{t}\right)=\hat{\omega}+\sum_{i=1}^{2} \hat{\alpha}_{i} \mathbf{E}\left(\epsilon_{t+d-i}^{2} \mid \Psi_{t}\right)
\end{aligned}
$$

where $d>1$. This model can be estimated as follows:

```
proc autoreg data=ibm maxit=50;
    model r = / noint garch=(q=2);
    output out=a cev=v;
run;
```

The parameter estimates for ω, α_{1}, and α_{2} are $0.00011,0.04136$, and 0.06976 , respectively. The normality test indicates that the conditional normal distribution may not fully explain the leptokurtosis in the stock returns (Bollerslev 1987).

The ARCH model estimates are shown in Output 8.6.2, and conditional variances are also shown in Output 8.6.3. The code that generates Output 8.6.3 is shown below.

```
data b; set a;
    length type $ 8.;
    if r ^= . then do;
        type = 'ESTIMATE'; output; end;
    else do;
        type = 'FORECAST'; output; end;
run;
proc sgplot data=b;
    series x=time y=v/group=type;
        refline 254/ axis = x LINEATTRS = (pattern=ShortDash);
run;
```

Output 8.6.2 ARCH(2) Estimation Results

Output 8.6.2 continued

IBM Stock Returns (daily) 29jun1959 - 30jun1960					
The AUTOREG Procedure					
GARCH Estimates					
SSE		0.03214307	Observat		254
MSE		0.0001265	Uncond V	0.	12632
Log	od	781.017441	Total R-S	re	0.0000
SBC		-1545.4229	AIC	-1	. 0349
MAE		0.00805675	AICC	-1	. 9389
MAPE		100	Normality	st	. 8557
			Pr > Chis		<. 0001
NOTE: No intercept term is used. R-squares are redefined.					
			Standard		App
Variable		Estimate	Error	t Value	Pr >
ARCHO	1	0.000112	7.5608E-6	14.85	$<.0$
ARCH1	1	0.0413	0.0511	0.81	0.4
ARCH2	1	0.0697	0.0432	1.62	0.1

Output 8.6.3 Conditional Variance for IBM Stock Prices

Example 8.7: Illustration of ODS Graphics

This example illustrates the use of ODS GRAPHICS. This is a continuation of the section "Forecasting Autoregressive Error Models" on page 322.

These graphical displays are requested by specifying the ODS GRAPHICS statement. For information about the graphs available in the AUTOREG procedure, see the section "ODS Graphics" on page 388.

The following statements show how to generate ODS GRAPHICS plots with the AUTOREG procedure. In this case, all plots are requested using the ALL option in the PROC AUTOREG statement, in addition to the ODS GRAPHICS statement. The plots are displayed in Output 8.7.1 through Output 8.7.8. Note: these plots can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting View $\boldsymbol{\wedge}$ Results.

```
data a;
    ul = 0; ull = 0;
    do time = -10 to 36;
        u = + 1.3 * ul - . 5 * ull + 2*rannor(12346);
        y = 10 + .5 * time + u;
```

```
        if time > 0 then output;
        ull = ul; ul = u;
    end;
run;
data b;
    y = .;
    do time = 37 to 46; output; end;
run;
data b;
    merge a b;
    by time;
run;
proc autoreg data=b all plots(unpack);
    model y = time / nlag=2 method=ml;
    output out=p p=yhat pm=ytrend
                        lcl=lcl ucl=ucl;
run;
```

Output 8.7.1 Residuals Plot

Output 8.7.2 Predicted versus Actual Plot

Output 8.7.3 Autocorrelation of Residuals Plot

Output 8.7.4 Partial Autocorrelation of Residuals Plot

Output 8.7.5 Inverse Autocorrelation of Residuals Plot

Output 8.7.6 Tests for White Noise Residuals Plot

Output 8.7.7 Q-Q Plot of Residuals

Output 8.7.8 Histogram of Residuals

References

Anderson, T. W. and Mentz, R. P. (1980), "On the Structure of the Likelihood Function of Autoregressive and Moving Average Models," Journal of Time Series, 1, 83-94.

Ansley, C. F., Kohn, R., and Shively, T. S. (1992), "Computing p-Values for the Generalized DurbinWatson and Other Invariant Test Statistics," Journal of Econometrics, 54, 277-300.

Baillie, R. T. and Bollerslev, T. (1992), "Prediction in Dynamic Models with Time-Dependent Conditional Variances," Journal of Econometrics, 52, 91-113.

Balke, N. S. and Gordon, R. J. (1986), "Historical Data," in R. J. Gordon, ed., The American Business Cycle, 781-850, Chicago: The University of Chicago Press.

Beach, C. M. and MacKinnon, J. G. (1978), "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors," Econometrica, 46, 51-58.

Bollerslev, T. (1986), "Generalized Autoregressive Conditional Heteroskedasticity," Journal of Econometrics, 31, 307-327.

Bollerslev, T. (1987), "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, 69, 542-547.

Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, Revised Edition, San Francisco: Holden-Day.

Breusch, T. S. and Pagan, A. R. (1979), "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, 47, 1287-1294.

Chipman, J. S. (1979), "Efficiency of Least Squares Estimation of Linear Trend When Residuals Are Autocorrelated," Econometrica, 47, 115-128.

Chow, G. (1960), "Tests of Equality between Sets of Coefficients in Two Linear Regressions," Econometrica, 28, 531-534.

Cochrane, D. and Orcutt, G. H. (1949), "Application of Least Squares Regression to Relationships Containing Autocorrelated Error Terms," Journal of the American Statistical Association, 44, 32-61.

Davies, R. B. (1973), "Numerical Inversion of a Characteristic Function," Biometrika, 60, 415-417.
Duffie, D. (1989), Futures Markets, Englewood Cliffs, NJ: Prentice Hall.
Durbin, J. (1969), "Tests for Serial Correlation in Regression Analysis Based on the Periodogram of Least-Squares Residuals," Biometrika, 56, 1-15.

Durbin, J. (1970), "Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors Are Lagged Dependent Variables," Econometrica, 38, 410-421.

Edgerton, D. and Wells, C. (1994), "Critical Values for the CUSUMSQ Statistic in Medium and Large Sized Samples," Oxford Bulletin of Economics and Statistics, 56, 355-365.

Engle, R. F. (1982), "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, 50, 987-1007.

Engle, R. F. and Bollerslev, T. (1986), "Modelling the Persistence of Conditional Variances," Econometric Review, 5, 1-50.

Engle, R. F., Lilien, D. M., and Robins, R. P. (1987), "Estimating Time Varying Risk in the Term Structure: The ARCH-M Model," Econometrica, 55, 391-407.

Fuller, W. A. (1976), Introduction to Statistical Time Series, New York: John Wiley \& Sons.
Gallant, A. R. and Goebel, J. J. (1976), "Nonlinear Regression with Autoregressive Errors," Journal of the American Statistical Association, 71, 961-967.

Godfrey, L. G. (1978a), "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, 46, 1293-1301.

Godfrey, L. G. (1978b), "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, 46, 1303-1310.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge: Cambridge University Press.

Golub, G. H. and Van Loan, C. F. (1989), Matrix Computations, Second Edition, Baltimore: Johns Hopkins University Press.

Greene, W. H. (1993), Econometric Analysis, Second Edition, New York: Macmillan.
Hamilton, J. D. (1994), Time Series Analysis, Princeton, NJ: Princeton University Press.
Harvey, A. C. (1981), The Econometric Analysis of Time Series, New York: John Wiley \& Sons.
Harvey, A. C. (1990), The Econometric Analysis of Time Series, Second Edition, Cambridge: MIT Press.

Harvey, A. C. and McAvinchey, I. D. (1978), "The Small Sample Efficiency of Two-Step Estimators in Regression Models with Autoregressive Disturbances," Discussion Paper No. 78-10, University of British Columbia.

Harvey, A. C. and Phillips, G. D. A. (1979), "Maximum Likelihood Estimation of Regression Models with Autoregressive-Moving Average Disturbances," Biometrika, 66, 49-58.

Hildreth, C. and Lu, J. Y. (1960), Demand Relations with Autocorrelated Disturbances, Technical Report 276, Michigan State University Agricultural Experiment Station, East Lansing, MI.

Hobijn, B., Franses, P. H., and Ooms, M. (2004), "Generalization of the KPSS-Test for Stationarity," Statistica Neerlandica, 58, 483-502.

Hurvich, C. M. and Tsai, C.-L. (1989), "Regression and Time Series Model Selection in Small Samples," Biometrika, 76, 297-307.

Inder, B. A. (1984), "Finite-Sample Power of Tests for Autocorrelation in Models Containing Lagged Dependent Variables," Economics Letters, 14, 179-185.

Inder, B. A. (1986), "An Approximation to the Null Distribution of the Durbin-Watson Statistic in Models Containing Lagged Dependent Variables," Econometric Theory, 2, 413-428.

Jarque, C. M. and Bera, A. K. (1980), "Efficient Tests for Normality, Homoskedasticity and Serial Independence of Regression Residuals," Economics Letters, 6, 255-259.

Johnston, J. (1972), Econometric Methods, Second Edition, New York: McGraw-Hill.
Jones, R. H. (1980), "Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations," Technometrics, 22, 389-396.

Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., and Lee, T. C. (1985), The Theory and Practice of Econometrics, Second Edition, New York: John Wiley \& Sons.

King, M. L. and Wu, P. X. (1991), "Small-Disturbance Asymptotics and the Durbin-Watson and Related Tests in the Dynamic Regression Model," Journal of Econometrics, 47, 145-152.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992), "Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root," Journal of Econometrics, 54, 159-178.

L'Esperance, W. L., Chall, D., , and Taylor, D. (1976), "An Algorithm for Determining the Distribution Function of the Durbin-Watson Test Statistic," Econometrica, 44, 1325-1326.

Maddala, G. S. (1977), Econometrics, New York: McGraw-Hill.
Maeshiro, A. (1976), "Autoregressive Transformation, Trended Independent Variables and Autocorrelated Disturbance Terms," Review of Economics and Statistics, 58, 497-500.

McLeod, A. I. and Li, W. K. (1983), "Diagnostic Checking ARMA Time Series Models Using Squared-Residual Autocorrelations," Journal of Time Series Analysis, 4, 269-273.

Nelson, C. R. and Plosser, C. I. (1982), "Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications," Journal of Monetary Economics, 10, 139-162.

Nelson, D. B. (1990), "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, 6, 318-334.

Nelson, D. B. (1991), "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, 59, 347-370.

Nelson, D. B. and Cao, C. Q. (1992), "Inequality Constraints in the Univariate GARCH Model," Journal of Business \& Economic Statistics, 10, 229-235.

Park, R. E. and Mitchell, B. M. (1980), "Estimating the Autocorrelated Error Model with Trended Data," Journal of Econometrics, 13, 185-201.

Phillips, P. C. and Ouliaris, S. (1990), "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, 58, 165-193.

Phillips, P. C. and Perron, P. (1988), "Testing for a Unit Root in Time Series Regression," Biometrika, 75, 335-346.

Prais, S. J. and Winsten, C. B. (1954), "Trend Estimators and Serial Correlation," Cowles Commission Discussion Paper No. 383.

Ramsey, J. B. (1969), "Tests for Specification Errors in Classical Linear Least Squares Regression Analysis," Journal of Royal Statistical Society.

Savin, N. E. and White, K. J. (1978), "Testing for Autocorrelation with Missing Observations," Econometrica, 46, 59-67.

Schwarz, G. (1978), "Estimating the Dimension of a Model," Annals of Statistics, 6, 461-464.
Shively, T. S. (1990), "Fast Evaluation of the Distribution of the Durbin-Watson and Other Invariant Test Statistics in Time Series Regression," Journal of the American Statistical Association, 85, 676-685.

Spitzer, J. J. (1979), "Small-Sample Properties of Nonlinear Least Squares and Maximum Likelihood Estimators in the Context of Autocorrelated Errors," Journal of the American Statistical Association, 74, 41-47.

Theil, H. (1971), Principles of Econometrics, New York: John Wiley \& Sons.
Vinod, H. D. (1973), "Generalization of the Durbin-Watson Statistic for Higher Order Autoregressive Process," Communication in Statistics, 2, 115-144.

Wallis, K. F. (1972), "Testing for Fourth Order Autocorrelation in Quarterly Regression Equations," Econometrica, 40, 617-636.

White, H. (1982), "Maximum Likelihood Estimation of Misspecified Models," Econometrica, 50, $1-25$.

White, K. J. (1992), "The Durbin-Watson Test for Autocorrelation in Nonlinear Models," Review of Economics and Statistics, 74, 370-373.

Chapter 9

The COMPUTAB Procedure

Contents

Overview: COMPUTAB Procedure 430
Getting Started: COMPUTAB Procedure 430
Producing a Simple Report 431
Using PROC COMPUTAB 432
Defining Report Layout 433
Adding Computed Rows and Columns 434
Enhancing the Report 435
Syntax: COMPUTAB Procedure 436
Functional Summary 436
PROC COMPUTAB Statement 438
COLUMNS Statement 440
ROWS Statement 441
CELL Statement 443
INIT Statement 444
Programming Statements 445
BY Statement 446
SUMBY Statement 446
NOTRANS Option 447
Details: COMPUTAB Procedure 448
Program Flow Example 448
Order of Calculations 451
Column Selection 452
Controlling Execution within Row and Column Blocks 453
Program Flow 454
Direct Access to Table Cells 456
Reserved Words 456
Missing Values 457
OUT= Data Set 457
Examples: COMPUTAB Procedure 458
Example 9.1: Using Programming Statements 458
Example 9.2: Enhancing a Report 460
Example 9.3: Comparison of Actual and Budget 465
Example 9.4: Consolidations 468
Example 9.5: Creating an Output Data Set 473
Example 9.6: A What-If Market Analysis 475
Example 9.7: Cash Flows 479

Overview: COMPUTAB Procedure

The COMPUTAB (computing and tabular reporting) procedure produces tabular reports generated using a programmable data table.

The COMPUTAB procedure is especially useful when you need both the power of a programmable spreadsheet and a report generation system, but you want to set up a program to run in a batch mode and generate routine reports.

With PROC COMPUTAB, you can select a subset of observations from the input data set, define the format of a table, operate on its row and column values, and create new columns and rows. Access to individual table values is available when needed.

The COMPUTAB procedure can tailor reports to almost any desired specification and provide consolidation reports over summarization variables. The generated report values can be stored in an output data set. PROC COMPUTAB is especially useful in creating tabular reports such as income statements, balance sheets, and other row and column reports.

Getting Started: COMPUTAB Procedure

The following example shows the different types of reports that can be generated by PROC COMPUTAB.

Suppose a company has monthly expense data on three of its divisions and wants to produce the year-to-date expense report shown in Figure 9.1. This section starts out with the default report produced by the COMPUTAB procedure and modifies it until the desired report is achieved.

Figure 9.1 Year-to-Date Expense Report

Year to Date Expenses				
	Division	Division	Division	All
	A	B	C	Divisions
Travel Expenses within U.S.	18700	211000	12800	\$242,500
Advertising	18500	176000	34500	\$229,000
Permanent Staff Salaries	186000	1270000	201000	\$1,657,000
Benefits Including Insurance	3900	11100	17500	\$32,500
Total	227100	1668100	265800	\$2,161,000

Producing a Simple Report

Without any specifications, the COMPUTAB procedure transposes and prints the input data set. The variables in the input data set become rows in the report, and the observations in the input data set become columns. The variable names are used as the row titles. The column headings default to COL1 through COLn. For example, the following input data set contains the monthly expenses reported by different divisions of the company:

```
data report;
    length compdiv $ 1;
    input compdiv $ date:date7. salary travel insure advrtise;
    format date date7.;
    label travel = 'Travel Expenses within U.S.'
            advrtise = 'Advertising'
            salary = 'Permanent Staff Salaries'
            insure = 'Benefits Including Insurance';
datalines;
A 31JAN1989 95000 10500 2000 6500
B 31JAN1989 668000 112000 5600 90000
C 31JAN1989 105000 6800 9000 18500
A 28FEB1989 91000 8200 1900 12000
B 28FEB1989 602000 99000 5500 86000
C 28FEB1989 96000 6000 8500 16000
;
```

You can get a listing of the data set by using the PRINT procedure, as follows:

```
title 'Listing of Monthly Divisional Expense Data';
proc print data=report;
run;
```

Figure 9.2 Listing of Data Set by PROC PRINT

Listing of Monthly Divisional Expense Data						
Obs	compdiv	date	salary	travel	insure	advrtise
1	A	31JAN89	95000	10500	2000	6500
2	B	31JAN89	668000	112000	5600	90000
3	C	31JAN89	105000	6800	9000	18500
4	A	28FEB89	91000	8200	1900	12000
5	B	28FEB89	602000	99000	5500	86000
6	C	28FEB89	96000	6000	8500	16000

To get a simple, transposed report of the same data set, use the following PROC COMPUTAB statement:

```
title 'Monthly Divisional Expense Report';
proc computab data=report;
run;
```

Figure 9.3 Listing of Data Set by PROC COMPUTAB

Monthly Divisional Expense Report						
	COL1	COL2	COL3	COL4	COL5	COL6
compdiv	A	B	C	A	B	C
date	31JAN89	31JAN89	31JAN89	28FEB89	28FEB89	28FEB89
salary	95000.00	668000.00	105000.00	91000.00	602000.00	96000.00
travel	10500.00	112000.00	6800.00	8200.00	99000.00	6000.00
insure	2000.00	5600.00	9000.00	1900.00	5500.00	8500.00
advrtise	6500.00	90000.00	18500.00	12000.00	86000.00	16000.00

Using PROC COMPUTAB

The COMPUTAB procedure is best understood by examining the following features:

- definition of the report layout with ROWS and COLUMNS statements
- input block
- row blocks
- column blocks

PROC COMPUTAB builds a table according to the specifications in the ROWS and COLUMNS statements. Row names and column names define the rows and columns of the table. Options in the ROWS and COLUMNS statements control titles, spacing, and formatting.

The input block places input observations into the appropriate columns of the report. It consists of programming statements used to select observations to be included in the report, to determine the column into which the observation should be placed, and to calculate row and column values that are not in the input data set.

Row blocks and column blocks perform operations on the values of rows and columns of the report after the input block has executed. Row blocks are a block of programming statements labeled ROWxxxxx: that create or modify row values; column blocks are a block of programming statements labeled COL $x x x x x$: that create or modify column values. Row and column blocks can make multiple passes through the report for final calculations.

For most reports, these features are sufficient. More complicated applications might require knowledge of the program data vector and the COMPUTAB data table. These topics are discussed in the section "Details: COMPUTAB Procedure" on page 448.

Defining Report Layout

ROWS and COLUMNS statements define the rows and columns of the report. The order of row and column names in these statements determines the order of rows and columns in the report. Additional ROWS and COLUMNS statements can be used to specify row and column formatting options.

The following statements select and order the variables from the input data set and produce the report in Figure 9.4:

```
proc computab data=report;
    rows travel advrtise salary;
run;
```

Figure 9.4 Report Produced Using a ROWS Statement

	Monthly Divisional Expense Report						
	COL1	COL2	COL3	COL4	COL5	COL6	
TRAVEL	10500.00	112000.00	6800.00	8200.00	99000.00	6000.00	
ADVRTISE	6500.00	90000.00	18500.00	12000.00	86000.00	16000.00	
SALARY	95000.00	668000.00	105000.00	91000.00	602000.00	96000.00	

When a COLUMNS statement is not specified, each observation becomes a new column. If you use a COLUMNS statement, you must specify to which column each observation belongs by using program statements for column selection. When more than one observation is selected for the same column, values are summed.

The following statements produce Figure 9.5:

```
proc computab data= report;
    rows travel advrtise salary insure;
    columns a b c;
    *----select column for company division,
            based on value of compdiv----*;
    a = compdiv = 'A';
    b = compdiv = 'B';
    c = compdiv = 'C';
run;
```

The statement A=COMPDIV='A'; illustrates the use of logical operators as a selection technique. If COMPDIV='A', then the current observation is added to the A column. See SAS Language: Reference, Version 6, First Edition for more information about logical operators.

Figure 9.5 Report Produced Using ROWS and COLUMNS Statements

Monthly Divisional Expense Report			
	A	B	C
TRAVEL	18700.00	211000.00	12800.00
ADVRTISE	18500.00	176000.00	34500.00
SALARY	186000.00	1270000.0	201000.00
INSURE	3900.00	11100.00	17500.00

Adding Computed Rows and Columns

In addition to the variables and observations in the input data set, you can create additional rows or columns by using SAS programming statements in PROC COMPUTAB. You can do the following:

- modify input data and select columns in the input block
- create or modify columns in column blocks
- create or modify rows in row blocks

The following statements add one computed row (SUM) and one computed column (TOTAL) to the report in Figure 9.5. In the input block the logical operators indicate the observations that correspond to each column of the report. After the input block reads in the values from the input data set, the column block creates the column variable TOTAL by summing the columns A, B, and C. The additional row variable, SUM, is calculated as the sum of the other rows. The result is shown in Figure 9.6.

```
proc computab data= report;
    rows travel advrtise salary insure sum;
    columns a b c total;
    a = compdiv = 'A';
    b = compdiv = 'B';
    c = compdiv = 'C';
    colblk: total = a + b + c;
    rowblk: sum = travel + advrtise + salary + insure;
run;
```

Figure 9.6 Report Produced Using Row and Column Blocks

Enhancing the Report

To enhance the appearance of the final report, you can use the following:

- TITLE and LABEL statements
- column headings
- row titles
- row and column spacing control
- overlining and underlining
- formats

The following example enhances the report in the previous example. The enhanced report is shown in Figure 9.7.

The TITLE statement assigns the report title. The column headings in Figure 9.7 (Division A, Division B, and Division C) are assigned in the first COLUMNS statement by "Division" _name_ specification. The second COLUMNS statement assigns the column heading ("All" "Divisions"), sets the spacing $(+4)$, and formats the values in the TOTAL column.

Similarly, the first ROWS statement uses previously assigned variable labels for row labels by specifying the _LABEL_ option. The DUL option in the second ROWS statement double-underlines the INSURE row. The third ROWS statement assigns the row label TOTAL to the SUM row.

```
title 'Year to Date Expenses';
proc computab cwidth=8 cdec=0;
        columns a b c / 'Division' _name_;
        columns total / 'All' 'Divisions' +4 f=dollar10.0;
        rows travel advrtise salary insure / _label_;
        rows insure / dul;
```

```
    rows sum / 'Total';
    a = compdiv = 'A';
    b = compdiv = 'B';
    c = compdiv = 'C';
    colblk: total = a + b + c;
    rowblk: sum = travel + advrtise + salary + insure;
run;
```

Figure 9.7 Report Produced by PROC COMPUTAB Using Enhancements

Year to Date Expenses				
	Division	Division	Division	All
	A	B	C	Divisions
Travel Expenses within U.S.	18700	211000	12800	\$242,500
Advertising	18500	176000	34500	\$229,000
Permanent Staff Salaries	186000	1270000	201000	\$1, 657,000
Benefits Including Insurance	3900	11100	17500	\$32,500
Total	227100	1668100	265800	\$2,161, 000

Syntax: COMPUTAB Procedure

The following statements are used with the COMPUTAB procedure:
PROC COMPUTAB options;
BY variables ;
COLUMNS names / options ;
ROWS names / options ;
CELL names / FORMAT= format ;
INIT anchor-name locator-name values locator-name values;
programming statements;
SUMBY variables ;
The PROC COMPUTAB statement is the only required statement. The COLUMNS, ROWS, and CELL statements define the COMPUTAB table. The INIT statement initializes the COMPUTAB table values. Programming statements process COMPUTAB table values. The BY and SUMBY statements provide BY-group processing and consolidation (roll up) tables.

Functional Summary

Table 9.1 summarizes the COMPUTAB procedure statements and options.

Table 9.1 COMPUTAB Functional Summary

Description	Statement	Option
Statements specify BY-group processing specify the format for printing a particular cell define columns of the report initialize values in the COMPUTAB data table define rows of the report produce consolidation tables	BY CELL COLUMNS INIT ROWS SUMBY	
Data Set Options specify the input data set specify an output data set	COMPUTAB COMPUTAB	$\begin{aligned} & \text { DATA= } \\ & \text { OUT= } \end{aligned}$
Input Options specify a value to use when testing for 0 initialize the data table to missing prevent the transposition of the input data set	COMPUTAB COMPUTAB COMPUTAB	FUZZ= INITMISS NOTRANS
Printing Control Options suppress printing of the listed columns suppress all printed output suppress printing of the listed rows suppress columns with all 0 or missing values suppress rows with all 0 or missing values list option values overprint titles, values, overlining, and underlining associated with listed rows print only consolidation tables	COLUMNS COMPUTAB ROWS COLUMNS ROWS COMPUTAB ROWS COMPUTAB	NOPRINT NOPRINT NOPRINT NOZERO NOZERO OPTIONS OVERPRINT SUMONLY
Report Formatting Options specify number of decimal places to print specify number of spaces between columns specify column width for the report overline the listed rows with double lines underline the listed rows with double lines specify a format for printing the cell values specify a format for printing column values specify a format for printing the row values left-align the column headings left-justify character rows in each column specify indentation from the margin suppress printing of row titles on later pages overline the listed rows with a single line start a new page before printing the listed rows specify number of spaces before row titles	COMPUTAB COMPUTAB COMPUTAB ROWS ROWS CELL COLUMNS ROWS COLUMNS ROWS ROWS COMPUTAB ROWS ROWS COMPUTAB	CDEC= CSPACE= CWIDTH= DOL DUL FORMAT= FORMAT= FORMAT= LJC LJC +n NORTR OL _PAGE_ RTS=

Description	Statement	Option
print a blank row underline the listed rows with a single line specify text to print if column is 0 or missing specify text to print if row is 0 or missing	ROWS ROWS COLUMNS ROWS	SKIP UL ZERO= ZERO=
Row and Column Type Options specify that columns contain character data specify that rows contain character data	COLUMNS ROWS	CHAR CHAR
Options for Column Headings specify literal column headings use variable labels in column headings specify a master title centered over columns use column names in column headings	COLUMNS COLUMNS COLUMNS COLUMNS	'column heading' _LABEL_ MTITLE= _NAME_
Options for Row Titling use labels in row titles use row names in row titles specify literal row titles	ROWS ROWS ROWS	$\begin{aligned} & \text { _LABEL_ } \\ & \text { _NAME_' } \\ & \text { 'row title' } \end{aligned}$

PROC COMPUTAB Statement

PROC COMPUTAB options ;
The following options can be used in the PROC COMPUTAB statement.

Input Options

DATA=SAS-data-set

names the SAS data set that contains the input data. If this option is not specified, the last created data set is used. If you are not reading a data set, use DATA=_NULL_.

FUZZ=value

specifies the criterion to use when testing for 0 . If a number is within the $F U Z Z=$ value of 0 , the number is set to 0 .

INITMISS

initializes the COMPUTAB data table to missing rather than to 0 . The COMPUTAB data table is discussed further in the section "Details: COMPUTAB Procedure" on page 448.

NOTRANSPOSE

NOTRANS

prevents the transposition of the input data set in building the COMPUTAB report tables. The NOTRANS option causes input data set variables to appear among the columns of the report rather than among the rows.

Report Formatting Options

The formatting options specify default values. Many of the formatting options can be modified for specific columns in COLUMNS statements and for rows in ROWS statements.

CDEC=d

specifies the default number of decimal places for printing. The default is $\mathrm{CDEC=2}$. See the FORMAT = option in the sections on COLUMN, ROWS, and CELL statements later in this chapter.

CSPACE=n

specifies the default number of spaces to insert between columns. The value of the CSPACE= option is used as the default value for the $+n$ option in the COLUMNS statement. The default is CSPACE=2.

CWIDTH=w

specifies a default column width for the report. The default is CWIDTH=9. The width must be in the range of $1-32$.

NORTR

suppresses the printing of row titles on each page. The NORTR (no row-title repeat) option is useful to suppress row titles when report pages are to be joined together in a larger report.

RTS=n

specifies the default number of spaces to be inserted before row titles when row titles appear after the first printed column. The default row-title spacing is RTS=2.

Output Options

NOPRINT

suppresses all printed output. Use the NOPRINT option with the OUT= option to produce an output data set but no printed reports.

OPTIONS

lists PROC COMPUTAB option values. The option values appear on a separate page preceding the procedure's normal output.

OUT=SAS-data-set

names the SAS data set to contain the output data. See the section "Details: COMPUTAB Procedure" on page 448 for a description of the structure of the output data set.

SUMONLY

suppresses printing of detailed reports. When the SUMONLY option is used, PROC COMPUTAB generates and prints only consolidation tables as specified in the SUMBY statement.

COLUMNS Statement

COLUMNS column-list / options ;

COLUMNS statements define the columns of the report. The COLUMNS statement can be abbreviated COLUMN, COLS, or COL.

The specified column names must be valid SAS names. Abbreviated lists, as described in $S A S$ Language: Reference, can also be used.

You can use as many COLUMNS statements as you need. A COLUMNS statement can describe more than one column, and one column of the report can be described with several different COLUMNS statements. The order of the columns on the report is determined by the order of appearance of column names in COLUMNS statements. The first occurrence of the name determines where in the sequence of columns a particular column is located.

The following options can be used in the COLUMNS statement.

Option for Column Type

CHAR

indicates that the columns contain character data.

Options for Column Headings

You can specify as many lines of column headings as needed. If no options are specified, the column names from the COLUMNS statement are used as column headings. Any or all of the following options can be used in a column heading:

"column heading"

specifies that the characters enclosed in quotes are to be used in the column heading for the variable or variables listed in the COLUMNS statement. Each quoted string appears on a separate line of the heading.

LABEL

uses labels, if provided, in the heading for the column or columns listed in the COLUMNS statement. If a label has not been provided, the name of the column is used. See SAS Language: Reference for information about the LABEL statement.

MTITLE="text"

specifies that the string of characters enclosed in quotes is a master title to be centered over all the columns listed in the COLUMNS statement. The list of columns must be consecutive. Special characters (" + ", "*", "=", and so forth) placed on either side of the text expand to fill the space. The MTITLE= option can be abbreviated $\mathrm{M}=$.

_NAME

uses column names in column headings for the columns listed in the COLUMNS statement. This option allows headings ("text") and names to be combined in a heading.

Options for Column Print Control

inserts n spaces before each column listed in the COLUMNS statement. The default spacing is given by the CSPACE $=$ option in the PROC COMPUTAB statement.

NOPRINT

suppresses printing of columns listed in the COLUMNS statement. This option enables you to create columns to be used for intermediate calculations without having those columns printed.

NOZERO

suppresses printing of columns when all the values in a column are 0 or missing. Numbers within the $F U Z Z=$ value of 0 are treated as 0 .

PAGE

starts a new page of the report before printing each of the columns in the list that follows.

_TITLES

prints row titles before each column in the list. The _TITLES_ option can be abbreviated as _TITLE_.

Options for Column Formatting

Column formats override row formats for particular table cells only when the input data set is not transposed (when the NOTRANS option is specified).

FORMAT=format

specifies a format for printing the values of the columns listed in the COLUMNS statement. The FORMAT= option can be abbreviated $\mathrm{F}=$.

LJC

left-justifies the column headings for the columns listed. By default, columns are rightjustified. When the LJC (left-justify character) option is used, any character row values in the column are also left-justified rather than right-justified.

ZERO="text"

substitutes "text" when the value in the column is 0 or missing.

ROWS Statement

ROWS row-list / options ;

ROWS statements define the rows of the report. The ROWS statement can be abbreviated ROW.
The specified row names must be valid SAS names. Abbreviated lists, as described in SAS Language: Reference, can also be used.

You can use as many ROWS statements as you need. A ROWS statement can describe more than one row, and one row of the report can be described with several different ROWS statements. The order of the rows in the report is determined by the order of appearance of row names in ROWS statements. The first occurrence of the name determines where the row is located.

The following options can be used in the ROWS statement.

Option for Row Type

CHAR

indicates that the rows contain character data.

Options for Row Titling

You can specify as many lines of row titles as needed. If no options are specified, the names from the ROWS statement are used as row titles. Any or all of the following options can be used in a row title:

LABEL

uses labels as row titles for the row or rows listed in the ROWS statement. If a label is not provided, the name of the row is substituted. See SAS Language: Reference for more information about the LABEL statement.

_NAME

uses row names in row titles for the row or rows listed in the ROWS statement.

"row title"

specifies that the string of characters enclosed in quotes is to be used in the row title for the row or rows listed in the ROWS statement. Each quoted string appears on a separate line of the heading.

Options for Row Print Control

+n
indents n spaces from the margin for the rows in the ROWS statement.
DOL
overlines the rows listed in the ROWS statement with double lines. Overlines are printed on the line before any row titles or data for the row.

DUL
underlines the rows listed in the ROWS statement with double lines. Underlines are printed on the line after the data for the row. A row can have both an underline and an overline option.

NOPRINT

suppresses printing of the rows listed in the ROWS statement. This option enables you to create rows to be used for intermediate calculations without having those rows printed.

NOZERO

suppresses the printing of a row when all the values are 0 or missing.
OL
overlines the rows listed in the ROWS statement with a single line. Overlines are printed on the line before any row titles or data for the row.

OVERPRINT

overprints titles, values, overlining, and underlining associated with rows listed in the ROWS statement. The OVERPRINT option can be abbreviated OVP. This option is valid only when the system option OVP is in effect. See SAS Language: Reference for more information about the OVP option.

PAGE
starts a new page of the report before printing these rows.
SKIP
prints a blank line after the data lines for these rows.
UL
underlines the rows listed in the ROWS statement with a single line. Underlines are printed on the line after the data for the row. A row can have both an underline and an overline option.

Options for Row Formatting

Row formatting options take precedence over column-formatting options when the input data set is transposed. Row print width can never be wider than column width. Character values are truncated on the right.

FORMAT= format

specifies a format for printing the values of the rows listed in the ROWS statement. The FORMAT = option can be abbreviated as $\mathrm{F}=$.

LJC

left-justifies character rows in each column.

ZERO="text"

substitutes text when the value in the row is 0 or missing.

CELL Statement

CELL cell_names / FORMAT= format ;

The CELL statement specifies the format for printing a particular cell in the COMPUTAB data table. Cell variable names are compound SAS names of the form name1.name2, where namel is the name of a row variable and name 2 is the name of a column variable. Formats specified with the FORMAT = option in CELL statements override formats specified in ROWS and COLUMNS statements.

INIT Statement

INIT anchor-name [locator-name] values [locator-name values] ;

The INIT statement initializes values in the COMPUTAB data table at the beginning of each execution of the procedure and at the beginning of each BY group if a BY statement is present.

The INIT statement in the COMPUTAB procedure is similar in function to the RETAIN statement in the DATA step, which initializes values in the program data vector. The INIT statement can be used at any point after the variable to which it refers has been defined in COLUMNS or ROWS statements. Each INIT statement initializes one row or column. Any number of INIT statements can be used.

The first term after the keyword INIT, anchor-name, anchors initialization to a row or column. If anchor-name is a row name, then all locator-name values in the statement are columns of that row. If anchor-name is a column name, then all locator-name values in the statement are rows of that column.

The following terms appear in the INIT statement:
anchor-name names the row or column in which values are to be initialized. This term is required.
locator-name identifies the starting column in the row (or starting row in the column) into which values are to be placed. For example, in a table with a row SALES and a column for each month of the year, the following statement initializes values for columns JAN, FEB, and JUN:

```
init sales jan 500 feb 600 jun 800;
```

If you do not specify locator-name values, the first value is placed into the first row or column, the second value into the second row or column, and so on. For example, the following statement assigns 500 to column JAN, 600 to FEB, and 450 to MAR:

```
init sales 500 600 450;
```

$+\mathrm{n} \quad$ specifies the number of columns in a row (or rows in a column) that are to be skipped when initializing values. For example, the following statement assigns 500 to JAN and 900 to JUL:

```
init sales jan 500 +5 900;
```

n *value assigns value to n columns in the row (or rows in the column). For example, both of the following statements assign 500 to columns JAN through JUN and 1000 to JUL through DEC:

```
init sales jan 6*500 jul 6*1000;
init sales 6*500 6*1000;
```


Programming Statements

You can use most SAS programming statements the same way you use them in the DATA step. Also, all DATA step functions can be used in the COMPUTAB procedure.

Lines written by the PUT statement are not integrated with the COMPUTAB report. PUT statement output is written to the SAS log.

The automatic variable _N_ can be used; its value is the number of observations read or the number read in the current BY group, if a BY statement is used. FIRST.variable and LAST.variable references cannot be used.

The following statements are also available in PROC COMPUTAB:

```
ABORT FORMAT
ARRAY GOTO
ATTRIB IF-THEN/ELSE
assignment statement LABEL
CALL LINK
DELETE PUT
DO RETAIN
iterative DO SELECT
DO UNTIL STOP
DO WHILE sum statement
END
FOOTNOTE
```

The programming statements can be assigned labels ROW $x x x x x$: or COL $x x x x x$: to indicate the start of a row and column block, respectively. Statements in a row block create or change values in all the columns in the specified rows. Similarly, statements in a column block create or change values in all the rows in the specified columns.

There is an implied RETURN statement before each new row or column block. Thus, the flow of execution does not leave the current row (column) block before the block repeats for all columns (rows.) Row and column variables and nonretained variables are initialized prior to each execution of the block.

The next COL $x x x x x$: label, ROW $x x x x x x$: label, or the end of the PROC COMPUTAB step signals the end of a row (column) block. Column blocks and row blocks can be mixed in any order. In some cases, performing calculations in different orders can lead to different results.

See the sections "Program Flow Example" on page 448, "Order of Calculations" on page 451, and "Controlling Execution within Row and Column Blocks" on page 453 for more information.

BY Statement

BY variables ;

A BY statement can be used with PROC COMPUTAB to obtain separate reports for observations in groups defined by the BY variables. At the beginning of each BY group, before PROC COMPUTAB reads any observations, all table values are set to 0 unless the INITMISS option or an INIT statement is specified.

SUMBY Statement

SUMBY variables;

The SUMBY statement produces consolidation tables for variables whose names are in the SUMBY list. Only one SUMBY statement can be used.

To use a SUMBY statement, you must use a BY statement. The SUMBY and BY variables must be in the same relative order in both statements. For example:

```
by a b c;
sumby a b;
```

This SUMBY statement produces tables that consolidate over values of C within levels of B and over values of B within levels of A. Suppose A has values 1, 2; B has values 1, 2; and C has values $1,2,3$. Table 9.2 indicates the consolidation tables produced by the SUMBY statement.

Table 9.2 Consolidation Tables Produced by the SUMBY Statement

SUMBY Consolidations	Consolidated BY Groups		
$\mathrm{A}=1, \mathrm{~B}=1$	$\mathrm{C}=1$	$\mathrm{C}=2$	$\mathrm{C}=3$
$\mathrm{~A}=1, \mathrm{~B}=2$	$\mathrm{C}=1$	$\mathrm{C}=2$	$\mathrm{C}=3$
$\mathrm{~A}=1$	$\mathrm{~B}=1, \mathrm{C}=1$	$\mathrm{~B}=1, \mathrm{C}=2$	$\mathrm{~B}=1, \mathrm{C}=3$
	$\mathrm{~B}=2, \mathrm{C}=1$	$\mathrm{~B}=2, \mathrm{C}=2$	$\mathrm{~B}=2, \mathrm{C}=3$
$\mathrm{~A}=2, \mathrm{~B}=1$	$\mathrm{C}=1$	$\mathrm{C}=2$	$\mathrm{C}=3$
$\mathrm{~A}=2, \mathrm{~B}=2$	$\mathrm{C}=1$	$\mathrm{C}=2$	$\mathrm{C}=3$
$\mathrm{~A}=2$	$\mathrm{~B}=1, \mathrm{C}=1$	$\mathrm{~B}=1, \mathrm{C}=2$	$\mathrm{~B}=1, \mathrm{C}=3$
	$\mathrm{~B}=2, \mathrm{C}=1$	$\mathrm{~B}=2, \mathrm{C}=2$	$\mathrm{~B}=2, \mathrm{C}=3$

Two consolidation tables for B are produced for each value of A. The first table consolidates the three tables produced for the values of C while B is 1 ; the second table consolidates the three tables produced for C while B is 2 .

Tables are similarly produced for values of A. Nested consolidation tables are produced for B (as described previously) for each value of A. Thus, this SUMBY statement produces a total of six consolidation tables in addition to the tables produced for each BY group.

To produce a table that consolidates the entire data set (the equivalent of using PROC COMPUTAB with neither BY nor SUMBY statements), use the special name _TOTAL_ as the first entry in the SUMBY variable list. For example,

```
sumby _total_ a b;
```

PROC COMPUTAB then produces consolidation tables for SUMBY variables as well as a consolidation table for all observations.

To produce only consolidation tables, use the SUMONLY option in the PROC COMPUTAB statement.

NOTRANS Option

The NOTRANS option in the PROC COMPUTAB statement prevents the transposition of the input data set. NOTRANS affects the input block, the precedence of row and column options, and the structure of the output data set if the OUT= option is specified.

When the input data set is transposed, input variables are among the rows of the COMPUTAB report, and observations compose columns. The reverse is true if the data set is not transposed; therefore, the input block must select rows to receive data values, and input variables are among the columns.

Variables from the input data set dominate the format specification and data type. When the input data set is transposed, input variables are among the rows of the report, and row options take precedence over column options. When the input data set is not transposed, input variables are among the columns, and column options take precedence over row options.

Variables for the output data set are taken from the dimension (row or column) that contains variables from the input data set. When the input data set is transposed, this dimension is the row dimension; otherwise, the output variables come from the column dimension.

Details: COMPUTAB Procedure

Program Flow Example

This example shows how the COMPUTAB procedure processes observations in the program working storage and the COMPUTAB data table (CDT).

Assume you have three years of figures for sales and cost of goods sold (CGS), and you want to determine total sales and cost of goods sold and calculate gross profit and the profit margin.

```
data example;
    input year sales cgs;
datalines;
1988 83 52
1989 106 85
1990 120 114
;
proc computab data=example;
    columns c88 c89 c90 total;
    rows sales cgs gprofit pctmarg;
    /* calculate gross profit */
    gprofit = sales - cgs;
    /* select a column */
    c88 = year = 1988;
    c89 = year = 1989;
    c90 = year = 1990;
    /* calculate row totals for sales */
    /* and cost of goods sold */
    col: total = c88 + c89 + c90;
    /* calculate profit margin */
    row: pctmarg = gprofit / cgs * 100;
run;
```

Table 9.3 shows the CDT before any observation is read in. All the columns and rows are defined with the values initialized to 0 .

Table 9.3 CDT before Any Input

	C88	C89	C90	TOTAL
SALES	0	0	0	0
CGS	0	0	0	0
GPROFIT	0	0	0	0
PCTMARG	0	0	0	0

When the first input is read in (year=1988, sales=83, and cgs=52), the input block puts the values for SALES and CGS in the C88 column since year=1988. Also the value for the gross profit for that year (GPROFIT) is calculated as indicated in the following statements:

```
gprofit = sales-cgs;
c88 = year = 1988;
c89 = year = 1989;
c90 = year = 1990;
```

Table 9.4 shows the CDT after the first observation is input.

Table 9.4 CDT after First Observation Input (C88=1)

	C88	C89	C90	TOTAL
SALES	83	0	0	0
CGS	52	0	0	0
GPROFIT	31	0	0	0
PCTMARG	0	0	0	0

Similarly, the second observation (year=1989, sales=106, cgs=85) is put in the second column, and the GPROFIT is calculated to be 21 . The third observation (year=1990, sales=120, cgs=114) is put in the third column, and the GPROFIT is calculated to be 6 . Table 9.5 shows the CDT after all observations are input.

Table 9.5 CDT after All Observations Input

	C88	C89	C90	TOTAL
SALES	83	106	120	0
CGS	52	85	114	0
GPROFIT	31	21	6	0
PCTMARG	0	0	0	0

After the input block is executed for each observation in the input data set, the first row or column block is processed. In this case, the column block is

```
col: total = c88 + c89 + c90;
```

The column block executes for each row, calculating the TOTAL column for each row. Table 9.6 shows the CDT after the column block has executed for the first row (total=83+106+120). The total sales for the three years is 309 .

Table 9.6 CDT after Column Block Executed for First Row

	C88	C89	C90	TOTAL
SALES	83	106	120	309
CGS	52	85	114	0
GPROFIT	31	21	6	0
PCTMARG	0	0	0	0

Table 9.7 shows the CDT after the column block has executed for all rows and the values for total cost of goods sold and total gross profit have been calculated.

Table 9.7 CDT after Column Block Executed for All Rows

	C88	C89	C90	TOTAL
SALES	83	106	120	309
CGS	52	85	114	251
GPROFIT	31	21	6	58
PCTMARG	0	0	0	0

After the column block has been executed for all rows, the next block is processed. The row block is

```
row: pctmarg = gprofit / cgs * 100;
```

The row block executes for each column, calculating the PCTMARG for each year and the total (TOTAL column) for three years. Table 9.8 shows the CDT after the row block has executed for all columns.

Table 9.8 CDT after Row Block Executed for All Columns

	C88	C89	C90	TOTAL
SALES	83	106	120	309
CGS	52	85	114	251
GPROFIT	31	21	6	58
PCTMARG	59.62	24.71	5.26	23.11

Order of Calculations

The COMPUTAB procedure provides alternative programming methods for performing most calculations. New column and row values are formed by adding values from the input data set, directly or with modification, into existing columns or rows. New columns can be formed in the input block or in column blocks. New rows can be formed in the input block or in row blocks.

This example illustrates the different ways to collect totals. Table 9.9 is the total sales report for two products, SALES1 and SALES2, during the years 1988-1990. The values for SALES1 and SALES2 in columns C88, C89, and C90 come from the input data set.

Table 9.9 Total Sales Report

	C88	C89	C90	SALESTOT
SALES1	15	45	80	140
SALES2	30	40	50	120
YRTOT	45	85	130	260

The new column SALESTOT, which is the total sales for each product over three years, can be computed in several different ways:

- in the input block by selecting SALESTOT for each observation:

```
salestot = 1;
```

- in a column block:

```
coltot: salestot = c88 + c89 + c90;
```

In a similar fashion, the new row YRTOT, which is the total sales for each year, can be formed as follows:

- in the input block:

```
yrtot = sales1 + sales2;
```

- in a row block:
rowtot: yrtot $=$ sales1 + sales2;

Performing some calculations in PROC COMPUTAB in different orders can yield different results, because many operations are not commutative. Be sure to perform calculations in the proper sequence. It might take several column and row blocks to produce the desired report values.

Notice that in the previous example, the grand total for all rows and columns is 260 and is the same whether it is calculated from row subtotals or column subtotals. It makes no difference in this case whether you compute the row block or the column block first.

However, consider the following example where a new column and a new row are formed:

Table 9.10 Report Sensitive to Order of Calculations

	STORE1	STORE2	STORE3	MAX
PRODUCT1	12	13	27	27
PRODUCT2	11	15	14	15
TOTAL	23	28	41	$?$

The new column MAX contains the maximum value in each row, and the new row TOTAL contains the column totals. MAX is calculated in a column block:

```
col: max = max(store1,store2,store3);
```

TOTAL is calculated in a row block:

```
row: total = product1 + product2;
```

Notice that either of two values, 41 or 42 , is possible for the element in column MAX and row TOTAL. If the row block is first, the value is the maximum of the column totals (41). If the column block is first, the value is the sum of the MAX values (42). Whether to compute a column block before a row block can be a critical decision.

Column Selection

The following discussion assumes that the NOTRANS option has not been specified. When NOTRANS is specified, this section applies to rows rather than columns.

If a COLUMNS statement appears in PROC COMPUTAB, a target column must be selected for the incoming observation. If there is no COLUMNS statement, a new column is added for each observation. When a COLUMNS statement is present and the selection criteria fail to designate a column, the current observation is ignored. Faulty column selection can result in columns or entire tables of 0 s (or missing values if the INITMISS option is specified).

During execution of the input block, when an observation is read, its values are copied into row variables in the program data vector (PDV).

To select columns, use either the column variable names themselves or the special variable _COL_. Use the column names by setting a column variable equal to some nonzero value. The example in the section "Getting Started: COMPUTAB Procedure" on page 430 uses the logical expression COMPDIV $=$ value , and the result is assigned to the corresponding column variable.

```
a = compdiv = 'A';
b = compdiv = 'B';
c = compdiv = 'C';
```

IF statements can also be used to select columns. The following statements are equivalent to the preceding example:

```
if compdiv = 'A' then a = 1;
else if compdiv = 'B' then b = 1;
else if compdiv = 'C' then c = 1;
```

At the end of the input block for each observation, PROC COMPUTAB multiplies numeric input values by any nonzero selector values and adds the result to selected columns. Character values simply overwrite the contents already in the table. If more than one column is selected, the values are added to each of the selected columns.

Use the _COL_ variable to select a column by assigning the column number to it. The COMPUTAB procedure automatically initializes column variables and sets the _COL_ variable to 0 at the start of each execution of the input block. At the end of the input block for each observation, PROC COMPUTAB examines the value of _COL_. If the value is nonzero and within range, the row variable values are added to the CDT cells of the _COL_th column, for example,

```
data rept;
    input div sales cgs;
datalines;
2 106 85
3 120 114
1 83 52
;
proc computab data=rept;
    row div sales cgs;
    columns div1 div2 div3;
    _col_ = div;
run;
```

The code in this example places the first observation (DIV=2) in column 2 (DIV2), the second observation (DIV=3) in column 3 (DIV3), and the third observation (DIV=1) in column 1 (DIV1).

Controlling Execution within Row and Column Blocks

Row names, column names, and the special variables _ROW_ and _COL_ can be used to limit the execution of programming statements to selected rows or columns. A row block operates on all
columns of the table for a specified row unless restricted in some way. Likewise, a column block operates on all rows for a specified column. Use column names or _COL_in a row block to execute programming statements conditionally; use row names or _ROW_in a column block.

For example, consider a simple column block that consists of only one statement:

```
col: total = qtr1 + qtr2 + qtr3 + qtr4;
```

This column block assigns a value to each row in the TOTAL column. As each row participates in the execution of a column block, the following changes occur:

- Its row variable in the program data vector is set to 1.
- The value of _ROW_ is the number of the participating row.
- The value from each column of the row is copied from the COMPUTAB data table to the program data vector.

To avoid calculating TOTAL on particular rows, use row names or _ROW_. For example,

```
col: if sales|cost then total = qtr1 + qtr2 + qtr3 + qtr4;
```

or

```
col: if _row_ < 3 then total = qtr1 + qtr2 + qtr3 + qtr4;
```

Row and column blocks can appear in any order, and rows and columns can be selected in each block.

Program Flow

This section describes in detail the different steps in PROC COMPUTAB execution.

Step 1: Define Report Organization and Set Up the COMPUTAB Data Table

Before the COMPUTAB procedure reads in data or executes programming statements, the columns list from the COLUMNS statements and the rows list from the ROWS statements are used to set up a matrix of all columns and rows in the report. This matrix is called the COMPUTAB data table (CDT). When you define columns and rows of the CDT, the COMPUTAB procedure also sets up corresponding variables in working storage called the program data vector (PDV) for programming statements. Data values reside in the CDT but are copied into the program data vector as they are needed for calculations.

Step 2: Select Input Data with Input Block Programming Statements

The input block copies input observations into rows or columns of the CDT. By default, observations go to columns; if the data set is not transposed (the NOTRANS option is specified), observations go to rows of the report table. The input block consists of all executable statements before any ROWxxxxx: or COLxxxxx: statement label. Use programming statements to perform calculations and select a given observation to be added into the report.

Input Block

The input block is executed once for each observation in the input data set. If there is no input data set, the input block is not executed. The program logic of the input block is as follows:

1. Determine which variables, row or column, are selector variables and which are data variables. Selector variables determine which rows or columns receive values at the end of the block. Data variables contain the values that the selected rows or columns receive. By default, column variables are selector variables and row variables are data variables. If the input data set is not transposed (the NOTRANS option is specified), the roles are reversed.
2. Initialize nonretained program variables (including selector variables) to 0 (or missing if the INITMISS option is specified). Selector variables are temporarily associated with a numeric data item supplied by the procedure. Using these variables to control row and column selection does not affect any other data values.
3. Transfer data from an observation in the data set to data variables in the PDV.
4. Execute the programming statements in the input block by using values from the PDV and storing results in the PDV.
5. Transfer data values from the PDV into the appropriate columns of the CDT. If a selector variable for a row or column has a nonmissing and nonzero value, multiply each PDV value for variables used in the report by the selector variable and add the results to the selected row or column of the CDT.

Step 3: Calculate Final Values by Using Column Blocks and Row Blocks

Column Blocks

A column block is executed once for each row of the CDT. The program logic of a column block is as follows:

1. Indicate the current row by setting the corresponding row variable in the PDV to 1 and the other row variables to missing. Assign the current row number to the special variable _ROW_.
2. Move values from the current row of the CDT to the respective column variables in the PDV.
3. Execute programming statements in the column block by using the column values in the PDV. Here new columns can be calculated and old ones adjusted.
4. Move the values back from the PDV to the current row of the CDT.

Row Blocks

A row block is executed once for each column of the CDT. The program logic of a row block is as follows:

1. Indicate the current column by setting the corresponding column variable in the PDV to 1 and the other column variables to missing. Assign the current column number to the special variable _COL_.
2. Move values from the current column of the CDT to the respective row variables in the PDV.
3. Execute programming statements in the row block by using the row values in the PDV. Here new rows can be calculated and old ones adjusted.
4. Move the values back from the PDV to the current column of the CDT.

See the section "Controlling Execution within Row and Column Blocks" on page 453.
Any number of column blocks and row blocks can be used. Each can include any number of programming statements.

The values of row variables and column variables are determined by the order in which different row-block and column-block programming statements are processed. These values can be modified throughout the COMPUTAB procedure, and final values are printed in the report.

Direct Access to Table Cells

You can insert or retrieve numeric values from specific table cells by using the special reserved name TABLE with row and column subscripts. References to the TABLE have the form

```
TABLE[ row-index, column-index ]
```

where row-index and column-index can be numbers, character literals, numeric variables, character variables, or expressions that produce a number or a name. If an index is numeric, it must be within range; if it is character, it must name a row or column.

References to TABLE elements can appear on either side of an equal sign in an assignment statement and can be used in a SAS expression.

Reserved Words

Certain words are reserved for special use by the COMPUTAB procedure, and using these words as variable names can lead to syntax errors or warnings. They are:

- COLUMN
- COLUMNS
- COL
- COLS
- _COL
- ROW
- ROWS
- _ROW_
- INIT
- _N_
- TABLE

Missing Values

Missing values for variables in programming statements are treated in the same way that missing values are treated in the DATA step; that is, missing values used in expressions propagate missing values to the result. See SAS Language: Reference for more information about missing values.

Missing values in the input data are treated as follows in the COMPUTAB report table. At the end of the input block, either one or more rows or one or more columns can have been selected to receive values from the program data vector (PDV). Numeric data values from variables in the PDV are added into selected report table rows or columns. If a PDV value is missing, the values already in the selected rows or columns for that variable are unchanged by the current observation. Other values from the current observation are added to table values as usual.

OUT= Data Set

The output data set contains the following variables:

- BY variables
- a numeric variable _TYPE_
- a character variable _NAME_
- the column variables from the COMPUTAB data table

The BY variables contain values for the current BY group. For observations in the output data set from consolidation tables, the consolidated BY variables have missing values.

The special variable _TYPE_ is a numeric variable that can have one of three values: 1,2 , or 3. _TYPE_= 1 indicates observations from the normal report table produced for each BY group; _TYPE_= 2 indicates observations from the _TOTAL_ consolidation table; _TYPE_= 3 indicates observations from other consolidation tables. _TYPE_= 2 and _TYPE_= 3 observations have one or more BY variables with missing values.

The special variable _NAME_ is a character variable of length 8 that contains the row or column name associated with the observation from the report table. If the input data set is transposed, _NAME_contains column names; otherwise, _NAME_ contains row names.

If the input data set is transposed, the remaining variables in the output data set are row variables from the report table. They are column variables if the input data set is not transposed.

Examples: COMPUTAB Procedure

Example 9.1: Using Programming Statements

This example illustrates two ways of operating on the same input variables and producing the same tabular report. To simplify the example, no report enhancements are shown.

The manager of a hotel chain wants a report that shows the number of bookings at its hotels in each of four cities, the total number of bookings in the current quarter, and the percentage of the total coming from each location for each quarter of the year. Input observations contain the following variables: REPTDATE (report date), LA (number of bookings in Los Angeles), ATL (number of bookings in Atlanta), CH (number of bookings in Chicago), and NY (number of bookings in New York).

The following DATA step creates the SAS data set BOOKINGS:

```
data bookings;
    input reptdate date9. la atl ch ny;
datalines;
01JAN1989 100 110 120 130
01FEB1989 140 150 160 170
01MAR1989 180 190 200 210
01APR1989 220 230 240 250
01MAY1989 260 270 280 290
01JUN1989 300 310 320 330
01JUL1989 340 350 360 370
01AUG1989 380 390 400 410
01SEP1989 420 430 440 450
010CT1989 460 470 480 490
01NOV1989 500 510 520 530
```

```
01DEC1989 540 550 560 570
;
```

The following PROC COMPUTAB statements select columns by setting _COL_ to an appropriate value. The PCT1, PCT2, PCT3, and PCT4 columns represent the percentage contributed by each city to the total for the quarter. These statements produce Output 9.1.1.

```
proc computab data=bookings cspace=1 cwidth=6;
    columns qtr1 pct1 qtr2 pct2 qtr3 pct3 qtr4 pct4;
    columns qtr1-qtr4 / format=6.;
    columns pct1-pct4 / format=6.2;
    rows la atl ch ny total;
    /* column selection */
    _col_ = qtr( reptdate ) * 2 - 1;
    /* copy qtr column values temporarily into pct columns */
    colcopy:
        pct1 = qtr1;
        pct2 = qtr2;
        pct3 = qtr3;
        pct4 = qtr4;
    /* calculate total row for all columns */
    /* calculate percentages for all rows in pct columns only */
    rowcalc:
        total = la + atl + ch + ny;
        if mod( _col_, 2 ) = O then do;
            la = la / total * 100;
            atl = atl / total * 100;
            ch = ch / total * 100;
            ny = ny / total * 100;
            total = 100;
            end;
run;
```

Output 9.1.1 Quarterly Report of Hotel Bookings

	Year to Date Expenses							
	QTR1	PCT1	QTR2	PCT2	QTR3	PCT3	QTR4	PCT4
LA	420	22.58	780	23.64	1140	24.05	1500	24.27
ATL	450	24.19	810	24.55	1170	24.68	1530	24.76
CH	480	25.81	840	25.45	1200	25.32	1560	25.24
NY	510	27.42	870	26.36	1230	25.95	1590	25.73
TOTAL	1860	100.00	3300	100.00	4740	100.00	6180	100.00

Using the same input data, the next set of statements shows the usefulness of arrays in allowing PROC COMPUTAB to work in two directions at once. Arrays in larger programs can both reduce the amount of program source code and simplify otherwise complex methods of referring to rows and columns. The same report as in Output 9.1.1 is produced.

```
proc computab data=bookings cspace=1 cwidth=6;
    columns qtr1 pct1 qtr2 pct2 qtr3 pct3 qtr4 pct4;
    columns qtr1-qtr4 / format=6.;
    columns pct1-pct4 / format=6.2;
    rows la atl ch ny total;
    array pct[4] pct1-pct4;
    array qt[4] qtr1-qtr4;
    array rowlist[5] la atl ch ny total;
    /* column selection */
    _col_ = qtr(reptdate) * 2 - 1;
    /* copy qtr column values temporarily into pct columns */
    colcopy:
        do i = 1 to 4;
            pct[i] = qt[i];
            end;
    /* calculate total row for all columns */
    /* calculate percentages for all rows in pct columns only */
    rowcalc:
        total = la + atl + ch + ny;
        if mod(_col_,2) = 0 then
            do i = 1 to 5;
                    rowlist[i] = rowlist[i] / total * 100;
            end;
run;
```


Example 9.2: Enhancing a Report

The following example shows how a report can be enhanced from a simple listing to a complex report. The simplest COMPUTAB report is a transposed listing of the data in the SAS data set INCOMREP shown in Output 9.2.1. To produce this output, nothing is specified except the PROC COMPUTAB statement and a TITLE statement.

```
data incomrep;
    length type $ 8;
    input type :$8. date :monyy7.
            sales retdis tcos selling randd
            general admin deprec other taxes;
    format date monyy7.;
```

```
datalines;
BUDGET JAN1989 4600 300 2200 480 110 500 210 14 -8 510
BUDGET FEB1989 4700 330 2300 500 110 500 200 14 0 480
BUDGET MAR1989 4800 360 2600 500 120 600 250 15 2 520
ACTUAL JAN1989 4900 505 2100 430 130 410 200 14 -8 500
ACTUAL FEB1989 5100 480 2400 510 110 390 230 15 2 490
;
title 'Computab Report without Any Specifications';
proc computab data=incomrep;
run;
```


Output 9.2.1 Simple Report

type	Computab Report without Any Specifications				
	COL1	COL2	COL3	COL4	COL5
	BUDGET	BUDGET	BUDGET	ACTUAL	ACTUAL
date	JAN1989	FEB1989	MAR1989	JAN1989	FEB1989
sales	4600.00	4700.00	4800.00	4900.00	5100.00
retdis	300.00	330.00	360.00	505.00	480.00
tcos	2200.00	2300.00	2600.00	2100.00	2400.00
selling	480.00	500.00	500.00	430.00	510.00
randd	110.00	110.00	120.00	130.00	110.00
general	500.00	500.00	600.00	410.00	390.00
admin	210.00	200.00	250.00	200.00	230.00
deprec	14.00	14.00	15.00	14.00	15.00
other	-8.00	0.00	2.00	-8.00	2.00
taxes	510.00	480.00	520.00	500.00	490.00

To exclude the budgeted values from your report, select columns for ACTUAL observations only. To remove unwanted variables, specify the variables you want in a ROWS statement.

```
title 'Column Selection by Month';
proc computab data=incomrep;
    rows sales--other;
    columns jana feba mara;
    mnth = month(date);
    if type = 'ACTUAL';
        jana = mnth = 1;
        feba = mnth = 2;
        mara = mnth = 3;
run;
```

The report is shown in Output 9.2.2.

Output 9.2.2 Report That Uses Column Selection Techniques

To complete the report, compute new rows from existing rows. This is done in a row block (although it can also be done in the input block). Add a new column (QTR1) that accumulates all the actual data. The NOZERO option suppresses the zero column for March. The output produced by these statements is shown in Output 9.2.3.

```
proc computab data=incomrep;
    /* add a new column to be selected */
    /* qtr1 column will be selected several times */
    columns actual1-actual3 qtr1 / nozero;
    array collist[3] actual1-actual3;
    rows sales retdis netsales tcos grosspft selling randd general
        admin deprec operexp operinc other taxblinc taxes netincom;
    if type='ACTUAL';
    i = month(date);
    if i <= 3 then qtr1 = 1;
    collist[i]=1;
    rowcalc:
        if sales = . then return;
        netsales = sales - retdis;
        grosspft = netsales - tcos;
        operexp = selling + randd + general + admin + deprec;
        operinc = grosspft - operexp;
        taxblinc = operinc + other;
        netincom = taxblinc - taxes;
run;
```

Output 9.2.3 Report That Uses Techniques to Compute New Rows

Now that you have all the numbers calculated, add specifications to improve the report's appearance. Specify titles, row and column labels, and formats. The report produced by these statements is shown in Output 9.2.4.

```
/* now get the report to look the way you want it */
title 'Pro Forma Income Statement';
title2 'XYZ Computer Services, Inc.';
title3 'Period to Date Actual';
title4 'Amounts in Thousands';
proc computab data=incomrep;
    columns actual1-actual3 qtr1 /
            nozero f=comma7. +3 ' ';
    array collist[3] actual1-actual3;
    columns actual1 / 'Jan';
    columns actual2 / 'Feb';
    columns actual3 / 'Mar';
    columns qtr1 / 'Total' 'Qtr 1';
    rows sales / , '
                            'Gross Sales ';
    rows retdis / 'Less Returns & Discounts';
    rows netsales / 'Net Sales' +3 ol;
    rows tcos / ' ,
    'Total Cost of Sales';
    rows grosspft / ' '
            'Gross Profit';
    rows selling / ' '
            'Operating Expenses:'
            ' Selling';
```

```
rows randd / ' R & D';
rows general / +3;
rows admin / , Administrative';
rows deprec / , Depreciation' ul;
rows operexp / ' , skip;
rows operinc / 'Operating Income';
rows other / 'Other Income/-Expense' ul;
rows taxblinc / 'Taxable Income';
rows taxes / 'Income Taxes' ul;
rows netincom / , Net Income' dul;
if type = 'ACTUAL';
i = month( date );
collist[i] = 1;
colcalc:
    qtr1 = actual1 + actual1 + actual3;
rowcalc:
        if sales = . then return;
    netsales = sales - retdis;
    grosspft = netsales - tcos;
    operexp = selling + randd + general + admin + deprec;
    operinc = grosspft - operexp;
    taxblinc = operinc + other;
    netincom = taxblinc - taxes;
run;
```

Output 9.2.4 Specifying Titles, Row and Column Labels, and Formats

Pro Forma Income Statement XYZ Computer Services, Inc. Period to Date Actual Amounts in Thousands			
	Jan	Feb	Total Qtr 1
Gross Sales	4,900	5,100	10,000
Less Returns \& Discounts	505	480	985
Net Sales	4,395	4,620	9,015
Total Cost of Sales	2,100	2,400	4,500
Gross Profit	2,295	2,220	4, 515
Operating Expenses:			
Selling	430	510	940
R \& D	130	110	240
GENERAL	410	390	800
Administrative	200	230	430
Depreciation	14	15	29
	1,184	1,255	2,439
Operating Income	1,111	965	2,076
Other Income/-Expense	-8	2	-6
Taxable Income	1,103	967	2,070
Income Taxes	500	490	990
Net Income	603	477	1,080

Example 9.3: Comparison of Actual and Budget

This example shows a more complex report that compares the actual data with the budgeted values. The same input data as in the previous example is used.

The report produced by these statements is shown in Output 9.3.1. The report shows the values for the current month and the year-to-date totals for budgeted amounts, actual amounts, and the actuals as a percentage of the budgeted amounts. The data have the values for January and February. Therefore, the CURMO variable (current month) in the RETAIN statement is set to 2 . The values for the observations where the month of the year is 2 (February) are accumulated for the current month values. The year-to-date values are accumulated from those observations where the month of the year is less than or equal to 2 (January and February).

```
data incomrep;
    length type $ 8;
    input type :$8. date :monyy7.
            sales retdis tcos selling randd
            general admin deprec other taxes;
    format date monyy7.;
datalines;
BUDGET JAN1989 4600 300 2200 480 110 500 210 14 -8 510
BUDGET FEB1989 4700 330 2300 500 110 500 200 14 0 480
BUDGET MAR1989 4800 360 2600 500 120 600 250 15 2 520
ACTUAL JAN1989 4900 505 2100 430 130 410 200 14 -8 500
ACTUAL FEB1989 5100 480 2400 510 110 390 230 15 2 490
;
title 'Pro Forma Income Statement';
title2 'XYZ Computer Services, Inc.';
title3 'Budget Analysis';
title4 'Amounts in Thousands';
options linesize=96;
proc computab data=incomrep;
    columns cmbud cmact cmpct ytdbud ytdact ytdpct /
            zero=' ';
columns cmbud--cmpct / mtitle='- Current Month: February -';
columns ytdbud--ytdpct / mtitle='- Year To Date -';
columns cmbud ytdbud / 'Budget' f=comma6.;
columns cmact ytdact / 'Actual' f=comma6.;
columns cmpct ytdpct / '% ' f=7.2;
columns cmbud--ytdpct / '-';
columns ytdbud / _titles_;
retain curmo 2; /* current month: February */
rows sales / ' '
                    'Gross Sales';
rows retdis / 'Less Returns & Discounts';
rows netsales / 'Net Sales' +3 ol;
rows tcos / ' ,
                    'Total Cost of Sales';
rows grosspft / ' '
                            'Gross Profit' +3;
rows selling / ' '
                    'Operating Expenses:'
                    ' Selling';
rows randd / ' R & D';
rows general / +3;
rows admin / , Administrative';
rows deprec / , Depreciation' ul;
rows operexp / , ';
rows operinc / 'Operating Income' ol;
rows other / 'Other Income/-Expense' ul;
rows taxblinc / 'Taxable Income';
rows taxes / 'Income Taxes' ul;
rows netincom / , Net Income' dul;
```

```
    cmbud = type = 'BUDGET' & month(date) = curmo;
    cmact = type = 'ACTUAL' & month(date) = curmo;
    ytdbud = type = 'BUDGET' & month(date) <= curmo;
    ytdact = type = 'ACTUAL' & month(date) <= curmo;
    rowcalc:
    if cmpct | ytdpct then return;
    netsales = sales - retdis;
    grosspft = netsales - tcos;
    operexp = selling + randd + general + admin + deprec;
    operinc = grosspft - operexp;
    taxblinc = operinc + other;
    netincom = taxblinc - taxes;
colpct:
    if cmbud & cmact then cmpct = 100 * cmact / cmbud;
    if ytdbud & ytdact then ytdpct = 100 * ytdact / ytdbud;
run;
```

Output 9.3.1 Report That Uses Specifications to Tailor Output

Example 9.4: Consolidations

This example consolidates product tables by region and region tables by corporate division. Output 9.4.1 shows the North Central and Northeast regional summaries for the Equipment division for the first quarter. Output 9.4.2 shows the profit summary for the Equipment division. Similar tables for the Publishing division are produced but not shown here.

```
data product;
    input pcode div region month sold revenue recd cost;
datalines;
1 1 1 1 56 5600 29 2465
1 1 1 1 2 13 1300 30 2550
1 1 1 1 3 17 1700 65 5525
2 1 1 1 2 2 240 50 4900
2 1 1 2 82 9840 17 1666
... more lines ...
proc format;
    value divfmt 1='Equipment'
                    2='Publishing';
    value regfmt 1='North Central'
                    2='Northeast'
                    3='South'
                    4='West';
run;
proc sort data=product;
    by div region pcode;
run;
title1 ' XYZ Development Corporation ';
title2 ' Corporate Headquarters: New York, NY ';
title3 ' Profit Summary ';
title4 ' ';
options linesize=96;
proc computab data=product sumonly;
    by div region pcode;
    sumby _total_ div region;
    format div divfmt.;
    format region regfmt.;
    label div = 'DIVISION';
    /* specify order of columns and column titles */
    columns jan feb mar qtr1 /
                mtitle='- first quarter -' ' ' nozero;
    columns apr may jun qtr2 /
                                    mtitle='- second quarter -' ' ' nozero;
```

```
    columns jul aug sep qtr3 /
            mtitle='- third quarter -' ' ' nozero;
columns oct nov dec qtr4 /
    mtitle='- fourth quarter -' ' ' nozero;
column jan / ' , 'January' '=';
column feb / ' ' 'February' '=';
column mar / ' , 'March' '=';
column qtr1 / 'Quarter' 'Summary' '=';
column apr / ' ' 'April' '=' _page_;
column may / ' ' 'May' '=';
column jun / ' ' 'June' '=';
column qtr2 / 'Quarter' 'Summary' '=';
column jul / ' ' 'July' '=' _page_;
column aug / ' ' 'August' '=';
column sep / ' ' 'September' '=';
column qtr3 / 'Quarter' 'Summary' '=';
column oct / ' ' 'October' '=' _page_;
column nov / ' ' 'November' '=';
column dec / ' ' 'December' '=';
column qtr4 / 'Quarter' 'Summary' '=';
/* specify order of rows and row titles */
row sold / ' ' 'Number Sold' f=8.;
row revenue / ' ' 'Sales Revenue';
row recd / ' ' 'Number Received' f=8.;
row cost / ' ' 'Cost of' 'Items Received';
row profit / ' ' 'Profit' 'Within Period' ol;
row pctmarg / , ' 'Profit Margin' dul;
/* select column for appropriate month */
_col_ = month + ceil( month / 3 ) - 1;
/* calculate quarterly summary columns */
colcalc:
    qtr1 = jan + feb + mar;
    qtr2 = apr + may + jun;
    qtr3 = jul + aug + sep;
    qtr4 = oct + nov + dec;
/* calculate profit rows */
    rowcalc:
        profit = revenue - cost;
        if cost > 0 then pctmarg = profit / cost * 100;
run;
```

Output 9.4.1 Summary by Regions for the Equipment Division

Output 9.4.1 continued

Output 9.4.2 Profit Summary for the Equipment Division

Output 9.4.3 shows the consolidation report of profit summary over both divisions and regions.

Output 9.4.3 Profit Summary

Example 9.5: Creating an Output Data Set

This example uses data and reports similar to those in Example 9.3 to illustrate the creation of an output data set.

```
data product;
    input pcode div region month sold revenue recd cost;
datalines;
1 1 1 1 56 5600 29 2465
1 1 1 2 13 1300 30 2550
1 11 1 3 17 1700 65 5525
2 11 1 1 2 240 50 4900
2 1 1 2 82 9840 17 1666
... more lines ...
proc sort data=product out=sorted;
    by div region;
run;
```

```
/* create data set, profit */
proc computab data=sorted notrans out=profit noprint;
    by div region;
    sumby div;
    /* specify order of rows and row titles */
    row jan feb mar qtr1;
    row apr may jun qtr2;
    row jul aug sep qtr3;
    row oct nov dec qtr4;
    /* specify order of columns and column titles */
    columns sold revenue recd cost profit pctmarg;
    /* select row for appropriate month */
    _row_ = month + ceil( month / 3 ) - 1;
    /* calculate quarterly summary rows */
    rowcalc:
        qtr1 = jan + feb + mar;
        qtr2 = apr + may + jun;
        qtr3 = jul + aug + sep;
        qtr4 = oct + nov + dec;
    /* calculate profit columns */
    colcalc:
        profit = revenue - cost;
        if cost > 0 then pctmarg = profit / cost * 100;
run;
/* make a partial listing of the output data set */
options linesize=96;
proc print data=profit(obs=10) noobs;
run;
```

Because the NOTRANS option is specified, column names become variables in the data set. REGION has missing values in the output data set for observations associated with consolidation tables. The output data set PROFIT, in conjunction with the option NOPRINT, illustrates how you can use the computational features of PROC COMPUTAB for creating additional rows and columns as in a spreadsheet without producing a report. Output 9.5 .1 shows a partial listing of the output data set PROFIT.

Output 9.5.1 Partial Listing of the PROFIT Data Set

div	region	_TYPE_		Devel Hea Prof	nt Corpo arters: N Summary	ion York,		PROFIT	PCTMARG
			_NAME	sold	revenue	recd	cost		
1	1	1	JAN	198	22090	255	24368	-2278	-9.348
1	1	1	FEB	223	26830	217	20104	6726	33.456
1	1	1	MAR	119	14020	210	19405	-5385	-27.751
1	1	1	QTR1	540	62940	682	63877	-937	-1.467
1	1	1	APR	82	9860	162	16374	-6514	-39.783
1	1	1	MAY	180	21330	67	6325	15005	237.233
1	1	1	JUN	183	21060	124	12333	8727	70.761
1	1	1	QTR2	445	52250	353	35032	17218	49.149
1	1	1	JUL	194	23210	99	10310	12900	125.121
1	1	1	AUG	153	17890	164	16704	1186	7.100

Example 9.6: A What-If Market Analysis

PROC COMPUTAB can be used with other SAS/ETS procedures and with macros to implement commonly needed decision support tools for financial and marketing analysis.

The following input data set reads quarterly sales figures:

```
data market;
    input date :yyq6. units @@;
datalines;
... more lines ...
```

The following statements illustrate how PROC FORECAST makes a total market forecast for the next four quarters:

```
/* forecast the total number of units to be */
/* sold in the next four quarters */
proc forecast out=outcome trend=2
    interval=qtr lead=4;
    id date;
    var units;
run;
```

The macros WHATIF and SHOW build a report table and provide the flexibility of examining alternate what-if situations. The row and column calculations of PROC COMPUTAB compute the income statement. With macros stored in a macro library, the only statements required with PROC COMPUTAB are macro invocations and TITLE statements.

```
/* set up rows and columns of report and initialize */
/* market share and program constants */
%macro whatif(mktshr=,price=,ucost=,taxrate=,numshar=,overhead=);
    columns mar / ' , 'March';
    columns jun / , , 'June';
    columns sep / , ' 'September';
    columns dec / ' , 'December';
    columns total / 'Calculated' 'Total';
    rows mktshr / 'Market Share' f=5.2;
    rows tunits / 'Market Forecast';
    rows units / 'Items Sold';
    rows sales / 'Sales';
    rows cost / 'Cost of Goods';
    rows ovhd / 'Overhead';
    rows gprof / 'Gross Profit';
    rows tax / 'Tax';
    rows pat / 'Profit After Tax';
    rows earn / 'Earnings per Share';
    rows mktshr--earn / skip;
    rows sales--earn / f=dollar12.2;
    rows tunits units / f=comma12.2;
    /* initialize market share values */
    init mktshr &mktshr;
    /* define constants */
    retain price &price ucost &ucost taxrate &taxrate
        numshar &numshar;
    /* retain overhead and sales from previous quarter */
    retain prevovhd &overhead prevsale;
    %mend whatif;
/* perform calculations and print the specified rows */
%macro show(rows);
    /* initialize list of row names */
    %let row1 = mktshr;
    %let row2 = tunits;
    %let row3 = units;
    %let row4 = sales;
    %let row5 = cost;
    %let row6 = ovhd;
    %let row7 = gprof;
    %let row8 = tax;
    %let row9 = pat;
    %let row10 = earn;
    /* find parameter row names in list and eliminate */
    /* them from the list of noprint rows */
    %let n = 1;
```

```
%let word = %scan(&rows,&n);
%do %while(&word NE );
    %let i = 1;
    %let row11 = &word;
    %do %while(&&row&i NE &word);
            %let i = %eval(&i+1);
            %end;
    %if &i<11 %then %let row&i = ;
    %let n = %eval(&n+1);
    %let word = %scan(&rows,&n);
%end;
rows &row1 &row2 &row3 &row4 &row5 &row6 &row7
            &row8 &row9 &row10 dummy / noprint;
/* select column using lead values from proc forecast */
mar = _lead_ = 1;
jun = _lead_ = 2;
sep = _lead_ = 3;
dec = _lead_ = 4;
rowreln:;
    /* inter-relationships */
    share = round( mktshr, 0.01 );
    tunits = units;
    units = share * tunits;
    sales = units * price;
    cost = units * ucost;
    /* calculate overhead */
    if mar then prevsale = sales;
    if sales > prevsale
            then ovhd = prevovhd + . 05 * ( sales - prevsale );
            else ovhd = prevovhd;
    prevovhd = ovhd;
    prevsale = sales;
    gprof = sales - cost - ovhd;
    tax = gprof * taxrate;
    pat = gprof - tax;
    earn = pat / numshar;
coltot:;
    if mktshr
        then total = ( mar + jun + sep + dec ) / 4;
        else total = mar + jun + sep + dec;
%mend show;
run;
```

The following PROC COMPUTAB statements use the PROC FORECAST output data set with invocations of the macros defined previously to perform a what-if analysis of the predicted income statement. The report is shown in Output 9.6.1.

```
title1 'Fleet Footwear, Inc.';
```

```
title2 'Marketing Analysis Income Statement';
title3 'Based on Forecasted Unit Sales';
title4 'All Values Shown';
options linesize=96;
proc computab data=outcome cwidth=12;
    %whatif(mktshr=.02 . 07 . 15 . 25,price=38.00,
                    ucost=20.00,taxrate=.48, numshar=15000,overhead=5000);
    %show(mktshr tunits units sales cost ovhd gprof tax pat earn);
run;
```

Output 9.6.1 PROC COMPUTAB Report That Uses Macro Invocations

Fleet Footwear, Inc. Marketing Analysis Income Statement Based on Forecasted Unit Sales All Values Shown					
Market Share	$\begin{array}{r} \text { March } \\ 0.02 \end{array}$	$\begin{aligned} & \text { June } \\ & 0.07 \end{aligned}$	September 0.15	December 0.25	Calculated Total 0.12
Market Forecast	23,663.94	24,169.61	24,675.27	25,180.93	97,689.75
Items Sold	473.28	1,691.87	3,701.29	6,295.23	12,161.67
Sales	\$17,984.60	\$64,291.15	\$140,649.03	\$239,218.83	\$462,143.61
Cost of Goods	\$9,465.58	\$33,837.45	\$74,025.80	\$125,904.65	\$243,233.48
Overhead	\$5,000.00	\$7,315.33	\$11,133.22	\$16,061.71	\$39,510.26
Gross Profit	\$3,519. 02	\$23,138.38	\$55,490.00	\$97,252.47	\$179,399.87
Tax	\$1,689.13	\$11,106.42	\$26,635. 20	\$46,681.19	\$86,111.94
Profit After Tax	\$1,829.89	\$12,031.96	\$28,854.80	\$50,571.28	\$93,287.93
Earnings per Share	\$0.12	\$0.80	\$1.92	\$3.37	\$6.22

The following statements produce a similar report for different values of market share and unit costs. The report in Output 9.6.2 displays the values for the market share, market forecast, sales, after-tax profit, and earnings per share.

```
title3 'Revised';
title4 'Selected Values Shown';
options linesize=96;
proc computab data=outcome cwidth=12;
```

```
    %whatif(mktshr=.01 . 06 . 12 . 20,price=38.00,
    ucost=23.00,taxrate=.48,numshar=15000,overhead=5000);
    %show(mktshr tunits sales pat earn);
run;
```

Output 9.6.2 Report That Uses Macro Invocations for Selected Values

Fleet Footwear, Inc. Marketing Analysis Income Statement Revised Selected Values Shown					
					Calculated
	March	June	September	December	Total
Market Share	0.01	0.06	0.12	0.20	0.10
Market Forecast	23,663.94	24,169.61	24,675.27	25,180.93	97,689.75
Sales	\$8, 992. 30	\$55,106. 70	\$112,519.22	\$191, 375.06	\$367, 993.28
Profit After Tax	\$-754.21	\$7,512.40	\$17,804.35	\$31, 940.30	\$56,502.84
Earnings per Share	\$-0.05	\$0. 50	\$1.19	\$2.13	\$3.77

Example 9.7: Cash Flows

The COMPUTAB procedure can be used to model cash flows from one time period to the next. The RETAIN statement is useful for enabling a row or column to contribute one of its values to its successor. Financial functions such as IRR (internal rate of return) and NPV (net present value) can be used on PROC COMPUTAB table values to provide a more comprehensive report. The following statements produce Output 9.7.1:

```
data cashflow;
    input date date9. netinc depr borrow invest tax div adv ;
datalines;
30MAR1982 65 42 32 126 43 51 41
30JUN1982 68 47 32 144 45 54 46
30SEP1982 70 49 30 148 46 55 47
30DEC1982 73 49 30 148 48 55 47
;
title1 'Blue Sky Endeavors';
title2 'Financial Summary';
title4 '(Dollar Figures in Thousands)';
proc computab data=cashflow;
    cols qtr1 qtr2 qtr3 qtr4 / 'Quarter' f=7.1;
    col qtr1 / 'One';
```

```
col qtr2 / 'Two';
col qtr3 / 'Three';
col qtr4 / 'Four';
row begcash / 'Beginning Cash';
row netinc / 'Income' ' Net income';
row depr / 'Depreciation';
row borrow;
row subtot1 / 'Subtotal';
row invest / 'Expenditures' , Investment';
row tax / 'Taxes';
row div / 'Dividend';
row adv / 'Advertising';
row subtot2 / 'Subtotal';
row cashflow/ skip;
row irret / 'Internal Rate' 'of Return' zero=' ';
rows depr borrow subtot1 tax div adv subtot2 / +3;
retain cashin -5;
_col_ = qtr( date );
rowblock:
    subtot1 = netinc + depr + borrow;
    subtot2 = tax + div + adv;
    begcash = cashin;
    cashflow = begcash + subtot1 - subtot2;
    irret = cashflow;
    cashin = cashflow;
colblock:
    if begcash then cashin = qtr1;
    if irret then do;
        temp = irr( 4, cashin, qtr1, qtr2, qtr3, qtr4 );
        qtr1 = temp;
        qtr2 = 0; qtr3 = 0; qtr4 = 0;
        end;
run;
```

Output 9.7.1 Report That Uses a RETAIN Statement and the IRR Financial Function

	Blue Sky Endeavors Financial Summary			
	Quarter	Quarter	Quarter	Quarter
	One	Two	Three	Four
Beginning Cash	-5.0	-1.0	1.0	2.0
Income				
Net income	65.0	68.0	70.0	73.0
Depreciation	42.0	47.0	49.0	49.0
BORROW	32.0	32.0	30.0	30.0
Subtotal	139.0	147.0	149.0	152.0
Expenditures				
Investment	126.0	144.0	148.0	148.0
Taxes	43.0	45.0	46.0	48.0
Dividend	51.0	54.0	55.0	55.0
Advertising	41.0	46.0	47.0	47.0
Subtotal	135.0	145.0	148.0	150.0
CASHFLOW	-1.0	1.0	2.0	4.0
Internal Rate				
of Return	20.9			

Chapter 10

The COUNTREG Procedure

Contents

Overview: COUNTREG Procedure . 484
Getting Started: COUNTREG Procedure . 485
Syntax: COUNTREG Procedure . 487
Functional Summary . 488
PROC COUNTREG Statement . 489
BOUNDS Statement . 490
BY Statement . 491
INIT Statement . 491
MODEL Statement . 491
OUTPUT Statement . 493
RESTRICT Statement . 493
ZEROMODEL Statement . 494
Details: COUNTREG Procedure . 495
Missing Values . 495
Poisson Regression . 495
Negative Binomial Regression . 496
Zero-Inflated Count Regression Overview 499
Zero-Inflated Poisson Regression . 500
Zero-Inflated Negative Binomial Regression 501
Computational Resources . 504
Nonlinear Optimization Options . 505
Covariance Matrix Types . 505
Displayed Output . 505
OUTPUT OUT= Data Set . 507
OUTEST= Data Set . 508
ODS Table Names . 508
Examples: COUNTREG Procedure . 509
Example 10.1: Basic Models . 509
Example 10.2: ZIP and ZINB Models for Data Exhibiting Extra Zeros . . . 511
References . 517

Overview: COUNTREG Procedure

The COUNTREG (count regression) procedure analyzes regression models in which the dependent variable takes nonnegative integer or count values. The dependent variable is usually an event count, which refers to the number of times an event occurs. For example, an event count might represent the number of ship accidents per year for a given fleet. In count regression, the conditional mean $E\left(y_{i} \mid \mathbf{x}_{i}\right)$ of the dependent variable, y_{i}, is assumed to be a function of a vector of covariates, \mathbf{x}_{i}.

The Poisson (log-linear) regression model is the most basic model that explicitly takes into account the nonnegative integer-valued aspect of the outcome. With this model, the probability of an event count is determined by a Poisson distribution, where the conditional mean of the distribution is a function of a vector of covariates. However, the basic Poisson regression model is limited because it forces the conditional mean of the outcome to equal the conditional variance. This assumption is often violated in real-life data. Negative binomial regression is an extension of Poisson regression in which the conditional variance may exceed the conditional mean. Also, an often encountered characteristic of count data is that the number of zeros in the sample exceeds the number of zeros predicted by either the Poisson or negative binomial model. Zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models explicitly model the production of zero counts to account for excess zeros and also enable the conditional variance of the outcome to differ from the conditional mean.

Under zero-inflated models, additional zeros occur with probability φ_{i}, which is determined by a separate model, $\varphi_{i}=F\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)$, where F is the normal or logistic distribution function resulting in a probit or logistic model, and \mathbf{z}_{i} is a set of covariates.

PROC COUNTREG supports the following models for count data:

- Poisson regression
- negative binomial regression with quadratic (NEGBIN2) and linear (NEGBIN1) variance functions (Cameron and Trivedi 1986)
- zero-inflated Poisson (ZIP) model (Lambert 1992)
- zero-inflated negative binomial (ZINB) model

In recent years, count data models have been used extensively in economics, political science, and sociology. For example, Hausman, Hall, and Griliches (1984) examine the effects of R\&D expenditures on the number of patents received by U.S. companies. Cameron and Trivedi (1986) study factors affecting the number of doctor visits. Greene (1994) studies the number of derogatory reports to a credit reporting agency for a group of credit card applicants. As a final example, Long (1997) analyzes the number of doctoral publications in the final three years of Ph.D. studies.

The COUNTREG procedure uses maximum likelihood estimation. When a model with a dependent count variable is estimated using linear ordinary least squares (OLS) regression, the count nature of the dependent variable is ignored. This leads to negative predicted counts and to parameter estimates with undesirable properties in terms of statistical efficiency, consistency, and unbiasedness unless
the mean of the counts is high, in which case the Gaussian approximation and linear regression may be satisfactory.

Getting Started: COUNTREG Procedure

The COUNTREG procedure is similar in use to other regression model procedures in the SAS System. For example, the following statements are used to estimate a Poisson regression model:

```
proc countreg data=one ;
    model y = x / dist=poisson ;
run;
```

The response variable y is numeric and has nonnegative integer values. To allow for variance greater than the mean, specify the dist=negbin option to fit the negative binomial model instead of the Poisson.

The following example illustrates the use of PROC COUNTREG. The data are taken from Long (1997). This study examines how factors such as gender (fem), marital status (mar), number of young children (kid5), prestige of the graduate program (phd), and number of articles published by a scientist's mentor (ment) affect the number of articles (art) published by the scientist.

The first 10 observations are shown in Figure 10.1.
Figure 10.1 Article Count Data

Obs	art	fem	mar	kid5	phd	ment
2	0	0	1	2	1.38000	8.0000
3	4	0	0	0	4.29000	7.0000
4	1	0	1	1	3.59000	19.0000
5	1	0	1	0	1.81000	0.0000
6	1	0	1	1	3.59000	6.0000
7	0	0	1	1	2.12000	10.0000
8	0	0	1	0	4.29000	2.0000
9	3	0	1	2	2.58000	2.0000
10	3	0	1	1	1.80000	4.0000

The following SAS statements estimate the Poisson regression model:

```
/*-- Poisson Regression --*/
proc countreg data=long97data;
    model art = fem mar kid5 phd ment / dist=poisson method=quanew;
run;
```

The Model Fit Summary, shown in Figure 10.2, lists several details about the model. By default, the COUNTREG procedure uses the Newton-Raphson optimization technique. The maximum log-
likelihood value is shown, as well as two information measures, Akaike's information criterion (AIC) and Schwarz's Bayesian information criterion (SBC), which can be used to compare competing Poisson models. Smaller values of these criteria indicate better models.

Figure 10.2 Estimation Summary Table for a Poisson Regression

The COUNTREG Procedure	
Model Fit Summary	
Dependent Variable	art
Number of Observations	915
Data Set	WORK. LONG97DATA
Model	Poisson
Log Likelihood	-1651
Maximum Absolute Gradient	0.00181
Number of Iterations	133
Optimization Method	Quasi-Newton
AIC	3314
SBC	3343

The parameter estimates of the model and their standard errors are shown in Figure 10.3. All covariates are significant predictors of the number of articles, except for the prestige of the program (phd), which has a p-value of 0.6271 .

Figure 10.3 Parameter Estimates of Poisson Regression

Parameter	DF	Parameter Estimates			Approx	
			Standard			
		Estimate	Error	t Value	Pr > \|t	
Intercept	1	0.304617	0.102982	2.96	0.0031	
fem	1	-0.224594	0.054614	-4.11	$<.0001$	
mar	1	0.155243	0.061375	2.53	0.0114	
kid5	1	-0.184883	0.040127	-4.61	<. 0001	
phd	1	0.012823	0.026397	0.49	0.6271	
ment	1	0.025543	0.002006	12.73	<. 0001	

The following statements fit the negative binomial model. While the Poisson model requires that the conditional mean and conditional variance be equal, the negative binomial model allows for overdispersion; that is, the conditional variance may exceed the conditional mean.

```
/*-- Negative Binomial Regression --*/
proc countreg data=long97data;
    model art = fem mar kid5 phd ment / dist=negbin(p=2) method=quanew;
run;
```

The fit summary is shown in Figure 10.4, and parameter estimates are listed in Figure 10.5.

Figure 10.4 Estimation Summary Table for a Negative Binomial Regression

Figure 10.5 Parameter Estimates of Negative Binomial Regression

Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.256144	0.138560	1.85	0.0645
fem	1	-0.216418	0.072672	-2.98	0.0029
mar	1	0.150489	0.082106	1.83	0.0668
kid5	1	-0.176415	0.053060	-3.32	0.0009
phd	1	0.015271	0.036040	0.42	0.6718
ment	1	0.029082	0.003470	8.38	$<.0001$
_Alpha	1	0.441620	0.052967	8.34	$<.0001$

The parameter estimate for _Alpha of 0.4416 is an estimate of the dispersion parameter in the negative binomial distribution. A t test for the hypothesis $H_{0}: \alpha=0$ is provided. It is highly significant, indicating overdispersion ($p<0.0001$).

The null hypothesis $H_{0}: \alpha=0$ can be also tested against the alternative $\alpha>0$ by using the likelihood ratio test, as described by Cameron and Trivedi (1998, pp. 45, 77-78). The likelihood ratio test statistic is equal to $-2\left(\mathcal{L}_{P}-\mathcal{L}_{N B}\right)=-2(-1651+1561)=180$, which is highly significant, providing strong evidence of overdispersion.

Syntax: COUNTREG Procedure

The COUNTREG procedure is controlled by the following statements:

```
PROC COUNTREG options;
    BOUNDS bound1 [, bound2 ...];
    BY variables;
    INIT initvalue1 [, initvalue2 ...];
    MODEL dependent variable = regressors / options ;
    OUTPUT options;
    RESTRICT restriction1 [, restriction2 ...];
    ZEROMODEL dependent variable ~ zero-inflated regressors / options ;
```

There can only be one MODEL statement. The ZEROMODEL statement, if used, must appear after the MODEL statement.

Functional Summary

The statements and options used with the COUNTREG procedure are summarized in the following table.

Table 10.1 COUNTREG Functional Summary

Description	Statement	Option
Data Set Options		
specify the input data set	COUNTREG	DATA=
write parameter estimates to an output data set	COUNTREG	OUTEST=
write estimates of $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ and $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$ to an output data set	OUTPUT	OUT=

Declaring the Role of Variables

specify BY-group processing
BY

Printing Control Options

print the correlation matrix of the estimates print the covariance matrix of the estimates print a summary iteration listing suppress the normal printed output request all printing options

MODEL	CORRB
MODEL	COVB
MODEL	ITPRINT
COUNTREG	NOPRINT
MODEL	PRINTALL

Options to Control the Optimization Process specify maximum number of iterations allowed select the iterative minimization method to use set boundary restrictions on parameters set initial values for parameters set linear restrictions on parameters specify other optimization options

MODEL	MAXITER=	
COUNTREG	METHOD=	
BOUNDS		
INIT		
RESTRICT		
COUNTREG	see Chapter	6,
	"Nonlinear mization Methods,"	

Description	Statement	Option

Model Estimation Options
specify the type of model
specify the type of model
specify the type of covariance matrix
suppress the intercept parameter
specify the offset variable
specify the zero-inflated offset variable
specify the zero-inflated link function

Output Control Options

include covariances in the OUTEST= data set
output probability of response variable taking the current value
output expected value of response variable
output estimates of XBeta $=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$
output estimates of ZGamma $=\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$
output probability of response variable taking a
zero value as a result of the zero-generating process

MODEL	DIST=
COUNTREG	DIST=
MODEL	COVEST=
MODEL	NOINT
MODEL	OFFSET=
ZEROMODEL	OFFSET=
ZEROMODEL	LINK=

COUNTREG COVOUT
OUTPUT PROB=

OUTPUT PRED=
OUTPUT $\mathrm{XBETA}=$
OUTPUT ZGAMMA=
OUTPUT PROBZERO=

PROC COUNTREG Statement

PROC COUNTREG options ;
The following options can be used in the PROC COUNTREG statement:

Data Set Options

DATA=SAS-data-set

specifies the input SAS data set. If the DATA= option is not specified, PROC COUNTREG uses the most recently created SAS data set.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to an output data set.

COVOUT

writes the covariance matrix for the parameter estimates to the OUTEST= data set. This
option is valid only if the OUTEST= option is specified.

Printing Options

NOPRINT

suppresses all printed output.

Estimation Control Options

COVEST=value

The COVEST= option specifies the type of covariance matrix of the parameter estimates. The quasi-maximum likelihood estimates are computed with COVEST=QML. The default is COVEST=HESSIAN. The supported covariance types are as follows:

OP specifies the covariance from the outer product matrix.
HESSIAN specifies the covariance from the Hessian matrix.
QML specifies the covariance from the outer product and Hessian matrices.

Options to Control the Optimization Process

PROC COUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. All the NLO options are available. For details, see Chapter 6, "Nonlinear Optimization Methods." In addition, the following option is supported on the PROC COUNTREG statement:

METHOD=value

specifies the iterative minimization method to use. The default is METHOD=NRA.
QN specifies the quasi-Newton method.
NRA specifies the Newton-Raphson method.
TR specifies the trust region method.

BOUNDS Statement

```
BOUNDS bound1 [, bound2 ...];
```

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS statement constraints refer to the parameters estimated by the COUNTREG procedure. You can specify any number of BOUNDS statements.

Each bound is composed of parameter names, constants, and inequality operators:
item operator item [operator item [operator item ...]]

Each item is a constant, a parameter name, or a list of parameter names. Each operator is ' $<$ ', ' $>$ ', ' $<=$ ', or ' $>=$ '. Parameter names are as shown in the ESTIMATE column of the "Parameter Estimates" table.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints; however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See the section "RESTRICT Statement" on page 493 as well.

The following BOUNDS statement constrains the estimates of the parameter for z to be negative, the parameters for x 1 through x 10 to be between zero and one, and the parameter for x 1 in the zeroinflation model to be less than one. The following example illustrates the use of parameter lists to specify boundary constraints:

```
bounds z < 0,
    0 < x1-x10 < 1,
    Inf_x1 < 1;
```


BY Statement

BY variables ;

A BY statement can be used with PROC COUNTREG to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the input data set should be sorted in order of the BY variables.

INIT Statement

INIT initvalue1 [, initvalue2 ...] ;
The INIT statement is used to set initial values for parameters in the optimization.
Each initvalue is written as a parameter or parameter list, followed by an optional equal sign (=), followed by a number:
parameter [=] number
Parameter names are as shown in the ESTIMATE column of the "Parameter Estimates" table.

MODEL Statement

MODEL dependent = regressors / options ;
The MODEL statement specifies the dependent variable and independent regressor variables for the regression model. The dependent count variable should take on only nonnegative integer values in
the input data set. PROC COUNTREG rounds any positive noninteger count values to the nearest integer. PROC COUNTREG discards any observations with a negative count.

Only one MODEL statement can be specified. The following options can be used in the MODEL statement after a slash (/).

DIST=value, $\mathrm{D}=$ value

specifies a type of model to be analyzed. If you specify this option in both the MODEL statement and the PROC COUNTREG statement, then only the value in the MODEL statement is used. The supported model types as follows:

POISSON IP Poisson regression model
$\operatorname{NEGBIN}(\mathrm{P}=1) \quad$ negative binomial regression model with a linear variance function
NEGBIN $(\mathrm{P}=2)$ | NEGBIN negative binomial regression model with a quadratic variance function

ZIPOISSON I ZIP zero-inflated Poisson regression
ZINEGBIN I ZINB zero-inflated negative binomial regression

NOINT

suppresses the intercept parameter.

OFFSET=variable

specifies a variable in the input data set to be used as an offset variable. The offset variable appears as a covariate in the model with its parameter restricted to 1 . The offset variable cannot be the response variable, the zero-inflation offset variable (if any), or one of the explanatory variables. The Model Fit Summary gives the name of the data set variable used as the offset variable; it is labeled as "Offset."

Printing Options

CORRB

prints the correlation matrix of the parameter estimates. It can also be specified in the PROC COUNTREG statement.

COVB

prints the covariance matrix of the parameter estimates. It can also be specified in the PROC COUNTREG statement.

ITPRINT

prints the objective function and parameter estimates at each iteration. The objective function is the negative log-likelihood function. It can also be specified in the PROC COUNTREG statement.

PRINTALL

requests all printing options. It can also be specified in the PROC COUNTREG statement.

OUTPUT Statement

```
OUTPUT < OUT=SAS-data-set> < output-options > ;
```

The OUTPUT statement creates a new SAS data set containing all the variables in the input data set and, optionally, the estimates of $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$, the expected value of the response variable, and the probability that the response variable will take on the current value. Furthermore, if a zero-inflated model was fit, you can request that the output data set contain the estimates of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$, and the probability that the response is zero as a result of the zero-generating process. These statistics can be computed for all observations in which the regressors are not missing, even if the response is missing. By adding observations with missing response values to the input data set, you can compute these statistics for new observations or for settings of the regressors not present in the data without affecting the model fit.

You can only specify one OUTPUT statement. OUTPUT statement options as follows:

OUT=SAS-data-set

names the output data set.

XBETA=name

names the variable containing estimates of $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$.

PRED=name

names the variable containing the predicted value of the response variable.

PROB=name

names the variable containing the probability of the response variable taking the current value, $\operatorname{Pr}\left(Y=y_{i}\right)$.

ZGAMMA=name

names the variable containing estimates of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$.

PROBZERO=name

names the variable containing the value that of φ_{i}, the probability that the response variable will take on the value of zero as a result of the zero-generating process. It is written to the output file only if the model is zero-inflated.

RESTRICT Statement

RESTRICT restriction1 [, restriction2 ...] ;
The RESTRICT statement is used to impose linear restrictions on the parameter estimates. You can specify any number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator ($=$) or an inequality operator $(<,>,<=,>=)$, followed by a second expression:

expression operator expression

The operator can be $=,<,>,<=$, or $>=$.
Restriction expressions can be composed of parameter names, constants, and the operators times $(*)$, plus $(+)$, and minus $(-)$. Parameter names are as shown in the ESTIMATE column of the "Parameter Estimates" table. The restriction expressions must be a linear function of the variables.

Lagrange multipliers are reported in the "Parameter Estimates" table for all the active linear constraints. They are identified with the names Restrict1, Restrict2, and so on. The probabilities of these Lagrange multipliers are computed using a beta distribution (LaMotte 1994). Nonactive, or nonbinding, restrictions have no effect on the estimation results and are not noted in the output.

The following RESTRICT statement constrains the negative binomial dispersion parameter, α, to 1 , which restricts the conditional variance to be $\mu+\mu^{2}$:

```
restrict _Alpha = 1;
```


ZEROMODEL Statement

ZEROMODEL dependent variable ~ zero-inflated regressors / options ;

The ZEROMODEL statement is required if either ZIP or ZINB is specified in the DIST= option in the MODEL statement. If ZIP or ZINB is specified, then the ZEROMODEL statement must follow immediately after the MODEL statement. The dependent variable in the ZEROMODEL statement must be the same as the dependent variable in the MODEL statement.

The zero-inflated (ZI) regressors appear in the equation that determines the probability $\left(\varphi_{i}\right)$ of a zero count. Each of these q variables has a parameter to be estimated in the regression. For example, let \mathbf{z}_{i}^{\prime} be the i th observation's $1 \times(q+1)$ vector of values of the $q \mathrm{ZI}$ explanatory variables $\left(w_{0}\right.$ is set to 1 for the intercept term). Then φ_{i} will be a function of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$, where $\boldsymbol{\gamma}$ is the $(q+1) \times 1$ vector of parameters to be estimated. (The zero-inflated intercept is γ_{0}; the coefficients for the q zero-inflated covariates are $\gamma_{1}, \ldots, \gamma_{q}$.) If this option is omitted, then only the intercept term γ_{0} is estimated. The "Parameter Estimates" table in the displayed output gives the estimates for the ZI intercept and ZI explanatory variables; they are labeled with the prefix "Inf_". For example, the ZI intercept is labeled "Inf_intercept". If you specify "Age" (a variable in your data set) as a ZI explanatory variable, then the "Parameter Estimates" table labels the corresponding parameter estimate "Inf_Age".

The following options can be specified in the ZEROMODEL statement following a slash (/):

LINK=value

specifies the distribution function used to compute probability of zeros. The supported distribution functions are as follows:

LOGISTIC specifies logistic distribution.
NORMAL specifies standard normal distribution.

If this option is omitted, then the default ZI link function is logistic.

OFFSET=variable

specifies a variable in the input data set to be used as a zero-inflated (ZI) offset variable. The ZI offset variable is included as a term, with coefficient restricted to 1 , in the equation that determines the probability $\left(\varphi_{i}\right)$ of a zero count. The ZI offset variable cannot be the response variable, the offset variable (if any), or one of the explanatory variables. The name of the data set variable used as the ZI offset variable is displayed in the "Model Fit Summary" output, where it is labeled as "Inf_offset".

Details: COUNTREG Procedure

Missing Values

Any observation in the input data set with a missing value for one or more of the regressors is ignored by PROC COUNTREG and not used in the model fit. PROC COUNTREG rounds any positive noninteger count values to the nearest integer. PROC COUNTREG ignores any observations with a negative count.

If there are observations in the input data set with missing response values but with nonmissing regressors, PROC COUNTREG can compute several statistics and store them in an output data set by using the OUTPUT statement. For example, you can request that the output data set contain the estimates of $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$, the expected value of the response variable, and the probability of the response variable taking on the current value. Furthermore, if a zero-inflated model was fit, you can request that the output data set contain the estimates of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$, and the probability that the response is zero as a result of the zero-generating process. Note that the presence of such observations (with missing response values) does not affect the model fit.

Poisson Regression

The most widely used model for count data analysis is Poisson regression. This assumes that y_{i}, given the vector of covariates \mathbf{x}_{i}, is independently Poisson distributed with

$$
P\left(Y_{i}=y_{i} \mid \mathbf{x}_{i}\right)=\frac{e^{-\mu_{i}} \mu_{i}^{y_{i}}}{y_{i}!}, \quad y_{i}=0,1,2, \ldots
$$

and the mean parameter - that is, the mean number of events per period - is given by

$$
\mu_{i}=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)
$$

where $\boldsymbol{\beta}$ is a $(k+1) \times 1$ parameter vector. (The intercept is β_{0}; the coefficients for the k regressors are $\beta_{1}, \ldots, \beta_{k}$.) Taking the exponential of $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ ensures that the mean parameter μ_{i} is nonnegative.

It can be shown that the conditional mean is given by

$$
E\left(y_{i} \mid \mathbf{x}_{i}\right)=\mu_{i}=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)
$$

The name log-linear model is also used for the Poisson regression model since the logarithm of the conditional mean is linear in the parameters:

$$
\ln \left[E\left(y_{i} \mid \mathbf{x}_{i}\right)\right]=\ln \left(\mu_{i}\right)=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}
$$

Note that the conditional variance of the count random variable is equal to the conditional mean in the Poisson regression model:

$$
V\left(y_{i} \mid \mathbf{x}_{i}\right)=E\left(y_{i} \mid \mathbf{x}_{i}\right)=\mu_{i}
$$

The equality of the conditional mean and variance of y_{i} is known as equidispersion.
The marginal effect of a regressor is given by

$$
\frac{\partial E\left(y_{i} \mid \mathbf{x}_{i}\right)}{\partial x_{j i}}=\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \boldsymbol{\beta}_{j}=E\left(y_{i} \mid \mathbf{x}_{i}\right) \beta_{j}
$$

Thus, a one-unit change in the j th regressor leads to a proportional change in the conditional mean $E\left(y_{i} \mid \mathbf{x}_{i}\right)$ of β_{j}.

The standard estimator for the Poisson model is the maximum likelihood estimator (MLE). Since the observations are independent, the log-likelihood function is written as

$$
\mathcal{L}=\sum_{i=1}^{N}\left(-\mu_{i}+y_{i} \ln \mu_{i}-\ln y_{i}!\right)=\sum_{i=1}^{N}\left(-e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}+y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\ln y_{i}!\right)
$$

The gradient and the Hessian are, respectively,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{N}\left(y_{i}-\mu_{i}\right) \mathbf{x}_{i}=\sum_{i=1}^{N}\left(y_{i}-e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}\right) \mathbf{x}_{i} \\
& \frac{\partial^{2} \mathcal{L}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}=-\sum_{i=1}^{N} \mu_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}=-\sum_{i=1}^{N} e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}
\end{aligned}
$$

The Poisson model has been criticized for its restrictive property that the conditional variance equals the conditional mean. Real-life data are often characterized by overdispersion - that is, the variance exceeds the mean. Allowing for overdispersion can improve model predictions since the Poisson restriction of equal mean and variance results in the underprediction of zeros when overdispersion exists. The most commonly used model that accounts for overdispersion is the negative binomial model.

Negative Binomial Regression

The Poisson regression model can be generalized by introducing an unobserved heterogeneity term for observation i. Thus, the individuals are assumed to differ randomly in a manner that is not fully accounted for by the observed covariates. This is formulated as

$$
E\left(y_{i} \mid \mathbf{x}_{i}, \tau_{i}\right)=\mu_{i} \tau_{i}=e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i}}
$$

where the unobserved heterogeneity term $\tau_{i}=e^{\epsilon_{i}}$ is independent of the vector of regressors \mathbf{x}_{i}. Then the distribution of y_{i} conditional on \mathbf{x}_{i} and τ_{i} is Poisson with conditional mean and conditional variance $\mu_{i} \tau_{i}$:

$$
f\left(y_{i} \mid \mathbf{x}_{i}, \tau_{i}\right)=\frac{\exp \left(-\mu_{i} \tau_{i}\right)\left(\mu_{i} \tau_{i}\right)^{y_{i}}}{y_{i}!}
$$

Let $g\left(\tau_{i}\right)$ be the probability density function of τ_{i}. Then, the distribution $f\left(y_{i} \mid \mathbf{x}_{i}\right)$ (no longer conditional on $\left.\tau_{i}\right)$ is obtained by integrating $f\left(y_{i} \mid \mathbf{x}_{i}, \tau_{i}\right)$ with respect to τ_{i} :

$$
f\left(y_{i} \mid \mathbf{x}_{i}\right)=\int_{0}^{\infty} f\left(y_{i} \mid \mathbf{x}_{i}, \tau_{i}\right) g\left(\tau_{i}\right) d \tau_{i}
$$

An analytical solution to this integral exists when τ_{i} is assumed to follow a gamma distribution. This solution is the negative binomial distribution. When the model contains a constant term, it is necessary to assume that $E\left(e^{\epsilon_{i}}\right)=E\left(\tau_{i}\right)=1$, in order to identify the mean of the distribution. Thus, it is assumed that τ_{i} follows a $\operatorname{gamma}(\theta, \theta)$ distribution with $E\left(\tau_{i}\right)=1$ and $V\left(\tau_{i}\right)=1 / \theta$:

$$
g\left(\tau_{i}\right)=\frac{\theta^{\theta}}{\Gamma(\theta)} \tau_{i}^{\theta-1} \exp \left(-\theta \tau_{i}\right)
$$

where $\Gamma(x)=\int_{0}^{\infty} z^{x-1} \exp (-z) d z$ is the gamma function and θ is a positive parameter. Then, the density of y_{i} given \mathbf{x}_{i} is derived as

$$
\begin{aligned}
f\left(y_{i} \mid \mathbf{x}_{i}\right) & =\int_{0}^{\infty} f\left(y_{i} \mid \mathbf{x}_{i}, \tau_{i}\right) g\left(\tau_{i}\right) d \tau_{i} \\
& =\frac{\theta^{\theta} \mu_{i}^{y_{i}}}{y_{i}!\Gamma(\theta)} \int_{0}^{\infty} e^{-\left(\mu_{i}+\theta\right) \tau_{i}} \tau_{i}^{\theta+y_{i}-1} d \tau_{i} \\
& =\frac{\theta^{\theta} \mu_{i}^{y_{i}} \Gamma\left(y_{i}+\theta\right)}{y_{i}!\Gamma(\theta)\left(\theta+\mu_{i}\right)^{\theta+y_{i}}} \\
& =\frac{\Gamma\left(y_{i}+\theta\right)}{y_{i}!\Gamma(\theta)}\left(\frac{\theta}{\theta+\mu_{i}}\right)^{\theta}\left(\frac{\mu_{i}}{\theta+\mu_{i}}\right)^{y_{i}}
\end{aligned}
$$

Making the substitution $\alpha=\frac{1}{\theta}(\alpha>0)$, the negative binomial distribution can then be rewritten as

$$
f\left(y_{i} \mid \mathbf{x}_{i}\right)=\frac{\Gamma\left(y_{i}+\alpha^{-1}\right)}{y_{i}!\Gamma\left(\alpha^{-1}\right)}\left(\frac{\alpha^{-1}}{\alpha^{-1}+\mu_{i}}\right)^{\alpha^{-1}}\left(\frac{\mu_{i}}{\alpha^{-1}+\mu_{i}}\right)^{y_{i}}, \quad y_{i}=0,1,2, \ldots
$$

Thus, the negative binomial distribution is derived as a gamma mixture of Poisson random variables. It has conditional mean

$$
E\left(y_{i} \mid \mathbf{x}_{i}\right)=\mu_{i}=e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}
$$

and conditional variance

$$
V\left(y_{i} \mid \mathbf{x}_{i}\right)=\mu_{i}\left[1+\frac{1}{\theta} \mu_{i}\right]=\mu_{i}\left[1+\alpha \mu_{i}\right]>E\left(y_{i} \mid \mathbf{x}_{i}\right)
$$

The conditional variance of the negative binomial distribution exceeds the conditional mean. Overdispersion results from neglected unobserved heterogeneity. The negative binomial model with
variance function $V\left(y_{i} \mid \mathbf{x}_{i}\right)=\mu_{i}+\alpha \mu_{i}^{2}$, which is quadratic in the mean, is referred to as the NEGBIN2 model (Cameron and Trivedi 1986). To estimate this model, specify DIST=NEGBIN($\mathrm{p}=2$) in the MODEL statement. The Poisson distribution is a special case of the negative binomial distribution where $\alpha=0$. A test of the Poisson distribution can be carried out by testing the hypothesis that $\alpha=\frac{1}{\theta_{i}}=0$. A Wald test of this hypothesis is provided (it is the reported t statistic for the estimated α in the negative binomial model).

The log-likelihood function of the negative binomial regression model (NEGBIN2) is given by

$$
\begin{aligned}
\mathcal{L}= & \sum_{i=1}^{N}\left\{\sum_{j=0}^{y_{i}-1} \ln \left(j+\alpha^{-1}\right)-\ln \left(y_{i}!\right)\right. \\
& \left.-\left(y_{i}+\alpha^{-1}\right) \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)+y_{i} \ln (\alpha)+y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right\}
\end{aligned}
$$

where use of the following fact is made:

$$
\Gamma(y+a) / \Gamma(a)=\prod_{j=0}^{y-1}(j+a)
$$

if y is an integer.
The gradient is

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{N} \frac{y_{i}-\mu_{i}}{1+\alpha \mu_{i}} \mathbf{x}_{i}
$$

and

$$
\frac{\partial \mathcal{L}}{\partial \alpha}=\sum_{i=1}^{N}\left\{-\alpha^{-2} \sum_{j=0}^{y_{i}-1} \frac{1}{\left(j+\alpha^{-1}\right)}+\alpha^{-2} \ln \left(1+\alpha \mu_{i}\right)+\frac{y_{i}-\mu_{i}}{\alpha\left(1+\alpha \mu_{i}\right)}\right\}
$$

Cameron and Trivedi (1986) consider a general class of negative binomial models with mean μ_{i} and variance function $\mu_{i}+\alpha \mu_{i}^{p}$. The NEGBIN2 model, with $p=2$, is the standard formulation of the negative binomial model. Models with other values of $p,-\infty<p<\infty$, have the same density $f\left(y_{i} \mid \mathbf{x}_{i}\right)$ except that α^{-1} is replaced everywhere by $\alpha^{-1} \mu^{2-p}$. The negative binomial model NEGBIN1, which sets $p=1$, has variance function $V\left(y_{i} \mid \mathbf{x}_{i}\right)=\mu_{i}+\alpha \mu_{i}$, which is linear in the mean. To estimate this model, specify $\operatorname{DIST}=\operatorname{NEGBIN}(\mathrm{p}=1)$ in the MODEL statement.

The log-likelihood function of the NEGBIN1 regression model is given by

$$
\begin{aligned}
\mathcal{L}= & \sum_{i=1}^{N}\left\{\sum_{j=0}^{y_{i}-1} \ln \left(j+\alpha^{-1} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right. \\
& \left.-\ln \left(y_{i}!\right)-\left(y_{i}+\alpha^{-1} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \ln (1+\alpha)+y_{i} \ln (\alpha)\right\}
\end{aligned}
$$

The gradient is

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{N}\left\{\left(\sum_{j=0}^{y_{i}-1} \frac{\mu_{i}}{\left(j \alpha+\mu_{i}\right)}\right) \mathbf{x}_{i}-\alpha^{-1} \ln (1+\alpha) \mu_{i} \mathbf{x}_{i}\right\}
$$

and

$$
\frac{\partial \mathcal{L}}{\partial \alpha}=\sum_{i=1}^{N}\left\{-\left(\sum_{j=0}^{y_{i}-1} \frac{\alpha^{-1} \mu_{i}}{\left(j \alpha+\mu_{i}\right)}\right)-\alpha^{-2} \mu_{i} \ln (1+\alpha)-\frac{\left(y_{i}+\alpha^{-1} \mu_{i}\right)}{1+\alpha}+\frac{y_{i}}{\alpha}\right\}
$$

Zero-Inflated Count Regression Overview

The main motivation for zero-inflated count models is that real-life data frequently display overdispersion and excess zeros. Zero-inflated count models provide a way of modeling the excess zeros as well as allowing for overdispersion. In particular, for each observation, there are two possible data generation processes. The result of a Bernoulli trial is used to determine which of the two processes is used. For observation i, Process 1 is chosen with probability φ_{i} and Process 2 with probability $1-\varphi_{i}$. Process 1 generates only zero counts. Process 2 generates counts from either a Poisson or a negative binomial model. In general,

$$
y_{i} \sim\left\{\begin{array}{lll}
0 & \text { with probability } & \varphi_{i} \\
g\left(y_{i}\right) & \text { with probability } & 1-\varphi_{i}
\end{array}\right.
$$

Therefore, the probability of $\left\{Y_{i}=y_{i}\right\}$ can be described as

$$
\begin{aligned}
P\left(y_{i}=0 \mid \mathbf{x}_{i}\right) & =\varphi_{i}+\left(1-\varphi_{i}\right) g(0) \\
P\left(y_{i} \mid \mathbf{x}_{i}\right) & =\left(1-\varphi_{i}\right) g\left(y_{i}\right), \quad y_{i}>0
\end{aligned}
$$

where $g\left(y_{i}\right)$ follows either the Poisson or the negative binomial distribution.
When the probability φ_{i} depends on the characteristics of observation i, φ_{i} is written as a function of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$, where \mathbf{z}_{i}^{\prime} is the $1 \times(q+1)$ vector of zero-inflated covariates and $\boldsymbol{\gamma}$ is the $(q+1) \times 1$ vector of zero-inflated coefficients to be estimated. (The zero-inflated intercept is γ_{0}; the coefficients for the q zero-inflated covariates are $\gamma_{1}, \ldots, \gamma_{q}$.) The function F relating the product $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$ (which is a scalar) to the probability φ_{i} is called the zero-inflated link function,

$$
\varphi_{i}=F_{i}=F\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)
$$

In the COUNTREG procedure, the zero-inflated covariates are indicated in the ZEROMODEL statement. Furthermore, the zero-inflated link function F can be specified as either the logistic function,

$$
F\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\Lambda\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\frac{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}
$$

or the standard normal cumulative distribution function (also called the probit function),

$$
F\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\int_{0}^{\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}} \frac{1}{\sqrt{2 \pi}} \exp \left(-u^{2} / 2\right) d u
$$

The zero-inflated link function is indicated in the ZEROMODEL statement, using the LINK= option. The default ZI link function is the logistic function.

Zero-Inflated Poisson Regression

In the zero-inflated Poisson (ZIP) regression model, the data generation process referred to earlier as Process 2 is

$$
g\left(y_{i}\right)=\frac{\exp \left(-\mu_{i}\right) \mu_{i}^{y_{i}}}{y_{i}!}
$$

where $\mu_{i}=e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}$. Thus the ZIP model is defined as

$$
\begin{aligned}
P\left(y_{i}=0 \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right) & =F_{i}+\left(1-F_{i}\right) \exp \left(-\mu_{i}\right) \\
P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right) & =\left(1-F_{i}\right) \frac{\exp \left(-\mu_{i}\right) \mu_{i}^{y_{i}}}{y_{i}!}, \quad y_{i}>0
\end{aligned}
$$

The conditional expectation and conditional variance of y_{i} are given by

$$
\begin{aligned}
& E\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)=\mu_{i}\left(1-F_{i}\right) \\
& V\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)=E\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)\left(1+\mu_{i} F_{i}\right)
\end{aligned}
$$

Note that the ZIP model (as well as the ZINB model) exhibits overdispersion since $V\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)>$ $E\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)$.

In general, the log-likelihood function of the ZIP model is

$$
\mathcal{L}=\sum_{i=1}^{N} \ln \left[P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)\right]
$$

Once a specific link function (either logistic or standard normal) for the probability φ_{i} is chosen, it is possible to write the exact expressions for the log-likelihood function and the gradient.

ZIP Model with Logistic Link Function

First, consider the ZIP model in which the probability φ_{i} is expressed with a logistic link function, namely

$$
\varphi_{i}=\frac{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}
$$

The log-likelihood function is

$$
\begin{aligned}
\mathcal{L}= & \sum_{\left\{i: y_{i}=0\right\}} \ln \left[\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right] \\
& +\sum_{\left\{i: y_{i}>0\right\}}\left[y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)-\sum_{k=2}^{y_{i}} \ln (k)\right] \\
& -\sum_{i=1}^{N} \ln \left[1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]
\end{aligned}
$$

The gradient for this model is given by

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\gamma}}=\sum_{\left\{i: y_{i}=0\right\}}\left[\frac{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}\right] \mathbf{z}_{i}-\sum_{i=1}^{N}\left[\frac{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}\right] \mathbf{z}_{i} \\
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=\sum_{\left\{i: y_{i}=0\right\}}\left[\frac{-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}\right] \mathbf{x}_{i}+\sum_{\left\{i: y_{i}>0\right\}}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right] \mathbf{x}_{i}
\end{aligned}
$$

ZIP Model with Standard Normal Link Function

Next, consider the ZIP model in which the probability φ_{i} is expressed with a standard normal link function: $\varphi_{i}=\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)$. The log-likelihood function is

$$
\begin{aligned}
\mathcal{L} & =\sum_{\left\{i: y_{i}=0\right\}} \ln \left\{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right\} \\
& +\sum_{\left\{i: y_{i}>0\right\}}\left\{\ln \left[\left(1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right)\right]-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)+y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}-\sum_{k=2}^{y_{i}} \ln (k)\right\}
\end{aligned}
$$

The gradient for this model is given by

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\gamma}} & =\sum_{\left\{i: y_{i}=0\right\}} \frac{\varphi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\left[1-\exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)\right]}{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)} \mathbf{z}_{i} \\
& -\sum_{\left\{i: y_{i}>0\right\}} \frac{\varphi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]} \mathbf{z}_{i} \\
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}} & =\sum_{\left\{i: y_{i}=0\right\}} \frac{-\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) \exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \exp \left(-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)} \mathbf{x}_{i} \\
& +\sum_{\left\{i: y_{i}>0\right\}}\left[y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right] \mathbf{x}_{i}
\end{aligned}
$$

Zero-Inflated Negative Binomial Regression

The zero-inflated negative binomial (ZINB) model in PROC COUNTREG is based on the negative binomial model with quadratic variance function ($\mathrm{p}=2$). The ZINB model is obtained by specifying a negative binomial distribution for the data generation process referred to earlier as Process 2:

$$
g\left(y_{i}\right)=\frac{\Gamma\left(y_{i}+\alpha^{-1}\right)}{y_{i}!\Gamma\left(\alpha^{-1}\right)}\left(\frac{\alpha^{-1}}{\alpha^{-1}+\mu_{i}}\right)^{\alpha^{-1}}\left(\frac{\mu_{i}}{\alpha^{-1}+\mu_{i}}\right)^{y_{i}}
$$

Thus the ZINB model is defined to be

$$
\begin{aligned}
P\left(y_{i}=0 \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right) & =F_{i}+\left(1-F_{i}\right)\left(1+\alpha \mu_{i}\right)^{-\alpha^{-1}} \\
P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right) & =\left(1-F_{i}\right) \frac{\Gamma\left(y_{i}+\alpha^{-1}\right)}{y_{i}!\Gamma\left(\alpha^{-1}\right)}\left(\frac{\alpha^{-1}}{\alpha^{-1}+\mu_{i}}\right)^{\alpha^{-1}} \\
& \times\left(\frac{\mu_{i}}{\alpha^{-1}+\mu_{i}}\right)^{y_{i}}, \quad y_{i}>0
\end{aligned}
$$

In this case, the conditional expectation and conditional variance of y_{i} are

$$
\begin{aligned}
& E\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)=\mu_{i}\left(1-F_{i}\right) \\
& V\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)=E\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}\right)\left[1+\mu_{i}\left(F_{i}+\alpha\right)\right]
\end{aligned}
$$

As with the ZIP model, the ZINB model exhibits overdispersion because the conditional variance exceeds the conditional mean.

ZINB Model with Logistic Link Function

In this model, the probability φ_{i} is given by the logistic function, namely

$$
\varphi_{i}=\frac{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}
$$

The log-likelihood function is

$$
\begin{aligned}
\mathcal{L} & =\sum_{\left\{i: y_{i}=0\right\}} \ln \left[\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}}\right] \\
& +\sum_{\left\{i: y_{i}>0\right\}} \sum_{j=0}^{y_{i}-1} \ln \left(j+\alpha^{-1}\right) \\
& +\sum_{\left\{i: y_{i}>0\right\}}\left\{-\ln \left(y_{i}!\right)-\left(y_{i}+\alpha^{-1}\right) \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)+y_{i} \ln (\alpha)+y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right\} \\
& -\sum_{i=1}^{N} \ln \left[1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]
\end{aligned}
$$

The gradient for this model is given by

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\gamma}} & =\sum_{\left\{i: y_{i}=0\right\}}\left[\frac{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}}}\right] \mathbf{z}_{i} \\
& -\sum_{i=1}^{N}\left[\frac{\exp \left(\mathbf{z}_{\mathbf{\prime}}^{\prime} \boldsymbol{\gamma}\right)}{1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}\right] \mathbf{z}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=\sum_{\left\{i: y_{i}=0\right\}}\left[\frac{-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}-1}}{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}}}\right] \mathbf{x}_{i} \\
&+\sum_{\left\{i: y_{i}>0\right\}}\left[\frac{y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right] \mathbf{x}_{i} \\
& \frac{\partial \mathcal{L}}{\partial \alpha}= \sum_{\left\{i: y_{i}=0\right\}} \frac{\alpha^{-2}\left[\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)-\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]}{\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{(1+\alpha) / \alpha}+\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)} \\
&+\sum_{\left\{i: y_{i}>0\right\}}\left\{-\alpha^{-2} \sum_{j=0}^{y_{i}-1} \frac{1}{\left(j+\alpha^{-1}\right)}+\alpha^{-2} \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)+\frac{y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\alpha\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}\right\}
\end{aligned}
$$

ZINB Model with Standard Normal Link Function

For this model, the probability φ_{i} is specified with the standard normal distribution function (probit function $): \varphi_{i}=\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)$. The log-likelihood function is

$$
\begin{aligned}
\mathcal{L} & =\sum_{\left\{i: y_{i}=0\right\}} \ln \left\{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}}\right\} \\
& +\sum_{\left\{i: y_{i}>0\right\}} \ln \left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \\
& +\sum_{\left\{i: y_{i}>0\right\}} \sum_{j=0}^{y_{i}-1}\left\{\ln \left(j+\alpha^{-1}\right)\right\} \\
& -\sum_{\left\{i: y_{i}>0\right\}} \ln \left(y_{i}!\right) \\
& -\sum_{\left\{i: y_{i}>0\right\}}\left(y_{i}+\alpha^{-1}\right) \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \\
& +\sum_{\left\{i: y_{i}>0\right\}} y_{i} \ln (\alpha) \\
& +\sum_{\left\{i: y_{i}>0\right\}} y_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}
\end{aligned}
$$

The gradient for this model is given by
$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\gamma}}=\sum_{\left\{i: y_{i}=0\right\}}\left[\frac{\varphi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\left[1-\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}}\right]}{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}}}\right] \mathbf{z}_{i}$

$$
\begin{aligned}
&-\sum_{\left\{i: y_{i}>0\right\}}\left[\frac{\varphi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}{1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)}\right] \mathbf{z}_{i} \\
& \frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}= \sum_{\left\{i: y_{i}=0\right\}} \frac{-\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-(1+\alpha) / \alpha}}{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{-\alpha^{-1}} \mathbf{x}_{i}} \\
&+\sum_{\left\{i: y_{i}>0\right\}}\left[\frac{y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right] \mathbf{x}_{i} \\
& \frac{\partial \mathcal{L}}{\partial \alpha}=\sum_{\left\{i: y_{i}=0\right\}} \frac{\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \alpha^{-2}\left[\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)-\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]}{\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{(1+\alpha) / \alpha+\left[1-\Phi\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right]\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}} \\
&+\sum_{\left\{i: y_{i}>0\right\}}\left\{-\alpha^{-2} \sum_{j=0}^{y_{i}-1} \frac{1}{\left(j+\alpha^{-1}\right)}+\alpha^{-2} \ln \left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)+\frac{y_{i}-\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\alpha\left(1+\alpha \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)}\right\}
\end{aligned}
$$

Computational Resources

The time and memory required by PROC COUNTREG are proportional to the number of parameters in the model and the number of observations in the data set being analyzed. Less time and memory will be required for smaller models and fewer observations. Also affecting these resources are the method chosen to calculate the variance-covariance matrix and the optimization method. All optimization methods available through the METHOD $=$ option have similar memory use requirements. The processing time might differ for each method depending on the number of iterations and functional calls needed. The data set is read into memory to save processing time. If there is not enough memory available to hold the data, the COUNTREG procedure stores the data in a utility file on disk and rereads the data as needed from this file. When this occurs, the execution time of the procedure increases substantially. The gradient and the variance-covariance matrix must be held in memory. If the model has p parameters including the intercept, then at least $8 *(p+p *(p+1) / 2)$ bytes will be needed. Time is also a function of the number of iterations needed to converge to a solution for the model parameters. The number of iterations needed cannot be known in advance. The MAXITER= option can be used to limit the number of iterations that PROC COUNTREG will do. The convergence criteria can be altered by nonlinear optimization options available in the PROC COUNTREG statement. For a list of all the nonlinear optimization options, see Chapter 6, "Nonlinear Optimization Methods."

Nonlinear Optimization Options

PROC COUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. In the PROC COUNTREG statement, you can specify nonlinear optimization options that are then passed to the NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 6, "Nonlinear Optimization Methods."

Covariance Matrix Types

The COUNTREG procedure allows the user to specify the estimation method for the covariance matrix. COVEST=HESSIAN option estimates the covariance matrix based on the inverse of the Hessian matrix; COVEST=OP uses the outer product of gradients; and COVEST=QML produces the covariance matrix based on both the Hessian and outer product matrices. While all three methods produce asymptotically equivalent results, they differ in computational intensity and produce results that might differ in finite samples. The COVEST=OP option provides the covariance matrix that is typically the easiest to compute. In some cases, the OP approximation is considered more efficient than the Hessian or QML approximations because it contains fewer random elements. The QML approximation is computationally the most complex because both outer product of gradients and Hessian matrix are required. In most cases, OP or Hessian approximations are preferred to QML. The need to use QML approximation arises in some cases when the model is misspecified and the information matrix equality does not hold. The default is COVEST=HESSIAN.

Displayed Output

PROC COUNTREG produces the following displayed output.

Iteration History for Parameter Estimates

If you specify the ITPRINT or PRINTALL options in the PROC COUNTREG statement, PROC COUNTREG displays a table containing the following for each iteration. Note that some information is specific to the model fitting procedure chosen (for example, Newton-Raphson, trust region, quasi-Newton).

- iteration number
- number of restarts since the fitting began
- number of function calls
- number of active constraints at the current solution
- value of the objective function (negative one times the log-likelihood value) at the current solution
- change in the objective function from previous iteration
- value of the maximum absolute gradient element
- step size (for Newton-Raphson and quasi-Newton methods)
- slope of the current search direction (for Newton-Raphson and quasi-Newton methods)
- lambda (for trust region method)
- radius value at current iteration (for trust region method)

Model Fit Summary

The Model Fit Summary output contains the following information:

- dependent (count) variable name
- number of observations used
- number of missing values in data set, if any
- data set name
- type of model that was fit
- offset variable name, if any
- zero-inflated link function, if any
- zero-inflated offset variable name, if any
- log-likelihood value at solution
- maximum absolute gradient at solution
- number of iterations
- AIC value at solution. Smaller value indicates better fit.
- SBC value at solution. Smaller value indicates better fit.

Under the Model Fit Summary is a statement about whether or not the algorithm successfully converged.

Parameter Estimates

The "Parameter Estimates" table in the displayed output gives the estimates for the ZI intercept and ZI explanatory variables; they are labeled with the prefix "Inf_". For example, the ZI intercept is labeled "Inf_intercept". If you specify "Age" (a variable in your data set) as a ZI explanatory variable, then the "Parameter Estimates" table labels the corresponding parameter estimate "Inf_Age". If you do not list any ZI explanatory variables (for the ZI option VAR=), then only the intercept term is estimated.
"_Alpha" is the negative binomial dispersion parameter. The t statistic given for "_Alpha" is a test of overdispersion.

Last Evaluation of the Gradient

If you specify the model option ITPRINT, the COUNTREG procedure displays the last evaluation of the gradient vector.

Covariance of Parameter Estimates

If you specify the COVB option in the MODEL statement, the COUNTREG procedure displays the estimated covariance matrix, defined as the inverse of the information matrix at the final iteration.

Correlation of Parameter Estimates

If you specify the CORRB option in the MODEL statement, PROC COUNTREG displays the estimated correlation matrix. It is based on the Hessian matrix used at the final iteration.

OUTPUT OUT= Data Set

The OUTPUT statement creates a new SAS data set containing all the variables in the input data set and, optionally, the estimates of $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$, the expected value of the response variable, and the probability of the response variable taking on the current value. Furthermore, if a zero-inflated model was fit, you can request that the output data set contain the estimates of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$, and the probability that the response is zero as a result of the zero-generating process. These statistics can be computed for all observations in which the regressors are not missing, even if the response is missing. By adding observations with missing response values to the input data set, you can compute these statistics for new observations or for settings of the regressors not present in the data without affecting the model fit.

OUTEST= Data Set

The OUTEST= data set is made up of one row (with _TYPE_='PARM') containing each of the parameter estimates in the model. The second row (with _TYPE_='STD') contains the standard errors for the parameter estimates in the model.

If you use the COVOUT option in the PROC COUNTREG statement, the OUTEST= data set also contains the covariance matrix for the parameter estimates. The covariance matrix appears in the observations with _TYPE_=‘COV', and the _NAME_ variable labels the rows with the parameter names.

ODS Table Names

PROC COUNTREG assigns a name to each table it creates. You can use these names to denote the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 10.2.

Table 10.2 ODS Tables Produced in PROC COUNTREG

ODS Table Name	Description	Option
ODS Tables Created by the MODEL Statement		
FitSummary	Summary of Nonlinear Estimation	default
ConvergenceStatus	Convergence Status	default
ParameterEstimates	Parameter Estimates	default
CovB	Covariance of Parameter Estimates	COVB
CorrB	Correlation of Parameter Estimates	CORRB
InputOptions	Input Options	ITPRINT
IterStart	Optimization Start	ITPRINT
IterHist	Iteration History	ITPRINT
IterStop	Optimization Results	ITPRINT
ParameterEstimatesResults	Parameter Estimates	ITPRINT
ParameterEstimatesStart	Parameter Estimates	ITPRINT
ProblemDescription	Problem Description	ITPRINT

Examples: COUNTREG Procedure

Example 10.1: Basic Models

Data Description and Objective

The data set docvisit contains information for approximately 5,000 Australian individuals about the number and possible determinants of doctor visits that were made during a two-week interval. This data set contains a subset of variables taken from the Racd3 data set used by Cameron and Trivedi (1998).

The variable doctorco represents doctor visits. Additional variables in the data set that you want to evaluate as determinants of doctor visits include sex (coded $0=$ male, $1=$ female), age (age in years divided by 100 , with more than 70 coded as 72), illness (number of illnesses during the two-week interval, with five or more coded as five), income (annual income in Australian dollars divided by 1,000), and hscore (a general health questionnaire score, where a high score indicates bad health). Summary statistics for these variables are computed in the following statements and presented in Output 10.1.1. In the rest of this example some possible applications of the COUNTREG procedure in this context are presented.

```
proc means data=docvisit;
    var doctorco sex age illness income hscore;
run;
```

Output 10.1.1 Summary Statistics

Variable	N	The MEANS Procedure			
		Mean	Std Dev	Minimum	Maximum
doctorco	5190	0.3017341	0.7981338	0	9.0000000
sex	5190	0.5206166	0.4996229	0	1.0000000
age	5190	0.4063854	0.2047818	0.1900000	0.7200000
illness	5190	1.4319846	1.3841524	0	5.0000000
income	5190	0.5831599	0.3689067	0	1.5000000
hscore	5190	1.2175337	2.1242665	0	12.0000000

Poisson Models

These statements fit a Poisson model to the data by using the covariates SEX, ILLNESS, INCOME, and HSCORE:

```
/*-- Poisson Model --*/
proc countreg data=docvisit;
```

```
    model doctorco=sex illness income hscore / dist=poisson printall;
run;
```

In this example, the DIST = option in the MODEL statement specifies the POISSON distribution. In addition, the PRINTALL option displays the correlation and covariance matrices for the parameters, log-likelihood values, and convergence information in addition to the parameter estimates. The parameter estimates for this model are shown in Output 10.1.2.

Output 10.1.2 Parameter Estimates of Poisson Model

The COUNTREG Procedure						
Parameter Estimates						
			Standard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	-1.855552	0.074545	-24.89	$<.0001$	
sex	1	0.235583	0.054362	4.33	$<.0001$	
illness	1	0.270326	0.017080	15.83	<. 0001	
income	1	-0.242095	0.077829	-3.11	0.0019	
hscore	1	0.096313	0.009089	10.60	<. 0001	

Suppose that you suspect that the population of individuals can be viewed as two distinct groups: a low-risk group, comprising individuals who never go to the doctor, and a high-risk group, comprising individuals who do go to the doctor. You might suspect that the data have this structure both because the sample variance of DOCTORCO (0.64) exceeds its sample mean (0.30), which suggests overdispersion, and because a large fraction of the DOCTORCO observations (80%) have the value zero. Estimating a zero-inflated model is one way to deal with overdispersion that results from excess zeros.

Suppose also that you suspect that the covariate AGE has an impact on whether an individual belongs to the low-risk group. For example, younger individuals might have illnesses of much lower severity when they do get sick and be less likely to visit a doctor, all else being equal. The following statements estimate a zero-inflated Poisson regression with AGE as a covariate in the zerogeneration process:

```
/*-- Zero-Inflated Poisson Model --*/
proc countreg data=docvisit;
    model doctorco=sex illness income hscore / dist=zip;
    zeromodel doctorco ~ age;
run;
```

In this case, the ZEROMODEL statement following the MODEL statement specifies that both an intercept and the variable AGE be used to estimate the likelihood of zero doctor visits. Output 10.1.3 shows the resulting parameter estimates.

Output 10.1.3 Parameter Estimates for ZIP Model

The COUNTREG Procedure					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	-1.033387	0.096973	-10.66	$<.0001$
sex	1	0.122511	0.062566	1.96	0.0502
illness	1	0.237478	0.019997	11.88	$<.0001$
income	1	-0.143945	0.087810	-1.64	0.1012
hscore	1	0.088386	0.010043	8.80	$<.0001$
Inf_Intercept	1	0.986557	0.131339	7.51	$<.0001$
Inf_age	1	-2.090923	0.270580	-7.73	$<.0001$

The estimates of the zero-inflated intercept (Inf_Intercept) and the zero-inflated regression coefficient for AGE (Inf_age) are approximately 0.99 and -2.09 , respectively. Therefore, you can estimate the probabilities for individuals of ages 20,50 , and 70 as follows:

$$
\begin{aligned}
& 20 \text { years: } \frac{e^{(0.99-2.09 * .20)}}{1+e^{(0.99-2.09 * .20)}}=0.64 \\
& 50 \text { years: } \frac{e^{(0.99-2.09 * .50)}}{1+e^{(0.99-2.09 * .50)}}=0.49 \\
& 70 \text { years: } \frac{e^{(0.99-2.09 * .70)}}{1+e^{(0.99-2.09 * .70)}}=0.38
\end{aligned}
$$

That is, the estimated probability of belonging to the low-risk group is about 0.64 for a 20 -yearold individual, 0.49 for a 50 -year-old individual, and only 0.38 for a 70 -year-old individual. This supports the suspicion that older individuals are more likely to have a positive number of doctor visits.

Alternative models to account for the overdispersion are the negative binomial and the zero-inflated negative binomial models, which can be fit using the DIST=NEGBIN and DIST=ZINB option, respectively.

Example 10.2: ZIP and ZINB Models for Data Exhibiting Extra Zeros

In the study by Long (1997) of the number of published articles by scientists (see the section "Getting Started: COUNTREG Procedure" on page 485), the observed proportion of scientists publishing no articles is 0.3005 . The following statements use PROC FREQ to compute the proportion of scientists publishing each observed number of articles. Output 10.2.1 shows the results.

```
proc freq data=long97data;
    table art / out=obs;
run;
```

Output 10.2.1 Proportion of Scientists Publishing a Certain Number of Articles

art	Frequency	Percent	cedure Cumulative Frequency	Cumulative Percent
0	275	30.05	275	30.05
1	246	26.89	521	56.94
2	178	19.45	699	76.39
3	84	9.18	783	85.57
4	67	7.32	850	92.90
5	27	2.95	877	95.85
6	17	1.86	894	97.70
7	12	1.31	906	99.02
8	1	0.11	907	99.13
9	2	0.22	909	99.34
10	1	0.11	910	99.45
11	1	0.11	911	99.56
12	2	0.22	913	99.78
16	1	0.11	914	99.89
19	1	0.11	915	100.00

PROC COUNTREG is then used to fit Poisson and negative binomial models to the data. For each model, the PROBCOUNTS macro computes the probability that the number of published articles is m, where m is a value in a list of nonnegative integers specified in the COUNTS= option. The computations require the parameter estimates of the fitted model. These are saved using the ODS OUTPUT statement as shown and passed to the PROBCOUNTS macro by using the INMODEL= option. Variables containing the probabilities are created with names beginning with the PREFIX= string followed by the COUNTS $=$ values and are saved in the OUT= data set. For the Poisson model, the variables poi0, poi1, ..., poi10 are created and saved in the data set predpoi, which also contains all of the variables in the DATA= data set. The PROBCOUNTS macro is available from the Samples section at http://support. sas.com. The following statements compute the estimates for Poisson and negative binomial models.

```
/*-- Poisson Model --*/
proc countreg data=long97data;
    model art=fem mar kid5 phd ment / dist=poisson;
    ods output ParameterEstimates=pe;
run;
%include probcounts;
%probcounts (data=long97data,
    inmodel=pe,
    counts=0 to 10,
    prefix=poi, out=predpoi)
/*-- Negative Binomial Model --*/
```

```
proc countreg data=long97data;
    model art=fem mar kid5 phd ment / dist=negbin(p=2);
    ods output ParameterEstimates=pe;
run;
%probcounts (data=predpoi,
    inmodel=pe,
    counts=0 to 10,
    prefix=nb, out=prednb)
```

Parameter estimates for these two models are shown in the section "Getting Started: COUNTREG Procedure" on page 485. For each model, the predicted proportion of zero articles can be calculated as the average predicted probability of zero articles across all scientists as shown in the macro probcounts in the following program. Under the Poisson model, the predicted proportion of zero articles is 0.2092 , which considerably underestimates the observed proportion. The negative binomial more closely estimates the proportion of zeros (0.3036). Also, the test of the dispersion parameter, _Alpha, in the negative binomial model indicates significant overdispersion ($p<0.0001$). As a result, the negative binomial model is preferred to the Poisson model.

Another way to account for the large number of zeros in this data set is to fit a zero-inflated Poisson (ZIP) or a zero-inflated negative binomial (ZINB) model. In the following statements, DIST=ZIP requests the ZIP model. In the ZEROMODEL statement, you can specify the predictors, \mathbf{z}, for the process that generated the additional zeros. The ZEROMODEL statement also specifies the model for the probability φ. By default, a logistic model is used for φ. The default can be changed using the LINK= option. In this particular ZIP model, all variables used to model the article counts are also used to model φ.

```
proc countreg data=long97data;
    model art = fem mar kid5 phd ment / dist=zip;
    zeromodel art ~ fem mar kid5 phd ment;
    ods output ParameterEstimates=pe;
run;
%probcounts (data=prednb,
    inmodel=pe,
    counts=0 to 10,
    prefix=zip, out=predzip)
```

The parameters of the ZIP model are displayed in Output 10.2.2. The first set of parameters gives the estimates of $\boldsymbol{\beta}$ in the model for the Poisson process mean. Parameters with the prefix "Inf_" are the estimates of γ in the logistic model for φ.

Output 10.2.2 ZIP Model Estimation

The COUNTREG Procedure					
Model Fit Summary					
Dependent Variable art					
Number of Observations 915					
Data Set WORK.LONG97DATA					
Model ZIP					
ZI Link Function Logistic					
Log Likelihood -1605					
Maximum Absolute Gradient 2.08803E-7					
Number of Iterations 16					
	Optimization Method Newton-Raphson				
AIC 3234					
SBC 3291					
Algorithm converged.					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.640838	0.121306	5.28	$<.0001$
fem	1	-0.209145	0.063405	-3.30	0.0010
mar	1	0.103751	0.071111	1.46	0.1446
kid5	1	-0.143320	0.047429	-3.02	0.0025
phd	1	-0.006166	0.031008	-0.20	0.8424
ment	1	0.018098	0.002295	7.89	$<.0001$
Inf_Intercept	1	-0.577060	0.509383	-1.13	0.2573
Inf_fem	1	0.109747	0.280082	0.39	0.6952
Inf_mar	1	-0.354013	0.317611	-1.11	0.2650
Inf_kid5	1	0.217101	0.196481	1.10	0.2692
Inf_phd	1	0.001272	0.145262	0.01	0.9930
Inf_ment	1	-0.134114	0.045244	-2.96	0.0030

The proportion of zeros predicted by the ZIP model is 0.2986 , which is much closer to the observed proportion than the Poisson model. But Output 10.2.4 shows that both models deviate from the observed proportions at one, two, and three articles.

The ZINB model is specified by the DIST=ZINB option. All variables are again used to model both the number of articles and φ. The METHOD=QN option specifies that the quasi-Newton method be used to fit the model rather than the default Newton-Raphson method. These options are implemented in the following program.

```
proc countreg data=long97data;
    model art=fem mar kid5 phd ment / dist=zinb method=qn;
    zeromodel art ~ fem mar kid5 phd ment;
    ods output ParameterEstimates=pe;
run;
%probcounts (data=predzip,
    inmodel=pe,
    counts=0 to 10,
    prefix=zinb, out=predzinb)
```

The estimated parameters of the ZINB model are shown in Output 10.2.3. The test for overdispersion again indicates a preference for the negative binomial version of the zero-inflated model ($p<0.0001$). The ZINB model also does a good job of estimating the proportion of zeros (0.3119), and it follows the observed proportions well, though possibly not as well as the negative binomial model.

Output 10.2.3 ZINB Model Estimation

The COUNTREG Procedure					
Model Fit Summary					
	Dependent Variable			art	
	Numbe	Observation		915	
	Data Set WORK.LON			7DATA	
	Model		ZINB		
	ZI Li	ction	Logistic		
	Log	hood	-1550		
	Maxim	solute Grad	0.00263		
	Numbe	Iterations	81		
	Optim	n Method	Quasi-Newton		
	AIC		3126		
	SBC		3189		
Algorithm converged.					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.416747	0.143596	2.90	0.0037
fem	1	-0.195507	0.075592	-2.59	0.0097
mar	1	0.097582	0.084452	1.16	0.2479
kid5	1	-0.151732	0.054206	-2.80	0.0051
phd	1	-0.000700	0.036270	-0.02	0.9846
ment	1	0.024786	0.003493	7.10	<. 0001
Inf_Intercept	1	-0.191684	1.322807	-0.14	0.8848
Inf_fem	1	0.635928	0.848911	0.75	0.4538
Inf_mar	1	-1.499470	0.938661	-1. 60	0.1102
Inf_kid5	1	0.628427	0.442780	1.42	0.1558
Inf_phd	1	-0.037715	0.308005	-0.12	0.9025
Inf_ment	1	-0.882291	0.316223	-2.79	0.0053
_Alpha	1	0.376681	0.051029	7.38	$<.0001$

The following statements compute the average predicted count probability across all scientists for each count $0,1, \ldots, 10$. The averages for each model, along with the observed proportions, are then arranged for plotting by PROC SGPLOT.

```
proc summary data=predzinb;
    var poi0-poi10 nb0-nb10 zip0-zip10 zinb0-zinb10;
    output out=mnpoi mean(poi0-poi10) =mn0-mn10;
    output out=mnnb mean(nb0-nb10) =mn0-mn10;
    output out=mnzip mean(zip0-zip10) =mn0-mn10;
    output out=mnzinb mean(zinb0-zinb10)=mn0-mn10;
run;
data means;
    set mnpoi mnnb mnzip mnzinb;
    drop _type_ _freq_;
run;
proc transpose data=means out=tmeans;
run;
data allpred;
    merge obs(where=(art<=10)) tmeans;
    obs=percent/100;
run;
proc sgplot;
    yaxis label='Probability';
    xaxis label='Number of Articles';
    series y=obs x=art / name='obs' legendlabel='Observed'
        lineattrs=(color=black thickness=4px);
    series y=coll x=art / name='poi' legendlabel='Poisson'
        lineattrs=(color=blue);
    series y=col2 x=art/ name='nb' legendlabel='Negative Binomial'
        lineattrs=(color=red);
    series y=col3 x=art/ name='zip' legendlabel=' ZIP'
        lineattrs=(color=blue pattern=2);
    series y=col4 x=art/ name='zinb' legendlabel='ZINB'
        lineattrs=(color=red pattern=2);
    discretelegend 'poi' 'zip' 'nb' 'zinb' 'obs' / title='Models:'
        location=inside position=ne across=2 down=3;
run;
```

For each of the four fitted models, Output 10.2 .4 shows the average predicted count probability for each article count across all scientists. The Poisson model clearly underestimates the proportion of zero articles published, while the other three models are quite accurate at zero. All of the models do well at the larger numbers of articles.

Output 10.2.4 Average Predicted Count Probability

References

Abramowitz, M. and Stegun, A. (1970), Handbook of Mathematical Functions, New York: Dover Press.

Amemiya, T. (1985), Advanced Econometrics, Cambridge: Harvard University Press.
Cameron, A. C. and Trivedi, P. K. (1986), "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Some Tests," Journal of Applied Econometrics, 1, 29-53.

Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge: Cambridge University Press.

Greene, W. H. (1994), "Accounting for Excess Zeros and Sample Selection in Poisson and Negative

Binomial Regression Models," Working Paper No. 94-10, New York: Stern School of Business, Department of Economics, New York University.

Greene, W. H. (2000), Econometric Analysis, Upper Saddle River, NJ: Prentice Hall.
Hausman, J. A., Hall, B. H., and Griliches, Z. (1984), "Econometric Models for Count Data with an Application to the Patents-R\&D Relationship," Econometrica, 52, 909-938.

King, G. (1989a), "A Seemingly Unrelated Poisson Regression Model," Sociological Methods and Research, 17, 235-255.

King, G. (1989b), Unifying Political Methodology: The Likelihood Theory and Statistical Inference, Cambridge: Cambridge University Press.

Lambert, D. (1992), "Zero-Inflated Poisson Regression with an Application to Defects in Manufacturing," Technometrics, 34, 1-14.

LaMotte, L. R. (1994), "A Note on the Role of Independence in t Statistics Constructed from Linear Statistics in Regression Models," The American Statistician, 48, 238-240.

Long, J. S. (1997), Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, CA: Sage Publications.

Winkelmann, R. (2000), Econometric Analysis of Count Data, Berlin: Springer-Verlag.

Chapter 11

The DATASOURCE Procedure

Contents

Overview: DATASOURCE Procedure 520
Getting Started: DATASOURCE Procedure 522
Structure of a SAS Data Set Containing Time Series Data 522
Reading Data Files 523
Subsetting Input Data Files 523
Controlling the Frequency of Data - The INTERVAL= Option 524
Selecting Time Series Variables - The KEEP and DROP Statements 524
Controlling the Time Range of Data - The RANGE Statement 526
Reading in Data Files Containing Cross Sections 527
Obtaining Descriptive Information on Cross Sections 529
Subsetting a Data File Containing Cross Sections 532
Renaming Time Series Variables 532
Changing the Lengths of Numeric Variables 534
Syntax: DATASOURCE Procedure 536
PROC DATASOURCE Statement 537
KEEP Statement 541
DROP Statement 541
KEEPEVENT Statement 542
DROPEVENT Statement 543
WHERE Statement 543
RANGE Statement 544
ATTRIBUTE Statement 545
FORMAT Statement 545
LABEL Statement 546
LENGTH Statement 546
RENAME Statement 547
Details: DATASOURCE Procedure 547
Variable Lists 547
OUT= Data Set 548
OUTCONT= Data Set 550
OUTBY= Data Set 551
OUTALL= Data Set 552
OUTEVENT= Data Set 553
Examples: DATASOURCE Procedure 554
Example 11.1: BEA National Income and Product Accounts 554
Example 11.2: BLS Consumer Price Index Surveys 557
Example 11.3: BLS State and Area Employment, Hours, and Earnings Surveys 562
Example 11.4: DRI/McGraw-Hill Format CITIBASE Files 564
Example 11.5: DRI Data Delivery Service Database 571
Example 11.6: PC Format CITIBASE Database 573
Example 11.7: Quarterly COMPUSTAT Data Files 575
Example 11.8: Annual COMPUSTAT Data Files, V9.2 New Filetype CSAUC3 578
Example 11.9: CRSP Daily NYSE/AMEX Combined Stocks 581
Data Elements Reference: DATASOURCE Procedure 586
BEA Data Files 590
BLS Data Files 591
Global Insight DRI Data Files 593
COMPUSTAT Data Files 595
CRSP Stock Files 600
FAME Information Services Databases 605
Haver Analytics Data Files 607
IMF Data Files 608
OECD Data Files 610
References 612

Overview: DATASOURCE Procedure

The DATASOURCE procedure extracts time series and event data from many different kinds of data files distributed by various data vendors and stores them in a SAS data set. Once stored in a SAS data set, the time series and event variables can be processed by other SAS procedures.

The DATASOURCE procedure has statements and options to extract only a subset of time series data from an input data file. It gives you control over the frequency of data to be extracted, time series variables to be selected, cross sections to be included, and time range of data to be output.

The DATASOURCE procedure can create auxiliary data sets containing descriptive information on the time series variables and cross sections. More specifically, the OUTCONT= option names a data set containing information on time series variables, the OUTBY= option names a data set that reports information on cross-sectional variables, and the OUTALL= option names a data set that combines both time series variables and cross-sectional information.

In addition to the auxiliary data sets, two types of primary output data sets are the OUT= and OUTEVENT= data sets. The OUTEVENT= data set contains event variables but excludes periodic time series data. The OUT= data set contains periodic time series data and any event variables referenced in the KEEP statement.

The output variables in the output and auxiliary data sets can be assigned various attributes by the DATASOURCE procedure. These attributes are labels, formats, new names, and lengths. While the
first three attributes in this list are used to enhance the output, the length attribute is used to control the memory and disk-space usage of the DATASOURCE procedure.

Data files currently supported by the DATASOURCE procedure include the following:

- U.S. Bureau of Economic Analysis data files:
- National Income and Product Accounts
- National Income and Product Accounts PC format
- S-pages
- U.S. Bureau of Labor Statistics data files:
- Consumer Price Index Surveys
- Producer Price Index Survey
- National Employment, Hours, and Earnings Survey
- State and Area Employment, Hours, and Earnings Survey
- Standard \& Poor's Compustat Services Financial Database Files:
- COMPUSTAT Annual
- COMPUSTAT 48 Quarter
- COMPUSTAT Full Coverage Annual
- COMPUSTAT Full Coverage 48 Quarter
- Center for Research in Security Prices (CRSP) data files:
- Daily Binary Format Files
- Monthly Binary Format Files
- Daily Character Format Files
- Monthly Character Format Files
- Global Insight, formerly DRI/McGraw-Hill data files:
- Basic Economics Data (formerly CITIBASE)
- DRI Data Delivery Service files
- CITIBASE Data Files
- DRI Data Delivery Service Time Series
- PC Format CITIBASE Databases
- FAME Information Services Databases
- Haver Analytics data files
- United States Economic Indicators
- Specialized Databases
- Financial Indicators
- Industry
- Industrial Countries
- Emerging Markets
- International Organizations
- Forecasts and As Reported Data
- United States Regional
- International Monetary Fund's Economic Information System data files:
- International Financial Statistics
- Direction of Trade Statistics
- Balance of Payment Statistics
- Government Finance Statistics
- Organization for Economic Cooperation and Development:
- Annual National Accounts
- Quarterly National Accounts
- Main Economic Indicators

Getting Started: DATASOURCE Procedure

Structure of a SAS Data Set Containing Time Series Data

SAS procedures require time series data to be in a specific form recognizable by the SAS System. This form is a two-dimensional array, called a SAS data set, whose columns correspond to series variables and whose rows correspond to measurements of these variables at certain time periods.

The time periods at which observations are recorded can be included in the data set as a time ID variable. The DATASOURCE procedure does include a time ID variable by the name of DATE.

For example, the following data set in Table 11.1, extracted from a DRIBASIC data file, gives the foreign exchange rates for Japan, Switzerland, and the United Kingdom, respectively.

Table 11.1 The Form of SAS Data Sets Required by Most SAS/ETS Procedures

Time ID Variable	Time Series Variables		
DATE	EXRJAN	EXRSW	EXRUK
SEP1987	143.290	1.50290	164.460
OCT1987	143.320	1.49400	166.200
NOV1987	135.400	1.38250	177.540
DEC1987	128.240	1.33040	182.880
JAN1988	127.690	1.34660	180.090
FEB1988	129.170	1.39160	175.820

Reading Data Files

The DATASOURCE procedure is designed to read data from many different files and to place them in a SAS data set. For example, if you have a DRI Basic Economics data file you want to read, use the following statements:

```
proc datasource filetype=dribasic infile=citifile out=dataset;
run;
```

Here, the FILETYPE= option indicates that you want to read DRI's Basic Economics data file, the INFILE= option specifies the fileref CITIFILE of the external file you want to read, and the OUT= option names the SAS data set to contain the time series data.

Subsetting Input Data Files

When only a subset of a data file is needed, it is inefficient to extract all the data and then subset it in a subsequent DATA step. Instead, you can use the DATASOURCE procedure options and statements to extract only needed information from the data file.

The DATASOURCE procedure offers the following subsetting capabilities:

- the INTERVAL= option controls the frequency of data output
- the KEEP or DROP statement selects a subset of time series variables
- the RANGE statement restricts the time range of data
- the WHERE statement selects a subset of cross sections

Controlling the Frequency of Data - The INTERVAL= Option

The OUT= data set contains only data with the same frequency. If the data file you want to read contains time series data with several frequencies, you can indicate the frequency of data you want to extract with the INTERVAL= option. For example, the following statements extract all monthly time series from the DRIBASIC file CITIFILE:

```
proc datasource filetype=dribasic infile=citifile
    interval=month out=dataset;
run;
```

When the INTERVAL= option is not given, the default frequency defined for the FILETYPE= type file is used. For example, the statements in the previous section extract yearly series since INTERVAL=YEAR is the default frequency for DRI's Basic Economic Data files.

To extract data for several frequencies, you need to execute the DATASOURCE procedure once for each frequency.

Selecting Time Series Variables - The KEEP and DROP Statements

If you want to include specific series in the OUT= data set, list them in a KEEP statement. If, on the other hand, you want to exclude some variables from the OUT= data set, list them in a DROP statement. For example, the following statements extract monthly foreign exchange rates for Japan (EXRJAN), Switzerland (EXRSW), and the United Kingdom (EXRUK) from a DRIBASIC file CITIFILE:

```
proc datasource filetype=dribasic infile=citifile
    interval=month out=dataset;
    keep exrjan exrsw exruk;
run;
```

The KEEP statement also allows input names to be quoted strings. If the name of a series in the input file contains blanks or special characters that are not valid SAS name syntax, put the series name in quotes to select it. Another way to allow the use of special characters in your SAS variable names is to use the SAS options statement to designate VALIDVARNAME=ANY. This option will allow PROC DATASOURCE to include special characters in your SAS variable names. The following is an example of extracting series from a FAME database by using the DATASOURCE procedure.

```
proc datasource filetype=fame dbname='fame_nys /disk1/prc/prc'
    interval=weekday out=outds outcont=attrds;
    range '1jan90'd to '1feb90'd;
    keep cci.close
        '{ibm.high,ibm.low,ibm.close}'
        'mave (ibm.close, 30)'
```

```
            'crosslist({gm,f,c},{volume})'
            'cci.close+ibm.close';
    rename 'mave(ibm.close,30)' = ibm30day
        'cci.close+ibm.close' = cci_ibm;
run;
```

The resulting output data set OUTDS contains the following series: DATE, CCI_CLOS, IBM_HIGH, IBM_LOW, IBM_CLOS, IBM30DAY, GM_VOLUM, F_VOLUME, C_VOLUME, CCI_IBM.

Obviously, to be able to use KEEP and DROP statements, you need to know the name of time series variables available in the data file. The OUTCONT= option gives you this information. More specifically, the OUTCONT= option creates a data set containing descriptive information on the same frequency time series. This descriptive information includes series names, a flag indicating if the series is selected for output, series variable types, lengths, position of series in the OUT= data set, labels, format names, format lengths, format decimals, and a set of FILETYPE= specific descriptor variables.

For example, the following statements list some of the monthly series available in the CITIFILE and are shown in Figure 11.1.

```
/*-- Selecting Time Series Variables -- The KEEP and DROP Statements --*/
filename citifile "citiaf.dat" RECFM=F LRECL=80;
proc datasource filetype=dribasic infile=citifile
        interval=month outcont=vars;
    drop e: ;
run;
title1 'Some Time Series Variables Available in CITIFILE';
proc print data=vars;
run;
```

Figure 11.1 Listing of the OUTCONT= Data Set

Controlling the Time Range of Data - The RANGE Statement

The RANGE statement is used to control the time range of observations included in the output data set. Figure 11.2 shows an example extracting the foreign exchange rates from September 1985 to

February 1987, you can use the following statements:

```
/*-- Controlling the Time Range of Data - The RANGE Statement --*/
filename citifile "citiaf.dat" RECFM=F LRECL=80;
proc datasource filetype=dribasic infile=citifile
        interval=month out=dataset;
    keep exrjan exrsw exruk;
    range from 1985:9 to 1987:2;
run;
title1 'Printout of the OUT= Data Set';
proc print data=dataset;
run;
```

Figure 11.2 Subset Obtained by KEEP and RANGE Statements

Printout of the OUT= Data Set				
Obs	DATE	EXRJAN	EXRSW	EXRUK
1	SEP1985	236.530	2.37490	136.420
2	OCT1985	214.680	2.16920	142.150
3	NOV1985	204.070	2.13060	143.960
4	DEC1985	202.790	2.10420	144.470
5	JAN1986	199.890	2.06600	142.440
6	FEB1986	184.850	1.95470	142.970
7	MAR1986	178.690	1.91500	146.740
8	APR1986	175.090	1. 90160	149.850
9	MAY1986	167.030	1.85380	152.110
10	JUN1986	167.540	1.84060	150.850
11	JUL1986	158.610	1.74450	150.710
12	AUG1986	154.180	1. 66160	148.610
13	SEP1986	154.730	1.65370	146.980
14	OCT1986	156.470	1.64330	142.640
15	NOV1986	162.850	1.68580	142.380
16	DEC1986	162.050	1.66470	143.930
17	JAN1987	154.830	1.56160	150.540
18	FEB1987	153.410	1.54030	152.800

Reading in Data Files Containing Cross Sections

Some data files group time series data with respect to cross-section identifiers; for example, International Financial Statistics files, distributed by IMF, group data with respect to countries (COUNTRY). Within each country, data are further grouped by Control Source Code (CSC), Partner Country Code (PARTNER), and Version Code (VERSION).

If a data file contains cross-section identifiers, the DATASOURCE procedure adds them to the output data set as BY variables. For example, the data set in Table 11.2 contains three cross sections:

- Cross-section one is identified by (COUNTRY='112' CSC='F' PARTNER=' , VERSION='Z').
- Cross-section two is identified by (COUNTRY='146' CSC='F' PARTNER=' , VERSION='Z').
- Cross-section three is identified by (COUNTRY='158' CSC='F' PARTNER=' , VERSION='Z').

Table 11.2 The Form of a SAS Data Set Containing BY Variables

$\begin{gathered} \text { BY } \\ \text { Variables } \end{gathered}$				Time ID Variable	Time Series Variables	
COUNTRY	CSC	PARTNER	VERSION	DATE	EFFEXR	EXRINDEX
112	F		Z	SEP1987	9326	12685
112	F		Z	OCT1987	9393	12813
112	F		Z	NOV1987	9626	13694
112	F		Z	DEC1987	9675	14099
112	F		Z	JAN1988	9581	13910
112	F		Z	FEB1988	9493	13549
146	F		Z	SEP1987	12046	16192
146	F		Z	OCT1987	12067	16266
146	F		Z	NOV1987	12558	17596
146	F		Z	DEC1987	12759	18301
146	F		Z	JAN1988	12642	18082
146	F		Z	FEB1988	12409	17470
158	F		Z	SEP1987	13841	16558
158	F		Z	OCT1987	13754	16499
158	F		Z	NOV1987	14222	17505
158	F		Z	DEC1987	14768	18423
158	F		Z	JAN1988	14933	18565
158	F		Z	FEB1988	14915	18331

Note that the data sets in Table 11.1 and Table 11.2 use two different ways of representing time series data for three different countries: the United Kingdom (COUNTRY='112'), Switzerland (COUNTRY $=$ ' 146 '), and Japan (COUNTRY $=$ ' 158 '). The first representation (Table 11.1) incorporates each country's name into the series names, while the second representation (Table 11.2) represents countries as different cross sections by using the BY variable named COUNTRY. See "Time Series and SAS Data Sets" in Chapter 3, "Working with Time Series Data."

Obtaining Descriptive Information on Cross Sections

If you want to know the unique set of values BY variables assume for each cross section in the data file, use the OUTBY = option. For example, the following statements list some of the cross sections available for an IFS file, and are shown in Figure 11.3.

```
filename ifsfile "imfifs1.dat" RECFM=F LRECL=88;
proc datasource
    filetype=imfifsp infile=ifsfile
    outselect=on ebcdic
    interval=month
    outby=xsection;
run;
title1 'Some Cross Sections Available in IFSFILE';
proc print data=xsection;
run;
```

Figure 11.3 Listing of the OUTBY= Data Set

The OUTBY= data set reports the total number of series, NSERIES, defined in each cross section, NSELECT of which represent the selected variables. If you want to see the descriptive information on each of these NSELECT variables for each cross section, specify the OUTALL= option. For example, the following statements print descriptive information on all monthly series defined for all cross sections (COUNTRY='111', COUNTRY='112', COUNTRY='146', COUNTRY='158', and COUNTRY='186') which are shown in Figure 11.4.

```
filename datafile "imfifs1.dat" RECFM=F LRECL=88;
title3 'Time Series Defined in Cross Section';
proc datasource filetype=imfifsp
    outselect=on ebcdic
    interval=month
    outall=ifsall;
run;
title4 'Cross Sections Available in OUTALL=IFSALL Data Set';
proc print
    data=ifsall;
run;
```

Figure 11.4 Listing of the OUTALL= Data Set

The OUTCONT= data set contains one observation for each time series variable with the descriptive information summarized over BY groups. When the data file contains no cross sections, the OUTCONT $=$ and OUTALL= data sets are equivalent, except that the OUTALL= data set also reports time ranges of available data. The OUTBY= data set in this case contains a single observation reporting the number of series and time ranges for the whole data file.

Subsetting a Data File Containing Cross Sections

Data files containing cross sections can be subsetted by controlling which cross sections to include in the output data set. Selecting a subset of cross sections is accomplished using the WHERE statement. The WHERE statement gives a condition that the BY variables must satisfy for a cross section to be selected. For example, the following statements extract the monthly market rate conversion factors for the United Kingdom (COUNTRY='112') and Switzerland (COUNTRY='146') for the period from September 1985 to February 1986.

```
filename datafile "imfifs1.dat" RECFM=F LRECL=88;
title3 'Time Series Defined in Selected Cross Sections';
proc datasource filetype=imfifsp
    outselect=on ebcdic
    interval=month
    out=ifs;
    where country in ('146', '112') and partner=' ';
    keep F___AA F___AC;
    range from '01sep85'd to '01feb86'd;
run;
title4 'OUTALL=IFS Data Set';
proc print
    data=ifs;
run;
```


Renaming Time Series Variables

Sometimes the time series variable names as given by data vendors are not descriptive enough, or you may prefer a different naming convention. In such cases, you can use the RENAME statement to assign more meaningful names to time series variables. You can also use LABEL statements to associate descriptive labels with your series variables.

For example, the series names for market rate conversion factor (F __AA) and market rate conversion factor (F __AC) used by IMF can be given more descriptive names and labels by the following statements and are shown in Figure 11.5 and Figure 11.6.

```
filename ifsfile "imfifs1.dat" RECFM=F LRECL=88;
```

```
proc datasource filetype=imfifsp infile=ifsfile
                interval=month
                out=market outcont=mrktvars;
    where country in ('112','146','158') and partner=' ';
    keep f___aa f___ac;
    range from '01jun85'd to '01feb86'd;
    rename f__aa=alphmkt f___ac=charmkt;
    label f___aa='F___AA: Market Rate Conversion Factor Used in Alpha Test'
    f___ac='F___AC: Market Rate Conversion Used in Charlie Test';
run;
title1 'Printout of OUTCONT= Showing New NAMEs and LABELs';
proc print data=mrktvars ;
    var name label length;
run;
title1 'Contents of OUT= Showing New NAMEs and LABELs';
proc contents data=market;
run;
```

The RENAME statement allows input names to be quoted strings. If the name of a series in the input file contains blanks or special characters that are not in valid SAS name syntax, use the SAS option VALIDVARNAME=ANY or put the series name in quotes to rename it. See the FAME example using rename in the "Selecting Time Series Variables - The KEEP and DROP Statements" on page 524 section.

Figure 11.5 Renaming and Labeling Variables

Figure 11.6 Renaming and Labeling Variables

Notice that even though you changed the names of F ___AA and F __ AC to alphmkt and charmkt, respectively, you still use their old names in the KEEP and LABEL statements because renaming takes place at the output stage.

Changing the Lengths of Numeric Variables

The length attribute indicates the number of bytes the SAS System uses for storing the values of variables in output data sets. Therefore, the shorter the variable lengths, the more efficient the diskspace usage. However, there is a trade-off. The lengths of numeric variables are closely tied to their precision, and reducing their lengths arbitrarily can cause precision loss.

The DATASOURCE procedure uses default lengths for series variables appropriate to each file type. For example, the default lengths for numeric variables are 5 for IMFIFSP type files. In some cases, however, you may want to assign different lengths. Assigning lengths less than the defaults reduces memory and disk-space usage at the expense of precision. Specifying lengths longer than the defaults increases the precision but causes the DATASOURCE procedure to use more memory and disk space. The following statements define a default length of 4 for all numeric variables in the IFSFILE and then assign a length of 6 to the exchange rate index. Output is shown in Figure 11.7 and Figure 11.8.

```
filename ifsfile "imfifs1.dat" RECFM=F LRECL=88;
proc datasource filetype=imfifsp infile=ifsfile
    interval=month
    out=market outcont=mrktvars;
    where country in ('112','146','158') and partner=' ';
    keep f___aa f___ac;
    range from '01jun85'd to '01feb86'd;
    rename f___aa=alphmkt f___ac=charmkt;
```

```
    label f___aa='F___AA: Market Rate Conversion Factor Used in Alpha Test'
    f___ac='F___AC: Market Rate Conversion Used in Charlie Test';
    length _numeric_ 4;
    length f___aa 6;
run;
title1 'Printout of OUTCONT= Showing New NAMEs and LABELs';
proc print data=mrktvars ;
    var name label length;
run;
title1 'Contents of OUT= Showing New NAMEs and LABELs';
proc contents data=market;
run;
```

Figure 11.7 Changing the Lengths of Numeric Variables

```
                    Contents of OUT= Showing New NAMEs and LABELs
                S
                E
                L L V
                E EA L
                N KCTNRRA
O A E T Y G N B
b M PEPTMU E
S E T DEHMML
1 alphmkt 1 1 1 6 6 F___AA: Market Rate Conversion Factor Used in Alpha Test
2 charmkt 1 1 1 4 7 F___AC: Market Rate Conversion Used in Charlie Test
\begin{tabular}{cccc} 
& & F & F \\
& F & O & O \\
& O & R & R \\
& R & M & M \\
O & M & A & A \\
b & A & T & T \\
S & T & L & D \\
& & & \\
\hline & & 0 & 0 \\
\hline & & & 0 \\
& & &
\end{tabular}
```

Figure 11.8 Changing the Lengths of Numeric Variables

The default lengths of the character variables are set to the minimum number of characters that can hold the longest possible value.

Syntax: DATASOURCE Procedure

The DATASOURCE procedure uses the following statements:

```
PROC DATASOURCE options;
    KEEP variable-list ;
    DROP variable-list;
    KEEPEVENT event-list ;
    DROPEVENT event-list;
    WHERE where-expression;
    RANGE FROM from TO to;
    ATTRIBUTE variable-list attribute-list ... ;
    FORMAT variable-list format ... ;
    LABEL variable="label" . . ;
    LENGTH variable-list length...;
    RENAME old-name=new-name ... ;
```

The PROC DATASOURCE statement is required. All the rest of the statements are optional.
The DATASOURCE procedure uses two kinds of statements, subsetting statements and attribute statements. Subsetting statements provide selection of time series data over selected time periods and cross sections from the input data file. Attribute statements control the attributes of the variables in the output SAS data set.

The subsetting statements are the KEEP, DROP, KEEPEVENT, and DROPEVENT statements (which select output variables); the RANGE statement (which selects time ranges); and the WHERE
statement (which selects cross sections). The attribute statements are the ATTRIBUTE, FORMAT, LABEL, LENGTH, and RENAME statements.

The statements and options used by PROC DATASOURCE are summarized in Table 11.3.
Table 11.3 Summary of Syntax

Option	Description
Input Data File Options	
FILETYPE $=$	type of input data file to read
INFILE $=$	fileref(s) of the input data
LRECL $=$	lrecl(s) of the input data
RECFM $=$	recfm(s) of the input data
character set of the incoming data	
ASCII	
EBaracter set of the incoming data	

PROC DATASOURCE Statement

PROC DATASOURCE options;

The following options can be used in the PROC DATASOURCE statement:

ALIGN= option

controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the following values: BEGINNING | BEG|B, MIDDLE \| MID | M, and ENDING
| END | E. BEGINNING is the default.

ASCII
specifies the incoming data is ASCII. This option is used when the native character set of your host machine is EBCDIC.

DBNAME= 'database name'
specifies the FAME database to access. Only use this option with the filetype=FAME option. The character string you specify in the DBNAME= option is passed through to FAME. Specify the value of this option as you would in accessing the database from within FAME software.

EBCDIC

specifies the incoming data is ebcdic. This option is needed when the native character set of your host machine is ASCII.

FAMEPRINT

prints the FAME command file generated by PROC DATASOURCE and the log file produced by the FAME component of the interface system. Only use this option with the filetype=FAME option.

FILETYPE= entry

DBTYPE= dbtype
specifies the kind of input data file to process. See "Data Elements Reference: DATASOURCE Procedure" on page 586 for a list of supported file types. The FILETYPE= option is required.

INDEX

creates a set of single indexes from BY variables for the OUT= data set. Under some circumstances, creating indexes for a SAS data set may increase the efficiency in locating observations when BY or WHERE statements are used in subsequent steps. Refer to SAS Language Reference: Concepts for more information on SAS indexes. The INDEX option is ignored when no OUT= data set is created or when the data file does not contain any BY variables. The INDEX= data set option can be used to override the index variable definitions.

INFILE= fileref

INFILE= (fileref1 fileref2 . . . filerefn)
specifies the fileref assigned to the input data file. The default value is DATAFILE. The fileref used in the INFILE= option (or if no INFILE= option is specified, the fileref DATAFILE) must be associated with the physical data file in a FILENAME statement. (On some operating systems, the fileref assignment can be made with the system's control language, and a FILENAME statement may not be needed. Refer to SAS Language Reference: Dictionary for more details on the FILENAME statement. Physical data files can reside on DVD, CD-ROM, or other media.

For some file types, the data are distributed over several files. In this case, the INFILE= option is required, and it lists in parentheses the filerefs for each of the files making up the database. The order in which these FILEREFS are listed is important and must conform to the specifics of each file type as explained in "Data Elements Reference: DATASOURCE Procedure" on page 586.

LRECL= \mid recl

LRECL= (lrecl1 Irecl2 . . . Irecln)
The logical record length in bytes of the infile. Only use this if you need to override the default LRECL of the file. For some file types, the data are distributed over several files. In this case, the LRECL= option lists in parentheses the LRECLs for each of the files making up the database. The order in which these LRECLs are listed is important and must conform to the specifics of each file type as explained in "Data Elements Reference: DATASOURCE Procedure" on page 586.

RECFM= recfm

RECFM $=($ recfm 1 recfm $2 \ldots$. recfmn $)$
The record format of the infile. Only use this if you need to override the default record format of the file. For some file types, the data are distributed over several files. In this case, the RECFM $=$ option lists in parentheses the RECFMs for each of the files making up the database. The order in which these RECFMs are listed is important and must conform to the specifics of each file type as explained in "Data Elements Reference: DATASOURCE Procedure" on page 586. The possible values of RECFM are

- F or FIXED for fixed length records
- N or BIN for binary records
- D or VAR for varying length records
- U or DEF for host default record format
- DOM_V or DOMAIN_VAR or BIN_V or BIN_VAR for UNIX binary record format

INTERVAL= interval

FREQUENCY= interval

TYPE= interval

specifies the periodicity of series selected for output to the OUT= data set. The OUT= data set created by PROC DATASOURCE can contain only time series with the same periodicity. Some data files contain time series with different periodicities; for example, a file can contain both monthly series and quarterly series. Use the INTERVAL= option to indicate which periodicity you want. If you want to extract series with different periodicities, use different PROC DATASOURCE invocations with the desired INTERVAL= options.

Common values for INTERVAL= are YEAR, QUARTER, MONTH, WEEK, and DAY. The values allowed, as well as the default value of the INTERVAL= option, depend on the file type. See "Data Elements Reference: DATASOURCE Procedure" on page 586 for the INTERVAL= values appropriate to the data file type you are reading.

OUT= SAS-data-set

names the output data set for the time series extracted from the data file. If none of the output
data set options are specified, including the OUT= data set itself, an OUT= data set is created and named according to the DATAn convention. However, when you create any of the other output data sets, such as OUTCONT=, OUTBY=, OUTALL=, or OUTEVENT=, you must explicitly specify the OUT= data set; otherwise, it will not be created. See "OUT= Data Set" on page 548 for further details.

OUTALL= SAS-data-set

writes information on the contents of the input data file to an output data set. The OUTALL= data set includes descriptive information, time ranges, and observation counts for all the time series within each BY group. By default, no OUTALL= data set is created.

The OUTALL= data set contains the Cartesian product of the information output by the OUTCONT $=$ and OUTBY $=$ options. In data files for which there are no cross sections, the OUTALL= and OUTCONT= data sets are almost equivalent, except that OUTALL= data set also reports time ranges and observation counts of series. See "OUTALL= Data Set" on page 552 for further details.

OUTBY= SAS-data-set
writes information on the BY variables to an output data set. The OUTBY= data set contains the list of cross sections in the database delimited by the unique set of values that the BY variables assume. Unless the OUTSELECT=OFF option is present, only the selected BY groups are written to the OUTBY= data set. If you omit the OUTBY= option, no OUTBY= data set is created. See "OUTBY= Data Set" on page 551 for further details.

OUTCONT= SAS-data-set

writes information on the contents of the input data file to an output data set. By default, the OUTCONT= data set includes descriptive information on all of the unique series of the selected periodicity in the data file. When the OUTSELECT=OFF option is omitted, the OUTCONT = data set includes observations only for the series selected for output to the OUT= data set. By default, no OUTCONT= data set is created. See "OUTCONT= Data Set" on page 550 for further details.

OUTEVENT= SAS-data-set

names the output data set to output event-oriented time series data. This option can only be used when CRSP stock files are being processed. For all other file types, it will be ignored. See "OUTEVENT= Data Set" on page 553 for further details.

OUTSELECT= ON | OFF

determines whether to output all observations (OUTSELECT=OFF) or only those corresponding to the selected time series and selected BY groups (OUTSELECT=ON) to OUTCONT=, OUTBY=, and OUTALL= data sets. The default is OUTSELECT=ON. The OUTSELECT= option is only relevant when any one of the auxiliary data sets is specified. The option writes observations to OUTCONT=, OUTBY=, and OUTALL= data sets for only the selected time series and selected BY groups if it is set ON. The OUTSELECT= option is only relevant when any one of the OUTCONT=, OUTBY=, and OUTALL= options is specified. The default is OUTSELECT=ON.

KEEP Statement

KEEP variable-list ;

The KEEP statement specifies which variables in the data file are to be included in the OUT= data set. Only the time series and event variables can be specified in a KEEP statement. All the BY variables and the time ID variable DATE are always included in the OUT= data set; they cannot be referenced in a KEEP statement. If they are referenced, a warning message is given and the reference is ignored.

The variable list can contain variable names or name range specifications. See "Variable Lists" on page 547 for details.

There is a default KEEP list for each file type. Usually, descriptor type variables, like footnotes, are not included in the default KEEP list. If you give a KEEP statement, the default list becomes undefined.

Only one KEEP or one DROP statement can be used. KEEP and DROP are mutually exclusive.
You can also use the KEEP= data set option to control which variables to include in the OUT= data set. However, the KEEP statement differs from the KEEP= data set option in several respects:

- The KEEP statement selection is applied before variables are read from the data file, while the KEEP= data set option selection is applied after variables are read and as they are written to the OUT= data set. Therefore, using the KEEP statement instead of the KEEP= data set option is much more efficient.
- If the KEEP statement causes no series variables to be selected, then no observations are output to the OUT= data set.
- The KEEP statement variable specifications are applied to each cross section independently. This behavior may produce variables different from those produced by the KEEP= data set option when order-range variable list specifications are used.

DROP Statement

DROP variable-list ;

The DROP statement specifies that some variables be excluded from the OUT= data set. Only the time series and event variables can be specified in a DROP statement. None of the BY variables or the time ID variable DATE can be excluded from the OUT= data set. If they are referenced in a DROP statement, a warning message is given and the reference is ignored. Use the WHERE statement for selection based on BY variables, and use the RANGE statement for date selections.

The variable list can contain variable names or name range specifications. See "Variable Lists" on page 547 for details.

Only one DROP or one KEEP statement can be used. KEEP and DROP are mutually exclusive.

There is a default DROP or KEEP list for each file type. Usually, descriptor type variables, like footnotes, are not included in the default KEEP list. If you specify a DROP statement, the default list becomes undefined.

You can also use the $\mathrm{DROP}=$ data set option to control which variables to exclude from the OUT= data set. However, the DROP statement differs from the DROP= data set option in several aspects:

- The DROP statement selection is applied before variables are read from the data file, while the $\mathrm{DROP}=$ data set option selection is applied after variables are read and as they are written to the OUT= data set. Therefore, using the DROP statement instead of the DROP= data set option is much more efficient.
- If the DROP statement causes all series variables to be excluded, then no observations are output to the OUT= data set.
- The DROP statement variable specifications are applied to each cross section independently. This behavior may produce variables different from those produced by the DROP= data set option when order-range variable list specifications are used.

KEEPEVENT Statement

KEEPEVENT variable-list ;

The KEEPEVENT statement specifies which event variables in the data file are to be included in the OUTEVENT= data set. As a result, the KEEPEVENT statement is valid only for data files containing event-oriented time series data. All the BY variables, the time ID variable DATE, and the event-grouping variable EVENT are always included in the OUTEVENT= data set. These variables cannot be referenced in the KEEPEVENT statement. If any of these variables are referenced, a warning message is given and the reference is ignored.

The variable list can contain variable names or name range specifications. See "Variable Lists" on page 547 for details.

Only one KEEPEVENT or one DROPEVENT statement can be used. KEEPEVENT and DROPEVENT are mutually exclusive.

You can also use the KEEP= data set option to control which event variables to include in the OUTEVENT= data set. However, the KEEPEVENT statement differs from the KEEP= data set option in several respects:

- The KEEPEVENT statement selection is applied before variables are read from the data file, while the KEEP= data set option selection is applied after variables are read and as they are written to the OUTEVENT= data set. Therefore, using the KEEPEVENT statement instead of the KEEP= data set option is much more efficient.
- If the KEEPEVENT statement causes no event variables to be selected, then no observations are output to the OUTEVENT= data set.

DROPEVENT Statement

DROPEVENT variable-list ;

The DROPEVENT statement specifies that some event variables be excluded from the OUTEVENT= data set. As a result, the DROPEVENT statement is valid only for data files containing event-oriented time series data. All the BY variables, the time ID variable DATE, and the event-grouping variable EVENT are always included in the OUTEVENT= data set. These variables cannot be referenced in the DROPEVENT statement. If any of these variables are referenced, a warning message is given and the reference is ignored.

The variable list can contain variable names or name range specifications. See "Variable Lists" on page 547 for details.

Only one DROPEVENT or one KEEPEVENT statement can be used. DROPEVENT and KEEPEVENT are mutually exclusive.

You can also use the DROP= data set option to control which event variables to exclude from the OUTEVENT= data set. However, the DROPEVENT statement differs from the DROP= data set option in several respects:

- The DROPEVENT statement selection is applied before variables are read from the data file, while the DROP= data set option selection is applied after variables are read and as they are written to the OUTEVENT= data set. Therefore, using the DROPEVENT statement instead of the DROP= data set option is much more efficient.
- If the DROPEVENT statement causes all series variables to be excluded, then no observations are output to the OUTEVENT= data set.

WHERE Statement

WHERE where-expression ;

The WHERE statement specifies conditions that BY variables must satisfy in order for a cross section to be included in the OUT= and OUTEVENT= data sets. By default, all BY groups are selected.

The where-expression must refer only to BY variables defined for the file type you are reading. The "Data Elements Reference: DATASOURCE Procedure" on page 586 lists the names of the BY variables for each file type.

For example, DOTS (Direction of Trade Statistics) files, distributed by the International Monetary Fund, have four BY variables: COUNTRY, CSC, PARTNER, and VERSION. Both COUNTRY and PARTNER are three-digit country codes. To select the direction of trade statistics of the United States (COUNTRY='111') with Turkey (COUNTRY='186'), Japan (COUNTRY='158'), and the oil exporting countries group (COUNTRY='985'), you should specify

```
where country='111' and partner in ('186','158','985');
```

You can use any SAS language operators and special WHERE expression operators in the WHERE statement condition. Refer to SAS Language Reference: Concepts for a more detailed discussion of WHERE expressions.

If you want to see the names of the BY variables and the values they assume for each cross section, you can first run PROC DATASOURCE with only the OUTBY= option. The information contained in the OUTBY = data set will aid you in selecting the appropriate BY groups for subsequent PROC DATASOURCE steps.

RANGE Statement

RANGE FROM from TO to ;

The RANGE statement selects the time range of observations written to the OUT= and OUTEVENT = data sets. The from and to values can be SAS date, time, or datetime constants, or they can be specified as year or year : period, where year is a two-digit or four-digit year, and period (when specified) is a period within the year corresponding to the INTERVAL= option. (For example, if INTERVAL=QTR, then period refers to quarters.) When period is omitted, the beginning of the year is assumed for the from value, and the end of the year is assumed for the to value.

If a two-digit year is specified, PROC DATASOURCE uses the current value of the YEARCUTOFF option to determine the century of your data. Warnings are issued in the SAS log whenever DATASOURCE needs to determine the century from a two-digit year specification.

The default YEARCUTOFF value is 1920. To use a different YEARCUTOFF value, specify
options yearcutoff=yyyy;
where YYYY is the YEARCUTOFF value you want to use. See SAS Language Reference: Dictionary for a more detailed discussion of the YEARCUTOFF option.

Both the FROM and TO specifications are optional, and both the FROM and TO keywords are optional. If the FROM limit is omitted, the output observations start with the minimum date for which data are available for any selected series. Similarly, if the TO limit is omitted, the output observations end with the maximum date for which data are available.

The following are some examples of RANGE statements:

```
range from 1980 to 1990;
range 1980 - 1990;
range from 1980;
range 1980;
range to 1990;
range to 1990:2;
range from '31aug89'd to '28feb1990'd;
```

The RANGE statement applies to each BY group independently. If all the selected series contain no data in the specified range for a given BY group, then there will be no observations for that BY group in the OUT= and OUTEVENT= data sets.

If you want to know the time ranges for which periodic time series data are available, you can first run PROC DATASOURCE with the OUTBY= or OUTALL= option. The OUTBY= data set reports the union of the time ranges over all the series within each BY group, while the OUTALL= data set gives time ranges for each series separately in each BY group.

ATTRIBUTE Statement

ATTRIBUTE variable-list attribute-list ... ;
The ATTRIBUTE statement assigns formats, labels, and lengths to variables in the output data sets.
The variable-list can contain variable names and variable name range specifications. See "Variable Lists" on page 547 for details. The attributes specified in the following attribute list apply to all variables in the variable list.

An attribute-list consists of one or more of the following options:

FORMAT= format

associates a format with variables in variable-list. The format can be either a standard SAS format or a format defined with the FORMAT procedure. The default formats for variables depend on the file type.

LABEL= "label"

assigns a label to the variables in the variable list. The default labels for variables depend on the file type. Labels can be up to 256 bytes in length.

LENGTH= length

specifies the number of bytes used to store the values of variables in the variable list. The default lengths for numeric variables depend on the file type. Usually default lengths are set to 5 bytes.

The length specification also controls the amount of memory that PROC DATASOURCE uses to hold variable values while processing the input data file. Thus, specifying a LENGTH= value smaller than the default will reduce both the disk space taken up by the output data sets and the amount of memory used by the PROC DATASOURCE step, at the cost of precision of output data values.

FORMAT Statement

The FORMAT statement assigns formats to variables in output data sets. The variable-list can contain variable names and variable name range specifications. See "Variable Lists" on page 547 for details. The format specified applies to all variables in the variable list.

A single FORMAT statement can assign the same format to several variables or different formats to different variables. The FORMAT statement can use standard SAS formats or formats defined using the FORMAT procedure.

Any later format specification for a variable, using either the FORMAT statement or the FORMAT= option in the ATTRIBUTE statement, always overrides the previous one.

LABEL Statement

LABEL variable = "label" . . ;
The LABEL statement assigns SAS variable labels to variables in the output data sets. You can give labels for any number of variables in a single LABEL statement. The default labels for variables depend on the file type. Extra-long labels (>256 bytes) reside in the OUTCONT data set as the DESCRIPT variable.

Any later label specification for a variable, using either the LABEL statement or the LABEL= option in the ATTRIBUTE statement, always overrides the previous one.

LENGTH Statement

LENGTH variable-list length ... ;

The LENGTH statement, like the LENGTH= option in the ATTRIBUTE statement, specifies the number of bytes used to store values of variables in output data sets. The default lengths for numeric variables depend on the file type. Usually default lengths are set to 5 bytes.

The default lengths of character variables are defined as the minimum number of characters that can hold the longest possible value.

For some file types, the LENGTH statement also controls the amount of memory used to store values of numeric variables while processing the input data file. Thus, specifying LENGTH values smaller than the default will reduce both the disk space taken up by the output data sets and the amount of memory used by the PROC DATASOURCE step, at the cost of precision of output data values.

Any later length specification for a variable, using either the LENGTH statement or the LENGTH= option in the ATTRIBUTE statement, always overrides the previous one.

RENAME Statement

RENAME old-name $=$ new-name \ldots;
The RENAME statement is used to change the names of variables in the output data sets. Any number of variables can be renamed in a single RENAME statement. The most recent RENAME specification overrides any previous ones for a given variable. The new-name is limited to 32 characters.

Renaming of variables is done at the output stage. Therefore, you need to use the old variable names in all other PROC DATASOURCE statements. For example, the series variable names DATA1DATA350 used with annual COMPUSTAT files are not very descriptive, so you may choose to rename them to reflect the financial aspect they represent. You may rename "DATA51" as "INVESTTAX" with the RENAME statement
rename data51=investtax;
since it contains investment tax credit data. However, in all other DATASOURCE statements, you must use the old name, DATA51.

Details: DATASOURCE Procedure

Variable Lists

Variable lists used in PROC DATASOURCE statements can consist of any combination of variable names and name range specifications. Items in variable lists can have the following forms:

- a name, such as PZU.
- an alphabetic range name1-name2. For example, A-DZZZZZZZ specifies all variables with names starting with $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D.
- a prefix range prefix :. For example, IP: selects all variables with names starting with the letters IP.
- an order range name1-name2. For example, GLR72-GLRD72 specifies all variables in the input data file between GLR72 and GRLD72 inclusive.
- a numeric order range name1-NUMERIC-name2. For example, GLR72-NUMERICGLRD72 specifies all numeric variables between GLR72 and GRLD72 inclusive.
- a character order range namel-CHARACTER-name2. For example, GLR72-CHARACTERGLRD72 specifies all character variables between GLR72 and GRLD72 inclusive.
- one of the keywords _NUMERIC_, _CHARACTER_, or _ALL_. The keyword _NUMERIC_ specifies all numeric variables, _CHARACTER_ specifies all character variables, and _ALL_ specifies all variables.

To determine the order of series in a data file, run PROC DATASOURCE with the OUTCONT= option, and print the output data set. Note that order and alphabetic range specifications are inclusive, meaning that the beginning and ending names of the range are also included in the variable list.

For order ranges, the names used to define the range must actually name variables in the input data file. For alphabetic ranges, however, the names used to define the range need not be present in the data file.

Note that variable specifications are applied to each cross section independently. This may cause the order-range variable list specification to behave differently than its DATA step and data set option counterparts. This is because PROC DATASOURCE knows which variables are defined for which cross sections, while the DATA step applies order range specification to the whole collection of time series variables.

If the ending variable name in an order range specification is not in the current cross section, all variables starting from the beginning variable to the last variable defined in that cross section get selected. If the first variable is not in the current cross section, then order range specification has no effect for that cross section.

The variable names used in variable list specifications can refer either to series names appearing in the input data file or to the SAS names assigned to series data fields internally if the series names are not recorded to the INFILE= file. When the latter is the case, internally defined variable names are listed in "Data Elements Reference: DATASOURCE Procedure" on page 586 later in this chapter.

The following are examples of the use of variable lists:

```
keep ip: pw112-pw117 pzu;
drop data1-data99 data151-data350;
length data1-numeric-aftnt350 ucode 4;
```

The first statement keeps all the variables starting with IP:, all the variables between PW112 and PW117 including PW112 and PW117 themselves, and a single variable PZU. The second statement drops all the variables that fall alphabetically between DATA1 and DATA99, and between DATA151 and DATA350. Finally, the third statement assigns a length of 4 bytes to all the numeric variables defined between DATA1 and AFTNT350, and UCODE. Variable lists can not exceed 200 characters in length.

OUT= Data Set

The OUT= data set can contain the following variables:

- the BY variables, which identify cross-sectional dimensions when the input data file contains time series replicated for different values of the BY variables. Use the BY variables in a

WHERE statement to process the OUT= data set by cross sections. The order in which BY variables are defined in the OUT= data set corresponds to the order in which the data file is sorted.

- DATE, a SAS date-, time-, or datetime-valued variable that reports the time period of each observation. The values of the DATE variable may span different time ranges for different BY groups. The format of the DATE variable depends on the INTERVAL= option.
- the periodic time series variables, which are included in the OUT= data set only if they have data in at least one selected BY group and they are not discarded by a KEEP or DROP statement
- the event variables, which are included in the OUT= data set if they are not discarded by a KEEP or DROP statement. By default, these variables are not output to OUT= data set.

The values of BY variables remain constant in each cross section. Observations within each BY group correspond to the sampling of the series variables at the time periods indicated by the DATE variable.

You can create a set of single indexes for the OUT= data set by using the INDEX option, provided there are BY variables. Under some circumstances, this may increase the efficiency of subsequent PROC and DATA steps that use BY and WHERE statements. However, there is a cost associated with creation and maintenance of indexes. The SAS Language Reference: Concepts lists the conditions under which the benefits of indexes outweigh the cost.

With data files containing cross sections, there can be various degrees of overlap among the series variables. One extreme is when all the series variables contain data for all the cross sections. In this case, the output data set is very compact. In the other extreme case, however, the set of time series variables are unique for each cross section, making the output data set very sparse, as depicted in Table 11.4.

Table 11.4 The OUT= Data Set Containing Unique Series for Each BY Group

BY Variables BY1 BYP	Series in first BY group	Series in second BY group S1 S2 S3 ... SM	\ldots	Series in last BY group T1 T2 T3 ... TK
$\begin{gathered} \text { BY } \\ \text { group } \end{gathered}$	DATA is here		data is missing everywhere except on diagonal	
$\begin{gathered} \hline \text { BY } \\ \text { group } \\ 2 \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { DATA } \\ \text { is } \\ \text { here } \end{gathered}$		
\vdots			$\begin{gathered} \text { DATA } \\ \text { is } \\ \text { here } \end{gathered}$	
$\begin{gathered} \text { BY } \\ \text { group } \\ \mathrm{N} \end{gathered}$				$\begin{gathered} \text { DATA } \\ \text { is } \\ \text { here } \end{gathered}$

The data in Table 11.4 can be represented more compactly if cross-sectional information is incorporated into series variable names.

OUTCONT= Data Set

The OUTCONT= data set contains descriptive information for the time series variables. This descriptive information includes various attributes of the time series variables. The OUTCONT= data set contains the following variables:

- NAME, a character variable that contains the series name
- KEPT, a numeric variable that indicates whether the series was selected for output by the DROP or KEEP statements. KEPT is usually the same as SELECTED, but can differ if a WHERE statement is used.
- SELECTED, a numeric variable that indicates whether the series is selected for output to the OUT= data set. The series is included in the OUT= data set (SELECTED=1) if it is kept $(\mathrm{KEPT}=1)$ and it has data for at least one selected BY group.
- TYPE, a numeric variable that indicates the type of the time series variable. TYPE=1 for numeric series; TYPE $=2$ for character series.
- LENGTH, a numeric variable that gives the number of bytes allocated for the series variable in the OUT= data set
- VARNUM, a numeric variable that gives the variable number of the series in the OUT= data set. If the series variable is not selected for output (SELECTED=0), then VARNUM has a missing value. Likewise, if no OUT= option is given, VARNUM has all missing values.
- LABEL, a character variable that contains the label of the series variable. LABEL contains only the first 256 characters of the labels. If they are longer than 256 characters, then the variable, DESCRIPT, is defined to hold the whole length of series labels. Note that if a data file assigns different labels to the same series variable within different cross sections, only the first occurrence of labels will be transferred to the LABEL column.
- the variables FORMAT, FORMATL, and FORMATD, which give the format name, length, and number of format decimals, respectively
- the GENERIC variables, whose values may vary from one series to another, but whose values remain constant across BY groups for the same series

By default, the OUTCONT= data set contains observations for only the selected series where SELECTED $=1$. If the OUTSELECT=OFF option is specified, the OUTCONT= data set contains one observation for each unique series of the specified periodicity contained in the input data file.

If you do not know what series are in the data file, you can run PROC DATASOURCE with the OUTCONT= option and OUTSELECT=OFF. The information contained in the OUTCONT= data set can then help you to determine which time series data you want to extract.

OUTBY= Data Set

The OUTBY= data set contains information on the cross sections contained in the input data file. These cross sections are represented as BY groups in the OUT= data set. The OUTBY= data set contains the following variables:

- the BY variables, whose values identify the different cross sections in the data file. The BY variables depend on the file type.
- BYSELECT, a numeric variable that reports the outcome of the WHERE statement condition for the BY variable values for this observation. The value of BYSELECT is 1 for BY groups selected by the WHERE statement for output to the OUT= data set and is 0 for BY groups that are excluded by the WHERE statement. BYSELECT is added to the data set only if a WHERE statement is given. When there is no WHERE statement, then all the BY groups are selected.
- ST_DATE, a numeric variable that gives the starting date for the BY group. The starting date is the earliest of the starting dates of all the series that have data for the current BY group.
- END_DATE, a numeric variable that gives the ending date for the BY group. The ending date is the latest of the ending dates of all the series that have data for the BY group.
- NTIME, a numeric variable that gives the number of time periods between ST_DATE and END_DATE, inclusive. Usually, this is the same as NOBS, but they differ when time periods are not equally spaced and when the OUT= data set is not specified. NTIME is a maximum limit on NOBS.
- NOBS, a numeric variable that gives the number of time series observations in the OUT= data set between ST_DATE and END_DATE inclusive. When a given BY group is discarded by a WHERE statement, the NOBS variable corresponding to this BY group becomes 0 , since the OUT= data set does not contain any observations for this BY group. Note that BYSELECT=0 for every discarded BY group.
- NINRANGE, a numeric variable that gives the number of observations in the range (from,to) defined by the RANGE statement. This variable is only added to the OUTBY= data set when the RANGE statement is specified.
- NSERIES, a numeric variable that gives the total number of unique time series variables having data for the BY group
- NSELECT, a numeric variable that gives the total number of selected time series variables having data for the BY group
- the generic variables, whose values remain constant for all the series in the current BY group

In this list, you can only control the attributes of the BY and GENERIC variables.
The variables NOBS, NTIME, and NINRANGE give observation counts, while the variables NSERIES and NSELECT give series counts.

By default, observations for only the selected BY groups (where BYSELECT=1) are output to the OUTBY = data set, and the date and time range variables are computed over only the selected time series variables. If the OUTSELECT=OFF option is specified, the OUTBY= data set contains an observation for each BY group, and the date and time range variables are computed over all the time series variables.

For file types that have no BY variables, the OUTBY= data set contains one observation giving ST_DATE, END_DATE, NTIME, NOBS, NINRANGE, NSERIES, and NSELECT for all the series in the file.

If you do not know the BY variable names or their possible values, you can do an initial run of PROC DATASOURCE with the OUTBY= option. The information contained in the OUTBY= data set can help you design your WHERE expression and RANGE statement for the subsequent executions of PROC DATASOURCE to obtain different subsets of the same data file.

OUTALL= Data Set

The OUTALL= data set combines and expands the information provided by the OUTCONT= and OUTBY= data sets. That is, the OUTALL= data set not only reports the OUTCONT= information separately for each BY group, but also reports the OUTBY= information separately for each series. Each observation in the OUTBY = data set gets expanded to NSERIES or NSELECT observations in the OUTALL= data set, depending on whether the OUTSELECT=OFF option is specified.

By default, only the selected BY groups and series are included in the OUTALL= data set. If the OUTSELECT=OFF option is specified, then all the series within all the BY groups are reported.

The OUTALL= data set contains all the variables defined in the OUTBY= and OUTCONT= data sets and also contains the GENERIC variables (whose values can vary from one series to another and from one BY group to another). Another additional variable is BLKNUM, which gives the data block number in the data file containing the series variable.

The OUTALL= data set is useful when BY groups do not contain the same time series variables or when the time ranges for series change across BY groups.

You should be careful in using the OUTALL= option, since the OUTALL= data set can get very large for many file types. Some file types have the same series and time ranges for each BY group; the OUTALL= option should not be used with these file types. For example, you should not specify the OUTALL= option with COMPUSTAT files, since all the BY groups contain the same series variables.

The OUTALL= and OUTCONT= data sets are equivalent when there are no BY variables, except that the OUTALL= data set contains extra information about the time ranges and observation counts of the series variables.

OUTEVENT= Data Set

The OUTEVENT= data set is used to output event-oriented time series data. Events occurring at discrete points in time are recorded along with the date they occurred. Only CRSP stock files contain event-oriented time series data. For all other types of files, the OUTEVENT= option is ignored.

The OUTEVENT = data set contains the following variables:

- the BY variables, which identify cross-sectional dimensions when the input data file contains time series replicated for different values of the BY variables. Use the BY variables in a WHERE statement to process the OUTEVENT= data set by cross sections. The order in which BY variables are defined in the OUTEVENT= data set corresponds to the order in which the data file is sorted.
- DATE, a SAS date-, time- or datetime-valued variable that reports the discrete time periods at which events occurred. The format of the DATE variable depends on the INTERVAL= option, and should accurately report the date based on the SAS YEARCUTOFF option. The default value for YEARCUTOFF is 1920 . The dates used can span up to 250 years.
- EVENT, a character variable that contains the event group name. The EVENT variable is another cross-sectional variable.
- the event variables, which are included in the OUTEVENT= data set only if they have data in at least one selected BY group, and are not discarded by a KEEPEVENT or DROPEVENT statement

Note that each event group contains a nonoverlapping set of event variables; therefore, the OUTEVENT= data set is very sparse. You should exercise care when selecting event variables to be included in the OUTEVENT= data set.

Also note that even though the OUTEVENT= data set cannot contain any periodic time series variables, the OUT= data set can contain event variables if they are explicitly specified in a KEEP statement. In summary, you can specify event variables in a KEEP statement, but you cannot specify periodic time series variables in a KEEPEVENT statement.

While variable selection for OUT = and OUTEVENT = data sets are controlled by a different set of statements (KEEP versus KEEPEVENT or DROP versus DROPEVENT), cross-section and range selections are controlled by the same statements, so in summary, the WHERE and the RANGE statements are effective for both output data sets.

Examples: DATASOURCE Procedure

Example 11.1: BEA National Income and Product Accounts

In this example, exports and imports of goods and services are extracted to demonstrate how to work with a National Income and Product Accounts (NIPA) file.

From the "Statistical Tables" published by the United States Department of Commerce, Bureau of Economic Analysis, the relation of foreign transactions in the Balance of Payments Accounts (BPA) are given in the fifth table (TABNUM='05') of the "Foreign Transactions" section (PARTNO='4'). Moreover, the first line in the table gives BPAs, while the eighth gives exports of goods and services. The series names __00100 and _ 00800 , are constructed by two underscores followed by three digits as the line numbers, and then two digits as the column numbers.

The following statements put this information together to extract quarterly BPAs and exports from a BEANIPA type file:

```
/*- assign fileref to the external file to be processed --------*/
filename ascifile 'beanipa.data' recfm=v lrecl=108;
title1 'Relation of Foreign Transactions to Balance of Payment Accounts';
title2 'Range from 1984 to 1989';
title3 'Annual';
proc datasource filetype=beanipa infile=ascifile
                    interval=year
                    outselect=off
                outkey=byfor4;
    range from 1984 to 1989;
    keep __00100 __00800;
    label __00100='Balance of Payment Accounts';
    label __00800='Exports of Goods and Services';
    rename __00100=BPAs __00800=exports;
run;
proc print data=byfor4;
run;
/*- assign fileref to the external file to be processed --------*/
filename ascifile 'beanipa.data' recfm=v lrecl=108;
title1 'Relation of Foreign Transactions to Balance of Payment Accounts';
title2 'Range from 1984 to 1989';
```

```
title3 'Annual';
proc datasource filetype=beanipa infile=ascifile
                interval=year
                outselect=off
                    outkey=byfor4
                    out=foreign4;
    range from 1984 to 1989;
    keep __00100 __00800;
    label __00100='Balance of Payment Accounts';
    label __00800='Exports of Goods and Services';
    rename __00100=BPAs __00800=exports;
run;
proc contents data=foreign4;
run;
proc print data=foreign4;
run;
```

The results are shown in Output 11.1.1, Output 11.1.2, and Output 11.1.3.

Output 11.1.1 Listing of OUTBY=byfor4 of the BEANIPA Data

Output 11.1.2 CONTENTS of OUT=foreign4 of the BEANIPA Data

Output 11.1.3 Listing of OUT=foreign4 of the BEANIPA Data

Relation of Foreign Transactions to Balance of Payment AccountsRange from 1984 to 1989Annual				
Obs	PARTNO	TABNUM	DATE	exports
1	1	20	1984	44
2	1	20	1985	53
3	1	20	1986	46
4	1	20	1987	40
5	1	20	1988	48
6	1	20	1989	47
7	4	05	1984	3835
8	4	05	1985	3709
9	4	05	1986	3965
10	4	05	1987	4496
11	4	05	1988	5520
12	4	05	1989	6262

This example illustrates the following features:

- You need to know the series variables names used by a particular vendor in order to construct the KEEP statement.
- You need to know the BY-variable names and their values for the required cross sections.
- You can use RENAME and LABEL statements to associate more meaningful names and labels with your selected series variables.

Example 11.2: BLS Consumer Price Index Surveys

This example compares changes of the prices in medical care services with respect to different regions for all urban consumers (SURVEY='CU') since May 1975. The source of the data is the Consumer Price Index Surveys distributed by the U.S. Department of Labor, Bureau of Labor Statistics.

An initial run of PROC DATASOURCE gives the descriptive information on different regions available (the OUTBY= data set), as well as the series variable name corresponding to medical care services (the OUTCONT= data set).

```
options yearcutoff = 1900;
filename datafile 'blscpil.data' recfm=v lrecl=152;
proc datasource filetype=blscpi
    interval=mon
    outselect=off
    outby=cpikey (where=( upcase (areaname)
                    in ('NORTHEAST','NORTH CENTRAL','SOUTH','WEST')) )
    outcont=cpicont (where= ( index( upcase(label), 'MEDICAL CARE' )) );
    where survey='CU';
run;
title1 'OUTBY= Data Set, By AREANAME Selection';
proc print
    data=cpikey;
run;
title1 'OUTCONT= Data Set, By LABEL Selection';
proc print
    data=cpicont;
run;
```

The OUTBY= data set in Output 11.2.1 lists all cross sections available for the four geographical regions: Northeast (AREA='0100'), North Central (AREA='0200'), Southern (AREA='0300'), and Western (AREA='0400'). The OUTCONT= data set in Output 11.2.2 gives the variable names for medical care related series.

Output 11.2.1 Partial Listings of the OUTBY= Data Set

OUTCONT= Data Set, By LABEL Selection										
Obs	SURVEY	SEASON	AREA BA	ASPTYPE	BAS	PR	BYSE	Lect	ST_DATE	END_DATE
1	CU	U	0200	S	1982	$4=100$		1	DEC1977	JUL1990
2	CU	U	0100	S	1982	$4=100$		1	-	-
3	CW	U	0400	S	1982	$4=100$		0	DEC1977	JUL1990
4	CW	U	0100	S	1982	$4=100$		0	.	.
5	CW	U	0200	S	1982	$4=100$		0	-	-
Obs	NTIME	NOBS	NSERIES	S NSE	LECT		SURTIT	LE	AREA	NAME
1	152	152	2		2	ALL U	URBAN	CONSUM	1 NORT	H CENTRAL
2	-	0	0		0	ALL U	URBAN	CONSUM	1 NORT	HEAST
3	152	0	1		0	URBAN	N WAGE	EARN	WEST	
4	.	0	0		0	URBAN	N WAGE	EARN	NORT	HEAST
5	.	0	0		0	URBAN	N WAGE	EARN	NORT	H CENTRAL

Output 11.2.2 Partial Listings of the OUTCONT= Data Set

The following statements make use of this information to extract the data for A512 and descriptive information on cross sections containing A512. Output 11.2.3 and Output 11.2.4 show these results.

```
options yearcutoff = 1900;
filename datafile 'blscpil.data' recfm=v lrecl=152;
proc format;
    value $areafmt '0100' = 'Northeast Region'
                        '0200' = 'North Central Region'
                        '0300' = 'Southern Region'
                        '0400' = 'Western Region';
run;
proc datasource filetype=blscpi interval=month
            out=medical outall=medinfo;
    where survey='CU' and area in ( '0100','0200','0300','0400' );
    keep date a512;
    range from 1988:9;
    format area $areafmt.;
    rename a512=medcare;
run;
title1 'Information on Medical Care Service, OUTALL= Data Set';
proc print
    data=medinfo;
run;
title1 'Medical Care Service By Region, OUT= Data Set';
title2 'Range from September, 1988';
proc print
    data=medical;
run;
```

Output 11.2.3 Printout of the OUTALL= Data Set

Output 11.2.4 Printout of the OUT= Data Set

Medical Care Service By Region, OUT= Data Set Range from September, 1988								
Obs	SURVEY	SEASON	AREA		BASPTYPE	BASEPER	DATE	medcare
1	CU	U	North	Central Region	S	1982-84=100	SEP1988	1364
2	CU	U	North	Central Region	S	1982-84=100	OCT1988	1365
3	CU	U	North	Central Region	S	1982-84=100	NOV1988	1368
4	CU	U	North	Central Region	S	1982-84=100	DEC1988	1372
5	CU	U	North	Central Region	S	1982-84=100	JAN1989	1387
6	CU	U	North	Central Region	S	1982-84=100	FEB1989	1399
7	CU	U	North	Central Region	S	1982-84=100	MAR1989	1405
8	CU	U	North	Central Region	S	1982-84=100	APR1989	1413
9	CU	U	North	Central Region	S	1982-84=100	MAY1989	1416
10	CU	U	North	Central Region	S	1982-84=100	JUN1989	1425
11	CU	U	North	Central Region	S	1982-84=100	JUL1989	1439
12	CU	U	North	Central Region	S	1982-84=100	AUG1989	1452
13	CU	U	North	Central Region	S	1982-84=100	SEP1989	1460
14	CU	U	North	Central Region	S	1982-84=100	OCT1989	1473
15	CU	U	North	Central Region	S	1982-84=100	NOV1989	1481
16	CU	U	North	Central Region	S	1982-84=100	DEC1989	1485
17	CU	U	North	Central Region	S	1982-84=100	JAN1990	1500
18	CU	U	North	Central Region	S	1982-84=100	FEB1990	1516
19	CU	U	North	Central Region	S	1982-84=100	MAR1990	1528
20	CU	U	North	Central Region	S	1982-84=100	APR1990	1538
21	CU	U	North	Central Region	S	1982-84=100	MAY1990	1548
22	CU	U	North	Central Region	S	1982-84=100	JUN1990	1557
23	CU	U	North	Central Region	S	1982-84=100	JUL1990	1573

The OUTALL= data set in Output 11.2.3 indicates that data values are stored with one decimal place (see the NDEC variable). Therefore, they need to be rescaled, as follows:

```
data medical;
    set medical;
    medcare = medcare * 0.1;
run;
```

This example illustrates the following features:

- Descriptive information needed to write KEEP and WHERE statements can be obtained with an initial run of the DATASOURCE procedure.
- The OUTCONT= and OUTALL= data sets contain information on how data values are stored, such as the precision, the units, and so on.
- The OUTCONT= and OUTALL= data sets report the new series names assigned by the RENAME statement, not the old names (see the NAME variable in Output 11.2.3).
- You can use PROC FORMAT to define formats for series or BY variables to enhance your output. Note that PROC DATASOURCE associates a permanent format, \$AREAFMT., with the BY variable AREA. As a result, the formatted values are displayed in the printout of the OUTALL=MEDINFO data set (see Output 11.2.3).

Example 11.3: BLS State and Area Employment, Hours, and Earnings Surveys

This example illustrates how to extract specific series from a State and Area Employment, Hours, and Earnings Survey. The series to be extracted is total employment in real estate and construction industries with respect to states from March 1989 to March 1990.

The State and Area, Employment, Hours and Earnings survey designates the totals for statewide figures by AREA='0000'.

The data type code for total employment is reported to be 1 . Therefore, the series name for this variable is SA1, since series names are constructed by adding an SA prefix to the data type codes given by BLS.

Output 11.3.1 and Output 11.3.2 show statewide figures for total employment (SA1) in many industries from March 1989 through March 1990.

```
filename ascifile "blseesa.dat" RECFM=F LRECL=152;
proc datasource filetype=blseesa
    infile=ascifile
    outall=totkey
    out=totemp;
    keep sa1;
    range from 1989:3 to 1990:3;
    rename sal=totemp;
run;
title1 'Information on Total Employment, OUTALL= Data Set';
proc print data=totkey;
run;
title1 'Total Employment, OUT= Data Set';
proc print data=totemp;
run;
```

Output 11.3.1 Printout of the OUTALL= Data Set for All BY Groups

filename datafile "blseesa.dat" RECFM=F LRECL=152;
proc datasource filetype=blseesa
outall=totkey
out=totemp;

```
    where industry='0000';
    keep sal;
    range from 1989:3 to 1990:3;
    rename sa1=totemp;
run;
title1 'Total Employment for Real Estate and Construction, OUT= Data Set';
proc print data=totemp;
run;
```

Output 11.3.2 Printout of the OUT= Data Set for INDUSTRY=0000

Obs	Total Employment for Real Estate and Construction, OUT= Data Set						
	State	AREA	DIVISION	INDUSTRY	detail	DATE	totemp
1	5	2580	7	0000	1	MAR1989	16
2	5	2580	7	0000	1	APR1989	16
3	5	2580	7	0000	1	MAY1989	16
4	5	2580	7	0000	1	JUN1989	16
5	5	2580	7	0000	1	JUL1989	16
6	5	2580	7	0000	1	AUG1989	16
7	5	2580	7	0000	1	SEP1989	16
8	5	2580	7	0000	1	ОСт1989	16
9	5	2580	7	0000	1	NOV1989	16
10	5	2580	7	0000	1	DEC1989	16
11	5	2580	7	0000	1	JAN1990	15
12	5	2580	7	0000	1	FEB1990	15
13	5	2580	7	0000	1	MAR1990	15

Note the following for this example:

- When the INFILE= option is omitted, the fileref assigned to the BLSEESA file is the default value DATAFILE.
- The FROM and TO values in the RANGE statement correspond to monthly data points since the INTERVAL= option defaults to MONTH for the BLSEESA filetype.

Example 11.4: DRI/McGraw-Hill Format CITIBASE Files

Output 11.4.1 and Output 11.4.2 illustrate how to extract weekly series from a sample CITIBASE file. They also demonstrate how the OUTSELECT= option affects the contents of the auxiliary data sets.

The weekly series contained in the sample data file CITIDEMO are listed by the following statements:

```
filename datafile "citidem.dat" RECFM=D LRECL=80;
proc datasource filetype=citibase interval=week
    outall=citiall outby=citikey;
run;
title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=citikey;
run;
title1 'Weekly Series Available in CITIDEMO File';
proc print data=citiall( drop=label );
run;
```

Output 11.4.1 Listing of the OUTBY= CITIKEY Data Set

Obs	ST_DATE	END_DATE	NTIME	NOBS	NSERIES	NSELECT
1	29NOV2019	09FEB2023	835	835	10	10

Output 11.4.2 Listing of the OUTALL= CITIALL Data Set

Daily Series Available in CITIDEMO File								
Obs NAME		SELECTED	TYPE	LENGTH	VARNUM BLK		UM	
1	DSIUSNYDJCM	1	1	5		42		
2	DSIUSNYSECM	1	1	5		4		
3	DSIUSWIL	1	1	5		44		
4	DFXWCAN	1	1	5		45		
5	DFXWUK90	1	1	5		46		
6	DSIUKAS	1	1	5		47		
7	DSIJPND	1	1	5		48		
8	DCP05	1	1	5		49		
9	DCD1M	1	1	5		50		
10	DTBD3M	1	1	5		51		
Obs	LABEL							FORMAT
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	STOCK MKT I STOCK MKT I STOCK MKT I FOREIGN EXC FOREIGN EXC STOCK MKT I STOCK MKT I INT.RATE:5- INT.RATE:1M INT. RATE: 3M	:NY DOW JO :NYSE COMP :WILSHIRE TE WSJ:CAN TE WSJ:U.K :U.K. - AL :JAPAN - N COMM.PAPER RTIFICATES BILL, DISC	ES COMPOSI OSITE, (WSJ) 500, (WSJ) DA, CANADIA , CENTS/POU SHARES KKEI-DOW SHORT TER OF DEPOSIT UNT YIELD	ITE, (J) AN $\$ / \mathrm{U}$ UND (90 RM YIE T, SHO (FRB	(NSJ) S. \$ DAY F D T TER H.15)	, NSA FORWARD), NSA RM YIELD (FBR	H. 15)	
Obs	FORMATL FOR	ST_DATE	END_DATE	NTIME	NOBS	CODE	ATTRIBUT	NDEC
1	0	02DEC2019	09FEB2023	834	834	DSIUSNYDJCM	1	2
2	0	02DEC2019	09FEB2023	834	834	DSIUSNYSECM	1	2
3	0	02DEC2019	09FEB2023	834	834	DSIUSWIL	1	2
4	0	29NOV2019	09FEB2023	835	835	DFXWCAN	1	4
5	0	29NOV2019	09FEB2023	835	835	DFXWUK90	1	2
6	0	29NOV2019	09FEB2023	835	835	DSIUKAS	1	2
7	0	29NOV2019	09FEB2023	835	835	DSIJPND	1	2
8	0	02DEC2019	22JAN2021	300	300	DCP05	2	2
9	0	02DEC2019	03FEB2023	830	830	DCD1M	1	2
10	0	02DEC2019	03FEB2023	830	830	DTBD3M	1	2

Note the following from Output 11.4.2:

- The OUTALL= data set reports the time ranges of variables.
- There are six observations in the OUTALL= data set, the same number as reported by NSERIES and NSELECT variables in the OUTBY= data set.
- The VARNUM variable contains all MISSING values, since no OUT= data set is created.

Output 11.4.3 and Output 11.4.4 demonstrate how the OUTSELECT= option affects the contents of the OUTBY= and OUTALL= data sets when a KEEP statement is present. First, set the OUTSELECT= option to OFF.

```
filename citidemo "citidem.dat" RECFM=D LRECL=80;
proc datasource filetype=citibase infile=citidemo interval=week
    outall=alloff outby=keyoff outselect=off;
    keep WSP:;
run;
title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=keyoff;
run;
title1 'Weekly Series Available in CITIDEMO File';
proc print data=alloff( keep=name kept selected st_date
    end_date ntime nobs );
run;
```

Output 11.4.3 Listing of the OUTBY= Data Set with OUTSELECT=OFF

Obs	ST_DATE	END_DATE	NTIME	NOBS	NSERIES	NSELECT
1	29NOV2019	09FEB2023	835	834	10	3

Output 11.4.4 Listing of the OUTALL= Data Set with OUTSELECT=OFF

Setting the OUTSELECT= option ON gives results shown in Output 11.4.5 and Output 11.4.6.

```
filename citidemo "citidem.dat" RECFM=D LRECL=80;
proc datasource filetype=citibase infile=citidemo
    interval=week
    outall=allon outby=keyon outselect=on;
    keep WSP:;
run;
```

title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=keyon;
run;

```
title1 'Daily Series Available in CITIDEMO File';
proc print data=allon( keep=name kept selected st_date
    end_date ntime nobs );
run;
```

Output 11.4.5 Listing of the OUTBY= Data Set with OUTSELECT=ON

Output 11.4.6 Listing of the OUTALL= Data Set with OUTSELECT=ON

Comparison of Output 11.4.4 and Output 11.4.6 reveals the following:

- The OUTALL= data set contains 10 (NSERIES) observations when OUTSELECT=OFF, and three (NSELECT) observations when OUTSELECT=ON.
- The observations in OUTALL=ALLON are those for which SELECTED=1 in OUTALL=ALLOFF.
- The time ranges in the OUTBY= data set are computed over all the variables (selected or not) for OUTSELECT=OFF, but only computed over the selected variables for OUTSELECT=ON. This corresponds to computing time ranges over all the series reported in the OUTALL= data set.
- The variable NTIME is the number of time periods between ST_DATE and END_DATE, while NOBS is the number of observations the OUT= data set is to contain. Thus, NTIME is
different depending on whether the OUTSELECT= option is set to ON or OFF, while NOBS stays the same.

The KEEP statement in the last two examples illustrates the use of an additional variable, KEPT, in the OUTALL= data sets of Output 11.4.4 and Output 11.4.6. KEPT, which reports the outcome of the KEEP statement, is only added to the OUTALL= data set when there is KEEP statement.

Adding the RANGE statement to the last example generates the data sets in Output 11.4.7 and Output 11.4.8:

```
filename citidemo "citidem.dat" RECFM=D LRECL=80;
proc datasource filetype=citibase infile=citidemo interval=week
    outby=keyrange out=citiout outselect=on;
    keep WSP:;
    range from '01dec1990'd;
run;
title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=keyrange;
run;
title1 'Weekly Data in CITIDEMO File';
proc print data=citiout;
run;
```

Output 11.4.7 Listing of the OUTBY=KEYRANGE Data Set for FILETYPE=CITIBASE

Daily Data in CItIdemo File							
Obs	ST_DATE	END_DATE	NTIME	nobs	NINRANGE	nSERIES	NSELECT
1	02DEC2019	09FEB2023	834	834	9	10	3

Output 11.4.8 Printout of the OUT=CITIOUT Data Set for FILETYPE=CITIBASE

Daily Data in CITIDEMO File				
Obs	DATE	DSIUSNYSECM	DCP05	DCD1M
1	02DEC2019	142.900	6.81000	6.89000
2	03DEC2019	144.540	6.84000	6.85000
3	04DEC2019	144.820	6.79000	6.87000
4	05DEC2019	145.890	6.77000	6.88000
5	06 DEC2019	137.030	6.73000	6.88000
6	09 DEC2019	138.810	6.81000	6.89000
7	10DEC2019	137.740	6.73000	6.83000
8	11DEC2019	137.950	6.65000	6.80000
9	12DEC2019	137.970	6.67000	6.81000

The OUTBY= data set in this last example contains an additional variable NINRANGE. This variable is added since there is a RANGE statement. Its value, 15 , is the number of observations in the OUT= data set. In this case, NOBS gives the number of observations the OUT= data set would contain if there were not a RANGE statement.

Example 11.5: DRI Data Delivery Service Database

This example demonstrates the DRIDDS filetype for the daily Federal Reserve Series fxrates_dds. Use VALIDVARNAME=ANY in your SAS options statement to allow special characters such as @, $\$$, and $\%$ to be in the series name. Note the use of long variable names in the OUT= data set in Output 11.5.2 and long labels in the OUTCONT= data set in Output 11.5.1.

The following statements extract daily series starting in January 1,1997:

```
options validvarname=any;
filename datafile "drifxrat.dat" RECFM=F LRECL=80;
proc format;
    value distekfm O = 'Unspecified'
                    2 = 'Linear'
                            4 = 'Triag'
                            6 = 'Polynomial'
                    8 = 'Even'
                    10 = 'Step'
                    12 = 'Stocklast'
                    14 = 'LinearUnadjusted'
                    16 = 'PolyUnadjusted'
                            18 = 'StockWithNAS'
            99 = 'None'
            255 = 'None';
    value convtkfm O = 'Unspecified'
                    1 = 'Average'
                    3 = 'AverageX'
                    5 = 'Sum'
                    7 = 'SumAnn'
                    9 = 'StockEnd'
                    11 = 'StockBegin'
                    13 = 'AvgNP'
                    15 = 'MaxNP'
                            17 = 'MinNP'
                            19 = 'StockEndNP'
                            21 = 'StockBeginNP'
            23 = 'Max'
            25 = 'Min'
            27 = 'AvgXNP'
            29 = 'SumNP'
            31 = 'SumAnnNP'
            99 = 'None'
            255 = 'None';
```

```
    /*--------------------------------------------------------------
    * process daily series *
    *-----------------------------------------------------------------*/
title3 'Reading DAILY Federal Reserve Series with fxrates_.dds';
proc datasource filetype=dridds
    infile=datafile
    interval=day
    out=fixr
    outcont=fixrcnt
    outall=fixrall;
    keep rx: ;
    range from '01jan97'd to '31dec99'd;
    format disttek distekfm.;
    format convtek convtkfm.;
run;
title1 'CONTENTS of FXRATES_.DDS File, KEEP RX:';
proc print
    data=fixrent;
run;
title1 'Daily Series Available in FXRATES_.DDS File, KEEP RX:';
proc print
    data=fixr;
run;
```

Output 11.5.1 Listing of the OUTCONT=FIXRCNT Data Set for FILETYPE=DRIDDS

Obs	Daily Series Available in FXRATES_.DDS File, KEEP RX: NAME KEPT SELECTED TYPE LENGTH VARNUM								
1	RXA\$\%US\$	@AU	1	1	1	5	2		
2	RXBF\%US\$	@BE	1	1	1	5	3		
3	RXDK\%US\$	@DK	1	1	1	5	4		
Obs				LABEL				FORM	T FORMATL
1	EXChange	RAT	IN AUS	TRALIAN DOLLA	PER U	DOLLAR -	AUSTRAL	IA	0
2	EXChANGE	RAT	IN BEL	GIAN FRANCS	R US D	LAR - bel	GIUM		0
3	EXCHANGE	RAT	IN DAN	ISH KRONE PER	100 US	OLLAR -	denmark		0
Obs	FORMATD	so	CEID	DISttek		tek	Status	UPDATE	UPTIME
1	0	@FAC	data.D	Unspecified		cified	0	31JAN97	132605
2	0	@FAC	DATA.D	Unspecified		ecified	0	31JAN97	132544
3	0	@FAC	DATA. ${ }^{\text {d }}$	Unspecified		cified	0	31JAN97	132544

Output 11.5.2 Printout of the OUT=FIXR Data Set for FILETYPE=DRIDDS

Example 11.6: PC Format CITIBASE Database

This example uses a PC format CITIBASE database (FILETYPE=CITIDISK) to extract annual population estimates for females and males with respect to various age groups.

Population estimate series for all ages of females including those in the armed forces overseas are given by PANF, while PANM gives the population estimate for all ages of males including those in armed forces overseas. More population estimate time series are described in Output 11.6.1 and are output in Output 11.6.2.

The following statements extract the required population estimates series:

```
filename keyfile "basekey.dat" RECFM=V LRECL=22;
```

```
filename indfile "baseind.dat" RECFM=F LRECL=84;
filename dbfile "basedb.dat" RECFM=F LRECL=4;
proc datasource filetype=citidisk infile=( keyfile indfile dbfile )
    out=popest outall=popinfo;
run;
proc print data=popinfo;
run;
proc print data=popest;
run;
```

Output 11.6.1 Listing of the OUTALL=POPINFO Data Set for FILETYPE=CITIDISK

Output 11.6.2 Printout of the OUT=POPEST Data Set for FILETYPE=CITIDISK

Daily Series Available in FXRATES_.DDS File, KEEP RX:						
Obs	DATE	PAN	PAN17	PAN18	PANF	PANM
1	1980	227757	172456	138358	116869	110888
2	1981	230138	175017	140618	118074	112064
3	1982	232520	177346	142740	119275	113245
4	1983	234799	179480	144591	120414	114385
5	1984	237001	181514	146257	121507	115494
6	1985	239279	183583	147759	122631	116648
7	1986	241625	185766	149149	123795	117830
8	1987	243942	187988	150542	124945	118997
9	1988	246307	189867	152113	126118	120189
10	1989	248762	191570	153695	127317	121445

This example demonstrates the following:

- The INFILE= options lists the filerefs of the key, index, and database files, in that order.
- The INTERVAL= option is omitted since the default interval for CITIDISK type files is YEAR.

Example 11.7: Quarterly COMPUSTAT Data Files

This example shows how to extract data from a 48-quarter Compustat Database File. For COMPUSTAT data files, the series variable names are constructed by concatenating the name of the data array DATA and the column number containing the required information. For example, for quarterly files the common stock data is in column 56. Therefore, the variable name for this series is DATA56. Similarly, the series variable names for quarterly footnotes are constructed by adding the column number to the array name, QFTNT. For example, the variable name for common stock footnotes is QFTNT14 since the 14th column of the QFTNT array contains this information.

The following example extracts common stock series (DATA56) and its footnote (QFTNT14) for companies whose stocks are traded over-the-counter and not in the S\&P 500 Index (ZLIST=06) and whose data reside in the over-the-counter file (FILE=06).

```
filename compstat "csqibm.dat" recfm=s370v lrecl=4820 blksize=14476;
proc datasource filetype=cs48qibm infile=compstat
                        out=stocks outby=company;
    keep data56 qftnt14;
    rename data56=comstock qftnt14=ftcomstk;
    label data56='Common Stock'
        qftnt14='Footnote for Common Stock';
    range from 1990:4;
run;
```

```
/*- add company name to the out= data set */
data stocks;
    merge stocks company( keep=dnum cnum cic coname );
    by dnum cnum cic;
run;
title1 'Common Stocks for Last Quarter of 1990';
proc print data=stocks ;
run;
```

Output 11.7.1 contains a listing of the STOCKS data set.

Output 11.7.1 Listing of the OUT=STOCKS Data Set

Obs	Common Stocks for Last Quarter of 1990										
	DNUM	CNUM	CIC	FILE	EIN	STK	SMBL	ZLIST	XREL	FIC	INCORP
1	2670	293308	102	6	56-0481457	0	ENGH	6	0	0	10
2	2835	372917	104	6	06-1047163	0	GENZ	6	0	0	10
3	3564	896726	106	6	25-0922753	0	TRON	6	0	0	42
4	3576	172755	100	6	77-0024818	0	CRUS	6	0	0	6
5	3577	602191	108	6	11-2693062	0	MILT	6	0	0	10
6	3630	616350	104	6	34-0299600	0	MORF	6	0	0	39
7	3674	827079	203	6	94-1527868	0	SILI	6	0	0	10
8	3842	602720	104	6	25-0668780	0	MNES	6	0	0	42
9	5080	007698	103	6	59-1001822	0	AESM	6	0	0	12
10	5122	090324	104	6	84-0601662	0	BIND	6	0	0	18
11	5211	977865	104	6	38-1746752	0	WLHN	6	0	0	26
12	5600	299155	101	6	36-1050870	0	EVAN	6	0	0	10
13	5731	382091	106	6	94-2366177	0	GGUY	6	0	0	6
14	7372	45812M	104	6	94-2658153	0	INTS	6	0	0	6
15	7372	566140	109	6	04-2711580	0	MCAM	6	0	0	25
16	7373	913077	103	6	81-0422894	0	тоте	6	0	0	10
17	7510	008450	108	6	34-1050582	0	AGNC	6	0	0	10
18	7819	026038	307	6	23-2359277	0	AFTI	6	0	0	10
19	8700	055383	103	6	59-1781257	0	BEIH	6	0	0	10
20	8731	759916	109	6	04-2729386	0	RGEN	6	0	0	10
Obs	State	COUNTY		DATE	comstock	ftc	mstk	CONAME			
1	13	121		1990:4	16.2510			ENGRAPH	INC		
2	25	17		1990:4	0.1620			GENZYME	CORP		
3	37	105		1990:4	3.1380			TRION	NC		
4	6	85		1990:4	.			CIRrus	LOGIC	INC	
5	36	103		1990:4				MILTOPE	GROU	INC	
6	39	35		1990:4	.			MOR-FLO	INDS		
7	6	85		1990:4				SILICON	Ix IN		
8	42	3		1990:4	6.7540			MINE SA	FETY	APPLIA	ances Co
9	12	25		1990:4				AERO SY	Stems	INC	
10	18	97		1990:4	3.2660			BINDLEY	WEST	En IN	NS
11	26	145		1990:4	6.4800			wolohan	LUMB	R CO	
12	17	31		1990:4				EVANS	NC		
13	6	75		1990:4	0.0520			GOOD GU	YS IN		
14	6	85		1990:4				INTEGR	ted S	Stems	INC
15	25	17		1990:4	0.0770			MARCAM	CORPO	Ration	
16	30	111		1990:4	0.0570			UNITED	TOTE	INC	
17	39	35		1990:4				AGENCY	RENT-	-CAR	INC
18	42	45		1990:4	0.0210			AMERIC	N FIL	TEC	NOL
19	13	121		1990:4	0.5170			BEI HOL	DINGS	LTD	
20	25	17		1990:4	.			REPLIGE	N COR		

Note that quarterly Compustat data are also available in Universal Character format. If you have this type of file instead of IBM 360/370 General format, use the FILETYPE=CS48QUC option instead.

Example 11.8: Annual COMPUSTAT Data Files, V9.2 New Filetype CSAUC3

Annual COMPUSTAT data in Universal Character format is read for PRICES since the year 2002, so that the desired output show the PRICE (HIGH), PRICE (LOW), and PRICE (CLOSE) for each company.

```
filename datafile "csaucy3.dat" RECFM=F LRECL=13612;
/*--------------------------------------------------------------------
    * create OUT=csauy3 data set with ASCII 2003 Industrial Data *
    * compare it with the OUT=csauc data set created by DATA STEP *
    *--------------------------------------------------------------------*/
proc datasource filetype=csaucy3 ascii
    infile=datafile
    interval=year
    outselect=on
    outkey=y3key
    out=csauy3;
    keep data197-data199 label;
    range from 2002;
run;
proc sort
    data=csauy3 out=csauy3;
    by dnum cnum cic file zlist smbl xrel stk;
run;
title1 'Price, High, Low and Close for Range from 2002';
proc contents data=csauy3;
run;
proc print data=csauy3;
run;
```

Output 11.8 .1 shows information on the contents of the CSAUY3 data set while Output 11.8.2 shows a listing of the CSAUY3 data set.

Output 11.8.1 Listing of the CONTENTS of OUT=CSAUY3 Data Set

Price, High, Low and Close for Range from 2002					
Alphabetic List of Variables and Attributes					
\#	Variable	Type	Len	Format	Label
3	CIC	Char	3		
2	CNUM	Char	6		
11	COUNTY	Num	5		
13	CPSPIN	Char	1		
15	CSSPII	Char	1		
14	CSSPIN	Char	2		
18	DATA197	Num	5		Price - Fiscal Year - High (\$\&c, NA)
19	DATA198	Num	5		Price - Fiscal Year - Low (\$\&c, NA)
20	DATA199	Num	5		Price - Close - Fiscal Year-End (\$\&C,NA)
17	DATE	Num	4	YEAR4.	Date of Observation
1	DNUM	Num	5		
9	DUPFILE	Num	5		
16	EIN	Char	10		
4	FILE	Num	5		
12	FINC	Num	5		
6	SMBL	Char	8		
10	STATE	Num	5		
8	STK	Num	5		
7	XREL	Num	5		
5	ZLIST	Num	5		

Output 11.8.2 Listing of the OUT=CSAUY3 Data Set
Price, High, Low and Close for Range from 2002
Obs dNuM CNUM CIC file zlist Smbl XREL STK dupfile State county finc

1	3089	899896	104	11	1	TUP	444	0	0	12	95	0
2	3089	899896	104	11	1	TUP	444	0	0	12	95	0
3	3674	032654	105	11	1	ADI	928	0	0	25	21	0
4	3674	032654	105	11	1	ADI	928	0	0	25	21	0
5	3842	053801	106	1	5	AVR	0	0	0	25	21	0
6	3842	053801	106	1	5	AVR	0	0	0	25	21	0
7	6035	149547	101	3	25	CAVB	0	0	0	47	149	0
8	6035	149547	101	3	25	CAVB	0	0	0	47	149	0
9	6211	617446	448	11	1	MWD	725	0	0	36	61	0
10	6211	617446	448	11	1	MWD	725	0	0	36	61	0
11	6726	$09247 M$	105	1	4	BMN	0	0	0	34	13	0
12	6726	$09247 M$	105	1	4	BMN	0	0	0	34	13	0
13	7011	$54021 P$	205	1	5	LGN	0	0	0	13	121	0
14	7011	$54021 P$	205	1	5	LGN	0	0	0	13	121	0
15	7370	$35921 T$	108	1	5	FNT	0	0	0	36	87	0
16	7370	$35921 T$	108	1	5	FNT	0	0	0	36	87	0
17	7370	459200	101	11	1	IBM	903	0	0	36	119	0
18	7370	459200	101	11	1	IBM	903	0	0	36	119	0
19	7812	591610	100	1	4	MGM	0	0	0	6	37	0
20	7812	591610	100	1	4	MGM	0	0	0	6	37	0

Obs	CPSPIN	CSSPIN	CSSPII	EIN	DATE	DATA197	DATA198	DATA199
1	1	10		36-4062333	2002	24.990	14.4000	15.0800
2	1	10		36-4062333	2003			
3	1	10		04-2348234	2002	48.840	17.8800	26.8000
4	1	10		04-2348234	2003	.	.	.
5				06-1174053	2002	1.500	0.2200	0.2300
6				06-1174053	2003	.	.	.
7				62-1721072	2002	14.000	11.5810	13.3400
8				62-1721072	2003	.	.	.
9	1	10	1	36-3145972	2002	60.020	28.8010	45.2400
10	1	10	1	36-3145972	2003	.	.	.
11					2002	11.050	10.3700	11.0100
12					2003	.	.	.
13				52-2093696	2002	13.894	1.0084	13.8940
14				52-2093696	2003	.	.	.
15				13-3950283	2002	0.440	0.1200	0.2600
16				13-3950283	2003	.	.	.
17	1	10	1	13-0871985	2002	126.390	54.0100	77.5000
18	1	10	1	13-0871985	2003	.	.	.
19				95-4605850	2002	23.250	9.0000	13.0000
20				95-4605850	2003	.	.	.

Note that annual COMPUSTAT data are available in either IBM 360/370 General format or Universal Character format. The first example expects an IBM 360/370 General format file since the FILETYPE= is set to CSAIBM, while the second example uses a Universal Character format file (FILETYPE=CSAUC).

Example 11.9: CRSP Daily NYSE/AMEX Combined Stocks

This sample code reads all the data on a three-volume daily NYSE/AMEX combined character data set. Assume that the following filerefs are assigned to the calendar/indices file and security files that this database comprises:

Fileref	VOLSER	File Type
calfile	DXAA1	calendar/indices file on volume 1
secfile1	DXAA1	security file on volume 1
secfile2	DXAA2	security file on volume 2
secfile3	DXAA3	security file on volume 3

The data set CALDATA is created by the following statements to contain the calendar/indices file:

```
proc datasource filetype=crspdci infile=calfile out=caldata;
run;
```

Here the FILETYPE=CRSPDCI indicates that you are reading a character format (indicated by a C in the 6th position) daily (indicated by a D in the 5 th position) calendar/indices file (indicated by an I in the 7th position).

The annual data in security files can be obtained by the following statements:

```
proc datasource filetype=crspdca
    infile=( secfile1 secfile2 secfile3 )
    out=annual;
run;
```

Similarly, the data sets to contain the daily security data (the OUT= data set) and the event data (the OUTEVENT= data set) are obtained by the following statements:

```
proc datasource filetype=crspdcs
    infile=( calfile secfile1 secfile2 secfile3 )
    out=periodic index outevent=events;
run;
```

Note that the FILETYPE= has an S in the 7th position, since you are reading the security files. Also, the INFILE= option first expects the fileref of the calendar/indices file since the dating variable (CALDT) is contained in that file. Following the fileref of calendar/indices file, you give the list of security files in the order in which you want to read them. When data span more than one physical volume, the filerefs of the security files residing on each volume must be given following the fileref of the calendar/indices file. The DATASOURCE procedure reads each of these files in the order in which they are specified. Therefore, you can request that all three volumes be mounted to the same drive, if you choose to do so.

This sample code illustrates the following points:

- The INDEX option in the second PROC DATASOURCE run creates an index file for the OUT=PERIODIC data set. This index file provides random access to the OUT= data set
and may increase the efficiency of the subsequent PROC and DATA steps that use BY and WHERE statements. The index variables are CUSIP, CRSP permanent number (PERMNO), NASDAQ company number (COMPNO), NASDAQ issue number (ISSUNO), header exchange code (HEXCD), and header SIC code (HSICCD). Each one of these variables forms a different key which is a single index. If you want to form keys from a combination of variables (composite indexes) or use some other variables as indexes, you should use the INDEX = data set option for the OUT= data set.
- The OUTEVENT=EVENTS data set is sparse. In fact, for each EVENT type, a unique set of event variables are defined. For example, for EVENT='SHARES', only the variables SHROUT and SHRFLG are defined, and they have missing values for all other EVENT types. Pictorially, this structure is similar to the data set shown in Figure 11.4. Because of this sparse representation, you should create the OUTEVENT= data set only when you need a subset of securities and events.

By default, the OUT= data set contains only the periodic data. However, you may also want to include the event-oriented data in the OUT= data set. This is accomplished by listing the event variables together with periodic variables in a KEEP statement. For example, if you want to extract the historical CUSIP (NCUSIP), number of shares outstanding (SHROUT), and dividend cash amount (DIVAMT) together with all the periodic series, use the following statements.

```
proc datasource filetype=crspdcs
    infile=( calfile secfile1 secfile2 secfile3 )
    out=both outevent=events;
    where cusip='09523220';
    keep bidlo askhi prc vol ret sxret bxret ncusip shrout divamt;
run;
```

The KEEP statement has no effect on the event variables output to the OUTEVENT= data set. If you want to extract only a subset of event variables, you need to use the KEEPEVENT statement. For example, the following sample code outputs only NCUSIP and SHROUT to the OUTEVENT= data set for CUSIP='09523220':

```
proc datasource filetype=crspdxc
    infile=( calfile secfile)
    outevent=subevts;
    where cusip='09523220';
    keepevent ncusip shrout;
run;
```

Output 11.9.1, Output 11.9.2, Output 11.9.3, and Output 11.9.4 show how to read the CRSP Daily NYSE/AMEX Combined ASCII Character Files.

```
filename dxci "dxccal95.dat" RECFM=F LRECL=130;
filename dxc "dxcsub95.dat" RECFM=F LRECL=400;
/*--- create output data sets from character format DX files ---*/
/*- create securities output data sets using DATASOURCE -------*/
/*- statements
-*/
proc datasource filetype=crspdcs ascii
    infile=( dxci dxc )
```

```
interval=day
outcont=dxccont
outkey=dxckey
outall=dxcall
out=dxc
outevent=dxcevent
outselect=off;
    range from '15aug95'd to '28aug95'd ;
    where cusip in ('12709510','35614220');
run;
title3 'DX Security File Outputs';
title4 'OUTKEY= Data Set';
proc print data=dxckey;
run;
title4 'OUTCONT= Data Set';
proc print data=dxccont;
run;
title4 "Listing of OUT= Data Set for cusip in ('12709510','35614220')";
proc print data=dxc;
run;
title4 "Listing of OUTEVENT= Data Set for cusip in ('12709510','35614220')";
proc print data=dxcevent;
run;
```

Output 11.9.1 Listing of the OUTBY= Data Set with OUTSELECT=ON

	Price, High, Low and Close for Range from 2002													
	DX Security File Outputs Data Set for cusip in ('12709510',' 35614220')													
							B		E			N		
							Y	S	N			I	N	N
		P	C	I		H	S	T	D			N	S	S
	C	E	0	S	H	S	E			N		R	E	E
	U	R	M	S	E	I	L	D	D	T	N	A	R	L
0	S	M	P	U	X	C	E	A	A	I	0	N	I	E
b	I	N	N		C	C	C	T	T	M	B	G	E	C
S	P	0	0	0	D	D	T	E	E	E	S	E	S	T
1	68391610	10000	7952	9787	3	3990	0	07JAN1986	11 JUN1987	521	0	0	35	7
2	12709510	10010	7967	9809	3	3840	1	17JAN1986	28AUG1995	3511	2431	10	35	7
3	49307510	10020	7972	9824	3	6710	0	27 JAN1986	30APR1993	2651	0	0	35	7
4	00338690	10030	22160	0	1	3310	0	02JUL1962	26DEC1968	2370	0	0	35	7
5	41741F20	10040	7988	9846	3	6210	0	07FEB1986	15JUN1989	1225	0	0	35	7
6	00074210	10050	13	11	3	3448	0	29DEC1972	16 JUN 1978	1996	0	0	35	7
7	35614220	10060	8007	9876	3	1040	1	24FEB1986	29DEC1995	3596	2492	10	35	7

Output 11.9.2 Listing of the OUTCONT= Data Set

Output 11.9.3 Listing of the OUT= Data Set with OUTSELECT=ON for CUSIPs 12709510 and 35614220

Obs	Price, High, Low and Close for Range from 2002						
	Listing of OUTEVENT= Data Set for cusip in ('12709510', '35614220')						
	CUSIP	PERMNO	COMPNO	ISSUNO	HEXCD	HSICCD	DATE
1	12709510	10010	7967	9809	3	3840	15AUG1995
2	12709510	10010	7967	9809	3	3840	16AUG1995
3	12709510	10010	7967	9809	3	3840	17AUG1995
4	12709510	10010	7967	9809	3	3840	18AUG1995
5	12709510	10010	7967	9809	3	3840	21AUG1995
6	12709510	10010	7967	9809	3	3840	22AUG1995
7	12709510	10010	7967	9809	3	3840	23AUG1995
8	12709510	10010	7967	9809	3	3840	24AUG1995
9	12709510	10010	7967	9809	3	3840	25AUG1995
10	12709510	10010	7967	9809	3	3840	28AUG1995
11	35614220	10060	8007	9876	3	1040	15AUG1995
12	35614220	10060	8007	9876	3	1040	16AUG1995
13	35614220	10060	8007	9876	3	1040	17AUG1995
14	35614220	10060	8007	9876	3	1040	18AUG1995
15	35614220	10060	8007	9876	3	1040	21AUG1995
16	35614220	10060	8007	9876	3	1040	22AUG1995
17	35614220	10060	8007	9876	3	1040	23AUG1995
18	35614220	10060	8007	9876	3	1040	24AUG1995
19	35614220	10060	8007	9876	3	1040	25AUG1995
20	35614220	10060	8007	9876	3	1040	28AUG1995
Obs	BIDLO	ASKHI	PRC	VOL	RET	SXRET	BXRET
1	7.500	7.8750	7.5625	29200	-0.008	7	.
2	7.500	7.8750	7.5000	22365	-0.008	4	.
3	7.500	7.8750	7.5000	33416	0.000		.
4	7.375	7.5000	7.3750	16666	-0.016	7	.
5	7.375	7.3750	7.3750	9382	0.000		.
6	7.250	7.3750	7.2500	33674	-0.016	9	.
7	7.250	7.3750	7.3125	22371	0.008	1	.
8	7.125	7.5000	7.1250	38621	-0.025	1	.
9	6.875	7.3750	7.0000	29713	-0.017	4	.
10	7.000	7.1250	7.0000	38798	0.000	-	.
11	12.375	12.6875	12.3750	39136	0.000	0	.
12	12.125	12.3750	12.2031	45916	-0.013	9	.
13	12.250	12.3125	12.2500	43644	0.003	1	.
14	12.250	12.6250	12.3750	11027	0.010	4	.
15	12.375	12.6250	12.3750	7378	0.000		.
16	12.250	12.3750	12.2500	99655	-0.010	1	.
17	12.125	12.2500	12.1250	95148	-0.010	4	.
18	12.125	12.3750	12.3750	185572	0.020	9	.
19	12.000	12.2500	12.0000	9575	-0.030	3	.
20	12.000	12.0625	12.0625	12854	0.005	8	-

Output 11.9.4 Listing of the OUTEVENT= Data Set in Range 15aug95-28aug95

Note in Output 11.9.4 that there were no events in range for cusip 35614220. See Chapter 33, "The SASECRSP Interface Engine," for more on CRSPAccess Data access.

Data Elements Reference: DATASOURCE Procedure

PROC DATASOURCE can process only certain kinds of data files. For certain time series databases, the DATASOURCE procedure has built-in information on the layout of files composing the database. PROC DATASOURCE knows how to read only these kinds of data files. To access these databases, you must indicate the data file type in the FILETYPE= option. For more detailed information, see the corresponding document for each filetype. (See "References" on page 612.) The currently supported file types are summarized in Table 11.5.

Table 11.5 Supported File Types

Supplier	FILETYPE $=$ Description	
BEA	BEANIPA	National Income and Product Accounts
	BEANIPAD	National Income and Product Accounts PC Format
BLS	BLSCPI	Consumer Price Index Surveys
	BLSWPI	Producer Price Index Survey
	BLSEENA	National Employment, Hours, and Earnings Survey
	BLSEESA	State and Area Employment,Hours,and Earnings Survey

Table 11.5 continued

Supplier	FILETYPE=	Description
GLOBAL	DRIBASIC	Basic Economic (formerly CITIBASE) Data Files
INSIGHT	CITIBASE	CITIBASE Data Files
(DRI)	DRIDDS	DRI Data Delivery Service Time Series
(DRI)	CITIDISK	PC Format CITIBASE Databases
CRSP	CRY2DBS	Y2K Daily Binary Security File Format
	CRY2DBI	Y2K Daily Binary Calendar\&Indices File Format
	CRY2DBA	Y2K Daily Binary File Annual Data Format
	CRY2MBS	Y2K Monthly Binary Security File Format
	CRY2MBI	Y2K Monthly Binary Calendar\&Indices File Format
	CRY2MBA	Y2K Monthly Binary File Annual Data Format
	CRY2DCS	Y2K Daily Character Security File Format
	CRY2DCI	Y2K Daily Character Calendar\&Indices File Format
	CRY2DCA	Y2K Daily Character File Annual Data Format
	CRY2MCS	Y2K Monthly Character Security File Format
	CRY2MCI	Y2K Monthly Character Calendar\&Indices File Format
	CRY2MCA	Y2K Monthly Character File Annual Data Format
	CRY2DIS	Y2K Daily IBM Binary Security File Format
	CRY2DII	Y2K Daily IBM Binary Calendar\&Indices File Format
	CRY2DIA	Y2K Daily IBM Binary File Annual Data Format
	CRY2MIS	Y2K Monthly IBM Binary Security File Format
	CRY2MII	Y2K Monthly IBM Binary Calendar\&Indices File Format
	CRY2MIA	Y2K Monthly IBM Binary File Annual Data Format
	CRY2MVS	Y2K Monthly VAX Binary Security File Format
	CRY2MVI	Y2K Monthly VAX Binary Calendar\&Indices File Format
	CRY2MVA	Y2K Monthly VAX Binary File Annual Data Format
	CRY2DVS	Y2K Daily VAX Binary Security File Format
	CRY2DVI	Y2K Daily VAX Binary Calendar\&Indices File Format
	CRY2DVA	Y2K Daily VAX Binary File Annual Data Format
	CRSPDBS	CRSP Daily Binary Security File Format
	CRSPDBI	CRSP Daily Binary Calendar\&Indices File Format
	CRSPDBA	CRSP Daily Binary File Annual Data Format
	CRSPMBS	CRSP Monthly Binary Security File Format
	CRSPMBI	CRSP Monthly Binary Calendar\&Indices File Format
	CRSPMBA	CRSP Monthly Binary File Annual Data Format
	CRSPDCS	CRSP Daily Character Security File Format
	CRSPDCI	CRSP Daily Character Calendar\&Indices File Format
	CRSPDCA	CRSP Daily Character File Annual Data Format
	CRSPMCS	CRSP Monthly Character Security File Format
	CRSPMCI	CRSP Monthly Character Calendar\&Indices File Format
	CRSPMCA	CRSP Monthly Character File Annual Data Format
	CRSPDIS	CRSP Daily IBM Binary Security File Format
	CRSPDII	CRSP Daily IBM Binary Calendar\&Indices File Format
	CRSPDIA	CRSP Daily IBM Binary File Annual Data Format
	CRSPMIS	CRSP Monthly IBM Binary Security File Format

Table 11.5 continued

Supplier	FILETYPE=	Description
CRSP	CRSPMII	CRSP Monthly IBM Binary Calendar\&Indices File Format
	CRSPMIA	CRSP Monthly IBM Binary File Annual Data Format
	CRSPMVS	CRSP Monthly VAX Binary Security File Format
	CRSPMVI	CRSP Monthly VAX Binary Calendar\& Indices File Format
	CRSPMVA	CRSP Monthly VAX Binary File Annual Data Format
	CRSPDVS	CRSP Daily VAX Binary Security File Format
	CRSPDVI	CRSP Daily VAX Binary Calendar\&Indices File Format
	CRSPDVA	CRSP Daily VAX Binary File Annual Data Format
	CRSPMUS	CRSP Monthly UNIX Binary Security File Format or utility dump of CRSPAccess Monthly Security File Format
	CRSPMUI	CRSP Monthly UNIX Binary Calendar\&Indices File Format or utility dump of CRSPAccess Monthly Cal\&Indices Format
	CRSPMUA	CRSP Monthly UNIX Binary File Annual Data Format or utility dump of CRSPAccess Monthly Annual Data Format
	CRSPDUS	CRSP Daily UNIX Binary Security File Format or utility dump of CRSPAccess Daily Security Format
	CRSPDUI	CRSP Daily UNIX Binary Calendar\&Indices File Format or utility dump of CRSPAccess Daily Calendar\&Indices Format
	CRSPDUA	CRSP Daily UNIX Binary File Annual Data Format or utility dump of CRSPAccess Daily Annual Data Format
CRSP	CRSPMOS	CRSP Monthly Old Character Security File Format
	CRSPMOI	CRSP Monthly Old Character Calendar\&Indices File Format
	CRSPMOA	CRSP Monthly Old Character File Annual Data Format
	CRSPDOS	CRSP Daily Old Character Security File Format
	CRSPDOI	CRSP Daily Old Character Calendar\&Indices File Format
	CRSPDOA	CRSP Daily Old Character File Annual Data Format
	CR95MIS	CRSP 1995 Monthly IBM Binary Security File Format
	CR95MII	CRSP 1995 Monthly IBM Binary Calendar\&Indices File Format
	CR95MIA	CRSP 1995 Monthly IBM Binary File Annual Data Format
	CR95DIS	CRSP 1995 Daily IBM Binary Security File Format
	CR95DII	CRSP 1995 Daily IBM Binary Calendar\&Indices File Format
	CR95DIA	CRSP 1995 Daily IBM Binary File Annual Data Format
	CR95MVS	CRSP 1995 Monthly VAX Binary Security File Format
	CR95MVI	CRSP 1995 Monthly VAX Binary Calendar\&Indices File Format
	CR95MVA	CRSP 1995 Monthly VAX Binary File Annual Data Format
	CR95DVS	CRSP 1995 Daily VAX Binary Security File Format
	CR95DVI	CRSP 1995 Daily VAX Binary Calendar\&Indices File Format
	CR95DVA	CRSP 1995 Daily VAX Binary File Annual Data Format
	CR95MUS	CRSP 1995 Monthly UNIX Binary Security File Format
	CR95MUI	CRSP 1995 Monthly UNIX Binary Calendar\&Indices File Format
	CR95MUA	CRSP 1995 Monthly UNIX Binary File Annual Data Format
	CR95DUS	CRSP 1995 Daily UNIX Binary Security File Format
	CR95DUI	CRSP 1995 Daily UNIX Binary Calendar\&Indices File Format
	CR95DUA	CRSP 1995 Daily UNIX Binary File Annual Data Format
	CR95MSS	CRSP 1995 Monthly VMS Binary Security File Format

Table 11.5 continued

Supplier	FILETYPE $=$ Description	
	CR95MSI	CRSP 1995 Monthly VMS Binary Calendar\&Indices File Format
	CR95MSA	CRSP 1995 Monthly VMS Binary File Annual Data Format
	CR95DSS	CRSP 1995 Daily VMS Binary Security File Format
	CR95DSI	CRSP 1995 Daily VMS Binary Calendar\&Indices File Format
	CR95DSA	CRSP 1995 Daily VMS Binary File Annual Data Format
	CR95MAS	CRSP 1995 Monthly ALPHA Binary Security File Format
	CR95MAI	CRSP 1995 Monthly ALPHA Binary Calendar\&Indices Format
	CR95MAA	CRSP 1995 Monthly ALPHA Binary File Annual Data Format
	CR95DAS	CRSP 1995 Daily ALPHA Binary Security File Format
	CR95DAI	CRSP 1995 Daily ALPHA Binary Calendar\&Indices File Format
	CR95DAA	CRSP 1995 Daily ALPHA Binary File Annual Data Format
FAME	FAME	FAME Information Services Databases
HAVER	HAVER	Haver Analytics Data Files
IMF	IMFIFSP	International Financial Statistics, Packed Format
	IMFDOTSP	Direction of Trade Statistics, Packed Format
	IMFBOPSP	Balance of Payment Statistics, Packed Format
	IMFGFSP	Government Finance Statistics, Packed Format
OECD	OECDANA	OECD Annual National Accounts Format
	OECDQNA	OECD Quarterly National Accounts Format
	OECDMEI	OECD Main Economic Indicators Format
S\&P	CSAIBM	COMPUSTAT Annual, IBM 360\&370 Format
	CS48QIBM	COMPUSTAT 48 Quarter, IBM 360\&370 Format
	CSAUC	COMPUSTAT Annual, Universal Character Format
	CS48QUC	COMPUSTAT 48 Quarter, Universal Character Format
	CSAIY2	Y2K COMPUSTAT Annual, IBM 360\&370 Format
	CSQIY2	Y2K COMPUSTAT 48 Quarter, IBM 360\&370 Format
	CSAUCY2	Y2K COMPUSTAT Annual, Universal Character Format
	CSQUCY2	Y2K COMPUSTAT 48 Quarter, Universal Character Format

Data supplier abbreviations used in Table 11.5 are summarized in Table 11.6.

Table 11.6 Data Supplier Abbreviations

Abbreviation	Supplier
BEA	Bureau of Economic Analysis, U.S. Department of Commerce
BLS	Bureau of Labor Statistics, U.S. Department of Labor
CRSP	Center for Research in Security Prices
DRI	Global Insight (formerly DRI/McGraw-Hill)
FAME	FAME Information Services, Inc.
GLOBAL INSIGHT	Global Insight, Inc.
HAVER	Haver Analytics Inc.
IMF	International Monetary Fund
OECD	Organization for Economic Cooperation and Development
S\&P	Standard \& Poor's Compustat Services Inc.

BEA Data Files

The Bureau of Economic Analysis, U.S. Department of Commerce, supplies national income, product accounting, and various other macroeconomic data at the regional, national, and international levels in the form of data files with various formats and on various media.

The following BEA data file types are supported.

FILETYPE=BEANIPA-National Income and Product Accounts Format

Table 11.7 FILETYPE=BEANIPA-National Income and Product Accounts Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default), QUARTER, MONTH	
BY Variables	PARTNO	Part Number of Publication, Integer Portion of the Table Number, 1-9 (charac- ter)
	TABNUM	Table Number Within Part, Decimal Portion of the Table Number, 1-24 (character)

Series Variables Series variable names are constructed by concatenating table number suffix, line and column numbers within each table. An underscore (_) prefix is also added for readability.

FILETYPE=BEANIPAD-National Income and Product Accounts PC Format

The PC format National Income and Product Accounts files contain the same information as the BEANIPA files described previously.

Table 11.8 FILETYPE=BEANIPAD-National Income and Product Accounts PC Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default), QUARTER, MONTH	
BY Variables	PARTNO	Part Number of Publication, Integer Portion of the Table Number, 1-9 (charac- ter)
	TABNUM	Table Number Within Part, Decimal Portion of the Table Number, 1-24 (character)

Table 11.8 (BEANIPAD-National Income and Product Accounts PC Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
Series Variables	Series variable names are constructed by concatenating table number suffix, line and column numbers within each table. An underscore (_) prefix is also added for readability.	

BLS Data Files

The Bureau of Labor Statistics, U.S. Department of Labor, compiles and distributes data on employment, expenditures, prices, productivity, injuries and illnesses, and wages.

The following BLS file types are supported.

FILETYPE=BLSCPI-Consumer Price Index Surveys (=CU,CW)

Table 11.9 FILETYPE=BLSCPI-Consumer Price Index Surveys (=CU,CW)

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR, SEMIYEAR1.6, MONTH (default)	
BY Variables	SURVEY	Survey type: CU=All Urban Consumers, CW=Urban Wage Earners and Clerical Workers (character)
	SEASON	Seasonality: S=Seasonally adjusted, U=Unadjusted (character)
	AREA	Geographic Area (character) Index Base Period Type, S=Standard,
	BASPTYPE	A=Alternate Reference (character)
	BASEPER \quad Index Base Period (character)	

FILETYPE=BLSWPI-Producer Price Index Survey (WP)

Table 11.10 FILETYPE=BLSWPI-Producer Price Index Survey (WP)

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR, MONTH (default)	

Table 11.10 (BLSWPI-Producer Price Index Survey (WP) Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
BY Variables	SEASON	Seasonality: S=Seasonally adjusted, U=Unadjusted (character)
	MAJORCOM \quadMajor Commodity Group (character)	
Sorting Order	BY SEASON MAJORCOM	
Series Variables	Series variable names are the same as commodity codes but prefixed by an underscore (_).	
Missing Codes	A data value of 0 is interpreted as MISSING.	

FILETYPE=BLSEENA-National Employment, Hours, and Earnings Survey

Table 11.11 FILETYPE=BLSEENA-National Employment, Hours, and Earnings Survey

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL=	YEAR, QUARTER, MONTH (default)	
BY Variables	SEASON	Seasonality: S=Seasonally adjusted, U=Unadjusted (character)
	DIVISION	Major Industrial Division (character)
	INDUSTRY	Industry Code (character)
Sorting Order	BY SEASON DIVISION INDUSTRY	
Series Variables	Series variable names are the same as data type codes prefixed by EE.	
	EE01	Total Employment
	EE02	Employment of Women
	EE03	Employment of Production or Nonsupervisory Workers
	EE04	Average Weekly Earnings of Production Workers
	EE05	Average Weekly Hours of Production Workers
	EE06	Average Hourly Earnings of Production Workers
	EE07	Average Weekly Overtime Hours of Production Workers
	EE40	Index of Aggregate Weekly Hours
	EE41	Index of Aggregate Weekly Payrolls
	EE47	Hourly Earnings Index; 1977 Weights; Current Dollars
	EE48	Hourly Earnings Index; 1977 Weights; Base 1977 Dollars
	EE49	Average Hourly Earnings; Base 1977 Dollars
	EE50	Gross Average Weekly Earnings; Current Dollars
	EE51	Gross Average Weekly Earnings; Base 1977 Dollars
	EE52	Spendable Average Weekly Earnings; No Dependents; Current Dollars

Table 11.11 (BLSEENA-National Employment, Hours, and Earnings Survey Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
	EE53	Spendable Average Weekly Earnings; No Depen- dents; Base 1977 Dollars
	EE54	Spendable Average Weekly Earnings; 3 Depen- dents; Current Dollars
	EE55	Spendable Average Weekly Earnings; 3 Depen- dents; Base 1977 Dollars
	EE60	Average Hourly Earnings Excluding Overtime
	EE61	Index of Diffusion; 1-month Span; Base 1977
	EE62	Index of Diffusion; 3-month Span; Base 1977
	EE63	Index of Diffusion; 6-month Span; Base 1977
	EE64	Index of Diffusion; 12-month Span; Base 1977
Missing Codes	Series data values are set to MISSING when their status codes are 1.	

FILETYPE=BLSEESA-State and Area Employment, Hours, and Earnings Survey

Table 11.12 FILETYPE=BLSEESA-State and Area Employment, Hours, and Earnings Survey

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR, MONTH (default)	
BY Variables	STATE	State FIPS codes (numeric)
	AREA	Area codes (character)
	DIVISION	Major industrial division (character)
	INDUSTRY	Industry code (character)
	DETAIL	Private/Government detail
	BY STATE AREA DIVISION INDUSTRY DETAIL	
Sorting Order	Beries Variables	Series variable names are the same as data type codes prefixed by SA.
	SA1	All employees
	SA2	Women workers
	SA3	Production workers
	SA4	Average weekly earnings
	SA5	Average weekly hours
Missing Codes	Series data values are set to MISSING when their status codes are 1.	

Global Insight DRI Data Files

The DRIBASIC (formerly CITIBASE) database contains economic and financial indicators of the U.S. and international economies gathered from various government and private sources by DRI/McGraw-Hill, Inc. There are over 8000 yearly, quarterly, monthly, weekly, and daily time
series.
Global Insight, formerly DRI/McGraw-Hill, distributes Basic Economic data files on various media. Old DRIDDS data files can be read by DATASOURCE using the DRIDDS filetype.

The following DRI file types are supported.

FILETYPE=DRIBASIC-Global Insight DRI Basic Economic Data Files

Table 11.13 FILETYPE=DRIBASIC-Global Insight DRI Basic Economic Data Files

Metadata Field Types	Metadata Metadata Labels Fields
Data Files	Database is stored in a single file.
INTERVAL $=$	YEAR (default), QUARTER, MONTH, WEEK, WEEK1.1,
	WEEK1.2, WEEK1.3, WEEK1.4, WEEK1.5, WEEK1.6, WEEK1.7,
BY Variables	WEEKDAY
None	
Series Variables	Variable names are taken from the series descriptor records in the data file. Note that series codes can be 20 bytes.
Missing Codes	MISSING=('1.000000E9'=. 'NA'-'ND'=.)

Note that when you specify the INTERVAL=WEEK option, all the weekly series will be aggregated, and the DATE variable in the OUT= data set will be set to the date of Sundays. The date of first observation for each series is the Sunday marking the beginning of the week that contains the starting date of that variable.

FILETYPE=DRIDDS-Global Insight DRI Data Delivery Service Data Files

Table 11.14 FILETYPE=DRIDDS-Global Insight DRI Data Delivery Service Data Files

Metadata Field	
Types	Metadata Fields
Data Files	Database is stored in a single file.
INTERVAL $=$	YEAR (default), SEMIYEAR, QUARTER, MONTH, SEMI-
	MONTH, TENDAY, WEEK, WEEK1.1, WEEK1.2, WEEK1.3,
	WEEK1.4, WEEK1.5, WEEK1.6, WEEK1.7, WEEKDAY, DAY
BY Variables	None
Series Variables	Variable names are taken from the series descriptor records in the data Missing Codes
file. Note that series names can be 24 bytes.	

FILETYPE=CITIOLD-OId Format CITIBASE Data Files

This file type is used for CITIBASE data distributed prior to May 1987.

Table 11.15 FILETYPE=CITIOLD-Old Format CITIBASE Data Files

Metadata Field Types	Metadata Fields
Data Files	Database is stored in a single file.
INTERVAL $=$	YEAR (default), QUARTER, MONTH
BY Variables	None
Series Variables	Variable names are taken from the series descriptor records in the data file and are the same as the series codes reported in the CITIBASE
	Directory.
Missing Codes	$1.0 \mathrm{E} 9=$.

FILETYPE=CITIDISK-PC Format CITIBASE Databases

Table 11.16 FILETYPE=CITIDISK-PC Format CITIBASE Databases

Metadata Field Types	Metadata \quad Metadata Labels Fields
Data Files	Database is stored in groups of three associated files having the same filename but different extensions: KEY, IND, or DB. The IN-
	FILE= option should contain three filerefs in the following order: IN- FILE=(keyfile indfile dbfile $).$
INTERVAL $=$	YEAR (default), QUARTER, MONTH
BY Variables	None
Series Variables	Series variable names are the same as series codes reported in the CITIBASE Directory.
Missing Codes	$1.0 \mathrm{E} 9=$.

COMPUSTAT Data Files

COMPUSTAT data files, distributed by Standard \& Poor's Compustat Services, Inc., consist of a collection of financial, statistical, and market information covering several thousand industrial and nonindustrial companies. Data are available in both an IBM 360/370 format and a "Universal Character" format, both of which further subdivide into annual and quarterly formats.

The BY variables are used to select individual companies or a group of companies. Individual companies can be selected by their unique six-digit CUSIP issuer code (CNUM). A number of specific groups of companies can be extracted by the following key fields:

FILE specifies the file identification code used to group companies by files.
ZLIST specifies the exchange listing code that can be used to group companies by exchange.
DNUM is used to extract companies in a specific SIC industry group.

Series names are internally constructed from the data array names documented in the COMPUSTAT manual. Each column of data array is treated as a SAS variable. The names of these variables are generated by concatenating the corresponding column numbers to the array name.

Missing values use four codes. Missing code '.C' represents a combined figure where the data item has been combined into another data item, '.I' reports an insignificant figure, '. ' ' represents a semi- $^{\prime}$ annual figure in the second and fourth quarters, ' ${ }^{\prime}$ ' represents an annual figure in the fourth quarter, and '.' indicates that the data item is not available. The missing codes '. C ' and '.I' are not used for Aggregate or Prices, Dividends, and Earnings (PDE) files. The missing codes '. S ' and '.A' are used only on the Industrial Quarterly File and not on the Aggregate Quarterly, Business Information, or PDE files.

FILETYPE=CSAIBM-COMPUSTAT Annual, IBM 360/370 Format

FILETYPE=CSAIY2-Four-Digit Year COMPUSTAT Annual, IBM 360/370 Format

Table 11.17 FILETYPE=CSAIBM,CSAIY2 -COMPUSTAT Annual,IBM 360/370 Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default)	
BY Variables	DNUM	Industry Classification Code (numeric)
	CNUM	CUSIP Issuer Code (character)
	CIC	CUSIP Issue Number and Check Digit (numeric)
	FILE	File Identification Code (numeric)
	ZLIST	Exchange Listing and S\&P Index Code (numeric)
	CONAME	Company Name (character)
	INAME	Industry Name (character)
	SMBL	Stock Ticker Symbol (character)
	XREL	S\&P Industry Index Relative Code (numeric)
	STK	Stock Ownership Code (numeric)
	STATE	Company Location Identification Code - State
	COUNTY	(numeric)
		Company Location Identification Code - County
	FINC	(numeric)
	EIN	Incorporation Code - Foreign (numeric)
	CPSPIN	Employer Identification Number (character)
	CSSPIN	S\&P Index Primary Marker (character)
	CSSPI	S\&P Index Secondary Identifier (character)
	SDBT	S\&P Senior Debt Rating - Current (character)
	SDBTIM	Footnote- S\&P Senior Debt Rating- Current
		(character)
	SUBDBT	S\&P Subordinated Debt Rating - Current (charac-
		ter)

Table 11.17 CSAIBM,CSAIY2 -COMPUSTAT Annual,IBM 360/370 Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels			
	CPAPER	S\&P Commercial (character)	Paper	Rating	- Current
Sorting Order	BY DNUM CNUM CIC				

FILETYPE=CS48QIBM-COMPUSTAT 48-Quarter, IBM 360/370 Format

FILETYPE=CSQIY2-FOUR-DIGIT YEAR COMPUSTAT 48-Quarter, IBM 360/370 Format

Table 11.18 FILETYPE=CS48QIBM,CSQIY2 -COMPUSTAT 48-Quarter, IBM 360/370 Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	QUARTER (default)	
BY Variables	DNUM	Industry Classification Code (numeric)
	CNUM	CUSIP Issuer Code (character)
	CIC	CUSIP Issue Number and Check Digit (numeric)
	FILE	File Identification Code (numeric)
	CONAME	Company Name (character)
	INAME	Industry Name (character)
	EIN	Employer Identification Number (character)
	STK	Stock Ownership Code (numeric)
	SMBL	Stock Ticker Symbol (character)
	ZLIST	Exchange Listing and S\&P Index Code (numeric)
	XREL	S\&P Industry Index Relative Code (numeric)
	FIC	Incorporation Code - Foreign (numeric)
	INCORP	Incorporation Code - State (numeric)
	STATE	Company Location Identification Code - State
	COUNTY	(numeric)
		Company Location Identification Code - County
	CANDX	(numeric)
	Canadian Index Code - Current (character)	
Sorting Order	BY DNUM CNUM CIC;	
Series Variables	DATA1-	Data Array
	DATA232	
	QFTNT1-	Data Footnotes
	QFTNT60	
	FYR	Fiscal Year-End Month of Data
	SPCSCYR	SPCS Calendar Year

Table 11.18 CS48QIBM,CSQIY2 -COMPUSTAT 48-Quarter, IBM 360/370 Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
	SPCSCQTR	SPCS Calendar Quarter
	UCODE	Update Code
	SOURCE	Source Document Code
	BONDRATE	S\&P Bond Rating
	DEBTCL	S\&P Class of Debt
	CPRATE	S\&P Commercial Paper Rating
	STOCK	S\&P Common Stock Ranking
	MIC	S\&P Major Index Code
	IIC	S\&P Industry Index Code
	REPORTDT	Report Date of Quarterly Earnings
	FORMAT	Flow of Funds Statement Format Code
	DEBTRT	S\&P Subordinated Debt Rating
	CANIC	Canadian Index Code
	CS	Comparability Status
	CSA	Company Status Alert
	SENIOR	S\&P Senior Debt Rating
Default	KEEP	DROP DATA122-DATA232 QFTNT24-QFTNT60;
List		
Missing Codes	$0.0001=.0 .0004=. C ~ 0.0008=. I$ 0.0002=.S 0.0003=.A	

FILETYPE=CSAUC-COMPUSTAT Annual, Universal Character Format

FILETYPE=CSAUCY2-Four-Digit Year COMPUSTAT Annual, Universal Character Format

Table 11.19 FILETYPE=CSAUC,CSAUCY2 -COMPUSTAT Annual, Universal Character Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default)	
BY Variables	DNUM	Industry Classification Code (numeric)
	CNUM	CUSIP Issuer Code (character)
	CIC	CUSIP Issue Number and Check Digit (character)
	FILE	File Identification Code (numeric)
	ZLIST	Exchange Listing and S\&P Index Code (numeric)
	CONAME	Company Name (character)
	INAME	Industry Name (character)
	SMBL	Stock Ticker Symbol (character)
	XREL	S\&P Industry Index Relative Code (numeric)
	STK	Stock Ownership Code (numeric)
	STATE	Company Location Identification Code - State
		(numeric)

Table 11.19 CSAUC,CSAUCY2 -COMPUSTAT Annual, Universal Character Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
	COUNTY	Company Location Identification Code - County (numeric)
	FINC	Incorporation Code - Foreign (numeric)
	EIN	Employer Identification Number (character)
	CPSPIN	S\&P Index Primary Marker (character)
	CSSPIN	S\&P Index Secondary Identifier (character)
	CSSPII	S\&P Index Subset Identifier (character) S\&P Senior Debt Rating - Current (character)
	SDBT	Footnote- S\&P Senior Debt Rating- Current (character)
	SDBTIM	S\&P Subordinated Debt Rating - Current (charac- ter)
	SUBDBT	S\&P Commercial Paper (character)
	CPAPER	- Current
Sorting Order	BY DNUM CNUM CIC	

FILETYPE=CS48QUC-COMPUSTAT 48 Quarter, Universal Character Format

FILETYPE=CSQUCY2-Four-Digit Year COMPUSTAT 48 Quarter, Universal Character Format

Table 11.20 FILETYPE=CS48QUC,CSQUCY2 -COMPUSTAT 48 Quarter, Universal Character Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	QUARTER (default)	
BY Variables	DNUM	Industry Classification Code (numeric)
	CNUM	CUSIP Issuer Code (character)
	CIC	CUSIP Issue Number and Check Digit (character)
	FILE	File Identification Code (numeric)
	CONAME	Company Name (character)
	INAME	Industry Name (character)
	EIN	Employer Identification Number (character)
	STK	Stock Ownership Code (numeric)
	SMBL	Stock Ticker Symbol (character)
	ZLIST	Exchange Listing and S\&P Index Code (numeric)
	XREL	S\&P Industry Index Relative Code (numeric)

Table 11.20 CS48QUC,CSQUCY2 -COMPUSTAT 48 Quarter, Universal Character Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
	FIC	Incorporation Code - Foreign (numeric)
	INCORP	Incorporation Code - State (numeric) Company Location Identification Code - State (numeric)
	STATE	Company Location Identification Code - County (numeric)
	COUNTY	Canadian Index Code - Current (numeric)
Sorting Order	CANDXC	BY DNUM CNUM CIC
Series Variables	DATA1-	Data Array
	DATA232	
	QFTNT1-	Data Footnotes
	QFTNT60	
	FYR	Fiscal Year-End Month of Data
	SPCSCYR	SPCS Calendar Year
	SPCSCQTR	SPCS Calendar Quarter
	UCODE	Update Code
	SOURCE	Source Document Code
	BONDRATE	S\&P Bond Rating

CRSP Stock Files

The Center for Research in Security Prices provides comprehensive security price data through two primary stock files, the NYSE/AMEX file and the NASDAQ file. These files contain master and return components, available separately or combined. CRSP stock files are further differentiated by the frequency at which prices and returns are reported, daily or monthly. Both daily and monthly
files contain annual data fields.
CRSP data files are distributed in CRSPAccess format. See Chapter 33, "The SASECRSP Interface Engine," for more about accessing your CRSPAccess database. You can convert your CRSPAccess data to binary format (SFA format) by using the CRSP-supplied utility (STK_DUMP_BIN). Use the DATASOURCE procedure for SFA format access and use SASECRSP Interface for CRSPAccess.

CRSP stock data (in SFA format) are provided in two files, a main data file containing security information and a calendar/indices file containing a list of trading dates and market information associated with those trading dates.

The file types for CRSP stock files are constructed by concatenating CRSP with a D or M to indicate the frequency of data, followed by B, C, or I to indicate file formats. B is for host binary, C is for character, and I is for IBM binary formats. The last character in the file type indicates if you are reading the Calendar/Indices file (I), or if you are extracting the security (S) or annual data (A). For example, the file type for the daily NYSE/AMEX combined data in IBM binary format is CRSPDIS. Its calendar/indices file can be read by CRSPDII, and its annual data can be extracted by CRSPDIA.

Starting in 1995, binary data used split records (RICFAC=2), so the 1995 filetypes (CR95*) should be used for 1995 and 1996 binary data. If you use utility routines supplied by CRSP to convert a character format file to a binary format file on a given host, then you need to use host binary file types (RIDFAC=1) to read those files in. Note that you cannot do the conversion on one host and transfer and read the file on another host.

If you are using the CRSPAccess Database, you will need to use the utility routine (stk_dump_bin) supplied by CRSP to generate the UNIX binary format of the data. You can access the UNIX (or SUN) binary data by using PROC DATASOURCE with the CRSPDUS for daily or CRSPMUS for monthly stock data.

For the four-digit year data, use the Y2K-compliant filetypes for that data type.
For CRSP file types, the INFILE= option must be of the form

```
INFILE=( calfile security1 < security2 ... > )
```

where calfile is the fileref assigned to the calendar/indices file, and securityl < security $2 \ldots>$ are the filerefs given to the security files, in the order in which they should be read.

CRSP Calendar/Indices Files

Table 11.21 CRSP Calendar/Indices Files Format

Metadata Field Types	Metadata Fields	Metadata Labels		
Data Files	Database is stored in a single file. INTERVAL $=$	DAY		
for products DA, DR, DX, EX, NX, and RA				
MONTH	for products MA, MX, and MZ			
Series Variables	None	VWRETD		Value-Weighted Return (including all distribu-
:---				
tions)				

Table 11.21 CRSP Calendar/Indices Files Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
	VWRETX	Value-Weighted Return (excluding dividends)
	EWRETD	Equal-Weighted Return (including all distributions)
	EWRETX	Equal-Weighted Return (excluding dividends)
	TOTVAL	Total Market Value
	TOTCNT	Total Market Count
	USDVAL	Market Value of Securities Used
	USDCNT	Count of Securities Used
	SPINDX	Level of the Standard \& Poor's Composite Index
	SPRTRN	Return on the Standard \& Poor's Composite Index
	NCINDX	NASDAQ Composite Index
	NCRTRN	NASDAQ Composite Return
Default KEEP List	All variabl	be kept.

CRSP Daily Security Files

Table 11.22 CRSP Daily Security Files Format

Table 11.22 CRSP Daily Security Files Format continued)

CRSP Monthly Security Files

Table 11.23 CRSP Monthly Security Files Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	INFILE=(calfile security 1 < security $2 \ldots>$)	
INTERVAL $=$	MONTH	
BY Variables	CUSIP	CUSIP Identifier (character)

Table 11.23 CRSP Monthly Security Files Format continued)

| Metadata Field |
| :--- | :--- | :--- |
Types		Metadata
Fields	\quad	Metadata
:---		
Labels		

Table 11.23 CRSP Monthly Security Files Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels	
			missing $=(-55.0=. \mathrm{s} \quad-66.0=. \mathrm{t}-$
			$88.0=. \mathrm{a}-99.0=. \mathrm{p}) ;$

CRSP Annual Data

Table 11.24 CRSP Annual Data Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	INFILE=(security1 < security $2 .$. >)	
INTERVAL=	YEAR	
BY Variables	CUSIP	CUSIP Identifier (character)
	PERMNO	CRSP Permanent Number (numeric)
	COMPNO	NASDAQ Company Number (numeric)
	ISSUNO	NASDAQ Issue Number (numeric)
	HEXCD	Header Exchange Code (numeric)
	HSICCD	Header SIC Code (numeric)
Sorting Order	BY CUSIP	
Series Variables	CAPV	Year End Capitalization
	SDEVV	Annual Standard Deviation missing $=(-99.0=$.
	BETAV	Annual Beta $\text { missing }=(-99.0=.)$
	CAPN	Year End Capitalization Portfolio Assignment
	SDEVN	Standard Deviation Portfolio Assignment
	BETAN	Beta Portfolio Assignment
Default KEEP Lists	All variables will be kept.	

FAME Information Services Databases

The DATASOURCE procedure provides access to FAME Information Services databases for UNIX-based systems only. For a more flexible FAME database access use the SASEFAME interface engine discussed in Chapter 34, "The SASEFAME Interface Engine," which is supported
for SAS 8.2 on Windows, Solaris2, AIX, and HP-UX hosts. SASEFAME for SAS 9 supports Windows, Solaris, AIX, and Linux.

The DATASOURCE interface to FAME requires a component supplied by FAME Information Services, Inc. Once this FAME component is installed on your system, you can use the DATASOURCE procedure to extract data from your FAME databases by giving the following specifications.

Specify FILETYPE=FAME in the PROC DATASOURCE statement and give the FAME database name to access with a DBNAME='fame-database' option. The character string you specify in the DBNAME $=$ option is passed through to FAME; specify the value of this option as you would in accessing the database from within FAME software.

Specify the output SAS data set to be created, the frequency of the series to be extracted, and other usual DATASOURCE procedure options as appropriate.

Specify the time range to extract with a RANGE statement. The RANGE statement is required when extracting series from FAME databases.

Name the FAME series to be extracted with a KEEP statement. The items in the KEEP statement are passed through to FAME software; therefore, you can use any valid FAME expression to specify the series to be extracted. Enclose in quotes any FAME series name or expression that is not a valid SAS name.

Name the SAS variable names you want to use for the extracted series in a RENAME statement. Give the FAME series name or expression (in quotes if needed) followed by an equal sign and the SAS name. The RENAME statement is not required; however, if the FAME series name is not a valid SAS variable name, the DATASOURCE procedure will construct a SAS name by translating and truncating the FAME series name. This process might not produce the desired name for the variable in the output SAS data set, so a rename statement could be used to produce a more appropriate variable name. The VALIDVARNAME=ANY option in your SAS options statement can be used to allow special characters in the SAS variable name.

For an alternative solution to PROC DATASOURCE's access to FAME, see "The SASEFAME Interface Engine" in Chapter 34, "The SASEFAME Interface Engine."

FILETYPE=FAME-FAME Information Services Databases

Table 11.25 FILETYPE=FAME-FAME Information Services Database Format

Metadata Field Types	Metadata Fields	Metadata Labels
INTERVAL=	YEAR	correspond to FAME's ANNUAL(DECEMBER)
	YEAR.2	correspond to FAME's ANNUAL(JANUARY) YEAR.3 YEAR.4
	correspond to FAME's ANNUAL(FEBRUARY)	
	YEAR.5	correspond to FAME's ANNUAL(MARCH)
	YEAR.6 ANNUAL(APRIL)	correspond to FAME's ANNUAL(MAY)
	YEAR.7	correspond to FAME's ANNUAL(JUNE)
	YEAR.8	correspond to FAME's ANNUAL(JULY)
	YEAR.9	correspond to FAME's ANNUAL(AUGUST)

Table 11.25 FILETYPE=FAME-FAME Information Services Database Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
	YEAR. 10	correspond to FAME's ANNUAL(SEPTEMBER)
	YEAR. 11	correspond to FAME's ANNUAL(OCTOBER)
	YEAR. 12	correspond to FAME's ANNUAL(NOVEMBER)
	SEMIYEAR	correspond to FAME's SEMIYEAR
	QUARTER	correspond to FAME's QUARTER
	MONTH	correspond to FAME's MONTH
	SEMIMONT	Hcorrespond to FAME's SEMIMONTH
	TENDAY	correspond to FAME's TENDAY
	WEEK	corresponds to FAME's WEEKLY(SATURDAY)
	WEEK. 2	corresponds to FAME's WEEKLY(SUNDAY)
	WEEK. 3	corresponds to FAME's WEEKLY(MONDAY)
	WEEK. 4	corresponds to FAME's WEEKLY(TUESDAY)
	WEEK. 5	corresponds to FAME's WEEKLY(WEDNESDAY)
	WEEK. 6	corresponds to FAME's WEEKLY(THURSDAY)
	WEEK. 7	corresponds to FAME's WEEKLY(FRIDAY)
	WEEK2	corresponds to FAME's BIWEEKLY(ASATURDAY)
	WEEK2.2	correspond to FAME's BIWEEKLY(ASUNDAY)
	WEEK2.3	correspond to FAME's BIWEEKLY(AMONDAY)
	WEEK2.4	correspond to FAME's BIWEEKLY(ATUESDAY)
	WEEK2.5	correspond to FAME's BIWEEKLY(AWEDNESDAY)
	WEEK2.6	correspond to FAME's BIWEEKLY(ATHURSDAY)
	WEEK2.7	correspond to FAME's BIWEEKLY(AFRIDAY)
	WEEK2.8	correspond to FAME's BIWEEKLY(BSATURDAY)
	WEEK2.9	correspond to FAME's BIWEEKLY(BSUNDAY)
	WEEK2.10	correspond to FAME's BIWEEKLY(BMONDAY)
	WEEK2.11	correspond to FAME's BIWEEKLY(BTUESDAY)
	WEEK2.12	correspond to FAME's BIWEEKLY(BWEDNESDAY)
	WEEK2.13	correspond to FAME's BIWEEKLY(BTHURSDAY)
	WEEK2.14	correspond to FAME's BIWEEKLY(BFRIDAY)
	WEEKDAY	correspond to FAME's WEEKDAY
	DAY	correspond to FAME's DAY
BY Variables	None	
Series Variables	Variable nam that series nan	s are constructed from the FAME series codes. Note nes are limited to 32 bytes.

Haver Analytics Data Files

Haver Analytics offers a broad range of economic, financial, and industrial data for the United States and other countries. See "The SASEHAVR Interface Engine" in Chapter 35, "The SASEHAVR Interface Engine," for information about accessing your HAVER DLX database. SASEHAVR is supported on most Windows environments. Use the DATASOURCE procedure for serial access of
your data. The format of Haver Analytics data files is similar to the CITIBASE/DRIBASIC formats.

FILETYPE=HAVER-Haver Analytics Data Files HAVERO-OId Format Haver Files

Table 11.26 FILETYPE=HAVER-Haver Analytics Data Files Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default), QUARTER, MONTH	
Series Variables	Variable names are taken from the series descriptor records in the data file. NOTE: HAVER filetype reports the UPDATE and SOURCE in the OUTCONT= data set, while HAVERO does not.	
Missing Codes	$1.0 E 9=$.	

IMF Data Files

The International Monetary Fund's Economic Information System (EIS) offers subscriptions for their International Financial Statistics (IFS), Direction of Trade Statistics (DOTS), Balance of Payment Statistics (BOPS), and Government Finance Statistics (GFS) databases. The first three contain annual, quarterly, and monthly data, while the GFS file has only annual data.

PROC DATASOURCE supports only the packed format IMF data.

FILETYPE=IMFIFSP-International Financial Statistics, Packed Format

The IFS data files contain over 23,000 time series including interest and exchange rates, national income and product accounts, price and production indexes, money and banking, export commodity prices, and balance of payments for nearly 200 countries and regional aggregates.

Table 11.27 FILETYPE=IMFIFSP-International Financial Statistics Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default), QUARTER, MONTH	
BY Variables	COUNTRY \quad Country Code (character, three digits)	
	CSC	Control Source Code (character)
	PARTNER	Partner Country Code (character, three digits)
	VERSION \quad Version Code (character)	
Sorting Order	BY COUNTRY CSC PARTNER VERSION	
Series Variables	Series variable names are the same as series codes reported in IMF Documentation prefixed by F for data and F_F for footnote indicators.	

Table 11.27 FILETYPE=IMFIFSP-International Financial Statistics Format continued)

| Metadata Field
 Types | Metadata
 Fields | Metadata Labels |
| :--- | :--- | :--- | :--- |
| Default
 List | KEEP | By default all the footnote indicators will be dropped. |

FILETYPE=IMFDOTSP-Direction of Trade Statistics, Packed Format

The DOTS files contain time series on the distribution of exports and imports for about 160 countries and country groups by partner country and areas.

Table 11.28 FILETYPE=IMFDOTSP-Direction of Trade Statistics Format
\(\left.$$
\begin{array}{lll}\hline \begin{array}{l}\text { Metadata Field } \\
\text { Types }\end{array} & \begin{array}{l}\text { Metadata } \\
\text { Fields }\end{array} & \text { Metadata Labels } \\
\hline \text { Data Files } & \text { Database is stored in a single file. } \\
\text { INTERVAL }= & \text { YEAR (default), QUARTER, MONTH } \\
\text { BY Variables } & \text { COUNTRY } & \begin{array}{l}\text { Country Code (character, three digits) }\end{array}
$$

\& CSC \& Control Source Code (character)

\& PARTNER \& Partner Country Code (character, three digits)

VERSION \quad Version Code (character)\end{array}\right]\)| Sorting Order | BY COUNTRY CSC PARTNER VERSION |
| :--- | :--- |

FILETYPE=IMFBOPSP-Balance of Payment Statistics, Packed Format

The BOPS data files contain approximately 43,000 time series on balance of payments for about 120 countries.

Table 11.29 FILETYPE=IMFBOPSP-Balance of Payment Statistics Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored in a single file.	
INTERVAL $=$	YEAR (default), QUARTER, MONTH	
BY Variables	COUNTRY	Country Code (character, three digits)
	CSC	Control Source Code (character)
	PARTNER	Partner Country Code (character, three digits)
	VERSION	Version Code (character)
Sorting Order	BY COUNTRY CSC PARTNER VERSION	

Table 11.29 FILETYPE=IMFBOPSP-Balance of Payment Statistics Format continued)

Metadata Field Types	Metadata Fields
Series Variables	Series variable names are the same as series codes reported in IMF Documentation prefixed by B for data and F_B for footnote indica- tors.
Default List	KEEP default all the footnote indicators will be dropped.

FILETYPE=IMFGFSP-Government Finance Statistics, Packed Format

The GFS data files encompass approximately 28,000 time series that give a detailed picture of federal government revenue, grants, expenditures, lending minus repayment financing and debt, and summary data of state and local governments, covering 128 countries.

Table 11.30 FILETYPE=IMFGFSP-Government Finance Statistics Format

OECD Data Files

The Organization for Economic Cooperation and Development compiles and distributes statistical data, including National Accounts and Main Economic Indicators.

FILETYPE=OECDANA-Annual National Accounts

The ANA data files contain both main national aggregates accounts (Volume I) and detailed tables for each OECD Member country (Volume II).

Table 11.31 FILETYPE=OECDANA-Annual National Accounts Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored on a single file.	
INTERVAL $=$	YEAR (default),	SEMIYR1.6, QUARTER, MONTH, WEEK,
	WEEKDAY	
BY Variables	PREFIX	Table number prefix (character)
	CNTRYZ	Country Code (character)
Series Variables	Series variable names are the same as the mnemonic name of the	
	element given on the element 'E' record. They are taken from the 12	
	byte time series 'T' record time series indicative.	
Series Renamed	OLDNAME	NEWNAME
	p0discgdpe	p0digdpe
	doll2gdpe	dol2gdpe
	doll3gdpe	dol3gdpe
	doll1gdpe	dol1gdpe
	ppp1gdpd	pp1gdpd
	ppp1gdpd1	pp1gdpd1
	p0itxgdpc	p0itgdpc
	p0itygdps	p0itgdps
	p0subgdpc	p0sugdpc
	p0subgdps	p0sugdps
	p0cfcgdpc	p0cfgdpc
	p0cfgddps	p0cfgdps
	p0discgdpc	p0dicgdc
	p0discgdps	p0dicgds
Missing Codes	A data value of * is interpreted as MISSING.	

FILETYPE=OECDQNA-Quarterly National Accounts

The QNA file contains the main aggregates of quarterly national accounts for 16 OECD Member Countries and on a selected number of aggregates for 4 groups of member countries: OECD-Total, OECD-Europe, EEC, and the 7 major countries.

Table 11.32 FILETYPE=OECDQNA-Quarterly National Accounts Format

Metadata Field Types	Metadata Fields	Metadata Labels
Data Files	Database is stored on a single file.	
INTERVAL $=$	QUARTER(default),YEAR	
BY Variables	COUNTRY	Country Code (character)
	SEASON	Seasonality PRICEseasonally adjusted 0=raw data, not seasonally adjusted Prices C=data at current prices

Table 11.32 FILETYPE=OECDQNA-Quarterly National Accounts Format continued)

Metadata Field Types	Metadata Fields	Metadata Labels
		R,L,M=data at con P,K,J,V=implicit
Series Variables	Subject code used to distinguish series within countries. Series variables are prefixed by _ for data, C for control codes, and D for relative date.	
Default DROP	By default all the control codes and relative dates will be dropped.	
List		
Missing Codes	A data value of + or - is interpreted as MISSING.	

FILETYPE=OECDMEI-Main Economic Indicators

The MEI file contains all series found in Parts 1 and 2 of the publication Main Economic Indicators.
Table 11.33 FILETYPE=OECDMEI-Main Economic Indicators Format

References

Bureau of Economic Analysis (1986), The National Income and Product Accounts of the United States, 1929-82, U.S. Dept of Commerce, Washington, DC.

Bureau of Economic Analysis (1987), Index of Items Appearing in the National Income and Product Accounts Tables, U.S. Dept of Commerce, Washington, DC.

Bureau of Economic Analysis (1991), Survey of Current Business, U.S. Dept of Commerce, Washington, DC.

Center for Research in Security Prices (2006), CRSP Data Description Guide, Chicago, IL.
Center for Research in Security Prices (2006), CRSP Fortran-77 to Fortran-95 Migration Guide, Chicago, IL.

Center for Research in Security Prices (2006), CRSP Programmer's Guide, Chicago, IL.
Center for Research in Security Prices (2006), CRSP Utilities Guide, Chicago, IL.
Center for Research in Security Prices (2000), CRSP SFA Guide, Chicago, IL.
Citibank (1990), CITIBASE Directory, New York, NY.
Citibank (1991), CITIBASE-Weekly, New York, NY.
Citibank (1991), CITIBASE-Daily, New York, NY.
DRI/McGraw-Hill (1997), DataLink, Lexington, MA.
DRI/McGraw-Hill Data Search and Retrieval for Windows (1996), DRIPRO User's Guide, Lexington, MA.

FAME Information Services (1995), User's Guide to FAME, Ann Arbor, Michigan
International Monetary Fund (1984), IMF Documentation on Computer Subscription, Washington, DC.

Organization For Economic Cooperation and Development (1992) Annual National Accounts: Volume I. Main Aggregates Content Documentation, Paris, France.

Organization For Economic Cooperation and Development (1992) Annual National Accounts: Volume II. Detailed Tables Technical Documentation, Paris, France.

Organization For Economic Cooperation and Development (1992) Main Economic Indicators Database Note, Paris, France.

Organization For Economic Cooperation and Development (1992) Main Economic Indicators Inventory, Paris, France.

Organization For Economic Cooperation and Development (1992) Main Economic Indicators OECD Statistics Document, Paris, France.

Organization For Economic Cooperation and Development (1992) OECD Statistical Information Research and Inquiry System Documentation, Paris, France.

Organization For Economic Cooperation and Development (1992) Quarterly National Accounts Inventory of Series Codes, Paris, France.

Organization For Economic Cooperation and Development (1992) Quarterly National Accounts

Technical Documentation, Paris, France.
Standard \& Poor's Compustat Services Inc. (1991), COMPUSTAT II Documentation, Englewood, CO.

Standard \& Poor’s Compustat Services Inc. (2003), COMPUSTAT Technical Guide, Englewood, CO.

Chapter 12

The ENTROPY Procedure (Experimental)

Contents
Overview: ENTROPY Procedure 616
Getting Started: ENTROPY Procedure 618
Simple Regression Analysis 618
Using Prior Information 625
Pure Inverse Problems 630
Analyzing Multinomial Response Data 635
Syntax: ENTROPY Procedure 638
Functional Summary 639
PROC ENTROPY Statement 640
BOUNDS Statement 644
BY Statement 646
ID Statement 646
MODEL Statement 646
PRIORS Statement 648
RESTRICT Statement 648
TEST Statement 649
WEIGHT Statement 650
Details: ENTROPY Procedure 651
Generalized Maximum Entropy 651
Generalized Cross Entropy 652
Normed Moment Generalized Maximum Entropy 654
Maximum Entropy-Based Seemingly Unrelated Regression 655
Generalized Maximum Entropy for Multinomial Discrete Choice Models 657
Censored or Truncated Dependent Variables 658
Information Measures 659
Parameter Covariance For GCE 660
Parameter Covariance For GCE-NM 661
Statistical Tests 661
Missing Values 662
Input Data Sets 663
Output Data Sets 664
ODS Table Names 665
ODS Graphics 666
Examples: ENTROPY Procedure 667
Example 12.1: Nonnormal Error Estimation 667
Example 12.2: Unreplicated Factorial Experiments 668
Example 12.3: Censored Data Models in PROC ENTROPY 672
Example 12.4: Use of the PDATA= Option 674
Example 12.5: Illustration of ODS Graphics 676
References 678

Overview: ENTROPY Procedure

The ENTROPY procedure implements a parametric method of linear estimation based on generalized maximum entropy. The ENTROPY procedure is suitable when there are outliers in the data and robustness is required, when the model is ill-posed or under-determined for the observed data, or for regressions that involve small data sets.

The main features of the ENTROPY procedure are as follows:

- estimation of simultaneous systems of linear regression models
- estimation of Markov models
- estimation of seemingly unrelated regression (SUR) models
- estimation of unordered multinomial discrete Choice models
- solution of pure inverse problems
- allowance of bounds and restrictions on parameters
- performance of tests on parameters
- allowance of data and moment constrained generalized cross entropy

It is often the case that the statistical/economic model of interest is ill-posed or under-determined for the observed data. For the general linear model, this can imply that high degrees of collinearity exist among explanatory variables or that there are more parameters to estimate than observations available to estimate them. These conditions lead to high variances or non-estimability for traditional generalized least squares (GLS) estimates.

Under these situations it might be in the researcher's or practitioner's best interest to consider a nontraditional technique for model fitting. The principle of maximum entropy is the foundation for an estimation methodology that is characterized by its robustness to ill-conditioned designs and its ability to fit over-parameterized models. See Mittelhammer, Judge, and Miller (2000) and Golan, Judge, and Miller (1996) for a discussion of Shannon's maximum entropy measure and the related Kullback-Leibler information.

Generalized maximum entropy (GME) is a means of selecting among probability distributions to choose the distribution that maximizes uncertainty or uniformity remaining in the distribution, subject to information already known about the distribution. Information takes the form of data or moment constraints in the estimation procedure. PROC ENTROPY creates a GME distribution for each parameter in the linear model, based upon support points supplied by the user. The mean of each distribution is used as the estimate of the parameter. Estimates tend to be biased, as they are a type of shrinkage estimate, but typically portray smaller variances than ordinary least squares (OLS) counterparts, making them more desirable from a mean squared error viewpoint (see Figure 12.1).

Figure 12.1 Distribution of Maximum Entropy Estimates versus OLS

Maximum entropy techniques are most widely used in the econometric and time series fields. Some important uses of maximum entropy include the following:

- size distribution of firms
- stationary Markov Process
- social accounting matrix (SAM)
- consumer brand preference
- exchange rate regimes
- wage-dependent firm relocation
- oil market dynamics

Getting Started: ENTROPY Procedure

This section introduces the ENTROPY procedure and shows how to use PROC ENTROPY for several kinds of statistical analyses.

Simple Regression Analysis

The ENTROPY procedure is similar in syntax to the other regression procedures in SAS. To demonstrate the similarity, suppose the endogenous/dependent variable is y, and $x 1$ and $x 2$ are two exogenous/independent variables of interest. To estimate the parameters in this single equation model using PROC ENTROPY, use the following SAS statements:

```
proc entropy;
    model y = x1 x2;
run;
```


Test Scores Data Set

Consider the following test score data compiled by Coleman et al. (1966):

```
title "Test Scores compiled by Coleman et al. (1966)";
data coleman;
    input test_score 6.2 teach_sal 6.2 pront_prof 8.2
            socio_stat 9.2 teach_score 8.2 mom_ed 7.2;
    label test_score="Average sixth grade test scores in observed district";
    label teach_sal="Average teacher salaries per student (1000s of dollars)";
    label prent_prof="Percent of students' fathers with professional employment";
    label socio_stat="Composite measure of socio-economic status in the district";
    label teach_score="Average verbal score for teachers";
    label mom_ed="Average level of education (years) of the students' mothers";
datalines;
... more lines ...
```

This data set contains outliers, and the condition number of the matrix of regressors, \mathbf{X}, is large, which indicates collinearity amoung the regressors. Since the maximum entropy estimates are both robust with respect to the outliers and also less sensitive to a high condition number of the \mathbf{X} matrix, maximum entropy estimation is a good choice for this problem.

To fit a simple linear model to this data by using PROC ENTROPY, use the following statements:

```
proc entropy data=coleman;
    model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;
run;
```

This requests the estimation of a linear model for TEST_SCORE with the following form:

$$
\begin{aligned}
\text { test_score }= & \text { intercept }+a * \text { teach_sal }+b * p r c n t_{-} p r o f+c * \text { socio_stat } \\
& +d * \text { teach_score }+e * m_{0} m_{-} e d+\epsilon
\end{aligned}
$$

This estimation produces the "Model Summary" table in Figure 12.2, which shows the equation variables used in the estimation.

Figure 12.2 Model Summary Table

```
        Test Scores compiled by Coleman et al. (1966)
    The ENTROPY Procedure
Variables(Supports(Weights)) teach_sal prent_prof socio_stat
        teach_score mom_ed Intercept
Equations(Supports(Weights)) test_score
```

Since support points and prior weights are not specified in this example, they are not shown in the "Model Summary" table. The next four pieces of information displayed in Figure 12.3 are: the "Data Set Options," the "Minimization Summary," the "Final Information Measures," and the "Observations Processed."

Figure 12.3 Estimation Summary Tables

Figure 12.3 continued

The item labeled "Objective Function Value" is the value of the entropy estimation criterion for this estimation problem. This measure is analogous to the log-likelihood value in a maximum likelihood estimation. The "Parameter Information Index" and the "Error Information Index" are normalized entropy values that measure the proximity of the solution to the prior or target distributions.

The next table displayed is the ANOVA table, shown in Figure 12.4. This is in the same form as the ANOVA table for the MODEL procedure, since this is also a multivariate procedure.

Figure 12.4 Summary of Residual Errors

The last table displayed is the "Parameter Estimates" table, shown in Figure 12.5. The difference between this parameter estimates table and the parameter estimates table produced by other regression procedures is that the standard error and the probabilities are labeled as approximate.

Figure 12.5 Parameter Estimates

Variable	GME-NM Variable Estimates			
		Approx		Approx
	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
teach_sal	0.287979	0.00551	52.26	$<.0001$
prent_prof	0.02266	0.00323	7.01	$<.0001$
socio_stat	0.199777	0.0308	6.48	$<.0001$
teach_score	0.497137	0.0180	27.61	$<.0001$
mom_ed	1.644472	0.0921	17.85	$<.0001$
Intercept	10.5021	0.3958	26.53	$<.0001$

The parameter estimates produced by the REG procedure for this same model are shown in Figure 12.6. Note that the parameters and standard errors from PROC REG are much different than estimates produced by PROC ENTROPY.

```
symbol v=dot h=1 c=green;
proc reg data=coleman;
    model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;
    plot rstudent.*obs.
        / vref= -1.714 1.714 cvref=blue lvref=1
            HREF=0 to 30 by 5 cHREF=red cframe=ligr;
run;
```

Figure 12.6 REG Procedure Parameter Estimates

Test Scores compiled by Coleman et al. (1966) The REG Procedure Model: MODEL1 Dependent Variable: test_score Parameter Estimates					
Intercept	1	19.94857	13.62755	1.46	0.1653
teach_sal	1	-1.79333	1.23340	-1.45	0.1680
prent_prof	1	0.04360	0.05326	0.82	0.4267
socio_stat	1	0.55576	0.09296	5.98	$<.0001$
teach_score	1	1.11017	0.43377	2.56	0.0227
mom_ed	1	-1.81092	2.02739	-0.89	0.3868

This data set contains two outliers, observations 3 and 18. These can be seen in a plot of the residuals shown in Figure 12.7

Figure 12.7 PROC REG Residuals with Outliers

Test Scores compiled by Coleman et al. (1966)

The presence of outliers suggests that a robust estimator such as M-estimator in the ROBUSTREG procedure should be used. The following statements use the ROBUSTREG procedure to estimate the model.

```
proc robustreg data=coleman;
    model test_score = teach_sal prent_prof
        socio_stat teach_score mom_ed;
run;
```

The results of the estimation are shown in Figure 12.8.

Figure 12.8 M-Estimation Results

Note that TEACH_SAL(VAR1) and MOM_ED(VAR5) change greatly when the robust estimation is used. Unfortunately, these two coefficients are negative, which implies that the test scores increase with decreasing teacher salaries and decreasing levels of the mother's education. Since ROBUSTREG is robust to outliers, they are not causing the counterintuitive parameter estimates.

The condition number of the regressor matrix \mathbf{X} also plays a important role in parameter estimation. The condition number of the matrix can be obtained by specifying the COLLIN option in the PROC ENTROPY statement.

```
proc entropy data=coleman collin;
    model test_score = teach_sal prent_prof socio_stat teach_score mom_ed;
run;
```

The output produced by the COLLIN option is shown in Figure 12.9.

Figure 12.9 Collinearity Diagnostics

Test Scores compiled by Coleman et al. (1966)						
The ENTROPY Procedure						
Collinearity Diagnostics						
				Variation--------		
Number	Eigenvalue	Condition Number	teach_sal	prent prof	socio_ stat	teach_ score
1	4.978128	1.0000	0.0007	0.0012	0.0026	0.0001
2	0.937758	2.3040	0.0006	0.0028	0.2131	0.0001
3	0.066023	8.6833	0.0202	0.3529	0.6159	0.0011
4	0.016036	17.6191	0.7961	0.0317	0.0534	0.0059
5	0.001364	60.4112	0.1619	0.3242	0.0053	0.7987
6	0.000691	84.8501	0.0205	0.2874	0.1096	0.1942
Collinearity Diagnostics						
		Condition		-Proportion of Variation-		
	Number	Eigenvalue	Number	mom_ed	Intercept	
	1	4.978128	1.0000	0.0001	0.0000	
	2	0.937758	2.3040	0.0000	0.0001	
	3	0.066023	8.6833	0.0000	0.0003	
	4	0.016036	17.6191	0.0083	0.0099	
	5	0.001364	60.4112	0.3309	0.0282	
	6	0.000691	84.8501	0.6607	0.9614	

The condition number of the \mathbf{X} matrix is reported to be 84.85 . This means that the condition number of $\mathbf{X}^{\prime} \mathbf{X}$ is $84.85^{2}=7199.5$, which is very large.

Ridge regression can be used to offset some of the problems associated with ill-conditioned \mathbf{X} matrices. Using the formula for the ridge value as

$$
\lambda_{R}=\frac{k S^{2}}{\hat{\beta}^{\prime} \hat{\beta}} \approx 0.9
$$

where $\hat{\beta}$ and S^{2} are the least squares estimators of β and σ^{2} and $k=6$. A ridge regression of the test score model was performed by using the data set with the outliers removed. The following PROC REG code performs the ridge regression:

```
data coleman;
    set coleman;
    if _n_ = 3 or _n_ = 18 then delete;
run;
proc reg data=coleman ridge=0.9 outest=t noprint;
    model test_score = teach_sal pront_prof socio_stat teach_score mom_ed;
run;
```

```
proc print data=t;
run;
```

The results of the estimation are shown in Figure 12.10.
Figure 12.10 Ridge Regression Estimates

Obs	Test Scores compiled by Coleman et al. (1966)						
	_MODEL	_TYPE_	DEPVAR_	_RIDGE_	PCOMIT_	_RMSE	Intercept
1	MODEL1	PARMS te	test_score	.	0	0.78236	29.7577
2	MODEL1	RIDGE te	test_score	0.9		3.19679	9.6698
Obs	$\begin{gathered} \text { teach_ } \\ \text { sal } \end{gathered}$	prent_ prof	$\begin{gathered} \text { socio_ } \\ \text { stat } \end{gathered}$	teach score	mom_ed	tes SC	
1	-1.69854	0.085118	80.66617	1.18400	-4.06675		
2	-0.08892	0.041889	90.23223	0.60041	1.32168		

Note that the ridge regression estimates are much closer to the estimates produced by the ENTROPY procedure that uses the original data set. Ridge regressions are not robust to outliers as maximum entropy estimates are. This might explain why the estimates still differ for TEACH_SAL.

Using Prior Information

You can use prior information about the parameters or the residuals to improve the efficiency of the estimates. Some authors prefer the terms pre-sample or pre-data over the term prior when used with maximum entropy to avoid confusion with Bayesian methods. The maximum entropy method described here does not use Bayes' rule when including prior information in the estimation.

To perform regression, the ENTROPY procedure uses a generalization of maximum entropy called generalized maximum entropy. In maximum entropy estimation, the unknowns are probabilities. Generalized maximum entropy expands the set of problems that can be solved by introducing the concept of support points. Generalized maximum entropy still estimates probabilities, but these are the probabilities of a support point. Support points are used to map the $(0,1)$ domain of the maximum entropy to the any finite range of values.

Prior information, such as expected ranges for the parameters or the residuals, is added by specifying support points for the parameters or the residuals. Support points are points in one dimension that specify the expected domain of the parameter or the residual. The wider the domain specified, the less efficient your parameter estimates are (the more variance they have). Specifying more support points in the same width interval also improves the efficiency of the parameter estimates at the cost of more computation. Golan, Judge, and Miller (1996) show that the gains in efficiency fall off for adding more than five support points. You can specify between 2 to 256 support points in the ENTROPY procedure.

If you have only a small amount of data, the estimates are very sensitive to your selection of support points and weights. For larger data sets, incorrect priors are discounted if they are not supported by the data.

Consider the data set generated by the following SAS statements:

```
data prior;
    do by = 1 to 100;
            do t = 1 to 10;
                y = 2*t + 5 * rannor(456);
                output;
            end;
    end;
run;
```

The PRIOR data set contains 100 samples of 10 observations each from the population

$$
\begin{aligned}
& y=2 * t+\epsilon \\
& \epsilon \sim N(0,5)
\end{aligned}
$$

You can estimate these samples using PROC ENTROPY as

```
proc entropy data=prior outest=parm1 noprint;
    model y = t ;
    by by;
run;
```

The 100 estimates are summarized by using the following SAS statements:

```
proc univariate data=parm1;
    var t;
run;
```

The summary statistics from PROC UNIVARIATE are shown in Output 12.11. The true value of the coefficient T is 2.0 , demonstrating that maximum entropy estimates tend to be biased.

Figure 12.11 No Prior Information Monte Carlo Summary

Now assume that you have prior information about the slope and the intercept for this model. You
are reasonably confident that the slope is 2 and you are less confident that intercept is zero. To specify prior information about the parameters, use the PRIORS statement.

There are two parts to the prior information specified in the PRIORS statement. The first part is the support points for a parameter. The support points specify the domain of the parameter. For example, the following statement sets the support points -1000 and 1000 for the parameter associated with variable T :

```
priors t -1000 1000;
```

This means that the coefficient lies in the interval $[-1000,1000]$. If the estimated value of the coefficient is actually outside of this interval, the estimation will not converge. In the previous PRIORS statement, no weights were specified for the support points, so uniform weights are assumed. This implies that the coefficient has a uniform probability of being in the interval [$-1000,1000$].

The second part of the prior information is the weights on the support points. For example, the following statements sets the support points $10,15,20$, and 25 with weights $1,5,5$, and 1 respectively for the coefficient of T :

```
priors t 10(1) 15(5) 20(5) 25(1);
```

This creates the prior distribution on the coefficient shown in Figure 12.12. The weights are automatically normalized so that they sum to one.

Figure 12.12 Prior Distribution of Parameter T

For the PRIOR data set created previously, the expected value of the coefficient of T is 2 . The following SAS statements reestimate the parameters with a prior weight specified for each one.

```
proc entropy data=prior outest=parm2 noprint;
    priors t O(1) 2(3) 4(1)
        intercept -100(.5) -10(1.5) 0(2) 10(1.5) 100(0.5);
    model y = t;
    by by;
run;
```

The priors on the coefficient of T express a confident view of the value of the coefficient. The priors on INTERCEPT express a more diffuse view on the value of the intercept. The following PROC UNIVARIATE statement computes summary statistics from the estimations:

```
proc univariate data=parm2;
    var t;
run;
```

The summary statistics for the distribution of the estimates of T are shown in Figure 12.13.

Figure 12.13 Prior Information Monte Carlo Summary

The prior information improves the estimation of the coefficient of T dramatically. The downside of specifying priors comes when they are incorrect. For example, say the priors for this model were specified as

```
priors t -2(1) 0(3) 2(1);
```

to indicate a prior centered on zero instead of two.
The resulting summary statistics shown in Figure 12.14 indicate how the estimation is biased away from the solution.

Figure 12.14 Incorrect Prior Information Monte Carlo Summary

The more data available for estimation, the less sensitive the parameters are to the priors. If the number of observations in each sample is 50 instead of 10 , then the summary statistics shown in Figure 12.15 are produced. The prior information is not supported by the data, so it is discounted.

Figure 12.15 Incorrect Prior Information with More Data

Pure Inverse Problems

A special case of systems of equations estimation is the pure inverse problem. A pure problem is one that contains an exact relationship between the dependent variable and the independent variables and does not have an error component. A pure inverse problem can be written as

$$
\mathbf{y}=X \beta
$$

where \mathbf{y} is a n-dimensional vector of observations, \mathbf{X} is a $n \times k$ matrix of regressors, and β is a k-dimensional vector of unknowns. Notice that there is no error term.

A classic example is a dice problem (Jaynes 1963). Given a six-sided die that can take on the values $x=1,2,3,4,5,6$ and the average outcome of the die $y=A$, compute the probabilities $\beta=$ $\left(p_{1}, p_{2}, \cdots, p_{6}\right)^{\prime}$ of rolling each number. This infers six values from two pieces of information. The data points are the expected value of y , and the sum of the probabilities is one. Given $E(y)=4.0$, this problem is solved by using the following SAS code:

```
data one;
    array x[6] ( 1 2 3 4 5 6 );
    y=4.0;
run;
proc entropy data=one pure;
    priors x1 0 1 x2 0 1 x3 0 1 x4 0 1 x5 0 1 x6 0 1;
    model y = x1-x6/ noint;
    restrict x1 + x2 +x3 +x4 + x5 + x6 =1;
run;
```

The probabilities are given in Figure 12.16.

Figure 12.16 Jaynes' Dice Pure Inverse Problem

Prior Distribution of Parameter T			
The ENTROPY Procedure			
GME Variable Estimates			
Information			
Variable	Estimate	Index	Label
x1	0.101763	0.5254	
x 2	0.122658	0.4630	
x3	0.147141	0.3974	
x 4	0.175533	0.3298	
x5	0.208066	0.2622	
$\mathbf{x} 6$	0.244839	0.1970	
Restrict0	2.388082		$\begin{array}{r} \mathrm{x} 1+ \\ +\quad \times 5 \end{array}$

Note how the probabilities are skewed to the higher values because of the high average roll provided in the input data.

First-Order Markov Process Estimation

A more useful inverse problem is the first-order markov process. Companies have a share of the marketplace where they do business. Generally, customers for a specific market space can move from company to company. The movement of customers can be visualized graphically as a flow diagram, as in Figure 12.17. The arrows represent movements of customers from one company to another.

Figure 12.17 Markov Transition Diagram

You can model the probability that a customer moves from one company to another using a firstorder Markov model. Mathematically the model is:

$$
y_{t}=P y_{t-1}
$$

where y_{t} is a vector of k market shares at time t and P is a $k \times k$ matrix of unknown transition probabilities. The value $p_{i j}$ represents the probability that a customer who is currently using company j at time $t-1$ moves to company i at time t. The diagonal elements then represent the probability that a customer stays with the current company. The columns in P sum to one.

Given market share information over time, you can estimate the transition probabilities P. In order to estimate P using traditional methods, you need at least k observations. If you have fewer than k transitions, you can use the ENTROPY procedure to estimate the probabilities.

Suppose you are studying the market share for four companies. If you want to estimate the transition probabilities for these four companies, you need a time series with four observations of the shares. Assume the current transition probability matrix is as follows:
$\left[\begin{array}{llll}0.7 & 0.4 & 0.0 & 0.1 \\ 0.1 & 0.5 & 0.4 & 0.0 \\ 0.0 & 0.1 & 0.6 & 0.0 \\ 0.2 & 0.0 & 0.0 & 0.9\end{array}\right]$

The following SAS DATA step statements generate a series of market shares from this probability matrix. A transition is represented as the current period shares, y , and the previous period shares, x .

```
data m;
            /* Known Transition matrix */
    array p[4,4] (0.7 .4 . 0 . 1
                0.1 .5 . 4 . 0
                0.0 . 1 . }6.
                0.2 .0 . 0 . 9 ) ;
            /* Initial Market shares */
    array y[4] y1-y4 ( . 4 . 3 . .2 . 1 );
    array x[4] x1-x4;
    drop p1-p16 i;
    do i = 1 to 3;
        x[1] = y[1]; x[2] = y[2];
        x[3] = y[3]; x[4] = y[4];
        y[1] = p[1,1] * x1 + p[1,2] * x2 + p[1,3] * x3 + p[1,4] * x4;
        y[2] = p[2,1] * x1 + p[2,2] * x2 + p[2,3] * x3 + p[2,4] * x4;
        y[3] = p[3,1] * x1 + p[3,2] * x2 + p[3,3] * x3 + p[3,4] * x4;
        y[4] = p[4,1] * x1 + p[4,2] * x2 + p[4,3] * x3 + p[4,4] * x4;
        output;
    end;
run;
```

The following SAS statements estimate the transition matrix by using only the first transition.

```
proc entropy markov pure data=m(obs=1);
    model y1-y4 = x1-x4;
run;
```

The MARKOV option implies NOINT for each model, that the sum of the parameters in each column is one, and chooses support points of 0 and 1 . This model can be expressed equivalently as

```
proc entropy pure data=m(obs=1) ;
    priors y1.x1 0 1 y1.x2 0 1 y1.x3 0 1 y1.x4 0 1;
    priors y2.x1 0 1 y2.x2 0 1 y2.x3 0 1 y2.x4 0 1;
    priors y3.x1 0 1 y3.x2 0 1 y3.x3 0 1 y3.x4 0 1;
    priors y4.x1 0 1 y4.x2 0 1 y4.x3 0 1 y4.x4 0 1;
    model y1 = x1-x4 / noint;
    model y2 = x1-x4 / noint;
    model y3 = x1-x4 / noint;
    model y4 = x1-x4 / noint;
    restrict y1.x1 + y2.x1 + y3.x1 + y4.x1 = 1;
    restrict y1.x2 + y2.x2 + y3.x2 + y4.x2 = 1;
    restrict y1.x3 + y2.x3 + y 3.x3 + y4.x3 = 1;
    restrict y1.x4 + y2.x4 + y3.x4 + y4.x4 = 1;
run;
```

The transition matrix is given in Figure 12.18.

Figure 12.18 Estimate of P by Using One Transition

Note that P varies greatly from the true solution.
If two transitions are used instead ($\mathrm{OBS}=2$), the resulting transition matrix is shown in Figure 12.19.

```
proc entropy markov pure data=m(obs=2);
    model y1-y4 = x1-x4;
run;
```

Figure 12.19 Estimate of P by Using Two Transitions

This transition matrix is much closer to the actual transition matrix.
If, in addition to the transitions, you had other information about the transition matrix, such as your own company's transition values, that information can be added as restrictions to the parameter estimates. For noisy data, the PURE option should be dropped. Note that this example has six zero probabilities in the transition matrix; the accurate estimation of transition matrices with fewer zero probabilities generally requires more transition observations.

Analyzing Multinomial Response Data

Multinomial discrete choice models suffer the same problems with collinearity of the regressors and small sample sizes as linear models. Unordered multinomial discrete choice models can be estimated using a variant of GME for discrete models called GME-D.

Consider the model shown in Golan, Judge, and Perloff (1996). In this model, there are five occupational categories, and the categories are considered a function of four individual characteristics. The sample contains 337 individuals.

```
data kpdata;
    input job x1 x2 x3 x4;
datalines;
... more lines ...
```

The dependent variable in this data, job, takes on values 0 through 4 . Support points are used only for the error terms; so error supports are specified on the MODEL statement.

```
proc entropy data=kpdata gmed tech=nra;
    model job = x1 x2 x3 x4 / noint
        esupports=( -. 1 -0.0666 -0.0333 0 0.0333 0.0666 .1 );
run;
```

Figure 12.20 Estimate of Jobs Model by Using GME-D

Prior Distribution of Parameter T				
The ENTROPY Procedure				
GME-D Variable Estimates				
		Approx		Approx
Variable	Estimate	Std Err	t Value	Pr > $\|t\|$
x1_1	1.885831	1.3463	1.40	0.1622
x2_1	-0.00308	0.0152	-0.20	0.8400
x3_1	-0.17823	0.0872	-2.04	0.0418
x4_1	1.03477	0.6952	1.49	0.1376
x1_2	0.187073	1.2612	0.15	0.8822
x2_2	0.019307	0.0144	1.34	0.1804
x3_2	0.003994	0.0817	0.05	0.9611
x4_2	0.269913	0.5747	0.47	0.6389
x1_3	-4.47704	1.6245	-2.76	0.0062
x2_3	0.025457	0.0164	1.55	0.1214
x3_3	0.235925	0.0969	2.43	0.0155
x4_3	1.25614	0.8294	1.51	0.1308
x1_4	-9.56275	1.5573	-6.14	<. 0001
x2_4	0.026694	0.0154	1.73	0.0840
x3_4	0.650215	0.0930	6.99	<. 0001
x4_4	1.444471	0.6912	2.09	0.0374

Note there are five estimates of the parameters produced for each regressor, one for each choice. The first choice is restricted to zero for normalization purposes. PROC ENTROPY drops the zeroed regressors. PROC ENTROPY also generates tables of marginal effects for each regressor. The following statements generate the marginal effects table for the previous analysis at the means of the variables.

```
proc entropy data=kpdata gmed tech=nra;
    model job = x1 x2 x3 x4 / noint
        esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 )
        marginals;
run;
```

Figure 12.21 Estimate of Jobs Model by Using GME-D (Marginals)

The marginals are derivatives of the probabilities with respect to each variable and so summarize how a small change in each variable affects the overall probability.

PROC ENTROPY also enables the user to specify where the derivative is evaluated, as shown below:

```
proc entropy data=kpdata gmed tech=nra;
    model job = x1 x2 x3 x4 / noint
            esupports=( -. 1 -0.0666 -0.0333 0 0.0333 0.0666 .1 )
            marginals=( x2=.4 x3=10 x4=0);
run;
```

Figure 12.22 Estimate of Jobs Model by Using GME-D (Marginals)

In this example, you evaluate the derivative when $\mathrm{x} 1=1, \mathrm{x} 2=0.4, \mathrm{x} 3=10$, and $\mathrm{x} 4=0$. If the user neglects a variable, PROC ENTROPY uses its mean value.

Syntax: ENTROPY Procedure

The following statements can be used with the ENTROPY procedure:

```
PROC ENTROPY options;
BOUNDS bound1 < , bound2, ... > ;
BY variable < variable ...> ;
ID variable < variable ...> ;
MODEL variable = variable < variable> .. < / options > ;
PRIORS variable < support points > variable < value > ...;
RESTRICT restriction1 < , restriction2 ...> > ;
TEST < "name" > test1 < , test2 ... > < / options > ;
WEIGHT variable;
```


Functional Summary

The statements and options in the ENTROPY procedure are summarized in the following table.
Description

Statement
Option

Data Set Options

specify the input data set for the variables
specify the input data set for support points and priors
specify the output data set for residual, predicted, and actual values
specify the output data set for the support points and priors
write the covariance matrix of the estimates to OUTEST= data set write the parameter estimates to a data set ENTROPY write the Lagrange multiplier estimates to a ENTROPY data set
write the covariance matrix of the equation errors to a data set
write the \mathbf{S} matrix used in the objective func- ENTROPY tion definition to a data set read the covariance matrix of the equation er- ENTROPY rors

Printing Options

request that the procedure produce graphics via the Output Delivery System print collinearity diagnostics suppress the normal printed output

Options to Control Iteration Output

print a summary iteration listing

ENTROPY
ENTROPY
ENTROPY
ENTROPY

ENTROPY

ENTROPY
ENTROPY

ENTROPY

ENTROPY
ENTROPY
ENTROPY

ENTROPY

DATA=
PDATA=

OUT=

OUTP=

OUTCOV
OUTEST= OUTL=

OUTS=

OUTSUSED=
SDATA=

PLOTS=

COLLIN
NOPRINT

ITPRINT
Description Statement Option

Options to Control the Minimization Pro-
 cess

specify the convergence criteria
ENTROPY
ENTROPY

ENTROPY

ENTROPY
CONVERGE= MAXITER= lowed
specify the maximum number of subiterations allowed
select the iterative minimization method to use

Statements That Declare Variables
specify BY-group processing
BY
specify a weight variable
specify identifying variables

General PROC ENTROPY Statement Op-

 tionsspecify seemingly unrelated regression
ENTROPY
specify iterated seemingly unrelated regres-
sion
specify data-constrained generalized maximum entropy
specify normed moment generalized maximum entropy
specify the denominator for computing vari-
ENTROPY
SUR
WEIGHT
ID ances and covariances

General TEST Statement Options

specify that a Wald test be computed
specify that a Lagrange multiplier test be com- TEST
puted
specify that a likelihood ratio test be computed
request all three types of tests

TEST

TEST
TEST
ENTROPY

ENTROPY

ENTROPY

WALD
LM
ITSUR

GME

GMENM

VARDEF=

LR
ALL

PROC ENTROPY Statement

PROC ENTROPY options;
The following options can be specified in the PROC ENTROPY statement.

General Options

COLLIN

requests that the collinearity diagnostics of the $X^{\prime} X$ matrix be printed.

COVBEST=CROSS | GME | GMENM

specifies the method for producing the covariance matrix of parameters for output and for standard error calculations. GMENM and GME are aliases and are the default.

GME | GCE

requests generalized maximum entropy or generalized cross entropy. This is the default estimation method.

GMENM | GCENM

requests normed moment maximum entropy or the normed moment cross entropy.

GMED

requests a variant of GME suitable for multinomial discrete choice models.

MARKOV

specifies that the model is a first-order Markov model.

PURE

specifies a regression without an error term.

SUR | ITSUR

specifies seemingly unrelated regression or iterated seemingly unrelated regression.

VARDEF=N | WGT | DF | WDF

specifies the denominator to be used in computing variances and covariances. VARDEF $=\mathrm{N}$ specifies that the number of nonmissing observations be used. VARDEF=WGT specifies that the sum of the weights be used. VARDEF=DF specifies that the number of nonmissing observations minus the model degrees of freedom (number of parameters) be used. VARDEF=WDF specifies that the sum of the weights minus the model degrees of freedom be used. The default is VARDEF=DF.

Data Set Options

DATA=SAS-data-set

specifies the input data set. Values for the variables in the model are read from this data set.

PDATA=SAS-data-set

names the SAS data set that contains the data about priors and supports.
OUT=SAS-data-set
names the SAS data set to contain the residuals from each estimation.

OUTCOV

COVOUT

writes the covariance matrix of the estimates to the OUTEST= data set in addition to the parameter estimates. The OUTCOV option is applicable only if the OUTEST= option is also specified.

OUTEST=SAS-data-set

names the SAS data set to contain the parameter estimates and optionally the covariance of the estimates.

OUTL=SAS-data-set
names the SAS data set to contain the estimated Lagrange multipliers for the models.

OUTP=SAS-data-set

names the SAS data set to contain the support points and estimated probabilities.

OUTS=SAS-data-set

names the SAS data set to contain the estimated covariance matrix of the equation errors. This is the covariance of the residuals computed from the parameter estimates.

OUTSUSED=SAS-data-set
names the SAS data set to contain the \mathbf{S} matrix used in the objective function definition. The OUTSUSED= data set is the same as the OUTS= data set for the methods that iterate the \mathbf{S} matrix.

SDATA=SAS-data-set

specifies a data set that provides the covariance matrix of the equation errors. The matrix read from the SDATA= data set is used for the equation error covariance matrix (\mathbf{S} matrix) in the estimation. The SDATA= matrix is used to provide only the initial estimate of \mathbf{S} for the methods that iterate the S matrix.

Printing Options

ITPRINT

prints the parameter estimates, objective function value, and convergence criteria at each iteration.

NOPRINT

suppresses the normal printed output but does not suppress error listings. Using any other print option turns the NOPRINT option off.

PLOTS=global-plot-options | plot-request requests that the ENTROPY procedure produce statistical graphics via the Output Delivery System, provided that the ODS GRAPHICS statement has been specified. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide). The global-plot-options apply to all relevant plots generated by the ENTROPY procedure.

The global-plot-options supported by the ENTROPY procedure are as follows:

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL breaks a graphic that is otherwise paneled into individual component plots.

The specific plot-request values supported by the ENTROPY procedure are as follows:

ALL	requests that all plots appropriate for the particular analysis be produced. ALL is equivalent to specifying FITPLOT, COOKSD, QQ, RESIDUAL- HISTOGRAM, and STUDENTRESIDUAL.
FITPLOT	plots the predicted and actual values.
COOKSD	produces the Cook's D plot.
QQ	produces a Q-Q plot of residuals.
RESIDUALHISTOGRAM plots the histogram of residuals.	
STUDENTRESIDUAL plots the studentized residuals.	
NONE	suppresses all plots.

When ODS graphics are enabled, the default behavior is to plot all plots appropriate for the particular analysis (ALL) in a panel.

Options to Control the Minimization Process

The following options can be helpful if a convergence problem occurs for a given model and set of data. The ENTROPY procedure uses the nonlinear optimization subsystem (NLO) to perform the model optimizations. In addition to the options listed below, all options supported in the NLO subsystem can be specified on the ENTROPY procedure statement. See Chapter 6, "Nonlinear Optimization Methods," for more details.

CONVERGE=value

GCONV=value
specifies the convergence criteria for S-iterated methods. The convergence measure computed during model estimation must be less than value before convergence is assumed. The default value is CONVERGE $=0.001$.

DUAL | PRIMAL

specifies whether the optimization problem is solved using the dual or primal form. The dual form is the default.

MAXITER=n

specifies the maximum number of iterations allowed. The default is MAXITER=100.

MAXSUBITER=n

specifies the maximum number of subiterations allowed for an iteration. The MAXSUBITER= option limits the number of step halvings. The default is MAXSUBITER=30.

METHOD=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR

TECHNIQUE=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR

TECH=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR

specifies the iterative minimization method to use. METHOD=TR specifies the trust region method, METHOD=NEWRAP specifies the Newton-Raphson method, METHOD=NRR specifies the Newton-Raphson ridge method, and METHOD=QN specifies the quasi-Newton method. See Chapter 6, "Nonlinear Optimization Methods," for more details about optimization methods. The default is METHOD=QN for the dual form and METHOD=NEWRAP for the primal form.

BOUNDS Statement

BOUNDS bound1 <, bound2 ... > ;
The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS statement constraints refer to the parameters estimated by the ENTROPY procedure. You can specify any number of BOUNDS statements.

Each boundary constraint is composed of variables, constants, and inequality operators in the following form:
item operator item <,operator item <,operator item ...\gg
Each item is a constant, the name of a regressor variable, or a list of regressor names. Each operator is $<,>,<=$, or $>=$.

You can use either the BOUNDS statement or the RESTRICT statement to impose boundary constraints; the BOUNDS statement provides a simpler syntax for specifying inequality constraints. See section "RESTRICT Statement" on page 648 for more information about the computational details of estimation with inequality restrictions.

Lagrange multipliers are reported for all the active boundary constraints. In the printed output and in the OUTEST= data set, the Lagrange multiplier estimates are identified with the names BOUND1, BOUND2, and so forth. The probability of the Lagrange multipliers are computed using a beta distribution (LaMotte 1994). Nonactive or nonbinding bounds have no effect on the estimation results and are not noted in the output. To give the constraints more descriptive names, use the RESTRICT statement instead of the BOUNDS statement.

The following BOUNDS statement constrains the estimates of the coefficients of WAGE and TARGET and the 10 coefficients of $x 1$ through $x 10$ to be between zero and one. This example illustrates the use of parameter lists to specify boundary constraints.

```
bounds 0 < wage target x1-x10 < 1;
```

The following is an example of the use of the BOUNDS statement to impose boundary constraints on the variables $\mathrm{X} 1, \mathrm{X} 2$, and X 3 :

```
proc entropy data=zero;
        bounds . 1 <= x1 <= 100,
            0 <= x2 <= 25.6,
            0<= x3 <= 5;
    model y = x1 x2 x3;
run;
```

The parameter estimates from this run are shown in Figure 12.23.
Figure 12.23 Output from Bounded Estimation

Figure 12.23 continued

BY Statement

BY variables ;

A BY statement is used to obtain separate estimates for observations in groups defined by the BY variables. To save parameter estimates for each BY group, use the OUTEST= option.

ID Statement

ID variables ;
The ID statement specifies variables to identify observations in error messages or other listings and in the OUT= data set. The ID variables are normally SAS date or datetime variables. If more than one ID variable is used, the first variable is used to identify the observations and the remaining variables are added to the OUT= data set.

MODEL Statement

MODEL dependent $=$ regressors < / options > ;
The MODEL statement specifies the dependent variable and independent regressor variables for the regression model. If no independent variables are specified in the MODEL statement, only the mean
(intercept) is estimated. To model a system of equations, specify more than one MODEL statement.
The following options can be used in the MODEL statement after a slash (/).

ESUPPORTS=(support (prior) ...)

specifies the support points and prior weights on the residuals for the specified equation. The default is the following five support values:

$$
-10 * \text { value, -value, } 0 \text {, value, } 10 * \text { value }
$$

where value is computed as

$$
\text { value }=(\max (y)-\bar{y}) * \text { multiplier }
$$

for GME, where y is the dependent variable, and

$$
\text { value }=(\max (y)-\bar{y}) * \text { multiplier } * \text { nobs } * \max (X) * 0.1
$$

for generalized maximum entropy-normed moments (GME-NM), where \mathbf{X} is the information matrix, and nobs is the number of observations. The multiplier depends on the MULTIPLIER= option. The MULTIPLIER= option defaults to 2 for unrestricted models and to 4 for restricted models. The prior probabilities default to the following:

$$
0.0005,0.333,0.333,0.333,0.0005
$$

The support points and prior weights are selected so that hypothesis tests can be performed without adding significant bias to the estimation. These prior probability values are ad hoc.

NOINT

suppresses the intercept parameter.

MARGINALS $=($ variable $=$ value, \ldots, variable $=$ value $)$

requests that the marginal effects of each variable be calculated for GME-D. Specifying the MARGINALS option with an optional list of values calculates the marginals at that vector of values. For example, if $\times 1-\mathrm{x} 4$ are explanatory variables, then including

MARGINALS $=(x 1=2, x 2=4, x 3=-1, x 4=5)$
calculates the marginal effects at that vector. A skipped variable implies that its mean value is to be used.

CENSORED ((UB | LB) = (variable | value), ESUPPORTS =(support (prior) ...))
specifies that the dependent variable be observed with censoring and specifies the censoring thresholds and the supports of the censored observations.

CATEGORY= variable

specifies the variable that keeps track of the categories the dependent variable is in when there is range censoring. When the actual value is observed, this variable should be set to MISSING.

RANGE (ID = (QS | INT) L = (NUMBER) R = (NUMBER) , ESUPPORTS=(support < (prior) > . . .))
specifies that the dependent variable be range bound. The RANGE option defines the range and the key (RANGE) that is used to identify the observation as being range bound. The RANGE $=$ value should be some value in the CATEGORY $=$ variable. The L and R define, respectively, the left endpoint of the range and the right endpoint of the range. ESUPPORTS sets the error supports on the variable.

PRIORS Statement

```
PRIORS variable < support points < (priors) >> variable < support points < (priors) >> ... ;
```

The PRIORS statement specifies the support points and prior weights for the coefficients on the variables.

Support points for coefficients default to five points, determined as follows:

$$
-2 * \text { value },- \text { value }, 0, \text { value }, 2 * \text { value }
$$

where value is computed as

$$
\text { value }=(\| \text { mean } \|+3 * \text { stderr }) * \text { multiplier }
$$

where the mean and the stderr are obtained from OLS and the multiplier depends on the MULTIPLIER= option. The MULTIPLIER= option defaults to 2 for unrestricted models and to 4 for restricted models. The prior probabilities for each support point default to the uniform distribution.

The number of support points must be at least two. If priors are specified, they must be positive and there must be the same number of priors as there are support points. Priors and support points can also be specified through the PDATA= data set.

RESTRICT Statement

```
RESTRICT restriction1 < , restriction2 ... > ;
```

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. You can specify any number of RESTRICT statements.

Each restriction is written as an optional name, followed by an expression, followed by an equality operator (=) or an inequality operator ($\langle\rangle,,<=,>=$), followed by a second expression:
<"name" > expression operator expression
The optional "name" is a string used to identify the restriction in the printed output and in the OUTEST= data set. The operator can be $=,<,>,<=$, or $>=$. The operator and second expression are optional, as in the TEST statement, where they default to $=0$.

Restriction expressions can be composed of variable names, multiplication (*), and addition (+) operators, and constants. Variable names in restriction expressions must be among the variables whose coefficients are estimated by the model. The restriction expressions must be a linear function of the variables.

The following is an example of the use of the RESTRICT statement:

```
proc entropy data=one;
    restrict y1.x1*2 <= x2 + y2.x1;
    model y1 = x1 x2;
    model y2 = x1 x3;
run;
```

This example illustrates the use of compound names, $\mathrm{y} 1 . \mathrm{x} 1$, to specify coefficients of specific equations.

TEST Statement

TEST < "name"> test1 < , test2 ... > < ,/ options > ;
The TEST statement performs tests of linear hypotheses on the model parameters.
The TEST statement applies only to parameters estimated in the model. You can specify any number of TEST statements.

Each test is written as an expression optionally followed by an equal sign (=) and a second expression:

```
expression <= expression>
```

Test expressions can be composed of variable names, multiplication $(*)$, addition (+), and subtraction (-) operators, and constants. Variables named in test expressions must be among the variables estimated by the model.

If you specify only one expression in a TEST statement, that expression is tested against zero. For example, the following two TEST statements are equivalent:

```
test a + b;
test a + b = 0;
```

When you specify multiple tests on the same TEST statement, a joint test is performed. For example, the following TEST statement tests the joint hypothesis that both of the coefficients on a and b are equal to zero:

```
test a, b;
```

To perform separate tests rather than a joint test, use separate TEST statements. For example, the following TEST statements test the two separate hypotheses that a is equal to zero and that b is equal to zero:

```
test a;
test b;
```

You can use the following options in the TEST statement:

WALD

specifies that a Wald test be computed. WALD is the default.

LM

RAO

LAGRANGE

specifies that a Lagrange multiplier test be computed.

LR

LIKE

specifies that a pseudo-likelihood ratio test be computed.

ALL

requests all three types of tests.

OUT=

specifies the name of an output SAS data set that contains the test results. The format of the OUT= data set produced by the TEST statement is similar to that of the OUTEST= data set.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in estimating parameters.

If the weight of an observation is nonpositive, that observation is not used for the estimation. Variable must be a numeric variable in the input data set. The regressors and the dependent variables are multiplied by the square root of the weight variable to form the weighted \mathbf{X} matrix and the weighted dependent variable. The same weight is used for all MODEL statements.

Details: ENTROPY Procedure

Shannon's measure of entropy for a distribution is given by

$$
\begin{array}{ll}
\text { maximize } & -\sum_{i=1}^{n} p_{i} \ln \left(p_{i}\right) \\
\text { subject to } & \sum_{i=1}^{n} p_{i}=1
\end{array}
$$

where p_{i} is the probability associated with the i th support point. Properties that characterize the entropy measure are set forth by Kapur and Kesavan (1992).

The objective is to maximize the entropy of the distribution with respect to the probabilities p_{i} and subject to constraints that reflect any other known information about the distribution (Jaynes 1957). This measure, in the absence of additional information, reaches a maximum when the probabilities are uniform. A distribution other than the uniform distribution arises from information already known.

Generalized Maximum Entropy

Reparameterization of the errors in a regression equation is the process of specifying a support for the errors, observation by observation. If a two-point support is used, the error for the t th observation is reparameterized by setting $e_{t}=w_{t 1} v_{t 1}+w_{t 2} v_{t 2}$, where $v_{t 1}$ and $v_{t 2}$ are the upper and lower bounds for the t th error e_{t}, and $w_{t 1}$ and $w_{t 2}$ represent the weight associated with the point $v_{t 1}$ and $v_{t 2}$. The error distribution is usually chosen to be symmetric, centered around zero, and the same across observations so that $v_{t 1}=-v_{t 2}=R$, where R is the support value chosen for the problem (Golan, Judge, and Miller 1996).

The generalized maximum entropy (GME) formulation was proposed for the ill-posed or underdetermined case where there is insufficient data to estimate the model with traditional methods. β is reparameterized by defining a support for β (and a set of weights in the cross entropy case), which defines a prior distribution for β.

In the simplest case, each β_{k} is reparameterized as $\beta_{k}=p_{k 1} z_{k 1}+p_{k 2} z_{k 2}$, where $p_{k 1}$ and $p_{k 2}$ represent the probabilities ranging from $[0,1]$ for each β, and $z_{k 1}$ and $z_{k 2}$ represent the lower and upper bounds placed on β_{k}. The support points, $z_{k 1}$ and $z_{k 2}$, are usually distributed symmetrically around the most likely value for β_{k} based on some prior knowledge.

With these reparameterizations, the GME estimation problem is

$$
\begin{array}{cc}
\operatorname{maximize} & H(p, w)=-p^{\prime} \ln (p)-w^{\prime} \ln (w) \\
\text { subject to } & y=X Z p+V w \\
& 1_{K}=\left(I_{K} \otimes 1_{L}^{\prime}\right) p \\
& 1_{T}=\left(I_{T} \otimes 1_{L}^{\prime}\right) w
\end{array}
$$

where y denotes the column vector of length T of the dependent variable; \mathbf{X} denotes the ($T \times K$) matrix of observations of the independent variables; p denotes the $L K$ column vector of weights associated with the points in $Z ; w$ denotes the $L T$ column vector of weights associated with the points in $V ; 1_{K}, 1_{L}$, and 1_{T} are $K-, L$-, and T-dimensional column vectors, respectively, of ones; and I_{K} and I_{T} are $(K \times K)$ and $(T \times T)$ dimensional identity matrices.

These equations can be rewritten using set notation as follows:

$$
\begin{array}{cl}
\operatorname{maximize} & H(p, w)=-\sum_{l=1}^{L} \sum_{k=1}^{K} p_{k l} \ln \left(p_{k l}\right)-\sum_{l=1}^{L} \sum_{t=1}^{T} w_{t l} \ln \left(w_{t l}\right) \\
\text { subject to } & y_{t}=\sum_{l=1}^{L}\left[\sum_{k=1}^{K}\left(X_{k t} Z_{k l} p_{k l}\right)+V_{t l} w_{t l}\right] \\
& \sum_{l=1}^{L} p_{k l}=1 \text { and } \sum_{l=1}^{L} w_{t l}=1
\end{array}
$$

The subscript l denotes the support point $(\mathrm{l}=1,2, \ldots, \mathrm{~L}), k$ denotes the parameter $(\mathrm{k}=1,2, \ldots, \mathrm{~K})$, and t denotes the observation $(\mathrm{t}=1,2, \ldots, \mathrm{~T})$.

The GME objective is strictly concave; therefore, a unique solution exists. The optimal estimated probabilities, p and w, and the prior supports, Z and V, can be used to form the point estimates of the unknown parameters, β, and the unknown errors, e.

Generalized Cross Entropy

Kullback and Leibler (1951) cross entropy measures the "discrepancy" between one distribution and another. Cross entropy is called a measure of discrepancy rather than distance because it does not satisfy some of the properties one would expect of a distance measure. (See Kapur and Kesavan (1992) for a discussion of cross entropy as a measure of discrepancy.) Mathematically, cross entropy is written as

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} p_{i} \ln \left(p_{i} / q_{i}\right) \\
\text { subject to } & \sum_{i=1}^{n} p_{i}=1,
\end{array}
$$

where q_{i} is the probability associated with the i th point in the distribution from which the discrepancy is measured. The q_{i} (in conjunction with the support) are often referred to as the prior distribution. The measure is nonnegative and is equal to zero when p_{i} equals q_{i}. The properties of the cross entropy measure are examined by Kapur and Kesavan (1992).

The principle of minimum cross entropy (Kullback 1959; Good 1963) states that one should choose probabilities that are as close as possible to the prior probabilities. That is, out of all probability distributions that satisfy a given set of constraints which reflect known information about the distribution, choose the distribution that is closest (as measured by $p(\ln (p)-\ln (q))$) to the prior distribution. When the prior distribution is uniform, maximum entropy and minimum cross entropy produce the same results (Kapur and Kesavan 1992), where the higher values for entropy correspond exactly with the lower values for cross entropy.

If the prior distributions are nonuniform, the problem can be stated as a generalized cross entropy (GCE) formulation. The cross entropy terminology specifies weights, q_{i} and u_{i}, for the points Z and V , respectively. Given informative prior distributions on Z and V , the GCE problem is

$$
\begin{array}{cc}
\operatorname{minimize} & I(p, q, w, u)=p^{\prime} \ln (p / q)+w^{\prime} \ln (w / u) \\
\text { subject to } & y=X Z p+V w \\
& 1_{K}=\left(I_{K} \otimes 1_{L}^{\prime}\right) p \\
& 1_{T}=\left(I_{T} \otimes 1_{L}^{\prime}\right) w
\end{array}
$$

where y denotes the T column vector of observations of the dependent variables; \mathbf{X} denotes the ($T \times K$) matrix of observations of the independent variables; q and p denote $L K$ column vectors of prior and posterior weights, respectively, associated with the points in $Z ; u$ and w denote the $L T$ column vectors of prior and posterior weights, respectively, associated with the points in $V ; 1_{K}, 1_{L}$, and 1_{T} are $K-, L$-, and T-dimensional column vectors, respectively, of ones; and $\mathbf{I}_{\mathbf{K}}$ and $\mathbf{I}_{\mathbf{T}}$ are (K $\times K)$ and $(T \times T)$ dimensional identity matrices.

The optimization problem can be rewritten using set notation as follows

$$
\begin{array}{ll}
\text { minimize } & I(p, q, w, u)=\sum_{l=1}^{L} \sum_{k=1}^{K} p_{k l} \ln \left(p_{k l} / q_{k l}\right)+\sum_{l=1}^{L} \sum_{t=1}^{T} w_{t l} \ln \left(w_{t l} / u_{t l}\right) \\
\text { subject to } & y_{t}=\sum_{l=1}^{L}\left[\sum_{k=1}^{K}\left(X_{k t} Z_{k l} p_{k l}\right)+V_{t l} w_{t l}\right] \\
\sum_{l=1}^{L} p_{k l}=1 \text { and } \sum_{l=1}^{L} w_{t l}=1
\end{array}
$$

The subscript l denotes the support point $(\mathrm{l}=1,2, \ldots, \mathrm{~L}), k$ denotes the parameter $(\mathrm{k}=1,2, \ldots, \mathrm{~K})$, and t denotes the observation $(\mathrm{t}=1,2, \ldots, \mathrm{~T})$.

The objective function is strictly convex; therefore, there is a unique global minimum for the problem (Golan, Judge, and Miller 1996). The optimal estimated weights, p and w, and the prior supports, Z and V, can be used to form the point estimates of the unknown parameters, β, and the unknown errors, e, by using

$$
\begin{aligned}
& \beta=Z p=\left[\begin{array}{cccccccccc}
z_{11} & \cdots & z_{L 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & z_{12} & \cdots & z_{L 2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & z_{1 K} & \cdots & z_{L K}
\end{array}\right]\left[\begin{array}{c}
p_{11} \\
\vdots \\
p_{L 1} \\
p_{12} \\
\vdots \\
p_{L 2} \\
\vdots \\
p_{1 K} \\
\vdots \\
p_{L K}
\end{array}\right] \\
& e=V w=\left[\begin{array}{cccccccccc}
v_{11} & \cdots & v_{L 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & v_{12} & \cdots & v_{L 2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & v_{1 T} & \cdots & v_{L T}
\end{array}\right]\left[\begin{array}{c}
w_{11} \\
\vdots \\
w_{L 1} \\
w_{12} \\
\vdots \\
w_{L 2} \\
\vdots \\
w_{1 T} \\
\vdots \\
w_{L T}
\end{array}\right]
\end{aligned}
$$

Computational Details

This constrained estimation problem can be solved either directly (primal) or by using the dual form. Either way, it is prudent to factor out one probability for each parameter and each observation as the sum of the other probabilities. This factoring reduces the computational complexity significantly. If the primal formalization is used and two support points are used for the parameters and the errors, the resulting GME problem is $\mathrm{O}\left((\text { nparms }+ \text { nobs })^{3}\right)$. For the dual form, the problem is $\mathrm{O}\left((n o b s)^{3}\right)$. Therefore for large data sets, GME-NM should be used instead of GME.

Normed Moment Generalized Maximum Entropy

The default estimation technique is normed moment generalized maximum entropy (GME-NM). This is simply GME with the data constraints modified by multiplying both sides by X^{\prime}. GME-NM then becomes

```
maximize \(H(p, w)=-p^{\prime} \ln (p)-w^{\prime} \ln (w)\)
subject to \(\quad X^{\prime} y=X^{\prime} X Z p+X^{\prime} V w\)
    \(1_{K}=\left(I_{K} \otimes 1_{L}^{\prime}\right) p\)
    \(1_{T}=\left(I_{T} \otimes 1_{L}^{\prime}\right) w\)
```

There is also the cross entropy version of GME-NM, which has the same form as GCE but with the normed constraints.

GME versus GME-NM

GME-NM is more computationally attractive than GME for large data sets because the computational complexity of the estimation problem depends primarily on the number of parameters and not on the number of observations. GME-NM is based on the first moment of the data, whereas GME is based on the data itself. If the distribution of the residuals is well defined by its first moment, then GME-NM is a good choice. So if the residuals are normally distributed or exponentially distributed, then GME-NM should be used. On the other hand if the distribution is Cauchy, lognormal, or some other distribution where the first moment does not describe the distribution, then use GME. See Example 12.1 for an illustration of this point.

Maximum Entropy-Based Seemingly Unrelated Regression

In a multivariate regression model, the errors in different equations might be correlated. In this case, the efficiency of the estimation can be improved by taking these cross-equation correlations into account. Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation, is a generalization of OLS for multi-equation systems.

Like SUR in the least squares setting, the generalized maximum entropy SUR (GME-SUR) method assumes that all the regressors are independent variables and uses the correlations among the errors in different equations to improve the regression estimates. The GME-SUR method requires an initial entropy regression to compute residuals. The entropy residuals are used to estimate the cross-equation covariance matrix.

In the iterative GME-SUR (ITGME-SUR) case, the preceding process is repeated by using the residuals from the GME-SUR estimation to estimate a new cross-equation covariance matrix. ITGME-SUR method alternates between estimating the system coefficients and estimating the cross-equation covariance matrix until the estimated coefficients and covariance matrix converge.

The estimation problem becomes the generalized maximum entropy system adapted for multiequations as follows:

$$
\begin{array}{cc}
\operatorname{maximize} & H(p, w)=-p^{\prime} \ln (p)-w^{\prime} \ln (w) \\
\text { subject to } & y=X Z p+V w \\
& 1_{K M}=\left(I_{K M} \otimes 1_{L}^{\prime}\right) p \\
1_{M T}=\left(I_{M T} \otimes 1_{L}^{\prime}\right) w
\end{array}
$$

where

$$
\begin{gathered}
\beta=Z p \\
Z=\left[\begin{array}{ccccccccccccccc}
z_{11}^{1} & \cdots & z_{L 1}^{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & z_{11}^{K} & \cdots & z_{L 1}^{K} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & z_{1 M}^{1} & \cdots & z_{L M}^{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & z_{1 M}^{K} & \cdots & z_{L M}^{K}
\end{array}\right] \\
\\
\\
\\
\\
\hline
\end{gathered}
$$

y denotes the $M T$ column vector of observations of the dependent variables; \mathbf{X} denotes the $(M T \mathrm{x}$ $K M$) matrix of observations for the independent variables; p denotes the $L K M$ column vector of weights associated with the points in $Z ; w$ denotes the $L M T$ column vector of weights associated with the points in $V ; 1_{L}, 1_{K M}$, and $1_{M T}$ are $L-, K M-$, and $M T$-dimensional column vectors, respectively, of ones; and $\mathbf{I}_{\mathbf{K M}}$ and $\mathbf{I}_{\mathbf{M T}}$ are $(K M \times K M)$ and $(M T \times M T)$ dimensional identity matrices. The subscript l denotes the support point $(l=1,2, \ldots, L), k$ denotes the parameter $(k=1,2, \ldots, K)$, m denotes the equation $(m=1,2, \ldots, M)$, and t denotes the observation $(t=1,2, \ldots, T)$.

Using this notation, the maximum entropy problem that is analogous to the OLS problem used as the initial step of the traditional SUR approach is

$$
\begin{array}{rc}
\operatorname{maximize} & H(p, w)=-p^{\prime} \ln (p)-w^{\prime} \ln (w) \\
\text { subject to } & (y-X Z p)=\sqrt{\Sigma} V w \\
& 1_{K M}=\left(I_{K M} \otimes 1_{L}^{\prime}\right) p \\
& 1_{M T}=\left(I_{M T} \otimes 1_{L}^{\prime}\right) w
\end{array}
$$

The results are GME-SUR estimates with independent errors, the analog of OLS. The covariance matrix $\hat{\Sigma}$ is computed based on the residual of the equations, $V w=e$. An $L^{\prime} L$ factorization of the $\hat{\Sigma}$ is used to compute the square root of the matrix.

After solving this problem, these entropy-based estimates are analogous to the Aitken two-step estimator. For iterative GME-SUR, the covariance matrix of the errors is recomputed, and a new $\hat{\Sigma}$ is computed and factored. As in traditional ITSUR, this process repeats until the covariance matrix and the parameter estimates converge.

The estimation of the parameters for the normed-moment version of SUR (GME-SUR-NM) uses an identical process. The constraints for GME-SUR-NM is defined as:

$$
X^{\prime} y=X^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{I}\right) X Z p+X^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{I}\right) V w
$$

The estimation of the parameters for GME-SUR-NM uses an identical process as outlined previously for GME-SUR.

Generalized Maximum Entropy for Multinomial Discrete Choice Models

Multinomial discrete choice models take the form of an experiment that consists of n trials. On each trial, one of k alternatives is observed. If $y_{i j}$ is the random variable that takes on the value 1 when alternative j is selected for the i th trial and 0 otherwise, then the probability that $y_{i j}$ is 1 , conditional on a vector of regressors X_{i} and unknown parameter vector β_{j}, is

$$
\operatorname{Pr}\left(y_{i j}=1 \mid X_{i}, \beta_{j}\right)=G\left(X_{i}^{\prime} \beta_{j}\right)
$$

where $G()$ is a link function. For noisy data the model becomes:

$$
y_{i j}=G\left(X_{i}^{\prime} \beta_{j}\right)+\epsilon_{i j}=p_{i j}+\epsilon_{i j}
$$

The standard maximum likelihood approach for multinomial logit is equivalent to the maximum entropy solution for discrete choice models. The generalized maximum entropy approach avoids an assumption of the form of the link function $G()$.

The generalized maximum entropy for discrete choice models (GME-D) is written in primal form as

$$
\begin{array}{ccl}
\operatorname{maximize} & H(p, w) & =-p^{\prime} \ln (p)-w^{\prime} \ln (w) \\
\text { subject to } \quad\left(I_{j} \otimes X^{\prime} y\right) & =\left(I_{j} \otimes X^{\prime}\right) p+\left(I_{j} \otimes X^{\prime}\right) V w \\
& \sum_{j}^{k} p_{i j} & =1 \text { for } i=1 \text { to } N \\
& \sum_{m}^{L} w_{i j m} & =1 \text { for } i=1 \text { to } N \text { and } j=1 \text { to } k
\end{array}
$$

Golan, Judge, and Miller (1996) have shown that the dual unconstrained formulation of the GMED can be viewed as a general class of logit models. Additionally, as the sample size increases, the solution of the dual problem approaches the maximum likelihood solution. Because of these characteristics, only the dual approach is available for the GME-D estimation method.

The parameters β_{j} are the Lagrange multipliers of the constraints. The covariance matrix of the parameter estimates is computed as the inverse of the Hessian of the dual form of the objective function.

Censored or Truncated Dependent Variables

In practice, you might find that variables are not always measured throughout their natural ranges. A given variable might be recorded continuously in a range, but, outside of that range, only the endpoint is denoted. In other words, say that the data generating process is:

$$
y_{i}=\mathbf{x}_{i \iota}+\epsilon
$$

However, you observe the following:

$$
y_{i}^{\star}=\left\{\begin{array}{rll}
u b & : & y_{i} \geq u b \\
\mathbf{x}_{i_{\iota}}+\epsilon \quad: & l b<y_{i}<u b \\
l b & : & y_{i} \leq l b
\end{array}\right.
$$

The primal problem is simply a slight modification of the primal formulation for GME-GCE. You specify different supports for the errors in the truncated or censored region, perhaps reflecting some nonsample information. Then the data constraints are modified. The constraints that arise in the censored areas are changed to inequality constraints (Golan, Judge, and Perloff 1997). Let the variable \mathbf{X}^{u} denote the observations of the explanatory variable where censoring occurs from the top, \mathbf{X}^{l} from the bottom, and \mathbf{X}^{a} in the middle region (no censoring). Let, \mathbf{V}^{u} be the supports for the observations at the upper bound, \mathbf{V}^{l} lower bound, and \mathbf{V}^{a} in the middle.

You have:

$$
\left[\begin{array}{c}
\mathbf{y}^{u} \geq u b \\
\mathbf{y}^{a} \\
\mathbf{y}^{l} \leq l b
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{u} \\
\mathbf{X}^{a} \\
\mathbf{X}^{l}
\end{array}\right] \mathbf{Z p}+\left[\begin{array}{c}
\mathbf{V}^{u} \mathbf{w}^{u} \\
\mathbf{V}^{a} \mathbf{w}^{a} \\
\mathbf{V}^{l} \mathbf{w}^{l}
\end{array}\right]
$$

The primal problem then becomes

$$
\begin{array}{cc}
\operatorname{maximize} & H(p, w) \\
\text { subject to } & =-p^{\prime} \ln (p)-w^{\prime} \ln (w) \\
\mathbf{y}^{a} & =\mathbf{X}^{a} \mathbf{V}^{a} p+\mathbf{V}^{a} \mathbf{w}^{a} \\
\mathbf{y}^{u} & \geq \mathbf{X}^{u} \mathbf{V}^{u} p+\mathbf{V}^{u} \mathbf{w}^{u} \\
\mathbf{y}^{l} & \leq \mathbf{X}^{l} \mathbf{V}^{l} p+\mathbf{V}^{l} \mathbf{w}^{l} \\
1_{K} & =\left(I_{K} \otimes 1_{L}^{\prime}\right) p \\
1_{T} & =\left(I_{T} \otimes 1_{L}^{\prime}\right) w
\end{array}
$$

PROC ENTROPY requires that the number of supports be identical for all three regions.
Alternatively, you can think of cases where the dependent variable is observed continuously for most of its range. However, the variable's range is reported for some observations. Such data is often found in highly disaggregated state level employment measures.

$$
y_{i}^{\star}=\left\{\begin{array}{rll}
\text { missing } & : & l_{1} \leq y \leq r_{1} \\
\vdots & : & \vdots \\
\text { missing } & : & l_{k} \leq y \leq r_{k} \\
\mathbf{x}_{i_{\iota}}+\epsilon & : & \text { otherwise }
\end{array}\right.
$$

Just as in the censored case, each range yields two inequality constraints for each observation in that range.

Information Measures

PROC ENTROPY returns several measures of fit. First, the value of the objective function is returned. Next, the signal entropy is provided followed by the noise entropy. The sum of the noise and signal entropies should equal the value of the objective function. The next two metrics that follow are the normed entropies of both the signal and the noise.

Normalized entropy (NE) measures the relative informational content of both the signal and noise components through p and w, respectively (Golan, Judge, and Miller 1996). Let S denote the normalized entropy of the signal, $X \beta$, defined as:

$$
S(\tilde{p})=\frac{-\tilde{p}^{\prime} \ln (\tilde{p})}{-q^{\prime} \ln (q)}
$$

where $S(\tilde{p}) \in[0,1]$. In the case of GME, where uniform priors are assumed, S can be written as:

$$
S(\tilde{p})=\frac{-\tilde{p}^{\prime} \ln (\tilde{p})}{\sum_{i} \ln \left(M_{i}\right)}
$$

where M_{i} is the number of support points for parameter i. A value of 0 for S implies that there is no uncertainty regarding the parameters; hence, it is a degenerate situation. However, a value of 1 implies that the posterior distributions equal the priors, which indicates total uncertainty if the priors are uniform.

Because NE is relative, it can be used for comparing various situations. Consider adding a data point to the model. If $S_{T+1}=S_{T}$, then there is no additional information contained within that data constraint. However, if $S_{T+1}<S_{T}$, then the data point gives a more informed set of parameter estimates.

NE can be used for determining the importance of particular variables with regard to the reduction of the uncertainty they bring to the model. Each of the k parameters that is estimated has an associated NE defined as

$$
S\left(\tilde{p}_{k}\right)=\frac{-\tilde{p}_{k}^{\prime} \ln \left(\tilde{p}_{k}\right)}{-\ln \left(q_{k}\right)}
$$

or, in the GME case,

$$
S\left(\tilde{p}_{k}\right)=\frac{-\tilde{p}_{k}^{\prime} \ln \left(\tilde{p}_{k}\right)}{\ln (M)}
$$

where $\tilde{p_{k}}$ is the vector of supports for parameter β_{k} and M is the corresponding number of support points. Since a value of 1 implies no relative information for that particular sample, Golan, Judge, and Miller (1996) suggest an exclusion criteria of $S\left(\tilde{p_{k}}\right)>0.99$ as an acceptable means of selecting noninformative variables. See Golan, Judge, and Miller (1996) for some simulation results.

The final set of measures of fit are the parameter information index and error information index. These measures can be best summarized as 1 - the appropriate normed entropy.

Parameter Covariance For GCE

For the cross-entropy problem, the estimate of the asymptotic variance of the signal parameter is given by:

$$
\hat{\operatorname{Var}}(\hat{\beta})=\frac{\hat{\sigma_{\gamma}^{2}}(\hat{\beta})}{\hat{\psi}^{2}(\hat{\beta})}\left(X^{\prime} X\right)^{-1}
$$

where

$$
\hat{\sigma_{\gamma}^{2}}(\hat{\beta})=\frac{1}{N} \sum_{i=1}^{N} \gamma_{i}^{2}
$$

and γ_{i} is the Lagrange multiplier associated with the i th row of the $V w$ constraint matrix. Also,

$$
\hat{\psi}^{2}(\hat{\beta})=\left[\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{j=1}^{J} v_{i j}^{2} w_{i j}-\left(\sum_{j=1}^{J} v_{i j} w_{i j}\right)^{2}\right)^{-1}\right]^{2}
$$

Parameter Covariance For GCE-NM

Golan, Judge, and Miller (1996) give the finite approximation to the asymptotic variance matrix of the normed moment formulation as:

$$
\hat{\operatorname{Var}}(\hat{\beta})=\Sigma_{z} X^{\prime} X C^{-1} D C^{-1} X^{\prime} X \Sigma_{z}
$$

where

$$
C=X^{\prime} X \Sigma_{z} X^{\prime} X+\Sigma_{v}
$$

and

$$
D=X^{\prime} \Sigma_{e} X
$$

Recall that in the normed moment formulation, V is the support of $\frac{X^{\prime} e}{T}$, which implies that Σ_{v} is a K-dimensional variance matrix. Σ_{z} and Σ_{v} are both diagonal matrices with the form

$$
\Sigma_{z}=\left[\begin{array}{ccc}
\sum_{l=1}^{L} z_{1 l}^{2} p_{1 l}-\left(\sum_{l=1}^{L} z_{1 l} p_{1 l}\right)^{2} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sum_{l=1}^{L} z_{K l}^{2} p_{K l}-\left(\sum_{l=1}^{L} z_{K l} p_{K l}\right)^{2}
\end{array}\right]
$$

and

$$
\Sigma_{v}=\left[\begin{array}{ccc}
\sum_{j=1}^{J} v_{1 j}^{2} w_{j l}-\left(\sum_{j=1}^{J} v_{1 j} w_{1 j}\right)^{2} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sum_{j=1}^{J} v_{K l}^{2} w_{K l}-\left(\sum_{j=1}^{J} v_{K l} w_{K l}\right)^{2}
\end{array}\right]
$$

Statistical Tests

Since the GME estimates have been shown to be asymptotically normally distributed, the classical Wald, Lagrange mulitiplier, and likelihood ratio statistics can be used for testing linear restrictions on the parameters.

Wald Tests

Let $H_{0}: L \beta=m$, where L is a set of linearly independent combinations of the elements of β. Then under the null hypothesis, the Wald test statistic,

$$
T_{W}=(L \beta-m)^{\prime}\left(L(\hat{\operatorname{Var}}(\hat{\beta})) L^{\prime}\right)^{-1}(L \beta-m)
$$

has a central χ^{2} limiting distribution with degrees of freedom equal to the rank of L.

Pseudo-Likelihood Ratio Tests

Using the conditionally maximized entropy function as a pseudo-likelihood, F, Mittelhammer and Cardell (2000) state that:

$$
\frac{2 \hat{\psi}(\hat{\beta})}{\hat{\sigma_{\gamma}^{2}}(\hat{\beta})}(F(\hat{\beta})-F(\tilde{\beta}))
$$

has the limiting distribution of the Wald statistic when testing the same hypothesis. Note that $F(\hat{\beta})$ and $F(\tilde{\beta})$ are the maximum values of the entropy objective function over the full and restricted parameter spaces, respectively.

Lagrange Multiplier Tests

Again using the GME function as a pseudo-likelihood, Mittelhammer and Cardell (2000) define the Lagrange multiplier statistic as:

$$
\frac{1}{\hat{\sigma_{\gamma}^{2}}(\tilde{\beta})} G(\tilde{\beta})^{\prime}\left(X^{\prime} X\right)^{-1} G(\tilde{\beta})
$$

where G is the gradient of F, which is being evaluated at the optimum point for the restricted parameters. This test statistic shares the same limiting distribution as the Wald and pseudo-likelihood ratio tests.

Missing Values

If an observation in the input data set contains a missing value for any of the regressors or dependent values, that observation is dropped from the analysis.

Input Data Sets

DATA= Data Set

The DATA= data set specified in the PROC ENTROPY statement is the data set that contains the data to be analyzed.

PDATA= Data Set

The PDATA= data set specified in the PROC ENTROPY statement specifies the support points and prior probabilities to be used in the estimation. The PDATA= can be used in lieu of a PRIORS statement, but is intended for use in conjunction with the OUTP= option. Once priors are entered through a PRIORS statement, they can be reused in subsequent estimations by specifying the PDATA $=$ option.

The variables in the data set are as follows:

- BY variables (if any)
- _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMENM. This is an optional column.
- variable, a character variable of length 32 that indicates the name of the regressor. The regressor name and the equation name identify a unique coefficient. This is required.
- _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the observation number when the probabilities are for the residual terms. The _OBS_ and the equation name identify which residual the probability is associated with. This an optional column.
- equation, a character variable of length 32 indicating the name of the dependent variable. This is a required column.
- NSupport, a numeric variable that indicates the number of support points for each basis. This variable is required.
- support, a numeric variable that is the support value the probability is associated with. This is a required column.
- prior, a numeric variable that is the prior probability associated with the probability. This is a required column.
- Prb, a numeric variable that is the estimated probability. This is optional.

SDATA= Data Set

The SDATA= data set specifies a data set that provides the covariance matrix of the equation errors. The matrix read from the SDATA= data set is used for the equation covariance matrix (\mathbf{S} matrix) in the estimation. (The SDATA= \mathbf{S} matrix is used to provide only the initial estimate of \mathbf{S} for the methods that iterate the \mathbf{S} matrix.)

Output Data Sets

OUT= Data Set

The OUT= data set specified in the PROC ENTROPY statement contains residuals of the dependent variables computed from the parameter estimates. The ID and BY variables are also added to this data set.

OUTEST= Data Set

The OUTEST= data set contains parameter estimates and, if requested via the COVOUT option, estimates of the covariance of the parameter estimates.

The variables in the data set are as follows:

- BY variables
- _NAME_, a character variable of length 32, blank for observations that contain parameter estimates or a parameter name for observations that contain covariances
- _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMENM
- the parameters estimated

If the COVOUT option is specified, an additional observation is written for each row of the estimate of the covariance matrix of parameter estimates, with the _NAME_values containing the parameter names for the rows.

OUTP= Data Set

The OUTP= data set specified in the PROC ENTROPY statement contains the probabilities estimated for each support point, as well as the support points and prior probabilities used in the estimation.

The variables in the data set are as follows:

- BY variables (if any)
- _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMENM.
- variable, a character variable of length 32 that indicates the name of the regressor. The regressor name and the equation name identify a unique coefficient.
- _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the observation number when the probabilities are for the residual terms. The _OBS_ and the equation name identify which residual the probability is associated with.
- equation, a character variable of length 32 that indicates the name of the dependent variable
- NSupport, a numeric variable that indicates the number of support points for each basis
- support, a numeric variable that is the support value the probability is associated with
- prior, a numeric variable that is the prior probability associated with the probability
- Prb, a numeric variable that is the estimated probability

OUTL= Data Set

The OUTL= data set specified in the PROC ENTROPY statement contains the Lagrange multiplier values for the underlying maximum entropy problem.

The variables in the data set are as follows:

- BY variables
- equation, a character variable of length 32 that indicates the name of the dependent variable
- variable, a character variable of length 32 that indicates the name of the regressor. The regressor name and the equation name identify a unique coefficient.
- _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the observation number when the probabilities are for the residual terms. The _OBS_ and the equation name identify which residual the Lagrange multiplier is associated with
- LagrangeMult, a numeric variable that contains the Lagrange multipliers

ODS Table Names

PROC ENTROPY assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 12.2 ODS Tables Produced in PROC ENTROPY

ODS Table Name	Description	Option
ConvCrit	Convergence criteria for estimation	default
ConvergenceStatus	Convergence status	default
DatasetOptions	Data sets used	default
MinSummary	Number of parameters, estimation kind	default
ObsUsed	Observations read, used, and missing	default
ParameterEstimates	Parameter estimates	default
ResidSummary	Summary of the SSE, MSE for the equations	default
TestResults	Test statement table	TEST statement

ODS Graphics

This section describes the use of ODS for creating graphics with the ENTROPY procedure.

ODS Graph Names

PROC ENTROPY assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 12.3.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 12.3 ODS Graphics Produced by PROC ENTROPY

ODS Graph Name	Plot Description
DiagnosticsPanel	Includes all the plots listed below
FitPlot	Predicted versus actual plot
CooksD	Cook's D plot
QQPlot	Q-Q plot of residuals
StudentResidualPlot	Studentized residual plot
ResidualHistogram	Histogram of the residuals

Examples: ENTROPY Procedure

Example 12.1: Nonnormal Error Estimation

This example illustrates the difference between GME-NM and GME. One of the basic assumptions of OLS estimation is that the errors in the estimation are normally distributed. If this assumption is violated, the estimated parameters are biased. For GME-NM, the story is similar. If the first moment of the distribution of the errors and a scale factor cannot be used to describe the distribution, then the parameter estimates from GME-MN are more biased. GME is much less sensitive to the underlying distribution of the errors than GME-NM.

To illustrate this, data for the following model is simulated with three different error distributions:

$$
y=a * x_{1}+b * x_{2}+\epsilon .
$$

For the first simulation, ϵ is distributed normally, then a chi-squared distribution with six degrees of freedom is assumed for the second simulation, and finally ϵ is assumed to have a Cauchy distribution in the third simulation.

In each of the three simulations, 100 samples of 10 observations each were simulated. The data for the model with the Cauchy error distribution is generated using the following DATA step code:

```
data one;
    call streaminit(156789);
    do by = 1 to 100;
        do x2 = 1 to 10;
            x1 = 10 * ranuni( 512);
            y = x1 + 2*x2 + rand('cauchy');
            output;
        end;
    end;
run;
```

The statements for the other distributions are identical except for the argument to the RAND() function.

The parameters to the model were estimated by using maximum entropy with the following programming statements:

```
proc entropy data=one gme outest=parm1;
    model y = x1 x2;
    by by;
run;
```

The estimation by using moment-constrained maximum entropy was performed by changing the GME option to GMENM. For comparison, the same model was estimated by using OLS with the following PROC REG statements:

```
proc reg data=one outest=parm3;
    model y = x1 x2;
    by by;
run;
```

The 100 estimations of the coefficient on variable $\times 1$ are then summarized for each of the three error distributions by using PROC UNIVARIATE, as follows:

```
proc univariate data=parm1;
    var x1;
run;
```

The following table summarizes the results from the estimations. The true value for the coefficient on $\times 1$ is 1.0 .

Estimation	Normal			Chi-Squared		
Method	Mean	Std Deviation	Mean	Std Deviation	Cauchy	
Mean	Std Deviation					
GME	0.418	0.117	0.626	.330	0.818	3.36
GME-NM	0.878	0.116	0.948	0.427	3.03	13.62
OLS	0.973	0.142	1.023	0.467	5.54	26.83

For normally distributed or nearly normally distributed data, moment-constrained maximum entropy is a good choice. For distributions not well described by a normal distribution, dataconstrained maximum entropy is a good choice.

Example 12.2: Unreplicated Factorial Experiments

Factorial experiments are useful for studying the effects of various factors on a response. For the practitioner constrained to the use of OLS regression, there must be replication to estimate all of the possible main and interaction effects in a factorial experiment. Using OLS regression to analyze unreplicated experimental data results in zero degrees of freedom for error in the ANOVA table, since there are as many parameters as observations. This situation leaves the experimenter unable to compute confidence intervals or perform hypothesis testing on the parameter estimates.

Several options are available when replication is impossible. The higher-order interactions can be assumed to have negligible effects, and their degrees of freedom can be pooled to create the error degrees of freedom used to perform inference on the lower-order estimates. Or, if a preliminary experiment is being run, a normal probability plot of all effects can provide insight as to which effects are significant, and therefore focused, in a later, more complete experiment.

The following example illustrates the probability plot methodology and the alternative by using PROC ENTROPY. Consider a 2^{4} factorial model with no replication. The data are taken from Myers and Montgomery (1995).

```
data rate;
    do a=-1,1; do b=-1,1; do c=-1,1; do d=-1,1;
        input y @@;
        ab=a*b; ac=a*c; ad=a*d; bc=b*c; bd=b*d; cd=c*d;
        abc=a*b*c; abd=a*b*d; acd=a*c*d; bcd=b*c*d;
        abcd=a*b*c*d;
        output;
    end; end; end; end;
    datalines;
    45 71 48 65 68 60 80 65 43 100 45 104 75 86 70 96
    ;
run;
```

Analyze the data by using PROC REG, then output the resulting estimates.

```
proc reg data=rate outest=regout;
    model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;
run;
proc transpose data=regout out=ploteff name=effect prefix=est;
    var a b c d ab ac ad bc bd cd abc abd acd bcd abcd;
run;
```

Now the normal scores for the estimates can be computed with the rank procedure as follows:

```
proc rank data=ploteff normal=blom out=qqplot;
    var est1;
    ranks normalq;
run;
```

To create the probability plot, simply plot the estimates versus their normal scores by using PROC SGPLOT as follows:

```
title "Unreplicated Factorial Experiments";
proc sgplot data=qqplot;
    scatter x=est1 y=normalq / markerchar=effect
                                    markercharattrs=(size=10pt);
    xaxis label="Estimate";
    yaxis label="Normal Quantile";
run;
```

Output 12.2.1 Normal Probability Plot of Effects

The plot shown in Output 12.2.1 displays evidence that the $\mathrm{a}, \mathrm{b}, \mathrm{d}$, ad, and bd estimates do not fit into the purely random normal model, which suggests that they may have some significant effect on the response variable. To verify this, fit a reduced model that contains only these effects.

```
proc reg data=rate;
    model y=a b d ad bd;
run;
```

The estimates for the reduced model are shown in Output 12.2.2.

Output 12.2.2 Reduced Model OLS Estimates

Unreplicated Factorial Experiments						
	The REG Procedure Model: MODEL1 Dependent Variable: y Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t	
Intercept	1	70.06250	1.10432	63.44	$<.0001$	
a	1	7.31250	1.10432	6.62	$<.0001$	
b	1	4.93750	1.10432	4.47	0.0012	
d	1	10.81250	1.10432	9.79	$<.0001$	
ad	1	8.31250	1.10432	7.53	$<.0001$	
bd	1	-9.06250	1.10432	-8.21	$<.0001$	

These results support the probability plot methodology.
PROC ENTROPY can directly estimate the full model without having to rely upon the probability plot for insight into which effects can be significant. To illustrate this, PROC ENTROPY is run by using default parameter and error supports in the following statements:

```
proc entropy data=rate;
    model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;
run;
```

The resulting GME estimates are shown in Output 12.2.3. Note that the parameter estimates associated with the $a, b, d, a d$, and bd effects are all significant.

Output 12.2.3 Full Model Entropy Results

Example 12.3: Censored Data Models in PROC ENTROPY

Data available to an analyst might sometimes be censored, where only part of the actual series is observed. Consider the case in which only observations greater than some lower bound are recorded, as defined by the following process:

$$
\mathbf{y}=\max (\mathbf{X} \boldsymbol{\beta}+\epsilon, l b) .
$$

Running ordinary least squares estimation on data generated by the preceding process is not optimal because the estimates are likely to be biased and inefficient. One alternative to estimating models with censored data is the tobit estimator. This model is supported in the QLIM procedure in SAS/ETS and in the LIFEREG procedure in SAS/STAT. PROC ENTROPY provides another alternative which can make it very easy to estimate such a model correctly.

The following DATA step generates censored data in which any negative values of the dependent variable, y, are set to a lower bound of 0 .

```
data cens;
    do t = 1 to 100;
        x1 = 5 * ranuni(456);
        x2 = 10 * ranuni( 457);
        y = 4.5*x1 + 2*x2 + 15 * rannor(458);
        if( y<0 ) then y = 0;
        output;
    end;
run;
```

To illustrate the effect of the censored option in PROC ENTROPY, the model is initially estimated without accounting for censoring in the following statements:

```
title "Censored Data Estimation";
proc entropy data = cens gme primal;
    priors intercept -32 32
        x1 -15 15
        x2 -15 15;
    model y = x1 x2 /
        esupports = (-25 1 25);
run;
```

Output 12.3.1 GME Estimates

Censored Data Estimation				
The ENTROPY Procedure				
GME Variable Estimates				
		Approx		Approx
Variable	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
x1	2.377609	0.000503	4725.98	$<.0001$
x 2	2.353014	0.000255	9244.87	$<.0001$
intercept	5.478121	0.00188	2906.41	$<.0001$

The previous model is reestimated by using the CENSORED option in the following statements:

```
proc entropy data = cens gme primal;
    priors intercept -32 32
        x1 -15 15
        x2 -15 15;
    model y = x1 x2 /
            esupports =( (-25 1 25}
            censored(lb = 0, esupports=(-15 1 15) );
run;
```

Output 12.3.2 Entropy Estimates

Censored Data Estimation				
The ENTROPY Procedure				
GME Variable Estimates				
		Approx		Approx
Variable	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
x 1	4.429697	0.00690	641.85	$<.0001$
x 2	1.46858	0.00349	420.61	$<.0001$
intercept	8.261412	0.0259	319.51	$<.0001$

The second set of entropy estimates are much closer to the true parameter estimates of 4.5 and 2. Since another alternative available for fitting a model of censored data is a tobit model, PROC QLIM is used in the following statements to fit a tobit model to the data:

```
proc qlim data=cens;
    model y = x1 x2;
    endogenous y ~ censored (lb=0);
run;
```

Output 12.3.3 QLIM Estimates

Censored Data Estimati					
The QLIM Procedure					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	2.979455	3.824252	0.78	0.4359
x 1	1	4.882284	1.019913	4.79	<. 0001
x 2	1	1.374006	0.513000	2.68	0.0074
_Sigma	1	13.723213	1.032911	13.29	<. 0001

For this data and code, PROC ENTROPY produces estimates that are closer to the true parameter values than those computed by PROC QLIM.

Example 12.4: Use of the PDATA= Option

It is sometimes useful to specify priors and supports by using the PDATA= option. This example illustrates how to create a PDATA= data set which contains the priors and support points for use in a subsequent PROC ENTROPY step. In order to have a model to estimate in PROC ENTROPY, you must first have data to analyze. The following DATA step generates the data used in this analysis:

```
title "Using a PDATA= data set";
data a;
    retain seed1 55371 seed2 97335;
    array x[4];
    do t = 1 to 100;
            ys = -5;
            do k = 1 to 4;
                x[k] = rannor( seed1 + k ) ;
                ys = ys + x[k] * k;
            end;
            ys = ys + rannor( seed2 );
            output;
        end;
run;
```

Next you fit this data with some arbitrary parameter support points and priors by using the following PROC ENTROPY statements:

```
proc entropy data = a gme primal;
    priors x1 -10(2) 30(1)
            x2 -20(3) 30(2)
            x3 -15(4) 30(4)
            x4 -25(3) 30(2)
            intercept -13(4) 30(2) ;
    model ys = x1 x2 x3 x4 / esupports=(-25 0 25);
run;
```

These statements produce the output shown in Output 12.4.1.
Output 12.4.1 Output From PROC ENTROPY

Using a PDATA= data set				
The ENTROPY Procedure				
GME Variable Estimates				
		Approx		Approx
Variable	Estimate	Std Err	t Value	Pr > $\|t\|$
x1	1.195688	0.1078	11.09	<. 0001
$\times 2$	1.844903	0.1018	18.12	<. 0001
x3	3.268396	0.1136	28.77	<. 0001
$\times 4$	3.908194	0.0934	41.83	<. 0001
intercept	-4.94319	0.1005	-49.21	<. 0001

You can estimate the same model by first creating a PDATA= data set, which includes the same information as the PRIORS statement in the preceding PROC ENTROPY step.

A data set that defines the supports and priors for the model parameters is shown in the following statements:

```
data test;
    length Variable $ 12 Equation $ 12;
    input Variable $ Equation $ Nsupport Support Prior ;
datalines;
    Intercept . 2 -13 0.66667
    Intercept . 2 30 0.33333
            x1 . 2 -10 0.66667
            x1 . 2 30 0.33333
            x2 . 2 -20 0.60000
            x2 . 2 30 0.40000
            x3 . 2 -15 0.50000
            x3 . 2 30 0.50000
            x4 . 2 -25 0.60000
            x4 . 2 30 0.40000
;
```

The following statements reestimate the model by using these support points.

```
proc entropy data=a gme primal pdata=test;
    model ys = x1 x2 x3 x4 / esupports=(-25 0 25);
run;
```

These statements produce the output shown in Output 12.4.2.
Output 12.4.2 Output From PROC ENTROPY with PDATA= option

Using				
The ENTROPY Procedure				
GME Variable Estimates				
		Approx		Approx
Variable	Estimate	Std Err	t Value	Pr > $\|t\|$
x1	1.195686	0.1078	11.09	<. 0001
$\times 2$	1.844902	0.1018	18.12	<. 0001
x3	3.268395	0.1136	28.77	<. 0001
$\times 4$	3.908194	0.0934	41.83	<. 0001
Intercept	-4.94319	0.1005	-49.21	<. 0001

These results are identical to the ones produced by the previous PROC ENTROPY step.

Example 12.5: Illustration of ODS Graphics

This example illustrates how to use ODS graphics in the ENTROPY procedure. This example is a continuation of the example in the section "Simple Regression Analysis" on page 618. Graphical
displays are requested by specifying the ODS GRAPHICS statement. For information about the graphics available in the ENTROPY procedure, see the section "ODS Graphics" on page 666.

The following statements show how to generate ODS graphics plots with the ENTROPY procedure. The plots are displayed in Output 12.5.1.

```
proc entropy data=coleman;
    model test_score = teach_sal prent_prof socio_stat
                teach_score mom_ed;
run;
```

Output 12.5.1 Model Diagnostics Plots

References

Coleman, J. S., Campbell, E. Q., Hobson, C. J., McPartland, J., Mood, A. M., Weinfeld, F. D., and York, R. L. (1966), Equality of Educational Opportunity, Washington, DC: U.S. Government Printing Office.

Deaton, A. and Muellbauer, J. (1980), "An Almost Ideal Demand System," The American Economic Review, 70, 312-326.

Golan, A., Judge, G., and Miller, D. (1996), Maximum Entropy Econometrics: Robust Estimation with Limited Data, Chichester, England: John Wiley \& Sons.

Golan, A., Judge, G., and Perloff, J. (1996), "A Generalized Maximum Entropy Approach to Recovering Information from Multinomial Response Data," Journal of the American Statistical Association, 91, 841-853.

Golan, A., Judge, G., and Perloff, J. (1997), "Estimation and Inference with Censored and Ordered Multinomial Response Data," Journal of Econometrics, 79, 23-51.

Golan, A., Judge, G., and Perloff, J. (2002), "Comparison of Maximum Entropy and Higher-Order Entropy Estimators," Journal of Econometrics, 107, 195-211.

Good, I. J. (1963), "Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables," Annals of Mathematical Statistics, 34, 911-934.

Harmon, A. M., Preckel, P., and Eales, J. (1998), Maximum Entropy-Based Seemingly Unrelated Regression, Master's thesis, Purdue University.

Jaynes, E. T. (1957), "Information of Theory and Statistical Mechanics," Physics Review, 106, 620630.

Jaynes, E. T. (1963), "Information Theory and Statistical Mechanics," in K. W. Ford, ed., Brandeis Lectures in Theoretical Physics, volume 3, Statistical Physics, 181-218, New York, Amsterdam: W. A. Benjamin Inc.

Kapur, J. N. and Kesavan, H. K. (1992), Entropy Optimization Principles with Applications, Boston: Academic Press.

Kullback, J. (1959), Information Theory and Statistics, New York: John Wiley \& Sons.
Kullback, J. and Leibler, R. A. (1951), "On Information and Sufficiency," Annals of Mathematical Statistics.

LaMotte, L. R. (1994), "A Note on the Role of Independence in t Statistics Constructed from Linear Statistics in Regression Models," The American Statistician, 48, 238-240.

Miller, D., Eales, J., and Preckel, P. (2003), "Quasi-Maximum Likelihood Estimation with Bounded Symmetric Errors," in Advances in Econometrics, volume 17, 133-148, Elsevier.

Mittelhammer, R. C. and Cardell, S. (2000), "The Data-Constrained GME Estimator of the GLM: Asymptotic Theory and Inference," Working paper of the Department of Statistics, Washington State University, Pullman.

Mittelhammer, R. C., Judge, G. G., and Miller, D. J. (2000), Econometric Foundations, Cambridge: Cambridge University Press.

Myers, R. H. and Montgomery, D. C. (1995), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York: John Wiley \& Sons.

Shannon, C. E. (1948), "A Mathematical Theory of Communication," Bell System Technical Journal, 27, 379-423 and 623-656.

Chapter 13

The ESM Procedure

Contents

Overview: ESM Procedure . 682
Getting Started: ESM Procedure . 682
Syntax: ESM Procedure . 684
Functional Summary . 684
PROC ESM Statement . 686
BY Statement . 689
FORECAST Statement . 689
ID Statement . 691
Details: ESM Procedure . 695
Accumulation . 695
Missing Value Interpretation . 697
Transformations . 697
Parameter Estimation . 697
Missing Value Modeling Issues . 697
Forecasting . 698
Inverse Transformations . 698
Statistics of Fit . 698
Forecast Summation . 698
Data Set Output . 699
Printed Output . 704
ODS Table Names . 704
ODS Graphics . 705
Examples: ESM Procedure . 706
Example 13.1: Forecasting of Time Series Data 706
Example 13.2: Forecasting of Transactional Data 709
Example 13.3: Specifying the Forecasting Model 711
Example 13.4: Extending the Independent Variables for Multivariate Forecasts 711
Example 13.5: Illustration of ODS Graphics 713

Overview: ESM Procedure

The ESM procedure generates forecasts by using exponential smoothing models with optimized smoothing weights for many time series or transactional data.

- For typical time series, you can use the following smoothing models:
- simple
- double
- linear
- damped trend
- seasonal
- Winters method (additive and multiplicative)
- Additionally, transformed versions of these models are provided:
- \log
- square root
- logistic
- Box-Cox

Graphics are available with the ESM procedure. For more information, see the section "ODS Graphics" on page 705.

The exponential smoothing models supported in PROC ESM differ from those supported in PROC FORECAST since all parameters associated with the forecasting model are optimized by PROC ESM based on the data.

The ESM procedure writes the time series extrapolated by the forecasts, the series summary statistics, the forecasts and confidence limits, the parameter estimates, and the fit statistics to output data sets. The ESM procedure optionally produces printed output for these results by using the Output Delivery System (ODS).

The ESM procedure can forecast both time series data, whose observations are equally spaced by a specific time interval (for example, monthly, weekly), or transactional data, whose observations are not spaced with respect to any particular time interval. Internet, inventory, sales, and similar data are typical examples of transactional data. For transactional data, the data is accumulated based on a specified time interval to form a time series prior to modeling and forecasting.

Getting Started: ESM Procedure

The ESM procedure is simple to use and does not require in-depth knowledge of forecasting methods. It can provide results in output data sets or in other output formats by using the Output Delivery

System (ODS). The following examples are more fully illustrated in "Example 13.2: Forecasting of Transactional Data" on page 709 .

Given an input data set that contains numerous time series variables recorded at a specific frequency, the ESM procedure can forecast the series as follows:

```
proc esm data=<input-data-set> out=<output-data-set>;
    id <time-ID-variable> interval=<frequency>;
    forecast <time-series-variables>;
run;
```

For example, suppose that the input data set SALES contains sales data recorded monthly, the variable that represents time is DATE, and the forecasts are to be recorded in the output data set NEXTYEAR. The ESM procedure could be used as follows:

```
proc esm data=sales out=nextyear;
    id date interval=month;
    forecast _numeric_;
run;
```

The preceding statements generate forecasts for every numeric variable in the input data set SALES for the next twelve months and store these forecasts in the output data set NEXTYEAR. Other output data sets can be specified to store the parameter estimates, forecasts, statistics of fit, and summary data.

By default, PROC ESM generates no printed output. If you want to print the forecasts by using the Output Delivery System (ODS), then you need to add the PRINT=FORECASTS option to the PROC ESM statement, as shown in the following example:

```
proc esm data=sales out=nextyear print=forecasts;
    id date interval=month;
    forecast _numeric_;
run;
```

Other PRINT= options can be specified to print the parameter estimates, statistics of fit, and summary data.

The ESM procedure can forecast both time series data, whose observations are equally spaced by a specific time interval (for example, monthly, weekly), or transactional data, whose observations are not spaced with respect to any particular time interval.

Given an input data set that contains transactional variables not recorded at any specific frequency, the ESM procedure accumulates the data to a specific time interval and forecasts the accumulated series as follows:

```
proc esm data=<input-data-set> out=<output-data-set>;
    id <time-ID-variable> interval=<frequency>
            accumulate=<accumulation>;
    forecast <time-series-variables> / model=<esm>;
run;
```

For example, suppose that the input data set WEBSITES contains three variables (BOATS, CARS, PLANES) that are Internet data recorded on no particular time interval, and the variable that represents time is TIME, which records the time of the Web hit. The forecasts for the total daily values are to be recorded in the output data set NEXTWEEK. The ESM procedure could be used as follows:

```
proc esm data=websites out=nextweek lead=7;
    id time interval=dtday accumulate=total;
    forecast boats cars planes;
run;
```

The preceding statements accumulate the data into a daily time series, generate forecasts for the BOATS, CARS, and PLANES variables in the input data set (WEBSITES) for the next seven days, and store the forecasts in the output data set (NEXTWEEK). Because the MODEL= option is not specified in the FORECAST statement, a simple exponential smoothing model is fit to each series.

Syntax: ESM Procedure

The following statements are used with the ESM procedure:

```
PROC ESM options;
    BY variables;
    ID variable INTERVAL= interval options;
    FORECAST variable-list / options;
```


Functional Summary

The statements and options that control the ESM procedure are summarized in the following table.
Table 13.1 Syntax Summary

Description	Statement	Option
Statements specify data sets and options specify BY-group processing specify variables to forecast specify the time ID variable	PROC ESM	
	BY	
Data Set Options specify the input data set	FORECAST	
specify to output forecasts only	ID	
specify the output data set	PROC ESM	DATA=
specify parameter output data set	PROC ESM	NOOUTALL

Description	Statement	Option
specify forecast output data set	PROC ESM	OUTFOR=
specify the forecast procedure information output data set	PROC ESM	OUTPROCINFO=
specify statistics output data set	PROC ESM	OUTSTAT=
specify summary output data set	PROC ESM	OUTSUM=
replace actual values held back	FORECAST	REPLACEBACK
replace missing values	FORECAST	REPLACEMISSING
use forecast value to append	FORECAST	USE=
Accumulation and Seasonality Options specify accumulation frequency	ID	INTERVAL=
specify length of seasonal cycle	PROC ESM	SEASONALITY=
specify interval alignment	ID	ALIGN=
specify that time ID variable values are not sorted	ID	NOTSORTED
specify starting time ID value	ID	START=
specify ending time ID value	ID	END=
specify accumulation statistic	ID, FORECAST	ACCUMULATE=
specify missing value interpretation	ID, FORECAST	SETMISSING=
specify zero value interpretation	ID, FORECAST	ZEROMISS=
Forecasting Horizon, Holdback Options specify data to hold back	PROC ESM	BACK=
specify forecast horizon or lead	PROC ESM	LEAD=
specify horizon to start summation	PROC ESM	STARTSUM=
Forecasting Model Options		
specify confidence limit width	FORECAST	ALPHA=
specify forecast model	FORECAST	MODEL=
specify median forecats	FORECAST	MEDIAN
specify backcast initialization	FORECAST	NBACKCAST=
specify model transformation	FORECAST	TRANSFORM=
Printing and Plotting Control Options specify time ID format	ID	
specify graphical output	PROC ESM	PLOT=
specify printed output	PROC ESM	PRINT=
specify detailed printed output	PROC ESM	PRINTDETAILS
Miscellaneous Options specify that analysis variables are processed in sorted order	PROC ESM	SORTNAMES
limit error and warning messages	PROC ESM	MAXERROR=

PROC ESM Statement

PROC ESM options;

The following options can be used in the PROC ESM statement.

BACK=n

specifies the number of observations before the end of the data where the multistep forecasts are to begin. The default is $\mathrm{BACK}=0$.

DATA=SAS-data-set

names the SAS data set that contains the input data for the procedure to forecast. If the DATA $=$ option is not specified, the most recently created SAS data set is used.

LEAD=n

specifies the number of periods ahead to forecast (forecast lead or horizon). The default is LEAD=12.

The $\mathrm{LEAD}=$ value is relative to the $\mathrm{BACK}=$ option specification and to the last observation in the input data set or the accumulated series, and not to the last nonmissing observation of a particular series. Thus, if a series has missing values at the end, the actual number of forecasts computed for that series is greater than the LEAD= value.

MAXERROR=number

limits the number of warning and error messages produced during the execution of the procedure to the specified value. The default is MAXERRORS=50. This option is particularly useful in BY-group processing where it can be used to suppress the recurring messages.

NOOUTALL

specifies that only forecasts are written to the OUT= and OUTFOR= data sets. The NOOUTALL option includes only the final forecast observations in the output data sets; it does not include the one-step forecasts for the data before the forecast period.

The OUT= and OUTFOR= data set will only contain the forecast results starting at the next period following the last observation and ending with the forecast horizon specified by the LEAD $=$ option.

OUT=SAS-data-set

names the output data set to contain the forecasts of the variables specified in the subsequent FORECAST statements. If an ID variable is specified, it is also included in the OUT= data set. The values are accumulated based on the ACCUMULATE= option, and forecasts are appended to these values based on the FORECAST statement USE= option. The OUT= data set is particularly useful in extending the independent variables. The OUT= data set can be used as the input data set in a subsequent PROC step to forecast a dependent series by using a regression modeling procedure. If the OUT= option is not specified, a default output data set is created by using the DATA n convention. If you do not want the OUT= data set created, use OUT=_NULL_.

OUTEST=SAS-data-set

names the output data set to contain the model parameter estimates and the associated test statistics and probability values. The OUTEST= data set is useful for evaluating the significance of the model parameters and understanding the model dynamics.

OUTFOR=SAS-data-set

names the output data set to contain the forecast time series components (actual, predicted, lower confidence limit, upper confidence limit, prediction error, prediction standard error). The OUTFOR= data set is useful for displaying the forecasts in tabular or graphical form.

OUTPROCINFO=SAS-data-set

names the output data set to contain information in the SAS log, specifically the number of notes, errors, and warnings and the number of series processed, forecasts requested, and forecasts failed.

OUTSTAT=SAS-data-set

names the output data set to contain the statistics of fit (or goodness-of-fit statistics). The OUTSTAT = data set is useful for evaluating how well the model fits the series.

OUTSUM=SAS-data-set

names the output data set to contain the summary statistics and the forecast summation. The summary statistics are based on the accumulated time series when the ACCUMULATE= or SETMISSING= options are specified. The forecast summations are based on the LEAD=, STARTSUM $=$, and USE $=$ options. The OUTSUM= data set is useful when forecasting large numbers of series and a summary of the results are needed.

PLOT=option | (options)

specifies the graphical output desired. By default, the ESM procedure produces no graphical output. The following plotting options are available:

ERRORS plots prediction error time series graphics.
ACF plots prediction error autocorrelation function graphics.
PACF plots prediction error partial autocorrelation function graphics.
IACF plots prediction error inverse autocorrelation function graphics.
WN plots white noise graphics.
MODELS plots model graphics.
FORECASTS plots forecast graphics.
MODELFORECASTSONLY plots forecast graphics with confidence limits in the data range.

FORECASTSONLY plots the forecast in the forecast horizon only.
LEVELS plots smoothed level component graphics.
SEASONS plots smoothed seasonal component graphics.
TRENDS plots smoothed trend (slope) component graphics.
ALL is the same as specifying all of the above PLOT= options.

For example, PLOT=FORECASTS plots the forecasts for each series. The PLOT= option produces printed output for these results by using the Output Delivery System (ODS).

PRINT=option | (options)

specifies the printed output desired. By default, the ESM procedure produces no printed output. The following printing options are available:

ESTIMATES prints the results of parameter estimation.
FORECASTS prints the forecasts.
PERFORMANCE prints the performance statistics for each forecast.
PERFORMANCESUMMARY prints the performance summary for each BY group.
PERFORMANCEOVERALL prints the performance summary for all of the BY groups.
STATISTICS prints the statistics of fit.
STATES
SUMMARY prints the summary statistics for the accumulated time series.
ALL Same as PRINT=(ESTIMATES FORECASTS STATISTICS SUMMARY).

For example, PRINT=FORECASTS prints the forecasts, PRINT=(ESTIMATES FORECASTS) prints the parameter estimates and the forecasts, and PRINT=ALL prints all of the output.

PRINTDETAILS

specifies that output requested with the PRINT= option be printed in greater detail.

SEASONALITY=number

specifies the length of the seasonal cycle. For example, SEASONALITY=3 means that every group of three observations forms a seasonal cycle. The SEASONALITY= option is applicable only for seasonal forecasting models. By default, the length of the seasonal cycle is one (no seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For example, INTERVAL=MONTH implies that the length of the seasonal cycle is twelve.

SORTNAMES

specifies that the variables specified in the FORECAST statements are processed in sorted order.

STARTSUM=n

specifies the starting forecast lead (or horizon) for which to begin summation of the forecasts specified by the $\mathrm{LEAD}=$ option. The $\mathrm{STARTSUM}=$ value must be less than the $\mathrm{LEAD}=$ value. The default is STARTSUM $=1$; that is, the sum from the one-step ahead forecast (which is the first forecast in the forecast horizon) to the multistep forecast specified by the LEAD= option.

The prediction standard errors of the summation of forecasts take into account the correlation between the multistep forecasts. The section "Forecast Summation" on page 698 describes the STARTSUM = option in more detail.

BY Statement

BY variables;
A BY statement can be used with PROC ESM to obtain separate dummy variable definitions for groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the $B Y$ variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement for the ESM procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FORECAST Statement

FORECAST variable-list/options;

The FORECAST statement lists the numeric variables in the DATA= data set whose accumulated values represent time series to be modeled and forecast. The options specify which forecast model is to be used.

A data set variable can be specified in only one FORECAST statement. Any number of FORECAST statements can be used. The following options can be used with the FORECAST statement.

ACCUMULATE=option

specifies how the data set observations are accumulated within each time period for the variables listed in the FORECAST statement. If the ACCUMULATE= option is not specified in the FORECAST statement, accumulation is determined by the ACCUMULATE= option of the ID statement. Use the ACCUMULATE= option with multiple FORECAST statements when you want different accumulation specifications for different variables. See the ID statement ACCUMULATE $=$ option for more details.

ALPHA=number

specifies the significance level to use in computing the confidence limits of the forecast. The ALPHA= value must be between 0 and 1 . The default is ALPHA $=0.05$, which produces 95% confidence intervals.

MEDIAN

specifies that the median forecast values are to be estimated. Forecasts can be based on the mean or median. By default, the mean value is provided. If no transformation is applied to the time series by using the TRANSFORM= option, the mean and median forecast values are identical.

MODEL=model-name

specifies the forecasting model to be used to forecast the time series. The default is MODEL=SIMPLE, which performs simple exponential smoothing. The following forecasting models are provided:

NONE no forecast
SIMPLE simple (single) exponential smoothing. This is the default.
DOUBLE double (Brown) exponential smoothing
LINEAR linear (Holt) exponential smoothing
DAMPTREND damped trend exponential smoothing
ADDSEASONALISEASONAL additive seasonal exponential smoothing
MULTSEASONAL multiplicative seasonal exponential smoothing
WINTERS Winters multiplicative method
ADDWINTERS Winters additive method
When the option MODEL=NONE is specified, the time series is appended with missing values in the OUT= data set. This option is useful when the results stored in the OUT= data set are used in a subsequent analysis where forecasts of the independent variables are needed to forecast the dependent variable.

NBACKCAST= n

specifies the number of observations used to initialize the backcast states. The default is the entire series.

REPLACEBACK

specifies that actual values excluded by the BACK= option are replaced with one-step-ahead forecasts in the OUT= data set.

REPLACEMISSING

specifies that embedded missing values are replaced with one-step-ahead forecasts in the OUT= data set.

SETMISSING=option | number

specifies how missing values (either input or accumulated) are assigned in the accumulated time series for variables listed in the FORECAST statement. If the SETMISSING= option is not specified in the FORECAST statement, missing values are set based on the SETMISSING= option of the ID statement. See the ID statement SETMISSING= option for more details.

TRANSFORM=option

specifies the time series transformation to be applied to the input or accumulated time series. The following transformations are provided:

NONE no transformation. This is the default.
LOG logarithmic transformation
SQRT square-root transformation
LOGISTIC logistic transformation
$\operatorname{BOXCOX}(n) \quad$ Box-Cox transformation with parameter number where number is between -5 and 5

When the TRANSFORM= option is specified, the time series must be strictly positive. After the time series is transformed, the model parameters are estimated by using the transformed series. The forecasts of the transformed series are then computed, and finally the transformed series forecasts are inverse transformed. The inverse transform produces either mean or median forecasts depending on whether the MEDIAN option is specified. The sections "Transformations" on page 697 and "Inverse Transformations" on page 698 describe this in more detail.

USE=option

specifies which forecast values are appended to the actual values in the OUT= and OUTSUM= data sets. The following USE= options are provided:

PREDICT The predicted values are appended to the actual values. This option is the default.

LOWER The lower confidence limit values are appended to the actual values.
UPPER The upper confidence limit values are appended to the actual values.
Thus, the USE= option enables the OUT= and OUTSUM= data sets to be used for worst-case, best-case, average-case, and median-case decisions.

ZEROMISS=option

specifies how beginning or ending zero values (either input or accumulated) are interpreted in the accumulated time series for variables listed in the FORECAST statement. If the ZEROMISS $=$ option is not specified in the FORECAST statement, beginning or ending zero values are set to missing values based on the ZEROMISS= option of the ID statement. See the ID statement ZEROMISS = option for more details.

ID Statement

ID variable INTERVAL = interval < options > ;
The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable's values are assumed to be SAS date or datetime values. In addition, the

ID statement specifies the (desired) frequency associated with the time series. The ID statement options also specify how the observations are accumulated and how the time ID values are aligned to form the time series to be forecast. The information specified affects all variables specified in subsequent FORECAST statements. If the ID statement is specified, the INTERVAL= option must be specified. If an ID statement is not specified, the observation number, with respect to the BY group, is used as the time ID. The following options can be used with the ID statement.

ACCUMULATE=option

specifies how the data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option. The ID variable contains the time ID values. Each time ID variable value corresponds to a specific time period. The accumulated values form the time series, which is used in subsequent model fitting and forecasting.

The ACCUMULATE= option is particularly useful when there are gaps in the input data or when there are multiple input observations that coincide with a particular time period (for example, transactional data). The EXPAND procedure offers additional frequency conversions and transformations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each time period based on the ID variable and the frequency specified by the INTERVAL= option:

NONE	No accumulation occurs; the ID variable values must be equally spaced with respect to the frequency. This is the default option. Observations are accumulated based on the total sum of their val- ues.
TOTAL	Observations are accumulated based on the average of their val-
ues.	
AVERAGE I AVG	

Observations are accumulated based on the uncorrected sum of squares of their values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying how accumulated missing values are treated. If missing values should be interpreted as zero, then SETMISSING=0 should be used. The section "Accumulation" on page 695 describes accumulation in greater detail.

ALIGN=option

controls the alignment of SAS dates used to identify output observations. The ALIGN= option accepts the following values: BEGINNING \| BEG \| B, MIDDLE \| MID \| M, and ENDING|END|E. BEGINNING is the default.

END=date | datetime

specifies a SAS date or datetime literal value that represents the end of the data. If the last time ID variable value is less than the $\mathrm{END}=$ value, the series is extended with missing values. If the last time ID variable value is greater than the END= value, the series is truncated. For example, END $=$ ' 1 jan 2008^{\prime} D specifies that data for time periods after the first of January 2008 not be used. The option END="\&sysdate"D uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. This option and the START= option can be used to ensure that data associated with each BY group contains the same number of observations.

FORMAT=format

specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default format is implied from the INTERVAL= option.

INTERVAL=interval

specifies the frequency of the input time series or for the time series to be accumulated from the input data. For example, if the input data set consists of quarterly observations, then INTERVAL=QTR should be used. If the SEASONALITY= option is not specified, the length of the seasonal cycle is implied by the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL= option determines the time periods for the accumulation of observations.

The basic intervals are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK, WEEKDAY, DAY, HOUR, MINUTE, SECOND. See Chapter 4, "Date Intervals, Formats, and Functions," for more information about the intervals that can be specified.

NOTSORTED

specifies that the time ID values are not in sorted order. The ESM procedure sorts the data with respect to the time ID prior to analysis.

SETMISSING=option | number

specifies how missing values (either input or accumulated) are assigned in the accumulated time series. If a number is specified, missing values are set to that number. If a missing value on the input data set indicates an unknown value, the SETMISSING= option should not be used. If a missing value indicates no value, SETMISSING=0 should be used. You
typically use SETMISSING=0 for transactional data, because no recorded data usually implies no activity. The following options can also be used to determine how missing values are assigned:

MISSING
AVERAGE I AVG
MINIMUM I MIN
MEDIAN I MED
MAXIMUM I MAX
FIRST
LAST
PREVIOUS I PREV

NEXT

Missing values are set to missing. This is the default option.
Missing values are set to the accumulated average value.
Missing values are set to the accumulated minimum value.
Missing values are set to the accumulated median value.
Missing values are set to the accumulated maximum value.
Missing values are set to the accumulated first nonmissing value.
Missing values are set to the accumulated last nonmissing value.
Missing values are set to the previous accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.

Missing values are set to the next accumulated nonmissing value. Missing values at the end of the accumulated series remain missing.

If SETMISSING=MISSING is specified, the missing observations are replaced with predicted values computed from the exponential smoothing model.

START=date | datetime

specifies a SAS date or datetime literal value that represents the beginning of the data. If the first time ID variable value is greater than the START= value, the series is prefixed with missing values. If the first time ID variable value is less than the START= value, the series is truncated. This option and the END= option can be used to ensure that data associated with each BY group contains the same number of observations.

ZEROMISS=option

specifies how beginning and/or ending zero values (either input or accumulated) are interpreted in the accumulated time series. The following values can be specified for the ZEROMISS = option:

NONE
LEFT
RIGHT
BOTH

Beginning and/or ending zeros are unchanged. This is the default.
Beginning zeros are set to missing.
Ending zeros are set to missing.
Both beginning and ending zeros are set to missing.

If the accumulated series is all missing and/or zero the series is not changed.

Details: ESM Procedure

The ESM procedure can be used to forecast time series data as well as transactional data. If the data is transactional, then the procedure must first accumulate the data into a time series before it can be forecast. The procedure uses the following sequential steps to produce forecasts, with the options that control the step listed to the right:

Table 13.2 ESM Processing Steps and Control Options

Step	Operation	Option	Statement
1	accumulation	ACCUMULATE $=$	ID
2	missing value interpretation	SETMISSING $=$	ID, FORECAST
3	transformations	TRANSFORM $=$	FORECAST
4	parameter estimation	MODEL=	FORECAST
5	forecasting	MODEL=, LEAD $=$	FORECAST, PROC ESM
6	inverse transformation	TRANSFORM, MEDIAN	FORECAST
7	summation of forecasts	LEAD $=$, STARTSUM $=$	PROC ESM

Each of the steps shown in Table 13.2 is described in the following sections.

Accumulation

If the ACCUMULATE $=$ option is specified in the ID statement, data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL = option, and the ID variable contains the time ID values. Each time ID value corresponds to a specific time period. Accumulation is particularly useful when the input data set contains transactional data, whose observations are not spaced with respect to any particular time interval. The accumulated values form the time series that is used in subsequent analyses by the ESM procedure.

For example, suppose a data set contains the following observations:

19MAR1999	10
19MAR1999	30
11MAY1999	50
12MAY1999	20
23MAY1999	20

If the INTERVAL=MONTH option is specified on the ID statement, all of the preceding observations fall within three time periods: March 1999, April 1999, and May 1999. The observations are accumulated within each time period as follows.

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the resulting time series is:

O1MAR1999	40
O1APR1999	
O1MAY1999	90

If the ACCUMULATE=AVERAGE option is specified, the resulting time series is:

```
O1MAR1999 20
O1APR1999
O1MAY1999 30
```

If the ACCUMULATE=MINIMUM option is specified, the resulting time series is:

```
O1MAR1999 10
O1APR1999 .
O1MAY1999 20
```

If the ACCUMULATE=MEDIAN option is specified, the resulting time series is:

```
O1MAR1999 20
01APR1999
O1MAY1999 20
```

If the ACCUMULATE=MAXIMUM option is specified, the resulting time series is:

```
O1MAR1999 30
O1APR1999 .
O1MAY1999 50
```

If the ACCUMULATE=FIRST option is specified, the resulting time series is:

```
O1MAR1999 10
O1APR1999 .
O1MAY1999 50
```

If the ACCUMULATE=LAST option is specified, the resulting time series is:

```
O1MAR1999 30
O1APR1999 .
O1MAY1999 20
```

If the ACCUMULATE=STDDEV option is specified, the resulting time series is:

```
O1MAR1999
    14.14
O1APR1999
O1MAY1999 17.32
```

As can be seen from the preceding examples, even though the data set observations contained no missing values, the accumulated time series can have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as truly unknown values and retained as missing values in the data set. The forecasting models used by the ESM procedure can effectively handle missing values (see the section "Missing Value Modeling Issues" on page 697). However, sometimes missing values are known, such as when missing values are created from accumulation and represent no observed values for the variable. In this case, the value for the period should be interpreted as zero (no values), and the SETMISSING=0 option should be used to cause PROC ESM to recode missing values as zero. In other cases, missing values should be interpreted as global values, such as minimum or maximum values of the accumulated series. The accumulated and missing-value-recoded time series is used in subsequent analyses in PROC ESM.

Transformations

If the TRANSFORM= option is specified in the FORECAST statement, the time series is transformed prior to model parameter estimation and forecasting. Only strictly positive series can be transformed. An error is generated when the TRANSFORM= option is used with a nonpositive series. (See Chapter 44, "Forecasting Process Details," for more details about forecasting transformed time series.)

Parameter Estimation

All the parameters (smoothing weights) associated with the exponential smoothing model used to forecast the time series (as specified by the MODEL= option) are optimized based on the data, with the default parameter restrictions imposed. If the TRANSFORM= option is specified, the transformed time series data are used to estimate the model parameters.

The techniques used in the ESM procedure are identical to those used for exponential smoothing models in the Time Series Forecasting System of SAS/ETS software. See Chapter 36, "Overview of the Time Series Forecasting System," for more information.

Missing Value Modeling Issues

The treatment of missing values varies with the forecasting model. Missing values after the start of the series are replaced with one-step-ahead predicted values, and the predicted values are used in the smoothing equations.

The treatment of missing values can also be specified with the SETMISSING= option, which changes the missing values prior to modeling.

Note: Even if all of the observed data are nonmissing, the ACCUMULATE= option can create missing values in the accumulated series (when the data contain no observations for some of the time periods specified by the INTERVAL= option).

Forecasting

Once the model parameters are estimated, one-step-ahead forecasts are generated for the full range of the accumulated and optionally transformed time series data, and multistep forecasts are generated from the end of the time series to the future time period specified by the LEAD= option. If there are missing values at the end of the time series, the forecast horizon will be greater than that specified by the LEAD= option.

Inverse Transformations

If the TRANSFORM= option is specified in the FORECAST statement, the forecasts of the transformed time series are inverse transformed. By default, forecasts of the mean (expected value) are generated. If the MEDIAN option is specified, median forecasts are generated. (See Chapter 44, "Forecasting Process Details," for more details about forecasting transformed time series.)

Statistics of Fit

The statistics of fit are computed by comparing the time series data (after accumulation and missing value recoding, if specified) with the generated forecasts. If the TRANSFORM=option is specified, the statistics of fit are based on the inverse transformed forecasts. (See Chapter 44, "Forecasting Process Details," for more details about statistics of fit for forecasting models.)

Forecast Summation

The multistep forecasts generated by the preceding steps can optionally be summed from the STARTSUM = value to the LEAD= value. For example, if the options STARTSUM=4 and LEAD=6 are specified on the PROC ESM statement, the four-step through six-step ahead forecasts are summed.

The forecasts are simply summed; however, the prediction error variance of this sum is computed by taking into account the correlation between the individual predictions. (These variance-related computations are performed only when no transformation is specified; that is, when TRANSFORM=NONE.) The upper and lower confidence limits for the sum of the predictions is then computed based on the prediction error variance of the sum.

The forecast summation is particularly useful when it is desirable to model in one frequency but the forecast of interest is another frequency. For example, if a time series has a monthly frequency (INTERVAL=MONTH) and you want a forecast for the third and fourth future months, a forecast summation for the third and fourth month can be obtained by specifying STARTSUM=3 and LEAD=4.

Data Set Output

The ESM procedure can create the OUT=, OUTEST=, OUTFOR=, OUTSTAT=, and OUTSUM= data sets. These data sets contain the variables listed in the BY statement and statistics related to the variables listing in the FORECAST statement. In general, if a forecasting step related to an output data set fails, the values of this step are not recorded or are set to missing in the related output data set and appropriate error and/or warning messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, and FORECAST statements. If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN= and INTERVAL $=$ options. The values of the variables specified in the FORECAST statements are accumulated based on the ACCUMULATE= option, and missing values are interpreted based on the SETMISSING= option. If the REPLACEMISSING option is specified, embedded missing values are replaced by the one-step-ahead predicted values.

These FORECAST variables are then extrapolated based on the forecasts from the fitted models, or extended with missing values when the MODEL=NONE option is specified. If USE=LOWER is specified, the variable is extrapolated with the lower confidence limits; if USE=UPPER, the variable is extrapolated using the upper confidence limits; otherwise, the variable values are extrapolated with the predicted values. If the TRANSFORM= option is specified, the predicted values contain either mean or median forecasts depending on whether or not the MEDIAN option is specified.

If any of the forecasting steps fail for a particular variable, the variable is extended by missing values.

OUTEST= Data Set

The OUTEST = data set contains the variables specified in the BY statement as well as the variables listed below. For variables listed in FORECAST statements where the option MODEL=NONE is specified, no observations are recorded in the OUTEST= data set. For variables listed in FORECAST statements where the option MODEL=NONE is not specified, the following variables in the OUTEST= data set contain observations related to the parameter estimation step:

NAME	variable name
MODEL	forecasting model
TRANSFORM	transformation

PARM	parameter name
EST	parameter estimate
STDERR	standard errors
TVALUE	t values
PVALUE	probability values

If the parameter estimation step fails for a particular variable, no observations are output to the OUTEST= data set for that variable.

OUTFOR= Data Set

The OUTFOR= data set contains the variables specified in the BY statement as well as the variables listed below. For variables listed in FORECAST statements where the option MODEL=NONE is specified, no observations are recorded in the OUTFOR= data set for these variables. For variables listed in FORECAST statements where the option MODEL=NONE is not specified, the following variables in the OUTFOR= data set contain observations related to the forecasting step:

NAME	variable name
_TIMEID__	time ID values
ACTUAL	actual values
PREDICT	predicted values
STD	prediction standard errors
LOWER	lower confidence limits
UPPER	upper confidence limits
ERROR	prediction errors

If the forecasting step fails for a particular variable, no observations are recorded in the OUTFOR= data set for that variable. If the TRANSFORM= option is specified, the values in the preceding variables are the inverse transform forecasts. If the MEDIAN option is specified, the median forecasts are stored; otherwise, the mean forecasts are stored.

OUTPROCINFO= Data Set

The OUTPROCINFO= data set contains information about the run of the ESM procedure. The following variables are present:
SOURCE set to the name of the procedure, in this case ESM
NAME name of an item being reported; can be the number of errors, notes, or warnings, number of forecasts requested, and so on
LABEL descriptive label for the item in _NAME_ _STAGE_ set to the current stage of the procedure, for ESM this is set to ALL _VALUE_ value of the item specified in _NAME_

OUTSTAT= Data Set

The OUTSTAT= data set contains the variables specified in the BY statement as well as the variables listed below. For variables listed in FORECAST statements where the option MODEL=NONE is specified, no observations are recorded for these variables in the OUTSTAT= data set. For variables listed in FORECAST statements where the option MODEL=NONE is not specified, the following variables in the OUTSTAT= data set contain observations related to the statistics of fit:

NAME	variable name
REGION	the region in which the statistics are calculated. Statistics calculated in the fit region are indicated by FIT. Statistics calculated in the forecast region, which happens only if the BACK= option is greater than zero, are indicated by FORECAST.
DFE	degrees of freedom error
N	number of observations
NOBS	number of observations used
NMISSA	number of missing actuals
NMISSP	number of missing predicted values
NPARMS	number of parameters
TSS	total sum of squares
SST	corrected total sum of squares
SSE	sum of square error
MSE	mean square error
UMSE	unbiased mean square error
RMSE	root mean square error
URMSE	unbiased root mean square error
MAPE	mean absolute percent error
MAE	mean absolute error
MASE	mean absolute scaled error
RSQUARE	R square
ADJRSQ	adjusted R square
AADJRSQ	Amemiya's adjusted R square
RWRSQ	random walk R square
AIC	Akaike information criterion
AICC	finite sample corrected AIC
SBC	Schwarz Bayesian information criterion
APC	Amemiya's prediction criterion
MAXERR	maximum error

MINERR	minimum error
MINPE	minimum percent error
MAXPE	maximum percent error
ME	mean error
MPE	mean percent error
MDAPE	median absolute percent error
GMAPE	geometric mean absolute percent error
MINPPE	minimum predictive percent error
MAXPPE	maximum predictive percent error
MSPPE	mean predictive percent error
MAPPE	symmetric mean absolute predictive percent error
MDAPPE	median absolute predictive percent error
GMAPPE	geometric mean absolute predictive percent error
MINSPE	minimum symmetric percent error
MAXSPE	maximum symmetric percent error
MSPE	mean symmetric percent error
SMAPE	symmetric mean absolute percent error
MDASPE	median absolute symmetric percent error
GMASPE	geometric mean absolute symmetric percent error
MINRE	minimum relative error
MAXRE	maximum relative error
MRE	mean relative error
MRAE	mean relative absolute error
MDRAE	median relative absolute error
GMRAE	geometric mean relative absolute error
MINAPES	minimum absolute error percent of standard deviation
MAXAPES	maximum absolute error percent of standard deviation
MAPES	mean absolute error percent of standard deviation
MDAPES	median absolute error percent of standard deviation
GMAPES	geometric mean absolute error percent of standard deviation

If the statistics of fit cannot be computed for a particular variable, no observations are recorded in the OUTSTAT= data set for that variable. If the TRANSFORM= option is specified, the values in the preceding variables are computed based on the inverse transform forecasts. If the MEDIAN option is specified, the median forecasts are the basis; otherwise, the mean forecasts are the basis.

See Chapter 44, "Forecasting Process Details," for more information about the calculation of forecasting statistics of fit.

OUTSUM= Data Set

The OUTSUM= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTSUM= data set records the summary statistics for each variable specified in a FORECAST statement. For variables listed in FORECAST statements where the option MODEL=NONE is specified, the values related to forecasts are set to missing for those variables in the OUTSUM= data set. For variables listed in FORECAST statements where the option MODEL=NONE is not specified, the forecast values are set based on the USE= option.

The following variables related to summary statistics are based on the ACCUMULATE= and SETMISSING= options:

NAME	variable name _STATUS_
forecasting status. Nonzero values imply that no forecast was generated for the series.	
NOBS	number of observations
N	number of nonmissing observations NMISS
MIN	number of missing observations
MAX	maximum value
MEAN	mean value value
STDDEV	standard deviation

The following variables related to forecast summation are based on the LEAD $=$ and STARTSUM $=$ options:

PREDICT forecast summation predicted values
STD forecast summation prediction standard errors
LOWER forecast summation lower confidence limits
UPPER forecast summation upper confidence limits
Variance-related computations are computed only when no transformation is specified (TRANSFORM=NONE).

The following variables related to multistep forecast are based on the LEAD $=$ and $\mathrm{USE}=$ options:
_LEAD n _ multistep forecast (n ranges from one to the value of the LEAD= option). If USE=LOWER, this variable contains the lower confidence limits; if USE=UPPER, this variable contains the upper confidence limits; otherwise, this variable contains the predicted values.

If the forecast step fails for a particular variable, the variables that are related to forecasting are set to missing for that variable. The OUTSUM= data set contains both a summary of the (accumulated) time series and optionally its forecasts for all series.

Printed Output

The ESM procedure optionally produces printed output by using the Output Delivery System (ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT $=$ and PRINTDETAILS options in the PROC ESM statement. In general, if a forecasting step that is related to printed output fails, the values of this step are not printed and appropriate error or warning messages are recorded in the log. The printed output is similar to the output data sets.

The printed output produced by the PRINT= option values is described as follows:

SUMMARY prints the summary statistics and forecast summaries similar to the OUTSUM = data set.

ESTIMATES
FORECASTS
PERFORMANCE
PERFORMANCESUMMARY
PERFORMANCEOVERALL STATES

STATISTICS
prints the parameter estimates similar to the OUTEST= data set.
prints the forecasts similar to the OUTFOR= data set.
prints the performance statistics.
prints the performance summary for each BY group.
prints the performance summary for all BY groups.
prints the backcast, initial, and final smoothed states.
prints the statistics of fit similar to the OUTSTAT= data set.

The PRINTDETAILS option is the opposite of the NOOUTALL option. Specifically, if PRINT=FORECASTS and the PRINTDETAILS options are specified in the PROC ESM statement, the one-step-ahead forecasts through the range of the data are printed in addition to the information related to a specific forecasting model, such as the smoothing states. If the PRINTDETAILS option is not specified, only the multistep forecasts are printed.

ODS Table Names

Table 13.3 relates the PRINT= options to ODS tables:

Table 13.3 ODS Tables Produced in PROC ESM

ODS Table Name	Description	PRINT= Option
DescStats	descriptive statistics	SUMMARY
ForecastSummary	forecast summary	SUMMARY
ForecastSummation	forecast summation	SUMMARY
ParameterEstimates	parameter estimates	ESTIMATES
Forecasts	forecasts	FORECASTS
Performance	performance statistics	PERFORMANCE
PerformanceSummary	performance summary	PERFORMANCESUMMARY
PerformanceOverall	performance overall	PERFORMANCEOVERALL
SmoothedStates	smoothed states	STATES
FitStatistics	evaluation statistics of fit	STATISTICS
PerformanceStatistics	performance (out-of-sample) statistics of fit	STATISTICS

The ODS table "ForecastSummary" is related to all time series within a BY group. The other tables are related to a single series within a BY group.

ODS Graphics

This section describes the use of ODS for creating graphics with the ESM procedure.
To request these graphs, you must specify the statement ods graphics on in your SAS program before the PROC ESM statement. In addition, you must specify the PLOT= option in the PROC ESM statement.

ODS Graph Names

PROC ESM assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 13.4.

Table 13.4 ODS Graphics Produced by the PLOT= Option in PROC ESM

ODS Graph Name	Plot Description	PLOT $=$ Option
ErrorACFNORMPlot	standardized autocorrelation of prediction errors	ACF
ErrorACFPlot	autocorrelation of prediction errors	ACF
ErrorHistogram	prediction error histogram	ERRORS
ErrorIACFNORMPlot	standardized inverse autocorrelation of prediction errors	IACF
ErrorIACFPlot	inverse autocorrelation of prediction errors	IACF
ErrorPACFNORMPlot	standardized partial autocorrelation of prediction errors	PACF
ErrorPACFPlot	partial autocorrelation of prediction errors	PACF
ErrorPlot	plot of prediction errors	ERRORS
ErrorWhiteNoiseLogProbPlot	white noise \log probability plot of prediction errors	WN
ErrorWhiteNoiseProbPlot	white noise probability plot of prediction errors	WN
ForecastsOnlyPlot	forecasts only plot	FORECASTSONLY
ForecastsPlot	forecasts plot	FORECASTS
LevelStatePlot	smoothed level state plot	LEVELS
ModelForecastsPlot	model and forecasts plot	MODELFORECASTS
ModelPlot	model plot	MODELS
SeasonStatePlot	smoothed season state plot	SEASONS
TrendStatePlot	smoothed trend state plot	TRENDS

Examples: ESM Procedure

Example 13.1: Forecasting of Time Series Data

This example uses retail sales data to illustrate how the ESM procedure can be used to forecast time series data.

The following DATA step creates a data set from data recorded monthly at numerous points of sales. The data set, SALES, contains a variable DATE that represents time and a variable for each sales item. Each value of the DATE variable is recorded in ascending order, and the values of each of the other variables represent a single time series:

```
data sales;
    format date date9.;
    input date : date9. shoes socks laces dresses
    coats shirts ties belts hats blouses;
datalines;
```

```
... more lines ...
```

The following ESM procedure statements forecast each of the monthly time series:

```
proc esm data=sales out=nextyear;
    id date interval=month;
    forecast _numeric_;
run;
```

The preceding statements generate forecasts for every numeric variable in the input data set SALES for the next twelve months and store these forecasts in the output data set NEXTYEAR.

The following statements plot the forecasts:

```
title1 "Shoe Department Sales";
proc sgplot data=nextyear;
    series x=date y=shoes / markers
                                    markerattrs=(symbol=circlefilled color=red)
                                    lineattrs=(color=red);
    series x=date y=socks / markers
                                    markerattrs=(symbol=asterisk color=blue)
                            lineattrs=(color=blue);
    series x=date y=laces / markers
                    markerattrs=(symbol=circle color=styg)
                    lineattrs=(color=styg);
    refline '01JAN1999'd / axis=x;
    xaxis values=('01JAN1994'd to '01DEC2000'd by year);
    yaxis values=(2000 to 10000 by 1000) minor label='Websites';
run;
```

The plots are shown in Output 13.1.1. The historical data is shown to the left of the reference line and the forecasts for the next twelve monthly periods is shown to the right.

Output 13.1.1 Retail Sales Forecast Plots

The default simple exponential smoothing model is used because the MODEL= option is omitted on the FORECAST statement. Note that for simple exponential smoothing the forecasts are constant.

The following ESM procedure statements are identical to the preceding statements except that the PRINT=FORECASTS option is specified:

```
proc esm data=sales out=nextyear print=forecasts;
    id date interval=month;
    forecast _numeric_;
run;
```

In addition to forecasting each of the monthly time series, the preceding statements print the forecasts by using the Output Delivery System (ODS); the forecasts are partially shown in Output 13.1.2. This output shows the predictions, prediction standard errors, and the upper and lower confidence limits for the next twelve monthly periods.

Output 13.1.2 Forecast Tables

Shoe Department Sales					
The ESM Procedure					
Forecasts for Variable shoes					
Standard					
Obs	Time	Forecasts	Error	95\% Confi	Limits
62	FEB1999	6009.1986	1069.4059	3913.2016	8105.1956
63	MAR1999	6009.1986	1075.7846	3900.6996	8117.6976
64	APR1999	6009.1986	1082.1257	3888.2713	8130.1259
65	MAY1999	6009.1986	1088.4298	3875.9154	8142.4818
66	JUN1999	6009.1986	1094.6976	3863.6306	8154.7666
67	JUL1999	6009.1986	1100.9298	3851.4158	8166.9814
68	AUG1999	6009.1986	1107.1269	3839.2698	8179.1274
69	SEP1999	6009.1986	1113.2895	3827.1914	8191.2058
70	OCT1999	6009.1986	1119.4181	3815.1794	8203.2178
71	NOV1999	6009.1986	1125.5134	3803.2329	8215.1643
72	DEC1999	6009.1986	1131.5758	3791.3507	8227.0465
73	JAN2000	6009.1986	1137.6060	3779.5318	8238.8654

Example 13.2: Forecasting of Transactional Data

This example illustrates how the ESM procedure can be used to forecast transactional data.
The following DATA step creates a data set from data recorded at several Internet Web sites. The data set WEBSITES contains a variable TIME that represents time and the variables ENGINE, BOATS, CARS, and PLANES that represent Internet Web site data. Each value of the TIME variable is recorded in ascending order, and the values of each of the other variables represent a transactional data series.

The following ESM procedure statements forecast each of the transactional data series:

```
proc esm data=websites out=nextweek lead=7;
    id time interval=dtday accumulate=total;
    forecast boats cars planes;
run;
```

The preceding statements accumulate the data into a daily time series, generate forecasts for the BOATS, CARS, and PLANES variables in the input data set WEBSITES for the next week, and the forecasts are stored in the OUT= data set NEXTWEEK.

The following statements plot the forecasts related to the Internet data:

```
title1 "Website Data";
proc sgplot data=nextweek;
series x=time y=boats / markers
                                    markerattrs=(symbol=circlefilled color=red)
                                    lineattrs=(color=red);
series x=time y=cars / markers
                                    markerattrs=(symbol=asterisk color=blue)
                                    lineattrs=(color=blue);
series x=time y=planes / markers
                markerattrs=(symbol=circle color=styg)
                lineattrs=(color=styg);
refline '11APR2000:00:00:00'dt / axis=x;
xaxis values=('13MAR2000:00:00:00'dt to '18APR2000:00:00:00'dt by dtweek);
yaxis label='Websites' minor;
run;
```

The plots are shown in Output 13.2.1. The historical data is shown to the left of the reference line and the forecasts for the next seven days are shown to the right.

Output 13.2.1 Internet Data Forecast Plots

Example 13.3: Specifying the Forecasting Model

This example illustrates how the ESM procedure can be used to specify different models for different series. Internet data from the previous example are used for this illustration.

This example, forecasts the BOATS variable by using the seasonal exponential smoothing model (SEASONAL), the CARS variable by using the Winters (multiplicative) model (MULTWINTERS), and the PLANES variable by using the Log Winters (additive) model. The following ESM procedure statements forecast each of the transactional data series based on these requirements:

```
proc esm data=websites out=nextweek lead=7;
    id time interval=dtday accumulate=total;
    forecast boats / model=seasonal;
    forecast cars / model=multwinters;
    forecast planes / model=addwinters transform=log;
run;
```


Example 13.4: Extending the Independent Variables for Multivariate Forecasts

In the previous example, the ESM procedure was used to forecast several transactional series variables by using univariate models. This example illustrates how the ESM procedure can be used to extend the independent variables that are associated with a multiple regression forecasting problem.

This example accumulates and forecasts the BOATS, CARS, and PLANES variables that were illustrated in the previous example. In addition, this example accumulates the ENGINES variable to form a time series that is then extended with missing values within the forecast horizon with the specification of MODEL=NONE.

```
proc esm data=websites out=nextweek lead=7;
    id time interval=dtday accumulate=total;
    forecast engines / model=none;
    forecast boats / model=seasonal;
    forecast cars / model=multwinters;
    forecast planes / model=addwinters transform=log;
run;
```

The following AUTOREG procedure statements are used to forecast the ENGINES variable by regressing on the independent variables (BOATS, CARS, and PLANES).

```
proc autoreg data= nextweek;
    model engines = boats cars planes / noprint;
    output out=enginehits p=predicted;
run;
```

The NEXTWEEK data set created by PROC ESM is used as an input data set to PROC AUTOREG. The output data set from PROC AUTOREG contains the forecast of the variable ENGINES based on
the regression model with the variables BOATS, CARS, and PLANES as regressors. See Chapter 8, "The AUTOREG Procedure," for details about autoregression models.

The following statements plot the forecasts related to the ENGINES variable:

```
title1 "Website Data";
proc sgplot data=enginehits;
    series x=time y=boats / markers
                                    markerattrs=(symbol=circlefilled color=red)
                                    lineattrs=(color=red);
    series x=time y=cars / markers
                                    markerattrs=(symbol=asterisk color=blue)
                lineattrs=(color=blue);
    series x=time y=planes / markers
                                    markerattrs=(symbol=circle color=styg)
                                    lineattrs=(color=styg);
    scatter x=time y=predicted / markerattrs=(symbol=plus color=black);
    refline '11APR2000:00:00:00'dt / axis=x;
    xaxis values=('13MAR2000:00:00:00'dt to '18APR2000:00:00:00' dt by dtweek);
    yaxis label='Websites' minor;
run;
```

The plots are shown in Output 13.4.1. The historical data is shown to the left of the reference line and the forecasts for the next seven daily periods are shown to the right.

Output 13.4.1 Internet Data Forecast Plots

Example 13.5: Illustration of ODS Graphics

This example illustrates the use of ODS graphics in the ESM procedure and uses the SASHELP.AIR data set to forecast the time series of international airline travel.

The graphical displays are requested by specifying the ods graphics on statement and the PLOTS= option in the PROC ESM statement. In this case, all plots are requested. Output 13.5.1 through Output 13.5.4 show a selection of the plots created.

For information about the graphics available in the ESM procedure, see the section "ODS Graphics" on page 705.

```
proc esm data=sashelp.air out=_null_
    lead=20
    back=20
    print=all
    plots=all;
    id date interval=month;
    forecast air / model=addwinters transform=log;
run;
```

Output 13.5.1 Smoothed Trend Plot

Output 13.5.2 Prediction Error Plot

Output 13.5.3 Prediction Error Standardized ACF Plot

Output 13.5.4 Forecast Plot

Chapter 14

The EXPAND Procedure

Contents

Overview: EXPAND Procedure 720
Getting Started: EXPAND Procedure 721
Converting to Higher Frequency Series 721
Aggregating to Lower Frequency Series 721
Combining Time Series with Different Frequencies 722
Interpolating Missing Values 723
Requesting Different Interpolation Methods 723
Using the ID Statement 724
Specifying Observation Characteristics 724
Converting Observation Characteristics 725
Creating New Variables 726
Transforming Series 726
Syntax: EXPAND Procedure 727
Functional Summary 728
PROC EXPAND Statement 728
BY Statement 731
CONVERT Statement 732
ID Statement 733
Details: EXPAND Procedure 733
Frequency Conversion 733
Identifying Observations 735
Range of Output Observations 736
Extrapolation 736
OBSERVED= Option 737
Conversion Methods 739
Transformation Operations 742
OUT= Data Set 756
OUTEST= Data Set 756
ODS Graphics 757
Examples: EXPAND Procedure 760
Example 14.1: Combining Monthly and Quarterly Data 760
Example 14.2: Illustration of ODS Graphics 762
Example 14.3: Interpolating Irregular Observations 766
Example 14.4: Using Transformations 769
References 770

Overview: EXPAND Procedure

The EXPAND procedure converts time series from one sampling interval or frequency to another and interpolates missing values in time series. A wide array of data transformations is also supported. Using PROC EXPAND, you can collapse time series data from higher frequency intervals to lower frequency intervals, or expand data from lower frequency intervals to higher frequency intervals. For example, quarterly values can be aggregated to produce an annual series, or quarterly estimates can be interpolated from an annual series.

Time series frequency conversion is useful when you need to combine series with different sampling intervals into a single data set. For example, if you need as input to a monthly model a series that is only available quarterly, you might use PROC EXPAND to interpolate the needed monthly values.

You can also interpolate missing values in time series, either without changing series frequency or in conjunction with expanding or collapsing the series.

You can convert between any combination of input and output frequencies that can be specified by SAS time interval names. (See Chapter 4, "Date Intervals, Formats, and Functions," for a complete description of SAS interval names.) When the $\mathrm{FROM}=$ and $\mathrm{TO}=$ options are used to specify from and to intervals, PROC EXPAND automatically accounts for calendar effects such as the differing number of days in each month and leap years.

The EXPAND procedure also handles conversions of frequencies that cannot be defined by standard interval names. Using the FACTOR= option, you can interpolate any number of output observations for each group of a specified number of input observations. For example, if you specify the option FACTOR=(13:2), 13 equally spaced output observations are interpolated from each pair of input observations.

You can also convert aperiodic series, observed at arbitrary points in time, into periodic estimates. For example, a series of randomly timed quality control spot-check results might be interpolated to form estimates of monthly average defect rates.

The EXPAND procedure can also change the observation characteristics of time series. Time series observations can measure beginning-of-period values, end-of-period values, midpoint values, or period averages or totals. PROC EXPAND can convert between these cases. You can construct estimates of interval averages from end-of-period values of a variable, estimate beginning-of-period or midpoint values from interval averages, or compute averages from interval totals, and so forth.

By default, the EXPAND procedure fits cubic spline curves to the nonmissing values of variables to form continuous-time approximations of the input series. Output series are then generated from the spline approximations. Several alternate conversion methods are described in the section "Conversion Methods" on page 739. You can also interpolate estimates of the rate of change of time series by differentiating the interpolating spline curve.

Various transformations can be applied to the input series prior to interpolation and to the interpolated output series. For example, the interpolation process can be modified by transforming the input series, interpolating the transformed series, and applying the inverse of the input transformation to the output series. PROC EXPAND can also be used to apply transformations to time series without interpolation or frequency conversion.

The results of the EXPAND procedure are stored in a SAS data set. No printed output is produced.

Getting Started: EXPAND Procedure

Converting to Higher Frequency Series

To create higher frequency estimates, specify the input and output intervals with the FROM= and TO= options, and list the variables to be converted in a CONVERT statement. For example, suppose variables X, Y, and Z in the data set ANNUAL are annual time series, and you want monthly estimates. You can interpolate monthly estimates by using the following statements:

```
proc expand data=annual out=monthly from=year to=month;
    convert x y z;
run;
```

Note that interpolating values of a time series does not add any real information to the data as the interpolation process is not the same process that generated the other (nonmissing) values in the series. While time series interpolation can sometimes be useful, great care is needed in analyzing time series containing interpolated values.

Aggregating to Lower Frequency Series

PROC EXPAND provides two ways to convert from a higher frequency to a lower frequency. When a curve fitting method is used, converting to a lower frequency is no different than converting to a higher frequency-you just specify the desired output frequency with the $\mathrm{TO}=$ option. This provides for interpolation of missing values and allows conversion from non-nested intervals, such as converting from weekly to monthly values.

Alternatively, you can specify simple aggregation or selection without interpolation of missing values. This might be useful, for example, if you want to add up monthly values to produce annual totals, but want the annual output data set to contain values only for complete years.

To perform simple aggregation, use the METHOD=AGGREGATE option in the CONVERT statement. For example, the following statements aggregate monthly values to yearly values:

```
proc expand data=monthly out=annual
    from=month to=year;
    convert x y z / method=aggregate;
    convert a b c / method=aggregate observed=total;
    id date;
run;
```

This example assumes that the variables X, Y, and Z represent point-in-time values observed at the beginning of each month, and that the desired results are point-in-time values observed at the beginning of each year. (The default value of the OBSERVED= option is OBSERVED=(BEGINNING,BEGINNING).) The variables A, B, and C are assumed to represent monthly totals, and that the desired results are annual totals; therefor the option OBSERVED=TOTAL is specified. See the section "Specifying Observation Characteristics" on page 724 for more information on the OBSERVED= option.

Note that the AGGREGATE method can be used only if the input intervals are nested within the output intervals, as when converting from daily to monthly or from monthly to yearly frequency.

Combining Time Series with Different Frequencies

One important use of PROC EXPAND is to combine time series measured at different sampling frequencies. For example, suppose you have data on monthly money stocks (M1), quarterly gross domestic product (GDP), and weekly interest rates (INTEREST), and you want to perform an analysis of a model that uses all these variables. To perform the analysis, you first need to convert the series to a common frequency and then combine the variables into one data set.

The following statements illustrate this process for the three data sets QUARTER, MONTHLY, and WEEKLY. The data sets QUARTER and WEEKLY are converted to monthly frequency using two PROC EXPAND steps, and the three data sets are then merged using a DATA step MERGE statement to produce the data set COMBINED. The quarterly GDP data are interpolated as the total GDP over each month (OBSERVED=TOTAL) while the weekly INTEREST data are converted to average rates over each month (OBSERVED=AVERAGE).

```
proc expand data=quarter out=temp1
    from=qtr to=month;
    id date;
    convert gdp / observed=total;
run;
proc expand data=weekly out=temp2
            from=week to=month;
    id date;
    convert interest / observed=average;
run;
data combined;
    merge monthly temp1 temp2;
    by date;
run;
```

See Chapter 3, "Working with Time Series Data," for further discussion of time series periodicity, time series dating, and time series interpolation. See the section "Specifying Observation Characteristics" on page 724 for more information on the OBSERVED= option.

Interpolating Missing Values

To interpolate missing values in time series without converting the observation frequency, leave off the TO= option on the PROC EXPAND statement. For example, the following statements interpolate any missing values in the time series in the data set ANNUAL.

```
proc expand data=annual out=new from=year;
    id date;
    convert x y z;
    convert a b c / observed=total;
run;
```

This example assumes that the variables X, Y, and Z represent point-in-time values observed at the beginning of each year. (The default value of the OBSERVED= option is OBSERVED=BEGINNING.) The variables A, B, and C are assumed to represent annual totals.

To interpolate missing values in variables observed at specific points in time, omit both the FROM= and $\mathrm{TO}=$ options and use the ID statement to supply time values for the observations. The observations do not need to be periodic or form regular time series, but the data set must be sorted by the ID variable. For example, the following statements interpolate any missing values in the numeric variables in the data set A .

```
proc expand data=a out=b;
    id date;
run;
```

If the observations are equally spaced in time, and all the series are observed as beginning-ofperiod values, only the input and output data sets need to be specified. For example, the following statements interpolate any missing values in the numeric variables in the data set A using a cubic spline function, assuming that the observations are at equally spaced points in time.

```
proc expand data=a out=b;
run;
```

Refer to the section "Missing Values" on page 748 for further information.

Requesting Different Interpolation Methods

By default, a cubic spline curve is fit to the input series, and the output is computed from this interpolating curve. Other interpolation methods can be specified with the METHOD= option on the CONVERT statement. The section "Conversion Methods" on page 739 explains the available methods.

For example, the following statements convert annual series to monthly series using linear interpolation instead of cubic spline interpolation.

```
proc expand data=annual out=monthly from=year to=month;
    id date;
    convert x y z / method=join;
run;
```


Using the ID Statement

An ID statement is normally used with PROC EXPAND to specify a SAS date or datetime variable to identify the time of each input observation. An ID variable allows PROC EXPAND to do the following:

- identify the observations in the output data set
- determine the time span between observations and detect gaps in the input series caused by omitted observations
- account for calendar effects such as the number of days in each month and leap years

If you do not specify an ID variable with SAS date or datetime values, PROC EXPAND makes default assumptions that may not be what you want. See the section "ID Statement" on page 733 for details.

Specifying Observation Characteristics

It is important to distinguish between variables that are measured at points in time and variables that represent totals or averages over an interval. Point-in-time values are often called stocks or levels. Variables that represent totals or averages over an interval are often called flows or rates.

For example, the annual series U.S. Gross Domestic Product represents the total value of production over the year and also the yearly average rate of production in dollars per year. However, a monthly variable inventory may represent the cost of a stock of goods as of the end of the month.

When the data represent periodic totals or averages, the process of interpolation to a higher frequency is sometimes called distribution, and the total values of the larger intervals are said to be distributed to the smaller intervals. The process of interpolating periodic total or average values to lower frequency estimates is sometimes called aggregation.

By default, PROC EXPAND assumes that all time series represent beginning-of-period point-intime values. If a series does not measure beginning of period point-in-time values, interpolation of the data values using this assumption is not appropriate, and you should specify the correct observation characteristics of the series. The observation characteristics of the series are specified with the OBSERVED= option on the CONVERT statement.

For example, suppose that the data set ANNUAL contains variables A, B, and C that measure yearly totals, while the variables X, Y, and Z measure first-of-year values. The following statements
estimate the contribution of each month to the annual totals in A, B, and C , and interpolate first-ofmonth estimates of X, Y, and Z .

```
proc expand data=annual out=monthly
    from=year to=month;
    id date;
    convert x y z;
    convert a b c / observed=total;
run;
```

The EXPAND procedure supports five different observation characteristics. The OBSERVED= value options for these five observation characteristics are:

BEGINNING beginning-of-period values
MIDDLE period midpoint values
END end-of-period values
TOTAL period totals
AVERAGE period averages
The interpolation of each series is adjusted appropriately for its observation characteristics. When OBSERVED=TOTAL or AVERAGE is specified, the interpolating curve is fit to the data values so that the area under the curve within each input interval equals the value of the series. For OBSERVED=MIDDLE or END, the curve is fit through the data points, with the time position of each data value placed at the specified offset from the start of the interval.

See the section "OBSERVED= Option" on page 737 for details.

Converting Observation Characteristics

The EXPAND procedure can be used to interpolate values for output series with different observation characteristics than the input series. To change observation characteristics, specify two values in the OBSERVED= option. The first value specifies the observation characteristics of the input series; the second value specifies the observation characteristics of the output series.

For example, the following statements convert the period total variable A in the data set ANNUAL to yearly midpoint estimates. This example does not change the series frequency, and the other variables in the data set are copied to the output data set unchanged.

```
proc expand data=annual out=new from=year;
    id date;
    convert a / observed=(total,middle);
run;
```


Creating New Variables

You can use the CONVERT statement to name a new variable to contain the results of the conversion. Using this feature, you can create several different versions of a series in a single PROC EXPAND step. Specify the new name after the input variable name and an equal sign:

```
convert variable=newname ... ;
```

For example, suppose you are converting quarterly data to monthly and you want both first-ofmonth and midmonth estimates for a beginning-of-period variable X . The following statements perform this task:

```
proc expand data=a out=b
    from=qtr to=month;
    id date;
    convert x=x_begin / observed=beginning;
    convert x=x_mid / observed=(beginning,middle);
run;
```


Transforming Series

The interpolation methods used by PROC EXPAND assume that there are no restrictions on the range of values that series can have. This assumption can sometimes cause problems if the series must be within a certain range.

For example, suppose you are converting monthly sales figures to weekly estimates. Sales estimates should never be less than zero, but since the spline curve ignores this restriction some interpolated values may be negative. One way to deal with this problem is to transform the input series before fitting the interpolating spline and then reverse transform the output series.

You can apply various transformations to the input series using the TRANSFORMIN= option on the CONVERT statement. (The TRANSFORMIN= option can be abbreviated as TRANSFORM= or TIN=.) You can apply transformations to the output series using the TRANSFORMOUT= option. (The TRANSFORMOUT= option can be abbreviated as TOUT=.)

For example, you might use a logarithmic transformation of the input sales series and exponentiate the interpolated output series. The following statements fit a spline curve to the log of SALES and then exponentiate the output series.

```
proc expand data=a out=b from=month to=week;
    id date;
    convert sales / observed=total
                                    transformin=(log)
                                    transformout=(exp);
run;
```

Note that the transformations specified by the TRANSFORMIN= option are applied before the data are interpolated; the cubic spline curve or other interpolation method is fitted to transformed input data. The transformations specified by the TRANSFORMOUT= option are applied to interpolated values computed from the curves fit to the transformed input data.

As another example, suppose you are interpolating missing values in a series of market share estimates. Market shares must be between 0% and 100%, but applying a spline interpolation to the raw series can produce estimates outside of this range.

The following statements use the logistic transformation to transform proportions in the range 0 to 1 to values in the range $-\infty$ to $+\infty$. The TIN=option first divides the market shares by 100 to rescale percent values to proportions and then applies the LOGIT function. The TOUT= option applies the inverse logistic function ILOGIT to the interpolated values to convert back to proportions and then multiplies by 100 to rescale back to percentages.

```
proc expand data=a out=b;
    id date;
    convert mshare / tin=( / 100 logit )
        tout=( ilogit * 100 );
run;
```

When more than one transformation is specified in the TRANSFORMIN= or TRANSFORMOUT= option, the transformations are applied in the order in which they are listed. Thus in the above example the complete input transformation is logit(mshare/100) (and not logit(mshare)/100) because the division operation is listed first in the TIN= option.

You can also use the TRANSFORM= (or TRANSFORMOUT=) option as a convenient way to do calculations normally performed with the SAS DATA step. For example, the following statements add the lead of X to the data set A . The METHOD=NONE option is used to suppress interpolation.

```
proc expand data=a method=none;
    id date;
    convert x=xlead / transform=(lead);
run;
```

Any number of operations can be listed in the TRANSFORMIN= and TRANSFORMOUT= options. See Table 14.2 for a list of the operations supported.

Syntax: EXPAND Procedure

The EXPAND procedure uses the following statements:

```
PROC EXPAND options;
```

BY variables ;
CONVERT variables / options;
ID variable;

Functional Summary

The statements and options controlling the EXPAND procedure are summarized in the following table.

Description	Statement	Option

Statements

specify options
specify BY-group processing
specify conversion options
specify the ID variable
Data Set Options
specify the input data set
extrapolate values before or after input series
specify the output data set
write interpolating functions to a data set

Input and Output Frequencies

control the alignment of SAS Date values
specify frequency conversion factor
specify input frequency
specify output frequency

Interpolation Control Options

specify interpolation method for all series
specify interpolation method for series
specify observation characteristics for series
specify observation characteristics for series
specify transformations of the input series
specify transformations of the output series

PROC EXPAND
BY
CONVERT
ID

PROC EXPAND DATA=
PROC EXPAND EXTRAPOLATE
PROC EXPAND OUT=
PROC EXPAND OUTEST=

PROC EXPAND	ALIGN=
PROC EXPAND	FACTOR $=$
PROC EXPAND	FROM $=$
PROC EXPAND	TO $=$

PROC EXPAND METHOD=
CONVERT METHOD=
PROC EXPAND OBSERVED=
CONVERT OBSERVED=
CONVERT TRANSFORMIN=
CONVERT TRANSFORMOUT=

Graphical Output Control Options

specify graphical output
PROC EXPAND PLOTS=

PROC EXPAND Statement

PROC EXPAND options;
The following options can be used with the PROC EXPAND statement:

Data Set Options

DATA $=$ SAS-data-set

names the input data set. If the DATA= option is omitted, the most recently created SAS data set is used.

OUT= SAS-data-set

names the output data set containing the resulting time series. If OUT= is not specified, the data set is named using the DATA n convention. See the section "OUT= Data Set" on page 756 for details.

OUTEST= SAS-data-set

names an output data set containing the coefficients of the spline curves fit to the input series. If the OUTEST= option is not specified, the spline coefficients are not output. See the section "OUTEST= Data Set" on page 756 for details.

Options That Define Input and Output Frequencies

ALIGN= option

controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the following values: BEGINNING | BEG | B, MIDDLE \mid MID $\mid \mathrm{M}$, and ENDING | END | E. BEGINNING is the default.

FACTOR= n

FACTOR=($n: m$)

specifies the number of output observations to be created from the input observations. FACTOR $=n$ specifies that n output observations are to be produced for each input observation. FACTOR $=(n: m)$ specifies that n output observations are to be produced for each group of m input observations. $\mathrm{FACTOR}=n$ is the same as $\mathrm{FACTOR}=(n: 1)$.

In the FACTOR=() option, a comma can be used instead of a colon or the delimiter can be omitted. Thus FACTOR $=(n, m)$ or FACTOR $=(n m)$ is the same as FACTOR $=(n: m)$.

The FACTOR= option cannot be used if the TO= option is used. The default value is FACTOR=(1:1). For more information, see the section "Frequency Conversion" on page 733.

FROM= interval

specifies the time interval between observations in the input data set. Examples of FROM= values are YEAR, QTR, MONTH, DAY, and HOUR. See Chapter 4, "Date Intervals, Formats, and Functions," for a complete description and examples of interval specifications.

TO= interval

specifies the time interval between observations in the output data set. By default, the $\mathrm{TO}=$ interval is generated from the combination of the FROM= and the FACTOR= values or is set to be the same as the FROM= value if FACTOR= is not specified. See Chapter 4, "Date Intervals, Formats, and Functions," for a description of interval specifications.

Options to Control the Interpolation

EXTRAPOLATE

specifies that missing values at the beginning or end of input series be replaced with values produced by a linear extrapolation of the interpolating curve fit to the input series. See the section "Extrapolation" on page 736 later in this chapter for details.

By default, PROC EXPAND avoids extrapolating values beyond the first or last input value for a series and only interpolates values within the range of the nonmissing input values. Note that the extrapolated values are often not very accurate and for the SPLINE method the EXTRAPOLATE option results may be very unreasonable. The EXTRAPOLATE option is rarely used.

METHOD= option

METHOD=SPLINE (constraint < , constraint >)
specifies the method used to convert the data series. The methods supported are SPLINE, JOIN, STEP, AGGREGATE, and NONE. The METHOD= option specified on the PROC EXPAND statement can be overridden for particular series by the METHOD $=$ option on the CONVERT statement. The default is METHOD=SPLINE. The constraint specifications for METHOD=SPLINE can have the values NOTAKNOT (the default), NATURAL, SLOPE=value, and/or CURVATURE=value. See the section "Conversion Methods" on page 739 for more information about these methods.

OBSERVED= value
OBSERVED=(from-value, to-value)
indicates the observation characteristics of the input time series and of the output series. Specifying the OBSERVED= option on the PROC EXPAND statement sets the default OBSERVED= value for subsequent CONVERT statements. See the sections "CONVERT Statement" on page 732 and "OBSERVED= Option" on page 737 later in this chapter for details. The default is OBSERVED=BEGINNING.

Options to Control Graphical Output

PLOTS= option | (options)

specifies the graphical output desired. If the PLOTS= option is used, the specified graphical output is produced for each output variable specified by a CONVERT statement. By default, the EXPAND procedure produces no graphical output. The following PLOTS $=$ options are available. Required options are listed in parentheses in the plot descriptions when necessary.

INPUT
TRANSFORMIN
CROSSINPUT

JOINTINPUT
plots the input series
plots the transformed input series (TRANSFORMIN= option)
plots both the input series and the transformed input series on one plot with two Y axis. The input and transformed series are shown on separate scales. (TRANSFORMIN= option)
plots both the input series and the transformed input series on one plot with one Y axis. The input and transformed series are shown on the same scale. (TRANSFORMIN= option)

CONVERTED plots the converted series, after input transformations and interpolation but before any TRANSFORMOUT= transformations are applied (METHOD=option)

TRANSFORMOUT plots the transformed output series (TRANSFORMOUT= option)

CROSSOUTPUT

JOINTOUTPUT

OUTPUT

ALL
plots both the converted series and the transformed output series on one plot with two Y axis. The converted and transformed output series are shown on separate scales. (TRANSFORMOUT= option)
plots both the converted series and the transformed output series on one plot with one Y axis. The converted and transformed output series are shown on the same scale. (TRANSFORMOUT= option)
plots the series stored in the OUT= data set (combination of TRANSFORMIN=, METHOD=, and TRANFORMOUT= options)
produces all plots except the Joint and Cross plots. (Same as PLOTS=(INPUT TRANFORMIN CONVERTED TRANSFORMOUT).)

The PLOTS= option produces results associated with each CONVERT statement output variable and the options listed in the PLOTS= specification. See the section "PLOTS= Option Details" on page 758 for more information.

BY Statement

BY variables ;
A BY statement can be used with PROC EXPAND to obtain separate analyses on observations in groups defined by the BY variables. The input data set must be sorted by the BY variables and be sorted by the ID variable within each BY group.

Use a BY statement when you want to interpolate or convert time series within levels of a crosssectional variable. For example, suppose you have a data set STATE containing annual estimates of average disposable personal income per capita (DPI) by state and you want quarterly estimates by state. These statements convert the DPI series within each state:

```
proc sort data=state;
    by state date;
run;
proc expand data=state out=stateqtr from=year to=qtr;
    convert dpi;
    by state;
    id date;
run;
```


CONVERT Statement

$$
\text { CONVERT variable }=\text { newname } \ldots</ \text { options }>\text {; }
$$

The CONVERT statement lists the variables to be processed. Only numeric variables can be processed.

For each of the variables listed, a new variable name can be specified after an equal sign to name the variable in the output data set that contains the converted values. If a name for the output series is not given, the variable in the output data set has the same name as the input variable. Variable lists may be used only when no name is given for the output series.

For example, variable lists can be specified as follows:

```
convert y1-y25 / observed=(beginning,end);
convert x--a / observed=average;
convert x-numeric-a / observed=average;
```

Any number of CONVERT statements can be used. If no CONVERT statement is used, all the numeric variables in the input data set except those appearing in the BY and ID statements are processed.

The following options can be used with the CONVERT statement.

METHOD = option

METHOD=SPLINE(constraint < , constraint >)

specifies the method used to convert the data series. (The method specified by the METHOD= option is applied to the input data series after applying any transformations specified by the TRANSFORMIN= option.) The methods supported are SPLINE, JOIN, STEP, AGGREGATE, and NONE. The METHOD = option specified on the PROC EXPAND statement can be overridden for particular series by the METHOD = option on the CONVERT statement. The default is METHOD=SPLINE. The constraint specifications for METHOD=SPLINE can have the values NOTAKNOT (the default), NATURAL, SLOPE=value, and/or CURVATURE=value. See the section "Conversion Methods" on page 739 section for more information about these methods.

OBSERVED= value

OBSERVED=(from-value , to-value)
indicates the observation characteristics of the input time series and of the output series. The values supported are TOTAL, AVERAGE, BEGINNING, MIDDLE, and END. In addition, DERIVATIVE can be specified as the to-value when the SPLINE method is used.

When only one values is specified, that value specifies both the from-value and the tovalue. (That is, OBSERVED=value is equivalent to OBSERVED=(value,value).) If the OBSERVED = option is omitted form both the PROC EXPAND and the CONVERT statements, the default is OBSERVED=(BEGINNING,BEGINNING). See the section "OBSERVED= Option" on page 737 later in this chapter for details.

TRANSFORMIN=(operation ...)

specifies a list of transformations to be applied to the input series before the interpolating function is fit. The operations are applied in the order listed. See the section "Transformation Operations" on page 742 later in this chapter for the operations that can be specified. The TRANSFORMIN = option can be abbreviated as TRANSIN=, TIN=, or TRANSFORM=.

TRANSFORMOUT=(operation ...)

specifies a list of transformations to be applied to the output series. The operations are applied in the order listed. See the section "Transformation Operations" on page 742 later in this chapter for the operations that can be specified. The TRANSFORMOUT= option can be abbreviated as TRANSOUT $=$, or TOUT $=$.

ID Statement

ID variable ;
The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable's values are assumed to be SAS date or datetime values.

The input data must form time series. This means that the observations in the input data set must be sorted by the ID variable (within the BY variables, if any). Moreover, there should be no duplicate observations, and no two observations should have ID values within the same time interval as defined by the $\mathrm{FROM}=$ option.

If the ID statement is omitted, SAS date or datetime values are generated to label the input observations. These ID values are generated by assuming that the input data set starts at a SAS date value of 0 , that is, 1 January 1960. This default starting date is then incremented for each observation by the FROM= interval (using the same logic as DATA step INTNX function). If the FROM= option is not specified, the ID values are generated as the observation count minus 1 . When the ID statement is not used, an ID variable is added to the output data set named either DATE or DATETIME, depending on the value specified in the $\mathrm{TO}=$ option. If neither the $\mathrm{TO}=$ option nor the $\mathrm{FROM}=$ option is given, the ID variable in the output data set is named TIME.

Details: EXPAND Procedure

Frequency Conversion

Frequency conversion is controlled by the $\mathrm{FROM}=$, $\mathrm{TO}=$, and $\mathrm{FACTOR}=$ options. The possible combinations of these options are explained in the following:

None Used
If $\mathrm{FROM}=, \mathrm{TO}=$, and $\mathrm{FACTOR}=$ are not specified, no frequency conversion is done. The data are
processed to interpolate any missing values and perform any specified transformations. Each input observation produces one output observation.

FACTOR $=(n: m)$

FACTOR $=(n: m)$ specifies that n output observations are produced for each group of m input observations. The fraction m / n is reduced first: thus FACTOR=(10:6) is equivalent to FACTOR=(5:3). Note that if $m / n=1$, the result is the same as the case given previously under "None Used".

FROM=interval

The FROM = option used alone establishes the frequency and interval widths of the input observations. Missing values are interpolated, and any specified transformations are performed, but no frequency conversion is done.

TO=interval

When the $\mathrm{TO}=$ option is used without the $\mathrm{FROM}=$ option, output observations with the $\mathrm{TO}=$ frequency are generated over the range of input ID values. The first output observation is for the $\mathrm{TO}=$ interval containing the ID value of the first input observation; the last output observation is for the TO= interval containing the ID value of the last input observation. The input observations are not assumed to form regular time series and may represent aperiodic points in time. An ID variable is required to give the date or datetime of the input observations.

FROM=interval TO=interval

When both the $\mathrm{FROM}=$ and $\mathrm{TO}=$ options are used, the input observations have the frequency given by the FROM= interval, and the output observations have the frequency given by the $\mathrm{TO}=$ interval.

FROM=interval FACTOR=(n:m)

When both the FROM= and FACTOR= options are used, a TO= interval is inferred from the combination of the FROM=interval and the $\operatorname{FACTOR}=(n: m)$ values specified. For example, FROM=YEAR FACTOR=4 is the same as FROM=YEAR TO=QTR. Also, FROM=YEAR FACTOR=(3:2) is the same as $\mathrm{FROM}=$ YEAR used with $\mathrm{TO}=\mathrm{MONTH} 8$. Once the implied TO= interval is determined, this combination operates the same as if $\mathrm{FROM}=$ and $\mathrm{TO}=$ had been specified. If no valid $\mathrm{TO}=$ interval can be constructed from the combination of the $\mathrm{FROM}=$ and $\mathrm{FACTOR}=$ options, an error is produced.

TO=interval FACTOR=(n:m)

The combination of the $\mathrm{TO}=$ option and the $\mathrm{FACTOR}=$ option is not allowed and produces an error.

ALIGN= option

Controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the following values: BEGINNING \mid BEG $|\mathrm{B}, \operatorname{MIDDLE}| \mathrm{MID} \mid \mathrm{M}$, and ENDING \mid END \mid E. BEGINNING is the default.

Converting to a Lower Frequency

When converting to a lower frequency, the results are either exact or approximate, depending on whether or not the input interval nests within the output interval and depending on the need to interpolate missing values within the series. If the $\mathrm{TO}=$ interval is nested within the $\mathrm{FROM}=$ interval (as when converting from monthly to yearly), and if there are no missing input values or partial periods, the results are exact.

When values are missing or the $\mathrm{FROM}=$ interval is not nested within the $\mathrm{TO}=$ interval (as when aggregating from weekly to monthly), the results depend on an interpolation. The METHOD=AGGREGATE option always produces exact results, never an interpolation. However, this method can only be used if the $\mathrm{FROM}=$ interval is nested within the $\mathrm{TO}=$ interval.

Identifying Observations

The variable specified in the ID statement is used to identify the observations. Usually, SAS date or datetime values are used for this variable. PROC EXPAND uses the ID variable to do the following:

- identify the time interval of the input values
- validate the input data set observations
- compute the ID values for the observations in the output data set

Identifying the Input Time Intervals

When the FROM= option is specified, observations are understood to refer to the whole time interval and not to a single time point. The ID values are interpreted as identifying the FROM= time interval containing the value. In addition, the widths of these input intervals are used by the OBSERVED= values TOTAL, AVERAGE, MIDDLE, and END.

For example, if FROM=MONTH is specified, then each observation is for the whole calendar month containing the ID value for the observation, and the width of the time interval covered by the observation is the number of days in that month. Therefore, if FROM=MONTH, the ID value '31MAR92'D is equivalent to the ID value '1MAR92'D-both of these ID values identify the same interval, March of 1992.

Widths of Input Time Intervals

When the FROM= option is not specified, the ID variable values are usually interpreted as referring to points in time. However, if an OBSERVED= option value is specified that assumes the observations refer to whole intervals and also requires interval widths (TOTAL or AVERAGE), then, in the absence of the FROM= specification, interval widths are assumed to be the time span between ID values. For the last observation, the interval width is assumed to be the same as for the next to last observation. (If neither the FROM= option nor the ID statement are specified, interval widths are assumed to be 1.0.) A note is printed in the SAS log warning that this assumption is made.

Validating the Input Data Set Observations

The ID variable is used to verify that successive observations read from the input data set correspond to sequential FROM= intervals. When the FROM= option is not used, PROC EXPAND verifies
that the ID values are nonmissing and in ascending order. An error message is produced and the observation is ignored when an invalid ID value is found in the input data set.

ID values for Observations in the Output Data Set

The time unit used for the ID variable in the output data set is controlled by the interval value specified by the $\mathrm{TO}=$ option. If you specify a date interval for the $\mathrm{TO}=$ value, the ID variable values in the output data set are SAS date values. If you specify a datetime interval for the $\mathrm{TO}=$ value, the ID variable values in the output data set are SAS datetime values.

The date or datetime values for the ID variable for output observations is the first date or datetime of the $\mathrm{TO}=$ interval, unless the ALIGN= option is used to specify a different alignment. (For example, if TO=WEEK is specified, then the output dates are Sundays. If TO=WEEK. 2 is specified, then the output date are Mondays.) See Chapter 4, "Date Intervals, Formats, and Functions," for more information on interval specifications.

Range of Output Observations

If no frequency conversion is done, the range of output observations is the same as in the input data set.

When frequency conversion is done, the observations in the output data set range from the earliest start of any result series to the latest end of any result series. Observations at the beginning or end of the input range for which all result values are missing are not written to the OUT= data set.

When the EXTRAPOLATE option is not used, the range of the nonmissing output results for each series is as follows. The first result value is for the TO= interval that contains the ID value of the start of the FROM= interval containing the ID value of the first nonmissing input observation for the series. The last result value is for the $\mathrm{TO}=$ interval that contains the end of the $\mathrm{FROM}=$ interval containing the ID value of the last nonmissing input observation for the series.

When the EXTRAPOLATE option is used, result values for all series are computed for the full time range covered by the input data set.

Extrapolation

The spline functions fit by the EXPAND procedure are very good at approximating continuous curves within the time range of the input data but poor at extrapolating beyond the range of the data. The accuracy of the results produced by PROC EXPAND may be somewhat less at the ends of the output series than at time periods for which there are several input values at both earlier and later times. The curves fit by PROC EXPAND should not be used for forecasting.

PROC EXPAND normally avoids extrapolation of values beyond the time range of the nonmissing input data for a series, unless the EXTRAPOLATE option is used. However, if the start or end of
the input series does not correspond to the start or end of an output interval, some output values may depend in part on an extrapolation.

For example, if FROM=YEAR, TO=WEEK, and OBSERVED=BEGINNING are specified, then the first observation output for a series is for the week of 1 January of the first nonmissing input year. If 1 January of that year is not a Sunday, the beginning of this week falls before the date of the first input value, and therefore a beginning-of-period output value for this week is extrapolated.

This extrapolation is made only to the extent needed to complete the terminal output intervals that overlap the endpoints of the input series and is limited to no more than the width of one FROM= interval or one $\mathrm{TO}=$ interval, whichever is less. This restriction of the extrapolation to complete terminal output intervals is applied to each series separately, and it takes into account the OBSERVED $=$ option for the input and output series.

When the EXTRAPOLATE option is used, the normal restriction on extrapolation is overridden. Output values are computed for the full time range covered by the input data set.

For the SPLINE method, extrapolation is performed by a linear projection of the trend of the cubic spline curve fit to the input data, not by extrapolation of the first and last cubic segments.

The EXTRAPLOTE option should be used with caution.

OBSERVED= Option

The values of the CONVERT statement OBSERVED= option are as follows:
BEGINNING indicates that the data are beginning-of-period values. OBSERVED=BEGINNING is the default.
MIDDLE indicates that the data are period midpoint values.
ENDING indicates that the data represent end-of-period values.
TOTAL indicates that the data values represent period totals for the time interval corresponding to the observation.

AVERAGE indicates that the data values represent period averages.
DERIVATIVE requests that the output series be the derivatives of the cubic spline curve fit to the input data by the SPLINE method.

If only one value is specified in the OBSERVED= option, that value applies to both the input and the output series. For example, OBSERVED=TOTAL is the same as OBSERVED=(TOTAL,TOTAL), which indicates that the input values represent totals over the time intervals corresponding to the input observations, and the converted output values also represent period totals. The value DERIVATIVE can be used only as the second OBSERVED= option value, and it can be used only when METHOD=SPLINE is specified or is the default method.

Since the TOTAL, AVERAGE, MIDDLE, and END cases require that the width of each input interval be known, both the FROM= option and an ID statement are normally required if one of these observation characteristics is specified for any series. However, if the FROM= option is not
specified, each input interval is assumed to extend from the ID value for the observation to the ID value of the next observation, and the width of the interval for the last observation is assumed to be the same as the width for the next to last observation.

Scale of OBSERVED=AVERAGE Values

The average values are assumed to be expressed in the time units defined by the $\mathrm{FROM}=$ or $\mathrm{TO}=\mathrm{op}-$ tion. That is, the product of the average value for an interval and the width of the interval is assumed to equal the total value for the interval. For purposes of interpolation, OBSERVED=AVERAGE values are first converted to OBSERVED=TOTAL values using this assumption, and then the interpolated totals are converted back to averages by dividing by the widths of the output intervals.

For example, suppose the options $\mathrm{FROM}=\mathrm{MONTH}, \mathrm{TO}=\mathrm{HOUR}$, and OBSERVED=AVERAGE are specified. Since FROM=MONTH is specified, each input value is assumed to represent an average rate per day such that the product of the value and the number of days in the month is equal to the total for the month. The input values are assumed to represent a per-day rate because FROM=MONTH implies SAS date ID values that measure time in days, and therefore the widths of MONTH intervals are measured in days. If FROM=DTMONTH is used instead, the values are assumed to represent a per-second rate, because the widths of DTMONTH intervals are measured in seconds.

Since $\mathrm{TO}=\mathrm{HOUR}$ is specified, the output values are scaled as an average rate per second such that the product of each output value and the number of seconds in an hour (3600) is equal to the interpolated hourly total. A per-second rate is used because TO=HOUR implies SAS datetime ID values that measure time in seconds, and therefore the widths of HOUR intervals are measured in seconds.

Note that the scale assumed for OBSERVED=AVERAGE data is important only when converting between AVERAGE and another OBSERVED= option, or when converting between SAS date and SAS datetime ID values. When both the input and the output series are AVERAGE values, and the units for the ID values are not changed, the scale assumed does not matter.

For example, suppose you are converting gross domestic product (GDP) from quarterly to monthly. The GDP values are quarterly averages measured at annual rates. If you want the interpolated monthly values to also be measured at annual rates, then the option OBSERVED=AVERAGE works fine. Since there is no change of scale involved in this problem, it makes no difference that PROC EXPAND assumes daily rates instead of annual rates.

However, suppose you want to convert GDP from quarterly to monthly and also convert from annual rates to monthly rates, so that the result is total gross domestic product for the month. Using the option OBSERVED=(AVERAGE,TOTAL) would fail, because PROC EXPAND assumes the average is scaled to daily, not annual, rates.

One solution is to rescale to quarterly totals and treat the data as totals. You could use the options TRANSFORMIN=(/ 4) OBSERVED=TOTAL. Alternatively, you could treat the data as averages but first convert to daily rates. In this case you would use the options TRANSFORMIN=(/ 365.25) OBSERVED=AVERAGE.

Results of the OBSERVED=DERIVATIVE Option

If the first value of the OBSERVED= option is BEGINNING, TOTAL, or AVERAGE, the result is the derivative of the spline curve evaluated at first-of-period ID values for the output observation. For OBSERVED=(MIDDLE,DERIVATIVE), the derivative of the function is evaluated at output interval midpoints. For OBSERVED=(END,DERIVATIVE), the derivative is evaluated at end-ofperiod ID values.

Conversion Methods

The SPLINE Method

The SPLINE method fits a cubic spline curve to the input values. A cubic spline is a segmented function consisting of third-degree (cubic) polynomial functions joined together so that the whole curve and its first and second derivatives are continuous.

For point-in-time input data, the spline curve is constrained to pass through the given data points. For interval total or average data, the definite integrals of the spline over the input intervals are constrained to equal the given interval totals.

For boundary constraints, the not-a-knot condition is used by default. This means that the first two spline pieces are constrained to be part of the same cubic curve, as are the last two pieces. Thus the spline used by PROC EXPAND by default is not the same as the commonly used natural spline, which uses zero second-derivative endpoint constraints. While DeBoor (1981) recommends the not-a-knot constraint for cubic spline interpolation, using this constraint can sometimes produce anomalous results at the ends of the interpolated series. PROC EXPAND provides options to specify other endpoint constraints for spline curves.

To specify endpoint constraints, use the following form of the METHOD= option.

METHOD=SPLINE(constraint < , constraint >)

The first constraint specification applies to the lower endpoint, and the second constraint specification applies to the upper endpoint. If only one constraint is specified, it applies to both the lower and upper endpoints.

The constraint specifications can have the following values:

NOTAKNOT

specifies the not-a-knot constraint. This is the default.

NATURAL

specifies the natural spline constraint. The second derivative of the spline curve is constrained to be zero at the endpoint.

SLOPE = value

specifies the first derivative of the spline curve at the endpoint. The value specified can be any positive or negative number, but extreme values may produce unreasonable results.

CURVATURE= value

specifies the second derivative of the spline curve at the endpoint. The value specified can be any positive or negative number, but extreme values may produce unreasonable results. Specifying CURVATURE $=0$ is equivalent to specifying the NATURAL option.

For example, to specify natural spline interpolation, use the following option in the CONVERT or PROC EXPAND statement:

```
method=spline(natural)
```

For OBSERVED=BEGINNING, MIDDLE, and END series, the spline knots are placed at the beginning, middle, and end of each input interval, respectively. For total or averaged series, the spline knots are set at the start of the first interval, at the end of the last interval, and at the interval midpoints, except that there are no knots for the first two and last two midpoints.

Once the cubic spline curve is fit to the data, the spline is extended by adding linear segments at the beginning and end. These linear segments are used for extrapolating values beyond the range of the input data.

For point-in-time output series, the spline function is evaluated at the appropriate points. For interval total or average output series, the spline function is integrated over the output intervals.

The JOIN Method

The JOIN method fits a continuous curve to the data by connecting successive straight line segments. For point-in-time data, the JOIN method connects successive nonmissing input values with straight lines. For interval total or average data, interval midpoints are used as the break points, and ordinates are chosen so that the integrals of the piecewise linear curve agree with the input totals.

For point-in-time output series, the JOIN function is evaluated at the appropriate points. For interval total or average output series, the JOIN function is integrated over the output intervals.

The STEP Method

The STEP method fits a discontinuous piecewise constant curve. For point-in-time input data, the resulting step function is equal to the most recent input value. For interval total or average data, the step function is equal to the average value for the interval.

For point-in-time output series, the step function is evaluated at the appropriate points. For interval total or average output series, the step function is integrated over the output intervals.

The AGGREGATE Method

The AGGREGATE method performs simple aggregation of time series without interpolation of missing values.

If the input data are totals or averages, the results are the sums or averages, respectively, of the input values for observations corresponding to the output observations. That is, if either TOTAL or AVERAGE is specified for the OBSERVED= option, the METHOD=AGGREGATE result is the sum or mean of the input values corresponding to the output observation. For example, suppose METHOD=AGGREGATE, FROM=MONTH, and TO=YEAR are specified. For OBSERVED=TOTAL series, the result for each output year is the sum of the input values over the months of that year. If any input value is missing, the corresponding sum or mean is also a missing value.

If the input data are point-in-time values, the result value of each output observation equals the input value for a selected input observation determined by the OBSERVED= attribute. For example, suppose METHOD=AGGREGATE, FROM=MONTH, and TO=YEAR are specified. For OBSERVED=BEGINNING series, January observations are selected as the annual values. For OBSERVED=MIDDLE series, July observations are selected as the annual values. For OBSERVED=END series, December observations are selected as the annual values. If the selected value is missing, the output annual value is missing.

The AGGREGATE method can be used only when the FROM= intervals are nested within the TO= intervals. For example, you can use METHOD=AGGREGATE when FROM=MONTH and TO=QTR because months are nested within quarters. You cannot use METHOD=AGGREGATE when $\mathrm{FROM}=$ WEEK and TO=QTR because weeks are not nested within quarters.

In addition, the AGGREGATE method cannot convert between point-in-time data and interval total or average data. Conversions between TOTAL and AVERAGE data are allowed, but conversions between BEGINNING, MIDDLE, and END are not.

Missing input values produce missing result values for METHOD=AGGREGATE. However, gaps in the sequence of input observations are not allowed. For example, if FROM=MONTH, you may have a missing value for a variable in an observation for a given February. But if an observation for January is followed by an observation for March, there is a gap in the data, and METHOD=AGGREGATE cannot be used.

When the AGGREGATE method is used, there is no interpolating curve, and therefore the EXTRAPOLATE option is not allowed.

Alternate methods for aggregating or accumulating time series data are supported by the TIMESERIES procedure. See Chapter 27, "The TIMESERIES Procedure," for more information.

METHOD=NONE

The option METHOD=NONE specifies that no interpolation be performed. This option is normally used in conjunction with the TRANSFORMIN= or TRANSFORMOUT= option.

When METHOD=NONE is specified, there is no difference between the TRANSFORMIN= and TRANSFORMOUT= options; if both are specified, the TRANSFORMIN= operations are performed first, followed by the TRANSFORMOUT= operations. TRANSFORM= can be used as an abbreviation for TRANSFORMIN=. METHOD=NONE cannot be used when frequency conversion is specified.

Transformation Operations

The operations that can be used in the TRANSFORMIN= and TRANSFORMOUT= options are shown in Table 14.2. Operations are applied to each value of the series. Each value of the series is replaced by the result of the operation.

In Table 14.2, x_{t} or x represents the value of the series at a particular time period t before the transformation is applied, y_{t} represents the value of the result series, and N represents the total number of observations.

The notation $[n$] indicates that the argument n is optional; the default is 1 . The notation window is used as the argument for the moving statistics operators, and it indicates that you can specify either an integer number of periods n or a list of n weights in parentheses. The notation sequence is used as the argument for the sequence operators, and it indicates that you must specify a sequence of numbers. The notation s indicates the length of seasonality, and it is a required argument.

Table 14.2 Transformation Operations

Syntax	Result
+ number	adds the specified number $: x+$ number
- number	subtracts the specified number $: x-$ number
* number	multiplies by the specified number $: x *$ number
I number	divides by the specified number $: x /$ number
ABS	absolute value: $\|x\|$
ADJUST	indicates that the following moving window summation or
	product operator should be adjusted for window width classical decomposition irregular component
CD_I s	classical decomposition seasonal component
CD_S s	classical decomposition seasonally adjusted series
CD_SA s	classical decomposition trend-cycle component
CD_TC s	classical decomposition (additive) irregular component
CDA_I s	classical decomposition (additive) seasonal component
CDA_S s	classical decomposition (additive) seasonally adjusted series
CDA_SA s	smallest integer greater than or equal to $x:$ ceil (x)
CEIL	centered moving average
CMOVAVE window	centered moving corrected sum of squares
CMOVCSS window	centered moving geometric mean
CMOVGMEAN window	centered moving maximum
CMOVMAX n	centered moving median
CMOVMED n	centered moving minimum
CMOVMIN n	centered moving product
CMOVPROD window	
CMOVRANGE n	centered moving range
CMOVRANK n	centered moving rank
CMOVSTD window	centered moving standard deviation
CMOVSUM n	centered moving sum
CMOVTVALUE window	centered moving t-value
CMOVUSS window	centered moving uncorrected sum of squares
CMOVVAR window	centered moving variance

Table 14.2 continued

Syntax	Result
CUAVE [n]	cumulative average
CUCSS [n]	cumulative corrected sum of squares
CUGMEAN [n]	cumulative geometric mean
CUMAX [n]	cumulative maximum
CUMED [n]	cumulative median
CUMIN [n]	cumulative minimum
CUPROD [n]	cumulative product
CURANK [n]	cumulative rank
CURANGE [n]	cumulative range
CUSTD [n]	cumulative standard deviation
CUSUM [n]	cumulative sum
CUTVALUE [n]	cumulative t-value
CUUSS [n]	cumulative uncorrected sum of squares
CUVAR [n]	cumulative variance
DIF [n]	span n difference: $x_{t}-x_{t-n}$
EWMA number	exponentially weighted moving average of x with smoothing weight number, where $0<$ number <1 :
EXP	This operation is also called simple exponential smoothing. exponential function: $\exp (x)$
FDIF d	fractional difference with difference order d where $0<d<$ 0.5
FLOOR	largest integer less than or equal to x : floor (x)
FSUM d	fractional summation with summation order d where $0<d<$ 0.5
HP_T lambda	Hodrick-Prescott Filter trend component where lambda is the nonnegative filter parameter
HP_C lambda	Hodrick-Prescott Filter cycle component where lambda is the nonnegative filter parameter
ILOGIT	inverse logistic function: $\frac{\exp (x)}{1+\exp (x)}$
LAG [n]	value of the series n periods earlier: x_{t-n}
LEAD [n]	value of the series n periods later: x_{t+n}
LOG	natural logarithm: $\log (x)$
LOGIT	logistic function: $\log \left(\frac{x}{1-x}\right)$
MAX number	maximum of x and number: $\max (x$, number $)$
MIN number	minimum of x and number: $\min (x$, number $)$
> number	missing value if $x<=$ number, else x
>= number	missing value if $x<$ number, else x
= number	missing value if $x \neq$ number, else x
$\wedge=$ number	missing value if $x=$ number, else x
< number	missing value if $x>=$ number, else x
<= number	missing value if $x>$ number, else x
MOVAVE n	backward moving average of n neighboring values: $\frac{1}{n} \sum_{j=0}^{n-1} x_{t-j}$
MOVAVE window	backward weighted moving average of neighboring values:

Table 14.2 continued

Syntax	Result
	$\left(\sum_{j=1}^{n} w_{j} x_{t-n+j}\right) /\left(\sum_{j=1}^{n} w_{j}\right)$
MOVCSS window	backward moving corrected sum of squares
MOVGMEAN window	backward moving geometric mean
MOVMAX n	backward moving maximum
MOVMED n	backward moving median
MOVMIN n	backward moving minimum
MOVPROD window	backward moving product
MOVRANGE n	backward moving range
MOVRANK n	backward moving rank
MOVSTD window	backward moving standard deviation
MOVSUM n	backward moving sum
MOVTVALUE window	backward moving t-value
MOVUSS window	backward moving uncorrected sum of squares
MOVVAR window	backward moving variance
MISSONLY <MEAN>	indicates that the following moving time window statistic operator should replace only missing values with the moving statistic and should leave nonmissing values unchanged.
	If the option MEAN is specified, then missing values are replaced by the overall mean of the series.
NEG	changes the sign: $-x$
NOMISS	indicates that the following moving time window statistic operator should not allow missing values
PCTDIF n	percent difference of the current value and lag n
PCTSUM n	percent summation of the current value and cumulative sum n-lag periods
RATIO n	ratio of current value to lag n
RECIPROCAL	reciprocal: $1 / x$
REVERSE	reverse the series: x_{N-t}
SCALE $n_{1} n_{2}$	scale series between n_{1} and n_{2}
SEQADD sequence	add sequence values to series
SEQDIV sequence	divide series by sequence values
SEQMINUS sequence	subtract sequence values to series
SEQMULT sequence	multiply series by sequence values
SET $n_{1} n_{2}$	set all values of n_{1} to n_{2}
SETEMBEDDED $n_{1} n_{2}$	set embedded values of n_{1} to n_{2}
SETLEFT $n_{1} n_{2}$	set beginning values of n_{1} to n_{2}
SETMISS number	replaces missing values in the series with the number specified
SETRIGHT $n_{1} n_{2}$	set ending values of n_{1} to n_{2}
SIGN	$-1,0$, or 1 as x is <0, equals 0 , or >0 respectively
SQRT	square root: \sqrt{x}
SQUARE	square: x^{2}
SUM	cumulative sum: $\sum_{j=1}^{t} x_{j}$
SUM n	cumulative sum of multiples of n-period lags:
	$x_{t}+x_{t-n}+x_{t-2 n}+\ldots$

Table 14.2 continued

Syntax	Result
TRIM n	sets x_{t} to missing a value if $t \leq n$ or $t \geq N-n+1$
TRIMLEFT n	sets x_{t} to missing a value if $t \leq n$
TRIMRIGHT n	sets x_{t} to missing a value if $t \geq N-n+1$

Moving Time Window Operators

Some operators compute statistics for a set of values within a moving time window; these are called moving time window operators. There are centered and backward versions of these operators.

The centered moving time window operators are CMOVAVE, CMOVCSS, CMOVGMEAN, CMOVMAX, CMOVMED, CMOVMIN, CMOVPROD, CMOVRANGE, CMOVRANK, CMOVSTD, CMOVSUM, CMOVTVALUE, CMOVUSS, and CMOVVAR. These operators compute statistics of the n values x_{i} for observations $t-(n-1) / 2 \leq i \leq t+(n-1) / 2$.

The backward moving time window operators are MOVAVE, MOVCSS, MOVGMEAN, MOVMAX, MOVMED, MOVMIN, MOVPROD, MOVRANGE, MOVRANK, MOVSTD, MOVSUM, MOVTVALUE, MOVUSS, and MOVVAR. These operators compute statistics of the n values $x_{t}, x_{t-1}, \ldots, x_{t-n+1}$.

All the moving time window operators accept an argument n specifying the number of periods to include in the time window. For example, the following statement computes a five-period backward moving average of X.

```
convert x=y / transformout=( movave 5 );
```

In this example, the resulting transformation is

$$
y_{t}=\left(x_{t}+x_{t-1}+x_{t-2}+x_{t-3}+x_{t-4}\right) / 5
$$

The following statement computes a five-period centered moving average of X.

```
convert x=y / transformout=( cmovave 5 );
```

In this example, the resulting transformation is

$$
y_{t}=\left(x_{t-2}+x_{t-1}+x_{t}+x_{t+1}+x_{t+2}\right) / 5
$$

If the window with a centered moving time window operator is not an odd number, one more lagged value than lead value is included in the time window. For example, the result of the CMOVAVE 4 operator is

$$
y_{t}=\left(x_{t+1}+x_{t}+x_{t-1}+x_{t-2}\right) / 4
$$

You can compute a forward moving time window operation by combining a backward moving time window operator with the REVERSE operator. For example, the following statement computes a five-period forward moving average of X.

```
convert x=y / transformout=( reverse movave 5 reverse );
```

In this example, the resulting transformation is

$$
y_{t}=\left(x_{t}+x_{t+1}+x_{t+2}+x_{t+3}+x_{t+4}\right) / 5
$$

Some of the moving time window operators enable you to specify a list of weight values to compute weighted statistics. These are CMOVAVE, CMOVCSS, CMOVGMEAN, CMOVPROD, CMOVSTD, CMOVTVALUE, CMOVUSS, CMOVVAR, MOVAVE, MOVCSS, MOVGMEAN, MOVPROD, MOVSTD, MOVTVALUE, MOVUSS, and MOVVAR.

To specify a weighted moving time window operator, enter the weight values in parentheses after the operator name. The window width n is equal to the number of weights that you specify; do not specify n.

For example, the following statement computes a weighted five-period centered moving average of X.

```
convert x=y / transformout=( cmovave( .1 .2 . 4 . . . 1 ) );
```

In this example, the resulting transformation is

$$
y_{t}=.1 x_{t-2}+.2 x_{t-1}+.4 x_{t}+.2 x_{t+1}+.1 x_{t+2}
$$

The weight values must be greater than zero. If the weights do not sum to 1 , the weights specified are divided by their sum to produce the weights used to compute the statistic.

A complete time window is not available at the beginning of the series. For the centered operators a complete window is also not available at the end of the series. The computation of the moving time window operators is adjusted for these boundary conditions as follows.

For backward moving window operators, the width of the time window is shortened at the beginning of the series. For example, the results of the MOVSUM 3 operator are

$$
\begin{aligned}
y_{1} & =x_{1} \\
y_{2} & =x_{1}+x_{2} \\
y_{3} & =x_{1}+x_{2}+x_{3} \\
y_{4} & =x_{2}+x_{3}+x_{4} \\
y_{5} & =x_{3}+x_{4}+x_{5} \\
& \ldots
\end{aligned}
$$

For centered moving window operators, the width of the time window is shortened at the beginning and the end of the series due to unavailable observations. For example, the results of the

CMOVSUM 5 operator are

$$
\begin{aligned}
y_{1} & =x_{1}+x_{2}+x_{3} \\
y_{2} & =x_{1}+x_{2}+x_{3}+x_{4} \\
y_{3} & =x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \\
y_{4} & =x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \\
& \cdots \\
y_{N-2} & =x_{N-4}+x_{N-3}+x_{N-2}+x_{N-1}+x_{N} \\
y_{N-1} & =x_{N-3}+x_{N-2}+x_{N-1}+x_{N} \\
y_{N} & =x_{N-2}+x_{N-1}+x_{N}
\end{aligned}
$$

For weighted moving time window operators, the weights for the unavailable or unused observations are ignored and the remaining weights renormalized to sum to 1 .

Cumulative Statistics Operators

Some operators compute cumulative statistics for a set of current and previous values of the series. The cumulative statistics operators are CUAVE, CUCSS, CUMAX, CUMED, CUMIN, CURANGE, CUSTD, CUSUM, CUUSS, and CUVAR.

By default, the cumulative statistics operators compute the statistics from all previous values of the series, so that y_{t} is based on the set of values $x_{t}, x_{t-1}, \ldots, x_{1}$. For example, the following statement computes y_{t} as the cumulative sum of nonmissing x_{i} values for $i \leq t$.

```
convert x=y / transformout=( cusum );
```

You can specify a lag increment argument n for the cumulative statistics operators. In this case, the statistic is computed from the current and every $n^{t h}$ previous value. When n is specified these operators compute statistics of the values $x_{t}, x_{t-n}, x_{t-2 n}, \ldots, x_{t-i n}$ for $t-i n>0$.

For example, the following statement computes y_{t} as the cumulative sum of nonmissing x_{i} values for odd i when t is odd and for even i when t is even.

```
convert x=y / transformout=( cusum 2 );
```

The results of this example are

$$
\begin{aligned}
& y_{1}=x_{1} \\
& y_{2}=x_{2} \\
& y_{3}=x_{1}+x_{3} \\
& y_{4}=x_{2}+x_{4} \\
& y_{5}=x_{1}+x_{3}+x_{5} \\
& y_{6}=x_{2}+x_{4}+x_{6}
\end{aligned}
$$

\qquad

Missing Values

You can truncate the length of the result series by using the TRIM, TRIMLEFT, and TRIMRIGHT operators to set values to missing at the beginning or end of the series.

You can use these functions to trim the results of moving time window operators so that the result series contains only values computed from a full width time window. For example, the following statements compute a centered five-period moving average of X, and they set to missing values at the ends of the series that are averages of fewer than five values.

```
convert x=y / transformout=( cmovave 5 trim 2 );
```

Normally, the moving time window and cumulative statistics operators ignore missing values and compute their results for the nonmissing values. When preceded by the NOMISS operator, these functions produce a missing result if any value within the time window is missing.

The NOMISS operator does not perform any calculations, but serves to modify the operation of the moving time window operator that follows it. The NOMISS operator has no effect unless it is followed by a moving time window operator.

For example, the following statement computes a five-period moving average of the variable X but produces a missing value when any of the five values are missing.

```
convert x=y / transformout=( nomiss movave 5 );
```

The following statement computes the cumulative sum of the variable X but produces a missing value for all periods after the first missing X value.

```
convert x=y / transformout=( nomiss cusum );
```

Similar to the NOMISS operator, the MISSONLY operator does not perform any calculations (unless followed by the MEAN option), but it serves to modify the operation of the moving time window operator that follows it. When preceded by the MISSONLY operator, these moving time window operators replace any missing values with the moving statistic and leave nonmissing values unchanged.

For example, the following statement replaces any missing values of the variable X with an exponentially weighted moving average of the past values of X and leaves nonmissing values unchanged. The missing values are interpolated using the specified exponentially weighted moving average. (This is also called simple exponential smoothing.)

```
convert x=y / transformout=( missonly ewma 0.3 );
```

The following statement replaces any missing values of the variable X with the overall mean of X.

```
convert x=y / transformout=( missonly mean );
```

You can use the SETMISS operator to replace missing values with a specified number. For example, the following statement replaces any missing values of the variable X with the number 8.77.

```
convert x=y / transformout=( setmiss 8.77 );
```


Classical Decomposition Operators

If x_{t} is a seasonal time series with s observations per season, classical decomposition methods "break down" the time series into four components: trend, cycle, seasonal, and irregular components. The trend and cycle components are often combined to form the trend-cycle component. There are two basic forms of classical decomposition: multiplicative and additive, which are show below.

$$
\begin{aligned}
x_{t} & =T C_{t} S_{t} I_{t} \\
x_{t} & =T C_{t}+S_{t}+I_{t}
\end{aligned}
$$

where
$T C_{t} \quad$ is the trend-cycle component
$S_{t} \quad$ is the seasonal component or seasonal factors that are periodic with period s and with mean one (multiplicative) or zero (additive)
$I_{t} \quad$ is the irregular or random component that is assumed to have mean one (multiplicative) or zero (additive)

For multiplicative decomposition, all of the x_{t} values should be positive.
The CD_TC operator computes the trend-cycle component for both the multiplicative and additive models. When s is odd, this operator computes an s-period centered moving average as follows:

$$
T C_{t}=\sum_{k=-\lfloor s / 2\rfloor}^{\lfloor s / 2\rfloor} x_{t+k} / s
$$

For example, in the case where $s=5$, the CD_TC s operator

```
convert x=tc / transformout=( cd_tc 5 );
```

is equivalent to the following CMOVAVE operator:

```
convert x=tc / transformout=( cmovave 5 trim 2 );
```

When s is even, the CD_TC s operator computes the average of two adjacent s-period centered moving averages as follows:

$$
T C_{t}=\sum_{k=-\lfloor s / 2\rfloor}^{\lfloor s / 2\rfloor-1}\left(x_{t+k}+x_{t+1+k}\right) / 2 s
$$

For example, in the case where $s=12$, the CD_TC s operator

```
convert x=tc / transformout=( cd_tc 12 );
```

is equivalent to the following CMOVAVE operator:

```
convert x=tc / transformout=(cmovave 12 movave 2 trim 6);
```

The CD_S and CDA_S operators compute the seasonal components for the multiplicative and additive models, respectively. First, the trend-cycle component is computed as shown previously. Second, the seasonal-irregular component is computed by $S I_{t}=x_{t} / T C_{t}$ for the multiplicative model and by $S I_{t}=x_{t}-T C_{t}$ for the additive model. The seasonal component is obtained by averaging the seasonal-irregular component for each season.

$$
S_{k+j s}=\sum_{t=k \bmod s} \frac{S I_{t}}{n / s}
$$

where $0 \leq j \leq n / s$ and $1 \leq k \leq s$. The seasonal components are normalized to sum to one (multiplicative) or zero (additive).

The CD_I and CDA_I operators compute the irregular component for the multiplicative and additive models respectively. First, the seasonal component is computed as shown previously. Next, the irregular component is determined from the seasonal-irregular and seasonal components as appropriate.

$$
\begin{aligned}
I_{t} & =S I_{t} / S_{t} \\
I_{t} & =S I_{t}-S_{t}
\end{aligned}
$$

The CD_SA and CDA_SA operators compute the seasonally adjusted time series for the multiplicative and additive models, respectively. After decomposition, the original time series can be seasonally adjusted as appropriate.

$$
\begin{aligned}
\tilde{x}_{t} & =x_{t} / S_{t}=T C_{t} I_{t} \\
\tilde{x}_{t} & =x_{t}-S_{t}=T C_{t}+I_{t}
\end{aligned}
$$

The following statements compute all the multiplicative classical decomposition components for the variable X for $s=12$.

```
convert x=tc / transformout=( cd_tc 12 );
convert x=s / transformout=( cd_s 12 );
convert x=i / transformout=( cd_i 12 );
convert x=sa / transformout=( cd_sa 12 );
```

The following statements compute all the additive classical decomposition components for the variable X for $s=4$.

```
convert x=tc / transformout=( cd_tc 4 );
convert x=s / transformout=( cda_s 4 );
convert x=i / transformout=( cda_i 4 );
convert x=sa / transformout=( cda_sa 4 );
```

The X12 and X11 procedures provides other methods for seasonal decomposition. See Chapter 32, "The X12 Procedure," and Chapter 31, "The X11 Procedure."

Fractional Operators

For fractional operators, the parameter, d, represents the order of fractional differencing. Fractional summation is the inverse operation of fractional differencing.

Examples of Usage

Suppose that X is a fractionally integrated time series variable of order $\mathrm{d}=0.25$. Fractionally differencing X forms a time series variable Y which is not integrated.

```
convert x=y / transformout=(fdif 0.25);
```

Suppose that Z is a non-integrated time series variable. Fractionally summing Z forms a time series W which is fractionally integrated of order $d=0.25$.

```
convert z=w / transformout=(fsum 0.25);
```


Moving Rank Operators

For the rank operators, the ranks are computed based on the current value with respect to the cumulative, centered, or moving window values. If the current value is missing, the transformed current value is set to missing. If the NOMISS option was previously specified and if any missing values are present in the moving window, the transformed current value is set to missing. Otherwise, redundant values from the moving window are removed and the rank of the current value is computed among the unique values of the moving window.

Examples of Usage

The trades of a particular security are recorded for each weekday in a variable named PRICE. Given the historical daily trades, the ranking of the price of this security for each trading day, considering its entire past history, can be computed as follows:

```
convert price=history / transformout=( curank );
```

The ranking of the price of this security for each trading day considering the previous week's history can be computed as follows:

```
convert price=lastweek / transformout=( movrank 5 );
```

The ranking of the price of this security for each trading day considering the previous two week's history can be computed as follows:

```
convert price=twoweek / transformout=( movrank 10 );
```


Moving Product Operators

For the product operators, the current transformed value is computed based on the (weighted) product of the cumulative, centered, or moving window values. If missing values are present in the moving window and the NOMISS operator is previously specified, the current transformed value is set to missing. Otherwise, the current transformed value is set to the (weighted) product of the nonmissing values of the moving window. If the geometric mean is desired, the exponents of each product are normalized to one.

Examples of Usage

The interest rates for a savings account are recorded for each month in the data set variable RATES. The cumulative interest rate for each month considering the entire account past history can be computed as follows:

```
convert rates=history / transformout=( + 1 cuprod - 1);
```

The interest rate for each quarter considering the previous quarter's history can be computed as follows:

```
convert rates=lastqtr / transformout=( + 1 movprod 3 - 1);
```


Sequence Operators

For the sequence operators, the sequence values are used to compute the transformed values from the original values in a sequential fashion. You can add to or subtract from the original series or you can multiply or divide by the sequence values. The first sequence value is applied to the first observation of the series, the second sequence value is applied to the second observation of the series, and so on until the end of the sequence is reached. At this point, the first sequence value is applied to the next observation of the series and the second sequence value on the next observation and so on.

Let v_{1}, \ldots, v_{m} be the sequence values and let $x_{t}, t=1, \ldots N$, be the original time series. The transformed series, y_{t}, is computed as follows:

$$
\begin{aligned}
y_{1} & =x_{1} \text { op } v_{1} \\
y_{2} & =x_{2} \text { op } v_{2} \\
& \cdots \\
y_{m} & =x_{m} \text { op } v_{m} \\
y_{m+1} & =x_{m+1} \text { op } v_{1} \\
y_{m+2} & =x_{m+2} \text { op } v_{2} \\
& \cdots \\
y_{2 m} & =x_{2 m} \text { op } v_{m} \\
y_{2 m+1} & =x_{2 m+1} \text { op } v 1 \\
y_{2 m+2} & =x_{2 m+2} \text { op } v 2 \\
& \cdots
\end{aligned}
$$

where $o p=+,-, *$, or $/$.

Examples of Usage

The multiplicative seasonal indices are $0.9,1.2 .0 .8$, and 1.1 for the four quarters. Let SEASADJ be a quarterly time series variable that has been seasonally adjusted in a multiplicative fashion. To restore the seasonality to SEASADJ use the following transformation:

```
convert seasadj=seasonal /
    transformout=(seqmult (0.9 1.2 0.8 1.1));
```

The additive seasonal indices are $4.4,-1.1,-2.1$, and -1.2 for the four quarters. Let SEASADJ be a quarterly time series variable that has been seasonally adjusted in additive fashion. To restore the seasonality to SEASADJ use the following transformation:

```
convert seasadj=seasonal /
    transformout=(seqadd (4.4 -1.1 -2.1 -1.2));
```


Set Operators

For the set operators, the first parameter, n_{1}, represents the value to be replaced and the second parameter, n_{2}, represents the replacement value. The replacement can be localized to the beginning, middle, or end of the series.

Examples of Usage

Suppose that a store opened recently and that the sales history is stored in a database that does not recognize missing values. Even though demand may have existed prior to the stores opening, this
database assigns the value of zero. Modeling the sales history may be problematic because the sales history is mostly zero. To compensate for this deficiency, the leading zero values should be set to missing with the remaining zero values unchanged (representing no demand).

```
convert sales=demand / transformout=(setleft 0 .);
```

Likewise, suppose a store is closed recently. The demand may still be present and hence a recorded value of zero does not accurately reflect actual demand.

```
convert sales=demand / transformout=(setright 0 .);
```


Scale Operator

For the scale operator, the first parameter, n_{1}, represents the value associated with the minimum value $\left(x_{\text {min }}\right)$ and the second parameter, n_{2}, represents the value associated with the maximum value $\left(x_{\max }\right)$ of the original series $\left(x_{t}\right)$. The scale operator recales the original data to be between the parameters n_{1} and n_{2} as follows:

$$
y_{t}=\left(\left(n_{2}-n_{1}\right) /\left(x_{\max }-x_{\min }\right)\right)\left(x_{t}-x_{\min }\right)+n_{1}
$$

Examples of Usage

Suppose that two new product sales histories are stored in variables X and Y and you wish to determine their adoption rates. In order to compare their adoption histories the variables must be scaled for comparison.

```
convert x=w / transformout=(scale 0 1);
convert y=z / transformout=(scale 0 1);
```


Adjust Operator

For the moving summation and product window operators, the window widths at the beginning and end of the series are smaller than those in the middle of the series. Likewise, if there are embedded missing values, the window width is smaller than specified. When preceded by the ADJUST operator, the moving summation (MOVSUM CMOVSUM) and moving product operators (MOVPROD CMOVPROD) are adjusted by the window width.

For example, suppose the variable X has 10 values and the moving summation operator of width 3 is applied to X to create the variable Y with window width adjustment and the variable Z without adjustment.

```
convert x=y / transformout=(adjust movsum 3);
convert x=z / transformout=(movsum 3);
```

The above transformations result in the following relationship between Y and $Z: y_{1}=3 z_{1}, y_{2}=$ $\frac{3}{2} z_{2}, y_{t}=z_{t}$ for $t>2$ because the first two window widths are smaller than 3 .

For example, suppose the variable X has 10 values and the moving multiplicative operator of width 3 is applied to X to create the variable Y with window width adjustment and the variable Z without adjustment.

```
convert x=y / transformout=(adjust movprod 3);
convert x=z / transformout=(movprod 3);
```

The above transformation result in the following: $y_{1}=z_{1}^{3}, y_{2}=z_{2}^{3 / 2}, y_{t}=z_{t}$ for $t>2$ because the first two window widths are smaller than 3.

Moving T-Value Operators

The moving t-value operators (CUTVALUE, MOVTVALUE, CMOVTVALUE) compute the t value of the cumulative series or moving window. They can be viewed as combinations of the moving average (CUAVE, MOVAVE, CMOVAVE) and the moving standard deviation (CUSTD, MOVSTD, CMOVSTD), respectively.

Percent Operators

The percentage operators compute the percent summation and the percent difference of the current value and the $\operatorname{lag}(n)$. The percent summation operator (PCTSUM) computes $y_{t}=100 x_{t} / \operatorname{cusum}\left(x_{t-n}\right)$. If any of the values of the preceding equation are missing or the cumulative summation is zero, the result is set to missing. The percent difference operator (PCTDIF) computes $y_{t}=100\left(x_{t}-x_{t-n}\right) / x_{t-n}$. If any of the values of the preceding equation are missing or the lag value is zero, the result is set to missing.

For example, suppose variable X contains the series. The percent summation of lag 4 is applied to X to create the variable Y. The percent difference of lag 4 is applied to X to create the variable Z.

```
convert x=y / transformout=(pctsum 4);
convert x=z / transformout=(pctdif 4);
```


Ratio Operators

The ratio operator computes the ratio of the current value and the $\operatorname{lag}(n)$ value. The ratio operator (RATIO) computes $y_{t}=x_{t} / x_{t-n}$. If any of the values of the preceding equation are missing or the lag value is zero, the result is set to missing.

For example, suppose variable X contains the series. The ratio of the current value and the lag 4 value of X assigned to the variable Y. The percent ratio of the current value and lag 4 value of X is assigned to the variable Z.

```
convert x=y / transformout=(ratio 4);
convert x=z / transformout=(ratio 4 * 100);
```


OUT= Data Set

The OUT= output data set contains the following variables:

- the BY variables, if any
- an ID variable that identifies the time period for each output observation
- the result variables
- if no frequency conversion is performed (so that there is one output observation corresponding to each input observation), all the other variables in the input data set are copied to the output data set

The ID variable in the output data set is named as follows:

- If an ID statement is used, the new ID variable has the same name as the variable used in the ID statement.
- If no ID statement is used, but the FROM= option is used, then the name of the ID variable is either DATE or DATETIME, depending on whether the TO= option indicates SAS date or SAS datetime values.
- If neither an ID statement nor the $\mathrm{TO}=$ option is used, the ID variable is named TIME.

OUTEST= Data Set

The OUTEST= data set contains the coefficients of the spline curves fit to the input series. The OUTEST = data set is of interest if you want to verify the interpolating curve PROC EXPAND uses, or if you want to use this function in another context, (for example, in a SAS/IML program).

The OUTEST = data set contains the following variables:

- the BY variables, if any
- VARNAME, a character variable containing the name of the input variable to which the coefficients apply
- METHOD, a character variable containing the value of the METHOD= option used to fit the series
- OBSERVED, a character variable containing the first letter of the OBSERVED= option name for the input series
- the ID variable that contains the lower breakpoint (or "knot") of the spline segment to which the coefficients apply. The ID variable has the same name as the variable used in the ID statement. If an ID statement is not used, but the FROM= option is used, then the name of the ID variable is DATE or DATETIME, depending on whether the FROM= option indicates SAS date or SAS datetime values. If neither an ID statement nor the FROM= option is used, the ID variable is named TIME.
- CONSTANT, the constant coefficient for the spline segment
- LINEAR, the linear coefficient for the spline segment
- QUAD, the quadratic coefficient for the spline segment
- CUBIC, the cubic coefficient for the spline segment

For each BY group, the OUTEST= data set contains observations for each polynomial segment of the spline curve fit to each input series. To obtain the observations defining the spline curve used for a series, select the observations where the value of VARNAME equals the name of the series.

The observations for a series in the OUTEST= data set encode the spline function fit to the series as follows. Let a_{i}, b_{i}, c_{i}, and d_{i} be the values of the variables CUBIC, QUAD, LINEAR, and CONSTANT, respectively, for the i th observation for the series. Let x_{i} be the value of the ID variable for the i th observation for the series. Let n be the number of observations in the OUTEST= data set for the series. The value of the spline function evaluated at a point x is

$$
f(x)=a_{i}\left(x-x_{i}\right)^{3}+b_{i}\left(x-x_{i}\right)^{2}+c_{i}\left(x-x_{i}\right)+d_{i}
$$

where the segment number i is selected as follows:

$$
i= \begin{cases}i & x_{i} \leq x<x_{i+1}, 1 \leq i<n \\ 1 & x<x_{1} \\ n & x \geq x_{n}\end{cases}
$$

In other words, if x is between the first and last ID values ($x_{1} \leq x<x_{n}$), use the observation from the OUTEST $=$ data set with the largest ID value less than or equal to x. If x is less than the first ID value x_{1}, then $i=1$. If x is greater than or equal to the last ID value ($x \geq x_{n}$), then $i=n$.

For METHOD=JOIN, the curve is a linear spline, and the values of CUBIC and QUAD are 0 . For METHOD=STEP, the curve is a constant spline, and the values of CUBIC, QUAD, and LINEAR are 0 . For METHOD=AGGREGATE, no coefficients are output.

ODS Graphics

This section describes the use of ODS for creating graphics with the EXPAND procedure. To request these graphs, you must specify the statement ods graphics on; in your SAS program prior to the PROC EXPAND step and specify the PLOTS $=$ option in the PROC EXPAND statement.

ODS Graph Names

PROC EXPAND assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 14.3.

To request these graphs, you must specify the ODS GRAPHICS statement and the PLOTS= option in the EXPAND statement.

Table 14.3 ODS Graphics Produced by PROC EXPAND

ODS Graph Name	Plot Description	PLOTS= Options
ConvertedSeriesPlot	Converted Series Plot	CONVERTED OUTPUT
		ALL
CrossInputSeriesPlot	Cross Input Series Plot	CROSSINPUT
CrossOutputSeriesPlot	Cross Output Series Plot	CROSSOUTPUT
InputSeriesPlot	Input Series Plot	INPUT JOINTINPUT
		ALL
JointInputSeriesPlot	Joint Input Series Plot	JOINTINPUT
JointOutputSeriesPlot	Joint Output Series Plot	JOINTOUTPUT
OutputSeriesPlot	Output Series Plot	SERIESIOUTPUT
TransformedInputSeriesPlot	Transformed Input Series Plot	TRANSFORMIN
		OUTPUT ALL
TransformedOutputSeriesPlot	Transformed Output Series Plot	TRANSFORMOUT
		OUTPUT ALL

PLOTS= Option Details

Some plots will only be produced for a series if the relevant options are also specified. For example, if PLOTS=TRANSFORMIN specified, the TRANSFORMIN plot will not be produced for a variable unless the TRANSFORMIN= option is specified on a CONVERT statement for that variable.

The PLOTS=TRANSFORMIN option plots the series after the input transformation (TRANSFORMIN= option) is applied. If the TRANFORMIN= option is not specified in the CONVERT statement for an output variable, the input transformation plot is not produced.

The PLOTS=CONVERTED option plots the series after the input transformation (TRANSFORMIN= option) is applied and after frequency conversion (METHOD= option). If there is no frequency conversion for an output variable, the converted series plot is not produced.

The PLOTS=TRANSFORMOUT option plots the series after the output transformation (TRANSFORMOUT = option) is applied. If the TRANFORMOUT= option is not specified in the CONVERT statement for an output variable, the output transformation plot is not produced.

The PLOTS=OUTPUT option plots the series after it has undergone input transformation (TRANSFORMIN= option), frequency conversion (METHOD $=$ option), and output transformation (TRANSFORMOUT $=$ option) if these CONVERT statement options were specified.

Cross and Joint Plots

The PLOTS = option values CROSSINPUT and CROSSOUTPUT produce graphs that overlay plots of two series using two Y axis and with each of the two plots show at a separate scale. The PLOTS= option values JOINTINPUT and JOINTOUTPUT produce graphs that overly plots of two series using a single Y axis and with both of the plots shown on the same scale.

Note that because the joint graphics options (PLOTS=JOINTINPUT or PLOTS=JOINTOUTPUT) plot the (input or converted) series and the transformed series on the same scale, if the transformation changes the range of the series these plots may be hard to visualize.

The PLOTS=CROSSINPUT option plots both the input series and the series after the input transformation (TRANSFORMIN = option) is applied. The left side vertical axis refers to the input series, while the right side vertical axis refers to the series after the transformation. If the TRANFORMIN= option is not specified in the CONVERT statement for an output variable, the cross input plot is not produced for that variable.

The PLOTS=JOINTINPUT option jointly plots both the input series and the series after the input transformation (TRANSFORMIN= option) is applied. If the TRANFORMIN= option is not specified in the CONVERT statement for an output variable, the joint input plot is not produced for that variable.

The PLOTS=CROSSOUTPUT option plots both the converted series and the converted series after the output transformation (TRANSFORMOUT= option) is applied. The left side vertical axis refers to the input series, while the right side vertical axis refers to the series after the transformation. If the TRANFORMOUT= option is not specified in the CONVERT statement for an output variable, the cross output plot is not produced for that variable.

The PLOTS=JOINTOUTPUT jointly plots both the converted series and the converted series after the output transformation (TRANSFORMOUT= option) is applied. If the TRANFORMOUT= option is not specified in the CONVERT statement for an output variable, the joint output plot is not produced for that variable.

Requesting All Plots

The PLOTS=ALL option is a convenient way to specify all the plots except the OUTPUT plots and the joint and cross plots. The option PLOTS=(ALL OUTPUT JOINTINPUT JOINTOUTPUT CROSSINPUT CROSSOUTPUT) request that all possible plots be produced.

Examples: EXPAND Procedure

Example 14.1: Combining Monthly and Quarterly Data

This example combines monthly and quarterly data sets by interpolating monthly values for the quarterly series. The series are extracted from two small sample data sets stored in the SASHELP library. These data sets were contributed by Citicorp Data Base services and contain selected U.S. macro economic series.

The quarterly series gross domestic product (GDP) and implicit price deflator (GD) are extracted from SASHELP.CITIQTR. The monthly series industrial production index (IP) and unemployment rate (LHUR) are extracted from SASHELP.CITIMON. Only observations for the years 1990 and 1991 are selected. PROC EXPAND is then used to interpolate monthly estimates for the quarterly series, and the interpolated series are merged with the monthly data.

The following statements extract and print the quarterly data, shown in Output 14.1.1.

```
data qtrly;
    set sashelp.citiqtr;
    where date >= '1jan1990'd &
            date < '1jan1992'd ;
    keep date gdp gd;
run;
title "Quarterly Data";
proc print data=qtrly;
run;
```

Output 14.1.1 Quarterly Data Set

Quarterly Data			
Obs	DATE	GD	GDP
1	1990:1	111.100	5422.40
2	1990:2	112.300	5504.70
3	1990:3	113.600	5570.50
4	1990:4	114.500	5557.50
5	1991:1	115.900	5589.00
6	1991:2	116.800	5652.60
7	1991:3	117.400	5709.20
8	1991: 4	-	5736.60

The following statements extract and print the monthly data, shown in Output 14.1.2.

```
data monthly;
    set sashelp.citimon;
```

```
    where date >= '1jan1990'd &
            date < '1jan1992'd ;
        keep date ip lhur;
run;
title "Monthly Data";
proc print data=monthly;
run;
```

Output 14.1.2 Monthly Data Set

	Mon	y Data	
Obs	DATE	IP	LHUR
1	JAN1990	107.500	5.30000
2	FEB1990	108.500	5.30000
3	MAR1990	108.900	5.20000
4	APR1990	108.800	5.40000
5	MAY1990	109.400	5.30000
6	JUN1990	110.100	5.20000
7	JUL1990	110.400	5.40000
8	AUG1990	110.500	5.60000
9	SEP1990	110.600	5.70000
10	OCT1990	109.900	5.80000
11	NOV1990	108.300	6.00000
12	DEC1990	107.200	6.10000
13	JAN1991	106.600	6.20000
14	FEB1991	105.700	6.50000
15	MAR1991	105.000	6.70000
16	APR1991	105.500	6.60000
17	MAY1991	106.400	6.80000
18	JUN1991	107.300	6.90000
19	JUL1991	108.100	6.80000
20	AUG1991	108.000	6.80000
21	SEP1991	108.400	6.80000
22	OCT1991	108.200	6.90000
23	NOV1991	108.000	6.90000
24	DEC1991	107.800	7.10000

The following statements interpolate monthly estimates for the quarterly series and merge the interpolated series with the monthly data. The resulting combined data set is then printed, as shown in Output 14.1.3.

```
proc expand data=qtrly out=temp from=qtr to=month;
    convert gdp gd / observed=average;
    id date;
run;
data combined;
    merge monthly temp;
    by date;
run;
```

```
title "Combined Data Set";
proc print data=combined;
run;
```

Output 14.1.3 Combined Data Set

Combined Data Set					
Obs	DATE	IP	LHUR	GDP	GD
1	JAN1990	107.500	5.30000	5409.69	110.879
2	FEB1990	108.500	5.30000	5417.67	111.048
3	MAR1990	108.900	5.20000	5439.39	111.367
4	APR1990	108.800	5.40000	5470.58	111.802
5	MAY1990	109.400	5.30000	5505.35	112.297
6	JUN1990	110.100	5.20000	5538.14	112.801
7	JUL1990	110.400	5.40000	5563.38	113.264
8	AUG1990	110.500	5.60000	5575.69	113.641
9	SEP1990	110.600	5.70000	5572.49	113.905
10	OCT1990	109.900	5.80000	5561.64	114.139
11	NOV1990	108.300	6.00000	5553.83	114.451
12	DEC1990	107.200	6.10000	5556.92	114.909
13	JAN1991	106.600	6.20000	5570.06	115.452
14	FEB1991	105.700	6.50000	5588.18	115.937
15	MAR1991	105.000	6.70000	5608.68	116.314
16	APR1991	105.500	6.60000	5630.81	116.600
17	MAY1991	106.400	6.80000	5652.92	116.812
18	JUN1991	107.300	6.90000	5674.06	116.988
19	JUL1991	108.100	6.80000	5693.43	117.164
20	AUG1991	108.000	6.80000	5710.54	117.380
21	SEP1991	108.400	6.80000	5724.11	117.665
22	OCT1991	108.200	6.90000	5733.65	
23	NOV1991	108.000	6.90000	5738.46	
24	DEC1991	107.800	7.10000	5737.75	

Example 14.2: Illustration of ODS Graphics

This example illustrates the use of ODS graphics with PROC EXPAND.
The graphical displays are requested by specifying the ods graphics on; statement and specifying the PLOTS $=$ option in the PROC EXPAND statement. For information about the graphics available in the EXPAND procedure, see the section "ODS Graphics" on page 757.

The following statements utilize the SASHELP.WORKERS data set to convert the time series of electrical workers from monthly to quarterly frequency and display ODS graphics plots. The PLOTS=ALL option is specified to request the plots of the input series, the transformed input series, the converted series, and the transformed output series. Figure 14.2.1 through Figure 14.2.4 show these plots.

```
proc expand data=sashelp.workers out=out
    from=month to=qtr
```

plots=all;
id date;
convert electric=out / method=spline
transformin=(movmed 4)
transformout=(movave 3);
run;
Output 14.2.1 Input Series Plot

Output 14.2.2 Transformed Input Series Plot - 4-Period Moving Median

Output 14.2.3 Converted Series Plot

Output 14.2.4 Transformed Output Series Plot - 3-Period Moving Average

Example 14.3: Interpolating Irregular Observations

This example shows the interpolation of a series of values measured at irregular points in time. The data are hypothetical. Assume that a series of randomly timed quality control inspections are made and defect rates for a process are measured. The problem is to produce two reports: estimates of monthly average defect rates for the months within the period covered by the samples, and a plot of the interpolated defect rate curve over time.

The following statements read and print the input data, as shown in Output 14.3.1.

```
data samples;
    input date : date9. defects @@;
    label defects = "Defects per }1000\mathrm{ units";
    format date date9.;
datalines;
... more lines ...
```

```
title "Sampled Defect Rates";
proc print data=samples;
run;
```

Output 14.3.1 Measured Defect Rates

To compute the monthly estimates, use PROC EXPAND with the TO=MONTH option and specify OBSERVED=(BEGINNING,AVERAGE). The following statements interpolate the monthly estimates.

```
proc expand data=samples
            out=monthly
            to=month
            plots=(input output);
    id date;
    convert defects / observed=(beginning,average);
run;
```

The following PROC PRINT step prints the results, as shown in Output 14.3.2.

```
title "Estimated Monthly Average Defect Rates";
proc print data=monthly;
run;
```

Output 14.3.2 Monthly Average Estimates

The plots produced by PROC EXPAND are shown in Output 14.3.3.
Output 14.3.3 Interpolated Defects Rate Curve

Output 14.3.3 continued

Example 14.4: Using Transformations

This example shows the use of PROC EXPAND to perform various transformations of time series. The following statements read in monthly values for a variable X .

```
data test;
    input year qtr x;
    date = yyq( year, qtr );
    format date yyqc.;
datalines;
1989 3 5238
198945289
1990 1 5375
1990 2 5443
1990 3 5514
199045527
1991 1 5557
1991 2 5615
;
```

The following statements use PROC EXPAND to compute lags and leads and a 3-period moving average of the X series.

```
proc expand data=test out=out method=none;
    id date;
    convert x = x_lag2 / transformout=(lag 2);
    convert x = x_lag1 / transformout=(lag 1);
    convert x;
    convert x = x_lead1 / transformout=(lead 1);
    convert x = x_lead2 / transformout=(lead 2);
    convert x = x_movave / transformout=(movave 3);
run;
title "Transformed Series";
proc print data=out;
run;
```

Because there are no missing values to interpolate and no frequency conversion, the METHOD=NONE option is used to prevent PROC EXPAND from performing unnecessary computations. Because no frequency conversion is done, all variables in the input data set are copied to the output data set. The CONVERT X; statement is included to control the position of X in the output data set. This statement can be omitted, in which case X is copied to the output data set following the new variables computed by PROC EXPAND.

The results are shown in Output 14.4.1.
Output 14.4.1 Output Data Set with Transformed Variables

Transformed Series									
Obs	date	x_lag2	x_lag1	\mathbf{x}	x_lead1	x_lead2	x_movave	year	qtr
1	1989:3	-	.	5238	5289	5375	5238.00	1989	3
2	1989:4	-	5238	5289	5375	5443	5263.50	1989	4
3	1990:1	5238	5289	5375	5443	5514	5300.67	1990	1
4	1990:2	5289	5375	5443	5514	5527	5369.00	1990	2
5	1990:3	5375	5443	5514	5527	5557	5444.00	1990	3
6	1990:4	5443	5514	5527	5557	5615	5494.67	1990	4
7	1991:1	5514	5527	5557	5615	-	5532.67	1991	1
8	1991:2	5527	5557	5615	-	-	5566.33	1991	2

References

DeBoor, Carl (1981), A Practical Guide to Splines, New York: Springer-Verlag.
Hodrick, R. J., and Prescott, E. C. (1980). "Post-war U.S. business cycles: An empirical investigation." Discussion paper 451, Carnegie-Mellon University.

Levenbach, H. and Cleary, J.P. (1984), The Modern Forecaster, Belmont, CA: Lifetime Learning

Publications (a division of Wadsworth, Inc.), 129-133.

Makridakis, S. and Wheelwright, S.C. (1978), Interactive Forecasting: Univariate and Multivariate Methods, Second Edition, San Francisco: Holden-Day, 198-201.

Wheelwright, S.C. and Makridakis, S. (1973), Forecasting Methods for Management, Third Edition, New York: Wiley-Interscience, 123-133.

Chapter 15

The FORECAST Procedure

Contents

Overview: FORECAST Procedure . 774
Getting Started: FORECAST Procedure . 775
Giving Dates to Forecast Values . 776
Computing Confidence Limits . 776
Form of the OUT= Data Set . 777
Plotting Forecasts . 778
Plotting Residuals . 779
Model Parameters and Goodness-of-Fit Statistics 780
Controlling the Forecasting Method . 782
Introduction to Forecasting Methods . 783
Time Trend Models . 784
Time Series Methods . 786
Combining Time Trend with Autoregressive Models 787
Syntax: FORECAST Procedure . 788
Functional Summary . 788
PROC FORECAST Statement . 790
BY Statement . 795
ID Statement . 795
VAR Statement . 795
Details: FORECAST Procedure . 795
Missing Values . 795
Data Periodicity and Time Intervals . 796
Forecasting Methods . 796
Specifying Seasonality . 805
Data Requirements . 806
OUT= Data Set . 806
OUTEST= Data Set . 808
Examples: FORECAST Procedure . 811
Example 15.1: Forecasting Auto Sales . 811
Example 15.2: Forecasting Retail Sales . 816
Example 15.3: Forecasting Petroleum Sales 821
References . 824

Overview: FORECAST Procedure

The FORECAST procedure provides a quick and automatic way to generate forecasts for many time series in one step. The procedure can forecast hundreds of series at a time, with the series organized into separate variables or across BY groups. PROC FORECAST uses extrapolative forecasting methods where the forecasts for a series are functions only of time and past values of the series, not of other variables.

You can use the following forecasting methods. For each of these methods, you can specify linear, quadratic, or no trend.

- The stepwise autoregressive method is used by default. This method combines time trend regression with an autoregressive model and uses a stepwise method to select the lags to use for the autoregressive process.
- The exponential smoothing method produces a time trend forecast. However, in fitting the trend, the parameters are allowed to change gradually over time, and earlier observations are given exponentially declining weights. Single, double, and triple exponential smoothing are supported, depending on whether no trend, linear trend, or quadratic trend, respectively, is specified. Holt two-parameter linear exponential smoothing is supported as a special case of the Holt-Winters method without seasons.
- The Winters method (also called Holt-Winters) combines a time trend with multiplicative seasonal factors to account for regular seasonal fluctuations in a series. Like the exponential smoothing method, the Winters method allows the parameters to change gradually over time, with earlier observations given exponentially declining weights. You can also specify the additive version of the Winters method, which uses additive instead of multiplicative seasonal factors. When seasonal factors are omitted, the Winters method reduces to the Holt twoparameter version of double exponential smoothing.

The FORECAST procedure writes the forecasts and confidence limits to an output data set. It can also write parameter estimates and fit statistics to an output data set. The FORECAST procedure does not produce printed output.

PROC FORECAST is an extrapolation procedure useful for producing practical results efficiently. However, in the interest of speed, PROC FORECAST uses some shortcuts that cause some statistical results (such as confidence limits) to be only approximate. For many time series, the FORECAST procedure, with appropriately chosen methods and weights, can yield satisfactory results. Other SAS/ETS procedures can produce better forecasts but at greater computational expense.

You can perform the stepwise autoregressive forecasting method with the AUTOREG procedure. You can perform forecasting by exponential smoothing with statistically optimal weights with the ESM procedure. Seasonal ARIMA models can be used for forecasting seasonal series for which the Winters and additive Winters methods might be used.

Additionally, the Time Series Forecasting System can be used to develop forecasting models, estimate the model parameters, evaluate the models' ability to forecast and display the results graphically. See Chapter 37, "Getting Started with Time Series Forecasting," for more details.

Getting Started: FORECAST Procedure

To use PROC FORECAST, specify the input and output data sets and the number of periods to forecast in the PROC FORECAST statement, and then list the variables to forecast in a VAR statement.

For example, suppose you have monthly data on the sales of some product in a data set named PAST, as shown in Figure 15.1, and you want to forecast sales for the next 10 months.

Figure 15.1 Example Data Set PAST

The following statements forecast 10 observations for the variable SALES by using the default STEPAR method and write the results to the output data set PRED:

```
proc forecast data=past lead=10 out=pred;
    var sales;
run;
```

The following statements use the PRINT procedure to print the data set PRED:

```
proc print data=pred;
run;
```

The PROC PRINT listing of the forecast data set PRED is shown in Figure 15.2.

Figure 15.2 Forecast Data Set PRED

| Obs | _TYPE_ | LEAD_ | sales |
| ---: | :--- | :--- | :--- | :--- |
| | | | |
| 1 | FORECAST | 1 | 12.6205 |
| 2 | FORECAST | 2 | 12.7665 |
| 3 | FORECAST | 3 | 12.9020 |
| 4 | FORECAST | 4 | 13.0322 |
| 5 | FORECAST | 5 | 13.1595 |
| 6 | FORECAST | 6 | 13.2854 |
| 7 | FORECAST | 7 | 13.4105 |
| 8 | FORECAST | 8 | 13.5351 |
| 9 | FORECAST | 9 | 13.6596 |
| 10 | FORECAST | 10 | 13.7840 |
| | | | |

Giving Dates to Forecast Values

Normally, your input data set has an ID variable that gives dates to the observations, and you want the forecast observations to have dates also. Usually, the ID variable has SAS date values. (See Chapter 3, "Working with Time Series Data," for information about using SAS date and datetime values.) The ID statement specifies the identifying variable.

If the ID variable contains SAS date or datetime values, the INTERVAL= option should be used on the PROC FORECAST statement to specify the time interval between observations. (See Chapter 4, "Date Intervals, Formats, and Functions," for more information about time intervals.) The FORECAST procedure uses the INTERVAL= option to generate correct dates for forecast observations.

The data set PAST, shown in Figure 15.1, has monthly observations and contains an ID variable DATE with SAS date values identifying each observation. The following statements produce the same forecast as the preceding example and also include the ID variable DATE in the output data set. Monthly SAS date values are extrapolated for the forecast observations.

```
proc forecast data=past interval=month lead=10 out=pred;
    var sales;
    id date;
run;
```


Computing Confidence Limits

Depending on the output options specified, multiple observations are written to the OUT= data set for each time period. The different parts of the results are contained in the VAR statement variables in observations identified by the character variable _TYPE_ and by the ID variable.

For example, the following statements use the OUTLIMIT option to write forecasts and 95% confidence limits for the variable SALES to the output data set PRED. This data set is printed with the PRINT procedure.

```
proc forecast data=past interval=month lead=10
    out=pred outlimit;
    var sales;
        id date;
run;
proc print data=pred;
run;
```

The output data set PRED is shown in Figure 15.3.
Figure 15.3 Output Data Set

Obs	date	_TYPE	LEAD	sales
1	AUG91	FORECAST	1	12.6205
2	AUG91	L95	1	12.1848
3	AUG91	U95	1	13.0562
4	SEP91	FORECAST	2	12.7665
5	SEP91	L95	2	12.2808
6	SEP91	U95	2	13.2522
7	OCT91	FORECAST	3	12.9020
8	OCT91	L95	3	12.4001
9	OCT91	U95	3	13.4039
10	NOV91	FORECAST	4	13.0322
11	NOV91	L95	4	12.5223
12	NOV91	U95	4	13.5421
13	DEC91	FORECAST	5	13.1595
14	DEC91	L95	5	12.6435
15	DEC91	U95	5	13.6755
16	JAN92	FORECAST	6	13.2854
17	JAN92	L95	6	12.7637
18	JAN92	U95	6	13.8070
19	FEB92	FORECAST	7	13.4105
20	FEB92	L95	7	12.8830
21	FEB92	U95	7	13.9379
22	MAR92	FORECAST	8	13.5351
23	MAR92	L95	8	13.0017
24	MAR92	U95	8	14.0686
25	APR92	FORECAST	9	13.6596
26	APR92	L95	9	13.1200
27	APR92	U95	9	14.1993
28	MAY92	FORECAST	10	13.7840
29	MAY92	L95	10	13.2380
30	MAY92	U95	10	14.3301

Form of the OUT= Data Set

The OUT= data set PRED, shown in Figure 15.3, contains three observations for each of the 10 forecast periods. Each of these three observations has the same value of the ID variable DATE, the SAS date value for the month and year of the forecast.

The three observations for each forecast period have different values of the variable _TYPE_. For the _TYPE_=FORECAST observation, the value of the variable SALES is the forecast value for the period indicated by the DATE value. For the _TYPE_=L95 observation, the value of the variable SALES is the lower limit of the 95% confidence interval for the forecast. For the _TYPE_=U95 observation, the value of the variable SALES is the upper limit of the 95% confidence interval.

You can control the types of observations written to the OUT= data set with the PROC FORECAST statement options OUTLIMIT, OUTRESID, OUTACTUAL, OUT1STEP, OUTSTD, OUTFULL, and OUTALL. For example, the OUTFULL option outputs the confidence limit values, the one-step-ahead predictions, and the actual data, in addition to the forecast values. See the sections "Syntax: FORECAST Procedure" on page 788 and "OUTEST = Data Set" on page 808 for more information.

Plotting Forecasts

The forecasts, confidence limits, and actual values can be plotted on the same graph with the SGPLOT procedure. Use the appropriate output control options in the PROC FORECAST statement to include in the OUT= data set the series you want to plot. Use the _TYPE_ variable in the SGPLOT procedure GROUP option to separate the observations for the different plots.

The OUTFULL option is used in the following statements. The resulting output data set contains the actual and predicted values, as well as the upper and lower 95% confidence limits.

```
proc forecast data=past interval=month lead=10
    out=pred outfull;
    id date;
    var sales;
run;
proc sgplot data=pred;
    series x=date y=sales / group=_type_ lineattrs=(pattern=1);
    xaxis values=('1jan90'd to '1jan93'd by qtr);
    refline '15jul91'd / axis=x;
run;
```

The _TYPE_ variable is used in the SGPLOT procedure's PLOT statement to make separate plots over time for each type of value. A reference line marks the start of the forecast period. (See SAS/GRAPH Software: Reference for more information about using PROC SGPLOT.) The WHERE statement restricts the range of the actual data shown in the plot. In this example, the variable SALES has monthly data from July 1989 through July 1991, but only the data for 1990 and 1991 are shown in Figure 15.4.

Figure 15.4 Plot of Forecast with Confidence Limits

Plotting Residuals

You can plot the residuals from the forecasting model by using PROC SGPLOT and a WHERE statement.

1. Use the OUTRESID option or the OUTALL option in the PROC FORECAST statement to include the residuals in the output data set.
2. Use a WHERE statement to specify the observation type of 'RESIDUAL' in the PROC GPLOT code.

The following statements add the OUTRESID option to the preceding example and plot the residuals:

```
proc forecast data=past interval=month lead=10
    out=pred outfull outresid;
    id date;
    var sales;
```

```
run;
proc sgplot data=pred;
    where _type_='RESIDUAL';
    needle x=date y=sales / markers;
    xaxis values=('1jan89'd to '1oct91'd by qtr);
run;
```

The plot of residuals is shown in Figure 15.5.
Figure 15.5 Plot of Residuals

Model Parameters and Goodness-of-Fit Statistics

You can write the parameters of the forecasting models used, as well as statistics that measure how well the forecasting models fit the data, to an output SAS data set by using the OUTEST= option. The options OUTFITSTATS, OUTESTTHEIL, and OUTESTALL control what goodness-of-fit statistics are added to the OUTEST= data set.

For example, the following statements add the OUTEST= and OUTFITSTATS options to the previous example to create the output statistics data set EST for the results of the default stepwise
autoregressive forecasting method:

```
proc forecast data=past interval=month lead=10
    out=pred outfull outresid
    outest=est outfitstats;
    id date;
    var sales;
run;
proc print data=est;
run;
```

The PRINT procedure prints the OUTEST= data set, as shown in Figure 15.6.
Figure 15.6 The OUTEST= Data Set for STEPAR Method

Obs	_TYPE_	date	sales
1	N	JUL91	25
2	NRESID	JUL91	25
3	DF	JUL91	22
4	SIGMA	JUL91	0.2001613
5	CONSTANT	JUL91	9.4348822
6	LINEAR	JUL91	0.1242648
7	AR1	JUL91	0.5206294
8	AR2	JUL91	.
9	AR3	JUL91	.
10	AR4	JUL91	.
11	AR5	JUL91	.
12	AR6	JUL91	.
13	AR7	JUL91	.
14	AR8	JUL91	
15	SST	JUL91	21.28342
16	SSE	JUL91	0.8793714
17	MSE	JUL91	0.0399714
18	RMSE	JUL91	0.1999286
19	MAPE	JUL91	1.2280089
20	MPE	JUL91	-0.050139
21	MAE	JUL91	0.1312115
22	ME	JUL91	-0.001811
23	MAXE	JUL91	0.3732328
24	MINE	JUL91	-0.551605
25	MAXPE	JUL91	3.2692294
26	MINPE	JUL91	-5.954022
27	RSQUARE	JUL91	0.9586828
28	ADJRSQ	JUL91	0.9549267
29	RW_RSQ	JUL91	0.2657801
30	ARSQ	JUL91	0.9474145
31	APC	JUL91	0.044768
32	AIC	JUL91	-77.68559
33	SBC	JUL91	-74.02897
34	CORR	JUL91	0.9791313

In the OUTEST= data set, the DATE variable contains the ID value of the last observation in the data set used to fit the forecasting model. The variable SALES contains the statistic indicated
by the value of the _TYPE_ variable. The _TYPE_=N, NRESID, and DF observations contain, respectively, the number of observations read from the data set, the number of nonmissing residuals used to compute the goodness-of-fit statistics, and the number of nonmissing observations minus the number of parameters used in the forecasting model.

The observation that has _TYPE_=SIGMA contains the estimate of the standard deviation of the one-step prediction error computed from the residuals. The _TYPE_=CONSTANT and _TYPE_=LINEAR observations contain the coefficients of the time trend regression. The _TYPE_=AR1, AR2, ..., AR8 observations contain the estimated autoregressive parameters. A missing autoregressive parameter indicates that the autoregressive term at that lag was not retained in the model by the stepwise model selection method. (See the section "STEPAR Method" on page 797 for more information.)

The other observations in the OUTEST= data set contain various goodness-of-fit statistics that measure how well the forecasting model used fits the given data. See the section "OUTEST= Data Set" on page 808 for details.

Controlling the Forecasting Method

The METHOD= option controls which forecasting method is used. The TREND=option controls the degree of the time trend model used. For example, the following statements produce forecasts of SALES as in the preceding example but use the double exponential smoothing method instead of the default STEPAR method:

```
proc forecast data=past interval=month lead=10
    method=expo trend=2
    out=pred outfull outresid
    outest=est outfitstats;
    var sales;
    id date;
run;
proc print data=est;
run;
```

The PRINT procedure prints the OUTEST= data set for the EXPO method, as shown in Figure 15.7.

Figure 15.7 The OUTEST= Data Set for METHOD=EXPO

Obs	_TYPE_	date	sales
1	N	JUL91	25
2	NRESID	JUL91	25
3	DF	JUL91	23
4	WEIGHT	JUL91	0.1055728
5	S1	JUL91	11.427657
6	S2	JUL91	10.316473
7	SIGMA	JUL91	0.2545069
8	CONSTANT	JUL91	12.538841
9	LINEAR	JUL91	0.1311574
10	SST	JUL91	21.28342
11	SSE	JUL91	1.4897965
12	MSE	JUL91	0.0647738
13	RMSE	JUL91	0.2545069
14	MAPE	JUL91	1.9121204
15	MPE	JUL91	-0.816886
16	MAE	JUL91	0.2101358
17	ME	JUL91	-0.094941
18	MAXE	JUL91	0.3127332
19	MINE	JUL91	-0.460207
20	MAXPE	JUL91	2.9243781
21	MINPE	JUL91	-4.967478
22	RSQUARE	JUL91	0.930002
23	ADJRSQ	JUL91	0.9269586
24	RW_RSQ	JUL91	-0.243886
25	ARSQ	JUL91	0.9178285
26	APC	JUL91	0.0699557
27	AIC	JUL91	-66.50591
28	SBC	JUL91	-64.06816
29	CORR	JUL91	0.9772418

See the section "Syntax: FORECAST Procedure" on page 788 for other options that control the forecasting method. See the section "Introduction to Forecasting Methods" on page 783 and the section "Forecasting Methods" on page 796 for an explanation of the different forecasting methods.

Introduction to Forecasting Methods

This section briefly introduces the forecasting methods used by the FORECAST procedure. See textbooks on forecasting and see the section "Forecasting Methods" on page 796 for more detailed discussions of forecasting methods.

The FORECAST procedure combines three basic models to fit time series:

- time trend models for long-term, deterministic change
- autoregressive models for short-term fluctuations
- seasonal models for regular seasonal fluctuations

Two approaches to time series modeling and forecasting are time trend models and time series methods.

Time Trend Models

Time trend models assume that there is some permanent deterministic pattern across time. These models are best suited to data that are not dominated by random fluctuations.

Examining a graphical plot of the time series you want to forecast is often very useful in choosing an appropriate model. The simplest case of a time trend model is one in which you assume the series is a constant plus purely random fluctuations that are independent from one time period to the next. Figure 15.8 shows how such a time series might look.

Figure 15.8 Time Series without Trend

The x_{t} values are generated according to the equation

$$
x_{t}=b_{0}+\epsilon_{t}
$$

where ϵ_{t} is an independent, zero-mean, random error and b_{0} is the true series mean.

Suppose that the series exhibits growth over time, as shown in Figure 15.9.
Figure 15.9 Time Series with Linear Trend

A linear model is appropriate for this data. For the linear model, assume the x_{t} values are generated according to the equation

$$
x_{t}=b_{0}+b_{1} t+\epsilon_{t}
$$

The linear model has two parameters. The predicted values for the future are the points on the estimated line. The extension of the polynomial model to three parameters is the quadratic (which forms a parabola). This allows for a constantly changing slope, where the x_{t} values are generated according to the equation

$$
x_{t}=b_{0}+b_{1} t+b_{2} t^{2}+\epsilon_{t}
$$

PROC FORECAST can fit three types of time trend models: constant, linear, and quadratic. For other kinds of trend models, other SAS procedures can be used.

Exponential smoothing fits a time trend model by using a smoothing scheme in which the weights decline geometrically as you go backward in time. The forecasts from exponential smoothing are a time trend, but the trend is based mostly on the recent observations instead of on all the observations
equally. How well exponential smoothing works as a forecasting method depends on choosing a good smoothing weight for the series.

To specify the exponential smoothing method, use the METHOD=EXPO option. Single exponential smoothing produces forecasts with a constant trend (that is, no trend). Double exponential smoothing produces forecasts with a linear trend, and triple exponential smoothing produces a quadratic trend. Use the TREND= option with the METHOD=EXPO option to select single, double, or triple exponential smoothing.

The time trend model can be modified to account for regular seasonal fluctuations of the series about the trend. To capture seasonality, the trend model includes a seasonal parameter for each season. Seasonal models can be additive or multiplicative.

$$
\begin{aligned}
& x_{t}=b_{0}+b_{1} t+s(t)+\epsilon_{t} \quad \text { (additive) } \\
& x_{t}=\left(b_{0}+b_{1} t\right) s(t)+\epsilon_{t} \quad \text { (multiplicative) }
\end{aligned}
$$

where $s(t)$ is the seasonal parameter for the season that corresponds to time t.
The Winters method is similar to exponential smoothing, but it includes seasonal factors. The Winters method can use either additive or multiplicative seasonal factors. Like exponential smoothing, good results with the Winters method depend on choosing good smoothing weights for the series to be forecast.

To specify the multiplicative or additive versions of the Winters method, use the METHOD=WINTERS or METHOD=ADDWINTERS options, respectively. To specify seasonal factors to include in the model, use the SEASONS= option.

Many observed time series do not behave like constant, linear, or quadratic time trends. However, you can partially compensate for the inadequacies of the trend models by fitting time series models to the departures from the time trend, as described in the following sections.

Time Series Methods

Time series models assume the future value of a variable to be a linear function of past values. If the model is a function of past values for a finite number of periods, it is an autoregressive model and is written as follows:

$$
x_{t}=a_{0}+a_{1} x_{t-1}+a_{2} x_{t-2}+\ldots+a_{p} x_{t-p}+\epsilon_{t}
$$

The coefficients a_{i} are autoregressive parameters. One of the simplest cases of this model is the random walk, where the series dances around in purely random jumps. This is illustrated in Figure 15.10.

Figure 15.10 Random Walk Series

The x_{t} values are generated by the equation

$$
x_{t}=x_{t-1}+\epsilon_{t}
$$

In this type of model, the best forecast of a future value is the present value. However, with other autoregressive models, the best forecast is a weighted sum of recent values. Pure autoregressive forecasts always damp down to a constant (assuming the process is stationary).

Autoregressive time series models can also be used to predict seasonal fluctuations.

Combining Time Trend with Autoregressive Models

Trend models are suitable for capturing long-term behavior, whereas autoregressive models are more appropriate for capturing short-term fluctuations. One approach to forecasting is to combine a deterministic time trend model with an autoregressive model.

The stepwise autoregressive method (STEPAR method) combines a time trend regression with an autoregressive model for departures from trend. The combined time trend and autoregressive model
is written as follows:

$$
\begin{aligned}
& x_{t}=b_{0}+b_{1} t+b_{2} t^{2}+u_{t} \\
& u_{t}=a_{1} u_{t-1}+a_{2} u_{t-2}+\ldots+a_{p} u_{t-p}+\epsilon_{t}
\end{aligned}
$$

The autoregressive parameters included in the model for each series are selected by a stepwise regression procedure, so that autoregressive parameters are included only at those lags at which they are statistically significant.

The stepwise autoregressive method is fully automatic. Unlike the exponential smoothing and Winters methods, it does not depend on choosing smoothing weights. However, the STEPAR method assumes that the long-term trend is stable; that is, the time trend regression is fit to the whole series with equal weights for the observations.

The stepwise autoregressive model is used when you specify the METHOD=STEPAR option or do not specify any METHOD= option. To select a constant, linear, or quadratic trend for the time-trend part of the model, use the TREND= option.

Syntax: FORECAST Procedure

The following statements are used with PROC FORECAST:

```
PROC FORECAST options;
```

BY variables;
ID variables;
VAR variables ;

Functional Summary

Table 15.1 summarizes the statements and options that control the FORECAST procedure.
Table 15.1 FORECAST Functional Summary

Description	Statement	Option		
Statements				
specify model and data set options specify BY-group processing	PROC FORECAST			
identify observations specify the variables to forecast	BY			
	ID	VAR		
Input Data Set Options				
specify the input SAS data set specify frequency of the input time series specify increment between observations	PROC FORECAST	PROC FORECAST	\quad	INTERVAL=
:---				

Description
specify seasonality
specify number of periods in a season
treat zeros at beginning of series as missing

Output Data Set Options

specify the number of periods ahead to forecast
name output data set to contain the forecasts
write actual values to the OUT= data set
write confidence limits to the OUT= data set
write residuals to the OUT= data set
write standard errors of the forecasts to the
OUT $=$ data set
write one-step-ahead predicted values to the
OUT= data set
write predicted, actual, and confidence limit
values to the OUT= data set
write all available results to the OUT= data set
specify significance level for confidence limits
control the alignment of SAS date values

Parameters and Statistics Output Data Set Options

write parameter estimates and goodness-offit statistics to an output data set
write additional statistics to OUTEST= data set
write Theil statistics to OUTEST= data set
write forecast accuracy statistics to OUT-
EST= data set

Forecasting Method Options

specify the forecasting method
specify degree of the time trend model
specify smoothing weights
specify order of the autoregressive model
specify significance level for adding AR lags
specify significance level for keeping AR lags
start forecasting before the end of data
specify criterion for judging singularity
limit number of error or warning messages

Statement	Option
PROC FORECAST	SEASONS=
PROC FORECAST	SINTPER=
PROC FORECAST	ZEROMISS

PROC FORECAST LEAD=
PROC FORECAST OUT=
PROC FORECAST OUTACTUAL
PROC FORECAST OUTLIMIT
PROC FORECAST OUTRESID
PROC FORECAST OUTSTD
PROC FORECAST OUT1STEP
ROC FORECAST OUTFULL
PROC FORECAST OUTALL
PROC FORECAST ALPHA=

PROC FORECAST ALIGN=

PROC FORECAST
OUTEST=

PROC FORECAST OUTESTALL
PROC FORECAST OUTESTTHEIL PROC FORECAST OUTFITSTATS

PROC FORECAST
METHOD= PROC FORECAST TREND= PROC FORECAST WEIGHT= PROC FORECAST PROC FORECAST PROC FORECAST

PROC FORECAST PROC FORECAST
PROC FORECAST

AR= SLENTRY= SLSTAY=

START= SINGULAR= MAXERRORS=

Description	Statement	Option		
Initializing Smoothed Values specify number of beginning values to use in calculating starting values	PROC FORECAST	NSTART=		
specify number of beginning values to use in calculating initial seasonal parameters	PROC FORECAST	NSSTART=		
specify starting values for constant term	PROC FORECAST	ASTART=		
specify starting values for linear trend specify starting values for the quadratic trend	PROC FORECAST	PROC FORECAST		BSTART=
:---				
CSTART=				

PROC FORECAST Statement

PROC FORECAST options ;

The following options can be specified in the PROC FORECAST statement:

ALIGN=option

controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the following values: BEGINNING | BEG \| B, MIDDLE | MID | M, and ENDING | END | E. BEGINNING is the default.

ALPHA=value

specifies the significance level to use in computing the confidence limits of the forecast. The value of the ALPHA= option must be between 0.01 and 0.99 . You should use only two digits for the ALPHA= option because PROC FORECAST rounds the value to the nearest percent ($\mathrm{ALPHA}=0.101$ is the same as ALPHA $=0.10$). The default is ALPHA $=0.05$, which produces 95\% confidence limits.

AR=n
NLAGS= n
specifies the maximum order of the autoregressive model. The AR= option is valid only for METHOD=STEPAR. The default value of n depends on the INTERVAL=option and on the number of observations in the DATA= data set. See the section "STEPAR Method" on page 797 for details.

ASTART=value

ASTART=(value ...)
specifies starting values for the constant term for the exponential smoothing, Winters, and additive Winters methods. This option is ignored if METHOD=STEPAR. The values specified are associated with the variables in the VAR statement in the order in which the variables are listed. See the section "Starting Values for EXPO, WINTERS, and ADDWINTERS Methods" on page 804 for details.

BSTART=value

BSTART=(value ...)
specifies starting values for the linear trend for the exponential smoothing, Winters, and additive Winters methods. The values specified are associated with the variables in the VAR statement in the order in which the variables are listed. This option is ignored if METHOD=STEPAR or TREND=1. See the section "Starting Values for EXPO, WINTERS, and ADDWINTERS Methods" on page 804 for details.

CSTART=value

CSTART=(value ...)
specifies starting values for the quadratic trend for the exponential smoothing, Winters, and additive Winters methods. The values specified are associated with the variables in the VAR statement in the order in which the variables are listed. This option is ignored if METHOD=STEPAR or TREND=1 or 2 . See the section "Starting Values for EXPO, WINTERS, and ADDWINTERS Methods" on page 804 for details.

DATA=SAS-data-set
names the SAS data set that contains the input time series for the procedure to forecast. If the DATA $=$ option is not specified, the most recently created SAS data set is used.

INTERVAL=interval

specifies the frequency of the input time series. For example, if the input data set consists of quarterly observations, then INTERVAL=QTR should be used. See Chapter 4, "Date Intervals, Formats, and Functions," for more details about the intervals available.

INTPER=n

when the INTERVAL= option is not used, specifies an increment (other than 1) to use in generating the values of the ID variable for the forecast observations in the output data set.

LEAD=n

specifies the number of periods ahead to forecast. The default is LEAD $=12$.
The LEAD= value is relative to the last observation in the input data set and not to the end of a particular series. Thus, if a series has missing values at the end, the actual number of forecasts computed for that series will be greater than the LEAD= value.

MAXERRORS=n

limits the number of warning and error messages produced during the execution of the procedure to the specified value. The default is MAXERRORS=50.

This option is particularly useful in BY-group processing where it can be used to suppress the recurring messages.

METHOD=method-name

specifies the method to use to model the series and generate the forecasts.
METHOD=STEPAR specifies the stepwise autoregressive method.
METHOD=EXPO specifies the exponential smoothing method.
METHOD=WINTERS specifies the Holt-Winters exponentially smoothed trend-seasonal method.

METHOD=ADDWINTERS specifies the additive seasonal factors variant of the Winters method.

For more information, see the section "Forecasting Methods" on page 796. The default is METHOD=STEPAR.

NSTART= n

NSTART=MAX

specifies the number of beginning values of the series to use in calculating starting values for the trend parameters in the exponential smoothing, Winters, and additive Winters methods. This option is ignored if METHOD=STEPAR.

For METHOD=EXPO, n beginning values of the series are used in forming the exponentially smoothed values $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 , where n is the value of the NSTART= option. The parameters are initialized by fitting a time trend regression to the first n nonmissing values of the series.

For METHOD=WINTERS or METHOD=ADDWINTERS, n beginning complete seasonal cycles are used to compute starting values for the trend parameters. For example, for monthly data the seasonal cycle is one year, and NSTART=2 specifies that the first 24 observations at the beginning of each series are used for the time trend regression used to calculate starting values.

When NSTART=MAX is specified, all the observations are used. The default for METHOD=EXPO is NSTART=8; the default for METHOD=WINTERS or METHOD=ADDWINTERS is NSTART=2. See the section "Starting Values for EXPO, WINTERS, and ADDWINTERS Methods" on page 804 for details.

NSSTART= n

NSSTART=MAX

specifies the number of beginning values of the series to use in calculating starting values for seasonal parameters for METHOD=WINTERS or METHOD=ADDWINTERS. The seasonal parameters are initialized by averaging over the first n values of the series for each season, where n is the value of the NSSTART= option. When NSSTART=MAX is specified, all the observations are used.

If NSTART= is specified, but NSSTART $=$ is not, NSSTART= defaults to the value specified for NSTART=. If neither NSTART= nor NSSTART= is specified, then the default is NSSTART=2. This option is ignored if METHOD=STEPAR or METHOD=EXPO. See the section "Starting Values for EXPO, WINTERS, and ADDWINTERS Methods" on page 804 for details.

OUT=SAS-data-set

names the output data set to contain the forecasts. If the OUT= option is not specified, the data set is named by using the DATA n convention. See the section "OUTEST= Data Set" on page 808 for details.

OUTACTUAL

writes the actual values to the OUT= data set.

OUTALL

provides all the output control options (OUTLIMIT, OUT1STEP, OUTACTUAL, OUTRESID, and OUTSTD).

OUTEST=SAS-data-set

names an output data set to contain the parameter estimates and goodness-of-fit statistics. When the OUTEST= option is not specified, the parameters and goodness-of-fit statistics are not stored. See the section "OUTEST= Data Set" on page 808 for details.

OUTESTALL

writes additional statistics to the OUTEST= data set. This option is the same as specifying both OUTESTTHEIL and OUTFITSTATS.

OUTESTTHEIL

writes Theil forecast accuracy statistics to the OUTEST= data set.

OUTFITSTATS

writes various R-square-type forecast accuracy statistics to the OUTEST= data set.

OUTFULL

provides OUTACTUAL, OUT1STEP, and OUTLIMIT output control options in addition to the forecast values.

OUTLIMIT

writes the forecast confidence limits to the OUT= data set.

OUTRESID

writes the residuals (when available) to the OUT= data set.

OUTSTD

writes the standard errors of the forecasts to the OUT= data set.

OUT1STEP

writes the one-step-ahead predicted values to the OUT= data set.

SEASONS=interval

SEASONS= (interval1 [interval2 [interval3]])
SEASONS=n
SEASONS=(n1[n2[n3]])
specifies the seasonality for seasonal models. The interval can be QTR, MONTH, DAY, or HOUR, or multiples of these (for example, QTR2, MONTH2, MONTH3, MONTH4, MONTH6, HOUR2, HOUR3, HOUR4, HOUR6, HOUR8, and HOUR12).

Alternatively, seasonality can be specified by giving the length of the seasonal cycles. For example, SEASONS=3 means that every group of three observations forms a seasonal cycle. The SEASONS= option is valid only for METHOD=WINTERS or METHOD=ADDWINTERS. See the section "Specifying Seasonality" on page 805 for details.

SINGULAR=value

gives the criterion for judging singularity. The default depends on the precision of the computer that you run SAS programs on.

SINTPER= m

SINTPER=(m1[m2[m3]])
specifies the number of periods to combine in forming a season. For example, SEASONS=3 SINTPER=2 specifies that each group of two observations forms a season and that the seasonal cycle repeats every six observations. The SINTPER= option is valid only when the SEASONS = option is used. See the section "Specifying Seasonality" on page 805 for details.

SLENTRY=value

controls the significance levels for entry of autoregressive parameters in the STEPAR method. The value of the SLENTRY= option must be between 0 and 1 . The default is SLENTRY=0.2. See the section "STEPAR Method" on page 797 for details.

SLSTAY=value

controls the significance levels for removal of autoregressive parameters in the STEPAR method. The value of the SLSTAY= option must be between 0 and 1 . The default is SLSTAY=0.05. See the section "STEPAR Method" on page 797 for details.

START=n
uses the first n observations to fit the model and begins forecasting with the $n+1$ observation.

TREND= n

specifies the degree of the time trend model. The value of the TREND= option must be 1,2 , or 3 . TREND $=1$ selects the constant trend model; TREND $=2$ selects the linear trend model; and TREND $=3$ selects the quadratic trend model. The default is TREND $=2$, except for METHOD=EXPO, for which the default is TREND $=3$.

WEIGHT=w

WEIGHT=(w1[w2[w3]])
specifies the smoothing weights for the EXPO, WINTERS, and ADDWINTERS methods. For the EXPO method, only one weight can be specified. For the WINTERS or ADDWINTERS method, $w 1$ gives the weight for updating the constant component, $w 2$ gives the weight for updating the linear and quadratic trend components, and $w 3$ gives the weight for updating the seasonal component. The $w 2$ and $w 3$ values are optional. Each value in the WEIGHT= option must be between 0 and 1. For default values, see the section "EXPO Method" on page 798 and the section "WINTERS Method" on page 799.

ZEROMISS

treats zeros at the beginning of a series as missing values. For example, a product can be introduced at a date after the date of the first observation in the data set, and the sales variable for the product can be recorded as zero for the observations prior to the introduction date. The ZEROMISS option says to treat these initial zeros as missing values.

BY Statement

BY variables;
A BY statement can be used with PROC FORECAST to obtain separate analyses on observations in groups defined by the BY variables.

ID Statement

ID variables ;

The first variable listed in the ID statement identifies observations in the input and output data sets. Usually, the first ID variable is a SAS date or datetime variable. Its values are interpreted and extrapolated according to the values of the INTERVAL= option. See the section "Data Periodicity and Time Intervals" on page 796 for details.

If more than one ID variable is specified in the ID statement, only the first is used to identify the observations; the rest are just copied to the OUT= data set and will have missing values for forecast observations.

VAR Statement

VAR variables ;

The VAR statement specifies the variables in the input data set that you want to forecast. If no VAR statement is specified, the procedure forecasts all numeric variables except the ID and BY variables.

Details: FORECAST Procedure

Missing Values

The treatment of missing values varies by method. For METHOD=STEPAR, missing values are tolerated in the series; the autocorrelations are estimated from the available data and tapered, if necessary. For the EXPO, WINTERS, and ADDWINTERS methods, missing values after the start of the series are replaced with one-step-ahead predicted values, and the predicted values are applied to the smoothing equations. For the WINTERS method, negative or zero values are treated as missing.

Data Periodicity and Time Intervals

The INTERVAL= option is used to establish the frequency of the time series. For example, INTERVAL=MONTH specifies that each observation in the input data set represents one month. If INTERVAL=MONTH2, each observation represents two months. Thus, there is a two-month time interval between each pair of successive observations, and the data frequency is bimonthly.

See Chapter 4, "Date Intervals, Formats, and Functions," for details about the interval values supported.

The INTERVAL= option is used together with the ID statement to fully describe the observations that make up the time series. The first variable specified in the ID statement is used to identify the observations. Usually, SAS date or datetime values are used for this variable. PROC FORECAST uses the ID variable in the following ways:

- to validate the data periodicity. When the INTERVAL= option is specified, the ID variable is used to check the data and verify that successive observations have valid ID values that correspond to successive time intervals. When the INTERVAL= option is not used, PROC FORECAST verifies that the ID values are nonmissing and in ascending order. A warning message is printed when an invalid ID value is found in the input data set.
- to check for gaps in the input observations. For example, if INTERVAL=MONTH and an input observation for January 1970 is followed by an observation for April 1970, there is a gap in the input data, with two observations omitted. When a gap in the input data is found, a warning message is printed, and PROC FORECAST processes missing values for each omitted input observation.
- to label the forecast observations in the output data set. The values of the ID variable for the forecast observations after the end of the input data set are extrapolated according to the frequency specifications of the INTERVAL= option. If the INTERVAL= option is not specified, the ID variable is extrapolated by incrementing the ID variable value for the last observation in the input data set by the INTPER= value, if specified, or by one.

The ALIGN= option controls the alignment of SAS dates. See Chapter 4, "Date Intervals, Formats, and Functions," for more information.

Forecasting Methods

This section explains the forecasting methods used by PROC FORECAST.

STEPAR Method

In the STEPAR method, PROC FORECAST first fits a time trend model to the series and takes the difference between each value and the estimated trend. (This process is called detrending.) Then, the remaining variation is fit by using an autoregressive model.

The STEPAR method fits the autoregressive process to the residuals of the trend model by using a backwards-stepping method to select parameters. Because the trend and autoregressive parameters are fit in sequence rather than simultaneously, the parameter estimates are not optimal in a statistical sense. However, the estimates are usually close to optimal, and the method is computationally inexpensive.

The STEPAR Algorithm

The STEPAR method consists of the following computational steps:

1. Fit the trend model as specified by the TREND= option by using ordinary least-squares regression. This step detrends the data. The default trend model for the STEPAR method is TREND $=2$, a linear trend model.
2. Take the residuals from step 1 and compute the autocovariances to the number of lags specified by the NLAGS= option.
3. Regress the current values against the lags, using the autocovariances from step 2 in a YuleWalker framework. Do not bring in any autoregressive parameter that is not significant at the level specified by the SLENTRY= option. (The default is SLENTRY=0.20.) Do not bring in any autoregressive parameter that results in a nonpositive-definite Toeplitz matrix.
4. Find the autoregressive parameter that is least significant. If the significance level is greater than the SLSTAY= value, remove the parameter from the model. (The default is SLSTAY=0.05.) Continue this process until only significant autoregressive parameters remain. If the OUTEST = option is specified, write the estimates to the OUTEST= data set.
5. Generate the forecasts by using the estimated model and output to the OUT= data set. Form the confidence limits by combining the trend variances with the autoregressive variances.

Missing values are tolerated in the series; the autocorrelations are estimated from the available data and tapered if necessary.

This method requires at least three passes through the data: two passes to fit the model and a third pass to initialize the autoregressive process and write to the output data set.

Default Value of the NLAGS= Option

If the NLAGS $=$ option is not specified, the default value of the NLAGS $=$ option is chosen based on the data frequency specified by the INTERVAL= option and on the number of observations in the input data set, if this can be determined in advance. (PROC FORECAST cannot determine the number of input observations before reading the data when a BY statement or a WHERE statement
is used or if the data are from a tape format SAS data set or external database. The NLAGS= value must be fixed before the data are processed.)

If the INTERVAL= option is specified, the default NLAGS= value includes lags for up to three years plus one, subject to the maximum of 13 lags or one-third of the number of observations in your data set, whichever is less. If the number of observations in the input data set cannot be determined, the maximum NLAGS= default value is 13 . If the INTERVAL= option is not specified, the default is NLAGS $=13$ or one-third the number of input observations, whichever is less.

If the Toeplitz matrix formed by the autocovariance matrix at a given step is not positive definite, the maximal number of autoregressive lags is reduced.

For example, for INTERVAL=QTR, the default is NLAGS=13 (that is, $4 \times 3+1$) provided that there are at least 39 observations. The NLAGS $=$ option default is always at least 3 .

EXPO Method

Exponential smoothing is used when the METHOD=EXPO option is specified. The term exponential smoothing is derived from the computational scheme developed by Brown and others (Brown and Meyers 1961; Brown 1962). Estimates are computed with updating formulas that are developed across time series in a manner similar to smoothing.

The EXPO method fits a trend model such that the most recent data are weighted more heavily than data in the early part of the series. The weight of an observation is a geometric (exponential) function of the number of periods that the observation extends into the past relative to the current period. The weight function is

$$
w_{\tau}=\omega(1-\omega)^{t-\tau}
$$

where τ is the observation number of the past observation, t is the current observation number, and ω is the weighting constant specified with the WEIGHT= option.

You specify the model with the TREND= option as follows:

- TREND $=1$ specifies single exponential smoothing (a constant model)
- TREND $=2$ specifies double exponential smoothing (a linear trend model)
- TREND $=3$ specifies triple exponential smoothing (a quadratic trend model)

Updating Equations

The single exponential smoothing operation is expressed by the formula

$$
S_{t}=\omega x_{t}+(1-\omega) S_{t-1}
$$

where S_{t} is the smoothed value at the current period, t is the time index of the current period, and x_{t} is the current actual value of the series. The smoothed value S_{t} is the forecast of x_{t+1} and is calculated as the smoothing constant ω times the value of the series, x_{t}, in the current period plus $(1-\omega)$ times the previous smoothed value S_{t-1}, which is the forecast of x_{t} computed at time $t-1$.

Double and triple exponential smoothing are derived by applying exponential smoothing to the smoothed series, obtaining smoothed values as follows:

$$
\begin{aligned}
& S_{t}^{[2]}=\omega S_{t}+(1-\omega) S_{t-1}^{[2]} \\
& S_{t}^{[3]}=\omega S_{t}^{[2]}+(1-\omega) S_{t-1}^{[3]}
\end{aligned}
$$

Missing values after the start of the series are replaced with one-step-ahead predicted values, and the predicted value is then applied to the smoothing equations.

The polynomial time trend parameters CONSTANT, LINEAR, and QUAD in the OUTEST= data set are computed from $S_{T}, S_{T}^{[2]}$, and $S_{T}^{[3]}$, the final smoothed values at observation T, the last observation used to fit the model. In the OUTEST= data set, the values of $S_{T}, S_{T}^{[2]}$, and $S_{T}^{[3]}$ are identified by _TYPE_=S1, _TYPE_=S2, and _TYPE_=S3, respectively.

Smoothing Weights

Exponential smoothing forecasts are forecasts for an integrated moving-average process; however, the weighting parameter is specified by the user rather than estimated from the data. Experience has shown that good values for the WEIGHT $=$ option are between 0.05 and 0.3. As a general rule, smaller smoothing weights are appropriate for series with a slowly changing trend, while larger weights are appropriate for volatile series with a rapidly changing trend. If unspecified, the weight defaults to $\left(1-0.8^{1 / \text { trend }}\right)$, where trend is the value of the TREND $=$ option. This produces defaults of WEIGHT $=0.2$ for TREND $=1$, WEIGHT $=0.10557$ for TREND $=2$, and WEIGHT=0.07168 for TREND=3.

The ESM procedure can be used to forecast time series by using exponential smoothing with smoothing weights that are optimized automatically. See Chapter 13, "The ESM Procedure."

The Time Series Forecasting System provides for exponential smoothing models and enables you to either specify or optimize the smoothing weights. See Chapter 37, "Getting Started with Time Series Forecasting," for details.

Confidence Limits

The confidence limits for exponential smoothing forecasts are calculated as they would be for an exponentially weighted time trend regression, using the simplifying assumption of an infinite number of observations. The variance estimate is computed by using the mean square of the unweighted one-step-ahead forecast residuals.

More detailed descriptions of the forecast computations can be found in Montgomery and Johnson (1976) and Brown (1962).

WINTERS Method

The WINTERS method uses updating equations similar to exponential smoothing to fit parameters for the model

$$
x_{t}=(a+b t) s(t)+\epsilon_{t}
$$

where a and b are the trend parameters and the function $s(t)$ selects the seasonal parameter for the season that corresponds to time t.

The WINTERS method assumes that the series values are positive. If negative or zero values are found in the series, a warning is printed and the values are treated as missing.

The preceding standard WINTERS model uses a linear trend. However, PROC FORECAST can also fit a version of the WINTERS method that uses a quadratic trend. When TREND $=3$ is specified for METHOD=WINTERS, PROC FORECAST fits the following model:

$$
x_{t}=\left(a+b t+c t^{2}\right) s(t)+\epsilon_{t}
$$

The quadratic trend version of the Winters method is often unstable, and its use is not recommended.
When TREND $=1$ is specified, the following constant trend version is fit:

$$
x_{t}=a s(t)+\epsilon_{t}
$$

The default for the WINTERS method is TREND=2, which produces the standard linear trend model.

Seasonal Factors

The notation $s(t)$ represents the selection of the seasonal factor used for different time periods. For example, if INTERVAL=DAY and SEASONS=MONTH, there are 12 seasonal factors, one for each month in the year, and the time index t is measured in days. For any observation, t is determined by the ID variable and $s(t)$ selects the seasonal factor for the month that t falls in. For example, if t is 9 February 1993 then $s(t)$ is the seasonal parameter for February.

When there are multiple seasons specified, $s(t)$ is the product of the parameters for the seasons. For example, if SEASONS=(MONTH DAY), then $s(t)$ is the product of the seasonal parameter for the month that corresponds to the period t and the seasonal parameter for the day of the week that corresponds to period t. When the SEASONS= option is not specified, the seasonal factors $s(t)$ are not included in the model. See the section "Specifying Seasonality" on page 805 for more information about specifying multiple seasonal factors.

Updating Equations

This section shows the updating equations for the Winters method. In the following formula, x_{t} is the actual value of the series at time $t ; a_{t}$ is the smoothed value of the series at time $t ; b_{t}$ is the smoothed trend at time $t ; c_{t}$ is the smoothed quadratic trend at time $t ; s_{t-1}(t)$ selects the old value of the seasonal factor that corresponds to time t before the seasonal factors are updated.

The estimates of the constant, linear, and quadratic trend parameters are updated by using the following equations:

For TREND=3,

$$
a_{t}=\omega_{1} \frac{x_{t}}{s_{t-1}(t)}+\left(1-\omega_{1}\right)\left(a_{t-1}+b_{t-1}+c_{t-1}\right)
$$

$$
\begin{aligned}
& b_{t}=\omega_{2}\left(a_{t}-a_{t-1}+c_{t-1}\right)+\left(1-\omega_{2}\right)\left(b_{t-1}+2 c_{t-1}\right) \\
& c_{t}=\omega_{2} \frac{1}{2}\left(b_{t}-b_{t-1}\right)+\left(1-\omega_{2}\right) c_{t-1}
\end{aligned}
$$

For TREND=2,

$$
\begin{aligned}
& a_{t}=\omega_{1} \frac{x_{t}}{s_{t-1}(t)}+\left(1-\omega_{1}\right)\left(a_{t-1}+b_{t-1}\right) \\
& b_{t}=\omega_{2}\left(a_{t}-a_{t-1}\right)+\left(1-\omega_{2}\right) b_{t-1}
\end{aligned}
$$

For TREND=1,

$$
a_{t}=\omega_{1} \frac{x_{t}}{s_{t-1}(t)}+\left(1-\omega_{1}\right) a_{t-1}
$$

In this updating system, the trend polynomial is always centered at the current period so that the intercept parameter of the trend polynomial for predicted values at times after t is always the updated intercept parameter a_{t}. The predicted value for τ periods ahead is

$$
x_{t+\tau}=\left(a_{t}+b_{t} \tau\right) s_{t}(t+\tau)
$$

The seasonal parameters are updated when the season changes in the data, using the mean of the ratios of the actual to the predicted values for the season. For example, if SEASONS=MONTH and INTERVAL=DAY, then when the observation for the first of February is encountered, the seasonal parameter for January is updated by using the formula

$$
s_{t}(t-1)=\omega_{3} \frac{1}{31} \sum_{i=t-31}^{t-1} \frac{x_{i}}{a_{i}}+\left(1-\omega_{3}\right) s_{t-1}(t-1)
$$

where t is February 1 of the current year, $s_{t}(t-1)$ is the seasonal parameter for January updated with the data available at time t, and $s_{t-1}(t-1)$ is the seasonal parameter for January of the previous year.

When multiple seasons are used, $s_{t}(t)$ is a product of seasonal factors. For example, if SEASONS $=($ MONTH DAY $)$ then $s_{t}(t)$ is the product of the seasonal factors for the month and for the day of the week: $s_{t}(t)=s_{t}^{m}(t) s_{t}^{d}(t)$.

The factor $s_{t}^{m}(t)$ is updated at the start of each month by using a modification of the preceding formula that adjusts for the presence of the other seasonal by dividing the summands $\frac{x_{i}}{a_{i}}$ by the that corresponds to day of the week effect $s_{i}^{d}(i)$.

Similarly, the factor $s_{t}^{d}(t)$ is updated by using the following formula:

$$
s_{t}^{d}(t)=\omega_{3} \frac{x_{t}}{a_{t} s_{t}^{m}(t)}+\left(1-\omega_{3}\right) s_{t-1}^{d}(t)
$$

where $s_{t-1}^{d}(t)$ is the seasonal factor for the same day of the previous week.
Missing values after the start of the series are replaced with one-step-ahead predicted values, and the predicted value is substituted for x_{i} and applied to the updating equations.

Normalization

The parameters are normalized so that the seasonal factors for each cycle have a mean of 1.0. This normalization is performed after each complete cycle and at the end of the data. Thus, if INTERVAL=MONTH and SEASONS=MONTH are specified and a series begins with a July value, then the seasonal factors for the series are normalized at each observation for July and at the last observation in the data set. The normalization is performed by dividing each of the seasonal parameters, and multiplying each of the trend parameters, by the mean of the unnormalized seasonal parameters.

Smoothing Weights

The weight for updating the seasonal factors, ω_{3}, is given by the third value specified in the WEIGHT $=$ option. If the WEIGHT $=$ option is not used, then ω_{3} defaults to 0.25 ; if the WEIGHT= option is used but does not specify a third value, then ω_{3} defaults to ω_{2}. The weight for updating the linear and quadratic trend parameters, ω_{2}, is given by the second value specified in the WEIGHT= option; if the WEIGHT= option does not specify a second value, then ω_{2} defaults to ω_{1}. The updating weight for the constant parameter, ω_{1}, is given by the first value specified in the WEIGHT= option. As a general rule, smaller smoothing weights are appropriate for series with a slowly changing trend, while larger weights are appropriate for volatile series with a rapidly changing trend.

If the WEIGHT $=$ option is not used, then ω_{1} defaults to $\left(1-0.8^{1 / \text { trend }}\right)$, where trend is the value of the TREND $=$ option. This produces defaults of WEIGHT=0.2 for TREND=1, WEIGHT=0.10557 for $\operatorname{TREND}=2$, and WEIGHT=0.07168 for TREND=3.

The ESM procedure and the Time Series Forecasting System provide for generating forecast models that use Winters Method and enable you to specify or optimize the weights. (See Chapter 13, "The ESM Procedure," and Chapter 37, "Getting Started with Time Series Forecasting," for details.)

Confidence Limits

A method for calculating exact forecast confidence limits for the WINTERS method is not available. Therefore, the approach taken in PROC FORECAST is to assume that the true seasonal factors have small variability about a set of fixed seasonal factors and that the remaining variation of the series is small relative to the mean level of the series. The equations are written

$$
\begin{aligned}
& s_{t}(t)=\mathrm{I}(t)\left(1+\delta_{t}\right) \\
& x_{t}=\mu \mathrm{I}(t)\left(1+\gamma_{t}\right) \\
& a_{t}=\xi\left(1+\alpha_{t}\right)
\end{aligned}
$$

where μ is the mean level and $\mathrm{I}(t)$ are the fixed seasonal factors. Assuming that α_{t} and δ_{t} are small, the forecast equations can be linearized and only first-order terms in δ_{t} and α_{t} kept. In terms of forecasts for γ_{t}, this linearized system is equivalent to a seasonal ARIMA model. Confidence limits for γ_{t} are based on this ARIMA model and converted into confidence limits for x_{t} using $s_{t}(t)$ as estimates of $\mathrm{I}(t)$.

The exponential smoothing confidence limits are based on an approximation to a weighted regression model, whereas the preceding Winters confidence limits are based on an approximation to an ARIMA model. You can use METHOD=WINTERS without the SEASONS= option to do exponential smoothing and get confidence limits for the EXPO forecasts based on the ARIMA model
approximation. These are generally more pessimistic than the weighted regression confidence limits produced by METHOD=EXPO.

ADDWINTERS Method

The ADDWINTERS method is like the WINTERS method except that the seasonal parameters are added to the trend instead of multiplied with the trend. The default TREND $=2$ model is as follows:

$$
x_{t}=a+b t+s(t)+\epsilon_{t}
$$

The WINTERS method for updating equation and confidence limits calculations described in the preceding section are modified accordingly for the additive version.

Holt Two-Parameter Exponential Smoothing

If the seasonal factors are omitted (that is, if the SEASONS $=$ option is not specified), the WINTERS (and ADDWINTERS) method reduces to the Holt two-parameter version of exponential smoothing. Thus, the WINTERS method is often referred to as the Holt-Winters method.

Double exponential smoothing is a special case of the Holt two-parameter smoother. The double exponential smoothing results can be duplicated with METHOD=WINTERS by omitting the SEASONS $=$ option and appropriately setting the WEIGHT= option. Letting $\alpha=\omega(2-\omega)$ and $\beta=\omega /(2-\omega)$, the following statements produce the same forecasts:

```
proc forecast method=expo trend=2 weight=\omega ...;
proc forecast method=winters trend=2 weight=(\alpha,\beta) ...;
```

Although the forecasts are the same, the confidence limits are computed differently.

Choice of Weights for EXPO, WINTERS, and ADDWINTERS Methods

For the EXPO, WINTERS, and ADDWINTERS methods, properly chosen smoothing weights are of critical importance in generating reasonable results. There are several factors to consider in choosing the weights.

The noisier the data, the lower should be the weight given to the most recent observation. Another factor to consider is how quickly the mean of the time series is changing. If the mean of the series is changing rapidly, relatively more weight should be given to the most recent observation. The more stable the series over time, the lower should be the weight given to the most recent observation.

Note that the smoothing weights should be set separately for each series; weights that produce good results for one series might be poor for another series. Since PROC FORECAST does not have a feature to use different weights for different series, when forecasting multiple series with the EXPO, WINTERS, or ADDWINTERS method it might be desirable to use different PROC FORECAST steps with different WEIGHT= options.

For the Winters method, many combinations of weight values might produce unstable noninvertible models, even though all three weights are between 0 and 1 . When the model is noninvertible, the forecasts depend strongly on values in the distant past, and predictions are determined largely by the starting values. Unstable models usually produce poor forecasts. The Winters model can be unstable even if the weights are optimally chosen to minimize the in-sample MSE. See Archibald (1990) for a detailed discussion of the unstable region of the parameter space of the Winters model.

Optimal weights and forecasts for exponential smoothing models can be computed by using the ESM and ARIMA procedures and by the Time Series Forecasting System.

Starting Values for EXPO, WINTERS, and ADDWINTERS Methods

The exponential smoothing method requires starting values for the smoothed values $S_{0}, S_{0}^{[2]}$, and $S_{0}^{[3]}$. The Winters and additive Winters methods require starting values for the trend coefficients and seasonal factors.

By default, starting values for the trend parameters are computed by a time trend regression over the first few observations for the series. Alternatively, you can specify the starting value for the trend parameters with the ASTART=, BSTART=, and CSTART= options.

The number of observations used in the time trend regression for starting values depends on the NSTART = option. For METHOD=EXPO, NSTART= beginning values of the series are used, and the coefficients of the time trend regression are then used to form the initial smoothed values S_{0}, $S_{0}^{[2]}$, and $S_{0}^{[3]}$.

For METHOD=WINTERS or METHOD=ADDWINTERS, n complete seasonal cycles are used to compute starting values for the trend parameter, where n is the value of the NSTART= option. For example, for monthly data the seasonal cycle is one year, so NSTART=2 specifies that the first 24 observations at the beginning of each series are used for the time trend regression used to calculate starting values.

The starting values for the seasonal factors for the WINTERS and ADDWINTERS methods are computed from seasonal averages over the first few complete seasonal cycles at the beginning of the series. The number of seasonal cycles averaged to compute starting seasonal factors is controlled by the NSSTART = option. For example, for monthly data with SEASONS=12 or SEASONS=MONTH, the first n January values are averaged to get the starting value for the January seasonal parameter, where n is the value of the NSSTART= option.

The $s_{0}(i)$ seasonal parameters are set to the ratio (for WINTERS) or difference (for ADDWINTERS) of the mean for the season to the overall mean for the observations used to compute seasonal starting values.

For example, if METHOD=WINTERS, INTERVAL=DAY, SEASON=(MONTH DAY), and NSTART $=2$ (the default), the initial seasonal parameter for January is the ratio of the mean value over days in the first two Januarys after the start of the series (that is, after the first nonmissing value) to the mean value for all days read for initialization of the seasonal factors. Likewise, the initial factor for Sundays is the ratio of the mean value for Sundays to the mean of all days read.

For the ASTART=, BSTART=, and CSTART= options, the values specified are associated with the
variables in the VAR statement in the order in which the variables are listed (the first value with the first variable, the second value with the second variable, and so on). If there are fewer values than variables, default starting values are used for the later variables. If there are more values than variables, the extra values are ignored.

Specifying Seasonality

Seasonality of a time series is a regular fluctuation about a trend. This is called seasonality because the time of year is the most common source of periodic variation. For example, sales of home heating oil are regularly greater in winter than during other times of the year.

Seasonality can be caused by many things other than weather. In the United States, sales of nondurable goods are greater in December than in other months because of the Christmas shopping season. The term seasonality is also used for cyclical fluctuation at periods other than a year. Often, certain days of the week cause regular fluctuation in daily time series, such as increased spending on leisure activities during weekends.

Three kinds of seasonality are supported in PROC FORECAST: time-of-year, day-of-week, and time-of-day. The seasonal part of the model is specified by using the SEASONS= option. The values for the SEASONS= option are listed in Table 15.2.

Table 15.2 The SEASONS= Option

SEASONS= Value	Cycle Length	Type of Seasonality
QTR	yearly	time of year
MONTH	yearly	time of year
DAY	weekly	day of week
HOUR	daily	time of day

The three kinds of seasonality can be combined. For example, SEASONS=(MONTH DAY HOUR) specifies that 24 hour-of-day seasons are nested within 7 day-of-week seasons, which in turn are nested within 12 month-of-year seasons. The different kinds of intervals can be listed in the SEASONS = option in any order. Thus, SEASONS=(HOUR DAY MONTH) is the same as SEASONS=(MONTH DAY HOUR). Note that the Winters method smoothing equations might be less stable when multiple seasonal factors are used.

Multiple period seasons can also be used. For example, SEASONS=QTR2 specifies two semiannual time-of-year seasons. The grouping of observations into multiple period seasons starts with the first interval in the seasonal cycle. Thus, MONTH2 seasons are January-February, March-April, and so on. (There is no provision for shifting seasonal intervals; thus, there is no way to specify seasons December-January, February-March, April-May, and so on.)

For multiple period seasons, the number of intervals combined to form the seasons must evenly divide and be less than the basic cycle length. For example, with SEASONS=MONTH n, the basic cycle length is 12 , so MONTH2, MONTH3, MONTH4, and MONTH6 are valid SEASONS= values (because 2, 3, 4, and 6 evenly divide 12 and are less than 12), but MONTH5 and MONTH12 are not valid SEASONS $=$ values.

The frequency of the seasons must not be greater than the frequency of the input data. For example, you cannot specify SEASONS=MONTH if INTERVAL=QTR or SEASONS=MONTH if INTERVAL=MONTH2. You also cannot specify two seasons of the same basic cycle. For example, SEASONS=(MONTH QTR) or SEASONS=(MONTH2 MONTH4) is not allowed.

Alternatively, the seasonality can be specified by giving the number of seasons in the SEASONS= option. $\mathrm{SEASONS}=n$ specifies that there are n seasons, with observations $1, n+1,2 n+1$, and so on in the first season, observations $2, n+2,2 n+2$, and so on in the second season, and so forth.

The options SEASONS $=n$ and SINTPER= m cause PROC FORECAST to group the input observations into n seasons, with m observations to a season, which repeat every $n m$ observations. The options $\operatorname{SEASONS}=\left(n_{1} n_{2}\right)$ and $\operatorname{SINTPER}=\left(m_{1} m_{2}\right)$ produce n_{1} seasons with m_{1} observations to a season nested within n_{2} seasons with $n_{1} m_{1} m_{2}$ observations to a season.

If the SINTPER=m option is used with the $\mathrm{SEASONS}=$ option, the $\mathrm{SEASONS}=$ interval is multiplied by the SINTPER= value. For example, specifying both SEASONS=(QTR HOUR) and SINT$\operatorname{PER}=(23)$ is the same as specifying SEASONS=(QTR2 HOUR3) and also the same as specifying SEASONS=(HOUR3 QTR2).

Data Requirements

You should have ample data for the series that you forecast by using PROC FORECAST. However, the results might be poor unless you have a good deal more than the minimum amount of data the procedure allows. The minimum number of observations required for the different methods is as follows:

- If METHOD=STEPAR is used, the minimum number of nonmissing observations required for each series forecast is the TREND= option value plus the value of the NLAGS= option. For example, using NLAGS=13 and TREND=2, at least 15 nonmissing observations are needed.
- If METHOD=EXPO is used, the minimum is the TREND=option value.
- If METHOD=WINTERS or ADDWINTERS is used, the minimum number of observations is either the number of observations in a complete seasonal cycle or the TREND= option value, whichever is greater. (However, there should be data for several complete seasonal cycles, or the seasonal factor estimates might be poor.) For example, for the seasonal specifications SEASONS=MONTH, SEASONS=(QTR DAY), or SEASONS=(MONTH DAY HOUR), the longest cycle length is one year, so at least one year of data is required. At least two years of data is recommended.

OUT= Data Set

The FORECAST procedure writes the forecast to the output data set named by the OUT= option. The OUT= data set contains the following variables:

- the BY variables
- _TYPE_, a character variable that identifies the type of observation
- _LEAD_, a numeric variable that indicates the number of steps ahead in the forecast. The value of _LEAD_ is 0 for the one-step-ahead forecasts before the start of the forecast period.
- the ID statement variables
- the VAR statement variables, which contain the result values as indicated by the _TYPE_ variable value for the observation

The FORECAST procedure processes each of the input variables listed in the VAR statement and writes several observations for each forecast period to the OUT= data set. The observations are identified by the value of the _TYPE_ variable. The options OUTACTUAL, OUTALL, OUTLIMIT, OUTRESID, OUT1STEP, OUTFULL, and OUTSTD control which types of observations are included in the OUT= data set.

The values of the variable _TYPE_ are as follows:

ACTUAL The VAR statement variables contain actual values from the input data set. The OUTACTUAL option writes the actual values. By default, only the observations for the forecast period are output.

FORECAST The VAR statement variables contain forecast values. The OUT1STEP option writes the one-step-ahead predicted values for the observations used to fit the model.

RESIDUAL The VAR statement variables contain residuals. The residuals are computed by subtracting the forecast value from the actual value (residual $=$ actual - forecast $). \quad$ The OUTRESID option writes observations for the residuals.

Lnn The VAR statement variables contain lower $n n \%$ confidence limits for the forecast values for the future observations specified by the LEAD= option. The value of $n n$ depends on the ALPHA= option; with the default ALPHA=0.05, the _TYPE_ value is L95 for the lower confidence limit observations. The OUTLIMIT option writes observations for the upper and lower confidence limits.

Unn The VAR statement variables contain upper $n n \%$ confidence limits for the forecast values for the future observations specified by the LEAD= option. The value of $n n$ depends on the ALPHA= option; with the default ALPHA=0.05, the _TYPE_ value is U95 for the upper confidence limit observations. The OUTLIMIT option writes observations for the upper and lower confidence limits
STD The VAR statement variables contain standard errors of the forecast values. The OUTSTD option writes observations for the standard errors of the forecast.

If no output control options are specified, PROC FORECAST outputs only the forecast values for the forecast periods.

The _TYPE_ variable can be used to subset the OUT= data set. For example, the following data step splits the OUT= data set into two data sets, one that contains the forecast series and the other that contains the residual series. For example

```
proc forecast out=out outresid ...;
run;
data fore resid;
    set out;
    if _TYPE_='FORECAST' then output fore;
    if _TYPE_='RESIDUAL' then output resid;
run;
```

See Chapter 3, "Working with Time Series Data," for more information about processing time series data sets in this format.

OUTEST= Data Set

The FORECAST procedure writes the parameter estimates and goodness-of-fit statistics to an output data set when the OUTEST= option is specified. The OUTEST= data set contains the following variables:

- the BY variables
- the first ID variable, which contains the value of the ID variable for the last observation in the input data set used to fit the model
- _TYPE_, a character variable that identifies the type of each observation
- the VAR statement variables, which contain statistics and parameter estimates for the input series. The values contained in the VAR statement variables depend on the _TYPE_ variable value for the observation.

The observations contained in the OUTEST= data set are identified by the _TYPE_ variable. The OUTEST= data set might contain observations with the following _TYPE_ values:

AR1-AR $n \quad$ The observation contains estimates of the autoregressive parameters for the series. Two-digit lag numbers are used if the value of the NLAGS= option is 10 or more; in that case these _TYPE_ values are AR01-AR n. These observations are output for the STEPAR method only.
CONSTANT The observation contains the estimate of the constant or intercept parameter for the time trend model for the series. For the exponential smoothing and the Winters' methods, the trend model is centered (that is, $t=0$) at the last observation used for the fit.

LINEAR The observation contains the estimate of the linear or slope parameter for the time trend model for the series. This observation is output only if you specify TREND=2 or TREND=3.

The observation contains the number of nonmissing observations used to fit the model for the series.

The observation contains the estimate of the quadratic parameter for the time trend model for the series. This observation is output only if you specify TREND=3.

The observation contains the estimate of the standard deviation of the error term for the series.

The observations contain exponentially smoothed values at the last observation. _TYPE_=S1 is the final smoothed value of the single exponential smooth. _TYPE_=S2 is the final smoothed value of the double exponential smooth. _TYPE_=S3 is the final smoothed value of the triple exponential smooth. These observations are output for METHOD=EXPO only.

WEIGHT1

WEIGHT2

NRESID The observation contains the number of nonmissing residuals, n, used to compute the goodness-of-fit statistics. The residuals are obtained by subtracting the one-step-ahead predicted values from the observed values.

SST
The observation contains the smoothing weight used for exponential smoothing. This is the value of the WEIGHT= option. This observation is output for The observation contain
ing. This is the value of
METHOD=EXPO only.
These observations are output only for METHOD=WINTERS or METHOD=ADDWINTERS. ple, if SEASONS=MONTH, the OUTEST= data set contains observations with _TYPE_=S_JAN, _TYPE_=S_FEB,_TYPE_=S_MAR, and so forth.

For multiple-period seasons, the names of the first and last interval of the season are concatenated to form the season name. Thus, for SEASONS=MONTH4, the OUTEST= data set contains observations with _TYPE_=S_JANAPR, _TYPE_=S_MAYAUG, and _TYPE_=S_SEPDEC.
When the SEASONS= option specifies numbers, the seasonal factors are labeled _TYPE_=S_i_j. For example, SEASONS=(2 3) produces observations with _TYPE_ values of $S _1 _1, S _1 _2, S _2 _1, S _2 _2$, and $S _2 _3$. The observation with _TYPE_=S_i_j contains the seasonal parameters for the j th season of the i th seasonal cycle.

The observation contains the total sum of squares for the series, corrected for the mean. $S S T=\sum_{t=1}^{n}\left(y_{t}-\bar{y}\right)^{2}$, where \bar{y} is the series mean.

SSE The observation contains the sum of the squared residuals, uncorrected for the mean. $S S E=\sum_{t=1}^{n}\left(y_{t}-\hat{y}_{t}\right)^{2}$, where \hat{y} is the one-step predicted value for the series.

MSE
The observation contains the mean squared error, calculated from one-stepahead forecasts. $M S E=\frac{1}{n-k} S S E$, where k is the number of parameters in the model.

RMSE
The observation contains the root mean squared error. $R M S E=\sqrt{M S E}$.
MAPE
The observation contains the mean absolute percent error.
$M A P E=\frac{100}{n} \sum_{t=1}^{n}\left|\left(y_{t}-\hat{y}_{t}\right) / y_{t}\right|$.
MPE The observation contains the mean percent error.
$M P E=\frac{100}{n} \sum_{t=1}^{n}\left(y_{t}-\hat{y}_{t}\right) / y_{t}$.
MAE
ME
MAXE
MINE
MAXPE
The observation contains the mean absolute error. $M A E=\frac{1}{n} \sum_{t=1}^{n}\left|y_{t}-\hat{y}_{t}\right|$.
The observation contains the mean error. $M A E=\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\hat{y}_{t}\right)$.
The observation contains the maximum error (the largest residual).
The observation contains the minimum error (the smallest residual).
The observation contains the maximum percent error.
MINPE
The observation contains the minimum percent error.
RSQUARE The observation contains the R square statistic, $R^{2}=1-S S E / S S T$. If the model fits the series badly, the model error sum of squares $S S E$ might be larger than $S S T$ and the R square statistic will be negative.

ADJRSQ

ARSQ

RW_RSQ

AIC

SBC

APC The observation contains Amemiya's prediction criterion.
$A P C=\frac{1}{n} S S T\left(\frac{n+k}{n-k}\right)\left(1-R^{2}\right)=\left(\frac{n+k}{n-k}\right) \frac{1}{n} S S E$.
CORR

THEILU
The observation contains the adjusted R square statistic.
$A D J R S Q=1-\left(\frac{n-1}{n-k}\right)\left(1-R^{2}\right)$.
The observation contains Amemiya's adjusted R square statistic.
$A R S Q=1-\left(\frac{n+k}{n-k}\right)\left(1-R^{2}\right)$.
The observation contains the random walk R square statistic (Harvey's R_{D}^{2} statistic that uses the random walk model for comparison).
$R W_{-} R S Q=1-\left(\frac{n-1}{n}\right) S S E / R W S S E$,
where $R W S S E=\sum_{t=2}^{n}\left(y_{t}-y_{t-1}-\mu\right)^{2}$ and $\mu=\frac{1}{n-1} \sum_{t=2}^{n}\left(y_{t}-y_{t-1}\right)$.
The observation contains Akaike's information criterion.
$A I C=n \ln (S S E / n)+2 k$.
The observation contains Schwarz's Bayesian criterion.
$S B C=n \ln (S S E / n)+k \ln (n)$.

The observation contains the correlation coefficient between the actual values and the one-step-ahead predicted values.

The observation contains Theil's U statistic that uses original units. See Maddala (1977, pp. 344-345), and Pindyck and Rubinfeld (1981, pp. 364-365) for more information about Theil statistics.

RTHEILU The observation contains Theil's U statistic calculated using relative changes.
THEILUM The observation contains the bias proportion of Theil's U statistic.
THEILUS The observation contains the variance proportion of Theil's U statistic.
THEILUC The observation contains the covariance proportion of Theil's U statistic.
THEILUR The observation contains the regression proportion of Theil's U statistic.
THEILUD The observation contains the disturbance proportion of Theil's U statistic.
RTHEILUM The observation contains the bias proportion of Theil's U statistic, calculated by using relative changes.

RTHEILUS The observation contains the variance proportion of Theil's U statistic, calculated by using relative changes.

RTHEILUC The observation contains the covariance proportion of Theil's U statistic, calculated by using relative changes.

RTHEILUR The observation contains the regression proportion of Theil's U statistic, calculated by using relative changes.

RTHEILUD The observation contains the disturbance proportion of Theil's U statistic, calculated by using relative changes.

Examples: FORECAST Procedure

Example 15.1: Forecasting Auto Sales

This example uses the Winters method to forecast the monthly U. S. sales of passenger cars series (VEHICLES) from the data set SASHELP.USECON. These data are taken from Business Statistics, published by the U. S. Bureau of Economic Analysis.

The following statements plot the series. The plot is shown in Output 15.1.1.

```
title1 "Sales of Passenger Cars";
symboll i=spline v=dot;
axis2 label=(a=-90 r=90 "Vehicles and Parts" )
        order=(6000 to 24000 by 3000);
title1 "Sales of Passenger Cars";
proc sgplot data=sashelp.usecon;
    series x=date y=vehicles / markers;
    xaxis values=('1jan80'd to '1jan92'd by year);
    yaxis values=(6000 to 24000 by 3000);
    format date year4.;
run;
```

Output 15.1.1 Monthly Passenger Car Sales

The following statements produce the forecast:

```
proc forecast data=sashelp.usecon interval=month
        method=winters seasons=month lead=12
                out=out outfull outresid outest=est;
    id date;
    var vehicles;
    where date >= '1jan80'd;
run;
```

The INTERVAL=MONTH option indicates that the data are monthly, and the ID DATE statement gives the dating variable. The METHOD=WINTERS specifies the Winters smoothing method. The LEAD $=12$ option forecasts 12 months ahead. The OUT=OUT option specifies the output data set, while the OUTFULL and OUTRESID options include in the OUT= data set the predicted and residual values for the historical period and the confidence limits for the forecast period. The OUTEST= option stores various statistics in an output data set. The WHERE statement is used to include only data from 1980 on.

The following statements print the OUT= data set (first 20 observations):

```
proc print data=out (obs=20) noobs;
run;
```

The listing of the output data set produced by PROC PRINT is shown in part in Output 15.1.2.
Output 15.1.2 The OUT= Data Set Produced by PROC FORECAST (First 20 Observations)

	Sales of P	senger	
date	_TYPE_	_LEAD_	VEhicles
JAN80	ACTUAL	0	8808.00
JAN80	FORECAST	0	8046.52
JAN80	Residual	0	761.48
FEB80	ACtUAL	0	10054.00
FEb80	FORECAST	0	9284.31
FEb80	Residual	0	769.69
MAR80	ACtUAL	0	9921.00
MAR80	FORECAST	0	10077.33
MAR80	ReSIdUAL	0	-156.33
APR80	ACtUAL	0	8850.00
APR80	FORECAST	0	9737.21
APR80	RESIDUAL	0	-887.21
MAY80	ACtUAL	0	7780.00
MAY80	FORECAST	0	9335.24
MAY80	Residual	0	-1555.24
Jun80	ACtUAL	0	7856.00
Jun80	FORECAST	0	9597.50
Jun80	ReSIdUAL	0	-1741.50
JUL80	ACtUAL	0	6102.00
JUL80	FORECAST	0	6833.16

The following statements print the OUTEST= data set:

```
title2 'The OUTEST= Data Set: WINTERS Method';
proc print data=est;
run;
```

The PROC PRINT listing of the OUTEST= data set is shown in Output 15.1.3.

Output 15.1.3 The OUTEST= Data Set Produced by PROC FORECAST

The following statements plot the residuals. The plot is shown in Output 15.1.4.

```
title1 "Sales of Passenger Cars";
title2 'Plot of Residuals';
proc sgplot data=out;
    where _type_ = 'RESIDUAL';
    needle x=date y=vehicles / markers markerattrs=(symbol=circlefilled);
    xaxis values=('1jan80'd to '1jan92'd by year);
    format date year4.;
run;
```

Output 15.1.4 Residuals from Winters Method

The following statements plot the forecast and confidence limits. The last two years of historical data are included in the plot to provide context for the forecast plot. A reference line is drawn at the start of the forecast period.

```
title1 "Sales of Passenger Cars";
title2 'Plot of Forecast from WINTERS Method';
proc sgplot data=out;
    series x=date y=vehicles / group=_type_ lineattrs=(pattern=1);
    where _type_ ^= 'RESIDUAL';
    refline '15dec91'd / axis=x;
    yaxis values=(9000 to 25000 by 1000);
    xaxis values=('1jan90'd to '1jan93'd by qtr);
run;
```

The plot is shown in Output 15.1.5.

Output 15.1.5 Forecast of Passenger Car Sales

Example 15.2: Forecasting Retail Sales

This example uses the stepwise autoregressive method to forecast the monthly U. S. sales of durable goods (DURABLES) and nondurable goods (NONDUR) from the SASHELP.USECON data set. The data are from Business Statistics, published by the U.S. Bureau of Economic Analysis. The following statements plot the series:

```
title1 'Sales of Durable and Nondurable Goods';
title2 'Plot of Forecast from WINTERS Method';
proc sgplot data=sashelp.usecon;
    series x=date y=durables / markers markerattrs=(symbol=circlefilled);
    xaxis values=('1jan80'd to '1jan92'd by year);
    yaxis values=(60000 to 150000 by 10000);
    format date year4.;
run;
title1 'Sales of Durable and Nondurable Goods';
title2 'Plot of Forecast from WINTERS Method';
proc sgplot data=sashelp.usecon;
    series x=date y=nondur / markers markerattrs=(symbol=circlefilled);
    xaxis values=('1jan80'd to '1jan92'd by year);
```

```
    yaxis values=(70000 to 130000 by 10000);
    format date year4.;
run;
```

The plots are shown in Output 15.2.1 and Output 15.2.2.
Output 15.2.1 Durable Goods Sales

Output 15.2.2 Nondurable Goods Sales

The following statements produce the forecast:

```
title1 "Forecasting Sales of Durable and Nondurable Goods";
proc forecast data=sashelp.usecon interval=month
    method=stepar trend=2 lead=12
        out=out outfull outest=est;
    id date;
    var durables nondur;
    where date >= '1jan80'd;
run;
```

The following statements print the OUTEST= data set.

```
title2 'OUTEST= Data Set: STEPAR Method';
proc print data=est;
run;
```

The PROC PRINT listing of the OUTEST= data set is shown in Output 15.2.3.

Output 15.2.3 The OUTEST= Data Set Produced by PROC FORECAST

Forecasting Sales of Durable and Nondurable Goods OUTEST= Data Set: STEPAR Method				
Obs	TYPE	DATE	durables	NONDUR
1	N	DEC91	144	144
2	NRESID	DEC91	144	144
3	DF	DEC91	137	139
4	SIGMA	DEC91	4519.451	2452.2642
5	CONSTANT	DEC91	71884.597	73190.812
6	LINEAR	DEC91	400.90106	308.5115
7	AR01	DEC91	0.5844515	0.8243265
8	ARO2	DEC91		
9	AR03	DEC91	.	
10	AR04	DEC91		
11	AR05	DEC91		
12	AR06	DEC91	0.2097977	
13	AR07	DEC91		
14	AR08	DEC91		
15	ARO9	DEC91	.	
16	AR10	DEC91	-0.119425	
17	AR11	DEC91		
18	AR12	DEC91	0.6138699	0.8050854
19	AR13	DEC91	-0.556707	-0.741854
20	SST	DEC91	4.923 E 10	2.8331 E 10
21	SSE	DEC91	1.88157 E 9	544657337
22	MSE	DEC91	13734093	3918398.1
23	RMSE	DEC91	3705.9538	1979.4944
24	MAPE	DEC91	2.9252601	1.6555935
25	MPE	DEC91	-0.253607	-0.085357
26	MAE	DEC91	2866.675	1532.8453
27	ME	DEC91	-67.87407	-29.63026
28	RSQUARE	DEC91	0.9617803	0.9807752

The following statements plot the forecasts and confidence limits. The last two years of historical data are included in the plots to provide context for the forecast. A reference line is drawn at the start of the forecast period.

```
title1 'Plot of Forecasts from STEPAR Method';
proc sgplot data=out;
    series x=date y=durables / group=_type_;
    xaxis values=('1jan90'd to '1jan93'd by qtr);
    yaxis values=(100000 to 150000 by 10000);
    refline '15dec91'd / axis=x;
run;
proc sgplot data=out;
    series x=date y=nondur / group=_type_;
    xaxis values=('1jan90'd to '1jan93'd by qtr);
    yaxis values=(100000 to 140000 by 10000);
    refline '15dec91'd / axis=x;
run;
```

The plots are shown in Output 15.2.4 and Output 15.2.5.

Output 15.2.4 Forecast of Durable Goods Sales

Output 15.2.5 Forecast of Nondurable Goods Sales

Example 15.3: Forecasting Petroleum Sales

This example uses the double exponential smoothing method to forecast the monthly U. S. sales of petroleum and related products series (PETROL) from the data set SASHELP.USECON. These data are taken from Business Statistics, published by the U.S. Bureau of Economic Analysis.

The following statements plot the PETROL series:

```
title1 "Sales of Petroleum and Related Products";
proc sgplot data=sashelp.usecon;
    series x=date y=petrol / markers;
    xaxis values=('1jan80'd to '1jan92'd by year);
    yaxis values=(8000 to 20000 by 1000);
    format date year4.;
run;
```

The plot is shown in Output 15.3.1.

Output 15.3.1 Sales of Petroleum and Related Products

The following statements produce the forecast:

```
proc forecast data=sashelp.usecon interval=month
    method=expo trend=2 lead=12
    out=out outfull outest=est;
    id date;
    var petrol;
    where date >= '1jan80'd;
run;
```

The following statements print the OUTEST= data set:

```
title2 'OUTEST= Data Set: EXPO Method';
proc print data=est;
run;
```

The PROC PRINT listing of the output data set is shown in Output 15.3.2.

Output 15.3.2 The OUTEST= Data Set Produced by PROC FORECAST

The plot of the forecast is shown in Output 15.3.3.

```
title1 "Sales of Petroleum and Related Products";
title2 'Plot of Forecast: EXPO Method';
proc sgplot data=out;
    series x=date y=petrol / group=_type_;
    xaxis values=('1jan89'd to '1jan93'd by qtr);
    yaxis values=(10000 to 20000 by 1000);
    refline '15dec91'd / axis=x;
run;
```

Output 15.3.3 Forecast of Petroleum and Related Products

References

Ahlburg, D. A. (1984). "Forecast Evaluation and Improvement Using Theil's Decomposition," Journal of Forecasting, 3, 345-351.

Aldrin, M. and Damsleth, E. (1989). "Forecasting Non-Seasonal Time Series with Missing Observations," Journal of Forecasting, 8, 97-116.

Archibald, B.C. (1990), "Parameter Space of the Holt-Winters' Model," International Journal of Forecasting, 6, 199-209.

Bails, D.G. and Peppers, L.C. (1982), Business Fluctuations: Forecasting Techniques and Applications, New Jersey: Prentice-Hall.

Bartolomei, S.M. and Sweet, A.L. (1989). "A Note on the Comparison of Exponential Smoothing Methods for Forecasting Seasonal Series," International Journal of Forecasting, 5, 111-116.

Bureau of Economic Analysis, U.S. Department of Commerce (1992 and earlier editions), Business Statistics, 27th and earlier editions, Washington: U.S. Government Printing Office.

Bliemel, F. (1973). "Theil's Forecast Accuracy Coefficient: A Clarification," Journal of Marketing Research, 10, 444-446.

Bowerman, B.L. and O’Connell, R.T. (1979), Time Series and Forecasting: An Applied Approach, North Scituate, Massachusetts: Duxbury Press.

Box, G.E.P. and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control, Revised Edition, San Francisco: Holden-Day.

Bretschneider, S.I., Carbone, R., and Longini, R.L. (1979). "An Adaptive Approach to Time Series Forecasting," Decision Sciences, 10, 232-244.

Brown, R.G. (1962), Smoothing, Forecasting and Prediction of Discrete Time Series, New York: Prentice-Hall.

Brown, R.G. and Meyer, R.F. (1961). "The Fundamental Theorem of Exponential Smoothing," Operations Research, 9, 673-685.

Chatfield, C. (1978). "The Holt-Winters Forecasting Procedure," Applied Statistics, 27, 264-279.
Chatfield, C., and Prothero, D.L. (1973). "Box-Jenkins Seasonal Forecasting: Problems in a Case Study," Journal of the Royal Statistical Society, Series A, 136, 295-315.

Chow, W.M. (1965). "Adaptive Control of the Exponential Smoothing Constant," Journal of Industrial Engineering, September-October 1965.

Cogger, K.O. (1974). "The Optimality of General-Order Exponential Smoothing," Operations Research, 22, 858-.

Cox, D. R. (1961). "Prediction by Exponentially Weighted Moving Averages and Related Methods," Journal of the Royal Statistical Society, Series B, 23, 414-422.

Fair, R.C. (1986). "Evaluating the Predictive Accuracy of Models," In Handbook of Econometrics, Vol. 3., Griliches, Z. and Intriligator, M.D., eds. New York: North Holland.

Fildes, R. (1979). "Quantitative Forecasting-The State of the Art: Extrapolative Models,"Journal of Operational Research Society, 30, 691-710.

Gardner, E.S. (1984). "The Strange Case of the Lagging Forecasts," Interfaces, 14, 47-50.
Gardner, E.S., Jr. (1985). "Exponential Smoothing: The State of the Art," Journal of Forecasting, 4, 1-38.

Granger, C.W.J. and Newbold, P. (1977), Forecasting Economic Time Series, New York: Academic Press, Inc.

Harvey, A.C. (1984). "A Unified View of Statistical Forecasting Procedures,"Journal of Forecasting, 3, 245-275.

Ledolter, J. and Abraham, B. (1984). "Some Comments on the Initialization of Exponential Smoothing," Journal of Forecasting, 3, 79-84.

Maddala, G.S. (1977), Econometrics, New York: McGraw-Hill.
Makridakis, S., Wheelwright, S.C., and McGee, V.E. (1983). Forecasting: Methods and Applications, 2nd Ed. New York: John Wiley and Sons.

McKenzie, Ed (1984). "General Exponential Smoothing and the Equivalent ARMA Process,"Journal of Forecasting, 3, 333-344.

Montgomery, D.C. and Johnson, L.A. (1976), Forecasting and Time Series Analysis, New York: McGraw-Hill.

Muth, J.F. (1960). "Optimal Properties of Exponentially Weighted Forecasts,"Journal of the American Statistical Association, 55, 299-306.

Pierce, D.A. (1979). " R^{2} Measures for Time Series," Journal of the American Statistical Association, 74, 901-910.

Pindyck, R.S. and Rubinfeld, D.L. (1981), Econometric Models and Economic Forecasts, Second Edition, New York: McGraw-Hill.

Raine, J.E. (1971). "Self-Adaptive Forecasting Reconsidered," Decision Sciences, 2, 181-191.
Roberts, S.A. (1982). "A General Class of Holt-Winters Type Forecasting Models," Management Science, 28, 808-820.

Theil, H. (1966). Applied Economic Forecasting. Amsterdam: North Holland.

Trigg, D.W., and Leach, A.G. (1967). "Exponential Smoothing with an Adaptive Response Rate," Operational Research Quarterly, 18, 53-59.

Winters, P.R. (1960). "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, 6, 324-342.

Chapter 16

The LOAN Procedure

Contents

Overview: LOAN Procedure 828
Getting Started: LOAN Procedure 828
Analyzing Fixed Rate Loans 829
Analyzing Balloon Payment Loans 830
Analyzing Adjustable Rate Loans 831
Analyzing Buydown Rate Loans 832
Loan Repayment Schedule 833
Loan Comparison 835
Syntax: LOAN Procedure 838
Functional Summary 838
PROC LOAN Statement 840
FIXED Statement 841
BALLOON Statement 845
ARM Statement 845
BUYDOWN Statement 848
COMPARE Statement 848
Details: LOAN Procedure 850
Computational Details 850
Loan Comparison Details 852
OUT= Data Set 853
OUTCOMP= Data Set 854
OUTSUM= Data Set 854
Printed Output 855
ODS Table Names 856
Examples: LOAN Procedure 857
Example 16.1: Discount Points for Lower Interest Rates 857
Example 16.2: Refinancing a Loan 860
Example 16.3: Prepayments on a Loan 862
Example 16.4: Output Data Sets 863
Example 16.5: Piggyback Loans 866
References 868

Overview: LOAN Procedure

The LOAN procedure analyzes and compares fixed rate, adjustable rate, buydown, and balloon payment loans. The LOAN procedure computes the loan parameters and outputs the loan summary information for each loan.

Multiple loan specifications can be processed and compared in terms of economic criteria such as after-tax or before-tax present worth of cost and true interest rate, breakeven of periodic payment and of interest paid, and outstanding balance at different periods in time. PROC LOAN selects the best alternative in terms of the specified economic criterion for each loan comparison period.

The LOAN procedure allows various payment and compounding intervals (including continuous compounding) and uniform or lump sum prepayments for a loan. Down payments, discount points, and other initialization costs can be included in the loan analysis and comparison.

The LOAN procedure does not support an input data set. All loans analyzed are specified with statements in the PROC LOAN step. The SAS DATA step provides a function MORT that can be used for data-driven analysis of many fixed-rate mortgage or installment loans. However, the MORT function supports only simple fixed rate loans.

Getting Started: LOAN Procedure

PROC LOAN supports four types of loans. You specify each type of loan with the corresponding statement: FIXED, BALLOON, ARM, and BUYDOWN.

- FIXED-Fixed rate loans have a constant interest rate and periodic payment throughout the life of the loan.
- BALLOON—Balloon payment loans are fixed rate loans with lump sum payments in certain payment periods in addition to the constant periodic payment.
- ARM—Adjustable rate loans are those in which the interest rate and periodic payment vary over the life of the loan. The future interest rates of an adjustable rate loan are not known with certainty, but they will vary within specified limits according to terms stated in the loan agreement. In practice, the rate adjustment terms vary. PROC LOAN offers a flexible set of options to capture a wide variety of rate adjustment terms.
- BUYDOWN—Buydown rate loans are similar to adjustable rate loans, but the interest rate adjustments are predetermined at the initialization of the loan, usually by paying interest points at the time of loan initialization.

Analyzing Fixed Rate Loans

The most common loan analysis is the calculation of the periodic payment when the loan amount, life, and interest rate are known. The following PROC LOAN statements analyze a 15-year (180 monthly payments) fixed rate loan for $\$ 100,000$ with an annual nominal interest rate of 7.5% :

```
proc loan;
    fixed amount=100000 rate=7.5 life=180;
run;
```

Another parameter the PROC LOAN statement can compute is the maximum amount you can borrow given the periodic payment you can afford and the rates available in the market. The following SAS statements analyze a loan for 180 monthly payments of $\$ 900$, with a nominal annual rate of 7.5%, and compute the maximum amount that can be borrowed:

```
proc loan;
    fixed payment=900 rate=7.5 life=180;
run;
```

Assume that you want to borrow $\$ 100,000$ and can pay $\$ 900$ a month. You know that the lender charges a 7.5% nominal interest rate compounded monthly. To determine how long it will take you to pay off your debt, use the following statements:

```
proc loan;
    fixed amount=100000 payment=900 rate=7.5;
run;
```

Sometimes, a loan is expressed in terms of the amount borrowed and the amount and number of periodic payments. In this case, you want to calculate the annual nominal rate charged on the loan to compare it to other alternatives. The following statements analyze a loan of $\$ 100,000$ paid in 180 monthly payments of $\$ 800$:

```
proc loan;
    fixed amount=100000 payment=800 life=180;
run;
```

There are four basic parameters that define a loan: life (number of periodic payments), principal amount, interest rate, and the periodic payment amount. PROC LOAN calculates the missing parameter among these four. Loan analysis output includes a loan summary table and an amortization schedule.

You can use the START= and LABEL= options to enhance your output. The START= option specifies the date of loan initialization and dates all the output accordingly. The LABEL= specification is used to label all output that corresponds to a particular loan; it is especially useful when multiple loans are analyzed. For example, the preceding statements for the first fixed rate loan are revised to include the $\mathrm{START}=$ and $\mathrm{LABEL}=$ options as follows:

```
proc loan start=1998:12;
    fixed amount=100000 rate=7.5 life=180
            label='BANK1, Fixed Rate';
run;
```


Loan Summary Table

The loan summary table is produced by default and contains loan analysis information. It shows the principal amount, the costs at the time of loan initialization (down payment, discount points, and other loan initialization costs), the total payment and interest, the initial nominal and effective interest rates, payment and compounding intervals, the length of the loan in the time units specified, the start and end dates (if specified), a list of nominal and effective interest rates, and periodic payments throughout the life of the loan.

Figure 16.1 shows the loan summary table for the fixed rate loan labeled "BANK1, Fixed Rate."
Figure 16.1 Fixed Rate Loan Summary

The LOAN Procedure			
Fixed Rate Loan Summary			
BANK1, Fixed Rate			
Downpayment	0.00	Principal Amount	100000.00
Initialization	0.00	Points	0.00
Total Interest	66862.61	Nominal Rate	7.5000\%
Total Payment	166862.61	Effective Rate	7.7633%
Pay Interval	MONTHLY	Compounding	MONTHLY
No. of Payments	180	No. of Compoundings	180
Start Date	DEC1998	End Date	DEC2013
Rates and Payments for BANK1, Fixed Rate			
Date	Nominal Rate	Effective Rate	Payment
DEC1998	7.5000\%	7.7633%	927.01

The loan is initialized in December 1998 and paid off in December 2013. The monthly payment is calculated to be $\$ 927.01$, and the effective interest rate is 7.7633%. Over the 15 years, $\$ 66,862.61$ is paid for interest charges on the loan.

Analyzing Balloon Payment Loans

You specify balloon payment loans like fixed rate loans, with the additional specification of the balloon payments. Assume you have an alternative to finance the $\$ 100,000$ investment with a 15year balloon payment loan. The annual nominal rate is 7.5%, as in the fixed rate loan. The terms of
the loan require two balloon payments of $\$ 2000$ and $\$ 1000$ at the 15 th and 48th payment periods, respectively. These balloon payments keep the periodic payment lower than that of the fixed rate loan. The balloon payment loan is defined by the following BALLOON statement:

```
proc loan start=1998:12;
    balloon amount=100000 rate=7.5 life=180
        balloonpayment=(15=2000 48=1000)
        label = 'BANK2, with Balloon Payment';
run;
```


List of Balloon Payments

In addition to the information for the fixed rate loan, the "Loan Summary Table" for the balloon payment loan includes a list of balloon payments in the list of rates and payments. For example, the balloon payment loan described previously includes two balloon payments, as shown in Figure 16.2.

Figure 16.2 List of Rates and Payments for a Balloon Payment Loan

The LOAN Procedure			
Rates and Payments for BANK2, with Balloon Payment			
Date	Nominal Rate	Effective Rate	Payment
DEC1998	7.5000%	7.7633%	903.25
	Balloon Period	Payment	
	MAR2000	2000.00	
	DEC2002	1000.00	

The periodic payment for the balloon payment loan is $\$ 23.76$ less than that of the fixed rate loan.

Analyzing Adjustable Rate Loans

In addition to specifying the basic loan parameters, you need to specify the terms of the rate adjustments for an adjustable rate loan. There are many ways of stating the rate adjustment terms, and PROC LOAN facilitates all of them. For details, see the section "Rate Adjustment Terms Options" on page 846 .

Assume that you have an alternative to finance the $\$ 100,000$ investment with a 15 -year adjustable rate loan with an initial annual nominal interest rate of 5.5%. The rate adjustment terms specify a 0.5% annual cap, a 2.5% life cap, and a rate adjustment every 12 months. Annual cap refers to the maximum increase in interest rate per adjustment period, and life cap refers to the maximum increase over the life of the loan. The following ARM statement specifies this adjustable rate loan by assuming the interest rate adjustments will always increase by the maximum allowed by the
terms of the loan. These assumptions are specified by the WORSTCASE and CAPS= options, as shown in the following statements:

```
proc loan start=1998:12;
    arm amount=100000 rate=5.5 life=180 worstcase
        caps=(0.5, 2.5)
        label='BANK3, Adjustable Rate';
run;
```


List of Rates and Payments for Adjustable Rate Loans

The list of rates and payments in the loan summary table for the adjustable rate loans reflects the changes in the interest rates and payments and the dates these changes become effective. For the adjustable rate loan described previously, Figure 16.3 shows the list of rates and payments that indicate five annual rate adjustments in addition to the initial rate and payment.

Figure 16.3 List of Rates and Payments for an Adjustable Rate Loan

Date	The LOAN Procedure and Payments for BANK3, Adjustable Rate		
DEC1998	5. 5000\%	5. 6408\%	817.08
JAN2000	6.0000\%	6.1678\%	842.33
JAN2001	6.5000%	6.6972\%	866.44
JAN2002	7.0000\%	7.2290\%	889.32
JAN2003	7.5000%	7.7633%	910.88
JAN2004	8.0000\%	8. 3000\%	931.03

Notice that the periodic payment of the adjustable rate loan as of January 2004 (\$931.03) exceeds that of the fixed rate loan (\$927.01).

Analyzing Buydown Rate Loans

A 15 -year buydown rate loan is another alternative to finance the $\$ 100,000$ investment. The nominal annual interest rate is 6.5% initially and will increase to 8% and 9% as of the 24th and 48th payment periods, respectively. The nominal annual interest rate is lower than that of the fixed rate alternative, at the cost of a 1% discount point ($\$ 1000$) paid at the initialization of the loan. The following BUYDOWN statement represents this loan alternative:

```
proc loan start=1998:12;
    buydown amount=100000 rate=6.5 life=180
        buydownrates=(24=8 48=9) pointpct=1
        label=' BANK4, Buydown';
run;
```


List of Rates and Payments for Buydown Rate Loans

Figure 16.4 shows the list of rates and payments in the loan summary table. It reflects the two rate adjustments and the corresponding monthly payments as well as the initial values for these parameters. As of December 2000, the periodic payment of the buydown loan exceeds the periodic payment for any of the other alternatives.

Figure 16.4 List of Rates and Payments for a Buydown Rate Loan

The LOAN Procedure		
Date	Rates and Payments Nominal Rate BANK4, Buydown Effective Rate	Payment
DEC1998		
DEC2000	6.5000%	6.6972%

Loan Repayment Schedule

In addition to the loan summary, you can print a loan repayment (amortization) schedule for each loan. For each payment period, this schedule contains the year and period within the year (or date, if the START= option is specified), the principal balance at the beginning of the period, the total payment, interest payment, principal repayment for the period, and the principal balance at the end of the period.

To print the first year of the amortization schedule for the fixed rate loan shown in Figure 16.5, use the following statements:

```
proc loan start=1998:12;
    fixed amount=100000 rate=7.5 life=180
            schedule=1
            label='BANK1, Fixed Rate';
run;
```

Figure 16.5 Loan Repayment Schedule for the First Year

The principal balance at the end of one year is $\$ 96,248.67$. The total payment for the year is $\$ 11,124.12$, of which $\$ 3,751.33$ went toward principal repayment.

You can also print the amortization schedule with annual summary information or for a specified number of years. The SCHEDULE=YEARLY option produces an annual summary loan amortization schedule, which is useful for loans with a long life. For example, to print the annual summary loan repayment schedule for the buydown loan shown in Figure 16.6, use the following statements:

```
proc loan start=1998:12;
    buydown amount=100000 rate=6.5 life=180
            buydownrates=(24=8 48=9) pointpct=1
            schedule=yearly
            label='BANK4, Buydown';
run;
```

Figure 16.6 Annual Summary Loan Repayment Schedule

The LOAN Procedure					
Loan Repayment Schedule					
BANK4, Buydown					
	Beginning		Interest	Principal	Ending
Year	Outstanding	Payment	Payment	Repayment	Outstanding
1998	100000.00	1000.00	0.00	0.00	100000.00
1999	100000.00	10453.32	6380.07	4073.25	95926.75
2000	95926.75	10528.71	6222.21	4306.50	91620.25
2001	91620.25	11358.00	7178.57	4179.43	87440.82
2002	87440.82	11403.51	6901.12	4502.39	82938.43
2003	82938.43	11904.12	7276.64	4627.48	78310.95
2004	78310.95	11904.12	6842.58	5061.54	73249.41
2005	73249.41	11904.12	6367.76	5536.36	67713.05
2006	67713.05	11904.12	5848.43	6055.69	61657.36
2007	61657.36	11904.12	5280.35	6623.77	55033.59
2008	55033.59	11904.12	4659.00	7245.12	47788.47
2009	47788.47	11904.12	3979.34	7924.78	39863.69
2010	39863.69	11904.12	3235.96	8668.16	31195.53
2011	31195.53	11904.12	2422.83	9481.29	21714.24
2012	21714.24	11904.12	1533.41	10370.71	11343.53
2013	11343.53	11904.09	560.56	11343.53	0.00

Loan Comparison

The LOAN procedure can compare alternative loans on the basis of different economic criteria and help select the most desirable loan. You can compare alternative loans through different points in time. The economic criteria offered by PROC LOAN are:

- outstanding principal balance-that is, the unpaid balance of the loan
- present worth of cost-that is, before-tax or after-tax net value of the loan cash flow through the comparison period. The cash flow includes all payments, discount points, initialization costs, down payment, and the outstanding principal balance at the comparison period.
- true interest rate-that is, before-tax or after-tax effective annual interest rate charged on the loan. The cash flow includes all payments, discount points, initialization costs, and the outstanding principal balance at the specified comparison period.
- periodic payment
- the total interest paid on the loan

The figures for present worth of cost, true interest rate, and interest paid are reported on the cash flow through the comparison period. The reported outstanding principal balance and the periodic payment are the values as of the comparison period.

The COMPARE statement specifies the type of comparison and the periods of comparison. For each period specified in the COMPARE statement, a loan comparison report is printed that also indicates the best alternative. Different criteria can lead to selection of different alternatives. Also, the period of comparison might change the desirable alternative. See the section "Loan Comparison Details" on page 852 for further information.

Comparison of 15-Year versus 30-Year Loan Alternatives

An issue that arises in the purchase of a house is the length of the loan life. Residential home loans are often for 15 or 30 years. Ordinarily, 15 -year loans have a lower interest rate but higher periodic payments than 30-year loans. A comparison of both loans might identify the better loan for your means and needs. The following SAS statements compare two such loans:

```
proc loan start=1998:12 amount=120000;
    fixed rate=7.5 life=360 label='30 year loan';
    fixed rate=6.5 life=180 label='15 year loan';
    compare;
run;
```


Default Loan Comparison Report

The default loan comparison report in Figure 16.7 shows the ending outstanding balance, periodic payment, interest paid, and before-tax true rate at the end of 30 years. In the case of the default loan comparison, the selection of the best alternative is based on minimization of the true rate.

Figure 16.7 Default Loan Comparison Report

Based on true rate, the best alternative is the 15 -year loan. However, if the objective were to minimize the periodic payment, the 30-year loan would be the more desirable.

Comparison of Fixed Rate and Adjustable Rate Loans

Suppose you want to compare a fixed rate loan to an adjustable rate alternative. The nominal interest rate on the adjustable rate loan is initially 1.5% lower than the fixed rate loan. The future rates of the adjustable rate loan are calculated using the worst case scenario.

The interest paid on a loan might be deductible for tax purposes, depending on the purpose of the loan and applicable laws. In the following example, the TAXRATE=28 (income tax rate) option in the COMPARE statement bases the calculations of true interest rate on the after-tax cash flow. Assume, also, that you are uncertain as to how long you will keep this property. The AT=(60 120) option, as shown in the following example, produces two loan comparison reports through the end of the 5th and the 10th years, respectively:

```
proc loan start=1998:12 amount=120000 life=360;
    fixed rate=7.5 label='BANK1, Fixed Rate';
    arm rate=6.0 worstcase caps=(0.5 2.5)
        label='BANK3, Adjustable Rate';
    compare taxrate=28 at=(60 120);
run;
```


After-Tax Loan Comparison Reports

The two loan comparison reports in Figure 16.8 and Figure 16.9 show the ending outstanding balance, periodic payment, interest paid, and after-tax true rate at the end of five years and ten years, respectively.

Figure 16.8 Loan Comparison Report as of December 2003

The LOAN Procedure				
Loan Comparison Report				
Analysis through DEC2003				
Loan Label	Ending Outstanding	Payment	Interest Paid	True Rate
BANK1, Fixed Rate	113540.74	839.06	43884.34	5.54
BANK3, Adjustable Rate	112958.49	871.83	40701.93	5.11
NOTE: "BANK3, Adjustable Rate" is the best alternative based on true rate analysis through DEC2003.				

Figure 16.9 Loan Comparison Report as of December 2008

The loan comparison report through December 2003 picks the adjustable rate loan as the best alternative, whereas the report through December 2008 shows the fixed rate loan as the better alternative. This implies that if you intend to keep the loan for 10 years or longer, the best alternative is the fixed rate alternative. Otherwise, the adjustable rate loan is the better alternative in spite of the worst-case scenario. Further analysis shows that the actual breakeven of true interest rate occurs at August 2008. That is, the desirable alternative switches from the adjustable rate loan to the fixed rate loan in August 2008.

Note that, under the assumption of worst-case scenario for the rate adjustments, the periodic payment for the adjustable rate loan already exceeds that of the fixed rate loan on December 2003 (as of the rate adjustment on January 2003 to be exact). If the objective were to minimize the periodic payment, the fixed rate loan would have been more desirable as of December 2003. However, all of the other criteria at that point still favor the adjustable rate loan.

Syntax: LOAN Procedure

The following statements are used with PROC LOAN:

```
PROC LOAN options;
    FIXED options;
    BALLOON options;
    ARM options;
    BUYDOWN options;
    COMPARE options;
```


Functional Summary

Table 16.1 summarizes the statements and options that control the LOAN procedure. Many of the loan specification options can be used on all of the statements except the COMPARE statement.

For these options, the statement column is left blank. Options specific to a type of loan indicate the statement name.

Table 16.1 LOAN Functional Summary

Description	Statement	Option

Statements

specify an adjustable rate loan
ARM
specify a balloon payment loan
BALLOON
specify a buydown rate loan
specify loan comparisons
specify a fixed rate loan
BUYDOWN
COMPARE
FIXED

Data Set Options

specify output data set for loan summary specify output data set for repayment schedule specify output data set for loan comparison

PROC LOAN	OUTSUM=
COMPARE	OUT $=$
OUTCOMP $=$	

Printing Control Options

suppress printing of loan summary report
suppress all printed output
print amortization schedule
suppress printing of loan comparison report

COMPARE

NOSUMMARYPRINT
NOPRINT
SCHEDULE=
NOCOMPRINT

Required Specifications

specify the loan amount
specify life of loan as number of payments
specify the periodic payment
specify the initial annual nominal interest rate

```
AMOUNT=
LIFE=
PAYMENT=
RATE=
```


Loan Specifications Options

specify loan amount as percentage of price
specify time interval between compoundings specify down payment at loan initialization specify down payment as percentage of price specify amount paid for loan initialization specify initialization costs as a percent specify time interval between payments specify label for the loan specify amount paid for discount points specify discount points as a percent specify uniform or lump sum prepayments specify the purchase price specify number of decimal places for rounding specify the date of loan initialization
Description Statement Option

Balloon Payment Loan Specification Option
specify the list of balloon payments
BALLOON
BALLOONPAYMENT=

Rate Adjustment Terms Options

specify frequency of rate adjustment specify periodic and life cap on rate adjustment
specify maximum rate adjustment ARM
specify maximum annual nominal interest rate
specify minimum annual nominal interest rate
Rate Adjustment Case Options
specify best-case (optimistic) scenario
specify predicted interest rates
ARM
ARM
ARM
ARM
Buydown Rate Loan Specification Option
specify list of nominal interest rates

Loan Comparison Options

specify all comparison criteria
specify the loan comparison periods
specify breakeven analysis of the interest paid specify breakeven analysis of periodic payment
specify minimum attractive rate of return specify present worth of cost analysis specify the income tax rate specify true interest rate analysis

ARM

ARM
ARM

COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE

ADJUSTFREQ= CAPS=

MAXADJUST= MAXRATE= MINRATE=

BESTCASE
ESTIMATEDCASE= FIXEDCASE WORSTCASE

BUYDOWN BUYDOWNRATES=

ALL
AT=
BREAKINTEREST
BREAKPAYMENT
MARR=
PWOFCOST
TAXRATE=
TRUEINTEREST

PROC LOAN Statement

PROC LOAN options ;

The OUTSUM= option can be used in the PROC LOAN statement. In addition, the following loan specification options can be specified in the PROC LOAN statement to be used as defaults for all loans unless otherwise specified for a given loan:

AMOUNT $=$	INTERVAL $=$	POINTPCT $=$
AMOUNTPCT $=$	LABEL $=$	PREPAYMENTS= $=$
COMPOUND $=$	LIFE $=$	PRICE $=$
DOWNPAYMENT $=$	NOSUMMARYPRINT	RATE $=$
DOWNPAYPCT $=$	NOPRINT	ROUND $=$
INITIAL $=$	PAYMENT $=$	START $=$
INITIALPCT $=$	POINTS $=$	SCHEDULE $=$

Output Option

OUTSUM= SAS-data-set

creates an output data set that contains loan summary information for all loans other than those for which a different OUTSUM= output data set is specified.

FIXED Statement

FIXED options;

The FIXED statement specifies a fixed rate and periodic payment loan. It can be specified using the options that are common to all loan statements. The FIXED statement options are listed in this section.

You must specify three of the following options in each loan statement: AMOUNT=, LIFE=, RATE $=$, and PAYMENT $=$. The LOAN procedure calculates the fourth parameter based on the values you give the other three. If you specify all four of the options, the PAYMENT= specification is ignored, and the periodic payment is recalculated for consistency.

As an alternative to specifying the AMOUNT= option, you can specify the PRICE= option along with one of the following options to facilitate the calculation of the loan amount: AMOUNTPCT=, DOWNPAYMENT=, or DOWNPAYPCT=.

Required Specifications

AMOUNT=amount

A=amount
specifies the loan amount (the outstanding principal balance at the initialization of the loan).

LIFE=n

L=n
gives the life of the loan in number of payments. (The payment frequency is specified by the INTERVAL = option.) For example, if the life of the loan is 10 years with monthly payments, use LIFE=120 and INTERVAL=MONTH (default) to indicate a 10-year loan in which 120 monthly payments are made.

PAYMENT= amount

$\mathrm{P}=$ amount
specifies the periodic payment. For ARM and BUYDOWN loans where the periodic payment might change, the PAYMENT = option specifies the initial amount of the periodic payment.

RATE=rate
R=rate
specifies the initial annual (nominal) interest rate in percent notation. The rate specified must be in the range 0% to 120%. For example, use RATE=12.75 for a 12.75% loan. For ARM and BUYDOWN loans, where the rate might change over the life of the loan, the RATE= option specifies the initial annual interest rate.

Specification Options

AMOUNTPCT=value

APCT=value

specifies the loan amount as a percentage of the purchase price (PRICE= option). The AMOUNTPCT= specification is used to calculate the loan amount if the AMOUNT= option is not specified. The value specified must be in the range 1% to 100%.

If both the AMOUNTPCT= and DOWNPAYPCT= options are specified and the sum of their values is not equal to 100 , the value of the downpayment percentage is set equal to 100 minus the value of the amount percentage.

COMPOUND=time-unit

specifies the time interval between compoundings. The default is the time unit given by the INTERVAL = option. If the INTERVAL= option is not used, then the default is COMPOUND=MONTH. The following time units are valid COMPOUND= values: CONTINUOUS, DAY, SEMIMONTH, MONTH, QUARTER, SEMIYEAR, and YEAR. The compounding interval is used to calculate the simple interest rate per payment period from the nominal annual interest rate or vice versa.

DOWNPAYMENT=amount

DP=amount
specifies the down payment at the initialization of the loan. The down payment is included in the calculation of the present worth of cost but not in the calculation of the true interest rate. The after-tax analysis assumes that the down payment is not tax-deductible. (Specify after-tax analysis with the TAXRATE= option in the COMPARE statement.)

DOWNPAYPCT=value

DPCT=value
specifies the down payment as a percentage of the purchase price (PRICE= option). The DOWNPAYPCT = specification is used to calculate the down payment amount if you do not specify the DOWNPAYMENT= option. The value you specify must be in the range 0% to 99\%.

If you specified both the AMOUNTPCT= and DOWNPAYPCT= options and the sum of their values is not equal to 100 , the value of the downpayment percentage is set equal to 100 minus the value of the amount percentage.

INITIAL=amount

INIT= amount

specifies the amount paid for loan initialization other than the discount points and down payment. This amount is included in the calculation of the present worth of cost and the true interest rate. The after-tax analysis assumes that the initial amount is not tax-deductible. (After-tax analysis is specified by the TAXRATE= option in the COMPARE statement.)

INITIALPCT=value

INITPCT=value

specifies the initialization costs as a percentage of the loan amount (AMOUNT= option). The INITIALPCT= specification is used to calculate the amount paid for loan initialization if you do not specify the INITIAL= option. The value you specify must be in the range of 0% to 100%.

INTERVAL=time-unit

gives the time interval between periodic payments. The default is INTERVAL=MONTH. The following time units are valid INTERVAL values: SEMIMONTH, MONTH, QUARTER, SEMIYEAR, and YEAR.

LABEL=‘loan-label'

specifies a label for the loan. If you specify the LABEL= option, all output related to the loan is labeled accordingly. If you do not specify the LABEL= option, the loan is labeled by sequence number.

POINTS=amount

PNT=amount
specifies the amount paid for discount points at the initialization of the loan. This amount is included in the calculation of the present worth of cost and true interest rate. The amount paid for discount points is assumed to be tax-deductible in after-tax analysis (that is, if the TAXRATE $=$ option is specified in the COMPARE statement).

POINTPCT=value

PNTPCT=value

specifies the discount points as a percentage of the loan amount (AMOUNT= option). The POINTPCT= specification is used to calculate the amount paid for discount points if you do not specify the POINTS = option. The value you specify must be in the range of 0% to 100%.

PREPAYMENTS=amount

PREPAYMENTS=(date1=prepayment1 date2=prepayment2 ...)
PREPAYMENTS=(period1=prepayment1 period2=prepayment2 ...)
PREP=
specifies either a uniform prepayment p throughout the life of the loan or lump sum prepayments. A uniform prepayment p is assumed to be paid with each periodic payment. Specify lump sum prepayments by pairs of periods (or dates) and respective prepayment amounts.

You can specify the prepayment periods as dates if you specify the START= option. Prepayment periods or dates and the respective prepayment amounts must be in time sequence. The prepayments are treated as principal payments, and the outstanding principal balance is
adjusted accordingly. In the adjustable rate and buydown rate loans, if there is a rate adjustment after prepayments, the adjusted periodic payment is calculated based on the outstanding principal balance. The prepayments do not result in periodic payment amount adjustments in fixed rate and balloon payment loans.

PRICE=amount

PRC=amount

specifies the purchase price, which is the loan amount plus the down payment. If you specify the PRICE= option along with the loan amount (AMOUNT= option) or the down payment (DOWNPAYMENT = option), the value of the other one is calculated.

If you specify the PRICE= option with the AMOUNTPCT= or DOWNPAYPCT= options, the loan amount and the downpayment are calculated.

ROUND=n

ROUND=NONE
specifies the number of decimal places to which the monetary amounts are rounded for the loan. Valid values for n are integers from 0 to 6 . If you specify ROUND=NONE, the values are not rounded off internally, but the printed output is rounded off to two decimal places. The default is ROUND $=2$.

START=SAS-date-literal
START=yyyy:period
S=
gives the date of loan initialization. The first payment is assumed to be one payment interval after the start date. For example, you can specify the START= option as StART='1APR2010'D or as StART=2010:3, where 3 is the third payment interval within the year 2010. If INTERVAL=QUARTER, 3 refers to the third quarter. If you specify the START= option, all output for the particular loan is dated accordingly.

Output Options

NOSUMMARYPRINT

NOSUMPR

suppresses the printing of the loan summary report. The NOSUMMARYPRINT option is usually used when an OUTSUM= data set is created to store loan summary information.

NOPRINT

NOP
suppresses all printed output for the loan.
OUT=SAS-data-set
writes the loan amortization schedule to an output data set.

OUTSUM=SAS-data-set

writes the loan summary for the individual loan to an output data set.

SCHEDULE

SCHEDULE=nyears
SCHEDULE=YEARLY

SCHED

prints the amortization schedule for the loan. SCHEDULE=nyears specifies the number of years the printed amortization table covers. If you omit the number of years or specify a period longer than the loan life, the schedule is printed for the full term of the loan. SCHEDULE=YEARLY prints yearly summary information in the amortization schedule rather than the full amortization schedule. SCHEDULE=YEARLY is useful for long-term loans.

BALLOON Statement

BALLOON options;

The BALLOON statement specifies a fixed rate loan with scheduled balloon payments in addition to the periodic payment. The following option is used in the BALLOON statement, in addition to the required options listed under the FIXED statement:

BALLOONPAYMENT=(date1=payment1 date2=payment2 ...)
BALLOONPAYMENT=(period1=payment1 period2=payment2 ...)
BPAY=(date1=payment1 date2=payment2 ...)
BPAY=(period1=payment1 period2=payment2 ...)
specifies pairs of periods and amounts of balloon (lump sum) payments in excess of the periodic payment during the life of the loan. You can also specify the balloon periods as dates if you specify the START= option. The dates are specified as SAS date literals. For example, BALLOONPAYMENT $=(\quad 1$ MAR2011' $D=1000)$) specifies a payment of 1000 in March of 2011.

If you do not specify this option, the calculations are identical to a loan specified in a FIXED statement. Balloon periods (or dates) and the respective balloon payments must be in time sequence.

ARM Statement

ARM options ;

The ARM statement specifies an adjustable rate loan where the future interest rates are not known with certainty but will vary within specified limits according to the terms stated in the loan agreement. In practice, the adjustment terms vary. Adjustments in the interest rate can be captured using the ARM statement options.

In addition to the required specifications and options listed under the FIXED statement, you can use the following options with the ARM statement.

Rate Adjustment Terms Options

ADJUSTFREQ=n

ADF=n
specifies the number of periods, in terms of the INTERVAL= specification, between rate adjustments. INTERVAL=MONTH ADJUSTFREQ=6 indicates that the nominal interest rate can be adjusted every six months until the life cap or maximum rate (whichever is specified) is reached. The default is ADJUSTFREQ=12. The periodic payment is adjusted every adjustment period even if there is no rate change; therefore, if prepayments are made (as specified with the PREPAYMENTS = option), the periodic payment might change even if the nominal rate does not.

CAPS=(periodic-cap, life-cap)

specifies the maximum interest rate adjustment, in percent notation, allowed by the loan agreement. The periodic cap specifies the maximum adjustment allowed at each adjustment period. The life cap specifies the maximum total adjustment over the life of the loan. For example, a loan specified with $\operatorname{CAPS}=(0.5,2)$ indicates that the nominal interest rate can change by 0.5% each adjustment period, and the annual nominal interest rate throughout the life of the loan will be within a 2% range of the initial annual nominal rate.

MAXADJUST=rate

MAXAD=rate

specifies the maximum rate adjustment, in percent notation, allowed at each adjustment period. Use the MAXADJUST= option with the MAXRATE= and MINRATE= options. The initial nominal rate plus the maximum adjustment should not exceed the specified MAXRATE= value. The initial nominal rate minus the maximum adjustment should not be less than the specified MINRATE= value.

MAXRATE=rate

MAXR=rate
specifies the maximum annual nominal rate, in percent notation, that might be charged on the loan. The maximum annual nominal rate should be greater than or equal to the initial annual nominal rate specified with the RATE= option.

MINRATE=rate

MINR=rate

specifies the minimum annual nominal rate, in percent notation, that might be charged on the loan. The minimum annual nominal rate should be less than or equal to the initial annual nominal rate specified with the RATE= option.

Rate Adjustment Case Options

PROC LOAN supports four rate adjustment scenarios for analysis of adjustable rate loans: pessimistic (WORSTCASE), optimistic (BESTCASE), no-change (FIXEDCASE), and estimated (ESTIMATEDCASE). The estimated case enables you to analyze the adjustable rate loan with your predictions of future interest rates. The default is worst-case analysis. If more than one case is
specified, worst-case analysis is performed. You can specify options for adjustable rate loans as follows:

BESTCASE

B
specifies a best-case analysis. The best-case analysis assumes that the interest rate charged on the loan will reach its minimum allowed limits at each adjustment period and over the life of the loan. If you use the BESTCASE option, you must specify either the CAPS= option or the MINRATE= and MAXADJUST= options.

ESTIMATEDCASE=(date1=rate1 date2=rate2 ...)

ESTIMATEDCASE=(period1=rate1 period2=rate2 ...)

ESTC=

specifies an estimated case analysis that indicates the rate adjustments will follow the rates you predict. This option specifies pairs of periods and estimated nominal interest rates.

The ESTIMATEDCASE= option can specify adjustments that cannot fit into the BESTCASE, WORSTCASE, or FIXEDCASE specifications, or "what-if" type analysis. If you specify the START= option, you can also specify the estimation periods as dates, in the form of SAS date literals. Estimated rates and the respective periods must be in time sequence.

If the estimated period falls between two adjustment periods (determined by ADJUSTFREQ= option), the rate is adjusted in the next adjustment period. The nominal interest rate charged on the loan is constant between two adjustment periods.

If any of the MAXRATE=, MINRATE=, CAPS=, and MAXADJUST= options are specified to indicate the rate adjustment terms of the loan agreement, these specifications are used to bound the rate adjustments. By using the ESTIMATEDCASE= option, you are predicting what the annual nominal rates in the market will be at different points in time, not necessarily the interest rate on your particular loan. For example, if the initial nominal rate (RATE= option) is 6.0, ADJUSTFREQ $=6$, MAXADJUST $=0.5$, and the ESTIMATEDCASE=($6=6.5$, $12=7.5$), the actual nominal rates charged on the loan would be 6.0% initially, 6.5% for the sixth through the eleventh periods, and 7.5% for the twelfth period onward.

FIXEDCASE

FIXCASE

specifies a fixed case analysis that assumes the rate will stay constant. The FIXEDCASE option calculates the ARM loan values similar to a fixed rate loan, but the payments are updated every adjustment period even if the rate does not change, leading to minor differences between the two methods. One such difference is in the way prepayments are handled. In a fixed rate loan, the rate and the payments are never adjusted; therefore, the payment stays the same over the life of the loan even when prepayments are made (instead, the life of the loan is shortened). In an ARM loan with the FIXEDCASE option, on the other hand, if prepayments are made, the payment is adjusted in the following adjustment period, leaving the life of the loan constant.

WORSTCASE

w

specifies a worst-case analysis. The worst-case analysis assumes that the interest rate charged
on the loan will reach its maximum allowed limits at each rate adjustment period and over the life of the loan. If the WORSTCASE option is used, either the CAPS= option or the MAXRATE $=$ and MAXADJUST $=$ options must be specified.

BUYDOWN Statement

BUYDOWN options;

The BUYDOWN statement specifies a buydown rate loan. The buydown rate loans are similar to ARM loans, but the interest rate adjustments are predetermined at the initialization of the loan, usually by paying interest points at the time of loan initialization.

You must use all the required specifications and options listed under the FIXED statement with the BUYDOWN statement. The following option is specific to the BUYDOWN statement and is required:

```
BUYDOWNRATES=( date1=rate1 date2=rate2 ... )
```

BUYDOWNRATES=(period1=rate1 period2=rate2 ...)

BDR=

specifies pairs of periods and the predetermined nominal interest rates that will be charged on the loan starting at the corresponding time periods.

You can also specify the buydown periods as dates in the form of SAS date literals if you also specify the date of the initial payment by using a date value in the START= option. Buydown periods (or dates) and the respective buydown rates must be in time sequence.

COMPARE Statement

COMPARE options;

The COMPARE statement compares multiple loans, or it can be used with a single loan. You can use only one COMPARE statement. COMPARE statement options specify the periods and desired types of analysis for loan comparison. The default analysis reports the outstanding principal balance, breakeven of payment, breakeven of interest paid, and before-tax true interest rate. The default comparison period corresponds to the first LIFE $=$ option specification. If the LIFE= option is not specified for any loan, the loan comparison period defaults to the first calculated life.

You can use the following options with the COMPARE statement. For more detailed information on loan comparison, see the section "Loan Comparison Details" on page 852.

Analysis Options

ALL

is equivalent to specifying the BREAKINTEREST, BREAKPAYMENT, PWOFCOST, and

TRUEINTEREST options. The loan comparison report includes all the criteria. You need to specify the MARR= option for present worth of cost calculation.

```
AT=( date1 date2 ... )
```

AT=(period1 period2 ...)
specifies the periods for loan comparison reports. If you specify the START= option in the PROC LOAN statement, you can specify the AT= option as a list of dates expressed as SAS date literals instead of periods. The comparison periods do not need to be in time sequence. If you do not specify the AT=option, the comparison period defaults to the first LIFE= option specification. If you do not specify the LIFE= option for any of the loans, the loan comparison period defaults to the first calculated life.

BREAKINTEREST

BI
specifies breakeven analysis of the interest paid. The loan comparison report includes the interest paid for each loan through the specified comparison period ($\mathrm{AT}=$ option).

BREAKPAYMENT

BP
specifies breakeven analysis of payment. The periodic payment for each loan is reported for every comparison period specified in the $\mathrm{AT}=\mathrm{option}$.

MARR=rate

specifies the MARR (minimum attractive rate of return) in percent notation. The MARR reflects the cost of capital or the opportunity cost of money. The MARR= option is used in calculating the present worth of cost.

PWOFCOST

PWC

calculates the present worth of cost (net present value of costs) for each loan based on the cash flow through the specified comparison periods. The calculations account for down payment, initialization costs, and discount points, as well as the payments and outstanding principal balance at the comparison period. If you specify the TAXRATE= option, the present worth of cost is based on after-tax cash flow. Otherwise, before-tax present worth of cost is calculated. You need to specify the MARR= option for present worth of cost calculations.

TAXRATE=rate

TAX=rate specifies income tax rate in percent notation for the after-tax calculations of the true interest rate and present worth of cost for those assets that qualify for tax deduction. If you specify this option, the amount specified in the POINTS = option and the interest paid on the loan are assumed to be tax-deductible. Otherwise, it is assumed that the asset does not qualify for tax deductions, and the cash flow is not adjusted for tax savings.

TRUEINTEREST

TI
calculates the true interest rate (effective interest rate based on the cash flow of all payments,
initialization costs, discount points, and the outstanding principal balance at the comparison period) for all the specified loans through each comparison period. If you specify the TAXRATE= option, the true interest rate is based on after-tax cash flow. Otherwise, the before-tax true interest rate is calculated.

Output Options

NOCOMPRINT
 NOCP

suppresses the printing of the loan comparison report. The NOCOMPRINT option is usually used when an OUTCOMP= data set is created to store loan comparison information.

OUTCOMP=SAS-data-set
writes the loan comparison report to an output data set.

Details: LOAN Procedure

Computational Details

These terms are used in the formulas that follow:

p	periodic payment
a	principal amount
r_{a}	nominal annual rate
f	compounding frequency (per year)
f^{\prime}	payment frequency (per year)
r	periodic rate
r_{e}	effective interest rate
n	total number of payments

The periodic rate, or the simple interest applied during a payment period, is given by

$$
r=\left(1+\frac{r_{a}}{f}\right)^{f / f^{\prime}}-1
$$

Note that the interest calculation is performed at each payment period rather than at the compound period. This is done by adjusting the nominal rate. See Muksian (1984) for details.

Note that when $f=f^{\prime}$ (that is, when the payment and compounding frequency coincide), the preceding expression reduces to the familiar form:

$$
r=\frac{r_{a}}{f}
$$

The periodic rate for continuous compounding can be obtained from this general expression by taking the limit as the compounding frequency f goes to infinity. The resulting expression is

$$
r=\exp \left(\frac{r_{a}}{f^{\prime}}\right)-1
$$

The effective interest rate, or annualized percentage rate (APR), is that rate which, if compounded once per year, is equivalent to the nominal annual rate compounded f times per year. Thus,

$$
\left(1+r_{e}\right)=(1+r)^{f}=\left(1+\frac{r_{a}}{f}\right)^{f}
$$

or

$$
r_{e}=\left(1+\frac{r_{a}}{f}\right)^{f}-1
$$

For continuous compounding, the effective interest rate is given by

$$
r_{e}=\exp \left(r_{a}\right)-1
$$

See Muksian (1984) for details.
The payment is calculated as

$$
p=\frac{a r}{1-\frac{1}{(1+r)^{n}}}
$$

The amount is calculated as

$$
a=\frac{p}{r}\left(1-\frac{1}{(1+r)^{n}}\right)
$$

Both the payment and amount are rounded to the nearest hundredth (cent) unless the ROUND= specification is different than the default, 2 .

The total number of payments n is calculated as

$$
n=\frac{-\ln \left(1-\frac{a r}{p}\right)}{\ln (1+r)}
$$

The total number of payments is rounded up to the nearest integer.
The nominal annual rate is calculated using the bisection method, with a as the objective and r starting in the interval between $8 * 10^{-6}$ and 0.1 with an initial midpoint 0.01 and successive midpoints bisecting.

Loan Comparison Details

In order to compare the costs of different alternatives, the input cash flow for the alternatives must be represented in equivalent values. The equivalent value of a cash flow accounts for the time-value of money. That is, it is preferable to pay the same amount of money later than to pay it now, since the money can earn interest while you keep it. The MARR (minimum attractive rate of return) reflects the cost of capital or the opportunity cost of money-that is, the interest that would have been earned on the savings that is foregone by making the investment. The MARR is used to discount the cash flow of alternatives into equivalent values at a fixed point in time. The MARR can vary for each investor and for each investment. Therefore, the MARR= option must be specified in the COMPARE statement if present worth of cost (PWOFCOST option) comparison is specified.

Present worth of cost reflects the equivalent amount at loan initialization of the loan cash flow discounted at MARR, not accounting for inflation. Present worth of cost accounts for the down payment, initialization costs, discount points, periodic payments, and the principal balance at the end of the report period. Therefore, it reflects the present worth of cost of the asset, not the loan. It is meaningful to use minimization of present worth of cost as a selection criterion only if the assets (down payment plus loan amount) are of the same value.

Another economic selection criterion is the rate of return (internal rate of return) of the alternatives. If interest is being earned by an alternative, the objective is to maximize the rate of return. If interest is being paid, as in loan alternatives, the best alternative is the one that minimizes the rate of return. The true interest rate reflects the effective annual rate charged on the loan based on the cash flow, including the initialization cost and the discount points.

The effects of taxes on different alternatives must be accounted for when these vary among different alternatives. Since interest costs on certain loans are tax-deductible, the comparisons for those loans are made based on the after-tax cash flows. The cost of the loan is reduced by the tax benefits it offers through the loan life if the TAXRATE= option is specified. The present worth of cost and true interest rate are calculated based on the after-tax cash flow of the loan. The down payment on the loan and initialization costs are assumed to be not tax-deductible in after-tax analysis. Discount points and the interest paid in each periodic payment are assumed to be tax-deductible if the TAXRATE $=$ option is specified. If the TAXRATE= option is not specified, the present worth of cost and the true interest rate are based on before-tax cash flow, assuming that the interest paid on the specified loan does not qualify for tax benefits.

The other two selection criteria are breakeven analysis of periodic payment and interest paid. If the objective is to minimize the periodic payment, the best alternative is the one with the minimum periodic payment. If the objective is to minimize the interest paid on the principal, then the best alternative is the one with the least interest paid.

Another criterion might be the minimization of the outstanding balance of the loan at a particular point in time. For example, if you plan to sell a house before the end of the loan life (which is often the case), you might want to select the loan with the minimum principal balance at the time of the sale, since this balance must be paid at that time. The outstanding balance of the alternative loans is calculated for each loan comparison period by default.

If you specified the START= option in the PROC LOAN statement, the present worth of cost reflects
the equivalent amount for each loan at that point in time. Any loan that has a START= specification different from the one in the PROC LOAN statement is not processed in the loan comparison.

The loan comparison report for each comparison period contains for each loan the loan label, outstanding balance, and any of the following measures if requested in the COMPARE statement: periodic payment (BREAKPAYMENT option), total interest paid to date (BREAKINTEREST option), present worth of cost (PWOFCOST option), and true interest rate (TRUEINTEREST option). The best loan is selected on the basis of present worth of cost or true interest rate. If both PWOFCOST and TRUEINTEREST options are specified, present worth of cost is the basis for the selection of the best loan.

You can use the OUTCOMP= option in the COMPARE statement to write the loan comparison report to a data set. The NOCOMPRINT option suppresses the printing of a loan comparison report.

OUT= Data Set

The OUT= option writes the loan amortization schedule to an output data set. The OUT= data set contains one observation for each payment period (or one observation for each year if you specified the SCHEDULE=YEARLY option). If you specified the START= option, the DATE variable denotes the date of the payment. Otherwise, YEAR and period variable (SEMIMONTH, MONTH, QUARTER, or SEMIYEAR) denote the payment year and period within the year.

The OUT= data set contains the following variables:

- DATE, date of the payment. DATE is included in the OUT= data set only when you specify the START= option.
- YEAR, year of the payment period. YEAR is included in the OUT= data set only when you do not specify the START= option.
- PERIOD, period within the year of the payment period. The name of the period variable matches the INTERVAL= specification (SEMIMONTH, MONTH, QUARTER, or SEMIYEAR.) The PERIOD variable is included in the OUT= data set only when you do not specify the START= option.
- BEGPRIN, beginning principal balance
- PAYMENT, payment
- INTEREST, interest payment
- PRIN, principal repayment
- ENDPRIN, ending principal balance

OUTCOMP= Data Set

The OUTCOMP= option in the COMPARE statement writes the loan comparison analysis results to an output data set. If you specified the START= option, the DATE variable identifies the date of the loan comparison. Otherwise, the PERIOD variable identifies the comparison period.

The OUTCOMP= data set contains one observation for each loan and for each loan comparison period. The OUTCOMP= data set contains the following variables.

- DATE, date of loan comparison report. The DATE variable is included in the OUTCOMP= data set only when you specify the START= option.
- PERIOD, period of the loan comparison for the observation. The PERIOD variable is included in the OUTCOMP= data set only when you do not specify the START= option.
- LABEL, label string for the loan
- TYPE, type of the loan
- PAYMENT, periodic payment at the time of report. The PAYMENT is included in the OUTCOMP= data set if you specified the BREAKPAYMENT or ALL option or if you used default criteria.
- INTPAY, interest paid through the time of report. The INTPAY variable is included in the OUTCOMP= data set if you specified the BREAKINTEREST or ALL option or if you used default criteria.
- TRUERATE, true interest rate charged on the loan. The TRUERATE variable is included in the OUTCOMP= data set if you specified the TRUERATE or ALL option or if you used default criteria.
- PWOFCOST, present worth of cost. The PWOFCOST variable is included in the OUTCOMP= data set only if you specified the PWOFCOST or ALL option.
- BALANCE, outstanding principal balance at the time of report

OUTSUM= Data Set

The OUTSUM= option writes the loan summary to an output data set. If you specified this option in the PROC LOAN statement, the loan summary information for all loans is written to the specified data set, except for those loans for which you specified a different OUTSUM= data set in the ARM, BALLOON, BUYDOWN, or FIXED statement.

The OUTSUM= data set contains one observation for each loan and contains the following variables:

- TYPE, type of loan
- LABEL, loan label
- PAYMENT, periodic payment
- AMOUNT, loan principal
- DOWNPAY, down payment. DOWNPAY is included in the OUTSUM= data set only when you specify a down payment.
- INITIAL, loan initialization costs. INITIAL is included in the OUTSUM= data set only when you specify initialization costs.
- POINTS, discount points. POINTS is included in the OUTSUM= data set only when you specify discount points.
- TOTAL, total payment
- INTEREST, total interest paid
- RATE, nominal annual interest rate
- EFFRATE, effective interest rate
- INTERVAL, payment interval
- COMPOUND, compounding interval
- LIFE, loan life (that is, the number of payment intervals)
- NCOMPND, number of compounding intervals
- COMPUTE, computed loan parameter: life, amount, payment, or rate

If you specified the START= option either in the PROC LOAN statement or for the individual loan, the OUTSUM= data set also contains the following variables:

- BEGIN, start date
- END, loan termination date

Printed Output

The output from PROC LOAN consists of the loan summary table, loan amortization schedule, and loan comparison report.

Loan Summary Table

The loan summary table shows the total payment and interest, the initial nominal annual and effective interest rates, payment and compounding intervals, the length of the loan in the time units specified, the start and end dates if specified, a list of nominal and effective interest rates, and periodic payments throughout the life of the loan.

A list of balloon payments for balloon payment loans and a list of prepayments if specified are printed with their respective periods or dates.

The loan summary table is printed for each loan by default. The NOSUMMARYPRINT option specified in the PROC LOAN statement suppresses the printing of the loan summary table for all loans. The NOSUMMARYPRINT option can be specified in individual loan statements to selectively suppress the printing of the loan summary table.

Loan Repayment Schedule

The amortization schedule contains for each payment period: the year and period within the year (or date, if you specified the START= option); principal balance at the beginning of the period; total payment, interest payment and principal payment for the period; and the principal balance at the end of the period. If you specified the SCHEDULE=YEARLY option, the amortization contains a summary for each year instead of for each payment period.

The amortization schedule is not printed by default. The SCHEDULE option in the PROC LOAN statement requests the printing of amortization tables for all loans. You can specify the SCHEDULE option in individual loan statements to selectively request the printing of the amortization schedule.

Loan Comparison Report

The loan comparison report is processed for each report period and contains the results of economic analysis of the loans. The quantities reported can include the outstanding principal balance, aftertax or before-tax present worth of cost and true interest rate, periodic payment, and the interest paid through the report period for each loan. The best alternative is identified if the asset value (down payment plus loan amount) is the same for each alternative.

The loan comparison report is printed by default. The NOCOMPRINT option specified in the COMPARE statement suppresses the printing of the loan comparison report.

ODS Table Names

PROC LOAN assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 16.2.

Table 16.2 ODS Tables Produced in PROC LOAN
ODS Table Name Description Option

ODS Tables Created by the PROC LOAN, FIXED, ARM, BALLOON, and BUYDOWN Statements
Repayment loan repayment schedule SCHEDULE

ODS Tables Created by the FIXED, ARM, BALLOON, and BUYDOWN Statements

LoanSummary	loan summary	default
RateList	rates and payments	default
PrepayList	prepayments and periods	PREPAYMENTS=

ODS Tables Created by the BALLOON Statement
BalloonList balloon payments and periods

ODS Tables Created by the COMPARE Statement
Comparison
loan comparison report
default

Examples: LOAN Procedure

Example 16.1: Discount Points for Lower Interest Rates

This example illustrates the comparison of two $\$ 100,000$ loans. The major difference between the two loans is that the nominal interest rate in the second loan is lower than the first with the added expense of paying discount points at the time of initialization.

Both alternatives are 30-year loans. The first loan is labeled " 8.25% - no discount points" and the second one is labeled " $8 \%-1$ discount point."

Assume that the interest paid qualifies for a tax deduction and you are in the 33% tax bracket. Also, your minimum attractive rate of return (MARR) for an alternative investment is 4\% (adjusted for tax rate).

You use the following statements to find the breakeven point in the life of the loan for your preference between the loans:

```
proc loan start=1992:1 nosummaryprint amount=100000 life=360;
    fixed rate=8.25 label='8.25% - no discount points';
    fixed rate=8 points=1000 label='8% - 1 discount point';
    compare at=(48 54 60) all taxrate=33 marr=4;
run;
```

Output 16.1.1 shows the loan comparison reports as of January 1996 (48th period), July 1996 (54th period), and January 1997 (60th period).

Output 16.1.1 Loan Comparison Reports for Discount Point Breakeven

The LOAN Procedure				
Loan Comparison Report				
Analysis through JAN1996				
Ending Present Worth Interest				
Loan Label	Outstanding	of Cost	Payment	
8.25\% - no discount	96388.09	105546.17	751.27	32449.05
8\% - 1 discount point	96219.32	105604.05	733.76	31439.80
Loan Comparison Report				
Analysis through JAN1996				
True				
Loan Label Rate				
8.25\% - no discount 5.67				
points				
8\% - 1 discount point 5.69				
NOTE: "8.25\% - no discount points" is the best alternative based on present worth of cost analysis through JAN1996.				

Output 16.1.1 continued

Notice that the breakeven point for present worth of cost and true rate both happen on July 1996. This indicates that if you intend to keep the loan for 4.5 years or more, it is better to pay the discount points for the lower rate. If your objective is to minimize the interest paid or the periodic payment, the " $8 \%-1$ discount point" loan is the preferred choice.

Example 16.2: Refinancing a Loan

Assume that you obtained a fixed rate 15-year loan in June 1995 for $\$ 78,500$ with a nominal annual rate of 9%. By early 1998 , the market offers a 6.5% interest rate, and you are considering whether to refinance your loan.

Use the following statements to find out the status of the loan on February 1998. Output 16.2.1 shows the results:

```
proc loan start=1995:6;
    fixed life=180 rate=9 amount=78500 noprint
        label='Original Loan';
    compare at=('10FEB1998'd);
run;
```

Output 16.2.1 Loan Comparison Report for Original Loan

The LOAN Procedure				
Loan Comparison Report				
Analysis through FEB1998				
	Ending		Interest	True
Loan Label	Outstanding	Payment	Paid	Rate
Original Loan	71028.75	796.20	18007.15	9.38

The monthly payment on the original loan is $\$ 796.20$. The ending outstanding principal balance as of February is $\$ 71,028.75$. At this point, you might want to refinance your loan with another 15year loan. The alternate loan has a 6.5% nominal annual rate. The initialization costs are $\$ 1,419.00$. Use the following statements to compare your alternatives:

```
proc loan start=1998:2 amount=71028.75;
    fixed rate=9 payment=796.20
            label='Keep the original loan' noprint;
    fixed life=180 rate=6.5 init=1419
            label='Refinance at 6.5%' noprint;
    compare at=(15 16) taxrate=33 marr=4 all;
run;
```

The comparison reports of May 1999 and June 1999 in Output 16.2.2 illustrate the break even between the two alternatives. If you intend to keep the loan through June 1999 or longer, your initialization costs for the refinancing are justified. The periodic payment of the refinanced loan is \$618.74.

Output 16.2.2 Loan Comparison Report for Refinancing Decision

Example 16.3: Prepayments on a Loan

This example compares a 30 -year loan with and without prepayments. Assume the $\$ 240,000$ 30year loan has an 8.25% nominal annual rate. Use the following statements to see the effect of making uniform prepayments of $\$ 500$ with periodic payment:

```
proc loan start=1992:12 rate=8.25 amount=240000 life=360;
    fixed label='No prepayments';
    fixed label='With Prepayments' prepay=500;
    compare at=(120) taxrate=33 marr=4 all;
run;
```

Output 16.3.1 Loan Summary Reports without Prepayments

The LOAN Procedure			
Fixed Rate Loan Summary			
No prepayments			
Downpayment	0.00	Principal Amount	240000.00
Initialization	0.00	Points	0.00
Total Interest	409094.17	Nominal Rate	8.2500\%
Total Payment	649094.17	Effective Rate	8.5692\%
Pay Interval	MONTHLY	Compounding	MONTHLY
No. of Payments	360	No. of Compoundings	360
Start Date	DEC1992	End Date	DEC2022
Rates and Payments for No prepayments			
Date	Nominal Rate	Effective Rate	Payment
DEC1992	8.2500\%	8.5692\%	1803.04

Output 16.3.2 Loan Summary Reports with Prepayments

	The LOAN Procedure	
	Fixed Rate Loan Summary	
	With Prepayments	
Downpayment	0.00	Principal Amount

Output 16.3.2 continued

Date	Rates and Payments Nominal Rate	for With Prepayments Effective Rate	Payment
DEC1992	8.2500%	8.5692%	2303.04

Output 16.3.3 Loan Comparison Report

The LOAN Procedure				
Loan Comparison Report				
Analysis through DEC2002				
Ending Present Worth Interest				
Loan Label	Outstanding		Payment	
No prepayments	211608.05	268762.31	1803.04	187972.85
With Prepayments	118848.23	264149.25	2303.04	155213.03
Loan Comparison Report				
Analysis through DEC2002				
True				
Loan Label Rate				
	No prepayments			
	With Prepayments			
NOTE: "With Prepayments" is the best alternative based on present worth of cost analysis through DEC2002.				

Output 16.3.1 through Output 16.3.3 illustrate the Loan Summary Reports and the Loan Comparison report. Notice that with prepayments you pay off the loan in slightly more than 15 years. Also, the total payments and total interest are considerably lower with the prepayments. If you can afford the prepayments of $\$ 500$ each month, another alternative you should consider is using a 15 -year loan, which is generally offered at a lower nominal interest rate.

Example 16.4: Output Data Sets

This example shows the analysis and comparison of five alternative loans. Initialization cost, discount points, and both lump sum and periodic payments are included in the specification of these loans. Although no printed output is produced, the loan summary and loan comparison information is stored in the OUTSUM $=$ and OUTCOMP= data sets.

```
proc loan start=1998:12 noprint outsum=loans
    amount=150000 life=360;
    fixed rate=7.5 life=180 prepayment=500
            label='BANK1, Fixed Rate';
    arm rate=5.5 estimatedcase=(12=7.5 18=8)
        label=' BANK1, Adjustable Rate';
    buydown rate=7 interval=semimonth init=15000
                bdrates=(3=9 10=10) label='BANK2, Buydown';
    arm rate=5.75 worstcase caps=(0.5 2.5)
        adjustfreq=6 label=' BANK3, Adjustable Rate'
        prepayments=(12=2000 36=5000);
    balloon rate=7.5 life=480
        points=1100 balloonpayment=(15=2000 48=2000)
        label='BANK4, with Balloon Payment';
    compare at=(120 360) all marr=7 tax=33 outcomp=comp;
run;
proc print data=loans;
run;
proc print data=comp;
run;
```

Output 16.4.1 and Output 16.4.2 illustrate the contents of the output data sets.

Output 16.4.1 OUTSUM= Data Set

Obs	TYPE	LABEL			PAYMENT	AMOUNT	INITIAL
1	FIXED	BANK1, Fixed Rate			1890.52	150000	0
2	ARM	BANK1, A	Adjustable Rate		851.68	150000	0
3	BUYDOWN	BANK2, B	Buydown		673.57	150000	15000
4	ARM	BANK3, A	Adjustable Rate		875.36	150000	0
5	BALLOON	BANK4, with Balloon Payment			965.36	150000	0
Obs	POINTS	TOTAL	INTEREST	RATE	EF	E IN	VAL
1	$0 \quad 2$	207839.44	$4 \quad 57839.44$	0.0750	0.0		LY
2	03	390325.49	$9 \quad 240325.49$	0.0550	0.05		LY
3	02	288858.08	8138858.08	0.0700	0.0		ONTHLY
4	$0 \quad 3$	387647.82	$2 \quad 237647.82$	0.0575	50.05		LY
5	1100 4	467372.31	1317372.31	0.0750	0.0		LY
Obs	COMPOUND	LIFE	E NCOMPND	COMPUTE	ST		
1	MONTHLY	110	$0 \quad 110$	PAYMENT	DEC1	FEB2	
2	MONTHLY	360	0360	PAYMENT	DEC1	DEC2	
3	SEMIMONTHLY	Y 360	0360	PAYMENT	DEC1	DEC2	
4	MONTHLY	360	0360	PAYMENT	DEC1	DEC2	
5	MONTHLY	480	$0 \quad 480$	PAYMENT	DEC1	DEC2	

Output 16.4.2 OUTCOMP= Data Set

Obs	DATE	TYPE	LABEL	PAYMENT
1	DEC2008	FIXED	BANK1, Fixed Rate	1772.76
2	DEC2008	ARM	BANK1, Adjustable Rate	1093.97
3	DEC2008	BUYDOWN	BANK2, Buydown	803.98
4	DEC2008	ARM	BANK3, Adjustable Rate	1065.18
5	DEC2008	BALLOON	BANK4, with Balloon Payment	965.36
6	DEC2028	FIXED	BANK1, Fixed Rate	1772.76
7	DEC2028	ARM	BANK1, Adjustable Rate	1094.01
8	DEC2028	BUYDOWN	BANK2, Buydown	800.46
9	DEC2028	ARM	BANK3, Adjustable Rate	1065.20
10	DEC2028	BALLOON	BANK4, with Balloon Payment	965.36
Obs	INTEREST	TRUERATE	PWOFCOST BALANCE	
1	57839.44	0.051424	$137741.07 \quad 0.00$	
2	108561.77	0.052212	130397.88 130788.65	
3	118182.19	0.087784	161810.0075798 .19	
4	107015.58	0.053231	131955.90125011 .88	
5	107906.61	0.052107	130242.56138063 .41	
6	57839.44	0.051424	137741.070 .00	
7	240325.49	0.053247	$121980.94 \quad 0.00$	
8	138858.08	0.086079	161536.44	
9	237647.82	0.054528	124700.220 .00	
10	282855.86	0.051800	117294.5081326 .26	

Example 16.5: Piggyback Loans

The piggyback loan is becoming a widely available alternative. Borrowers like to avoid the PMI (private mortgage insurance) required with loans where the borrower has a down payment of less than 20% of the price. The piggyback allows a secondary home equity loan to be packaged with a primary loan with less than 20% down payment. The secondary loan usually has a shorter life and higher interest rate. The interest paid on both loans are tax-deductible whereas PMI does not qualify for a tax deduction.

The following example compares a conventional fixed rate loan with 20% down as opposed to a piggyback loan: one primary fixed rate with 10% down payment and a secondary, home equity loan for 10% of the original price. All loans have monthly payments.

The conventional loan alternative is a 30 -year loan with a fixed annual rate of 7.5%. The primary loan in the piggyback loan setup is also a 30 -year loan with a fixed annual rate of 7.75%. The secondary loan is a 15 -year loan with a fixed annual interest rate of 8.25%.

The comparison output for the two loans comprising the piggyback loan is aggregated using the TIMESERIES procedure with a minimum of specified options:

- The INTERVAL= option requests that the data be aggregated into periods of length 5 years beginning on the 25th month, resulting in appropriately identified periods.
- The ACC=TOTAL option specifies that the output should reflect accumulated totals as opposed to, say, averages.
- The NOTSORTED option indicates that the input data set has not been sorted by the ID variable.

See Chapter 27, "The TIMESERIES Procedure," for more information about this procedure.
Use the following statements to analyze the conventional loan, as well as the piggyback alternative, and compare them on the basis of their present worth of cost, outstanding balance, and interest payment amounts at the end of 5,10 , and 15 years into the loan life.

```
title1 'LOAN: Piggyback loan example';
title2 'LOAN: Conventional loan';
proc loan start=2002:1 noprint;
    fixed price=200000 dp=40000 rate=7.5 life=360
            label='20 percent down: Conventional Fixed Rate' ;
    compare at=(60 120 180) pwofcost taxrate=30 marr=12
                breakpay breakint outcomp=comploans;
run;
title2 'LOAN: Piggyback: Primary Loan';
```

```
proc loan start=2002:1 noprint;
    fixed amount=160000 dp=20000 rate=7.75 life=360
            label='Piggyback: Primary loan' out=loan1;
compare at=(60 120 180 ) pwofcost taxrate=30 marr=12
            breakpay breakint outcomp=cloan1;
run;
title2 'LOAN: Piggyback: Secondary (Home Equity) Loan';
proc loan start=2002:1 noprint;
    fixed amount=20000 rate=8.25 life=180
            label='Piggyback: Secondary (Home Equity) Loan' out=loan2;
    compare at=(60 120 180 ) pwofcost taxrate=30 marr=12
            breakpay breakint outcomp=cloan2;
run;
data cloan12;
    set cloan1 cloan2;
run;
proc timeseries data=cloan12 out= totcomp ;
    id date interval=year5.25 acc=total notsorted;
    var payment interest pwofcost balance ;
run;
/*-- LOAN: Piggyback loan --*/
title;
proc print data=totcomp;
    format date monyy7.;
run;
data comploans;
    set comploans;
    drop type label;
run;
/*-- LOAN: Conventional Loan --*/
title;
proc print data=comploans;
run;
```

The loan comparisons in Output 16.5.1 and Output 16.5.2 illustrate the after-tax comparison of the loans. The after-tax present value of cost for the piggyback loan is lower than the 20% down conventional fixed rate loan.

Output 16.5.1 Piggyback Loan

Obs	DATE	PAYMENT	INTEREST	PWOFCOST	BALANCE
1	JAN2007	1340.29	67992.92	157157.41	167575.52
2	JAN2012	1340.29	129973.53	135556.98	149138.73
3	JAN2017	1339.66	183028.58	125285.77	121777.01

Output 16.5.2 Conventional Loan

Obs	DATE	PAYMENT	INTEREST	PWOFCOST	BALANCE
1	JAN2007	1118.74	58512.54	160436.81	151388.14
2	JAN2012	1118.74	113121.41	140081.64	138872.61
3	JAN2017	1118.74	162056.97	130014.97	120683.77

References

DeGarmo, E.P., Sullivan, W.G., and Canada, J.R. (1984), Engineering Economy, Seventh Edition, New York: Macmillan Publishing Company.

Muksian, R. (1984), Financial Mathematics Handbook, Englewood Cliffs, NJ: Prentice-Hall.
Newnan, D.G. (1988), Engineering Economic Analysis, Third Edition, San Jose, CA: Engineering Press.

Riggs, J.L. and West, T.M. (1986), Essentials of Engineering Economics, Second Edition, New York: McGraw-Hill.

Chapter 17

The MDC Procedure

Contents

Overview: MDC Procedure 870
Getting Started: MDC Procedure 871
Conditional Logit: Estimation and Prediction 871
Nested Logit Modeling 876
Multivariate Normal Utility Function 880
HEV and Multinomial Probit: Heteroscedastic Utility Function 881
Parameter Heterogeneity: Mixed Logit 886
Syntax: MDC Procedure 887
Functional Summary 888
PROC MDC Statement 889
MDCDATA Statement 890
BOUNDS Statement 890
BY Statement 891
ID Statement 891
MODEL Statement 892
NEST Statement 897
NLOPTIONS Statement 900
OUTPUT Statement 901
RESTRICT Statement 901
UTILITY Statement 902
Details: MDC Procedure 903
Multinomial Discrete Choice Modeling 903
Multinomial Logit and Conditional Logit 904
Heteroscedastic Extreme-Value Model 906
Mixed Logit Model 907
Multinomial Probit 909
Nested Logit 910
Decision Tree and Nested Logit 912
Model Fit and Goodness-of-Fit Statistics 915
OUTEST= Data Set 916
ODS Table Names 917
Examples: MDC Procedure 918
Example 17.1: Binary Data Modeling 918
Example 17.2: Conditional Logit and Data Conversion 921

Overview: MDC Procedure

The MDC (multinomial discrete choice) procedure analyzes models where the choice set consists of multiple alternatives. This procedure supports conditional logit, mixed logit, heteroscedastic extreme value, nested logit, and multinomial probit models. The MDC procedure uses the maximum likelihood (ML) or simulated maximum likelihood method for model estimation. The term multinomial logit is often used in the econometrics literature to refer to the conditional logit model of McFadden (1974). Here, the term conditional logit refers to McFadden's conditional logit model, and the term multinomial logit refers to a model that differs slightly. Schmidt and Strauss (1975) and Theil (1969) are early applications of the multinomial logit model in the econometrics literature. The main difference between McFadden's conditional logit model and the multinomial logit model is that the multinomial logit model makes the choice probabilities depend on the characteristics of the individuals only, whereas the conditional logit model considers the effects of choice attributes on choice probabilities as well.

Unordered multiple choices are observed in many settings in different areas of application. For example, choices of housing location, occupation, political party affiliation, type of automobile, and mode of transportation are all unordered multiple choices. Economics and psychology models often explain observed choices by using the random utility function. The utility of a specific choice can be interpreted as the relative pleasure or happiness that the decision maker derives from that choice with respect to other alternatives in a finite choice set. It is assumed that the individual chooses the alternative for which the associated utility is highest. However, the utilities are not known to the analyst with certainty and are therefore treated by the analyst as random variables. When the utility function contains a random component, the individual choice behavior becomes a probabilistic process.

The random utility function of individual i for choice j can be decomposed into deterministic and stochastic components:

$$
U_{i j}=V_{i j}+\epsilon_{i j}
$$

where $V_{i j}$ is a deterministic utility function, assumed to be linear in the explanatory variables, and $\epsilon_{i j}$ is an unobserved random variable that captures the factors that affect utility that are not included in $V_{i j}$. Different assumptions on the distribution of the errors, $\epsilon_{i j}$, give rise to different classes of models.

The features of discrete choice models available in the MDC procedure are summarized in Table 17.1.

Table 17.1 Summary of Models Supported by PROC MDC

Model Type	Utility Function	Distribution of $\epsilon_{i j}$
Conditional	$U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j}$	IEV
Logit	$U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j}$	independent and identical HEV HEV
independent and nonidentical		
Nested Logit	$U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j}$	GEV
Mixed Logit	$U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\xi_{i j}+\epsilon_{i j}$	IEV IEVated and identical independent and identical
Multinomial $U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j}$ Probit MVN correlated and nonidentical		

IEV stands for type I extreme-value (or Gumbel) distribution with the probability density function and the cumulative distribution function of the random error given by $f\left(\epsilon_{i j}\right)=$ $\exp \left(-\epsilon_{i j}\right) \exp \left(-\exp \left(-\epsilon_{i j}\right)\right)$ and $F\left(\epsilon_{i j}\right)=\exp \left(-\exp \left(-\epsilon_{i j}\right)\right)$; HEV stands for heteroscedastic extreme-value distribution with the probability density function and the cumulative distribution function of the random error given by $f\left(\epsilon_{i j}\right)=\frac{1}{\theta_{j}} \exp \left(\frac{\epsilon_{i j}}{\theta_{j}}\right) \exp \left[-\exp \left(-\frac{\epsilon_{i j}}{\theta_{j}}\right)\right]$ and $F\left(\epsilon_{i j}\right)=$ $\exp \left[-\exp \left(-\frac{\epsilon_{i j}}{\theta_{j}}\right)\right]$, where θ_{j} is a scale parameter for the random component of the j th alternative; GEV stands for generalized extreme-value distribution; MVN represents multivariate normal distribution; and $\xi_{i j}$ is an error component. See the "Mixed Logit Model" on page 907 section for more information about $\xi_{i j}$.

Getting Started: MDC Procedure

Conditional Logit: Estimation and Prediction

The MDC procedure is similar in use to the other regression model procedures in the SAS System. However, the MDC procedure requires identification and choice variables. For example, consider a random utility function

$$
U_{i j}=x_{1, i j} \beta_{1}+x_{2, i j} \beta_{2}+\epsilon_{i j} j=1, \ldots, 3
$$

where the cumulative distribution function of the stochastic component is type I extreme value, $F\left(\epsilon_{i j}\right)=\exp \left(-\exp \left(-\epsilon_{i j}\right)\right)$. You can estimate this conditional logit model with the following statements:

```
proc mdc;
    model decision = x1 x2 / type=clogit
        choice=(mode 1 2 3);
```

```
    id pid;
run;
```

Note that the MDC procedure, unlike other regression procedures, does not include the intercept term automatically. The dependent variable decision takes the value 1 when a specific alternative is chosen; otherwise it takes the value 0 . Each individual is allowed to choose one and only one of the possible alternatives. In other words, the variable decision takes the value 1 one time only for each individual. If each individual has three elements (1,2 , and 3) in the choice set, the NCHOICE=3 option can be specified instead of $\mathrm{CHOICE}=($ mode 123).

Consider the following trinomial data from Daganzo (1979). The original data (origdata) contain travel time (ttime1-ttime3) and choice (choice) variables. ttime1-ttime3 are the travel times for three different modes of transportation, and choice indicates which one of the three modes is chosen. The choice variable must have integer values.

```
data origdata;
    input ttime1 ttime2 ttime3 choice @@;
datalines;
16.481 16.196 23.89 2 15.123 11.373 14.182 2
19.469 8.822 20.819 2
12.578 10.671 18.335 2 11.513 10.582 
... more lines ...
```

A new data set (newdata) is created since PROC MDC requires that each individual decision maker has one case for each alternative in his choice set. Note that the ID statement is required for all MDC models. In the following example, there are two public transportation modes, 1 and 2 , and one private transportation mode, 3 , and all individuals share the same choice set.

The first nine observations of the raw data set are shown in Figure 17.1.
Figure 17.1 Initial Choice Data

Obs	ttime1	ttime2	ttime3	choice
1	16.481	16.196	23.890	2
2	15.123	11.373	14.182	2
3	19.469	8.822	20.819	2
4	18.847	15.649	21.280	2
5	12.578	10.671	18.335	2
6	11.513	20.582	27.838	1
7	10.651	15.537	17.418	1
8	8.359	15.675	21.050	1
9	11.679	12.668	23.104	1

The following statements transform the data according to MDC procedure requirements.

```
data newdata(keep=pid decision mode ttime);
    set origdata;
    array tvec{3} ttime1 - ttime3;
```

```
    retain pid 0;
    pid + 1;
    do i = 1 to 3;
    mode = i;
    ttime = tvec{i};
    decision = ( choice = i );
        output;
    end;
run;
```

The first nine observations of the transformed data set are shown in Figure 17.2.
Figure 17.2 Transformed Modal Choice Data

Obs	pid	mode	ttime	decision
1	1	1	16.481	0
2	1	2	16.196	1
3	1	3	23.890	0
4	2	1	15.123	0
5	2	2	11.373	1
6	2	3	14.182	0
7	3	1	19.469	0
8	3	2	8.822	1
9	3	3	20.819	0

The decision variable, decision, must have one nonzero value for each decision maker corresponding to the actual choice. When the RANK option is specified, the decision variable must contain rank data. For more details, see the section "MODEL Statement" on page 892. The following SAS statements estimate the conditional logit model by using maximum likelihood:

```
proc mdc data=newdata;
    model decision = ttime /
            type=clogit
            nchoice=3
            optmethod=qn
            covest=hess;
    id pid;
run;
```

The MDC procedure enables different individuals to face different choice sets. When all individuals have the same choice set, the NCHOICE= option can be used instead of the CHOICE= option. However, the NCHOICE= option is not allowed when a nested logit model is estimated. When the NCHOICE=number option is specified, the choices are generated as $1, \ldots$, number. For more flexible alternatives (e.g., 1368), you need to use the CHOICE $=$ option. The choice variable must have integer values.

The OPTMETHOD=QN option specifies the quasi-Newton optimization technique. The covariance matrix of the parameter estimates is obtained from the Hessian matrix since COVEST=HESS is specified. You can also specify COVEST=OP or COVEST=QML. See the section "MODEL Statement" on page 892 for more details.

The MDC procedure produces a summary of model estimation displayed in Figure 17.3. Since there are multiple observations for each individual, the "Number of Cases" (150)-that is, the total number of choices faced by all individuals-is larger than the number of individuals, "Number of Observations" (50). Figure 17.4 shows the frequency distribution of the three choice alternatives. In this example, mode 2 is most frequently chosen.

Figure 17.3 Estimation Summary Table

Figure 17.4 Choice Frequency

Discrete Response Profile			
Index	CHOICE	Frequency	Percent
0	1	14	28.00
1	2	29	58.00
2	3	7	14.00

The MDC procedure computes nine goodness-of-fit measures for the discrete choice model. Seven of them are pseudo- R^{2} measures based on the null hypothesis that all coefficients except for an intercept term are zero (Figure 17.5). McFadden's likelihood ratio index (LRI) is the smallest in value. For more details see the section "Model Fit and Goodness-of-Fit Statistics" on page 915.

Figure 17.5 Likelihood Ratio Test and R^{2} Measures

Goodness-of-Fit Measures		
Measure	Value	Formula
Likelihood Ratio (R)	43.219	2 * (LogL - LogL0)
Upper Bound of R (U)	109.86	- 2 * LogL0
Aldrich-Nelson	0.4636	$\mathrm{R} / \mathrm{(R+N})$
Cragg-Uhler 1	0.5787	$1-\exp (-\mathrm{R} / \mathrm{N})$
Cragg-Uhler 2	0.651	$(1-\exp (-\mathrm{R} / \mathrm{N})$) / (1-exp (-U/N))
Estrella	0.6666	$1-(1-R / U)^{\wedge}(\mathrm{U} / \mathrm{N})$
Adjusted Estrella	0.6442	$1-((\log L-K) / L \circ g L 0)^{\wedge}(-2 / N * L o g L 0)$
McFadden's LRI	0.3934	R / U
Veall-Zimmermann	0.6746	$(R *(U+N)) /(U *(R+N))$
$\mathrm{N}=$ \# of observations, $\mathrm{K}=\mathrm{\#}$ of regressors		

Finally, the parameter estimate is displayed in Figure 17.6.
Figure 17.6 Parameter Estimate of Conditional Logit

The predicted choice probabilities are produced using the OUTPUT statement:

```
output out=probdata pred=p;
```

The parameter estimates can be used to forecast the choice probability of individuals that are not in the input data set. To do so, you need to append to the input data set extra observations whose values of the dependent variable decision are missing, since these extra observations are not supposed to be used in the estimation stage. The identification variable pid must have values that are not used in the existing observations. The output data set, probdata, contains a new variable, p, in addition to input variables in the data set, extdata.

The following statements forecast the choice probability of individuals that are not in the input data set.

```
data extra;
    input pid mode decision ttime;
datalines;
51 1 . 5.0
```

```
51 2 . 15.0
51 3 . 14.0
;
data extdata;
    set newdata extra;
run;
proc mdc data=extdata;
    model decision = ttime /
                        type=clogit
                        covest=hess
            nchoice=3;
    id pid;
    output out=probdata pred=p;
run;
proc print data=probdata( where=( pid >= 49 ) );
    var mode decision p ttime;
    id pid;
run;
```

The last nine observations from the forecast data set (probdata) are displayed in Figure 17.7. It is expected that the decision maker will choose mode " 1 " based on predicted probabilities for all modes.

Figure 17.7 Out-of-Sample Mode Choice Forecast

pid	mode	decision	p	ttime
49	1		0	0.46393
49	2	1	0.41753	12.852
49	3	0	0.11853	15.672
50	1	0	0.06936	15.557
50	2	1	0.92437	8.307
50	3	0	0.00627	22.286
51	1	.	0.93611	5.000
51	2	.	0.02630	15.000
51	3	.	0.03759	14.000

Nested Logit Modeling

A more general model can be specified using the nested logit model.
Consider, for example, the following random utility function:

$$
U_{i j}=x_{i j} \beta+\epsilon_{i j} j=1, \ldots, 3
$$

Suppose the set of all alternatives indexed by j is partitioned into K nests, B_{1}, \ldots, B_{K}. The nested logit model is obtained by assuming that the error term in the utility function has the GEV
cumulative distribution function:

$$
\exp \left(-\sum_{k=1}^{K}\left(\sum_{j \in B_{k}} \exp \left\{-\epsilon_{i j} / \lambda_{k}\right\}\right)^{\lambda_{k}}\right)
$$

where λ_{k} is a measure of a degree of independence among the alternatives in nest k. When $\lambda_{k}=1$ for all k, the model reduces to the standard logit model.

Since the public transportation modes, 1 and 2, tend to be correlated, these two choices can be grouped together. The decision tree displayed in Figure 17.8 is constructed.

Figure 17.8 Decision Tree for Model Choice

The two-level decision tree is specified in the NEST statement. The NCHOICE= option is not allowed for nested logit estimation. Instead, the CHOICE= option needs to be specified, as in the following statements:

```
/*-- nested logit estimation --*/
proc mdc data=newdata;
    model decision \(=\) ttime /
            type=nlogit
            choice=(mode 12 3)
            covest=hess;
    id pid;
    utility \(u(1)=\), ttime;
    nest level(1) \(=(12 @ 1,3 @ 2)\),
            level(2) \(=(12\) @ 1\()\);
run;
```

In Figure 17.9, estimates of the inclusive value parameters, INC_L2G1C1 and INC_L2G1C2, are indicative of a nested model structure. See the section "Nested Logit" on page 910 and the section "Decision Tree and Nested Logit" on page 912 for more details on inclusive values.

Figure 17.9 Two-Level Nested Logit Estimates

The MDC Procedure					
Nested Logit Estimates					
Parameter Estimates					
			andard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
ttime_L1	1	-0.4040	0.1241	-3.25	0.0011
INC_L2G1C1	1	0.8016	0.4352	1.84	0.0655
INC_L2G1C2	1	0.8087	0.3591	2.25	0.0243

The nested logit model is estimated with the restriction INC_L2G1C1 =INC_L2G1C2 by specifying the SAMESCALE option, as in the following statements. The estimation result is displayed in Figure 17.10.

```
/*-- nlogit with samescale option --*/
proc mdc data=newdata;
    model decision = ttime /
            type=nlogit
            choice=(mode 1 2 3)
            samescale
            covest=hess;
    id pid;
    utility u(1,) = ttime;
    nest level(1) = (1 2 @ 1, 3 @ 2),
            level(2) = (1 2 @ 1);
run;
```

Figure 17.10 Nested Logit Estimates with One Dissimilarity Parameter

The MDC Procedure						
Nested Logit Estimates						
Parameter Estimates						
			Standard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
ttime_L1	1	-0.4025	0.1217	-3.31	0.0009	
INC_L2G1	1	0.8209	0.3019	2.72	0.0066	

The nested logit model is equivalent to the conditional logit model if INC_L2G1C1 = INC_L2G1C2 $=1$. You can verify this relationship by estimating a constrained nested logit model. (See the section "RESTRICT Statement" on page 901 for details on imposing linear restrictions on parameter estimates.) The parameter estimates and the active linear constraints for the following constrained nested logit model are displayed in Figure 17.11.

```
/*-- constrained nested logit estimation --*/
proc mdc data=newdata;
    model decision = ttime /
                            type=nlogit
                            choice=(mode 1 2 3)
            covest=hess;
    id pid;
    utility u(1,) = ttime;
    nest level(1) = (1 2 @ 1, 3 @ 2),
        level(2) = (1 2 @ 1);
    restrict INC_L2G1C1 = 1, INC_L2G1C2 =1;
run;
```

Figure 17.11 Constrained Nested Logit Estimates

The MDC Procedure						
Nested Logit Estimates						
Parameter Estimates						
			tandard			Approx
Parameter	DF	Estimate	Error	t Value	Pr	$>\|t\|$
ttime_L1	1	-0.3572	0.0776	-4. 60		. 0001
INC_L2G1C1	0	1.0000	0			
INC_L2G1C2	0	1.0000	0			
Restrict1	1	-2.1706	8.4098	-0.26		. 7993*
Restrict2	1	3.6573	10.0001	0.37		. 7186 *
Parameter Estimates						
Parameter Parameter Label						
ttime_L1						
INC_L2G1C1						
INC_L2G1C2						
Restrict1 Linear EC						
Restrict2 Linear EC [2						
* Probability computed using beta distribution.						
Linearly Independent Active Linear Constraints						
1		$=-1.00$	$+1.0$	0 * INC_L	C1	
2		$=-1.0$	$+1.0$	0 * INC_	C2	

Multivariate Normal Utility Function

Consider the following random utility function:

$$
U_{i j}=\operatorname{ttime}_{i j} \beta+\epsilon_{i j}, \quad j=1,2,3
$$

where

$$
\left[\begin{array}{c}
\epsilon_{i 1} \\
\epsilon_{i 2} \\
\epsilon_{i 3}
\end{array}\right] \sim N\left(\mathbf{0},\left[\begin{array}{ccc}
1 & \rho_{21} & 0 \\
\rho_{21} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

The correlation coefficient (ρ_{21}) between $U_{i 1}$ and $U_{i 2}$ represents common neglected attributes of public transportation modes, 1 and 2 . The following SAS statements estimate this trinomial probit model:

```
/*-- homoscedastic mprobit --*/
proc mdc data=newdata;
    model decision = ttime /
                        type=mprobit
            nchoice=3
            unitvariance=(1 2 3)
            covest=hess;
    id pid;
run;
```

The UNITVARIANCE=(1 23) option specifies that the random component of utility for each of these choices have unit variance. If the UNITVARIANCE $=$ option is specified, it needs to include at least two choices. The results of this constrained multinomial probit model estimation are displayed in Figure 17.12 and Figure 17.13. The test for time $=0$ is rejected at the 1% significance level.

Figure 17.12 Constrained Probit Estimation Summary

Figure 17.13 Multinomial Probit Estimates with Unit Variances

The MDC Procedure						
Multinomial Probit Estimates						
Parameter Estimates						
			andard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
ttime	1	-0.2307	0.0472	-4.89	$<.0001$	
RHO_21	1	0.4820	0.3135	1.54	0.1242	

HEV and Multinomial Probit: Heteroscedastic Utility Function

When the stochastic components of utility are heteroscedastic and independent, you can model the data by using an HEV or a multinomial probit model. The HEV model assumes that the utility of alternative j for each individual i has heteroscedastic random components,

$$
U_{i j}=V_{i j}+\epsilon_{i j}
$$

where the cumulative distribution function of the Gumbel distributed $\epsilon_{i j}$ is

$$
F\left(\epsilon_{i j}\right)=\exp \left(-\exp \left(-\epsilon_{i j} / \theta_{j}\right)\right)
$$

Note that the variance of $\epsilon_{i j}$ is $\frac{1}{6} \pi^{2} \theta_{j}^{2}$. Therefore, the error variance is proportional to the square of the scale parameter θ_{j}. For model identification, at least one of the scale parameters must be normalized to 1 . The following SAS statements estimate an HEV model under a unit scale restriction for mode " 1 " $\left(\theta_{1}=1\right)$. The results of computation are presented in Output 17.14 and Output 17.15.

```
/*-- hev with gauss-laguerre method --*/
proc mdc data=newdata;
    model decision = ttime /
            type=hev
            nchoice=3
            hev=(unitscale=1, integrate=laguerre)
            covest=hess;
    id pid;
run;
```

Figure 17.14 HEV Estimation Summary

Figure 17.15 HEV Parameter Estimates

The MDC Procedure						
Heteroscedastic Extreme Value Model Estimates						
Parameter Estimates						
Standard Approx						
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
ttime	1	-0.4407	0.1798	-2.45	0.0143	
SCALE2	1	0.7765	0.4348	1.79	0.0741	
SCALE3	1	0.5753	0.2752	2.09	0.0366	

The parameters SCALE2 and SCALE3 in the output correspond to the estimates of the scale parameters θ_{2} and θ_{3}, respectively.

Note that the estimate of the HEV model is not always stable since computation of the log-likelihood function requires numerical integration. Bhat (1995) proposed the Gauss-Laguerre method. In general, the log-likelihood function value of HEV should be larger than that of conditional logit since HEV models include the conditional logit as a special case, but in this example the reverse is true (-33.414 for the HEV model, which is less than -33.321 for the conditional logit model). (See Figure 17.14 and Figure 17.3.) This indicates that the Gauss-Laguerre approximation to the true probability is too coarse. You can see how well the Gauss-Laguerre method works by specifying a unit scale restriction for all modes, as in the following statements, since the HEV model with the unit variance for all modes reduces to the conditional logit model:

```
/*-- hev with gauss-laguerre and unit scale --*/
proc mdc data=newdata;
    model decision = ttime /
                type=hev
            nchoice=3
```

```
        hev=(unitscale=1 2 3, integrate=laguerre)
        covest=hess;
    id pid;
run;
```

Figure 17.16 shows that the ttime coefficient is not close to that of the conditional logit model.
Figure 17.16 HEV Estimates with All Unit Scale Parameters

There is another option of specifying the integration method. The INTEGRATE=HARDY option uses the adaptive Romberg-type integration method. The adaptive integration produces much more accurate probability and log-likelihood function values, but often it is not practical to use this method of analyzing the HEV model since it requires excessive CPU time. The following SAS statements produce the HEV estimates by using the adaptive Romberg-type integration method. The results are displayed in Figure 17.17 and Figure 17.18.

```
/*-- hev with adaptive integration --*/
proc mdc data=newdata;
    model decision = ttime /
                        type=hev
            nchoice=3
            hev=(unitscale=1, integrate=hardy)
            covest=hess;
        id pid;
run;
```

Figure 17.17 HEV Estimation Summary Using Alternative Integration Method

Figure 17.18 HEV Estimates Using Alternative Integration Method

With the INTEGRATE=HARDY option, the log-likelihood function value of the HEV model, -33.026 , is greater than that of the conditional logit model, -33.321 . (See Figure 17.17 and Figure 17.3.)

When you impose unit scale restrictions on all choices, as in the following statements, the HEV model gives the same estimates as the conditional logit model. (See Figure 17.19 and Figure 17.6.)

```
/*-- hev with adaptive integration and unit scale --*/
proc mdc data=newdata;
    model decision = ttime /
            type=hev
            nchoice=3
            hev=(unitscale=1 2 3, integrate=hardy)
            covest=hess;
    id pid;
run;
```

Figure 17.19 Alternative HEV Estimates with Unit Scale Restrictions

For comparison, we estimate a heteroscedastic multinomial probit model by imposing a zero restriction on the correlation parameter, $\rho_{31}=0$. The MDC procedure requires normalization of at least two of the error variances in the multinomial probit model. Also, for identification, the correlation parameters associated with a unit normalized variance are restricted to be zero. When the UNITVARIANCE= option is specified, the zero restriction on correlation coefficients applies to the last choice of the list. In the following statements, the variances of the first and second choices are normalized. The UNITVARIANCE $=\left(\begin{array}{ll}1 & 2\end{array}\right)$ option imposes additional restrictions that $\rho_{32}=\rho_{21}=0$. The default for the UNITVARIANCE $=$ option is the last two choices (which would have been equivalent to UNITVARIANCE=(2 3) for this example). The result is presented in Figure 17.20.

The utility function can be defined as

$$
U_{i j}=V_{i j}+\epsilon_{i j}
$$

where

```
    \mp@subsup{\epsilon}{i}{}~N(\mathbf{0},[\begin{array}{ccc}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{\mp@subsup{\sigma}{3}{2}}\end{array}])
/*-- mprobit estimation --*/
proc mdc data=newdata;
    model decision = ttime /
            type=mprobit
            nchoice=3
            unitvariance=(1 2)
            covest=hess;
    id pid;
    restrict RHO_31 = 0;
run;
```

Figure 17.20 Heteroscedastic Multinomial Probit Estimates

The MDC Procedure					
Multinomial Probit Estimates					
Parameter Estimates					
			andard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
ttime	1	-0.3206	0.0920	-3.49	0.0005
STD_3	1	1.6913	0.6906	2.45	0.0143
RHO_31	0	0	0		
Restrict1	1	1.1854	1.5490	0.77	0.4499*
Parameter Estimates					
Parameter Parameter Label					
ttime					
STD_3					
RHO_31					
Restrict1 Linear EC [1]					
* Probability computed using beta distribution.					

Note that in the output the estimates of standard errors and correlations are denoted by STD_i and RHO_ij, respectively. In this particular case the first two variances (STD_1, STD_2) are normalized to one, and corresponding correlations (RHO_21, RHO_32) are set to zero, so they are not listed among parameter estimates.

Parameter Heterogeneity: Mixed Logit

One way of modeling unobserved heterogeneity across individuals in their sensitivity to observed exogenous variables is to use the mixed logit model with a random parameters or random coefficients specification. The probability of choosing alternative j is written as

$$
P_{i}(j)=\frac{\exp \left(\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}\right)}{\sum_{k=1}^{J} \exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}\right)}
$$

where $\boldsymbol{\beta}$ is a vector of coefficients that varies across individuals, and $\mathbf{x}_{i j}$ is a vector of exogenous attributes.

For example, you can specify the distribution of the parameter β to be the normal distribution.
The mixed logit model uses a Monte Carlo simulation method to estimate the probabilities of choice. There are two simulation methods available. When the RANDNUM=PSEUDO option is given in the MODEL statement, pseudo-random numbers are generated, while the RANDNUM=HALTON option uses Halton quasi-random sequences. The default value is RANDNUM=HALTON.

You can estimate the model with normally distributed random coefficients of ttime with the following SAS statements:

```
/*-- mixed logit estimation --*/
proc mdc data=newdata type=mixedlogit;
    model decision = ttime /
        nchoice=3
        mixed=(normalparm=ttime);
    id pid;
run;
```

Let β^{m} and β^{s} be mean and scale parameters, respectively, for the random coefficient, β. The relevant utility function is

$$
U_{i j}=\mathrm{ttime}_{i j} \beta+\epsilon_{i j}
$$

where $\beta=\beta^{m}+\beta^{s} \eta ; \beta^{m}$ and β^{s} are fixed mean and scale parameters, respectively. The stochastic component, η, is assumed to be standard normal since the NORMALPARM=option is given. Alternatively, the UNIFORMPARM= or LOGNORMALPARM= option can be specified. The LOGNORMALPARM = option is useful when nonnegative parameters are being estimated. The NORMALPARM $=$, UNIFORMPARM=, and LOGNORMALPARM= variables must be included on the right-hand side of the MODEL statement. See the section "Mixed Logit Model" on page 907 for more details. To estimate a mixed logit model by using the transportation mode choice data, the MDC procedure requires the MIXED= option for random components. Results of the mixed logit estimation are displayed in Figure 17.21.

Figure 17.21 Mixed Logit Model Parameter Estimates

Note that the parameter ttime_M corresponds to the constant mean parameter β^{m} and the parameter ttime_S corresponds to the constant scale parameter β^{s} of the random coefficient β.

Syntax: MDC Procedure

The MDC procedure is controlled by the following statements:

```
PROC MDC options;
    MDCDATA options;
    BOUNDS bound1 < , bound2 ... > ;
    BY variables;
    ID variable ;
    MODEL dependent variables = regressors / options ;
    NEST LEVEL(value) = ((values)@(value),..., (values)@(value)) ;
    NLOPTIONS options;
    OUTPUT options;
    RESTRICT restriction1 < , restriction2 ... > ;
    UTILITY U() = variables, ..., U() = variables ;
```


Functional Summary

The statements and options used with the MDC procedure are summarized in the following table:
Table 17.2 MDC Functional Summary

Description	Statement	Option
Data Set Options formats the data for use by PROC MDC specify the input data set write parameter estimates to an output data set include covariances in the OUTEST= data set write linear predictors and predicted probabilities to an output data set	MDCDATA MDC MDC MDC OUTPUT	DATA= OUTEST= COVOUT OUT=
Declaring the Role of Variables specify the ID variable specify BY-group processing variables	$\begin{aligned} & \text { ID } \\ & \text { BY } \end{aligned}$	
Printing Control Options request all printing options display correlation matrix of the estimates display covariance matrix of the estimates display detailed information about optimization iterations suppress all displayed output	MODEL MODEL MODEL MODEL MODEL	ALL CORRB COVB ITPRINT NOPRINT
Model Estimation Options specify the choice variables specify the convergence criterion specify the type of covariance matrix specify the starting point of the Halton sequence specify options specific to the HEV model set the initial values of parameters used by the iterative optimization algorithm	MODEL MODEL MODEL MODEL MODEL MODEL	CHOICE=() CONVERGE= COVEST= HALTONSTART= HEV=() INITIAL=()

Description	Statement	Option
specify the maximum number of iterations	MODEL	MAXITER=
specify the options specific to mixed logit	MODEL	MIXED=()
specify the number of choices for each person	MODEL	NCHOICE=
specify the number of simulations	MODEL	NSIMUL=
specify the optimization technique	MODEL	OPTMETHOD=
specify the type of random number generators	MODEL	RANDNUM=
specify that initial values are generated using random numbers	MODEL	RANDINIT
specify the rank dependent variable	MODEL	RANK
specify optimization restart options	MODEL	RESTART=()
specify a restriction on inclusive parameters	MODEL	SAMESCALE
specify a seed for pseudo-random number generation	MODEL	SEED=
specify a stated preference data restriction on inclusive parameters	MODEL	SPSCALE
specify the type of the model	MODEL	TYPE=
specify normalization restrictions on multinomial probit error variances	MODEL	UNITVARIANCE=()
Controlling the Optimization Process specify upper and lower bounds for the parameter estimates	BOUNDS	
specify linear restrictions on the parameter estimates	RESTRICT	
specify nonlinear optimization options	NLOPTIONS	
NESTED Logit Related Options		
specify the tree structure	NEST	LEVEL()=
specify the type of utility function	UTILITY	U()$=$
Output Control Options		
output predicted probabilities	OUTPUT	$\mathrm{P}=$
output estimated linear predictor	OUTPUT	XBETA=

PROC MDC Statement

PROC MDC options ;
The following options can be used in the PROC MDC statement.

DATA=SAS-data-set

specifies the input SAS data set. If the DATA= option is not specified, PROC MDC uses the most recently created SAS data set.

OUTEST=SAS-data-set

names the SAS data set that the parameter estimates are written to. See "OUTEST= Data Set" later in this chapter for information about the contents of this data set.

COVOUT

writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid only if the OUTEST= option is specified.

In addition, any of the following MODEL statement options can be specified in the PROC MDC statement, which is equivalent to specifying the option for the MODEL statement: ALL, CONVERGE=, CORRB, COVB, COVEST=, HALTONSTART=, ITPRINT, MAXITER=, NOPRINT, NSIMUL=, OPTMETHOD=, RANDINIT, RANK, RESTART=, SAMESCALE, SEED=, SPSCALE, TYPE=, and UNITVARIANCE=.

MDCDATA Statement

MDCDATA options < / OUT= SAS-data-set > ;
The MDCDATA statement prepares data for use by PROC MDC when the choice-specific information is stored in multiple variables (see Output 17.1).

VARLIST (name1 = (var1 var2 ...) name2 = (var1 var2 ...) ...)
creates name variables from a multiple variable list of choice alternatives in parentheses. The choice-specific dummy variables are created for the first set of multiple variables. At least one set of multiple variables must be specified.

SELECT=(variable)

specifies a variable that contains choices for each individual.

ID=(name)

creates a variable that identifies each individual.
ALT=(name)
identifies selection alternatives for each individual.

DECVAR=(name)

creates a $0-1$ variable indicating the choice made for each individual.

OUT=SAS-data-set

specifies a SAS data set where modified data are outputted.

BOUNDS Statement

BOUNDS bound1 <, bound2 ... > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS statement constraints refer to the parameters estimated by the MDC procedure. You can specify any number of BOUNDS statements.

Each bound is composed of parameters, constants, and inequality operators:

```
item operator item < operator item < operator item ... > >
```

Each item is a constant, parameter, or list of parameters. Parameters associated with a regressor variable are referred to by the name of the corresponding regressor variable. Each operator is ' $<$ ', '>', '<=', or '>='.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints; however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See the section "RESTRICT Statement" on page 901 as well.

Lagrange multipliers are reported for all the active boundary constraints. In the displayed output, the Lagrange multiplier estimates are identified with the names Restrict1, Restrict2, and so forth. The probability of the Lagrange multipliers is computed using a beta distribution (LaMotte 1994). Nonactive, or nonbinding, bounds have no effect on the estimation results and are not noted in the output.

The following BOUNDS statement constrains the estimates of the coefficient of ttime to be negative and the coefficients of $x 1$ through $\times 10$ to be between zero and one. This example illustrates the use of parameter lists to specify boundary constraints.

```
bounds ttime < 0,
    0 < x1-x10 < 1;
```


BY Statement

BY variables;
A BY statement can be used with PROC MDC to obtain separate analyses on observations in groups defined by the BY variables.

ID Statement

ID variable ;
The ID statement must be used with PROC MDC to specify the identification variable that controls multiple choice-specific cases. The MDC procedure requires only one ID statement even with multiple MODEL statements.

MODEL Statement

> MODEL dependent = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression model. When the nested logit model is estimated, regressors in the UTILITY statement are used for estimation.

The following options can be used in the MODEL statement after a slash (/).

CHOICE=(variables)

CHOICE=(variable numbers)
specifies the variables that contain possible choices for each individual. Choice variables must have integer values. Multiple choice variables are allowed only for nested logit models. If all possible alternatives are written with the variable name, the MDC procedure checks all values of the choice variable. The $\mathrm{CHOICE}=(\mathrm{X} 1223)$ specification implies that the value of X should be 1,2 , or 3 . On the other hand, the CHOICE $=(\mathrm{X})$ specification considers all distinctive nonmissing values of X as elements of the choice set.

CONVERGE=number

specifies the convergence criterion. The CONVERGE= option is the same as the ABSGCONV = option in the NLOPTIONS statement. The ABSGCONV= option in the NLOPTIONS statement overrides the CONVERGE= option. The default value is $1 \mathrm{E}-5$.

HALTONSTART=number

specifies the starting point of the Halton sequence. The specified number must be a positive integer. The default is HALTONSTART=11.

HEV=(option-list)

specifies options that are used to estimate the HEV model. The HEV model with a unit scale for the alternative 1 is estimated using the following SAS statement:

```
model y = x1 x2 x3 / hev=(unitscale=1);
```

The following options can be used in the $\mathrm{HEV}=()$ option. These options are listed within parentheses and separated by commas.

INTORDER=number

specifies the number of summation terms for Gaussian quadrature integration. The default is INTORDER=40. The maximum order is limited to 45 . This option applies only to the INTEGRATION=LAGUERRE method.

UNITSCALE=number-list specifies restrictions on scale parameters of stochastic utility components.

INTEGRATE=LAGUERRE I HARDY

specifies the integration method. The INTEGRATE=HARDY option specifies an adaptive integration method, while the INTEGRATE=LAGUERRE option specifies the Gauss-Laguerre approximation method. The default is INTEGRATE=LAGUERRE.

MIXED=(option-list)

specifies options that are used for mixed logit estimation. The mixed logit model with normally distributed random parameters is specified as follows:

```
model y = x1 x2 x3 / mixed=(normalparm=x1);
```

The following options can be used in the MIXED=() option. The options are listed within parentheses and separated by commas.

LOGNORMALPARM=variables

specifies the variables whose random coefficients are lognormally distributed. LOGNORMALPARM = variables must be included on the right-hand side of the MODEL statement.

NORMALEC=variables

specifies the error component variables whose coefficients have a normal distribution $N\left(0, \sigma^{2}\right)$.

NORMALPARM=variables
specifies the variables whose random coefficients are normally distributed. NORMALPARM = variables must be included on the right-hand side of the MODEL statement.

UNIFORMEC=variables
specifies the error component variables whose coefficients have a uniform distribution $U(-\sqrt{3} \sigma, \sqrt{3} \sigma)$.

UNIFORMPARM=variables
specifies the variables whose random coefficients are uniformly distributed. UNIFORMPARM = variables must be included on the right-hand side of the MODEL statement.

NCHOICE=number

specifies the number of choices for multinomial choice models when all individuals have the same choice set. When individuals have different number of choices, NCHOICE= option is not allowed, and CHOICE $=$ option should be used. The NCHOICE $=$ and CHOICE $=$ options must not be used simultaneously, and the NCHOICE= option cannot be used for nested logit models.

NSIMUL=number

specifies the number of simulations when the mixed logit or multinomial probit model is estimated. The default is NSIMUL=100. In general, you need a smaller number of simulations with RANDNUM=HALTON than with RANDNUM=PSEUDO.

RANDNUM=value

specifies the type of the random number generator used for simulation. RANDNUM=HALTON is the default. The following option values are allowed:

PSEUDO specifies pseudo-random number generation.
HALTON specifies Halton sequence generation.

RANDINIT

RANDINIT=number
specifies that initial parameter values be perturbed by uniform pseudo-random numbers for numerical optimization of the objective function. The default is $U(-1,1)$. When the RANDINIT $=r$ option is specified, $U(-r, r)$ pseudo-random numbers are generated. The value r should be positive. With a RANDINIT or RANDINIT= option, there are pure random searches for a given number of trials (1000 for conditional or nested logit, and 500 for other models) to get a maximum (or minimum) value of the objective function. For example, when there is a parameter estimate with an initial value of 1 , the RANDINIT option will add a generated random number u to the initial value and compute an objective function value by using $1+u$. This option is helpful in finding the initial value automatically if there is no guidance in setting the initial estimate.

RANK

specifies that the dependent variable contain ranks. The numbers must be positive integers starting from 1 . When the dependent variable has value 1 , the corresponding alternative is chosen. This option is provided only as a convenience to the user: the extra information contained in the ranks is not currently used for estimation purposes.

RESTART=(option-list)

specifies options that are used for reiteration of the optimization problem. When the ADDRANDOM option is specified, the initial value of reiteration is computed using random grid searches around the initial solution, as follows:

```
model y = x1 x2 / type=clogit
    restart=(addvalue=(.01 .01));
```

The preceding SAS statement reestimates a conditional logit model by adding ADDVALUE= values. If the ADDVALUE= option contains missing values, the RESTART= option uses the corresponding estimate from the initial stage. If no ADDVALUE= value is specified for an estimate, a default value equal to (lestimatel $* 1 \mathrm{e}-3$) is added to the corresponding estimate from the initial stage. If both the ADDVALUE $=$ and $\operatorname{ADDRANDOM(=)~options~are~specified,~}$ ADDVALUE $=$ is ignored.

The following options can be used in the RESTART=() option. The options are listed within parentheses.

ADDMAXIT=number

specifies the maximum number of iterations for the second stage of the estimation. The default is ADDMAXIT=100.

ADDRANDOM

ADDRANDOM=value

specifies random added values to the estimates from the initial stage. With the ADDRANDOM option, $U(-1,1)$ random numbers are created and added to the estimates obtained in the initial stage. When the ADDRANDOM $=r$ option is specified, $U(-r, r)$ random numbers are generated. The restart initial value is determined based on the given number of random searches (1000 for conditional or nested logit, and 500 for other models).

ADDVALUE=(value-list)

specifies values added to the estimates from the initial stage. A missing value in the list is considered as a zero value for the corresponding estimate. When the ADDVALUE= option is not specified, default values equal to (lestimatel * 1e-3) are added.

SAMESCALE

specifies that the parameters of the inclusive values be the same within a group at each level when the nested logit is estimated.

SEED=number

specifies an initial seed for pseudo-random number generation. The SEED= value must are less than $2^{31}-1$. If the SEED= value is negative or zero, the time of day from the computer's clock is used to obtain the initial seed. The default is $\mathrm{SEED}=0$.

SPSCALE

specifies that the parameters of the inclusive values be the same for any choice with only one nested choice within a group, for each level in a nested logit model. This option is useful in analyzing stated preference data.

TYPE=value

specifies the type of model to be analyzed. The supported model types are as follows:

CONDITIONLOGIT I CLOGIT I CL HEV

MIXEDLOGIT I MXL
MULTINOMPROBIT I MPROBIT I MP
NESTEDLOGIT I NLOGIT I NL
specifies a conditional logit model. specifies a heteroscedastic extreme-value model. specifies a mixed logit model. specifies a multinomial probit model. specifies a nested logit model.

UNITVARIANCE=(number-list)

specifies normalization restrictions on error variances of multinomial probit for the choices whose numbers are given in the list. If the UNITVARIANCE= option is specified, it must include at least two choices. Also, for identification, additional zero restrictions are placed on the correlation coefficients for the last choice in the list.

COVEST=value

The COVEST= option specifies the type of covariance matrix. Possible values are OP, HESSIAN, and QML.

OP specifies the covariance from the outer product matrix.

HESSIAN
QML
specifies the covariance from the Hessian matrix. specifies the covariance from the outer product and Hessian matrices.

When COVEST=OP is specified, the outer product matrix is used to compute the covariance matrix of the parameter estimates. The COVEST=HESSIAN option produces the covariance matrix by using the inverse Hessian matrix. The quasi-maximum likelihood estimates
are computed with COVEST=QML. The default is COVEST=HESSIAN when the NewtonRaphson method is used. COVEST=OP is the default when the OPTMETHOD=QN option is specified.

Printing Options

ALL

requests all printing options.

COVB

displays the estimated covariances of the parameter estimates.

CORRB

displays the estimated correlation matrix of the parameter estimates.

ITPRINT

displays the initial parameter estimates, convergence criteria, and constraints of the optimization. At each iteration, objective function value, maximum absolute gradient element, step size, and slope of search direction are printed as well. The objective function is the full negative log-likelihood function for the maximum likelihood method. When the ITPRINT option is specified in the presence of the NLOPTIONS statement, all printing options in the NLOPTIONS statement are ignored.

NOPRINT

suppresses all displayed output.

Estimation Control Options

You can also specify detailed optimization options in the NLOPTIONS statement. The OPTMETHOD $=$ option overrides the TECHNIQUE= option in the NLOPTIONS statement. Note that the NLOPTIONS statement is ignored if the OPTMETHOD= option is specified.

INITIAL=(initial-values)

START=(initial-values)
specifies initial values for some or all of the parameter estimates. The values specified are assigned to model parameters in the same order in which the parameter estimates are displayed in the MDC procedure output.

When you use the INITIAL= option, the initial values in the INITIAL= option must satisfy the restrictions specified for the parameter estimates. If they do not, the initial values you specify are adjusted to satisfy the restrictions.

MAXITER=number

sets the maximum number of iterations allowed. The MAXITER= option overrides the MAXITER $=$ option in the NLOPTIONS statement. The default is MAXITER=100.

OPTMETHOD=value
The OPTMETHOD= option specifies the optimization technique when the estimation method uses nonlinear optimization.

QN specifies the quasi-Newton method.
NR specifies the Newton-Raphson method.

TR specifies the trust region method.

The OPTMETHOD=NR option is the same as the TECHNIQUE=NEWRAP option in the NLOPTIONS statement. For the conditional and nested logit models the default is OPTMETHOD=NR. For other models the default is OPTMETHOD=QN.

NEST Statement

```
NEST LEVEL(level-number )= (choices@choice,...);
```

The NEST statement is used when one choice variable contains all possible alternatives and the TYPE=NLOGIT option is specified. The decision tree is constructed based on the NEST statement. When the choice set is specified using multiple CHOICE= variables in the MODEL statement, the NEST statement is ignored.

Consider the following eight choices that are nested in a three-level tree structure.

Level 1	Level 2	Level 3	top
1	1	1	1
2	1	1	1
3	1	1	1
4	2	1	1
5	2	1	1
6	2	1	1
7	3	2	1
8	3	2	1

You can use the following NEST statement to specify the tree structure displayed in Figure 17.22:

```
nest level(1) = (1 2 3 @ 1, 4 5 6 @ 2, 7 8 @ 3),
    level(2) = (1 2 @ 1, 3 @ 2),
    level(3) = (1 2 @ 1);
```

Figure 17.22 A Three-Level Tree

Note that the decision tree is constructed based on the sequence of first-level choice set specification. Therefore, specifying another order at Level 1 builds a different tree. The following NEST statement builds the tree displayed in Figure 17.23:

```
nest level(1) \(=(456\) @ 2,123 @ 1, 78 @ 3),
    level(2) \(=(1\) @ 2 1, 3 @ 2\()\),
    level(3) = (1 2 @ 1);
```

Figure 17.23 An Alternative Three-Level Tree

However, the NEST statement with a different sequence of choice specification at higher levels builds the same tree as displayed in Figure 17.22 if the sequence at the first level is the same:

```
nest level(1) = (1 2 3 @ 1, 4 5 6 @ 2, 7 8 @ 3),
    level(2) = (3 @ 2, 1 2 @ 1),
    level(3) = (1 2 @ 1);
```

The following specifications are equivalent:

```
nest level(2) = (3 @ 2, 1 2 @ 1)
nest level(2) = (3 @ 2, 1 @ 1, 2 @ 1)
nest level(2) = (1 @ 1, 2 @ 1, 3 @ 2)
```

Since the MDC procedure contains multiple cases for each individual, it is important to keep the data sequence in the proper order. Consider the four-choice multinomial model with one explanatory variable cost:

pid	choice	y	cost
1	1	1	10
1	2	0	25
1	3	0	20
1	4	0	30
2	1	0	15
2	2	0	22
2	3	1	16
2	4	0	25

The order of data needs to correspond to the value of choice. Therefore, the following data set is equivalent to the preceding data:

pid	choice	y	cost
1	2	0	25
1	3	0	20
1	1	1	10
1	4	0	30
2	3	1	16
2	4	0	25
2	1	0	15
2	2	0	22

The two-level nested model is estimated with a NEST statement, as follows:

```
proc mdc data=one type=nlogit;
    model y = cost / choice=(choice);
    id pid;
    utility(1,) = cost;
    nest level(1) = (1 2 3 @ 1, 4 @ 2),
            level(2) = (1 2 @ 1);
run;
```

The tree is constructed as in Figure 17.24.

Figure 17.24 A Two-Level Tree

Another model is estimated if you specify the decision tree as in Figure 17.25. The different nested tree structure is specified in the following SAS statements:

```
proc mdc data=one type=nlogit;
    model y = cost / choice=(choice);
    id pid;
    utility u(1,) = cost;
    nest level(1) = (1 @ 1, 2 3 4 @ 2),
        level(2) = (1 2 @ 1);
run;
```

Figure 17.25 An Alternate Two-Level Tree

NLOPTIONS Statement

NLOPTIONS options ;

PROC MDC uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. The NLOPTIONS statement specifies nonlinear optimization options. The NLOPTIONS statement must follow the MODEL statement. For a list of all the options of the NLOPTIONS statement, see Chapter 6, "Nonlinear Optimization Methods."

OUTPUT Statement

OUTPUT options ;

The MDC procedure supports the OUTPUT statement. The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and, optionally, the estimated linear predictors (XBETA) and predicted probabilities (P). The input data set must be sorted by the choice variable(s) within each ID.

OUT=SAS-data-set

specifies the name of the output data set.

PRED=variable name

$\mathrm{P}=$ variable name

requests the predicted probabilities by naming the variable that contains the predicted probabilities in the output data set.

XBETA=variable name

names the variable that contains the linear predictor $\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)$ values. However, the XBETA= option is not supported in the nested logit model.

RESTRICT Statement

```
RESTRICT restriction1 < , restriction2 ... > ;
```

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. You can specify any number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<, >, <=, >=), followed by a second expression:

expression operator expression

The operator can be $=,<,>,<=$, or $>=$.
Restriction expressions can be composed of parameters; multiplication (*), summation (+), and substraction (-) operators; and constants. Parameters named in restriction expressions must be among the parameters estimated by the model. Parameters associated with a regressor variable are referred to by the name of the corresponding regressor variable. The restriction expressions must be a linear function of the parameters.

Lagrange multipliers are reported for all the active linear constraints. In the displayed output, the Lagrange multiplier estimates are identified with the names Restrict1, Restrict2, and so forth. The probability of the Lagrange multipliers is computed using a beta distribution (LaMotte 1994).

The following are examples of using the RESTRICT statement:

```
proc mdc data=one;
```

```
model y = x1-x10 /
    type=clogit
    choice=(mode 1 2 3);
id pid;
restrict x1*2 <= x2 + x3, ;
run;
proc mdc data=newdata;
model decision = ttime /
    type=mprobit
    nchoice=3
    unitvariance=(1 2)
    covest=hess;
id pid;
restrict RHO_31 = 0, STD_3<=1;
run;
```


UTILITY Statement

```
UTILITY U(level < , choices> )= variables ;
```

The UTILITY statement can be used in estimating a nested logit model. The U()$=$ option can have two arguments. The first argument contains level information, while the second argument is related to choice information. The second argument can be omitted for the first level when all the choices at the first level share the same variables and the same parameters. However, for any level above the first, the second argument must be provided. The UTILITY statement specifies a utility function while the NEST statement constructs the decision tree.

Consider a two-level nested logit model that has one explanatory variable at level 1 . This model can be specified as follows:

```
proc mdc data=one type=nlogit;
    model y = cost / choice=(choice);
    id pid;
    utility u(1,2 3 4) = cost;
    nest level(1) = (1 @ 1, 2 3 4 @ 2),
        level(2) = (1 2 @ 1);
run;
```

You also can specify the following statement, since all the variables at the first level share the same explanatory variable, cost:

```
utility u(1,) = cost;
```

The variable, cost, should be listed in the MODEL statement. When the additional explanatory variable, dummy, is included at level 2, another $U()=$ option needs to be specified. Note that the U()$=$ option must specify choices within any level above the first. Thus, it is specified as $\mathrm{U}(2,12)$ in the following statements:

```
proc mdc data=one type=nlogit;
    model y = cost dummy / choice=(choice);
    id pid;
    utility u(1,) = cost,
                u(2,1 2) = dummy;
    nest level(1) = (1 @ 1, 2 3 4 @ 2),
        level(2) = (1 2 @ 1);
run;
```


Details: MDC Procedure

Multinomial Discrete Choice Modeling

When the dependent variable takes multiple discrete values, you can use multinomial discrete choice modeling to analyze the data. We consider models for unordered multinomial data. Let the random utility function be defined by

$$
U_{i j}=V_{i j}+\epsilon_{i j}
$$

where the subscript i is an index for the individual, the subscript j is an index for the alternative, $V_{i j}$ is a nonstochastic utility function, and $\epsilon_{i j}$ is a random component, or error, which captures unobserved characteristics of alternatives and/or individuals. In multinomial discrete choice models, the utility function is assumed to be linear, so that $V_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}$. In the conditional logit model, each $\epsilon_{i j}$ for all $j \in C_{i}$ is distributed independently and identically (iid) with the type I extreme-value distribution, $\exp \left(-\exp \left(-\epsilon_{i j}\right)\right)$, also known as the Gumbel distribution. The iid assumption on the random components of the utilities of the different alternatives can be relaxed to overcome the wellknown and restrictive Independence from Irrelevant Alternatives (IIA) property of the conditional logit model. This allows for more flexible substitution patterns among alternatives than the one imposed by the conditional logit model. See the section "Independence from Irrelevant Alternatives (IIA)" on page 905. The nested logit model is derived by allowing the random components to be identical but nonindependent. Instead of independent type I extreme-value errors, the errors are assumed to have a generalized extreme-value distribution. This model generalizes the conditional logit model to allow for particular patterns of correlation in unobserved utility (McFadden 1978). Another generalization of the conditional logit model, the heteroscedastic extreme-value (HEV) model, is obtained by allowing independent but nonidentical errors distributed with a type I extremevalue distribution (Bhat 1995). It permits different variances on the random components of utility across the alternatives. Mixed logit models are also generalizations of the conditional logit model that can represent very general patterns of substitution among alternatives. See the "Mixed Logit Model" on page 907 section for details. The multinomial probit (MNP) model is derived when the errors, ($\epsilon_{i 1}, \epsilon_{i 2}, \cdots, \epsilon_{i J}$), have a multivariate normal (MVN) distribution. Thus, this model accommodates a very general error structure.

The multinomial probit model requires burdensome computation compared to a family of multinomial choice models derived from the Gumbel distributed utility function, since it involves multi-
dimensional integration (with dimension $J-1$) in the estimation process. In addition, the multinomial probit model requires more parameters than other multinomial choice models. As a result, conditional and nested logit models are used more frequently, even though they are derived from a utility function whose random component is more restrictively defined than the multinomial probit model.

The event of a choice being made, $\left\{y_{i}=j\right\}$, can be expressed using a random utility function as follows:

$$
U_{i j} \geq \boldsymbol{m a x}_{k \in C_{i}, k \neq j} U_{i k}
$$

where C_{i} is the choice set of individual i. Individual i chooses alternative j if and only if it provides a level of utility that is greater than or equal to that of any other alternative in his choice set. Then, the probability that individual i chooses alternative j (from among the n_{i} choices in his choice set $\left.C_{i}\right)$ is

$$
P_{i}(j)=P_{i j}=P\left[\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j} \geq \max _{k \in C_{i}}\left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}+\epsilon_{i k}\right)\right]
$$

Multinomial Logit and Conditional Logit

When explanatory variables contain only individual characteristics, the multinomial logit model is defined as

$$
P\left(y_{i}=j\right)=P_{i j}=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}\right)}{\sum_{k=0}^{J} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}\right)} \text { for } j=0, \cdots, J
$$

where y_{i} is a random variable that indicates the choice made, x_{i} is a vector of characteristics specific to the i th individual, and $\boldsymbol{\beta}_{j}$ is a vector of coefficients specific to the j th alternative. Thus, this model involves choice-specific coefficients and only individual specific regressors. For model identification, one often assumes that $\boldsymbol{\beta}_{0}=0$. The multinomial logit model reduces to the binary logit model if $J=1$.

The ratio of the choice probabilities for alternatives j and l, or the odds ratio of alternatives j and l, is

$$
\frac{P_{i j}}{P_{i l}}=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}\right) / \sum_{k=0}^{J} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}\right)}{\exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{l}\right) / \sum_{k=0}^{J} \exp \left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}\right)}=\exp \left[\mathbf{x}_{i}^{\prime}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{l}\right)\right]
$$

Note that the odds ratio of alternatives j and l does not depend on any alternatives other than j and l. For more on this, see the section "Independence from Irrelevant Alternatives (IIA)" on page 905.

The log-likelihood function of the multinomial logit model is

$$
\mathcal{L}=\sum_{i=1}^{N} \sum_{j=0}^{J} d_{i j} \ln P\left(y_{i}=j\right)
$$

where

$$
d_{i j}= \begin{cases}1 & \text { if individual } i \text { chooses alternative } j \\ 0 & \text { otherwise }\end{cases}
$$

This type of multinomial choice modeling has a couple of weaknesses: it has too many parameters (the number of individual characteristics times J) and it is difficult to interpret. The multinomial logit model can be used to predict the choice probabilities, among a given set of $J+1$ alternatives, of an individual with known vector of characteristics \mathbf{x}_{i}.

The parameters of the multinomial logit model can be estimated with the TYPE=CLOGIT option in the MODEL statement; however, this requires modification of the conditional logit model to allow individual specific effects.

The conditional logit model, sometimes also called the multinomial logit model, is similarly defined when choice-specific data are available. Using properties of type I extreme-value (or Gumbel) distribution, the probability that individual i chooses alternative j from among the choices in his choice set C_{i} is

$$
P\left(y_{i}=j\right)=P_{i j}=P\left[\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j} \geq \max _{k \in C_{i}, k \neq j}\left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}+\epsilon_{i k}\right)\right]=\frac{\exp \left(\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}\right)}{\sum_{k \in C_{i}} \exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}\right)}
$$

where $\mathbf{x}_{i j}$ is a vector of attributes specific to the j th alternative as perceived by the i th individual. It is assumed that there are n_{i} choices in each individual's choice set, C_{i}.

The log-likelihood function of the conditional logit model is

$$
\mathcal{L}=\sum_{i=1}^{N} \sum_{j \in C_{i}} d_{i j} \ln P\left(y_{i}=j\right)
$$

The conditional logit model can be used to predict the probability that an individual will choose a previously unavailable alternative, given knowledge of $\boldsymbol{\beta}$ and the vector $\mathbf{x}_{i j}$ of choice-specific characteristics.

Independence from Irrelevant Alternatives (IIA)

The problematic aspect of the conditional logit (and the multinomial logit) model lies in the property of independence from irrelevant alternatives (IIA). The IIA property can be derived from the probability ratio of any two choices. For the conditional logit model,

$$
\frac{P_{i j}}{P_{i l}}=\frac{\exp \left(\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}\right) / \sum_{k \in C_{i}} \exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}\right)}{\exp \left(\mathbf{x}_{i l}^{\prime} \boldsymbol{\beta}\right) / \sum_{k \in C_{i}} \exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}\right)}=\exp \left[\left(\mathbf{x}_{i j}-\mathbf{x}_{i l}\right)^{\prime} \boldsymbol{\beta}\right]
$$

It is evident that the ratio of the probabilities for alternatives j and l does not depend on any alternatives other than j and l. This was also shown to be the case for the multinomial logit model. Thus, for the conditional and multinomial logit models, the ratio of probabilities of any two alternatives is necessarily the same regardless of what other alternatives are in the choice set or what the characteristics of the other alternatives are. This is referred to as the IIA property.

The IIA property is useful from the point of view of estimation and forecasting. For example, it allows the prediction of demand for currently unavailable alternatives. If the IIA property is appropriate for the choice situation being considered, then estimation can be based on the set of currently available alternatives and then the estimated model can be used to calculate the probability that an individual would choose a new alternative not considered in the estimation procedure. However,
the IIA property is restrictive from the point of view of choice behavior. Models that display the IIA property predict that a change in the attributes of one alternative changes the probabilities of the other alternatives proportionately such that the ratios of probabilities remain constant. Thus, cross elasticities due to a change in the attributes of an alternative j are equal for all alternatives $k \neq j$. This particular substitution pattern might be too restrictive in some choice settings.

The IIA property of the conditional logit model follows from the assumption that the random components of utility are identically and independently distributed. The other models in PROC MDC, namely, nested logit, HEV, mixed logit, and multinomial probit, relax the IIA property in different ways.

For an example of Hausman's specification test of IIA assumption, see "Example 17.6: Hausman's Specification and Likelihood Ratio Tests" on page 936.

Heteroscedastic Extreme-Value Model

The heteroscedastic extreme-value (HEV) model (Bhat 1995) allows the random components of the utility function to be nonidentical. Specifically, the HEV model assumes independent but nonidentical error terms distributed with the type I extreme-value distribution. The HEV model allows the variances of the random components of utility to differ across alternatives. Bhat (1995) argues that the HEV model does not have the IIA property. The HEV model contains the conditional logit model as a special case. The probability that an individual i will choose alternative j from the set C_{i} of available alternatives is

$$
P_{i}(j)=\int_{-\infty}^{\infty} \prod_{k \in C_{i}, k \neq j} \Gamma\left[\frac{\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}-\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}+\theta_{j} w}{\theta_{k}}\right] \gamma(w) d w
$$

where the choice set C_{i} has n_{i} elements and

$$
\begin{aligned}
& \Gamma(x)=\exp (-\exp (-x)) \\
& \gamma(x)=\exp (-x) \Gamma(x)
\end{aligned}
$$

are the cumulative distribution function and probability density function of the type I extreme-value distribution. The variance of the error term for the j th alternative is $\frac{1}{6} \pi^{2} \theta_{j}^{2}$. If the scale parameters, θ_{j}, of the random components of utility of all alternatives are equal, then this choice probability is the same as that of the conditional logit model. The log-likelihood function of the HEV model can be written as

$$
\mathcal{L}=\sum_{i=1}^{N} \sum_{j \in C_{i}} d_{i j} \ln \left[P_{i}(j)\right]
$$

where

$$
d_{i j}= \begin{cases}1 & \text { if individual } i \text { chooses alternative } j \\ 0 & \text { otherwise }\end{cases}
$$

Since the log-likelihood function contains an improper integral function, it is computationally difficult to get a stable estimate. With the transformation $u=\exp (-w)$, the probability can be written

$$
\begin{aligned}
P_{i}(j) & =\int_{0}^{\infty} \Pi_{k \in C_{i}, k \neq j} \Gamma\left[\frac{\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}-\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}-\theta_{j} \ln (u)}{\theta_{k}}\right] \exp (-u) d u \\
& =\int_{0}^{\infty} G_{i j}(u) \exp (-u) d u
\end{aligned}
$$

Using the Gauss-Laguerre weight function, $W(x)=\exp (-u)$, the integration of the log-likelihood function can be replaced with a summation as follows:

$$
\int_{0}^{\infty} G_{i j}(u) \exp (-u) d u=\sum_{k=1}^{K} w_{k} G_{i j}\left(x_{k}\right)
$$

Weights $\left(w_{k}\right)$ and abscissas $\left(x_{k}\right)$ are tabulated by Abramowitz and Stegun (1970).

Mixed Logit Model

In mixed logit models, an individual's utility from any alternative can be decomposed into a deterministic component, $\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}$, which is a linear combination of observed variables, and a stochastic component, $\xi_{i j}+\epsilon_{i j}$:

$$
U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\xi_{i j}+\epsilon_{i j}
$$

where $\mathbf{x}_{i j}$ is a vector of observed variables relating to individual i and alternative $j, \boldsymbol{\beta}$ is a vector of parameters, $\xi_{i j}$ is an error component that can be correlated among alternatives and heteroscedastic for each individual, and $\epsilon_{i j}$ is a random term with zero mean that is independently and identically distributed over alternatives and individuals. The conditional logit model is derived if you assume $\epsilon_{i j}$ has an iid Gumbel distribution and $V\left(\xi_{i j}\right)=0$.

The mixed logit model assumes a general distribution for $\xi_{i j}$ and an iid Gumbel distribution for $\epsilon_{i j}$. Denote the density function of the error component $\xi_{i j}$ as $f\left(\xi_{i j} \mid \boldsymbol{\gamma}\right)$, where $\boldsymbol{\gamma}$ is a parameter vector of the distribution of $\xi_{i j}$. The choice probability of alternative j for individual i is written as

$$
P_{i}(j)=\int Q_{i}\left(j \mid \xi_{i j}\right) f\left(\xi_{i j} \mid \boldsymbol{\gamma}\right) d \xi_{i j}
$$

where the conditional choice probability for a given value of $\xi_{i j}$ is the logit

$$
Q_{i}\left(j \mid \xi_{i j}\right)=\frac{\exp \left(\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\xi_{i j}\right)}{\sum_{k \in C_{i}} \exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}+\xi_{i k}\right)}
$$

Since $\xi_{i j}$ is not given, the unconditional choice probability, $P_{i}(j)$, is the integral of the conditional choice probability, $Q_{i}\left(j \mid \xi_{i j}\right)$, over the distribution of $\xi_{i j}$. This model is called "mixed logit" since the choice probability is a mixture of logits with $f\left(\xi_{i j} \mid \boldsymbol{\gamma}\right)$ as the mixing distribution.

In general, the mixed logit model does not have an exact likelihood function since the probability $P_{i}(j)$ does not always have a closed form solution. Therefore, a simulation method is used for computing the approximate probability:

$$
\tilde{P}_{i}(j)=1 / S \sum_{s=1}^{S} \tilde{Q}_{i}\left(j \mid \xi_{i j}^{S}\right)
$$

where S is the number of simulation replications and $\tilde{P}_{i}(j)$ is a simulated probability. The simulated log-likelihood function is computed as

$$
\tilde{\mathcal{L}}=\sum_{i=1}^{N} \sum_{j=1}^{n_{i}} d_{i j} \ln \left(\tilde{P}_{i}(j)\right)
$$

where

$$
d_{i j}= \begin{cases}1 & \text { if individual } i \text { chooses alternative } j \\ 0 & \text { otherwise }\end{cases}
$$

For simulation purposes, assume that the error component has a specific structure,

$$
\xi_{i j}=\mathbf{z}_{i j}^{\prime} \boldsymbol{\mu}+\mathbf{w}_{i j}^{\prime} \boldsymbol{\beta}^{*}
$$

where $\mathbf{z}_{i j}$ is a vector of observed data and $\boldsymbol{\mu}$ is a random vector with zero mean and density function $\psi(\boldsymbol{\mu} \mid \boldsymbol{\gamma})$. The observed data vector $\left(\mathbf{z}_{i j}\right)$ of the error component can contain some or all elements of $\mathbf{x}_{i j}$. The component $\mathbf{z}_{i j}^{\prime} \boldsymbol{\mu}$ induces heteroscedasticity and correlation across unobserved utility components of the alternatives. This allows flexible substitution patterns among the alternatives. The k th element of vector $\boldsymbol{\mu}$ is distributed as

$$
\mu_{k} \sim\left(0, \sigma_{k}^{2}\right)
$$

Therefore, μ_{k} can be specified as

$$
\mu_{k}=\sigma_{k} \epsilon_{\mu}
$$

where

$$
\epsilon_{\mu} \sim N(0,1)
$$

or

$$
\epsilon_{\mu} \sim U(-\sqrt{3}, \sqrt{3})
$$

In addition, $\boldsymbol{\beta}^{*}$ is a vector of random parameters (or random coefficients). Random coefficients allow heterogeneity across individuals in their sensitivity to observed exogenous variables. The observed data vector, $\mathbf{w}_{i j}$, is a subset of $\mathbf{x}_{i j}$. Three types of distributions for the random coefficients are supported. Denote the m th element of $\boldsymbol{\beta}^{*}$ as β_{m}^{*}.

- Normally distributed coefficient with the mean b_{m} and spread s_{m} being estimated.

$$
\beta_{m}^{*}=b_{m}+s_{m} \epsilon_{\beta} \quad \text { and } \quad \epsilon_{\beta} \sim N(0,1)
$$

- Uniformly distributed coefficient with the mean b_{m} and spread s_{m} being estimated. A uniform distribution with mean b and spread s is $U(b-s, b+s)$.

$$
\beta_{m}^{*}=b_{m}+s_{m} \epsilon_{\beta} \quad \text { and } \quad \epsilon_{\beta} \sim U(-1,1)
$$

- Lognormally distributed coefficient. The coefficient is calculated as

$$
\beta_{m}^{*}=\exp \left(b_{m}+s_{m} \epsilon_{\beta}\right) \quad \text { and } \quad \epsilon_{\beta} \sim N(0,1)
$$

where b_{m} and s_{m} are parameters that are estimated.

The estimate of spread for normally, uniformly, and lognormally distributed coefficients can be negative. The absolute value of the estimated spread can be interpreted as an estimate of standard deviation for normally distributed coefficients.

A detailed description of mixed logit models can be found, for example, in Brownstone and Train (1999).

Multinomial Probit

The multinomial probit model allows the random components of the utility of the different alternatives to be nonindependent and nonidentical. Thus, it does not have the IIA property. The increase in the flexibility of the error structure comes at the expense of introducing several additional parameters in the covariance matrix of the errors.

Consider the random utility function

$$
U_{i j}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\epsilon_{i j}
$$

where the joint distribution of $\left(\epsilon_{i 1}, \epsilon_{i 2}, \cdots, \epsilon_{i J}\right)$ is multivariate normal:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\epsilon_{i 1} \\
\epsilon_{i 2} \\
\vdots \\
\epsilon_{i J}
\end{array}\right] \sim N(\mathbf{0}, \boldsymbol{\Sigma})} \\
& \boldsymbol{\Sigma}=\left[\sigma_{j k}\right]_{j, k=1, \ldots, J}
\end{aligned}
$$

The dimension of the error covariance matrix is determined by the number of alternatives J. Given $\left(\mathbf{x}_{i 1}, \mathbf{x}_{i 2}, \cdots, \mathbf{x}_{i J}\right)$, the j th alternative is chosen if and only if $U_{i j} \geq U_{i k}$ for all $k \neq j$. Thus, the probability that the j th alternative is chosen is

$$
P\left(y_{i}=j\right)=P_{i j}=P\left[\epsilon_{i 1}-\epsilon_{i j}<\left(\mathbf{x}_{i j}-\mathbf{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}, \ldots, \epsilon_{i J}-\epsilon_{i j}<\left(\mathbf{x}_{i j}-\mathbf{x}_{i J}\right)^{\prime} \boldsymbol{\beta}\right]
$$

where y_{i} is a random variable that indicates the choice made. This is a cumulative probability from a ($J-1$)-variate normal distribution. Since evaluation of this probability involves multidimensional integration, it is practical to use a simulation method to estimate the model. Many studies have shown that the simulators proposed by Geweke (1989), Hajivassiliou (1993), and Keane (1994)
(GHK) perform well. For example, Hajivassiliou, McFadden, and Ruud (1996) compare 13 simulators using 11 different simulation methods and conclude that the GHK simulation method is the most reliable. To compute the probability of the multivariate normal distribution, the recursive simulation method is used. Refer to Hajivassiliou (1993) for more details on GHK simulators.

The log-likelihood function for the multinomial probit model can be written as

$$
\mathcal{L}=\sum_{i=1}^{N} \sum_{j=1}^{J} d_{i j} \ln P\left(y_{i}=j\right)
$$

where

$$
d_{i j}= \begin{cases}1 & \text { if individual } i \text { chooses alternative } j \\ 0 & \text { otherwise }\end{cases}
$$

For identification of the multinomial probit model, two of the diagonal elements of Σ are normalized to 1 , and it is assumed that for one of the choices whose error variance is normalized to 1 (say, k), it is also true that $\sigma_{j k}=\sigma_{k j}=0$ for $j=1, \cdots, J$ and $j \neq k$. Thus, a model with J alternatives has at most $J(J-1) / 2-1$ covariance parameters after normalization.

Let D and R be defined as

$$
\begin{aligned}
& D=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{J}
\end{array}\right] \\
& R=\left[\begin{array}{cccc}
1 & \rho_{12} & \cdots & \rho_{1 J} \\
\rho_{21} & 1 & \cdots & \rho_{2 J} \\
\vdots & \vdots & \vdots & \vdots \\
\rho_{J 1} & \rho_{J 2} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

where $\sigma_{j}^{2}=\sigma_{j j}$ and $\rho_{j k}=\frac{\sigma_{j k}}{\sigma_{j} \sigma_{k}}$. Then, for identification, $\sigma_{J-1}=\sigma_{J}=1$ and $\rho_{k J}=\rho_{J k}=0$, for all $k \neq J$ can be imposed, and the error covariance matrix is $\Sigma=D R D$.

In the standard MDC output, the parameter estimates STD_j and RHO_jk correspond to σ_{j} and $\rho_{j k}$.

In principle, the multinomial probit model is fully identified with the preceding normalizations. However, in practice, convergence in applications of the model with more than three alternatives often requires additional restrictions on the elements of $\boldsymbol{\Sigma}$.

It must also be noted that the unrestricted structure of the error covariance matrix makes it impossible to forecast demand for a new alternative without knowledge of the new $(J+1)$ by $(J+1)$ error covariance matrix.

Nested Logit

The nested logit model (McFadden 1978, 1981) allows partial relaxation of the assumption of independence of the stochastic components of utility of alternatives. In some choice situations, the IIA
property holds for some pairs of alternatives but not all. In these situations, the nested logit model can be used if the set of alternatives faced by an individual can be partitioned into subsets such that the IIA property holds within subsets but not across subsets.

In the nested logit model, the joint distribution of the errors is generalized extreme value (GEV). This is a generalization of the type I extreme-value distribution that gives rise to the conditional logit model. Note that all $\epsilon_{i j}$ within each subset are correlated with each other. Refer to McFadden $(1978,1981)$ for details.

Nested logit models can be described analytically following the notation of McFadden (1981). Assume that there are L levels, with 1 representing the lowest and L representing the highest level of the tree. The index of a node at level h in the tree is a pair $\left(j_{h}, \pi_{h}\right)$, where $\pi_{h}=\left(j_{h+1}, \cdots, j_{L}\right)$ is the index of the adjacent node at level $h+1$. Thus, the primitive alternatives, at level 1 in the tree, are indexed by vectors $\left(j_{1}, \cdots, j_{L}\right)$, while the alternative nodes at level L are indexed by integers j_{L}. The choice set $C_{\pi_{h}}$ is the set of primitive alternatives (at level 1) that belong to branches below the node π_{h}. The notation $C_{\pi_{h}}$ is also used to denote a set of indices j_{h} such that $\left(j_{h}, \pi_{h}\right)$ is a node immediately below π_{h}. Note that $C_{\pi_{0}}$ is a set with a single element, while $C_{\pi_{L}}$ represents a choice set containing all possible alternatives. As an example, consider the circled node at level 1 in Figure 17.26. Since it stems from node $11, \pi_{h}=11$, and since it is the second node stemming from $11, j_{h}=2$, so that its index is $\pi_{h-1}=\pi_{0}=\left(j_{h}, \pi_{h}\right)=211$. Similarly, $C_{11}=\{111,211,311\}$ contains all the possible choices below 11 .

Note that while this notation is useful for writing closed-form solutions for probabilities, the MDC procedure allows a more flexible definition of indices. See the NEST statement in the section "Syntax" for more details on how to describe decision trees within the MDC procedure.

Figure 17.26 Node Indices for a Three-Level Tree

Let $\mathbf{x}_{i ; j_{h} \pi_{h}}^{(h)}$ denote the vector of observed variables for individual i common to the alternatives below node $j_{h} \pi_{h}$. The probability of choice at level h has a closed-form solution and is written

$$
P_{i}\left(j_{h} \mid \pi_{h}\right)=\frac{\exp \left[\mathbf{x}_{i ; j_{h} \pi_{h}}^{(h) \prime} \boldsymbol{\beta}^{(h)}+\sum_{k \in C_{i ; j_{h} \pi_{h}}} I_{k, j_{h} \pi_{h}} \theta_{k, j_{h} \pi_{h}}\right]}{\sum_{j \in C_{i ; \pi_{h}}} \exp \left[\mathbf{x}_{i ; j \pi_{h}}^{(h) \prime} \boldsymbol{\beta}^{(h)}+\sum_{k \in C_{i ; j \pi_{h}}} I_{k, j \pi_{h}} \theta_{k, j \pi_{h}}\right]}, h=2, \cdots, L
$$

where $I_{\pi_{h}}$ is the inclusive value (at level $h+1$) of the branch below node π_{h} and is defined recursively as follows:

$$
\begin{aligned}
& I_{\pi_{h}}=\ln \left\{\sum_{j \in C_{i ; \pi_{h}}} \exp \left[\mathbf{x}_{i ; j \pi_{h}}^{(h) \prime} \boldsymbol{\beta}^{(h)}+\sum_{k \in C_{i ; j \pi_{h}}} I_{k, j \pi_{h}} \theta_{k, j \pi_{h}}\right]\right\} \\
& 0 \leq \theta_{k, \pi_{1}} \leq \cdots \leq \theta_{k, \pi_{L-1}}
\end{aligned}
$$

The inclusive value $I_{\pi_{h}}$ denotes the average utility that the individual can expect from the branch below π_{h}. The dissimilarity parameters or inclusive value parameters $\left(\theta_{k, j \pi_{h}}\right)$ are the coefficients of the inclusive values and have values between 0 and 1 if nested logit is the correct model specification. When they all take value 1 , the nested logit model is equivalent to the conditional logit model.

At decision level 1 , there is no inclusive value; i.e., $I_{\pi_{0}}=0$. Therefore, the conditional probability is

$$
P_{i}\left(j_{1} \mid \pi_{1}\right)=\frac{\exp \left[\mathbf{x}_{i ; j_{1} \pi_{1}}^{(1) \prime} \boldsymbol{\beta}^{(1)}\right]}{\sum_{j \in C_{i ; \pi_{1}}} \exp \left[\mathbf{x}_{i ; j \pi_{1}}^{(1) \prime} \boldsymbol{\beta}^{(1)}\right]}
$$

The log-likelihood function at level h can then be written

$$
\mathcal{L}^{(h)}=\sum_{i=1}^{N} \sum_{\pi_{h^{\prime}} \in C_{i, \pi_{h+1}}} \sum_{j \in C_{i, \pi_{h^{\prime}}}} y_{i, j \pi_{h^{\prime}}} \ln P\left(C_{i, j \pi_{h^{\prime}}} \mid C_{i, \pi_{h^{\prime}}}\right)
$$

where $y_{i, j \pi_{h^{\prime}}}$ is an indicator variable that has the value of 1 for the selected choice. The full loglikelihood function of the nested logit model is obtained by adding the conditional log-likelihood functions at each level:

$$
\mathcal{L}=\sum_{h=1}^{L} \mathcal{L}^{(h)}
$$

Note that the log-likelihood functions are computed from conditional probabilities when $h<L$. The nested logit model is estimated using the full information maximum likelihood method.

Decision Tree and Nested Logit

You can view choices as a decision tree and model the decision tree by using the nested logit model. You need to use either the NEST statement or the CHOICE= option of the MODEL statement to specify the nested tree structure. Additionally, you need to identify which explanatory variables are used at each level of the decision tree. These explanatory variables are arguments for what is called a utility function. The utility function is specified using UTILITY statements. For example, consider a two-level decision tree. The tree structure is displayed in Figure 17.27.

Figure 17.27 Two-Level Decision Tree

A nested logit model with two levels can be specified using the following SAS statements:

```
proc mdc data=one type=nlogit;
    model decision = x1 x2 x3 x4 x5 /
            choice=(upmode 1 2, mode 1 2 3 4 5);
    id pid;
    utility u(1, 3 4 5 @ 2) = x1 x2,
            u(1, 1 2 @ 1) = x3 x4,
            u(2, 1 2) = x5;
run;
```

The DATA=one data set should be arranged as follows:

obs	pid	upmode	mode	x1	x2	x3	x4	x5	decision
1	1	1	1	$\#$	$\#$	$\#$	$\#$	$\#$	1
2	1	1	2	$\#$	$\#$	$\#$	$\#$	$\#$	0
3	1	2	3	$\#$	$\#$	$\#$	$\#$	$\#$	0
4	1	2	4	$\#$	$\#$	$\#$	$\#$	$\#$	0
5	1	2	5	$\#$	$\#$	$\#$	$\#$	$\#$	0
6	2	1	1	$\#$	$\#$	$\#$	$\#$	$\#$	0
7	2	1	2	$\#$	$\#$	$\#$	$\#$	$\#$	0
8	2	2	3	$\#$	$\#$	$\#$	$\#$	$\#$	0
9	2	2	4	$\#$	$\#$	$\#$	$\#$	$\#$	0
10	2	2	5	$\#$	$\#$	$\#$	$\#$	$\#$	1

All model variables, $x 1$ through $\times 5$, are specified in the UTILITY statement. It is required that entries denoted as \# have values for model estimation and prediction. The values of the level 2 utility variable $x 5$ should be the same for all the primitive (level 1) alternatives below node 1 at level 2 and, similarly, for all the primitive alternatives below node 2 at level 2 . In other words, $x 5$ should have the same value for primitive alternatives 1 and 2 and, similarly, it should have the same value for primitive alternatives 3,4 , and 5 . More generally, the values of any level 2 or higher utility function variables should be constant across primitive alternatives under each node for which the utility function applies. Since PROC MDC expects this to be the case, it will use the values of $x 5$ only for the primitive alternatives 1 and 3, ignoring the values for the primitive alternatives 2,4 , and 5 . Thus, PROC MDC uses the values of the utility function variable only
for the primitive alternatives that come first under each node for which the utility function applies. This behavior applies to any utility function variables that are specified above the first level. The choice variable for level 2 (upmode) should be placed before the first-level choice variable (mode) when the CHOICE= option is given. Alternatively, the NEST statement can be used to specify the decision tree. The following SAS statements fit the same nested logit model:

```
proc mdc data=a type=nlogit;
    model decision = x1 x2 x3 x4 x5 /
            choice=(mode 1 2 3 4 5);
    id pid;
    utility u(1, 3 4 5 @ 2) = x1 x2,
            u(1, 1 2 @ 1) = x3 x4,
            u(2, 1 2) = x5;
    nest level(1) = (1 2 @ 1, 3 4 5 @ 2),
        level(2) = (1 2 @ 1);
run;
```

The $\mathrm{U}(1,345 @ 2)=$ option specifies three choices, 3,4 , and 5 , at level 1 of the decision tree. They are connected to the upper branch 2 . The specified variables (x 1 and x 2) are used to model this utility function. The bottom level of the decision tree is level 1. All variables in the UTILITY statement must be included in the MODEL statement. When all choices at the first level share the same variables, you can omit the second argument of the $U()=$ option for that level. However, $U(1$, $)=x 1 \times 2$ is not equivalent to the following statements:

```
u(1, 3 4 5 @ 2) = x1 x2;
u(1, 1 2 @ 1) = x1 x2;
```

The CHOICE= variables need to be specified from the top to the bottom level. To forecast demand for new products, stated preference data are widely used. Stated preference data are attractive for market researchers since attribute variations can be controlled. Hensher (1993) explores the advantage of combining revealed preference (market data) and stated preference data. The scale factor $\left(\mathrm{V}_{r p} / \mathrm{V}_{s p}\right)$ can be estimated using the nested logit model with the decision tree structure displayed in Figure 17.28.

Figure 17.28 Decision Tree for Revealed and Stated Preference Data

Example SAS statements are as follows:

```
proc mdc data=a type=nlogit;
    model decision = x1 x2 x3 /
            spscale
            choice=(mode 1 2 3 4 5 6);
    id pid;
    utility u(1,) = x1 x2 x3;
    nest level(1) = (1 2 3 @ 1, 4 @ 2, 5 @ 3, 6 @ 4),
            level(2) = (1 2 3 4 @ 1);
run;
```

The SPSCALE option specifies that parameters of inclusive values for nodes 2, 3, and 4 at level 2 be the same. When you specify the SAMESCALE option, the MDC procedure imposes the same coefficient of inclusive values for choices 1-4.

Model Fit and Goodness-of-Fit Statistics

McFadden (1974) suggests a likelihood ratio index that is analogous to the R^{2} in the linear regression model:

$$
R_{M}^{2}=1-\frac{\ln L}{\ln L_{0}}
$$

where L is the maximum of the log-likelihood function and L_{0} is the maximum of the log-likelihood function when all coefficients, except for an intercept term, are zero. McFadden's likelihood ratio index is bounded by 0 and 1 .

Estrella (1998) proposes the following requirements for a goodness-of-fit measure to be desirable in discrete choice modeling:

- The measure must take values in $[0,1]$, where 0 represents no fit and 1 corresponds to perfect fit.
- The measure should be directly related to the valid test statistic for the significance of all slope coefficients.
- The derivative of the measure with respect to the test statistic should comply with corresponding derivatives in a linear regression.

Estrella's measure is written as

$$
R_{E 1}^{2}=1-\left(\frac{\ln L}{\ln L_{0}}\right)^{-(2 / N) \ln L_{0}}
$$

Estrella suggests an alternative measure,

$$
R_{E 2}^{2}=1-\left[(\ln L-K) / \ln L_{0}\right]^{-(2 / N) \ln L_{0}}
$$

where $\ln L_{0}$ is computed with null parameter values, N is the number of observations used, and K represents the number of estimated parameters.

Other goodness-of-fit measures are summarized as follows:

$$
\begin{array}{rll}
R_{C U 1}^{2} & =1-\left(\frac{L_{0}}{L}\right)^{\frac{2}{N}} & (\text { Cragg-Uhler 1) } \\
R_{C U 2}^{2} & =\frac{1-\left(L_{0} / L\right) \frac{2}{N}}{1-L_{0}^{\frac{2}{N}}} & (\text { Cragg-Uhler 2) } \\
R_{A}^{2} & =\frac{2\left(\ln L-\ln L_{0}\right)}{2\left(\ln L-\ln L_{0}\right)+N} & \text { (Aldrich-Nelson) } \\
R_{V Z}^{2} & =R_{A}^{2} \frac{2 \ln L_{0}-N}{2 \ln L_{0}} & \text { (Veall-Zimmermann) }
\end{array}
$$

The AIC and SBC are computed as follows:
$A I C=-2 \ln (L)+2 k$
$S B C=-2 \ln (L)+\ln (n) k$
where
$\ln (L)$ is the \log likelihood value for the model, k is the number of parameters estimated, and n is the number of observations (i.e., the number of respondents).

OUTEST= Data Set

The OUTEST = data set contains all the parameters estimated in a MODEL statement. The OUTEST= option can be used when the PROC MDC call contains one MODEL statement. There are additional restrictions. For the HEV and multinomial probit models, you need to specify exactly all possible elements of the choice set, since additional parameters (e.g., SCALE1 or STD1) are generated automatically in the MDC procedure. Therefore, the following SAS statements are not valid when the OUTEST $=$ option is given:

```
proc mdc data=a outest=e;
    model y = x / type=hev choice=(alter);
run;
```

You need to specify all possible choices in the CHOICE= option since the OUTEST= option is specified:

```
proc mdc data=a outest=e;
    model y = x / type=hev choice=(alter 1 2 3);
run;
```

When the NCHOICE= option is given, no additional information about possible choices is required. Therefore, the following are correct SAS statements:

```
proc mdc data=a outest=e;
    model y = x / type=mprobit nchoice=3;
run;
```

The nested logit model does not produce the OUTEST= data set unless the NEST statement is specified.

Each parameter contains the estimate for the corresponding parameter in the corresponding model. In addition, the OUTEST= data set contains the following variables:
DEPVAR the name of the dependent variable
METHOD the estimation method
MODEL the label of the MODEL statement if one is given, or blank otherwise
STATUS a character variable indicating whether the optimization process reached convergence or failed to converge; 0 indicates that the convergence was reached, 1 indicates that the maximum number of iterations allowed was exceeded, 2 indicates a failure to improve the function value, and 3 indicates a failure to converge because objective function or its derivatives could not be evaluated, or improved, or linear constraints were dependent, or the algorithm failed to return to feasible region, or the number of iterations was greater than prespecified.
NAME the name of the row of the covariance matrix for the parameter estimate, if the COVOUT option is specified, or blank otherwise
LIKLHD the log-likelihood value
STDERR standard error of the parameter estimate, if the COVOUT option is specified
TYPE PARMS for observations containing parameter estimates, or COV for observations containing covariance matrix elements

The OUTEST = data set contains one observation for the MODEL statement giving the parameter estimates for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations for the MODEL statement giving the rows of the covariance matrix of parameter estimates. For covariance observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter associated with that row of the covariance matrix.

ODS Table Names

PROC MDC assigns a name to each table it creates. You can use these names to denote the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the Table 17.3.

Table 17.3 ODS Tables Produced in PROC MDC

ODS Table Name	Description	Option
ODS Tables Created by the MODEL Statement		
ResponseProfile	Response Profile	default
ClassLevels	Class Levels	default
FitSummary	Summary of Nonlinear Estimation	default
GoodnessOfFit	Pseudo-R 2 Measures	default
ConvergenceStatus	Convergence Status	default
ParameterEstimates	Parameter Estimates	default
CovB	Covariance of Parameter Estimates	COVB
CorrB	Correlation of Parameter Estimates	CORRB
LinCon	Linear Constraints	ITPRINT
InputOptions	Input Options	ITPRINT
ProblemDescription	Problem Description	ITPRINT
IterStart	Optimization Start	ITPRINT
IterHist	Iteration History	ITPRINT
IterStop	Optimization Results	ITPRINT
ConvergenceStatus	Convergence Status	ITPRINT
ParameterEstimatesResults	Resulting Parameters	ITPRINT
LinConSol	Linear Constraints Evaluated at Solution	ITPRINT
ODS Tables Created by the		
TestResults Statement	Test Results	default

Examples: MDC Procedure

Example 17.1: Binary Data Modeling

The MDC procedure supports various multinomial choice models. However, binary choice models such as binary logit and probit can also be estimated using PROC MDC since these models are special cases of multinomial models.

Spector and Mazzeo (1980) studied the effectiveness of a new teaching method on students' performance in an economics course. They reported grade point average (gpa), previous knowledge of the material (tuce), a dummy variable for the new teaching method (psi), and the final course grade (grade). grade is recorded as 1 if a student earned the letter grade "A," and 0 otherwise.

The binary logit can be estimated using the conditional logit model. In order to use the MDC procedure, the data are converted as follows so that each possible choice corresponds to one observation:

```
data smdata;
    input gpa tuce psi grade;
datalines;
2.66 20 0 0
2.89 22 0
3.28 24 0
... more lines ...
data smdata1;
    set smdata;
    retain id 0;
    id + 1;
    /*-- first choice --*/
    choice1 = 1;
    choice2 = 0;
    decision = (grade = 0);
    gpa_2 = 0;
    tuce_2 = 0;
    psi_2 = 0;
    output;
    /*-- second choice --*/
    choice1 = 0;
    choice2 = 1;
    decision = (grade = 1);
    gpa_2 = gpa;
    tuce_2 = tuce;
    psi_2 = psi;
    output;
run;
```

The first 10 observations are displayed in Output 17.1.1. The variables related to grade $=0$ are omitted since these are not used for binary choice model estimation.

Output 17.1.1 Converted Binary Data

id	decision	choice2	gpa_2	tuce_2	psi_2
1	1	0	0.00	0	0
1	0	1	2.66	20	0
2	1	0	0.00	0	0
2	0	1	2.89	22	0
3	1	0	0.00	0	0
3	0	1	3.28	24	0
4	1	0	0.00	0	0
4	0	1	2.92	12	0
5	0	0	0.00	0	0
5	1	1	4.00	21	0

Consider the choice probability of the conditional logit model for binary choice:

$$
P_{i}(j)=\frac{\exp \left(\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}\right)}{\sum_{k=1}^{2} \exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}\right)}, \quad j=1,2
$$

The choice probability of the binary logit model is computed based on normalization. The preceding conditional logit model can be converted as

$$
\begin{aligned}
& P_{i}(1)=\frac{1}{1+\exp \left(\left(\mathbf{x}_{i 2}-\mathbf{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right)} \\
& P_{i}(2)=\frac{\exp \left(\left(\mathbf{x}_{i 2}-\mathbf{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\left(\mathbf{x}_{i 2}-\mathbf{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right)}
\end{aligned}
$$

Therefore, you can interpret the binary choice data as the difference between the first and second choice characteristics. In the following statements, it is assumed that $\mathbf{x}_{i 1}=\mathbf{0}$. The binary logit model is estimated and displayed in Output 17.1.2.

```
/*-- Conditional Logit --*/
proc mdc data=smdata1;
    model decision = choice2 gpa_2 tuce_2 psi_2 /
                type=clogit
            nchoice=2
            covest=hess;
    id id;
run;
```

Output 17.1.2 Binary Logit Estimates

The MDC Procedure					
Conditional Logit Estimates					
Parameter Estimates					
	Standard				Approx
Parameter	DF	Estimate	Error	t Value	Pr > $\|t\|$
choice2	1	-13.0213	4.9313	-2.64	0.0083
gpa_2	1	2.8261	1.2629	2.24	0.0252
tuce_2	1	0.0952	0.1416	0.67	0.5014
psi_2	1	2.3787	1.0646	2.23	0.0255

Consider the choice probability of the multinomial probit model:

$$
P_{i}(j)=P\left[\epsilon_{i 1}-\epsilon_{i j}<\left(\mathbf{x}_{i j}-\mathbf{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}, \ldots, \epsilon_{i J}-\epsilon_{i j}<\left(\mathbf{x}_{i j}-\mathbf{x}_{i J}\right)^{\prime} \boldsymbol{\beta}\right]
$$

The probabilities of choice of the two alternatives can be written as

$$
\begin{aligned}
& P_{i}(1)=P\left[\epsilon_{i 2}-\epsilon_{i 1}<\left(\mathbf{x}_{i 1}-\mathbf{x}_{i 2}\right)^{\prime} \boldsymbol{\beta}\right] \\
& P_{i}(2)=P\left[\epsilon_{i 1}-\epsilon_{i 2}<\left(\mathbf{x}_{i 2}-\mathbf{x}_{i 1}\right)^{\prime} \boldsymbol{\beta}\right]
\end{aligned}
$$

where $\left[\begin{array}{c}\epsilon_{i 1} \\ \epsilon_{i 2}\end{array}\right] \sim N\left(\mathbf{0},\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right]\right)$. Assume that $\mathbf{x}_{i 1}=0$ and $\sigma_{12}=0$. The binary probit model is estimated and displayed in Output 17.1.3. You do not get the same estimates as that of the usual binary probit model. The probabilities of choice in the binary probit model are

$$
\begin{aligned}
& P_{i}(2)=P\left[\epsilon_{i}<\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right] \\
& P_{i}(1)=1-P\left[\epsilon_{i}<\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right]
\end{aligned}
$$

where $\epsilon_{i} \sim N(0,1)$. However, the multinomial probit model has the error variance $\operatorname{Var}\left(\epsilon_{i 2}-\epsilon_{i 1}\right)=$ $\sigma_{1}^{2}+\sigma_{2}^{2}$ if $\epsilon_{i 1}$ and $\epsilon_{i 2}$ are independent ($\sigma_{12}=0$). In the following statements, unit variance restrictions are imposed on choices 1 and $2\left(\sigma_{1}^{2}=\sigma_{2}^{2}=1\right)$. Therefore, the usual binary probit estimates (and standard errors) can be obtained by multiplying the multinomial probit estimates (and standard errors) in Output 17.1.3 by $1 / \sqrt{2}$.

```
/*-- Multinomial Probit --*/
proc mdc data=smdata1;
    model decision = choice2 gpa_2 tuce_2 psi_2 /
            type=mprobit
            nchoice=2
            covest=hess
            unitvariance=(1 2);
    id id;
run;
```

Output 17.1.3 Binary Probit Estimates

The MDC Procedure					
Multinomial Probit Estimates					
Parameter Estimates					
			andard		Approx
Parameter	DF	Estimate	Error	t Value	Pr > $\|t\|$
choice2	1	-10.5392	3.5956	-2.93	0.0034
gpa_2	1	2.2992	0.9813	2.34	0.0191
tuce_2	1	0.0732	0.1186	0.62	0.5375
psi_2	1	2.0171	0.8415	2.40	0.0165

Example 17.2: Conditional Logit and Data Conversion

In this example, data are prepared for use by the MDCDATA statement. Sometimes, choice-specific information is stored in multiple variables. Since the MDC procedure requires multiple observations for each decision maker, you need to arrange the data so that there is an observation for each subjectalternative (or individual-choice) combination. Simple binary choice data are obtained from BenAkiva and Lerman (1985). The following statements create the SAS data set:

```
data travel;
    length mode $ 8;
    input auto transit mode $;
datalines;
52.9 4.4 Transit
4.1 28.5 Transit
4.1 86.9 Auto
56.2 31.6 Transit
51.8 20.2 Transit
0.2 91.2 Auto
27.6 79.7 Auto
89.9 2.2 Transit
41.5 24.5 Transit
95.0 43.5 Transit
... more lines ...
```

The travel time is stored in two variables, auto and transit. In addition, the chosen alternatives are stored in a character variable, mode. The choice variable, mode, is converted to a numeric variable, decision, since the MDC procedure supports only numeric variables. The following statements convert the original data set, travel, and estimate the binary logit model. The first 10 observations of a relevant subset of the new data set and the parameter estimates are displayed in Output 17.2.1 and Output 17.2.2, respectively.

```
data new;
    set travel;
    retain id 0;
    id+1;
    /*-- create auto variable --*/
    decision = (upcase(mode) = 'AUTO');
    ttime = auto;
    autodum = 1;
    trandum = 0;
    output;
    /*-- create transit variable --*/
    decision = (upcase(mode) = 'TRANSIT');
    ttime = transit;
    autodum = 0;
    trandum = 1;
    output;
run;
proc print data=new(obs=10);
    var decision autodum trandum ttime;
    id id;
run;
```


Output 17.2.1 Converted Data

id	decision	autodum	trandum	ttime
	1	0	1	0
1	1	0	1	52.9
2	0	1	0	4.4
2	1	0	1	4.1
3	1	1	0	28.5
3	0	0	1	8.1
4	0	1	0	1

The following statements perform the binary logit estimation.

```
proc mdc data=new;
    model decision = autodum ttime /
            type=clogit
            nchoice=2;
    id id;
run;
```

Output 17.2.2 Binary Logit Estimation of Modal Choice Data

The MDC Procedure						
Conditional Logit Estimates						
Parameter Estimates						
	Standard				Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
autodum	1	-0.2376	0.7505	-0.32	0.7516	
ttime	1	-0.0531	0.0206	-2.57	0.0101	

In order to handle more general cases, you can use the MDCDATA statement. Choice-specific dummy variables are generated and multiple observations for each individual are created. The following example converts the original data set travel by using the MDCDATA statement and performs conditional logit analysis. Interleaved data are output into the new data set new3. This data set has twice as many observations as the original travel data set.

```
proc mdc data=travel;
    mdcdata varlist( x1 = (auto transit) )
            select=mode
            id=id
            alt=alternative
            decvar=Decision / out=new3;
    model decision = auto x1 /
            nchoice=2
```

```
        type=clogit;
    id id;
run;
```

The first nine observations of the modified data set are shown in Output 17.2.3. The result of the preceding program is listed in Output 17.2.4.

Output 17.2.3 Transformed Model Choice Data

| Obs | MODE | AUTO | TRANSIT | X1 | ID | ALTERNATIVE | DECISION |
| :---: | :--- | :--- | :---: | ---: | :---: | ---: | :---: | :---: |
| | | | | | | | |
| 1 | TRANSIT | 1 | 0 | 52.9 | 1 | 1 | 0 |
| 2 | TRANSIT | 0 | 1 | 4.4 | 1 | 2 | 1 |
| 3 | TRANSIT | 1 | 0 | 4.1 | 2 | 1 | 0 |
| 4 | TRANSIT | 0 | 1 | 28.5 | 2 | 2 | 1 |
| 5 | AUTO | 1 | 0 | 4.1 | 3 | 1 | 1 |
| 6 | AUTO | 0 | 1 | 86.9 | 3 | 2 | 0 |
| 7 | TRANSIT | 1 | 0 | 56.2 | 4 | 1 | 0 |
| 8 | TRANSIT | 0 | 1 | 31.6 | 4 | 2 | 1 |
| 9 | TRANSIT | 1 | 0 | 51.8 | 5 | 1 | 0 |

Output 17.2.4 Results Using MDCDATA Statement

Example 17.3: Correlated Choice Modeling

Often, it is not realistic to assume that the random components of utility for all choices are independent. This example shows the solution to the problem of correlated random components by using multinomial probit and nested logit.

To analyze correlated data, trinomial choice data (1000 observations) are created using a pseudorandom number generator by using the following statements. The random utility function is

$$
U_{i j}=V_{i j}+\epsilon_{i j}, \quad j=1,2,3
$$

where

```
    \epsilonij~N}~N(0,[\begin{array}{lll}{2}&{.6}&{0}\\{.6}&{1}&{0}\\{0}&{0}&{1}\end{array}]
/*-- generate simulated series --*/
%let ndim = 3;
%let nobs = 1000;
data trichoice;
    array error{&ndim} e1-e3;
    array vtemp{&ndim} _temporary_;
    array lm{6} _temporary_(1.4142136 0.4242641 0.9055385 0 0 1);
    retain nseed 345678 useed 223344;
    do id = 1 to &nobs;
        index = 0;
        /* generate independent normal variate */
        do i = 1 to &ndim;
            /* index of diagonal element */
            vtemp{i} = rannor(nseed);
        end;
        /* get multivariate normal variate */
        index = 0;
        do i = 1 to &ndim;
            error{i} = 0;
            do j = 1 to i;
                error{i} = error{i} + lm{index+j}*vtemp{j};
            end;
            index = index + i;
        end;
        x1 = 1.0 + 2.0 * ranuni (useed);
        x2 = 1.2 + 2.0 * ranuni (useed);
        x3 = 1.5 + 1.2 * ranuni (useed);
        util1 = 2.0 * x1 + e1;
        util2 = 2.0 * x2 + e2;
        util3 = 2.0 * x3 + e3;
        do i = 1 to &ndim;
            vtemp{i} = 0;
        end;
        if ( util1 > util2 & util1 > util3 ) then
            vtemp{1} = 1;
        else if ( util2 > util1 & util2 > util3 ) then
            vtemp{2} = 1;
        else if ( util3 > util1 & util3 > util2 ) then
            vtemp{3} = 1;
        else continue;
        /*-- first choice --*/
        x = x1;
        mode = 1;
        decision = vtemp{1};
        output;
        /*-- second choice --*/
```

```
    x = x2;
    mode = 2;
    decision = vtemp{2};
    output;
    /*-- third choice --*/
    x = x3;
    mode = 3;
    decision = vtemp{3};
    output;
    end;
run;
```

First, the multinomial probit model is estimated (see the following program). Results show that standard deviation, correlation, and slope estimates are close to the parameter values. Note that $\rho_{12}=\frac{\sigma_{12}}{\sqrt{\left(\sigma_{1}^{2}\right)\left(\sigma_{2}^{2}\right)}}=\frac{0.6}{\sqrt{(2)(1)}}=0.42, \sigma_{1}=\sqrt{2}=1.41, \sigma_{2}=\sqrt{1}=1$, and the parameter value for the variable x is 2.0. (See Output 17.3.1.)

```
/*-- Trinomial Probit --*/
proc mdc data=trichoice randnum=halton nsimul=100;
    model decision = x /
                    type=mprobit
                    choice=(mode 1 2 3)
            covest=op
            optmethod=qn;
        id id;
run;
```

Output 17.3.1 Trinomial Probit Model Estimation

The MDC Procedure					
Multinomial Probit Estimates					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	Pr > $\|t\|$
x	1	1.7987	0.1202	14.97	<. 0001
STD_1	1	1.2824	0.1468	8.74	<. 0001
RHO_21	1	0.4233	0.1041	4.06	<. 0001

The nested model is also estimated based on a two-level decision tree (see the following program). (See Output 17.3.2.) The estimated result (see Output 17.3.3) shows that the data support the nested tree model since the estimates of the inclusive value parameters are significant and are less than 1 .

Output 17.3.2 Nested Tree Structure


```
/*-- Two-Level Nested Logit --*/
proc mdc data=trichoice;
    model decision = x /
            type=nlogit
            choice=(mode 1 2 3)
            covest=op
            optmethod=qn;
    id id;
    utility u(1,) = x;
    nest level(1) = (1 2 @ 1, 3 @ 2),
            level(2) = (1 2 @ 1);
run;
```

Output 17.3.3 Two-Level Nested Logit

The MDC Procedure						
Nested Logit Estimates						
Parameter Estimates						
			Standard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
x_L1	1	2.6672	0.1978	13.48	$<.0001$	
INC_L2G1C1	1	0.7911	0.0832	9.51	<. 0001	
INC_L2G1C2	1	0.7965	0.0921	8.65	<. 0001	

Example 17.4: Testing for Homoscedasticity of the Utility Function

The conditional logit model imposes equal variances on random components of utility of all alternatives. This assumption can often be too restrictive and the calculated results misleading. This example shows several approaches to testing the homoscedasticity assumption.

The section "Getting Started: MDC Procedure" on page 871 analyzes an HEV model by using

Daganzo's trinomial choice data and displays the HEV parameter estimates in Figure 17.15. The inverted scale estimates for mode " 2 " and mode " 3 " suggest that the conditional logit model (which imposes equal variances on random components of utility of all alternatives) might be misleading. The HEV estimation summary from that analysis is repeated in Output 17.4.1.

Output 17.4.1 HEV Estimation Summary $\left(\theta_{1}=1\right)$

Model Fit Summary

Dependent Variable	decision
Number of Observations	50
Number of Cases	150
Log Likelihood	-33.41383
Maximum Absolute Gradient	
Number of Iterations	0.0000218
Optimization Method	Dual Quasi-Newton
AIC	72.82765
Schwarz Criterion	78.56372

You can estimate the HEV model with unit scale restrictions on all three alternatives $\left(\theta_{1}=\theta_{2}=\right.$ $\theta_{3}=1$) with the following statements. Output 17.4.2 displays the estimation summary.

```
/*-- HEV Estimation --*/
proc mdc data=newdata;
    model decision = ttime /
                        type=hev
                    nchoice=3
            hev=(unitscale=1 2 3, integrate=laguerre)
            covest=hess;
    id pid;
run;
```

Output 17.4.2 HEV Estimation Summary $\left(\theta_{1}=\theta_{2}=\theta_{3}=1\right)$

The MDC Procedure	
Heteroscedastic Extreme Value Model Estimates	
Model Fit Summary	
Dependent Variable	decision
Number of Observations	50
Number of Cases	150
Log Likelihood	-34.12756
Maximum Absolute Gradient	$6.7951 \mathrm{E}-9$
Number of Iterations	5
Optimization Method	Dual Quasi-Newton
AIC	70.25512
Schwarz Criterion	72.16714

The test for scale equivalence (SCALE2=SCALE3=1) is performed using a likelihood ratio test statis-
tic. The following SAS statements compute the test statistic (1.4276) and its p-value (0.4898) from the log-likelihood values in Figure 17.4.1 and Figure 17.4.2:

```
data _null_;
    /*-- test for H0: scale2 = scale3 = 1 --*/
    /* ln L (max) = -34.1276 */
    /* ln L(0) = -33.4138 */
    stat = -2 * ( - 34.1276 + 33.4138 );
    df = 2;
    p_value = 1 - probchi(stat, df);
    put stat= p_value=;
run;
```

The test statistic fails to reject the null hypothesis of equal scale parameters, which implies that the random utility function is homoscedastic.

A multinomial probit model also allows heteroscedasticity of the random components of utility for different alternatives. Consider the following utility function:

$$
U_{i j}=V_{i j}+\epsilon_{i j}
$$

where

$$
\boldsymbol{\epsilon}_{i} \sim N\left(\mathbf{0},\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right]\right)
$$

This multinomial probit model is estimated by using the following program. The estimation summary is displayed in Output 17.4.3.

```
/*-- Heteroscedastic Multinomial Probit --*/
proc mdc data=newdata;
    model decision = ttime /
            type=mprobit
            nchoice=3
            unitvariance=(1 2)
            covest=hess;
    id pid;
    restrict RHO_31 = 0;
run;
```

Output 17.4.3 Heteroscedastic Multinomial Probit Estimation Summary

The MDC Procedure	
Multinomial Probit Estimates	
Model Fit Summary	
Dependent Variable	decision
Number of Observations	50
Number of Cases	150
Log Likelihood	-33.88604
Log Likelihood Null (LogL (0))	-54.93061
Maximum Absolute Gradient	$5.60277 \mathrm{E}-6$
Number of Iterations	8
Optimization Method	Dual Quasi-Newton
AIC	71.77209
Schwarz Criterion	75.59613
Number of Simulations	100
Starting Point of Halton Sequence	11

Next, the multinomial probit model with unit variances ($\sigma_{1}=\sigma_{2}=\sigma_{3}=1$) is estimated in the following statements. The estimation summary is displayed in Output 17.4.4.

```
/*-- Homoscedastic Multinomial Probit --*/
proc mdc data=newdata;
    model decision = ttime /
            type=mprobit
            nchoice=3
            unitvariance=(1 2 3)
            covest=hess;
    id pid;
    restrict RHO_21 = 0;
run;
```

Output 17.4.4 Homoscedastic Multinomial Probit Estimation Summary

The test for homoscedasticity $\left(\sigma_{3}=1\right)$ under $\sigma_{1}=\sigma_{2}=1$ shows that the error variance is not heteroscedastic since the test statistic (1.313) is less than $\chi_{0.05,1}^{2}=3.84$. The marginal probability or p-value computed in the following program from the PROBCHI function is 0.2519 .

```
data _null_;
    /*-- test for HO: sigma3 = 1 --*/
    /* ln L(max) = -33.8860 */
    /* ln L(0) = -34.5425 */
    stat = -2 * ( -34.5425 + 33.8860 );
    df = 1;
    p_value = 1 - probchi(stat, df);
    put stat= p_value=;
run;
```


Example 17.5: Choice of Time for Work Trips: Nested Logit Analysis

This example uses sample data of 527 automobile commuters in the San Francisco Bay Area to demonstrate the use of nested logit model.

Brownstone and Small (1989) analyzed a two-level nested logit model displayed in Output 17.5.1. The probability of choosing j at level 2 is written as

$$
P_{i}(j)=\frac{\exp \left(\tau_{j} I_{j}\right)}{\sum_{j^{\prime}=1}^{3} \exp \left(\tau_{j^{\prime}} I_{j^{\prime}}\right)}
$$

where $I_{j^{\prime}}$ is an inclusive value and is computed as

$$
I_{j^{\prime}}=\ln \left[\sum_{k^{\prime} \in C_{j^{\prime}}} \exp \left(\mathbf{x}_{i k^{\prime}}^{\prime} \boldsymbol{\beta}\right)\right]
$$

The probability of choosing an alternative k is denoted as

$$
P_{i}(k \mid j)=\frac{\exp \left(\mathbf{x}_{i k}^{\prime} \boldsymbol{\beta}\right)}{\sum_{k^{\prime} \in C_{j}} \exp \left(\mathbf{x}_{i k^{\prime}}^{\prime} \boldsymbol{\beta}\right)}
$$

The full information maximum likelihood (FIML) method maximizes the following log-likelihood function:

$$
\mathcal{L}=\sum_{i=1}^{N} \sum_{j=1}^{J} d_{i j}\left[\ln \left(P_{i}(k \mid j)\right)+\ln \left(P_{i}(j)\right)\right]
$$

where $d_{i j}=1$ if a decision maker i chooses j, and 0 otherwise.
Output 17.5.1 Decision Tree for Two-Level Nested Logit

Sample data of 527 automobile commuters in the San Francisco Bay Area have been analyzed by Small (1982) and Brownstone and Small (1989). The regular time of arrival is recorded as between 42.5 minutes early and 17.5 minutes late, and indexed by 12 alternatives, using five-minute interval groups. Refer to Small (1982) for more details on these data.

The following statements estimate the two-level nested logit model:

```
/*-- Two-level Nested Logit --*/
proc mdc data=small maxit=200 outest=a;
    model decision = r15 r10 ttime ttime_cp sde sde_cp
                sdl sdlx d2l /
            type=nlogit
            choice=(alt);
        id id;
        utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp
            sdl sdlx d2l;
    nest level(1) =(1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),
            level(2) = (1 2 3 @ 1);
run;
```

The estimation summary, discrete response profile, and the FIML estimates are displayed in Output 17.5.2 through Output 17.5.4.

Output 17.5.2 Nested Logit Estimation Summary

Output 17.5.3 Discrete Choice Characteristics

Discrete Response Profile			
Index	alt	Frequency	Percent
0	1	6	1.14
1	2	10	1.90
2	3	61	11.57
3	4	15	2.85
4	5	27	5.12
5	6	80	15.18
6	7	55	10.44
7	8	64	12.14
8	9	187	35.48
9	10	13	2.47
10	11	8	1.52
11	12	1	0.19

Output 17.5.4 Nested Logit Estimates

The MDC Procedure					
Nested Logit Estimates					
Parameter Estimates					
			andard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
r15_L1	1	1.1034	0.1221	9.04	$<.0001$
r10_L1	1	0.3931	0.1194	3.29	0.0010
ttime_L1	1	-0.0465	0.0235	-1.98	0.0474
ttime_cp_L1	1	-0.0498	0.0305	-1.63	0.1028
sde_L1	1	-0.6618	0.0833	-7.95	<. 0001
sde_cp_L1	1	0.0519	0.1278	0.41	0.6850
sdl_L1	1	-2.1006	0.5062	-4.15	<. 0001
sdlx_L1	1	-3.5240	1.5346	-2.30	0.0217
d21_L1	1	-1.0941	0.3273	-3.34	0.0008
INC_L2G1C1	1	0.6762	0.2754	2.46	0.0141
INC_L2G1C2	1	1.0906	0.3090	3.53	0.0004
INC_L2G1C3	1	0.7622	0.1649	4.62	<. 0001

Brownstone and Small (1989) also estimate the two-level nested logit model with equal scale parameter constraints, $\tau_{1}=\tau_{2}=\tau_{3}$. Replication of their model estimation is listed in the following program, and the results are displayed in Output 17.5.5 and Output 17.5.6. The parameter estimates and standard errors are almost identical to those in Brownstone and Small (1989, p. 69).

```
/*-- Nested Logit with Equal Dissimilarity Parameters --*/
proc mdc data=small maxit=200 outest=a;
    model decision = r15 r10 ttime ttime_cp sde sde_cp
                        sdl sdlx d2l /
            samescale
            type=nlogit
            choice=(alt);
    id id;
    utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp
                sdl sdlx d2l;
    nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),
            level(2) = (1 2 3 @ 1);
run;
```

Output 17.5.5 Nested Logit Estimation Summary with Equal Dissimilarity Parameters

Output 17.5.6 Nested Logit Estimates with Equal Dissimilarity Parameters

Parameter	DF	The MDC Procedure			
		Nested Logit Estimate Parameter Estimates		t Value	Approx
			andard		
		Estimate	Error		Pr > $\|t\|$
r15_L1	1	1.1345	0.1092	10.39	$<.0001$
r10_L1	1	0.4194	0.1081	3.88	0.0001
ttime_L1	1	-0.1626	0.0609	-2.67	0.0076
ttime_cp_L1	1	0.1285	0.0853	1.51	0.1319
sde_L1	1	-0.7548	0.0669	-11.28	$<.0001$
sde_cp_L1	1	0.2292	0.0981	2.34	0.0195
sdl_L1	1	-2.0719	0.4860	-4.26	$<.0001$
sdlx_L1	1	-2.8216	1.2560	-2.25	0.0247
d2l_L1	1	-1.3164	0.3474	-3.79	0.0002
INC_L2G1	1	0.8059	0.1705	4.73	<. 0001

However, the test statistic for $H_{0}: \tau_{1}=\tau_{2}=\tau_{3}$ rejects the null hypothesis at the 5% significance level since $-2 *(\ln L(0)-\ln L)=7.15>\chi_{0.05,2}^{2}=5.99$. The p-value is computed in the following program and is equal to 0.0280 .

```
data _null_;
    /*-- test for H0: tau1 = tau2 = tau3 --*/
    /* ln L(max) = -990.8191 */
    /* ln L(0) = -994.3940 */
    stat = -2 * ( -994.3940 + 990.8191 );
    df = 2;
    p_value = 1 - probchi(stat, df);
    put stat= p_value=;
```


Example 17.6: Hausman's Specification and Likelihood Ratio Tests

Hausman's Specification Test

As discussed under multinomial and conditional logits (see the section "Multinomial Logit and Conditional Logit" on page 904), the odds ratios in the multinomial or conditional logits are independent of the other alternatives. This property of the logit models is often viewed as rather restrictive and provides substitution patterns that do not represent the actual relationship among choice alternatives.

This independence assumption, called Independence of Irrelevant Alternatives (IIA), can be tested with Hausman's specification test. According to Hausman and McFadden (1984), if a subset of choice alternatives is irrelevant, it can be omitted from the sample without changing the remaining parameters systematically.

Under the null hypothesis (IIA holds), omitting the irrelevant alternatives will lead to consistent and efficient parameter estimates β_{R}, while parameter estimates β_{U} from the unrestricted model will be consistent but inefficient. Under the alternative, only the parameter estimates β_{U} obtained from the unrestricted model will be consistent.

This example demonstrates the use of Hausman's specification test to analyze the IIA assumption and decide on an appropriate model providing less restrictive substitution patterns (nested logit, multinomial probit). A sample data set of 527 automobile commuters in the San Francisco Bay Area is used (Small 1982). The regular time of arrival is recorded as between 42.5 minutes early and 17.5 minutes late, and indexed by 12 alternatives, using five-minute interval groups. Refer to Small (1982) for more details on these data.

Naturally, the data can be divided into three groups: commuters arriving early (alternatives 1 8), commuters arriving on time (alternative 9), and commuters arriving late (alternatives $10-12$). Suppose that we want to test whether the IIA assumption holds for commuters who arrived on time (alternative 9).

Hausman's specification test is distributed as χ^{2} with k degrees of freedom (equal to the number of independent variables) and can be written as

$$
\chi^{2}=\left(\hat{\beta_{U}}-\hat{\beta_{R}}\right)^{\prime}\left[\hat{V_{U}}-\hat{V_{R}}\right]^{-1}\left(\hat{\beta_{U}}-\hat{\beta_{R}}\right)
$$

where $\hat{\beta_{R}}$ and $\hat{V_{R}}$ represent parameter estimates and variance-covariance matrix from the model where the ninth alternative was omitted, and $\hat{\beta_{U}}$ and $\hat{V_{U}}$ represent parameter estimates and variancecovariance matrix from the full model. The following macro can be used to perform the IIA test for the ninth alternative.

* name: \%IIA
* note: This macro test the IIA hypothesis using the Hausman's
* specification test. Inputs into the macro are as follows:

```
* indata: input data set
* varlist: list of RHS variables
* nchoice: number of choices for each individual
* choice: list of choices
* nvar: number of dependent variables
* nIIA: number of choice alternatives used to test IIA
* IIA: choice alternatives used to test IIA
* id: ID variable
* decision: 0-1 LHS variable representing nchoice choices
* purpose: Hausman's specification test
*---------------------------------------------------------------------*/
%macro IIA(indata=, varlist=, nchoice=, choice= , nvar= , IIA= ,
                        nIIA=, id= , decision=);
    %let n=%eval(&nchoice-&nIIA);
    proc mdc data=&indata outest=cov covout ;
        model &decision = &varlist /
                type=clogit
                nchoice=&nchoice;
        id &id;
        run;
    data two;
        set &indata;
        if &choice in &IIA and &decision=1 then output;
    run;
    data two;
        set two;
        keep &id ind;
        ind=1;
    run;
    data merged;
        merge &indata two;
        by &id;
        if ind=1 or &choice in &IIA then delete;
    run;
    proc mdc data=merged outest=cov2 covout ;
    model &decision = &varlist /
                type=clogit
                nchoice=&n;
        id &id;
        run;
proc IML;
    use cov var{_TYPE_ &varlist};
            read first into BetaU;
            read all into CovVarU where(_TYPE_='COV');
        close cov;
```

```
    use cov2 var{_TYPE_ &varlist};
    read first into BetaR;
    read all into CovVarR where(_TYPE_='COV');
    close cov;
    tmp = BetaU-BetaR;
    ChiSq=tmp*ginv (CovVarR-CovVarU) *tmp`;
    if ChiSq<0 then ChiSq=0;
    Prob=1-Probchi(ChiSq, &nvar);
    Print "Hausman Test for IIA for Variable &IIA";
    Print ChiSq Prob;
run; quit;
%mend IIA;
```

The following statement invokes the \%IIA macro to test IIA for commuters arriving on time:

```
%IIA( indata=small,
    varlist=r15 r10 ttime ttime_cp sde sde_cp sdl sdlx d2l,
    nchoice=12,
    choice=alt,
    nvar=9,
    nIIA=1,
    IIA=(9),
    id=id,
    decision=decision );
```

The obtained χ^{2} of 7.9 and the p-value of 0.54 indicate that IIA does not hold for commuters arriving on time (alternative 9). In this case the following model (nested logit), which reserves a subcategory for alternative 9 , might be more appropriate (Output 17.5.1):

```
proc mdc data=small maxit=200 outest=a;
    model decision = r15 r10 ttime ttime_cp sde sde_cp
                sdl sdlx d2l /
            type=nlogit
            choice=(alt);
    id id;
    utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp
                                    sdl sdlx d2l;
    nest level(1) =(1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),
        level(2) = (1 2 3 @ 1);
run;
```

Similarly, IIA could be tested for commuters arriving approximately on time (alternative 8, 9, 10), as follows:

```
%IIA( indata=small,
    varlist=r15 r10 ttime ttime_cp sde sde_cp sdl sdlx d2l,
    nchoice=12,
    choice=alt,
    nvar=9,
    nIIA=3,
    IIA=(8 9 10),
```

```
id=id,
decision=decision );
```

Based on this test, independence of irrelevant alternatives is rejected for this subgroup ($\chi^{2}=10.3$), and it is concluded that these three alternatives are not independent from the other nine alternatives. This finding provides a partial justification for another nested logit model, with commuters arriving approximately on time being in one subcategory.

Likelihood Ratio Test

Another specification test that can be performed is the likelihood ratio test (LR). Suppose we are interested in testing whether the nested logit model (Output 17.5.1) with three subgroups representing commuters arriving early, on time, and late is more appropriate than the standard multinomial logit. This can be done by running two logit models and calculating the LR test as follows. First, run the unrestricted nested logit model.

```
/*-- Unrestricted Nested Logit --*/
proc mdc data=small maxit=200 outest=a;
    model decision = r15 r10 ttime ttime_cp sde sde_cp
                        sdl sdlx d2l /
            type=nlogit
            choice=(alt);
    id id;
    utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp
                                    sdl sdlx d2l;
    nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),
        level(2) = (1 2 3 @ 1);
run;
```

Second, run the restricted model with inclusive value parameters constrained to one. This model, with a restriction on inclusive value parameters, is equal to the standard multinomial logit.

```
/*-- Restricted Model with Inclusive Value Parameters
    Constrained to One --*/
proc mdc data=small maxit=200 outest=a;
    model decision = r15 r10 ttime ttime_cp sde sde_cp
                sdl sdlx d2l /
            type=nlogit
            choice=(alt);
    id id;
    utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp
                    sdl sdlx d2l;
    nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),
        level(2) = (1 2 3 @ 1);
    restrict INC_L2G1C1=1, INC_L2G1C2=1, INC_L2G1C3=1;
run;
```

The likelihood ratio test is distributed as χ^{2} with degrees of freedom equal to number of restrictions imposed:

$$
\chi^{2}=2 *\left(\log L_{U}-\log \hat{g} L_{R}\right)
$$

where $\log L_{U}$ represents the \log of unrestricted likelihood and $\log L_{R}$ is the \log of restricted likelihood at the optimized solution. Unrestricted and restricted log-likelihood values can be found in the "Model Fit Summary" table (see Output 17.5.5). Calculating the LR, test we conclude that nested logit is a more appropriate model. The LR test can be used to test other types of restrictions in the nested logit setting as long as one model can be nested within another.

Acknowledgments: MDC Procedure

Professor Kenneth Small provided the work trip data that are used in the "Examples" section. These data were collected for the urban travel demand forecasting project, which was carried out by McFadden, Talvitie, and Associates (1977). The project was supported by the National Science Foundation, Research Applied to National Needs Program through grants GI-43740 and APR74-20392, and the Alfred P. Sloan Foundation, through grant 74-21-8.

References

Abramowitz, M. and Stegun, A. (1970), Handbook of Mathematical Functions, New York: Dover Press.

Amemiya, T. (1981), "Qualitative Response Models: A Survey," Journal of Economic Literature, 19, 483-536.

Amemiya, T. (1985), Advanced Econometrics, Cambridge: Harvard University Press.
Ben-Akiva, M. and Lerman, S. R. (1985), Discrete Choice Analysis, Cambridge: MIT Press.
Bhat, C. R. (1995), "A Heteroscedastic Extreme Value Model of Intercity Travel Mode Choice," Transportation Research, 29, 471-483.

Brownstone, D. and Small, K. A. (1989), "Efficient Estimation of Nested Logit Models," Journal of Business and Statistics, 7, 67-74.

Brownstone, D. and Train, K. (1999), "Forecasting New Product Penetration with Flexible Substitution Patterns," Journal of Econometrics, 89, 109-129.

Daganzo, C. (1979), Multinomial Probit: The Theory and Its Application to Demand Forecasting, New York: Academic Press.

Daganzo, C. and Kusnic, M. (1993), "Two Properties of the Nested Logit Model," Transportation Science, 27, 395-400.

Estrella, A. (1998), "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business and Economic Statistics, 16, 198-205.

Geweke, J. (1989),"Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, 57, 1317-1340.

Geweke, J., Keane, M., and Runkle, D. (1994), "Alternative Computational Approaches to Inference in the Multinomial Probit Model," Review of Economics and Statistics, 76, 609-632.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge: Cambridge University Press.

Green, W. H. (1997), Econometric Analysis, Upper Saddle River, NJ: Prentice Hall.
Hajivassiliou, V. A. (1993), "Simulation Estimation Methods for Limited Dependent Variable Models," in Handbook of Statistics, vol. 11, ed. G. S. Maddala, C. R. Rao, and H. D. Vinod, New York: Elsevier Science Publishing.

Hajivassiliou, V., McFadden, D., and Ruud, P. (1996), "Simulation of Multivariate Normal Rectangle Probabilities and Their Derivatives: Theoretical and Computational Results," Journal of Econometrics, 72, 85-134.

Hausman, J., and McFadden, D. (1984), "Specification Tests for the Multinomial Logit Model," Econometrica, 52(5), 1219-40.

Hensher, D. A. (1986), "Sequential and Full Information Maximum Likelihood Estimation of a Nested Logit Model," Review of Economics and Statistics, 68, 657-667.

Hensher, D. A. (1993), "Using Stated Response Choice Data to Enrich Revealed Preference Discrete Choice Models," Marketing Letters, 4, 139-151.

Keane, M. P. (1994), "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, 62, 95-116.

Keane, M. P. (1997), "Current Issues in Discrete Choice Modeling," Marketing Letters, 8, 307-322.
LaMotte, L. R. (1994), "A Note on the Role of Independence in t Statistics Constructed from Linear Statistics in Regression Models," The American Statistician, 48, 238-240.

Luce, R. D. (1959), Individual Choice Behavior: A Theoretical Analysis, New York: Wiley.
Maddala, G. S. (1983), Limited Dependent and Qualitative Variables in Econometrics, Cambridge: Cambridge University Press.

McFadden, D. (1974), "Conditional Logit Analysis of Qualitative Choice Behavior," in Frontiers in Econometrics, ed. P. Zarembka, New York: Academic Press.

McFadden, D. (1978), "Modelling the Choice of Residential Location," in Spatial Interaction Theory and Planning Models, ed. A. Karlqvist, L. Lundqvist, F. Snickars, and J. Weibull, Amsterdam: North Holland.

McFadden, D. (1981), "Econometric Models of Probabilistic Choice," in Structural Analysis of Discrete Data with Econometric Applications, ed. C.F. Manski and D. McFadden, Cambridge: MIT Press.

McFadden, D. and Ruud, P. A. (1994), "Estimation by Simulation," Review of Economics and Statistics, 76, 591-608.

McFadden, D., Talvitie, A. P., and Associates (1977), The Urban Travel Demand Forecasting Project: Phase I Final Report Series, vol. 5, The Institute of Transportation Studies, University of California, Berkeley.

Powers, D. A. and Xie, Y. (2000), Statistical Methods for Categorical Data Analysis, San Diego: Academic Press.

Schmidt, P. and Strauss, R. (1975), "The Prediction of Occupation Using Multiple Logit Models," International Economic Review, 16, 471-486.

Small, K. (1982), "The Scheduling of Consumer Activities: Work Trips," American Economic Review, 72, 467-479.

Spector, L. and Mazzeo, M. (1980), "Probit Analysis and Economic Education,"Journal of Economic Education, 11, 37-44.

Swait, J. and Bernardino, A. (2000), "Distingushing Taste Variation from Error Structure in Discrete Choice Data," Transportation Research Part B, 34, 1-15.

Theil, H. (1969), "A Multinomial Extension of the Linear Logit Model," International Economic Review, 10, 251-259.

Train, K. E., Ben-Akiva, M., and Atherton, T. (1989), "Consumption Patterns and Self-Selecting Tariffs," Review of Economics and Statistics, 71, 62-73.

Chapter 18

The MODEL Procedure

Contents

Overview: MODEL Procedure 945
Getting Started: MODEL Procedure 949
Nonlinear Regression Analysis 949
Nonlinear Systems Regression 953
General Form Models 954
Solving Simultaneous Nonlinear Equation Systems 957
Monte Carlo Simulation 960
Syntax: MODEL Procedure 962
Functional Summary 964
PROC MODEL Statement 970
BOUNDS Statement 975
BY Statement 976
CONTROL Statement 979
ENDOGENOUS Statement 979
ERRORMODEL Statement 980
ESTIMATE Statement 981
EXOGENOUS Statement 983
FIT Statement 984
ID Statement 993
INCLUDE Statement 993
INSTRUMENTS Statement 994
LABEL Statement 995
MOMENT Statement 996
OUTVARS Statement 997
PARAMETERS Statement 997
Programming Statements 998
RANGE Statement 998
RESET Statement 999
RESTRICT Statement 999
SOLVE Statement 1000
TEST Statement 1005
VAR Statement 1007
WEIGHT Statement 1007
Details: Estimation by the MODEL Procedure 1007
Estimation Methods 1007
Properties of the Estimates 1025
Minimization Methods 1027
Convergence Criteria 1028
Troubleshooting Convergence Problems 1030
Iteration History 1042
Computer Resource Requirements 1044
Testing for Normality 1048
Heteroscedasticity 1050
Testing for Autocorrelation 1058
Transformation of Error Terms 1059
Error Covariance Structure Specification 1062
Ordinary Differential Equations 1066
Restrictions and Bounds on Parameters 1076
Tests on Parameters 1078
Hausman Specification Test 1079
Chow Tests 1081
Profile Likelihood Confidence Intervals 1082
Choice of Instruments 1084
Autoregressive Moving-Average Error Processes 1088
Distributed Lag Models and the \%PDL Macro 1102
Input Data Sets 1104
Output Data Sets 1110
ODS Table Names 1113
ODS Graphics 1115
Details: Simulation by the MODEL Procedure 1116
Solution Modes 1117
Multivariate t Distribution Simulation 1122
Alternate Distribution Simulation 1124
Mixtures of Distributions-Copulas 1126
Solution Mode Output 1132
Goal Seeking: Solving for Right-Hand-Side Variables 1138
Numerical Solution Methods 1140
Numerical Integration 1146
Limitations 1147
SOLVE Data Sets 1148
Programming Language Overview: MODEL Procedure 1151
Variables in the Model Program 1151
Equation Translations 1155
Derivatives 1157
Mathematical Functions 1159
Functions across Time 1160
Language Differences 1164
Storing Programs in Model Files 1167
Diagnostics and Debugging 1168
Analyzing the Structure of Large Models 1174
Examples: MODEL Procedure 1180
Example 18.1: OLS Single Nonlinear Equation 1180
Example 18.2: A Consumer Demand Model 1183
Example 18.3: Vector AR(1) Estimation 1188
Example 18.4: MA(1) Estimation 1192
Example 18.5: Polynomial Distributed Lags by Using \%PDL 1196
Example 18.6: General Form Equations 1201
Example 18.7: Spring and Damper Continuous System 1205
Example 18.8: Nonlinear FIML Estimation 1211
Example 18.9: Circuit Estimation 1213
Example 18.10: Systems of Differential Equations 1215
Example 18.11: Monte Carlo Simulation 1218
Example 18.12: Cauchy Distribution Estimation 1219
Example 18.13: Switching Regression Example 1221
Example 18.14: Simulating from a Mixture of Distributions 1225
Example 18.15: Simulated Method of Moments—Simple Linear Regression 1233
Example 18.16: Simulated Method of Moments—AR(1) Process 1235
Example 18.17: Simulated Method of Moments—Stochastic Volatility Model 1236
Example 18.18: Duration Data Model with Unobserved Heterogeneity 1238
Example 18.19: EMM Estimation of a Stochastic Volatility Model 1240
Example 18.20: Illustration of ODS Graphics 1244
References 1254

Overview: MODEL Procedure

The MODEL procedure analyzes models in which the relationships among the variables comprise a system of one or more nonlinear equations. Primary uses of the MODEL procedure are estimation, simulation, and forecasting of nonlinear simultaneous equation models.

PROC MODEL features include the following:

- SAS programming statements to define simultaneous systems of nonlinear equations
- tools to analyze the structure of the simultaneous equation system
- ARIMA, PDL, and other dynamic modeling capabilities
- tools to specify and estimate the error covariance structure
- tools to estimate and solve ordinary differential equations
- the following methods for parameter estimation:
- ordinary least squares (OLS)
- two-stage least squares (2SLS)
- seemingly unrelated regression (SUR) and iterative SUR (ITSUR)
- three-stage least squares (3SLS) and iterative 3SLS (IT3SLS)
- generalized method of moments (GMM)
- simulated method of moments (SMM)
- full information maximum likelihood (FIML)
- general log-likelihood maximization
- simulation and forecasting capabilities
- Monte Carlo simulation
- goal-seeking solutions

ODS Graphics is now available with the MODEL procedure. For more information, see the section "ODS Graphics" on page 1115.

A system of equations can be nonlinear in the parameters, nonlinear in the observed variables, or nonlinear in both the parameters and the variables. Nonlinear in the parameters means that the mathematical relationship between the variables and parameters is not required to have a linear form. (A linear model is a special case of a nonlinear model.) A general nonlinear system of equations can be written as

$$
\begin{gathered}
q_{1}\left(y_{1, t}, y_{2, t}, \ldots, y_{g, t}, x_{1, t}, x_{2, t}, \ldots, x_{m, t}, \theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)=\epsilon_{1, t} \\
q_{2}\left(y_{1, t}, y_{2, t}, \ldots, y_{g, t}, x_{1, t}, x_{2, t}, \ldots, x_{m, t}, \theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)=\epsilon_{2, t} \\
\vdots \\
q_{g}\left(y_{1, t}, y_{2, t}, \ldots, y_{g, t}, x_{1, t}, x_{2, t}, \ldots, x_{m, t}, \theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)=\epsilon_{g, t}
\end{gathered}
$$

where $y_{i, t}$ is an endogenous variable, $x_{i, t}$ is an exogenous variable, θ_{i} is a parameter, and ϵ_{i} is the unknown error. The subscript t represents time or some index to the data.

In econometrics literature, the observed variables are either endogenous (dependent) variables or exogenous (independent) variables. This system can be written more succinctly in vector form as

$$
\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)=\boldsymbol{\epsilon}_{t}
$$

This system of equations is in general form because the error term is by itself on one side of the equality. Systems can also be written in normalized form by placing the endogenous variable on one side of the equality, with each equation defining a predicted value for a unique endogenous variable. A normalized form equation system can be written in vector notation as

$$
\mathbf{y}_{t}=\mathbf{f}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)+\boldsymbol{\epsilon}_{t} .
$$

PROC MODEL handles equations written in both forms.
Econometric models often explain the current values of the endogenous variables as functions of past values of exogenous and endogenous variables. These past values are referred to as lagged values, and the variable x_{t-i} is called lag i of the variable x_{t}. Using lagged variables, you can create a dynamic, or time-dependent, model. In the preceding model systems, the lagged exogenous and endogenous variables are included as part of the exogenous variables.

If the data are time series, so that t indexes time (see Chapter 3, "Working with Time Series Data," for more information on time series), it is possible that $\boldsymbol{\epsilon}_{\boldsymbol{t}}$ depends on $\boldsymbol{\epsilon}_{t-i}$ or, more generally, the $\boldsymbol{\epsilon}_{t}$'s are not identically and independently distributed. If the errors of a model system are autocorrelated, the standard error of the estimates of the parameters of the system will be inflated.

Sometimes the $\boldsymbol{\epsilon}_{i}$'s are not identically distributed because the variance of $\boldsymbol{\epsilon}$ is not constant. This is known as heteroscedasticity. Heteroscedasticity in an estimated model can also inflate the standard error of the estimates of the parameters. Using a weighted estimation can sometimes eliminate this problem. Alternately, a variance model such as GARCH or EGARCH can be estimated to correct for heteroscedasticity. If the proper weighting scheme and the form of the error model is difficult to determine, generalized methods of moments (GMM) estimation can be used to determine parameter estimates with very few assumptions about the form of the error process.

Other problems can also arise when estimating systems of equations. Consider the following system of equations, which is nonlinear in its parameters and cannot be estimated with linear regression:

$$
\begin{aligned}
& y_{1, t}=\theta_{1}+\left(\theta_{2}+\theta_{3} \theta_{4}^{t}\right)^{-1}+\theta_{5} y_{2, t}+\epsilon_{1, t} \\
& y_{2, t}=\theta_{6}+\left(\theta_{7}+\theta_{8} \theta_{9}^{t}\right)^{-1}+\theta_{10} y_{1, t}+\epsilon_{2, t}
\end{aligned}
$$

This system of equations represents a rudimentary predator-prey process with y_{1} as the prey and y_{2} as the predator (the second term in both equations is a logistics curve). The two equations must be estimated simultaneously because of the cross-dependency of y 's. This cross-dependency makes ϵ_{1} and ϵ_{2} violate the assumption of independence. Nonlinear ordinary least squares estimation of these equations produce biased and inconsistent parameter estimates. This is called simultaneous equation bias.

One method to remove simultaneous equation bias, in the linear case, is to replace the endogenous variables on the right-hand side of the equations with predicted values that are uncorrelated with the error terms. These predicted values can be obtained through a preliminary, or "first-stage," instrumental variable regression. Instrumental variables, which are uncorrelated with the error term, are used as regressors to model the predicted values. The parameter estimates are obtained by a second regression by using the predicted values of the regressors. This process is called two-stage least squares.

In the nonlinear case, nonlinear ordinary least squares estimation is performed iteratively by using a linearization of the model with respect to the parameters. The instrumental solution to simultaneous equation bias in the nonlinear case is the same as the linear case, except the linearization of the model with respect to the parameters is predicted by the instrumental regression. Nonlinear two-stage least squares is one of several instrumental variables methods available in the MODEL procedure to handle simultaneous equation bias.

When you have a system of several regression equations, the random errors of the equations can
be correlated. In this case, the large-sample efficiency of the estimation can be improved by using a joint generalized least squares method that takes the cross-equation correlations into account. If the equations are not simultaneous (no dependent regressors), then seemingly unrelated regression (SUR) can be used. The SUR method requires an estimate of the cross-equation error covariance matrix, Σ. The usual approach is to first fit the equations by using OLS, compute an estimate $\hat{\Sigma}$ from the OLS residuals, and then perform the SUR estimation based on $\hat{\Sigma}$. The MODEL procedure estimates Σ by default, or you can supply your own estimate of Σ.

If the equation system is simultaneous, you can combine the 2SLS and SUR methods to take into account both simultaneous equation bias and cross-equation correlation of the errors. This is called three-stage least squares or 3SLS.

A different approach to the simultaneous equation bias problem is the full information maximum likelihood (FIML) estimation method. FIML does not require instrumental variables, but it assumes that the equation errors have a multivariate normal distribution. 2SLS and 3SLS estimation do not assume a particular distribution for the errors.

Other nonnormal error distribution models can be estimated as well. The centered t distribution with estimated degrees of freedom and nonconstant variance is an additional built-in likelihood function. If the distribution of the equation errors is not normal or t but known, then the log likelihood can be specified by using the ERRORMODEL statement.

Once a nonlinear model has been estimated, it can be used to obtain forecasts. If the model is linear in the variables you want to forecast, a simple linear solve can generate the forecasts. If the system is nonlinear, an iterative procedure must be used. The preceding example system is linear in its endogenous variables. The MODEL procedure's SOLVE statement is used to forecast nonlinear models.

One of the main purposes of creating models is to obtain an understanding of the relationship among the variables. There are usually only a few variables in a model you can control (for example, the amount of money spent on advertising). Often you want to determine how to change the variables under your control to obtain some target goal. This process is called goal seeking. PROC MODEL allows you to solve for any subset of the variables in a system of equations given values for the remaining variables.

The nonlinearity of a model creates two problems with the forecasts: the forecast errors are not normally distributed with zero mean, and no formula exists to calculate the forecast confidence intervals. PROC MODEL provides Monte Carlo techniques, which, when used with the covariance of the parameters and error covariance matrix, can produce approximate error bounds on the forecasts. The following distributions on the errors are supported for multivariate Monte Carlo simulation:

- Cauchy
- chi-squared
- empirical
- F
- Poisson
- uniform

A transformation technique is used to create a covariance matrix for generating the correct innovations in a Monte Carlo simulation.

Getting Started: MODEL Procedure

This section introduces the MODEL procedure and shows how to use PROC MODEL for several kinds of nonlinear regression analysis and nonlinear systems simulation problems.

Nonlinear Regression Analysis

One of the most important uses of PROC MODEL is to estimate unknown parameters in a nonlinear model. A simple nonlinear model has the form:

$$
y=f(\mathbf{x}, \boldsymbol{\theta})+\epsilon
$$

where \mathbf{x} is a vector of exogenous variables. To estimate unknown parameters by using PROC MODEL, do the following:

1. Use the DATA= option in a PROC MODEL statement to specify the input SAS data set that contains \mathbf{y} and \mathbf{x}, the observed values of the variables.
2. Write the equation for the model by using SAS programming statements, including all parameters and arithmetic operators but leaving off the unobserved error component, ϵ.
3. Use a FIT statement to fit the model equation to the input data to determine the unknown parameters, $\boldsymbol{\theta}$.

An Example

The SASHELP library contains the data set CITIMON, which contains the variable LHUR, the monthly unemployment figures, and the variable IP, the monthly industrial production index. You suspect that the unemployment rates are inversely proportional to the industrial production index. Assume that these variables are related by the following nonlinear equation:

$$
\text { lhur }=\frac{1}{a \cdot \mathrm{ip}+b}+c+\epsilon
$$

In this equation a, b, and c are unknown coefficients and ϵ is an unobserved random error.
The following statements illustrate how to use PROC MODEL to estimate values for a, b, and c from the data in SASHELP.CITIMON.

```
proc model data=sashelp.citimon;
    lhur = 1/(a * ip + b) + c;
    fit lhur;
run;
```

Notice that the model equation is written as a SAS assignment statement. The variable LHUR is assumed to be the dependent variable because it is named in the FIT statement and is on the left-hand side of the assignment.

PROC MODEL determines that LHUR and IP are observed variables because they are in the input data set. A, B, and C are treated as unknown parameters to be estimated from the data because they are not in the input data set. If the data set contained a variable named A, B, or C, you would need to explicitly declare the parameters with a PARMS statement.

In response to the FIT statement, PROC MODEL estimates values for A, B, and C by using nonlinear least squares and prints the results. The first part of the output is a "Model Summary" table, shown in Figure 18.1.

Figure 18.1 Model Summary Report

This table details the size of the model, including the number of programming statements that define the model, and lists the dependent variables (LHUR in this case), the unknown parameters (A, B, and C), and the model equations. In this case the equation is named for the dependent variable, LHUR.

PROC MODEL then prints a summary of the estimation problem, as shown in Figure 18.2.
Figure 18.2 Estimation Problem Report

The Equation to Estimate is
LHUR $=F(a, b, C(1))$

The notation used in the summary of the estimation problem indicates that LHUR is a function of A, B, and C , which are to be estimated by fitting the function to the data. If the partial derivative of the equation with respect to a parameter is a simple variable or constant, the derivative is shown in
parentheses after the parameter name. In this case, the derivative with respect to the intercept C is 1. The derivatives with respect to A and B are complex expressions and so are not shown.

Next, PROC MODEL prints an estimation summary as shown in Figure 18.3.
Figure 18.3 Estimation Summary Report

The estimation summary provides information on the iterative process used to compute the estimates. The heading "OLS Estimation Summary" indicates that the nonlinear ordinary least squares (OLS) estimation method is used. This table indicates that all three parameters were estimated successfully by using 144 nonmissing observations from the data set SASHELP.CITIMON. Calculating the estimates required 10 iterations of the GAUSS method. Various measures of how well the iterative process converged are also shown. For example, the "RPC(B)" value 0.00968 means that on the final iteration the largest relative change in any estimate was for parameter B, which changed by 0.968 percent. See the section "Convergence Criteria" on page 1028 for details.

PROC MODEL then prints the estimation results. The first part of this table is the summary of residual errors, shown in Figure 18.4.

Figure 18.4 Summary of Residual Errors Report

This table lists the sum of squared errors (SSE), the mean squared error (MSE), the root mean squared error (root MSE), and the R^{2} and adjusted R^{2} statistics. The R^{2} value of 0.7472 means that the estimated model explains approximately 75 percent more of the variability in LHUR than a mean model explains.

Following the summary of residual errors is the parameter estimates table, shown in Figure 18.5.
Figure 18.5 Parameter Estimates

Parameter	Nonlinear OLS Parameter Estimates			
		Approx		Approx
	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
a	0.009046	0.00343	2.63	0.0094
b	-0.57059	0.2617	-2.18	0.0309
c	3.337151	0.7297	4.57	<. 0001

Because the model is nonlinear, the standard error of the estimate, the t value, and its significance level are only approximate. These values are computed using asymptotic formulas that are correct for large sample sizes but only approximately correct for smaller samples. Thus, you should use caution in interpreting these statistics for nonlinear models, especially for small sample sizes. For linear models, these results are exact and are the same as standard linear regression.

The last part of the output produced by the FIT statement is shown in Figure 18.6.
Figure 18.6 System Summary Statistics

Number of Observations	Statistics for System		
Used	144	Objective	0.5222
Missing	1	Objective*N	75.1989

This table lists the objective value for the estimation of the nonlinear system. Since there is only a single equation in this case, the objective value is the same as the residual MSE for LHUR except that the objective value does not include a degrees-of-freedom correction. This can be seen in the fact that "Objective*N" equals the residual SSE, 75.1989. N is 144, the number of observations used.

Convergence and Starting Values

Computing parameter estimates for nonlinear equations requires an iterative process. Starting with an initial guess for the parameter values, PROC MODEL tries different parameter values until the objective function of the estimation method is minimized. (The objective function of the estimation method is sometimes called the fitting function.) This process does not always succeed, and whether it does succeed depends greatly on the starting values used. By default, PROC MODEL uses the starting value 0.0001 for all parameters.

Consequently, in order to use PROC MODEL to achieve convergence of parameter estimates, you need to know two things: how to recognize convergence failure by interpreting diagnostic output, and how to specify reasonable starting values. The MODEL procedure includes alternate iterative techniques and grid search capabilities to aid in finding estimates. See the section "Troubleshooting Convergence Problems" on page 1030 for more details.

Nonlinear Systems Regression

If a model has more than one endogenous variable, several facts need to be considered in the choice of an estimation method. If the model has endogenous regressors, then an instrumental variables method such as 2SLS or 3SLS can be used to avoid simultaneous equation bias. Instrumental variables must be provided to use these methods. A discussion of possible choices for instrumental variables is provided in the section "Choice of Instruments" on page 1084 in this chapter.

The following is an example of the use of 2SLS and the INSTRUMENTS statement:

```
proc model data=test2;
    exogenous x1 x2;
    parms a1 a2 b2 2.5 c2 55 d1;
    y1 = a1 * y2 + b2 * x1 * x1 + d1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
    fit y1 y2 / 2sls;
    instruments b2 c2 _exog_;
run;
```

The estimation method selected is added after the slash (/) on the FIT statement. The INSTRUMENTS statement follows the FIT statement and in this case selects all the exogenous variables as instruments with the _EXOG_ keyword. The parameters B2 and C2 in the instruments list request that the derivatives with respect to B 2 and C 2 be additional instruments.

Full information maximum likelihood (FIML) can also be used to avoid simultaneous equation bias. FIML is computationally more expensive than an instrumental variables method and assumes that the errors are normally distributed. On the other hand, FIML does not require the specification of instruments. FIML is selected with the FIML option on the FIT statement.

The preceding example is estimated with FIML by using the following statements:

```
proc model data=test2;
    exogenous x1 x2;
    parms a1 a2 b2 2.5 c2 55 d1;
    y1 = a1 * y2 + b2 * x1 * x1 + d1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
    fit y1 y2 / fiml;
run;
```


General Form Models

The single equation example shown in the preceding section was written in normalized form and specified as an assignment of the regression function to the dependent variable LHUR. However, sometimes it is impossible or inconvenient to write a nonlinear model in normalized form.

To write a general form equation, give the equation a name with the prefix "EQ.". This EQ.-prefixed variable represents the equation error. Write the equation as an assignment to this variable.

For example, suppose you have the following nonlinear model that relates the variables x and y :

$$
\epsilon=a+b \ln (c y+d x)
$$

Naming this equation 'one', you can fit this model with the following statements:

```
proc model data=xydata;
    eq.one = a + b * log( c * y + d * x );
    fit one;
run;
```

The use of the EQ. prefix tells PROC MODEL that the variable is an error term and that it should not expect actual values for the variable ONE in the input data set.

Supply and Demand Models

General form specifications are often useful when you have several equations for the same dependent variable. This is common in supply and demand models, where both the supply equation and the demand equation are written as predictions for quantity as functions of price.

For example, consider the following supply and demand system:

$$
\begin{aligned}
\text { (supply) quantity } & =\alpha_{1}+\alpha_{2} \text { price }+\epsilon_{1} \\
\text { (demand) quantity } & =\beta_{1}+\beta_{2} \text { price }+\beta_{3} \text { income }+\epsilon_{2}
\end{aligned}
$$

Assume the quantity of interest is the amount of energy consumed in the U.S., the price is the price of gasoline, and the income variable is the consumer debt. When the market is at equilibrium, these
equations determine the market price and the equilibrium quantity. These equations are written in general form as

$$
\begin{aligned}
& \epsilon_{1}=\text { quantity }-\left(\alpha_{1}+\alpha_{2} \text { price }\right) \\
& \epsilon_{2}=\text { quantity }-\left(\beta_{1}+\beta_{2} \text { price }+\beta_{3} \text { income }\right)
\end{aligned}
$$

Note that the endogenous variables quantity and price depend on two error terms so that OLS should not be used. The following example uses three-stage least squares estimation.

Data for this model is obtained from the SASHELP.CITIMON data set.

```
title1 'Supply-Demand Model using General-form Equations';
proc model data=sashelp.citimon;
    endogenous eegp eec;
    exogenous exvus cciutc;
    parameters a1 a2 b1 b2 b3 ;
    label eegp = 'Gasoline Retail Price'
            eec = 'Energy Consumption'
            cciutc = 'Consumer Debt';
    /* -------- Supply equation ------------- */
    eq.supply = eec - (a1 + a2 * eegp );
    /* -------- Demand equation ------------- */
    eq.demand = eec - (b1 + b2 * eegp + b3 * cciutc);
    /* -------- Instrumental variables -------*/
    lageegp = lag(eegp); lag2eegp=lag2 (eegp);
    /* -------- Estimate parameters --------- */
    fit supply demand / n3sls fsrsq;
    instruments _EXOG_ lageegp lag2eegp;
run;
```

The FIT statement specifies the two equations to estimate and the method of estimation, N3SLS. Note that '3SLS' is an alias for N3SLS. The option FSRSQ is selected to get a report of the first stage R^{2} to determine the acceptability of the selected instruments.

Since three-stage least squares is an instrumental variables method, instruments are specified with the INSTRUMENTS statement. The instruments selected are all the exogenous variables, selected with the _EXOG_ option, and two lags of the variable EEGP: LAGEEGP and LAG2EEGP.

The data set CITIMON has four observations that generate missing values because values for EEGP, EEC, or CCIUTC are missing. This is revealed in the "Observations Processed" output shown in Figure 18.7. Missing values are also generated when the equations cannot be computed for a given observation. Missing observations are not used in the estimation.

Figure 18.7 Supply-Demand Observations Processed

Supply-Demand Model using General-form Equations	
The MODEL Procedure	
3SLS Estimation Summary	
Observations Processed	
Read	145
Solved	143
First	3
Last	145
Used	139
Missing	4
Lagged	2

The lags used to create the instruments also reduce the number of observations used. In this case, the first two observations were used to fill the lags of EEGP.

The data set has a total of 145 observations, of which four generated missing values and two were used to fill lags, which left 139 observations for the estimation. In the estimation summary, in Figure 18.8, the total degrees of freedom for the model and error is 139 .

Figure 18.8 Supply-Demand Parameter Estimates

One disadvantage of specifying equations in general form is that there are no actual values associated with the equation, so the R^{2} statistic cannot be computed.

Solving Simultaneous Nonlinear Equation Systems

You can use a SOLVE statement to solve the nonlinear equation system for some variables when the values of other variables are given.

Consider the supply and demand model shown in the preceding example. The following statement computes equilibrium price (EEGP) and quantity (EEC) values for given observed cost (CCIUTC) values and stores them in the output data set EQUILIB.

```
title1 'Supply-Demand Model using General-form Equations';
proc model data=sashelp.citimon;
    endogenous eegp eec;
    exogenous exvus cciutc;
    parameters a1 a2 a3 b1 b2 ;
    label eegp = 'Gasoline Retail Price'
            eec = 'Energy Consumption'
            cciutc = 'Consumer Debt';
    /* -------- Supply equation ---------------- */
    eq.supply = eec - (a1 + a2 * eegp + a3 * cciutc);
    /* -------- Demand equation -------------- */
    eq.demand = eec - (b1 + b2 * eegp );
    /* -------- Instrumental variables -------*/
    lageegp = lag(eegp); lag2eegp=lag2 (eegp);
    /* -------- Estimate parameters --------- */
    instruments _EXOG_ lageegp lag2eegp;
    fit supply demand / n3sls ;
    solve eegp eec / out=equilib;
run;
```

As a second example, suppose you want to compute points of intersection between the square root function and hyperbolas of the form $a+b / x$. That is, you want to solve the system:

$$
\begin{array}{ll}
\text { (square root) } y=\sqrt{x} \\
\text { (hyperbola) } & y=a+\frac{b}{x}
\end{array}
$$

The following statements read parameters for several hyperbolas in the input data set TEST and solve the nonlinear equations. The SOLVEPRINT option in the SOLVE statement prints the solution values. The ID statement is used to include the values of A and B in the output of the SOLVEPRINT option.

```
title1 'Solving a Simultaneous System';
data test;
    input a b @@;
datalines;
    01 1 1 1 2
```

```
;
proc model data=test;
    eq.sqrt = sqrt(x) - y;
    eq.hyperbola = a + b / x - y;
    solve x y / solveprint;
    id a b;
run;
```

The printed output produced by this example consists of a model summary report, a listing of the solution values for each observation, and a solution summary report. The model summary for this example is shown in Figure 18.9.

Figure 18.9 Model Summary Report

The output produced by the SOLVEPRINT option is shown in Figure 18.10.
Figure 18.10 Solution Values for Each Observation

Figure 18.10 continued

For each observation, a heading line is printed that lists the values of the ID variables for the observation and information about the iterative process used to compute the solution. The number of iterations required, and the convergence measure (labeled CC) are printed. This convergence measure indicates the maximum error by which solution values fail to satisfy the equations. When this error is small enough (as determined by the CONVERGE= option), the iterations terminate. The equation with the largest error is indicated. For example, for observation 3 the HYPERBOLA equation has an error of 4.42×10^{-13} while the error of the SQRT equation is even smaller. Following the heading line for the observation, the solution values are printed.

The last part of the SOLVE statement output is the solution summary report shown in Figure 18.11. This report summarizes the solution method used (Newton's method by default), the iteration history, and the observations processed.

Figure 18.11 Solution Summary Report

	Solving a Simultaneous System The MODEL Procedure Simultaneous Simulation Data Set Options DATA $=\quad$ TEST Solution Summary

Figure 18.11 continued

Monte Carlo Simulation

The RANDOM= option is used to request Monte Carlo (or stochastic) simulation to generate confidence intervals for a forecast. The confidence intervals are implied by the model's relationship to implicit random error term ϵ and the parameters.

The Monte Carlo simulation generates a random set of additive error values, one for each observation and each equation, and computes one set of perturbations of the parameters. These new parameters, along with the additive error terms, are then used to compute a new forecast that satisfies this new simultaneous system. Then a new set of additive error values and parameter perturbations is computed, and the process is repeated the requested number of times.

Consider the following exchange rate model for the U.S. dollar with the German mark and the Japanese yen:

$$
\begin{aligned}
& r a t e _j p=a_{1}+b_{1} i m_{-} j p+c_{1} d i_{-} j p ; \\
& \text { rate_wg }=a_{2}+b_{2} i m_{-} w g+c_{1} d i_{-} w g
\end{aligned}
$$

where rate_jp and rate_wg are the exchange rate of the Japanese yen and the German mark versus the U.S. dollar, respectively; $i m_{-} j p$ and $i m_{-} w g$ are the imports from Japan and Germany in 1984 dollars, respectively; and $d i _j p$ and $d i _w g$ are the differences in inflation rate of Japan and the U.S., and Germany and the U.S., respectively. The Monte Carlo capabilities of the MODEL procedure are used to generate error bounds on a forecast by using this model.

```
proc model data=exchange;
    endo im_jp im_wg;
    exo di_jp di_wg;
    parms a1 a2 b1 b2 c1 c2;
    label rate_jp = 'Exchange Rate of Yen/$'
            rate_wg = 'Exchange Rate of Gm/$'
            im_jp = 'Imports to US from Japan in 1984 $'
            im_wg = 'Imports to US from WG in 1984 $'
            di_jp = 'Difference in Inflation Rates US-JP'
            di_wg = 'Difference in Inflation Rates US-WG';
    rate_jp = a1 + b1*im_jp + c1*di_jp;
    rate_wg = a2 + b2*im_wg + c2*di_wg;
```

```
        /* Fit the EXCHANGE data */
    fit rate_jp rate_wg / sur outest=xch_est outcov outs=s;
        /* Solve using the WHATIF data set */
    solve rate_jp rate_wg / data=whatif estdata=xch_est sdata=s
    random=100 seed=123 out=monte forecast;
    id yr;
    range yr=1986;
run;
```

Data for the EXCHANGE data set was obtained from the Department of Commerce and the yearly "Economic Report of the President."

First, the parameters are estimated using SUR selected by the SUR option in the FIT statement. The OUTEST = option is used to create the XCH_EST data set which contains the estimates of the parameters. The OUTCOV option adds the covariance matrix of the parameters to the XCH_EST data set. The OUTS = option is used to save the covariance of the equation error in the data set S.

Next, Monte Carlo simulation is requested by using the RANDOM= option in the SOLVE statement. The data set WHATIF is used to drive the forecasts. The ESTDATA= option reads in the XCH_EST data set which contains the parameter estimates and covariance matrix. Because the parameter covariance matrix is included, perturbations of the parameters are performed. The SDATA= option causes the Monte Carlo simulation to use the equation error covariance in the S data set to perturb the equation errors. The SEED= option selects the number 123 as a seed value for the random number generator. The output of the Monte Carlo simulation is written to the data set MONTE selected by the OUT= option.

To generate a confidence interval plot for the forecast, use PROC UNIVARIATE to generate percentile bounds and use PROC SGPLOT to plot the graph. The following SAS statements produce the graph in Figure 18.12.

```
proc sort data=monte;
    by yr;
run;
proc univariate data=monte noprint;
    by yr;
    var rate_jp rate_wg;
    output out=bounds mean=mean p5=p5 p95=p95;
run;
title "Monte Carlo Generated Confidence Intervals on a Forecast";
proc sgplot data=bounds noautolegend;
    series x=yr y=mean / markers;
    series x=yr y=p5 / markers;
    series x=yr y=p95 / markers;
run;
```

Figure 18.12 Monte Carlo Confidence Interval Plot

Syntax: MODEL Procedure

The following statements can be used with the MODEL procedure:
PROC MODEL options ;
ABORT ;
ARRAY arrayname variable-list ... ;
ATTRIB variable-list1 attribute-list1 < variable-list2 attribute-list2 . . \gg
BOUNDS bound $1<$, bound $2 \ldots>$;
BY variable-list ;
CALL name;
CALL name(expression1 < , expression2 ... >);
CONTROL variable < value > ... ;
DELETE ;

DO ;
DO variable = expression < TO expression > < BY expression >
< , expression TO expression < BY expression > ... > < WHILE expression >
< UNTIL expression > ;
END ;
DROP variable...;
ENDOGENOUS variable < initial-values > ... ;
ERRORMODEL equation-name ~ distribution < CDF=(CDF(options)) > ;
ESTIMATE item1 < , item2 ... > < ,/ options > ;
EXOGENOUS variable < initial values > ... ;
FIT equations < PARMS $=($ parameter values ...) $\rangle\langle$ START $=($ parameter values ...) \rangle < DROP=(parameters) > </options > ;
FORMAT variable-list < format > < DEFAULT= default-format > ;
GOTO statement-label ;
ID variable-list ;
IF expression ;
IF expression THEN programming-statement1 ; < ELSE programming-statement2 > ;
variable = expression ;
variable + expression ;
INCLUDE model-file ... ;
INSTRUMENTS < instruments > < _EXOG_ > < EXCLUDE=(parameters) > </options > ;
KEEP variable...;
LABEL variable ='label' . . ;
LENGTH variable-list < \$ > length...$<$ DEFAULT=length > ;
LINK statement-label ;
OUTVARS variable ... ;
PARAMETERS variable1 < value1 > < variable2 < value2 ... \gg ;
PUT print-item...<@><@@ >
RANGE variable < = first > < TO last > ;
RENAME old-name1 = new-name1 < . . old-name2 = new-name2 > ;
RESET options;
RESTRICT restriction1 < , restriction2 ... > ;
RETAIN variable-list1 value1 < variable-list2 value2 ... > ;
RETURN ;
SOLVE variable-list < SATISFY=(equations) > < / options > ;
SUBSTR (variable, index, length) = expression ;
SELECT < (expression) > ;
OTHERWISE programming-statement ;
STOP ;
TEST < "name" > test1 <, test2 ... > < ,/ options > ;
VAR variable < initial-values > ... ;
WEIGHT variable ;
WHEN (expression) programming-statement ;

Functional Summary

The statements and options in the MODEL procedure are summarized in the following table.
Description Statement Option

Data Set Options

specify the input data set for the variables specify the input data set for parameters specify the method for handling missing values specify the input data set for parameters request that the procedure produce graphics via the Output Delivery System specify the output data set for residual, predicted, or actual values specify the output data set for solution mode results
write the actual values to OUT= data set select all output options write the covariance matrix of the estimates write the parameter estimates to a data set write the parameter estimates to a data set write the observations used to start the lags write the predicted values to the OUT= data set
write the residual values to the OUT= data set write the covariance matrix of the equation errors to a data set write the \mathbf{S} matrix used in the objective function definition to a data set write the estimate of the variance matrix of the moment generating function read the covariance matrix of the equation errors read the covariance matrix for GMM and ITGMM
specify the name of the time variable select the estimation type to read

General ESTIMATE Statement Options

specify the name of the data set in which the estimate of the functions of the parameters are to be written

FIT, SOLVE
DATA=
FIT, SOLVE
FIT

MODEL
MODEL

FIT

SOLVE

FIT
FIT
FIT
FIT
MODEL
SOLVE
FIT

FIT
FIT

FIT

FIT

FIT, SOLVE

FIT

FIT, SOLVE, MODEL TIME=
FIT, SOLVE TYPE=

ESTIMATE
OUTEST=

Description	Statement	Option
write the covariance matrix of the functions of the parameters to the OUTEST= data set	ESTIMATE	OUTCOV
print the covariance matrix of the functions of the parameters	ESTIMATE	COVB
print the correlation matrix of the functions of the parameters	ESTIMATE	CORRB
Printing Options for FIT Tasks print the modified Breusch-Pagan test for heteroscedasticity	FIT	BREUSCH
print the Chow test for structural breaks	FIT	CHOW=
print collinearity diagnostics	FIT	COLLIN
print the correlation matrices	FIT	CORR
print the correlation matrix of the parameters	FIT	CORRB
print the correlation matrix of the residuals	FIT	CORRS
print the covariance matrices	FIT	COV
print the covariance matrix of the parameters	FIT	COVB
print the covariance matrix of the residuals	FIT	COVS
print Durbin-Watson d statistics	FIT	DW
print first-stage R^{2} statistics	FIT	FSRSQ
print Godfrey's tests for autocorrelated residuals for each equation	FIT	GODFREY
print Hausman's specification test	FIT	HAUSMAN
print tests of normality of the model residuals	FIT	NORMAL
print the predictive Chow test for structural breaks	FIT	PCHOW=
specify all the printing options	FIT	PRINTALL
print White's test for heteroscedasticity	FIT	WHITE
Options to Control FIT Iteration Output print the inverse of the crossproducts Jacobian matrix	FIT	I
print a summary iteration listing	FIT	ITPRINT
print a detailed iteration listing	FIT	ITDETAILS
print the crossproduct Jacobian matrix	FIT	XPX
specify all the iteration printing-control options	FIT	ITALL
Options to Control the Minimization Process		
specify the convergence criteria	FIT	CONVERGE=
select the Hessian approximation used for FIML	FIT	HESSIAN=

Description

Statement
Option
specify the local truncation error bound for the integration
specify the maximum number of iterations allowed specify the maximum number of subiterations allowed
select the iterative minimization method to use specify the smallest allowed time step to be used in the integration modify the iterations for estimation methods that iterate the \mathbf{S} matrix or the \mathbf{V} matrix specify the smallest pivot value specify the number of minimization iterations to perform at each grid point specify a weight variable

Options to Read and Write Model Files

read a model from one or more input model files
suppress the default output of the model file specify the name of an output model file delete the current model

Options to List or Analyze the Structure of the Model

print a dependency structure of a model MODEL
print a graph of the dependency structure of a MODEL model
print the model program and variable lists MODEL
print the derivative tables and compiled model program code
print a dependency list
print a table of derivatives
print a cross-reference of the variables

General Printing Control Options

expand parts of the printed output
print a message for each statement as it is exe-
cuted
select the maximum number of execution errors that can be printed
select the number of decimal places shown in
the printed output
suppress the normal printed output

FIT, SOLVE, MODEL

FIT

FIT

FIT
FIT, SOLVE, MODEL

FIT

MODEL, FIT, SOLVE
FIT

WEIGHT

INCLUDE

MODEL, RESET
MODEL, RESET
RESET

BLOCK
GRAPH

LIST
LISTCODE

LISTDEP
LISTDER
XREF

DETAILS
FLOW

MAXERRORS=

NDEC=

NOPRINT
\(\left.\begin{array}{lll}\hline Description \& Statement \& Option

\hline \& \&

\begin{array}{l}specify all the noniteration printing options

print the result of each operation as it is exe-

cuted\end{array} \& FIT, SOLVE \& FIT, SOLVE\end{array}\right]\) TRACE | request a comprehensive memory usage sum- |
| :--- |
| mary |
| turn off the NOPRINT option | | RIT, SOLVE, MODEL, |
| :--- | MEMORYUSE

Description	Statement	Option
specify seemingly unrelated regression	FIT	SUR
specify iterated seemingly unrelated regression	FIT	ITSUR
specify two-stage least squares	FIT	2SLS
specify iterated two-stage least squares	FIT	IT2SLS
specify three-stage least squares	FIT	3SLS
specify iterated three-stage least squares	FIT	IT3SLS
specify full information maximum likelihood	FIT	FIML
specify simulated method of moments	FIT	NDRAW
specify number of draws for the V matrix	FIT	NDRAWV
specify number of initial observations for SMM	FIT	NPREOBS
select the variance-covariance estimator used for FIML	FIT	COVBEST $=$
specify generalized method of moments	FIT	GMM
specify the kernel for GMM and ITGMM	FIT	KERNEL=
specify iterated generalized method of moments	FIT	ITGMM
specify the type of generalized inverse used for the covariance matrix	FIT	GINV=
specify the denominator for computing variances and covariances	FIT	VARDEF=
specify adding the variance adjustment for SMM	FIT	ADJSMMV
specify variance correction for heteroscedasticity	FIT	HCCME=
specify GMM variance under arbitrary weighting matrix	FIT	GENGMMV
specify GMM variance under optimal weighting matrix	FIT	NOGENGMMV
Solution Mode Options		
select a subset of the model equations	SOLVE	SATISFY=
solve only for missing variables	SOLVE	FORECAST
solve for all solution variables	SOLVE	SIMULATE
Solution Mode Options: Lag Processing use solved values in the lag functions	SOLVE	DYNAMIC
use actual values in the lag functions	SOLVE	STATIC
produce successive forecasts to a fixed forecast horizon	SOLVE	NAHEAD=
select the observation to start dynamic solutions	SOLVE	START=

Description	Statement	Option
Solution Mode Options: Numerical Methods		
specify the maximum number of iterations allowed	SOLVE	MAXITER $=$
specify the maximum number of subiterations allowed	SOLVE	MAXSUBITER=
specify the convergence criteria	SOLVE	CONVERGE=
compute a simultaneous solution using a Jacobi-like iteration	SOLVE	JACOBI
compute a simultaneous solution using a	SOLVE	SEIDEL
compute a simultaneous solution using Newton's method	SOLVE	NEWTON
compute a nonsimultaneous solution	SOLVE	SINGLE
Monte Carlo Simulation Options		
specify pseudo-random number generator	SOLVE	PSUEDO=
repeat the solution multiple times	SOLVE	RANDOM=
initialize the pseudo-random number generator	SOLVE	SEED=
specify copula options	SOLVE	COPULA $=$
Solution Mode Printing Options print between data points integration values for the DERT. variables and the auxiliary variables	FIT, SOLVE, MODEL	INTGPRINT
print the solution approximation and equation errors	SOLVE	ITPRINT
print the solution values and residuals at each observation	SOLVE	SOLVEPRINT
print various summary statistics	SOLVE	STATS
print tables of Theil inequality coefficients	SOLVE	THEIL
specify all printing control options	SOLVE	PRINTALL
General TEST Statement Options		
specify that a Lagrange multiplier test be computed	TEST	LM
specify that a likelihood ratio test be computed	TEST	LR
request all three types of tests	TEST	ALL
specify the name of an output SAS data set that contains the test results	TEST	OUT=

Description	Statement	Option

Miscellaneous Statements

specify the range of observations to be used subset the data set with BY variables

RANGE
BY

PROC MODEL Statement

PROC MODEL options;

The following options can be specified in the PROC MODEL statement. All of the nonassignment options (the options that do not accept a value after an equal sign) can have NO prefixed to the option name in the RESET statement to turn the option off. The default case is not explicitly indicated in the discussion that follows. Thus, for example, the option DETAILS is documented in the following, but NODETAILS is not documented since it is the default. Also, the NOSTORE option is documented because STORE is the default.

Data Set Options

DATA $=S A S$-data-set

names the input data set. Variables in the model program are looked up in the DATA= data set and, if found, their attributes (type, length, label, format) are set to be the same as those in the input data set (if not previously defined otherwise). The values for the variables in the program are read from the input data set when the model is estimated or simulated by FIT and SOLVE statements.

OUTPARMS=SAS-data-set
writes the parameter estimates to a SAS data set. See the section "Output Data Sets" on page 1110 for details.

PARMSDATA=SAS-data-set
names the SAS data set that contains the parameter estimates. In PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When more than one option is specified, the options are implemented in the following order of precedence (from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of 0.0001 is used. See the section "Input Data Sets" on page 1104 for details.

PLOTS=global-plot-options / plot-request

requests that the MODEL procedure produce statistical graphics via the Output Delivery System, provided that the ODS GRAPHICS statement has been specified. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT

User's Guide). The global-plot-options apply to all relevant plots generated by the MODEL procedure. The global-plot-options supported by the MODEL procedure follow.

Global Plot Options

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL breaks a graphic that is otherwise paneled into individual component plots.

Specific Plot Options

ALL requests that all plots appropriate for the particular analysis be produced.
ACF produces the autocorrelation function plot.
IACF produces the inverse autocorrelation function plot of residuals.
PACF produces the partial autocorrelation function plot of residuals.
FITPLOT plots the predicted and actual values.
COOKSD produces the Cook's D plot.
QQ produces a QQ plot of residuals.
RESIDUAL | RES plots the residuals.
STUDENTRESIDUAL plots the studentized residuals.
RESIDUALHISTOGRAM | RESIDHISTOGRAM plots the histogram of residuals.
NONE suppresses all plots.

Options to Read and Write Model Files

MODEL=model-name
 MODEL=(model-list)

reads the model from one or more input model files created by previous PROC MODEL executions. Model files are written by the OUTMODEL= option.

NOSTORE

suppresses the default output of the model file. This option is applicable only when FIT or SOLVE statements are not used, the MODEL= option is not used, and when a model is specified.

OUTMODEL=model-name

specifies the name of an output model file to which the model is to be written. Starting with SAS 9.2, model files are being stored as XML-based SAS data sets instead of being stored as members of a SAS catalog as in earlier releases. This makes MODEL files more readily extendable in the future and enables Java-based applications to read the MODEL files directly. To change this behavior, use the SAS global-CMPMODEL-options. You can choose the format in which the output model file is stored and read by using the CMPMODEL=global-CMPMODEL-options in an OPTIONS statement as follows.

OPTIONS CMPMODEL=global-CMPMODEL-options;

The global CMPMODEL options are:
CATALOG specifies that model files be written and read from SAS catalogs only.
XML
BOTH specifies that model files be written to both XML and CATALOG formats. When BOTH is specified, model files are read from the data set first and read from the SAS catalog only if the data set is not found. This is the default option.

Options to List or Analyze the Structure of the Model

These options produce reports on the structure of the model or list the programming statements that define the models. These options are automatically reset (turned off) after the reports are printed. To turn these options back on after a RUN statement has been entered, use the RESET statement or specify the options on a FIT or SOLVE statement.

BLOCK

prints an analysis of the structure of the model given by the assignments to model variables appearing in the model program. This analysis includes a classification of model variables into endogenous (dependent) and exogenous (independent) groups based on the presence of the variable on the left-hand side of an assignment statement. The endogenous variables are grouped into simultaneously determined blocks. The dependency structure of the simultaneous blocks and exogenous variables is also printed. The BLOCK option cannot analyze dependencies implied by general form equations.

GRAPH

prints the graph of the dependency structure of the model. The GRAPH option also invokes the BLOCK option and produces a graphical display of the information listed by the BLOCK option.

LIST
prints the model program and variable lists, including the statements added by PROC MODEL and macros.

LISTALL

selects the LIST, LISTDEP, LISTDER, and LISTCODE options.

LISTCODE

prints the derivative tables and compiled model program code. LISTCODE is a debugging feature and is not normally needed.

LISTDEP

prints a report that lists for each variable in the model program the variables that depend on it and that it depends on. These lists are given separately for current-period values and for lagged values of the variables.

The information displayed is the same as that used to construct the BLOCK report but differs in that the information is listed for all variables (including parameters, control variables, and program variables), not just for the model variables. Classification into endogenous and exogenous groups and analysis of simultaneous structure is not done by the LISTDEP report.

LISTDER

prints a table of derivatives for FIT and SOLVE tasks. (The LISTDER option is applicable only for the default NEWTON method for SOLVE tasks.) The derivatives table shows each nonzero derivative computed for the problem. The derivative listed can be a constant, a variable in the model program, or a special derivative variable created to hold the result of the derivative expression. This option is turned on by the LISTCODE and PRINTALL options.

XREF

prints a cross-reference of the variables in the model program that shows where each variable was referenced or given a value. The XREF option is normally used in conjunction with the LIST option. A more detailed description is given in the section "Diagnostics and Debugging" on page 1168 .

General Printing Control Options

DETAILS

specifies the detailed printout. Parts of the printed output are expanded when the DETAILS option is specified. If ODS GRAPHICS ON is specified, the following additional graphs of the residuals are produced: ACF, PACF, IACF, white noise, and QQ plot versus the normal.

FLOW

prints a message for each statement in the model program as it is executed. This debugging option is needed very rarely and produces voluminous output.

MAXERRORS=n

specifies the maximum number of execution errors that can be printed. The default is MAXERRORS=50.

NDEC=n

specifies the precision of the format that PROC MODEL uses when printing various numbers. The default is NDEC=3, which means that PROC MODEL attempts to print values by using the D format but ensures that at least three significant digits are shown. If the $\mathrm{NDEC}=$ value is greater than nine, the BEST. format is used. The smallest value allowed is NDEC=2.

The NDEC= option affects the format of most, but not all, of the floating point numbers that PROC MODEL can print. For some values (such as parameter estimates), a precision limit one or two digits greater than the NDEC= value is used. This option does not apply to the precision of the variables in the output data set.

NOPRINT

suppresses the normal printed output but does not suppress error listings. Using any other print option turns the NOPRINT option off. The PRINT option can be used with the RESET statement to turn off NOPRINT.

PRINTALL

turns on all the printing-control options. The options set by PRINTALL are DETAILS; the model information options LIST, LISTDEP, LISTDER, XREF, BLOCK, and GRAPH; the FIT task printing options FSRSQ, COVB, CORRB, COVS, CORRS, DW, and COLLIN; and the SOLVE task printing options STATS, THEIL, SOLVEPRINT, and ITPRINT.

TRACE
prints the result of each operation in each statement in the model program as it is executed, in addition to the information printed by the FLOW option. This debugging option is needed very rarely and produces voluminous output.

MEMORYUSE

prints a report of the memory required for the various parts of the analysis.

FIT Task Options

The following options are used in the FIT statement (parameter estimation) and can also be used in the PROC MODEL statement: COLLIN, CONVERGE=, CORR, CORRB, CORRS, COVB, COVBEST=, COVS, DW, FIML, FSRSQ, GMM, HESSIAN=, I, INTGPRINT, ITALL, ITDETAILS, ITGMM, ITPRINT, ITOLS, ITSUR, IT2SLS, IT3SLS, KERNEL=, LTEBOUND=, MAXITER=, MAXSUBITER=, METHOD=, MINTIMESTEP=, NESTIT, N2SLS, N3SLS, OLS, OUTPREDICT, OUTRESID, OUTACTUAL, OUTLAGS, OUTALL, OUTCOV, SINGULAR=, STARTITER=, SUR, TIME=, VARDEF, and XPX. See the section "FIT Statement" on page 984 for a description of these options.

When used in the PROC MODEL or RESET statement, these are default options for subsequent FIT statements. For example, the statement

```
proc model n2sls ... ;
```

makes two-stage least squares the default parameter estimation method for FIT statements that do not specify an estimation method.

SOLVE Task Options

The following options used in the SOLVE statement can also be used in the PROC MODEL statement: CONVERGE=, DYNAMIC, FORECAST, INTGPRINT, ITPRINT, JACOBI, LTEBOUND=, MAXITER=, MAXSUBITER=, MINTIMESTEP=, NAHEAD=, NEWTON, OUTPREDICT, OUTRESID, OUTACTUAL, OUTLAGS, OUTERRORS, OUTALL, SEED=, SEIDEL, SIMULATE, SINGLE, SINGULAR=, SOLVEPRINT, START=, STATIC, STATS, THEIL, TIME=, and TYPE=. See the section "SOLVE Statement" on page 1000 for a description of these options.

When used in the PROC MODEL or RESET statement, these options provide default values for subsequent SOLVE statements.

BOUNDS Statement

```
BOUNDS bound1 <, bound2 ...> ;
```

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS statement constraints refer to the parameters estimated by the associated FIT statement (that is, to either the preceding FIT statement or, in the absence of a preceding FIT statement, to the following FIT statement). You can specify any number of BOUNDS statements.

Each bound is composed of parameters and constants and inequality operators:

item operator item < operator item < operator item ... \gg

Each item is a constant, the name of an estimated parameter, or a list of parameter names. Each operator is $<,>,<=$, or $>=$.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints; however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See the section "RESTRICT Statement" on page 999 for more information about the computational details of estimation with inequality restrictions.

Lagrange multipliers are reported for all the active boundary constraints. In the printed output and in the OUTEST = data set, the Lagrange multiplier estimates are identified with the names BOUND0, BOUND1, and so forth. The probability of the Lagrange multipliers are computed using a beta distribution (LaMotte 1994). To give the constraints more descriptive names, use the RESTRICT statement instead of the BOUNDS statement.

The following BOUNDS statement constrains the estimates of the parameters A and B and the ten parameters P1 through P10 to be between zero and one. This example illustrates the use of parameter lists to specify boundary constraints.

```
bounds 0 < a b p1-p10 < 1;
```

The following statements are an example of the use of the BOUNDS statement and they produce the output shown in Figure 18.13:

```
title 'Holzman Function (1969), Himmelblau No. 21, N=3';
data zero;
    do i = 1 to 99;
        output;
    end;
run;
proc model data=zero;
    parms x1= 100 x2= 12.5 x3= 3;
    bounds . 1 <= x1 <= 100,
            0 <= x2 <= 25.6,
            0 <= x3 <= 5;
    t = 2 / 3;
```

```
    u = 25 + (-50 * log(0.01 * i )) ** t;
    v = (u - x2) ** x3;
    w = exp(-v / x1);
    eq.foo = -.01 * i + w;
    fit foo / method=marquardt;
run;
```

Figure 18.13 Output from Bounded Estimation

BY Statement

BY variables ;

A BY statement is used with the FIT statement to obtain separate estimates for observations in groups defined by the BY variables. Note that if an output model file is written, using the OUTMODEL $=$ option, the parameter values stored are those from the last BY group processed. To save parameter estimates for each BY group, use the OUTEST= option in the FIT statement.

A BY statement is used with the SOLVE statement to obtain solutions for observations in groups defined by the BY variables. If the BY variables are identical in the DATA= data set and the ESTDATA= data set, then the two data sets are synchronized and the calculations are performed by using the data and parameters for each BY group. This holds for BY variables in the SDATA= data set as well. If the BY variables do not match, BY group processing is abandoned in either the ESTDATA= data set or the SDATA= data set, whichever has the missing BY value. If the DATA= data set does not contain BY variables and the ESTDATA= data set or the SDATA= data set does, then BY processing is performed for the ESTDATA= data set and the SDATA= data set by reusing the data in the DATA= data set for each BY group.

If both FIT and SOLVE tasks require BY group processing, then two separate BY statements are needed. If parameters for each BY group in the OUTEST = data set obtained from the FIT task are to be used for the corresponding BY group for the SOLVE task, then one of the two BY statements must appear after the SOLVE statement.

The following linear regression example illustrates the use of BY group processing. Both the datasets A and D to be used for fitting and solving, respectively, have three groups.

```
/*------ data set for fit task------ */
data a ;
    do group = 1 to 3;
        do i = 1 to 100 ;
            x = normal (1);
            y = 2 + 3*x + rannor(3535) ;
            output ;
        end ;
    end ;
run ;
/*------ data set for solve task------ */
data d ;
    do group = 1 to 3;
        x = normal(1) ;
        output ;
    end ;
run ;
/* ------ 2 BY statements, one of them appear after SOLVE statement ------ */
proc model data = a ;
    by group ;
    y = a0 + a1*x ;
    fit y / outest = b1 ;
    solve y / data = d estdata = b1 out = c1 ;
    by group ;
run;
proc print data = b1 ;run;
proc print data = c1 ; run;
```

Each of the parameter estimates obtained from the BY group processing in the FIT statement shown in Figure 18.14 is used in the corresponding BY group variables in the SOLVE statement. The output dataset is shown in Figure 18.15.

Figure 18.14 Listing of OUTEST= Data Set Created in the FIT Statement with Two BY Statements

Obs	group	_NAME_	_TYPE_	_STATUS_	_NUSED_	a0	a1
1	1		OLS	0 Converged	100	2.00338	3.00298
2	2		OLS	0 Converged	100	2.05091	3.08808
3	3		OLS	0 Converged	100	2.15528	3.04290

Figure 18.15 Listing of OUT= Data Set Created in the SOLVE Statement with Two BY Statements

Obs	group	_TYPE_	MODE	ERRORS_	y	\mathbf{x}
1	1	PREDICT	SIMULATE	0	7.42322	1.80482
2	2	PREDICT	SIMULATE	0	1.80413	-0.07992
3	3	PREDICT	SIMULATE	0	3.36202	0.39658

If only one BY statement is used and it appears before the SOLVE statement, then parameters for the last BY group in the OUTEST = data set are used for all BY groups for the SOLVE task.

```
/*------ 1 BY statement that appears before SOLVE statement------ */
proc model data = a ;
    by group ;
    y = a0 + a1*x ;
    fit y / outest = b2 ;
    solve y / data = d estdata = b2 out = c2 ;
run;
proc print data = b2 ; run;
proc print data = c2 ; run;
```

The estimates of the parameters are shown in Figure 18.16, and the output data set of the SOLVE statement is shown in Figure 18.17. Hence, the estimates and the predicted values obtained in the last BY group variable of both DATA C1 and C2 are the same while the others do not match.

Figure 18.16 Listing of OUTEST= Data Set Created in the FIT Statement with One BY Statement That Appears before the SOLVE Statement

Obs	group	_NAME	_TYPE_		_STATUS_	_NUSED_	a0	a1
1	1		OLS	0	Converged	100	2.00338	3.00298
2	2		OLS	0	Converged	100	2.05091	3.08808
3	3		OLS		Converged	100	2.15528	3.04290

Figure 18.17 Listing of OUT= Data Set Created in the SOLVE Statement with One BY Statement That Appears before the SOLVE Statement

Obs	_TYPE	_MODE	ERRORS_	Y	\mathbf{x}
1	PREDICT	SIMULATE	0	7.64717	1.80482
2	PREDICT	SIMULATE	0	1. 91211	-0.07992
3	PREDICT	SIMULATE	0	3.36202	0.39658

If only one BY statement is used and it appears after the SOLVE statement, then BY group processing does not apply to the FIT task. In this case, the OUTEST=data set does not contain the BY variable, and the single set of parameter estimates obtained from the FIT task are used for all BY groups during the SOLVE task.

```
/*------ 1 BY statement that appears after SOLVE statement------*/
proc model data = a ;
    y = a0 + a1*x ;
    fit y / outest = b3 ;
    solve y / data = d estdata = b3 out = c3 ;
    by group ;
run;
proc print data = b3 ; run;
proc print data = c3 ; run;
```

The output data B3 and C3 are listed in Figure 18.18 and Figure 18.19, respectively.
Figure 18.18 Listing of OUTEST= Data Set Created in the FIT Statement with One BY Statement That Appears after the SOLVE Statement

Obs	_NAME_	_TYPE_	_STATUS_	NUSED_ 20	a0	a1
1		OLS	0 Converged	300	2.06624	3.04219

Figure 18.19 Listing of OUT= Data Set Created in the First SOLVE Statement with One BY Statement That Appears after the SOLVE Statement

Obs	group	_TYPE_	_MODE_	_ERRORS_	\mathbf{y}	x
1	1	PREDICT	SIMULATE	0	7.55686	1.80482
2	2	PREDICT	SIMULATE	0	1.82312	-0.07992
3	3	PREDICT	SIMULATE	0	3.27270	0.39658

CONTROL Statement

CONTROL variable < value > ... ;
The CONTROL statement declares control variables and specifies their values. A control variable is like a parameter except that it has a fixed value and is not estimated from the data. You can use control variables for constants in model equations that you might want to change in different solution cases. You can use control variables to vary the program logic. Unlike the retained variables, these values are fixed across iterations.

ENDOGENOUS Statement

ENDOGENOUS variable < initial-values > ... ;
The ENDOGENOUS statement declares model variables and identifies them as endogenous. You can declare model variables with an ENDOGENOUS statement instead of with a VAR statement
to help document the model or to indicate the default solution variables. The variables declared endogenous are solved when a SOLVE statement does not indicate which variables to solve. Valid abbreviations for the ENDOGENOUS statement are ENDOG and ENDO.

The DEPENDENT statement is equivalent to the ENDOGENOUS statement and is provided for the convenience of non-econometric practitioners.

The ENDOGENOUS statement optionally provides initial values for lagged dependent variables. See the section "Lag Logic" on page 1161 for more information.

ERRORMODEL Statement

ERRORMODEL equation-name \sim distribution $<C D F=C D F$ (options) $>$;
The ERRORMODEL statement is the mechanism for specifying the distribution of the residuals. You must specify the dependent/endogenous variables or general-form model name, a tilde (\sim), and then a distribution with its parameters. The following options are used in the ERRORMODEL statement:

Options to Specify the Distribution

CAUCHY(< location, scale>)
specifies the Cauchy distribution. This option is supported only for simulation. The arguments correspond to the arguments of the SAS CDF function which computes the cumulative distribution function (ignoring the random variable argument).

CHISQUARED ($d f<, n c>$)
specifies the χ^{2} distribution. This option is supported only for simulation. The arguments correspond to the arguments of the SAS CDF function (ignoring the random variable argument).

GENERAL(Likelihood < , parm1, parm2, . . parmn >)
specifies the negative of a general log-likelihood function that you construct by using SAS programming statements. The procedure minimizes the negative log-likelihood function specified. parm1, parm $2, \ldots$ parmn are optional parameters for this distribution and are used for documentation purposes only.
$\mathbf{F}(n d f, d d f<, n c>)$
specifies the F distribution. This option is supported only for simulation. The arguments correspond to the arguments of the SAS CDF function (ignoring the random variable argument).

NORMAL $\left(v_{1} v_{2} \ldots v_{n}\right)$

specifies a multivariate normal (Gaussian) distribution with mean 0 and variances v_{1} through v_{n}.

POISSON(mean)

specifies the Poisson distribution. This option is supported only for simulation. The argu-
ments correspond to the arguments of the SAS CDF function (ignoring the random variable argument).

$\mathbf{T}\left(v_{1} v_{2} \cdots v_{n}, d f\right)$

specifies a multivariate t distribution with noncentrality 0 , variance v_{1} through v_{n}, and common degrees of freedom $d f$.

UNIFORM(< left, right >)

specifies the uniform distribution. This option is supported only for simulation. The arguments correspond to the arguments of the SAS CDF function (ignoring the random variable argument).

Options to Specify the CDF for Simulation

CDF=(CDF(options))

specifies the univariate distribution that is used for simulation so that the estimation can be done for one set of distributional assumptions and the simulation for another. The CDF can be any of the distributions from the previous section with the exception of the general likelihood. In addition, you can specify the empirical distribution of the residuals.

EMPIRICAL= (< TAILS=(options) >)

uses the sorted residual data to create an empirical CDF.

TAILS=(tail-options)

specifies how to handle the tails in computing the inverse CDF from an empirical distribution, where tail-options are:

NORMAL specifies the normal distribution to extrapolate the tails.
$\mathrm{T}(d f) \quad$ specifies the t distribution to extrapolate the tails.
PERCENT $=p \quad$ specifies the percentage of the observations to use in constructing each tail. The default for the PERCENT= option is 10. A normal distribution or a t distribution is used to extrapolate the tails to infinity. The variance for the tail distribution is obtained from the data so that the empirical CDF is continuous.

ESTIMATE Statement

ESTIMATE item < , item ...><, /options > ;
The ESTIMATE statement computes estimates of functions of the parameters.
The ESTIMATE statement refers to the parameters estimated by the associated FIT statement (that is, to either the preceding FIT statement or, in the absence of a preceding FIT statement, to the following FIT statement). You can use any number of ESTIMATE statements.

Let $\mathbf{h}(\theta)$ denote the function of parameters that needs to be estimated. Let $\hat{\theta}$ denote the unconstrained estimate of the parameter of interest, θ. Let $\hat{\mathbf{V}}$ be the estimate of the covariance matrix of θ. Denote

$$
\mathbf{A}(\theta)=\partial h(\theta) /\left.\partial \theta\right|_{\hat{\theta}}
$$

Then the standard error of the parameter function estimate is computed by obtaining the square root of $\mathbf{A}(\hat{\theta}) \hat{\mathbf{V}} \mathbf{A}^{\prime}(\hat{\theta})$. This is the same as the variance needed for a Wald type test statistic with null hypothesis $h(\theta)=0$.

If the expression of the function in the ESTIMATE statement includes a variable, then the value used in computing the function estimate is the last observation of the variable in the DATA= data set.

If you specify options on the ESTIMATE statement, a comma is required before the "/" character that separates the test expressions from the options, since the " $/$ " character can also be used within test expressions to indicate division. Each item is written as an optional name followed by an expression,

< "name" > expression

where "name" is a string used to identify the estimate in the printed output and in the OUTEST= data set.

Expressions can be composed of parameter names, arithmetic operators, functions, and constants. Comparison operators (such as $=$ or $<$) and logical operators (such as \&) cannot be used in ESTIMATE statement expressions. Parameters named in ESTIMATE expressions must be among the parameters estimated by the associated FIT statement.

You can use the following options in the ESTIMATE statement:

OUTEST=

specifies the name of the data set in which the estimate of the functions of the parameters are to be written. The format for this data set is identical to the OUTEST= data set for the FIT statement.

If you specify a name in the ESTIMATE statement, that name is used as the parameter name for the estimate in the OUTEST= data set. If no name is provided and the expression is just a symbol, the symbol name is used; otherwise, the string "_Estimate \#" is used, where "\#" is the variable number in the OUTEST= data set.

OUTCOV

writes the covariance matrix of the functions of the parameters to the OUTEST= data set in addition to the parameter estimates.

COVB

prints the covariance matrix of the functions of the parameters.

CORRB

prints the correlation matrix of the functions of the parameters.
The following statements are an example of the use of the ESTIMATE statement in a segmented model and produce the output shown in Figure 18.20:

```
data a;
    input y x @@;
datalines;
    .46 1 
    .78 8 . .70 9. .74 10 . 77 11 . 78 12 .74 13 . 80 13
    .80 15 . 78 16
;
title 'Segmented Model -- Quadratic with Plateau';
proc model data=a;
    x0 = -. 5 * b / c;
    if x < x0 then y = a + b*x + c*x*x;
    else y = a + b*x0 + c*x0*x0;
    fit y start=( a . 45 b . 5 c -. 0025 );
    estimate 'Join point' x0 ,
                'plateau' a + b*x0 + c*x0**2 ;
run;
```

Figure 18.20 ESTIMATE Statement Output

EXOGENOUS Statement

EXOGENOUS variable < initial-values > ...;
The EXOGENOUS statement declares model variables and identifies them as exogenous. You can declare model variables with an EXOGENOUS statement instead of with a VAR statement to help document the model or to indicate the default instrumental variables. The variables declared exogenous are used as instruments when an instrumental variables estimation method is requested (such as N2SLS or N3SLS) and an INSTRUMENTS statement is not used. Valid abbreviations for the EXOGENOUS statement are EXOG and EXO.

The INDEPENDENT statement is equivalent to the EXOGENOUS statement and is provided for
the convenience of non-econometric practitioners.
The EXOGENOUS statement optionally provides initial values for lagged exogenous variables. See the section "Lag Logic" on page 1161 for more information.

FIT Statement

```
FIT < equations > < PARMS=( parameter < values> ...) > < START=( parameter values
    ...) > < DROP=( parameter ...) > < INITIAL=( variable < = parameter | constant > ...)
    > < / options > ;
```

The FIT statement estimates model parameters by fitting the model equations to input data and optionally selects the equations to be fit. If the list of equations is omitted, all model equations that contain parameters are fitted.

The following options can be used in the FIT statement.
DROP=(parameters ...)
specifies that the named parameters not be estimated. All the parameters in the equations fit are estimated except those listed in the $\mathrm{DROP}=$ option. The dropped parameters retain their previous values and are not changed by the estimation.

INITIAL $=($ variable $=<$ parameter $/$ constant $>\ldots$)
associates a variable with an initial value as a parameter or a constant. This option applies only to ordinary differential equations. See the section "Ordinary Differential Equations" on page 1066 for more information.

PARMS= (parameters [values] ...)
selects a subset of the parameters for estimation. When the PARMS= option is used, only the named parameters are estimated. Any parameters not specified in the PARMS $=$ list retain their previous values and are not changed by the estimation.

In PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When more than one option is specified, the options are implemented in the following order of precedence (from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of 0.0001 is used.

PRL= WALD | LR | BOTH

requests confidence intervals on estimated parameters. By default, the PRL option produces 95% likelihood ratio confidence limits. The coverage of the confidence interval is controlled by the ALPHA= option in the FIT statement.

START=(parameter values ...)
supplies starting values for the parameter estimates. In PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When more than one option is specified, the options are implemented in the following order of precedence (from
highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA $=$ option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of 0.0001 is used. If the START= option specifies more than one starting value for one or more parameters, a grid search is performed over all combinations of the values, and the best combination is used to start the iterations. For more information, see the STARTITER= option.

Options to Control the Estimation Method Used

ADJSMMV

specifies adding the variance adjustment from simulating the moments to the variancecovariance matrix of the parameter estimators. By default, no adjustment is made.

COVBEST=GLS | CROSS | FDA

specifies the variance-covariance estimator used for FIML. COVBEST=GLS selects the generalized least squares estimator. COVBEST=CROSS selects the crossproducts estimator. COVBEST=FDA selects the inverse of the finite difference approximation to the Hessian. The default is COVBEST=CROSS.

DYNAMIC

specifies dynamic estimation of ordinary differential equations. See the section "Ordinary Differential Equations" on page 1066 for more details.

FIML

specifies full information maximum likelihood estimation.

GINV=G2 | G4

specifies the type of generalized inverse to be used when computing the covariance matrix. G4 selects the Moore-Penrose generalized inverse. The default is GINV=G2.

Rather than deleting linearly related rows and columns of the covariance matrix, the MoorePenrose generalized inverse averages the variance effects between collinear rows. When the option GINV=G4 is used, the Moore-Penrose generalized inverse is used to calculate standard errors and the covariance matrix of the parameters as well as the change vector for the optimization problem. For singular systems, a normal G2 inverse is used to determine the singular rows so that the parameters can be marked in the parameter estimates table. A G2 inverse is calculated by satisfying the first two properties of the Moore-Penrose generalized inverse; that is, $\mathbf{A} \mathbf{A}^{+} \mathbf{A}=\mathbf{A}$ and $\mathbf{A}^{+} \mathbf{A} \mathbf{A}^{+}=\mathbf{A}^{+}$. Whether or not you use a G4 inverse, if the covariance matrix is singular, the parameter estimates are not unique. Refer to Noble and Daniel (1977, pp. 337-340) for more details about generalized inverses.

GENGMMV

specify GMM variance under arbitrary weighting matrix. See the section "Estimation Methods" on page 1007 for more details.

This is the default method for GMM estimation.

GMM

specifies generalized method of moments estimation.

HCCME= 0|1|2|3|NO
specifies the type of heteroscedasticity-consistent covariance matrix estimator to use for OLS, 2SLS, 3SLS, SUR, and the iterated versions of these estimation methods. The number corresponds to the type of covariance matrix estimator to use as

$$
\begin{aligned}
H C_{0}: & \hat{\epsilon}_{t}^{2} \\
H C_{1}: & \frac{n}{n-d f} \hat{\epsilon}_{t}^{2} \\
H C_{2}: & \hat{\epsilon}_{t}^{2} /\left(1-\hat{h}_{t}\right) \\
H C_{3}: & \hat{\epsilon}_{t}^{2} /\left(1-\hat{h}_{t}\right)^{2}
\end{aligned}
$$

The default is NO.

ITGMM

specifies iterated generalized method of moments estimation.
ITOLS
specifies iterated ordinary least squares estimation. This is the same as OLS unless there are cross-equation parameter restrictions.

ITSUR
specifies iterated seemingly unrelated regression estimation
IT2SLS
specifies iterated two-stage least squares estimation. This is the same as 2SLS unless there are cross-equation parameter restrictions.

IT3SLS
specifies iterated three-stage least squares estimation.
KERNEL=(PARZEN | BART | QS, <c>, <e>)
KERNEL=PARZEN | BART | QS
specifies the kernel to be used for GMM and ITGMM. PARZEN selects the Parzen kernel, BART selects the Bartlett kernel, and QS selects the quadratic spectral kernel. $e \geq 0$ and $c \geq 0$ are used to compute the bandwidth parameter. The default is KERNEL=(PARZEN, 1, 0.2). See the section "Estimation Methods" on page 1007 for more details.

N2SLS | 2SLS

specifies nonlinear two-stage least squares estimation. This is the default when an INSTRUMENTS statement is used.

N3SLS | 3SLS

specifies nonlinear three-stage least squares estimation.

NDRAW < =number of draws >

requests the simulation method for estimation. H is the number of draws. If number of draws is not specified, the default H is set to 10 .

NOOLS

NO2SLS

specifies bypassing OLS or 2SLS to get initial parameter estimates for GMM, ITGMM, or FIML. This is important for certain models that are poorly defined in OLS or 2SLS, or if good initial parameter values are already provided. Note that for GMM, the \mathbf{V} matrix is created by using the initial values specified and this might not be consistently estimated.

NO3SLS

specifies not to use 3SLS automatically for FIML initial parameter starting values.

NOGENGMMV

specifies not to use GMM variance under arbitrary weighting matrix. Use GMM variance under optimal weighting matrix instead. See the section "Estimation Methods" on page 1007 for more details.

NPREOBS =number of obs to initialize

specifies the initial number of observations to run the simulation before the simulated values are compared to observed variables. This option is most useful in cases where the program statements involve lag operations. Use this option to avoid the effect of the starting point on the simulation.

NVDRAW =number of draws for V matrix

specifies H^{\prime}, the number of draws for V matrix. If this option is not specified, the default H^{\prime} is set to 20 .

OLS specifies ordinary least squares estimation. This is the default.

SUR

 specifies seemingly unrelated regression estimation.
VARDEF=N | WGT | DF | WDF

specifies the denominator to be used in computing variances and covariances, MSE, root MSE measures, and so on. VARDEF=N specifies that the number of nonmissing observations be used. VARDEF=WGT specifies that the sum of the weights be used. VARDEF=DF specifies that the number of nonmissing observations minus the model degrees of freedom (number of parameters) be used. VARDEF=WDF specifies that the sum of the weights minus the model degrees of freedom be used. The default is VARDEF=DF. VARDEF=N is the only option used for FIML estimation regardless of any option specified.

Data Set Options

DATA=SAS-data-set

specifies the input data set. Values for the variables in the program are read from this data set. If the DATA= option is not specified on the FIT statement, the data set specified by the DATA = option on the PROC MODEL statement is used.

ESTDATA=SAS-data-set

specifies a data set whose first observation provides initial values for some or all of the parameters.

MISSING=PAIRWISE | DELETE

The option MISSING=PAIRWISE specifies that missing values are tracked on an equation-by-equation basis. The MISSING=DELETE option specifies that the entire observation is omitted from the analysis when any equation has a missing predicted or actual value for the equation. The default is MISSING=DELETE.

OUT=SAS-data-set

names the SAS data set to contain the residuals, predicted values, or actual values from each estimation. The residual values written to the OUT= data set are defined as the actual predicted, which is the negative of RESID.variable as defined in the section "Equation Translations" on page 1155. Only the residuals are output by default.

OUTACTUAL

writes the actual values of the endogenous variables of the estimation to the OUT= data set. This option is applicable only if the OUT= option is specified.

OUTALL

selects the OUTACTUAL, OUTERRORS, OUTLAGS, OUTPREDICT, and OUTRESID options.

OUTCOV

COVOUT
writes the covariance matrix of the estimates to the OUTEST= data set in addition to the parameter estimates. The OUTCOV option is applicable only if the OUTEST= option is also specified.

OUTEST=SAS-data-set

names the SAS data set to contain the parameter estimates and optionally the covariance of the estimates.

OUTLAGS

writes the observations used to start the lags to the OUT= data set. This option is applicable only if the OUT= option is specified.

OUTPREDICT

writes the predicted values to the OUT= data set. This option is applicable only if OUT= is specified.

OUTRESID

writes the residual values computed from the parameter estimates to the OUT= data set. The OUTRESID option is the default if neither OUTPREDICT nor OUTACTUAL is specified. This option is applicable only if the OUT= option is specified. If the h.var equation is specified, the residual values written to the OUT= data set are the normalized residuals, defined as actual - predicted, divided by the square root of the h.var value. If the WEIGHT statement is used, the residual values are calculated as actual - predicted multiplied by the square root of the WEIGHT variable.

OUTS=SAS-data-set

names the SAS data set to contain the estimated covariance matrix of the equation errors. This is the covariance of the residuals computed from the parameter estimates.

OUTSN=SAS-data-set

names the SAS data set to contain the estimated normalized covariance matrix of the equation errors. This is valid for multivariate t distribution estimation.

OUTSUSED=SAS-data-set

names the SAS data set to contain the \mathbf{S} matrix used in the objective function definition. The OUTSUSED= data set is the same as the OUTS= data set for the methods that iterate the \mathbf{S} matrix.

OUTUNWGTRESID

writes the unweighted residual values computed from the parameter estimates to the OUT= data set. These are residuals computed as actual - predicted with no accounting for the WEIGHT statement, the _WEIGHT_ variable, or any variance expressions. This option is applicable only if the OUT= option is specified.

OUTV=SAS-data-set

names the SAS data set to contain the estimate of the variance matrix for GMM and ITGMM.

SDATA=SAS-data-set

specifies a data set that provides the covariance matrix of the equation errors. The matrix read from the SDATA= data set is used for the equation covariance matrix (\mathbf{S} matrix) in the estimation. (The SDATA= S matrix is used to provide only the initial estimate of \mathbf{S} for the methods that iterate the \mathbf{S} matrix.)

TIME=name

specifies the name of the time variable. This variable must be in the data set.

TYPE=name

specifies the estimation type to read from the SDATA = and ESTDATA= data sets. The name specified in the TYPE= option is compared to the _TYPE_ variable in the ESTDATA= and SDATA= data sets to select observations to use in constructing the covariance matrices. When the TYPE= option is omitted, the last estimation type in the data set is used. Valid values are the estimation methods used in PROC MODEL.

VDATA=SAS-data-set

specifies a data set that contains a variance matrix for GMM and ITGMM estimation. See the section "Output Data Sets" on page 1110 for details.

Printing Options for FIT Tasks

BREUSCH=(variable-list)

specifies the modified Breusch-Pagan test, where variable-list is a list of variables used to model the error variance.

CHOW=obs

CHOW=(obs1 obs2 . . . obsn)
prints the Chow test for break points or structural changes in a model. The argument is the number of observations in the first sample or a parenthesized list of first sample sizes. If the size of the one of the two groups in which the sample is partitioned is less than the number of parameters, then a predictive Chow test is automatically used. See the section "Chow Tests" on page 1081 for details.

COLLIN

prints collinearity diagnostics for the Jacobian crossproducts matrix (XPX) after the parameters have converged. Collinearity diagnostics are also automatically printed if the estimation fails to converge.

CORR

prints the correlation matrices of the residuals and parameters. Using CORR is the same as using both CORRB and CORRS.

CORRB

prints the correlation matrix of the parameter estimates.

CORRS

prints the correlation matrix of the residuals.

COV

prints the covariance matrices of the residuals and parameters. Specifying COV is the same as specifying both COVB and COVS.

COVB

prints the covariance matrix of the parameter estimates.
covs
prints the covariance matrix of the residuals.

DW <=>

prints Durbin-Watson d statistics, which measure autocorrelation of the residuals. When the residual series is interrupted by missing observations, the Durbin-Watson statistic calculated is d^{\prime} as suggested by Savin and White (1978). This is the usual Durbin-Watson computed by ignoring the gaps. Savin and White show that it has the same null distribution as the DW with no gaps in the series and can be used to test for autocorrelation using the standard tables. The Durbin-Watson statistic is not valid for models that contain lagged endogenous variables.

You can use the DW= option to request higher-order Durbin-Watson statistics. Since the ordinary Durbin-Watson statistic tests only for first-order autocorrelation, the Durbin-Watson statistics for higher-order autocorrelation are called generalized Durbin-Watson statistics.

DWPROB

prints the significance level (p-values) for the Durbin-Watson tests. Since the Durbin-Watson p-values are computationally expensive, they are not reported by default. In the DurbinWatson test, the null hypothesis is that there is autocorrelation at a specific lag.

See the section "Generalized Durbin-Watson Tests" for limitations of the statistic in the Chapter 8, "The AUTOREG Procedure."

FSRSQ

prints the first-stage R^{2} statistics for instrumental estimation methods. These R^{2} statistics measure the proportion of the variance retained when the Jacobian columns associated with the parameters are projected through the instruments space.

GODFREY

GODFREY=n

performs Godfrey's tests for autocorrelated residuals for each equation, where n is the maximum autoregressive order, and specifies that Godfrey's tests be computed for lags 1 through n. The default number of lags is one.

HAUSMAN

performs Hausman's specification test, or m-statistics.

NORMAL

performs tests of normality of the model residuals.

PCHOW=obs

PCHOW=(obs1 obs2 \ldots obsn)
prints the predictive Chow test for break points or structural changes in a model. The argument is the number of observations in the first sample or a parenthesized list of first sample sizes. See the section "Chow Tests" on page 1081 for details.

PRINTALL

specifies the printing options COLLIN, CORRB, CORRS, COVB, COVS, DETAILS, DW, and FSRSQ.

WHITE

specifies White's test.

Options to Control Iteration Output

Details of the output produced are discussed in the section "Iteration History" on page 1042.
prints the inverse of the crossproducts Jacobian matrix at each iteration.
ITALL
specifies all iteration printing-control options (I, ITDETAILS, ITPRINT, and XPX). ITALL also prints the crossproducts matrix (labeled CROSS), the parameter change vector, and the estimate of the cross-equation covariance of residuals matrix at each iteration.

ITDETAILS

prints a detailed iteration listing. This includes the ITPRINT information and additional statistics.

ITPRINT

prints the parameter estimates, objective function value, and convergence criteria at each iteration.

XPX
prints the crossproducts Jacobian matrix at each iteration.

Options to Control the Minimization Process

The following options can be helpful when you experience a convergence problem:

CONVERGE=value1

CONVERGE=(value1, value2)
specifies the convergence criteria. The convergence measure must be less than valuel before convergence is assumed. value 2 is the convergence criterion for the \mathbf{S} and \mathbf{V} matrices for \mathbf{S} and \mathbf{V} iterated methods. value 2 defaults to value 1 . See the section "Convergence Criteria" on page 1028 for details. The default value is CONVERGE $=0.001$.

HESSIAN=CROSS | GLS | FDA

specifies the Hessian approximation used for FIML. HESSIAN=CROSS selects the crossproducts approximation to the Hessian, HESSIAN=GLS selects the generalized least squares approximation to the Hessian, and HESSIAN=FDA selects the finite difference approximation to the Hessian. HESSIAN=GLS is the default.

LTEBOUND=n

specifies the local truncation error bound for the integration. This option is ignored if no ordinary differential equations (ODEs) are specified.

EPSILON = value
specifies the tolerance value used to transform strict inequalities into inequalities when restrictions on parameters are imposed. By default, EPSILON=1E-8. See the section "Restrictions and Bounds on Parameters" on page 1076 for details.

MAXITER=n

specifies the maximum number of iterations allowed. The default is MAXITER $=100$.

MAXSUBITER=n

specifies the maximum number of subiterations allowed for an iteration. For the GAUSS method, the MAXSUBITER= option limits the number of step halvings. For the MARQUARDT method, the MAXSUBITER= option limits the number of times λ can be increased. The default is MAXSUBITER=30. See the section "Minimization Methods" on page 1027 for details.

METHOD=GAUSS | MARQUARDT

specifies the iterative minimization method to use. METHOD=GAUSS specifies the Gauss-Newton method, and METHOD=MARQUARDT specifies the Marquardt-Levenberg method. The default is METHOD=GAUSS. If the default GAUSS method fails to converge, the procedure switches to the MARQUARDT method. See the section "Minimization Methods" on page 1027 for details.

MINTIMESTEP=n

specifies the smallest allowed time step to be used in the integration. This option is ignored if no ODEs are specified.

NESTIT

changes the way the iterations are performed for estimation methods that iterate the estimate of the equation covariance (\mathbf{S} matrix). The NESTIT option is relevant only for the methods that iterate the estimate of the covariance matrix (ITGMM, ITOLS, ITSUR, IT2SLS, and IT3SLS). See the section "Details on the Covariance of Equation Errors" on page 1026 for an explanation of NESTIT.

SINGULAR=value

 specifies the smallest pivot value allowed. The default 1.0E-12.
STARTITER= n

specifies the number of minimization iterations to perform at each grid point. The default is STARTITER=0, which implies that no minimization is performed at the grid points. See the section "Using the STARTITER Option" on page 1035 for more details.

Other Options

Other options that can be used on the FIT statement include the following that list and analyze the model: BLOCK, GRAPH, LIST, LISTCODE, LISTDEP, LISTDER, and XREF. The following printing control options are also available: DETAILS, FLOW, INTGPRINT, MAXERRORS=, NOPRINT, PRINTALL, and TRACE. For complete descriptions of these options, see the discussion of the PROC MODEL statement options earlier in this chapter.

ID Statement

ID variables ;

The ID statement specifies variables to identify observations in error messages or other listings and in the OUT= data set. The ID variables are normally SAS date or datetime variables. If more than one ID variable is used, the first variable is used to identify the observations; the remaining variables are added to the OUT= data set.

INCLUDE Statement

```
INCLUDE model-names ...;
```

The INCLUDE statement reads model files and inserts their contents into the current model. However, instead of replacing the current model as the RESET MODEL= option does, the contents of included model files are inserted into the model program at the position that the INCLUDE statement appears.

INSTRUMENTS Statement

```
INSTRUMENTS variables < _EXOG_ > ;
INSTRUMENTS < variables-list> < _EXOG_ > < EXCLUDE =( parameters ) > < / options >
        ;
INSTRUMENTS (equation, variables) (equation, variables)... ;
```

The INSTRUMENTS statement specifies the instrumental variables to be used in the N2SLS, N3SLS, IT2SLS, IT3SLS, GMM, and ITGMM estimation methods.

There are three ways of specifying the INSTRUMENTS statement. The first form of the INSTRUMENTS statement is declared before a FIT statement and defines the default instruments list. The items specified as instruments can be variables or the special keyword _EXOG_. The keyword _EXOG_ indicates that all the model variables declared EXOGENOUS are to be added to the instruments list. If a single INSTRUMENTS statement of the first form is declared before multiple FIT statements, then it serves as the default instruments list for each of the FIT statements. However, if any of these FIT statements are followed by separate INSTRUMENTS statement, then the latter take precedence over the default list. Hence, in the case of multiple FIT statements, the INSTRUMENTS statement for a particular FIT statement is written below the FIT statement if instruments other than the default are required. For a single FIT statement, you can declare the INSTRUMENTS statement of the first form either preceding or following the FIT statement.

The second form of the INSTRUMENTS statement is used only after the FIT statement and before the next RUN statement. The items specified as instruments for the second form can be variables, names of parameters to be estimated, or the special keyword _EXOG_. If you specify the name of a parameter in the instruments list, the partial derivatives of the equations with respect to the parameter (that is, the columns of the Jacobian matrix associated with the parameter) are used as instruments. The parameter itself is not used as an instrument. These partial derivatives should not depend on any of the parameters to be estimated. Only the names of parameters to be estimated can be specified.

Note that an INSTRUMENTS statement of only the first form declared before multiple FIT statements serves as the default instruments list. Hence, in the cases of multiple as well as single FIT statements, you can declare the second form of INSTRUMENTS statements only following the FIT statements.

In the case where a FIT statement is preceded by an INSTRUMENTS statement of the second form in error and not followed by any INSTRUMENTS statement, then the default list is used. This default list is given by the INSTRUMENTS statement of the first form as explained above. If such a list is not declared, all the model variables declared EXOGENOUS comprise the default.

A third form of the INSTRUMENTS statement is used to specify instruments for each equation. No explicit intercept is added, parameters cannot be specified to represent instruments, and the _EXOG_ keyword is not allowed. Equations not explicitly assigned instruments use all the instruments specified for the other equations as well as instruments not assigned specific equations. In the following statements, $z 1, z 2$, and $z 3$ are instruments used with equation $y 1$, and $z 2, z 3$, and $z 4$ are instruments used with equation y 2 .

```
proc model data=data_sim;
    exogenous x1 x2;
    parms a b c d e f;
    y1 =a*x1**2 + b*x2**2 + c*x1*x2 ;
    y2 =d*x1**2 + e*x2**2 + f*x1*x2**2;
    fit y1 y2 / 3sls ;
    instruments (y1, z1 z2 z3) (y2,z2 z3 z4);
run;
```


EXCLUDE=(parameters)

specifies that the derivatives of the equations with respect to all of the parameters to be estimated (except the parameters listed in the EXCLUDE list) be used as instruments, in addition to the other instruments specified. If you use the EXCLUDE= option, you should be sure that the derivatives with respect to the nonexcluded parameters in the estimation are independent of the endogenous variables and not functions of the parameters estimated.

The following options can be specified on the INSTRUMENTS statement following a slash (/):

NOINTERCEPT

NOINT
excludes the constant of 1.0 (intercept) from the instruments list. An intercept is included as an instrument while using the first or second form of the INSTRUMENTS statement unless NOINTERCEPT is specified.

When a FIT statement specifies an instrumental variables estimation method and no INSTRUMENTS statement accompanies the FIT statement, the default instruments are used. If no default instruments list has been specified, all the model variables declared EXOGENOUS are used as instruments. See the section "Choice of Instruments" on page 1084 for more details.

INTONLY

specifies that only the intercept be used as an instrument. This option is used for GMM estimation where the moments have been specified explicitly.

LABEL Statement

LABEL variable='label'... ;
The LABEL statement specifies a label of up to 255 characters for parameters and other variables used in the model program. Labels are used to identify parts of the printout of FIT and SOLVE tasks. The labels are displayed in the output if the LINESIZE= option is large enough.

MOMENT Statement

MOMENT variables $=$ moment specification ;

In many scenarios, endogenous variables are observed from data. From the models, you can simulate these endogenous variables based on a fixed set of parameters. The goal of simulated method of moments (SMM) is to find a set of parameters such that the moments of the simulated data match the moments of the observed variables. If there are many moments to match, the code might be tedious. The following MOMENT statement provides a way to generate some commonly used moments automatically. Multiple MOMENT statements can be used.
variables can be one or more endogenous variables.
moment specification can have the following four types:

- (number list) specifies that the endogenous variable is raised to the power specified by each number in number list. For example,

```
moment y = (2 3);
```

adds the following two equations to be estimated:

```
eq._moment_1 = y**2 - pred.y**2;
eq._moment_2 = y**3 - pred.y**3;
```

- ABS(number list) specifies that the absolute value of the endogenous variable is raised to the power specified by each number in number list. For example,

```
moment y = ABS(3);
```

adds the following equation to be estimated:

```
eq._moment_2 = abs(y)**3 - abs(pred.y)**3;
```

- LAGnum (number list) specifies that the endogenous variable is multiplied by the num th lag of the endogenous variable, and this product is raised to the power specified by each number in number list. For example,

```
moment y = LAG4(3);
```

adds the following equation to be estimated:

```
eq._moment_3 = (y*lag4(y))**3 - (pred.y*lag4 (pred.y))**3;
```

- ABS_LAGnum ($n u m b e r$ list) specifies that the endogenous variable is multiplied by the num th lag of the endogenous variable, and the absolute value of this product is raised to the power specified by each number in number list. For example,

```
moment y = ABS_LAG4(3);
```

adds the following equation to be estimated:

```
eq._moment_4 = abs(y*lag4(y))**3 - abs(pred.y*lag4(pred.y))**3;
```

The following PROC MODEL statements use the MOMENT statement to generate 24 moments and fit these moments using SMM.

```
proc model data=_tmpdata list;
    parms a b . }5\mathrm{ s 1;
    instrument _exog_ / intonly;
    u = rannor( 10091 );
    z = rannor( 97631 );
    lsigmasq = xlag(sigmasq,exp(a));
    lnsigmasq = a + b * log(lsigmasq) + s * u;
    sigmasq = exp( lnsigmasq );
    y = sqrt(sigmasq) * z;
    moment y = (2 4) abs(1 3) abs_lag1(1 2) abs_lag2(1 2);
    moment y = abs_lag3(1 2) abs_lag4(1 2)
            abs_lag5(1 2) abs_lag6(1 2)
            abs_lag7(1 2) abs_lag8(1 2)
            abs_lag9(1 2) abs_lag10(1 2);
    fit y / gmm npreobs=20 ndraw=10;
    bound s > 0, 1>b>0;
run;
```


OUTVARS Statement

OUTVARS variables ;

The OUTVARS statement specifies additional variables defined in the model program to be output to the OUT= data sets. The OUTVARS statement is not needed unless the variables to be added to the output data set are not referred to by the model, or unless you want to include parameters or other special variables in the OUT= data set. The OUTVARS statement includes additional variables, whereas the KEEP statement excludes variables.

PARAMETERS Statement

PARAMETERS variable < value > < variable < value \gg . . ;

The PARAMETERS statement declares the parameters of a model and optionally sets their initial values. Valid abbreviations are PARMS and PARM.

Each parameter has a single value associated with it, which is the same for all observations. Lagging is not relevant for parameters. If a value is not specified in the PARMS statement (or by the PARMS $=$ option of a FIT statement), the value defaults to 0.0001 for FIT tasks and to a missing value for SOLVE tasks.

Programming Statements

To define the model, you can use most of the programming statements that are allowed in the SAS DATA step. See the SAS Language Reference: Dictionary for more information.

RANGE Statement

RANGE variable < = first > < TO last > ;
The RANGE statement specifies the range of observations to be read from the DATA= data set. For FIT tasks, the RANGE statement controls the period of fit for the estimation. For SOLVE tasks, the RANGE statement controls the simulation period or forecast horizon.

The RANGE variable must be a numeric variable in the DATA= data set that identifies the observations, and the data set must be sorted by the RANGE variable. The first observation in the range is identified by first, and the last observation is identified by last.

PROC MODEL uses the first l observations prior to first to initialize the lags, where l is the maximum number of lags needed to evaluate any of the equations to be fit or solved, or the maximum number of lags needed to compute any of the instruments when an instrumental variables estimation method is used. There should be at least l observations in the data set before first. If last is not specified, all the nonmissing observations starting with first are used.

If first is omitted, the first l observations are used to initialize the lags, and the rest of the data, until last, is used. If a RANGE statement is used but both first and last are omitted, the RANGE statement variable is used to report the range of observations processed.

The RANGE variable should be nonmissing for all observations. Observations that contain missing RANGE values are deleted.

The following are examples of RANGE statements:

```
range year = 1971 to 1988; /* yearly data */
range date = '1feb73'd to '1nov82'd; /* monthly data */
range time = 60.5; /* time in years */
range year to 1977; /* use all years through 1977 */
range date; /* use values of date to report period-of-fit */
```

If no RANGE statements follow multiple FIT statements and a single RANGE statement is declared before all the FIT statements, estimation in each of the multiple FIT statements is based on the data specified in the single RANGE statement. A single RANGE statement following multiple FIT statements affects only the fit immediately preceding it.

If the FIT statement is both followed by and preceded by RANGE statements, the following RANGE statement takes precedence over the preceding RANGE statement.

In the case where a range of data is to be used for a particular SOLVE task, the RANGE statement should be specified following the SOLVE statement in the case of either single or multiple SOLVE statements.

RESET Statement

RESET options ;

All of the options of the PROC MODEL statement can be reset by the RESET statement. In addition, the RESET statement supports one additional option:

PURGE

deletes the current model so that a new model can be defined.
When the MODEL= option is used in the RESET statement, the current model is deleted before the new model is read.

RESTRICT Statement

RESTRICT restriction1 < , restriction2 ... > ;
The RESTRICT statement is used to impose linear and nonlinear restrictions on the parameter estimates.

RESTRICT statements refer to the parameters estimated by the associated FIT statement (that is, to either the preceding FIT statement or, in the absence of a preceding FIT statement, to the following FIT statement). You can specify any number of RESTRICT statements.

Each restriction is written as an optional name, followed by an expression, followed by an equality operator (=) or an inequality operator ($<,>,<=,>=$), followed by a second expression:
< "name" > expression operator expression
The optional "name" is a string used to identify the restriction in the printed output and in the OUTEST= data set. The operator can be $=,<,>,<=$, or $>=$. The operator and second expression are optional.

Restriction expressions can be composed of parameter names, arithmetic operators, functions, and constants. Comparison operators (such as $=$ or $<$) and logical operators (such as \&) cannot be used
in RESTRICT statement expressions. Parameters named in restriction expressions must be among the parameters estimated by the associated FIT statement. Expressions can refer to variables defined in the program.

The restriction expressions can be linear or nonlinear functions of the parameters.
The following is an example of the use of the RESTRICT statement:

```
proc model data=one;
    endogenous y1 y2;
    exogenous x1 x2;
    parms a b c;
    restrict b*(b+c) <= a;
    eq.one = -y1/c + a/x2 + b * x1**2 + c * x2**2;
    eq.two = -y2 * y1 + b * x2**2 - c/(2 * x1);
    fit one two / fiml;
run;
```


SOLVE Statement

```
SOLVE variables < SATISFY= equations> </options>;
```

The SOLVE statement specifies that the model be simulated or forecast for input data values and, optionally, selects the variables to be solved. If the list of variables is omitted, all of the model variables declared ENDOGENOUS are solved. If no model variables are declared ENDOGENOUS, then all model variables are solved.

The following specification can be used in the SOLVE statement:

SATISFY=equation

SATISFY=(equations)

specifies a subset of the model equations that the solution values are to satisfy. If the SATISFY= option is not used, the solution is computed to satisfy all the model equations. Note that the number of equations must equal the number of variables solved.

Data Set Options

DATA=SAS-data-set

names the input data set. The model is solved for each observation read from the DATA= data set. If the DATA= option is not specified on the SOLVE statement, the data set specified by the DATA= option in the PROC MODEL statement is used.

ESTDATA=SAS-data-set

names a data set whose first observation provides values for some or all of the parameters and whose additional observations (if any) give the covariance matrix of the parameter estimates.

The covariance matrix read from the ESTDATA= data set is used to generate multivariate normal pseudo-random shocks to the model parameters when the RANDOM= option requests Monte Carlo simulation.

OUT=SAS-data-set

outputs the predicted (solution) values, residual values, actual values, or equation errors from the solution to a data set. The residual values are the actual-predicted values, which is the negative of RESID.variable as defined in the section "Equation Translations" on page 1155. Only the solution values are output by default.

OUTACTUAL

outputs the actual values of the solved variables read from the input data set to the OUT= data set. This option is applicable only if the OUT= option is specified.

OUTALL

specifies the OUTACTUAL, OUTERRORS, OUTLAGS, OUTPREDICT, and OUTRESID options.

OUTERRORS

writes the equation errors to the OUT= data set. These values are normally very close to zero when a simultaneous solution is computed; they can be used to double-check the accuracy of the solution process. It is applicable only if the OUT= option is specified.

OUTLAGS

writes the observations used to start the lags to the OUT= data set. This option is applicable only if the OUT= option is specified.

OUTPREDICT

writes the solution values to the OUT= data set. This option is relevant only if the OUT= option is specified.

The OUTPREDICT option is the default unless one of the other output options is used.

OUTRESID

writes the residual values computed as the actual - predicted values and is not the same as the RESID.variable values. This option is applicable only if the OUT= option is specified.

PARMSDATA=SAS-data-set

specifies a data set that contains the parameter estimates. See the section "Input Data Sets" on page 1104 for more details.

RESIDDATA=SAS-data-set

specifies a data set that contains the residuals that are to be used in the empirical distribution. This data set can be created using the OUT= option on the FIT statement.

SDATA=SAS-data-set

specifies a data set that provides the covariance matrix of the equation errors. The covariance matrix read from the SDATA= data set is used to generate multivariate normal pseudo-random shocks to the equations when the RANDOM= option requests Monte Carlo simulation.

TYPE=name

specifies the estimation type. The name specified in the TYPE= option is compared to the _TYPE_ variable in the ESTDATA= and SDATA= data sets to select observations to use in constructing the covariance matrices. When TYPE= is omitted, the last estimation type in the data set is used.

Solution Mode Options: Lag Processing

DYNAMIC

specifies a dynamic solution. In the dynamic solution mode, solved values are used by the lagging functions. DYNAMIC is the default.

NAHEAD $=n$

specifies a simulation of n-period-ahead dynamic forecasting. The NAHEAD $=$ option is used to simulate the process of using the model to produce successive forecasts to a fixed forecast horizon, in which each forecast uses the historical data available at the time the forecast is made.

Note that NAHEAD $=1$ produces a static (one-step-ahead) solution. NAHEAD=2 produces a solution that uses one-step-ahead solutions for the first lag (LAG1 functions return static predicted values) and actual values for longer lags. NAHEAD $=3$ produces a solution that uses NAHEAD $=2$ solutions for the first lags, NAHEAD $=1$ solutions for the second lags, and actual values for longer lags. In general, NAHEAD $=n$ solutions use NAHEAD $=n-1$ solutions for LAG1, NAHEAD $=n-2$ solutions for LAG2, and so forth.

START=S

specifies static solutions until the s th observation and then changes to dynamic solutions. If the START $=s$ option is specified, the first observation in the range in which LAG n delivers solved predicted values is $s+n$, while LAG n returns actual values for earlier observations.

STATIC

specifies a static solution. In static solution mode, actual values of the solved variables from the input data set are used by the lagging functions.

Solution Mode Options: Use of Available Data

FORECAST

specifies that the actual value of a solved variable is used as the solution value (instead of the predicted value from the model equations) whenever nonmissing data are available in the input data set. That is, in FORECAST mode, PROC MODEL solves only for those variables that are missing in the input data set.

SIMULATE

specifies that PROC MODEL always solves for all solution variables as a function of the input values of the other variables, even when actual data for some of the solution variables are available in the input data set. SIMULATE is the default.

Solution Mode Options: Numerical Solution Method

JACOBI

computes a simultaneous solution using a Jacobi iteration.

NEWTON

computes a simultaneous solution by using Newton's method. When the NEWTON option is selected, the analytic derivatives of the equation errors with respect to the solution variables are computed, and memory-efficient sparse matrix techniques are used for factoring the Jacobian matrix.

The NEWTON option can be used to solve both normalized-form and general-form equations and can compute goal-seeking solutions. NEWTON is the default.

SEIDEL

computes a simultaneous solution by using a Gauss-Seidel method.

SINGLE

ONEPASS

specifies a single-equation (nonsimultaneous) solution. The model is executed once to compute predicted values for the variables from the actual values of the other endogenous variables. The SINGLE option can be used only for normalized-form equations and cannot be used for goal-seeking solutions.

For more information on these options, see the section "Solution Modes" on page 1117.

Monte Carlo Simulation Options

COPULA=(NORMAL | NORMALMIX($\left.\left.n, p_{1} \ldots p_{n}, v_{1} \ldots v_{n}\right) \mid \mathbf{T}(d f)<\operatorname{ASYM}>\right)$
specifies copula to be used in the simulation. The normal (Gaussian) copula is the default. The copula applies to covariance of equation errors.

PSEUDO=DEFAULT | TWISTER

specifies which pseudo-number generator is to be used in generating draws for Monte Carlo simulation. The two pseudo-random number generators supported by the MODEL procedure are a default congruential generator which has period $2^{31}-1$ and Mersenne-Twister pseudorandom number generator which has an extraordinarily long period $2^{19937}-1$.

QUASI=NONE|SOBOL|FAURE

specifies a pseudo- or quasi-random number generator. Two quasi-random number generators are supported by the MODEL procedure: the Sobol sequence (QUASI=SOBOL) and the Faure sequence (QUASI=FAURE). The default is QUASI=NONE, which is the pseudorandom number generator.

RANDOM=n

repeats the solution n times for each BY group, with different random perturbations of the equation errors if the SDATA= option is used; with different random perturbations of the parameters if the ESTDATA= option is used and the ESTDATA= data set contains a parameter covariance matrix; and with different values returned from the random number generator
functions, if any are used in the model program. If $\mathrm{RANDOM}=0$, the random number generator functions always return zero. See the section "Monte Carlo Simulation" on page 1120 for details. The default is RANDOM=0.

SEED=n

specifies an integer to use as the seed in generating pseudo-random numbers to shock the parameters and equations when the ESTDATA= or the SDATA= options are specified. If n is negative or zero, the time of day from the computer's clock is used as the seed. The $\mathrm{SEED}=$ option is relevant only if the RANDOM= option is used. The default is $\mathrm{SEED}=0$.

WISHART=df
specifies that a Wishart distribution with degrees of freedom $d f$ be used in place of the normal error covariance matrix. This option is used to model the variance of the error covariance matrix when Monte Carlo simulation is selected.

Options for Controlling the Numerical Solution Process

The following options are useful when you have difficulty converging to the simultaneous solution.

CONVERGE=value

specifies the convergence criterion for the simultaneous solution. Convergence of the solution is judged by comparing the CONVERGE= value to the maximum over the equations of

$$
\frac{\left|\epsilon_{i}\right|}{\left|y_{i}\right|+1 E-6}
$$

if they are computable, otherwise

$$
\left|\epsilon_{i}\right|
$$

where ϵ_{i} represents the equation error and y_{i} represents the solution variable that corresponds to the i th equation for normalized-form equations. The default is CONVERGE=1E-8.

MAXITER=n

specifies the maximum number of iterations allowed for computing the simultaneous solution for any observation. The default is MAXITER=50.

MAXSUBITER=n

specifies the maximum number of damping subiterations that are performed in solving a nonlinear system when using the NEWTON solution method. Damping is disabled by setting MAXSUBITER=0. The default is MAXSUBITER=10.

Printing Options

INTGPRINT

prints between data points integration values for the DERT. variables and the auxiliary variables. If you specify the DETAILS option, the integrated derivative variables are printed as well.

ITPRINT

prints the solution approximation and equation errors at each iteration for each observation. This option can produce voluminous output.

PRINTALL

specifies the printing control options DETAILS, ITPRINT, SOLVEPRINT, STATS, and THEIL.

SOLVEPRINT

prints the solution values and residuals at each observation.

STATS

prints various summary statistics for the solution values

THEIL

prints tables of Theil inequality coefficients and Theil relative change forecast error measures for the solution values. See the section "Summary Statistics" on page 1135 for more information.

Other Options

Other options that can be used on the SOLVE statement include the following that list and analyze the model: BLOCK, GRAPH, LIST, LISTCODE, LISTDEP, LISTDER, and XREF. The LTEBOUND = and MINTIMESTEP= options can be used to control the integration process. The following printing-control options are also available: DETAILS, FLOW, MAXERRORS=, NOPRINT, and TRACE. For complete descriptions of these options, see the PROC MODEL and FIT statement options described earlier in this chapter.

TEST Statement

TEST < "name"> test1 < , test2 . . \gg ,/ options > ;
The TEST statement performs tests of nonlinear hypotheses on the model parameters.
The TEST statement applies to the parameters estimated by the associated FIT statement (that is, either the preceding FIT statement or, in the absence of a preceding FIT statement, the following FIT statement). You can specify any number of TEST statements.

If you specify options on the TEST statement, a comma is required before the "/" character that separates the test expressions from the options, because the "l" character can also be used within test expressions to indicate division.

The label lengths for tests and estimate statements are 256 characters. If the labels exceed this length, the label is truncated to 256 characters with a note printed to the log.

Each test is written as an expression optionally followed by an equal sign (=) and a second expression:
<expression> < = expression >
Test expressions can be composed of parameter names, arithmetic operators, functions, and constants. Comparison operators (such as $=$) and logical operators (such as \&) cannot be used in TEST statement expressions. Parameters named in test expressions must be among the parameters estimated by the associated FIT statement.

If you specify only one expression in a test, that expression is tested against zero. For example, the following two TEST statements are equivalent:

```
test a + b;
test a + b = 0;
```

When you specify multiple tests in the same TEST statement, a joint test is performed. For example, the following TEST statement tests the joint hypothesis that both A and B are equal to zero.

```
test a, b;
```

To perform separate tests rather than a joint test, use separate TEST statements. For example, the following TEST statements test the two separate hypotheses that A is equal to zero and that B is equal to zero.

```
test a;
test b;
```

You can use the following options in the TEST statement.

WALD

specifies that a Wald test be computed. WALD is the default.

LM

RAO

LAGRANGE

specifies that a Lagrange multiplier test be computed.
LR
LIKE
specifies that a likelihood ratio test be computed.
ALL
requests all three types of tests.
OUT=SAS-data-set
specifies the name of an output SAS data set that contains the test results. The format of the OUT = data set produced by the TEST statement is similar to that of the OUTEST = data set produced by the FIT statement.

VAR Statement

VAR variables < initial-values> ... ;
The VAR statement declares model variables and optionally provides initial values for the lags of the variables. See the section "Lag Logic" on page 1161 for more information.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in estimating parameters.

If the weight of an observation is nonpositive, that observation is not used for the estimation. variable must be a numeric variable in the input data set.

An alternative weighting method is to use an assignment statement to give values to the special variable _WEIGHT_. The _WEIGHT_ variable must not depend on the parameters being estimated. If both weighting specifications are given, the weights are multiplied together.

Details: Estimation by the MODEL Procedure

Estimation Methods

Consider the general nonlinear model:

$$
\begin{aligned}
& \boldsymbol{\epsilon}_{t}=\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \\
& \mathbf{z}_{t}=Z\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

where $\mathbf{q} \in R^{g}$ is a real vector valued function of $\mathbf{y}_{t} \in R^{g}, \mathbf{x}_{t} \in R^{l}, \boldsymbol{\theta} \in R^{p}$, where g is the number of equations, l is the number of exogenous variables (lagged endogenous variables are considered exogenous here), p is the number of parameters, and t ranges from 1 to $n . \mathbf{z}_{t} \in R^{k}$ is a vector of instruments. $\boldsymbol{\epsilon}_{t}$ is an unobservable disturbance vector with the following properties:

$$
\begin{aligned}
E\left(\boldsymbol{\epsilon}_{t}\right) & =0 \\
E\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right) & =\boldsymbol{\Sigma}
\end{aligned}
$$

All of the methods implemented in PROC MODEL aim to minimize an objective function. The following table summarizes the objective functions that define the estimators and
the corresponding estimator of the covariance of the parameter estimates for each method.

Table 18.2 Summary of PROC MODEL Estimation Methods

Method	Instruments	Objective Function	Covariance of θ
OLS	no	$\mathbf{r}^{\prime} \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{I}\right) \mathbf{X}\right)^{-1}$
ITOLS	no	$\mathbf{r}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{I}\right) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{I}\right) \mathbf{X}\right)^{-1}$
SUR	no	$\mathbf{r}^{\prime}\left(\mathbf{S}_{\text {OLS }}^{-1} \otimes \mathbf{I}\right) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{I}\right) \mathbf{X}\right)^{-1}$
ITSUR	no	$\mathbf{r}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{I}\right) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{I}\right) \mathbf{X}\right)^{-1}$
N2SLS	yes	$\mathbf{r}^{\prime}(\mathbf{I} \otimes \mathbf{W}) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{W}\right) \mathbf{X}\right)^{-1}$
IT2SLS	yes	$\mathbf{r}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{W}\right) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{W}\right) \mathbf{X}\right)^{-1}$
N3SLS	yes	$\mathbf{r}^{\prime}\left(\mathbf{S}_{\text {N2SLS }}^{-1} \otimes \mathbf{W}\right) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{X}\right)^{-1}$
IT3SLS	yes	$\mathbf{r}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{r} / n$	$\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{X}\right)^{-1}$
GMM	yes	$\left[n \mathbf{m}_{n}(\theta)\right]^{\prime} \hat{\mathbf{V}}_{\text {N } 2 \text { SLS }}^{-1}\left[n \mathbf{m}_{n}(\theta)\right] / n$	$\left[(\mathbf{Y X})^{\prime} \hat{\mathbf{V}}^{-1}(\mathbf{Y X})\right]^{-1}$
ITGMM	yes	$\left[n \mathbf{m}_{n}(\theta)\right]^{\prime} \hat{\mathbf{V}}^{-1}\left[n \mathbf{m}_{n}(\theta)\right] / n$	$\left[(\mathbf{Y X})^{\prime} \hat{\mathbf{V}}^{-1}(\mathbf{Y X})\right]^{-1}$
FIML	no	$\begin{aligned} & \text { constant }+\frac{n}{2} \ln (\operatorname{det}(\mathbf{S})) \\ & -\sum_{1}^{n} \ln \left\|\left(\mathbf{J}_{t}\right)\right\| \end{aligned}$	$\left[\hat{\mathbf{Z}}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{I}\right) \hat{\mathbf{Z}}\right]^{-1}$

The column labeled "Instruments" identifies the estimation methods that require instruments. The variables used in this table and the remainder of this chapter are defined as follows:
$n=$ is the number of nonmissing observations.
$g=$ is the number of equations.
$k=$ is the number of instrumental variables.
$\mathbf{r}=\left[\begin{array}{c}r_{1} \\ r_{2} \\ \vdots \\ r_{g}\end{array}\right]$ is the $n g \times 1$ vector of residuals for the g equations stacked together.
$\mathbf{r}_{i}=\left[\begin{array}{c}q_{i}\left(\mathbf{y}_{1}, \mathbf{x}_{1}, \boldsymbol{\theta}\right) \\ q_{i}\left(\mathbf{y}_{2}, \mathbf{x}_{2}, \boldsymbol{\theta}\right) \\ \vdots \\ q_{i}\left(\mathbf{y}_{n}, \mathbf{x}_{n}, \boldsymbol{\theta}\right)\end{array}\right]$ is the $n \times 1$ column vector of residuals for the i th equation.
$\mathbf{S} \quad$ is a $g \times g$ matrix that estimates $\boldsymbol{\Sigma}$, the covariances of the errors across equations (referred to as the \mathbf{S} matrix).
$\mathbf{X} \quad$ is an $n g \times p$ matrix of partial derivatives of the residual with respect to the parameters.

W \quad is an $n \times n$ matrix, $\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}$.
$\mathbf{Z} \quad$ is an $n \times k$ matrix of instruments.
$\mathbf{Y} \quad$ is a $g k \times n g$ matrix of instruments. $\mathbf{Y}=\mathbf{I}_{g} \otimes \mathbf{Z}^{\prime}$.
$\hat{\mathbf{Z}} \quad \hat{\mathbf{Z}}=\left(\hat{Z}_{1}, \hat{Z}_{2}, \ldots, \hat{Z}_{p}\right)$ is an $n g \times p$ matrix. \hat{Z}_{i} is a $n g \times 1$ column vector obtained
from stacking the columns of

$$
\mathbf{U} \frac{1}{n} \sum_{t=1}^{n}\left(\frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}}{\partial y_{t}}\right)^{-1} \frac{\partial^{2} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}}{\partial y_{t} \partial \theta_{i}}-\mathbf{Q}_{i}
$$

$\mathbf{U} \quad$ is an $n \times g$ matrix of residual errors. $\mathbf{U}=\boldsymbol{\epsilon}_{1}, \boldsymbol{\epsilon}_{2}, \ldots, \boldsymbol{\epsilon}_{n}{ }^{\prime}$.

Q
\mathbf{Q}_{i}
I
\mathbf{J}_{t}
\mathbf{m}_{n} is the $n \times g$ matrix $\mathbf{q}\left(\mathbf{y}_{1}, \mathbf{x}_{1}, \boldsymbol{\theta}\right), \mathbf{q}\left(\mathbf{y}_{2}, \mathbf{x}_{2}, \boldsymbol{\theta}\right), \ldots, \mathbf{q}\left(\mathbf{y}_{n}, \mathbf{x}_{n}, \boldsymbol{\theta}\right)$.
is an $n \times g$ matrix $\frac{\partial \mathbf{Q}}{\partial \theta_{i}}$. is an $n \times n$ identity matrix. is $\frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)}{\partial \mathbf{y}_{t}^{\prime}}$, which is a $g \times g$ Jacobian matrix. is first moment of the crossproduct $\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}$, $m_{n}=\frac{1}{n} \sum_{t=1}^{n} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}$
$\mathbf{z}_{t} \quad$ is a k column vector of instruments for observation $t . \mathbf{z}_{t}^{\prime}$ is also the t th row of \mathbf{Z}.
$k \quad$ is the number of instrumental variables used.
constant
\otimes
is the constant $\frac{n g}{2}(1+\ln (2 \pi))$.
is the notation for a Kronecker product.

All vectors are column vectors unless otherwise noted. Other estimates of the covariance matrix for FIML are also available.

Dependent Regressors and Two-Stage Least Squares

Ordinary regression analysis is based on several assumptions. A key assumption is that the independent variables are in fact statistically independent of the unobserved error component of the model. If this assumption is not true (if the regressor varies systematically with the error), then ordinary regression produces inconsistent results. The parameter estimates are biased.

Regressors might fail to be independent variables because they are dependent variables in a larger simultaneous system. For this reason, the problem of dependent regressors is often called simultaneous equation bias. For example, consider the following two-equation system:

$$
\begin{aligned}
& y_{1}=a_{1}+b_{1} y_{2}+c_{1} x_{1}+\epsilon_{1} \\
& y_{2}=a_{2}+b_{2} y_{1}+c_{2} x_{2}+\epsilon_{2}
\end{aligned}
$$

In the first equation, y_{2} is a dependent, or endogenous, variable. As shown by the second equation, y_{2} is a function of y_{1}, which by the first equation is a function of ϵ_{1}, and therefore y_{2} depends on ϵ_{1}. Likewise, y_{1} depends on ϵ_{2} and is a dependent regressor in the second equation. This is an example of a simultaneous equation system; y_{1} and y_{2} are a function of all the variables in the system.

Using the ordinary least squares (OLS) estimation method to estimate these equations produces biased estimates. One solution to this problem is to replace y_{1} and y_{2} on the right-hand side of the equations with predicted values, thus changing the regression problem to the following:

$$
y_{1}=a_{1}+b_{1} \hat{y}_{2}+c_{1} x_{1}+\epsilon_{1}
$$

$$
y_{2}=a_{2}+b_{2} \hat{y}_{1}+c_{2} x_{2}+\epsilon_{2}
$$

This method requires estimating the predicted values \hat{y}_{1} and \hat{y}_{2} through a preliminary, or "first stage," instrumental regression. An instrumental regression is a regression of the dependent regressors on a set of instrumental variables, which can be any independent variables useful for predicting the dependent regressors. In this example, the equations are linear and the exogenous variables for the whole system are known. Thus, the best choice for instruments (of the variables in the model) are the variables x_{1} and x_{2}.

This method is known as two-stage least squares or 2SLS, or more generally as the instrumental variables method. The 2SLS method for linear models is discussed in Pindyck (1981, p. 191-192). For nonlinear models this situation is more complex, but the idea is the same. In nonlinear 2SLS, the derivatives of the model with respect to the parameters are replaced with predicted values. See the section "Choice of Instruments" on page 1084 for further discussion of the use of instrumental variables in nonlinear regression.

To perform nonlinear 2SLS estimation with PROC MODEL, specify the instrumental variables with an INSTRUMENTS statement and specify the 2SLS or N2SLS option in the FIT statement. The following statements show how to estimate the first equation in the preceding example with PROC MODEL:

```
proc model data=in;
    y1 = a1 + b1 * y2 + c1 * x1;
    fit y1 / 2sls;
    instruments x1 x2;
run;
```

The 2SLS or instrumental variables estimator can be computed by using a first-stage regression on the instrumental variables as described previously. However, PROC MODEL actually uses the equivalent but computationally more appropriate technique of projecting the regression problem into the linear space defined by the instruments. Thus, PROC MODEL does not produce any "first stage" results when you use 2SLS. If you specify the FSRSQ option in the FIT statement, PROC MODEL prints "First-Stage R ${ }^{2}$ " statistic for each parameter estimate.
Formally, the $\hat{\boldsymbol{\theta}}$ that minimizes

$$
\hat{S}_{n}=\frac{1}{n}\left(\sum_{t=1}^{n}\left(\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \theta\right) \otimes \mathbf{z}_{t}\right)\right)^{\prime}\left(\sum_{t=1}^{n} I \otimes \mathbf{z}_{t} \mathbf{z}_{t}^{\prime}\right)^{-1}\left(\sum_{t=1}^{n}\left(\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}\right)\right)
$$

is the N2SLS estimator of the parameters. The estimate of $\boldsymbol{\Sigma}$ at the final iteration is used in the covariance of the parameters given in Table 18.2. See Amemiya (1985, p. 250) for details on the properties of nonlinear two-stage least squares.

Seemingly Unrelated Regression

If the regression equations are not simultaneous (so there are no dependent regressors), seemingly unrelated regression (SUR) can be used to estimate systems of equations with correlated random
errors. The large-sample efficiency of an estimation can be improved if these cross-equation correlations are taken into account. SUR is also known as joint generalized least squares or Zellner regression. Formally, the $\hat{\boldsymbol{\theta}}$ that minimizes

$$
\hat{S}_{n}=\frac{1}{n} \sum_{t=1}^{n} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)
$$

is the SUR estimator of the parameters.
The SUR method requires an estimate of the cross-equation covariance matrix, $\boldsymbol{\Sigma}$. PROC MODEL first performs an OLS estimation, computes an estimate, $\hat{\boldsymbol{\Sigma}}$, from the OLS residuals, and then performs the SUR estimation based on $\hat{\boldsymbol{\Sigma}}$. The OLS results are not printed unless you specify the OLS option in addition to the SUR option.

You can specify the $\hat{\boldsymbol{\Sigma}}$ to use for SUR by storing the matrix in a SAS data set and naming that data set in the SDATA= option. You can also feed the $\hat{\boldsymbol{\Sigma}}$ computed from the SUR residuals back into the SUR estimation process by specifying the ITSUR option. You can print the estimated covariance matrix $\hat{\boldsymbol{\Sigma}}$ by using the COVS option in the FIT statement.

The SUR method requires estimation of the Σ matrix, and this increases the sampling variability of the estimator for small sample sizes. The efficiency gain that SUR has over OLS is a large sample property, and you must have a reasonable amount of data to realize this gain. For a more detailed discussion of SUR, see Pindyck and Rubinfeld (1981, p. 331-333).

Three-Stage Least Squares Estimation

If the equation system is simultaneous, you can combine the 2 SLS and SUR methods to take into account both dependent regressors and cross-equation correlation of the errors. This is called threestage least squares (3SLS).

Formally, the $\hat{\boldsymbol{\theta}}$ that minimizes

$$
\hat{S}_{n}=\frac{1}{n}\left(\sum_{t=1}^{n}\left(\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}\right)\right)^{\prime}\left(\sum_{t=1}^{n}\left(\hat{\boldsymbol{\Sigma}} \otimes \mathbf{z}_{t} \mathbf{z}_{t}^{\prime}\right)\right)^{-1}\left(\sum_{t=1}^{n}\left(\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}\right)\right)
$$

is the 3SLS estimator of the parameters. For more details on 3SLS, see Gallant (1987, p. 435).
Residuals from the 2SLS method are used to estimate the Σ matrix required for 3SLS. The results of the preliminary 2 SLS step are not printed unless the 2 SLS option is also specified.

To use the three-stage least squares method, specify an INSTRUMENTS statement and use the 3SLS or N3SLS option in either the PROC MODEL statement or a FIT statement.

Generalized Method of Moments (GMM)

For systems of equations with heteroscedastic errors, generalized method of moments (GMM) can be used to obtain efficient estimates of the parameters. See the section "Heteroscedasticity" on page 1050 for alternatives to GMM.

Consider the nonlinear model

$$
\begin{aligned}
\boldsymbol{\epsilon}_{t} & =\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \\
\mathbf{z}_{t} & =Z\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

where \mathbf{z}_{t} is a vector of instruments and $\boldsymbol{\epsilon}_{t}$ is an unobservable disturbance vector that can be serially correlated and nonstationary.

In general, the following orthogonality condition is desired:

$$
E\left(\boldsymbol{\epsilon}_{t} \otimes \mathbf{z}_{t}\right)=0
$$

This condition states that the expected crossproducts of the unobservable disturbances, $\boldsymbol{\epsilon}_{t}$, and functions of the observable variables are set to 0 . The first moment of the crossproducts is

$$
\begin{aligned}
\mathbf{m}_{n} & =\frac{1}{n} \sum_{t=1}^{n} \mathbf{m}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \\
\mathbf{m}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) & =\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}
\end{aligned}
$$

where $\mathbf{m}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \in R^{g k}$.
The case where $g k>p$ is considered here, where p is the number of parameters.
Estimate the true parameter vector θ^{0} by the value of $\hat{\theta}$ that minimizes

$$
S(\theta, \mathbf{V})=\left[n \mathbf{m}_{n}(\theta)\right]^{\prime} \mathbf{V}^{-1}\left[n \mathbf{m}_{n}(\theta)\right] / n
$$

where

$$
\mathbf{V}=\operatorname{Cov}\left(\left[n \mathbf{m}_{n}\left(\theta^{0}\right)\right],\left[n \mathbf{m}_{n}\left(\theta^{0}\right)\right]^{\prime}\right)
$$

The parameter vector that minimizes this objective function is the GMM estimator. GMM estimation is requested in the FIT statement with the GMM option.

The variance of the moment functions, \mathbf{V}, can be expressed as

$$
\begin{aligned}
\mathbf{V} & =E\left(\sum_{t=1}^{n} \boldsymbol{\epsilon}_{t} \otimes \mathbf{z}_{t}\right)\left(\sum_{s=1}^{n} \boldsymbol{\epsilon}_{s} \otimes \mathbf{z}_{s}\right)^{\prime} \\
& =\sum_{t=1}^{n} \sum_{s=1}^{n} E\left[\left(\boldsymbol{\epsilon}_{t} \otimes \mathbf{z}_{t}\right)\left(\boldsymbol{\epsilon}_{s} \otimes \mathbf{z}_{s}\right)^{\prime}\right] \\
& =n \mathbf{S}_{n}^{0}
\end{aligned}
$$

where \mathbf{S}_{n}^{0} is estimated as

$$
\hat{\mathbf{S}}_{n}=\frac{1}{n} \sum_{t=1}^{n} \sum_{s=1}^{n}\left(\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}\right)\left(\mathbf{q}\left(\mathbf{y}_{s}, \mathbf{x}_{s}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{s}\right)^{\prime}
$$

Note that $\hat{\mathbf{S}}_{n}$ is a $g k \times g k$ matrix. Because $\operatorname{Var}\left(\hat{\mathbf{S}}_{n}\right)$ does not decrease with increasing n, you consider estimators of \mathbf{S}_{n}^{0} of the form:

$$
\begin{aligned}
\hat{\mathbf{S}}_{n}(l(n)) & =\sum_{\tau=-n+1}^{n-1} w\left(\frac{\tau}{l(n)}\right) \mathbf{D} \hat{\mathbf{S}}_{n, \tau} \mathbf{D} \\
\hat{\mathbf{S}}_{n, \tau} & = \begin{cases}\sum_{t=1+\tau}^{n}\left[\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}^{\#}\right) \otimes \mathbf{z}_{t}\right]\left[\mathbf{q}\left(\mathbf{y}_{t-\tau}, \mathbf{x}_{t-\tau}, \boldsymbol{\theta}^{\#}\right) \otimes \mathbf{z}_{t-\tau}\right]^{\prime} & \tau \geq 0 \\
\left(\hat{\mathbf{S}}_{n,-\tau}\right)^{\prime} & \tau<0\end{cases}
\end{aligned}
$$

where $l(n)$ is a scalar function that computes the bandwidth parameter, $w(\cdot)$ is a scalar valued kernel, and the diagonal matrix \mathbf{D} is used for a small sample degrees of freedom correction (Gallant 1987). The initial $\theta^{\#}$ used for the estimation of $\hat{\mathbf{S}}_{n}$ is obtained from a 2 SLS estimation of the system. The degrees of freedom correction is handled by the VARDEF= option as it is for the \mathbf{S} matrix estimation.

The following kernels are supported by PROC MODEL. They are listed with their default bandwidth functions.

Bartlett: KERNEL=BART

$$
\begin{aligned}
w(x) & = \begin{cases}1-|x| & |x|<=1 \\
0 & \text { otherwise }\end{cases} \\
l(n) & =\frac{1}{2} n^{1 / 3}
\end{aligned}
$$

Parzen: KERNEL=PARZEN

$$
\begin{aligned}
& w(x)= \begin{cases}1-6|x|^{2}+6|x|^{3} & 0<=|x|<=\frac{1}{2} \\
2(1-|x|)^{3} & \frac{1}{2}<=|x|<=1 \\
0 & \text { otherwise }\end{cases} \\
& l(n)=n^{1 / 5}
\end{aligned}
$$

Quadratic spectral: KERNEL=QS

$$
\begin{aligned}
w(x) & =\frac{25}{12 \pi^{2} x^{2}}\left(\frac{\sin (6 \pi x / 5)}{6 \pi x / 5}-\cos (6 \pi x / 5)\right) \\
l(n) & =\frac{1}{2} n^{1 / 5}
\end{aligned}
$$

Figure 18.21 Kernels for Smoothing

Details of the properties of these and other kernels are given in Andrews (1991). Kernels are selected with the KERNEL= option; KERNEL=PARZEN is the default. The general form of the KERNEL= option is

```
KERNEL=( PARZEN | QS | BART, C, e )
```

where the $e \geq 0$ and $c \geq 0$ are used to compute the bandwidth parameter as

$$
l(n)=c n^{e}
$$

The bias of the standard error estimates increases for large bandwidth parameters. A warning message is produced for bandwidth parameters greater than $n^{\frac{1}{3}}$. For a discussion of the computation of the optimal $l(n)$, refer to Andrews (1991).

The "Newey-West" kernel (Newey and West 1987) corresponds to the Bartlett kernel with bandwidth parameter $l(n)=L+1$. That is, if the "lag length" for the Newey-West kernel is L, then the corresponding MODEL procedure syntax is KERNEL=(bart, L+1, 0).

Andrews and Monahan (1992) show that using prewhitening in combination with GMM can improve confidence interval coverage and reduce over rejection of t statistics at the cost of inflating the variance and MSE of the estimator. Prewhitening can be performed by using the \%AR macros.

For the special case that the errors are not serially correlated-that is,

$$
E\left(e_{t} \otimes \mathbf{z}_{t}\right)\left(e_{s} \otimes \mathbf{z}_{s}\right)=0 \quad t \neq s
$$

the estimate for \mathbf{S}_{n}^{0} reduces to

$$
\hat{\mathbf{S}}_{n}=\frac{1}{n} \sum_{t=1}^{n}\left[\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}\right]\left[\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}\right]^{\prime}
$$

The option KERNEL=(kernel,0,) is used to select this type of estimation when using GMM.

Covariance of GMM estimators

The covariance of GMM estimators, given a general weighting matrix $\mathbf{V}_{\mathrm{G}}^{-1}$, is

$$
\left[(\mathbf{Y X})^{\prime} \mathbf{V}_{\mathrm{G}}^{-1}(\mathbf{Y X})\right]^{-1}(\mathbf{Y X})^{\prime} \mathbf{V}_{\mathrm{G}}^{-1} \hat{\mathbf{V}} \mathbf{V}_{\mathrm{G}}^{-1}(\mathbf{Y X})\left[(\mathbf{Y X})^{\prime} \mathbf{V}_{\mathrm{G}}^{-1}(\mathbf{Y X})\right]^{-1}
$$

By default or when GENGMMV is specified, this is the covariance of GMM estimators.
If the weighting matrix is the same as $\hat{\mathbf{V}}$, then the covariance of GMM estimators becomes

$$
\left[(\mathbf{Y X})^{\prime} \hat{\mathbf{V}}^{-1}(\mathbf{Y X})\right]^{-1}
$$

If NOGENGMMV is specified, this is used as the covariance estimators.

Testing Over-Identifying Restrictions

Let r be the number of unique instruments times the number of equations. The value r represents the number of orthogonality conditions imposed by the GMM method. Under the assumptions of the GMM method, $r-p$ linearly independent combinations of the orthogonality should be close to zero. The GMM estimates are computed by setting these combinations to zero. When r exceeds the number of parameters to be estimated, the OBJECTIVE*N, reported at the end of the estimation, is an asymptotically valid statistic to test the null hypothesis that the over-identifying restrictions of the model are valid. The OBJECTIVE*N is distributed as a chi-square with $r-p$ degrees of freedom (Hansen 1982, p. 1049).

Iterated Generalized Method of Moments (ITGMM)

Iterated generalized method of moments is similar to the iterated versions of 2SLS, SUR, and 3SLS. The variance matrix for GMM estimation is reestimated at each iteration with the parameters determined by the GMM estimation. The iteration terminates when the variance matrix for the equation errors change less than the CONVERGE $=$ value. Iterated generalized method of moments is selected by the ITGMM option on the FIT statement. For some indication of the small sample properties of ITGMM, see Ferson and Foerster (1993).

Simulated Method of Moments (SMM)

The SMM method uses simulation techniques in model inference and estimation. It is appropriate for estimating models in which integrals appear in the objective function, and these integrals can be approximated by simulation. There might be various reasons for integrals to appear in an objective function (for example, transformation of a latent model into an observable model, missing data, random coefficients, heterogeneity, and so on).

This simulation method can be used with all the estimation methods except full information maximum likelihood (FIML) in PROC MODEL. SMM, also known as simulated generalized method of moments (SGMM), is the default estimation method because of its nice properties.

Estimation Details

A general nonlinear model can be described as

$$
\boldsymbol{\epsilon}_{t}=\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)
$$

where $\mathbf{q} \in R^{g}$ is a real vector valued function of $\mathbf{y}_{t} \in R^{g}, \mathbf{x}_{t} \in R^{l}, \boldsymbol{\theta} \in R^{p} ; g$ is the number of equations; l is the number of exogenous variables (lagged endogenous variables are considered exogenous here); p is the number of parameters; and t ranges from 1 to $n . \boldsymbol{\epsilon}_{t}$ is an unobservable disturbance vector with the following properties:

$$
\begin{aligned}
E\left(\boldsymbol{\epsilon}_{t}\right) & =0 \\
E\left(\boldsymbol{\epsilon}_{\boldsymbol{t}} \boldsymbol{\epsilon}_{t}^{\prime}\right) & =\mathbf{\Sigma}
\end{aligned}
$$

In many cases, it is not possible to write $\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)$ in a closed form. Instead \mathbf{q} is expressed as an integral of a function \mathbf{f}; that is,

$$
\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)=\int \mathbf{f}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}, \mathbf{u}_{t}\right) d P(\mathbf{u})
$$

where $\mathbf{f} \in R^{g}$ is a real vector valued function of $\mathbf{y}_{t} \in R^{g}, \mathbf{x}_{t} \in R^{l}, \boldsymbol{\theta} \in R^{p}$, and $\mathbf{u}_{t} \in R^{m}, m$ is the number of stochastic variables with a known distribution $P(\mathbf{u})$. Since the distribution of \mathbf{u} is completely known, it is possible to simulate artificial draws from this distribution. Using such independent draws $\mathbf{u}_{h t}, h=1, \ldots, H$, and the strong law of large numbers, \mathbf{q} can be approximated by

$$
\frac{1}{H} \sum_{h=1}^{H} \mathbf{f}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}, \mathbf{u}_{h t}\right)
$$

Simulated Generalized Method of Moments (SGMM)

Generalized method of moments (GMM) is widely used to obtain efficient estimates for general model systems. When the moment conditions are not readily available in closed forms but can be approximated by simulation, simulated generalized method of moments (SGMM) can be used. The SGMM estimators have the nice property of being asymptotically consistent and normally distributed even if the number of draws H is fixed (see McFadden 1989; Pakes and Pollard 1989).

Consider the nonlinear model

$$
\begin{aligned}
& \boldsymbol{\epsilon}_{t}=\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)=\frac{1}{H} \sum_{h=1}^{H} \mathbf{f}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}, \mathbf{u}_{h t}\right) \\
& \mathbf{z}_{t}=Z\left(\mathbf{x}_{t}\right)
\end{aligned}
$$

where $\mathbf{z}_{t} \in R^{k}$ is a vector of k instruments and $\boldsymbol{\epsilon}_{t}$ is an unobservable disturbance vector that can be serially correlated and nonstationary. In the case of no instrumental variables, \mathbf{z}_{t} is 1 . $\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)$ is the vector of moment conditions, and it is approximated by simulation.

In general, theory suggests the following orthogonality condition

$$
E\left(\boldsymbol{\epsilon}_{t} \otimes \mathbf{z}_{t}\right)=0
$$

which states that the expected crossproducts of the unobservable disturbances, $\boldsymbol{\epsilon}_{t}$, and functions of the observable variables are set to 0 . The sample means of the crossproducts are

$$
\begin{aligned}
\mathbf{m}_{n} & =\frac{1}{n} \sum_{t=1}^{n} \mathbf{m}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \\
\mathbf{m}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) & =\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \otimes \mathbf{z}_{t}
\end{aligned}
$$

where $\mathbf{m}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \in R^{g k}$. The case where $g k>p$, where p is the number of parameters, is considered here. An estimate of the true parameter vector θ^{0} is the value of $\hat{\theta}$ that minimizes

$$
S(\theta, V)=\left[n \mathbf{m}_{n}(\theta)\right]^{\prime} \mathbf{V}^{-1}\left[n \mathbf{m}_{n}(\theta)\right] / n
$$

where

$$
\mathbf{V}=\operatorname{Cov}\left(\mathbf{m}\left(\theta^{0}\right), \mathbf{m}\left(\theta^{0}\right)^{\prime}\right)
$$

The steps for SGMM are as follows:

1. Start with a positive definite $\hat{\mathbf{V}}$ matrix. This $\hat{\mathbf{V}}$ matrix can be estimated from a consistent estimator of θ. If $\hat{\theta}$ is a consistent estimator, then \mathbf{u}_{t} for $t=1, \ldots, n$ can be simulated H^{\prime} number of times. A consistent estimator of \mathbf{V} is obtained as

$$
\hat{\mathbf{V}}=\frac{1}{n} \sum_{t=1}^{n}\left[\frac{1}{H^{\prime}} \sum_{h=1}^{H^{\prime}} \mathbf{f}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \hat{\boldsymbol{\theta}}, \mathbf{u}_{h t}\right) \otimes \mathbf{z}_{t}\right]\left[\frac{1}{H^{\prime}} \sum_{h=1}^{H^{\prime}} \mathbf{f}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \hat{\boldsymbol{\theta}}, \mathbf{u}_{h t}\right) \otimes \mathbf{z}_{t}\right]^{\prime}
$$

H^{\prime} must be large so that this is an consistent estimator of \mathbf{V}.
2. Simulate H number of \mathbf{u}_{t} for $t=1, \ldots, n$. As shown by Gourieroux and Monfort (1993), the number of simulations H does not need to be very large. For $H=10$, the SGMM estimator achieves 90% of the efficiency of the corresponding GMM estimator. Find $\hat{\theta}$ that minimizes the quadratic product of the moment conditions again with the weight matrix being $\hat{\mathbf{V}}^{-1}$.

$$
\min _{\theta}\left[n \mathbf{m}_{n}(\theta)\right]^{\prime} \hat{\mathbf{V}}^{-1}\left[n \mathbf{m}_{n}(\theta)\right] / n
$$

3. The covariance matrix of $\sqrt{n} \theta$ is given as (Gourieroux and Monfort 1993)

$$
\boldsymbol{\Sigma}_{1}^{-1} \mathbf{D} \hat{\mathbf{V}}^{-1} \mathbf{V}(\hat{\theta}) \hat{\mathbf{V}}^{-1} \mathbf{D}^{\prime} \boldsymbol{\Sigma}_{1}^{-1}+\frac{1}{H} \boldsymbol{\Sigma}_{1}^{-1} \mathbf{D} \hat{\mathbf{V}}^{-1} E[\mathbf{z} \otimes \operatorname{Var}(\mathbf{f} \mid \mathbf{x}) \otimes \mathbf{z}] \hat{\mathbf{V}}^{-1} \mathbf{D}^{\prime} \boldsymbol{\Sigma}_{1}^{-1}
$$

where $\boldsymbol{\Sigma}_{1}=\mathbf{D} \hat{\mathbf{V}}^{-1} \mathbf{D}, \mathbf{D}$ is the matrix of partial derivatives of the residuals with respect to the parameters, $\mathbf{V}(\hat{\theta})$ is the covariance of moments from estimated parameters $\hat{\theta}$, and $\operatorname{Var}(\mathbf{f} \mid \mathbf{x})$ is the covariance of moments for each observation from simulation. The first term is the variance-covariance matrix of the exact GMM estimator, and the second term accounts for the variation contributed by simulating the moments.

Implementation in PROC MODEL

In PROC MODEL, if the user specifies the GMM and NDRAW options in the FIT statement, PROC MODEL first fits the model by using N2SLS and computes $\hat{\mathbf{V}}$ by using the estimates from N2SLS and H^{\prime} simulation. If NO2SLS is specified in the FIT statement, $\hat{\mathbf{V}}$ is read from VDATA= data set. If the user does not provide a $\hat{\mathbf{V}}$ matrix, the initial starting value of θ is used as the estimator for computing the $\hat{\mathbf{V}}$ matrix in step 1. If ITGMM option is specified instead of GMM, then PROC MODEL iterates from step 1 to step 3 until the \mathbf{V} matrix converges.

The consistency of the parameter estimates is not affected by the variance correction shown in the second term in step 3. The correction on the variance of parameter estimates is not computed by default. To add the adjustment, use ADJSMMV option on the FIT statement. This correction is of the order of $\frac{1}{H}$ and is small even for moderate H.

The following example illustrates how to use SMM to estimate a simple regression model. Suppose the model is

$$
y=a+b x+u, u \sim \text { iid } N\left(0, s^{2}\right) .
$$

First, consider the problem in a GMM context. The first two moments of y are easily derived:

$$
\begin{aligned}
E(y) & =a+b x \\
E\left(y^{2}\right) & =(a+b x)^{2}+s^{2}
\end{aligned}
$$

Rewrite the moment conditions in the form similar to the discussion above:

$$
\begin{aligned}
\epsilon_{1 t} & =y_{t}-\left(a+b x_{t}\right) \\
\epsilon_{2 t} & =y_{t}^{2}-\left(a+b x_{t}\right)^{2}-s^{2}
\end{aligned}
$$

Then you can estimate this model by using GMM with following statements:

```
proc model data=a;
    parms a b s;
    instrument x;
    eq.m1 = y-(a+b*x);
    eq.m2 = y*y - (a+b*x)**2 - s*s;
    bound s > 0;
    fit m1 m2 / gmm;
run;
```

Now suppose you do not have the closed form for the moment conditions. Instead you can simulate the moment conditions by generating H number of simulated samples based on the parameters. Then the simulated moment conditions are

$$
\begin{aligned}
\epsilon_{1 t} & =\frac{1}{H} \sum_{h=1}^{H}\left\{y_{t}-\left(a+b x_{t}+s u_{t, h}\right)\right\} \\
\epsilon_{2 t} & =\frac{1}{H} \sum_{h=1}^{H}\left\{y_{t}^{2}-\left(a+b x_{t}+s u_{t, h}\right)^{2}\right\}
\end{aligned}
$$

This model can be estimated by using SGMM with the following statements:

```
proc model data=_tmpdata;
    parms a b s;
    instrument x;
    ysim = (a+b*x) + s * rannor( 98711 );
    eq.m1 = y-ysim;
    eq.m2 = y*y - ysim*ysim;
    bound s > 0;
    fit m1 m2 / gmm ndraw=10;
run;
```

You can use the following MOMENT statement instead of specifying the two moment equations above:

```
moment ysim=(1, 2);
```

In cases where you require a large number of moment equations, using the MOMENT statement to specify them is more efficient.

Note that the NDRAW= option tells PROC MODEL that this is a simulation-based estimation. Thus, the random number function RANNOR returns random numbers in estimation process. During the simulation, 10 draws of $m 1$ and $m 2$ are generated for each observation, and the averages enter the objective functions just as the equations specified previously.

Other Estimation Methods

The simulation method can be used not only with GMM and ITGMM, but also with OLS, ITOLS, SUR, ITSUR, N2SLS, IT2SLS, N3SLS, and IT3SLS. These simulation-based methods are similar to the corresponding methods in PROC MODEL; the only difference is that the objective functions include the average of the H simulations.

Full Information Maximum Likelihood Estimation (FIML)

A different approach to the simultaneous equation bias problem is the full information maximum likelihood (FIML) estimation method (Amemiya 1977).

Compared to the instrumental variables methods (2SLS and 3SLS), the FIML method has these advantages and disadvantages:

- FIML does not require instrumental variables.
- FIML requires that the model include the full equation system, with as many equations as there are endogenous variables. With 2SLS or 3SLS, you can estimate some of the equations without specifying the complete system.
- FIML assumes that the equations errors have a multivariate normal distribution. If the errors are not normally distributed, the FIML method might produce poor results. 2SLS and 3SLS do not assume a specific distribution for the errors.
- The FIML method is computationally expensive.

The full information maximum likelihood estimators of θ and σ are the $\hat{\theta}$ and $\hat{\sigma}$ that minimize the negative log-likelihood function:

$$
\begin{aligned}
\mathbf{l}_{n}(\boldsymbol{\theta}, \boldsymbol{\sigma})= & \frac{n g}{2} \ln (2 \pi)-\sum_{t=1}^{n} \ln \left(\left|\frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)}{\partial \mathbf{y}_{t}^{\prime}}\right|\right)+\frac{n}{2} \ln (|\boldsymbol{\Sigma}(\sigma)|) \\
& +\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}(\sigma)^{-1} \sum_{t=1}^{n} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \mathbf{q}^{\prime}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)\right)
\end{aligned}
$$

The option FIML requests full information maximum likelihood estimation. If the errors are distributed normally, FIML produces efficient estimators of the parameters. If instrumental variables are not provided, the starting values for the estimation are obtained from a SUR estimation. If instrumental variables are provided, then the starting values are obtained from a 3SLS estimation. The log-likelihood value and the l_{2} norm of the gradient of the negative log-likelihood function are shown in the estimation summary.

FIML Details

To compute the minimum of $\mathbf{l}_{n}(\boldsymbol{\theta}, \boldsymbol{\sigma})$, this function is concentrated using the relation

$$
\boldsymbol{\Sigma}(\theta)=\frac{1}{n} \sum_{t=1}^{n} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \mathbf{q}^{\prime}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)
$$

This results in the concentrated negative log-likelihood function:

$$
\left.\mathbf{l}_{n}(\boldsymbol{\theta})=\frac{n g}{2}(1+\ln (2 \pi))-\sum_{t=1}^{n} \ln \left|\frac{\partial}{\partial \mathbf{y}_{t}^{\prime}} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)\right|+\frac{n}{2} \ln \right\rvert\, \boldsymbol{\Sigma}(\theta \mid)
$$

The gradient of the negative log-likelihood function is

$$
\frac{\partial}{\partial \theta_{i}} \mathbf{l}_{n}(\boldsymbol{\theta})=\sum_{t=1}^{n} \nabla_{i}(t)
$$

$$
\begin{aligned}
\nabla_{i}(t)= & -\operatorname{tr}\left(\left(\frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)}{\partial \mathbf{y}_{t}^{\prime}}\right)^{-1} \frac{\partial^{2} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)}{\partial \mathbf{y}_{t}^{\prime} \partial \theta_{i}}\right) \\
+ & \frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}(\theta)^{-1} \frac{\partial \boldsymbol{\Sigma}(\theta)}{\partial \theta_{i}}\right. \\
& {\left.\left[I-\boldsymbol{\Sigma}(\theta)^{-1} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}\right]\right) } \\
+ & \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}^{\prime}\right) \mathbf{\Sigma}(\theta)^{-1} \frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)}{\partial \theta_{i}}
\end{aligned}
$$

where

$$
\frac{\partial \boldsymbol{\Sigma}(\theta)}{\partial \theta_{i}}=\frac{2}{n} \sum_{t=1}^{n} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}}{\partial \theta_{i}}
$$

The estimator of the variance-covariance of $\hat{\theta}$ (COVB) for FIML can be selected with the COVBEST $=$ option with the following arguments:

CROSS selects the crossproducts estimator of the covariance matrix (Gallant 1987, p. 473):

$$
C=\left(\frac{1}{n} \sum_{t=1}^{n} \nabla(t) \nabla^{\prime}(t)\right)^{-1}
$$

where $\nabla(t)=\left[\nabla_{1}(t), \nabla_{2}(t), \ldots, \nabla_{p}(t)\right]^{\prime}$. This is the default.
GLS selects the generalized least squares estimator of the covariance matrix. This is computed as (Dagenais 1978)

$$
C=\left[\hat{\mathbf{Z}}^{\prime}\left(\boldsymbol{\Sigma}(\theta)^{-1} \otimes I\right) \hat{\mathbf{Z}}\right]^{-1}
$$

where $\hat{\mathbf{Z}}=\left(\hat{Z}_{1}, \hat{Z}_{2}, \ldots, \hat{Z}_{p}\right)$ is $n g \times p$ and each \hat{Z}_{i} column vector is obtained from stacking the columns of

$$
\mathbf{U} \frac{1}{n} \sum_{t=1}^{n}\left(\frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}}{\partial y}\right)^{-1} \frac{\partial^{2} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}}{\partial \mathbf{y}_{n}^{\prime} \partial \theta_{i}}-Q_{i}
$$

\mathbf{U} is an $n \times g$ matrix of residuals and q_{i} is an $n \times g$ matrix $\frac{\partial \mathbf{Q}}{\partial \theta_{i}}$.
FDA selects the inverse of concentrated likelihood Hessian as an estimator of the covariance matrix. The Hessian is computed numerically, so for a large problem this is computationally expensive.

The HESSIAN = option controls which approximation to the Hessian is used in the minimization procedure. Alternate approximations are used to improve convergence and execution time. The choices are as follows:

CROSS The crossproducts approximation is used.
GLS The generalized least squares approximation is used (default).
FDA The Hessian is computed numerically by finite differences.

HESSIAN=GLS has better convergence properties in general, but COVBEST=CROSS produces the most pessimistic standard error bounds. When the HESSIAN= option is used, the default estimator of the variance-covariance of $\hat{\theta}$ is the inverse of the Hessian selected.

Multivariate t Distribution Estimation

The multivariate t distribution is specified by using the ERRORMODEL statement with the T option. Other method specifications (FIML and OLS, for example) are ignored when the ERRORMODEL statement is used for a distribution other than normal.

The probability density function for the multivariate t distribution is

$$
P_{q}=\frac{\Gamma\left(\frac{d f+m}{2}\right)}{(\pi * d f)^{\frac{m}{2}} * \Gamma\left(\frac{d f}{2}\right)|\boldsymbol{\Sigma}(\sigma)|^{\frac{1}{2}}} *\left(1+\frac{\mathbf{q}^{\prime}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \boldsymbol{\Sigma}(\sigma)^{-1} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)}{d f}\right)^{-\frac{d f+m}{2}}
$$

where m is the number of equations and $d f$ is the degrees of freedom.
The maximum likelihood estimators of θ and σ are the $\hat{\theta}$ and $\hat{\sigma}$ that minimize the negative loglikelihood function:

$$
\begin{aligned}
\mathbf{l}_{n}(\boldsymbol{\theta}, \boldsymbol{\sigma})= & -\sum_{t=1}^{n} \ln \left(\frac{\Gamma\left(\frac{d f+m}{2}\right)}{(\pi * d f)^{\frac{m}{2}} * \Gamma\left(\frac{d f}{2}\right)} *\left(1+\frac{q_{t}^{\prime} \boldsymbol{\Sigma}^{-1} q_{t}}{d f}\right)^{-\frac{d f+m}{2}}\right) \\
& +\frac{n}{2} * \ln (|\boldsymbol{\Sigma}|)-\sum_{t=1}^{n} \ln \left(\left|\frac{\partial q_{t}}{\partial y_{t}^{\prime}}\right|\right)
\end{aligned}
$$

The ERRORMODEL statement is used to request the t distribution maximum likelihood estimation. An OLS estimation is done to obtain initial parameter estimates and MSE.var estimates. Use NOOLS to turn off this initial estimation. If the errors are distributed normally, t distribution estimation produces results similar to FIML.

The multivariate model has a single shared degrees-of-freedom parameter, which is estimated. The degrees-of-freedom parameter can also be set to a fixed value. The log-likelihood value and the l_{2} norm of the gradient of the negative log-likelihood function are shown in the estimation summary.

t Distribution Details

Since a variance term is explicitly specified by using the ERRORMODEL statement, $\boldsymbol{\Sigma}(\theta)$ is estimated as a correlation matrix and $\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)$ is normalized by the variance. The gradient of the negative log-likelihood function with respect to the degrees of freedom is

$$
\begin{aligned}
\frac{\partial l_{n}}{\partial d f}= & \frac{n m}{2 d f}-\frac{n}{2} \frac{\Gamma^{\prime}\left(\frac{d f+m}{2}\right)}{\Gamma\left(\frac{d f+m}{2}\right)}+\frac{n}{2} \frac{\Gamma^{\prime}\left(\frac{d f}{2}\right)}{\Gamma\left(\frac{d f}{2}\right)}+ \\
& 0.5 \log \left(1+\frac{\mathbf{q}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{q}}{d f}\right)-\frac{0.5(d f+m)}{\left(1+\frac{\mathbf{q}^{\prime} \mathbf{\Sigma}^{-1} \mathbf{q}}{d f}\right)} \frac{\mathbf{q}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{q}}{d f^{2}}
\end{aligned}
$$

The gradient of the negative log-likelihood function with respect to the parameters is

$$
\frac{\partial l_{n}}{\partial \theta_{i}}=\frac{0.5(d f+m)}{\left(1+\mathbf{q}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{q} / d f\right)}\left[\frac{\left(2 \mathbf{q}^{\prime} \boldsymbol{\Sigma}^{-1} \frac{\partial \mathbf{q}}{\partial \theta_{i}}\right)}{d f}+\mathbf{q}^{\prime} \boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\partial \theta_{i}} \boldsymbol{\Sigma}^{-1} \mathbf{q}\right]-\frac{n}{2} \operatorname{trace}\left(\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\partial \theta_{i}}\right)
$$

where

$$
\frac{\partial \boldsymbol{\Sigma}(\theta)}{\partial \theta_{i}}=\frac{2}{n} \sum_{t=1}^{n} \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)^{\prime}}{\partial \theta_{i}}
$$

and

$$
\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right)=\frac{\epsilon(\theta)}{\sqrt{h(\theta)}} \in R^{m \times n}
$$

The estimator of the variance-covariance of $\hat{\theta}$ (COVB) for the t distribution is the inverse of the likelihood Hessian. The gradient is computed analytically, and the Hessian is computed numerically.

Empirical Distribution Estimation and Simulation

The following SAS statements fit a model that uses least squares as the likelihood function, but represent the distribution of the residuals with an empirical cumulative distribution function (CDF). The plot of the empirical probability distribution is shown in Figure 18.22.

```
data t;
    format date monyy.;
    do t = 0 to 9.9 by 0.1;
        date = intnx( 'month', '1jun90'd, (t*10)-1 );
        y = 0.1 * (rannor(123)-10) +
            . 5 * (rannor(456)+10);
        output;
    end;
run;
ods select Model.Liklhood.ResidSummary
            Model.Liklhood.ParameterEstimates;
proc model data=t time=t itprint;
    dependent y;
    parm a 5;
    y = a;
    obj = resid.y * resid.y;
    errormodel y ~ general( obj )
    cdf=(empirical=(tails=( normal percent=10)));
    fit y / outsn=s out=r;
    id date;
```

```
solve y / data=t(where=(date='laug98'd))
    residdata=r sdata=s
    random=200 seed=6789 out=monte ;
proc kde data=monte;
    univar y / plots=density;
ods graphics off;
```

run;
run;

Figure 18.22 Empirical PDF Plot

For simulation, if the CDF for the model is not built in to the procedure, you can use the CDF=EMPIRICAL() option. This uses the sorted residual data to create an empirical CDF. For computing the inverse CDF, the program needs to know how to handle the tails. For continuous data, the tail distribution is generally poorly determined. To counter this, the PERCENT= option specifies the percentage of the observations to use in constructing each tail. The default for the PERCENT= option is 10 .

A normal distribution or a t distribution is used to extrapolate the tails to infinity. The standard errors for this extrapolation are obtained from the data so that the empirical CDF is continuous.

Properties of the Estimates

All of the methods are consistent. Small sample properties might not be good for nonlinear models. The tests and standard errors reported are based on the convergence of the distribution of the estimates to a normal distribution in large samples.

These nonlinear estimation methods reduce to the corresponding linear systems regression methods if the model is linear. If this is the case, PROC MODEL produces the same estimates as PROC SYSLIN.

Except for GMM, the estimation methods assume that the equation errors for each observation are identically and independently distributed with a 0 mean vector and positive definite covariance matrix $\boldsymbol{\Sigma}$ consistently estimated by \mathbf{S}. For FIML, the errors need to be normally distributed. There are no other assumptions concerning the distribution of the errors for the other estimation methods.

The consistency of the parameter estimates relies on the assumption that the \mathbf{S} matrix is a consistent estimate of $\boldsymbol{\Sigma}$. These standard error estimates are asymptotically valid, but for nonlinear models they might not be reliable for small samples.

The \mathbf{S} matrix used for the calculation of the covariance of the parameter estimates is the best estimate available for the estimation method selected. For \mathbf{S}-iterated methods, this is the most recent estimation of $\boldsymbol{\Sigma}$. For OLS and 2SLS, an estimate of the \mathbf{S} matrix is computed from OLS or 2SLS residuals and used for the calculation of the covariance matrix. For a complete list of the \mathbf{S} matrix used for the calculation of the covariance of the parameter estimates, see Table 18.2.

Missing Values

An observation is excluded from the estimation if any variable used for FIT tasks is missing, if the weight for the observation is not greater than 0 when weights are used, or if a DELETE statement is executed by the model program. Variables used for FIT tasks include the equation errors for each equation, the instruments, if any, and the derivatives of the equation errors with respect to the parameters estimated. Note that variables can become missing as a result of computational errors or calculations with missing values.

The number of usable observations can change when different parameter values are used; some parameter values can be invalid and cause execution errors for some observations. PROC MODEL keeps track of the number of usable and missing observations at each pass through the data, and if the number of missing observations counted during a pass exceeds the number that was obtained using the previous parameter vector, the pass is terminated and the new parameter vector is considered infeasible. PROC MODEL never takes a step that produces more missing observations than the current estimate does.

The values used to compute the Durbin-Watson, R^{2}, and other statistics of fit are from the observations used in calculating the objective function and do not include any observation for which any needed variable was missing (residuals, derivatives, and instruments).

Details on the Covariance of Equation Errors

There are several \mathbf{S} matrices that can be involved in the various estimation methods and in forming the estimate of the covariance of parameter estimates. These \mathbf{S} matrices are estimates of $\boldsymbol{\Sigma}$, the true covariance of the equation errors. Apart from the choice of instrumental or noninstrumental methods, many of the methods provided by PROC MODEL differ in the way the various \mathbf{S} matrices are formed and used.

All of the estimation methods result in a final estimate of $\boldsymbol{\Sigma}$, which is included in the output if the COVS option is specified. The final \mathbf{S} matrix of each method provides the initial \mathbf{S} matrix for any subsequent estimation.

This estimate of the covariance of equation errors is defined as

$$
\mathbf{S}=\mathbf{D}\left(\mathbf{R}^{\prime} \mathbf{R}\right) \mathbf{D}
$$

where $\mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{g}\right)$ is composed of the equation residuals computed from the current parameter estimates in an $n \times g$ matrix and \mathbf{D} is a diagonal matrix that depends on the VARDEF $=$ option.

For VARDEF $=\mathrm{N}$, the diagonal elements of \mathbf{D} are $1 / \sqrt{n}$, where n is the number of nonmissing observations. For VARDEF=WGT, n is replaced with the sum of the weights. For VARDEF=WDF, n is replaced with the sum of the weights minus the model degrees of freedom. For the default VARDEF $=\mathrm{DF}$, the i th diagonal element of \mathbf{D} is $1 / \sqrt{n-d f_{i}}$, where $d f_{i}$ is the degrees of freedom (number of parameters) for the i th equation. Binkley and Nelson (1984) show the importance of using a degrees-of-freedom correction in estimating $\boldsymbol{\Sigma}$. Their results indicate that the DF method produces more accurate confidence intervals for N3SLS parameter estimates in the linear case than the alternative approach they tested. VARDEF=N is always used for the computation of the FIML estimates.

For the fixed \mathbf{S} methods, the OUTSUSED= option writes the \mathbf{S} matrix used in the estimation to a data set. This \mathbf{S} matrix is either the estimate of the covariance of equation errors matrix from the preceding estimation, or a prior $\boldsymbol{\Sigma}$ estimate read in from a data set when the SDATA= option is specified. For the diagonal \mathbf{S} methods, all of the off-diagonal elements of the \mathbf{S} matrix are set to 0 for the estimation of the parameters and for the OUTSUSED= data set, but the output data set produced by the OUTS = option contains the off-diagonal elements. For the OLS and N2SLS methods, there is no previous estimate of the covariance of equation errors matrix, and the option OUTSUSED= saves an identity matrix unless a prior $\boldsymbol{\Sigma}$ estimate is supplied by the SDATA= option. For FIML, the OUTSUSED= data set contains the \mathbf{S} matrix computed with VARDEF=N. The OUTS= data set contains the \mathbf{S} matrix computed with the selected VARDEF= option.

If the COVS option is used, the method is not \mathbf{S}-iterated, \mathbf{S} is not an identity, and the OUTSUSED= matrix is included in the printed output.

For the methods that iterate the covariance of equation errors matrix, the \mathbf{S} matrix is iteratively reestimated from the residuals produced by the current parameter estimates. This \mathbf{S} matrix estimate iteratively replaces the previous estimate until both the parameter estimates and the estimate of the covariance of equation errors matrix converge. The final OUTS = matrix and OUTSUSED= matrix are thus identical for the \mathbf{S}-iterated methods.

Nested Iterations

By default, for \mathbf{S}-iterated methods, the \mathbf{S} matrix is held constant until the parameters converge once. Then the \mathbf{S} matrix is reestimated. One iteration of the parameter estimation algorithm is performed, and the \mathbf{S} matrix is again reestimated. This latter process is repeated until convergence of both the parameters and the \mathbf{S} matrix. Since the objective of the minimization depends on the \mathbf{S} matrix, this has the effect of chasing a moving target.

When the NESTIT option is specified, iterations are performed to convergence for the structural parameters with a fixed \mathbf{S} matrix. The \mathbf{S} matrix is then reestimated, the parameter iterations are repeated to convergence, and so on until both the parameters and the \mathbf{S} matrix converge. This has the effect of fixing the objective function for the inner parameter iterations. It is more reliable, but usually more expensive, to nest the iterations.

R-Square Statistic

For unrestricted linear models with an intercept successfully estimated by OLS, R^{2} is always between 0 and 1 . However, nonlinear models do not necessarily encompass the dependent mean as a special case and can produce negative R^{2} statistics. Negative R^{2} statistics can also be produced even for linear models when an estimation method other than OLS is used and no intercept term is in the model.
R^{2} is defined for normalized equations as

$$
R^{2}=1-\frac{S S E}{S S A-\bar{y}^{2} \times n}
$$

where SSA is the sum of the squares of the actual y 's and \bar{y} are the actual means. R^{2} cannot be computed for models in general form because of the need for an actual Y.

Minimization Methods

PROC MODEL currently supports two methods for minimizing the objective function. These methods are described in the following sections.

GAUSS

The Gauss-Newton parameter-change vector for a system with g equations, n nonmissing observations, and p unknown parameters is

$$
\boldsymbol{\Delta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{r}
$$

where $\boldsymbol{\Delta}$ is the change vector, \mathbf{X} is the stacked $n g \times p$ Jacobian matrix of partial derivatives of the residuals with respect to the parameters, and \mathbf{r} is an $n g \times 1$ vector of the stacked residuals. The components of \mathbf{X} and \mathbf{r} are weighted by the \mathbf{S}^{-1} matrix. When instrumental methods are used, \mathbf{X}
and \mathbf{r} are the projections of the Jacobian matrix and residuals vector in the instruments space and not the Jacobian and residuals themselves. In the preceding formula, \mathbf{S} and \mathbf{W} are suppressed. If instrumental variables are used, then the change vector becomes:

$$
\boldsymbol{\Delta}=\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{r}
$$

This vector is computed at the end of each iteration. The objective function is then computed at the changed parameter values at the start of the next iteration. If the objective function is not improved by the change, the $\boldsymbol{\Delta}$ vector is reduced by one-half and the objective function is reevaluated. The change vector will be halved up to MAXSUBITER= times until the objective function is improved. If the objective function cannot be improved after MAXSUBITER= times, the procedure switches to the MARQUARDT method described in the next section to further improve the objective function.

For FIML, the $\mathbf{X}^{\prime} \mathbf{X}$ matrix is substituted with one of three choices for approximations to the Hessian. See the section "Full Information Maximum Likelihood Estimation (FIML)" on page 1019 in this chapter.

MARQUARDT

The Marquardt-Levenberg parameter change vector is

$$
\boldsymbol{\Delta}=\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \operatorname{diag}\left(\mathbf{X}^{\prime} \mathbf{X}\right)\right)^{-1} \mathbf{X}^{\prime} \mathbf{r}
$$

where $\boldsymbol{\Delta}$ is the change vector, and \mathbf{X} and \mathbf{r} are the same as for the Gauss-Newton method, described in the preceding section. Before the iterations start, λ is set to a small value (1E-6). At each iteration, the objective function is evaluated at the parameters changed by $\boldsymbol{\Delta}$. If the objective function is not improved, λ is increased to 10λ and the step is tried again. λ can be increased up to MAXSUBITER $=$ times to a maximum of 1 E 15 (whichever comes first) until the objective function is improved. For the start of the next iteration, λ is reduced to $\max (\lambda / 10,1 \mathrm{E}-10)$.

Convergence Criteria

There are a number of measures that could be used as convergence or stopping criteria. PROC MODEL computes five convergence measures labeled R, S, PPC, RPC, and OBJECT.

When an estimation technique that iterates estimates of $\boldsymbol{\Sigma}$ is used (that is, IT3SLS), two convergence criteria are used. The termination values can be specified with the CONVERGE $=(p, s)$ option in the FIT statement. If the second value, s, is not specified, it defaults to p. The criterion labeled S (described later in the section) controls the convergence of the \mathbf{S} matrix. When S is less than s, the \mathbf{S} matrix has converged. The criterion labeled R is compared to the p-value to test convergence of the parameters.

The R convergence measure cannot be computed accurately in the special case of singular residuals (when all the residuals are close to 0) or in the case of a 0 objective value. When either the trace of the \mathbf{S} matrix computed from the current residuals (trace(\mathbf{S})) or the objective value is less than the value of the SINGULAR= option, convergence is assumed.

The various convergence measures are explained in the following:

R
is the primary convergence measure for the parameters. It measures the degree to which the residuals are orthogonal to the Jacobian columns, and it approaches 0 as the gradient of the objective function becomes small. R is defined as the square root of

$$
\frac{\left(r^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{X}\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) r\right)}{\left(r^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{W}\right) r\right)}
$$

where \mathbf{X} is the Jacobian matrix and \mathbf{r} is the residuals vector. R is similar to the relative offset orthogonality convergence criterion proposed by Bates and Watts (1981).

In the univariate case, the R measure has several equivalent interpretations:

- the cosine of the angle between the residuals vector and the column space of the Jacobian matrix. When this cosine is 0 , the residuals are orthogonal to the partial derivatives of the predicted values with respect to the parameters, and the gradient of the objective function is 0 .
- the square root of the R^{2} for the current linear pseudo-model in the residuals
- a norm of the gradient of the objective function, where the norming matrix is proportional to the current estimate of the covariance of the parameter estimates. Thus, using R, convergence is judged when the gradient becomes small in this norm.
- the prospective relative change in the objective function value expected from the next GAUSS step, assuming that the current linearization of the model is a good local approximation

In the multivariate case, R is somewhat more complicated but is designed to go to 0 as the gradient of the objective becomes small and can still be given the previous interpretations for the aggregation of the equations weighted by \mathbf{S}^{-1}.
PPC is the prospective parameter change measure. PPC measures the maximum relative change in the parameters implied by the parameter-change vector computed for the next iteration. At the k th iteration, PPC is the maximum over the parameters

$$
\frac{\left|\theta_{i}^{k+1}-\theta_{i}^{k}\right|}{\left|\theta_{i}^{k}+1.0 e^{-6}\right|}
$$

where θ_{i}^{k} is the current value of the i th parameter and θ_{i}^{k+1} is the prospective value of this parameter after adding the change vector computed for the next iteration. The parameter with the maximum prospective relative change is printed with the value of PPC, unless the PPC is nearly 0 .
RPC is the retrospective parameter change measure. RPC measures the maximum relative change in the parameters from the previous iteration. At the k th iteration,

RPC is the maximum over i of

$$
\frac{\left|\theta_{i}^{k}-\theta_{i}^{k-1}\right|}{\left|\theta_{i}^{k-1}+1.0 e^{-6}\right|}
$$

where θ_{i}^{k} is the current value of the i th parameter and θ_{i}^{k-1} is the previous value of this parameter. The name of the parameter with the maximum retrospective relative change is printed with the value of RPC, unless the RPC is nearly 0 .
OBJECT measures the relative change in the objective function value between iterations:

$$
\frac{\left|O^{k}-O^{k-1}\right|}{\left|O^{k-1}+1.0 e^{-6}\right|}
$$

where O^{k-1} is the value of the objective function $\left(O^{k}\right)$ from the previous iteration.

S
measures the relative change in the \mathbf{S} matrix. S is computed as the maximum over i, j of

$$
\frac{\left|S_{i j}^{k}-S_{i j}^{k-1}\right|}{\left|S_{i j}^{k-1}+1.0 e^{-6}\right|}
$$

where S^{k-1} is the previous \mathbf{S} matrix. The S measure is relevant only for estimation methods that iterate the \mathbf{S} matrix.

An example of the convergence criteria output is shown in Figure 18.23.
Figure 18.23 Convergence Criteria Output

Final Convergence Criteria	
R	0.000737
PPC (b)	0.003943
RPC (b)	0.00968
Object	$4.784 \mathrm{E}-6$
Trace (S)	0.533325
Objective Value	0.522214

The Trace (\mathbf{S}) is the trace (the sum of the diagonal elements) of the \mathbf{S} matrix computed from the current residuals. This row is labeled MSE if there is only one equation.

Troubleshooting Convergence Problems

As with any nonlinear estimation routine, there is no guarantee that the estimation will be successful for a given model and data. If the equations are linear with respect to the parameters, the parameter
estimates always converge in one iteration. The methods that iterate the \mathbf{S} matrix must iterate further for the \mathbf{S} matrix to converge. Nonlinear models might not necessarily converge.

Convergence can be expected only with fully identified parameters, adequate data, and starting values sufficiently close to solution estimates.

Convergence and the rate of convergence might depend primarily on the choice of starting values for the estimates. This does not mean that a great deal of effort should be invested in choosing starting values. First, try the default values. If the estimation fails with these starting values, examine the model and data and rerun the estimation using reasonable starting values. It is usually not necessary that the starting values be very good, just that they not be very bad; choose values that seem plausible for the model and data.

An Example of Requiring Starting Values

Suppose you want to regress a variable Y on a variable X , assuming that the variables are related by the following nonlinear equation:

$$
y=a+b x^{c}+\epsilon
$$

In this equation, Y is linearly related to a power transformation of X . The unknown parameters are a, b, and $c . \epsilon$ is an unobserved random error. The following SAS statements generate simulated data. In this simulation, $a=10, b=2$, and the use of the SQRT function corresponds to $c=.5$.

```
data test;
    do i = 1 to 20;
        x = 5 * ranuni(1234);
        y = 10 + 2 * sqrt(x) + .5 * rannor(2345);
        output;
        end;
run;
```

The following statements specify the model and give descriptive labels to the model parameters. Then the FIT statement attempts to estimate a, b, and c by using the default starting value 0.0001 .

```
proc model data=test;
    y = a + b * x ** c;
    label a = "Intercept"
            b = "Coefficient of Transformed X"
            c = "Power Transformation Parameter";
    fit y;
run;
```

PROC MODEL prints model summary and estimation problem summary reports and then prints the output shown in Figure 18.24.

Figure 18.24 Diagnostics for Convergence Failure

By using the default starting values, PROC MODEL is unable to take even the first step in iterating to the solution. The change in the parameters that the Gauss-Newton method computes is very extreme and makes the objective values worse instead of better. Even when this step is shortened by a factor of a million, the objective function is still worse, and PROC MODEL is unable to estimate the model parameters.

The problem is caused by the starting value of C . Using the default starting value $\mathrm{C}=0.0001$, the first iteration attempts to compute better values of A and B by what is, in effect, a linear regression of Y on the 10,000 th root of X , which is almost the same as the constant 1 . Thus the matrix that is inverted to compute the changes is nearly singular and affects the accuracy of the computed parameter changes.

This is also illustrated by the next part of the output, which displays collinearity diagnostics for the crossproducts matrix of the partial derivatives with respect to the parameters, shown in Figure 18.25.

Figure 18.25 Collinearity Diagnostics

Number	Collinearity Diagnostics				
	Eigenvalue	Condition Number	-----Proportion of Variation----		
			a	b	c
1	2.376793	1.0000	0.0000	0.0000	0.0000
2	0.623207	1.9529	0.0000	0.0000	0.0000
3	1.68475E-12	1187758	1.0000	1.0000	1.0000

This output shows that the matrix is singular and that the partials of A, B, and C with respect to the residual are collinear at the point $(0.0001,0.0001,0.0001)$ in the parameter space. See the section "Linear Dependencies" on page 1041 for a full explanation of the collinearity diagnostics.

The MODEL procedure next prints the note shown in Figure 18.26, which suggests that you try different starting values.

Figure 18.26 Estimation Failure Note

```
NOTE: The parameter estimation is abandoned. Check your model and data. If the
    model is correct and the input data are appropriate, try rerunning the
    parameter estimation using different starting values for the parameter
    estimates.
PROC MODEL continues as if the parameter estimates had converged.
```

PROC MODEL then produces the usual printout of results for the nonconverged parameter values. The estimation summary is shown in Figure 18.27. The heading includes the reminder "(Not Converged)".

Figure 18.27 Nonconverged Estimation Summary

The nonconverged estimation results are shown in Figure 18.28.

Figure 18.28 Nonconverged Results

Note that the R^{2} statistic is negative. An $R^{2}<0$ results when the residual mean squared error for the model is larger than the variance of the dependent variable. Negative R^{2} statistics might be produced when either the parameter estimates fail to converge correctly, as in this case, or when the correctly estimated model fits the data very poorly.

Controlling Starting Values

To fit the preceding model you must specify a better starting value for C . Avoid starting values of C that are either very large or close to 0 . For starting values of A and B, you can specify values, use the default, or have PROC MODEL fit starting values for them conditional on the starting value for C.

Starting values are specified with the START= option of the FIT statement or in a PARMS statement. In PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When more than one option is specified, the options are implemented in the following order of precedence (from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option, and the PARMSDATA= option. When no starting values for the parameter estimates are specified with BY group processing, the default start value 0.0001 is used for each by group. Again, when no starting values are specified, and a model with a FIT statement is stored by the OUTMODEL=outmodel-filename option in a previous step, the outmodel-filename can be invoked in a subsequent PROC MODEL step by using the MODEL=outmodel-filename option with multiple estimation methods in the second step. In such a case, the parameter estimates from the outmodel-filename are used directly as starting values for OLS, and OLS results from the second step provide starting values for the subsequent estimation method such as 2SLS or SUR, provided that NOOLS is not specified.

For example, the following statements estimate the model parameters by using the starting values $\mathrm{A}=0.0001, \mathrm{~B}=0.0001$, and $\mathrm{C}=5$.

```
proc model data=test;
    y = a + b * x ** c;
    label a = "Intercept"
        b = "Coefficient of Transformed X"
        c = "Power Transformation Parameter";
    fit y start=(c=5);
run;
```

Using these starting values, the estimates converge in 16 iterations. The results are shown in Figure 18.29. Note that since the START= option explicitly declares parameters, the parameter C is placed first in the table.

Figure 18.29 Converged Results

The MODEL Procedure							
Nonlinear OLS Summary of Residual Errors							
Equation	$\begin{array}{r} \text { DF } \\ \text { Model } \end{array}$	$\begin{array}{r} \text { DF } \\ \text { Error } \end{array}$	SSE	MSE	Root MSE	R-Square	$\begin{array}{r} \text { Adj } \\ \text { R-Sq } \end{array}$
Y	3	17	5.7359	0.3374	0.5809	0.8062	0.7834
Nonlinear OLS Parameter Estimates							
Approx Approx							
Parameter	Estimate	St	Err t	Value	$r>\|t\|$	Label	
c	0.327079		892	1.13	0.2738	Power Tran Parameter	ormation
a	8.384311		775	2.48	0.0238	Intercept	
b	3.505391		858	1.01	0.3287	Coefficien	
						Transforme	

Using the STARTITER Option

PROC MODEL can compute starting values for some parameters conditional on starting values you specify for the other parameters. You supply starting values for some parameters and specify the STARTITER option on the FIT statement.

For example, the following statements set C to 1 and compute starting values for A and B by estimating these parameters conditional on the fixed value of C . With $\mathrm{C}=1$, this is equivalent to computing A and B by linear regression on X . A PARMS statement is used to declare the parameters in alphabetical order. The ITPRINT option is used to print the parameter values at each iteration.

```
proc model data=test;
    parms a b c;
    y = a + b * x ** c;
    label a = "Intercept"
            b = "Coefficient of Transformed X"
```

```
            c = "Power Transformation Parameter";
    fit y start=(c=1) / startiter itprint;
run;
```

With better starting values, the estimates converge in only eight iterations. Counting the iteration required to compute the starting values for A and B , this is seven fewer than the 16 iterations required without the STARTITER option. The iteration history listing is shown in Figure 18.30.

Figure 18.30 ITPRINT Listing

The MODEL Procedure OLS Estimation								
	N							
	Iteration N	Obs	R	Objective	Subit	a	b	c
GRID	0	20	0.9989	162.9	0	0.00010	0.00010	1.00000
GRID	1	20	0.0000	0.3464	0	10.96530	0.77007	1.00000
	N							
	Iteration N	Obs	R	Objective	Subit	a	b	c
OLS	0	20	0.3873	0.3464	0	10.96530	0.77007	1.00000
OLS	1	20	0.3339	0.3282	2	10.75993	0.99433	0.83096
OLS	2	20	0.3244	0.3233	1	10.46894	1.31205	0.66810
OLS	3	20	0.3151	0.3197	1	10.11707	1.69149	0.54626
OLS	4	20	0.2764	0.3110	1	9.74691	2.08492	0.46615
OLS	5	20	0.2379	0.3040	0	9.06175	2.80546	0.36575
OLS	6	20	0.0612	0.2879	0	8.51825	3.36746	0.33201
OLS	7	20	0.0022	0.2868	0	8.39485	3.49449	0.32776
OLS	8	20	0.0001	0.2868	0	8.38467	3.50502	0.32711
NOTE: At OLS Iteration 8 CONVERGE=0.001 Criteria Met.								

The results produced in this case are almost the same as the results shown in Figure 18.29, except that the PARMS statement causes the parameter estimates table to be ordered A, B, C instead of C, A, B. They are not exactly the same because the different starting values caused the iterations to converge at a slightly different place. This effect is controlled by changing the convergence criterion with the CONVERGE= option.

By default, the STARTITER option performs one iteration to find starting values for the parameters that are not given values. In this case, the model is linear in A and B, so only one iteration is needed. If A or B were nonlinear, you could specify more than one "starting values" iteration by specifying a number for the STARTITER= option.

Finding Starting Values by Grid Search

PROC MODEL can try various combinations of parameter values and use the combination that produces the smallest objective function value as starting values. (For OLS the objective function is the residual mean square.) This is known as a preliminary grid search. You can combine the STARTITER option with a grid search.

For example, the following statements try five different starting values for $\mathrm{C}: 1,0.7,0.5,0.3$, and 0 . For each value of C , values for A and B are estimated. The combination of A, B, and C values that produce the smallest residual mean square is then used to start the iterative process.

```
proc model data=test;
    parms a b c;
    y = a + b * x ** c;
    label a = "Intercept"
            b = "Coefficient of Transformed X"
            c = "Power Transformation Parameter";
    fit y start=(c=1 . 7 . 5 . 3 0) / startiter itprint;
run;
```

The iteration history listing is shown in Figure 18.31. Using the best starting values found by the grid search, the OLS estimation only requires two iterations. However, since the grid search required nine iterations, the total iterations in this case is 11 .

Figure 18.31 ITPRINT Listing

The MODEL Procedure OLS Estimation								
	N							
	Iteration	N Obs	R	R Objective	Subit	a	b	c
GRID	0	20	0.9989	162.9	0	0.00010	0.00010	1.00000
GRID	1	20	0.0000	0.3464	0	10.96530	0.77007	1.00000
GRID	0	20	0.7587	- 0.7242	0	10.96530	0.77007	0.70000
GRID	1	20	0.0000	0.3073	0	10.41027	1.36141	0.70000
GRID	0	20	0.7079	0.5843	0	10.41027	1.36141	0.50000
GRID	1	20	0.0000	0.2915	0	9.69319	2.13103	0.50000
GRID	0	20	0.7747	0.7175	0	9.69319	2.13103	0.30000
GRID	1	20	0.0000	0.2869	0	8.04397	3.85767	0.30000
GRID	0	20	0.5518	- 2.1277	0	8.04397	3.85767	0.00000
GRID	1	20	0.0000	- 1.4799	0	8.04397	4.66255	0.00000
	N							
	Iteration	N Obs	R	R Objective	Subit	a	b	c
OLS	0	20	0.0189	0.2869	0	8.04397	3.85767	0.30000
OLS	1	20	0.0158	0.2869	0	8.35023	3.54145	0.32233
OLS	2	20	0.0006	$6 \quad 0.2868$	0	8.37468	3.51540	0.32622
NOTE: At OLS Iteration 2 CONVERGE=0.001 Criteria Met.								

Because no initial values for A or B were provided in the PARAMETERS statement or were read in with a PARMSDATA= or ESTDATA= option, A and B were given the default value of 0.0001 for the first iteration. At the second grid point, $\mathrm{C}=5$, the values of A and B obtained from the previous iterations are used for the initial iteration. If initial values are provided for parameters, the parameters start at those initial values at each grid point.

Guessing Starting Values from the Logic of the Model

Example 18.1, which uses a logistic growth curve model of the U.S. population, illustrates the need for reasonable starting values. This model can be written

$$
\text { pop }=\frac{a}{1+\exp (b-c(t-1790))}
$$

where t is time in years. The model is estimated by using decennial census data of the U.S. population in millions. If this simple but highly nonlinear model is estimated by using the default starting values, the estimation fails to converge.

To find reasonable starting values, first consider the meaning of a and c. Taking the limit as time increases, a is the limiting or maximum possible population. So, as a starting value for a, several times the most recent population known can be used-for example, one billion (1000 million).

Dividing the time derivative by the function to find the growth rate and taking the limit as t moves into the past, you can determine that c is the initial growth rate. You can examine the data and compute an estimate of the growth rate for the first few decades, or you can pick a number that sounds like a plausible population growth rate figure, such as 2%.

To find a starting value for b, let t equal the base year used, 1790, which causes c to drop out of the formula for that year, and then solve for the value of b that is consistent with the known population in 1790 and with the starting value of a. This yields $b=\ln (a / 3.9-1)$ or about 5.5 , where a is 1000 and 3.9 is roughly the population for 1790 given in the data. The estimates converge using these starting values.

Convergence Problems

When estimating nonlinear models, you might encounter some of the following convergence problems.

Unable to Improve

The optimization algorithm might be unable to find a step that improves the objective function. If this happens in the Gauss-Newton method, the step size is halved to find a change vector for which the objective improves. In the Marquardt method, λ is increased to find a change vector for which the objective improves. If, after MAXSUBITER= step-size halvings or increases in λ, the change vector still does not produce a better objective value, the iterations are stopped and an error message is printed.

Failure of the algorithm to improve the objective value can be caused by a CONVERGE= value that is too small. Look at the convergence measures reported at the point of failure. If the estimates appear to be approximately converged, you can accept the NOT CONVERGED results reported, or you can try rerunning the FIT task with a larger CONVERGE= value.

If the procedure fails to converge because it is unable to find a change vector that improves the objective value, check your model and data to ensure that all parameters are identified and data values are reasonably scaled. Then, rerun the model with different starting values. Also, consider
using the Marquardt method if the Gauss-Newton method fails; the Gauss-Newton method can get into trouble if the Jacobian matrix is nearly singular or ill-conditioned. Keep in mind that a nonlinear model may be well-identified and well-conditioned for parameter values close to the solution values but unidentified or numerically ill-conditioned for other parameter values. The choice of starting values can make a big difference.

Nonconvergence

The estimates might diverge into areas where the program overflows or the estimates might go into areas where function values are illegal or too badly scaled for accurate calculation. The estimation might also take steps that are too small or that make only marginal improvement in the objective function and thus fail to converge within the iteration limit.

When the estimates fail to converge, collinearity diagnostics for the Jacobian crossproducts matrix are printed if there are 20 or fewer parameters estimated. See the section "Linear Dependencies" on page 1041 for an explanation of these diagnostics.

Inadequate Convergence Criterion

If convergence is obtained, the resulting estimates approximate only a minimum point of the objective function. The statistical validity of the results is based on the exact minimization of the objective function, and for nonlinear models the quality of the results depends on the accuracy of the approximation of the minimum. This is controlled by the convergence criterion used.

There are many nonlinear functions for which the objective function is quite flat in a large region around the minimum point so that many quite different parameter vectors might satisfy a weak convergence criterion. By using different starting values, different convergence criteria, or different minimization methods, you can produce very different estimates for such models.

You can guard against this by running the estimation with different starting values and different convergence criteria and checking that the estimates produced are essentially the same. If they are not, use a smaller CONVERGE= value.

Local Minimum

You might have converged to a local minimum rather than a global one. This problem is difficult to detect because the procedure appears to have succeeded. You can guard against this by running the estimation with different starting values or with a different minimization technique. The START= option can be used to automatically perform a grid search to aid in the search for a global minimum.

Discontinuities

The computational methods assume that the model is a continuous and smooth function of the parameters. If this is not the case, the methods might not work.

If the model equations or their derivatives contain discontinuities, the estimation usually succeeds, provided that the final parameter estimates lie in a continuous interval and that the iterations do not produce parameter values at points of discontinuity or parameter values that try to cross asymptotes.

One common case of discontinuities causing estimation failure is that of an asymptotic discontinuity between the final estimates and the initial values. For example, consider the following model, which is basically linear but is written with one parameter in reciprocal form:

```
y = a + b * x1 + x2 / c;
```

By placing the parameter C in the denominator, a singularity is introduced into the parameter space at $\mathrm{C}=0$. This is not necessarily a problem, but if the correct estimate of C is negative while the starting value is positive (or vice versa), the asymptotic discontinuity at 0 will lie between the estimate and the starting value. This means that the iterations have to pass through the singularity to get to the correct estimates. The situation is shown in Figure 18.32.

Figure 18.32 Asymptotic Discontinuity

Because of the incorrect sign of the starting value, the C estimate goes off towards positive infinity in a vain effort to get past the asymptote and onto the correct arm of the hyperbola. As the computer is required to work with ever closer approximations to infinity, the numerical calculations break down and an "objective function was not improved" convergence failure message is printed. At this point, the iterations terminate with an extremely large positive value for C . When the sign of the starting value for C is changed, the estimates converge quickly to the correct values.

Linear Dependencies

In some cases, the Jacobian matrix might not be of full rank; parameters might not be fully identified for the current parameter values with the current data. When linear dependencies occur among the derivatives of the model, some parameters appear with a standard error of 0 and with the word BIASED printed in place of the t statistic. When this happens, collinearity diagnostics for the Jacobian crossproducts matrix are printed if the DETAILS option is specified and there are twenty or fewer parameters estimated. Collinearity diagnostics are also printed out automatically when a minimization method fails, or when the COLLIN option is specified.

For each parameter, the proportion of the variance of the estimate accounted for by each principal component is printed. The principal components are constructed from the eigenvalues and eigenvectors of the correlation matrix (scaled covariance matrix). When collinearity exists, a principal component is associated with proportion of the variance of more than one parameter. The numbers reported are proportions so they remain between 0 and 1 . If two or more parameters have large proportion values associated with the same principal component, then two problems can occur: the computation of the parameter estimates are slow or nonconvergent; and the parameter estimates have inflated variances (Belsley, Kuh, and Welsch 1980, p. 105-117).

For example, the following cubic model is fit to a quadratic data set:

```
proc model data=test3;
    exogenous x1;
    parms b1 a1 c1 ;
    y1 = a1 * x1 + b1 * x1 * x1 + c1 * x1 * x1 *x1;
    fit y1 / collin;
run;
```

The collinearity diagnostics are shown in Figure 18.33.
Figure 18.33 Collinearity Diagnostics

The MODEL Procedure					
Collinearity Diagnostics					
Number	Eigenvalue	Condition	---Prop	n of Va	ion----
		Number	b1	a1	c1
1	2.942920	1.0000	0.0001	0.0004	0.0002
2	0.056638	7.2084	0.0001	0.0357	0.0148
3	0.000442	81.5801	0.9999	0.9639	0.9850

Notice that the proportions associated with the smallest eigenvalue are almost 1. For this model, removing any of the parameters decreases the variances of the remaining parameters.

In many models, the collinearity might not be clear cut. Collinearity is not necessarily something you remove. A model might need to be reformulated to remove the redundant parameterization, or the limitations on the estimability of the model can be accepted. The GINV=G4 option can be helpful to avoid problems with convergence for models containing collinearities.

Collinearity diagnostics are also useful when an estimation does not converge. The diagnostics provide insight into the numerical problems and can suggest which parameters need better starting values. These diagnostics are based on the approach of Belsley, Kuh, and Welsch (1980).

Iteration History

The options ITPRINT, ITDETAILS, XPX, I, and ITALL specify a detailed listing of each iteration of the minimization process.

ITPRINT Option

The ITPRINT information is selected whenever any iteration information is requested.
The following information is displayed for each iteration:

N	is the number of usable observations.
Objective	is the corrected objective function value.
Trace(S)	is the trace of the \mathbf{S} matrix. subit
is the number of subiterations required to find a λ or a damping factor that re- duces the objective function.	
R	is the R convergence measure.

The estimates for the parameters at each iteration are also printed.

ITDETAILS Option

The additional values printed for the ITDETAILS option are:

Theta is the angle in degrees between Δ, the parameter change vector, and the negative gradient of the objective function.
Phi is the directional derivative of the objective function in the Δ direction scaled by the objective function.

Stepsize \quad is the value of the damping factor used to reduce Δ if the Gauss-Newton method is used.

Lambda is the value of λ if the Marquardt method is used.
$\operatorname{Rank}(\mathrm{XPX}) \quad$ is the rank of the $\mathbf{X}^{\prime} \mathbf{X}$ matrix (output if the projected Jacobian crossproducts matrix is singular).

The definitions of PPC and R are explained in the section "Convergence Criteria" on page 1028. When the values of PPC are large, the parameter associated with the criteria is displayed in parentheses after the value.

XPX and I Options

The XPX and the I options select the printing of the augmented $\mathbf{X}^{\prime} \mathbf{X}$ matrix and the augmented $\mathbf{X}^{\prime} \mathbf{X}$ matrix after a sweep operation (Goodnight 1979) has been performed on it. An example of the output from the following statements is shown in Figure 18.34.

```
proc model data=test2;
    y1 = a1 * x2 * x2 - exp( d1*x1);
    y2 = a2 * x1 * x1 + b2 * exp( d2*x2);
    fit y1 y2 / itall XPX I ;
run;
```

Figure 18.34 XPX and I Options Output

The MODEL Procedure OLS Estimation						
Cross Products for System At OLS Iteration 0						
	a1	d1	a2	b2	d2	Residual
a1	1839468	-33818.35	0.0	0.00	0.000000	3879959
d1	-33818	1276.45	0.0	0.00	0.000000	-76928
a2	0	0.00	42925.0	1275.15	0.154739	470686
b2	0	0.00	1275.2	50.01	0.003867	16055
d2	0	0.00	0.2	0.00	0.000064	2
Residual	3879959	-76928.14	470686.3	16055.07	2.329718	24576144
XPX Inverse for System At OLS Iteration 0						
	a1	d1	a2	b2	d2	Residual
a1	0.000001	0.000028	0.000000	0.0000	0.00	2
d1	0.000028	0.001527	0.000000	0.0000	0.00	-9
a2	0.000000	0.000000	0.000097	-0.0025	-0.08	6
b2	0.000000	0.000000	-0.002455	0.0825	0.95	172
d2	0.000000	0.000000	-0.084915	0.9476	15746.71	11931
Residual	1.952150	-8.546875	5.823969	171.6234	11930.89	10819902

The first matrix, labeled "Cross Products," for OLS estimation is

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{r} \\
\mathbf{r}^{\prime} \mathbf{X} & \mathbf{r}^{\prime} \mathbf{r}
\end{array}\right]
$$

The column labeled Residual in the output is the vector $\mathbf{X}^{\prime} \mathbf{r}$, which is the gradient of the objective function. The diagonal scalar value $\mathbf{r}^{\prime} \mathbf{r}$ is the objective function uncorrected for degrees of freedom. The second matrix, labeled "XPX Inverse," is created through a sweep operation on the augmented $\mathbf{X}^{\prime} \mathbf{X}$ matrix to get:

$$
\left[\begin{array}{cc}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} & \left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{r} \\
\left(\mathbf{X}^{\prime} \mathbf{r}\right)^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} & \mathbf{r}^{\prime} \mathbf{r}-\left(\mathbf{X}^{\prime} \mathbf{r}\right)^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{r}
\end{array}\right]
$$

Note that the residual column is the change vector used to update the parameter estimates at each iteration. The corner scalar element is used to compute the R convergence criteria.

ITALL Option

The ITALL option, in addition to causing the output of all of the preceding options, outputs the \mathbf{S} matrix, the inverse of the \mathbf{S} matrix, the CROSS matrix, and the swept CROSS matrix. An example of a portion of the CROSS matrix for the preceding example is shown in Figure 18.35.

Figure 18.35 ITALL Option Crossproducts Matrix Output

The MODEL Procedure OLS Estimation				
Crossproducts Matrix At OLS Iteration 0				
	1	@PRED. ${ }^{1 / @ a 1}$	@PRED. ${ }^{1 / @ d 1}$	@PRED. $\mathrm{Y}^{2} / @ \mathrm{a} 2$
1	50.00	6409	-239.16	1275.0
@PRED. $\mathrm{Y} 1 / \mathrm{Ca1}$	6409.08	1839468	-33818.35	187766.1
@PRED. $\mathrm{Y} 1 / \mathrm{C} 1$	-239.16	-33818	1276.45	-7253.0
@PRED. $\mathrm{y}^{2 / @ a 2}$	1275.00	187766	-7253.00	42925.0
@PRED. $\mathrm{Y}^{2 / @ \mathrm{~b} 2}$	50.00	6410	-239.19	1275.2
@PRED. $\mathrm{y}^{2 / @ d 2 ~}$	0.00	1	-0.03	0.2
RESID. ${ }^{1}$	14699.97	3879959	-76928.14	420582.9
RESID. Y^{2}	16052.76	4065028	-85083.68	470686.3
Crossproducts Matrix At OLS Iteration 0				
	@PRED. $\mathrm{y}^{2 / @ b 2}$	@PRED. $\mathrm{y}^{2 / @ d 2}$	RESID. y^{1}	RESID. y^{2}
1	50.00	0.003803	14700	16053
@PRED. $\mathrm{Y} 1 / \mathrm{C}$ a1	6409.88	0.813934	3879959	4065028
@PRED. $\mathrm{Y} 1 / \mathrm{C} 1$	-239.19	-0.026177	-76928	-85084
@PRED. $\mathrm{y}^{2 / @ a 2}$	1275.15	0.154739	420583	470686
@PRED. $\mathrm{Y}^{2 / @ \mathrm{~b} 2}$	50.01	0.003867	14702	16055
@PRED. $\mathrm{y}^{2 / @ d 2}$	0.00	0.000064	2	2
RESID. y^{1}	14701.77	1.820356	11827102	12234106
RESID. y^{2}	16055.07	2.329718	12234106	12749042

Computer Resource Requirements

If you are estimating large systems, you need to be aware of how PROC MODEL uses computer resources (such as memory and the CPU) so they can be used most efficiently.

Saving Time with Large Data Sets

If your input data set has many observations, the FIT statement performs a large number of model program executions. A pass through the data is made at least once for each iteration and the model program is executed once for each observation in each pass. If you refine the starting estimates by using a smaller data set, the final estimation with the full data set might require fewer iterations.

For example, you could use

```
proc model;
    /* Model goes here */
    fit / data=a(obs=25);
    fit / data=a;
```

where OBS=25 selects the first 25 observations in A. The second FIT statement produces the final estimates using the full data set and starting values from the first run.

Fitting the Model in Sections to Save Space and Time

If you have a very large model (with several hundred parameters, for example), the procedure uses considerable space and time. You might be able to save resources by breaking the estimation process into several steps and estimating the parameters in subsets.

You can use the FIT statement to select for estimation only the parameters for selected equations. Do not break the estimation into too many small steps; the total computer time required is minimized by compromising between the number of FIT statements that are executed and the size of the crossproducts matrices that must be processed.

When the parameters are estimated for selected equations, the entire model program must be executed even though only a part of the model program might be needed to compute the residuals for the equations selected for estimation. If the model itself can be broken into sections for estimation (and later combined for simulation and forecasting), then more resources can be saved.

For example, to estimate the following four equation model in two steps, you could use

```
proc model data=a outmodel=part1;
    parms a0-a2 b0-b2 c0-c3 d0-d3;
    y1 = a0 + a1*y2 + a2*x1;
    y2 = b0 + b1*y1 + b2*x2;
    y3 = c0 + c1*y1 + c2*y4 + c3*x3;
    y4 = d0 + d1*y1 + d2*y3 + d3*x4;
    fit y1 y2;
    fit y3 y4;
    fit y1 y2 y3 y4;
run;
```

You should try estimating the model in pieces to save time only if there are more than 14 parameters; the preceding example takes more time, not less, and the difference in memory required is trivial.

Memory Requirements for Parameter Estimation

PROC MODEL is a large program, and it requires much memory. Memory is also required for the SAS System, various data areas, the model program and associated tables and data vectors, and a few crossproducts matrices. For most models, the memory required for PROC MODEL itself is much larger than that required for the model program, and the memory required for the model program is larger than that required for the crossproducts matrices.

The number of bytes needed for two crossproducts matrices, four \mathbf{S} matrices, and three parameter covariance matrices is

$$
8 \times(2+k+m+g)^{2}+16 \times g^{2}+12 \times(p+1)^{2}
$$

plus lower-order terms, where m is the number of unique nonzero derivatives of each residual with respect to each parameter, g is the number of equations, k is the number of instruments, and p is the number of parameters. This formula is for the memory required for 3SLS. If you are using OLS, a reasonable estimate of the memory required for large problems (greater than 100 parameters) is to divide the value obtained from the formula in half.

Consider the following model program.

```
proc model data=test2 details;
    exogenous x1 x2;
    parms b1 100 a1 a2 b2 2.5 c2 55;
    y1 = a1 * y2 + b1 * x1 * x1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2;
    fit y1 y2 / n3sls memoryuse;
    inst b1 b2 c2 x1 ;
run;
```

The DETAILS option prints the storage requirements information shown in Figure 18.36.
Figure 18.36 Storage Requirements Information

The MODEL Procedure	
Storage Requirements for this Problem	
Order of XPX Matrix	6
Order of S Matrix	2
Order of Cross Matrix	13
Total Nonzero Derivatives	5
Distinct Variable Derivatives	5
Size of Cross matrix	728

The matrix $\mathbf{X}^{\prime} \mathbf{X}$ augmented by the residual vector is called the XPX matrix in the output, and it has the size $m+1$. The order of the \mathbf{S} matrix, 2 for this example, is the value of g. The CROSS matrix is made up of the k unique instruments, a constant column that represents the intercept terms, followed by the m unique Jacobian variables plus a constant column that represents the parameters with constant derivatives, followed by the g residuals.

The size of two CROSS matrices in bytes is

$$
8 \times(2+k+m+g)^{2}+2+k+m+g
$$

Note that the CROSS matrix is symmetric, so only the diagonal and the upper triangular part of the matrix is stored. For examples of the CROSS and XPX matrices see the section "Iteration History" on page 1042.

The MEMORYUSE Option

The MEMORYUSE option in the FIT, SOLVE, MODEL, or RESET statement can be used to request a comprehensive memory usage summary.

Figure 18.37 shows an example of the output produced by the MEMORYUSE option.
Figure 18.37 MEMORYUSE Option Output for FIT Task

Definitions of the memory components follow:

symbols	memory used to store information about variables in the model memory used to store the variable names and labels
strings	space used to hold lists of variables lists
arrays	memory used by ARRAY statements
statements	memory used for the list of programming statements in the model opcodes memory used to store the code compiled to evaluate the expression in the model program
parsing	memory used in parsing the SAS statements
executable	the compiled model program size
block option	memory used by the BLOCK option
cross ref.	memory used by the XREF option
flow analysis	memory used to compute the interdependencies of the variables
derivatives	memory used to compute and store the analytical derivatives
data vector	memory used for the program data vector
cross matrix	memory used for one or more copies of the CROSS matrix
$\mathbf{X}^{\prime} \mathbf{X}$ matrix	memory used for one or more copies of the $\mathbf{X}^{\prime} \mathbf{X}$ matrix
S matrix	memory used for the covariance matrix
GMM memory	additional memory used for the GMM and ITGMM methods
Jacobian	memory used for the Jacobian matrix for SOLVE and FIML
work vectors	memory used for miscellaneous work vectors
overhead	other miscellaneous memory

Testing for Normality

The NORMAL option in the FIT statement performs multivariate and univariate tests of normality.
The three multivariate tests provided are Mardia's skewness test and kurtosis test (Mardia 1970) and the Henze-Zirkler $T_{n, \beta}$ test (Henze and Zirkler 1990). The two univariate tests provided are the Shapiro-Wilk W test and the Kolmogorov-Smirnov test. (For details on the univariate tests, refer to "Goodness-of-Fit Tests" section in "The UNIVARIATE Procedure" chapter in the Base SAS Procedures Guide.) The null hypothesis for all these tests is that the residuals are normally distributed.

For a random sample $X_{1}, \ldots, X_{n}, X_{i} \in \mathrm{R}^{d}$, where d is the dimension of X_{i} and n is the number of observations, a measure of multivariate skewness is

$$
b_{1, d}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left(X_{i}-\mu\right)^{\prime} \mathbf{S}^{-1}\left(X_{j}-\mu\right)\right]^{3}
$$

where \mathbf{S} is the sample covariance matrix of \mathbf{X}. For weighted regression, both \mathbf{S} and $\left(X_{i}-\mu\right)$ are computed by using the weights supplied by the WEIGHT statement or the _WEIGHT_ variable.

Mardia showed that under the null hypothesis $\frac{n}{6} b_{1, d}$ is asymptotically distributed as $\chi^{2}(d(d+1)(d+2) / 6)$. For small samples, Mardia's skewness test statistic is calculated with a small sample correction formula, given by $\frac{n k}{6} b_{1, d}$ where the correction factor k is given by $k=(d+1)(n+1)(n+3) / n(((n+1)(d+1))-6)$. Mardia's skewness test statistic in PROC MODEL uses this small sample corrected formula.

A measure of multivariate kurtosis is given by

$$
b_{2, d}=\frac{1}{n} \sum_{i=1}^{n}\left[\left(X_{i}-\mu\right)^{\prime} \mathbf{S}^{-1}\left(X_{i}-\mu\right)\right]^{2}
$$

Mardia showed that under the null hypothesis, $b_{2, d}$ is asymptotically normally distributed with mean $d(d+2)$ and variance $8 d(d+2) / n$.

The Henze-Zirkler test is based on a nonnegative functional $D(.,$.$) that measures the distance be-$ tween two distribution functions and has the property that

$$
D\left(\mathrm{~N}_{d}\left(0, I_{d}\right), Q\right)=0
$$

if and only if

$$
Q=\mathrm{N}_{d}\left(0, I_{d}\right)
$$

where $\mathrm{N}_{d}\left(\mu, \Sigma_{d}\right)$ is a d-dimensional normal distribution.
The distance measure $D(.,$.$) can be written as$

$$
D_{\beta}(P, Q)=\int_{\mathrm{R}^{d}}|\hat{P}(t)-\hat{Q}(t)|^{2} \varphi_{\beta}(t) d t
$$

where $\hat{P}(t)$ and $\hat{Q}(t)$ are the Fourier transforms of P and Q , and $\varphi_{\beta}(t)$ is a weight or a kernel function. The density of the normal distribution $\mathrm{N}_{d}\left(0, \beta^{2} I_{d}\right)$ is used as $\varphi_{\beta}(t)$

$$
\varphi_{\beta}(t)=\left(2 \pi \beta^{2}\right)^{\frac{-d}{2}} \exp \left(\frac{-|t|^{2}}{2 \beta^{2}}\right), t \in \mathrm{R}^{d}
$$

where $|t|=\left(t^{\prime} t\right)^{0.5}$.
The parameter β depends on n as

$$
\beta_{d}(n)=\frac{1}{\sqrt{2}}\left(\frac{2 d+1}{4}\right)^{1 /(d+4)} n^{1 /(d+4)}
$$

The test statistic computed is called $T_{\beta}(d)$ and is approximately distributed as a lognormal. The lognormal distribution is used to compute the null hypothesis probability.

$$
\begin{aligned}
T_{\beta}(d)= & \frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} \exp \left(-\frac{\beta^{2}}{2}\left|Y_{j}-Y_{k}\right|^{2}\right) \\
& -2\left(1+\beta^{2}\right)^{-d / 2} \frac{1}{n} \sum_{j=1}^{n} \exp \left(-\frac{\beta^{2}}{2\left(1+\beta^{2}\right)}\left|Y_{j}\right|^{2}\right)+\left(1+2 \beta^{2}\right)^{-d / 2}
\end{aligned}
$$

where

$$
\left|Y_{j}-Y_{k}\right|^{2}=\left(X_{j}-X_{k}\right)^{\prime} \mathbf{S}^{-1}\left(X_{j}-X_{k}\right)
$$

$$
\left|Y_{j}\right|^{2}=\left(X_{j}-\bar{X}\right)^{\prime} \mathbf{S}^{-1}\left(X_{j}-\bar{X}\right)
$$

Monte Carlo simulations suggest that $T_{\beta}(d)$ has good power against distributions with heavy tails.
The Shapiro-Wilk W test is computed only when the number of observations (n) is less than 2000 while computation of the Kolmogorov-Smirnov test statistic requires at least 2000 observations.

The following is an example of the output produced by the NORMAL option.

```
proc model data=test2;
    y1 = a1 * x2 * x2 - exp( d1*x1);
    y2 = a2 * x1 * x1 + b2 * exp( d2*x2);
    fit y1 y2 / normal ;
run;
```

Figure 18.38 Normality Test Output

The MODEL Procedure			
Equation	Normality Tes Test Statistic	Value	Prob
y1	Shapiro-Wilk W	0.37	<. 0001
y^{2}	Shapiro-Wilk W	0.84	<. 0001
System	Mardia Skewness	286.4	<. 0001
	Mardia Kurtosis	31.28	<. 0001
	Henze-Zirkler T	7.09	<. 0001

Heteroscedasticity

One of the key assumptions of regression is that the variance of the errors is constant across observations. If the errors have constant variance, the errors are called homoscedastic. Typically, residuals are plotted to assess this assumption. Standard estimation methods are inefficient when the errors are heteroscedastic or have nonconstant variance.

Heteroscedasticity Tests

The MODEL procedure provides two tests for heteroscedasticity of the errors: White's test and the modified Breusch-Pagan test.

Both White's test and the Breusch-Pagan are based on the residuals of the fitted model. For systems of equations, these tests are computed separately for the residuals of each equation.

The residuals of an estimation are used to investigate the heteroscedasticity of the true disturbances.
The WHITE option tests the null hypothesis

$$
H_{0}: \sigma_{i}^{2}=\sigma^{2} \text { for all } i
$$

White's test is general because it makes no assumptions about the form of the heteroscedasticity (White 1980). Because of its generality, White's test might identify specification errors other than heteroscedasticity (Thursby 1982). Thus, White's test might be significant when the errors are homoscedastic but the model is misspecified in other ways.

White's test is equivalent to obtaining the error sum of squares for the regression of squared residuals on a constant and all the unique variables in $\mathbf{J} \otimes \mathbf{J}$, where the matrix \mathbf{J} is composed of the partial derivatives of the equation residual with respect to the estimated parameters. White's test statistic W is computed as follows:

$$
W=n R^{2}
$$

where R^{2} is the correlation coefficient obtained from the above regression. The statistic is asymptotically distributed as chi-squared with $\mathrm{P}-1$ degrees of freedom, where P is the number of regressors in the regression, including the constant and n is the total number of observations. In the example given below, the regressors are constant, income, income*income, income*income*income, and income*income*income*income. income*income occurs twice and one is dropped. Hence, $\mathrm{P}=5$ with degrees of freedom, $\mathrm{P}-1=4$.

Note that White's test in the MODEL procedure is different than White's test in the REG procedure requested by the SPEC option. The SPEC option produces the test from Theorem 2 on page 823 of White (1980). The WHITE option, on the other hand, produces the statistic discussed in Greene (1993).

The null hypothesis for the modified Breusch-Pagan test is homosedasticity. The alternate hypothesis is that the error variance varies with a set of regressors, which are listed in the BREUSCH= option.

Define the matrix \mathbf{Z} to be composed of the values of the variables listed in the BREUSCH= option, such that $z_{i, j}$ is the value of the j th variable in the BREUSCH $=$ option for the i th observation. The null hypothesis of the Breusch-Pagan test is

$$
\sigma_{i}^{2}=\sigma^{2}\left(\alpha_{0}+\boldsymbol{\alpha}^{\prime} z_{i}\right) \quad H_{0}: \boldsymbol{\alpha}=\mathbf{0}
$$

where σ_{i}^{2} is the error variance for the i th observation and α_{0} and $\boldsymbol{\alpha}$ are regression coefficients.
The test statistic for the Breusch-Pagan test is

$$
b p=\frac{1}{v}(\mathbf{u}-\bar{u} \mathbf{i})^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}(\mathbf{u}-\bar{u} \mathbf{i})
$$

where $\mathbf{u}=\left(e_{1}^{2}, e_{2}^{2}, \ldots, e_{n}^{2}\right), \mathbf{i}$ is a $n \times 1$ vector of ones, and

$$
v=\frac{1}{n} \sum_{i=1}^{n}\left(e_{i}^{2}-\frac{\mathbf{e}^{\prime} \mathbf{e}}{n}\right)^{2}
$$

This is a modified version of the Breusch-Pagan test, which is less sensitive to the assumption of normality than the original test (Greene 1993, p. 395).

The statements in the following example produce the output in Figure 18.39:

```
proc model data=schools;
    parms const inc inc2;
    exp = const + inc * income + inc2 * income * income;
    incsq = income * income;
    fit exp / white breusch=(1 income incsq);
run;
```

Figure 18.39 Output for Heteroscedasticity Tests

The MODEL Procedure					
Heteroscedasticity Test					
Equation	Test	Statistic	DF P	Pr > ChiSq	Variables
exp	White's Test	21.16	4	0.0003	Cross of all vars
	Breusch-Pagan	15.83	2	0.0004	1 , income, incsq

Correcting for Heteroscedasticity

There are two methods for improving the efficiency of the parameter estimation in the presence of heteroscedastic errors. If the error variance relationships are known, weighted regression can be used or an error model can be estimated. For details about error model estimation, see the section "Error Covariance Structure Specification" on page 1062. If the error variance relationship is unknown, GMM estimation can be used.

Weighted Regression

The WEIGHT statement can be used to correct for the heteroscedasticity. Consider the following model, which has a heteroscedastic error term:

$$
y_{t}=250\left(e^{-0.2 t}-e^{-0.8 t}\right)+\sqrt{(9 / t)} \epsilon_{t}
$$

The data for this model is generated with the following SAS statements.

```
data test;
    do t=1 to 25;
        y = 250 * (exp( -0.2 * t ) - exp( -0.8 * t )) +
            sqrt( 9 / t ) * rannor(1);
        output;
    end;
run;
```

If this model is estimated with OLS, as shown in the following statements, the estimates shown in Figure 18.40 are obtained for the parameters.

```
proc model data=test;
```

```
    parms b1 0.1 b2 0.9;
    y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
    fit y;
run;
```

Figure 18.40 Unweighted OLS Estimates

The MODEL Procedure				
Nonlinear OLS Parameter Estimates				
		Approx		Approx
Parameter	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
b1	0.200977	0.00101	198.60	$<.0001$
b2	0.826236	0.00853	96.82	$<.0001$

If both sides of the model equation are multiplied by \sqrt{t}, the model has a homoscedastic error term. This multiplication or weighting is done through the WEIGHT statement. The WEIGHT statement variable operates on the squared residuals as

$$
\boldsymbol{\epsilon}_{t}^{\prime} \boldsymbol{\epsilon}_{t}=\text { weight } \times \mathbf{q}_{t}^{\prime} \mathbf{q}_{t}
$$

so that the WEIGHT statement variable represents the square of the model multiplier. The following PROC MODEL statements corrects the heteroscedasticity with a WEIGHT statement:

```
proc model data=test;
    parms b1 0.1 b2 0.9;
    y = 250 * ( exp ( -b1 * t ) - exp ( -b2 * t ) );
    fit y;
    weight t;
run;
```

Note that the WEIGHT statement follows the FIT statement. The weighted estimates are shown in Figure 18.41.

Figure 18.41 Weighted OLS Estimates

Nonlinear OLS Parameter Estimates					
Parameter		Approx		Approx	
	Estimate	Std Err	t Value	Pr > \|t	
b1	0.200977	0.00101	198.60	$<.0001$	
b2	0.826236	0.00853	96.82	$<.0001$	

The weighted OLS estimates are identical to the output produced by the following PROC MODEL example:

```
proc model data=test;
```

```
    parms b1 0.1 b2 0.9;
    y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
    _weight__ = t;
    fit y;
run;
```

If the WEIGHT statement is used in conjunction with the _WEIGHT_ variable, the two values are multiplied together to obtain the weight used.

The WEIGHT statement and the _WEIGHT_ variable operate on all the residuals in a system of equations. If a subset of the equations needs to be weighted, the residuals for each equation can be modified through the RESID. variable for each equation. The following example demonstrates the use of the RESID. variable to make a homoscedastic error term:

```
proc model data=test;
    parms b1 0.1 b2 0.9;
    y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
    resid.y = resid.y * sqrt(t);
    fit y;
run;
```

These statements produce estimates of the parameters and standard errors that are identical to the weighted OLS estimates. The reassignment of the RESID.Y variable must be done after Y is assigned; otherwise it would have no effect. Also, note that the residual (RESID.Y) is multiplied by \sqrt{t}. Here the multiplier is acting on the residual before it is squared.

GMM Estimation

If the form of the heteroscedasticity is unknown, generalized method of moments estimation (GMM) can be used. The following PROC MODEL statements use GMM to estimate the example model used in the preceding section:

```
proc model data=test;
    parms b1 0.1 b2 0.9;
    y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
    fit y / gmm;
    instruments b1 b2;
run;
```

GMM is an instrumental method, so instrument variables must be provided.
GMM estimation generates estimates for the parameters shown in Figure 18.42.

Figure 18.42 GMM Estimation for Heteroscedasticity

The MODEL Procedure				
Nonlinear GMM Parameter Estimates				
	Approx			Approx
Parameter	Estimate	Std Err	t Value	Pr > $\|t\|$
b1	0.200487	0.000800	250.69	$<.0001$
b2	0.822148	0.0148	55.39	$<.0001$

Heteroscedasticity-Consistent Covariance Matrix Estimation

Homoscedasticity is required for ordinary least squares regression estimates to be efficient. A nonconstant error variance, heteroscedasticity, causes the OLS estimates to be inefficient, and the usual OLS covariance matrix, $\hat{\boldsymbol{\Sigma}}$, is generally invalid:

$$
\hat{\boldsymbol{\Sigma}}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

When the variance of the errors of a classical linear model

$$
Y=\mathbf{X} \beta+\epsilon
$$

is not constant across observations (heteroscedastic), so that $\sigma_{i}^{2} \neq \sigma_{j}^{2}$ for some $j>1$, the OLS estimator

$$
\hat{\beta}_{O L S}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} Y
$$

is unbiased but it is inefficient. Models that take into account the changing variance can make more efficient use of the data. When the variances, σ_{t}^{2}, are known, generalized least squares (GLS) can be used and the estimator

$$
\hat{\beta}_{G L S}=\left(\mathbf{X}^{\prime} \boldsymbol{\Omega} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} Y
$$

where

$$
\boldsymbol{\Omega}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \sigma_{T}^{2}
\end{array}\right]
$$

is unbiased and efficient. However, GLS is unavailable when the variances, σ_{t}^{2}, are unknown.
To solve this problem White (1980) proposed a heteroscedastic consistent-covariance matrix estimator (HCCME)

$$
\hat{\boldsymbol{\Sigma}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \hat{\boldsymbol{\Omega}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

that is consistent as well as unbiased, where

$$
\hat{\mathbf{\Omega}}_{0}=\left[\begin{array}{cccc}
\epsilon_{1}^{2} & 0 & 0 & 0 \\
0 & \epsilon_{2}^{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \epsilon_{T}^{2}
\end{array}\right]
$$

and $\epsilon_{t}=Y_{t}-\mathbf{X}_{t} \beta \hat{O L S}$.
This estimator is considered somewhat unreliable in finite samples. Therefore, Davidson and MacKinnon (1993) propose three different modifications to estimating $\hat{\boldsymbol{\Omega}}$. The first solution is to simply multiply ϵ_{t}^{2} by $\frac{n}{n-d f}$, where n is the number of observations and $d f$ is the number of explanatory variables, so that

$$
\hat{\boldsymbol{\Omega}}_{1}=\left[\begin{array}{cccc}
\frac{n}{n-d f} \epsilon_{1}^{2} & 0 & 0 & 0 \\
0 & \frac{n}{n-d f} \epsilon_{2}^{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{n}{n-d f} \epsilon_{n}^{2}
\end{array}\right]
$$

The second solution is to define

$$
\hat{\boldsymbol{\Omega}}_{2}=\left[\begin{array}{cccc}
\frac{\epsilon_{1}^{2}}{1-\hat{h}_{1}} & 0 & 0 & 0 \\
0 & \frac{\epsilon_{2}^{2}}{1-\hat{h}_{2}} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{\epsilon_{n}^{2}}{1-\hat{h}_{n}}
\end{array}\right]
$$

where $\hat{h}_{t}=\mathbf{X}_{t}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{t}^{\prime}$.
The third solution, called the "jackknife," is to define

$$
\hat{\mathbf{\Omega}}_{3}=\left[\begin{array}{cccc}
\frac{\epsilon_{1}^{2}}{\left(1-\hat{h}_{1}\right)^{2}} & 0 & 0 & 0 \\
0 & \frac{\epsilon_{2}^{2}}{\left(1-\hat{h}_{2}\right)^{2}} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{\epsilon_{n}^{2}}{\left(1-\hat{h}_{T}\right)^{2}}
\end{array}\right]
$$

MacKinnon and White (1985) investigated these three modified HCCMEs, including the original HCCME, based on finite-sample performance of pseudo- t statistics. The original HCCME performed the worst. The first modification performed better. The second modification performed even better than the first, and the third modification performed the best. They concluded that the original HCCME should never be used in finite sample estimation, and that the second and third modifications should be used over the first modification if the diagonals of $\hat{\boldsymbol{\Omega}}$ are available.

Seemingly Unrelated Regression HCCME

Extending the discussion to systems of g equations, the HCCME for SUR estimation is

$$
\left(\tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \hat{\boldsymbol{\Omega}} \tilde{\mathbf{X}}\left(\tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right)^{-1}
$$

where $\tilde{\mathbf{X}}$ is a $n g \times k$ matrix with the first g rows representing the first observation, the next g rows representing the second observation, and so on. $\hat{\boldsymbol{\Omega}}$ is now a $n g \times n g$ block diagonal matrix with typical block $g \times g$

$$
\hat{\boldsymbol{\Omega}}_{i}=\left[\begin{array}{cccc}
\psi_{1, i} \psi_{1, i} & \psi_{1, i} \psi_{2, i} & \ldots & \psi_{1, i} \psi_{g, i} \\
\psi_{2, i} \psi_{1, i} & \psi_{2, i} \psi_{2, i} & \ldots & \psi_{2, i} \psi_{g, i} \\
\vdots & \vdots & \vdots & \vdots \\
\psi_{g, i} \psi_{1, i} & \psi_{g, i} \psi_{2, i} & \ldots & \psi_{g, i} \psi_{g, i}
\end{array}\right]
$$

where

$$
\psi_{j, i}=\epsilon_{j, i} \quad H C_{0}
$$

or

$$
\psi_{j, i}=\sqrt{\frac{n}{n-d f}} \epsilon_{j, i} \quad H C_{1}
$$

or

$$
\psi_{j, i}=\epsilon_{j, i} / \sqrt{1-\hat{h}_{i}} \quad H C_{2}
$$

or

$$
\psi_{j, i}=\epsilon_{j, i} /\left(1-\hat{h}_{i}\right) \quad H C_{3}
$$

Two- and Three-Stage Least Squares HCCME

For two- and three-stage least squares, the HCCME for a g equation system is

$\operatorname{Cov} F(\hat{\boldsymbol{\Omega}}) \operatorname{Cov}$

where

$$
\operatorname{Cov}=\left(\frac{1}{n} \mathbf{X}^{\prime}\left(\mathbf{I} \otimes \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}\right) \mathbf{X}\right)^{-1}
$$

is the normal covariance matrix without the \mathbf{S} matrix and

$$
F(\boldsymbol{\Omega})=\frac{1}{n} \sum_{i}^{g} \sum_{j}^{g} \mathbf{X}_{i}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \hat{\boldsymbol{\Omega}}_{i j} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{X}_{j}
$$

where \mathbf{X}_{j} is a $n \times p$ matrix with the j th equations regressors in the appropriate columns and zeros everywhere else.

$$
\hat{\boldsymbol{\Omega}}_{i j}=\left[\begin{array}{cccc}
\psi_{i, 1} \psi_{j, 1} & 0 & 0 & 0 \\
0 & \psi_{i, 2} \psi_{j, 2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \psi_{i, n} \psi_{j, n}
\end{array}\right]
$$

For 2SLS $\hat{\boldsymbol{\Omega}}_{i j}=0$ when $i \neq j$. The ϵ_{t} used in $\hat{\boldsymbol{\Omega}}$ is computed by using the parameter estimates obtained from the instrumental variables estimation.

The leverage value for the i th equation used in the HCCME $=2$ and $\mathrm{HCCME}=3$ methods is computed as conditional on the first stage as

$$
h_{t i}=\mathbf{Z}_{t}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{X}_{i}\left(\mathbf{X}^{\prime}\left(\mathbf{I} \otimes \mathbf{Z}\left(\mathbf{Z}^{\prime} * \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}\right) \mathbf{X}\right)^{-1} \mathbf{X}_{i}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}_{t}^{\prime}
$$

for 2SLS and

$$
h_{t i}=\mathbf{Z}_{t}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{X}_{i}\left(\mathbf{X}^{\prime}\left(\mathbf{S}^{-1} \otimes \mathbf{Z}\left(\mathbf{Z}^{\prime} * \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}\right) \mathbf{X}\right)^{-1} \mathbf{X}_{i}^{\prime} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}_{t}^{\prime} / \mathbf{S}_{i i}
$$

for 3SLS.

Testing for Autocorrelation

The GODFREY= option in the FIT statement produces the Godfrey Lagrange multiplier test for serially correlated residuals for each equation (Godfrey 1978a and 1978b). n is the maximum autoregressive order, and specifies that Godfrey's tests be computed for lags 1 through n. The default number of lags is four.

The tests are performed separately for each equation estimated by the FIT statement. When a nonlinear model is estimated, the test is computed by using a linearized model.

The following is an example of the output produced by the GODFREY $=3$ option:
Figure 18.43 Autocorrelation Test Output

Godfrey Test Output			
The MODEL Procedure			
Godfrey's Serial Correlation Test			
Equation	Alte	LM	Pr > LM
y	1	6.63	0.0100
	2	6.89	0.0319
	3	6.96	0.0732

The three variations of the test reported by the GODFREY=3 option are designed to have power
against different alternative hypothesis. Thus, if the residuals in fact have only first-order autocorrelation, the lag 1 test has the most power for rejecting the null hypothesis of uncorrelated residuals. If the residuals have second- but not higher-order autocorrelation, the lag 2 test might be more likely to reject; the same is true for third-order autocorrelation and the lag 3 test.

The null hypothesis of Godfrey's tests is that the equation residuals are white noise. However, if the equation includes autoregressive error model of order $p(\operatorname{AR}(p)$,) then the lag i test, when considered in terms of the structural error, is for the null hypothesis that the structural errors are from an $\operatorname{AR}(p)$ process versus the alternative hypothesis that the errors are from an $\operatorname{AR}(p+i)$ process.

The alternative $\operatorname{ARMA}(p, i)$ process is locally equivalent to the alternative $\operatorname{AR}(p+i)$ process with respect to the null model $\operatorname{AR}(p)$. Thus, the GODFREY= option results are also a test of $\operatorname{AR}(p)$ errors against the alternative hypothesis of $\operatorname{ARMA}(p, i)$ errors. See Godfrey (1978a and 1978b) for more detailed information.

Transformation of Error Terms

In PROC MODEL you can control the form of the error term. By default, the error term is assumed to be additive. This section demonstrates how to specify nonadditive error terms and discusses the effects of these transformations.

Models with Nonadditive Errors

The estimation methods used by PROC MODEL assume that the error terms of the equations are independently and identically distributed with zero means and finite variances. Furthermore, the methods assume that the RESID.name equation variable for normalized form equations or the EQ.name equation variable for general form equations contains an estimate of the error term of the true stochastic model whose parameters are being estimated. Details on RESID.name and EQ.name equation variables are in the section "Equation Translations" on page 1155.

To illustrate these points, consider the common loglinear model

$$
\begin{align*}
& y=\alpha x^{\beta} \tag{1}\\
& \ln y=a+b \ln (x) \tag{2}
\end{align*}
$$

where $a=\log (\alpha)$ and $b=\beta$. Equation (2) is called the \log form of the equation in contrast to equation (1), which is called the level form of the equation. Using the SYSLIN procedure, you can estimate equation (2) by specifying

```
proc syslin data=in;
    model logy=logx;
run;
```

where LOGY and LOGX are the logs of Y and X computed in a preceding DATA step. The resulting values for INTERCEPT and LOGX correspond to a and b in equation (2).

Using the MODEL procedure, you can try to estimate the parameters in the level form (and avoid the DATA step) by specifying

```
proc model data=in;
    parms alpha beta;
    y = alpha * x ** beta;
    fit y;
run;
```

where ALPHA and BETA are the parameters in equation (1).
Unfortunately, at least one of the preceding is wrong; an ambiguity results because equations (1) and (2) contain no explicit error term. The SYSLIN and MODEL procedures both deal with additive errors; the residual used (the estimate of the error term in the equation) is the difference between the predicted and actual values (of LOGY for PROC SYSLIN and of Y for PROC MODEL in this example). If you perform the regressions discussed previously, PROC SYSLIN estimates equation (3) while PROC MODEL estimates equation (4).

$$
\begin{align*}
& \ln y=a+b \ln (x)+\epsilon \tag{3}\\
& y=\alpha x^{\beta}+\xi \tag{4}
\end{align*}
$$

These are different statistical models. Equation (3) is the log form of equation (5)

$$
\begin{equation*}
y=\alpha x^{\beta} \mu \tag{5}
\end{equation*}
$$

where
$\mu=e^{\epsilon}$. Equation (4), on the other hand, cannot be linearized because the error term ξ (different from μ) is additive in the level form.

You must decide whether your model is equation (4) or (5). If the model is equation (4), you should use PROC MODEL. If you linearize equation (1) without considering the error term and apply SYSLIN to MODEL LOGY=LOGX, the results will be wrong. On the other hand, if your model is equation (5) (in practice it usually is), and you want to use PROC MODEL to estimate the parameters in the level form, you must do something to account for the multiplicative error.

PROC MODEL estimates parameters by minimizing an objective function. The objective function is computed using either the RESID.-prefixed equation variable or the EQ.-prefixed equation variable. You must make sure that these prefixed equation variables are assigned an appropriate error term. If the model has additive errors that satisfy the assumptions, nothing needs to be done. In the case of equation (5), the error is nonadditive and the equation is in normalized form, so you must alter the value of RESID.Y.

The following assigns a valid estimate of μ to RESID.Y:

```
y = alpha * x ** beta;
resid.y = actual.y / pred.y;
```

However, $\mu=\mathrm{e}^{\epsilon}$, and therefore μ, cannot have a mean of zero, and you cannot consistently estimate α and β by minimizing the sum of squares of an estimate of μ. Instead, you use $\epsilon=\ln \mu$.

```
proc model data=in;
```

```
    parms alpha beta;
    y = alpha * x ** beta;
    resid.y = log( actual.y / pred.y );
    fit Y;
run;
```

If the model was expressed in general form, this transformation becomes

```
proc model data=in;
    parms alpha beta;
    EQ.trans = log( y / (alpha * x ** beta));
    fit trans;
run;
```

Both examples produce estimates of α and β of the level form that match the estimates of a and b of the \log form. That is, ALPHA=exp(INTERCEPT) and BETA=LOGX, where INTERCEPT and LOGX are the PROC SYSLIN parameter estimates from the MODEL LOGY=LOGX. The standard error reported for ALPHA is different from that for the INTERCEPT in the log form.

The preceding example is not intended to suggest that loglinear models should be estimated in level form but, rather, to make the following points:

- Nonlinear transformations of equations involve the error term of the equation, and this should be taken into account when transforming models.
- The RESID.-prefixed and the EQ.-prefixed equation variables for models estimated by the MODEL procedure must represent additive errors with zero means.
- You can use assignments to RESID.-prefixed and EQ.-prefixed equation variables to transform error terms.
- Some models do not have additive errors or zero means, and many such models can be estimated using the MODEL procedure. The preceding approach applies not only to multiplicative models but to any model that can be manipulated to isolate the error term.

Predicted Values of Transformed Models

Nonadditive or transformed errors affect the distribution of the predicted values, as well as the estimates. For the preceding loglinear example, the MODEL procedure produces consistent parameter estimates. However, the predicted values for Y computed by PROC MODEL are not unbiased estimates of the expected values of Y , although they do estimate the conditional median Y values.

In general, the predicted values produced for a model with nonadditive errors are not unbiased estimates of the conditional means of the endogenous value. If the model can be transformed to a model with additive errors by using a monotonic transformation, the predicted values estimate the conditional medians of the endogenous variable.

For transformed models in which the biasing factor is known, you can use programming statements to correct for the bias in the predicted values as estimates of the endogenous means. In the preceding log-linear case, the predicted values are biased by the factor $\exp \left(\sigma^{2} / 2\right)$. You can produce approximately unbiased predicted values in this case by writing the model as

```
proc model data=in;
    parms alpha beta;
    y=alpha * x ** beta;
    resid.y = log( actual.y / pred.y );
    fit y;
run;
```

See Miller (1984) for a discussion of bias factors for predicted values of transformed models.
Note that models with transformed errors are not appropriate for Monte Carlo simulation that uses the SDATA= option. PROC MODEL computes the OUTS = matrix from the transformed RESID.prefixed equation variables, while it uses the SDATA= matrix to generate multivariate normal errors, which are added to the predicted values. This method of computing errors is inconsistent when the equation variables have been transformed.

Error Covariance Structure Specification

One of the key assumptions of regression is that the variance of the errors is constant across observations. Correcting for heteroscedasticity improves the efficiency of the estimates.

Consider the following general form for models:

$$
\begin{aligned}
\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \theta\right) & =\boldsymbol{\varepsilon}_{t} \\
\boldsymbol{\varepsilon}_{\boldsymbol{t}} & =H_{t} * \boldsymbol{\epsilon}_{t} \\
H_{t} & =\left[\begin{array}{cccc}
\sqrt{h_{t, 1}} & 0 & \cdots & 0 \\
0 & \sqrt{h_{t, 2}} & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & \sqrt{h_{t, g}}
\end{array}\right] \\
\mathbf{h}_{t} & =\mathbf{g}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \phi\right)
\end{aligned}
$$

where $\boldsymbol{\epsilon}_{t} \sim N(0, \Sigma)$.
For models that are homoscedastic,

$$
h_{t}=1
$$

If you have a model that is heteroscedastic with known form, you can improve the efficiency of the estimates by performing a weighted regression. The weight variable, using this notation, would be $1 / \sqrt{h_{t}}$.

If the errors for a model are heteroscedastic and the functional form of the variance is known, the model for the variance can be estimated along with the regression function.

To specify a functional form for the variance, assign the function to an H.var variable where var is the equation variable. For example, if you want to estimate the scale parameter for the variance of a simple regression model

$$
y=a * x+b
$$

you can specify

```
proc model data=s;
    y = a * x + b;
    h.y = sigma**2;
fit y;
```

Consider the same model with the following functional form for the variance:

$$
h_{t}=\sigma^{2} * x^{2 * \alpha}
$$

This would be written as

```
proc model data=s;
    y = a * x + b;
    h.y = sigma**2 * x**(2*alpha);
fit y;
```

There are three ways to model the variance in the MODEL procedure: feasible generalized least squares, generalized method of moments, and full information maximum likelihood.

Feasible GLS

A simple approach to estimating a variance function is to estimate the mean parameters θ by using some auxiliary method, such as OLS, and then use the residuals of that estimation to estimate the parameters ϕ of the variance function. This scheme is called feasible GLS. It is possible to use the residuals from an auxiliary method for the purpose of estimating ϕ because in many cases the residuals consistently estimate the error terms.

For all estimation methods except GMM and FIML, using the H.var syntax specifies that feasible GLS is used in the estimation. For feasible GLS, the mean function is estimated by the usual method. The variance function is then estimated using pseudo-likelihood (PL) function of the generated residuals. The objective function for the PL estimation is

$$
p_{n}(\sigma, \theta)=\sum_{i=1}^{n}\left(\frac{\left(y_{i}-f\left(x_{i}, \hat{\beta}\right)\right)^{2}}{\sigma^{2} h\left(z_{i}, \theta\right)}+\log \left[\sigma^{2} h\left(z_{i}, \theta\right)\right]\right)
$$

Once the variance function has been estimated, the mean function is reestimated by using the variance function as weights. If an S-iterated method is selected, this process is repeated until convergence (iterated feasible GLS).

Note that feasible GLS does not yield consistent estimates when one of the following is true:

- The variance is unbounded.
- There is too much serial dependence in the errors (the dependence does not fade with time).
- There is a combination of serial dependence and lag dependent variables.

The first two cases are unusual, but the third is much more common. Whether iterated feasible GLS avoids consistency problems with the last case is an unanswered research question. For more information see Davidson and MacKinnon (1993, pp. 298-301) or Gallant (1987, pp. 124-125) and Amemiya (1985, pp. 202-203).

One limitation is that parameters cannot be shared between the mean equation and the variance equation. This implies that certain GARCH models, cross-equation restrictions of parameters, or testing of combinations of parameters in the mean and variance component are not allowed.

Generalized Method of Moments

In GMM, normally the first moment of the mean function is used in the objective function.

$$
\begin{aligned}
\mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \theta\right) & =\epsilon_{t} \\
\mathbf{E}\left(\epsilon_{t}\right) & =0
\end{aligned}
$$

To add the second moment conditions to the estimation, add the equation

$$
\mathbf{E}\left(\varepsilon_{t} * \varepsilon_{t}-h_{t}\right)=0
$$

to the model. For example, if you want to estimate σ for linear example above, you can write

```
proc model data=s;
    y = a * x + b;
    eq.two = resid.y**2 - sigma**2;
fit y two/ gmm;
instruments x;
run;
```

This is a popular way to estimate a continuous-time interest rate processes (see Chan et al. 1992). The H.var syntax automatically generates this system of equations.

To further take advantage of the information obtained about the variance, the moment equations can be modified to

$$
\begin{aligned}
\mathbf{E}\left(\varepsilon_{t} / \sqrt{h_{t}}\right) & =0 \\
\mathbf{E}\left(\varepsilon_{t} * \varepsilon_{t}-h_{t}\right) & =0
\end{aligned}
$$

For the above example, this can be written as

```
proc model data=s;
    y = a * x + b;
    eq.two = resid.y**2 - sigma**2;
    resid.y = resid.y / sigma;
fit y two/ gmm;
instruments x;
run;
```

Note that, if the error model is misspecified in this form of the GMM model, the parameter estimates might be inconsistent.

Full Information Maximum Likelihood

For FIML estimation of variance functions, the concentrated likelihood below is used as the objective function. That is, the mean function is coupled with the variance function and the system is solved simultaneously.

$$
\begin{aligned}
l_{n}(\phi)= & \frac{n g}{2}(1+\ln (2 \pi))-\sum_{t=1}^{n} \ln \left(\left|\frac{\partial \mathbf{q}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \theta\right)}{\partial \mathbf{y}_{t}}\right|\right) \\
& +\frac{1}{2} \sum_{t=1}^{n} \sum_{i=1}^{g}\left(\ln \left(h_{t, i}\right)+\mathbf{q}_{i}\left(\mathbf{y}_{t}, \mathbf{x}_{t}, \theta\right)^{2} / h_{t, i}\right)
\end{aligned}
$$

where g is the number of equations in the system.
The HESSIAN=GLS option is not available for FIML estimation that involves variance functions. The matrix used when HESSIAN=CROSS is specified is a crossproducts matrix that has been enhanced by the dual quasi-Newton approximation.

Examples

You can specify a $\operatorname{GARCH}(1,1)$ model as follows:

```
proc model data=modloc.usd_jpy;
    /* Mean model --------*/
    jpyret = intercept ;
    /* Variance model ------------------*/
    h.jpyret = arch0
            + arch1 * xlag( resid.jpyret ** 2, mse.jpyret )
            + garch1 * xlag(h.jpyret, mse.jpyret) ;
    bounds arch0 arch1 garch1 >= 0;
fit jpyret / method=marquardt fiml;
run;
```

Note that the BOUNDS statement is used to ensure that the parameters are positive, a requirement for GARCH models.

EGARCH models are used because there are no restrictions on the parameters. You can specify a $\operatorname{EGARCH}(1,1)$ model as follows:

```
proc model data=sasuser.usd_dem ;
            /* Mean model ----------*/
    demret = intercept ;
                /* Variance model -----------------*/
    if ( _OBS_ =1 ) then
        h.demret = exp( earch0 + egarch1 * log(mse.demret) );
    else
        h.demret = exp( earch0 + earch1 * zlag( g)
                                    + egarch1 * log(zlag(h.demret)));
    g = - theta * nresid.demret + abs( nresid.demret ) - sqrt(2/3.1415);
fit demret / method=marquardt fiml maxiter=100 converge=1.0e-6;
run;
```


Ordinary Differential Equations

Ordinary differential equations (ODEs) are also called initial value problems because a time zero value for each first-order differential equation is needed. The following is an example of a first-order system of ODEs:

$$
\begin{aligned}
y^{\prime} & =-0.1 y+2.5 z^{2} \\
z^{\prime} & =-z \\
y_{0} & =0 \\
z_{0} & =1
\end{aligned}
$$

Note that you must provide an initial value for each ODE.
As a reminder, any n-order differential equation can be modeled as a system of first-order differential equations. For example, consider the differential equations

$$
\begin{aligned}
& y^{\prime \prime}=b y^{\prime}+c y \\
& y_{0}=0 \\
& y_{0}^{\prime}=1
\end{aligned}
$$

which can be written as the system of differential equations

$$
\begin{aligned}
y^{\prime} & =z \\
z^{\prime} & =b y^{\prime}+c y \\
y_{0} & =0 \\
z_{0} & =1
\end{aligned}
$$

This differential system can be simulated as follows:

```
data t;
    time=0; output;
    time=1; output;
    time=2; output;
run;
proc model data=t ;
    dependent y 0 z 1;
    parm b -2 c -4;
            dert.y = z;
    dert.z = b * dert.y + c * y;
    solve y z / dynamic solveprint;
run;
```

The preceding statements produce the output shown in Figure 18.44. These statements produce additional output, which is not shown.

Figure 18.44 Simulation Results for Differential System

Figure 18.44 continued

The differential variables are distinguished by the derivative with respect to time (DERT.) prefix. Once you define the DERT. variable, you can use it on the right-hand side of another equation. The differential equations must be expressed in normal form; implicit differential equations are not allowed, and other terms on the left-hand side are not allowed.

The TIME variable is the implied with respect to variable for all DERT. variables. The TIME variable is also the only variable that must be in the input data set.

You can provide initial values for the differential equations in the data set, in the declaration statement (as in the previous example), or in statements in the program. Using the previous example, you can specify the initial values as

```
proc model data=t ;
    dependent y z ;
    parm b -2 c -4;
    if ( time=0 ) then
        do;
            y=0;
            z=1;
        end;
    else
            do;
            dert.y = z;
            dert.z = b * dert.y + c * y;
        end;
    end;
    solve y z / dynamic solveprint;
run;
```

If you do not provide an initial value, 0 is used.

DYNAMIC and STATIC Simulation

Note that, in the previous example, the DYNAMIC option is specified in the SOLVE statement. The DYNAMIC and STATIC options work the same for differential equations as they do for dynamic systems. In the differential equation case, the DYNAMIC option makes the initial value needed at each observation the computed value from the previous iteration. For a static simulation, the data set must contain values for the integrated variables. For example, if DERT.Y and DERT.Z are the
differential variables, you must include Y and Z in the input data set in order to do a static simulation of the model.

If the simulation is dynamic, the initial values for the differential equations are obtained from the data set, if they are available. If the variable is not in the data set, you can specify the initial value in a declaration statement. If you do not specify an initial value, the value of 0.0 is used.

A dynamic solution is obtained by solving one initial value problem for all the data. A graph of a simple dynamic simulation is shown in Figure 18.45. If the time variable for the current observation is less than the time variable for the previous observation, the integration is restarted from this point. This allows for multiple samples in one data file.

Figure 18.45 Dynamic Solution

In a static solution, $\mathrm{n}-1$ initial value problems are solved using the first $\mathrm{n}-1$ data values as initial values. The equations are integrated using the i th data value as an initial value to the $i+1$ data value. Figure 18.46 displays a static simulation of noisy data from a simple differential equation. The static solution does not propagate errors in initial values as the dynamic solution does.

Figure 18.46 Static Solution

For estimation, the DYNAMIC and STATIC options in the FIT statement perform the same functions as they do in the SOLVE statement. Components of differential systems that have missing values or are not in the data set are simulated dynamically. For example, often in multiple compartment kinetic models, only one compartment is monitored. The differential equations that describe the unmonitored compartments are simulated dynamically.

For estimation, it is important to have accurate initial values for ODEs that are not in the data set. If an accurate initial value is not known, the initial value can be made an unknown parameter and estimated. This allows for errors in the initial values but increases the number of parameters to estimate by the number of equations.

Estimation of Differential Equations

Consider the kinetic model for the accumulation of mercury (Hg) in mosquito fish (Matis, Miller, and Allen 1991, p. 177). The model for this process is the one-compartment constant infusion model shown in Figure 18.47.

Figure 18.47 One-Compartment Constant Infusion Model

The differential equation that models this process is

$$
\begin{aligned}
\frac{d \operatorname{conc}}{d t} & =k_{u}-k_{e} \operatorname{conc} \\
\operatorname{conc}_{0} & =0
\end{aligned}
$$

The analytical solution to the model is

$$
\text { conc }=\left(k_{u} / k_{e}\right)\left(1-\exp \left(-k_{e} t\right)\right)
$$

The data for the model are

```
data fish;
    input day conc;
datalines;
0.0 0.0
1.0 0.15
2.0 0.2
3.0 0.26
4.0 0.32
6.0 0.33
;
```

To fit this model in differential form, use the following statements:

```
proc model data=fish;
    parm ku ke;
    dert.conc = ku - ke * conc;
    fit conc / time=day;
run;
```

The results from this estimation are shown in Figure 18.48.

Figure 18.48 Static Estimation Results for Fish Model

The MODEL Procedure				
Nonlinear OLS Parameter Estimates				
		Approx		Approx
Parameter	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
ku	0.180159	0.0312	5.78	0.0044
ke	0.524661	0.1181	4.44	0.0113

To perform a dynamic estimation of the differential equation, add the DYNAMIC option to the FIT statement.

```
proc model data=fish;
    parm ku . 3 ke . 3;
    dert.conc = ku - ke * conc;
    fit conc / time = day dynamic;
run;
```

The equation DERT.CONC is integrated from $\operatorname{conc}(0)=0$. The results from this estimation are shown in Figure 18.49.

Figure 18.49 Dynamic Estimation Results for Fish Model

The MODEL Procedure					
Parameter	Nonlinear OLS Parameter Estimates				
	Approx			Approx	
	Estimate	Std Err	t Value	Pr > \|t	
ku	0.167109	0.0170	9.84	0.0006	
ke	0.469033	0.0731	6.42	0.0030	

To perform a dynamic estimation of the differential equation and estimate the initial value, use the following statements:

```
proc model data=fish;
    parm ku . 3 ke . 3 conc0 0;
    dert.conc = ku - ke * conc;
    fit conc initial=(conc = conc0) / time = day dynamic;
run;
```

The INITIAL= option in the FIT statement is used to associate the initial value of a differential equation with a parameter. The results from this estimation are shown in Figure 18.50.

Figure 18.50 Dynamic Estimation with Initial Value for Fish Model

Finally, to estimate the fish model by using the analytical solution, use the following statements:

```
proc model data=fish;
    parm ku . 3 ke .3;
    conc = (ku/ ke)*( 1 - exp(-ke * day));
    fit conc;
run;
```

The results from this estimation are shown in Figure 18.51.
Figure 18.51 Analytical Estimation Results for Fish Model

Parameter	The MODEL Procedure			
	Nonlinear OLS Parameter Estimates			
	Approx			Approx
	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
ku	0.167109	0.0170	9.84	0.0006
ke	0.469033	0.0731	6.42	0.0030

A comparison of the results among the four estimations reveals that the two dynamic estimations and the analytical estimation give nearly identical results (identical to the default precision). The two dynamic estimations are identical because the estimated initial value (0.00013071) is very close to the initial value used in the first dynamic estimation (0). Note also that the static model did not require an initial guess for the parameter values. Static estimation, in general, is more forgiving of bad initial values.

The form of the estimation that is preferred depends mostly on the model and data. If a very accurate initial value is known, then a dynamic estimation makes sense. If, additionally, the model can be written analytically, then the analytical estimation is computationally simpler. If only an approximate initial value is known and not modeled as an unknown parameter, the static estimation is less sensitive to errors in the initial value.

The form of the error in the model is also an important factor in choosing the form of the estimation.

If the error term is additive and independent of previous error, then the dynamic mode is appropriate. If, on the other hand, the errors are cumulative, a static estimation is more appropriate. See the section "Monte Carlo Simulation" on page 1120 for an example.

Auxiliary Equations

Auxiliary equations can be used with differential equations. These are equations that need to be satisfied with the differential equations at each point between each data value. They are automatically added to the system, so you do not need to specify them in the SOLVE or FIT statement.

Consider the following example.
The Michaelis-Menten equations describe the kinetics of an enzyme-catalyzed reaction. The enzyme is E , and S is called the substrate. The enzyme first reacts with the substrate to form the enzyme-substrate complex ES, which then breaks down in a second step to form enzyme and products P.

The reaction rates are described by the following system of differential equations:

$$
\begin{aligned}
\frac{d[E S]}{d t} & =k_{1}([E]-[E S])[S]-k_{2}[E S]-k_{3}[E S] \\
\frac{d[S]}{d t} & =-k_{1}([E]-[E S])[S]+k_{2}[E S] \\
{[E] } & =[E]_{t o t}-[E S]
\end{aligned}
$$

The first equation describes the rate of formation of ES from $\mathrm{E}+\mathrm{S}$. The rate of formation of ES from $\mathrm{E}+\mathrm{P}$ is very small and can be ignored. The enzyme is in either the complexed or the uncomplexed form. So if the total ($[E]_{t o t}$) concentration of enzyme and the amount bound to the substrate is known, $[E]$ can be obtained by conservation.

In this example, the conservation equation is an auxiliary equation and is coupled with the differential equations for integration.

Time Variable

You must provide a time variable in the data set. The name of the time variable defaults to TIME. You can use other variables as the time variable by specifying the TIME= option in the FIT or SOLVE statement. The time intervals need not be evenly spaced. If the time variable for the current observation is less than the time variable for the previous observation, the integration is restarted.

Differential Equations and Goal Seeking

Consider the following differential equation

$$
y^{\prime}=a * x
$$

and the data set

```
data t2;
    y=0; time=0; output;
    y=2; time=1; output;
    y=3; time=2; output;
run;
```

The problem is to find values for X that satisfy the differential equation and the data in the data set. Problems of this kind are sometimes referred to as goal-seeking problems because they require you to search for values of X that satisfy the goal of Y .

This problem is solved with the following statements:

```
proc model data=t2;
    independent x 0;
    dependent y;
    parm a 5;
    dert.y = a * x;
    solve x / out=goaldata;
run;
proc print data=goaldata;
run;
```

The output from the PROC PRINT statement is shown in Figure 18.52.
Figure 18.52 Dynamic Solution

Obs	-TYPE $_{-}$	_MODE	_ERRORS_	\mathbf{x}	\mathbf{y}	time
1	PREDICT	SIMULATE	0	0.00000	0.00000	0
2	PREDICT	SIMULATE	0	0.80000	2.00000	1
3	PREDICT	SIMULATE	0	-0.40000	3.00000	2

Note that an initial value of 0 is provided for the X variable because it is undetermined at TIME $=$ 0.

In the preceding goal-seeking example, X is treated as a linear function between each set of data points (see Figure 18.53).

Figure 18.53 Form of X Used for Integration in Goal Seeking

If you integrate $y^{\prime}=a x$ manually, you have

$$
\begin{aligned}
x(t) & =\frac{t_{f}-t}{t_{f}-t_{0}} x_{0}+\frac{-T_{0}}{t_{f}-t_{0}} x_{f} \\
y & =\int_{t_{o}}^{t_{f}} a x(t) d t \\
& =\left.a \frac{1}{t_{f}-t_{0}}\left(t\left(t_{f} x_{0}-t_{0} x_{f}\right)+\frac{1}{2} t^{2}\left(x_{f}-x_{0}\right)\right)\right|_{t_{0}} ^{t_{f}}
\end{aligned}
$$

For observation 2, this reduces to

$$
\begin{aligned}
& y=\frac{1}{2} a * x_{f} \\
& 2=2.5 * x_{f}
\end{aligned}
$$

So $x=0.8$ for this observation.
Goal seeking for the TIME variable is not allowed.

Restrictions and Bounds on Parameters

Using the BOUNDS and RESTRICT statements, PROC MODEL can compute optimal estimates subject to equality or inequality constraints on the parameter estimates.

Equality restrictions can be written as a vector function:

$$
\mathbf{h}(\theta)=0
$$

Inequality restrictions are either active or inactive. When an inequality restriction is active, it is treated as an equality restriction. All inactive inequality restrictions can be written as a vector function:

$$
F(\theta) \geq 0
$$

Strict inequalities, such as $(f(\theta)>0)$, are transformed into inequalities as $f(\theta) \times(1-\epsilon)-\epsilon \geq 0$, where the tolerance ϵ is controlled by the EPSILON= option in the FIT statement and defaults to 10^{-8}. The i th inequality restriction becomes active if $F_{i}<0$ and remains active until its Lagrange multiplier becomes negative. Lagrange multipliers are computed for all the nonredundant equality restrictions and all the active inequality restrictions.

For the following, assume the vector $\mathbf{h}(\theta)$ contains all the current active restrictions. The constraint matrix \mathbf{A} is

$$
\mathbf{A}(\hat{\theta})=\frac{\partial \mathbf{h}(\hat{\theta})}{\partial \hat{\theta}}
$$

The covariance matrix for the restricted parameter estimates is computed as

$\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{H Z}\right)^{-1} \mathbf{Z}^{\prime}$

where \mathbf{H} is Hessian or approximation to the Hessian of the objective function $\left(\left(\mathbf{X}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{I}\right) \mathbf{X}\right)\right.$ for OLS), and \mathbf{Z} is the last $(n p-n c)$ columns of $\mathbf{Q} . \mathbf{Q}$ is from an LQ factorization of the constraint matrix, $n c$ is the number of active constraints, and $n p$ is the number of parameters. See Gill, Murray, and Wright (1981) for more details on LQ factorization. The covariance column in Table 18.2 summarizes the Hessian approximation used for each estimation method.

The covariance matrix for the Lagrange multipliers is computed as

$$
\left(\mathbf{A H}^{-1} \mathbf{A}^{\prime}\right)^{-1}
$$

The p-value reported for a restriction is computed from a beta distribution rather than a t distribution because the numerator and the denominator of the t ratio for an estimated Lagrange multiplier are not independent.

The Lagrange multipliers for the active restrictions are printed with the parameter estimates. The Lagrange multiplier estimates are computed using the relationship

$$
\mathbf{A}^{\prime} \lambda=\mathrm{g}
$$

where the dimensions of the constraint matrix \mathbf{A} are the number of constraints by the number of parameters, λ is the vector of Lagrange multipliers, and g is the gradient of the objective function at the final estimates.

The final gradient includes the effects of the estimated \mathbf{S} matrix. For example, for OLS the final gradient would be:

$$
\mathrm{g}=\mathbf{X}^{\prime}\left(\operatorname{diag}(\mathbf{S})^{-1} \otimes \mathbf{I}\right) r
$$

where r is the residual vector. Note that when nonlinear restrictions are imposed, the convergence measure R might have values greater than one for some iterations.

Tests on Parameters

In general, the hypothesis tested can be written as

$$
H_{0}: \mathbf{h}(\theta)=0
$$

where $\mathbf{h}(\theta)$ is a vector-valued function of the parameters θ given by the r expressions specified on the TEST statement.

Let $\hat{\mathbf{V}}$ be the estimate of the covariance matrix of $\hat{\theta}$. Let $\hat{\theta}$ be the unconstrained estimate of θ and $\tilde{\theta}$ be the constrained estimate of θ such that $h(\tilde{\theta})=0$. Let

$$
\mathbf{A}(\theta)=\partial h(\theta) /\left.\partial \theta\right|_{\hat{\theta}}
$$

Let r be the dimension of $h(\theta)$ and n be the number of observations. Using this notation, the test statistics for the three kinds of tests are computed as follows.

The Wald test statistic is defined as

$$
W=h^{\prime}(\hat{\theta})\left(\mathbf{A}(\hat{\theta}) \hat{\mathbf{V}} \mathbf{A}^{\prime}(\hat{\theta})\right)^{-1} h(\hat{\theta})
$$

The Wald test is not invariant to reparameterization of the model (Gregory and Veall 1985; Gallant 1987, p. 219). For more information about the theoretical properties of the Wald test, see Phillips and Park (1988).

The Lagrange multiplier test statistic is

$$
R=\lambda^{\prime} \mathbf{A}(\tilde{\theta}) \tilde{\mathbf{V}} \mathbf{A}^{\prime}(\tilde{\theta}) \lambda
$$

where λ is the vector of Lagrange multipliers from the computation of the restricted estimate $\tilde{\theta}$.
The Lagrange multiplier test statistic is equivalent to Rao's efficient score test statistic:

$$
R=(\partial L(\tilde{\theta}) / \partial \theta)^{\prime} \tilde{\mathbf{V}}(\partial L(\tilde{\theta}) / \partial \theta)
$$

where L is the log-likelihood function for the estimation method used. For SUR, 3SLS, GMM, and iterated versions of these methods, the likelihood function is computed as

$$
L=\text { Objective } \times N o b s / 2
$$

For OLS and 2SLS, the Lagrange multiplier test statistic is computed as:

$$
R=\left[(\partial \hat{S}(\tilde{\theta}) / \partial \theta)^{\prime} \tilde{\mathbf{V}}(\partial \hat{S}(\tilde{\theta}) / \partial \theta)\right] / \hat{S}(\tilde{\theta})
$$

where $\hat{S}(\tilde{\theta})$ is the corresponding objective function value at the constrained estimate.
The likelihood ratio test statistic is

$$
T=2(L(\hat{\theta})-L(\tilde{\theta}))
$$

where $\tilde{\theta}$ represents the constrained estimate of θ and L is the concentrated log-likelihood value.

For OLS and 2SLS, the likelihood ratio test statistic is computed as:

$$
T=(n-n p a r m s) \times(\hat{S}(\tilde{\theta})-\hat{S}(\hat{\theta})) / \hat{S}(\hat{\theta})
$$

This test statistic is an approximation from

$$
T=n \times \log \left(1+\frac{r F}{n-\text { nparms }}\right)
$$

when the value of $r F /(n-n p a r m s)$ is small (Greene 2004, p. 421).
The likelihood ratio test is not appropriate for models with nonstationary serially correlated errors (Gallant 1987, p. 139). The likelihood ratio test should not be used for dynamic systems, for systems with lagged dependent variables, or with the FIML estimation method unless certain conditions are met (see Gallant 1987, p. 479).

For each kind of test, under the null hypothesis the test statistic is asymptotically distributed as a χ^{2} random variable with r degrees of freedom, where r is the number of expressions in the TEST statement. The p-values reported for the tests are computed from the $\chi^{2}(r)$ distribution and are only asymptotically valid. When both RESTRICT and TEST statements are used in a PROC MODEL step, test statistics are computed by taking into account the constraints imposed by the RESTRICT statement.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation to its small sample distribution than the other two tests. However, the Wald test has the least computational cost, since it does not require computation of the constrained estimate $\tilde{\theta}$.

The following is an example of using the TEST statement to perform a likelihood ratio test for a compound hypothesis.

```
test a*exp (-k) = 1-k, d = 0 ,/ lr;
```

It is important to keep in mind that although individual t tests for each parameter are printed by default into the parameter estimates table, they are only asymptotically valid for nonlinear models. You should be cautious in drawing any inferences from these t tests for small samples.

Hausman Specification Test

Hausman's specification test, or m-statistic, can be used to test hypotheses in terms of bias or inconsistency of an estimator. This test was also proposed by Wu (1973). Hausman's m-statistic is as follows.

Given two estimators, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, where under the null hypothesis both estimators are consistent but only $\hat{\beta}_{0}$ is asymptotically efficient and under the alternative hypothesis only $\hat{\beta}_{1}$ is consistent, the m-statistic is

$$
m=\hat{q}^{\prime}\left(\hat{\mathbf{V}}_{1}-\hat{\mathbf{V}}_{0}\right)^{-} \hat{q}
$$

where $\hat{\mathbf{V}}_{1}$ and $\hat{\mathbf{V}}_{0}$ represent consistent estimates of the asymptotic covariance matrices of $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ respectively, and

$$
q=\hat{\beta}_{1}-\hat{\beta}_{0}
$$

The m-statistic is then distributed χ^{2} with k degrees of freedom, where k is the rank of the matrix ($\hat{\mathbf{V}}_{1}-\hat{\mathbf{V}}_{0}$). A generalized inverse is used, as recommended by Hausman and Taylor (1982).

In the MODEL procedure, Hausman's m-statistic can be used to determine if it is necessary to use an instrumental variables method rather than a more efficient OLS estimation. Hausman's m statistic can also be used to compare 2SLS with 3SLS for a class of estimators for which 3SLS is asymptotically efficient (similarly for OLS and SUR).

Hausman's m-statistic can also be used, in principle, to test the null hypothesis of normality when comparing 3SLS to FIML. Because of the poor performance of this form of the test, it is not offered in the MODEL procedure. See Fair (1984, pp. 246-247) for a discussion of why Hausman's test fails for common econometric models.

To perform a Hausman's specification test, specify the HAUSMAN option in the FIT statement. The selected estimation methods are compared using Hausman's m-statistic.

In the following example, Hausman's test is used to check the presence of measurement error. Under H_{0} of no measurement error, OLS is efficient, while under $H_{1}, 2$ SLS is consistent. In the following code, OLS and 2SLS are used to estimate the model, and Hausman's test is requested.

```
proc model data=one out=fiml2;
    endogenous y1 y2;
    y1 = py2 * y2 + px1 * x1 + interc;
    y2 = py1* y1 + pz1 * z1 + d2;
    fit y1 y2 / ols 2sls hausman;
    instruments x1 z1;
run;
```

The output specified by the HAUSMAN option produces the results shown in Figure 18.54.
Figure 18.54 Hausman's Specification Test Results

Figure 18.54 indicates that 2SLS is preferred over OLS at 5% level of significance. In this case, the null hypothesis of no measurement error is rejected. Hence, the instrumental variable estimator is required for this example due to the presence of measurement error.

Chow Tests

The Chow test is used to test for break points or structural changes in a model. The problem is posed as a partitioning of the data into two parts of size n_{1} and n_{2}. The null hypothesis to be tested is

$$
H_{o}: \beta_{1}=\beta_{2}=\beta
$$

where β_{1} is estimated by using the first part of the data and β_{2} is estimated by using the second part.

The test is performed as follows (see Davidson and MacKinnon 1993, p. 380).

1. The p parameters of the model are estimated.
2. A second linear regression is performed on the residuals, \hat{u}, from the nonlinear estimation in step one.

$$
\hat{u}=\hat{\mathbf{X}} b+\text { residuals }
$$

where $\hat{\mathbf{X}}$ is Jacobian columns that are evaluated at the parameter estimates. If the estimation is an instrumental variables estimation with matrix of instruments \mathbf{W}, then the following regression is performed:

$$
\hat{u}=\mathbf{P}_{W^{*}} \hat{\mathbf{X}} b+\text { residuals }
$$

where $\mathbf{P}_{W^{*}}$ is the projection matrix.
3. The restricted SSE (RSSE) from this regression is obtained. An SSE for each subsample is then obtained by using the same linear regression.
4. The F statistic is then

$$
f=\frac{\left(R S S E-S S E_{1}-S S E_{2}\right) / p}{\left(S S E_{1}+S S E_{2}\right) /(n-2 p)}
$$

This test has p and $n-2 p$ degrees of freedom.
Chow's test is not applicable if $\min \left(n_{1}, n_{2}\right)<p$, since one of the two subsamples does not contain enough data to estimate β. In this instance, the predictive Chow test can be used. The predictive Chow test is defined as

$$
f=\frac{\left(R S S E-S S E_{1}\right) \times\left(n_{1}-p\right)}{S S E_{1} * n_{2}}
$$

where $n_{1}>p$. This test can be derived from the Chow test by noting that the $S S E_{2}=0$ when $n_{2}<=p$ and by adjusting the degrees of freedom appropriately.

You can select the Chow test and the predictive Chow test by specifying the CHOW=arg and the PCHOW=arg options in the FIT statement, where \arg is either the number of observations in the first sample or a parenthesized list of first sample sizes. If the size of the one of the two groups in which the sample is partitioned is less than the number of parameters, then a predictive Chow test is automatically used. These tests statistics are not produced for GMM and FIML estimations.

The following is an example of the use of the Chow test.

```
data exp;
    x=0;
    do time=1 to 100;
        if time=50 then x=1;
        y = 35 * exp( 0.01 * time ) + rannor( 123 ) + x * 5;
        output;
    end;
run;
proc model data=exp;
    parm zo 35 b;
        dert.z = b * z;
        y=z;
    fit y init=(z=zo) / chow =(40 50 60) pchow=90;
run;
```

The data set introduces an artificial structural change into the model (the structural change effects the intercept parameter). The output from the requested Chow tests are shown in Figure 18.55.

Figure 18.55 Chow's Test Results

Test	The MODEL Procedure			F Value	
	Structural Change Test				
	Break Point	Num DF	Den DF		Pr $>$ F
Chow	40	2	96	12.95	$<.0001$
Chow	50	2	96	101.37	$<.0001$
Chow	60	2	96	26.43	$<.0001$
Predictive Chow	90	11	87	1.86	0.0566

Profile Likelihood Confidence Intervals

Wald-based and likelihood-ratio-based confidence intervals are available in the MODEL procedure for computing a confidence interval on an estimated parameter. A confidence interval on a parameter θ can be constructed by inverting a Wald-based or a likelihood-ratio-based test.

The approximate $100(1-\alpha) \%$ Wald confidence interval for a parameter θ is

$$
\hat{\theta} \pm z_{1-\alpha / 2} \hat{\sigma}
$$

where z_{p} is the $100 p$ th percentile of the standard normal distribution, $\hat{\theta}$ is the maximum likelihood estimate of θ, and $\hat{\sigma}$ is the standard error estimate of $\hat{\theta}$.

A likelihood-ratio-based confidence interval is derived from the χ^{2} distribution of the generalized likelihood ratio test. The approximate $1-\alpha$ confidence interval for a parameter θ is

$$
\theta: 2[l(\hat{\theta})-l(\theta)] \leq q_{1,1-\alpha}=2 l^{*}
$$

where $q_{1,1-\alpha}$ is the $(1-\alpha)$ quantile of the χ^{2} with one degree of freedom, and $l(\theta)$ is the \log likelihood as a function of one parameter. The endpoints of a confidence interval are the zeros of the function $l(\theta)-l^{*}$. Computing a likelihood-ratio-based confidence interval is an iterative process. This process must be performed twice for each parameter, so the computational cost is considerable. Using a modified form of the algorithm recommended by Venzon and Moolgavkar (1988), you can determine that the cost of each endpoint computation is approximately the cost of estimating the original system.

To request confidence intervals on estimated parameters, specify the PRL= option in the FIT statement. By default, the PRL option produces 95% likelihood ratio confidence limits. The coverage of the confidence interval is controlled by the ALPHA= option in the FIT statement.

The following is an example of the use of the confidence interval options.

```
data exp;
    do time = 1 to 20;
        y = 35 * exp( 0.01 * time ) + 5*rannor( 123 );
    output;
    end;
run;
proc model data=exp;
    parm zo 35 b;
            dert.z = b * z;
            y=z;
        fit y init=(z=zo) / prl=both;
        test zo = 40.475437 ,/ lr;
run;
```

The output from the requested confidence intervals and the TEST statement are shown in Figure 18.56

Figure 18.56 Confidence Interval Estimation

Figure 18.56 continued

Parameter Wald			
95\% Confidence Intervals			
zo	36.5893	32.7730	40.4056
b	0.00650	-0.00259	0.0156
Parameter Likelihood Ratio			
	Confiden	Interval	
Parameter	Value	Lower	Upper
zo	36.5893	32.8381	40.4921
b	0.00650	-0.00264	0.0157

Note that the likelihood ratio test reported the probability that $z o=40.47543$ is 5% but $z o=40.47543$ is the upper bound of a 95% confidence interval. To understand this conundrum, note that the TEST statement is using the likelihood ratio statistic to test the null hypothesis $H_{0}: z o=40.47543$ with the alternate that $H_{a}: z o \neq 40.47543$. The upper confidence interval can be viewed as a test with the null hypothesis $H_{0}: z o<=40.47543$.

Choice of Instruments

Several of the estimation methods supported by PROC MODEL are instrumental variables methods. There is no standard method for choosing instruments for nonlinear regression. Few econometric textbooks discuss the selection of instruments for nonlinear models. See Bowden and Turkington (1984, pp. 180-182) for more information.

The purpose of the instrumental projection is to purge the regressors of their correlation with the residual. For nonlinear systems, the regressors are the partials of the residuals with respect to the parameters.

Possible instrumental variables include the following:

- any variable in the model that is independent of the errors
- lags of variables in the system
- derivatives with respect to the parameters, if the derivatives are independent of the errors
- low-degree polynomials in the exogenous variables
- variables from the data set or functions of variables from the data set

Selected instruments must not have any of the following characteristics:

- depend on any variable endogenous with respect to the equations estimated
- depend on any of the parameters estimated
- be lags of endogenous variables if there is serial correlation of the errors

If the preceding rules are satisfied and there are enough observations to support the number of instruments used, the results should be consistent and the efficiency loss held to a minimum.

You need at least as many instruments as the maximum number of parameters in any equation, or some of the parameters cannot be estimated. Note that number of instruments means linearly independent instruments. If you add an instrument that is a linear combination of other instruments, it has no effect and does not increase the effective number of instruments.

You can, however, use too many instruments. In order to get the benefit of instrumental variables, you must have more observations than instruments. Thus, there is a trade-off; the instrumental variables technique completely eliminates the simultaneous equation bias only in large samples. In finite samples, the larger the excess of observations over instruments, the more the bias is reduced. Adding more instruments might improve the efficiency, but after some point efficiency declines as the excess of observations over instruments becomes smaller and the bias grows.

The instruments used in an estimation are printed out at the beginning of the estimation. For example, the following statements produce the instruments list shown in Figure 18.57.

```
proc model data=test2;
    exogenous x1 x2;
    parms b1 a1 a2 b2 2.5 c2 55;
    y1 = a1 * y2 + b1 * exp(x1);
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2;
    fit y1 y2 / n2sls;
    inst b1 b2 c2 x1 ;
run;
```

Figure 18.57 Instruments Used Message
The MODEL Procedure
The 2 Equations to Estimate
$y 1=F(b 1, a 1(y 2))$
$y^{2}=F(a 2(y 1), b 2, ~ c 2)$
Instruments 1 x1 @y1/@b1 @y2/@b2 @y2/@c2

This states that an intercept term, the exogenous variable X1, and the partial derivatives of the equations with respect to $\mathrm{B} 1, \mathrm{~B} 2$, and C 2 , were used as instruments for the estimation.

Examples

Suppose that Y1 and Y2 are endogenous variables, that X 1 and X 2 are exogenous variables, and that A, B, C, D, E, F, and G are parameters. Consider the following model:

```
y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1 y2;
instruments exclude=(c g);
```

The INSTRUMENTS statement produces $\mathrm{X} 1, \mathrm{X} 2, \mathrm{LAG}(\mathrm{Y} 1)$, and an intercept as instruments.
In order to estimate the Y1 equation by itself, it is necessary to include X 2 explicitly in the instruments since F , in this case, is not included in the following estimation:

```
y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1;
instruments x2 exclude=(c);
```

This produces the same instruments as before. You can list the parameter associated with the lagged variable as an instrument instead of using the EXCLUDE= option. Thus, the following is equivalent to the previous example:

```
y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1;
instruments x1 x2 d;
```

For an example of declaring instruments when estimating a model involving identities, consider Klein's Model I:

```
proc model data=klien;
    endogenous c p w i x wsum k y;
    exogenous wp g t year;
    parms c0-c3 i0-i3 w0-w3;
    a:c = c0 + c1 * p + c2 * lag(p) + c3 * wsum;
    b: i = i0 + i1 * p + i2 * lag(p) + i3 * lag(k);
    c: w = w0 + w1 * x + w2 * lag(x) + w3 * year;
    x = c + i + g;
    y = c + i + g-t;
    p = x-w-t;
    k = lag(k) + i;
    wsum = w + wp;
run;
```

The three equations to estimate are identified by the labels A, B, and C . The parameters associated with the predetermined terms are C2, I2, I3, W2, and W3 (and the intercepts, which are automatically added to the instruments). In addition, the system includes five identities that contain the predetermined variables $G, T, \operatorname{LAG}(\mathrm{~K})$, and WP. Thus, the INSTRUMENTS statement can be written as

```
lagk = lag(k);
instruments c2 i2 i3 w2 w3 g t wp lagk;
```

where LAGK is a program variable used to hold LAG(K). However, this is more complicated than it needs to be. Except for $\operatorname{LAG}(\mathrm{K})$, all the predetermined terms in the identities are exogenous variables, and $\operatorname{LAG}(\mathrm{K})$ is already included as the coefficient of I3. There are also more parameters for predetermined terms than for endogenous terms, so you might prefer to use the EXCLUDE= option. Thus, you can specify the same instruments list with the simpler statement

```
instruments _exog_ exclude=(c1 c3 i1 w1);
```

To illustrate the use of polynomial terms as instrumental variables, consider the following model:

```
y1 = a + b * exp(c * x1 ) + d * log( x2 ) + e * exp( f * y2 );
```

The parameters are A, B, C, D, E, and F, and the right-hand-side variables are X1, X2, and Y2. Assume that X 1 and X 2 are exogenous (independent of the error), while Y 2 is endogenous. The equation for Y 2 is not specified, but assume that it includes the variables $\mathrm{X} 1, \mathrm{X} 3$, and Y 1 , with X 3 exogenous, so the exogenous variables of the full system are $\mathrm{X} 1, \mathrm{X} 2$, and X 3 . Using as instruments quadratic terms in the exogenous variables, the model is specified to PROC MODEL as follows:

```
proc model;
    parms a b c d e f;
    y1 = a + b * exp( c * x1 ) + d * log( x2 ) + e * exp( f * y2 );
    instruments inst1-inst9;
    inst1 = x1; inst2 = x2; inst3 = x3;
    inst4 = x1 * x1; inst5 = x1 * x2; inst6 = x1 * x3;
    inst7 = x2 * x2; inst8 = x2 * x3; inst9 = x3 * x3;
    fit y1 / 2sls;
run;
```

It is not clear what degree polynomial should be used. There is no way to know how good the approximation is for any degree chosen, although the first-stage $R^{2} \mathrm{~s}$ might help the assessment.

First-Stage R-Squares

When the FSRSQ option is used on the FIT statement, the MODEL procedure prints a column of first-stage R^{2} (FSRSQ) statistics along with the parameter estimates. The FSRSQ measures the fraction of the variation of the derivative column associated with the parameter that remains after projection through the instruments.

Ideally, the FSRSQ should be very close to 1.00 for exogenous derivatives. If the FSRSQ is small for an endogenous derivative, it is unclear whether this reflects a poor choice of instruments or a large influence of the errors in the endogenous right-hand-side variables. When the FSRSQ for one or more parameters is small, the standard errors of the parameter estimates are likely to be large.

Note that you can make all the FSRSQs larger (or 1.00) by including more instruments, because of the disadvantage discussed previously. The FSRSQ statistics reported are unadjusted R^{2} s and do not include a degrees-of-freedom correction.

Autoregressive Moving-Average Error Processes

Autoregressive moving-average error processes (ARMA errors) and other models that involve lags of error terms can be estimated by using FIT statements and simulated or forecast by using SOLVE statements. ARMA models for the error process are often used for models with autocorrelated residuals. The \%AR macro can be used to specify models with autoregressive error processes. The \%MA macro can be used to specify models with moving-average error processes.

Autoregressive Errors

A model with first-order autoregressive errors, $\operatorname{AR}(1)$, has the form

$$
\begin{aligned}
& y_{t}=f\left(x_{t}, \theta\right)+\mu_{t} \\
& \mu_{t}=\phi \mu_{t-1}+\epsilon_{t}
\end{aligned}
$$

while an $\operatorname{AR}(2)$ error process has the form

$$
\mu_{t}=\phi_{1} \mu_{t-1}+\phi_{2} \mu_{t-2}+\epsilon_{t}
$$

and so forth for higher-order processes. Note that the ϵ_{t} 's are independent and identically distributed and have an expected value of 0 .

An example of a model with an $\operatorname{AR}(2)$ component is

$$
\begin{aligned}
& y=\alpha+\beta x_{1}+\mu_{t} \\
& \mu_{t}=\phi_{1} \mu_{t-1}+\phi_{2} \mu_{t-2}+\epsilon_{t}
\end{aligned}
$$

You would write this model as

```
proc model data=in;
    parms a b p1 p2;
    y = a + b * x1 + p1 * zlag1 (y - (a + b * x1)) +
                p2 * zlag2(y - (a + b * x1));
    fit y;
run;
```

or equivalently using the \%AR macro as

```
proc model data=in;
    parms a b;
    y = a + b * x1;
    %ar( y, 2 );
    fit y;
run;
```


Moving-Average Models

A model with first-order moving-average errors, MA(1), has the form

$$
\begin{aligned}
& y_{t}=f\left(x_{t}\right)+\mu_{t} \\
& \mu_{t}=\epsilon_{t}-\theta_{1} \epsilon_{t-1}
\end{aligned}
$$

where ϵ_{t} is identically and independently distributed with mean zero. An MA(2) error process has the form

$$
\mu_{t}=\epsilon_{t}-\theta_{1} \epsilon_{t-1}-\theta_{2} \epsilon_{t-2}
$$

and so forth for higher-order processes.
For example, you can write a simple linear regression model with MA(2) moving-average errors as

```
proc model data=inma2;
    parms a b ma1 ma2;
    y = a + b * x + ma1 * zlag1( resid.y ) +
        ma2 * zlag2( resid.y );
    fit;
run;
```

where MA1 and MA2 are the moving-average parameters.
Note that RESID.Y is automatically defined by PROC MODEL as

```
pred.y = a + b * x + ma1 * zlag1( resid.y ) +
    ma2 * zlag2( resid.y );
resid.y = pred.y - actual.y;
```

Note that RESID.Y is negative of ϵ_{t}.
The ZLAG function must be used for MA models to truncate the recursion of the lags. This ensures that the lagged errors start at zero in the lag-priming phase and do not propagate missing values when lag-priming period variables are missing, and it ensures that the future errors are zero rather than missing during simulation or forecasting. For details about the lag functions, see the section "Lag Logic" on page 1161.

This model written using the \%MA macro is as follows:

```
proc model data=inma2;
    parms a b;
    y = a + b * x;
    %ma(y, 2);
    fit;
run;
```


General Form for ARMA Models

The general $\operatorname{ARMA}(p, q)$ process has the following form

$$
\mu_{t}=\phi_{1} \mu_{t-1}+\ldots+\phi_{p} \mu_{t-p}+\epsilon_{t}-\theta_{1} \epsilon_{t-1}-\ldots-\theta_{q} \epsilon_{t-q}
$$

$\operatorname{An} \operatorname{ARMA}(p, q)$ model can be specified as follows:

```
yhat = ... compute structural predicted value here ... ;
yarma = ar1 * zlag1( y - yhat ) + ... /* ar part */
    + ar(p) * zlag(p)( y - yhat )
    + ma1 * zlag1( resid.y ) + ... /* ma part */
    + ma(q) * zlag(q)( resid.y );
y = yhat + yarma;
```

where ARi and MAj represent the autoregressive and moving-average parameters for the various lags. You can use any names you want for these variables, and there are many equivalent ways that the specification could be written.

Vector ARMA processes can also be estimated with PROC MODEL. For example, a two-variable AR(1) process for the errors of the two endogenous variables Y1 and Y2 can be specified as follows:

```
y1hat = ... compute structural predicted value here ... ;
y1 = y1hat + ar1_1 * zlag1( y1 - y1hat ) /* ar part y1,y1 */
    + ar1_2 * zlag1( y2 - y2hat ); /* ar part y1,y2 */
y21hat = ... compute structural predicted value here ... ;
y2 = y2hat + ar2_2 * zlag1( y2 - y2hat ) /* ar part y2,y2 */
    + ar2_1 * zlag1( y1 - y1hat ); /* ar part y2,y1 */
```


Convergence Problems with ARMA Models

ARMA models can be difficult to estimate. If the parameter estimates are not within the appropriate range, a moving-average model's residual terms grow exponentially. The calculated residuals for later observations can be very large or can overflow. This can happen either because improper starting values were used or because the iterations moved away from reasonable values.

Care should be used in choosing starting values for ARMA parameters. Starting values of 0.001 for ARMA parameters usually work if the model fits the data well and the problem is well-conditioned. Note that an MA model can often be approximated by a high-order AR model, and vice versa. This can result in high collinearity in mixed ARMA models, which in turn can cause serious illconditioning in the calculations and instability of the parameter estimates.

If you have convergence problems while estimating a model with ARMA error processes, try to estimate in steps. First, use a FIT statement to estimate only the structural parameters with the ARMA parameters held to zero (or to reasonable prior estimates if available). Next, use another FIT
statement to estimate the ARMA parameters only, using the structural parameter values from the first run. Since the values of the structural parameters are likely to be close to their final estimates, the ARMA parameter estimates might now converge. Finally, use another FIT statement to produce simultaneous estimates of all the parameters. Since the initial values of the parameters are now likely to be quite close to their final joint estimates, the estimates should converge quickly if the model is appropriate for the data.

AR Initial Conditions

The initial lags of the error terms of $\operatorname{AR}(p)$ models can be modeled in different ways. The autoregressive error startup methods supported by SAS/ETS procedures are the following:

CLS conditional least squares (ARIMA and MODEL procedures)
ULS unconditional least squares (AUTOREG, ARIMA, and MODEL procedures)
ML maximum likelihood (AUTOREG, ARIMA, and MODEL procedures)
YW Yule-Walker (AUTOREG procedure only)
HL
Hildreth-Lu, which deletes the first p observations (MODEL procedure only)
See Chapter 8, "The AUTOREG Procedure," for an explanation and discussion of the merits of various $\operatorname{AR}(\mathrm{p})$ startup methods.

The CLS, ULS, ML, and HL initializations can be performed by PROC MODEL. For AR(1) errors, these initializations can be produced as shown in Table 18.3. These methods are equivalent in large samples.

Table 18.3 Initializations Performed by PROC MODEL: AR(1) ERRORS

Method	Formula
conditional least squares	Y=YHAT+AR1*ZLAG1(Y-YHAT);
unconditional least squares	Y=YHAT+AR1*ZLAG1(Y-YHAT);
	IF_OBS_=1 THEN
	RESID.Y=SQRT(1-AR1**2)*RESID.Y;
maximum likelihood	Y=YHAT+AR1*ZLAG1(Y-YHAT);
	W=(1-AR1**2)**(-1/(2*_NUSED_);
	IF_OBS_=1 THEN W=W*SQRT(1-AR1**2);
	RESID.Y=W*RESID.Y;
Hildreth-Lu	Y=YHAT+AR1*LAG1(Y-YHAT);

MA Initial Conditions

The initial lags of the error terms of $\operatorname{MA}(q)$ models can also be modeled in different ways. The following moving-average error start-up paradigms are supported by the ARIMA and MODEL procedures:

ULS unconditional least squares

CLS conditional least squares
ML maximum likelihood

The conditional least squares method of estimating moving-average error terms is not optimal because it ignores the start-up problem. This reduces the efficiency of the estimates, although they remain unbiased. The initial lagged residuals, extending before the start of the data, are assumed to be 0 , their unconditional expected value. This introduces a difference between these residuals and the generalized least squares residuals for the moving-average covariance, which, unlike the autoregressive model, persists through the data set. Usually this difference converges quickly to 0 , but for nearly noninvertible moving-average processes the convergence is quite slow. To minimize this problem, you should have plenty of data, and the moving-average parameter estimates should be well within the invertible range.

This problem can be corrected at the expense of writing a more complex program. Unconditional least squares estimates for the $\mathrm{MA}(1)$ process can be produced by specifying the model as follows:

```
yhat = ... compute structural predicted value here ... ;
if _obs_ = 1 then do;
    h = sqrt( 1 + ma1 ** 2 );
    y = yhat;
    resid.y = ( y - yhat ) / h;
    end;
else do;
    g = ma1 / zlag1( h );
    h = sqrt( 1 + mal ** 2 - g ** 2 );
    y = yhat + g * zlag1( resid.y );
    resid.y = ( ( y - yhat) - g * zlag1( resid.y ) ) / h;
    end;
```

Moving-average errors can be difficult to estimate. You should consider using an $\operatorname{AR}(p)$ approximation to the moving-average process. A moving-average process can usually be well-approximated by an autoregressive process if the data have not been smoothed or differenced.

The \%AR Macro

The SAS macro \%AR generates programming statements for PROC MODEL for autoregressive models. The \%AR macro is part of SAS/ETS software, and no special options need to be set to use the macro. The autoregressive process can be applied to the structural equation errors or to the endogenous series themselves.

The \%AR macro can be used for the following types of autoregression:

- univariate autoregression
- unrestricted vector autoregression
- restricted vector autoregression

Univariate Autoregression

To model the error term of an equation as an autoregressive process, use the following statement after the equation:

```
%ar( varname, nlags )
```

For example, suppose that Y is a linear function of $\mathrm{X} 1, \mathrm{X} 2$, and an $\mathrm{AR}(2)$ error. You would write this model as follows:

```
proc model data=in;
    parms a b c;
    y = a + b * x1 + c * x2;
    %ar( y, 2 )
    fit y / list;
run;
```

The calls to \%AR must come after all of the equations that the process applies to.
The preceding macro invocation, $\% \mathrm{AR}(\mathrm{y}, 2)$, produces the statements shown in the LIST output in Figure 18.58.

Figure 18.58 LIST Option Output for an AR(2) Model

The _PRED__ prefixed variables are temporary program variables used so that the lags of the residuals are the correct residuals and not the ones redefined by this equation. Note that this is equivalent to the statements explicitly written in the section "General Form for ARMA Models" on page 1090.

You can also restrict the autoregressive parameters to zero at selected lags. For example, if you wanted autoregressive parameters at lags 1,12 , and 13 , you can use the following statements:

```
proc model data=in;
    parms a b c;
    y = a + b * x1 + c * x2;
    %ar( y, 13, , 1 12 13)
    fit y / list;
run;
```

These statements generate the output shown in Figure 18.59.
Figure 18.59 LIST Option Output for an AR Model with Lags at 1, 12, and 13

The MODEL Procedure		
Listing of Compiled Program Code		
Stmt	Line: Col	Statement as Parsed
1	1949:4	PRED. $\mathrm{y}=\mathrm{a}+\mathrm{b}$ * $\mathrm{x} 1+\mathrm{c}$ * x 2 ;
1	1949:4	RESID. $\mathrm{y}=$ PRED. y - ACTUAL. y ;
1	1949:4	ERROR.y = PRED.y - y;
2	1950:14	_PRED__y = PRED. Y ;
3	1950:15	_OLD_PRED. $\mathrm{y}=\mathrm{PRED} \cdot \mathrm{y}+\mathrm{y}$ _11 * ZLAG1 (y -
		_PRED__y) + y_112 * ZLAG12 (y -
		_PRED__y) + Y_113 * ZLAG13 (
		y - _PRED__ ${ }^{\text {l }}$);
3	1950:15	PRED.Y = _OLD_PRED.Y;
3	1950:15	RESID. $\mathrm{y}=\mathrm{PRED} \cdot \mathrm{y}$ - ACTUAL. y ;
3	1950:15	ERROR. $\mathrm{y}=$ PRED. y - y ;

There are variations on the conditional least squares method, depending on whether observations at the start of the series are used to "warm up" the AR process. By default, the \%AR conditional least squares method uses all the observations and assumes zeros for the initial lags of autoregressive terms. By using the $\mathrm{M}=$ option, you can request that $\% \mathrm{AR}$ use the unconditional least squares (ULS) or maximum-likelihood (ML) method instead. For example,

```
proc model data=in;
    y = a + b * x1 + c * x2;
    %ar( y, 2, m=uls )
    fit y;
run;
```

Discussions of these methods is provided in the section "AR Initial Conditions" on page 1091.
By using the $\mathrm{M}=\mathrm{CLS} n$ option, you can request that the first n observations be used to compute estimates of the initial autoregressive lags. In this case, the analysis starts with observation $n+1$. For example:

```
proc model data=in;
    y = a + b * x1 + c * x2;
    %ar( y, 2, m=cls2 )
```

```
    fit y;
run;
```

You can use the \%AR macro to apply an autoregressive model to the endogenous variable, instead of to the error term, by using the TYPE=V option. For example, if you want to add the five past lags of Y to the equation in the previous example, you could use $\% \mathrm{AR}$ to generate the parameters and lags by using the following statements:

```
proc model data=in;
    parms a b c;
    y = a + b * x1 + c * x2;
    %ar( y, 5, type=v )
    fit y / list;
run;
```

The preceding statements generate the output shown in Figure 18.60.
Figure 18.60 LIST Option Output for an AR model of Y

The MODEL Procedure		
Listing of Compiled Program Code		
1	1972:4	PRED. $\mathrm{y}=\mathrm{a}+\mathrm{b}$ * $\mathrm{x} 1+\mathrm{c}$ * x 2 ;
1	1972:4	RESID. $\mathrm{y}=\mathrm{PRED} . \mathrm{y}$ - ACTUAL. y ;
1	1972:4	ERROR. $\mathrm{y}=\mathrm{PRED} \cdot \mathrm{y}-\mathrm{y}$;
2	1973:15	_OLD_PRED. $\mathrm{y}=\mathrm{PRED} \cdot \mathrm{y}+\mathrm{y}$ ¢11 * ZLAG1 (y)
		$\begin{aligned} & +y _12 * \text { ZLAG2 }(\mathrm{y})+\mathrm{y} _13 * \text { ZLAG3 }(\mathrm{y}) \\ & +\mathrm{y} _14 * \operatorname{ZLAG}(\mathrm{y})+\mathrm{y} _15 * \operatorname{ZLAG5}(\mathrm{y}) ; \end{aligned}$
2	1973:15	PRED. $\mathrm{y}=$ _OLD_PRED. Y ;
2	1973:15	RESID. $\mathrm{y}=\mathrm{PRED} \cdot \mathrm{y}$ - ACTUAL. y ;
2	1973:15	ERROR. $\mathrm{y}=$ PRED. y - y ;

This model predicts Y as a linear combination of X 1 , X 2 , an intercept, and the values of Y in the most recent five periods.

Unrestricted Vector Autoregression

To model the error terms of a set of equations as a vector autoregressive process, use the following form of the \%AR macro after the equations:

```
%ar( process_name, nlags, variable_list )
```

The process_name value is any name that you supply for $\% \mathrm{AR}$ to use in making names for the autoregressive parameters. You can use the \%AR macro to model several different AR processes for different sets of equations by using different process names for each set. The process name ensures that the variable names used are unique. Use a short process_name value for the process if parameter estimates are to be written to an output data set. The \%AR macro tries to construct parameter names
less than or equal to eight characters, but this is limited by the length of process_name, which is used as a prefix for the AR parameter names.

The variable_list value is the list of endogenous variables for the equations.
For example, suppose that errors for equations Y1, Y2, and Y3 are generated by a second-order vector autoregressive process. You can use the following statements:

```
proc model data=in;
    y1 = ... equation for y1 ...;
    y2 = ... equation for y2 ...;
    y3 = ... equation for y3 ...;
    %ar( name, 2, y1 y2 y3 )
    fit y1 y2 y3;
run;
```

which generate the following for Y1 and similar code for Y2 and Y3:

```
y1 = pred.y1 + name1_1_1*zlag1(y1-name_y1) +
    name1_1_2*zlag1(y2-name_y2) +
    name1_1_3*zlag1(y3-name_y3) +
    name2_1_1*zlag2(y1-name_y1) +
    name2_1_2*zlag2(y2-name_y2) +
    name2_1_3*zlag2(y3-name_y3) ;
```

Only the conditional least squares ($\mathrm{M}=\mathrm{CLS}$ or $\mathrm{M}=\mathrm{CLS} n$) method can be used for vector processes.
You can also use the same form with restrictions that the coefficient matrix be 0 at selected lags. For example, the following statements apply a third-order vector process to the equation errors with all the coefficients at lag 2 restricted to 0 and with the coefficients at lags 1 and 3 unrestricted:

```
proc model data=in;
    y1 = ... equation for y1 ...;
    y2 = ... equation for y2 ...;
    y3 = ... equation for y3 ...;
    %ar( name, 3, y1 y2 y3, 1 3 )
    fit y1 y2 y3;
```

You can model the three series Y1-Y3 as a vector autoregressive process in the variables instead of in the errors by using the TYPE=V option. If you want to model Y1-Y3 as a function of past values of Y1-Y3 and some exogenous variables or constants, you can use \%AR to generate the statements for the lag terms. Write an equation for each variable for the nonautoregressive part of the model, and then call \%AR with the TYPE=V option. For example,

```
proc model data=in;
    parms a1-a3 b1-b3;
    y1 = a1 + b1 * x;
    y2 = a2 + b2 * x;
    y3 = a3 + b3 * x;
```

```
    %ar( name, 2, y1 y2 y3, type=v )
    fit y1 y2 y3;
run;
```

The nonautoregressive part of the model can be a function of exogenous variables, or it can be intercept parameters. If there are no exogenous components to the vector autoregression model, including no intercepts, then assign zero to each of the variables. There must be an assignment to each of the variables before $\% A R$ is called.

```
proc model data=in;
    y1=0;
    y2=0;
    y3=0;
    %ar( name, 2, y1 y2 y3, type=v )
    fit y1 y2 y3;
run;
```

This example models the vector $\mathrm{Y}=(\mathrm{Y} 1 \mathrm{Y} 2 \mathrm{Y} 3)^{\prime}$ as a linear function only of its value in the previous two periods and a white noise error vector. The model has $18=(3 \times 3+3 \times 3)$ parameters.

Syntax of the \%AR Macro

There are two cases of the syntax of the \%AR macro. When restrictions on a vector AR process are not needed, the syntax of the \%AR macro has the general form

```
%AR ( name, nlag <, endolist < , laglist >><<,M= method ><<,TYPE= V> );
```

where

name	specifies a prefix for $\%$ AR to use in constructing names of variables needed to define the AR process. If the endolist is not specified, the endogenous list defaults to name, which must be the name of the equation to which the AR error process is to be applied. The name value cannot exceed 32 characters.
nlag	
is the order of the AR process.	

TYPE $=\mathrm{V} \quad$ specifies that the AR process is to be applied to the endogenous variables themselves instead of to the structural residuals of the equations.

Restricted Vector Autoregression

You can control which parameters are included in the process, restricting to 0 those parameters that you do not include. First, use \%AR with the DEFER option to declare the variable list and define the dimension of the process. Then, use additional \%AR calls to generate terms for selected equations with selected variables at selected lags. For example,

```
proc model data=d;
    y1 = ... equation for y1 ...;
    y2 = ... equation for y2 ...;
    y3 = ... equation for y3 ...;
    %ar( name, 2, y1 y2 y3, defer )
    %ar( name, y1, y1 y2 )
    %ar( name, y2 y3, , 1 )
    fit y1 y2 y3;
run;
```

The error equations produced are as follows:

```
y1 = pred.y1 + name1_1_1*zlag1 (y1-name_y1) +
    name1_1_2*zlag1(y2-name_y2) + name2_1_1*zlag2(y1-name_y1) +
    name2_1_2*zlag2(y2-name_y2) ;
y2 = pred.y2 + name1_2_1*zlag1(y1-name_y1) +
    name1_2_2*zlag1 (y2-name_y2) + name1_2_3*zlag1 (y3-name_y3) ;
y3 = pred.y3 + name1_3_1*zlag1 (y1-name_y1) +
    name1_3_2*zlag1(y2-name_y2) + name1_3_3*zlag1(y3-name_y3) ;
```

This model states that the errors for Y1 depend on the errors of both Y1 and Y2 (but not Y3) at both lags 1 and 2, and that the errors for Y2 and Y3 depend on the previous errors for all three variables, but only at lag 1 .

\%AR Macro Syntax for Restricted Vector AR

An alternative use of \%AR is allowed to impose restrictions on a vector AR process by calling $\% \mathrm{AR}$ several times to specify different AR terms and lags for different equations.

The first call has the general form
\%AR(name, nlag, endolist , DEFER);
where
name specifies a prefix for $\% \mathrm{AR}$ to use in constructing names of variables needed to define the vector AR process.
nlag specifies the order of the AR process.
endolist specifies the list of equations to which the AR process is to be applied.
DEFER specifies that \%AR is not to generate the AR process but is to wait for further information specified in later \%AR calls for the same name value.

The subsequent calls have the general form

```
%AR( name, eqlist, varlist, laglist,TYPE= )
```

where
name \quad is the same as in the first call.
eqlist specifies the list of equations to which the specifications in this \%AR call are to be applied. Only names specified in the endolist value of the first call for the name value can appear in the list of equations in eqlist.
varlist specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist. Only names in the endolist of the first call for the name value can appear in varlist. If not specified, varlist defaults to endolist.
laglist specifies the list of lags at which the AR terms are to be added. The coefficients of the terms at lags not listed are set to 0 . All of the listed lags must be less than or equal to the value of nlag, and there must be no duplicates. If not specified, laglist defaults to all lags 1 through nlag.

The \%MA Macro

The SAS macro \%MA generates programming statements for PROC MODEL for moving-average models. The \%MA macro is part of SAS/ETS software, and no special options are needed to use the macro. The moving-average error process can be applied to the structural equation errors. The syntax of the \%MA macro is the same as the \%AR macro except there is no TYPE= argument.

When you are using the \%MA and \%AR macros combined, the \%MA macro must follow the \%AR macro. The following SAS/IML statements produce an ARMA(1, (13)) error process and save it in the data set MADAT2.

```
    /* use IML module to simulate a MA process */
proc iml;
    phi = { 1 . 2 };
    theta = { 1 . 3 0 . . % };
    y = armasim( phi, theta, 0, .1, 200, 32565 );
    create madat2 from y[colname=' y'];
    append from y;
quit;
```

The following PROC MODEL statements are used to estimate the parameters of this model by using maximum likelihood error structure:

```
title 'Maximum Likelihood ARMA(1, (1 3))';
proc model data=madat2;
    y=0;
    %ar( y, 1, , M=ml )
    %ma( y, 3, , 1 3, M=ml ) /* %MA always after %AR */
    fit y;
run;
title;
```

The estimates of the parameters produced by this run are shown in Figure 18.61.
Figure 18.61 Estimates from an ARMA(1, (13)) Process

Syntax of the \%MA Macro

There are two cases of the syntax for the \%MA macro. When restrictions on a vector MA process are not needed, the syntax of the \%MA macro has the general form

$$
\% \text { MA (name , nlag <, endolist <, laglist } \gg<, M=\text { method }>\text {); }
$$

where

name	specifies a prefix for $\%$ MA to use in constructing names of variables needed to define the MA process and is the default endolist.
nlag	is the order of the MA process.

endolist specifies the equations to which the MA process is to be applied. If more than one name is given, CLS estimation is used for the vector process.
laglist specifies the lags at which the MA terms are to be added. All of the listed lags must be less than or equal to nlag, and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag.
$\mathrm{M}=$ method \quad specifies the estimation method to implement. Valid values of $\mathrm{M}=$ are CLS (conditional least squares estimates), ULS (unconditional least squares estimates), and ML (maximum likelihood estimates). $\mathrm{M}=\mathrm{CLS}$ is the default. Only M=CLS is allowed when more than one equation is specified in the endolist.

\%MA Macro Syntax for Restricted Vector Moving-Average

An alternative use of $\% \mathrm{MA}$ is allowed to impose restrictions on a vector MA process by calling \%MA several times to specify different MA terms and lags for different equations.

The first call has the general form
\%MA(name , nlag, endolist , DEFER);
where
name specifies a prefix for $\% \mathrm{MA}$ to use in constructing names of variables needed to define the vector MA process.
nlag specifies the order of the MA process.
endolist specifies the list of equations to which the MA process is to be applied.
DEFER specifies that \%MA is not to generate the MA process but is to wait for further information specified in later \%MA calls for the same name value.

The subsequent calls have the general form

```
%MA( name, eqlist, varlist, laglist )
```

where

name	is the same as in the first call. specifies the list of equations to which the specifications in this $\%$ MA call are to be applied.
varlist	specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist.
laglist	specifies the list of lags at which the MA terms are to be added.

Distributed Lag Models and the \%PDL Macro

In the following example, the variable y is modeled as a linear function of x, the first lag of x, the second lag of x, and so forth:

$$
y_{t}=a+b_{0} x_{t}+b_{1} x_{t-1}+b_{2} x_{t-2}+b_{3} x_{t-3}+\ldots+b_{n} x_{t-n}
$$

Models of this sort can introduce a great many parameters for the lags, and there may not be enough data to compute accurate independent estimates for them all. Often, the number of parameters is reduced by assuming that the lag coefficients follow some pattern. One common assumption is that the lag coefficients follow a polynomial in the lag length

$$
b_{i}=\sum_{j=0}^{d} \alpha_{j}(i)^{j}
$$

where d is the degree of the polynomial used. Models of this kind are called Almon lag models, polynomial distributed lag models, or PDLs for short. For example, Figure 18.62 shows the lag distribution that can be modeled with a low-order polynomial. Endpoint restrictions can be imposed on a PDL to require that the lag coefficients be 0 at the 0th lag, or at the final lag, or at both.

Figure 18.62 Polynomial Distributed Lags

For linear single-equation models, SAS/ETS software includes the PDLREG procedure for estimating PDL models. See Chapter 20, "The PDLREG Procedure," for a more detailed discussion of
polynomial distributed lags and an explanation of endpoint restrictions.
Polynomial and other distributed lag models can be estimated and simulated or forecast with PROC MODEL. For polynomial distributed lags, the \%PDL macro can generate the needed programming statements automatically.

The \%PDL Macro

The SAS macro \%PDL generates the programming statements to compute the lag coefficients of polynomial distributed lag models and to apply them to the lags of variables or expressions.

To use the \%PDL macro in a model program, you first call it to declare the lag distribution; later, you call it again to apply the PDL to a variable or expression. The first call generates a PARMS statement for the polynomial parameters and assignment statements to compute the lag coefficients. The second call generates an expression that applies the lag coefficients to the lags of the specified variable or expression. A PDL can be declared only once, but it can be used any number of times (that is, the second call can be repeated).

The initial declaratory call has the general form

```
%PDL ( pdlname, nlags, degree , R=code, OUTEST=dataset );
```

where pdlname is a name (up to 32 characters) that you give to identify the PDL, nlags is the lag length, and degree is the degree of the polynomial for the distribution. The $\mathrm{R}=$ code is optional for endpoint restrictions. The value of code can be FIRST (for upper), LAST (for lower), or BOTH (for both upper and lower endpoints). See Chapter 20, "The PDLREG Procedure," for a discussion of endpoint restrictions. The option OUTEST=dataset creates a data set that contains the estimates of the parameters and their covariance matrix.

The later calls to apply the PDL have the general form

```
%PDL( pdlname, expression )
```

where pdlname is the name of the PDL and expression is the variable or expression to which the PDL is to be applied. The pdlname given must be the same as the name used to declare the PDL.

The following statements produce the output in Figure 18.63:

```
proc model data=in list;
    parms int pz;
    %pdl (xpdl,5,2);
    y = int + pz * z + %pdl (xpdl,x);
    %ar(y,2,M=ULS);
    id i;
fit y / out=model1 outresid converge=1e-6;
run;
```

Figure 18.63 \%PDL Macro Estimates

The MODEL Procedure					
	Nonlinear OLS Estimates				
Term	Estimate	Approx		Approx	Label
		Std Err	t Value	$\operatorname{Pr}>\|t\|$	
XPDL_L0	1.568788	0.0935	16.77	$<.0001$	$\begin{aligned} & \text { PDL (XPDL, 5, 2) } \\ & \text { coefficient for lag0 } \end{aligned}$
XPDL_L1	0.564917	0.0328	17.22	$<.0001$	PDL (XPDL, 5, 2) coefficient for lag1
XPDL_L2	-0.05063	0.0593	-0.85	0.4155	PDL (XPDL, 5, 2) coefficient for lag2
XPDL_L3	-0.27785	0.0517	-5. 37	0.0004	$\begin{aligned} & \text { PDL (XPDL, 5, 2) } \\ & \text { coefficient for lag3 } \end{aligned}$
XPDL_L4	-0.11675	0.0368	-3.17	0.0113	PDL (XPDL, 5, 2) coefficient for lag4
XPDL_L5	0.43267	0.1362	3.18	0.0113	PDL (XPDL, 5, 2)
					coefficient for lag5

This second example models two variables, Y1 and Y2, and uses two PDLs:

```
proc model data=in;
    parms int1 int2;
    %pdl( logxpdl, 5, 3 )
    %pdl( zpdl, 6, 4 )
    y1 = int1 + %pdl( logxpdl, log(x) ) + %pdl( zpdl, z );
    y2 = int2 + %pdl( zpdl, z );
    fit y1 y2;
run;
```

$\mathrm{A}(5,3) \mathrm{PDL}$ of the \log of X is used in the equation for $\mathrm{Y} 1 . \mathrm{A}(6,4) \mathrm{PDL}$ of Z is used in the equations for both Y1 and Y2. Since the same ZPDL is used in both equations, the lag coefficients for Z are the same for the Y1 and Y2 equations, and the polynomial parameters for ZPDL are shared by the two equations. See Example 18.5 for a complete example and comparison with PDLREG.

Input Data Sets

DATA= Input Data Set

For FIT tasks, the DATA= option specifies which input data set to use in estimating parameters. Variables in the model program are looked up in the DATA= data set and, if found, their attributes (type, length, label, and format) are set to be the same as those in the DATA= data set (if not defined otherwise within PROC MODEL).

ESTDATA= Input Data Set

The ESTDATA= option specifies an input data set that contains an observation that gives values for some or all of the model parameters. The data set can also contain observations that gives the rows of a covariance matrix for the parameters.

Parameter values read from the ESTDATA= data set provide initial starting values for parameters estimated. Observations that provide covariance values, if any are present in the ESTDATA= data set, are ignored.

The ESTDATA= data set is usually created by the OUTEST= option in a previous FIT statement. You can also create an ESTDATA= data set with a SAS DATA step program. The data set must contain a numeric variable for each parameter to be given a value or covariance column. The name of the variable in the ESTDATA= data set must match the name of the parameter in the model. Parameters with names longer than 32 characters cannot be set from an ESTDATA= data set. The data set must also contain a character variable _NAME_ of length 32. _NAME_ has a blank value for the observation that gives values to the parameters. _NAME_ contains the name of a parameter for observations that define rows of the covariance matrix.

More than one set of parameter estimates and covariances can be stored in the ESTDATA= data set if the observations for the different estimates are identified by the variable _TYPE_. _TYPE_ must be a character variable of length 8 . The TYPE= option is used to select for input the part of the ESTDATA= data set for which the _TYPE_ value matches the value of the TYPE= option.

In PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When more than one option is specified, the options are implemented in the following order of precedence (from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of 0.0001 is used.

The following SAS statements generate the ESTDATA= data set shown in Figure 18.64. The second FIT statement uses the TYPE= option to select the estimates from the GMM estimation as starting values for the FIML estimation.

```
/* Generate test data */
data gmm2;
        do t=1 to 50;
            x1 = sqrt(t) ;
            x2 = rannor(10) * 10;
            y1 = -.002 * x2 * x2 - .05 / x2 - 0.001 * x1 * x1;
            y2 = 0.002* y1 + 2 * x2 * x2 + 50 / x2 + 5 * rannor(1);
            y1 = y1 + 5 * rannor (1);
            z1 = 1; z2 = x1 * x1; z3 = x2 * x2; z4 = 1.0/x2;
            output;
    end;
run;
proc model data=gmm2 ;
    exogenous x1 x2;
    parms a1 a2 b1 2.5 b2 c2 55 d1;
    inst b1 b2 c2 x1 x2;
```

```
    y1 = a1 * y2 + b1 * x1 * x1 + d1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
    fit y1 y2 / 3sls gmm kernel=(qs,1,0.2) outest=gmmest;
    fit y1 y2 / fiml type=gmm estdata=gmmest;
run;
proc print data=gmmest;
run;
```

Figure 18.64 ESTDATA= Data Set

MISSING=PAIRWISE | DELETE

When missing values are encountered for any one of the equations in a system of equations, the default action is to drop that observation for all of the equations. The new MISSING=PAIRWISE option in the FIT statement provides a different method of handling missing values that avoids losing data for nonmissing equations for the observation. This is especially useful for SUR estimation on equations with unequal numbers of observations.

The option MISSING=PAIRWISE specifies that missing values are tracked on an equation-byequation basis. The MISSING=DELETE option specifies that the entire observation is omitted from the analysis when any equation has a missing predicted or actual value for the equation. The default is MISSING=DELETE.

When you specify the MISSING=PAIRWISE option, the \mathbf{S} matrix is computed as

$$
\mathbf{S}=\mathbf{D}\left(\mathbf{R}^{\prime} \mathbf{R}\right) \mathbf{D}
$$

where \mathbf{D} is a diagonal matrix that depends on the VARDEF= option, the matrix \mathbf{R} is $\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{g}\right)$, and \mathbf{r}_{i} is the vector of residuals for the i th equation with $r_{i j}$ replaced with zero when $r_{i j}$ is missing.

For MISSING=PAIRWISE, the calculation of the diagonal element $d_{i, i}$ of \mathbf{D} is based on n_{i}, the number of nonmissing observations for the i th equation, instead of on n. Similarly, for VARDEF=WGT or WDF, the calculation is based on the sum of the weights for the nonmissing observations for the i th equation instead of on the sum of the weights for all observations. See the description of the VARDEF= option for the definition of \mathbf{D}.

The degrees-of-freedom correction for a shared parameter is computed by using the average number of observations used in its estimation.

The MISSING=PAIRWISE option is not valid for the GMM and FIML estimation methods.
For the instrumental variables estimation methods (2SLS, 3SLS), when an instrument is missing for an observation, that observation is dropped for all equations, regardless of the MISSING=option.

PARMSDATA= Input Data Set

The option PARMSDATA= reads values for all parameters whose names match the names of variables in the PARMSDATA= data set. Values for any or all of the parameters in the model can be reset by using the PARMSDATA= option. The PARMSDATA= option goes in the PROC MODEL statement, and the data set is read before any FIT or SOLVE statements are executed.

In PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When more than one option is specified, the options are implemented in the following order of precedence (from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of 0.0001 is used.

Together, the OUTPARMS= and PARMSDATA= options enable you to change part of a model and recompile the new model program without the need to reestimate equations that were not changed.

Suppose you have a large model with parameters estimated and you now want to replace one equation, Y, with a new specification. Although the model program must be recompiled with the new equation, you don't need to reestimate all the equations, just the one that changed.

Using the OUTPARMS $=$ and PARMSDATA $=$ options, you could do the following:

```
proc model model=oldmod outparms=temp; run;
proc model outmodel=newmod parmsdata=temp data=in;
    ... include new model definition with changed y eq. here ...
    fit y;
run;
```

The model file NEWMOD then contains the new model and its estimated parameters plus the old models with their original parameter values.

SDATA= Input Data Set

The SDATA= option allows a cross-equation covariance matrix to be input from a data set. The \mathbf{S} matrix read from the SDATA= data set, specified in the FIT statement, is used to define the objective function for the OLS, N2SLS, SUR, and N3SLS estimation methods and is used as the initial \mathbf{S} for the methods that iterate the \mathbf{S} matrix.

Most often, the SDATA= data set has been created by the OUTS $=$ or OUTSUSED $=$ option in a previous FIT statement. The OUTS= and OUTSUSED= data sets from a FIT statement can be read back in by a FIT statement in the same PROC MODEL step.

You can create an input SDATA= data set by using the DATA step. PROC MODEL expects to find a character variable _NAME_ in the SDATA= data set as well as variables for the equations in the estimation or solution. For each observation with a _NAME_ value that matches the name of an equation, PROC MODEL fills the corresponding row of the \mathbf{S} matrix with the values of the names of equations found in the data set. If a row or column is omitted from the data set, a 1 is placed on the diagonal for the row or column. Missing values are ignored, and since the \mathbf{S} matrix is symmetric, you can include only a triangular part of the \mathbf{S} matrix in the SDATA= data set with the omitted part indicated by missing values. If the SDATA= data set contains multiple observations with the same _NAME_, the last values supplied for the _NAME_ are used. The structure of the expected data set is further described in the section "OUTS= Data Set" on page 1112.

Use the TYPE= option in the PROC MODEL or FIT statement to specify the type of estimation method used to produce the \mathbf{S} matrix you want to input.

The following SAS statements are used to generate an \mathbf{S} matrix from a GMM and a 3SLS estimation and to store that estimate in the data set GMMS:

```
proc model data=gmm2 ;
    exogenous x1 x2;
    parms a1 a2 b1 2.5 b2 c2 55 d1;
    inst b1 b2 c2 x1 x2;
    y1 = a1 * y2 + b1 * x1 * x1 + d1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
    fit y1 y2 / 3sls gmm kernel=(qs,1,0.2)
        outest=gmmest outs=gmms;
run;
proc print data=gmms;
run;
```

The data set GMMS is shown in Figure 18.65.
Figure 18.65 SDATA= Data Set

Obs	_NAME_ $_{-}$	_TYPE_ $_{-}$	_NUSED_ $_{-}$	y^{1}	y^{2}
1	y 1	3SLS	50	27.1032	38.1599
2	y^{2}	3SLS	50	38.1599	74.6253
3	y^{1}	GMM	50	27.6248	32.2811
4	y^{2}	GMM	50	32.2811	58.8387

VDATA= Input data set

The VDATA= option enables a variance matrix for GMM estimation to be input from a data set. When the VDATA= option is used in the PROC MODEL or FIT statement, the matrix that is input is used to define the objective function and is used as the initial \mathbf{V} for the methods that iterate the \mathbf{V} matrix.

Normally the VDATA= matrix is created from the OUTV= option in a previous FIT statement. Alternately an input VDATA= data set can be created by using the DATA step. Each row and
column of the \mathbf{V} matrix is associated with an equation and an instrument. The position of each element in the \mathbf{V} matrix can then be indicated by an equation name and an instrument name for the row of the element and an equation name and an instrument name for the column. Each observation in the VDATA= data set is an element in the \mathbf{V} matrix. The row and column of the element are indicated by four variables (EQ_ROW, INST_ROW, EQ_COL, and INST_COL) that contain the equation name or instrument name. The variable name for an element is VALUE. Missing values are set to 0 . Because the variance matrix is symmetric, only a triangular part of the matrix needs to be input.

The following SAS statements are used to generate a \mathbf{V} matrix estimation from GMM and to store that estimate in the data set GMMV:

```
proc model data=gmm2;
    exogenous x1 x2;
    parms a1 a2 b2 b1 2.5 c2 55 d1;
    inst b1 b2 c2 x1 x2;
    y1 = a1 * y2 + b1 * x1 * x1 + d1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
    fit y1 y2 / gmm outv=gmmv;
run;
proc print data=gmmv(obs=15);
run;
```

The data set GMM2 was generated by the example in the preceding ESTDATA= section. The \mathbf{V} matrix stored in GMMV is selected for use in an additional GMM estimation by the following FIT statement:

```
fit y1 y2 / gmm vdata=gmmv;
run;
```

A partial listing of the GMMV data set is shown in Figure 18.66. There are a total of 78 observations in this data set. The \mathbf{V} matrix is 12 by 12 for this example.

Figure 18.66 The First 15 Observations in the VDATA= Data Set

Obs	_TYPE_	EQ_ROW	EQ_COL	INST_ROW	INST_COL	VALUE
1	GMM	y1	y1	1	1	1555.78
2	GMM	y1	y1	x1	1	8565.80
3	GMM	y1	y1	x1	x 1	49932.47
4	GMM	y1	y1	x 2	1	8244.34
5	GMM	y1	y1	x 2	x 1	51324.21
6	GMM	y1	y1	x 2	x 2	159913.24
7	GMM	y1	y1	@PRED. $\mathrm{y}^{1 / @ b 1}$	1	49933.61
8	GMM	y1	y1	@PRED. $\mathrm{y}^{1 / @ b 1}$	x1	301270.02
9	GMM	y1	y1	@PRED. $\mathrm{y}^{1 / @ b 1}$	x 2	317277.10
10	GMM	y1	y1	@PRED. $\mathrm{y}^{1 / @ b 1}$	@PRED. $\mathrm{y} 1 / \mathrm{@b} 1$	1860095.90
11	GMM	y1	y1	@PRED. $\mathrm{y}^{2 / @ b 2}$	1	163855.31
12	GMM	y1	y1	@PRED. $\mathrm{y}^{2} / @ \mathrm{~b} 2$	x 1	900622.60
13	GMM	y1	y1	@PRED. $\mathrm{y}^{2} / @ \mathrm{~b}$ 2	x 2	1285421.56
14	GMM	y1	y1	@PRED. $\mathrm{y}^{2} / @ \mathrm{~b} 2$	@PRED. $\mathrm{Y} 1 / \mathrm{@}$ (1	5173744.58
15	GMM	y1	y1	@PRED. $\mathrm{y}^{2} / @ \mathrm{~b} 2$	@PRED. $\mathrm{y}^{2} / @ \mathrm{~b} 2$	30307640.16

Output Data Sets

OUT= Data Set

For normalized form equations, the OUT= data set specified in the FIT statement contains residuals, actuals, and predicted values of the dependent variables computed from the parameter estimates. For general form equations, actual values of the endogenous variables are copied for the residual and predicted values.

The variables in the data set are as follows:

- BY variables
- RANGE variable
- ID variables
- _ESTYPE_, a character variable of length 8 that identifies the estimation method: OLS, SUR, N2SLS, N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, ITGMM, or FIML
- _TYPE_, a character variable of length 8 that identifies the type of observation: RESIDUAL, PREDICT, or ACTUAL
- _WEIGHT , the weight of the observation in the estimation. The _WEIGHT_ value is 0 if the observation was not used. It is equal to the product of the _WEIGHT_ model program variable and the variable named in the WEIGHT statement, if any, or 1 if weights were not used.
- the WEIGHT statement variable if used
- the model variables. The dependent variables for the normalized form equations in the estimation contain residuals, actuals, or predicted values, depending on the _TYPE_ variable, whereas the model variables that are not associated with estimated equations always contain actual values from the input data set.
- any other variables named in the OUTVARS statement. These can be program variables computed by the model program, CONTROL variables, parameters, or special variables in the model program.

The following SAS statements are used to generate and print an OUT= data set:

```
proc model data=gmm2;
    exogenous x1 x2;
    parms a1 a2 b2 b1 2.5 c2 55 d1;
    inst b1 b2 c2 x1 x2;
    y1 = a1 * y2 + b1 * x1 * x1 + d1;
    y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;
    fit y1 y2 / 3sls gmm out=resid outall ;
run;
proc print data=resid(obs=20);
run;
```

The data set GMM2 was generated by the example in the preceding ESTDATA= section above. A partial listing of the RESID data set is shown in Figure 18.67.

Figure 18.67 The OUT= Data Set

Obs	_ESTYPE_	_TYPE	WEIGHT	x1	x2	y1	y^{2}
1	3SLS	ACTUAL	1	1.00000	-1.7339	-3.05812	-23.071
2	3SLS	PREDICT	1	1.00000	-1.7339	-0.36806	-19.351
3	3SLS	RESIDUAL	1	1.00000	-1.7339	-2.69006	-3.720
4	3SLS	ACTUAL	1	1.41421	-5. 3046	0.59405	43.866
5	3SLS	PREDICT	1	1.41421	-5.3046	-0.49148	45.588
6	3SLS	RESIDUAL	1	1.41421	-5.3046	1.08553	-1.722
7	3SLS	ACTUAL	1	1.73205	-5.2826	3.17651	51.563
8	3SLS	PREDICT	1	1.73205	-5.2826	-0.48281	41.857
9	3SLS	RESIDUAL	1	1.73205	-5.2826	3.65933	9.707
10	3SLS	ACTUAL	1	2.00000	-0.6878	3.66208	-70.011
11	3SLS	PREDICT	1	2.00000	-0.6878	-0.18592	-76.502
12	3SLS	RESIDUAL	1	2.00000	-0.6878	3.84800	6.491
13	3SLS	ACTUAL	1	2.23607	-7.0797	0.29210	99.177
14	3SLS	PREDICT	1	2.23607	-7.0797	-0.53732	92.201
15	3SLS	RESIDUAL	1	2.23607	-7.0797	0.82942	6.976
16	3SLS	ACTUAL	1	2.44949	14.5284	1.86898	423.634
17	3SLS	PREDICT	1	2.44949	14.5284	-1.23490	421.969
18	3SLS	RESIDUAL	1	2.44949	14.5284	3.10388	1.665
19	3SLS	ACTUAL	1	2.64575	-0.6968	-1.03003	-72.214
20	3SLS	PREDICT	1	2.64575	-0.6968	-0.10353	-69.680

OUTEST= Data Set

The OUTEST = data set contains parameter estimates and, if requested, estimates of the covariance of the parameter estimates.

The variables in the data set are as follows:

- BY variables
- _NAME_, a character variable of length 32, blank for observations that contain parameter estimates or a parameter name for observations that contain covariances
- _TYPE_, a character variable of length 8 that identifies the estimation method: OLS, SUR, N2SLS, N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, ITGMM, or FIML
- _STATUS_, variable that gives the convergence status of estimation. _STATUS_ $=0$ when convergence criteria are met, $=1$ when estimation converges with a note, $=2$ when estimation converges with a warning, and $=3$ when estimation fails to converge
- _NUSED_, the number of observations used in estimation
- the parameters estimated

If the COVOUT option is specified, an additional observation is written for each row of the estimate of the covariance matrix of parameter estimates, with the _NAME_ values that contain the parameter names for the rows. Parameter names longer than 32 characters are truncated.

OUTPARMS= Data Set

The option OUTPARMS = writes all the parameter estimates to an output data set. This output data set contains one observation and is similar to the OUTEST = data set, but it contains all the parameters, is not associated with any FIT task, and contains no covariances. The OUTPARMS= option is used in the PROC MODEL statement, and the data set is written at the end, after any FIT or SOLVE steps have been performed.

OUTS= Data Set

The OUTS = SAS data set contains the estimate of the covariance matrix of the residuals across equations. This matrix is formed from the residuals that are computed by using the parameter estimates.

The variables in the OUTS= data set are as follows:

- BY variables
- _NAME_, a character variable that contains the name of the equation
- _TYPE_, a character variable of length 8 that identifies the estimation method: OLS, SUR, N2SLS, N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, ITGMM, or FIML
- variables with the names of the equations in the estimation

Each observation contains a row of the covariance matrix. The data set is suitable for use with the SDATA = option in a subsequent FIT or SOLVE statement. (See the section "Tests on Parameters" on page 1078 in this chapter for an example of the SDATA= option.)

OUTSUSED= Data Set

The OUTSUSED= SAS data set contains the covariance matrix of the residuals across equations that is used to define the objective function. The form of the OUTSUSED= data set is the same as that for the OUTS= data set.

Note that OUTSUSED= is the same as OUTS= for the estimation methods that iterate the \mathbf{S} matrix (ITOLS, IT2SLS, ITSUR, and IT3SLS). If the SDATA= option is specified in the FIT statement, OUTSUSED= is the same as the SDATA= matrix read in for the methods that do not iterate the \mathbf{S} matrix (OLS, SUR, N2SLS, and N3SLS).

OUTV= Data Set

The OUTV= data set contains the estimate of the variance matrix, \mathbf{V}. This matrix is formed from the instruments and the residuals that are computed by using the final parameter estimates obtained from the estimation method chosen.

An estimate of \mathbf{V} obtained from 2SLS is used in GMM estimation. Hence if you input the dataset obtained from the OUTV statement in 2SLS into the VDATA statement while fitting GMM, you get the same result by fitting GMM directly without specifying the VDATA option.

ODS Table Names

PROC MODEL assigns a name to each table it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 18.4 ODS Tables Produced in PROC MODEL

ODS Table Name	Description	Option		
ODS Tables Created by the FIT Statement				
AugGMMCovariance	Crossproducts matrix	GMM ITALL		
ChowTest	Structural change test	CHOW=		
CollinDiagnostics	Collinearity diagnostics	Profile likelihood confidence intervals ConfInterval ConvCrit		PRL=
:---				
Convergence criteria for estimation	\quad default			

Table 18.4 (continued)

ODS Table Name	Description	Option
ConvergenceStatus	Convergence status	default
CorrB	Correlations of parameters	COVB/CORRB
CorrResiduals	Correlations of residuals	CORRS/COVS
CovB	Covariance of parameters	COVB/CORRB
CovResiduals	Covariance of residuals	CORRS/COVS
Crossproducts	Crossproducts matrix	ITALL/ITPRINT
DatasetOptions	Data sets used	default
DetResidCov	Determinant of the residuals	DETAILS
DWTest	Durbin Watson test	DW=
Equations	Listing of equations to estimate	default
EstSummaryMiss	Model summary statistics for PAIRWISE	MISSING=
EstSummaryStats	Objective, objective * N	default
GMMCovariance	Crossproducts matrix	GMM DETAILS
Godfrey	Godfrey's serial correlation test	GF=
HausmanTest	Hausman's test table	HAUSMAN
HeteroTest	Heteroscedasticity test tables	BREUSCH/PAGEN
InvXPXMat	X'X inverse for system	I
IterInfo	Iteration printing	ITALL/ITPRINT
LagLength	Model lag length	default
MinSummary	Number of parameters, estimation kind	default
ModSummary	Listing of all categorized variables	default
ModVars	Listing of model variables and parameters	default
NormalityTest	Normality test table	NORMAL
ObsSummary	Identifies observations with errors	default
ObsUsed	Observations read, used, and missing.	default
ParameterEstimates	Parameter estimates	default
ParmChange	Parameter change vector	
ResidSummary	Summary of the SSE, MSE for the equations	default
SizeInfo	Storage requirement for estimation	DETAILS
TermEstimates	Nonlinear OLS and ITOLS Estimates	OLS/ITOLS
TestResults	Test statement table	
WgtVar	The name of the weight variable	
XPXMat	X'X for system	XPX

ODS Tables Created by the SOLVE Statement

DatasetOptions	Data sets used	default
DescriptiveStatistics	Descriptive statistics	STATS
FitStatistics	Fit statistics for simulation	STATS
LagLength	Model lag length	default
ModSummary	Listing of all categorized variables	default
ObsSummary	Simulation trace output	SOLVEPRINT
ObsUsed	Observations read, used, and missing.	default
SimulationSummary	Number of variables solved for	default
SolutionVarList	Solution variable lists	default

Table 18.4 (continued)

ODS Table Name	Description	Option
TheilRelStats	Theil relative change error statistics	THEIL
TheilStats	Theil forecast error statistics	THEIL
ErrorVec	Iteration Error vector	ITPRINT
ResidualValues	Iteration residual values	ITPRINT
PredictedValues	Iteration predicted values	ITPRINT
SolutionValues	Iteration solved for variable values	ITPRINT

ODS Tables Created by the FIT and SOLVE Statements

AdjacencyMatrix	Adjacency graph	GRAPH
BlockAnalysis	Block analysis	BLOCK
BlockStructure	Block structure	BLOCK
CodeDependency	Variable cross reference	LISTDEP
CodeList	Listing of programs statements	LISTCODE
CrossReference	Cross-reference listing for program	
DepStructure	Dependency structure of the system	BLOCK
FirstDerivatives	First derivative table	LISTDER
InterIntg	Integration iteration output	INTGPRINT
MemUsage	Memory usage statistics	MEMORYUSE
ParmReadIn	Parameter estimates read in	ESTDATA=
ProgList	Listing of compiled program code	
RangeInfo	RANGE statement specification	
SortAdjacencyMatrix	Sorted adjacency graph	GRAPH
TransitiveClosure	Transitive closure graph	GRAPH

The AugGMMCovariance table is the \mathbf{V} matrix augmented with the moment vector at iteration zero, produced when the ITALL option is used with the GMM option. If the \mathbf{V} matrix to be used in GMM is read in by the VDATA option, then AugGMMCovariance would be the same matrix augmented with the moment vectors. The GMMCovariance ODS output is produced only when you read in a covariance matrix to be used in the GMM method. This table is produced by using DETAILS option with the GMM option.

ODS Graphics

This section describes the use of ODS for creating graphics with the MODEL procedure.

ODS Graph Names

PROC MODEL assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when you use ODS. The names are listed in Table 18.5.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 18.5 ODS Graphics Produced by PROC MODEL

ODS Graph Name	Plot Description
ACFPlot	Autocorrelation of residuals
ActualByPredicted	Predicted versus actual plot
CooksD	Cook's D plot
IACFPlot	Inverse autocorrelation of residuals
QQPlot	Q-Q plot of residuals
PACFPlot	Partial autocorrelation of residuals
ResidualHistogram	Histogram of the residuals
StudentResidualPlot	Studentized residual plot

Details: Simulation by the MODEL Procedure

The solution, given the vector \mathbf{k}, of the following nonlinear system of equations is the vector \mathbf{u} that satisfies this equation:

$$
\mathbf{q}(\mathbf{u}, \mathbf{k}, \boldsymbol{\theta})=0
$$

A simulation is a set of solutions \mathbf{u}_{t} for a specific sequence of vectors \mathbf{k}_{t}.
Model simulation can be performed to do the following:

- check how well the model predicts the actual values over the historical period
- investigate the sensitivity of the solution to changes in the input values or parameters
- examine the dynamic characteristics of the model
- check the stability of the simultaneous solution
- estimate the statistical distribution of the predicted values of the nonlinear model using Monte Carlo methods

By combining the various solution modes with different input data sets, model simulation can answer many different questions about the model. This section presents details of model simulation and solution.

Solution Modes

The following solution modes are commonly used:

- The dynamic simultaneous forecast mode is used for forecasting with the model. Collect the historical data on the model variables, the future assumptions of the exogenous variables, and any prior information on the future endogenous values, and combine them in a SAS data set. Use the FORECAST option in the SOLVE statement.
- The dynamic simultaneous simulation mode is often called ex post simulation, historical simulation, or ex post forecasting. Use the DYNAMIC option. This mode is the default.
- The static simultaneous simulation mode can be used to examine the within-period performance of the model without the complications of previous period errors. Use the STATIC option.
- The NAHEAD=n dynamic simultaneous simulation mode can be used to see how well n -period-ahead forecasting would have performed over the historical period. Use the NAHEAD $=n$ option.

The different solution modes are explained in detail in the following sections.

Dynamic and Static Simulations

In model simulation, either solved values or actual values from the data set can be used to supply lagged values of an endogenous variable. A dynamic solution refers to a solution obtained by using only solved values for the lagged values. Dynamic mode is used both for forecasting and for simulating the dynamic properties of the model.

A static solution refers to a solution obtained by using the actual values when available for the lagged endogenous values. Static mode is used to simulate the behavior of the model without the complication of previous period errors. Dynamic simulation is the default.

If you want to use static values for lags only for the first n observations, and dynamic values thereafter, specify the $S T A R T=n$ option. For example, if you want a dynamic simulation to start after observation twenty-four, specify START $=24$ on the SOLVE statement. If the model being simulated had a value lagged for four time periods, then this value would start using dynamic values when the simulation reached observation number 28.

n-Period-Ahead Forecasting

Suppose you want to regularly forecast 12 months ahead and produce a new forecast each month as more data becomes available. n-period-ahead forecasting allows you to test how well you would have done over time if you had been using your model to forecast one year ahead.

To see how well a model predicts n time periods in the future, perform an n-period-ahead forecast on real data and compare the forecast values with the actual values.
n-period-ahead forecasting refers to using dynamic values for the lagged endogenous variables only for lags 1 through $n-1$. For example, one-period-ahead forecasting, specified by the NAHEAD=1 option in the SOLVE statement, is the same as if a static solution had been requested. Specifying NAHEAD=2 produces a solution that uses dynamic values for lag one and static, actual, values for longer lags.

The following example is a two-year-ahead dynamic simulation. The output is shown in Figure 18.68.

```
data yearly;
    input year x1 x2 x3 y1 y2 y3;
    datalines;
```



```
85 5 6 6 1 1 1 27 4
```



```
87 2 10 3 0 10 10
88 4 7 6 6 20 60 40
89 5 4 8 8 40 40 40
90 3 2 10 10 50 60 60
91 2 5 5 11 40 50 60
;
run;
proc model data=yearly outmodel=yearlyModel;
    endogenous y1 y2 y3;
    exogenous x1 x2 x3;
    y1 = 2 + 3*x1 - 2*x2 + 4*x3;
    y2 = 4 + lag2( y3 ) + 2*y1 + x1;
    y3 = lag3( y1 ) + y2 - x2;
    solve y1 y2 y3 / nahead=2 out=c;
run;
proc print data=c;
run;
```

Figure 18.68 NAHEAD Summary Report

The MODEL Procedure	
Dynamic Simultaneous	2-Periods-Ahead Forecasting Simulation
Data Set Options	
DATA= YEARLY	
OUT= \quad C	

Figure 18.68 continued

The C data set is shown in Figure 18.69:
Figure 18.69 C Data Set

Obs	_TYPE	_MODE_	_LAG_	_ERRORS_	y1	y^{2}	y^{3}	x1	x2	x3
1	PREDICT	SIMULATE	0	0	0	10	7	2	10	3
2	PREDICT	SIMULATE	1	0	24	58	52	4	7	6
3	PREDICT	SIMULATE	1	0	41	101	102	5	4	8
4	PREDICT	SIMULATE	1	0	47	141	139	3	2	10
5	PREDICT	SIMULATE	1	0	42	130	145	2	5	11

The preceding two-year-ahead simulation can be emulated without using the NAHEAD= option by the following PROC MODEL statements:

```
proc model data=yearly model=yearlyModel;
    range year = 87 to 88;
    solve y1 y2 y3 / dynamic solveprint;
run;
    range year = 88 to 89;
    solve y1 y2 y3 / dynamic solveprint;
run;
    range year = 89 to 90;
    solve y1 y2 y3 / dynamic solveprint;
run;
    range year = 90 to 91;
    solve y1 y2 y3 / dynamic solveprint;
```

The totals shown under "Observations Processed" in Figure 18.68 are equal to the sum of the four individual runs.

Simulation and Forecasting

You can perform a simulation of your model or use the model to produce forecasts. Simulation refers to the determination of the endogenous or dependent variables as a function of the input values of the other variables, even when actual data for some of the solution variables are available in the input data set. The simulation mode is useful for verifying the fit of the model parameters. Simulation is selected by the SIMULATE option in the SOLVE statement. Simulation mode is the default.

In forecast mode, PROC MODEL solves only for those endogenous variables that are missing in the data set. The actual value of an endogenous variable is used as the solution value whenever nonmissing data for it is available in the input data set. Forecasting is selected by the FORECAST option in the SOLVE statement.

For example, an econometric forecasting model can contain an equation to predict future tax rates, but tax rates are usually set in advance by law. Thus, for the first year or so of the forecast, the predicted tax rate should really be exogenous. Or, you might want to use a prior forecast of a certain variable from a short-run forecasting model to provide the predicted values for the earlier periods of a longer-range forecast of a long-run model. A common situation in forecasting is when historical data needed to fill the initial lags of a dynamic model are available for some of the variables but have not yet been obtained for others. In this case, the forecast must start in the past to supply the missing initial lags. Clearly, you should use the actual data that are available for the lags. In all the preceding cases, the forecast should be produced by running the model in the FORECAST mode; simulating the model over the future periods would not be appropriate.

Monte Carlo Simulation

The accuracy of the forecasts produced by PROC MODEL depends on four sources of error (Pindyck and Rubinfeld 1981, 405-406):

- The system of equations contains an implicit random error term ϵ

$$
\mathbf{g}(\mathbf{y}, \mathbf{x}, \hat{\boldsymbol{\theta}})=\boldsymbol{\epsilon}
$$

where $\mathbf{y}, \mathbf{x}, \mathbf{g}, \hat{\boldsymbol{\theta}}$, and $\boldsymbol{\epsilon}$ are vector valued.

- The estimated values of the parameters, $\hat{\boldsymbol{\theta}}$, are themselves random variables.
- The exogenous variables might have been forecast themselves and therefore might contain errors.
- The system of equations might be incorrectly specified; the model only approximates the process modeled.

The RANDOM = option is used to request Monte Carlo (or stochastic) simulations to generate confidence intervals for errors that arise from the first two sources. The Monte Carlo simulations can be performed with $\boldsymbol{\epsilon}, \boldsymbol{\theta}$, or both vectors represented as random variables. The SEED= option is used to control the random number generator for the simulations. SEED=0 forces the random number generator to use the system clock as its seed value.

In Monte Carlo simulations, repeated simulations are performed on the model for random perturbations of the parameters and the additive error term. The random perturbations follow a multivariate normal distribution with expected value of 0 and covariance described by a covariance matrix of the parameter estimates in the case of θ, or a covariance matrix of the equation residuals for the case of ϵ. PROC MODEL can generate both covariance matrices or you can provide them.

The ESTDATA= option specifies a data set that contains an estimate of the covariance matrix of the parameter estimates to use for computing perturbations of the parameters. The ESTDATA= data set is usually created by the FIT statement with the OUTEST= and OUTCOV options. When the ESTDATA= option is specified, the matrix read from the ESTDATA= data set is used to compute vectors of random shocks or perturbations for the parameters. These random perturbations are computed at the start of each repetition of the solution and added to the parameter values. The perturbed parameters are fixed throughout the solution range. If the covariance matrix of the parameter estimates is not provided, the parameters are not perturbed.

The SDATA= option specifies a data set that contains the covariance matrix of the residuals to use for computing perturbations of the equations. The SDATA= data set is usually created by the FIT statement with the OUTS= option. When SDATA= is specified, the matrix read from the SDATA= data set is used to compute vectors of random shocks or perturbations for the equations. These random perturbations are computed at each observation. The simultaneous solution satisfies the model equations plus the random shocks. That is, the solution is not a perturbation of a simultaneous solution of the structural equations; rather, it is a simultaneous solution of the stochastic equations by using the simulated errors. If the SDATA= option is not specified, the random shocks are not used.

The different random solutions are identified by the _REP_ variable in the OUT= data set. An unperturbed solution with _REP_=0 is also computed when the RANDOM= option is used. RANDOM $=n$ produces $n+1$ solution observations for each input observation in the solution range. If the RANDOM = option is not specified, the SDATA= and ESTDATA= options are ignored, and no Monte Carlo simulation is performed.

PROC MODEL does not have an automatic way of modeling the exogenous variables as random variables for Monte Carlo simulation. If the exogenous variables have been forecast, the error bounds for these variables should be included in the error bounds generated for the endogenous variables. If the models for the exogenous variables are included in PROC MODEL, then the error bounds created from a Monte Carlo simulation contain the uncertainty due to the exogenous variables.

Alternatively, if the distribution of the exogenous variables is known, the built-in random number generator functions can be used to perturb these variables appropriately for the Monte Carlo simulation. For example, if you know the forecast of an exogenous variable, X, has a standard error of 5.2 and the error is normally distributed, then the following statements can be used to generate random values for X :

```
x_new = x + 5.2 * rannor(456);
```

During a Monte Carlo simulation, the random number generator functions produce one value at each observation. It is important to use a different seed value for all the random number generator functions in the model program; otherwise, the perturbations will be correlated. For the unperturbed solution, _REP_=0, the random number generator functions return 0 .

PROC UNIVARIATE can be used to create confidence intervals for the simulation (see the Monte Carlo simulation example in the section "Getting Started: MODEL Procedure" on page 949).

Multivariate t Distribution Simulation

To perform a Monte Carlo analysis of models that have residuals distributed as a multivariate t, use the ERRORMODEL statement with either the $\sim \mathfrak{t}$ (variance, $d f$) option or with the $\mathrm{CDF}=\mathrm{t}$ (variance, $d f$) option. The $\mathrm{CDF}=$ option specifies the distribution that is used for simulation so that the estimation can be done for one set of distributional assumptions and the simulation for another.

The following is an example of estimating and simulating a system of equations with t distributed errors by using the ERRORMODEL statement.

```
/* generate simulation data set */
data five;
    set xfrate end=last;
    if last then do;
        todate = date +5;
        do date = date to todate;
                output;
        end;
    end;
run;
```

The preceding DATA step generates the data set to request a five-days-ahead forecast. The following statements estimate and forecast the three forward-rate models of the following form.

```
    \mp@subsup{rate}{t}{}=\mp@subsup{rate}{t-1}{}+\mu*\mp@subsup{\mathrm{ rate }}{t-1}{}+v
        v}=\sigma*\mp@subsup{rate }{t-1}{}*
        \epsilon~N(0,1)
title "Daily Multivariate Geometric Brownian Motion Model "
        "of D-Mark/USDollar Forward Rates";
proc model data=xfrate;
    parms df 15; /* Give initial value to df */
    demusd1m = lag(demusd1m) + mu1m * lag(demusd1m);
```

```
    var_demusd1m = sigma1m ** 2 * lag(demusd1m **2);
    demusd3m = lag(demusd3m) + mu3m * lag(demusd3m);
    var_demusd3m = sigma3m ** 2 * lag(demusd3m ** 2);
    demusd6m = lag(demusd6m) + mu6m * lag(demusd6m);
    var_demusd6m = sigma6m ** 2 * lag(demusd6m ** 2);
        /* Specify the error distribution */
        errormodel demusd1m demusd3m demusd6m
            ~ t( var_demusd1m var_demusd3m var_demusd6m, df );
        /* output normalized S matrix */
        fit demusd1m demusd3m demusd6m / outsn=s;
run;
            /* forecast five days in advance */
        solve demusd1m demusd3m demusd6m /
            data=five sdata=s random=1500 out=monte;
        id date;
run;
    /* select out the last date ---*/
data monte; set monte;
    if date = '10dec95'd then output;
run;
title "Distribution of demusd1m Five Days Ahead";
proc univariate data=monte noprint;
    var demusd1m;
    histogram demusd1m /
                normal (noprint color=red)
            kernel(noprint color=blue) cfill=ligr;
run;
```

The Monte Carlo simulation specified in the preceding example draws from a multivariate t distribution with constant degrees of freedom and forecasted variance, and it computes future states of DEMUSD1M, DEMUSD3M, and DEMUSD6M. The OUTSN= option in the FIT statement is used to specify the data set for the normalized $\boldsymbol{\Sigma}$ matrix. That is, the $\boldsymbol{\Sigma}$ matrix is created by crossing the normally distributed residuals. The normally distributed residuals are created from the t distributed residuals by using the normal inverse CDF and the $t \mathrm{CDF}$. This matrix is a correlation matrix.

The distribution of DEMUSD1M on the fifth day is shown in the Figure 18.70. The two curves overlaid on the graph are a kernel density estimation and a normal distribution fit to the results.

Figure 18.70 Distribution of DEMUSD1M

Alternate Distribution Simulation

As an alternate to the normal distribution, the ERRORMODEL statement can be used in a simulation to specify other distributions. The distributions available for simulation are Cauchy, chisquared, F, Poisson, t, and uniform. An empirical distribution can also be used if the residuals are specified by using the RESIDDATA= option in the SOLVE statement.

Except for the t distribution, all of these alternate distributions are univariate but can be used together in a multivariate simulation. The ERRORMODEL statement applies to solved for equations only. That is, the normal form or general form equation referred to by the ERRORMODEL statement must be one of the equations you have selected in the SOLVE statement.

In the following example, two Poisson distributed variables are used to simulate the calls that arrive at and leave a call center.

```
data s; /* Covariance between arriving and leaving */
    arriving = 1; leaving = 0.7; _name_= "arriving";
    output;
    arriving = 0.7; leaving = 1.0; _name_= "leaving";
```

output;
run;

```
data calls;
```

 date = '20mar2001'd;
 output;
 run;

The first DATA step generates a data set that contains a covariance matrix for the ARRIVING and LEAVING variables. The covariance is

$$
\begin{array}{cc}
1 & .7 \\
.7 & 1
\end{array}
$$

The following statements create the number of waiting clients data:

```
proc model data=calls;
    arriving = 0;
    errormodel arriving ~ poisson( 10 );
    leaving = 4;
    errormodel leaving ~ poisson( 11 );
    waiting = arriving - leaving;
    if waiting < O then waiting=0;
    outvars waiting;
    solve arriving leaving / random=500 sdata=s out=sim;
run;
title "Distribution of Clients Waiting";
proc univariate data=sim noprint;
    var waiting ;
    histogram waiting / cfill=ligr;
run;
```

The distribution of number of waiting clients is shown in Figure 18.71.

Figure 18.71 Distribution of Number of Clients Waiting

Mixtures of Distributions-Copulas

The theory of copulas is what enables the MODEL procedure to combine and simulate multivariate distributions with different marginals. This section provides a brief overview of copulas.

Modeling a system of variables accurately is a difficult task. The underlying, ideal, distributional assumptions for each variable are usually different from each other. An individual variable might be best modeled as a t distribution or as a Poisson process. The correlation of the various variables are very important to estimate as well. A joint estimation of a set of variables would make it possible to estimate a correlation structure but would restrict the modeling to single, simple multivariate distribution (for example, the normal). Even with a simple multivariate distribution, the joint estimation would be computationally difficult and would have to deal with issues of missing data.

By using the MODEL procedure ERRORMODEL statement, you can combine and simulate from models of different distributions. The covariance matrix for the combined model is constructed by using the copula induced by the multivariate normal distribution. A copula is a function that couples joint distributions to their marginal distributions.

By default, the copula used in the MODEL procedure is based on the multivariate normal. This
particular multivariate normal has zero mean and covariance matrix \mathbf{R}. The user provides \mathbf{R}, which can be created by using the following steps:

1. Each model is estimated separately and their residuals are saved.
2. The residuals for each model are converted to a normal distribution by using their CDFs, $F_{i}($.$) , using the relationship \Phi^{-1}\left(F\left(\epsilon_{i t}\right)\right)$.
3. These normal residuals are crossed to create a covariance matrix \mathbf{R}.

If the model of interest can be estimated jointly, such as multivariate T, then the OUTSN= option can be used to generate the correct covariance matrix.

A draw from this mixture of distributions is created by using the following steps that are performed automatically by the MODEL procedure.

1. Independent $N(0,1)$ variables are generated.
2. These variables are transformed to a correlated set by using the covariance matrix \mathbf{R}.
3. These correlated normals are transformed to a uniform by using $\Phi()$.
4. $F^{-1}()$ is used to compute the final sample value.

Alternate Copulas

The Gaussian, t, and the normal mixture copula are available in the MODEL procedure. These copulas support asymmetric parameters and can use alternate estimation methods for creating the base covariance matrix.

The normal (Gaussian) copula is the default. A draw from a Gaussian copula is obtained from

$$
\mathbf{x}=\mathbf{A} \mathbf{z}
$$

where $\mathbf{z} \in R^{d}$ is a vector of independent random normal(0,1$)$ draws, $\mathbf{A} \in R^{d \times d}$ is the square root of the covariance matrix, \mathbf{R}. For the normal mixture and t copula, a draw is created as

$$
\mathbf{x}=w \boldsymbol{\gamma}+\sqrt{w} \mathbf{A} \mathbf{z}
$$

where w is a scalar random variable and $\boldsymbol{\gamma} \in R^{d}$ is a vector of asymmetry parameters. $\boldsymbol{\gamma}$ is specified in the SDATA= data set. If $W \sim$ inverse $\operatorname{gamma}(d f / 2, d f / 2)$, then \mathbf{x} is multivariate t or skewed t if $\boldsymbol{\gamma}$ is provided. When NORMALMIX is specified, w is distributed as a step function with each of the n positive variances, $v_{1} \ldots v_{n}$, having probability $p_{1} \ldots p_{n}$.

The covariance matrix $\mathbf{R}=\mathbf{A}^{\prime} \mathbf{A}$ is specified with the SDATA= option. The vector of asymmetry parameters, $\boldsymbol{\gamma}$, defaults to zero or is specified in the SDATA= data set with _TYPE_=ASYM. The ASYM option specifies that the nonzero asymmetry vector, $\boldsymbol{\gamma}$, is to be used.

The actual draw for an individual variable, y_{i}, depends on the marginal distribution of the variable, \tilde{F}, and the chosen copula F as

$$
y_{i}=\tilde{F}_{i}^{-1}\left(F\left(x_{i}\right)\right)
$$

Asymmetrical Copula Example

In this example, an asymmetrical t copula is used to correlate two uniform distributions. The asymmetrical parameter is varied over a range of values to demonstrate its effect. The resulting graphs is produced by using ODS graphics.

```
data histdata;
    do asym = -1.3 to 1.1 by .3;
        date='01aug2007'd;
        y = .5;
        z = .5;
        output;
    end;
run ;
    /* Add the asymmetric parameter to cov mat */
data asym;
    do asym = -1.3 to 1.1 by . 3;
        y = asym;
        z = 0;
            _name_ = " ";
            _type_ = "asym";
            output;
            y = 1;
            z = .65;
            _name_ = "y";
            _type_ = "cov";
            output;
            y = . 65;
            z = 1;
            _name_ = "z";
            _type_ = "cov";
            output;
        end;
run;
```

proc model out=sim(where=(_REP_ > 0)) data=histdata sdata=asym;
$y=0 ;$
errormodel y ~ Uniform(0,1);
z = 0;
errormodel z ~ Uniform(0,1);
solve y z / random=500 seed=12345 copula=(t(5) asym);
by asym;
run;

To produce a panel plot of this joint distribution, use the following SAS/GRAPH statements.

```
ods graphics on / height=800 width=800;
proc template;
    define statgraph myplot.panel;
```

```
    BeginGraph;
    entrytitle halign=left halign=center
            textattrs=GRAPHTITLETEXT "t Copula with a Range of Asymmetry";
    layout datapanel classvars=(asym) / rows=3 columns=3
                order=rowmajor height=1024 width=1420
                rowaxisopts=(griddisplay=on label=' ')
                columnaxisopts=(griddisplay=on label=' ');
            layout prototype;
                    scatterplot x=z y=y ;
            endlayout;
        endlayout;
    EndGraph;
    end;
run;
proc sgrender data=sim template='myplot.panel';
run;
```

Figure $18.72 t$ Copula with Asymmetry

Quasi-Random Number Generators

Traditionally high-discrepancy pseudo-random number generators are used to generate innovations in Monte Carlo simulations. Loosely translated, a high-discrepancy pseudo-random number generator is one in which there is very little correlation between the current number generated and the past numbers generated. This property is ideal if indeed independence of the innovations is required. If, on the other hand, the efficient spanning of a multidimensional space is desired, a low discrepancy, quasi-random number generator can be used. A quasi-random number generator produces numbers that have no random component.

A simple one-dimensional quasi-random sequence is the van der Corput sequence. Given a prime number $\mathrm{r}(r \geq 2)$, any integer has a unique representation in terms of base r . A number in the interval $[0,1)$ can be created by inverting the representation base power by base power. For example, consider $\mathrm{r}=3$ and $\mathrm{n}=1,1$ in base 3 is

$$
1_{10}=1 \cdot 3^{0}=1_{3}
$$

When the powers of 3 are inverted,

$$
\phi(1)=\frac{1}{3}
$$

Also, 11 in base 3 is

$$
11_{10}=1 \cdot 3^{2}+2 \cdot 3^{0}=102_{3}
$$

When the powers of 3 are inverted,

$$
\phi(11)=\frac{1}{9}+2 \cdot \frac{1}{3}=\frac{7}{9}
$$

The first 10 numbers in this sequence $\phi(1) \ldots \phi(10)$ are provided below

$$
0, \frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{4}{9}, \frac{7}{9}, \frac{2}{9}, \frac{5}{9}, \frac{8}{9}, \frac{1}{27}
$$

As the sequence proceeds, it fills in the gaps in a uniform fashion.
Several authors have expanded this idea to many dimensions. Two versions supported by the MODEL procedure are the Sobol sequence (QUASI=SOBOL) and the Faure sequence (QUASI=FAURE). The Sobol sequence is based on binary numbers and is generally computationally faster than the Faure sequence. The Faure sequence uses the dimensionality of the problem to determine the number base to use to generate the sequence. The Faure sequence has better distributional properties than the Sobol sequence for dimensions greater than 8 .

As an example of the difference between a pseudo-random number and a quasi-random number, consider simulating a bivariate normal with 100 draws.

Figure 18.73 Kernel Density of a Bivariate Normal produced by 100 Faure-Random Draws

Figure 18.74 Kernel Density of a Bivariate Normal produced by 100 Pseudo-Random Draws

Solution Mode Output

The following SAS statements dynamically forecast the solution to a nonlinear equation:

```
proc model data=sashelp.citimon;
    parameters a 0.010708 b -0.478849 c 0.929304;
    lhur = 1/(a * ip) + b + c * lag(lhur);
    solve lhur / out=sim forecast dynamic;
run;
```

The first page of output produced by the SOLVE step is shown in Figure 18.75. This is the summary description of the model. The error message states that the simulation was aborted at observation 144 because of missing input values.

Figure 18.75 Solve Step Summary Output

The second page of output, shown in Figure 18.76, gives more information on the failed observation.
Figure 18.76 Solve Step Error Message

```
        The MODEL Procedure
                Dynamic Single-Equation Forecast
ERROR: Solution values are missing because of missing input values for
    observation 144 at NEWTON iteration 0.
NOTE: Additional information on the values of the variables at this
    observation, which may be helpful in determining the cause of the failure
    of the solution process, is printed below.
        Observation 144 Iteration 0 CC -1.000000
            Missing 1
Iteration Errors - Missing.
\begin{tabular}{|c|c|c|c|c|c|}
\hline N_: & 144 & ACTUAL. LHUR: & . & ERROR.LHUR: & \\
\hline IP : & - & LHUR: & 7.10000 & PRED.LHUR: & \\
\hline a: & 0.01071 & b : & -0.47885 & C: & 0.92930 \\
\hline
\end{tabular}
NOTE: Simulation aborted.
```

From the program data vector, you can see the variable IP is missing for observation 144. LHUR could not be computed, so the simulation aborted.

The solution summary table is shown in Figure 18.77.

Figure 18.77 Solution Summary Report

This solution summary table includes the names of the input data set and the output data set followed by a description of the model. The table also indicates that the solution method defaulted to Newton's method. The remaining output is defined as follows.
\(\left.$$
\begin{array}{ll}\text { Maximum CC } & \begin{array}{l}\text { is the maximum convergence value accepted by the Newton } \\
\text { procedure. This number is always less than the value } \\
\text { for the CONVERGE= option. }\end{array}
$$

Maximum Iterations

is the maximum number of Newton iterations performed

at each observation and each replication of Monte\end{array}\right\}\)| Carlo simulations. |
| :--- |
| is the sum of the number of iterations required for each |
| observation and each Monte Carlo simulation. |
| is the average number of Newton iterations required to |
| Total Iterationssolve the system at each step.
 is the number of observations used times the number of
 random replications selected plus one, for Monte Carlo
 simulations. The one additional simulation is the original
 unperturbed solution. For simulations that do not involve Monte |
| Carlo, this number is the number of observations used. |

Summary Statistics

The STATS and THEIL options are used to select goodness-of-fit statistics. Actual values must be provided in the input data set for these statistics to be printed. When the RANDOM= option is specified, the statistics do not include the unperturbed (_REP_=0) solution.

STATS Option Output

The following statements show the addition of the STATS and THEIL options to the model in the previous section:

```
proc model data=sashelp.citimon;
    parameters a 0.010708 b -0.478849 c 0.929304;
    lhur= 1/(a * ip) + b + c * lag(lhur) ;
    solve lhur / out=sim dynamic stats theil;
    range date to '01nov91'd;
run;
```

The STATS output in Figure 18.78 and the THEIL output in Figure 18.79 are generated.
Figure 18.78 STATS Output

The number of observations (Nobs), the number of observations with both predicted and actual values nonmissing (N), and the mean and standard deviation of the actual and predicted values of the determined variables are printed first. The next set of columns in the output are defined as
follows:

Mean Error	$\frac{1}{N} \sum_{j=1}^{N}\left(\hat{y}_{j}-y_{j}\right)$
Mean \% Error	$\frac{100}{N} \sum_{j=1}^{N}\left(\hat{y}_{j}-y_{j}\right) / y_{j}$
Mean Abs Error	$\frac{1}{N} \sum_{j=1}^{N}\left\|\hat{y}_{j}-y_{j}\right\|$
Mean Abs \% Error	$\frac{100}{N} \sum_{j=1}^{N}\left\|\left(\hat{y}_{j}-y_{j}\right) / y_{j}\right\|$
RMS Error	$\sqrt{\frac{1}{N} \sum_{j=1}^{N}\left(\hat{y}_{j}-y_{j}\right)^{2}}$
RMS \% Error	$100 \sqrt{\frac{1}{N} \sum_{j=1}^{N}\left(\left(\hat{y}_{j}-y_{j}\right) / y_{j}\right)^{2}}$
R-square	$1-S S E / C S S A$
SSE	$\sum_{j=1}^{N}\left(\hat{y}_{j}-y_{j}\right)^{2}$
SSA	$\sum_{j=1}^{N}\left(y_{j}\right)^{2}$
CSSA	$S S A-\left(\sum_{j=1}^{N} y_{j}\right)^{2}$
\hat{y}	predicted value
y	actual value

When the RANDOM= option is specified, the statistics do not include the unperturbed (_REP_=0) solution.

THEIL Option Output

The THEIL option specifies that Theil forecast error statistics be computed for the actual and predicted values and for the relative changes from lagged values. Mathematically, the quantities are

$$
\begin{aligned}
& \hat{y c}=(\hat{y}-\operatorname{lag}(y)) / \operatorname{lag}(y) \\
& y c=(y-\operatorname{lag}(y)) / \operatorname{lag}(y)
\end{aligned}
$$

where $\hat{y c}$ is the relative change for the predicted value and $y c$ is the relative change for the actual value.

Figure 18.79 THEIL Output

The columns have the following meaning:
Corr (R) is the correlation coefficient, ρ, between the actual and predicted values.

$$
\rho=\frac{\operatorname{cov}(y, \hat{y})}{\sigma_{a} \sigma_{p}}
$$

where σ_{p} and σ_{a} are the standard deviations of the predicted and actual values.
Bias (UM) is an indication of systematic error and measures the extent to which the average values of the actual and predicted deviate from each other.

$$
\frac{(\mathrm{E}(y)-\mathrm{E}(\hat{y}))^{2}}{\frac{1}{N} \sum_{t=1}^{N}\left(y_{t}-\hat{y}_{t}\right)^{2}}
$$

$\operatorname{Reg}(\mathrm{UR}) \quad$ is defined as $\left(\sigma_{p}-\rho * \sigma_{a}\right)^{2} / M S E$. Consider the regression

$$
y=\alpha+\beta \hat{y}
$$

If $\hat{\beta}=1$, UR will equal zero.

Dist (UD) is defined as $\left(1-\rho^{2}\right) \sigma_{a} \sigma_{a} / M S E$ and represents the variance of the residuals obtained by regressing $y c$ on $\hat{y c}$.
Var (US) is the variance proportion. US indicates the ability of the model to replicate the degree of variability in the endogenous variable.

$$
U S=\frac{\left(\sigma_{p}-\sigma_{a}\right)^{2}}{M S E}
$$

Covar (UC) represents the remaining error after deviations from average values and average variabilities have been accounted for.

$$
U C=\frac{2(1-\rho) \sigma_{p} \sigma_{a}}{M S E}
$$

U1
is a statistic that measures the accuracy of a forecast defined as follows:

$$
U I=\frac{\sqrt{M S E}}{\sqrt{\frac{1}{N} \sum_{t=1}^{N}\left(y_{t}\right)^{2}}}
$$

U
is the Theil's inequality coefficient defined as follows:

$$
U=\frac{\sqrt{M S E}}{\sqrt{\frac{1}{N} \sum_{t=1}^{N}\left(y_{t}\right)^{2}}+\sqrt{\frac{1}{N} \sum_{t=1}^{N}\left(\hat{y}_{t}\right)^{2}}}
$$

MSE
is the mean square error. In the case of the relative change Theil statistics, the MSE is computed as follows:

$$
M S E=\frac{1}{N} \sum_{t=1}^{N}\left(\hat{y} c_{t}-y c_{t}\right)^{2}
$$

More information about these statistics can be found in the references Maddala (1977, 344-347) and Pindyck and Rubinfeld (1981, 364-365).

Goal Seeking: Solving for Right-Hand-Side Variables

The process of computing input values that are needed to produce target results is often called goal seeking. To compute a goal-seeking solution, use a SOLVE statement that lists the variables you want to solve for and provide a data set that contains values for the remaining variables.

Consider the following demand model for packaged rice

$$
\text { quantity demanded }=\alpha_{1}+\alpha_{2} \text { price }^{2 / 3}+\alpha_{3} \text { income }
$$

where price is the price of the package and income is disposable personal income. The only variable the company has control over is the price it charges for rice. This model is estimated by using the following simulated data and PROC MODEL statements:

```
data demand;
    do t=1 to 40;
        price = (rannor(10) +5) * 10;
        income = 8000 * t ** (1/8);
        demand = 7200 - 1054 * price ** (2/3) +
                7 * income + 100 * rannor(1);
        output;
    end;
run;
data goal;
    demand = 85000;
    income = 12686;
run;
```

The goal is to find the price the company would have to charge to meet a sales target of 85,000 units. To do this, a data set is created with a DEMAND variable set to 85000 and with an INCOME variable set to 12686 , the last income value.

The desired price is then determined by using the following PROC MODEL statements:

```
proc model data=demand
    outmodel=demandModel;
    demand = a1 - a2 * price ** (2/3) + a3 * income;
    fit demand / outest=demest;
    solve price / estdata=demest data=goal solveprint;
run;
```

The SOLVEPRINT option prints the solution values, number of iterations, and final residuals at each observation. The SOLVEPRINT output from this solve is shown in Figure 18.80.

Figure 18.80 Goal Seeking, SOLVEPRINT Output

The output indicates that it took six Newton iterations to determine the PRICE of 33.5902, which makes the DEMAND value within $16 \mathrm{E}-11$ of the goal of 85,000 units.

Consider a more ambitious goal of 100,000 units. The output shown in Figure 18.81 indicates that the sales target of 100,000 units is not attainable according to this model.

```
data goal;
```

```
    demand = 100000;
    income = 12686;
run;
proc model model=demandModel;
    solve price / estdata=demest data=goal solveprint;
run;
```

Figure 18.81 Goal Seeking, Convergence Failure

The program data vector with the error note indicates that even after 10 subiterations, the norm of the residuals could not be reduced. The sales target of 100,000 units are unattainable with the given model. You might need to reformulate your model or collect more data to more accurately reflect the market response.

Numerical Solution Methods

If the SINGLE option is not used, PROC MODEL computes values that simultaneously satisfy the model equations for the variables named in the SOLVE statement. PROC MODEL provides three iterative methods, Newton, Jacobi, and Seidel, for computing a simultaneous solution of the system of nonlinear equations.

Single-Equation Solution

For normalized form equation systems, the solution either can simultaneously satisfy all the equations or can be computed for each equation separately, by using the actual values of the solution variables in the current period to compute each predicted value. By default, PROC MODEL com-
putes a simultaneous solution. The SINGLE option in the SOLVE statement selects single-equation solutions.

Single-equation simulations are often made to produce residuals (which estimate the random terms of the stochastic equations) rather than the predicted values themselves. If the input data and range are the same as that used for parameter estimation, a static single-equation simulation reproduces the residuals of the estimation.

Newton's Method

The NEWTON option in the SOLVE statement requests Newton's method to simultaneously solve the equations for each observation. Newton's method is the default solution method. Newton's method is an iterative scheme that uses the derivatives of the equations with respect to the solution variables, \mathbf{J}, to compute a change vector as

$$
\Delta \mathbf{y}^{i}=\mathbf{J}^{-1} \mathbf{q}\left(\mathbf{y}^{i}, \mathbf{x}, \boldsymbol{\theta}\right)
$$

PROC MODEL builds and solves \mathbf{J} by using efficient sparse matrix techniques. The solution variables \boldsymbol{y}^{i} at the i th iteration are then updated as

$$
\mathbf{y}^{i+1}=\mathbf{y}^{i}+d \times \Delta \mathbf{y}^{i}
$$

where d is a damping factor between 0 and 1 chosen iteratively so that

$$
\left\|\mathbf{q}\left(\mathbf{y}^{i+1}, \mathbf{x}, \boldsymbol{\theta}\right)\right\|<\left\|\mathbf{q}\left(\mathbf{y}^{i}, \mathbf{x}, \boldsymbol{\theta}\right)\right\|
$$

The number of subiterations allowed for finding a suitable d is controlled by the MAXSUBITER= option. The number of iterations of Newton's method allowed for each observation is controlled by MAXITER= option. See Ortega and Rheinbolt (1970) for more details.

Jacobi Method

The JACOBI option in the SOLVE statement selects a matrix-free alternative to Newton's method. This method is the traditional nonlinear Jacobi method found in the literature. The Jacobi method as implemented in PROC MODEL substitutes predicted values for the endogenous variables and iterates until a fixed point is reached. Then necessary derivatives are computed only for the diagonal elements of the jacobian, \mathbf{J}.

If the normalized form equation is

$$
\mathbf{y}=\mathbf{f}(\mathbf{y}, \mathbf{x}, \boldsymbol{\theta})
$$

the Jacobi iteration has the form

$$
\mathbf{y}^{i+1}=\mathbf{f}\left(\mathbf{y}^{i}, \mathbf{x}, \boldsymbol{\theta}\right)
$$

Seidel Method

The Seidel method is an order-dependent alternative to the Jacobi method. The Seidel method is selected by the SEIDEL option in the SOLVE statement. The Seidel method is like the Jacobi method except that in the Seidel method the model is further edited to substitute the predicted values into the solution variables immediately after they are computed. Seidel thus differs from the other methods in that the values of the solution variables are not fixed within an iteration. With the other methods, the order of the equations in the model program makes no difference, but the Seidel method might work much differently when the equations are specified in a different sequence. Note that this fixed point method is the traditional nonlinear Seidel method found in the literature.

The iteration has the form

$$
\mathbf{y}_{j}^{i+1}=\mathbf{f}\left(\hat{\mathbf{y}}^{i}, \mathbf{x}, \boldsymbol{\theta}\right)
$$

where \mathbf{y}_{j}^{i+1} is the j th equation variable at the i th iteration and

$$
\hat{\mathbf{y}}^{i}=\left(y_{1}^{i+1}, y_{2}^{i+1}, y_{3}^{i+1}, \ldots, y_{j-1}^{i+1}, y_{j}^{i}, y_{j+1}^{i}, \ldots, y_{g}^{i}\right)^{\prime}
$$

If the model is recursive, and if the equations are in recursive order, the Seidel method converges at once. If the model is block-recursive, the Seidel method might converge faster if the equations are grouped by block and the blocks are placed in block-recursive order. The BLOCK option can be used to determine the block-recursive form.

Jacobi and Seidel Methods with General Form Equations

Jacobi and Seidel solution methods support general form equations.
There are two cases where derivatives are (automatically) computed. The first case is for equations with the solution variable on the right-hand side and on the left-hand side of the equation

$$
y^{i}=f\left(\mathbf{x}, y^{i}\right)
$$

In this case the derivative of ERROR. y with respect to y is computed, and the new y approximation is computed as

$$
y^{i+1}=y^{i}-\frac{f\left(\mathbf{x}, y^{i}\right)-y^{i}}{\partial\left(f\left(\mathbf{x}, y^{i}\right)-y^{i}\right) / \partial y}
$$

The second case is a system of equations that contains one or more EQ.var equations. In this case, a heuristic algorithm is used to make the assignment of a unique solution variable to each general form equation. Use the DETAILS option in the SOLVE statement to print a listing of the assigned variables.

Once the assignment is made, the new y approximation is computed as

$$
y^{i+1}=y^{i}-\frac{f\left(\mathbf{x}, \mathbf{y}^{i}\right)-y^{i}}{\partial\left(f\left(\mathbf{x}, \mathbf{y}^{i}\right)-y^{i}\right) / \partial y}
$$

If k is the number of general form equations, then k derivatives are required.
The convergence properties of the Jacobi and Seidel solution methods remain significantly poorer than the default Newton's method.

Comparison of Methods

Newton's method is the default and should work better than the others for most small- to mediumsized models. The Seidel method is always faster than the Jacobi for recursive models with equations in recursive order. For very large models and some highly nonlinear smaller models, the Jacobi or Seidel methods can sometimes be faster. Newton's method uses more memory than the Jacobi or Seidel methods.

Both the Newton's method and the Jacobi method are order-invariant in the sense that the order in which equations are specified in the model program has no effect on the operation of the iterative solution process. In order-invariant methods, the values of the solution variables are fixed for the entire execution of the model program. Assignments to model variables are automatically changed to assignments to corresponding equation variables. Only after the model program has completed execution are the results used to compute the new solution values for the next iteration.

Troubleshooting Problems

In solving a simultaneous nonlinear dynamic model you might encounter some of the following problems.

Missing Values

For SOLVE tasks, there can be no missing parameter values. Missing right-hand-side variables result in missing left-hand-side variables for that observation.

Unstable Solutions

A solution might exist but be unstable. An unstable system can cause the Jacobi and Seidel methods to diverge.

Explosive Dynamic Systems

A model might have well-behaved solutions at each observation but be dynamically unstable. The solution might oscillate wildly or grow rapidly with time.

Propagation of Errors

During the solution process, solution variables can take on values that cause computational errors. For example, a solution variable that appears in a LOG function might be positive at the solution but might be given a negative value during one of the iterations. When computational errors occur, missing values are generated and propagated, and the solution process might collapse.

Convergence Problems

The following items can cause convergence problems:

- There are illegal function values (for example $\sqrt{-1}$).
- There are local minima in the model equation.
- No solution exists.
- Multiple solutions exist.
- Initial values are too far from the solution.
- The CONVERGE= value is too small.

When PROC MODEL fails to find a solution to the system, the current iteration information and the program data vector are printed. The simulation halts if actual values are not available for the simulation to proceed. Consider the following program, which produces the output shown in Figure 18.82:

```
data test1;
    do t=1 to 50;
        x1 = sqrt(t) ;
        y = .;
        output;
    end;
proc model data=test1;
    exogenous x1 ;
    control a1 -1 b1 -29 c1 -4 ;
    y = a1 * sqrt(y) + b1 * x1 * x1 + c1 * lag(x1);
    solve y / out=sim forecast dynamic ;
run;
```

Figure 18.82 SOLVE Convergence Problems

```
                                    The MODEL Procedure
                                    Dynamic Single-Equation Forecast
ERROR: Could not reduce norm of residuals in 10 subiterations.
ERROR: The solution failed because 1 equations are missing or have extreme
    values for observation 1 at NEWTON iteration 1.
NOTE: Additional information on the values of the variables at this
    observation, which may be helpful in determining the cause of the failure
    of the solution process, is printed below.
        Observation 1 Iteration 1 CC -1.000000
        Missing 1
Iteration Errors - Missing.
```

Figure 18.82 continued

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline _N_: & 12 & ACTUAL. \(\times 1\) : & 1.41421 & ACTUAL. y : & \\
\hline ERROR. y : & - & PRED. Y : & . & a1: & -1 \\
\hline b1: & -29 & c1: & -4 & x1: & 1.41421 \\
\hline y : & -0.00109 & & & & \\
\hline @PRED.y/@y: & & @ERROR.Y/@ & & & \\
\hline
\end{tabular}
NOTE: Check for missing input data or uninitialized lags.
(Note that the LAG and DIF functions return missing values for the initial lag starting observations. This is a change from the 1982 and earlier versions of SAS/ETS which returned zero for uninitialized lags.)
NOTE: Simulation aborted.
```

At the first observation, a solution to the following equation is attempted:

$$
y=-\sqrt{y}-62
$$

There is no solution to this problem. The iterative solution process got as close as it could to making Y negative while still being able to evaluate the model. This problem can be avoided in this case by altering the equation.

In other models, the problem of missing values can be avoided by either altering the data set to provide better starting values for the solution variables or by altering the equations.

You should be aware that, in general, a nonlinear system can have any number of solutions and the solution found might not be the one that you want. When multiple solutions exist, the solution that is found is usually determined by the starting values for the iterations. If the value from the input data set for a solution variable is missing, the starting value for it is taken from the solution of the last period (if nonmissing) or else the solution estimate is started at 0 .

Iteration Output

The iteration output, produced by the ITPRINT option, is useful in determining the cause of a convergence problem. The ITPRINT option forces the printing of the solution approximation and equation errors at each iteration for each observation. A portion of the ITPRINT output from the following statements is shown in Figure 18.83.

```
proc model data=test1;
    exogenous x1 ;
    control a1 -1 b1 -29 c1 -4 ;
    y = a1 * sqrt(abs(y)) + b1 * x1 * x1 + c1 * lag(x1);
    solve y / out=sim forecast dynamic itprint;
run;
```

For each iteration, the equation with the largest error is listed in parentheses after the Newton convergence criteria measure. From this output you can determine which equation or equations in the system are not converging well.

Figure 18.83 SOLVE, ITPRINT Output

Numerical Integration

The differential equation system is numerically integrated to obtain a solution for the derivative variables at each data point. The integration is performed by evaluating the provided model at
multiple points between each data point. The integration method used is a variable order, variable step-size backward difference scheme; for more detailed information, see Aiken (1985) and Byrne and Hindmarsh (1975). The step size or time step is chosen to satisfy a local truncation error requirement. The term truncation error comes from the fact that the integration scheme uses a truncated series expansion of the integrated function to do the integration. Because the series is truncated, the integration scheme is within the truncation error of the true value.

To further improve the accuracy of the integration, the total integration time is broken up into small intervals (time steps or step sizes), and the integration scheme is applied to those intervals. The integration at each time step uses the values computed at the previous time step so that the truncation error tends to accumulate. It is usually not possible to estimate the global error with much precision. The best that can be done is to monitor and to control the local truncation error, which is the truncation error committed at each time step relative to

$$
d=\max _{0 \leq t \leq T}\left(\|y(t)\|_{\infty}, 1\right)
$$

where $y(t)$ is the integrated variable. Furthermore, the $y(t) \mathrm{s}$ are dynamically scaled to within two orders of magnitude one to keep the error monitoring well behaved.

The local truncation error requirement defaults to $1.0 \mathrm{E}-9$. You can specify the LTEBOUND= option to modify that requirement. The LTEBOUND= option is a relative measure of accuracy, so a value smaller than $1.0 \mathrm{E}-10$ is usually not practical. A larger bound increases the speed of the simulation and estimation but decreases the accuracy of the results. If the LTEBOUND= option is set too small, the integrator is not able to take time steps small enough to satisfy the local truncation error requirement and still have enough machine precision to compute the results. Since the integrations are scaled to within $1.0 \mathrm{E}-2$ of one, the simulated values should be correct to at least seven decimal places.

There is a default minimum time step of $1.0 \mathrm{E}-14$. This minimum time step is controlled by the MINTIMESTEP $=$ option and the machine epsilon. If the minimum time step is smaller than the machine epsilon times the final time value, the minimum time step is increased automatically.

For the points between each observation in the data set, the values for nonintegrated variables in the data set are obtained from a linear interpolation from the two closest points. Lagged variables can be used with integrations, but their values are discrete and are not interpolated between points. Lagging, therefore, can then be used to input step functions into the integration.

The derivatives necessary for estimation (the gradient with respect to the parameters) and goal seeking (the Jacobian) are computed by numerically integrating analytical derivatives. The accuracy of the derivatives is controlled by the same integration techniques mentioned previously.

Limitations

There are limitations to the types of differential equations that can be solved or estimated. One type is an explosive differential equation (finite escape velocity) for which the following differential equation is an example:

$$
y^{\prime}=a \times y, a>0
$$

If this differential equation is integrated too far in time, y exceeds the maximum value allowed on the computer, and the integration terminates.

Likewise, differential systems that are singular cannot be solved or estimated in general. For example, consider the following differential system:

$$
\begin{aligned}
x^{\prime} & =-y^{\prime}+2 x+4 y+\exp (t) \\
y^{\prime} & =-x^{\prime}+y+\exp (4 * t)
\end{aligned}
$$

This system has an analytical solution, but an accurate numerical solution is very difficult to obtain. The reason is that y^{\prime} and x^{\prime} cannot be isolated on the left-hand side of the equation. If the equation is modified slightly to

$$
\begin{aligned}
& x^{\prime}=-y^{\prime}+2 x+4 y+\exp (t) \\
& y^{\prime}=x^{\prime}+y+\exp (4 t)
\end{aligned}
$$

the system is nonsingular, but the integration process could still fail or be extremely slow. If the MODEL procedure encounters either system, a warning message is issued.

This system can be rewritten as the following recursive system, which can be estimated and simulated successfully with the MODEL procedure:

$$
\begin{aligned}
& x^{\prime}=0.5 y+0.5 \exp (4 t)+x+1.5 y-0.5 \exp (t) \\
& y^{\prime}=x^{\prime}+y+\exp (4 t)
\end{aligned}
$$

Petzold (1982) mentions a class of differential algebraic equations that, when integrated numerically, could produce incorrect or misleading results. An example of such a system is

$$
\begin{aligned}
y_{2}^{\prime}(t) & =y_{1}(t)+g_{1}(t) \\
0 & =y_{2}(t)+g_{2}(t)
\end{aligned}
$$

The analytical solution to this system depends on g and its derivatives at the current time only and not on its initial value or past history. You should avoid systems of this and other similar forms mentioned in Petzold (1982).

SOLVE Data Sets

SDATA= Input Data Set

The SDATA= option reads a cross-equation covariance matrix from a data set. The covariance matrix read from the SDATA= data set specified in the SOLVE statement is used to generate random equation errors when the RANDOM= option specifies Monte Carlo simulation.

Typically, the SDATA= data set is created by the OUTS= option in a previous FIT statement. (The OUTS = data set from a FIT statement can be read back in by a SOLVE statement in the same PROC MODEL step.)

You can create an input SDATA= data set by using the DATA step. PROC MODEL expects to find a character variable _NAME_ in the SDATA= data set as well as variables for the equations in the estimation or solution. For each observation with a _NAME_ value that matches the name of an equation, PROC MODEL fills the corresponding row of the \mathbf{S} matrix with the values of the names of equations found in the data set. If a row or column is omitted from the data set, an identity matrix row or column is assumed. Missing values are ignored. Since the \mathbf{S} matrix is symmetric, you can include only a triangular part of the \mathbf{S} matrix in the SDATA= data set with the omitted part indicated by missing values. If the SDATA= data set contains multiple observations with the same _NAME_, the last values supplied for the _NAME_ variable are used. The section "OUTS= Data Set" on page 1112 contains more details on the format of this data set.

Use the TYPE= option to specify the type of estimation method used to produce the \mathbf{S} matrix you want to input.

ESTDATA= Input Data Set

The ESTDATA= option specifies an input data set that contains an observation with values for some or all of the model parameters. It can also contain observations with the rows of a covariance matrix for the parameters.

When the ESTDATA= option is used, parameter values are set from the first observation. If the RANDOM $=$ option is used and the ESTDATA= data set contains a covariance matrix, the covariance matrix of the parameter estimates is read and used to generate pseudo-random shocks to the model parameters for Monte Carlo simulation. These random perturbations have a multivariate normal distribution with the covariance matrix read from the ESTDATA= data set.

The ESTDATA= data set is usually created by the OUTEST= option in a FIT statement. The OUTEST= data set contains the parameter estimates produced by the FIT statement and also contains the estimated covariance of the parameter estimates if the OUTCOV option is used. This OUTEST= data set can be read in by the ESTDATA= option in a SOLVE statement.

You can also create an ESTDATA= data set with a SAS DATA step program. The data set must contain a numeric variable for each parameter to be given a value or covariance column. The name of the variable in the ESTDATA= data set must match the name of the parameter in the model. Parameters with names longer than 32 characters cannot be set from an ESTDATA= data set. The data set must also contain a character variable _NAME_ of length 32. _NAME_ has a blank value for the observation that gives values to the parameters. _NAME_ contains the name of a parameter for observations that define rows of the covariance matrix.

More than one set of parameter estimates and covariances can be stored in the ESTDATA= data set if the observations for the different estimates are identified by the variable _TYPE_. _TYPE_ must be a character variable of length eight. The TYPE= option is used to select for input the part of the ESTDATA= data set for which the value of the _TYPE_ variable matches the value of the TYPE= option.

OUT= Data Set

The OUT= data set contains solution values, residual values, and actual values of the solution variables.

The OUT= data set contains the following variables:

- BY variables
- RANGE variable
- ID variables
- _TYPE_, a character variable of length eight that identifies the type of observation. The _TYPE_ variable can be PREDICT, RESIDUAL, ACTUAL, or ERROR.
- _MODE_, a character variable of length eight that identifies the solution mode. _MODE_ takes the value FORECAST or SIMULATE.
- if lags are used, a numeric variable, _LAG_, that contains the number of dynamic lags that contribute to the solution. The value of _LAG_ is always zero for STATIC mode solutions. _LAG_ is set to a missing value for lag-starting observations.
- if the RANDOM= option is used, _REP_, a numeric variable that contains the replication number. For example, if RANDOM=10, each input observation results in eleven output observations with _REP_ values 0 through 10. The observations with _REP_=0 are from the unperturbed solution. (The random-number generator functions are suppressed, and the parameter and endogenous perturbations are zero when $_$REP $=0$.)
- _ERRORS_, a numeric variable that contains the number of errors that occurred during the execution of the program for the last iteration for the observation. If the solution failed to converge, this is counted as one error, and the _ERRORS_ variable is made negative.
- solution and other variables. The solution variables contain solution or predicted values for _TYPE_=PREDICT observations, residuals for _TYPE_=RESIDUAL observations, or actual values for _TYPE_=ACTUAL observations. The other model variables, and any other variables read from the input data set, are always actual values from the input data set.
- any other variables named in the OUTVARS statement. These can be program variables computed by the model program, CONTROL variables, parameters, or special variables in the model program. Compound variable names longer than 32 characters are truncated in the OUT= data set.

By default, only the predicted values are written to the OUT= data set. The OUTRESID, OUTACTUAL, and OUTERROR options are used to add the residual, actual, and ERROR. values, respectively, to the data set.

For examples of the OUT= data set, see Example 18.6.

DATA= Input Data Set

The input data set should contain all of the exogenous variables and should supply nonmissing values for them for each period to be solved.

Solution variables can be supplied in the input data set and are used as follows:

- to supply initial lags. For example, if the lag length of the model is three, three observations are read in to feed the lags before any solutions are computed.
- to evaluate the goodness of fit. Goodness-of-fit measures are computed based on the difference between the solved values and the actual values supplied from the data set.
- to supply starting values for the iterative solution. If the value from the input data set for a solution variable is missing, the starting value for it is taken from the solution of the last period (if nonmissing) or else the solution estimate is started at zero.
- for STATIC mode solutions, actual values from the data set are used by the lagging functions for the solution variables.
- for FORECAST mode solutions, actual values from the data set are used as the solution values when nonmissing.

Programming Language Overview: MODEL Procedure

Variables in the Model Program

Variable names are alphanumeric but must start with a letter. The length is limited to 32 characters.
PROC MODEL uses several classes of variables, and different variable classes are treated differently. The variable class is controlled by declaration statements: the VAR, ENDOGENOUS, and EXOGENOUS statements for model variables, the PARAMETERS statement for parameters, and the CONTROL statement for control class variables. These declaration statements have several valid abbreviations. Various internal variables are also made available to the model program to allow communication between the model program and the procedure. RANGE, ID, and BY variables are also available to the model program. Those variables not declared as any of the preceding classes are program variables.

Some classes of variables can be lagged; that is, their value at each observation is remembered, and previous values can be referred to by the lagging functions. Other classes have only a single value and are not affected by lagging functions. For example, parameters have only one value and are not affected by lagging functions; therefore, if P is a parameter, DIFn (P) is always 0 , and LAGn (P) is always the same as P for all values of n.

The different variable classes and their roles in the model are described in the following.

Model Variables

Model variables are declared by VAR, ENDOGENOUS, or EXOGENOUS statements, or by FIT and SOLVE statements. The model variables are the variables that the model is intended to explain or predict.

PROC MODEL enables you to use expressions on the left-hand side of the equal sign to define model equations. For example, a log-linear model for Y can be written as

```
log( y ) = a + b * x;
```

Previously, only a variable name was allowed on the left-hand side of the equal sign.
The text on the left-hand side of the equation serves as the equation name used to identify the equation in printed output, in the OUT= data sets, and in FIT or SOLVE statements. To refer to equations specified by using left-hand side expressions (in the FIT statement, for example), place the left-hand side expression in quotes. For example, the following statements fit a log-linear model to the dependent variable Y :

```
proc model data=in;
    log( y ) = a + b * x;
    fit "log(y)";
run;
```

The estimation and simulation is performed by transforming the models into general form equations. No actual or predicted value is available for general form equations, so no R^{2} or adjusted R^{2} is computed.

Equation Variables

An equation variable is one of several special variables used by PROC MODEL to control the evaluation of model equations. An equation variable name consists of one of the prefixes EQ , RESID, ERROR, PRED, or ACTUAL, followed by a period and the name of a model equation.

Equation variable names can appear in parts of the PROC MODEL printed output, and they can be used in the model program. For example, RESID-prefixed variables can be used in LAG functions to define equations with moving-average error terms. See the section "Autoregressive MovingAverage Error Processes" on page 1088 for details.

The meaning of these prefixes is detailed in the section "Equation Translations" on page 1155.

Parameters

Parameters are variables that have the same value for each observation. Parameters can be given values or can be estimated by fitting the model to data. During the SOLVE stage, parameters are treated as constants. If no estimation is performed, the SOLVE stage uses the initial value provided
in the ESTDATA= data set, the MODEL= file, or in the PARAMETER statement, as the value of the parameter.

The PARAMETERS statement declares the parameters of the model. Parameters are not lagged, and they cannot be changed by the model program.

Control Variables

Control variables supply constant values to the model program that can be used to control the model in various ways. The CONTROL statement declares control variables and specifies their values. A control variable is like a parameter except that it has a fixed value and is not estimated from the data.

Control variables are not reinitialized before each pass through the data and can thus be used to retain values between passes. You can use control variables to vary the program logic. Control variables are not affected by lagging functions.

For example, if you have two versions of an equation for a variable Y , you could put both versions in the model and, by using a CONTROL statement to select one of them, produce two different solutions to explore the effect the choice of equation has on the model, as shown in the following statements:

```
select (case);
    when (1) y = ...first version of equation... ;
    when (2) y = ...second version of equation... ;
end;
control case 1;
solve / out=case1;
run;
control case 2;
solve / out=case2;
run;
```


RANGE, ID, and BY Variables

The RANGE statement controls the range of observations in the input data set that is processed by PROC MODEL. The ID statement lists variables in the input data set that are used to identify observations in the printout and in the output data set. The BY statement can be used to make PROC MODEL perform a separate analysis for each BY group. The variable in the RANGE statement, the ID variables, and the BY variables are available for the model program to examine, but their values should not be changed by the program. The BY variables are not affected by lagging functions.

Internal Variables

You can use several internal variables in the model program to communicate with the procedure. For example, if you want PROC MODEL to list the values of all the variables when more than 10
iterations are performed and the procedure is past the 20th observation, you can write

```
if _obs_ > 20 then if _iter_ > 10 then _list_ = 1;
```

Internal variables are not affected by lagging functions, and they cannot be changed by the model program except as noted. The following internal variables are available. The variables are all numeric except where noted.
ERRORS is a flag that is set to 0 at the start of program execution and is set to a nonzero value whenever an error occurs. The program can also set the _ERRORS_ variable.
ITER is the iteration number. For FIT tasks, the value of _ITER_ is negative for preliminary grid-search passes. The iterative phase of the estimation starts with iteration 0 . After the estimates have converged, a final pass is made to collect statistics with _ITER_ set to a missing value. Note that at least one pass, and perhaps several subiteration passes as well, is made for each iteration. For SOLVE tasks, _ITER_ counts the iterations used to compute the simultaneous solution of the system.
LAG is the number of dynamic lags that contribute to the solution at the current observation. _LAG_ is always 0 for FIT tasks and for STATIC solutions. _LAG_ is set to a missing value during the lag starting phase.
LIST is a list flag that is set to 0 at the start of program execution. The program can set _LIST_ to a nonzero value to request a listing of the values of all the variables in the program after the program has finished executing.
METHOD is the solution method in use for SOLVE tasks. _METHOD_ is set to a blank value for FIT tasks. _METHOD_ is a character-valued variable. Values are NEWTON, JACOBI, SIEDEL, or ONEPASS.
MODE takes the value ESTIMATE for FIT tasks and the value SIMULATE or FORECAST for SOLVE tasks. _MODE_ is a character-valued variable.
NMISS is the number of missing or otherwise unusable observations during the model estimation. For FIT tasks, _NMISS_ is initially set to 0 ; at the start of each iteration, _NMISS_ is set to the number of unusable observations for the previous iteration. For SOLVE tasks, _NMISS_ is set to a missing value.
NUSED is the number of nonmissing observations used in the estimation. For FIT tasks, PROC MODEL initially sets _NUSED_ to the number of parameters; at the start of each iteration, _NUSED_ is reset to the number of observations used in the previous iteration. For SOLVE tasks, _NUSED_ is set to a missing value.
counts the observations being processed. _OBS_ is negative or 0 for observations in the lag starting phase.
is the replication number for Monte Carlo simulation when the RANDOM= option is specified in the SOLVE statement. _REP_ is 0 when the RANDOM= option is not used and for FIT tasks. When _REP_=0, the random-number generator functions always return 0 .
WEIGHT is the weight of the observation. For FIT tasks, _WEIGHT_ provides a weight for the observation in the estimation. _WEIGHT_is initialized to 1.0 at the start of execution for FIT tasks. For SOLVE tasks, _WEIGHT_ is ignored.

Program Variables

Variables not in any of the other classes are called program variables. Program variables are used to hold intermediate results of calculations. Program variables are reinitialized to missing values before each observation is processed. Program variables can be lagged. The RETAIN statement can be used to give program variables initial values and enable them to keep their values between observations.

Character Variables

PROC MODEL supports both numeric and character variables. Character variables are not involved in the model specification but can be used to label observations, to write debugging messages, or for documentation purposes. All variables are numeric unless they are the following.

- character variables in a DATA= SAS data set
- program variables assigned a character value
- declared to be character by a LENGTH or ATTRIB statement

Equation Translations

Equations written in normalized form are always automatically converted to general form equations. For example, when a normalized form equation such as

```
y = a + b*x;
```

is encountered, it is translated into the equations

```
PRED.y = a + b*x;
RESID.y = PRED.y - ACTUAL.y;
ERROR.y = PRED.y - y;
```

If the same system is expressed as the following general form equation, then this equation is used unchanged.

```
EQ.y = y - a + b*x;
```

This makes it easy to solve for arbitrary variables and to modify the error terms for autoregressive or moving average models.

Use the LIST option to see how this transformation is performed. For example, the following statements produce the listing shown in Figure 18.84.

```
proc model data=line list;
    y = a1 + b1*x1 + c1*x2;
    fit y;
run;
```

Figure 18.84 LIST Output

PRED. Y is the predicted value of Y, and ACTUAL. Y is the value of Y in the data set. The predicted value minus the actual value, RESID. Y, is then the error term, ϵ, for the original Y equation. Note that the residuals obtained from the OUTRESID option in the OUT=dataset for both the FIT and SOLVE statements are defined as actual - predicted, the negative of RESID.Y. See the section "Syntax: MODEL Procedure" on page 962 for details. ACTUAL.Y and Y have the same value for parameter estimation. For solve tasks, ACTUAL. Y is still the value of Y in the data set but Y becomes the solved value; the value that satisfies PRED. $\mathrm{Y}-\mathrm{Y}=0$.

The following are the equation variable definitions.
EQ. The value of an EQ.-prefixed equation variable (normally used to define a general form equation) represents the failure of the equation to hold. When the $\mathrm{EQ} . n a m e$ variable is 0 , the name equation is satisfied.
RESID. The RESID.name variables represent the stochastic parts of the equations and are used to define the objective function for the estimation process. A RESID.prefixed equation variable is like an EQ.-prefixed variable but makes it possible to use or transform the stochastic part of the equation. The RESID. equation is used in place of the ERROR. equation for model solutions if it has been reassigned or used in the equation.
ERROR. An ERROR.name variable is like an EQ.-prefixed variable, except that it is used only for model solution and does not affect parameter estimation.
PRED. For a normalized form equation (specified by assignment to a model variable), the PRED.name equation variable holds the predicted value, where name is the name of both the model variable and the corresponding equation. (PRED.prefixed variables are not created for general form equations.)

ACTUAL. For a normalized form equation (specified by assignment to a model variable), the ACTUAL.name equation variable holds the value of the name model variable read from the input data set.

DERT. The DERT.name variable defines a differential equation. Once defined, it might be used on the right-hand side of another equation.
H. The H.name variable specifies the functional form for the variance of the named equation.
GMM_H. This is created for H.vars and is the moment equation for the variance for GMM. This variable is used only for GMM.

```
GMM_H.name = RESID.name**2 - H.name;
```

MSE. The MSE. y variable contains the value of the mean squared error for y at each iteration. An MSE. variable is created for each dependent/endogenous variable in the model. These variables can be used to specify the missing lagged values in the estimation and simulation of GARCH type models.

```
demret = intercept ;
h.demret = arch0 +
    arch1 * xlag( resid.demret ** 2, mse.demret) +
    garch1 * xlag(h.demret, mse.demret) ;
```

NRESID. This is created for H.vars and is the normalized residual of the variable <name $>$. The formula is

```
NRESID.name = RESID.name/ sqrt(H.name);
```

The three equation variable prefixes, RESID., ERROR., and EQ. allow for control over the objective function for the FIT, the SOLVE, or both the FIT and the SOLVE stages. For FIT tasks, PROC MODEL looks first for a RESID.name variable for each equation. If defined, the RESID.-prefixed equation variable is used to define the objective function for the parameter estimation process. Otherwise, PROC MODEL looks for an EQ.-prefixed variable for the equation and uses it instead.

For SOLVE tasks, PROC MODEL looks first for an ERROR.name variable for each equation. If defined, the ERROR.-prefixed equation variable is used for the solution process. Otherwise, PROC MODEL looks for an EQ.-prefixed variable for the equation and uses it instead. To solve the simultaneous equation system, PROC MODEL computes values of the solution variables (the model variables being solved for) that make all of the ERROR.name and EQ.name variables close to 0 .

Derivatives

Nonlinear modeling techniques require the calculation of derivatives of certain variables with respect to other variables. The MODEL procedure includes an analytic differentiator that determines the model derivatives and generates program code to compute these derivatives. When parameters are estimated, the MODEL procedure takes the derivatives of the equation with respect to the parameters. When the model is solved, Newton's method requires the derivatives of the equations with respect to the variables solved for.

PROC MODEL uses exact mathematical formulas for derivatives of non-user-defined functions. For other functions, numerical derivatives are computed and used.

The differentiator differentiates the entire model program, including the conditional logic and flow of control statements. Delayed definitions, as when the LAG of a program variable is referred to before the variable is assigned a value, are also differentiated correctly.

The differentiator includes optimization features that produce efficient code for the calculation of derivatives. However, when flow of control statements such as GOTO statements are used, the optimization process is impeded, and less efficient code for derivatives might be produced. Optimization is also reduced by conditional statements, iterative DO loops, and multiple assignments to the same variable.

The table of derivatives is printed with the LISTDER option. The code generated for the computation of the derivatives is printed with the LISTCODE option.

Derivative Variables

When the differentiator needs to generate code to evaluate the expression for the derivative of a variable, the result is stored in a special derivative variable. Derivative variables are not created when the derivative expression reduces to a previously computed result, a variable, or a constant. The names of derivative variables, which might sometimes appear in the printed output, have the form @obj /@wrt, where obj is the variable whose derivative is being taken and wrt is the variable that the differentiation is with respect to. For example, the derivative variable for the derivative of Y with respect to X is named @ $Y / @ X$.

The derivative variables can be accessed or used as part of the model program using the GETDER() function.
$\operatorname{GETDER}(x, a) \quad$ the derivative of x with respect to a.
$\operatorname{GETDER}(x, a, b)$ the second derivative of x with respect to a and b.
The main purpose of the $\operatorname{GETDER}()$ function is for surfacing the derivatives so they can be stored in a data set for further processing. Only derivatives that are implied by the problem are available to the $\operatorname{GETDER}()$ function. When derivatives are requested that aren't already created, a missing value will be returned. The derivative of the $\operatorname{GETDER}()$ function is always zero so the results of the GETDER() function shouldn't be used in any of the equations in the FIT or the SOLVE statement.

The following example adds the gradient of the PRED. y value with respect to the parameters to the OUT $=$ data set.

```
proc model data=line ;
    y = a1 + b1**2 *x1 + c1*x2;
    Dy_a1 = getder(PRED.y,a1);
    Dy_b1 = getder(PRED.y,b1);
    Dy_c1 = getder(PRED.y,c1);
    outvars Dy_a1 Dy_b1 Dy_c1;
    fit y / out=grad;
run;
```


Mathematical Functions

The following is a brief summary of SAS functions that are useful for defining models. Additional functions and details are in SAS Language: Reference. Information about creating new functions can be found in SAS/BASE Software: Procedure Reference, Chapter 18, "The FCMP Procedure."

$\operatorname{ABS}(x)$	the absolute value of x
$\operatorname{ARCOS}(x)$	the arccosine in radians of $x ; x$ should be between -1 and 1.
$\operatorname{ARSIN}(x)$	the arcsine in radians of $x ; x$ should be between -1 and 1.
$\operatorname{ATAN}(x)$	the arctangent in radians of x
$\operatorname{COS}(x)$	the cosine of $x ; x$ is in radians.
$\operatorname{COSH}(x)$	the hyperbolic cosine of x
$\operatorname{EXP}(x)$	e^{x}
$\operatorname{LOG}(x)$	the natural logarithm of x
$\operatorname{LOG10(x)}$	the log base ten of x
$\operatorname{LOG} 2(x)$	the log base two of x
$\operatorname{SIN}(x)$	the sine of $x ; x$ is in radians.
$\operatorname{SINH}(x)$	the hyperbolic sine of x
$\operatorname{SQRT}(x)$	the square root of x
$\operatorname{TAN}(x)$	the tangent of $x ; x$ is in radians and is not an odd multiple of $\pi / 2$.
$\operatorname{TANH}(x)$	the hyperbolic tangent of x

Random-Number Functions

The MODEL procedure provides several functions for generating random numbers for Monte Carlo simulation. These functions use the same generators as the corresponding SAS DATA step functions.

The following random number functions are supported: RANBIN, RANCAU, RAND, RANEXP, RANGAM, RANNOR, RANPOI, RANTBL, RANTRI, and RANUNI. For more information, refer to SAS Language: Reference.

Each reference to a random number function sets up a separate pseudo-random sequence. Note that this means that two calls to the same random function with the same seed produce identical results. This is different from the behavior of the random number functions used in the SAS DATA step. For example, the following statements produce identical values for X and Y , but Z is from an independent pseudo-random sequence:

```
x=rannor(123);
y=rannor(123);
z=rannor (567);
q=rand('BETA', 1, 12 );
```

For FIT tasks, all random number functions always return 0. For SOLVE tasks, when Monte Carlo simulation is requested, a random number function computes a new random number on the first iteration for an observation (if it is executed on that iteration) and returns that same value for all later iterations of that observation. When Monte Carlo simulation is not requested, random number functions always return 0 .

Functions across Time

PROC MODEL provides four types of special built-in functions that refer to the values of variables and expressions in previous time periods. These functions have the following forms where n represents the number of periods, x is any expression, and the argument i is a variable or expression that gives the lag length $(0<=i<=n)$. If the index value i is omitted, the maximum lag length n is used.

LAG $n(<i,>x)$ returns the i th lag of x, where n is the maximum lag;
$\operatorname{DIF} n(x) \quad$ is the difference of x at lag n
ZLAGn $(<i,>x)$ returns the i th lag of x, where n is the maximum lag, with missing lags replaced with zero

XLAG $n(x, y) \quad$ returns the nth lag of x if x is nonmissing, or y if x is missing
$\operatorname{ZDIF}(x) \quad$ is the difference with lag length truncated and missing values converted to zero; x is the variable or expression to compute the moving average of
$\operatorname{MOVAVG} n(x) \quad$ is the moving average if X_{t} denotes the observation at time point t, to ensure compatibility with the number n of observations used to calculate the moving average MOVAVGn, the following definition is used:

$$
\operatorname{MOVAVGn}\left(X_{t}\right)=\frac{X_{t}+X_{t-1}+X_{t-2}+\ldots+X_{t-n+1}}{n}
$$

The moving average calculation for SAS 9.1 and earlier releases is as follows:

$$
\operatorname{MOVAVGn}\left(X_{t}\right)=\frac{X_{t}+X_{t-1}+X_{t-2}+\ldots+X_{t-n}}{n+1}
$$

Missing values of x are omitted in computing the average.
If you do not specify n, the number of periods is assumed to be one. For example, $\operatorname{LAG}(\mathrm{X})$ is the same as LAG1(X). No more than four digits can be used with a lagging function; that is, LAG9999 is the greatest LAG function, ZDIF9999 is the greatest ZDIF function, and so on.

The LAG functions get values from previous observations and make them available to the program. For example, $\operatorname{LAG}(\mathrm{X})$ returns the value of the variable X as it was computed in the execution of the program for the preceding observation. The expression LAG2 (X+2*Y) returns the value of the expression $\mathrm{X}+2 * \mathrm{Y}$, computed by using the values of the variables X and Y that were computed by the execution of the program for the observation two periods ago.

The DIF functions return the difference between the current value of a variable or expression and the value of its LAG. For example, DIF2(X) is a short way of writing X-LAG2(X), and $\operatorname{DIF} 15(\mathrm{SQRT}(2 * \mathrm{Z})$) is a short way of writing $\operatorname{SQRT}(2 * \mathrm{Z})-\operatorname{LAG15(SQRT}(2 * \mathrm{Z})$).

The ZLAG and ZDIF functions are like the LAG and DIF functions, but they are not counted in the determination of the program lag length, and they replace missing values with 0s. The ZLAG function returns the lagged value if the lagged value is nonmissing, or 0 if the lagged value is missing. The ZDIF function returns the differenced value if the differenced value is nonmissing, or 0 if the value of the differenced value is missing. The ZLAG function is especially useful for models with ARMA error processes. See the next section for details.

Lag Logic

The LAG and DIF lagging functions in the MODEL procedure are different from the queuing functions with the same names in the DATA step. Lags are determined by the final values that are set for the program variables by the execution of the model program for the observation. This can have upsetting consequences for programs that take lags of program variables that are given different values at various places in the program, as shown in the following statements:

```
temp = x + w;
t = lag( temp );
temp = q - r;
s = lag( temp );
```

The expression LAG(TEMP) always refers to $\operatorname{LAG}(\mathrm{Q}-\mathrm{R})$, never to $\mathrm{LAG}(\mathrm{X}+\mathrm{W})$, since $\mathrm{Q}-\mathrm{R}$ is the final value assigned to the variable TEMP by the model program. If $\mathrm{LAG}(\mathrm{X}+\mathrm{W})$ is wanted for T , it should be computed as $\mathrm{T}=\mathrm{LAG}(\mathrm{X}+\mathrm{W})$ and not $\mathrm{T}=\mathrm{LAG}(\mathrm{TEMP})$, as in the preceding example.

Care should also be exercised in using the DIF functions with program variables that might be reassigned later in the program. For example, the program

```
temp = x ;
s = dif( temp );
temp = 3 * y;
```

computes values for S equivalent to

```
s = x - lag( 3 * y );
```

Note that in the preceding examples, TEMP is a program variable, not a model variable. If it were a model variable, the assignments to it would be changed to assignments to a corresponding equation variable.

Note that whereas LAG1(LAG1(X)) is the same as LAG2(X), DIF1(DIF1(X)) is not the same as DIF2(X). The DIF2 function is the difference between the current period value at the point in the program where the function is executed and the final value at the end of execution two periods ago; DIF2 is not the second difference. In contrast, DIF1(DIF1(X)) is equal to DIF1(X)LAG1(DIF1(X)), which equals X-2*LAG1(X)+LAG2(X), which is the second difference of X.

More information about the differences between PROC MODEL and the DATA step LAG and DIF functions is found in Chapter 3, "Working with Time Series Data."

Lag Lengths

The lag length of the model program is the number of lags needed for any relevant equation. The program lag length controls the number of observations used to initialize the lags.

PROC MODEL keeps track of the use of lags in the model program and automatically determines the lag length of each equation and of the model as a whole. PROC MODEL sets the program lag length to the maximum number of lags needed to compute any equation to be estimated, solved, or needed to compute any instrument variable used.

In determining the lag length, the ZLAG and ZDIF functions are treated as always having a lag length of 0 . For example, if Y is computed as

```
y = lag2( x + zdif3( temp ) );
```

then Y has a lag length of 2 (regardless of how TEMP is defined). If Y is computed as

```
y = zlag2( x + dif3( temp ) );
```

then Y has a lag length of 0 .
This is so that ARMA errors can be specified without causing the loss of additional observations to the lag starting phase and so that recursive lag specifications, such as moving-average error terms, can be used. Recursive lags are not permitted unless the ZLAG or ZDIF functions are used to truncate the lag length. For example, the following statement produces an error message:

```
t = a + b * lag( t );
```

The program variable T depends recursively on its own lag, and the lag length of T is therefore undefined.

In the following equation RESID.Y depends on the predicted value for the Y equation but the predicted value for the Y equation depends on the LAG of RESID.Y, and thus, the predicted value for the Y equation depends recursively on its own lag.

```
y = yhat + ma * lag( resid.y );
```

The lag length is infinite, and PROC MODEL prints an error message and stops. Since this kind of specification is allowed, the recursion must be truncated at some point. The ZLAG and ZDIF functions do this.

The following equation is valid and results in a lag length for the Y equation equal to the lag length of YHAT:

```
y = yhat + ma * zlag( resid.y );
```

Initially, the lags of RESID.Y are missing, and the ZLAG function replaces the missing residuals with 0 s , their unconditional expected values.

The ZLAG0 function can be used to zero out the lag length of an expression. ZLAG0(x) returns the current period value of the expression x, if nonmissing, or else returns 0 , and prevents the lag length of x from contributing to the lag length of the current statement.

Initializing Lags

At the start of each pass through the data set or BY group, the lag variables are set to missing values and an initialization is performed to fill the lags. During this phase, observations are read from the data set, and the model variables are given values from the data. If necessary, the model is executed to assign values to program variables that are used in lagging functions. The results for variables used in lag functions are saved. These observations are not included in the estimation or solution.

If, during the execution of the program for the lag starting phase, a lag function refers to lags that are missing, the lag function returns missing. Execution errors that occur while starting the lags are not reported unless requested. The modeling system automatically determines whether the program needs to be executed during the lag starting phase.

If L is the maximum lag length of any equation being fit or solved, then the first L observations are used to prime the lags. If a BY statement is used, the first L observations in the BY group are used to prime the lags. If a RANGE statement is used, the first L observations prior to the first observation requested in the RANGE statement are used to prime the lags. Therefore, there should be at least L observations in the data set.

Initial values for the lags of model variables can also be supplied in VAR, ENDOGENOUS, and EXOGENOUS statements. This feature provides initial lags of solution variables for dynamic solution when initial values for the solution variable are not available in the input data set. For example, the statement

```
var x 2 3 y 4 5 z 1;
```

feeds the initial lags exactly like these values in an input data set:

Lag	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
2	3	5	\cdot
1	2	4	1

If initial values for lags are available in the input data set and initial lag values are also given in a declaration statement, the values in the VAR, ENDOGENOUS, or EXOGENOUS statements take priority.

The RANGE statement is used to control the range of observations in the input data set that are processed by PROC MODEL. In the following statement, '01jan1924' specifies the starting period of the range, and '01dec 1943' specifies the ending period:

```
range date = '01jan1924'd to '01dec1943'd;
```

The observations in the data set immediately prior to the start of the range are used to initialize the lags.

Language Differences

For the most part, PROC MODEL programming statements work the same as they do in the DATA step as documented in SAS Language: Reference. However, there are several differences that should be noted.

DO Statement Differences

The DO statement in PROC MODEL does not allow a character index variable. Thus, the following DO statement is not valid in PROC MODEL, although it is supported in the DATA step:

```
do i = 'A', 'B', 'C'; /* invalid PROC MODEL code */
```


IF Statement Differences

The IF statement in PROC MODEL does not allow a character-valued condition. For example, the following IF statement is not supported by PROC MODEL:

```
if 'this' then statement;
```

Comparisons of character values are supported in IF statements, so the following IF statement is acceptable:

```
if 'this' < 'that' then statement;
```

PROC MODEL allows for embedded conditionals in expressions. For example the following two statements are equivalent:

```
flag = if time = 1 or time = 2 then conc+30/5 + dose*time
    else if time > 5 then ( }0=1\mathrm{ ) else (patient * flag);
if time = 1 or time = 2 then flag= conc+30/5 + dose*time;
else if time > 5 then flag=(0=1); else flag=patient*flag;
```

Note that the ELSE operator involves only the first object or token after it so that the following assignments are not equivalent:

```
total = if sum > 0 then sum else sum + reserve;
total = if sum > 0 then sum else (sum + reserve);
```

The first assignment makes TOTAL always equal to SUM plus RESERVE.

PUT Statement Differences

The PUT statement, mostly used in PROC MODEL for program debugging, supports only some of the features of the DATA step PUT statement. It also has some new features that the DATA step PUT statement does not support.

The PROC MODEL PUT statement does not support line pointers, factored lists, iteration factors, overprinting, the _INFILE_ option, or the colon (:) format modifier.

The PROC MODEL PUT statement does support expressions, but an expression must be enclosed in parentheses. For example, the following statement prints the square root of x :

```
put (sqrt(x));
```

Subscripted array names must be enclosed in parentheses. For example, the following statement prints the i th element of the array A:

```
put (a i);
```

However, the following statement is an error:

```
put a i;
```

The PROC MODEL PUT statement supports the print item _PDV_ to print a formatted listing of all the variables in the program. For example, the following statement prints a much more readable listing of the variables than does the _ALL_ print item:

```
put _pdv_;
```

To print all the elements of the array A, use the following statement:

```
put a;
```

To print all the elements of A with each value labeled by the name of the element variable, use the following statement:

```
put a=;
```


ABORT Statement Difference

In the MODEL procedure, the ABORT statement does not allow any arguments.

SELECT/WHEN/OTHERWISE Statement Differences

The WHEN and OTHERWISE statements allow more than one target statement. That is, DO groups are not necessary for multiple statement WHENs. For example in PROC MODEL, the following syntax is valid:

```
select;
    when (exp1)
        stmt1;
        stmt2;
    when (exp2)
        stmt3;
        stmt4;
end;
```


The ARRAY Statement

```
ARRAY arrayname < \{dimensions\} > < \$ [length] > < variables and constants > ;
```

The ARRAY statement is used to associate a name with a list of variables and constants. The array name can then be used with subscripts in the model program to refer to the items in the list.

In PROC MODEL, the ARRAY statement does not support all the features of the DATA step ARRAY statement. Implicit indexing cannot be used; all array references must have explicit subscript expressions. Only exact array dimensions are allowed; lower-bound specifications are not supported. A maximum of six dimensions is allowed.

On the other hand, the ARRAY statement supported by PROC MODEL does allow both variables and constants to be used as array elements. You cannot make assignments to constant array elements. Both dimension specification and the list of elements are optional, but at least one must be supplied. When the list of elements is not given or fewer elements than the size of the array are listed, array variables are created by suffixing element numbers to the array name to complete the element list.

The following are valid PROC MODEL array statements:

```
array x[120]; /* array x of length 120 */
array q[2,2]; /* Two dimensional array Q */
array b[4] va vb vc vd; /* B[2] = VB, B[4] = VD */
array x x1-x30; /* array x of length 30, x[7] = x7 */
array a[5] (1 2 3 4 5); /* array A initialized to 1,2,3,4,5 */
```


RETAIN Statement

RETAIN variables initial-values ;

The RETAIN statement causes a program variable to hold its value from a previous observation until the variable is reassigned. The RETAIN statement can be used to initialize program variables.

The RETAIN statement does not work for model variables, parameters, or control variables because the values of these variables are under the control of PROC MODEL and not programming statements. Use the PARMS and CONTROL statements to initialize parameters and control variables. Use the VAR, ENDOGENOUS, or EXOGENOUS statement to initialize model variables.

Storing Programs in Model Files

Models can be saved in and recalled from SAS catalog files as well as XML-based data sets. SAS catalogs are special files that can store many kinds of data structures as separate units in one SAS file. Each separate unit is called an entry, and each entry has an entry type that identifies its structure to the SAS system. Starting with SAS 9.2, model files are being stored as SAS data sets instead of being stored as members of a SAS catalog as in earlier releases. This makes MODEL files more readily extendable in the future and enables Java-based applications to read the MODEL files directly. You can choose between the two formats by specifying a global CMPMODEL option in an OPTIONS statement. Details are given below.

In general, to save a model, use the OUTMODEL=name option in the PROC MODEL statement, where name is specified as libref.catalog.entry, libref.entry, or entry for catalog entry and, starting with SAS 9.2, libref.datasetname or datasetname for XML-based SAS datasets. The libref, catalog, datasetnames and entry names must be valid SAS names no more than 32 characters long. The catalog name is restricted to seven characters on the CMS operating system. If not given, the catalog name defaults to MODELS, and the libref defaults to WORK. The entry type is always MODEL. Thus, OUTMODEL=X writes the model to the file WORK.MODELS.X.MODEL in the SAS catalog or creates a WORK.X XML-based dataset in the WORK library depending on the format chosen by using the CMPMODEL= option. By default, both these formats are chosen.

The CMPMODEL= option can be used in an OPTIONS statement to modify the behavior when reading and writing MODEL files. The values allowed are CMPMODEL $=$ BOTH \mid XML I CATALOG. For example, the following statements restore the previous behavior:

```
options cmpmodel=catalog;
```

The CMPMODEL= option defaults to BOTH in SAS 9.2 and is intended for transitional use. If CMPMODEL=BOTH, the MODEL procedure writes both formats; when loading model files PROC MODEL attempts to load the XML version first and the CATALOG version second (if the XML version is not found). If CMPMODEL=XML, the MODEL procedure reads and writes only the XML format. If CMPMODEL=CATALOG, only the catalog format is used.

The MODEL= option is used to read in a model. A list of model files can be specified in the MODEL= option, and a range of names with numeric suffixes can be given, as in

MODEL=(MODEL1-MODEL10). When more than one model file is given, the list must be placed in parentheses, as in MODEL=(A B C), except in case of a single name. If more than one model file is specified, the files are combined in the order listed in the MODEL= option.

The MODEL procedure continues to read and write catalog MODEL files, and model files created by previous releases of SAS/ETS continue to work, so you should experience no direct impact from this change.

When the MODEL= option is specified in the PROC MODEL statement and model definition statements are also given later in the PROC MODEL step, the model files are read in first, in the order listed, and the model program specified in the PROC MODEL step is appended after the model program read from the MODEL= files. The class assigned to a variable, when multiple model files are used, is the last declaration of that variable. For example, if Y1 was declared endogenous in the model file M1 and exogenous in the model file M2, the following statement causes Y1 to be declared exogenous.

```
proc model model=(m1 m2);
```

The INCLUDE statement can be used to append model code to the current model code. In contrast, when the MODEL= option is used in the RESET statement, the current model is deleted before the new model is read.

By default, no model file is output if the PROC MODEL step performs any FIT or SOLVE tasks, or if the MODEL = option or the NOSTORE option is used. However, to ensure compatibility with previous versions of SAS/ETS software, when the PROC MODEL step does nothing but compile the model program, no input model file is read, and the NOSTORE option is not used, a model file is written. This model file is the default input file for a later PROC SYSLIN or PROC SIMLIN step. The default output model filename in this case is WORK.MODELS._MODEL_.MODEL.

If FIT statements are used to estimate model parameters, the parameter estimates written to the output model file are the estimates from the last estimation performed for each parameter.

Diagnostics and Debugging

PROC MODEL provides several features to aid in finding errors in the model program. These debugging features are not usually needed; most models can be developed without them.

The example model program that follows is used in the following sections to illustrate the diagnostic and debugging capabilities. This example is the estimation of a segmented model.

```
/*--- Diagnostics and Debugging ---*/
*--_----Fitting a Segmented Model using MODEL----*
| continuity restriction: p=a+b*x0+c*x0**2 |
| smoothness restriction: 0=b+2*c*x0 so x0=-b/(2*c)|
*----------------------------------------------------------
title 'QUADRATIC MODEL WITH PLATEAU';
data a;
    input y x @@;
datalines;
.46 1 . . 47 2 . 57 3 . 61 4 4 . 62 5 5 . 68 68 6 . 69 7
.78 8 . 70 9 . 74 10 .77 11 . 78 12 .74 13 . 80 13
.80 15 .78 16
;
proc model data=a list xref listcode;
    parms a 0.45 b 0.5 c -0.0025;
    x0 = -. 5*b / c; /* join point */
    if x < x0 then /* Quadratic part of model */
        y = a + b*x + c*x*x;
    else /* Plateau part of model */
        y = a + b*x0 + c*x0*x0;
    fit y;
run;
```


Program Listing

The LIST option produces a listing of the model program. The statements are printed one per line with the original line number and column position of the statement.

The program listing from the example program is shown in Figure 18.85.

Figure 18.85 LIST Output for Segmented Model

The LIST option also shows the model translations that PROC MODEL performs. LIST output is useful for understanding the code generated by the $\% \mathrm{AR}$ and the $\% \mathrm{MA}$ macros.

Cross-Reference

The XREF option produces a cross-reference listing of the variables in the model program. The XREF listing is usually used in conjunction with the LIST option. The XREF listing does not include derivative (@-prefixed) variables. The XREF listing does not include generated assignments to equation variables, PRED., RESID., and ERROR.-prefixed variables, unless the DETAILS option is used.

The cross-reference from the example program is shown in Figure 18.86.
Figure 18.86 XREF Output for Segmented Model

Compiler Listing

The LISTCODE option lists the model code and derivatives tables produced by the compiler. This listing is useful only for debugging and should not normally be needed.

LISTCODE prints the operator and operands of each operation generated by the compiler for each model program statement. Many of the operands are temporary variables generated by the compiler and given names such as \#temp1. When derivatives are taken, the code listing includes the operations generated for the derivatives calculations. The derivatives tables are also listed.

A LISTCODE option prints the transformed equations from the example shown in Figure 18.87 and Figure 18.88.

Figure 18.87 LISTCODE Output for Segmented Model—Statements as Parsed

Figure 18.88 LISTCODE Output for Segmented Model-Compiled Code

1 Stmt ASSIGN Oper * Oper / Oper eeocf Oper / Oper - Oper / 2 Stmt IF Oper < 3 Stmt ASSIGN Oper * Oper + Oper * Oper * Oper + Oper eeocf Oper = Oper = Oper * Oper = 3 Stmt Assign Oper - Oper eeocf Oper = Oper = Oper = 3 Stmt Assign	QUADRATIC MODEL WITH PLATEAU The MODEL Procedure line 1069 column 4. (1) $a r g=x 0$ argsave $=x 0$ Source Text: $x 0=-.5 * b / c ;$ at 1069:12 $(30,0,2)$. * : _temp1 <- -0.5 b at 1069:15 $(31,0,2) . /: x 0<-\quad$ temp1 c at 1069:15 (18,0,1). eeocf : _DER_ <- _DER_ at 1069:15 (31,0,2). / : @x0/@b <- -0.5 c at 1069:15 (24,0,1). - : @1dt1_2 <- x0 at 1069:15 (31,0,2). / : @x0/@c <- @1dt1_2 c line 1070 column ref.st=ASSIGN stmt 4. (2) arg=_temp1 number 5 at 1073:7 argsave=_temp1 Source Text: if $x<x 0$ then at 1070:11 (36, 0, 2) . < : _temp1 <- x x0 line 1071 column 7. (1) arg=PRED.y argsave=y Source Text: /* Quadratic part of model */ $y=a+b * x+c * x * x ;$ at 1071:16 $(30,0,2) . \quad *: \quad$ temp1 <- b x at 1071:13 (32,0,2). + : _temp2 <- a _temp1 at 1071:22 $(30,0,2) . \quad *: \quad$ temp3 <- c x at 1071:24 $(30,0,2) . \quad *: ~+t e m p 4<-~<t e m p 3 ~ x ~$ at 1071:19 (32,0,2). + : PRED.y <- _temp2 _temp4 at 1071:19 (18,0,1). eeocf : _DER_ <- _DER_ at 1071:19 (1,0,1). = : @PRED.y/@a <- 1 at 1071:19 (1,0,1). = : @PRED. y/@b <- x at 1071:24 (30,0,2). * : @1dt1_1 <- x x at 1071:19 (1,0,1). = : @PRED.y/@c <- @1dt1_1 line 1071 column 7. (1) arg=RESID.y argsave=y at 1071:7 (33,0,2). - : RESID.y <- PRED.y ACTUAL.y at 1071:7 (18,0,1). eeocf : _DER_ <- _DER_ at 1071:7 (1,0,1). = @ @RESID.y/@a <- @PRED.y/@a at 1071:7 (1,0,1). = : @RESID.y/@b <- @PRED.y/@b at 1071:7 (1,0,1). = : @RESID.y/@c <- @PRED.y/@c line 1071 column 7. (1) arg=ERROR.y argsave=y

Figure 18.88 continued

Analyzing the Structure of Large Models

PROC MODEL provides several features to aid in analyzing the structure of the model program. These features summarize properties of the model in various forms.

The following Klein's model program is used to introduce the LISTDEP, BLOCK, and GRAPH options.

```
proc model out=m data=klein listdep graph block;
    endogenous c p w i x wsum k y;
    exogenous wp g t year;
    parms c0-c3 i0-i3 w0-w3;
    a: c = c0 + c1 * p + c2 * lag(p) + c3 * wsum;
    b: i = iO + i1 * p + i2 * lag(p) + i3 * lag(k);
    c: w = w0 + w1 * x + w2 * lag(x) + w3 * year;
    x = c + i + g;
    y = c + i + g-t;
    p = x-w-t;
    k = lag(k) + i;
    wsum = w + wp;
    id year;
run;
```


Dependency List

The LISTDEP option produces a dependency list for each variable in the model program. For each variable, a list of variables that depend on it and a list of variables it depends on is given. The dependency list produced by the example program is shown in Figure 18.89.

Figure 18.89 A Portion of the LISTDEP Output for Klein's Model

Figure 18.89 continued

Figure 18.89 continued

BLOCK Listing

The BLOCK option prints an analysis of the program variables based on the assignments in the model program. The output produced by the example is shown in Figure 18.90.

Figure 18.90 The BLOCK Output for Klein's Model

One use for the block output is to put a model in recursive form. Simulations of the model can be done with the SEIDEL method, which is efficient if the model is recursive and if the equations are in recursive order. By examining the block output, you can determine how to reorder the model equations for the most efficient simulation.

Adjacency Graph

The GRAPH option displays the same information as the BLOCK option with the addition of an adjacency graph. An X in a column in an adjacency graph indicates that the variable associated with the row depends on the variable associated with the column. The output produced by the example is shown in Figure 18.91.

The first and last graphs are straightforward. The middle graph represents the dependencies of the nonexogenous variables after transitive closure has been performed (that is, A depends on B, and B depends on C , so A depends on C). The preceding transitive closure matrix indicates that K and Y do not directly or indirectly depend on each other.

Figure 18.91 The GRAPH Output for Klein's Model

Figure 18.91 continued

Examples: MODEL Procedure

Example 18.1: OLS Single Nonlinear Equation

This example illustrates the use of the MODEL procedure for nonlinear ordinary least squares (OLS) regression. The model is a logistic growth curve for the population of the United States. The data is the population in millions recorded at ten-year intervals starting in 1790 and ending in 2000. For an explanation of the starting values given by the START= option, see the section "Troubleshooting Convergence Problems" on page 1030. Portions of the output from the following statements are shown in Output 18.1.1 through Output 18.1.3.

```
title 'Logistic Growth Curve Model of U.S. Population';
data uspop;
    input pop :6.3 @@;
    retain year 1780;
    year=year+10;
    label pop='U.S. Population in Millions';
    datalines;
3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710
;
```

```
proc model data=uspop;
    label a = 'Maximum Population'
            b = 'Location Parameter'
            c = 'Initial Growth Rate';
    pop = a / ( 1 + exp( b - c * (year-1790) ) );
    fit pop start=(a 1000 b 5.5 c .02) / out=resid outresid;
run;
```

Output 18.1.1 Logistic Growth Curve Model Summary

	Logistic Growth Curve Model of U.S. Population The MODEL Procedure Model Summary Model Variables pop Parameters (Value) $a(1000) b(5.5) c(0.02)$ Equations pop The Equation to Estimate is $p o p=F(a, b, c)$

Output 18.1.2 Logistic Growth Curve Estimation Summary

Output 18.1.2 continued

Output 18.1.3 Logistic Growth Curve Estimates

Logistic Growth Curve Model of U.S. Population						
The MODEL Procedure						
Nonlinear OLS Summary of Residual Errors						
	DF	DF				Adj
Equation	Model	Error	SSE	MSE	R-Square	R-Sq
pop	3	18	345.6	19.2020	0.9972	0.9969
Nonlinear OLS Parameter Estimates						
Approx Approx						
Parameter	Estimate	Std Err	t Value	$\mathrm{Pr}>1$	Label	
a	387.9307	30.0404	12.91	$<.00$	1 Maxim	Population
b	3.990385	0.0695	57.44	$<.00$	1 Locat	Parameter
c	0.022703	0.00107	21.22	$<.00$	1 Initi	Growth Rate

The adjusted R^{2} value indicates the model fits the data well. There are only 21 observations and the model is nonlinear, so significance tests on the parameters are only approximate. The significance tests and associated approximate probabilities indicate that all the parameters are significantly different from 0 .

The FIT statement included the options OUT=RESID and OUTRESID so that the residuals from the estimation are saved to the data set RESID. The residuals are plotted to check for heteroscedasticity by using PROC SGPLOT as follows.

```
title2 "Residuals Plot";
proc sgplot data=resid;
    refline 0;
    scatter x=year y=pop / markerattrs=(symbol=circlefilled);
    xaxis values=(1780 to 2000 by 20);
```

run;

The plot is shown in Output 18.1.4.

Output 18.1.4 Residual for Population Model (Actual-Predicted)

The residuals do not appear to be independent, and the model could be modified to explain the remaining nonrandom errors.

Example 18.2: A Consumer Demand Model

This example shows the estimation of a system of nonlinear consumer demand equations based on the translog functional form by using seemingly unrelated regression (SUR). Expenditure shares and corresponding normalized prices are given for three goods.

Since the shares add up to one, the system is singular; therefore, one equation is omitted from the estimation process. The choice of which equation to omit is arbitrary. The nonlinear system is first
estimated in unrestricted form by the following statements:

```
title1 'Consumer Demand--Translog Functional Form';
title2 'Asymmetric Model';
proc model data=tlog1;
    endogenous share1 share2;
    parms a1 a2 b11 b12 b13 b21 b22 b23 b31 b32 b33;
    bm1 = b11 + b21 + b31;
    bm2 = b12 + b22 + b32;
    bm3 = b13 + b23 + b33;
    lp1 = log(p1);
    lp2 = log(p2);
    lp3 = log(p3);
    share1 = ( a1 + b11 * lp1 + b12 * lp2 + b13 * lp3 ) /
            ( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
    share2 = ( a2 + b21 * lp1 + b22 * lp2 + b23 * lp3 ) /
            ( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
    fit share1 share2
        start=( a1 -. 14 a2 -. 45 b11 . 03 b12 . 47 b22 . 98 b31 . 20
                        b32 1.11 b33 . 71 ) / outsused=smatrix sur;
run;
```

A portion of the printed output produced by this example is shown in Output 18.2.1 through Output 18.2.3.

Output 18.2.1 Translog Demand Model Summary

Consumer Demand--Translog Functional Form
Asymmetric Model
The MODEL Procedure
Model Summary

Model Variables
Endogenous
Parameters
Equations
Number of Statements

```
    Model Variables share1 share2
Parameters(Value) a1(-0.14) a2(-0.45) b11(0.03) b12(0.47) b13 b21
    b22(0.98) b23 b31(0.2) b32(1.11) b33(0.71)
    Equations share1 share2
```

 The 2 Equations to Estimate
 share1 \(=F(a 1, b 11, b 12, b 13, b 21, b 22, b 23, b 31, b 32, b 33)\)
 share2 \(=F(a 2, b 11, b 12, b 13, b 21, b 22, b 23, b 31, b 32, b 33)\)
 Output 18.2.2 Estimation Summary for the Unrestricted Model

```
NOTE: At SUR Iteration 2 CONVERGE=0.001 Criteria Met.
Consumer Demand--Translog Functional Form
                    Asymmetric Model
            The MODEL Procedure
                SUR Estimation Summary
                    Data Set Options
            DATA= TLOG1
                OUTSUSED= SMATRIX
                Minimization Summary
\begin{tabular}{lr} 
Parameters Estimated & 11 \\
Method & Gauss \\
Iterations & 2
\end{tabular}
            Final Convergence Criteria
\begin{tabular}{lr} 
R & 0.00016 \\
PPC (b11) & 0.00116 \\
RPC (b11) & 0.012106 \\
Object & \(2.921 \mathrm{E}-6\) \\
Trace (S) & 0.000078 \\
Objective Value & 1.749312
\end{tabular}
            Observations Processed
            Read 44
            Solved 44
```

Output 18.2.3 Estimation Results for the Unrestricted Model

Consumer Demand--Translog Functional Form Asymmetric Model							
The MODEL Proced							
Nonlinear SUR Summary of Residual Errors							
	DF	DF					Adj
Equation	Model	Error	SSE	MSE	Root MSE	R-Square	$\mathrm{R}-\mathrm{Sq}$
share1	5.5	38.5	0.00166	0.000043	0.00656	0.8067	0.7841
share2	5.5	38.5	0.00135	0.000035	0.00592	0.9445	0.9380

Output 18.2.3 continued

The model is then estimated under the restriction of symmetry $\left(b_{i j}=b_{j i}\right)$, as shown in the following statements:

```
title2 'Symmetric Model';
proc model data=tlog1;
    var share1 share2 p1 p2 p3;
    parms a1 a2 b11 b12 b22 b31 b32 b33;
    bm1 = b11 + b12 + b31;
    bm2 = b12 + b22 + b32;
    bm3 = b31 + b32 + b33;
    lp1 = log(p1);
    lp2 = log(p2);
    lp3 = log(p3);
    share1 = ( a1 + b11 * lp1 + b12 * lp2 + b31 * lp3 ) /
            ( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
    share2 = ( a2 + b12 * lp1 + b22 * lp2 + b32 * lp3 ) /
            ( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
    fit share1 share2
        start=( a1 -. 14 a2 -. 45 b11 . 03 b12 . 47 b22 . 98 b31 . 20
            b32 1.11 b33 . 71 ) / sdata=smatrix sur;
run;
```

A portion of the printed output produced for the symmetry restricted model is shown in Output 18.2.4 and Output 18.2.5.

Output 18.2.4 Model Summary from the Restricted Model

Output 18.2.5 Estimation Results for the Restricted Model

Hypothesis testing requires that the \mathbf{S} matrix from the unrestricted model be imposed on the restricted model, as explained in the section "Tests on Parameters" on page 1078. The \mathbf{S} matrix saved in the data set SMATRIX is requested by the SDATA= option.

A chi-square test is used to see if the hypothesis of symmetry is accepted or rejected. (Oc-Ou) has a chi-square distribution asymptotically, where $O c$ is the constrained OBJECTIVE*N and $O u$ is the unconstrained OBJECTIVE*N. The degrees of freedom is equal to the difference in the number of
free parameters in the two models.
In this example, $O u$ is 76.9697 and $O c$ is 78.4097 , resulting in a difference of 1.44 with 3 degrees of freedom. You can obtain the probability value by using the following statements:

```
data _null_;
    /* probchi( reduced-full, n-restrictions )*/
    p = 1-probchi( 1.44, 3 );
    put p=;
run;
```

The output from this DATA step run is $p=0.6961858724$. With this p-value you cannot reject the hypothesis of symmetry. This test is asymptotically valid.

Example 18.3: Vector AR(1) Estimation

This example shows the estimation of a two-variable vector $\operatorname{AR}(1)$ error process for the Grunfeld model (Grunfeld and Griliches 1960) by using the \%AR macro. First, the full model is estimated. Second, the model is estimated with the restriction that the errors are univariate $\operatorname{AR}(1)$ instead of a vector process. The following statements produce Output 18.3.1 through Output 18.3.5.

```
data grunfeld;
    input year gei gef gec whi whf whc;
    label gei = 'Gross Investment GE'
            gec = 'Capital Stock Lagged GE'
            gef = 'Value of Outstanding Shares GE Lagged'
            whi = 'Gross Investment WH'
            whc = 'Capital Stock Lagged WH'
            whf = 'Value of Outstanding Shares Lagged WH';
datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
... more lines ...
title1 'Example of Vector AR(1) Error Process Using Grunfeld''s Model';
/* Note: GE stands for General Electric
    wH stands for Westinghouse */
proc model outmodel=grunmod;
    var gei whi gef gec whf whc;
    parms ge_int ge_f ge_c wh_int wh_f wh_c;
    label ge_int = 'GE Intercept'
            ge_f = 'GE Lagged Share Value Coef'
            ge_c = 'GE Lagged Capital Stock Coef'
            wh_int = 'WH Intercept'
            wh_f = 'WH Lagged Share Value Coef'
            wh_c = 'WH Lagged Capital Stock Coef';
```

```
    gei = ge_int + ge_f * gef + ge_c * gec;
    whi = wh_int + wh_f * whf + wh_c * whc;
run;
```

The preceding PROC MODEL step defines the structural model and stores it in the model file named GRUNMOD.

The following PROC MODEL step reads in the model, adds the vector autoregressive terms using $\% \mathrm{AR}$, and requests SUR estimation by using the FIT statement.

```
title2 'With Unrestricted Vector AR(1) Error Process';
proc model data=grunfeld model=grunmod;
    %ar( ar, 1, gei whi )
    fit gei whi / sur;
run;
```

The final PROC MODEL step estimates the restricted model, as shown in the following statements:

```
title2 'With restricted AR(1) Error Process';
proc model data=grunfeld model=grunmod;
    %ar( gei, 1 )
    %ar( whi, 1)
    fit gei whi / sur;
run;
```

Output 18.3.1 Model Summary for the Unrestricted Model

```
    Example of Vector AR(1) Error Process Using Grunfeld's Model
    With Unrestricted Vector AR(1) Error Process
    The MODEL Procedure
                Model Summary
                            Model Variables 6
            Parameters 10
            Equations 2
            Number of Statements 7
    Model Variables gei whi gef gec whf whc
Parameters(Value) ge_int ge_f ge_c wh_int wh_f wh_c ar_l1_1_1(0)
    ar_11_1_2(0) ar_11_2_1(0) ar_l1_2_2(0)
        Equations gei whi
                    The 2 Equations to Estimate
    gei = F(ge_int, ge_f, ge_c, wh_int, wh_f, wh_c, ar_l1_1_1, ar_11_1_2)
    whi = F(ge_int, ge_f, ge_c, wh_int, wh_f, wh_c, ar_11_2_1, ar_11_2_2)
    NOTE: At SUR Iteration 9 CONVERGE=0.001 Criteria Met.
```

Output 18.3.2 Estimation Summary for the Unrestricted Model

Output 18.3.3 Estimation Results for the Unrestricted Model

Example of Vector AR(1) Error Process Using Grunfeld's Model With Unrestricted Vector AR(1) Error Process						
Nonlinear SUR Summary of Residual Errors						
Equation	$\begin{array}{r} \text { DF } \\ \text { Model } \end{array}$	$\begin{array}{r} \text { DF } \\ \text { Error } \end{array}$	SSE	MSE	R-Square	$\begin{array}{r} \text { Adj } \\ \text { R-Sq } \end{array}$
gei	5	15	9374.5	625.0	0.7910	0.7352
whi	5	15	1429.2	95.2807	0.7940	0.7391

Output 18.3.3 continued

Nonlinear SUR Parameter Estimates					
		Approx		Approx	
Parameter	Estimate	Std Err	t value	$\operatorname{Pr}>\|t\|$	Label
ge_int	-42.2858	30.5284	-1.39	0.1863	GE Intercept
ge_f	0.049894	0.0153	3.27	0.0051	GE Lagged Share Value Coef
ge_c	0.123946	0.0458	2.70	0.0163	GE Lagged Capital Stock Coef
wh_int	-4.68931	8.9678	-0.52	0.6087	wh Intercept
wh_f	0.068979	0.0182	3.80	0.0018	WH Lagged Share Value Coef
wh_c	0.019308	0.0754	0.26	0.8015	wh Lagged Capital Stock Coef
ar_11_1_1	0.990902	0.3923	2.53	0.0233	AR(ar) gei: LAG1 parameter for gei
ar_11_1_2	-1.56252	1.0882	-1.44	0.1716	AR(ar) gei: LAG1 parameter for whi
ar_11_2_1	0.244161	0.1783	1.37	0.1910	AR(ar) whi: LAG1 parameter for gei
ar_11_2_2	-0.23864	0.4957	-0.48	0.6372	AR(ar) whi: LAG1 parameter for whi

Output 18.3.4 Model Summary for the Restricted Model

```
    Example of Vector AR(1) Error Process Using Grunfeld's Model
            With restricted AR(1) Error Process
                The MODEL Procedure
                    Model Summary
                            Model Variables 6
            Parameters 8
            Equations 2
            Number of Statements 7
            Model Variables
            gei whi gef gec whf whc
Parameters(Value) ge_int ge_f ge_c wh_int wh_f wh_c gei_l1(0) whi_ll(0)
            Equations gei whi
```

Output 18.3.5 Estimation Results for the Restricted Model

Example 18.4: MA(1) Estimation

This example estimates parameters for an MA(1) error process for the Grunfeld model, using both the unconditional least squares and the maximum likelihood methods. The ARIMA procedure estimates for Westinghouse equation are shown for comparison. The output of the following statements is summarized in Output 18.4.1:

```
proc model outmodel=grunmod;
    var gei whi gef gec whf whc;
    parms ge_int ge_f ge_c wh_int wh_f wh_c;
    label ge_int = 'GE Intercept'
            ge_f = 'GE Lagged Share Value Coef'
            ge_c = 'GE Lagged Capital Stock Coef'
            wh_int = 'WH Intercept'
            wh_f = 'WH Lagged Share Value Coef'
            wh_c = 'WH Lagged Capital Stock Coef';
```

```
    gei = ge_int + ge_f * gef + ge_c * gec;
    whi = wh_int + wh_f * whf + wh_c * whc;
run;
title1 'Example of MA(1) Error Process Using Grunfeld''s Model';
title2 'MA(1) Error Process Using Unconditional Least Squares';
proc model data=grunfeld model=grunmod;
    %ma(gei,1, m=uls);
    %ma(whi,1, m=uls);
    fit whi gei start=( gei_m1 0.8 -0.8) / startiter=2;
run;
```

Output 18.4.1 PROC MODEL Results by Using ULS Estimation

The estimation summary from the following PROC ARIMA statements is shown in Output 18.4.2.

```
title2 'PROC ARIMA Using Unconditional Least Squares';
```

```
proc arima data=grunfeld;
    identify var=whi cross=(whf whc ) noprint;
    estimate q=1 input=(whf whc) method=uls maxiter=40;
run;
```


Output 18.4.2 PROC ARIMA Results by Using ULS Estimation

The model stored in Example 18.3 is read in by using the MODEL= option and the moving-average terms are added using the \%MA macro.

The MA(1) model using maximum likelihood is estimated by using the following statements:

```
title2 'MA(1) Error Process Using Maximum Likelihood ';
proc model data=grunfeld model=grunmod;
    %ma(gei,1, m=ml);
    %ma(whi,1, m=ml);
    fit whi gei;
run;
```

For comparison, the model is estimated by using PROC ARIMA as follows:

```
title2 'PROC ARIMA Using Maximum Likelihood ';
proc arima data=grunfeld;
    identify var=whi cross=(whf whc) noprint;
    estimate q=1 input=(whf whc) method=ml;
run;
```

PROC ARIMA does not estimate systems, so only one equation is evaluated.

The estimation results are shown in Output 18.4.3 and Output 18.4.4. The small differences in the parameter values between PROC MODEL and PROC ARIMA can be eliminated by tightening the convergence criteria for both procedures.

Output 18.4.3 PROC MODEL Results by Using ML Estimation

Output 18.4.4 PROC ARIMA Results by Using ML Estimation

Example 18.5: Polynomial Distributed Lags by Using \%PDL

This example shows the use of the \%PDL macro for polynomial distributed lag models. Simulated data is generated so that Y is a linear function of six lags of X , with the lag coefficients following a quadratic polynomial. The model is estimated by using a fourth-degree polynomial, both with and without endpoint constraints. The example uses simulated data generated from the following model:

$$
\begin{aligned}
& y_{t}=10+\sum_{z=0}^{6} f(z) x_{t-z}+\epsilon \\
& f(z)=-5 z^{2}+1.5 z
\end{aligned}
$$

The LIST option prints the model statements added by the \%PDL macro. The following statements generate simulated data as shown:

```
/*------------------------------------------------------------------------*/
/* Generate Simulated Data for a Linear Model with a PDL on X */
/* y = 10 + x(6,2) + e */
/* pdl (x) = -5.*(lg)**2 + 1.5*(lg) + 0. */
/*---------------------------------------------------------------------*/
data pdl;
    pdl2=-5.; pdl1=1.5; pdl0=0;
    array zz(i) z0-z6;
    do i=1 to 7;
```

```
    z=i-1;
    zz=pdl2*z**2 + pdl1*z + pdl0;
    end;
    do n=-11 to 30;
    x =10*ranuni (1234567)-5;
    pdl=z0*x + z1*xl1 + z2*xl2 + z3*xl3 + z4*xl4 + z5*xl5 + z6*xl6;
    e =10*rannor(123);
    y =10+pdl+e;
    if n>=1 then output;
    xl6=xl5; xl5=xl4; xl4=xl3; xl3=xl2; xl2=xl1; xl1=x;
    end;
run;
title1 'Polynomial Distributed Lag Example';
title3 'Estimation of PDL(6,4) Model-- No Endpoint Restrictions';
proc model data=pdl;
    parms int; /* declare the intercept parameter */
    %pdl( xpdl, 6, 4 ) /* declare the lag distribution */
    y = int + %pdl( xpdl, x ); /* define the model equation */
    fit y / list; /* estimate the parameters */
run;
```

The LIST output for the model without endpoint restrictions is shown in Output 18.5.1. The first seven statements in the generated program are the polynomial expressions for lag parameters XPDL_L0 through XPDL_L6. The estimated parameters are INT, XPDL_0, XPDL_1, XPDL_2, XPDL_3, and XPDL_4.

Output 18.5.1 PROC MODEL Listing of Generated Program

The FIT results for the model without endpoint restrictions are shown in Output 18.5.2.

Output 18.5.2 PROC MODEL Results That Specify No Endpoint Restrictions

Portions of the output produced by the following PDL model with endpoints of the model restricted to zero are presented in Output 18.5.3.

```
title3 'Estimation of PDL(6,4) Model-- Both Endpoint Restrictions';
proc model data=pdl ;
    parms int; /* declare the intercept parameter */
    %pdl( xpdl, 6, 4, r=both ) /* declare the lag distribution */
    y = int + %pdl ( xpdl, x ); /* define the model equation */
    fit y /list; /* estimate the parameters */
run;
```

Output 18.5.3 PROC MODEL Results Specifying Both Endpoint Restrictions

Note that XPDL_0 and XPDL_1 are not shown in the estimate summary. They were used to satisfy the endpoint restrictions analytically by the generated \%PDL macro code. Their values can be determined by back substitution.

To estimate the PDL model with one or more of the polynomial terms dropped, specify the largest degree of the polynomial desired with the \%PDL macro and use the DROP= option in the FIT statement to remove the unwanted terms. The dropped parameters should be set to 0 . The following PROC MODEL statements demonstrate estimation with a PDL of degree 2 without the 0th order term.

```
title3 'Estimation of PDL(6,2) Model-- With XPDL_O Dropped';
proc model data=pdl list;
    parms int; /* declare the intercept parameter */
    %pdl( xpdl, 6, 2 ) /* declare the lag distribution */
    y = int + %pdl( xpdl, x ); /* define the model equation */
    xpdl_0 =0;
    fit y drop=xpdl_0; /* estimate the parameters */
run;
```

The results from this estimation are shown in Output 18.5.4.

Output 18.5.4 PROC MODEL Results That Specify \%PDL(XPDL, 6, 2)

Example 18.6: General Form Equations

Data for this example are generated. General form equations are estimated and forecast by using PROC MODEL. The system is a basic supply and demand model.

The following statements specify the form of the model:

```
title1 "General Form Equations for Supply-Demand Model";
proc model outmodel=model;
    var price quantity income unitcost;
    parms d0-d2 s0-s2;
    eq.demand=d0+d1*price+d2*income-quantity;
    eq. supply=s0+s1*price+s2*unitcost-quantity;
run;
```

Three data sets are used in this example. The first data set, HISTORY, is used to estimate the parameters of the model. The ASSUME data set is used to produce a forecast of PRICE and QUANTITY. Notice that the ASSUME data set does not need to contain the variables PRICE and QUANTITY. The HISTORY data set is shown as follows:

```
data history;
    input year income unitcost price quantity;
datalines;
```

```
1976 2221.87 3.31220 0.17903 266.714
1977 2254.77 3.61647 0.06757 276.049
... more lines ...
```

The ASSUME data set is shown as follows:

```
data assume;
    input year income unitcost;
datalines;
1986 2571.87 2.31220
1987 2609.12 2.45633
1988 2639.77 2.51647
1989 2667.77 1.65617
1990 2705.16 1.01601
;
```

The third data set, GOAL, used in a forecast of PRICE and UNITCOST as a function of INCOME and QUANTITY is as follows:

```
data goal;
    input year income quantity;
datalines;
1986 2571.87 371.4
1987 2721.08 416.5
1988 3327.05 597.3
1989 3885.85 764.1
1990 3650.98 694.3
;
```

The following statements fit the model to the HISTORY data set and solve the fitted model for the ASSUME data set.

```
proc model model=model outmodel=model;
/* estimate the model parameters */
    fit supply demand / data=history outest=est n2sls;
    instruments income unitcost year;
run;
/* produce forecasts for income and unitcost assumptions */
    solve price quantity / data=assume out=pq;
run;
title2 "Parameter Estimates for the System";
proc print data=est;
run;
title2 "Price Quantity Solution";
proc print data=pq;
run;
```

The model summary of the supply and demand model is shown as follows:
Output 18.6.1 Model Summary

```
General Form Equations for Supply-Demand Model
                The MODEL Procedure
                    Model Summary
            Model Variables 4
            Parameters 6
            Equations 2
            Number of Statements 3
Model Variables price quantity income unitcost
            Parameters d0 d1 d2 s0 s1 s2
            Equations demand supply
                    The 2 Equations to Estimate
        supply = F(s0(1), s1(price), s2(unitcost))
        demand = F(d0(1), d1(price), d2(income))
Instruments 1 income unitcost year
```

The estimation results are shown in Output 18.6.2 and the OUTEST= data set is show in Output 18.6.3. The output data set produced by the SOLVE statement is shown in Output 18.6.4.

Output 18.6.2 Output from the FIT Statement

Output 18.6.3 Listing of OUTEST= Data Set Created in the FIT Statement

Output 18.6.4 Listing of OUT= Data Set Created in the First SOLVE Statement

Obs	_TYPE_	General Form Equations for Supply-Demand Model Price Quantity Solution						
		MODE	ERRORS	price	quantity	income	unitcost	year
1	PREDICT	SIMULATE	0	1.20473	371.552	2571.87	2.31220	1986
2	PREDICT	SIMULATE	0	1.18666	382.642	2609.12	2.45633	1987
3	PREDICT	SIMULATE	0	1.20154	391.788	2639.77	2.51647	1988
4	PREDICT	SIMULATE	0	1.68089	400.478	2667.77	1.65617	1989
5	PREDICT	SIMULATE	0	2.06214	411.896	2705.16	1.01601	1990

The GOAL data set is used in a forecast of PRICE and UNITCOST as a function of INCOME and QUANTITY.

```
data goal;
    input year income quantity;
datalines;
1986 2571.87 371.4
1987 2721.08 416.5
1988 3327.05 597.3
1989 3885.85 764.1
1990 3650.98 694.3
;
```

The following statements produce the goal-seeking solutions for PRICE and UNITCOST by using the GOAL dataset.

```
title2 "Price Unitcost Solution";
/* produce goal-seeking solutions for
    income and quantity assumptions*/
proc model model=model;
    solve price unitcost / data=goal out=pc;
run;
```

```
proc print data=pc;
run;
```

The output data set produced by the final SOLVE statement is shown in Output 18.6.5.
Output 18.6.5 Listing of OUT= Data Set Created in the Second SOLVE Statement
$\left.\begin{array}{|lllllllllll|}\hline & & \text { General Form Equations for Supply-Demand Model } \\ \text { Price Unitcost Solution }\end{array}\right]$

Example 18.7: Spring and Damper Continuous System

This model simulates the mechanical behavior of a spring and damper system shown in Figure 18.92.

Figure 18.92 Spring and Damper System Model

A mass is hung from a spring with spring constant K . The motion is slowed by a damper with damper constant C . The damping force is proportional to the velocity, while the spring force is
proportional to the displacement.
This is actually a continuous system; however, the behavior can be approximated by a discrete time model. We approximate the differential equation

$$
\frac{\partial \text { disp }}{\partial \text { time }}=\text { velocity }
$$

with the difference equation

$$
\frac{\Delta \text { disp }}{\Delta \text { time }}=\text { velocity }
$$

This is rewritten as

$$
\frac{d i s p-\mathrm{LAG}(d i s p)}{d t}=\text { velocity }
$$

where $d t$ is the time step used. In PROC MODEL, this is expressed with the program statement

```
disp = lag(disp) + vel * dt;
```

or

```
dert.disp = vel;
```

The first statement is simply a computing formula for Euler's approximation for the integral

$$
d i s p=\int \text { velocity } d t
$$

If the time step is small enough with respect to the changes in the system, the approximation is good. Although PROC MODEL does not have the variable step-size and error-monitoring features of simulators designed for continuous systems, the procedure is a good tool to use for less challenging continuous models.

The second form instructs the MODEL procedure to do the integration for you.
This model is unusual because there are no exogenous variables, and endogenous data are not needed. Although you still need a SAS data set to count the simulation periods, no actual data are brought in.

Since the variables DISP and VEL are lagged, initial values specified in the VAR statement determine the starting state of the system. The mass, time step, spring constant, and damper constant are declared and initialized by a CONTROL statement as shown in the following statements:

```
title1 'Simulation of Spring-Mass-Damper System';
/*- Data to drive the simulation time periods ---*/
data one;
    do n=1 to 100;
```

```
        output;
    end;
run;
proc model data=one outmodel=spring;
    var force -200 disp 10 vel 0 accel -20 time 0;
    control mass 9.2 c 1.5 dt .1 k 20;
    force = -k * disp -c * vel;
    disp = lag(disp) + vel * dt;
    vel = lag(vel) + accel * dt;
    accel = force / mass;
    time = lag(time) + dt;
run;
```

The displacement scale is zeroed at the point where the force of gravity is offset, so the acceleration of the gravity constant is omitted from the force equation. The control variable C and K represent the damper and the spring constants respectively.

The model is simulated three times, and the simulation results are written to output data sets. The first run uses the original initial conditions specified in the VAR statement. In the second run, the initial displacement is doubled; the results show that the period of the motion is unaffected by the amplitude. In the third run, the DERT. syntax is used to do the integration. Notice that the path of the displacement is close to the old path, indicating that the original time step is short enough to yield an accurate solution. These simulations are performed by the following statements:

```
proc model data=one model=spring;
    title2 "Simulation of the model for the base case";
    control run '1';
    solve / out=a;
run;
    title2 "Simulation of the model with twice the initial displacement";
    control run '2';
    var disp 20;
    solve / out=b;
run;
data two;
    do time = 0 to 10 by .2; output;end;
run;
title2 "Simulation of the model using the dert. syntax";
proc model data=two;
    var force -200 disp 10 vel 0 accel -20 time 0;
    control mass 9.2 c 1.5 dt .1 k 20;
    control run '3' ;
    force = -k * disp -c * vel;
    dert.disp = vel ;
    dert.vel = accel;
    accel = force / mass;
    solve / out=c;
    id time ;
run;
```

The output SAS data sets that contain the solution results are merged and the displacement time paths for the three simulations are plotted. The three runs are identified on the plot as 1,2 , and 3 . The following statements produce Output 18.7.1 through Output 18.7.5.

```
data p;
    set a b c;
run;
title2 'Overlay Plot of All Three Simulations';
proc sgplot data=p;
    series x=time y=disp / group=run lineattrs=(pattern=1);
    xaxis values=(0 to 10 by 1);
    yaxis values=(-20 to 20 by 10);
run;
```

Output 18.7.1 Model Summary

```
Simulation of Spring-Mass-Damper System
Simulation of the model for the base case
    The MODEL Procedure
                                    Model Summary
    Model Variables 5
    Control Variables 5
    Equations 5
    Number of Statements 6
    Program Lag Length 1
    Model Variables force(-200) disp(10) vel(0) accel(-20) time(0)
Control Variables mass(9.2) c(1.5) dt(0.1) k(20) run(1)
    Equations force disp vel accel time
```

Output 18.7.2 Printed Output Produced by PROC MODEL SOLVE Statements
Simulation of Spring-Mass-Damper System
Simulation of the model for the base case
The MODEL Procedure
Dynamic Simultaneous Simulation
Data Set Options
DATA= ONE
OUT= A

Output 18.7.2 continued

Output 18.7.3 Printed Output Produced by PROC MODEL SOLVE Statements

Output 18.7.3 continued
Variables Solved For force disp vel accel time

Output 18.7.4 Printed Output Produced by PROC MODEL SOLVE Statements

Simulation of Spring-Mass-Damper System Simulation of the model using the dert. syntax The MODEL Procedure Simultaneous Simulation Data Set Options DATA= TWO OUT $=\quad$ C Solution Summary Variables Solved Maximum Iterations 0 Observations Processed Variables Solved For ODE's Auxiliary Equations force disp vel accel dert.disp dert.vel force accel

Output 18.7.5 Overlay Plot of Three Simulations

Example 18.8: Nonlinear FIML Estimation

The data and model for this example were obtained from Bard (1974, p.133-138). The example is a two-equation econometric model used by Bodkin and Klein to fit U.S production data for the years 1909-1949. The model is the following:

$$
\begin{aligned}
& g_{1}=c_{1} 10^{c_{2} z_{4}}\left(c_{5} z_{1}^{-c_{4}}+\left(1-c_{5}\right) z_{2}^{-c_{4}}\right)^{-c_{3} / c_{4}}-z_{3}=0 \\
& g_{2}=\left[c_{5} /\left(1-c_{5}\right)\right]\left(z_{1} / z_{2}\right)^{\left(-1-c_{4}\right)}-z_{5}=0
\end{aligned}
$$

where z_{1} is capital input, z_{2} is labor input, z_{3} is real output, z_{4} is time in years with 1929 as year zero, and z_{5} is the ratio of price of capital services to wage scale. The c_{i} 's are the unknown parameters. z_{1} and z_{2} are considered endogenous variables. A FIML estimation is performed by using the following statements:

```
    input z1 z2 z3 z4 z5;
datalines;
1.33135 0.64629 0.4026 -20 0.24447
1.39235 0.66302 0.4084 -19 0.23454
... more lines ...
title1 "Nonlinear FIML Estimation";
proc model data=bodkin;
    parms c1-c5;
    endogenous z1 z2;
    exogenous z3 z4 z5;
    eq.g1 = c1 * 10 **(c2 * z4) * (c5*z1**(-c4)+
        (1-c5)*z2**(-c4)) **(-c3/c4) - z3;
    eq.g2 = (c5/(1-c5))*(z1/z2)**(-1-c4) -z5;
    fit g1 g2 / fiml ;
run;
```

When FIML estimation is selected, the log likelihood of the system is output as the objective value. The results of the estimation are shown in Output 18.8.1.

Output 18.8.1 FIML Estimation Results for U.S. Production Data

Example 18.9: Circuit Estimation

Consider the nonlinear circuit shown in Figure 18.93.
Figure 18.93 Nonlinear Resistor Capacitor Circuit

The theory of electric circuits is governed by Kirchhoff's laws: the sum of the currents flowing to a node is zero, and the net voltage drop around a closed loop is zero. In addition to Kirchhoff's laws, there are relationships between the current I through each element and the voltage drop V across the elements. For the circuit in Figure 18.93, the relationships are

$$
C \frac{d V}{d t}=I
$$

for the capacitor and

$$
V=\left(R_{1}+R_{2}(1-\exp (-V))\right) I
$$

for the nonlinear resistor. The following differential equation describes the current at node 2 as a function of time and voltage for this circuit:

$$
C \frac{d V_{2}}{d t}-\frac{V_{1}-V_{2}}{R_{1}+R_{2}(1-\exp (-V))}=0
$$

This equation can be written in the form

$$
\frac{d V_{2}}{d t}=\frac{V_{1}-V_{2}}{\left(R_{1}+R_{2}(1-\exp (-V))\right) C}
$$

Consider the following data.

```
data circ;
    input v2 v1 time@@;
datalines;
```

```
-0.00007 0.0 0.0000000001 0.00912 0.5 0.0000000002
    0.03091 1.0 0.0000000003 0.06419 1.5 0.0000000004
    0.11019 2.0 0.0000000005 0.16398 2.5 0.0000000006
    0.23048 3.0 0.0000000007 0.30529 3.5 0.0000000008
    0.39394 4.0 0.0000000009 0.49121 4.5 0.0000000010
    0.59476 5.0 0.0000000011 0.70285 5.0 0.0000000012
    0.81315 5.0 0.0000000013 0.90929 5.0 0.0000000014
    1.01412 5.0 0.0000000015 1.11386 5.0 0.0000000016
    1.21106 5.0 0.0000000017 1.30237 5.0 0.0000000018
    1.40461 5.0 0.0000000019 1.48624 5.0 0.0000000020
    1.57894 5.0 0.0000000021 1.66471 5.0 0.0000000022
;
```

You can estimate the parameters in the preceding equation by using the following SAS statements:

```
title1 'Circuit Model Estimation Example';
proc model data=circ mintimestep=1.0e-23;
    parm R2 2000 R1 4000 C 5.0e-13;
    dert.v2 = (v1-v2)/((r1 + r2*(1-exp( -(v1-v2)))) * C);
    fit v2;
run;
```

The results of the estimation are shown in Output 18.9.1.
Output 18.9.1 Circuit Estimation

In this case, the model equation is such that there is linear dependency that causes biased results and inflated variances. The Jacobian matrix is singular or nearly singular, but eliminating one of the parameters is not a solution in this case.

Example 18.10: Systems of Differential Equations

The following is a simplified reaction scheme for the competitive inhibitors with recombinant human renin (Morelock et al. 1995).

Figure 18.94 Competitive Inhibition of Recombinant Human Renin

In Figure 18.94, $E=$ enzyme, $D=$ probe, and $I=$ inhibitor.
The differential equations that describe this reaction scheme are as follows:

$$
\begin{aligned}
& \frac{d D}{d t}=k 1 r * E D-k 1 f * E * D \\
& \frac{d E D}{d t}=k 1 f * E * D-k 1 r * E D \\
& \frac{d E}{d t}=k 1 r * E D-k 1 f * E * D+k 2 r * E I-k 2 f * E * I \\
& \frac{d E I}{d t}=k 2 f * E * I-k 2 r * E I \\
& \frac{d I}{d t}=k 2 r * E I-k 2 f * E * I
\end{aligned}
$$

For this system, the initial values for the concentrations are derived from equilibrium considerations (as a function of parameters) or are provided as known values.

The experiment used to collect the data was carried out in two ways; preincubation (type='disassoc') and no preincubation (type='assoc'). The data also contain repeated measurements. The data contain values for fluorescence F, which is a function of concentration. Since there are no direct data for the concentrations, all the differential equations are simulated dynamically.

The SAS statements used to fit this model are as follows:

```
title1 'Systems of Differential Equations Example';
proc sort data=fit;
    by type time;
run;
%let k1f = 6.85e6 ;
%let k1r = 3.43e-4 ;
%let k2f = 1.8e7 ;
%let k2r = 2.1e-2 ;
%let qf = 2.1e8 ;
%let qb = 4.0e9 ;
%let dt = 5.0e-7 ;
%let et = 5.0e-8 ;
%let it = 8.05e-6 ;
proc model data=fit;
    parameters qf = 2.1e8
            qb = 4.0e9
            k2f = 1.8e5
            k2r = 2.1e-3
            l = 0;
            k1f = 6.85e6;
            k1r = 3.43e-4;
        /* Initial values for concentrations */
        control dt 5.0e-7
                et 5.0e-8
                it 8.05e-6;
            /* Association initial values --------------*/
        if type = 'assoc' and time=0 then do;
            ed = 0;
            /* solve quadratic equation ----------*/
            a = 1;
            b = - (&it+&et+(k2r/k2f));
            c = &it*&et;
            ei = (-b- (((b**2)-(4*a*c))**.5))/(2*a);
            d = &dt-ed;
            i = &it-ei;
            e = &et-ed-ei;
            end;
```

```
        /* Disassociation initial values ----------*/
        if type = 'disassoc' and time=0 then do;
            ei = 0;
            a = 1;
            b = -(&dt+&et+(&k1r/&k1f));
            c = &dt*&et;
            ed = (-b- (( (b**2)-(4*a*c))**.5))/(2*a);
            d = &dt-ed;
            i = &it-ei;
            e = &et-ed-ei;
        end;
    if time ne O then do;
        dert.d = k1r* ed - k1f *e *d;
        dert.ed = k1f* e *d - klr*ed;
        dert.e = k1r* ed - k1f* e * d + k2r * ei - k2f * e *i;
        dert.ei = k2f* e *i - k2r * ei;
        dert.i = k2r * ei - k2f* e *i;
        end;
    /* L - offset between curves */
    if type = 'disassoc' then
    F = (qf* (d-ed)) + (qb*ed) -L;
else
    F=(qf* (d-ed)) + (qb*ed);
    fit F / method=marquardt;
run;
```

This estimation requires the repeated simulation of a system of 41 differential equations (5 base differential equations and 36 differential equations to compute the partials with respect to the parameters).

The results of the estimation are shown in Output 18.10.1.
Output 18.10.1 Kinetics Estimation

Systems of Differential Equations Example							
The MODEL Procedure							
Nonlinear OLS Summary of Residual Errors							
	DF	DF					Adj
Equation	Model	Error	SSE	MSE	Root MSE	R-Square	R-Sq
f	5	797	2525.0	3.1681	1.7799	0.9980	0.9980

Output 18.10.1 continued

Nonlinear OLS Parameter Estimates				
		Approx		Approx
Parameter	Estimate	Std Err	t Value	$\operatorname{Pr}>\|t\|$
qf	2.0413 E 8	681443	299.55	<. 0001
qb	4.2263 E 9	9133194	462.74	<. 0001
k2f	6451279	867022	7.44	<. 0001
k2r	0.007808	0.00103	7.55	<. 0001
1	-5.76977	0.4138	-13.94	<. 0001

Example 18.11: Monte Carlo Simulation

This example illustrates how the form of the error in a ODE model affects the results from a static and dynamic estimation. The differential equation studied is

$$
\frac{d y}{d t}=a-a y
$$

The analytical solution to this differential equation is

$$
y=1-\exp (-a t)
$$

The first data set contains errors that are strictly additive and independent. The data for this estimation are generated by the following DATA step:

```
data drive1;
    a = 0.5;
    do iter=1 to 100;
        do time = 0 to 50;
            y = 1 - exp(-a*time) + 0.1 *rannor(123);
            output;
        end;
    end;
run;
```

The second data set contains errors that are cumulative in form.

```
data drive2;
    a = 0.5;
    yp = 1.0 + 0.01 *rannor(123);
    do iter=1 to 100;
        do time = 0 to 50;
            y = 1 - exp(-a)*(1 - yp);
            yp = y + 0.01 *rannor(123);
            output;
        end;
```

```
    end;
run;
```

The following statements perform the 100 static estimations for each data set:

```
title1 'Monte Carlo Simulation of ODE';
proc model data=drive1 noprint;
    parm a 0.5;
    dert.y = a - a * y;
    fit y / outest=est;
    by iter;
run;
```

Similar statements are used to produce 100 dynamic estimations with a fixed and an unknown initial value. The first value in the data set is used to simulate an error in the initial value. The following PROC UNIVARIATE statements process the estimations:

```
proc univariate data=est noprint;
    var a;
    output out=monte mean=mean p5=p5 p95=p95;
run;
proc print data=monte;
run;
```

The results of these estimations are summarized in Table 18.6.

Table 18.6 Monte Carlo Summary, A=0.5

Estimation Type	Additive Error			Cumulative Error		
	mean	$\mathbf{p 9 5}$	$\mathbf{p 5}$	mean	$\mathbf{p 9 5}$	$\mathbf{p 5}$
static	0.77885	1.03524	0.54733	0.57863	1.16112	0.31334
dynamic fixed	0.48785	0.63273	0.37644	3.8546 E 24	8.88 E 10	-51.9249
dynamic unknown	0.48518	0.62452	0.36754	641704.51	1940.42	-25.6054

For this example model, it is evident that the static estimation is the least sensitive to misspecification.

Example 18.12: Cauchy Distribution Estimation

In this example a nonlinear model is estimated by using the Cauchy distribution. Then a simulation is done for one observation in the data.

The following DATA step creates the data for the model.

```
/* Generate a Cauchy distributed Y */
data c;
```

```
    format date monyy.;
    call streaminit(156789);
    do t=0 to 20 by 0.1;
    date=intnx('month','01jun90'd,(t*10)-1);
    x=rand('normal');
    e=rand('cauchy') + 10 ;
    y=exp (4*x)+e;
    output;
    end;
run;
```

The model to be estimated is

$$
\begin{aligned}
& y=e^{-a x}+\epsilon \\
& \epsilon \sim \operatorname{Cauchy}(n c)
\end{aligned}
$$

That is, the residuals of the model are distributed as a Cauchy distribution with noncentrality parameter $n c$.

The log likelihood for the Cauchy distribution is

$$
\text { like }=-\log \left(1+(x-n c)^{2} * \pi\right)
$$

The following SAS statements specify the model and the log-likelihood function.

```
title1 'Cauchy Distribution';
proc model data=c ;
    dependent y;
    parm a -2 nc 4;
    y=exp(-a*x);
        /* Likelihood function for the residuals */
    obj = log(1+(-resid.y-nc)**2 * 3.1415926);
    errormodel y ~ general(obj) cdf=cauchy(nc);
    fit y / outsn=s1 method=marquardt;
    solve y / sdata=s1 data=c(obs=1) random=1000
            seed=256789 out=out1;
run;
title 'Distribution of Y';
proc sgplot data=out1;
    histogram y;
run;
```

The FIT statement uses the OUTSN= option to output the Σ matrix for residuals from the normal distribution. The $\boldsymbol{\Sigma}$ matrix is 1×1 and has value 1.0 because it is a correlation matrix. The OUTS $=$ matrix is the scalar 2989.0. Because the distribution is univariate (no covariances), the OUTS = option would produce the same simulation results. The simulation is performed by using the SOLVE statement.

The distribution of y is shown in the following output.

Output 18.12.1 Distribution of Y

Example 18.13: Switching Regression Example

Take the usual linear regression problem

$$
y=\mathbf{x} \beta+u
$$

where Y denotes the n column vector of the dependent variable, \mathbf{X} denotes the ($n \times k$) matrix of independent variables, β denotes the k column vector of coefficients to be estimated, n denotes the number of observations ($i=1,2, \ldots, n$), and k denotes the number of independent variables.

You can take this basic equation and split it into two regimes, where the i th observation on y is
generated by one regime or the other:

$$
\begin{aligned}
& y_{i}=\sum_{j=1}^{k} \beta_{1 j} X_{j i}+u_{1 i}=x_{i}^{\prime} \beta_{1}+u_{1 i} \\
& y_{i}=\sum_{j=1}^{k} \beta_{2 j} X_{j i}+u_{2 i}=x_{i}^{\prime} \beta_{2}+u_{2 i}
\end{aligned}
$$

where $x_{h i}$ and $x_{h j}$ are the i th and j th observations, respectively, on x_{h}. The errors, $u_{1 i}$ and $u_{2 i}$, are assumed to be distributed normally and independently with mean zero and constant variance. The variance for the first regime is σ_{1}^{2}, and the variance for the second regime is σ_{2}^{2}. If $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ and $\beta_{1} \neq \beta_{2}$, the regression system given previously is thought to be switching between the two regimes.

The problem is to estimate $\beta_{1}, \beta_{2}, \sigma_{1}$, and σ_{2} without knowing a priori which of the n values of the dependent variable, y, was generated by which regime. If it is known a priori which observations belong to which regime, a simple Chow test can be used to test $\sigma_{1}^{2}=\sigma_{2}^{2}$ and $\beta_{1}=\beta_{2}$.

Using Goldfeld and Quandt's D-method for switching regression, you can solve this problem. Assume that observations exist on some exogenous variables $z_{1 i}, z_{2 i}, \ldots, z_{p i}$, where z determines whether the i th observation is generated from one equation or the other. The equations are given as follows:

$$
\begin{array}{ll}
y_{i}=x_{i}^{\prime} \beta_{1}+u_{1 i} & \text { if } \sum_{j=1}^{p} \pi_{j} z_{j i} \leq 0 \\
y_{i}=x_{i}^{\prime} \beta_{2}+u_{2 i} & \text { if } \sum_{j=1}^{p} \pi_{j} z_{j i}>0
\end{array}
$$

where π_{j} are unknown coefficients to be estimated. Define $d\left(z_{i}\right)$ as a continuous approximation to a step function. Replacing the unit step function with a continuous approximation by using the cumulative normal integral enables a more practical method that produces consistent estimates.

$$
d\left(z_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\sum \pi_{j} z_{j i}} \exp \left[-\frac{1}{2} \frac{\xi^{2}}{\sigma^{2}}\right] d \xi
$$

\mathbf{D} is the n dimensional diagonal matrix consisting of $d\left(z_{i}\right)$:

$$
\mathbf{D}=\left[\begin{array}{cccc}
d\left(z_{1}\right) & 0 & 0 & 0 \\
0 & d\left(z_{2}\right) & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & d\left(z_{n}\right)
\end{array}\right]
$$

The parameters to estimate are now the $k \beta_{1}$'s, the $k \beta_{2}{ }^{\prime} \mathrm{s}, \sigma_{1}^{2}, \sigma_{2}^{2}, p \pi$'s, and the σ introduced in the $d\left(z_{i}\right)$ equation. The σ can be considered as given a priori, or it can be estimated, in which case, the estimated magnitude provides an estimate of the success in discriminating between the two regimes (Goldfeld and Quandt 1976). Given the preceding equations, the model can be written as:

$$
Y=(\mathbf{I}-\mathbf{D}) \mathbf{X} \beta_{1}+\mathbf{D} \mathbf{X} \beta_{2}+W
$$

where $W=(\mathbf{I}-\mathbf{D}) U_{1}+\mathbf{D} U_{2}$, and W is a vector of unobservable and heteroscedastic error terms. The covariance matrix of W is denoted by $\boldsymbol{\Omega}$, where $\boldsymbol{\Omega}=(\mathbf{I}-\mathbf{D})^{2} \sigma_{1}^{2}+\mathbf{D}^{2} \sigma_{2}^{2}$. The maximum likelihood parameter estimates maximize the following log-likelihood function.

$$
\begin{aligned}
\log L= & -\frac{n}{2} \log 2 \pi-\frac{1}{2} \log |\boldsymbol{\Omega}|- \\
& \frac{1}{2} *\left[\left[Y-(\mathbf{I}-\mathbf{D}) \mathbf{X} \beta_{1}-\mathbf{D} X \beta_{2}\right]^{\prime} \mathbf{\Omega}^{-1}\left[Y-(\mathbf{I}-\mathbf{D}) \mathbf{X} \beta_{1}-\mathbf{D X} \beta_{2}\right]\right]
\end{aligned}
$$

As an example, you now can use this switching regression likelihood to develop a model of housing starts as a function of changes in mortgage interest rates. The data for this example are from the U.S. Census Bureau and cover the period from January 1973 to March 1999. The hypothesis is that there are different coefficients on your model based on whether the interest rates are going up or down.

So the model for z_{i} is

$$
z_{i}=p *\left(\operatorname{rate}_{i}-\operatorname{rate}_{i-1}\right)
$$

where rate ${ }_{i}$ is the mortgage interest rate at time i and p is a scale parameter to be estimated.
The regression model is

$$
\begin{array}{lll}
\operatorname{starts}_{i}=\text { intercept }_{1}+\operatorname{ar1} * \text { starts }_{i-1}+\text { djf1 } * \text { decjanfeb } & z_{i}<0 \\
\text { starts }_{i}=\text { intercept }_{2}+\operatorname{ar2} * \text { starts }_{i-1}+\text { djf2 } 2 * \text { decjanfeb } & z_{i}>=0
\end{array}
$$

where starts ${ }_{i}$ is the number of housing starts at month i and decjanfeb is a dummy variable that indicates that the current month is one of December, January, or February.

This model is written by using the following SAS statements:

```
title1 'Switching Regression Example';
proc model data=switch;
    parms sig1=10 sig2=10 int1 b11 b13 int2 b21 b23 p;
    bounds 0.0001 < sig1 sig2;
    decjanfeb = ( month(date) = 12 | month(date) <= 2 );
    a = p*dif(rate); /* Upper bound of integral */
    d = probnorm(a); /* Normal CDF as an approx of switch */
        /* Regime 1 */
    y1 = int1 + zlag(starts)*b11 + decjanfeb *b13 ;
            /* Regime 2 */
    y2 = int2 + zlag(starts) *b21 + decjanfeb *b23 ;
                            /* Composite regression equation */
    starts = (1 - d)*y1 + d*y2;
                            /* Resulting log-likelihood function */
    logL = (1/2)*( (log(2*3.1415)) +
```

```
            log( (sig1**2)*((1-d)**2) +(sig2**2)*(d**2) )
            + (resid.starts*( 1/( (sig1**2)*((1-d)**2) +
            (sig2**2)*(d**2) ) )*resid.starts) ) ;
errormodel starts ~ general(logL);
fit starts / method=marquardt converge=1.0e-5;
    /* Test for significant differences in the parms */
test int1 = int2 ,/ lm;
test b11 = b21 ,/ lm;
test b13 = b23 ,/ lm;
test sig1 = sig2 ,/ lm;
run;
```

Four TEST statements are added to test the hypothesis that the parameters are the same in both regimes. The parameter estimates and ANOVA table from this run are shown in Output 18.13.1.

Output 18.13.1 Parameter Estimates from the Switching Regression

The test results shown in Output 18.13 .2 suggest that the variance of the housing starts, SIG1 and SIG2, are significantly different in the two regimes. The tests also show a significant difference in the AR term on the housing starts.

Output 18.13.2 Test Results for Switching Regression

Test	Test Results			
	Type	Statistic	Pr > ChiSq	Label
Test0	L.M.	1.00	0.3185	int1 = int2
Test1	L.M.	15636	<. 0001	b 11 = b21
Test2	L.M.	1.45	0.2280	b 13 = b23
Test 3	L.M.	4.39	0.0361	sig1 = sig2

Example 18.14: Simulating from a Mixture of Distributions

This example illustrates how to perform a multivariate simulation by using models that have different error distributions. Three models are used. The first model has t distributed errors. The second model is a $\operatorname{GARCH}(1,1)$ model with normally distributed errors. The third model has a noncentral Cauchy distribution.

The following SAS statements generate the data for this example. The t and the CAUCHY data sets use a common seed so that those two series are correlated.

```
/* set distribution parameters */
%let df = 7.5;
%let sig1 = .5;
%let var2 = 2.5;
data t;
    format date monyy.;
    do date='1jun2001'd to '1nov2002'd;
                /* t-distribution with df,sig1 */
        t = . 05 * date + 5000 + &sig1*tinv(ranuni(1234),&df);
        output;
    end;
run;
data normal;
    format date monyy.;
    le = &var2;
    lv = &var2;
    do date='1jun2001'd to '1nov2002'd;
                            /* Normal with GARCH error structure */
        v = 0.0001 + 0.2 * le**2 + . 75 * lv;
        e = sqrt( v) * rannor(12345) ;
        normal = 25 + e;
        le = e;
        lv = v;
        output;
    end;
run;
```

```
data cauchy;
    format date monyy.;
    PI = 3.1415926;
    do date='1jun2001'd to '1nov2002'd;
        cauchy = -4 + tan((ranuni(1234) - 0.5) * PI);
        output;
    end;
run;
```

Since the multivariate joint likelihood is unknown, the models must be estimated separately. The residuals for each model are saved by using the OUT= option. Also, each model is saved by using the OUTMODEL= option. The ID statement is used to provide a variable in the residual data set to merge by. The XLAG function is used to model the $\operatorname{GARCH}(1,1)$ process. The XLAG function returns the lag of the first argument if it is nonmissing, otherwise it returns the second argument.

```
title1 't-distributed Errors Example';
proc model data=t outmod=tModel;
    parms df 10 vt 4;
    t = a * date + c;
    errormodel t ~ t( vt, df );
    fit t / out=tresid;
    id date;
run;
title1 'GARCH-distributed Errors Example';
proc model data=normal outmodel=normalModel;
    normal = b0 ;
    h.normal = arch0 + arch1 * xlag(resid.normal **2 , mse.normal)
            + GARCH1 * xlag(h.normal, mse.normal);
    fit normal /fiml out=nresid;
    id date;
run;
title1 'Cauchy-distributed Errors Example';
proc model data=cauchy outmod=cauchyModel;
    parms nc = 1;
    /* nc is noncentrality parm to Cauchy dist */
    cauchy = nc;
    obj = log(1+resid.cauchy**2 * 3.1415926);
    errormodel cauchy ~ general(obj) cdf=cauchy(nc);
    fit cauchy / out=cresid;
    id date;
run;
```

The simulation requires a covariance matrix created from normal residuals. The following DATA step statements use the inverse CDFs of the t and Cauchy distributions to convert the residuals to the normal distribution. The CORR procedure is used to create a correlation matrix that uses the
converted residuals.

```
/* Merge and normalize the 3 residual data sets */
data c; merge tresid nresid cresid; by date;
    t = probit(cdf("T", t/sqrt(0.2789), 16.58 ));
    cauchy = probit(cdf("CAUCHY", cauchy, -4.0623));
run;
proc corr data=c out=s;
    var t normal cauchy;
run;
```

Now the models can be simulated together by using the MODEL procedure SOLVE statement. The data set created by the CORR procedure is used as the correlation matrix.

```
title1 'Simulating Equations with Different Error Distributions';
/* Create one observation driver data set */
data sim; merge t normal cauchy; by date;
data sim; set sim(firstobs = 519 );
proc model data=sim model=( tModel normalModel cauchyModel );
    errormodel t ~ t( vt, df );
    errormodel cauchy ~ cauchy(nc);
    solve t cauchy normal / random=2000 seed=1962 out=monte
        sdata=s(where=(_type_="CORR"));
run;
```

An estimation of the joint density of the t and Cauchy distribution is created by using the KDE procedure. Bounds are placed on the Cauchy dimension because of its fat tail behavior. The joint PDF is shown in Output 18.14.1.

```
title "T and Cauchy Distribution";
proc kde data=monte;
    univar t / out=t_dens;
    univar cauchy / out=cauchy_dens;
    bivar t cauchy / out=density
        plots=all;
run;
```

Output 18.14.1 Bivariate Density of t and Cauchy, Distribution of t by Cauchy

Output 18.14.2 Bivariate Density of t and Cauchy, Kernel Density for t and Cauchy

Output 18.14.3 Bivariate Density of t and Cauchy, Distribution and Kernel Density for t and Cauchy

Output 18.14.4 Bivariate Density of t and Cauchy, Distribution of t by Cauchy

Output 18.14.5 Bivariate Density of t and Cauchy, Kernel Density for t and Cauchy

Output 18.14.6 Bivariate Density of t and Cauchy, Distribution and Kernel Density for t and Cauchy

Example 18.15: Simulated Method of Moments-Simple Linear Regression

This example illustrates how to use SMM to estimate a simple linear regression model for the following process:

$$
y=a+b x+\epsilon, \epsilon \sim \text { iid } N\left(0, s^{2}\right)
$$

In the following SAS statements, y sim is simulated, and the first moment and the second moment of y sim are compared with those of the observed endogenous variable y.

```
title "Simple regression model";
data regdata;
    do i=1 to 500;
```

```
        x = rannor( 1013 );
        Y = 2 + 1.5 * x + 1.5 * rannor( 9871 );
        output;
    end;
run;
proc model data=regdata;
    parms a b s;
    instrument x;
    ysim = (a+b*x) + s * rannor( 8003 );
    y = ysim;
    eq.ysq = y*y - ysim*ysim;
    fit y ysq / gmm ndraw;
    bound s > 0;
run;
```

The output of the MODEL procedure is shown in Output 18.15.1:
Output 18.15.1 PROC MODEL Output

Simple regression m				
The MODEL Procedure				
Model Summary				
$\begin{array}{ll}\text { Model Variables } & 1 \\ \text { Parameters } & 3\end{array}$				
Equations				
Number of Statements 4				
Parameters abs Equations ysq Y				
The 2 Equations to Estimate				
	$\begin{array}{r} \mathrm{Y} \\ \mathrm{ysq} \\ \text { Instrument } \end{array}$	$\begin{aligned} & (a(1), b \\ & (a, b, s) \\ & \mathbf{x} \end{aligned}$, s)	
Nonlinear GMM Parameter Estimates				
	Approx			Approx
Parameter	Estimate	Std Err	t Value	Pr > $\|t\|$
a	2.065983	0.0657	31.45	<. 0001
b	1.511075	0.0565	26.73	<. 0001
s	1.483358	0.0498	29.78	<. 0001

Example 18.16: Simulated Method of Moments-AR(1) Process

This example illustrates how to use SMM to estimate an $\operatorname{AR}(1)$ regression model for the following process:

$$
\begin{aligned}
y_{t} & =a+b x_{t}+u_{t} \\
u_{t} & =\alpha u_{t-1}+\epsilon_{t} \\
\epsilon_{t} & \sim \text { iid } N\left(0, s^{2}\right)
\end{aligned}
$$

In the following SAS statements, ysim is simulated by using this model, and the endogenous variable y is set to be equal to y sim. The MOMENT statement creates two more moments for the estimation. One is the second moment and the other is the first-order autocovariance. The NPREOBS $=20$ option instructs PROC MODEL to run the simulation 20 times before ysim is compared to the first observation of y. Because the initial $\operatorname{zlag}(u)$ is zero, the first $y \operatorname{sim}$ is $a+b * x+s *$ rannor (8003). Without the NPREOBS option, this ysim is matched with the first observation of y. With NPREOBS, this y sim, along with the next $19 y$ sim, is thrown away, and the moment match starts with the twenty-first y sim with the first observation of y. This way, the initial values do not exert a large inference on the simulated endogenous variables.

```
%let nobs=500;
data ardata;
    lu =0;
    do i=-10 to &nobs;
        x = rannor( 1011 );
        e = rannor( 1011 );
        u = .6 * lu + 1.5 * e;
        Y = 2 + 1.5 * x + u;
        lu = u;
        if i > O then output;
    end;
run;
title1 'Simulated Method of Moments for AR(1) Process';
proc model data=ardata ;
    parms a b s 1 alpha .5;
    instrument x;
    u = alpha * zlag(u) + s * rannor( 8003 );
    ysim = a + b * x + u;
    y = ysim;
    eq.ysq = y*y - ysim*ysim;
    eq.ylagy = y * lag(y) - ysim * lag( ysim );
    fit y ysq ylagy / gmm npreobs=10 ndraw=10;
    bound s > 0, 1 > alpha > 0;
run;
```

The output of the MODEL procedure is shown in Output 18.16.1:

Output 18.16.1 PROC MODEL Output

Example 18.17: Simulated Method of Moments—Stochastic Volatility Model

This example illustrates how to use SMM to estimate a stochastic volatility model as in Andersen and Sorensen (1996):

$$
\begin{aligned}
y_{t} & =\sigma_{t} z_{t} \\
\log \left(\sigma_{t}^{2}\right) & =a+b \log \left(\sigma_{t-1}^{2}\right)+s u_{t} \\
\left(z_{t}, u_{t}\right) & \sim \text { iid } N\left(0, I_{2}\right)
\end{aligned}
$$

This model is widely used in modeling the return process of stock prices and foreign exchange rates. This is called the stochastic volatility model because the volatility is stochastic as the random variable u_{t} appears in the volatility equation. The following SAS statements use three moments: absolute value, the second-order moment, and absolute value of the first-order autoregressive moment.

Note the ADJSMMV option in the FIT statement to request the SMM covariance adjustment for the parameter estimates. Although these moments have closed form solution as shown by Andersen and Sorensen (1996), the simulation approach significantly simplifies the moment conditions.

```
%let nobs=1000;
data _tmpdata;
    a = -0.736; b=0.9; s=0.363;
    ll=sqrt( exp(a/(1-b)));;
    do i=-10 to &nobs;
        u = rannor( 101 );
        z = rannor( 98761 );
        lnssq = a+b*log(ll**2) +s*u;
        st = sqrt(exp(lnssq));
        ll = st;
        y = st * z;
        if i > O then output;
    end;
run;
title1 'Simulated Method of Moments for Stochastic Volatility Model';
proc model data=_tmpdata ;
    parms a b . }5\mathrm{ s 1;
    instrument _exog_ / intonly;
    u = rannor( 8801 );
    z = rannor( 9701 );
    lsigmasq = xlag(sigmasq,exp(a));
    lnsigmasq = a + b * log(lsigmasq) + s * u;
    sigmasq = exp( lnsigmasq );
    ysim = sqrt(sigmasq) * z;
    eq.m1 = abs(y) - abs(ysim);
    eq.m2 = y**2 - ysim**2;
    eq.m5 = abs(y*lag(y))-abs(ysim*lag(ysim));
    fit m1 m2 m5 / gmm npreobs=10 ndraw=10;
    bound s > 0, 1 > b > 0;
run;
```

The output of the MODEL procedure is shown in Output 18.17.1.
Output 18.17.1 PROC MODEL Output

Simulated Method of Moments for Stochastic Volatility Model	
The MODEL Procedure	
Model Summary	
Parameters	3
Equations	3
Number of Statements	10
Program Lag Length	1

Output 18.17.1 continued

Example 18.18: Duration Data Model with Unobserved Heterogeneity

All of the previous three models actually have closed-form moment conditions, so the simulation approach is not necessarily required for the estimation. This example illustrates how to use SMM to estimate a model for which there is no closed-form solution for the moments and thus the traditional GMM method does not apply. The model is the duration data model with unobserved heterogeneity in Gourieroux and Monfort (1993):

$$
\begin{aligned}
y_{i} & =-\exp \left(-b x_{i}-\sigma u_{i}\right) \log \left(v_{i}\right) \\
u_{i} & \sim N(0,1) \quad v_{i} \sim U_{[0,1]}
\end{aligned}
$$

The SAS statements are:

```
title1 'SMM for Duration Model with Unobserved Heterogeneity';
%let nobs=1000;
data durationdata;
    b=0.9; s=0.5;
    do i=1 to &nobs;
        u = rannor( 1011 );
        v = ranuni( 1011 );
        x = 2 * ranuni( 1011 );
        y = -exp (-b * x + s * u) * log(v);
        output;
    end;
run;
```

```
proc model data=durationdata;
    parms b . 5 s 1;
    instrument x;
    u = rannor( 1011 );
    v = ranuni( 1011 );
    y = -exp(-b * x + s * u) * log(v);
    moment y = (2 3 4);
    fit y / gmm ndraw=10 ;* maxiter=500;
    bound s > 0, b > 0;
run;
```

The output of the MODEL procedure is shown in Output 18.18.1.
Output 18.18.1 PROC MODEL Output

SMM for Duration Model with Unobserved Heterogeneity The MODEL Procedure Model Summary Model Variables y Parameters (Value) $b(0.5) s(1)$ Equations _moment_3 _moment_2 _moment_1 y The 4 Equations to Estimate $\begin{aligned} \text { moment_3 } & =F(b, s) \\ \text { _moment_2 } & =F(b, s) \\ \text { _moment_1 } & =F(b, s) \\ y & =F(b, s) \\ \text { Instruments } & 1 \times \end{aligned}$ Nonlinear GMM Parameter Estimates

Example 18.19: EMM Estimation of a Stochastic Volatility Model

The efficient method of moments (EMM), introduced by Bansal et al. (1993 and 1995) and Gallant and Tauchen (2001), can be considered a variant of SMM. The idea is to match the efficiency of the maximum likelihood (ML) estimation with the flexibility of the SMM procedure. ML itself can be interpreted as a method of moments procedure, where the score vector, the vector of derivatives of the log-likelihood function with respect to the parameters, provides the exactly identifying moment conditions. EMM employs an auxiliary (or pseudo) model that closely matches the true model. The score vector of the auxiliary model provides the moment conditions in the SMM step.

This example uses the SMM feature of PROC MODEL to estimate the simple stochastic volatility (SV) model of Example 18.17 with the EMM method.

Suppose that your data are the time series $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, and the model that you want to estimate, or the structural model, is characterized by the vector of parameters $\boldsymbol{\theta}$. For the SV model, $\boldsymbol{\theta}$ is given by (a, b, s).

The first step of the EMM method is to fit the data with an auxiliary model (or score generator) that has transition density $f\left(y_{t} \mid Y_{t-1}, \eta\right)$, parametrized by the pseudo parameter η, where $Y_{t-1}=$ $\left\{y_{t-1}, \ldots, y_{1}\right\}$. The auxiliary model must approximate the true data-generating process as closely as possible and be such that ML estimation is feasible.

The only identification requirement is that the dimension of the pseudo parameter η be greater than or equal to that of the structural parameter $\boldsymbol{\theta}$.

Andersen, Chung, and Sorensen (1999) showed that the $\operatorname{GARCH}(1,1)$ is an appropriate auxiliary model that leads to a good performance of the EMM estimator for the SV model.

The analytical expression for the $\operatorname{GARCH}(1,1)$ model with mean zero is

$$
\begin{aligned}
y_{t} & =\sigma_{t} z_{t} \\
\sigma_{t}^{2} & =\omega+\alpha y_{t-1}+\beta \sigma_{t-1}^{2}
\end{aligned}
$$

The pseudo parameter vector η is given by (ω, α, β).
One advantage of such a class of models is that the conditional density of y_{t} is Gaussian-that is,

$$
f\left(y_{t} \mid Y_{t-1}, \eta\right) \propto \frac{1}{\sigma_{t}} \exp \left(-\frac{y_{t}^{2}}{2 \sigma_{t}^{2}}\right)
$$

Therefore the score vector can easily be computed analytically.
The AUTOREG procedure provides the ML estimates, $\hat{\boldsymbol{\eta}}_{n}$. The output is stored in the garchout data set, while the estimates are stored in the garchest data set.

```
titlel 'Efficient Method of Moments for Stochastic Volatility Model';
/* estimate GARCH (1,1) model */
proc autoreg data=svdata(keep=y)
```

```
outest=garchest
noprint covout;
    model y = / noint garch=(q=1,p=1);
    output out=garchout cev=gsigmasq r=resid;
run;
```

If the pseudo model is close enough to the structural model, in a suitable sense, Gallant and Long (1997) showed that a consistent estimator of the asymptotic covariance matrix of the sample pseudoscore vector can be obtained from the formula

$$
\hat{\mathbf{V}}_{n}=\frac{1}{n} \sum_{t=1}^{n} s_{f}\left(Y_{t}, \hat{\boldsymbol{\eta}}_{n}\right) s_{f}\left(Y_{t}, \hat{\boldsymbol{\eta}}_{n}\right)^{\prime}
$$

where $s_{f}\left(Y_{t}, \hat{\boldsymbol{\eta}}_{n}\right)=\left(\partial / \partial \boldsymbol{\eta}_{n}\right) \log f\left(y_{t} \mid Y_{t-1}, \hat{\boldsymbol{\eta}}_{n}\right)$ denotes the score function of the auxiliary model computed at the ML estimates.

The ML estimates of the $\operatorname{GARCH}(1,1)$ model are used in the following SAS statements to compute the variance-covariance matrix $\hat{\mathbf{V}}_{n}$.

```
/* compute the V matrix */
data vvalues;
    set garchout(keep=y gsigmasq resid);
    /* compute scores of GARCH model */
    score_1 = (-1 + y**2/gsigmasq)/ gsigmasq;
    score_2 = (-1 + Y**2/gsigmasq) *lag(gsigmasq) / gsigmasq;
    score_3 = (-1 + y**2/gsigmasq) *lag(y**2) / gsigmasq;
    array score{*} score_1-score_3;
    array v_t{*} v_t_1-v_t_6;
    array v{*} v_1-v_6;
    /* compute external product of score vector */
    do i=1 to 3;
        do j=i to 3;
                v_t{j*(j-1)/2 + i} = score{i}*score{j};
        end;
    end;
    /* average them over t */
    do s=1 to 6;
        v{s}+ v_t{s}/&nobs;
    end;
run;
```

The $\hat{\mathbf{V}}$ matrix must be formatted to be used with the VDATA= option of the MODEL procedure. See the section "VDATA= Input data set" on page 1108 for more information about the VDATA= data set.

```
/* Create a VDATA dataset acceptable to PROC MODEL */
/* Transpose the last obs in the dataset */
proc transpose data=vvalues(firstobs=&nobs keep=v_1-v_6)
```

```
out=tempv;
run;
/* Add eq and inst labels */
data vhat;
    set tempv(drop=_name_);
    value = col1;
    drop col1;
    input _type_ $ eq_row $ eq_col $ inst_row $ inst_col $; *$;
    datalines;
            gmm m1 m1 1 1 /* intcpt is the only inst we use */
            gmm m1 m2 1 1
            gmm m2 m2 1 1
            gmm m1 m3 1 1
            gmm m2 m3 1 1
            gmm m3 m3 1 1
        ;
```

The last step of the EMM procedure is to estimate $\boldsymbol{\theta}$ by using SMM, where the moment conditions are given by the scores of the auxiliary model.

Given a fixed value of the parameter vector $\boldsymbol{\theta}$ and an arbitrarily large T, one can simulate a series $\left\{\hat{y}_{1}(\boldsymbol{\theta}), \hat{y}_{2}(\boldsymbol{\theta}), \ldots, \hat{y}_{T}(\boldsymbol{\theta})\right\}$ from the structural model. The EMM estimator is the value $\hat{\boldsymbol{\theta}}_{n}$ that minimizes the quantity

$$
m_{T}\left(\boldsymbol{\theta}, \hat{\boldsymbol{\eta}}_{n}\right)^{\prime} \hat{\mathbf{v}}_{n}^{-1} m_{T}\left(\boldsymbol{\theta}, \hat{\boldsymbol{\eta}}_{n}\right)
$$

where

$$
m_{T}\left(\boldsymbol{\theta}, \hat{\boldsymbol{\eta}}_{n}\right)=\frac{1}{T} \sum_{k=1}^{T} s_{f}\left(\hat{Y}_{k}(\boldsymbol{\theta}), \hat{\boldsymbol{\eta}}_{n}\right)
$$

is the sample moment condition evaluated at the fixed estimated pseudo parameter $\hat{\boldsymbol{\eta}}_{n}$. Note that the target function depends on the parameter $\boldsymbol{\theta}$ only through the simulated series \hat{y}_{k}.

The following statements generate a data set that contains $T=20,000$ replicates of the estimated pseudo parameter $\hat{\eta}_{n}$ and that is then input to the MODEL procedure. The EMM estimates are found by using the SMM option of the FIT statement. The $\hat{\mathbf{V}}_{n}$ matrix computed above serves as weighting matrix by using the VDATA = option, and the scores of the $\operatorname{GARCH}(1,1)$ auxiliary model evaluated at the ML estimates are the moment conditions in the GMM step.

Since the number of structural parameters to estimate (3) is equal to the number of moment equations (3) times the number of instruments (1), the model is exactly identified and the objective function has value zero at the minimum.

For simplicity, the starting values are set to the true values of the parameters.

```
/* USE SMM TO FIND EMM ESTIMATES */
/* Generate dataset of length T */
data emm;
    set garchest(obs=1 keep = _ah_0 _ah_1 _gh_1 _mse_);
    do i=1 to 20000;
        output;
```

```
    end;
    drop i;
run;
title2 'EMM estimates';
/* Find the EMM estimates */
proc model data=emm maxiter=1000;
    parms a -0.736 b 0.9 s 0.363;
    instrument _exog_ / intonly;
    /* Describe the structural model */
    u = rannor( 8801 );
    z = rannor( 9701 );
    lsigmasq = xlag(sigmasq,exp(a));
    lnsigmasq = a + b * log(lsigmasq) + s * u;
    sigmasq = exp( lnsigmasq );
    ysim = sqrt(sigmasq) * z;
    /* Volatility of the GARCH model */
    gsigmasq = _ah_0 + _gh_1*xlag(gsigmasq, _mse_)
            + _ah_1*xlag(ysim**2, _mse_);
    /* Use scores of the GARCH model as moment conditions */
    eq.m1 = (-1 + ysim**2/gsigmasq)/ gsigmasq;
    eq.m2 = (-1 + ysim**2/gsigmasq) *xlag(gsigmasq, _mse_) / gsigmasq;
    eq.m3 = (-1 + ysim**2/gsigmasq)*xlag(ysim**2, _mse_) / gsigmasq;
    /* Fit scores using SMM and estimated Vhat */
    fit m1 m2 m3 / gmm npreobs=10 ndraw=1 /* smm options */
            vdata=vhat /* use estimated Vhat */
            kernel=(bart,0,) /* turn smoothing off */;
    bounds s > 0, 1>b>0;
run;
```

The output of the MODEL procedure is shown in Output 18.19.1.
Output 18.19.1 PROC MODEL Output

Efficient Method of Moments for Stochastic Volatility Model EMM estimates

The MODEL Procedure

Model Summary

Parameters 3
Equations 3
Number of Statements 11

Parameters (Value) $a(-0.736) b(0.9) s(0.363)$
Equations m1 m2 m3

Output 18.19.1 continued

Example 18.20: Illustration of ODS Graphics

This example illustrates graphical output from PROC MODEL. This is a continuation of the section "Nonlinear Regression Analysis" on page 949. These graphical displays are requested by specifying the ODS GRAPHICS ON statement. For information about the graphics available in the MODEL procedure, see the section "ODS Graphics" on page 1115.

The following statements show how to generate ODS graphics plots with the MODEL procedure. The plots are displayed in Output 18.20.1 and Output 18.20.2. Note that the variable date in the ID statement is used to define the horizontal tick mark values when appropriate.

```
title1 'Example of Graphical Output from PROC MODEL';
proc model data=sashelp.citimon;
    lhur = 1/(a * ip + b) + c;
    fit lhur;
    id date;
run;
```

Output 18.20.1 Diagnostics Plots

Output 18.20.2 Diagnostics Plots

You can also obtain the plots in the diagnostics panel as separate graphs by specifying the PLOTS(UNPACK) option. These plots are displayed in Output 18.20.3 through Output 18.20.10.

```
title1 'Unpacked Graphical Output from PROC MODEL';
proc model data=sashelp.citimon plots(unpack);
    lhur = 1/(a * ip + b) + c;
    fit lhur;
    id date;
run;
```

Output 18.20.3 Studentized Residuals Plot

Output 18.20.4 Cook's D Plot

Output 18.20.5 Predicted versus Actual Plot

Output 18.20.6 Autocorrelation of Residuals Plot

Output 18.20.7 Partial Autocorrelation of Residuals Plot

Output 18.20.8 Inverse Autocorrelation of Residuals Plot

Output 18.20.9 Q-Q Plot of Residuals

Output 18.20.10 Histogram of Residuals

References

Aiken, R.C., ed. (1985), Stiff Computation, New York: Oxford University Press.
Amemiya, T. (1974), "The Nonlinear Two-Stage Least-Squares Estimator," Journal of Econometrics, 2, 105-110.

Amemiya, T. (1977), "The Maximum Likelihood Estimator and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model," Econometrica, 45 (4), 955-968.

Amemiya, T. (1985), Advanced Econometrics, Cambridge, MA: Harvard University Press.
Andersen, T.G., Chung, H-J., and Sorensen, B.E. (1999), "Efficient Method of Moments Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Econometrics, 91, 61-87.

Andersen, T.G. and Sorensen, B.E. (1996), "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business and Economic Statistics, 14, 328-352.

Andrews, D.W.K. (1991), "Heteroscedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, 59 (3), 817-858.

Andrews, D.W.K. and Monahan, J.C. (1992), "Improved Heteroscedasticity and Autocorrelation Consistent Covariance Matrix Estimator,"Econometrica, 60 (4), 953-966.

Bansal, R., Gallant, A.R., Hussey, R., and Tauchen, G.E. (1993), "Computational Aspects of Nonparametric Simulation Estimation," Belsey, D.A., ed., Computational Techniques for Econometrics and Economic Analysis, Boston, MA: Kluwer Academic Publishers, 3-22.

Bansal, R., Gallant, A.R., Hussey, R., and Tauchen, G.E. (1995), "Nonparametric Estimation of Structural Models for High-Frequency Currency Market Data," Journal of Econometrics, 66, 251287.

Bard, Yonathan (1974), Nonlinear Parameter Estimation, New York: Academic Press.
Bates, D.M. and Watts, D.G. (1981), "A Relative Offset Orthogonality Convergence Criterion for Nonlinear Least Squares," Technometrics, 23 (2), 179-183.

Belsley, D.A., Kuh, E., and Welsch, R.E. (1980), Regression Diagnostics, New York: John Wiley \& Sons.

Binkley, J.K. and Nelson, G. (1984), "Impact of Alternative Degrees of Freedom Corrections in Two and Three Stage Least Squares," Journal of Econometrics, 24 (3) 223-233.

Bowden, R.J. and Turkington, D.A. (1984), Instrumental Variables, Cambridge: Cambridge University Press.

Bratley, P., Fox, B.L., and H. Niederreiter (1992), "Implementation and Tests of Low-Discrepancy Sequences," ACM Transactions on Modeling and Computer Simulation, 2 (3), 195-213.

Breusch, T.S. and Pagan, A.R., (1979), "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, 47 (5), 1287-1294.

Breusch, T.S. and Pagan, A.R. (1980), "The Lagrange Multiplier Test and Its Applications to Model Specification in Econometrics," Review of Econometric Studies, 47, 239-253.

Byrne, G.D. and Hindmarsh, A.C. (1975), "A Polyalgorithm for the Numerical Solution of ODEs," ACM TOMS, 1 (1), 71-96.

Calzolari, G. and Panattoni, L. (1988), "Alternative Estimators of FIML Covariance Matrix: A Monte Carlo Study," Econometrica, 56 (3), 701-714.

Chan, K.C., Karolyi, G.A., Longstaff, F.A., and Sanders, A.B. (1992), "An Empirical Comparison of Alternate Models of the Short-Term Interest Rate," The Journal of Finance, 47 (3), 1209-1227.

Christensen, L.R., Jorgenson, D.W., and L.J. Lau (1975), "Transcendental Logarithmic Utility Functions," American Economic Review, 65, 367-383.

Dagenais, M.G. (1978), "The Computation of FIML Estimates as Iterative Generalized Least Squares Estimates in Linear and Nonlinear Simultaneous Equation Models," Econometrica, 46, 6, 1351-1362.

Davidian, M and Giltinan, D.M. (1995), Nonlinear Models for Repeated Measurement Data, London: Chapman \& Hall.

Davidson, R. and MacKinnon, J.G. (1993), Estimation and Inference in Econometrics, New York: Oxford University Press.

Duffie, D. and Singleton, K.J. (1993), "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica 61, 929-952.

Fair, R.C. (1984), Specification, Estimation, and Analysis of Macroeconometric Models, Cambridge: Harvard University Press.

Ferson, Wayne E. and Foerster, Stephen R. (1993), "Finite Sample Properties of the Generalized Method of Moments in Tests of Conditional Asset Pricing Models," Working Paper No. 77, University of Washington.

Fox, B.L. (1986), "Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators," ACM Transactions on Mathematical Software, 12 (4), 362-276.

Gallant, A.R. (1977), "Three-Stage Least Squares Estimation for a System of Simultaneous, Nonlinear, Implicit Equations," Journal of Econometrics, 5, 71-88.

Gallant, A.R. (1987), Nonlinear Statistical Models, New York: John Wiley and Sons.
Gallant, A.R. and Holly, A. (1980), "Statistical Inference in an Implicit, Nonlinear, Simultaneous Equation Model in the Context of Maximum Likelihood Estimation," Econometrica, 48 (3), 697720.

Gallant, A.R. and Jorgenson, D.W. (1979), "Statistical Inference for a System of Simultaneous, Nonlinear, Implicit Equations in the Context of Instrumental Variables Estimation," Journal of Econometrics, 11, 275-302.

Gallant, A.R. and Long, J. (1997). "Estimating Stochastic Differential Equations Efficiently by Minimum Chi-squared," Biometrika, 84, 125-141.

Gallant, A.R. and Tauchen, G.E. (2001), "Efficient Method of Moments," Working Paper, [http://www.econ.duke.edu/~get/wpapers/ee.pdf] accessed 12 September 2001.

Gill, P.E., Murray, W., and Wright, M.H. (1981), Practical Optimization, New York: Academic Press.

Godfrey, L.G. (1978a), "Testing Against General Autoregressive and Moving Average Error Models when the Regressors Include Lagged Dependent Variables," Econometrica, 46, 1293-1301.

Godfrey, L.G. (1978b), "Testing for Higher Order Serial Correlation in Regression Equations when the Regressors Include Lagged Dependent Variables," Econometrica, 46, 1303-1310.

Goldfeld, S.M. and Quandt, R.E. (1972), Nonlinear Methods in Econometrics, Amsterdam: NorthHolland Publishing Company.

Goldfeld, S.M. and Quandt, R.E. (1973), "A Markov Model for Switching Regressions,"Journal of Econometrics, 3-16.

Goldfeld, S.M. and Quandt, R.E. (1973), "The Estimation of Structural Shifts by Switching Regressions," Annals of Economic and Social Measurement, 2/4.

Goldfeld, S.M. and Quandt, R.E. (1976), Studies in Nonlinear Estimation, Cambridge, MA: Ballinger Publishing Company.

Goodnight, J.H. (1979), "A Tutorial on the SWEEP Operator," The American Statistician, 33, 149158.

Gourieroux, C. and Monfort, A. (1993), "Simulation Based Inference: A Survey with Special Reference to Panel Data Models,"Journal of Econometrics, 59, 5-33.

Greene, William H. (1993), Econometric Analysis, New York: Macmillian Publishing Company.
Greene, William H. (2004), Econometric Analysis, New York: Macmillian Publishing Company.
Gregory, A.W. and Veall, M.R. (1985), "On Formulating Wald Tests for Nonlinear Restrictions," Econometrica, 53, 1465-1468.

Grunfeld, Y. and Griliches, "Is Aggregation Necessarily Bad ?" Review of Economics and Statistics, February 1960, 113-134.

Hansen, L.P. (1982), "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, 50 (4), 1029-1054.

Hansen, L.P. (1985), "A Method for Calculating Bounds on the Asymptotic Covariance Matrices of Generalized Method of Moments Estimators," Journal of Econometrics, 30, 203-238.

Hatanaka, M. (1978), "On the Efficient Estimation Methods for the Macro-Economic Models Nonlinear in Variables,"Journal of Econometrics, 8, 323-356.

Hausman, J. A. (1978), "Specification Tests in Econometrics," Econometrica, 46(6), 1251-1271.
Hausman, J.A. and Taylor, W.E. (1982), "A Generalized Specification Test," Economics Letters, 8, 239-245.

Henze, N. and Zirkler, B. (1990), "A Class of Invariant Consistent Tests for Multivariate Normality," Communications in Statistics—Theory and Methods, 19 (10), 3595-3617.

Johnston, J. (1984), Econometric Methods, Third Edition, New York: McGraw-Hill.
Jorgenson, D.W. and Laffont, J. (1974), "Efficient Estimation of Nonlinear Simultaneous Equations with Additive Disturbances," Annals of Social and Economic Measurement, 3, 615-640.

Joy, C., Boyle, P.P., and Tan, K.S. (1996), "Quasi-Monte Carlo Methods in Numerical Finance," Management Science, 42 (6), 926-938.

LaMotte, L.R. (1994), "A Note on the Role of Independence in t Statistics Constructed From Linear Statistics in Regression Models," The American Statistician, 48 (3), 238-239.

Lee, B. and Ingram, B. (1991), "Simulation Estimation of Time Series Models," Journal of Econometrics, 47, 197-205.

MacKinnon, J.G. and White H. (1985), "Some Heteroskedasticity Consistent Covariance Matrix Estimators with Improved Finite Sample Properties," Journal of Econometrics, 29, 305-325.

Maddala, G.S. (1977), Econometrics, New York: McGraw-Hill.
Mardia, K. V. (1974), "Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies," The Indian Journal of Statistics 36 (B) pt. 2, 115-128.

Mardia, K. V. (1970), "Measures of Multivariate Skewness and Kurtosis with Applications," Biometrika 57 (3), 519-530.

Matis, J.H., Miller, T.H., and Allen, D.M. (1991), Metal Ecotoxicology Concepts and Applications, ed. M.C Newman and A. W. McIntosh, Chelsea, MI; Lewis Publishers.

Matsumoto, M. and Nishimura, T. (1998), "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator," ACM Transactions on Modeling and Computer Simulation, 8, 3-30.

McFadden, D. (1989), "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, 57, 995-1026.

McNeil, A.J., Frey, R., and Embrechts, P. (2005), Quantitative Risk Management: Concepts, Techniques and Tools Princeton Series in Finance, Princeton University Press, 2005.

Messer, K. and White, H. (1994), "A Note on Computing the Heteroskedasticity Consistent Covariance Matrix Using Instrumental Variable Techniques," Oxford Bulletin of Economics and Statistics, 46, 181-184.

Mikhail, W.M. (1975), "A Comparative Monte Carlo Study of the Properties of Economic Estimators," Journal of the American Statistical Association, 70, 94-104.

Miller, D.M. (1984), "Reducing Transformation Bias in Curve Fitting," The American Statistician, 38 (2), 124-126.

Morelock, M.M., Pargellis, C.A., Graham, E.T., Lamarre, D., and Jung, G. (1995), "Time-Resolved Ligand Exchange Reactions: Kinetic Models for Competitive Inhibitors with Recombinant Human Renin," Journal of Medical Chemistry, 38, 1751-1761.

Nelsen, Roger B. (1999), Introduction to Copulas, New York: Springer-Verlag.
Newey, W.K. and West, D. W. (1987), "A Simple, Positive Semi-Definite, Heteroscedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, 55, 703-708.

Noble, B. and Daniel, J.W. (1977), Applied Linear Algebra, Englewood Cliffs, NJ: Prentice-Hall.
Ortega, J. M. and Rheinbolt, W.C. (1970), "Iterative Solution of Nonlinear Equations in Several

Variables," Burlington, MA: Academic Press.
Pakes, A. and Pollard, D. (1989), "Simulation and the Asymptotics of Optimization Estimators," Econometrica 57, 1027-1057.

Parzen, E. (1957), "On Consistent Estimates of the Spectrum of a Stationary Time Series," Annals of Mathematical Statistics, 28, 329-348.

Pearlman, J. G. (1980), "An Algorithm for Exact Likelihood of a High-Order AutoregressiveMoving Average Process," Biometrika, 67 (1), 232-233.

Petzold, L.R. (1982), "Differential/Algebraic Equations Are Not ODEs," SIAM Journal on Scientific and Statistical Computing, 3, 367-384.

Phillips, C.B. and Park, J.Y. (1988), "On Formulating Wald Tests of Nonlinear Restrictions," Econometrica, 56, 1065-1083.

Pindyck, R.S. and Rubinfeld, D.L. (1981), Econometric Models and Economic Forecasts, Second Edition, New York: McGraw-Hill.

Savin, N.E. and White, K.J. (1978), "Testing for Autocorrelation with Missing Observations," Econometrics, 46, 59-67.

Sobol, I.M., A Primer for the Monte Carlo Method, Boca Raton, FL: CRC Press, 1994.
Srivastava, V. and Giles, D.E.A., (1987), Seemingly Unrelated Regression Equation Models, New York: Marcel Dekker.

Theil, H. (1971), Principles of Econometrics, New York: John Wiley \& Sons.
Thursby, J., (1982), "Misspecification, Heteroscedasticity, and the Chow and Goldfield-Quandt Test," Review of Economics and Statistics, 64, 314-321.

Venzon, D.J. and Moolgavkar, S.H. (1988), "A Method for Computing Profile-Likelihood Based Confidence Intervals," Applied Statistics, 37, 87-94.

White, Halbert, (1980), "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, 48 (4), 817-838.

Wu, D. M. (July 1973), "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, 41 (4), 733-750.

Chapter 19

The PANEL Procedure

Contents
Overview: PANEL Procedure . 1262
Getting Started: PANEL Procedure . 1264
Specifying the Input Data . 1264
Specifying the Regression Model . 1265
Unbalanced Data . 1266
Introductory Example . 1266
Syntax: PANEL Procedure . 1268
Functional Summary . 1268
PROC PANEL Statement . 1270
BY Statement . 1271
CLASS Statement . 1272
FLATDATA Statement . 1272
ID Statement . 1273
INSTRUMENT Statement . 1273
LAG, ZLAG, XLAG, SLAG or CLAG Statement 1274
MODEL Statement . 1276
OUTPUT Statement . 1279
RESTRICT Statement . 1280
TEST Statement . 1280
Details: PANEL Procedure . 1282
Missing Values . 1282
Computational Resources . 1282
Restricted Estimates . 1282
Notation . 1283
The One-Way Fixed-Effects Model . 1284
The Two-Way Fixed-Effects Model . 1285
Balanced Panels . 1286
Unbalanced Panels . 1288
Between Estimators . 1291
Pooled Estimator . 1291
The One-Way Random-Effects Model . 1292
The Two-Way Random-Effects Model . 1295
Parks Method (Autoregressive Model) . 1300
Da Silva Method (Variance-Component Moving-Average Model) 1302
Dynamic Panel Estimator 1304
Specification Testing For Dynamic Panel 1310
Instrument Choice 1311
Linear Hypothesis Testing 1312
Heteroscedasticity-Corrected Covariance Matrices 1313
R-Square 1316
Specification Tests 1317
Troubleshooting 1318
ODS Graphics 1320
The OUTPUT OUT= Data Set 1320
The OUTEST= Data Set 1321
The OUTTRANS= Data Set 1322
Printed Output 1323
ODS Table Names 1323
Example: PANEL Procedure 1324
Example 19.1: Analyzing Demand for Liquid Assets 1324
Example 19.2: The Airline Cost Data: Fixtwo Model 1329
ODS Graphics Plots 1333
Example 19.3: The Airline Cost Data: Further Analysis 1335
Example 19.4: The Airline Cost Data: Random-Effects Models 1337
Example 19.5: Using the FLATDATA Statement 1340
Example 19.6: The Cigarette Sales Data: Dynamic Panel Estimation with GMM 1343
References: PANEL Procedure 1345

Overview: PANEL Procedure

The PANEL procedure analyzes a class of linear econometric models that commonly arise when time series and cross-sectional data are combined. This type of pooled data on time series crosssectional bases is often referred to as panel data. Typical examples of panel data include observations in time on households, countries, firms, trade, and so on. For example, in the case of survey data on household income, the panel is created by repeatedly surveying the same households in different time periods (years).

The panel data models can be grouped into several categories depending on the structure of the error term. The error structures and the corresponding methods that the PANEL procedure uses to analyze data are as follows:

- one-way and two-way models
- fixed-effects and random-effects models
- autoregressive models
- moving-average models

If the specification is dependent only on the cross section to which the observation belongs, such a model is referred to as a one-way model. A specification that depends on both the cross section and the time period to which the observation belongs is called a two-way model.

Apart from the possible one-way or two-way nature of the effect, the other dimension of difference between the possible specifications is the nature of the cross-sectional or time-series effect. The models are referred to as fixed-effects models if the effects are nonrandom and as random-effects models otherwise.

If the effects are fixed, the models are essentially regression models with dummy variables that correspond to the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is the best linear unbiased estimator. Random-effects models use a two-stage approach. In the first stage, variance components are calculated by using methods described by Fuller and Battese, Wansbeek and Kapteyn, Wallace and Hussain, or Nerlove. In the second stage, variance components are used to standardize the data, and ordinary least squares(OLS) regression is performed.

There are two types of models in the PANEL procedure that accommodate an autoregressive structure. The Parks method is used to estimate a first-order autoregressive model with contemporaneous correlation. The dynamic panel estimator is used to estimate an autoregressive model with lagged dependent variable.

The Da Silva method is used to estimate mixed variance-component moving-average error process. The regression parameters are estimated by using a two-step generalized least squares(GLS)-type estimator.

The new PANEL procedure enhances the features that were implemented in the TSCSREG procedure. The following list shows the most important additions.

- New estimation methods include between estimators, pooled estimators, and dynamic panel estimators that use the generalized method of moments (GMM). The variance components for random-effects models can be calculated for both balanced and unbalanced panels by using the methods described by Fuller and Battese, Wansbeek and Kapteyn, Wallace and Hussain, or Nerlove.
- The CLASS statement creates classification variables that are used in the analysis.
- The TEST statement includes new options for Wald, Lagrange multiplier, and the likelihood ratio tests.
- The new RESTRICT statement specifies linear restrictions on the parameters.
- The FLATDATA statement enables the data to be in a compressed form.
- Several methods that produce heteroscedasticity-consistent covariance matrices (HCCME) are added because the presence of heterscedasticity can result in inefficient and biased estimates of the variance covariance matrix in the OLS framework.
- The LAG statement can generate a large number of missing values, depending on lag order. Typically, it is difficult to create lagged variables in the panel setting. If lagged variables are created in a DATA step, several programming steps that include loops are often needed. By including the LAG statement, the PANEL procedure makes the creation of lagged values easy. The missing values can be replaced with zeros, overall mean, time mean, or cross section mean by using the LAG, ZLAG, XLAG, SLAG, and CLAG statements.
- ODS Graphics plots can now be produced by the PANEL procedure. The new plots include residual, predicted, and actual value plots, Q-Q plots, histograms, and profile plots. The OUTPUT statement enables you to output data and estimates that can be used in other analyses.

Getting Started: PANEL Procedure

This section demonstrates the use of the PANEL procedure.

Specifying the Input Data

The PANEL procedure is similar to other regression procedures in SAS. Suppose you want to regress the variable Y on regressors X 1 and X 2 . Cross sections are identified by the variable STATE, and time periods are identified by the variable DATE. The input data set used by PROC PANEL must be sorted by cross section and by time within each cross section. Therefore, the first step in PROC PANEL is to make sure that the input data set is sorted. The following statements sort the data set A appropriately:

```
proc sort data=a;
    by state date;
run;
```

The next step is to invoke the PANEL procedure and specify the cross section and time series variables in an ID statement. The following statements shows the correct syntax:

```
proc panel data=a;
    id state date;
    model y = x1 x2;
run;
```

Alternatively, PROC PANEL has the capability to read "flat" data. Say that you are using the data set A, which has observations on states. Specifically, the data are composed of observations on Y, $X 1$, and $X 2$. Unlike the previous case, the data is not recorded with a PROC PANEL structure. Instead, you have all of a state's information on a single row. You have variables to denote the name of the state (say state). The time observations for the Y variable are recorded horizontally.

So the variable $Y_{-} 1$ is the first period's time observation, $Y_{-} 10$ is the tenth period's observation for some state. The same holds for the other variables. You have variables $X 1 _1$ to $X 1 _10, X 2 _1$ to $X 2 _10$, and $X 3 _1$ to $X 3 _10$ for others. With such data, PROC PANEL could be called by using the following syntax:

```
proc panel data=a;
    flatdata indid = state base = (Y X1 X2) tsname = t;
    id state t;
    model Y = X1 X2;
run;
```

See "FLATDATA Statement" on page 1272 and Example 19.2 for more information about the use of the FLATDATA statement.

Specifying the Regression Model

The MODEL statement in PROC PANEL is specified like the MODEL statement in other SAS regression procedures: the dependent variable is listed first, followed by an equal sign, followed by the list of regressor variables, as shown in the following statements:

```
proc panel data=a;
    id state date;
    model y = x1 x2;
run;
```

The major advantage of using PROC PANEL is that you can incorporate a model for the structure of the random errors. It is important to consider what kind of error structure model is appropriate for your data and to specify the corresponding option in the MODEL statement.

The error structure options supported by the PANEL procedure are FIXONE, FIXONETIME, FIXTWO, RANONE, RANTWO, PARKS, DASILVA, GMM and ITGMM(iterated GMM). See the section "Details: PANEL Procedure" on page 1282 for more information about these methods and the error structures they assume. The following statements fit a Fuller-Battese one-way random-effects model.

```
proc panel data=a;
    id state date;
    model y = x1 x2 / rantwo vcomp=fb;
run;
```

You can specify more than one error structure option in the MODEL statement; the analysis is repeated using each specified method. You can use any number of MODEL statements to estimate different regression models or estimate the same model by using different options. See Example 19.1 for more information.

In order to aid in model specification within this class of models, the procedure provides two specification test statistics. The first is an F statistic that tests the null hypothesis that the fixed-effects parameters are all zero. The second is a Hausman m statistic that provides information about the appropriateness of the random-effects specification. The m statistic is based on the idea that, under the null hypothesis of no correlation between the effects variables and the regressors, OLS and GLS are consistent, but OLS is inefficient. Hence, a test can be based on the result that the covariance of an efficient estimator with its difference from an inefficient estimator is zero. Rejection of the null hypothesis might suggest that the fixed-effects model is more appropriate.

The procedure also provides the Buse R-square measure. This number is interpreted as a measure of the proportion of the transformed sum of squares of the dependent variable that is attributable to the influence of the independent variables. In the case of OLS estimation, the Buse R-square measure is equivalent to the usual R -square measure.

Unbalanced Data

In the case of fixed-effects models, random-effects models, between estimators, and dynamic panel estimators, the PANEL procedure can process data with different numbers of time series observations across different cross sections. The Parks and Da Silva methods cannot be used with unbalanced data. The missing time series observations are recognized by the absence of time series ID variable values in some of the cross sections in the input data set. Moreover, if an observation with a particular time series ID value and cross-sectional ID value is present in the input data set, but one or more of the model variables are missing, that time series point is treated as missing for that cross section.

Introductory Example

The following statements use the cost function data from Greene (1990) to estimate the variance components model. The variable PRODUCTION is the log of output in millions of kilowatt-hours, and COST is the log of cost in millions of dollars. Refer to Greene (1990) for details.

```
    data greene;
    input firm year production cost @@;
    datalines;
        11955 5.36598 1.14867 1 1960 6.03787 1.45185
        1 1965 6.37673 1.52257 1 1970 6.93245 1.76627
        21955 6.54535 1.35041 2 1960 6.69827 1.71109
        21965 7.40245 2.09519 2 1970 7.82644 2.39480
... more lines ...
```

You decide to fit the following model to the data:

$$
C_{i t}=\text { Intercept }+\boldsymbol{\beta} P_{i t}+v_{i}+e_{t}+\epsilon_{i t} i=1, \ldots, N ; t=1, \ldots, T
$$

where $C_{i t}$ and $P_{i t}$ represent the cost and production, and v_{i}, e_{t} and $\epsilon_{i t}$ are the cross-sectional, time series, and error variance components.

If you assume that the time and cross-sectional effects are random, you are left with four possible estimators for the variance components. You choose Fuller-Battese.

The following statements fit this model.

```
proc sort data=greene;
    by firm year;
run;
proc panel data=greene;
    model cost = production / rantwo vcomp = fb;
    id firm year;
run;
```

The PANEL procedure output is shown in Figure 19.1. A model description is printed first, which reports the estimation method used and the number of cross sections and time periods. The variance components estimates are printed next. Finally, the table of regression parameter estimates shows the estimates, standard errors, and t tests.

Figure 19.1 The Variance Components Estimates

Figure 19.1 continued

Parameter Estimates					
Variable	DF	Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	-2.99992	0.6478	-4.63	0.0001
production	1	0.746596	0.0762	9.80	<. 0001

Syntax: PANEL Procedure

The following statements are used with the PANEL procedure.

```
PROC PANEL options;
    BY variables;
    CLASS options;
    FLATDATA options;
    ID cross-section-id time-series-id ;
    INSTRUMENTS options;
    LAG options;
    MODEL dependent = regressors < / options > ;
    RESTRICT equation1 <,equation2... > ;
    TEST equation1 <,equation2... > ;
```


Functional Summary

The statements and options used with the PANEL procedure are summarized in the following table.

Description	Statement	Option
Data Set Options		
includes correlations in the OUTEST $=$ data set includes covariances in the OUTEST= data set	PANEL	PANEL
specifies the input data set	CORROUT	
specifies variables to keep but not transform	PANEL	COVOUT
specifies the output data set for CLASS	CLASS	DATA=
STATEMENT	KEEP=	
Specifies the output data set specifies the name of an output SAS data set writes parameter estimates to an output data	PLATDATA	OUTPUT

| Description | Statement | Option |
| :--- | :--- | :--- | | writes the transformed series to an output data |
| :--- | :--- |
| set | PANEL \quad OUTTRANS =

Description	Statement	Option
specifies the Parks method	MODEL	PARKS
prints Φ matrix for Parks method	MODEL	PHI
specifies the pooled model	MODEL	POOLED
specifies the one-way random-effects model	MODEL	RANONE
specifies the two-way random-effects model prints autocorrelation coefficients for Parks	MODEL	MODEL

PROC PANEL Statement

PROC PANEL options ;

The following options can be specified on the PROC PANEL statement.
DATA=SAS-data-set
names the input data set. The input data set must be sorted by cross section and by time period within cross section. If you omit the DATA= option, the most recently created SAS data set is used.

OUTEST=SAS-data-set

names an output data set to contain the parameter estimates. When the OUTEST= option is not specified, the OUTEST= data set is not created. See the section "The OUTEST= Data Set" on page 1321 for details about the structure of the OUTEST= data set.

OUTTRANS=SAS-data-set

names an output data set to contain the transformed series for further analysis and computation of models with time observations greater than two. See the section "The OUTTRANS= Data Set" on page 1322 for details about the structure of the OUTTRANS= data set.

OUTCOV

COVOUT
writes the covariance matrix of the parameter estimates to the OUTEST= data set. See the section "The OUTEST= Data Set" on page 1321 for details.

OUTCORR

CORROUT
writes the correlation matrix of the parameter estimates to the OUTEST= data set. See the section "The OUTEST= Data Set" on page 1321 for details.

PLOTS<(global-plot-options)> < = (specific-plot-options)>
requests that the PANEL procedure produce statistical graphics via the Output Delivery System, provided that the ODS GRAPHICS statement has been specified. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide). The global plot options apply to all relevant plots generated by the PANEL procedure. The global plot options supported by the PANEL procedure follow.

Global Plot Options

ONLY

UNPACKPANEL breaks a graphic that is otherwise paneled into individual component plots.
suppresses the default plots. Only the plots specifically requested are produced.

Specific Plot Options

ACTSURFACE
ALL
FITPLOT
NONE
PREDSURFACE

QQ
RESIDSTACK I RESSTACK
RESIDSURFACE

RESIDUAL I RES

A BY statement can be used with PROC PANEL to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the input data set must be sorted by the BY variables as well as by cross section and time period within the BY groups.

The following statements show an example:

```
proc sort data=a;
    by byvar1 byvar2 csid tsid;
run;
proc panel data=a;
    by byvar1 byvar2;
    id csid tsid;
    ...
run;
```


CLASS Statement

CLASS variables </ out= SAS-data-set> ;
The CLASS statement names the classification variables to be used in the analysis. Classification variables can be either character or numeric.

In PROC PANEL, the CLASS statement enables you to output class variables to a data set that contains a copy of the original data.

FLATDATA Statement

FLATDATA options / out= SAS-data-set ;
The following options must be specified in the FLATDATA statement:
BASE=(variable, variable, ..., variable)
specifies the variables that are to be transformed into a proper PROC PANEL format. All variables to be transformed must be named according to the convention: basename_timeperiod. You supply just the basename, and the procedure extracts the appropriate variables to transform. If some year's data are missing for a variable, then PROC PANEL detects this and fills in with missing values.

INDID=variable

names the variable in the input data set that uniquely identifies each individual. The INDID variable can be a character or numeric variable.

KEEP=(variable, variable, ..., variable)
specifies the variables that are to be copied without any transformation. These variables
remain constant with respect to time when the data are converted to PROC PANEL format. This is an optional item.

TSNAME=name

specifies a name for the generated time identifier. The name must satisfy the requirements for the name of a SAS variable. The name can be quoted, but it must not be the name of a variable in the input data set.

The following options can be specified on the FLATDATA statement after the slash (/):
OUT =SAS-data-set
saves the converted flat data set to a PROC PANEL formatted data set.

ID Statement

ID cross-section-id time-series-id;
The ID statement is used to specify variables in the input data set that identify the cross section and time period for each observation.

When an ID statement is used, the PANEL procedure verifies that the input data set is sorted by the cross section ID variable and by the time series ID variable within each cross section. The PANEL procedure also verifies that the time series ID values are the same for all cross sections.

To make sure the input data set is correctly sorted, use PROC SORT to sort the input data set with a BY statement with the variables listed exactly as they are listed in the ID statement, as shown in the following statements:

```
proc sort data=a;
    by csid tsid;
run;
proc panel data=a;
    id csid tsid;
    ... etc. ...
run;
```


INSTRUMENT Statement

INSTRUMENTS options;

The INSTRUMENTS statement denotes which variables are used in the moment condition equations of the dynamic panel estimator. The following options can be used with the INSTRUMENTS statement.

CONSTANT

includes an intercept (column of ones) as an uncorrelated exogenous instrument.

DEPVAR

specifies that a dependent variable be used at an appropriate lag as an instrument.
CORRELATED=(variable, variable, . ., variable)
specifies a list of variables correlated with the error term. These variables are not used in forming moment conditions from level equations.

EXOGENOUS=(variable, variable, . . . variable)

specifies a list of variables that are not correlated with the error term.

PREDETERMINED=(variable, variable, \ldots, variable)

specifies a list of variables whose future realizations can be correlated with the error term but whose present and past realizations are not.

If a variable listed in the EXOGENOUS list is not included in the CORRELATED list, then it is considered to be uncorrelated to the error term. For example, in the following statements, the exogenous instruments are $\mathrm{Z} 1, \mathrm{Z} 2$ and $\mathrm{X} 1 . \mathrm{Z} 1$ is an instrument that is correlated to the individual fixed effects.

```
proc panel data=a;
    inst exogenous=(Z1 z2 x1)
        correlated = (z1) constant depvar;
    model Y = x1 x2 x3 / gmm;
run;
```

For a detailed discussion of the model set up and the use of the INSTRUMENTS statement, see "Dynamic Panel Estimator" on page 1304.

Note that for each MODEL statement, one INSTRUMENT statement is required. In other words, if there are two models to be estimated by using GMM within one PANEL procedure, then there should be two INSTRUMENT statements. For example,

```
proc panel data=test;
    inst depvar pred=(x1 x2) exog=(x3 x4 x5) correlated=(x3 x4 x5);
    model y = y_1 x1 x2 / gmm maxband=6 nolevels ginv=g4 artest=5;
    inst pred=(x2 x4) exog=(x3 x5) correlated=(x3 x4);
    model y = y_1 x2 / gmm maxband=6 nolevels ginv=g4 artest=5;
    id cs ts;
run;
```


LAG, ZLAG, XLAG, SLAG or CLAG Statement

LAG $\operatorname{var}_{1}\left(\operatorname{lag}_{1} \operatorname{lag}_{2} \ldots \operatorname{lag}_{T}\right), \ldots, \operatorname{var}_{N}\left(\operatorname{lag}_{1} \operatorname{lag}_{2} \ldots \operatorname{lag}_{T}\right)</$ OUT=SAS-data-set $>$;
Generally, creating lags of variables in a panel setting is a tedious process in which you must generate many DATA STEP statements. The PANEL procedure now enables you to generate lags of any series without jumping across any individual's boundary. The lag statement is a data set
generation tool. Using the data created by a LAG statement requires a subsequent PROC PANEL call. There can be more than one LAG statement in each call to PROC PANEL.

The LAG statement tends to generate many missing values in the data. This can be problematic, because the number of usable observations diminishes with the lag length. Therefore, PROC PANEL offers alternatives to the LAG statement. The OUT= option must be specified on the LAG statement. The output data set includes all variables in the input set, plus the lags that are denoted with the convention originalvar_lag. The following statements can be used instead of LAG with otherwise identical syntax:

CLAG

replaces missing values with the cross section mean for that variable in that cross section. Note that missing values are replaced only if they are in the generated (lagged) series. Missing variables in the original variables are not changed.

SLAG

replaces missing values with the time mean for that variable in that time period. Note that missing values are replaced only if they are in the generated (lagged) series. Missing variables in the original variables are not changed.

XLAG

replaces missing values with the overall mean for that variable. Note that missing values are replaced only if they are in the generated (lagged) series. Missing variables in the original variables are not changed.

ZLAG

replaces missing values with zero for that variable. Note that missing values are replaced only if they are in the generated (lagged) series. Missing variables in the original variables are not changed.

Assume that data set A has been sorted by cross section and time period within cross section (or FLATDATA has been specified), and the variables are $\mathrm{Y}, \mathrm{X} 1, \mathrm{X} 2$ and X 3 . You desire the lags 1 and 3 of the X 1 variable; lag 3, 6 , and 9 of X 2 ; and lag 2 of variable X 3 . The following PROC PANEL statements generate a series with those characteristics.

```
proc panel data=A;
    id i t;
    lag X1(1 3) X2(3 6 9) X3(2) / out=A_lag;
run;
```

If you want a zeroing instead of missing values, then you specify the following:

```
proc panel data=A;
    id i t;
    zlag X1(1 3) X2(3 6 9) X3(2) / out=A_zlag;
run;
```

Similarly, you can specify XLAG to replace with overall means, SLAG to replace with time means, and CLAG to replace with cross section means.

MODEL Statement

MODEL response $=$ regressors </ options> ;

The MODEL statement specifies the regression model and the error structure assumed for the regression residuals. The response variable on the left side of the equal sign is regressed on the independent variables listed after the equal sign. Any number of MODEL statements can be used. For each model statement, only one response variable can be specified on the left side of the equal sign.

The error structure is specified by the FULLER, PARKS, DASILVA, FIXONE, FIXONETIME, FIXTWO, RANONE, RANTWO, GMM, and ITGMM options. More than one of these options can be used, in which case the analysis is repeated for each error structure model specified.

Models can be given labels. Model labels are used in the printed output to identify the results for different models. If no label is specified, the response variable name is used as the label for the model. The model label is specified as follows:
label : MODEL ...;
The following options can be specified in the MODEL statement after a slash (/).

ARTEST=integer

specifies the maximum order of the test for the presence of AR effects in the residual. The acceptable range of values for this option is 1 to $t-3$. See the section "Instrument Choice" on page 1311 for details.

ATOL=number

specifies the convergence criterion for iterated GMM when convergence of the method is determined by convergence in the weighting matrix. The convergence criterion must be positive. See the section "Dynamic Panel Estimator" on page 1304 for details.

BANDOPT=TRAILING | CENTERED | LEADING

specifies which observations are included in the instrument list when the MAXBAND option is employed. See the section "Dynamic Panel Estimator" on page 1304 for details.

BP
requests the Breusch-Pagan one-way test for random effects.

BP2

requests the Breusch-Pagan two-way test for random effects.

BTOL=number

specifies the convergence criterion for iterated GMM when convergence of the method is determined by convergence in the parameter matrix. The convergence criterion must be positive. The default is BTOL=1e-8. See the section "Dynamic Panel Estimator" on page 1304 for details.

BTWNG

specifies that a between-groups model be estimated.

BTWNT

specifies that a between-time-periods model be estimated.

CORRB

CORR

prints the matrix of estimated correlations between the parameter estimates.

COVB

VAR
prints the matrix of estimated covariances between the parameter estimates.

DASILVA

specifies that the model be estimated by using the Da Silva method, which assumes a mixed variance-component moving-average model for the error structure. See the section "Da Silva Method (Variance-Component Moving-Average Model)" on page 1302 for details.

FIXONE

specifies that a one-way fixed-effects model be estimated with the one-way model corresponding to cross-sectional effects only.

FIXONETIME

specifies that a one-way fixed-effects model be estimated with the one-way model corresponding to time effects only.

FIXTWO

specifies that a two-way fixed-effects model be estimated.

FULLER

specifies that the model be estimated by using the Fuller-Battese method, which assumes a variance components model for the error structure. See the section "Fuller and Battese's Method" on page 1292 later in this chapter for details.

GINV= G2 | G4

specifies what type of generalized inverse to use. The default is a G2 inverse. The G4 inverse is generally more desirable except that it is a more numerically intensive methodology.

GMM

specifies that the model be estimated by using the dynamic panel estimator method, which allows for autoregressive processes. This is the single-step model. Note that with this option one INSTRUMENT statement is required for each MODEL statement. See the section "Dynamic Panel Estimator" on page 1304 for details.

HCCME=number

specifies the type of HCCME variance-covariance matrix requested. The expected range of values is no or 0 to 4 . The default is zero, no correction. See the section "HeteroscedasticityCorrected Covariance Matrices" on page 1313 for details.

ITGMM

specifies that the model be estimated by using the dynamic panel estimator method, but that PROC PANEL keep updating the weighting matrix until either the parameter vector converges
or the weighting matrix converges. See the section "Dynamic Panel Estimator" on page 1304 for details.

ITPRINT

prints out the iteration history of the parameter and transformed sum of error squared.

$\mathbf{M}=$ number

specifies the order of the moving-average process in the Da Silva method. The value of the $\mathrm{M}=$ option must be less than $T-1$. The default is $\mathrm{M}=1$.

MAXBAND=integer

specifies the maximum number of time periods (per instrumental variable) that are allowed into the moment condition. The acceptable range of values for this option is 1 to $t-1$. The default value is MAXBAND=1 or MAXBAND=2, depending on the BANDOPT option. See the section "Dynamic Panel Estimator" on page 1304 for details.

MAXITER= integer

specifies the maximum number of iterations allowed for the iterated GMM option. The default value is MAXITER=200. See the section "Dynamic Panel Estimator" on page 1304 for details.

NODIFFS

specifies that the dynamic panel model be estimated without moment conditions from the difference equations. See the section "Dynamic Panel Estimator" on page 1304 for details.

NOESTIM

limits the estimation of a FIXONE, FIXONETIME, RANONE model to the generation of the transformed series. This option is intended for use with an OUTTRANS= data set.

NOINT

suppresses the intercept parameter from the model.

NOLEVELS

specifies that the dynamic panel model be estimated without moment conditions from the level equations. See the section "Dynamic Panel Estimator" on page 1304 for details.

NOPRINT

suppresses the normal printed output.

PARKS

specifies that the model be estimated by using the Parks method, which assumes a first-order autoregressive model for the error structure. See the section "Parks Method (Autoregressive Model)" on page 1300 for details.
prints the Φ matrix of estimated covariances of the observations for the Parks method. The PHI option is relevant only when the PARKS option is used. See the section "Parks Method (Autoregressive Model)" on page 1300 for details.

POOLED

specifies that a pooled (OLS) model be estimated.

RANONE

specifies that a one-way random-effects model be estimated.

RANTWO

specifies that a two-way random-effects model be estimated.

RHO

prints the estimated autocorrelation coefficients for the Parks method.

ROBUST

specifies that robust weighting matrix be used in the calculation of the variance-covariance matrix of the single step estimator. See the section "Dynamic Panel Estimator" on page 1304 for details.

SINGULAR=number

specifies a singularity criterion for the inversion of the matrix. The default depends on the precision of the computer system.

TIME

specifies that the model be estimated by using the dynamic panel estimator method, but that PROC PANEL includes time dummy variables to model any time effects present in the data. See the section "Dynamic Panel Estimator" on page 1304 for details.

TWOSTEP

specifies that the model be estimated by using the dynamic panel estimator method, but that two steps be used in the estimation. An initial first step is used to form an estimator for the weighting matrix used in the second step. See the section "Dynamic Panel Estimator" on page 1304 for details.

VCOMP=FB / NL / WH / WK
specifies the type of variance component estimate to use. The default is VCOMP=FB for balanced data and VCOMP=WK for unbalanced data. See the section "The One-Way RandomEffects Model" on page 1292 for details.

OUTPUT Statement

```
OUTPUT OUT=SAS-data-set < = options ... > ;
```

The OUTPUT statement creates an output SAS data set as specified by the following options:

OUT=SAS-data-set

names the output SAS data set to contain the predicted and transformed values. If the OUT= option is not specified, the new data set is named according to the DATAn convention.

PREDICTED=name

$\mathrm{P}=$ name

writes the predicted values to the output data set.

RESIDUAL=name

$\mathrm{R}=$ name

writes the residuals from the predicted values based on both the structural and time series parts of the model to the output data set.

RESTRICT Statement

Abstract

RESTRICT "string" equation <, equation2. . . > ; The RESTRICT statement specifies linear equality restrictions on the parameters in the previous model statement. There can be as many unique restrictions as the number of parameters in the preceding model statement. Multiple RESTRICT statements are understood as joint restrictions on a model's parameters. Restrictions on the intercept are obtained by the use of the keyword INTERCEPT.

Currently, only linear equality restrictions are permitted in PROC PANEL. Tests and restriction expressions can only be composed of algebraic operations that involve the addition symbol (+), subtraction symbol (-), and multiplication symbol (*).

The RESTRICT statement accepts labels that are produced in the printed output. RESTRICT statement can be labeled in two ways. A RESTRICT statement can be preceded by a label followed by a colon. This is illustrated in rest1 in the example below. Alternatively, the keyword RESTRICT can be followed by a quoted string.

The following statements illustrate the use of the RESTRICT statement:

```
proc panel;
    model y = x1 x2 x3;
    restrict x1 = 0, x2 * . 5 + 2 * x3= 0;
    rest1: restrict }\textrm{x}2=0, x3=0
    restrict "rest2" intercept=1;
run;
```

Note that a restrict statement cannot include a division sign in its formulation.

TEST Statement

TEST "string" equation <, equation2... ></options> ;
The TEST statement performs Wald, Lagrange multiplier and likelihood ratio tests of linear hypotheses about the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the corresponding regressor. The keyword INTERCEPT refers to the coefficient of the intercept.

The following options can be specified on the TEST statement after the slash (/):

ALL

specifies Wald, Lagrange multiplier and likelihood ratio tests.

WALD

specifies the WALD test.
LM
specifies the Lagrange multiplier test.
LR
specifies the likelihood ratio test.
The following statements illustrate the use of the TEST statement:

```
proc panel;
    id csid tsid;
    model y = x1 x2 x3;
    test x1 = 0, x2 * . 5 + 2 * x3 = 0;
    test_int: test intercept = 0, x3 = 0;
run;
```

The first test investigates the joint hypothesis that

$$
\beta_{1}=0
$$

and

$$
.5 \beta_{2}+2 \beta_{3}=0
$$

Currently, only linear equality restrictions and tests are permitted in PROC PANEL. Tests and restriction expressions can be composed only of algebraic operations that involve the addition symbol $(+)$, subtraction symbol (-), and multiplication symbol (*).

The TEST statement accepts labels that are produced in the printed output. The TEST statement can be labeled in two ways. A TEST statement can be preceded by a label followed by a colon. Alternatively, the keyword TEST can be followed by a quoted string. If both are presented, PROC PANEL uses the quoted string. In the event no label is present, PROC PANEL automatically labels the tests. If both a TEST and a RESTRICT statement are specified, the test is run with restrictions applied.

Note that for the DaSilva method, only the WALD test is available.

Details: PANEL Procedure

Missing Values

Any observation in the input data set with a missing value for one or more of the regressors is ignored by PROC PANEL and is not used in the model fit.

If there are observations in the input data set with missing dependent variable values but with nonmissing regressors, PROC PANEL can compute predicted values and store them in an output data set by using the OUTPUT statement. Note that the presence of such observations with missing dependent variable values does not affect the model fit because these observations are excluded from the calculation.

If either some regressors or the dependent variable values are missing, the model is estimated as unbalanced where the number of time series observations across different cross sections does not have to be equal. The Parks and Da Silva methods cannot be used with unbalanced data.

Computational Resources

The more parameters there are to be estimated, the more memory and time are required to estimate the model. Also affecting these resources are the estimation method chosen and the method to calculate variance components. If the model has p parameters including the intercept, there are at least $p+[p *(p+1)] / 2$ numbers being held in the memory.

If the Arellano and Bond GMM approach is used, the amount of memory grows proportionately to the number of instruments in the INSTRUMENT statement. If the ITGMM (iterated GMM) option is selected, the computation time also depends on the convergence criteria selected and the maximum number of iterations allowed.

Restricted Estimates

A consequence of estimating a linear model with a restriction is that the error degrees of freedom increase by the number of restrictions. PROC PANEL produces the Lagrange multiplier associated with each restriction.

Say that you are interested in linear regression in which there are r restrictions. A linear restriction
implies the following set of equations that relate the regression coefficients:

$$
\begin{aligned}
& R_{1,1} \beta_{1}+R_{1,2} \beta_{2}+\cdots+R_{1, p} \beta_{p}=q_{1} \\
& R_{2,1} \beta_{1}+R_{2,2} \beta_{2}+\cdots+R_{2, p} \beta_{p}=q_{2} \\
& \quad \ldots \cdots \cdots \cdots \cdots \cdots \\
& R_{r, 1} \beta_{1}+R_{r, 2} \beta_{2}+\cdots+R_{r, p} \beta_{p}=q_{r}
\end{aligned}
$$

To economize on notation, you can represent the restriction structure in the following matrix notation $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$. The restricted $\boldsymbol{\beta}$ estimator is given by:

$$
\boldsymbol{\beta}^{*}=\boldsymbol{\beta}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \boldsymbol{\beta}-\mathbf{q})
$$

The Lagrange multipliers are given as:

$$
\lambda_{*}=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \boldsymbol{\beta}-\mathbf{q})
$$

The standard errors of the Lagrange Multipliers are calculated from the following relationship:

$$
\operatorname{Var}\left(\boldsymbol{\lambda}_{*}\right)=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R} \operatorname{Var}(\boldsymbol{\beta}) \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}
$$

A significant Lagrange multiplier implies that you can reject the null hypothesis that the restrictions are not binding.

Note that in the special case of the fixed-effects models, the NOINT option and RESTRICT INTERCEPT $=0$ option give different estimates. This is not an error; it reflects two perspectives on the same issue. In the FIXONE case, the intercept is the last cross section's fixed effect (or the last time affecting the case of FIXONETIME). Specifying the NOINT option removes the intercept, but allows the last effect in. The NOINT command simply reclassifies the effects. The dummy variables become true cross section effects. If you specify the NOINT option with the FIXTWO option, the restriction is imposed that the last time effect is zero. A RESTRICT INTERCEPT=0 statement suppresses the estimation of the last effect in the FIXONE and FIXONETIME case. A RESTRICT INTERCEPT $=0$ has similar effects on the FIXTWO estimator. In general, restricting the intercept to zero is not recommended because OLS loses its unbiased nature.

Notation

The following notation represents the usual panel structure, with the specification of $u_{i t}$ dependent on the particular model:

$$
y_{i t}=\sum_{k=1}^{K} x_{i t k} \beta_{k}+u_{i t} \quad i=1, \ldots N ; t=1, \ldots T_{i}
$$

The total number of observations $M=\sum_{i=1}^{N} T_{i}$. For the balanced data case, $T_{i}=T$ for all i. The $M \times M$ covariance matrix of $u_{i t}$ is denoted by \mathbf{V}. Let \mathbf{X} and \mathbf{y} be the independent and dependent variables arranged by cross section and by time within each cross section. Let \mathbf{X}_{s} be the X matrix without the intercept. All other notation is specific to each section.

The One-Way Fixed-Effects Model

The specification for the one-way fixed-effects model is

$$
u_{i t}=\gamma_{i}+\epsilon_{i t}
$$

where the $\gamma_{i} \mathrm{~s}$ are nonrandom parameters to be estimated.
Let $\mathbf{Q}_{0}=\operatorname{diag}\left(\mathbf{E}_{T_{i}}\right)$, with $\overline{\mathbf{J}}_{T_{i}}=\mathbf{J}_{T_{i}} / T_{i}$ and $\mathbf{E}_{T_{i}}=\mathbf{I}_{T_{i}}-\overline{\mathbf{J}}_{T_{i}}$, where $\mathbf{J}_{T_{i}}$ is a matrix of T_{i} ones.
The matrix \mathbf{Q}_{0} represents the within transformation. In the one-way model, the within transformation is the conversion of the raw data to deviations from a cross section's mean. The vector $\tilde{\mathbf{x}}_{i t}$ is a row of the general matrix \mathbf{X}_{s}, where the subscripted s implies the constant (column of ones) is missing.
Let $\tilde{\mathbf{X}}_{s}=\mathbf{Q}_{0} \mathbf{X}_{s}$ and $\tilde{\mathbf{y}}=\mathbf{Q}_{0} \mathbf{y}$. The estimator of the slope coefficients is given by

$$
\tilde{\beta}_{s}=\left(\tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{X}}_{s}\right)^{-1} \tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{y}}
$$

Once the slope estimates are in hand, the estimation of an intercept or the cross-sectional fixed effects is handled as follows. First, you obtain the cross-sectional effects:

$$
\gamma_{i}=\bar{y}_{i}-\tilde{\beta}_{s} \bar{x}_{i} . \text { for } \quad i=1 \ldots N
$$

If the NOINT option is specified, then the dummy variables' coefficients are set equal to the fixed effects. If an intercept is desired, then the ith dummy variable is obtained from the following expression:

$$
D_{i}=\gamma_{i}-\gamma_{N} \quad \text { for } \quad i=1 \ldots N-1
$$

The intercept is the Nth fixed effect γ_{N}.
The within model sum of squared errors is:

$$
\mathrm{SSE}=\sum_{i=1}^{N} \sum_{t=1}^{T_{i}}\left(y_{i t}-\gamma_{i}-\mathbf{X}_{s} \tilde{\beta}_{s}\right)^{2}
$$

The estimated error variance can be written:

$$
\hat{\sigma}_{\epsilon}^{2}=\mathrm{SSE} /(M-N-(K-1))
$$

Alternatively, an equivalent way to express the error variance is

$$
\hat{\sigma}_{\epsilon}^{2}=\tilde{\mathbf{u}}^{\prime} \mathbf{Q}_{0} \tilde{\mathbf{u}} /(M-N-(K-1))
$$

where the residuals $\tilde{\mathbf{u}}$ are given by $\tilde{\mathbf{u}}=\left(\mathbf{I}_{M}-\mathbf{j}_{M} \mathbf{j}^{\prime}{ }_{M} / M\right)\left(\mathbf{y}-\mathbf{X}_{s} \tilde{\beta}_{s}\right)$ if there is an intercept and by $\tilde{\mathbf{u}}=\left(\mathbf{y}-\mathbf{X}_{s} \tilde{\beta}_{s}\right)$ if there is not. The drawback is that the formula changes (but the results do not) with the inclusion of a constant.

The variance covariance matrix of $\tilde{\beta}_{s}$ is given by:

$$
\operatorname{Var}\left[\tilde{\beta}_{s}\right]=\hat{\sigma}_{\epsilon}^{2}\left(\tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{x}}_{s}\right)^{-1}
$$

The covariance of the dummy variables and the dummy variables with the $\tilde{\beta}_{s}$ is dependent on whether the intercept is included in the model.

- no intercept:

$$
\begin{aligned}
& \operatorname{Var}\left[\gamma_{i}\right]=\operatorname{Var}\left[D_{i}\right]=\frac{\hat{\sigma}_{\epsilon}^{2}}{T_{i}}+\overline{\mathbf{x}}_{i \cdot}^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right] \overline{\mathbf{x}}_{i} . \\
& \operatorname{Cov}\left[\gamma_{i}, \gamma_{j}\right]=\operatorname{Cov}\left[D_{i} D_{j}\right]=\overline{\mathbf{x}}_{i \cdot}^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right] \overline{\mathbf{x}}_{j} . \\
& \operatorname{Cov}\left[\gamma_{i}, \tilde{\beta}_{s}\right]=\operatorname{Cov}\left[D_{i} \tilde{\beta}_{s}\right]=-\overline{\mathbf{x}}_{i}^{\prime} \cdot \operatorname{Var}\left[\tilde{\beta}_{s}\right]
\end{aligned}
$$

- intercept:

$$
\begin{aligned}
& \operatorname{Var}\left[D_{i}\right]=\frac{\hat{\sigma}_{\epsilon}^{2}}{T_{i}}+\left(\overline{\mathbf{x}}_{i} \cdot-\overline{\mathbf{x}}_{N \cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{i} \cdot-\overline{\mathbf{x}}_{N \cdot}\right) \\
& \operatorname{Cov}\left[D_{i}, D_{j}\right]=\frac{\hat{\sigma}_{\epsilon}^{2}}{T_{i}}+\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N \cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{j \cdot}-\overline{\mathbf{x}}_{N \cdot}\right) \\
& \operatorname{Var}[\operatorname{Intercept}]=\operatorname{Var}\left[\gamma_{N}\right]=\frac{\hat{\sigma}_{\epsilon}^{2}}{T_{N}}+\overline{\mathbf{x}}_{N \cdot}^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right] \overline{\mathbf{x}}_{N \cdot} \\
& \operatorname{Cov}\left[D_{i}, \tilde{\beta}_{s}\right]=-\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N \cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right] \\
& \operatorname{Cov}\left[\operatorname{Intercept}, D_{i}\right]=-\frac{\hat{\sigma}_{\epsilon}^{2}}{T_{i}}+\overline{\mathbf{x}}_{N \cdot}^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N \cdot}\right) \\
& \operatorname{Cov}\left[\operatorname{Intercept} \tilde{\beta}_{s}\right]=-\overline{\mathbf{x}}_{N}^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]
\end{aligned}
$$

Alternatively, the model option FIXONETIME estimates a one-way model where the heterogeneity comes from time effects. This option is analogous to re-sorting the data by time and then by cross section and running a FIXONE model. The advantage of using the FIXONETIME option is that sorting is avoided and the model remains labeled correctly.

The Two-Way Fixed-Effects Model

The specification for the two-way fixed-effects model is

$$
u_{i t}=\gamma_{i}+\alpha_{t}+\epsilon_{i t}
$$

where the $\gamma_{i} \mathrm{~s}$ and $\alpha_{t} \mathrm{~s}$ are nonrandom parameters to be estimated.
If you do not specify the NOINT option, which suppresses the intercept, the estimates for the fixed effects are reported under the restriction that $\gamma_{N}=0$ and $\alpha_{T}=0$. If you specify the NOINT option to suppress the intercept, only the restriction $\alpha_{T}=0$ is imposed.

Balanced Panels

Assume that the data are balanced (for example, all cross sections have T observations). Then you can write the following:

$$
\begin{aligned}
& \tilde{y}_{i t}=y_{i t}-\bar{y}_{i} \cdot-\bar{y}_{\cdot t}+\overline{\bar{y}} \\
& \tilde{\mathbf{x}}_{i t}=\mathbf{x}_{i t}-\overline{\mathbf{x}}_{i} \cdot-\overline{\mathbf{x}}_{\cdot t}+\overline{\overline{\mathbf{x}}}
\end{aligned}
$$

where the symbols:
$y_{i t}$ and $\mathbf{x}_{i t}$ are the dependent variable (a scalar) and the explanatory variables (a vector whose columns are the explanatory variables not including a constant), respectively
\bar{y}_{i}. and $\overline{\mathbf{x}}_{i}$. are cross section means
$\bar{y}_{\cdot t}$ and $\overline{\mathbf{x}}_{t}$ are time means
$\overline{\bar{y}}$ and $\overline{\overline{\mathbf{x}}}$ are the overall means
The two-way fixed-effects model is simply a regression of $\tilde{y}_{i t}$ on $\tilde{\mathbf{x}}_{i t}$. Therefore, the two-way β is given by:

$$
\tilde{\beta}_{s}=\left(\tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{y}}
$$

The calculations of cross section dummy variables, time dummy variables, and intercepts follow in a fashion similar to that used in the one-way model.

First, you obtain the net cross-sectional and time effects. Denote the cross-sectional effects by γ and the time effects by α. These effects are calculated from the following relations:

$$
\begin{aligned}
& \hat{\gamma}_{i}=\left(\bar{y}_{i \cdot}-\overline{\bar{y}}\right)-\tilde{\beta}_{s}\left(\bar{x}_{i \cdot}-\overline{\bar{x}}\right) \\
& \hat{\alpha}_{t}=\left(\bar{y}_{\cdot t}-\overline{\bar{y}}\right)-\tilde{\beta}_{s}\left(\bar{x}_{\cdot t}-\overline{\bar{x}}\right)
\end{aligned}
$$

Denote the cross-sectional dummy variables and time dummy variables with the superscript C and T. Under the NOINT option the following equations give the dummy variables:

$$
\begin{aligned}
D_{i}^{C} & =\hat{\gamma}_{i}+\hat{\alpha}_{T} \\
D_{t}^{T} & =\hat{\alpha}_{t}-\hat{\alpha}_{T}
\end{aligned}
$$

When an intercept is specified, the equations for dummy variables and intercept are:

$$
\begin{aligned}
& D_{i}^{C}=\hat{\gamma}_{i}-\hat{\gamma}_{N} \\
& D_{t}^{T}=\hat{\alpha}_{t}-\hat{\alpha}_{T} \\
& \text { Intercept }=\hat{\gamma}_{N}+\hat{\alpha}_{T}
\end{aligned}
$$

The sum of squared errors is:

$$
\mathrm{SSE}=\sum_{i=1}^{N} \sum_{t=1}^{T_{i}}\left(y_{i t}-\gamma_{i}-\alpha_{t}-\mathbf{X}_{s} \tilde{\beta}_{s}\right)^{2}
$$

The estimated error variance is:

$$
\hat{\sigma}_{\epsilon}^{2}=\operatorname{SSE} /(M-N-T-(K-1))
$$

With or without a constant, the variance covariance matrix of $\tilde{\beta}_{s}$ is given by:

$$
\operatorname{Var}\left[\tilde{\beta}_{s}\right]=\hat{\sigma}_{\epsilon}^{2}\left(\tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{X}}_{s}\right)^{-1}
$$

Variance Covariance of Dummy variables with No Intercept

The variances and covariances of the dummy variables are given with the NOINT specification as follows:

$$
\begin{aligned}
& \operatorname{Var}\left(D_{i}^{C}\right)=\hat{\sigma}_{\epsilon}^{2}\left(\frac{1}{T}+\frac{1}{N}-\frac{1}{N T}\right) \\
& +\left(\overline{\mathbf{x}}_{i \cdot}+\overline{\mathbf{x}}_{\cdot t}-\overline{\overline{\mathbf{x}}}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{i \cdot}+\overline{\mathbf{x}}_{t}-\overline{\overline{\mathbf{x}}}\right) \\
& \operatorname{Var}\left(D_{t}^{T}\right)=\frac{2 \hat{\sigma}_{\epsilon}^{2}}{N}+\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot}\right) \\
& \operatorname{Cov}\left(D_{i}^{C}, D_{j}^{C}\right)=\hat{\sigma}_{\epsilon}^{2}\left(\frac{1}{N}-\frac{1}{N T}\right) \\
& +\left(\overline{\mathbf{x}}_{m} i i \cdot+\overline{\mathbf{x}}_{m} i \cdot t-\overline{\overline{\mathbf{x}}}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{m} i j \cdot+\overline{\mathbf{x}}_{m} i \cdot t-\overline{\overline{\mathbf{x}}}\right) \\
& \operatorname{Cov}\left(D_{t}^{T}, D_{u}^{T}\right)=\frac{\hat{\sigma}_{\epsilon}^{2}}{N}+\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{\cdot u}-\overline{\mathbf{x}}_{\cdot}\right) \\
& \operatorname{Cov}\left(D_{i}^{C}, D_{t}^{T}\right)=-\frac{\hat{\sigma}_{\epsilon}^{2}}{N}+\left(\overline{\mathbf{x}}_{i}+\overline{\mathbf{x}}_{\cdot t}-\overline{\overline{\mathbf{x}}}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot}\right) \\
& \operatorname{Cov}\left(D_{i}^{C}, \beta\right)=-\left(\overline{\mathbf{x}}_{i \cdot}+\overline{\mathbf{x}}_{\cdot t}-\overline{\overline{\mathbf{x}}}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right] \\
& \operatorname{Cov}\left(D_{i}^{T}, \beta\right)=-\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot T}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]
\end{aligned}
$$

Variance Covariance of Dummy variables with Intercept

The variances and covariances of the dummy variables are given when the intercept is included as follows:

$$
\begin{aligned}
& \operatorname{Var}\left(D_{i}^{C}\right)=\frac{\hat{\sigma}_{\epsilon}^{2}}{T}+\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N .}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{i \cdot}-\overline{\mathbf{x}}_{N} .\right) \\
& \operatorname{Var}\left(D_{t}^{T}\right)=\frac{2 \hat{\sigma}_{\epsilon}^{2}}{N}+\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot T}\right) \\
& \operatorname{Var}(\text { Intercept })=\hat{\sigma}_{\epsilon}^{2}\left(\frac{1}{T}+\frac{1}{N}-\frac{1}{N T}\right)+\left(\overline{\mathbf{x}}_{N}+\overline{\mathbf{x}}_{T}-\overline{\overline{\mathbf{x}}}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{N}+\overline{\mathbf{x}}_{T}-\overline{\overline{\mathbf{x}}}\right) \\
& \operatorname{Cov}\left(D_{i}^{C}, D_{j}^{C}\right)=\frac{\hat{\sigma}_{\epsilon}^{2}}{T}+\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N} .\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{j:}-\overline{\mathbf{x}}_{N .}\right) \\
& \operatorname{Cov}\left(D_{t}^{T}, D_{u}^{T}\right)=\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]\left(\overline{\mathbf{x}}_{\cdot u}-\overline{\mathbf{x}}_{T}\right) \\
& \operatorname{Cov}\left(D_{i}^{C}, \text { Intercept }\right)=-\left(\frac{\hat{\sigma}_{\epsilon}^{2}}{T}\right)+\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N} .\right)^{\prime} \operatorname{Var}\left(\tilde{\beta}_{S}\right)\left(\overline{\mathbf{x}}_{N}+\overline{\mathbf{x}}_{T}-\overline{\overline{\mathbf{x}}}\right) \\
& \operatorname{Cov}\left(D_{t}^{T}, \text { Intercept }\right)=-\left(\frac{\hat{\sigma}_{\epsilon}^{2}}{N}\right)+\left(\overline{\mathbf{x}}_{\cdot t}-\overline{\mathbf{x}}_{\cdot T}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\overline{\mathbf{x}}_{N \cdot}+\overline{\mathbf{x}}_{\cdot T}-\overline{\overline{\mathbf{x}}}\right) \\
& \operatorname{Cov}\left(D_{i}^{C}, \tilde{\beta}\right)=-\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{N}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right] \\
& \operatorname{Cov}\left(D_{t}^{T}, \tilde{\beta}\right)=-\left(\overline{\mathbf{x}}_{t}-\overline{\mathbf{x}}_{\cdot}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{s}\right] \\
& \operatorname{Cov}(\text { Intercept, } \tilde{\beta})=-\left(\overline{\mathbf{x}}_{N}+\overline{\mathbf{x}}_{\cdot T}-\overline{\overline{\mathbf{x}}}\right)^{\prime} \operatorname{Var}\left[\tilde{\beta}_{S}\right]
\end{aligned}
$$

Unbalanced Panels

Let \mathbf{X}_{*} and \mathbf{y}_{*} be the independent and dependent variables arranged by time and by cross section within each time period. (Note that the input data set used by the PANEL procedure must be sorted by cross section and then by time within each cross section.) Let M_{t} be the number of cross sections observed in year t and let $\sum_{t} M_{t}=M$. Let \mathbf{D}_{t} be the $M_{t} \times N$ matrix obtained from the $N \times N$ identity matrix from which rows that correspond to cross sections not observed at time t have been omitted. Consider

$$
\mathbf{Z}=\left(\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)
$$

where $\mathbf{Z}_{1}=\left(\mathbf{D}_{1}^{\prime}, \mathbf{D}_{2}^{\prime}, \ldots . . \mathbf{D}_{T}^{\prime}\right)^{\prime}$ and $\mathbf{Z}_{2}=\operatorname{diag}\left(\mathbf{D}_{1} \mathbf{j}_{N}, \mathbf{D}_{2} \mathbf{j}_{N}, \ldots \ldots \mathbf{D}_{T} \mathbf{j}_{N}\right)$. The matrix \mathbf{Z} gives the dummy variable structure for the two-way model.

Let

$$
\begin{aligned}
\Delta_{N} & =\mathbf{Z}_{1}^{\prime} \mathbf{Z}_{1} \\
\boldsymbol{\Delta}_{T} & =\mathbf{Z}_{2}^{\prime} \mathbf{Z}_{2} \\
\mathbf{A} & =\mathbf{Z}_{2}^{\prime} \mathbf{Z}_{1} \\
\overline{\mathbf{Z}} & =\mathbf{Z}_{2}-\mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{A}^{\prime} \\
\mathbf{Q} & =\Delta_{T}-\mathbf{A} \Delta_{N}^{-1} \mathbf{A}^{\prime} \\
\mathbf{P} & =\left(\mathbf{I}_{M}-\mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime}\right)-\overline{\mathbf{Z}} \mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime}
\end{aligned}
$$

The estimate of the regression slope coefficients is given by

$$
\tilde{\beta}_{s}=\left(\mathbf{X}_{* s}^{\prime} \mathbf{P} \mathbf{X}_{* s}\right)^{-1} \mathbf{X}_{* s}^{\prime} \mathbf{P} \mathbf{y}_{*}
$$

where $\mathbf{X}_{* s}$ is the \mathbf{X}_{*} matrix without the vector of 1s.
The estimator of the error variance is

$$
\hat{\sigma}_{\epsilon}^{2}=\tilde{\mathbf{u}}^{\prime} \mathbf{P} \tilde{\mathbf{u}} /(M-T-N+1-(K-1))
$$

where the residuals are given by $\tilde{\mathbf{u}}=\left(\mathbf{I}_{M}-\mathbf{j}_{M} \mathbf{j}_{M}^{\prime} / M\right)\left(\mathbf{y}_{*}-\mathbf{X}_{* s} \tilde{\beta}_{s}\right)$ if there is an intercept in the model and by $\tilde{\mathbf{u}}=\mathbf{y}_{*}-\mathbf{X}_{* s} \tilde{\beta}_{s}$ if there is no intercept.

The actual implementation is quite different from the theory. The PANEL procedure transforms all series using the \mathbf{P} matrix.

$$
\overline{\mathbf{v}}=\mathbf{P v}
$$

The variable being transformed is v, which could be \mathbf{y} or any column of \mathbf{X}. After the data are properly transformed, OLS is run on the resulting series.

Given $\tilde{\beta}_{s}$, the next step is estimating the cross-sectional and time effects. Given that $\boldsymbol{\gamma}$ is the column vector of cross-sectional effects and $\boldsymbol{\alpha}$ is the column vector of time effects,

$$
\begin{aligned}
& \tilde{\boldsymbol{\alpha}}=\mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime} y-\mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime} \mathbf{X}_{s} \tilde{\beta}_{s} \\
& \tilde{\boldsymbol{\gamma}}=\left(\Theta_{1}+\Theta_{2}-\Theta_{3}\right) y-\left(\Theta_{1}+\Theta_{2}-\Theta_{3}\right) \mathbf{X}_{s} \tilde{\beta}_{s} \\
& \Theta_{1}=\Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \\
& \Theta_{2}=\Delta_{N}^{-1} \mathbf{A}^{\prime} Q^{-1} \mathbf{Z}_{2}^{\prime} \\
& \Theta_{3}=\Delta_{N}^{-1} \mathbf{A}^{\prime} Q^{-1} \mathbf{A} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime}
\end{aligned}
$$

Given the cross-sectional and time effects, the next step is to derive the associated dummy variables. Using the NOINT option, the following equations give the dummy variables:

$$
\begin{aligned}
& D_{i}^{C}=\hat{\gamma}_{i}+\hat{\alpha}_{T} \\
& D_{t}^{T}=\hat{\alpha}_{t}-\hat{\alpha}_{T}
\end{aligned}
$$

When an intercept is desired, the equations for dummy variables and intercept are:

$$
\begin{aligned}
& D_{i}^{C}=\hat{\gamma}_{i}-\hat{\gamma}_{N} \\
& D_{t}^{T}=\hat{\alpha}_{t}-\hat{\alpha}_{T} \\
& \text { Intercept }=\hat{\gamma}_{N}+\hat{\alpha}_{T}
\end{aligned}
$$

The calculation of the variance-covariance matrix is as follows:

$$
\begin{aligned}
\operatorname{Var}[\hat{\gamma}] & =\hat{\sigma}_{\epsilon}^{2}\left(\Delta_{N}^{-1}-\Sigma_{1}+\Sigma_{2}\right) \\
& +\left(\Theta_{1}+\Theta_{2}-\Theta_{3}\right) \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\Theta_{1}+\Theta_{2}-\Theta_{3}\right)^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Sigma_{1}=\Delta_{N}^{-1} \mathbf{A}^{\prime} \mathbf{Q}^{-1} \mathbf{A} \Delta_{N}^{-1} \mathbf{A}^{\prime} \mathbf{Q}^{-1} \mathbf{A} \Delta_{N}^{-1} \\
& \Sigma_{2}=\Delta_{N}^{-1} \mathbf{A}^{\prime} \mathbf{Q}^{-1} \Delta_{T} \mathbf{Q}^{-1} \mathbf{A} \Delta_{N} \\
& \operatorname{Var}[\hat{\boldsymbol{\alpha}}]=\hat{\sigma}_{\epsilon}^{2}\left(\mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime} \overline{\mathbf{Z}} \mathbf{Q}^{-1}\right)+\left(\mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime} \mathbf{X}_{s}\right) \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\mathbf{X}_{s}^{\prime} \overline{\mathbf{Z}} \mathbf{Q}^{-1}\right) \\
& \operatorname{Cov}\left[\hat{\boldsymbol{\alpha}}, \hat{\gamma}^{\prime}\right]=\hat{\sigma}_{\epsilon}^{2} \Delta_{N}^{-1}\left[\mathbf{A}^{\prime} \mathbf{Q}^{-1} \Delta_{T}-\mathbf{A}^{\prime} \mathbf{Q}^{-1} \mathbf{A} \Delta_{N}^{-1} \mathbf{A}^{\prime}\right] \mathbf{Q}^{-1} \\
& +\left(\Theta_{1}+\Theta_{2}-\Theta_{3}\right) \operatorname{Var}\left[\tilde{\beta}_{s}\right]\left(\mathbf{X}_{s}^{\prime} \overline{\mathbf{Z}} \mathbf{Q}^{-1}\right) \\
& \operatorname{Cov}[\hat{\gamma}, \tilde{\beta}]=\left(\Theta_{1}+\Theta_{2}-\Theta_{3}\right) \operatorname{Var}\left[\tilde{\beta}_{s}\right] \\
& \operatorname{Cov}[\hat{\boldsymbol{\alpha}}, \tilde{\beta}]=\left(\mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime} \mathbf{X}_{s}\right) \operatorname{Var}\left[\tilde{\beta}_{s}\right]
\end{aligned}
$$

Now you work out the variance covariance estimates for the dummy variables.

Variance Covariance of Dummy variables with No Intercept

The variances and covariances of the dummy variables are given under the NOINT selection as follows:

$$
\begin{aligned}
\operatorname{Cov}\left(D_{i}^{C}, D_{j}^{C}\right) & =\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\gamma}_{j}\right)+\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\alpha}_{T}\right)+\operatorname{Cov}\left(\hat{\gamma}_{j}, \hat{\alpha}_{T}\right)+\operatorname{Var}\left(\hat{\alpha}_{T}\right) \\
\operatorname{Cov}\left(D_{t}^{T}, D_{u}^{T}\right) & =\operatorname{Cov}\left(\hat{\alpha}_{t}, \hat{\alpha}_{u}\right)-\operatorname{Cov}\left(\hat{\alpha}_{t}, \hat{\alpha}_{T}\right)-\operatorname{Cov}\left(\hat{\alpha}_{u}, \hat{\alpha}_{T}\right)+\operatorname{Var}\left(\hat{\alpha}_{T}\right) \\
\operatorname{Cov}\left(D_{i}^{C}, D_{t}^{T}\right) & =\operatorname{Cov}\left(\hat{\gamma}_{i} \hat{\alpha}_{t}\right)+\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\alpha}_{T}\right)-\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\alpha}_{T}\right)-\operatorname{Var}\left(\hat{\alpha}_{T}\right) \\
\operatorname{Cov}\left(D_{i}^{C}, \tilde{\beta}\right) & =-\operatorname{Cov}\left(\hat{\gamma}_{i}, \tilde{\beta}\right)-\operatorname{Cov}\left(\hat{\alpha}_{T}, \tilde{\beta}\right) \\
\operatorname{Cov}\left(D_{i}^{T}, \tilde{\beta}\right) & =-\operatorname{Cov}\left(\hat{\alpha}_{t}, \tilde{\beta}\right)+\operatorname{Cov}\left(\hat{\alpha}_{T}, \tilde{\beta}\right)
\end{aligned}
$$

Variance Covariance of Dummy variables with Intercept

The variances and covariances of the dummy variables are given as follows when the intercept is included:

$$
\begin{aligned}
\operatorname{Cov}\left(D_{i}^{C}, D_{j}^{C}\right) & =\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\gamma}_{j}\right)-\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\gamma}_{N}\right)-\operatorname{Cov}\left(\hat{\gamma}_{j}, \hat{\gamma}_{N}\right)+\operatorname{Var}\left(\hat{\gamma}_{N}\right) \\
\operatorname{Cov}\left(D_{t}^{T}, D_{u}^{T}\right) & =\operatorname{Cov}\left(\hat{\alpha}_{t}, \hat{\alpha}_{u}\right)-\operatorname{Cov}\left(\hat{\alpha}_{t}, \hat{\alpha}_{T}\right)-\operatorname{Cov}\left(\hat{\alpha}_{u}, \hat{\alpha}_{T}\right)+\operatorname{Var}\left(\hat{\alpha}_{T}\right) \\
\operatorname{Cov}\left(D_{i}^{C}, D_{t}^{T}\right) & =\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\alpha}_{t}\right)-\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\alpha}_{T}\right)-\operatorname{Cov}\left(\hat{\gamma}_{N}, \hat{\alpha}_{t}\right)+\operatorname{Cov}\left(\hat{\gamma}_{N}, \hat{\alpha}_{T}\right) \\
\operatorname{Cov}\left(D_{i}^{C}, \text { Intercept }\right) & =\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\gamma}_{N}\right)+\operatorname{Cov}\left(\hat{\gamma}_{i}, \hat{\alpha}_{T}\right)-\operatorname{Cov}\left(\hat{\gamma}_{j}, \hat{\alpha}_{T}\right)-\operatorname{Var}\left(\hat{\gamma}_{N}\right) \\
\operatorname{Cov}\left(D_{t}^{T}, \text { Intercept }\right) & =\operatorname{Cov}\left(\hat{\alpha}_{t}, \hat{\alpha}_{T}\right)+\operatorname{Cov}\left(\hat{\alpha}_{t}, \hat{\gamma}_{N}\right)-\operatorname{Cov}\left(\hat{\alpha}_{T}, \hat{\alpha}_{N}\right)-\operatorname{Var}\left(\hat{\alpha}_{T}\right) \\
\operatorname{Cov}\left(D_{i}^{C}, \tilde{\beta}\right) & =-\operatorname{Cov}\left(\hat{\gamma}_{i}, \tilde{\beta}\right)-\operatorname{Cov}\left(\hat{\gamma}_{N}, \tilde{\beta}\right) \\
\operatorname{Cov}\left(D_{i}^{T}, \tilde{\beta}\right) & =-\operatorname{Cov}\left(\hat{\alpha}_{t}, \tilde{\beta}\right)+\operatorname{Cov}\left(\hat{\alpha}_{T}, \tilde{\beta}\right) \\
\operatorname{Cov}\left(\text { Intercept, } \tilde{\beta}_{f}\right) & =-\operatorname{Cov}\left(\hat{\alpha}_{T}, \tilde{\beta}\right)-\operatorname{Cov}\left(\hat{\gamma}_{N}, \tilde{\beta}\right)
\end{aligned}
$$

Between Estimators

The between groups estimator is the regression of the cross section means of \mathbf{y} on the cross section means of $\tilde{\mathbf{X}}_{s}$. In other words, you fit the following regression:

$$
\bar{y}_{i \cdot}=\overline{\mathbf{x}}_{i} \cdot \beta^{B G}+\eta_{i}
$$

The between time periods estimator is the regression of the time means of \mathbf{y} on the time means of $\tilde{\mathbf{X}}_{s}$. In other words, you fit the following regression:

$$
\bar{y}_{\cdot t}=\overline{\mathbf{x}}_{t} \beta^{B T}+\zeta_{t}
$$

In either case, the error is assumed to be normally distributed with mean zero and a constant variance.

Pooled Estimator

PROC PANEL allows you to pool time series cross-sectional data and run regressions on the data. Pooling is admissible if there are no fixed effects or random effects present in the data. This feature is included to aid in analysis and comparison across model types and to give you access to HCCME standard errors and other panel diagnostics. In general, this model type should not be used with time series cross-sectional data.

The One-Way Random-Effects Model

The specification for the one-way random-effects model is

$$
u_{i t}=v_{i}+\epsilon_{i t}
$$

Let $\mathbf{Z}_{0}=\operatorname{diag}\left(\mathbf{j}_{T_{i}}\right), \mathbf{P}_{0}=\operatorname{diag}\left(\overline{\mathbf{J}}_{T_{i}}\right)$, and $\mathbf{Q}_{0}=\operatorname{diag}\left(\mathbf{E}_{T_{i}}\right)$, with $\overline{\mathbf{J}}_{T_{i}}=\mathbf{J}_{T_{i}} / T_{i}$ and $\mathbf{E}_{T_{i}}=\mathbf{I}_{T_{i}}-\overline{\mathbf{J}}_{T_{i}}$. Define $\tilde{\mathbf{X}}_{s}=\mathbf{Q}_{0} \mathbf{X}_{s}$ and $\tilde{\mathbf{y}}=\mathbf{Q}_{0} \mathbf{y}$.

In the one-way model, estimation proceeds in a two-step fashion. First, you obtain estimates of the variance of the σ_{ϵ}^{2} and σ_{ν}^{2}. There are multiple ways to derive these estimates; PROC PANEL provides four options. All four options are valid for balanced or unbalanced panels. Once these estimates are in hand, they are used to form a weighting factor θ, and estimation proceeds via OLS on partial deviations from group means.

PROC PANEL gives the following options for variance component estimators.

Fuller and Battese's Method

The Fuller and Battese method for estimating variance components can be obtained with the option VCOMP $=\mathrm{FB}$ and the option RANONE. The variance components are given by the following equations (see Baltagi and Chang (1994) and Fuller and Battese (1974) for the approach in the two-way model). Let

$$
\begin{aligned}
& R(\nu)=\mathbf{y}^{\prime} \mathbf{Z}_{0}\left(\mathbf{Z}_{0}^{\prime} \mathbf{Z}_{0}\right)^{-1} \mathbf{Z}_{0}^{\prime} \mathbf{y} \\
& R(\beta \mid \nu)=\left(\left(\tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{X}}_{s}\right)^{-1} \tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{y}}^{\prime}\left(\tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{y}}\right)\right. \\
& R(\beta)=\left(\mathbf{X}_{s}^{\prime} \mathbf{y}\right)^{\prime}\left(\mathbf{X}_{s}^{\prime} \mathbf{X}_{s}\right)^{-1} \mathbf{X}_{s}^{\prime} \mathbf{y} \\
& R(\nu \mid \beta)=R(\beta \mid \nu)+R(\nu)-R(\beta)
\end{aligned}
$$

The estimator of the error variance is given by

$$
\hat{\sigma}_{\epsilon}^{2}=\left(\mathbf{y}^{\prime} \mathbf{y}-R(\beta \mid v)-R(\nu)\right) /(M-N-(K-1))
$$

If the NOINT option is specified, the estimator is

$$
\hat{\sigma}_{\epsilon}^{2}=\left(\mathbf{y}^{\prime} \mathbf{y}-R(\beta \mid \nu)-R(\nu)\right) /(M-N-K)
$$

The estimator of the cross-sectional variance component is given by

$$
\hat{\sigma}_{v}^{2}=\left(R(\nu \mid \beta)-(N-1) \hat{\sigma}_{\epsilon}^{2}\right) /\left(M-\operatorname{tr}\left(\mathbf{Z}_{0}^{\prime} \mathbf{X}_{s}\left(\mathbf{X}_{s}^{\prime} \mathbf{X}_{s}\right)^{-1} \mathbf{X}_{s}^{\prime} \mathbf{Z}_{0}\right)\right)
$$

Note that the error variance is the variance of the residual of the within estimator.
According to Baltagi and Chang (1994), the Fuller and Battese method is appropriate to apply to both balanced and unbalanced data. The Fuller and Battese method is the default for estimation of one-way random-effects models with balanced panels. However, the Fuller and Battese method does not always obtain nonnegative estimates for the cross section (or group) variance. In the case of a negative estimate, a warning is printed and the estimate is set to zero.

Wansbeek and Kapteyn's Method

The Wansbeek and Kapteyn method for estimating variance components can be obtained by setting VCOMP $=\mathrm{WK}$ (together with the option RANONE). The estimation of the one-way unbalanced data model is performed by using a specialization (Baltagi and Chang 1994) of the approach used by Wansbeek and Kapteyn (1989) for unbalanced two-way models. The Wansbeek and Kapteyn method is the default for unbalanced data. If just RANONE is specified, without the VCOMP= option, PROC PANEL estimates the variance component under Wansbeek and Kapteyn's method.

The estimation of the variance components is performed by using a quadratic unbiased estimation (QUE) method. This involves focusing on quadratic forms of the centered residuals, equating their expected values to the realized quadratic forms, and solving for the variance components.

Let

$$
\begin{aligned}
& q_{1}=\tilde{\mathbf{u}}^{\prime} \mathbf{Q}_{0} \tilde{\mathbf{u}} \\
& q_{2}=\tilde{\mathbf{u}}^{\prime} \mathbf{P}_{0} \tilde{\mathbf{u}}
\end{aligned}
$$

where the residuals $\tilde{\mathbf{u}}$ are given by $\tilde{\mathbf{u}}=\left(\mathbf{I}_{M}-\mathbf{j}{ }_{M} \mathbf{j}^{\prime}{ }_{M} / M\right)\left(\mathbf{y}-\mathbf{X}_{s}\left(\tilde{\mathbf{X}}_{s}{ }_{S} \tilde{\mathbf{X}}_{s}\right)^{-1} \tilde{\mathbf{X}}_{s}{ }^{\prime} \tilde{\mathbf{y}}\right.$ if there is an intercept and by $\tilde{\mathbf{u}}=\mathbf{y}-\mathbf{X}_{s}\left(\tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{X}}_{s}\right)^{-1} \tilde{\mathbf{X}}_{s}^{\prime} \tilde{\mathbf{y}}$ if there is not.

Consider the expected values

$$
\begin{aligned}
E\left(q_{1}\right) & =(M-N-(K-1)) \sigma_{\epsilon}^{2} \\
E\left(q_{2}\right) & =\left(N-1+\operatorname{tr}\left[\left(\mathbf{X}_{s}^{\prime} \mathbf{Q}_{0} \mathbf{X}_{s}\right)^{-1} \mathbf{X}_{s}^{\prime} \mathbf{P}_{0} \mathbf{X}_{s}\right]-\operatorname{tr}\left[\left(\mathbf{X}_{s}^{\prime} \mathbf{Q}_{0} \mathbf{X}_{s}\right)^{-1} \mathbf{X}_{s}^{\prime} \overline{\mathbf{J}}_{M} \mathbf{X}_{s}\right]\right) \sigma_{\epsilon}^{2} \\
\quad[M & \left.-\left(\sum_{i} T_{i}^{2} / M\right)\right] \sigma_{v}^{2}
\end{aligned}
$$

where $\hat{\sigma}_{\epsilon}^{2}$ and $\hat{\sigma}_{v}^{2}$ are obtained by equating the quadratic forms to their expected values.
The estimator of the error variance is the residual variance of the within estimate. The Wansbeek and Kapteyn method can also generate negative variance components estimates.

Wallace and Hussain's Method

The Wallace and Hussain method for estimating variance components can be obtained by setting VCOMP $=\mathrm{WH}$ (together with the option RANONE). Wallace-Hussain estimates start from OLS residuals on a data that are assumed to exhibit groupwise heteroscedasticity. As in the Wansbeek and Kapteyn method, you start with

$$
\begin{aligned}
& q_{1}=\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{Q}_{0} \tilde{\mathbf{u}}_{O L S} \\
& q_{2}=\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{P}_{0} \tilde{\mathbf{u}}_{O L S}
\end{aligned}
$$

However, instead of using the 'true' errors, you substitute the OLS residuals. You solve the system

$$
\begin{aligned}
& E\left(\hat{q}_{1}\right)=E\left(\hat{u}_{O L S}^{\prime} \mathbf{Q}_{0} \hat{u}_{O L S}\right)=\delta_{11} \hat{\sigma}_{v}^{2}+\delta_{12} \hat{\sigma}_{\epsilon}^{2} \\
& E\left(\hat{q}_{2}\right)=E\left(\hat{u}_{O L S}^{\prime} \mathbf{P}_{0} \hat{u} O L S\right)=\delta_{21} \hat{\sigma}_{v}^{2}+\delta_{22} \hat{\sigma}_{\epsilon}^{2}
\end{aligned}
$$

The constants $\delta_{11}, \delta_{12}, \delta_{21}, \delta_{22}$ are given by

$$
\begin{aligned}
& \delta_{11}=\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{0} \mathbf{Z}_{0}^{\prime} \mathbf{X}\right)-\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{P}_{0} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{0} \mathbf{Z}_{0}^{\prime} \mathbf{X}\right) \\
& \delta_{12}=M-N-K+\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{P}_{0} \mathbf{X}\right) \\
& \delta_{21}=M-2 \operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{0} \mathbf{Z}_{0}^{\prime} \mathbf{X}\right)+\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{P}_{0} \mathbf{X}\right) \\
& \delta_{22}=N-\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{P}_{0} \mathbf{X}\right)
\end{aligned}
$$

where $\operatorname{tr}()$ is the trace operator on a square matrix.
Solving this system produces the variance components. This method is applicable to balanced and unbalanced panels. However, there is no guarantee of positive variance components. Any negative values are fixed equal to zero.

Nerlove's Method

The Nerlove method for estimating variance components can be obtained by setting VCOMP = NL. The Nerlove method (see Baltagi 1995, page 17) is assured to give estimates of the variance components that are always positive. Furthermore, it is simple in contrast to the previous estimators.

If γ_{i} is the i th fixed effect, Nerlove's method uses the variance of the fixed effects as the estimate of $\hat{\sigma}_{v}^{2}$. You have $\hat{\sigma}_{v}^{2}=\sum_{i=1}^{N} \frac{\left(\gamma_{i}-\bar{\gamma}\right)^{2}}{N-1}$, where $\bar{\gamma}$ is the mean fixed effect. The estimate of σ_{ϵ}^{2} is simply the residual sum of squares of the one-way fixed-effects regression divided by the number of observations.

With the variance components in hand, from any method, the next task is to estimate the regression model of interest. For each individual, you form a weight $\left(\theta_{i}\right)$ as follows:

$$
\begin{aligned}
& \theta_{i}=1-\sigma_{\epsilon} / w_{i} \\
& w_{i}^{2}=T_{i} \sigma_{v}^{2}+\sigma_{\epsilon}^{2}
\end{aligned}
$$

where T_{i} is the i th cross section's time observations.
Taking the θ_{i}, you form the partial deviations,

$$
\begin{aligned}
& \tilde{y}_{i t}=y_{i t}-\theta_{i} \bar{y}_{i} . \\
& \tilde{x}_{i t}=x_{i t}-\theta_{i} \bar{x}_{i} .
\end{aligned}
$$

where \bar{y}_{i}.and \bar{x}_{i}. are cross section means of the dependent variable and independent variables (including the constant if any), respectively.

The random-effects β is then the result of simple OLS on the transformed data.

The Two-Way Random-Effects Model

The specification for the two-way random-effects model is

$$
u_{i t}=v_{i}+e_{t}+\epsilon_{i t}
$$

As in the one-way random-effects model, the PANEL procedure provides four options for variance component estimators. Unlike the one-way random-effects model, unbalanced panels present some special concerns.

Let \mathbf{X}_{*} and \mathbf{y}_{*} be the independent and dependent variables arranged by time and by cross section within each time period. (Note that the input data set used by the PANEL procedure must be sorted by cross section and then by time within each cross section.) Let M_{t} be the number of cross sections observed in time t and $\sum_{t} M_{t}=M$. Let \mathbf{D}_{t} be the $M_{t} \times N$ matrix obtained from the $N \times N$ identity matrix from which rows that correspond to cross sections not observed at time t have been omitted. Consider

$$
\mathbf{Z}=\left(\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)
$$

where $\mathbf{Z}_{1}=\left(\mathbf{D}_{1}^{\prime}, \mathbf{D}_{2}^{\prime}, \ldots . . \mathbf{D}_{T}^{\prime}\right)^{\prime}$ and $\mathbf{Z}_{2}=\operatorname{diag}\left(\mathbf{D}_{1} \mathbf{j}_{N}, \mathbf{D}_{2 \mathbf{j}}^{N}, \ldots \ldots \mathbf{D}_{T} \mathbf{j}_{N}\right)$.
The matrix \mathbf{Z} gives the dummy variable structure for the two-way model.
For notational ease, let

$$
\begin{aligned}
& \Delta_{N}=\mathbf{Z}_{1}^{\prime} \mathbf{Z}_{1}, \Delta_{T}=\mathbf{Z}_{2}^{\prime} \mathbf{Z}_{2}, \mathbf{A}=\mathbf{Z}_{2}^{\prime} \mathbf{Z}_{1} \\
& \overline{\mathbf{Z}}=\mathbf{Z}_{2}-\mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{A}^{\prime} \\
& \bar{\Delta}_{1}=\mathbf{I}_{M}-\mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \\
& \bar{\Delta}_{2}=\mathbf{I}_{M}-\mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \\
& \mathbf{Q}=\Delta_{T}-\mathbf{A} \Delta_{N}^{-1} \mathbf{A}^{\prime} \\
& \mathbf{P}=\left(\mathbf{I}_{M}-\mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime}\right)-\overline{\mathbf{Z}} \mathbf{Q}^{-1} \overline{\mathbf{Z}}^{\prime}
\end{aligned}
$$

Fuller and Battese's Method

The Fuller and Battese method for estimating variance components can be obtained by setting $\mathrm{VCOMP}=\mathrm{FB}$ (with the option RANTWO). FB is the default method for a RANTWO model with balanced panel. If RANTWO is requested without specifying the VCOMP= option, PROC PANEL proceeds under the Fuller and Battese method.

Following the discussion in Baltagi, et. al. (2002), the Fuller and Battese method forms the estimates as follows.

The estimator of the error variance is

$$
\hat{\sigma}_{\epsilon}^{2}=\tilde{\mathbf{u}}^{\prime} \mathbf{P} \tilde{\mathbf{u}} /(M-T-N+1-(K-1))
$$

where \mathbf{P} is the Wansbeek and Kapteyn within estimator for unbalanced (or balanced) panel in a two-way setting.

The estimator of the error variance is the same as that in the Wansbeek and Kapteyn method.
Consider the expected values

$$
\begin{aligned}
E\left(q_{N}\right) & =\sigma_{\epsilon}^{2}[M-T-K+1] \\
& +\sigma_{v}^{2}\left[M-T-\operatorname{tr}\left(\mathbf{X}_{s}^{\prime} \bar{\Delta}_{2} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \bar{\Delta}_{2} \mathbf{X}_{s}\left(\mathbf{X}_{s}^{\prime} \bar{\Delta}_{2} \mathbf{X}_{s}\right)^{-1}\right)\right] \\
E\left(q_{T}\right) & =\sigma_{\epsilon}^{2}[M-N-K+1] \\
& +\sigma_{e}^{2}\left[M-N-\operatorname{tr}\left(\mathbf{X}_{s}^{\prime} \bar{\Delta}_{1} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \bar{\Delta}_{1} \mathbf{X}_{s}\left(\mathbf{X}_{s}^{\prime} \bar{\Delta}_{1} \mathbf{X}_{s}\right)^{-1}\right)\right]
\end{aligned}
$$

Just as in the one-way case, there is always the possibility that the (estimated) variance components will be negative. In such a case, the negative components are fixed to equal zero. After substituting the group sum of the within residuals for $\left(q_{N}\right)$, the time sums of the within residuals for $\left(q_{T}\right)$, and $\hat{\sigma}_{\epsilon}^{2}$, the two equations are solved for $\hat{\sigma}_{v}^{2}$ and $\hat{\sigma}_{e}^{2}$.

Wansbeek and Kapteyn's Method

The Wansbeek and Kapteyn method for estimating variance components can be obtained with by setting VCOMP = WK. The following methodology, outlined in Wansbeek and Kapteyn (1989) is used to handle both balanced and unbalanced data. The Wansbeek and Kapteyn method is the default for a RANTWO model with unbalanced panel. If RANTWO is requested without specifying the VCOMP= option, PROC PANEL proceeds under the Wansbeek and Kapteyn method if the panel is unbalanced.

The estimator of the error variance is

$$
\hat{\sigma}_{\epsilon}^{2}=\tilde{\mathbf{u}}^{\prime} \mathbf{P} \tilde{\mathbf{u}} /(M-T-N+1-(K-1))
$$

where the $\tilde{\mathbf{u}}$ are given by $\tilde{\mathbf{u}}=\left(\mathbf{I}_{M}-\mathbf{j}_{M} \mathbf{j}^{\prime}{ }_{M} / M\right)\left(\mathbf{y}_{*}-\mathbf{X}_{* s}\left(\mathbf{X}^{\prime}{ }_{* S} \mathbf{P} \mathbf{X}_{* S}\right)^{-1} \mathbf{X}_{* S}{ }^{\prime} \mathbf{P} \mathbf{y}_{*}\right)$ if there is an intercept and by $\tilde{\mathbf{u}}=\left(\mathbf{y}_{*}-\mathbf{X}_{* s}\left(\mathbf{X}^{\prime}{ }_{* s} \mathbf{P} \mathbf{X}_{* s}\right)^{-1} \mathbf{X}^{\prime}{ }_{* s} \mathbf{P} \mathbf{y}_{*}\right.$ if there is not.

The estimation of the variance components is performed by using a quadratic unbiased estimation (QUE) method that involves computing on quadratic forms of the residuals $\tilde{\mathbf{u}}$, equating their expected values to the realized quadratic forms, and solving for the variance components.

Let

$$
\begin{aligned}
& q_{N}=\tilde{\mathbf{u}}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \tilde{\mathbf{u}} \\
& q_{T}=\tilde{\mathbf{u}}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \tilde{\mathbf{u}}
\end{aligned}
$$

The expected values are

$$
E\left(q_{N}\right)=\left(T+k_{N}-\left(1+k_{0}\right)\right) \sigma^{2}+\left(T-\frac{\lambda_{1}}{M}\right) \sigma_{\nu}^{2}+\left(M-\frac{\lambda_{2}}{M}\right) \sigma_{e}^{2}
$$

$$
\begin{aligned}
E\left(q_{T}\right) & =\left(N+k_{T}-\left(1+k_{0}\right)\right) \sigma^{2} \\
& +\left(M-\frac{\lambda_{1}}{M}\right) \sigma_{v}^{2}+\left(N-\frac{\lambda_{2}}{M}\right) \sigma_{e}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& k_{0}=\mathbf{j}_{M}^{\prime} \mathbf{X}_{* s}\left(\mathbf{X}_{* s}^{\prime} \mathbf{P} \mathbf{X}_{* s}\right)^{-1} \mathbf{X}_{* s}^{\prime} \mathbf{j}_{M} / M \\
& k_{N}=\operatorname{tr}\left(\left(\mathbf{X}_{* s}^{\prime} \mathbf{P} \mathbf{X}_{* s}\right)^{-1} \mathbf{X}_{* s}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \mathbf{X}_{* s}\right) \\
& k_{T}=\operatorname{tr}\left(\left(\mathbf{X}_{* s}^{\prime} \mathbf{P} \mathbf{X}_{* s}\right)^{-1} \mathbf{X}_{* s}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \mathbf{X}_{* s}\right) \\
& \lambda_{1}=\mathbf{j}_{M}^{\prime} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \mathbf{j}_{M} \\
& \lambda_{2}=\mathbf{j}_{M}^{\prime} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \mathbf{j}_{M}
\end{aligned}
$$

The quadratic unbiased estimators for σ_{v}^{2} and σ_{e}^{2} are obtained by equating the expected values to the quadratic forms and solving for the two unknowns.

When the NOINT option is specified, the variance component equations change slightly. In particular, the following is true (Wansbeek and Kapteyn 1989):

$$
\begin{aligned}
& E\left(q_{N}\right)=\left(T+k_{N}\right) \sigma^{2}+T \sigma_{v}^{2}+M \sigma_{e}^{2} \\
& E\left(q_{T}\right)=\left(N+k_{T}\right) \sigma^{2}+M \sigma_{v}^{2}+N \sigma_{e}^{2}
\end{aligned}
$$

Wallace and Hussain's Method

The Wallace and Hussain method for estimating variance components can be obtained by setting VCOMP $=$ WH. Wallace and Hussain's method is by far the most computationally intensive. It uses the OLS residuals to estimate the variance components. In other words, the Wallace and Hussain method assumes that the following holds:

$$
\begin{aligned}
& q_{\epsilon}=\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{P} \tilde{\mathbf{u}}_{O L S} \\
& q_{N}=\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \tilde{\mathbf{u}}_{O L S} \\
& q_{T}=\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \tilde{\mathbf{u}}_{O L S}
\end{aligned}
$$

Taking expectations yields

$$
\begin{aligned}
& E\left(q_{\epsilon}\right)=E\left(\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{P} \tilde{\mathbf{u}}_{O L S}\right)=\delta_{11} \sigma_{\epsilon}^{2}+\delta_{12} \sigma_{v}^{2}+\delta_{13} \sigma_{e}^{2} \\
& E\left(q_{N}\right)=E\left(\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \tilde{\mathbf{u}}_{O L S}\right)=\delta_{21} \sigma_{\epsilon}^{2}+\delta_{22} \sigma_{v}^{2}+\delta_{23} \sigma_{e}^{2} \\
& E\left(q_{T}\right)=E\left(\tilde{\mathbf{u}}_{O L S}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \tilde{\mathbf{u}}_{O L S}\right)=\delta_{31} \sigma_{\epsilon}^{2}+\delta_{32} \sigma_{v}^{2}+\delta_{33} \sigma_{e}^{2}
\end{aligned}
$$

where the $\delta_{j s}$ constants are defined by

$$
\delta_{11}=M-N-T+1-\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{P} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

$$
\begin{aligned}
\delta_{12}= & \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{P X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)\right) \\
\delta_{13}= & \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{P} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)\right) \\
\delta_{21}= & T-\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
\delta_{22}= & T-2 \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
& +\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
\delta_{23}= & T-2 \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
& +\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{2} \Delta_{T}^{-1} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
\delta_{31}= & N-\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
\delta_{32}= & M-2 \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
& +\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
\delta_{33}= & N-2 \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
+ & \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{Z}_{1} \Delta_{N}^{-1} \mathbf{Z}_{1}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

The PANEL procedure solves this system for the estimates $\hat{\sigma}_{\epsilon}, \hat{\sigma}_{\nu}$, and $\hat{\sigma}_{e}$. Some of the estimated variance components can be negative. Negative components are set to zero and estimation proceeds.

Nerlove's Method

The Nerlove method for estimating variance components can be obtained with by setting VCOMP $=\mathrm{NL}$.

The estimator of the error variance is

$$
\hat{\sigma}_{\epsilon}^{2}=\tilde{\mathbf{u}}^{\prime} \mathbf{P} \tilde{\mathbf{u}} / M
$$

The variance components for cross section and time effects are:

$$
\hat{\sigma}_{v}^{2}=\sum_{i=1}^{N} \frac{\left(\gamma_{i}-\bar{\gamma}\right)^{2}}{N-1} \text { where } \gamma_{i} \text { is the } i \text { th cross section effect }
$$

and

$$
\hat{\sigma}_{e}^{2}=\sum_{i=1}^{T} \frac{\left(\alpha_{t}-\bar{\alpha}\right)^{2}}{T-1} \text { where } \alpha_{i} \text { is the } t \text { th time effect }
$$

With the estimates of the variance components in hand, you can proceed to the final estimation. If the panel is balanced, partial mean deviations are used:

$$
\begin{aligned}
& \tilde{y}_{i t}=y_{i t}-\theta_{1} \bar{y}_{i} \cdot \theta_{2} \bar{y}_{\cdot t}+\theta_{3} \bar{y}_{.} \\
& \tilde{x}_{i t}=x_{i t}-\theta_{1} \bar{x}_{i \cdot}-\theta_{2} \bar{x}_{\cdot t}+\theta_{3} \bar{x}_{.} .
\end{aligned}
$$

The θ estimates are obtained from

$$
\begin{aligned}
& \theta_{1}=1-\frac{\sigma_{\epsilon}}{\sqrt{T \sigma_{v}^{2}+\sigma_{\epsilon}^{2}}} \\
& \theta_{2}=1-\frac{\sigma_{\epsilon}}{\sqrt{N \sigma_{e}^{2}+\sigma_{\epsilon}^{2}}} \\
& \theta_{3}=\theta_{1}+\theta_{2}+\frac{\sigma_{\epsilon}}{\sqrt{T \sigma_{v}^{2}+N \sigma_{e}^{2}+\sigma_{\epsilon}^{2}}}-1
\end{aligned}
$$

With these partial deviations, PROC PANEL uses OLS on the transformed series (including an intercept if so desired).

The case of an unbalanced panel is somewhat trickier. You could naively substitute the variance components in the equation below:

$$
\Omega=\sigma_{\epsilon}^{2} \mathbf{I}_{M}+\sigma_{v}^{2} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\prime}+\sigma_{e}^{2} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\prime}
$$

After inverting the expression for Ω, it is possible to do GLS on the data (even if the panel is unbalanced). However, the inversion of Ω is no small matter because the dimension is at least $\frac{M(M+1)}{2}$.

Wansbeek and Kapteyn show that the inverse of Ω can be written as

$$
\sigma_{\epsilon}^{2} \Omega^{-1}=\mathbf{V}-\mathbf{V} \mathbf{Z}_{2} \tilde{\mathbf{P}}^{-1} \mathbf{Z}_{\mathbf{2}}^{\prime} \mathbf{V}
$$

with the following:

$$
\begin{aligned}
\mathbf{V} & =\mathbf{I}_{M}-\mathbf{Z}_{1} \tilde{\Delta}_{N}^{-1} \mathbf{Z}_{1}^{\prime} \\
\tilde{\mathbf{P}} & =\tilde{\Delta}_{T}-\mathbf{A} \tilde{\Delta}_{N}^{-1} \mathbf{A}^{\prime} \\
\tilde{\Delta}_{N} & =\Delta_{N}+\left(\frac{\sigma_{\epsilon}^{2}}{\sigma_{v}^{2}}\right) \mathbf{I}_{N} \\
\tilde{\Delta}_{T} & =\Delta_{T}+\left(\frac{\sigma_{\epsilon}^{2}}{\sigma_{e}^{2}}\right) \mathbf{I}_{T}
\end{aligned}
$$

Computationally, this is a much less intensive approach.
By using the inverse of the variance-covariance matrix of the error, it becomes possible to complete GLS on the unbalanced panel.

Parks Method (Autoregressive Model)

Parks (1967) considered the first-order autoregressive model in which the random errors $u_{i t}$, $i=1,2, \ldots, N$, and $t=1,2, \ldots, T$ have the structure

$$
\begin{aligned}
E\left(u_{i t}^{2}\right) & =\sigma_{i i}(\text { heteroscedasticity }) \\
E\left(u_{i t} u_{j t}\right) & =\sigma_{i j}(\text { contemporaneously correlated }) \\
u_{i t} & =\rho_{i} u_{i, t-1}+\epsilon_{i t}(\text { autoregression })
\end{aligned}
$$

where

$$
\begin{aligned}
E\left(\epsilon_{i t}\right) & =0 \\
E\left(u_{i, t-1} \epsilon_{j t}\right) & =0 \\
E\left(\epsilon_{i t} \epsilon_{j t}\right) & =\phi_{i j} \\
E\left(\epsilon_{i t} \epsilon_{j s}\right) & =0(s \neq t) \\
E\left(u_{i 0}\right) & =0 \\
E\left(u_{i 0} u_{j 0}\right) & =\sigma_{i j}=\phi_{i j} /\left(1-\rho_{i} \rho_{j}\right)
\end{aligned}
$$

The model assumed is first-order autoregressive with contemporaneous correlation between cross sections. In this model, the covariance matrix for the vector of random errors \mathbf{u} can be expressed as

$$
E\left(\mathbf{u u}^{\prime}\right)=\mathbf{V}=\left[\begin{array}{cccc}
\sigma_{11} P_{11} & \sigma_{12} P_{12} & \ldots & \sigma_{1 N} P_{1 N} \\
\sigma_{21} P_{21} & \sigma_{22} P_{22} & \ldots & \sigma_{2 N} P_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{N 1} P_{N 1} & \sigma_{N 2} P_{N 2} & \ldots & \sigma_{N N} P_{N N}
\end{array}\right]
$$

where

$$
P_{i j}=\left[\begin{array}{ccccc}
1 & \rho_{j} & \rho_{j}^{2} & \ldots & \rho_{j}^{T-1} \\
\rho_{i} & 1 & \rho_{j} & \ldots & \rho_{j}^{T-2} \\
\rho_{i}^{2} & \rho_{i} & 1 & \ldots & \rho_{j}^{T-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\rho_{i}^{T-1} & \rho_{i}^{T-2} & \rho_{i}^{T-3} & \ldots & 1
\end{array}\right]
$$

The matrix \mathbf{V} is estimated by a two-stage procedure, and $\boldsymbol{\beta}$ is then estimated by generalized least squares. The first step in estimating \mathbf{V} involves the use of ordinary least squares to estimate $\boldsymbol{\beta}$ and obtain the fitted residuals, as follows:

$$
\hat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}_{O L S}
$$

A consistent estimator of the first-order autoregressive parameter is then obtained in the usual manner, as follows:

$$
\hat{\rho}_{i}=\left(\sum_{t=2}^{T} \hat{u}_{i t} \hat{u}_{i, t-1}\right) /\left(\sum_{t=2}^{T} \hat{u}_{i, t-1}^{2}\right) i=1,2, \ldots, N
$$

Finally, the autoregressive characteristic of the data is removed (asymptotically) by the usual transformation of taking weighted differences. That is, for $i=1,2, \ldots, N$,

$$
\begin{aligned}
& y_{i 1} \sqrt{1-\hat{\rho}_{i}^{2}}=\sum_{k=1}^{p} X_{i 1 k \iota k} \sqrt{1-\hat{\rho}_{i}^{2}}+u_{i 1} \sqrt{1-\hat{\rho}_{i}^{2}} \\
& y_{i t}-\hat{\rho}_{i} y_{i, t-1}=\sum_{k=1}^{p}\left(X_{i t k}-\hat{\rho}_{i} \mathbf{X}_{i, t-1, k}\right) \boldsymbol{\beta}_{k}+u_{i t}-\hat{\rho}_{i} u_{i, t-1} t=2, \ldots, T
\end{aligned}
$$

which is written

$$
y_{i t}^{*}=\sum_{k=1}^{p} X_{i t k}^{*} \boldsymbol{\beta}_{k}+u_{i t}^{*} i=1,2, \ldots, N ; \quad t=1,2, \ldots, T
$$

Notice that the transformed model has not lost any observations (Seely and Zyskind 1971).
The second step in estimating the covariance matrix \mathbf{V} is applying ordinary least squares to the preceding transformed model, obtaining

$$
\hat{\mathbf{u}}^{*}=\mathbf{y}^{*}-\mathbf{X}^{*} \boldsymbol{\beta}_{O L S}^{*}
$$

from which the consistent estimator of $\sigma_{i j}$ is calculated as follows:

$$
s_{i j}=\frac{\hat{\phi}_{i j}}{\left(1-\hat{\rho}_{i} \hat{\rho}_{j}\right)}
$$

where

$$
\hat{\phi}_{i j}=\frac{1}{(T-p)} \sum_{t=1}^{T} \hat{u}_{i t}^{*} \hat{u}_{j t}^{*}
$$

Estimated generalized least squares (EGLS) then proceeds in the usual manner,

$$
\hat{\boldsymbol{\beta}}_{P}=\left(\mathbf{X}^{\prime} \hat{\mathbf{V}}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \hat{\mathbf{V}}^{-1} \mathbf{y}
$$

where $\hat{\mathbf{V}}$ is the derived consistent estimator of \mathbf{V}. For computational purposes, $\hat{\boldsymbol{\beta}}_{P}$ is obtained directly from the transformed model,

$$
\hat{\boldsymbol{\beta}}_{P}=\left(\mathbf{X}^{*^{\prime}}\left(\hat{\Phi}^{-1} \otimes I_{T}\right) \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{*^{\prime}}\left(\hat{\Phi}^{-1} \otimes I_{T}\right) \mathbf{y}^{*}
$$

where $\hat{\Phi}=\left[\hat{\phi}_{i j}\right]_{i, j=1, \ldots, N}$.
The preceding procedure is equivalent to Zellner's two-stage methodology applied to the transformed model (Zellner 1962).

Parks demonstrates that this estimator is consistent and asymptotically, normally distributed with

$$
\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{P}\right)=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}
$$

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let ρ be the $N \times 1$ vector of true parameters and $R=\left(r_{1}, \ldots, r_{N}\right)^{\prime}$ be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC PANEL, the following modification for R is made:

$$
r_{i}=\left\{\begin{array}{lll}
r_{i} & \text { if }\left|r_{i}\right|<1 \\
\max (.95, \mathrm{rmax}) & \text { if } r_{i} \geq 1 \\
\min (-.95, \mathrm{rmin}) & \text { if } r_{i} \leq-1
\end{array}\right.
$$

where

$$
\operatorname{rmax}= \begin{cases}0 & \text { if } r_{i}<0 \text { or } r_{i} \geq 1 \quad \forall i \\ \max _{j}\left[r_{j}: 0 \leq r_{j}<1\right] & \text { otherwise }\end{cases}
$$

and

$$
\operatorname{rmin}= \begin{cases}0 & \text { if } r_{i}>0 \text { or } r_{i} \leq-1 \quad \forall i \\ \max _{j}\left[r_{j}:-1<r_{j} \leq 0\right] & \text { otherwise }\end{cases}
$$

Whenever this correction is made, a warning message is printed.

Da Silva Method (Variance-Component Moving-Average Model)

The Da Silva method assumes that the observed value of the dependent variable at the t th time point on the i th cross-sectional unit can be expressed as

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \beta+a_{i}+b_{t}+e_{i t} \quad i=1, \ldots, N ; t=1, \ldots, T
$$

where
$\mathbf{x}_{i t}^{\prime}=\left(x_{i t 1}, \ldots, x_{i t p}\right)$ is a vector of explanatory variables for the t th time point and i th crosssectional unit
$\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ is the vector of parameters
a_{i} is a time-invariant, cross-sectional unit effect
b_{t} is a cross-sectionally invariant time effect
$e_{i t}$ is a residual effect unaccounted for by the explanatory variables and the specific time and cross-sectional unit effects

Since the observations are arranged first by cross sections, then by time periods within cross sections, these equations can be written in matrix notation as

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{u}
$$

where

$$
\begin{aligned}
& \mathbf{u}=\left(\mathbf{a} \otimes \mathbf{1}_{T}\right)+\left(\mathbf{1}_{N} \otimes \mathbf{b}\right)+\mathbf{e} \\
& \mathbf{y}=\left(y_{11}, \ldots, y_{1 T}, y_{21}, \ldots, y_{N T}\right)^{\prime} \\
& \mathbf{X}=\left(\mathbf{x}_{11}, \ldots, \mathbf{x}_{1 T}, \mathbf{x}_{21}, \ldots, \mathbf{x}_{N T}\right)^{\prime} \\
& \mathbf{a}=\left(a_{1} \ldots a_{N}\right)^{\prime} \\
& \mathbf{b}=\left(b_{1} \ldots b_{T}\right)^{\prime} \\
& \mathbf{e}=\left(e_{11}, \ldots, e_{1 T}, e_{21}, \ldots, e_{N T}\right)^{\prime}
\end{aligned}
$$

Here $\mathbf{1}_{N}$ is an $N \times 1$ vector with all elements equal to 1 , and \otimes denotes the Kronecker product.
The following conditions are assumed:

1. $\mathbf{x}_{i t}$ is a sequence of nonstochastic, known $p \times 1$ vectors in \Re^{p} whose elements are uniformly bounded in \Re^{p}. The matrix \mathbf{X} has a full column rank p.
2. $\boldsymbol{\beta}$ is a $p \times 1$ constant vector of unknown parameters.
3. \mathbf{a} is a vector of uncorrelated random variables such that $E\left(a_{i}\right)=0$ and $\operatorname{var}\left(a_{i}\right)=\sigma_{a}^{2}$, $\sigma_{a}^{2}>0, i=1, \ldots, N$.
4. \mathbf{b} is a vector of uncorrelated random variables such that $E\left(b_{t}\right)=0$ and $\operatorname{var}\left(b_{t}\right)=\sigma_{b}^{2}$ where $\sigma_{b}^{2}>0$ and $t=1, \ldots, T$.
5. $\mathbf{e}_{i}=\left(e_{i 1}, \ldots, e_{i T}\right)^{\prime}$ is a sample of a realization of a finite moving-average time series of order $m<T-1$ for each i; hence,

$$
e_{i t}=\alpha_{0} \epsilon_{t}+\alpha_{1} \epsilon_{t-1}+\ldots+\alpha_{m} \epsilon_{t-m} \quad t=1, \ldots, T ; i=1, \ldots, N
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$ are unknown constants such that $\alpha_{0} \neq 0$ and $\alpha_{m} \neq 0$, and $\left\{\epsilon_{j}\right\}_{j=-\infty}^{j=\infty}$ is a white noise process-that is, a sequence of uncorrelated random variables with $E\left(\epsilon_{t}\right)=0, E\left(\epsilon_{t}^{2}\right)=\sigma_{\epsilon}^{2}$, and $\sigma_{\epsilon}^{2}>0$.
6. The sets of random variables $\left\{a_{i}\right\}_{i=1}^{N},\left\{b_{t}\right\}_{t=1}^{T}$, and $\left\{e_{i t}\right\}_{t=1}^{T}$ for $i=1, \ldots, N$ are mutually uncorrelated.
7. The random terms have normal distributions $a_{i} \sim N\left(0, \sigma_{a}^{2}\right), b_{t} \sim N\left(0, \sigma_{b}^{2}\right)$, and $\epsilon_{t-k} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$, for $i=1, \ldots, N ; t=1, \ldots T$; and $k=1, \ldots, m$.

If assumptions 1-6 are satisfied, then

$$
E(\mathbf{y})=\mathbf{X} \beta
$$

and

$$
\operatorname{var}(\mathbf{y})=\sigma_{a}^{2}\left(I_{N} \otimes J_{T}\right)+\sigma_{b}^{2}\left(J_{N} \otimes I_{T}\right)+\left(I_{N} \otimes \Psi_{T}\right)
$$

where Ψ_{T} is a $T \times T$ matrix with elements $\psi_{t s}$ as follows:

$$
\operatorname{Cov}\left(e_{i t} e_{i s}\right)= \begin{cases}\psi(|t-s|) & \text { if }|t-s| \leq m \\ 0 & \text { if }|t-s|>m\end{cases}
$$

where $\psi(k)=\sigma_{\epsilon}^{2} \sum_{j=0}^{m-k} \alpha_{j} \alpha_{j+k}$ for $k=|t-s|$. For the definition of I_{N}, I_{T}, J_{N}, and J_{T}, see the section "Fuller and Battese's Method" on page 1292.

The covariance matrix, denoted by \mathbf{V}, can be written in the form

$$
\mathbf{V}=\sigma_{a}^{2}\left(I_{N} \otimes J_{T}\right)+\sigma_{b}^{2}\left(J_{N} \otimes I_{T}\right)+\sum_{k=0}^{m} \psi(k)\left(I_{N} \otimes \Psi_{T}^{(k)}\right)
$$

where $\Psi_{T}^{(0)}=I_{T}$, and, for $k=1, \ldots, m, \Psi_{T}^{(k)}$ is a band matrix whose k th off-diagonal elements are 1 's and all other elements are 0 's.

Thus, the covariance matrix of the vector of observations \mathbf{y} has the form

$$
\operatorname{Var}(\mathbf{y})=\sum_{k=1}^{m+3} v_{k} V_{k}
$$

where

$$
\begin{aligned}
v_{1} & =\sigma_{a}^{2} \\
v_{2} & =\sigma_{b}^{2} \\
v_{k} & =\psi(k-3) k=3, \ldots, m+3 \\
V_{1} & =I_{N} \otimes J_{T} \\
V_{2} & =J_{N} \otimes I_{T} \\
V_{k} & =I_{N} \otimes \Psi_{T}^{(k-3)} k=3, \ldots, m+3
\end{aligned}
$$

The estimator of $\boldsymbol{\beta}$ is a two-step GLS-type estimator-that is, GLS with the unknown covariance matrix replaced by a suitable estimator of \mathbf{V}. It is obtained by substituting Seely estimates for the scalar multiples $v_{k}, k=1,2, \ldots, m+3$.

Seely (1969) presents a general theory of unbiased estimation when the choice of estimators is restricted to finite dimensional vector spaces, with a special emphasis on quadratic estimation of functions of the form $\sum_{i=1}^{n} \delta_{i} v_{i}$.

The parameters $v_{i}(i=1, \ldots, \mathrm{n})$ are associated with a linear model $\mathrm{E}(\mathbf{y})=\mathbf{X} \beta$ with covariance matrix $\sum_{i=1}^{n} v_{i} V_{i}$ where $V_{i}(i=1, \ldots, \mathrm{n})$ are real symmetric matrices. The method is also discussed by Seely (1970a,1970b) and Seely and Zyskind (1971). Seely and Soong (1971) consider the MINQUE principle, using an approach along the lines of Seely (1969).

Dynamic Panel Estimator

For an example on dynamic panel estimation using GMM option, see "Example 19.6: The Cigarette Sales Data: Dynamic Panel Estimation with GMM" on page 1343.

Consider the case of the following general model:

$$
y_{i t}=\Sigma_{l=1}^{\operatorname{maxlag}} \phi_{l y_{i(t-l)}}+\Sigma_{k=1}^{K} \beta_{k} x_{i t k}+\gamma_{i}+\alpha_{t}+\epsilon_{i t}
$$

The x variables can include ones that are correlated or uncorrelated to the individual effects, predetermined, or strictly exogenous. The γ and α are cross-sectional and time series fixed effects, respectively. Arellano and Bond (1991) show that it is possible to define conditions that should result in a consistent estimator.

Consider the simple case of an autoregression in a panel setting (with only individual effects):

$$
y_{i t}=\phi y_{i(t-l)}+\gamma_{i}+\epsilon_{i t}
$$

Differencing the preceding relationship results in:

$$
\Delta y_{i t}=\phi \Delta y_{i(t-1)}+v_{i t}
$$

where $v_{i t}=\epsilon_{i t}-\epsilon_{i t-l}$.
Obviously, y is not exogenous. However, Arellano and Bond (1991) show that it is still useful as an instrument, if properly lagged.

For $t=2$ (assuming the first observation corresponds to time period 1) you have,

$$
\Delta y_{i 2}=\phi \Delta y_{i l}+v_{i 2}
$$

Using $y_{i l}$ as an instrument is not a good idea since $\operatorname{Cov}\left(\epsilon_{i 1}, v_{i 2}\right) \neq 0$. Therefore, since it is not possible to form a moment restriction, you discard this observation.

For $t=3$ you have,

$$
\Delta y_{i 3}=\phi \Delta y_{i 2}+v_{i 3}
$$

Clearly, you have every reason to suspect that $\operatorname{Cov}\left(\epsilon_{i 1}, \nu_{i 3}\right)=0$. This condition forms one restriction.

For $t=4$, both $\operatorname{Cov}\left(\epsilon_{i 1}, v_{i 4}\right)=0$ and $\operatorname{Cov}\left(\epsilon_{i 2}, v_{i 4}\right)=0$ must hold.
Proceeding in that fashion, you have the following matrix of instruments,

$$
\mathbf{Z}_{i}=\left(\begin{array}{cccccccccc}
y_{i 1} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & y_{i l} & y_{i 2} & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & y_{i 1} & y_{i 2} & y_{i 3} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & & & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & y_{i 1} & \cdots & y_{i(T-2)}
\end{array}\right)
$$

Using the instrument matrix, you form the weighting matrix $\mathbf{A}_{\mathbf{N}}$ as

$$
A_{\mathbf{N}}=\left(\frac{1}{N} \sum_{i}^{N} \mathbf{Z}_{i}^{\prime} \mathbf{H}_{i} \mathbf{Z}_{i}\right)^{-1}
$$

The initial weighting matrix is

$$
\mathbf{H}_{i}=\left(\begin{array}{rrrrrrrrrr}
2 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & & & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

Note that the maximum size of the \mathbf{H}_{i} matrix is T-2. The origins of the initial weighting matrix are the expected error covariances. Notice that on the diagonals,

$$
E\left(v_{i t} v_{i t}\right)=E\left(\epsilon_{i t}^{2}-2 \epsilon_{i t} \epsilon_{i(t-1)}+\epsilon_{i(t-1)}^{2}\right)=2 \sigma_{\epsilon}^{2}
$$

and off diagonals,

$$
E\left(v_{i t} v_{i(t-1)}\right)=E\left(\epsilon_{i t} \epsilon_{i(t-1)}-\epsilon_{i t} \epsilon_{i(t-2)}-\epsilon_{i(t-1)} \epsilon_{i(t-1)}+\epsilon_{i(t-l)} \epsilon_{i(t-2)}\right)=-\sigma_{\epsilon}^{2}
$$

If you let the vector of lagged differences (in the series $y_{i t}$) be denoted as Δy_{i-} and the dependent variable as Δy_{i}, then the optimal GMM estimator is

$$
\phi=\left[\left(\sum_{i} \Delta y_{i-}^{\prime} \mathbf{Z}_{i}\right) A_{\mathbf{N}}\left(\sum_{i} \mathbf{Z}_{i}^{\prime} \Delta y_{i-}\right)\right]^{-1}\left(\sum_{i} \Delta y_{i-}^{\prime} \mathbf{Z}_{i}\right) A_{\mathbf{N}}\left(\sum_{i} \mathbf{Z}_{i}^{\prime} \Delta y_{i}\right)
$$

Using the estimate, $\hat{\phi}$, you can obtain estimates of the errors, $\hat{\epsilon}$, or the differences, \hat{v}. From the errors, the variance is calculated as,

$$
\sigma^{2}=\frac{\hat{\epsilon}^{\prime} \hat{\epsilon}}{M-1}
$$

where $M=\sum_{i=1}^{N} T_{i}$ is the total number of observations.
Furthermore, you can calculate the variance of the parameter as,

$$
\sigma^{2}\left[\left(\Sigma_{i} \Delta y_{i-}^{\prime} \mathbf{Z}_{i}\right) A_{\mathbf{N}}\left(\sum_{i} \mathbf{Z}_{i}^{\prime} \Delta y_{i-}\right)\right]^{-1}
$$

Alternatively, you can view the initial estimate of the ϕ as a first step. That is, by using $\hat{\phi}$, you can improve the estimate of the weight matrix, $A_{\mathbf{N}}$.

Instead of imposing the structure of the weighting, you form the \mathbf{H}_{i} matrix through the following:

$$
\mathbf{H}_{i}=\hat{v}_{i} \hat{v}_{i}^{\prime}
$$

You then complete the calculation as previously shown. The PROC PANEL option TWOSTEP specifies this estimation.

The case of multiple right-hand-side variables illustrates more clearly the power of Arellano and Bond (1991) and Arellano and Bover (1995).

Considering the general case you have:

$$
y_{i t}=\sum_{l=1}^{\text {maxlag }} \phi_{l} y_{i(t-l)}+\mathbf{X}_{i}+\gamma_{i}+\alpha_{t}+\epsilon_{i t}
$$

It is clear that lags of the dependent variable are both not exogenous and correlated to the fixed effects. However, the independent variables can fall into one of several categories. An independent variable can be correlated and exogenous, uncorrelated and exogenous, correlated and predetermined, and uncorrelated and predetermined. The category in which an independent variable is found influences when or whether it becomes a suitable instrument. Note, however, that neither PROC PANEL nor Arellano and Bond require that a regressor be an instrument or that an instrument be a regressor.

First, consider the question of exogenous or endogenous. An exogenous variable is not correlated with the error term in the model at all. Therefore, all observations (on the exogenous variable) become valid instruments at all time periods. If the model has only one instrument and it happens to be exogenous, then the optimal instrument matrix looks like,

$$
\mathbf{Z}_{i}=\left(\begin{array}{ccccc}
x_{i 1} \cdots x_{i T} & 0 & 0 & 0 & 0 \\
0 & x_{i l} \cdots x_{i T} & 0 & 0 & 0 \\
0 & 0 & x_{i l} \cdots x_{i T S} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & x_{i 1} \cdots x_{i T S}
\end{array}\right)
$$

The situation for the predetermined variables becomes a little more difficult. A predetermined variable is one whose future realizations can be correlated to current shocks in the dependent variable. With such an understanding, it is admissible to allow all current and lagged realizations as instruments. In other words you have,

$$
\mathbf{Z}_{i}=\left(\begin{array}{ccccc}
x_{i 1} & 0 & 0 & 0 & 0 \\
0 & x_{i 1} x_{i 2} & 0 & 0 & 0 \\
0 & 0 & x_{i 1} \cdots & x_{i 3} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & x_{i 1} \cdots x_{i(T S-2)}
\end{array}\right)
$$

When the data contain a mix of endogenous, exogenous, and predetermined variables, the instrument matrix is formed by combining the three. The third observation would have one observation on the dependent variable as an instrument, three observations on the predetermined variables as instruments, and all observations on the exogenous variables.

There is yet another set of moment restrictions that can be employed. An uncorrelated variable means that the variable's level is not affected by the individual specific effect. You write the general model presented above as:

$$
y_{i t}=\sum_{l=l}^{\operatorname{maxlag}} \phi_{l} y_{i(t-l)}+\Sigma_{k=l}^{K} \beta_{k} x_{i t k}+\alpha_{t}+\mu_{i t}
$$

where $\mu_{i t}=\gamma_{i}+\epsilon_{i t}$.
Since the variables are uncorrelated with γ and uncorrelated with the error, you can perform a system estimation with the difference and level equations. That is, the uncorrelated variables imply moment restrictions on the level equation. If you denote the new instrument matrix with the full complement of instruments available by a $*$ and both x^{p} and x^{e} are uncorrelated, then you have:

$$
\mathbf{Z}_{i}^{*}=\left(\begin{array}{ccccc}
\mathbf{Z}_{i} & 0 & 0 & 0 & 0 \\
0 & x_{i 1}^{p} & x_{i l}^{e} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & x_{i T S}^{p} & x_{i T S}^{e}
\end{array}\right)
$$

The formation of the initial weighting matrix becomes somewhat problematic. If you denote the new weighting matrix with $\mathrm{a} *$, then you can write the following:

$$
A_{\mathrm{N}}^{*}=\left(\frac{1}{N} \sum_{i}^{N} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{H}_{i}^{*} \mathbf{Z}_{i}^{*}\right)^{-1}
$$

where

$$
\mathbf{H}_{i}^{*}=\left(\begin{array}{ccccc}
\mathbf{H}_{i} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

To finish, you write out the two equations (or two stages) that are estimated.

$$
\Delta y_{i t}=\boldsymbol{\beta}^{*} \Delta \mathbf{S}_{i}+\alpha_{t}-\alpha_{t-1}+v_{i t} \quad y_{i t}=\boldsymbol{\beta}^{*} \mathbf{S}_{i}+\gamma_{i}+\alpha_{t}+\epsilon_{i t}
$$

where \mathbf{S}_{i} is the matrix of all explanatory variables, lagged endogenous, exogenous, and predetermined.

Let $\mathbf{y}_{i t}^{*}$ be given by

$$
\mathbf{y}_{i t}^{*}=\binom{\Delta y_{i t}}{y_{i t}} \quad \boldsymbol{\beta}^{*}=\left(\begin{array}{ll}
\boldsymbol{\phi} & \boldsymbol{\beta}
\end{array}\right) \quad \mathbf{S}^{*}=\binom{\Delta \mathbf{S}_{i}}{\mathbf{S}_{i}}
$$

Using the information above,

$$
\boldsymbol{\beta}^{*}=\left[\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{S}_{i}\right)\right]^{-1}\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{y}_{i}^{*}\right)
$$

If the TWOSTEP or ITGMM option is not requested, estimation terminates here. If it terminates, you can obtain the following information.

Variance of the error term comes from the second stage equation-that is,

$$
\sigma^{2}=\frac{\hat{\epsilon}^{\prime} \hat{\epsilon}}{M-p}
$$

where p is the number of regressors.
The variance covariance matrix can be obtained from

$$
\left[\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{S}_{i}^{*}\right)\right]^{-1} \sigma^{2}
$$

Alternatively, a robust estimate of the variance covariance matrix can be obtained by specifying the ROBUST option. Without further reestimation of the model, the \mathbf{H}_{i}^{*} matrix is recalculated as follows:

$$
\mathbf{H}_{i, 2}^{*}=\left(\begin{array}{cc}
\boldsymbol{\nu} \boldsymbol{\nu}^{\prime} & 0 \\
0 & \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}
\end{array}\right)
$$

And the weighting matrix becomes

$$
A_{\mathbf{N}, 2}^{*}=\left(\frac{1}{N} \sum_{i}^{N} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{H}_{i, 2}^{*} \mathbf{Z}_{i}^{*}\right)^{-1}
$$

Using the information above, you construct the robust variance covariance matrix from the following:

Let \mathbf{G} denote a temporary matrix.

$$
\mathbf{G}=\left[\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{S}_{* i}\right)\right]^{-1}\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}}^{*}
$$

The robust variance covariance estimate of $\boldsymbol{\beta}^{*}$ is:

$$
\mathbf{V}^{\text {robust }}\left(\boldsymbol{\beta}^{*}\right)=\mathbf{G} A_{\mathbf{N}, 2}^{*-1} \mathbf{G}^{\prime}
$$

Alternatively, the new weighting matrix can be used to form an updated estimate of the regression parameters. This results when the TWOSTEP option is requested. In short,

$$
\boldsymbol{\beta}^{*}=\left[\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}, 2}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{S}_{i}^{*}\right)\right]^{-1}\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}, 2}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{S}_{i}^{*}\right)
$$

The variance covariance estimate of the two step $\boldsymbol{\beta}^{*}$ becomes

$$
V\left(\boldsymbol{\beta}^{*}\right)=\left[\left(\sum_{i} \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}, 2}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \mathbf{S}_{i}^{*}\right)\right]^{-1}
$$

As a final note, it possible to iterate more than twice by specifying the ITGMM option. Such a multiple iteration should result in a more stable estimate of the variance covariance estimate. PROC

PANEL allows two convergence criteria. Convergence can occur in the parameter estimates or in the weighting matrices. Iterate until

$$
\max _{i, j \leq \operatorname{dim}\left(A_{\mathrm{N}, \mathbf{k}}\right)} \frac{\left|A_{\mathbf{N}, \mathbf{k}+\mathbf{1}}^{*}(i, j)-A_{\mathbf{N}, \mathbf{k}}^{*}(i, j)\right|}{\left|A_{\mathbf{N}, \mathbf{k}}^{*}(i, j)\right|} \leq \mathrm{ATOL}
$$

or

$$
\max _{i \leq \operatorname{dim}\left(\boldsymbol{\beta}_{k}^{*}\right)} \frac{\left|\boldsymbol{\beta}_{k+1}^{*}(i)-\boldsymbol{\beta}_{k}^{*}(i)\right|}{\left|\boldsymbol{\beta}_{k}^{*}(i)\right|} \leq \mathrm{BTOL}
$$

where ATOL is the tolerance for convergence in the weighting matrix and BTOL is the tolerance for convergence in the parameter estimate matrix. The default convergence criteria is $\mathrm{BTOL}=1 \mathrm{E}-8$ for PROC PANEL.

Specification Testing For Dynamic Panel

Specification tests under the GMM in PROC PANEL follow Arellano and Bond (1991) very generally. The first test available is a Sargan/Hansen test of over-identification. The test for a one-step estimation is constructed as

$$
\left(\sum_{i} \eta_{i}^{\prime} \mathbf{Z}_{\mathbf{i}}^{*}\right) A_{\mathbf{N}}^{*}\left(\sum_{i} \mathbf{Z}_{\mathbf{i}}^{*^{\prime}} \eta_{i}\right) \sigma^{2}
$$

where η_{i} is the stacked error term (of the differenced equation and level equation).
When the robust weighting matrix is used, the test statistic is computed as

$$
\left(\sum_{i} \eta_{i}^{\prime} \mathbf{Z}_{\mathbf{i}}^{*}\right) A_{\mathbf{N}, 2}^{*}\left(\sum_{i} \mathbf{Z}_{\mathbf{i}}^{*^{\prime}} \eta_{i}\right)
$$

This definition of the Sargan test is used for all iterated estimations. The Sargan test is distributed as a χ^{2} with degrees of freedom equal to the number of moment conditions minus the number of parameters.

In addition to the Sargan test, PROC PANEL tests for autocorrelation in the residuals. These tests are distributed as standard normal. PROC PANEL tests the hypothesis that the autocorrelation of the l th lag is significant.

Define $\boldsymbol{\omega}_{l}$ as the lag of the differenced error, with zero padding for the missing values generated. Symbolically,

$$
\boldsymbol{\omega}_{l}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\nu_{1} \\
\vdots \\
\nu_{T S-2-l}
\end{array}\right)
$$

You define the constant k_{0} as

$$
k_{0}(l)=\sum_{i} \omega_{l, i}^{\prime} \boldsymbol{v}_{i}
$$

You next define the constant k_{1} as

$$
k_{1}(l)=\sum_{i} \omega_{l, i}^{\prime} \mathbf{H}_{i} \omega_{l, i}
$$

Note that the choice of \mathbf{H}_{i} is dependent on the stage of estimation. If the estimation is first stage, then you would use the matrix with twos along the main diagonal, and minus ones along the primary subdiagonals. In a robust estimation or multi-step estimation, this matrix would be formed from the outer product of the residuals (from the previous step).

Define the constant k_{2} as

$$
k_{2}(l)=-2\left(\sum_{i} \omega_{l, i}^{\prime} \Delta \mathbf{S}_{i}\right) \mathbf{G}\left(\sum_{i} \Delta \mathbf{S}_{i}^{\prime} \mathbf{Z}_{i}\right) A_{\mathbf{N}, \mathbf{k}}\left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{H}_{i} \boldsymbol{\omega}_{l, i}\right)
$$

The matrix \mathbf{G} is defined as

$$
\mathbf{G}=\left[\left(\sum_{i} \Delta \mathbf{S}_{i}^{*^{\prime}} \mathbf{Z}_{i}^{*}\right) A_{\mathbf{N}, \mathbf{k}}^{*}\left(\sum_{i} \mathbf{Z}_{i}^{*^{\prime}} \Delta \mathbf{S}_{i}^{*}\right)\right]^{-1}
$$

The constant k_{3} is defined as

$$
k_{3}(l)=\left(\sum_{i} \omega_{l, i}^{\prime} \Delta \mathbf{S}_{i}\right) V\left(\boldsymbol{\beta}^{*}\right)\left(\sum_{i} \Delta \mathbf{S}_{i}^{\prime} \boldsymbol{\omega}_{l, i}\right)
$$

Using the four quantities, the test for autoregressive structure in the differenced residual is

$$
m(l)=\frac{k_{0}(l)}{\sqrt{k_{1}(l)+k_{2}(l)+k_{3}(l)}}
$$

The m statistic is distributed as a normal random variable with mean zero and standard deviation of one.

Instrument Choice

Arellano and Bond's technique is a very useful method for dealing with any autoregressive characteristics in the data. However, there is one caveat to consider. Too many instruments bias the estimator to the within estimate. Furthermore, many instruments make this technique not scalable. The weighting matrix becomes very large, so every operation that involves it becomes more computationally intensive. The PANEL procedure enables you to specify a bandwidth for instrument selection. For example, specifying MAXBAND $=10$ means that at most there will be ten time observations for each variable entering as an instrument. The default is to follow the Arellano-Bond methodology.

In specifying a maximum bandwidth, you can also specify the selection of the time observations. There are three possibilities: leading, trailing (default), and centered. The exact consequence of choosing any of those possibilities depends on the variable type (correlated, exogenous, or predetermined) and the time period of the current observation.

If the MAXBAND option is specified, then the following is true under any selection criterion (let t be the time subscript for the current observation). The first observation for the endogenous variable (as instrument) is $\max (t-$ MAXBAND, 2) and the last instrument is $t-2$. The first observation for a predetermined variable is $\max (t-$ MAXBAND, 2$)$ and $t-1$. The first and last observation for an exogenous variable is given in the list below.

- Trailing: If $t<$ MAXBAND, then the first instrument is for the first time period and the last observation is MAXBAND. Otherwise, if $t \geq$ MAXBAND, then the first observation is t - MAXBAND, while the last instrument to enter is t.
- Centered: If $t \leq \frac{\text { MAXBAND }}{2}$, then the first observation is the first time period and the last observation is MAXBAND. If $t>T-\frac{\text { MAXBAND }}{2}$, then the first instrument included is the $T-$ MAXBAND +1 and the last observation is T. If $\frac{\text { MAXBAND }}{2}<t \leq T-\frac{\text { MAXBAND }}{2}$, then the first included instrument is $t-\frac{\text { MAXBAND }}{2}+1$ and the last observation is $t+\frac{\text { MAXBAND }}{2}$. If the MAXBAND value is an odd number, the procedure decrements by one.
- Leading : If $t>T$ - MAXBAND, then the first instrument corresponds to time period T - MAXBAND, while the last observation is $T S$. Otherwise, if $t \leq T$ - MAXBAND, then the first observation is t and the last observation is $t+$.

The PANEL procedure enables you to include dummy variables to deal with the presence of time effects not captured by including the lagged dependent variable. The dummy variables directly affect the level equations. However, this implies that the difference of the dummy variables for dummy variable of time period t and $t-1$ enters the difference equation. The first usable observation occurs at $t=3$. If the level equation is not used in the estimation, then there is no way to identify the dummy variables. Selecting the TIME option gives the same result as that which would be obtained by creating dummy variables in the data set and using those in the regression.

The PANEL procedure gives you several options when it comes to missing values and unbalanced panel. By default, any time period for which there are missing values is skipped. The corresponding rows and columns of \mathbf{H} matrices are zeroed, and the calculation is continued. Alternatively, you can elect to replace missing values and missing observations with zeros (ZERO), the overall mean of the series (OAM), the cross-sectional mean (CSM), or the time series mean (TSM).

Linear Hypothesis Testing

For a linear hypothesis of the form $\mathbf{R} \beta=\mathbf{r}$ where \mathbf{R} is $J \times K$ and \mathbf{r} is $J \times 1$, the F-statistic with $J, M-K$ degrees of freedom is computed as

$$
(\mathbf{R} \beta-\mathbf{r})^{\prime}\left[\mathbf{R} \hat{\mathbf{V}} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \beta-\mathbf{r})
$$

However, it is also possible to write the F statistic as

$$
F=\frac{\left(\hat{\mathbf{u}}_{*}^{\prime} \hat{\mathbf{u}}_{*}-\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}\right) / J}{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}} /(M-K)}
$$

where
$\hat{\mathbf{u}}_{*}$ is the residual vector from the restricted regression
$\hat{\mathbf{u}}$ is the residual vector from the unrestricted regression
J is the number of restrictions
$(M-K)$ are the degrees of freedom
The Wald, likelihood ratio (LR) and Lagrange multiplier (LM) tests are all related to the F test. You use this relationship of the F test to the likelihood ratio and Lagrange multiplier tests. The Wald test is calculated from its definition.

The Wald test statistic is:

$$
W=(\mathbf{R} \beta-\mathbf{r})^{\prime}\left[\mathbf{R} \hat{\mathbf{V}} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \beta-\mathbf{r})
$$

The advantage of calculating Wald in this manner is that it enables you to substitute a heteroscedasticity-corrected covariance matrix for the matrix V. PROC PANEL makes such a substitution if you request the HCCME option in the MODEL statement.

The likelihood ratio is:

$$
L R=M \ln \left[1+\frac{1}{M-K} J F\right]
$$

The Lagrange multiplier test statistic is:

$$
L M=M\left[\frac{J F}{M-K+J F}\right]
$$

Note that only the Wald is changed when the HCCME option is selected. The LR and LM tests are unchanged.
The distribution of these test statistics is the χ^{2} with degrees of freedom equal to the number of restrictions imposed (J). The three tests are asymptotically equivalent, but they have differing small sample properties. Greene (2000, p. 392) and Davidson and MacKinnon (1993, pg. 456-458) discuss the small sample properties of these statistics.

Heteroscedasticity-Corrected Covariance Matrices

The MODEL statement HCCME= option is used to select the type of heteroscedasticity- consistent covariance matrix. In the presence of heteroscedasticity, the covariance matrix has a complicated structure which can result in inefficiencies in the OLS estimates and biased estimates of the variance
covariance matrix. Consider the simple linear model (this discussion parallels the discussion in Davidson and MacKinnon, 1993, pg. 548-562):

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

The assumptions that make the linear regression best linear unbiased estimator (BLUE) are $E(\epsilon)=$ 0 and $E\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}\right)=\Omega$, where Ω has the simple structure $\sigma^{2} \mathbf{I}$. Heteroscedasticity results in a general covariance structure, so that it is not possible to simplify Ω. The result is the following:

$$
\tilde{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{X}_{\iota}+>\right)=\beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}>
$$

As long as the following is true, then you are assured that the OLS estimate is consistent and unbiased:

$$
\operatorname{plim}_{n \rightarrow \infty}\left(\frac{1}{n} \mathbf{X}^{\prime} \boldsymbol{\epsilon}\right)=0
$$

If the regressors are nonrandom, then it is possible to write the variance of the estimated $\boldsymbol{\beta}$ as the following:

$$
\operatorname{Var}(\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

The effect of structure in the variance covariance matrix can be ameliorated by using generalized least squares (GLS), provided that Ω^{-1} can be calculated. Using Ω^{-1}, you premultiply both sides of the regression equation,

$$
\Omega^{-1} \mathbf{y}=\Omega^{-1} \mathbf{X} \iota+\Omega^{-1} \epsilon
$$

The resulting GLS $\boldsymbol{\beta}$ is

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \mathbf{y}
$$

Using the GLS $\boldsymbol{\beta}$, you can write

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \mathbf{y} \\
& =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\Omega^{-1} \mathbf{X}_{\iota}+\Omega^{-1} \boldsymbol{\epsilon}\right) \\
& =\beta+\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \boldsymbol{\epsilon}
\end{aligned}
$$

The resulting variance expression for the GLS estimator is

$$
\begin{aligned}
\operatorname{Var}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) & =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \boldsymbol{\epsilon} \epsilon^{\prime} \Omega^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \Omega \Omega^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1}
\end{aligned}
$$

The difference in variance between the OLS estimator and the GLS estimator can be written as

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1}
$$

By the Gauss Markov Theory, the difference matrix must be positive definite under most circumstances (zero if OLS and GLS are the same, when the usual classical regression assumptions are
met). Thus, OLS is not efficient under a general error structure. It is crucial to realize is that OLS does not produce biased results. It would suffice if you had a method for estimating a consistent covariance matrix and you used the OLS β. Estimation of the Ω matrix is by no means simple. The matrix is square and has M^{2} elements, so unless some sort of structure is assumed, it becomes an impossible problem to solve. However, the heteroscedasticity can have quite a general structure. White (1980) shows that it is not necessary to have a consistent estimate of Ω. On the contrary, it suffices to get an estimate of the middle expression. That is, you need an estimate of:

$$
\Lambda=\mathbf{X}^{\prime} \Omega \mathbf{X}
$$

This matrix, Λ, is easier to estimate because its dimension is K. PROC PANEL provides the following classical HCCME estimators:

The matrix Λ is approximated by:

- $H C C M E=N 0$: This is the simple OLS estimator so $\left(\mathbf{X}^{\prime} \mathbf{X}\right)$. If you do not request the HCCME= option, then PROC PANEL defaults to this estimator.
- $\mathrm{HCCME}=0$:

$$
\frac{1}{M} \sum_{i=0}^{M} \hat{\epsilon}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}
$$

The \mathbf{x}_{i} constitutes the ith row of the matrix \mathbf{X}_{s}.

- $H C C M E=1$:

$$
\frac{1}{M} \sum_{i=0}^{M}\left(\frac{M}{M-K} \hat{\epsilon}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)
$$

- $H C C M E=2$:

$$
\frac{1}{M} \sum_{i=0}^{M} \frac{\hat{\epsilon}_{i}^{2}}{1-\hat{h}_{i}} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}
$$

The \hat{h}_{i} term is i th diagonal element of the so called hat matrix. The expression for \hat{h}_{i} is $\mathbf{X}_{i}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{i}^{\prime}$. The hat matrix attempts to adjust the estimates for the presence of influence or leverage points.

- $H C C M E=3$:

$$
\frac{1}{n} \sum_{i=0}^{M} \frac{\hat{\epsilon}_{i}^{2}}{\left(1-\hat{h}_{i}\right)^{2}} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}
$$

- HCCME=4: This is the Arellano (1987) version of the White (1980) HCCME for panel. PROC PANEL includes an option for the calculation of the Arellano (1987) version of the White HCCME in the panel setting. Arellano's insight is that in a panel there are N covariance matrices, each corresponding to a cross section. Forming the White (1980) HCCME for each panel, you need to take only the average of those N estimators that yield Arellano. The details
of the estimation follow. First, you arrange the data such that the first cross section occupies the first T_{i} observations. You treat the panels as separate regressions with the form:

$$
\mathbf{y}_{i}=\alpha_{i} \mathbf{i}+\mathbf{X}_{i s} \tilde{\boldsymbol{\beta}}+\boldsymbol{\epsilon}_{i}
$$

The parameter estimates $\tilde{\boldsymbol{\beta}}$ and α_{i} are the result of LSDV or within estimator. \mathbf{i} is a vector ones of length T_{i}. The estimate of the i th cross section's $\mathbf{X}^{\prime} \Omega \mathbf{X}$ matrix (where the s subscript indicates that no constant column has been suppressed to avoid confusion) is $\mathbf{X}_{i}^{\prime} \Omega \mathbf{X}_{i}$. The estimate for the whole sample is:

$$
\mathbf{X}_{s}^{\prime} \Omega \mathbf{X}_{s}=\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \Omega \mathbf{X}_{i}
$$

The Arellano standard error is in fact a White-Newey-West estimator with constant and equal weight on each component. It should be noted that, in the between estimators, selecting HCCME $=4$ returns the HCCME $=0$ result since there is no 'other' variable to group by.

In their discussion, Davidson and MacKinnon (1993, pg. 554) argue that HCCME=1 should always be preferred to $\mathrm{HCCME}=0$. While generally $\mathrm{HCCME}=3$ is preferred to 2 and 2 is preferred to 1 , the calculation of HCCME $=1$ is as simple as the calculation of $\mathrm{HCCME}=0$. Therefore, it is clear that HCCME $=1$ is preferred when the calculation of the hat matrix is too tedious.

All HCCME estimators have well defined asymptotic properties. The small sample properties are not well known, and care must exercised when sample sizes are small.

The HCCME estimator of $\operatorname{Var}(\boldsymbol{\beta})$ is used to drive the covariance matrices for the fixed effects and the Lagrange multiplier standard errors. Robust estimates of the variance covariance matrix for $\boldsymbol{\beta}$ imply robust variance covariance matrices for all other parameters.

R-Square

The conventional R-square measure is inappropriate for all models that the PANEL procedure estimates by using GLS since a number outside the [0,1] range might be produced. Hence, a generalization of the R-square measure is reported. The following goodness-of-fit measure (Buse 1973) is reported:

$$
R^{2}=1-\frac{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{V}}^{-1} \hat{\mathbf{u}}}{\mathbf{y}^{\prime} \mathbf{D}^{\prime} \hat{\mathbf{V}}^{-1} \mathbf{D y}}
$$

where $\hat{\mathbf{u}}$ are the residuals of the transformed model, $\hat{\mathbf{u}}=\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \hat{\mathbf{V}}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \hat{\mathbf{V}}^{-1} \mathbf{y}$, and $\mathbf{D}=\mathbf{I}_{M}-\mathbf{j}_{M} \mathbf{j}_{M}^{\prime}\left(\frac{\hat{\mathbf{V}}^{-1}}{\mathbf{j}_{M} \hat{\mathbf{V}}^{-1} \mathbf{j}_{M}}\right)$.
This is a measure of the proportion of the transformed sum of squares of the dependent variable that is attributable to the influence of the independent variables.

If there is no intercept in the model, the corresponding measure (Theil 1961) is

$$
R^{2}=1-\frac{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{V}}^{-1} \hat{\mathbf{u}}}{\mathbf{y}^{\prime} \hat{\mathbf{V}}^{-1} \mathbf{y}}
$$

However, the fixed-effects models are somewhat different. In the case of a fixed-effects model, the choice of including or excluding an intercept becomes merely a choice of classification. Suppressing the intercept in the FIXONE or FIXONETIME case merely changes the name of the intercept to a fixed effect. It makes no sense to redefine the R-square measure since nothing material changes in the model. Similarly, for the FIXTWO model there is no reason to change R-square. In the case of the FIXONE, FIXONETIME, and FIXTWO models, the R-square is defined as the Theil (1961) R-square (detailed above). This makes intuitive sense since you are regressing a transformed (demeaned) series on transformed regressors, excluding a constant. In other words, you are looking at one minus the sum of squared errors divided by the sum of squares of the (transformed) dependent variable.

In the case of OLS estimation, both of the R -square formulas given here reduce to the usual R -square formula.

Specification Tests

The PANEL procedure outputs the results of one specification test for fixed effects and two specification tests for random effects.

For fixed effects, let β_{f} be the n dimensional vector of fixed-effects parameters. The specification test reported is the conventional F statistic for the hypothesis $\beta_{f}=\mathbf{0}$. The F statistic with $n, M-K$ degrees of freedom is computed as

$$
\hat{\beta}_{f} \hat{\mathbf{S}}_{f}^{-1} \hat{\beta}_{f} / n
$$

where $\hat{\mathbf{S}}_{f}$ is the estimated covariance matrix of the fixed-effects parameters.
Hausman's (1978) specification test or m statistic can be used to test hypotheses in terms of bias or inconsistency of an estimator. This test was also proposed by Wu (1973) and further extended in Hausman and Taylor (1982). Hausman's m statistic is as follows.

Consider two estimators, $\hat{\beta}_{a}$ and $\hat{\beta}_{b}$, which under the null hypothesis are both consistent, but only $\hat{\beta}_{a}$ is asymptotically efficient. Under the alternative hypothesis, only $\hat{\beta}_{b}$ is consistent. The m statistic is

$$
m=\left(\hat{\beta}_{b}-\hat{\beta}_{a}\right)^{\prime}\left(\hat{\mathbf{S}}_{b}-\hat{\mathbf{S}}_{a}\right)^{-1}\left(\hat{\beta}_{b}-\hat{\beta}_{a}\right)
$$

where $\hat{\mathbf{S}}_{b}$ and $\hat{\mathbf{S}}_{a}$ are consistent estimates of the asymptotic covariance matrices of $\hat{\beta}_{b}$ and $\hat{\beta}_{a}$. Then m is distributed χ^{2} with k degrees of freedom, where k is the dimension of $\hat{\beta}_{a}$ and $\hat{\beta}_{b}$.

In the random-effects specification, the null hypothesis of no correlation between effects and regressors implies that the OLS estimates of the slope parameters are consistent and inefficient but the GLS estimates of the slope parameters are consistent and efficient. This facilitates a Hausman
specification test. The reported χ^{2} statistic has degrees of freedom equal to the number of slope parameters.

Breusch and Pagan (1980) lay out a Lagrange multiplier test for random effects based on the simple OLS (pooled) estimator. If $\hat{u}_{i t}$ is the $i t$ th residual from the OLS regression, then the Breusch-Pagan (BP) test for one-way random effects is

$$
B P=\frac{N T}{2(T-1)}\left[\frac{\sum_{i=1}^{N}\left[\sum_{t=1}^{T} \hat{u}_{i t}\right]^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{u}_{i t}^{2}}-1\right]^{2}
$$

The BP test generalizes to the case of a two-way random-effects model (Greene 2000, page 589). Specifically,

$$
\begin{aligned}
B P 2 & =\frac{N T}{2(T-1)}\left[\frac{\sum_{i=1}^{n}\left[\sum_{t=1}^{T} \hat{u}_{i t}\right]^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{u}_{i t}^{2}}-1\right]^{2} \\
& +\frac{N T}{2(N-1)}\left[\frac{\sum_{t=1}^{T}\left[\sum_{i=1}^{N} \hat{u}_{i t}\right]^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{u}_{i t}^{2}}-1\right]^{2}
\end{aligned}
$$

is distributed as a χ^{2} statistic with two degrees of freedom. Since the BP2 test generalizes (nests the BP test) the test for random effects, the absence of random effects (nonrejection of the null of no random effects) in the BP2 is a fairly clear indication that there will probably not be any one-way effects either. In both cases (BP and BP2), the residuals are obtained from a pooled regression. There is very little extra cost in selecting both the BP and BP2 test. Notice that in the case of just groupwise heteroscedasticity, the BP2 test approaches BP. In the case of time based heteroscedasticity, the BP2 test reduces to a BP test of time effects. In the case of unbalanced panels, neither the BP nor BP2 statistics are valid.

Finally, you should be aware that the BP option generates different results depending on whether the estimation is FIXONE or FIXONET. Specifically, under the FIXONE estimation technique, the BP tests for cross-sectional random effects. Under the FIXONET estimation, the BP tests for time random effects.

While the Hausman statistic is automatically generated, you request Breusch-Pagan via the BP or BP2 option (see Baltagi 1995 for details).

Troubleshooting

Some guidelines need to be followed when you use PROC PANEL for analysis. For each cross section, PROC PANEL requires at least two time series observations with nonmissing values for all model variables. There should be at least two cross sections for each time point in the data. If these two conditions are not met, then an error message is printed in the log stating that there is only one cross section or time series observation and further computations will be terminated. You have to
give adequate data for an estimation method to produce results, and you should check the \log for any data related errors.

If the number of cross sections is greater than the number of time series observations per cross section, PROC PANEL while using PARKS method produces an error message stating that the phi matrix is singular. This is analogous to seemingly unrelated regression with fewer observations than equations in the model. To avoid the problem, reduce the number of cross sections.

Your data set could have multiple observations for each time ID within a particular cross section. However, PROC PANEL is applicable only in cases where you have only a single observation for each time ID within each cross section. In such a case, after you have sorted the data, an error warning specifying that the data has not been sorted in ascending sequence with respect to time series ID appears in the log.

The cause of the error is due to multiple observations for each time ID for a given cross section. PROC PANEL allows only one observation for each time ID within each cross section.

The following data set shown in Figure 19.2 illustrates the preceding instance with the correct representation.

Figure 19.2 Single Observation for Each Time Series

Obs	firm	year	production	cost
	1	1	1955	5.36598
2	1	1960	6.03787	1.14867
3	1	1965	6.37673	1.52257
4	1	1970	6.93245	1.76627
5	2	1955	6.54535	1.35041
6	2	1960	6.69827	1.71109
7	2	1965	7.40245	2.09519
8	2	1970	7.82644	2.39480

In this case, you can observe that there are no multiple observations with respect to a given time series ID within a cross section. This is the correct representation of a data set where PROC PANEL is applicable.

If for state ID 1 you have two observations for the year=1955, then PROC PANEL produces the following error message:
"The data set is not sorted in ascending sequence with respect to time series ID. The current time period has year=1955 and the previous time period has year=1955 in cross section firm=1."

A data set similar to the previous example with multiple observations for the YEAR=1955 is shown in Figure 19.3; this data set results in an error message due to multiple observations while using PROC PANEL.

Figure 19.3 Multiple Observations for Each Time Series

Obs	firm	year	production	cost
1	1	1955	5.36598	1.14867
2	1	1955	6.37673	1.52257
3	1	1960	6.03787	1.45185
4	1	1970	6.93245	1.76627
5	2	1955	6.54535	1.35041
6	2	1960	6.69827	1.71109
7	2	1965	7.40245	2.09519
8	2	1970	7.82644	2.39480

In order to use PROC PANEL, you need to aggregate the data so that you have unique time ID values within each cross section. One possible way to do this is to run a PROC MEANS on the input data set and compute the mean of all the variables by FIRM and YEAR, and then use the output data set.

ODS Graphics

This section describes the use of ODS for creating graphics with the PANEL procedure. Both the graphical results and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement. The table below lists the graph names, the plot descriptions, and the options used.

Table 19.2 ODS Graphics Produced by PROC PANEL

ODS Graph Name	Plot Description	Plots=Option
ResidualPlot	Plot of the residuals	Residual, Resid
FitPlot	Predicted versus actual plot	Fitplot
QQPlot	Plot of the quantiles of the residuals	QQ
ResidSurfacePlot	Surface plot of the residuals	Residsurface
PredSurfacePlot	Surface plot of the predicted values	Predsurface
ActSurfacePlot	Surface plot of the actual values	Actsurface
ResidStackPlot	Stack plot of the residuals	Residstack, Resstack
ResidHistogram	Plot of the histogram of residuals	Residualhistogram, Residhistogram

The OUTPUT OUT= Data Set

PROC PANEL writes the initial data of the estimated model, predicted values, and residuals to an output data set when the OUTPUT OUT= statement is specified. The OUT= data set contains the following variables:

MODELL	is a character variable that contains the label for the MODEL statement if a label is specified.
METHOD	is a character variable that identifies the estimation method.
MODLNO	is the number of the model estimated.
ACTUAL	contains the value of the dependent variable.
WEIGHT	contains the weighing variable.
CSID	is the value of the cross section ID.
TSID	is the value of the time period in the dynamic model.
regressors	are the values of regressor variables specified in the MODEL statement.
name	if PRED= name1 and/or RESIDUAL= name2 options are specified, then name 1 and name 2 are the columns of predicted values of dependent variable and residuals of the regression, respectively.

The OUTEST= Data Set

PROC PANEL writes the parameter estimates to an output data set when the OUTEST= option is specified. The OUTEST= data set contains the following variables:
MODEL is a character variable that contains the label for the MODEL statement if a label is specified.
METHOD is a character variable that identifies the estimation method. Current methods are FULLER, PARKS, and DASILVA.
TYPE is a character variable that identifies the type of observation. Values of the _TYPE_ variable are CORRB, COVB, CSPARMS, and PARMS; the CORRB observation contains correlations of the parameter estimates; the COVB observation contains covariances of the parameter estimates; the CSPARMS observation contains cross-sectional parameter estimates; and the PARMS observation contains parameter estimates.
NAME is a character variable that contains the name of a regressor variable for COVB and CORRB observations and is left blank for other observations. The _NAME_ variable is used in conjunction with the _TYPE_ values COVB and CORRB to identify rows of the correlation or covariance matrix.
DEPVAR is a character variable that contains the name of the response variable.
MSE
CSID is the value of the cross section ID for CSPARMS observations. The _CSID_ variable is used with the _TYPE_ value CSPARMS to identify the cross section for the first-order autoregressive parameter estimate contained in the observation. The _CSID_ variable is missing for observations with other _TYPE_ values. (Currently, only the _A_1 variable contains values for CSPARMS observations.)

VARCS	is the variance component estimate due to cross sections. The_VARCS_ variable is included in the OUTEST= data set when either the FULLER or DASILVA option is specified.
is the variance component estimate due to time series. The _VARTS_ variable	
is included in the OUTEST= data set when either the FULLER or DASILVA	
option is specified.	
is the variance component estimate due to error. The _VARERR_ variable is	
included in the OUTEST= data set when the FULLER option is specified.	
is the first-order autoregressive parameter estimate. The _A_1 variable is in-	
cluded in the OUTEST= data set when the PARKS option is specified. The	
values of _A_1 are cross-sectional parameters, meaning that they are estimated	
for each cross section separately. The_A_1 variable has a value only for	
TYPE=CSPARMS observations. The cross section to which the estimate be-	

The OUTTRANS= Data Set

PROC PANEL writes the transformed series to an output data set. That is, if the user selects FIXONE, FIXONETIME, or RANONE and supplies the OUTTRANS = option, the transformed dependent variable and independent variables are written out to a SAS data set; other variables in the input data set are copied unchanged.

Say that your data set contains variables $\mathrm{y}, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$, and $\mathrm{z2}$. The following statements result in a SAS data set with several characteristics:

```
proc panel data=datain outtrans=dataout;
    id cs ts;
    model y = x1 x2 x3 / fixone;
run;
```

First, z 2 is copied over. Then $\mathrm{y}, \mathrm{x} 1, \mathrm{x} 2$, and $\times 3$, are replaced with their mean deviates (from cross sectional). Furthermore, two new variables are created.
MODELL is the model's label (if it exists).
TRTYPE is the model's transformation type. In the FIXONE case, this is _FIXONE_ or _FIXONET_. If the model RANONE model is selected, the _TRTYPE_variable
is either _Ran1FB_, _Ran1WK_, _Ran1WH_ or _Ran1NL_ depending on the variance component estimators chosen.

Printed Output

For each MODEL statement, the printed output from PROC PANEL includes the following:

- a model description, which gives the estimation method used, the model statement label if specified, the number of cross sections and the number of observations in each cross section, and the order of moving average error process for the DASILVA option. For fixed-effects model analysis, an F test for the absence of fixed effects is produced, and for random-effects model analysis, a Hausman test is used for the appropriateness of the random-effects specification.
- the estimates of the underlying error structure parameters
- the regression parameter estimates and analysis. For each regressor, this includes the name of the regressor, the degrees of freedom, the parameter estimate, the standard error of the estimate, a t statistic for testing whether the estimate is significantly different from 0 , and the significance probability of the t statistic.

Optionally, PROC PANEL prints the following:

- the covariance and correlation of the resulting regression parameter estimates for each model and assumed error structure
- the $\hat{\Phi}$ matrix that is the estimated contemporaneous covariance matrix for the PARKS option

ODS Table Names

PROC PANEL assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 19.3.

Table 19.3 ODS Tables Produced in PROC PANEL

ODS Table Name	Description	Option
ODS Tables Created by the	MODEL Statement	Default
ModelDescription	Model description	Default
FitStatistics	Fit statistics	FIXONE,FIXTWO,
FixedEffectsTest	F test for no fixed effects	FIXONET
		Default
ParameterEstimates	Parameter estimates	

Table 19.3 (continued)

ODS Table Name	Description	Option
CovB	Covariance of parameter estimates	COVB
CorrB	Correlations of parameter estimates	CORRB
VarianceComponents	Variance component estimates	RANONE, RANTWO, DASILVA
RandomEffectsTest	Hausman test for random effects	RANONE, RANTWO
AR1Estimates	First-order autoregressive parameter estimates	RHO(PARKS)
TestResults	Tests of linear restrictions	
BreuschPaganTest	Breusch-Pagan one-way test	BP
BreuschPaganTest2	Breusch-Pagan two-way test	BP2
Sargan	Sargan's test for overidentification	GMM
ARTest	Autoregression test for the residuals	GMM
IterHist	Iteration history	ITGMM
ConvergenceStatus	Convergence status of iterated GMM estimator	ITGMM
EstimatedPhiMatrix	Estimated phi matrix	PARKS
EstimatedAutocovariances	Estimates of autocovariances	PARKS

ODS Tables Created by the TEST Statement
TestResults
Test results

Example: PANEL Procedure

Example 19.1: Analyzing Demand for Liquid Assets

In this example, the demand equations for liquid assets are estimated. The demand function for the demand deposits is estimated under three error structures while demand equations for time deposits and savings and loan (S\&L) association shares are calculated using the Parks method. The data for seven states (CA, DC, FL, IL, NY, TX, and WA) are selected out of 49 states. See Feige (1964) for data description. All variables were transformed via natural logarithm. The data set A is shown below.

```
data a;
    length state $ 2;
    input state $ year d t s y rd rt rs;
    label d = 'Per Capita Demand Deposits'
```

```
t = 'Per Capita Time Deposits'
s = 'Per Capita S & L Association Shares'
y = 'Permanent Per Capita Personal Income'
rd = 'Service Charge on Demand Deposits'
rt = 'Interest on Time Deposits'
rs = 'Interest on S & L Association Shares';
CA 1949 6.2785 6.1924 4.4998 7.2056 -1.0700 0.1080
CA 1950 6.4019 6.2106 4.6821 7.2889 -1.0106 0.1501 1.0767
CA 1951 6.5058 6.2729 4.8598
CA 1952 6.4785 6.2729 5.0039 7.4000 -0.9970 0.4492 1.1227
CA 1953 6.4118 6.2538
... more lines ...
```

datalines;

As shown in the following statements, the SORT procedure is used to sort the data into the required time series cross-sectional format; then PROC PANEL analyzes the data.

```
proc sort data=a;
    by state year;
run;
proc panel data=a;
    model d = y rd rt rs / fuller parks dasilva m=7;
    model t = y rd rt rs / parks;
    model s = y rd rt rs / parks;
    id state year;
run;
```

The income elasticities for liquid assets are greater than 1 except for the demand deposit income elasticity (0.692757) estimated by the Da Silva method. In Output 19.1.1, Output 19.1.2, and Output 19.1.3, the coefficient estimates $(-0.29094,-0.43591$, and -0.27736) of demand deposits (RD) imply that demand deposits increase significantly as the service charge is reduced. The price elasticities (0.227152 and 0.408066) for time deposits (RT) and S\&L association shares (RS) have the expected sign. Thus an increase in the interest rate on time deposits or $\mathrm{S} \& \mathrm{~L}$ shares will increase the demand for the corresponding liquid asset. Demand deposits and S\&L shares appear to be substitutes (see Output 19.1.2, Output 19.1.3, and Output 19.1.5). Time deposits are also substitutes for $S \& L$ shares in the time deposit demand equation (see Output 19.1.4), while these liquid assets are independent of each other in Output 19.1.5 (insignificant coefficient estimate of RT, -0.02705). Demand deposits and time deposits appear to be weak complements in Output 19.1.3 and Output 19.1.4, while the cross elasticities between demand deposits and time deposits are not significant in Output 19.1.2 and Output 19.1.5.

Output 19.1.1 Demand for Demand Deposits, Fuller-Battese Method

Output 19.1.2 Demand for Demand Deposits, Parks Method

Output 19.1.3 Demand for Demand Deposits, DaSilva Method

Output 19.1.3 continued

Output 19.1.4 Demand for Time Deposits, Parks Method

Output 19.1.5 Demand for Savings and Loan Shares, Parks Method

Example 19.2: The Airline Cost Data: Fixtwo Model

The Christenson Associates airline data are a frequently cited data set (see Greene 2000). The data measure costs, prices of inputs, and utilization rates for six airlines over the time span 1970-1984. This example analyzes the log transformations of the cost, price and quantity, and the raw (not logged) capacity utilization measure. You speculate the following model:

$$
\begin{aligned}
\ln \left(T C_{i t}\right)=\alpha_{N}+\gamma_{T} & +\left(\alpha_{i}-\alpha_{N}\right)+\left(\gamma_{t}-\gamma_{T}\right) \\
& +\beta_{1} \ln \left(Q_{i t}\right)+\beta_{2} \ln \left(P F_{i t}\right)+\beta_{3} L F_{i t}+\epsilon_{i t}
\end{aligned}
$$

where the α are the pure cross-sectional effects and γ are the time effects. The actual model speculated is highly nonlinear in the original variables. It would look like the following:

$$
T C_{i t}=\exp \left(\alpha_{i}+\gamma_{t}+\beta_{3} L F_{i t}+\epsilon_{i t}\right) Q_{i t}^{\beta_{1}} P F_{i t}^{\beta_{2}}
$$

The data and preliminary SAS statements are:

```
data airline;
    input Obs I T C Q PF LF;
    label obs = "Observation number";
    label I = "Firm Number (CSID)";
    label T = "Time period (TSID)";
    label Q = "Output in revenue passenger miles (index)";
    label C = "Total cost, in thousands";
    label PF = "Fuel price";
    label LF = "Load Factor (utilization index)";
datalines;
... more lines ...
data airline;
    set airline;
    lC = log(C);
    lQ = log(Q);
    lPF = log(PF);
    label lC = "Log transformation of costs";
    label lQ = "Log transformation of quantity";
    label lPF= "Log transformation of price of fuel";
run;
```

The following statements fit the model.

```
proc panel data=airline;
    id i t;
    model lC = lQ lPF LF / fixtwo;
run;
```

First, you see the model's description in Output 19.2.1. The model is a two-way fixed-effects model. There are six cross sections and fifteen time observations.

Output 19.2.1 The Airline Cost Data—Model Description

The R-square and degrees of freedom can be seen in Table 19.2.2. On the whole, you see a large R -square, so there is a reasonable fit. The degrees of freedom of the estimate are 90 minus 14 time dummy variables minus 5 cross section dummy variables and 4 regressors.

Output 19.2.2 The Airline Cost Data—Fit Statistics

	Fit Statistics		
SSE	0.1768	DFE	67
MSE	0.0026	Root MSE	0.0514
R-Square	0.9984		

The F test for fixed effects is shown in Table 19.2.3. Testing the hypothesis that there are no fixed effects, you easily reject the null of poolability. There are group effects, or time effects, or both. The test is highly significant. OLS would not give reasonable results.

Output 19.2.3 The Airline Cost Data-Test for Fixed Effects

F Test for No Fixed Effects			
Num DF	Den DF	F Value	$\mathrm{Pr}>\mathrm{F}$
19	67	23.10	<. 0001

Looking at the parameters, you see a more complicated pattern. Most of the cross-sectional effects are highly significant (with the exception of CS2). This means that the cross sections are significantly different from the sixth cross section. Many of the time effects show significance, but this is not uniform. It looks like the significance might be driven by a large $16^{\text {th }}$ period effect, since the first six time effects are negative and of similar magnitude. The time dummy variables taper off in size and lose significance from time period 12 onward. There are many causes to which you could attribute this decay of time effects. The time period of the data spans the OPEC oil embargoes and the dissolution of the Civil Aeronautics Board (CAB). These two forces are two possible reasons to observe the decay and parameter instability. As for the regression parameters, you see that quantity affects cost positively, and the price of fuel has a positive effect, but load factors negatively affect the costs of the airlines in this sample. The somewhat disturbing result is that the fuel cost is not significant. If the time effects are proxies for the effect of the oil embargoes, then an insignificant fuel cost parameter would make some sense. If the dummy variables proxy for the dissolution of the CAB , then the effect of load factors is also not being precisely estimated.

Output 19.2.4 The Airline Cost Data—Parameter Estimates

Variable	DF	Estimate	Parameter Standard Error	Estimates		Label	
				t value	Pr > \|t		
CS1	1	0.174237	0.0861	2.02	0.0470	Cross Sectional	
						Effect 1	
CS2	1	0.111412	0.0780	1.43	0.1576	Cross Sectional	
						Effect 2	
cs3	1	-0.14354	0.0519	-2.77	0.0073	Cross Sectional	
						Effect 3	
CS4	1	0.18019	0.0321	5.61	<. 0001	Cross Sectional	
						Effect 4	
CS5	1	-0.04671	0.0225	-2.08	0.0415	Cross Sectional	
						Effect 5	
TS1	1	-0.69286	0.3378	-2.05	0.0442	Time Series	
						Effect 1	
TS2	1	-0.63816	0.3321	-1.92	0.0589	Time Series	
						Effect 2	
TS3	1	-0.59554	0.3294	-1.81	0.0751	Time Series	
						Effect 3	
TS4	1	-0.54192	0.3189	-1.70	0.0939	Time Series	
						Effect 4	
TS5	1	-0.47288	0.2319	-2.04	0.0454	Time Series	
						Effect 5	
TS6	1	-0.42705	0.1884	-2.27	0.0267	Time Series	
						Effect 6	
TS7	1	-0.39586	0.1733	-2. 28	0.0255	Time Series	
						Effect 7	
TS8	1	-0.33972	0.1501	-2. 26	0.0269	Time Series	
						Effect 8	
TS9	1	-0.2718	0.1348	-2. 02	0.0478	Time Series	
						Effect 9	
TS10	1	-0.22734	0.0763	-2.98	0.0040	Time Series	
						Effect 10	
TS11	1	-0.1118	0.0319	-3. 50	0.0008	Time Series	
						Effect 11	
TS12	1	-0.03366	0.0429	-0.78	0.4354	Time Series	
						Effect 12	
TS13	1	-0.01775	0.0363	-0.49	0.6261	Time Series	
						Effect 13	
TS14	1	-0.01865	0.0305	-0.61	0.5430	Time Series	
						Effect 14	
Intercept	1	12.93834	2.2181	5.83	<. 0001	Intercept	
12	1	0.817264	0.0318	25.66	<. 0001	Log transformation of quantity	
1PF	1	0.168732	0.1635	1.03	0.3057	Log transformation of price of fuel	
LF	1	-0.88267	0.2617	-3.37	0.0012	Load Factor (utilization index)	

ODS Graphics Plots

ODS graphics plots can be obtained to graphically analyze the results. The following statements show how to generate the plots. If the PLOTS=ALL option is specified, all available plots are produced in two panels. For a complete list of options, see the section "ODS Graphics" on page 1320.

```
proc panel data=airline;
    id i t;
    model lC = lQ lPF LF / fixtwo plots = all;
run;
```

The preceding statements result in plots shown in Output 19.2.5 and Output 19.2.6.

Output 19.2.5 Diagnostic Panel 1

Output 19.2.6 Diagnostic Panel 2

The UNPACK and ONLY options produce individual detail images of paneled plots. The graph shown in Output 19.2.7 shows a detail plot of residuals by cross section. The packed version always puts all cross sections on one plot while the unpacked one shows the cross sections in groups of ten to avoid loss of detail.

```
proc panel data=airline;
    id i t;
    model lC = lQ lPF LF / fixtwo plots(unpack only) = residsurface;
run;
```

Output 19.2.7 Surface Plot of the Residual

Example 19.3: The Airline Cost Data: Further Analysis

Using the same data as in Example 19.2, you further investigate the 'true' effect of fuel prices. Specifically, you run the FixOne model, ignoring time effects. You specify the following statements in PROC PANEL to run this model:

```
proc panel data=airline;
    id i t;
    model lC = lQ lPF LF / fixone;
run;
```

The preceding statements result in Output 19.3.1. The fit seems to have deteriorated somewhat. The SSE rises from 0.1768 to 0.2926 .

Output 19.3.1 The Airline Cost Data—Fit Statistics
\(\left.\begin{array}{|cc|}\hline The PANEL Procedure

Fixed One Way Estimates\end{array}\right]\)| |
| :--- |
| Dependent Variable: lC Log transformation of costs |
| |
| Fit Statistics |
| |
| SSE |
| MSE |
| R-Square |

You still reject poolability based on the F test in Output 19.3.2 at all accepted levels of significance.
Output 19.3.2 The Airline Cost Data-Test for Fixed Effects

F Test for No Fixed Effects			
Num DF	Den DF	F Value	$\mathrm{Pr}>\mathrm{F}$
5	81	57.74	<. 0001

The parameters change somewhat dramatically as shown in Output 19.3.3. The effect of fuel costs comes in very strong and significant. The load factor's coefficient increases, although not as dramatically. This suggests that the fixed time effects might be proxies for both the oil shocks and deregulation.

Output 19.3.3 The Airline Cost Data—Parameter Estimates

Example 19.4: The Airline Cost Data: Random-Effects Models

This example continues to use the Christenson Associates airline data, which measures costs, prices of inputs, and utilization rates for six airlines over the time span 1970-1984. There are six cross sections and fifteen time observations. Here, you examine the different estimates generated from the one-way random-effects and two-way random-effects models, by using four different methods to estimate the variance components: Fuller and Battese, Wansbeek and Kapteyn, Wallace and Hussain, and Nerlove.

The data for this example is created by the PROC PANEL statements shown in Example 19.2. The PROC PANEL statements necessary to generate the estimates are as follows:

```
proc panel data=airline outest=estimates;
    id I T;
    RANONE: model lC = lQ lPF lF / ranone vcomp=fb;
    RANONEwk: model lC = lQ lPF lF / ranone vcomp=wk;
    RANONEwh: model lC = lQ lPF lF / ranone vcomp=wh;
    RANONEnl: model lC = lQ lPF lF / ranone vcomp=nl;
    RANTWO: model lC = lQ lPF lF / rantwo vcomp=fb;
    RANTWOwk: model lC = lQ lPF lF / rantwo vcomp=wk;
    RANTWOwh: model lC = lQ lPF lF / rantwo vcomp=wh;
    RANTWOnl: model lC = lQ lPF lF / rantwo vcomp=nl;
    POOLED: model lC = lQ lPF lF / pooled;
    BTWNG: model lC = lQ lPF lF / btwng;
    BTWNT: model lC = lQ lPF lF / btwnt;
run;
data table;
    set estimates;
        VarCS = round(_VARCS_,.00001);
        VarTS = round(_VARTS_,.00001);
        VarErr = round(_VARERR_,.00001);
        Int = round(Intercept,.0001);
        1Q2 = round(1Q,.0001);
        lPF2 = round(lPF,.0001);
        lF2 = round(lF,.0001);
        if _n_ >= 9 then do;
    VarCS = . ;
    VarTS = . ;
    keep _MODEL_ _METHOD_ VarCS VarTS VarErr Int lQ2 lPF2 lF2;
run;
```

The parameter estimates and variance components for both models are reported in Output 19.4.1 and Output 19.4.2.

```
title "Parameter Estimates";
proc print data=table label noobs;
    label _MODEL_ = "Model"
        _METHOD_ = "Method"
        Int = "Intercept"
        lQ2 = "lQ"
```

```
    lPF2 = "lPF"
    lF2 = "lF";
    var _METHOD_ _MODEL_ Int lQ2 lPF2 lF2;
run;
```

Output 19.4.1 Parameter Estimates

Method	Parameter Estimates				
	Model	Intercept	12	1PF	$1 F$
Ran1FB	RANONE	9.7097	0.9187	0.4177	-1.0700
Ran1WK	RANONEWK	9.6295	0.9069	0.4227	-1.0646
Ran1WH	RANONEWH	9.6439	0.9090	0.4218	-1.0650
_Ran1NL	RANONENL	9.6406	0.9086	0.4220	-1.0648
Ran2FB	RANTWO	9.3627	0.8665	0.4362	-0.9805
_Ran2WK	RANTWOWK	9.6436	0.8433	0.4097	-0.9263
Ran2WH	RANTWOWH	9.3793	0.8692	0.4353	-0.9852
Ran2NL	RANTWONL	9.9726	0.8387	0.3829	-0.9134
_POOLED	POOLED	9.5169	0.8827	0.4540	-1.6275
BTWGRP_	BTWNG	85.8094	0.7825	-5.5240	-1.7509
_BTWTME	BTWNT	11.1849	1.1333	0.3343	-1.3509

```
title "Variance Component Estimates" ;
proc print data=table label noobs;
    label _MODEL_ = "Model"
        METHOD_ = "Method"
            VarCS = "Variance Component for Cross Sections"
            VarTS = "Variance Component for Time Series"
            VarErr = "Variance Component for Error";
    var _METHOD_ _MODEL_ VarCS VarTS VarErr;
run;
title '';
```

Output 19.4.2 Variance Component Estimates

In the random-effects model, individual constant terms are viewed as randomly distributed across cross-sectional units and not as parametric shifts of the regression function, as in the fixed-effects model. This is appropriate when the sampled cross-sectional units are drawn from a large population. Clearly, in this example, the six airlines are a sample of all the airlines in the industry and not an exhaustive, or nearly exhaustive, list.

There are four ways of computing the variance components in the one-way random-effects model. The method by Fuller and Battese (1974) (FB), uses a "fitting of constants" methods to estimate them. The Wansbeek and Kapteyn (1989) (WK) method uses the true disturbances, while the Wallace and Hussain (WH) method uses ordinary least squares residuals.

Looking at the estimates of the variance components for cross section and error in Output 19.4.2, you see that equal variance components for error are computed for both FB and WK, while WH and NL are nearly equal.

All four techniques produce different variance components for cross sections. These estimates are then used to estimate the values of the parameters in Output 19.4.1. All the parameters appear to have similar and equally plausible estimates. Both the index for output in revenue passenger miles (1Q) and fuel price (IPF) have small, positive effects on total costs, which you would expect. The load factor (LF) has a somewhat larger and negative effect on total costs, suggesting that as utilization increases, costs decrease.

As in the one-way random-effects model, the variance components for error produced by the FB and WK methods are equal. However, in this case, the WH and NL methods produce variance estimates that are dissimilar. The estimates of the variance component for cross sections are all different, but in a close range. The same cannot be said for the variance component for time series. As varied as each of the variance estimates may be, they produce parameter estimates that are similar and plausible. As with the one-way effects model, the index for output (1Q) and fuel price (IPF) are small and positive. The load factor (LF) estimates are all negative and, with the exception of the estimate produced by the WH method, somewhat smaller than the estimates produced in the oneway model. During the time the data were collected, the Civil Aeronautics Board dissolved, so it is possible that the dummy variables are proxies for this dissolution. This would lead to the decay of time effects and an imprecise estimation of the effects of the load factors, even though the estimates are statistically significant.

The pooled estimates give you something to compare the random-effects estimates against. You see that signs and magnitudes of output and fuel price are similar but that the magnitude of the load factor coefficient is somewhat larger under pooling. Since the model appears to have both cross-sectional and time series effects, the pooled model should not be used.

Finally, you examine the between groups estimators. For the between groups estimate, you are looking at each airline's data averaged across time. You see in Output 19.4.1 that the between groups parameter estimates are radically different from all other parameter estimates. This could indicate that the time component is not being appropriately handled with this technique. For the between times estimate, you are looking at the average across all airlines in each time period. In this case, the parameter estimates are of the same sign and closer in magnitude to the previously computed estimates. Both the output and load factor effects appear to have more bearing on total costs.

Example 19.5: Using the FLATDATA Statement

Sometimes the data can be found in compressed form, where each line consists of all observations for the dependent and independent variables for the cross section. To illustrate, suppose you have a data set with 20 cross sections where each cross section consists of observations for six time periods. Each time period has values for dependent and independent variables $Y_{1} \ldots Y_{6}$ and $X_{1} \ldots X_{6}$. The $c s$ and num variables represent other character and numeric variables that are constant across each cross section.

The observations for first five cross sections along with other variables are shown in Output 19.5.1. In this example, i represents the cross section. The time period is identified by the subscript on the Y and X variables; it ranges from 1 to 6 .

Output 19.5.1 Compressed Data Set

Since the PANEL procedure cannot work directly with the data in compressed form, the FLATDATA statement can be used to transform the data. The OUT= option can be used to output transformed data to a data set.

```
proc panel data=flattest;
    flatdata indid=i tsname="t" transform=(X Y)
        keep=( cs num seed ) / out=flat_out;
    id i t;
    model y = x / fixone noint;
run;
```

First, six observations for the uncompressed data set and results for the one-way fixed-effects model fitted are shown in Output 19.5.2 and Output 19.5.3.

Output 19.5.2 Uncompressed Data Set

Obs	,					
	I	t	X	Y	CS	NUM
1	1	1	0.40268	2.30418	CS1	-1. 56058
2	1	2	0.91951	2.11850	CS1	-1.56058
3	1	3	0.69482	2.66009	CS1	-1.56058
4	1	4	-2.28899	-4.94104	CS1	-1.56058
5	1	5	-1.32762	-0.83053	CS1	-1.56058
6	1	6	1.92348	5.01359	CS1	-1.56058

Output 19.5.3 Estimation with the FLATDATA Statement

Example 19.6: The Cigarette Sales Data: Dynamic Panel Estimation with GMM

In this example, a dynamic panel demand model for cigarette sales is estimated. It illustrates the application of the method described in the section "Dynamic Panel Estimator" on page 1304. The data are a panel from 46 American states over the period 1963-92. See Baltagi and Levin (1992) and Baltagi (1995) for data description. All variables were transformed by taking the natural logarithm. The data set CIGAR is shown in the following statements.

```
data cigar;
    input state year price pop pop_16 cpi ndi sales pimin;
    label
    state = 'State abbreviation'
    year = 'YEAR'
    price = 'Price per pack of cigarettes'
    pop = 'Population'
    pop_16 = 'Population above the age of 16'
    cpi = 'Consumer price index with (1983=100)'
    ndi = 'Per capita disposable income'
    sales = 'Cigarette sales in packs per capita'
    pimin = 'Minimum price in adjoining states per pack of cigarettes';
    datalines;
1 63 28.6 3383 2236.5 30.6 1558.3045298 93.9 26.1
1 64 29.8 3431 2276.7 31.0 1684.0732025 95.4 27.5
1 65 29.8 3486 2327.5 31.5 1809.8418752 98.5 28.9
1 66 31.5 3524 2369.7 32.4 1915.1603572 96.4 29.5
1 67 31.6 3533 2393.7 33.4 2023.5463678 95.5 29.6
1 68 35.6 3522 2405.2 34.8 2202.4855362 88.4 32
69 36.6 3531 2411.9 36.7 2377.3346665 90.1 32.8
70 39.6 3444 2394.6 38.8 2591.0391591 89.8 34.3
71 42.7 3481 2443.5 40.5 2785.3159706 95.4 35.8
... more lines ...
```

The following statements sort the data by STATE and YEAR variables.

```
proc sort data=cigar;
    by state year;
run;
```

Next, logarithms of the variables required for regression estimation are calculated, as shown in the following statements:

```
data cigar;
    set cigar;
    lsales = log(sales);
    lprice = log(price);
    lndi = log(ndi);
    lpimin = log(pimin);
```

```
    label lprice = 'Log price per pack of cigarettes';
    label lndi = 'Log per capita disposable income';
    label lsales = 'Log cigarette sales in packs per capita';
    label lpimin = 'Log minimum price in adjoining states
        per pack of cigarettes';
run;
```

The following statements create the CIGAR_LAG data set with lagged variable for each cross section.

```
proc panel data=cigar;
    id state year;
    clag lsales(1) / out=cigar_lag;
run;
data cigar_lag;
    set cigar_lag;
    label lsales_1 = 'Lagged log cigarette sales in packs per capita';
run;
```

Finally, the model is estimated by a two step GMM method. Five lags (MAXBAND=5) of the dependent variable are used as instruments. NOLEVELS options is specified to avoid use of level equations, as shown in the following statements:

```
proc panel data=cigar_lag;
    inst depvar;
    model lsales = lsales_1 lprice lndi lpimin
        / gmm nolevels twostep maxband=5;
    id state year;
run;
```

Output 19.6.1 Estimation with GMM

Output 19.6.1 continued

Parameter Estimates					
Variable	DF	Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.00415	0.000873	4.75	$<.0001$
1sales_1	1	0.603963	0.00937	64.44	$<.0001$
lprice	1	-0.24099	0.0305	-7.90	$<.0001$
lndi	1	0.17851	0.0121	14.81	$<.0001$
lpimin	1	-0.07458	0.0312	-2.39	0.0169

If the theory suggests that there are other valid instruments, PREDETERMINED, EXOGENOUS and CORRELATED options can also be used.

References: PANEL Procedure

Arellano, M. (1987), "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, 49, 431-434.

Arellano, M. and Bond, S. (1991), "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, 58(2), 277-297.

Arellano, M. and Bover, O. (1995), "Another Look at the Instrumental Variable Estimation of ErrorComponents Models ," Journal of Econometrics, 68(1), 29-51.

Baltagi, B. H. (1995), Econometric Analysis of Panel Data, New York: John Wiley \& Sons.
Baltagi, B. H. and Chang, Y. (1994), "Incomplete Panels: A Comparative Study of Alternative Estimators for the Unbalanced One-Way Error Component Regression Model," Journal of Econometrics, 62(2), 67-89.

Baltagi, B. H. and D. Levin (1992), "Cigarette Taxation: Raising Revenues and Reducing Consumption," Structural Change and Economic Dynamics, 3, 321-335.

Baltagi, B. H., Song, Seuck H., and Jung, Byoung C. (2002), "A Comparative Study of Alternative Estimators for the Unbalanced Two-Way Error Component Regression Model," Econometrics Journal, 5, 480-493.

Breusch, T. S. and Pagan, A. R. (1980), "The Lagrange Multiplier Test and Its Applications to Model Specification in Econometrics," The Review of Economic Studies, 47:1, 239-253.

Buse, A. (1973), "Goodness of Fit in Generalized Least Squares Estimation," American Statistician, 27, 106-108.

Davidson, R. and MacKinnon, J. G. (1993), Estimation and Inference in Econometrics, New York: Oxford University Press.

Da Silva, J. G. C. (1975), "The Analysis of Cross-Sectional Time Series Data," Ph.D. dissertation, Department of Statistics, North Carolina State University.

Davis, Peter (2002), "Estimating Multi-Way Error Components Models with Unbalanced Data Structures," Journal of Econometrics, 106:1, 67-95.

Feige, E. L. (1964), The Demand for Liquid Assets: A Temporal Cross-Section Analysis, Englewood Cliffs: Prentice-Hall.

Feige, E. L. and Swamy, P. A. V. (1974), "A Random Coefficient Model of the Demand for Liquid Assets," Journal of Money, Credit, and Banking, 6, 241-252.

Fuller, W. A. and Battese, G. E. (1974), "Estimation of Linear Models with Crossed-Error Structure," Journal of Econometrics, 2, 67-78.

Greene, W. H. (1990), Econometric Analysis, First Edition, New York: Macmillan Publishing Company.

Greene, W. H. (2000), Econometric Analysis, Fourth Edition, New York: Macmillan Publishing Company.

Hausman, J. A. (1978), "Specification Tests in Econometrics," Econometrica, 46, 1251-1271.
Hausman, J. A. and Taylor, W. E. (1982), "A Generalized Specification Test," Economics Letters, 8, 239-245.

Hsiao, C. (1986), Analysis of Panel Data, Cambridge: Cambridge University Press.
Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., and Lee, T. C. (1985), The Theory and Practice of Econometrics, Second Edition, New York: John Wiley \& Sons.

Kmenta, J. (1971), Elements of Econometrics, AnnArbor: The University of Michigan Press.
Lamotte, L. R. (1994), "A Note on the Role of Independence in t Statistics Constructed from Linear Statistics in Regression Models," The American Statistician, 48:3, 238-240.

Maddala, G. S. (1977), Econometrics, New York: McGraw-Hill Co.
Parks, R. W. (1967), "Efficient Estimation of a System of Regression Equations When Disturbances Are Both Serially and Contemporaneously Correlated," Journal of the American Statistical Association, 62, 500-509.

SAS Institute Inc. (1979), SAS Technical Report S-106, PANEL: A SAS Procedure for the Analysis of Time-Series Cross-Section Data, Cary, NC: SAS Institute Inc.

Searle S. R. (1971), "Topics in Variance Component Estimation," Biometrics, 26, 1-76.
Seely, J. (1969), "Estimation in Finite-Dimensional Vector Spaces with Application to the Mixed Linear Model," Ph.D. dissertation, Department of Statistics, Iowa State University.

Seely, J. (1970a), "Linear Spaces and Unbiased Estimation," Annals of Mathematical Statistics, 41, 1725-1734.

Seely, J. (1970b), "Linear Spaces and Unbiased Estimation-Application to the Mixed Linear Model," Annals of Mathematical Statistics, 41, 1735-1748.

Seely, J. and Soong, S. (1971), "A Note on MINQUE's and Quadratic Estimability," Corvallis, Oregon: Oregon State University.

Seely, J. and Zyskind, G. (1971), "Linear Spaces and Minimum Variance Unbiased Estimation," Annals of Mathematical Statistics, 42, 691-703.

Theil, H. (1961), Economic Forecasts and Policy, Second Edition, Amsterdam: North-Holland, 435-437.

Wansbeek, T., and Kapteyn, Arie (1989), "Estimation of the Error-Components Model with Incomplete Panels," Journal of Econometrics, 41, 341-361.

White, H. (1980), "A Heteroscedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroscedasticity," Econometrica, 48, 817-838.

Wu, D. M. (1973), "Alternative Tests of Independence between Stochastic Regressors and Disturbances," Econometrica, 41(4), 733-750.

Zellner, A. (1962), "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias," Journal of the American Statistical Association, 57, 348-368.

Chapter 20

The PDLREG Procedure

Contents

Overview: PDLREG Procedure 1349
Getting Started: PDLREG Procedure 1351
Introductory Example 1351
Syntax: PDLREG Procedure 1354
Functional Summary 1354
PROC PDLREG Statement 1355
BY Statement 1355
MODEL Statement 1356
OUTPUT Statement 1358
RESTRICT Statement 1360
Details: PDLREG Procedure 1361
Missing Values 1361
Polynomial Distributed Lag Estimation 1361
Autoregressive Error Model Estimation 1362
OUT= Data Set 1363
Printed Output 1363
ODS Table Names 1364
Examples: PDLREG Procedure 1365
Example 20.1: Industrial Conference Board Data 1365
Example 20.2: Money Demand Model 1368
References 1373

Overview: PDLREG Procedure

The PDLREG procedure estimates regression models for time series data in which the effects of some of the regressor variables are distributed across time. The distributed lag model assumes that the effect of an input variable X on an output Y is distributed over time. If you change the value of X at time t, Y will experience some immediate effect at time t, and it will also experience a delayed effect at times $t+1, t+2$, and so on up to time $t+p$ for some limit p.

The regression model supported by PROC PDLREG can include any number of regressors with distribution lags and any number of covariates. (Simple regressors without lag distributions are called
covariates.) For example, the two-regressor model with a distributed lag effect for one regressor is written

$$
y_{t}=\alpha+\sum_{i=0}^{p} \beta_{i} x_{t-i}+\gamma z_{t}+u_{t}
$$

Here, x_{t} is the regressor with a distributed lag effect, z_{t} is a simple covariate, and u_{t} is an error term.

The distribution of the lagged effects is modeled by Almon lag polynomials. The coefficients b_{i} of the lagged values of the regressor are assumed to lie on a polynomial curve. That is,

$$
b_{i}=\alpha_{0}^{*}+\sum_{j=1}^{d} \alpha_{j}^{*} i^{j}
$$

where $d(\leq p)$ is the degree of the polynomial. For the numerically efficient estimation, the PDLREG procedure uses orthogonal polynomials. The preceding equation can be transformed into orthogonal polynomials:

$$
b_{i}=\alpha_{0}+\sum_{j=1}^{d} \alpha_{j} f_{j}(i)
$$

where $f_{j}(i)$ is a polynomial of degree j in the lag length i, and α_{j} is a coefficient estimated from the data.

The PDLREG procedure supports endpoint restrictions for the polynomial. That is, you can constrain the estimated polynomial lag distribution curve so that $b_{-1}=0$ or $b_{p+1}=0$, or both. You can also impose linear restrictions on the parameter estimates for the covariates.

You can specify a minimum degree and a maximum degree for the lag distribution polynomial, and the procedure fits polynomials for all degrees in the specified range. (However, if distributed lags are specified for more that one regressor, you can specify a range of degrees for only one of them.)

The PDLREG procedure can also test for autocorrelated residuals and perform autocorrelated error correction by using the autoregressive error model. You can specify any order autoregressive error model and can specify several different estimation methods for the autoregressive model, including exact maximum likelihood.

The PDLREG procedure computes generalized Durbin-Watson statistics to test for autocorrelated residuals. For models with lagged dependent variables, the procedure can produce Durbin h and Durbin t statistics. You can request significance level p-values for the Durbin-Watson, Durbin h, and Durbin t statistics. See Chapter 8, "The AUTOREG Procedure," for details about these statistics.

The PDLREG procedure assumes that the input observations form a time series. Thus, the PDLREG procedure should be used only for ordered and equally spaced time series data.

Getting Started: PDLREG Procedure

Use the MODEL statement to specify the regression model. The PDLREG procedure's MODEL statement is written like MODEL statements in other SAS regression procedures, except that a regressor can be followed by a lag distribution specification enclosed in parentheses.

For example, the following MODEL statement regresses Y on X and Z and specifies a distributed lag for X :

```
model y = x(4,2) z;
```

The notation $X(4,2)$ specifies that the model includes X and 4 lags of X, with the coefficients of X and its lags constrained to follow a second-degree (quadratic) polynomial. Thus, the regression model specified by this MODEL statement is

$$
\begin{aligned}
& y_{t}=a+b_{0} x_{t}+b_{1} x_{t-1}+b_{2} x_{t-2}+b_{3} x_{t-3}+b_{4} x_{t-4}+c z_{t}+u_{t} \\
& b_{i}=\alpha_{0}+\alpha_{1} f_{1}(i)+\alpha_{2} f_{2}(i)
\end{aligned}
$$

where $f_{1}(i)$ is a polynomial of degree 1 in i and $f_{2}(i)$ is a polynomial of degree 2 in i.
Lag distribution specifications are enclosed in parentheses and follow the name of the regressor variable. The general form of the lag distribution specification is
regressor-name (length, degree, minimum-degree, end-constraint)
where
length is the length of the lag distribution-that is, the number of lags of the regressor to use.
degree \quad is the degree of the distribution polynomial.
minimum-degree is an optional minimum degree for the distribution polynomial.
end-constraint is an optional endpoint restriction specification, which can have the value FIRST, LAST, or BOTH.

If the minimum-degree option is specified, the PDLREG procedure estimates models for all degrees between minimum-degree and degree.

Introductory Example

The following statements generate simulated data for variables Y and X . Y depends on the first three lags of X, with coefficients $.25, .5$, and .25 . Thus, the effect of changes of X on Y takes effect 25% after one period, 75% after two periods, and 100% after three periods.

```
data test;
    xl1 = 0; xl2 = 0; xl3 = 0;
    do t = -3 to 100;
        x = ranuni (1234);
        y = 10 + . 25 * xl1 + . 5 * xl2 + . 25 * xl3
            + .1 * rannor(1234);
        if t > 0 then output;
        xl3 = xl2; xl2 = xl1; xl1 = x;
    end;
run;
```

The following statements use the PDLREG procedure to regress Y on a distributed lag of X. The length of the lag distribution is 4 , and the degree of the distribution polynomial is specified as 3 .

```
proc pdlreg data=test;
    model y = x( 4, 3 );
run;
```

The PDLREG procedure first prints a table of statistics for the residuals of the model, as shown in Figure 20.1. See Chapter 8, "The AUTOREG Procedure," for an explanation of these statistics.

Figure 20.1 Residual Statistics

The PDLREG Procedu				
Dependent Variable \quad Y				
PDLREG Pr				
Ordinary Least Squares Estimates				
SSE	0.86604442	DFE		91
MSE	0.00952	Root MS		0.09755
SBC	-156.72612	AIC		-169.54786
MAE	0.07761107	AICC		-168.88119
MAPE	0.73971576	Regress	-Square	0.7711
Durbin-Watson	1.9920	Total R	quare	0.7711

The PDLREG procedure next prints a table of parameter estimates, standard errors, and t tests, as shown in Figure 20.2.

Figure 20.2 Parameter Estimates

	DF	Estimate	Standard Error	t Value	Approx Pr Variable
Intercept	1	10.0030	0.0431	231.87	$<.0001$
x**0	1	0.4406	0.0378	11.66	$<.0001$
x**1	1	0.0113	0.0336	0.34	0.7377
x**2	1	-0.4108	0.0322	-12.75	$<.0001$
x**3	1	0.0331	0.0392	0.84	0.4007

The table in Figure 20.2 shows the model intercept and the estimated parameters of the lag distribution polynomial. The parameter labeled $\mathrm{X}^{* *} 0$ is the constant term, α_{0}, of the distribution polynomial. $\mathrm{X}^{* *} 1$ is the linear coefficient, $\alpha_{1} ; \mathrm{X}^{* * 2}$ is the quadratic coefficient, α_{2}; and $\mathrm{X}^{* * 3}$ is the cubic coefficient, α_{3}.

The parameter estimates for the distribution polynomial are not of interest in themselves. Since the PDLREG procedure does not print the orthogonal polynomial basis that it constructs to represent the distribution polynomial, these coefficient values cannot be interpreted.

However, because these estimates are for an orthogonal basis, you can use these results to test the degree of the polynomial. For example, this table shows that the $\mathrm{X}^{* * 3}$ estimate is not significant; the p-value for its t ratio is 0.4007 , while the $\mathrm{X}^{* * 2}$ estimate is highly significant ($p<.0001$). This indicates that a second-degree polynomial might be more appropriate for this data set.

The PDLREG procedure next prints the lag distribution coefficients and a graphical display of these coefficients, as shown in Figure 20.3.

Figure 20.3 Coefficients and Graph of Estimated Lag Distribution

Variable	Estimate of Lag Distribution			
	Standard			Approx
	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
$\mathbf{x}(0)$	-0.040150	0.0360	-1. 12	0.2677
\mathbf{x} (1)	0.324241	0.0307	10.55	<. 0001
\mathbf{x} (2)	0.416661	0.0239	17.45	<. 0001
x (3)	0.289482	0.0315	9.20	$<.0001$
x (4)	-0.004926	0.0365	-0.13	0.8929
Estimate of Lag Distribution				
Variable	-0.04			0.4167
$\mathbf{x}(0)$	\|***			I
$\mathbf{x}(1)$	1 \| 1 ******	*******	********	1
$\mathbf{x}(2)$	\|******	*******	*********	***** \|
x (3)	\|******	*******	*****	I
x(4)	1 I			1

The lag distribution coefficients are the coefficients of the lagged values of X in the regression model. These coefficients lie on the polynomial curve defined by the parameters shown in Figure 20.2. Note that the estimated values for $\mathrm{X}(1), \mathrm{X}(2)$, and $\mathrm{X}(3)$ are highly significant, while $X(0)$ and $X(4)$ are not significantly different from 0 . These estimates are reasonably close to the true values used to generate the simulated data.

The graphical display of the lag distribution coefficients plots the estimated lag distribution polynomial reported in Figure 20.2. The roughly quadratic shape of this plot is another indication that a third-degree distribution curve is not needed for this data set.

Syntax: PDLREG Procedure

The following statements can be used with the PDLREG procedure:

```
PROC PDLREG option;
    BY variables;
    MODEL dependents = effects / options;
    OUTPUT OUT= SAS-data-set keyword = variables ;
    RESTRICT restrictions;
```


Functional Summary

The statements and options used with the PDLREG procedure are summarized in the following table.

Table 20.1 PDLREG Functional Summary

Description	Statement	Option
Data Set Options		
specify the input data set	PDLREG	DATA=
write predicted values to an output data set	OUTPUT	OUT=
BY-Group Processing specify BY-group processing	BY	
Printing Control Options		
request all print options	MODEL	ALL
print correlations of the estimates	MODEL	CORRB
print covariances of the estimates	MODEL	COVB
print DW statistics up to order j	MODEL	DW=j
print the marginal probability of DW statistics	MODEL	DWPROB
print inverse of the crossproducts matrix	MODEL	I
print details at each iteration step	MODEL	ITPRINT
print Durbin t statistic	MODEL	LAGDEP
print Durbin h statistic	MODEL	LAGDEP=
suppress printed output	MODEL	NOPRINT
print partial autocorrelations	MODEL	PARTIAL
print standardized parameter estimates	MODEL	STB
print crossproducts matrix	MODEL	XPX
Model Estimation Options		
specify order of autoregressive process	MODEL	NLAG=
suppress intercept parameter	MODEL	NOINT
specify convergence criterion	MODEL	CONVERGE=
specify maximum number of iterations	MODEL	MAXITER=
specify estimation method	MODEL	METHOD=

Table 20.1 continued

Description	Statement	Option
Output Control Options		
specify confidence limit size	OUTPUT	ALPHACLI=
specify confidence limit size for structural predicted values	OUTPUT	ALPHACLM=
output transformed intercept variable	OUTPUT	CONSTANT=
output lower confidence limit for predicted values	OUTPUT	LCL=
output lower confidence limit for structural predicted values	OUTPUT	LCLM $=$
output predicted values	OUTPUT	$\mathrm{P}=$
output predicted values of the structural part	OUTPUT	$\mathrm{PM}=$
output residuals from the predicted values	OUTPUT	$\mathrm{R}=$
output residuals from the structural predicted values	OUTPUT	$\mathrm{RM}=$
output transformed variables	OUTPUT	TRANSFORM=
output upper confidence limit for the predicted values	OUTPUT	UCL=
output upper confidence limit for the structural predicted values	OUTPUT	UCLM $=$

PROC PDLREG Statement

PROC PDLREG option;
The PROC PDLREG statement has the following option:

DATA $=$ SAS-data-set

specifies the name of the SAS data set containing the input data. If you do not specify the DATA= option, the most recently created SAS data set is used.

In addition, you can place any of the following MODEL statement options in the PROC PDLREG statement, which is equivalent to specifying the option for every MODEL statement: ALL, CONVERGE=, CORRB, COVB, DW=, DWPROB, ITPRINT, MAXITER=, METHOD=, NOINT, NOPRINT, and PARTIAL.

BY Statement

BY variables;
A BY statement can be used with PROC PDLREG to obtain separate analyses on observations in groups defined by the BY variables.

MODEL Statement

MODEL dependent $=$ effects / options ;

The MODEL statement specifies the regression model. The keyword MODEL is followed by the dependent variable name, an equal sign, and a list of independent effects. Only one MODEL statement is allowed.

Every variable in the model must be a numeric variable in the input data set. Specify an independent effect with a variable name optionally followed by a polynomial lag distribution specification.

Specifying Independent Effects

The general form of an effect is

```
variable (length, degree, minimum-degree, constraint )
```

The term in parentheses following the variable name specifies a polynomial distributed lag (PDL) for the variable. The PDL specification is as follows:
length specifies the number of lags of the variable to include in the lag distribution.
degree specifies the maximum degree of the distribution polynomial. If not specified, the degree defaults to the lag length.
minimum-degree
specifies the minimum degree of the polynomial. By default minimum-degree is the same as degree.
constraint
specifies endpoint restrictions on the polynomial. The value of constraint can be FIRST, LAST, or BOTH. If a value is not specified, there are no endpoint restrictions.

If you do not specify the degree or minimum-degree parameter, but you do specify endpoint restrictions, you must use commas to show which parameter, degree or minimum-degree, is left out.

MODEL Statement Options

The following options can appear in the MODEL statement after a slash (/).

ALL

prints all the matrices computed during the analysis of the model.

CORRB

prints the matrix of estimated correlations between the parameter estimates.

COVB

prints the matrix of estimated covariances between the parameter estimates.

$\mathrm{DW}=j$

prints the generalized Durbin-Watson statistics up to the order of j. The default is DW=1. When you specify the LAGDEP or LAGDEP=name option, the Durbin-Watson statistic is not printed unless you specify the DW= option.

DWPROB

prints the marginal probability of the Durbin-Watson statistic.

CONVERGE= value

sets the convergence criterion. If the maximum absolute value of the change in the autoregressive parameter estimates between iterations is less than this amount, then convergence is assumed. The default is CONVERGE=.001.

I
prints $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, the inverse of the crossproducts matrix for the model; or, if restrictions are specified, it prints $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ adjusted for the restrictions.

ITPRINT

prints information on each iteration.

LAGDEP

LAGDV
prints the t statistic for testing residual autocorrelation when regressors contain lagged dependent variables.

LAGDEP= name

LAGDV= name
prints the Durbin h statistic for testing the presence of first-order autocorrelation when regressors contain the lagged dependent variable whose name is specified as LAGDEP=name. When the h statistic cannot be computed, the asymptotically equivalent t statistic is given.

MAXITER= number

sets the maximum number of iterations allowed. The default is MAXITER=50

METHOD = value

specifies the type of estimates for the autoregressive component. The values of the METHOD $=$ option are as follows:

METHOD=ML specifies the maximum likelihood method.
METHOD=ULS specifies unconditional least squares.
METHOD=YW specifies the Yule-Walker method.
METHOD=ITYW specifies iterative Yule-Walker estimates.
The default is METHOD=ML if you specified the LAGDEP or LAGDEP= option; otherwise, METHOD=YW is the default.

NLAG $=m$

NLAG= (number-list)
specifies the order of the autoregressive process or the subset of autoregressive lags to be fit. If you do not specify the NLAG= option, PROC PDLREG does not fit an autoregressive model.

NOINT

suppresses the intercept parameter from the model.

NOPRINT

suppresses the printed output.

PARTIAL

prints partial autocorrelations if the NLAG= option is specified.
STB
prints standardized parameter estimates. Sometimes known as a standard partial regression coefficient, a standardized parameter estimate is a parameter estimate multiplied by the standard deviation of the associated regressor and divided by the standard deviation of the regressed variable.

XPX

prints the crossproducts matrix, $\mathbf{X}^{\prime} \mathbf{X}$, used for the model. \mathbf{X} refers to the transformed matrix of regressors for the regression.

OUTPUT Statement

OUTPUT OUT= SAS-data-set keyword= option . . . ;

The OUTPUT statement creates an output SAS data set with variables as specified by the following keyword options. See the section "Predicted Values" in Chapter 8, "The AUTOREG Procedure," for a description of the associated computations for these options.

ALPHACLI $=$ number

sets the confidence limit size for the estimates of future values of the current realization of the response time series to number, where number is less than one and greater than zero. The resulting confidence interval has 1-number confidence. The default value for number is 0.05 , corresponding to a 95% confidence interval.

ALPHACLM = number

sets the confidence limit size for the estimates of the structural or regression part of the model to number, where number is less than one and greater than zero. The resulting confidence interval has 1-number confidence. The default value for number is 0.05 , corresponding to a 95% confidence interval.

OUT= SAS-data-set

names the output data.

The following specifications are of the form $K E Y W O R D=$ names, where $K E Y W O R D=$ specifies the statistic to include in the output data set and names gives names to the variables that contain the statistics.

CONSTANT= variable

writes the transformed intercept to the output data set.

LCL= name

requests that the lower confidence limit for the predicted value (specified in the PREDICTED $=$ option) be added to the output data set under the name given.

LCLM = name

requests that the lower confidence limit for the structural predicted value (specified in the PREDICTEDM = option) be added to the output data set under the name given.

PREDICTED= name

$\mathrm{P}=$ name

stores the predicted values in the output data set under the name given.

PREDICTEDM= name

PM= name

stores the structural predicted values in the output data set under the name given. These values are formed from only the structural part of the model.

RESIDUAL= name

$\mathbf{R =}$ name

stores the residuals from the predicted values based on both the structural and time series parts of the model in the output data set under the name given.

RESIDUALM= name

RM= name
requests that the residuals from the structural prediction be given.

TRANSFORM= variables

requests that the specified variables from the input data set be transformed by the autoregressive model and put in the output data set. If you need to reproduce the data suitable for reestimation, you must also transform an intercept variable. To do this, transform a variable that only takes the value 1 or use the CONSTANT= option.

UCL= name

stores the upper confidence limit for the predicted value (specified in the PREDICTED= option) in the output data set under the name given.

UCLM= name

stores the upper confidence limit for the structural predicted value (specified in the PREDICTEDM = option) in the output data set under the name given.

For example, the SAS statements

```
proc pdlreg data=a;
    model y=x1 x2;
    output out=b p=yhat r=resid;
run;
```

create an output data set named B. In addition to the input data set variables, the data set B contains the variable YHAT, whose values are predicted values of the dependent variable Y, and RESID, whose values are the residual values of Y.

RESTRICT Statement

```
RESTRICT equation , ..., equation;
```

The RESTRICT statement places restrictions on the parameter estimates for covariates in the preceding MODEL statement. A parameter produced by a distributed lag cannot be restricted with the RESTRICT statement.

Each restriction is written as a linear equation. If you specify more than one restriction in a RESTRICT statement, the restrictions are separated by commas.

You can refer to parameters by the name of the corresponding regressor variable. Each name used in the equation must be a regressor in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the intercept parameter in the model.

RESTRICT statements can be given labels. You can use labels to distinguish results for different restrictions in the printed output. Labels are specified as follows:

```
label : RESTRICT ...
```

The following is an example of the use of the RESTRICT statement, in which the coefficients of the regressors X 1 and X 2 are required to sum to 1 :

```
proc pdlreg data=a;
    model y = x1 x2;
    restrict x1 + x2 = 1;
run;
```

Parameter names can be multiplied by constants. When no equal sign appears, the linear combination is set equal to 0 . Note that the parameters associated with the variables are restricted, not the variables themselves. Here are some examples of valid RESTRICT statements:

```
restrict x1 + x2 = 1;
restrict x1 + x2 - 1;
restrict 2 * x1 = x2 + x3 , intercept + x4 = 0;
restrict x1 = x2 = x3 = 1;
restrict 2 * x1 - x2;
```

Restricted parameter estimates are computed by introducing a Lagrangian parameter λ for each restriction (Pringle and Rayner 1971). The estimates of these Lagrangian parameters are printed in
the parameter estimates table. If a restriction cannot be applied, its parameter value and degrees of freedom are listed as 0 .

The Lagrangian parameter, λ, measures the sensitivity of the SSE to the restriction. If the restriction is changed by a small amount ϵ, the SSE is changed by $2 \lambda \epsilon$.

The t ratio tests the significance of the restrictions. If λ is zero, the restricted estimates are the same as the unrestricted ones.

You can specify any number of restrictions in a RESTRICT statement, and you can use any number of RESTRICT statements. The estimates are computed subject to all restrictions specified. However, restrictions should be consistent and not redundant.

Details: PDLREG Procedure

Missing Values

The PDLREG procedure skips any observations at the beginning of the data set that have missing values. The procedure uses all observations with nonmissing values for all the independent and dependent variables such that the lag distribution has sufficient nonmissing lagged independent variables.

Polynomial Distributed Lag Estimation

The simple finite distributed lag model is expressed in the form

$$
y_{t}=\alpha+\sum_{i=0}^{p} \beta_{i} x_{t-i}+\epsilon_{t}
$$

When the lag length (p) is long, severe multicollinearity can occur. Use the Almon or polynomial distributed lag model to avoid this problem, since the relatively low-degree $d(\leq p)$ polynomials can capture the true lag distribution. The lag coefficient can be written in the Almon polynomial lag

$$
\beta_{i}=\alpha_{0}^{*}+\sum_{j=1}^{d} \alpha_{j}^{*} i^{j}
$$

Emerson (1968) proposed an efficient method of constructing orthogonal polynomials from the preceding polynomial equation as

$$
\beta_{i}=\alpha_{0}+\sum_{j=1}^{d} \alpha_{j} f_{j}(i)
$$

where $f_{j}(i)$ is a polynomial of degree j in the lag length i. The polynomials $f_{j}(i)$ are chosen so that they are orthogonal:

$$
\sum_{i=1}^{n} w_{i} f_{j}(i) f_{k}(i)= \begin{cases}1 & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

where w_{i} is the weighting factor, and $n=p+1$. PROC PDLREG uses the equal weights $\left(w_{i}=1\right)$ for all i. To construct the orthogonal polynomials, the following recursive relation is used:

$$
f_{j}(i)=\left(A_{j} i+B_{j}\right) f_{j-1}(i)-C_{j} f_{j-2}(i) j=1, \ldots, d
$$

The constants A_{j}, B_{j}, and C_{j} are determined as follows:

$$
\begin{aligned}
A_{j}= & \left\{\sum_{i=1}^{n} w_{i} i^{2} f_{j-1}^{2}(i)-\left(\sum_{i=1}^{n} w_{i} i f_{j-1}^{2}(i)\right)^{2}\right. \\
& \left.-\left(\sum_{i=1}^{n} w_{i} i f_{j-1}(i) f_{j-2}(i)\right)^{2}\right\}^{-1 / 2} \\
B_{j}= & -A_{j} \sum_{i=1}^{n} w_{i} i f_{j-1}^{2}(i) \\
C_{j}= & A_{j} \sum_{i=1}^{n} w_{i} i f_{j-1}(i) f_{j-2}(i)
\end{aligned}
$$

where $f_{-1}(i)=0$ and $f_{0}(i)=1 / \sqrt{\sum_{i=1}^{n} w_{i}}$.
PROC PDLREG estimates the orthogonal polynomial coefficients, $\alpha_{0}, \ldots, \alpha_{d}$, to compute the coefficient estimate of each independent variable (X) with distributed lags. For example, if an independent variable is specified as $\mathrm{X}(9,3)$, a third-degree polynomial is used to specify the distributed lag coefficients. The third-degree polynomial is fit as a constant term, a linear term, a quadratic term, and a cubic term. The four terms are constructed to be orthogonal. In the output produced by the PDLREG procedure for this case, parameter estimates with names $\mathrm{X}^{* *} 0, \mathrm{X}^{* *} 1, \mathrm{X}^{* *} 2$, and $\mathrm{X}^{* *} 3$ correspond to $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \hat{\alpha}_{2}$, and $\hat{\alpha}_{3}$, respectively. A test using the t statistic and the approximate p-value ("Approx $\operatorname{Pr}>|t|$ ") associated with $\mathrm{X}^{* *} 3$ can determine whether a second-degree polynomial rather than a third-degree polynomial is appropriate. The estimates of the 10 lag coefficients associated with the specification $X(9,3)$ are labeled $X(0), X(1), X(2), X(3), X(4), X(5), X(6), X(7)$, $X(8)$, and $X(9)$.

Autoregressive Error Model Estimation

The PDLREG procedure uses the same autoregressive error model estimation methods as the AUTOREG procedure. These two procedures share the same computational resources for computing estimates. See Chapter 8, "The AUTOREG Procedure," for details about estimation methods for autoregressive error models.

OUT= Data Set

The OUT= data set produced by the PDLREG procedure's OUTPUT statement is similar in form to the OUT= data set produced by the AUTOREG procedure. See Chapter 8, "The AUTOREG Procedure," for details on the OUT= data set.

Printed Output

The PDLREG procedure prints the following items:

1. the name of the dependent variable
2. the ordinary least squares (OLS) estimates
3. the estimates of autocorrelations and of the autocovariance, and if line size permits, a graph of the autocorrelation at each lag. The autocorrelation for lag 0 is 1 . These items are printed if you specify the NLAG= option.
4. the partial autocorrelations if the PARTIAL and NLAG= options are specified. The first partial autocorrelation is the autocorrelation for lag 1.
5. the preliminary mean square error, which results from solving the Yule-Walker equations if you specify the NLAG= option
6. the estimates of the autoregressive parameters, their standard errors, and the ratios of estimates to standard errors (t) if you specify the NLAG= option
7. the statistics of fit for the final model if you specify the NLAG= option. These include the error sum of squares (SSE), the degrees of freedom for error (DFE), the mean square error (MSE), the root mean square error (Root MSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), the Schwarz information criterion (SBC), the Akaike's information criterion (AIC), Akaike's information criterion corrected(AICC), the regression R^{2} (Regress R-Square), the total R^{2} (Total R-Square), and the Durbin-Watson statistic (DurbinWatson). See Chapter 8, "The AUTOREG Procedure," for details of the regression R^{2} and the total R^{2}.
8. the parameter estimates for the structural model (B), a standard error estimate, the ratio of estimate to standard error (t), and an approximation to the significance probability for the parameter being 0 ("Approx $\operatorname{Pr}>|t|$ ")
9. a plot of the lag distribution (estimate of lag distribution)
10. the covariance matrix of the parameter estimates if the COVB option is specified

ODS Table Names

PROC PDLREG assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 20.2 ODS Tables Produced in PROC PDLREG

ODS Table Name	Description	Option
ODS Tables Created by the MODEL Statement		
ARParameterEstimates	Estimates of autoregressive parameters	NLAG=
CholeskyFactor	Cholesky root of gamma	
Coefficients	Coefficients for first NLAG observations	NLAG=
ConvergenceStatus	Convergence status table	default
CorrB	Correlation of parameter estimates	CORRB
CorrGraph	Estimates of autocorrelations	NLAG=
CovB	Covariance of parameter estimates	COVB
DependenceEquations	Linear dependence equation	
Dependent	Dependent variable	default
DWTest	Durbin-Watson statistics	DW=
DWTestProb	Durbin-Watson statistics and p-values	DW= DWPROB
ExpAutocorr	Expected autocorrelations	NLAG=
FitSummary	Summary of regression	default
GammaInverse	Gamma inverse	
IterHistory	Iteration history	ITPRINT
LagDist	Lag distribution	ALL
ParameterEstimates	Parameter estimates	default
ParameterEstimatesGivenAR	Parameter estimates assuming AR parameters are given	NLAG=
PartialAutoCorr	Partial autocorrelation	PARTIAL
PreMSE	Preliminary MSE	NLAG=
XPXIMatrix	$\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ matrix	XPX
XPXMatrix	$\mathbf{X}^{\prime} \mathbf{X}$ matrix	XPX
YWIterSSE	Yule-Walker iteration sum of squared error	METHOD=ITYW
ODS Tables Created by the RESTRICT Statement		
Restrict	Restriction table	default

Examples: PDLREG Procedure

Example 20.1: Industrial Conference Board Data

In this example, a second-degree Almon polynomial lag model is fit to a model with a five-period lag, and dummy variables are used for quarter effects. The PDL model is estimated using capital appropriations data series for the period 1952 to 1967. The estimation model is written

$$
\begin{aligned}
& C E_{t}=a_{0}+b_{1} Q 1_{t}+b_{2} Q 2_{t}+b_{3} Q 3_{t} \\
& +c_{0} C A_{t}+c_{1} C A_{t-1}+\ldots+c_{5} C A_{t-5}
\end{aligned}
$$

where CE represents capital expenditures and CA represents capital appropriations.

```
title 'National Industrial Conference Board Data';
title2 'Quarterly Series - 1952Q1 to 1967Q4';
data a;
    input ce ca @@;
    qtr = mod( _n_-1, 4 ) + 1;
    q1 = qtr=1;
    q2 = qtr=2;
    q3 = qtr=3;
datalines;
... more lines ...
proc pdlreg data=a;
    model ce = q1 q2 q3 ca(5,2) / dwprob;
run;
```

The printed output produced by the PDLREG procedure is shown in Output 20.1.1. The small Durbin-Watson test indicates autoregressive errors.

Output 20.1.1 Printed Output Produced by PROC PDLREG

National Industrial Conference Board Data Quarterly Series - 195291 to 1967Q4
The PDLREG Procedure
Dependent Variable ce

Output 20.1.1 continued

The following statements use the REG procedure to fit the same polynomial distributed lag model. A DATA step computes lagged values of the regressor X, and RESTRICT statements are used to impose the polynomial lag distribution. Refer to Judge et al. (1985, pp. 357-359) for the restricted least squares estimation of the Almon distributed lag model.

```
data b;
    set a;
    ca_1 = lag( ca );
    ca_2 = lag2( ca );
    ca_3 = lag3( ca );
    ca_4 = lag4( ca );
    ca_5 = lag5( ca );
run;
proc reg data=b;
    model ce = q1 q2 q3 ca ca_1 ca_2 ca_3 ca_4 ca_5;
    restrict - ca + 5*ca_1 - 10*ca_2 + 10*ca_3 - 5*ca_4 + ca_5;
    restrict ca - 3*ca_1 + 2*ca_2 + 2*ca_3 - 3*ca_4 + ca_5;
    restrict -5*ca + 7*ca_1 + 4*ca_2 - 4*ca_3 - 7*ca_4 + 5*ca_5;
run;
```

The REG procedure output is shown in Output 20.1.2.
Output 20.1.2 Printed Output Produced by PROC REG

Output 20.1.2 continued

Example 20.2: Money Demand Model

This example estimates the demand for money by using the following dynamic specification:

$$
m_{t}=a_{0}+b_{0} m_{t-1}+\sum_{i=0}^{5} c_{i} y_{t-i}+\sum_{i=0}^{2} d_{i} r_{t-i}+\sum_{i=0}^{3} f_{i} p_{t-i}+u_{t}
$$

where

$$
\begin{aligned}
& m_{t}=\log \text { of real money stock (M1) } \\
& y_{t}=\log \text { of real GNP } \\
& r_{t}=\text { interest rate (commercial paper rate) } \\
& p_{t}=\text { inflation rate } \\
& c_{i}, d_{i}, \text { and } f_{i}(i>0) \text { are coefficients for the lagged variables }
\end{aligned}
$$

The following DATA step reads the data and transforms the real money and real GNP variables using the natural logarithm. Refer to Balke and Gordon (1986) for a description of the data.

```
data a;
    input m1 gnp gdf r @@;
    m = log( 100 * m1 / gdf );
    lagm = lag( m );
    y = log(gnp );
    p = log( gdf / lag( gdf ) );
    date = intnx( 'qtr', '1jan1968'd, _n_-1 );
```

```
    format date yyqc6.;
    label m = 'Real Money Stock (M1)'
        lagm = 'Lagged Real Money Stock'
        y = 'Real GNP'
        r = 'Commercial Paper Rate'
        p = 'Inflation Rate';
datalines;
... more lines ...
```

Output 20.2.1 shows a partial list of the data set.
Output 20.2.1 Partial List of the Data Set A

National Industrial Conference Board Data Quarterly Series - 1952Q1 to 1967Q4						
Obs	date	m	lagm	Y	r	p
1	1968:1	5.44041	.	6.94333	5.58	.
2	1968:2	5.44732	5.44041	6.96226	6.08	0.011513
3	1968:3	5.45815	5.44732	6.97422	5.96	0.008246
4	1968: 4	5.46492	5.45815	6.97661	5.96	0.014865
5	1969:1	5.46980	5.46492	6.98855	6.66	0.011005

The regression model is written for the PDLREG procedure with a MODEL statement. The LAGDEP $=$ option is specified to test for the serial correlation in disturbances since regressors contain the lagged dependent variable LAGM.

```
title 'Money Demand Estimation using Distributed Lag Model';
title2 'Quarterly Data - 1968Q2 to 1983Q4';
proc pdlreg data=a;
    model m = lagm y(5,3) r(2, , ,first) p(3,2) / lagdep=lagm;
run;
```

The estimated model is shown in Output 20.2.2 and Output 20.2.3.
Output 20.2.2 Parameter Estimates

| Money Demand Estimation using Distributed Lag Model |
| :---: | :---: |
| Quarterly Data - 19682 to 198304 |

Output 20.2.2 continued

Output 20.2.3 Estimates for Lagged Variables

Estimate of Lag Distribution					
Variable		Standard		Approx	
	Estimate	Error	t Value	Pr > \|t	
Y(0)	0.268619	0.0910	2.95	0.0049	
$y(1)$	-0.196484	0.0612	-3.21	0.0024	
Y(2)	-0.163148	0.0537	-3.04	0.0038	
$y(3)$	0.063850	0.0451	1.42	0.1632	
y(4)	0.179733	0.0588	3.06	0.0036	
$y(5)$	-0.120276	0.0679	-1.77	0.0827	
Estimate of Lag Distribution					
Variable	-0.196	0		0.2686	
$y(0)$					
$y(1)$					
$y(2)$	*************\|				
$y(3)$	\|******				
y(4)	\|****************				
$y(5)$	********* \|				
	Estimate of Lag Distribution				
	Standard			Approx	
Variable	Estimate Error t Value			Pr > $\|t\|$	
$r(0)$	-0.001341	0.000388	-3.45	0.0012	
$r(1)$	-0.000751	0.000234	-3.22	0.0023	
r (2)	0.001770	0.000754	2.35	0.0230	
	Estimate of Lag Distribution				
Variable	-0.001	0	0.0018		
$r(0)$				1	
$r(1)$	********* \|			1	
r (2)					

Output 20.2.3 continued

Variable	Estimate of Lag Distribution			
	Standard			Approx
	Estimate	Error	t Value	Pr > $\|t\|$
$p(0)$	-1.104051	0.2027	-5.45	$<.0001$
$p(1)$	0.082892	0.1257	0.66	0.5128
p(2)	0.263391	0.1381	1.91	0.0624
p(3)	-0.562556	0.2076	-2.71	0.0093
Estimate of Lag Distribution				
Variable	-1.104		0	0.2634
$p(0)$				1
$p(1)$	1	\|***		
$p(2)$	1	\|********		
$p(3)$	1	*******	******* \|	1

References

Balke, N. S. and Gordon, R. J. (1986), "Historical Data," in R. J. Gordon, ed., The American Business Cycle, 781-850, Chicago: The University of Chicago Press.

Emerson, P. L. (1968), "Numerical Construction of Orthogonal Polynomials from a General Recurrence Formula," Biometrics, 24, 695-701.

Gallant, A. R. and Goebel, J. J. (1976), "Nonlinear Regression with Autoregressive Errors," Journal of the American Statistical Association, 71, 961-967.

Harvey, A. C. (1981), The Econometric Analysis of Time Series, New York: John Wiley \& Sons.
Johnston, J. (1972), Econometric Methods, Second Edition, New York: McGraw-Hill.
Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., and Lee, T. C. (1985), The Theory and Practice of Econometrics, Second Edition, New York: John Wiley \& Sons.

Park, R. E. and Mitchell, B. M. (1980), "Estimating the Autocorrelated Error Model with Trended Data," Journal of Econometrics, 13, 185-201.

Pringle, R. M. and Rayner, A. A. (1971), Generalized Inverse Matrices with Applications to Statistics, New York: Hafner Publishing.

Chapter 21

The QLIM Procedure

Contents
Overview: QLIM Procedure 1376
Getting Started: QLIM Procedure 1377
Introductory Example: Binary Probit and Logit Models 1378
Syntax: QLIM Procedure 1382
Functional Summary 1383
PROC QLIM Statement 1384
BOUNDS Statement 1386
BY Statement 1387
CLASS Statement 1387
ENDOGENOUS Statement 1387
HETERO Statement 1390
INIT Statement 1391
MODEL Statement 1391
NLOPTIONS Statement 1392
OUTPUT Statement 1392
RESTRICT Statement 1393
TEST Statement 1394
WEIGHT Statement 1395
Details: QLIM Procedure 1396
Ordinal Discrete Choice Modeling 1396
Limited Dependent Variable Models 1399
Stochastic Frontier Production and Cost Models 1403
Heteroscedasticity and Box-Cox Transformation 1405
Bivariate Limited Dependent Variable Modeling 1406
Selection Models 1408
Multivariate Limited Dependent Models 1409
Tests on Parameters 1410
Output to SAS Data Set 1411
OUTEST= Data Set 1413
Naming 1414
ODS Table Names 1415
Examples: QLIM Procedure 1416
Example 21.1: Ordered Data Modeling 1416
Example 21.2: Tobit Analysis 1419
Example 21.3: Bivariate Probit Analysis 1421
Example 21.4: Sample Selection Model 1422
Example 21.5: Sample Selection Model with Truncation and Censoring 1423
Example 21.6: Types of Tobit Models 1426
Example 21.7: Stochastic Frontier Models 1432
References 1437

Overview: QLIM Procedure

The QLIM (qualitative and limited dependent variable model) procedure analyzes univariate and multivariate limited dependent variable models where dependent variables take discrete values or dependent variables are observed only in a limited range of values. This procedure includes logit, probit, tobit, selection, and multivariate models. The multivariate model can contain discrete choice and limited endogenous variables as well as continuous endogenous variables.

The QLIM procedure supports the following models:

- linear regression model with heteroscedasticity
- Box-Cox regression with heteroscedasticity
- probit with heteroscedasticity
- logit with heteroscedasticity
- tobit (censored and truncated) with heteroscedasticity
- bivariate probit
- bivariate tobit
- sample selection and switching regression models
- multivariate limited dependent variables
- stochastic frontier production and cost models

In the linear regression models with heteroscedasticity, the assumption that error variance is constant across observations is relaxed. The QLIM procedure allows for a number of different linear and nonlinear variance specifications. Another way to make the linear model more appropriate to fit the data and reduce skewness is to apply Box-Cox transformation. If the nature of data is such that the dependent variable is discrete and it takes only two possible values, OLS estimates are inconsistent. The QLIM procedure offers probit and logit models to overcome these estimation problems. Assumptions about the error variance can also be relaxed in order to estimate probit or logit with heteroscedasticity.

The QLIM procedure also offers a class of models where the dependent variable is censored or truncated from below and/or above. When a continuous dependent variable is observed only
within a certain range and values outside this range are not available, the QLIM procedure offers a class of models adjusting for truncation. In some cases, the dependent variable is continuous only in a certain range and all values outside this range are reported as being on its boundary. For example, if it is not possible to observe negative values, the value of the dependent variable is reported as equal to zero. Because the data are censored, OLS results are inconsistent, and it cannot be guaranteed that the predicted values from the model fall in the appropriate region.

Most of the models in the QLIM procedure can be extended to accommodate bivariate and multivariate scenarios. The assumption that one variable is observed only if another variable takes on certain values lead to the introduction of sample selection models. If the dependent variables are mutually exclusive and observed only for certain ranges of the selection variable, the sample selection can be extended to include cases of switching regression. Stochastic frontier production and cost models allow for random shocks of the production or cost. They include a systematic positive component in the error term adjusting for technological or cost inefficiency.

The QLIM procedure uses maximum likelihood methods. Initial starting values for the nonlinear optimizations are typically calculated by OLS.

Getting Started: QLIM Procedure

The QLIM procedure is similar in use to the other regression or simultaneous equations model procedures in the SAS System. For example, the following statements are used to estimate a binary choice model by using the probit probability function:

```
proc qlim data=a;
    model y = x1;
    endogenous y ~ discrete;
run;
```

The response variable, y, is numeric and has discrete values. PROC QLIM enables the user to specify the type of endogenous variables in the ENDOGENOUS statement. The binary probit model can be also specified as follows:

```
model y = x1 / discrete;
```

When multiple endogenous variables are specified in the QLIM procedure, these equations are estimated as a system. Multiple endogenous variables can be specified with one MODEL statement in the QLIM procedure when these models have the same exogenous variables:

```
model y1 y2 = x1 x2 / discrete;
```

The preceding specification is equivalent to the following statements:

```
proc qlim data=a;
    model y1 = x1 x2;
    model y2 = x1 x2;
    endogenous y1 y2 ~ discrete;
run;
```

The standard tobit model is estimated by specifying the endogenous variable to be truncated or censored. The limits of the dependent variable can be specified with the CENSORED or TRUNCATED option in the ENDOGENOUS or MODEL statement when the data are limited by specific values or variables. For example, the two-limit censored model requires two variables that contain the lower (bottom) and upper (top) bound:

```
proc qlim data=a;
    model y = x1 x2 x3;
    endogenous y ~ censored(lb=bottom ub=top);
run;
```

The bounds can be numbers if they are fixed for all observations in the data set. For example, the standard tobit model can be specified as follows:

```
proc qlim data=a;
    model y = x1 x2 x3;
    endogenous y ~ censored(lb=0);
run;
```


Introductory Example: Binary Probit and Logit Models

The following example illustrates the use of PROC QLIM. The data were originally published by Mroz (1987) and downloaded from Wooldridge (2002). This data set is based on a sample of 753 married white women. The dependent variable is a discrete variable of labor force participation (inlf). Explanatory variables are the number of children ages 5 or younger (kidslt6), the number of children ages 6 to 18 (kidsge6), the woman's age (age), the woman's years of schooling (educ), wife's labor experience (exper), square of experience (expersq), and the family income excluding the wife's wage (nwifeinc). The program (with data values omitted) is as follows:

```
/*-- Binary Probit --*/
proc qlim data=mroz;
    model inlf = nwifeinc educ exper expersq
    age kidslt6 kidsge6 / discrete;
run;
```

Results of this analysis are shown in the following four figures. In the first table, shown in Figure 21.1, PROC QLIM provides frequency information about each choice. In this example, 428 women participate in the labor force (inlf $=1$).

Figure 21.1 Choice Frequency Summary

The second table is the estimation summary table shown in Figure 21.2. Included are the number of dependent variables, names of dependent variables, the number of observations, the log-likelihood function value, the maximum absolute gradient, the number of iterations, AIC, and Schwarz criterion.

Figure 21.2 Fit Summary Table of Binary Probit

Model Fit Summary	
Number of Endogenous Variables	1
Endogenous Variable	inlf
Number of Observations	753
Log Likelihood	-401.30219
Maximum Absolute Gradient	0.0000669
Number of Iterations	15
Optimization Method	Quasi-Newton
AIC	818.60439
Schwarz Criterion	855.59691

Goodness-of-fit measures are displayed in Figure 21.3. All measures except McKelvey-Zavoina's definition are based on the log-likelihood function value. The likelihood ratio test statistic has chisquare distribution conditional on the null hypothesis that all slope coefficients are zero. In this example, the likelihood ratio statistic is used to test the hypothesis that kidslt6 $=$ kidge $6=$ age $=$ educ $=$ exper $=$ expersq $=n$ wifeinc $=0$.

Figure 21.3 Goodness of Fit

Goodness-of-Fit Measures		
Measure	Value	Formula
Likelihood Ratio (R)	227.14	2 * (LogL - LogL0)
Upper Bound of R (U)	1029.7	- 2 * LogL0
Aldrich-Nelson	0.2317	$\mathrm{R} / \mathrm{l}+\mathrm{N})$
Cragg-Uhler 1	0.2604	$1-\exp (-\mathrm{R} / \mathrm{N})$
Cragg-Uhler 2	0.3494	$(1-\exp (-\mathrm{R} / \mathrm{N})$) / (1-exp (-U/N))
Estrella	0.2888	$1-(1-R / U)^{\wedge}(\mathrm{U} / \mathrm{N})$
Adjusted Estrella	0.2693	$1-((\operatorname{LogL}-\mathrm{K}) / \operatorname{LogL} 0)^{\wedge}(-2 / \mathrm{N} * \operatorname{LogL} 0)$
McFadden's LRI	0.2206	R / U
Veall-Zimmermann	0.4012	$(\mathrm{R} *(\mathrm{U}+\mathrm{N})$) / (U * ($\mathrm{R}+\mathrm{N}$))
McKelvey-Zavoina	0.4025	

Finally, the parameter estimates and standard errors are shown in Figure 21.4.
Figure 21.4 Parameter Estimates of Binary Probit

Parameter	DF	Parameter Estimates			Approx
			Standard		
		Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.270077	0.508590	0.53	0.5954
nwifeinc	1	-0.012024	0.004840	-2.48	0.0130
educ	1	0.130905	0.025255	5.18	<. 0001
exper	1	0.123348	0.018720	6.59	$<.0001$
expersq	1	-0.001887	0.000600	-3.14	0.0017
age	1	-0.052853	0.008477	-6.24	<. 0001
kidslt6	1	-0.868329	0.118519	-7.33	$<.0001$
kidsge6	1	0.036005	0.043477	0.83	0.4076

When the error term has a logistic distribution, the binary logit model is estimated. To specify a logistic distribution, add $\mathrm{D}=\mathrm{LOGIT}$ option as follows:

```
/*-- Binary Logit --*/
proc qlim data=mroz;
    model inlf = nwifeinc educ exper expersq
        age kidslt6 kidsge6 / discrete(d=logit);
run;
```

The estimated parameters are shown in Figure 21.5.

Figure 21.5 Parameter Estimates of Binary Logit

Binary Data						
The QLIM Procedure						
Parameter Estimates						
			Standard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	0.425452	0.860365	0.49	0.6210	
nwifeinc	1	-0.021345	0.008421	-2.53	0.0113	
educ	1	0.221170	0.043441	5.09	<. 0001	
exper	1	0.205870	0.032070	6.42	<. 0001	
expersq	1	-0.003154	0.001017	-3.10	0.0019	
age	1	-0.088024	0.014572	-6.04	<. 0001	
kidslt 6	1	-1.443354	0.203575	-7.09	$<.0001$	
kidsge6	1	0.060112	0.074791	0.80	0.4215	

The heteroscedastic logit model can be estimated using the HETERO statement. If the variance of the logit model is a function of the family income level excluding wife's income (nwifeinc), the variance can be specified as

$$
\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2} \exp \left(\gamma * \text { nwifeinc }_{i}\right)
$$

where σ^{2} is normalized to 1 because the dependent variable is discrete. The following SAS statements estimate the heteroscedastic logit model:

```
/*-- Binary Logit with Heteroscedasticity --*/
proc qlim data=mroz;
    model inlf = nwifeinc educ exper expersq
            age kidslt6 kidsge6 / discrete(d=logit);
    hetero inlf ~ nwifeinc / noconst;
run;
```

The parameter estimate, γ, of the heteroscedasticity variable is listed as _H.nwifeinc; see Figure 21.6.

Figure 21.6 Parameter Estimates of Binary Logit with Heteroscedasticity

Binary Data					
The QLIM Procedure					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	0.510445	0.983538	0.52	0.6038
nwifeinc	1	-0.026778	0.012108	-2.21	0.0270
educ	1	0.255547	0.061728	4.14	$<.0001$
exper	1	0.234105	0.046639	5.02	$<.0001$
expersq	1	-0.003613	0.001236	-2.92	0.0035
age	1	-0.100878	0.021491	-4.69	<. 0001
kidslt 6	1	-1.645206	0.311296	-5.29	<. 0001
kidsge6	1	0.066941	0.085633	0.78	0.4344
_H.nwifeinc	1	0.013280	0.013606	0.98	0.3291

Syntax: QLIM Procedure

The QLIM procedure is controlled by the following statements:
PROC QLIM options ;
BOUNDS bound1 < , bound2 \ldots > ;
BY variables ;
CLASS variables;
ENDOGENOUS variables ~ options;
HETERO dependent variables \sim exogenous variables / options ;
INIT initvalue1 < , initvalue2 ... > ;
MODEL dependent variables = regressors / options ;
NLOPTIONS options ;
OUTPUT options ;
RESTRICT restriction1 < , restriction2 ... > ;
TEST options ;
WEIGHT variable ;
At least one MODEL statement is required. If more than one MODEL statement is used, the QLIM procedure estimates a system of models. Main effects and higher-order terms can be specified in the MODEL statement, as in the GLM procedure and PROBIT procedure in SAS/STAT. If a CLASS statement is used, it must precede the MODEL statement.

Functional Summary

The statements and options used with the QLIM procedure are summarized in the following table.
Table 21.1 QLIM Functional Summary

Description	Statement	Option
Data Set Options specify the input data set write parameter estimates to an output data set write predictions to an output data set	QLIM QLIM	DATA= OUTPUT
OUTEST=		
Declaring the Role of Variables specify BY-group processing specify classification variables specify a weight variable		OUT=

Model Estimation Options

specify options specific to Box-Cox transformation suppress the intercept parameter
specify a seed for pseudo-random number generation
specify number of draws for Monte Carlo integra-
tion
specify method to calculate parameter covariance

Endogenous Variable Options

specify discrete variable
specify censored variable
specify truncated variable
specify variable selection condition

MODEL
MODEL
QLIM

QLIM
QLIM

ENDOGENOUS
DISCRETE()
ENDOGENOUS CENSORED()
ENDOGENOUS TRUNCATED()
ENDOGENOUS SELECT()

Table 21.1 continued

Description	Statement	Option
specify stochastic frontier variable	ENDOGENOUS	FRONTIER()
Heteroscedasticity Model Options		
specify the function for heteroscedasticity models square the function for heteroscedasticity models specify no constant for heteroscedasticity models	HETERO	HETERO
	HETERO	SQUA=
Output Control Options		NOCONST
output predicted values output structured part output residuals output error standard deviation output marginal effects output probability for the current response output probability for all responses output expected value output conditional expected value output inverse Mills ratio include covariances in the OUTEST= data set include correlations in the OUTEST= data set	OUTPUT	PREDICTED
	OUTPUT	XBETA
Test Request Options	OUTPUT	RESIDUAL
Requests Wald, Lagrange multiplier, and likelihood	OUTPUT	ERRSTD
ratio tests	OUTPUT	PROBGINAL
Requests the WALD test	OROBALL	
Requests the Lagrange multiplier test	OUTPUT	EXPECTED
Requests the likelihood ratio test	OUTPUT	CONDITIONAL

PROC QLIM Statement

PROC QLIM options ;
The following options can be used in the PROC QLIM statement.

Data Set Options

DATA $=$ SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC QLIM uses the most recently created SAS data set.

Output Data Set Options

OUTEST=SAS-data-set

writes the parameter estimates to an output data set.

COVOUT

writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid only if the OUTEST= option is specified.

CORROUT

writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid only if the OUTEST= option is specified.

Printing Options

NOPRINT

suppresses the normal printed output but does not suppress error listings. If NOPRINT option is set, then any other print option is turned off.

PRINTALL

turns on all the printing-control options. The options set by PRINTALL are COVB and CORRB.

CORRB

prints the correlation matrix of the parameter estimates.

COVB

prints the covariance matrix of the parameter estimates.

ITPRINT

prints the initial parameter estimates, convergence criteria, and all constraints of the optimization. At each iteration, objective function value, step size, maximum gradient, and slope of search direction are printed as well.

Model Estimation Options

COVEST=covariance-option

specifies the method to calculate the covariance matrix of parameter estimates. The supported covariance types are as follows:

OP specifies the covariance from the outer product matrix.
HESSIAN specifies the covariance from the inverse Hessian matrix.
QML
specifies the covariance from the outer product and Hessian matrices (the quasi-maximum likelihood estimates).

The default is COVEST=HESSIAN.

NDRAW=value

specifies the number of draws for Monte Carlo integration.

SEED=value

specifies a seed for pseudo-random number generation in Monte Carlo integration.

Options to Control the Optimization Process

PROC QLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. All the NLO options are available from the NLOPTIONS statement. For details, see Chapter 6, "Nonlinear Optimization Methods."

METHOD=value

specifies the optimization method. If this option is specified, it overwrites the TECH= option in NLOPTIONS statement. Valid values are as follows:

CONGRA performs a conjugate-gradient optimization
DBLDOG performs a version of double dogleg optimization
NMSIMP performs a Nelder-Mead simplex optimization
NEWRAP performs a Newton-Raphson optimization combining a line-search algorithm with ridging

NRRIDG performs a Newton-Raphson optimization with ridging
QUANEW performs a quasi-Newton optimization
TRUREG performs a trust region optimization
The default method is METHOD=QUANEW.

BOUNDS Statement

BOUNDS bound1 < , bound2 \ldots; ;
The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS statement constraints refer to the parameters estimated by the QLIM procedure. Any number of BOUNDS statements can be specified.

Each bound is composed of parameters and constants and inequality operators. Parameters associated with regressor variables are referred to by the names of the corresponding regressor variables:
item operator item < operator item < operator item ... \gg
Each item is a constant, the name of a parameter, or a list of parameter names. See the section "Naming of Parameters" on page 1414 for more details on how parameters are named in the QLIM procedure. Each operator is '<', '>', '<=', or '>='.

Both the BOUNDS statement and the RESTRICT statement can be used to impose boundary constraints; however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See the "RESTRICT Statement" on page 1393 for more information.

The following BOUNDS statement constrains the estimates of the parameters associated with the variable ttime and the variables x 1 through x 10 to be between zero and one. This example illustrates the use of parameter lists to specify boundary constraints.

```
bounds 0 < ttime x1-x10 < 1;
```

The following BOUNDS statement constrains the estimates of the correlation (_RHO) and sigma (_SIGMA) in the bivariate model:

```
bounds _rho >= 0, _sigma.y1 > 1, _sigma.y2 < 5;
```


BY Statement

BY variables ;
A BY statement can be used with PROC QLIM to obtain separate analyses on observations in groups defined by the BY variables.

CLASS Statement

CLASS variables ;
The CLASS statement names the classification variables to be used in the analysis. Classification variables can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats to group values into levels. See the discussion of the FORMAT procedure in SAS Language Reference: Dictionary for details.

If the CLASS statement is used, it must appear before any of the MODEL statements.

ENDOGENOUS Statement

ENDOGENOUS variables ~ options ;

The ENDOGENOUS statement specifies the type of dependent variables that appear on the lefthand side of the equation. Endogenous variables listed refer to the dependent variables that appear on the left-hand side of the equation. Currently, no right-hand side endogeneity is handled in PROC QLIM. All variables appearing on the right-hand side of the equation are treated as exogenous.

Discrete Variable Options

DISCRETE < (discrete-options) >
specifies that the endogenous variables in this statement are discrete. Valid discrete-options are as follows:

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sorting order for the levels of the discrete variables specified in the ENDOGENOUS statement. This ordering determines which parameters in the model correspond to each level in the data. The following table shows how PROC QLIM interprets values of the ORDER $=$ option.

Value of ORDER $=$	Levels Sorted By
DATA	order of appearance in the input data set formatted value
FORMATTED	descending frequency count; levels with the most observations come first in the order FREQ
unformatted value	

By default, ORDER=FORMATTED. For the values FORMATTED and INTERNAL, the sort order is machine dependent. For more information about sorting order, see the chapter on the SORT procedure in the Base SAS Procedures Guide.

DISTRIBUTION=distribution-type
DIST=distribution-type
D=distribution-type
specifies the cumulative distribution function used to model the response probabilities. Valid values for distribution-type are as follows:

NORMAL the normal distribution for the probit model
LOGISTIC the logistic distribution for the logit model
By default, DISTRIBUTION=NORMAL.
If a multivariate model is specified, logistic distribution is not allowed. Only normal distribution is supported.

Censored Variable Options

CENSORED < (censored-options) >
specifies that the endogenous variables in this statement be censored. Valid censored-options are as follows:

LB=value or variable

LOWERBOUND=value or variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is missing, no lower bound is set. By default, no lower bound is set.

UB=value or variable
UPPERBOUND=value or variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is missing, no upper bound is set. By default, no upper bound is set.

Truncated Variable Options

TRUNCATED < (truncated-options) >

specifies that the endogenous variables in this statement be truncated. Valid truncated-options are as follows:

LB=value or variable

LOWERBOUND=value or variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is missing, no lower bound is set. By default, no lower bound is set.

UB=value or variable

UPPERBOUND=value or variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is missing, no upper bound is set. By default, no upper bound is set.

Stochastic Frontier Variable Options

FRONTIER < (frontier-options) >

specifies that the endogenous variable in this statement follow a production or cost frontier. Valid frontier-options are as follows:

TYPE=

HALF specifies half-normal model.
EXPONENTIAL specifies exponential model.
TRUNCATED specifies truncated normal model.

PRODUCTION

specifies that the model estimated be a production function.
COST
specifies that the model estimated be a cost function.
If neither PRODUCTION nor COST option is specified, production function is estimated by default.

Selection Options

SELECT (select-option)

specifies selection criteria for sample selection model. Select-option specifies the condition for the endogenous variable to be selected. It is written as a variable name, followed by an equality operator ($=$) or an inequality operator ($<,>,<=,>=$), followed by a number:

variable operator number

The variable is the endogenous variable that the selection is based on. The operator can be $=,<,>,<=$, or $>=$. Multiple select-options can be combined with the logic operators: AND, OR. The following example illustrates the use of the SELECT option:

```
endogenous y1 ~ select(z=0);
endogenous y2 ~ select(z=1 or z=2);
```

The SELECT option can be used together with the DISCRETE, CENSORED, or TRUNCATED option. For example:

```
endogenous y1 ~ select(z=0) discrete;
endogenous y2 ~ select(z=1) censored (lb=0);
endogenous y3 ~ select(z=1 or z=2) truncated (ub=10);
```

For more details about selection models with censoring or truncation, see the section "Selection Models" on page 1408.

HETERO Statement

HETERO;

dependent variables \sim exogenous variables </ options >
The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the way these variables are used to model the error variance. The heteroscedastic regression model supported by PROC QLIM is

$$
\begin{aligned}
& y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i} \\
& \epsilon_{i} \sim \mathrm{~N}\left(0, \sigma_{i}^{2}\right)
\end{aligned}
$$

See the section "Heteroscedasticity" on page 1405 for more details on the specification of functional forms.

LINK=value

The functional form can be specified using the LINK= option. The following option values are allowed:

EXP specifies the exponential link function

$$
\sigma_{i}^{2}=\sigma^{2}\left(1+\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)\right)
$$

LINEAR
specifies the linear link function

$$
\sigma_{i}^{2}=\sigma^{2}\left(1+\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)
$$

When the LINK= option is not specified, the exponential link function is specified by default.

NOCONST

specifies that there be no constant in the linear or exponential heteroscedasticity model.

$$
\begin{aligned}
\sigma_{i}^{2} & =\sigma^{2}\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right) \\
\sigma_{i}^{2} & =\sigma^{2} \exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)
\end{aligned}
$$

SQUARE

estimates the model by using the square of linear heteroscedasticity function. For example, you can specify the following heteroscedasticity function:

$$
\begin{aligned}
& \qquad \sigma_{i}^{2}=\sigma^{2}\left(1+\left(\mathbf{z}_{i}^{\prime} \gamma\right)^{2}\right) \\
& \text { model } \mathrm{y}=\mathrm{x} 1 \mathbf{x} 2 / \text { discrete; } \\
& \text { hetero } \mathrm{y} \sim \mathrm{z} 1 / \text { link=linear square; }
\end{aligned}
$$

The option SQUARE does not apply to exponential heteroscedasticity function because the square of an exponential function of $\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$ is the same as the exponential of $2 \mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}$. Hence the only difference is that all $\boldsymbol{\gamma}$ estimates are divided by two.

INIT Statement

INIT initvalue1 < , initvalue2 ... > ;
The INIT statement is used to set initial values for parameters in the optimization. Any number of INIT statements can be specified.

Each initvalue is written as a parameter or parameter list, followed by an optional equality operator (=), followed by a number:
parameter <=> number

MODEL Statement

MODEL dependent $=$ regressors < / options > ;
The MODEL statement specifies the dependent variable and independent regressor variables for the regression model.

The following options can be used in the MODEL statement after a slash (/).

LIMIT1=value

specifies the restriction of the threshold value of the first category when the ordinal probit or logit model is estimated. LIMIT1=ZERO is the default option. When LIMIT1=VARYING is specified, the threshold value is estimated.

NOINT

suppresses the intercept parameter.

Endogenous Variable Options

The endogenous variable options are the same as the options specified in the ENDOGENOUS statement. If an endogenous variable has an endogenous option specified in both the MODEL statement and the ENDOGENOUS statement, the option in the ENDOGENOUS statement is used.

BOXCOX Estimation Options

BOXCOX (option-list)

specifies options that are used for Box-Cox regression or regressor transformation. For example, the Box-Cox regression is specified as

```
model y = x1 x2 / boxcox(y=lambda,x1 x2)
```

PROC QLIM estimates the following Box-Cox regression model:

$$
y_{i}^{(\lambda)}=\beta_{0}+\beta_{1} x_{1 i}^{\left(\lambda_{2}\right)}+\beta_{2} x_{2 i}^{\left(\lambda_{2}\right)}+\epsilon_{i}
$$

The option-list takes the form variable-list < = varname > separated by ', . The variable-list specifies that the list of variables have the same Box-Cox transformation; varname specifies the name of this Box-Cox coefficient. If varname is not specified, the coefficient is called _Lambdai, where i increments sequentially.

NLOPTIONS Statement

```
NLOPTIONS < options> ;
```

PROC QLIM uses the be nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. For a list of all the options of the NLOPTIONS statement, see Chapter 6, "Nonlinear Optimization Methods."

OUTPUT Statement

OUTPUT < OUT=SAS-data-set><output-options> ;

The OUTPUT statement creates a new SAS data set containing all variables in the input data set and, optionally, the estimates of \mathbf{x}^{\prime}, predicted value, residual, marginal effects, probability, standard deviation of the error, expected value, conditional expected value, and inverse Mills ratio. When the response values are missing for the observation, all output estimates except residual are still computed as long as none of the explanatory variables is missing. This enables you to compute these statistics for prediction. You can specify only one OUTPUT statement.

Details on the specifications in the OUTPUT statement are as follows:

CONDITIONAL

output estimates of conditional expected values of continuous endogenous variables.

ERRSTD

output estimates of σ_{j}, the standard deviation of the error term.

EXPECTED

output estimates of expected values of continuous endogenous variables.

MARGINAL

output marginal effects.

MILLS

output estimates of inverse Mills ratios of censored or truncated continuous, binary discrete, and selection endogenous variables.

OUT=SAS-data-set

names the output data set.

PREDICTED

output estimates of predicted endogenous variables.

PROB

output estimates of probability of discrete endogenous variables taking the current observed responses.

PROBALL

output estimates of probability of discrete endogenous variables for all possible responses.

RESIDUAL

output estimates of residuals of continuous endogenous variables.

XBETA

output estimates of \mathbf{x}^{\prime}.

RESTRICT Statement

RESTRICT restriction1 <, restriction2 ... > ;

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. Any number of RESTRICT statements can be specified, but the number of restrictions imposed is limited by the number of regressors.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<, >, <=, >=), followed by a second expression:

expression operator expression

The operator can be $=,<,>,<=$, or $>=$. The operator and second expression are optional.
Restriction expressions can be composed of parameter names, multiplication (*), addition (+) and substitution (-) operators, and constants. Parameters named in restriction expressions must be among the parameters estimated by the model. Parameters associated with a regressor variable are referred to by the name of the corresponding regressor variable. The restriction expressions must be a linear function of the parameters.

The following is an example of the use of the RESTRICT statement:

```
proc qlim data=one;
    model y = x1-x10 / discrete;
    restrict x1*2 <= x2 + x3;
run;
```

The RESTRICT statement can also be used to impose cross-equation restrictions in multivariate models. The following RESTRICT statement imposes an equality restriction on coefficients of $x 1$ in equation $y 1$ and $x 1$ in equation $y 2$:

```
proc qlim data=one;
    model y1 = x1-x10;
    model y2 = x1-x4;
    endogenous y1 y2 ~ discrete;
    restrict y1.x1=y2.x1;
run;
```


TEST Statement

<'label':> TEST <'string':> equation [,equation...] / options ;
The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the corresponding regressor. The keyword INTERCEPT refers to the coefficient of the intercept.

The following options can be specified in the TEST statement after the slash (/):

ALL

requests Wald, Lagrange multiplier, and likelihood ratio tests.

WALD

requests the Wald test.
LM
requests the Lagrange multiplier test.
LR
requests the likelihood ratio test.
The following illustrates the use of the TEST statement:

```
proc qlim;
    model y = x1 x2 x3;
    test x1 = 0, x2 * . 5 + 2 * x3 = 0;
    test _int: test intercept = 0, x3 = 0;
run;
```

The first test investigates the joint hypothesis that

$$
\beta_{1}=0
$$

and

$$
0.5 \beta_{2}+2 \beta_{3}=0
$$

Only linear equality restrictions and tests are permitted in PROC QLIM. Tests expressions can be composed only of algebraic operations involving the addition symbol (+), subtraction symbol (-), and multiplication symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. TEST statement can be labeled in two ways. A TEST statement can be preceded by a label followed by a colon. Alternatively, the keyword TEST can be followed by a quoted string. If both are present, PROC QLIM uses the label preceding the colon. In the event no label is present, PROC QLIM automatically labels the tests.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

Details: QLIM Procedure

Ordinal Discrete Choice Modeling

Binary Probit and Logit Model

The binary choice model is

$$
y_{i}^{*}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i}
$$

where value of the latent dependent variable, y_{i}^{*}, is observed only as follows:

$$
\begin{array}{rlll}
y_{i} & =1 & \text { if } y_{i}^{*}>0 \\
& =0 & & \text { otherwise }
\end{array}
$$

The disturbance, ϵ_{i}, of the probit model has standard normal distribution with the distribution function (CDF)

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-t^{2} / 2\right) d t
$$

The disturbance of the logit model has standard logistic distribution with the CDF

$$
\Lambda(x)=\frac{\exp (x)}{1+\exp (x)}=\frac{1}{1+\exp (-x)}
$$

The binary discrete choice model has the following probability that the event $\left\{y_{i}=1\right\}$ occurs:

$$
P\left(y_{i}=1\right)=F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)= \begin{cases}\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) & \text { (probit) } \\ \Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) & \text { (logit) }\end{cases}
$$

The log-likelihood function is

$$
\ell=\sum_{i=1}^{N}\left\{y_{i} \log \left[F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]+\left(1-y_{i}\right) \log \left[1-F\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right]\right\}
$$

where the $\operatorname{CDF} F(x)$ is defined as $\Phi(x)$ for the probit model while $F(x)=\Lambda(x)$ for logit. The first order derivative of the logit model are

$$
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{N}\left(y_{i}-\Lambda\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right) \mathbf{x}_{i}
$$

The probit model has more complicated derivatives

$$
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{N}\left[\frac{\left(2 y_{i}-1\right) \phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}\right] \mathbf{x}_{i}=\sum_{i=1}^{N} r_{i} \mathbf{x}_{i}
$$

where

$$
r_{i}=\frac{\left(2 y_{i}-1\right) \phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}
$$

Note that the logit maximum likelihood estimates are $\frac{\pi}{\sqrt{3}}$ times greater than probit maximum likelihood estimates, since the probit parameter estimates, $\boldsymbol{\beta}$, are standardized, and the error term with logistic distribution has a variance of $\frac{\pi^{2}}{3}$.

Ordinal Probit/Logit

When the dependent variable is observed in sequence with M categories, binary discrete choice modeling is not appropriate for data analysis. McKelvey and Zavoina (1975) proposed the ordinal (or ordered) probit model.

Consider the following regression equation:

$$
y_{i}^{*}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i}
$$

where error disturbances, ϵ_{i}, have the distribution function F. The unobserved continuous random variable, y_{i}^{*}, is identified as M categories. Suppose there are $M+1$ real numbers, μ_{0}, \cdots, μ_{M}, where $\mu_{0}=-\infty, \mu_{1}=0, \mu_{M}=\infty$, and $\mu_{0} \leq \mu_{1} \leq \cdots \leq \mu_{M}$. Define

$$
R_{i, j}=\mu_{j}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}
$$

The probability that the unobserved dependent variable is contained in the j th category can be written as

$$
P\left[\mu_{j-1}<y_{i}^{*} \leq \mu_{j}\right]=F\left(R_{i, j}\right)-F\left(R_{i, j-1}\right)
$$

The log-likelihood function is

$$
\ell=\sum_{i=1}^{N} \sum_{j=1}^{M} d_{i j} \log \left[F\left(R_{i, j}\right)-F\left(R_{i, j-1}\right)\right]
$$

where

$$
d_{i j}= \begin{cases}1 & \text { if } \mu_{j-1}<y_{i} \leq \mu_{j} \\ 0 & \text { otherwise }\end{cases}
$$

The first derivatives are written as

$$
\begin{aligned}
\frac{\partial \ell}{\partial \boldsymbol{\beta}} & =\sum_{i=1}^{N} \sum_{j=1}^{M} d_{i j}\left[\frac{f\left(R_{i, j-1}\right)-f\left(R_{i, j}\right)}{F\left(R_{i, j}\right)-F\left(R_{i, j-1}\right)} \mathbf{x}_{i}\right] \\
\frac{\partial \ell}{\partial \mu_{k}} & =\sum_{i=1}^{N} \sum_{j=1}^{M} d_{i j}\left[\frac{\delta_{j, k} f\left(R_{i, j}\right)-\delta_{j-1, k} f\left(R_{i, j-1}\right)}{F\left(R_{i, j}\right)-F\left(R_{i, j-1}\right)}\right]
\end{aligned}
$$

where $f(x)=\frac{d F(x)}{d x}$ and $\delta_{j, k}=1$ if $j=k$. When the ordinal probit is estimated, it is assumed that $F\left(R_{i, j}\right)=\Phi\left(R_{i, j}\right)$. The ordinal logit model is estimated if $F\left(R_{i, j}\right)=\Lambda\left(R_{i, j}\right)$. The first
threshold parameter, μ_{1}, is estimated when the LIMIT1=VARYING option is specified. By default (LIMIT1=ZERO), so that $M-2$ threshold parameters $\left(\mu_{2}, \ldots, \mu_{M-1}\right)$ are estimated.

The ordered probit models are analyzed by Aitchison and Silvey (1957), and Cox (1970) discussed ordered response data by using the logit model. They defined the probability that y_{i}^{*} belongs to j th category as

$$
P\left[\mu_{j-1}<y_{i} \leq \mu_{j}\right]=F\left(\mu_{j}+\mathbf{x}_{i}^{\prime} \boldsymbol{\theta}\right)-F\left(\mu_{j-1}+\mathbf{x}_{i}^{\prime} \boldsymbol{\theta}\right)
$$

where $\mu_{0}=-\infty$ and $\mu_{M}=\infty$. Therefore, the ordered response model analyzed by Aitchison and Silvey can be estimated if the LIMIT1=VARYING option is specified. Note that $\boldsymbol{\theta}=-\boldsymbol{\beta}$.

Goodness-of-Fit Measures

The goodness-of-fit measures discussed in this section apply only to discrete dependent variable models.

McFadden (1974) suggested a likelihood ratio index that is analogous to the R^{2} in the linear regression model:

$$
R_{M}^{2}=1-\frac{\ln L}{\ln L_{0}}
$$

where L is the value of the maximum likelihood function and L_{0} is a likelihood function when regression coefficients except an intercept term are zero. It can be shown that L_{0} can be written as

$$
L_{0}=\sum_{j=1}^{M} N_{j} \ln \left(\frac{N_{j}}{N}\right)
$$

where N_{j} is the number of responses in category j.
Estrella (1998) proposes the following requirements for a goodness-of-fit measure to be desirable in discrete choice modeling:

- The measure must take values in $[0,1]$, where 0 represents no fit and 1 corresponds to perfect fit.
- The measure should be directly related to the valid test statistic for significance of all slope coefficients.
- The derivative of the measure with respect to the test statistic should comply with corresponding derivatives in a linear regression.

Estrella's (1998) measure is written

$$
R_{E 1}^{2}=1-\left(\frac{\ln L}{\ln L_{0}}\right)^{-\frac{2}{N} \ln L_{0}}
$$

An alternative measure suggested by Estrella (1998) is

$$
R_{E 2}^{2}=1-\left[(\ln L-K) / \ln L_{0}\right]^{-\frac{2}{N} \ln L_{0}}
$$

where $\ln L_{0}$ is computed with null slope parameter values, N is the number observations used, and K represents the number of estimated parameters.

Other goodness-of-fit measures are summarized as follows:

$$
\begin{aligned}
& R_{C U 1}^{2}=1-\left(\frac{L_{0}}{L}\right)^{\frac{2}{N}}(\text { Cragg }- \text { Uhler1 }) \\
& R_{C U 2}^{2}=\frac{1-\left(L_{0} / L\right)^{\frac{2}{N}}}{1-L_{0}^{\frac{2}{N}}}(\text { Cragg }- \text { Uhler2 }) \\
& R_{A}^{2}=\frac{2\left(\ln L-\ln L_{0}\right)}{2\left(\ln L-\ln L_{0}\right)+N}(\text { Aldrich }- \text { Nelson }) \\
& R_{V Z}^{2}=R_{A}^{2} \frac{2 \ln L_{0}-N}{2 \ln L_{0}}(\text { Veall }- \text { Zimmermann }) \\
& R_{M Z}^{2}=\frac{\sum_{i=1}^{N}\left(\hat{y}_{i}-\overline{\hat{y}}_{i}\right)^{2}}{N+\sum_{i=1}^{N}\left(\hat{y}_{i}-\overline{\hat{y}}_{i}\right)^{2}}(\text { McKelvey }- \text { Zavoina })
\end{aligned}
$$

where $\hat{y}_{i}=\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}$ and $\overline{\hat{y}_{i}}=\sum_{i=1}^{N} \hat{y}_{i} / N$.

Limited Dependent Variable Models

Censored Regression Models

When the dependent variable is censored, values in a certain range are all transformed to a single value. For example, the standard tobit model can be defined as

$$
\begin{aligned}
& y_{i}^{*}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i} \\
& y_{i}= \begin{cases}y_{i}^{*} & \text { if } y_{i}^{*}>0 \\
0 & \text { if } y_{i}^{*} \leq 0\end{cases}
\end{aligned}
$$

where $\epsilon_{i} \sim \operatorname{iid} d\left(0, \sigma^{2}\right)$. The log-likelihood function of the standard censored regression model is

$$
\ell=\sum_{i \in\left\{y_{i}=0\right\}} \ln \left[1-\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta} / \sigma\right)\right]+\sum_{i \in\left\{y_{i}>0\right\}} \ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]
$$

where $\Phi(\cdot)$ is the cumulative density function of the standard normal distribution and $\phi(\cdot)$ is the probability density function of the standard normal distribution.

The tobit model can be generalized to handle observation-by-observation censoring. The censored model on both of the lower and upper limits can be defined as

$$
y_{i}= \begin{cases}R_{i} & \text { if } y_{i}^{*} \geq R_{i} \\ y_{i}^{*} & \text { if } L_{i}<y_{i}^{*}<R_{i} \\ L_{i} & \text { if } y_{i}^{*} \leq L_{i}\end{cases}
$$

The log-likelihood function can be written as

$$
\begin{aligned}
\ell= & \sum_{i \in\left\{L_{i}<y_{i}<R_{i}\right\}} \ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]+\sum_{i \in\left\{y_{i}=R_{i}\right\}} \ln \left[\Phi\left(-\frac{R_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]+ \\
& \sum_{i \in\left\{y_{i}=L_{i}\right\}} \ln \left[\Phi\left(\frac{L_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]
\end{aligned}
$$

Log-likelihood functions of the lower- or upper-limit censored model are easily derived from the two-limit censored model. The log-likelihood function of the lower-limit censored model is

$$
\ell=\sum_{i \in\left\{y_{i}>L_{i}\right\}} \ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]+\sum_{i \in\left\{y_{i}=L_{i}\right\}} \ln \left[\Phi\left(\frac{L_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]
$$

The log-likelihood function of the upper-limit censored model is

$$
\ell=\sum_{i \in\left\{y_{i}<R_{i}\right\}} \ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]+\sum_{i \in\left\{y_{i}=R_{i}\right\}} \ln \left[1-\Phi\left(\frac{R_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]
$$

Types of Tobit Models

Amemiya (1984) classified Tobit models into five types based on characteristics of the likelihood function. For notational convenience, let P denote a distribution or density function, $y_{j i}^{*}$ is assumed to be normally distributed with mean $\mathbf{x}_{j i}^{\prime} \boldsymbol{\beta}_{j}$ and variance σ_{j}^{2}.

Type 1 Tobit

The Type 1 Tobit model was already discussed in the preceding section.

$$
\begin{aligned}
y_{1 i}^{*} & =\mathbf{x}_{11}^{\prime} \boldsymbol{\beta}_{1}+u_{1 i} \\
y_{1 i} & =y_{1 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0
\end{aligned}
$$

The likelihood function is characterized as $P\left(y_{1}<0\right) P\left(y_{1}\right)$.

Type 2 Tobit

The Type 2 Tobit model is defined as

$$
\begin{aligned}
y_{1 i}^{*} & =\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+u_{1 i} \\
y_{2 i}^{*} & =\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+u_{2 i} \\
y_{1 i} & =1 \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0 \\
y_{2 i} & =y_{2 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0
\end{aligned}
$$

where $\left(u_{1 i}, u_{2 i}\right) \sim N(0, \Sigma)$. The likelihood function is described as $P\left(y_{1}<0\right) P\left(y_{1}>0, y_{2}\right)$.

Type 3 Tobit

The Type 3 Tobit model is different from the Type 2 Tobit in that $y_{1 i}^{*}$ of the Type 3 Tobit is observed when $y_{1 i}^{*}>0$.

$$
\begin{aligned}
y_{1 i}^{*} & =\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+u_{1 i} \\
y_{2 i}^{*} & =\mathbf{x}_{22}^{\prime} \boldsymbol{\beta}_{2}+u_{2 i} \\
y_{1 i} & =y_{1 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \quad \text { if } y_{1 i}^{*} \leq 0 \\
y_{2 i} & =y_{2 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0
\end{aligned}
$$

where $\left(u_{1 i}, u_{2 i}\right)^{\prime} \sim \operatorname{iidN}(0, \Sigma)$.
The likelihood function is characterized as $P\left(y_{1}<0\right) P\left(y_{1}, y_{2}\right)$.

Type 4 Tobit

The Type 4 Tobit model consists of three equations:

$$
\begin{aligned}
y_{1 i}^{*} & =\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+u_{1 i} \\
y_{2 i}^{*} & =\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+u_{2 i} \\
y_{3 i}^{*} & =\mathbf{x}_{3 i}^{\prime} \boldsymbol{\beta}_{3}+u_{3 i} \\
y_{1 i} & =y_{1 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0 \\
y_{2 i} & =y_{2 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0 \\
y_{3 i} & =y_{3 i}^{*} \text { if } y_{1 i}^{*} \leq 0 \\
& =0 \text { if } y_{1 i}^{*}>0
\end{aligned}
$$

where $\left(u_{1 i}, u_{2 i}, u_{3 i}\right)^{\prime} \sim \operatorname{iidN}(0, \Sigma)$. The likelihood function of the Type 4 Tobit model is characterized as $P\left(y_{1}<0, y_{3}\right) P\left(y_{1}, y_{2}\right)$.

Type 5 Tobit

The Type 5 Tobit model is defined as follows:

$$
\begin{aligned}
y_{1 i}^{*} & =\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+u_{1 i} \\
y_{2 i}^{*} & =\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+u_{2 i} \\
y_{3 i}^{*} & =\mathbf{x}_{3 i}^{\prime} \boldsymbol{\beta}_{3}+u_{3 i} \\
y_{1 i} & =1 \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0 \\
y_{2 i} & =y_{2 i}^{*} \text { if } y_{1 i}^{*}>0 \\
& =0 \text { if } y_{1 i}^{*} \leq 0 \\
y_{3 i} & =y_{3 i}^{*} \text { if } y_{1 i}^{*} \leq 0 \\
& =0 \text { if } y_{1 i}^{*}>0
\end{aligned}
$$

where $\left(u_{1 i}, u_{2 i}, u_{3 i}\right)^{\prime}$ are from iid trivariate normal distribution. The likelihood function of the Type 5 Tobit model is characterized as $P\left(y_{1}<0, y_{3}\right) P\left(y_{1}>0, y_{2}\right)$.

Code examples for these models can be found in "Example 21.6: Types of Tobit Models" on page 1426.

Truncated Regression Models

In a truncated model, the observed sample is a subset of the population where the dependent variable falls in a certain range. For example, when neither a dependent variable nor exogenous variables are observed for $y_{i}^{*} \leq 0$, the truncated regression model can be specified.

$$
\ell=\sum_{i \in\left\{y_{i}>0\right\}}\left\{-\ln \Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta} / \sigma\right)+\ln \left[\frac{\phi\left(\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right) / \sigma\right)}{\sigma}\right]\right\}
$$

Two-limit truncation model is defined as

$$
y_{i}=y_{i}^{*} \text { if } L_{i}<y_{i}^{*}<R_{i}
$$

The log-likelihood function of the two-limit truncated regression model is

$$
\ell=\sum_{i=1}^{N}\left\{\ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]-\ln \left[\Phi\left(\frac{R_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)-\Phi\left(\frac{L_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]\right\}
$$

The log-likelihood functions of the lower- and upper-limit truncation model are

$$
\begin{aligned}
\ell & =\sum_{i=1}^{N}\left\{\ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]-\ln \left[1-\Phi\left(\frac{L_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]\right\} \text { (lower) } \\
\ell & =\sum_{i=1}^{N}\left\{\ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right) / \sigma\right]-\ln \left[\Phi\left(\frac{R_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]\right\} \text { (upper) }
\end{aligned}
$$

Stochastic Frontier Production and Cost Models

Stochastic frontier production models were first developed by Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977). Specification of these models allow for random shocks of the production or cost but also include a term for technological or cost inefficiency. Assuming that the production function takes a log-linear Cobb-Douglas form, the stochastic frontier production model can be written as

$$
\ln \left(y_{i}\right)=\beta_{0}+\sum_{n} \boldsymbol{\beta}_{n} \ln \left(x_{n i}\right)+\epsilon_{i}
$$

where $\epsilon_{i}=v_{i}-u_{i}$. The v_{i} term represents the stochastic error component and u_{i} is the nonnegative, technology inefficiency error component. The v_{i} error component is assumed to be distributed iid normal and independently from u_{i}. If $u_{i}>0$, the error term, ϵ_{i}, is negatively skewed and represents technology inefficiency. If $u_{i}<0$, the error term ϵ_{i} is positively skewed and represents cost inefficiency. PROC QLIM models the u_{i} error component as a half normal, exponential, or truncated normal distribution.

The Normal-Half Normal Model

In case of the normal-half normal model, v_{i} is iid $N\left(0, \sigma_{v}^{2}\right), u_{i}$ is iid $N^{+}\left(0, \sigma_{u}^{2}\right)$ with v_{i} and u_{i} independent of each other. Given the independence of error terms, the joint density of v and u can be written as

$$
f(u, v)=\frac{2}{2 \pi \sigma_{u} \sigma_{v}} \exp \left\{-\frac{u^{2}}{2 \sigma_{u}^{2}}-\frac{v^{2}}{2 \sigma_{v}^{2}}\right\}
$$

Substituting $v=\epsilon+u$ into the preceding equation gives

$$
f(u, \epsilon)=\frac{2}{2 \pi \sigma_{u} \sigma_{v}} \exp \left\{-\frac{u^{2}}{2 \sigma_{u}^{2}}-\frac{(\epsilon+u)^{2}}{2 \sigma_{v}^{2}}\right\}
$$

Integrating u out to obtain the marginal density function of ϵ results in the following form:

$$
\begin{aligned}
f(\epsilon) & =\int_{0}^{\infty} f(u, \epsilon) d u \\
& =\frac{2}{\sqrt{2 \pi} \sigma}\left[1-\phi\left(\frac{\epsilon \lambda}{\sigma}\right)\right] \exp \left\{-\frac{\epsilon^{2}}{2 \sigma^{2}}\right\} \\
& =\frac{2}{\sigma} \phi\left(\frac{\epsilon}{\sigma}\right) \Phi\left(-\frac{\epsilon \lambda}{\sigma}\right)
\end{aligned}
$$

where $\lambda=\sigma_{u} / \sigma_{v}$ and $\sigma=\sqrt{\sigma_{u}^{2}+\sigma_{v}^{2}}$.
In the case of a stochastic frontier cost model, $v=\epsilon-u$ and

$$
f(\epsilon)=\frac{2}{\sigma} \phi\left(\frac{\epsilon}{\sigma}\right) \Phi\left(\frac{\epsilon \lambda}{\sigma}\right)
$$

The log-likelihood function for the production model with N producers is written as

$$
\ln L=\text { constant }-N \ln \sigma+\sum_{i} \ln \Phi\left(-\frac{\epsilon_{i} \lambda}{\sigma}\right)-\frac{1}{2 \sigma^{2}} \sum_{i} \epsilon_{i}^{2}
$$

The Normal-Exponential Model

Under the normal-exponential model, v_{i} is iid $N\left(0, \sigma_{v}^{2}\right)$ and u_{i} is iid exponential. Given the independence of error term components u_{i} and v_{i}, the joint density of v and u can be written as

$$
f(u, v)=\frac{1}{\sqrt{2 \pi} \sigma_{u} \sigma_{v}} \exp \left\{-\frac{u}{\sigma_{u}}-\frac{v^{2}}{2 \sigma_{v}^{2}}\right\}
$$

The marginal density function of ϵ for the production function is

$$
\begin{aligned}
f(\epsilon) & =\int_{0}^{\infty} f(u, \epsilon) d u \\
& =\left(\frac{1}{\sigma_{u}}\right) \Phi\left(-\frac{\epsilon}{\sigma_{v}}-\frac{\sigma_{v}}{\sigma_{u}}\right) \exp \left\{\frac{\epsilon}{\sigma_{u}}+\frac{\sigma_{v}^{2}}{2 \sigma_{u}^{2}}\right\}
\end{aligned}
$$

and the marginal density function for the cost function is equal to

$$
f(\epsilon)=\left(\frac{1}{\sigma_{u}}\right) \Phi\left(\frac{\epsilon}{\sigma_{v}}-\frac{\sigma_{v}}{\sigma_{u}}\right) \exp \left\{-\frac{\epsilon}{\sigma_{u}}+\frac{\sigma_{v}^{2}}{2 \sigma_{u}^{2}}\right\}
$$

The log-likelihood function for the normal-exponential production model with N producers is

$$
\ln L=\text { constant }-N \ln \sigma_{u}+N\left(\frac{\sigma_{v}^{2}}{2 \sigma_{u}^{2}}\right)+\sum_{i} \frac{\epsilon_{i}}{\sigma_{u}}+\sum_{i} \ln \Phi\left(\frac{\epsilon_{i}}{\sigma_{v}}-\frac{\sigma_{v}}{\sigma_{u}}\right)
$$

The Normal-Truncated Normal Model

The normal-truncated normal model is a generalization of the normal-half normal model by allowing the mean of u_{i} to differ from zero. Under the normal-truncated normal model, the error term component v_{i} is iid $N^{+}\left(0, \sigma_{v}^{2}\right)$ and u_{i} is iid $N\left(\mu, \sigma_{u}^{2}\right)$. The joint density of v_{i} and u_{i} can be written as

$$
f(u, v)=\frac{1}{\sqrt{2 \pi} \sigma_{u} \sigma_{v} \Phi\left(\mu / \sigma_{u}\right)} \exp \left\{-\frac{(u-\mu)^{2}}{2 \sigma_{u}^{2}}-\frac{v^{2}}{2 \sigma_{v}^{2}}\right\}
$$

The marginal density function of ϵ for the production function is

$$
\begin{aligned}
f(\epsilon) & =\int_{0}^{\infty} f(u, \epsilon) d u \\
& =\frac{1}{\sqrt{2 \pi} \sigma \Phi\left(\mu / \sigma_{u}\right)} \Phi\left(\frac{\mu}{\sigma \lambda}-\frac{\epsilon \lambda}{\sigma}\right) \exp \left\{-\frac{(\epsilon+\mu)^{2}}{2 \sigma^{2}}\right\} \\
& =\frac{1}{\sigma} \phi\left(\frac{\epsilon+\mu}{\sigma}\right) \Phi\left(\frac{\mu}{\sigma \lambda}-\frac{\epsilon \lambda}{\sigma}\right)\left[\Phi\left(\frac{\mu}{\sigma_{u}}\right)\right]^{-1}
\end{aligned}
$$

and the marginal density function for the cost function is

$$
f(\epsilon)=\frac{1}{\sigma} \phi\left(\frac{\epsilon-\mu}{\sigma}\right) \Phi\left(\frac{\mu}{\sigma \lambda}+\frac{\epsilon \lambda}{\sigma}\right)\left[\Phi\left(\frac{\mu}{\sigma_{u}}\right)\right]^{-1}
$$

The log-likelihood function for the normal-truncated normal production model with N producers is

$$
\begin{aligned}
\ln L= & \text { constant }-N \ln \sigma-N \ln \Phi\left(\frac{\mu}{\sigma_{u}}\right)+\sum_{i} \ln \Phi\left(\frac{\mu}{\sigma \lambda}+\frac{\epsilon_{i} \lambda}{\sigma}\right) \\
& -\frac{1}{2} \sum_{i}\left(\frac{\epsilon_{i}+\mu}{\sigma}\right)^{2}
\end{aligned}
$$

For more detail on normal-half normal, normal-exponential, and normal-truncated models, see Kumbhakar and Knox Lovell (2000) and Coelli, Prasada Rao, and Battese (1998).

Heteroscedasticity and Box-Cox Transformation

Heteroscedasticity

If the variance of regression disturbance, $\left(\epsilon_{i}\right)$, is heteroscedastic, the variance can be specified as a function of variables

$$
E\left(\epsilon_{i}^{2}\right)=\sigma_{i}^{2}=f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)
$$

The following table shows various functional forms of heteroscedasticity and the corresponding options to request each model.

No.	Model	Options
1	$f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\sigma^{2}\left(1+\exp \left(\mathbf{z}_{i}^{\prime} \gamma\right)\right)$	link=EXP (default)
2	$f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\sigma^{2} \exp \left(\mathbf{z}_{i}^{\prime} \gamma\right)$	link=EXP noconst
3	$f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\sigma^{2}\left(1+\sum_{l=1}^{L} \gamma_{l} z_{l i}\right)$	link=LINEAR
4	$f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\sigma^{2}\left(1+\left(\sum_{l=1}^{\bar{L}} \gamma_{l} z_{l i}\right)^{2}\right)$	link=LINEAR square
5	$f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\sigma^{2}\left(\sum_{l=1}^{L} \gamma_{l} z_{l i}\right)$	link=LINEAR noconst
6	$f\left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)=\sigma^{2}\left(\left(\sum_{l=1}^{L} \gamma_{l} z_{l i}\right)^{2}\right)$	link=LINEAR square noconst

For discrete choice models, σ^{2} is normalized ($\sigma^{2}=1$) since this parameter is not identified. Note that in models 3 and 5, it may be possible that variances of some observations are negative. Although the QLIM procedure assigns a large penalty to move the optimization away from such region, it is possible that the optimization cannot improve the objective function value and gets locked in the region. Signs of such outcome include extremely small likelihood values or missing standard errors in the estimates. In models 2 and 6 , variances are guaranteed to be greater or equal to zero, but
it may be possible that variances of some observations are very close to zero. In these scenarios, standard errors may be missing. Models 1 and 4 do not have such problems. Variances in these models are always positive and never close to zero.

The heteroscedastic regression model is estimated using the following log-likelihood function:

$$
\ell=-\frac{N}{2} \ln (2 \pi)-\sum_{i=1}^{N} \frac{1}{2} \ln \left(\sigma_{i}^{2}\right)-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{e_{i}}{\sigma_{i}}\right)^{2}
$$

where $e_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$.

Box-Cox Modeling

The Box-Cox transformation on x is defined as

$$
x^{(\lambda)}= \begin{cases}\frac{x^{\lambda}-1}{\lambda} & \text { if } \lambda \neq 0 \\ \ln (x) & \text { if } \lambda=0\end{cases}
$$

The Box-Cox regression model with heteroscedasticity is written as

$$
\begin{aligned}
y_{i}^{\left(\lambda_{0}\right)} & =\beta_{0}+\sum_{k=1}^{K} \beta_{k} x_{k i}^{\left(\lambda_{k}\right)}+\epsilon_{i} \\
& =\mu_{i}+\epsilon_{i}
\end{aligned}
$$

where $\epsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ and transformed variables must be positive. In practice, too many transformation parameters cause numerical problems in model fitting. It is common to have the same Box-Cox transformation performed on all the variables - that is, $\lambda_{0}=\lambda_{1}=\cdots=\lambda_{K}$. It is required for the magnitude of transformed variables to be in the tolerable range if the corresponding transformation parameters are $|\lambda|>1$.

The log-likelihood function of the Box-Cox regression model is written as

$$
\ell=-\frac{N}{2} \ln (2 \pi)-\sum_{i=1}^{N} \ln \left(\sigma_{i}\right)-\frac{1}{2 \sigma_{i}^{2}} \sum_{i=1}^{N} e_{i}^{2}+\left(\lambda_{0}-1\right) \sum_{i=1}^{N} \ln \left(y_{i}\right)
$$

where $e_{i}=y_{i}^{\left(\lambda_{0}\right)}-\mu_{i}$.
When the dependent variable is discrete, censored, or truncated, the Box-Cox transformation can be applied only to explanatory variables.

Bivariate Limited Dependent Variable Modeling

The generic form of a bivariate limited dependent variable model is

$$
\begin{aligned}
& y_{1 i}^{*}=\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+\epsilon_{1 i} \\
& y_{2 i}^{*}=\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+\epsilon_{2 i}
\end{aligned}
$$

where the disturbances, $\epsilon_{1 i}$ and $\epsilon_{2 i}$, have joint normal distribution with zero mean, standard deviations σ_{1} and σ_{2}, and correlation of $\rho . y_{1}^{*}$ and y_{2}^{*} are latent variables. The dependent variables y_{1} and y_{2} are observed if the latent variables y_{1}^{*} and y_{2}^{*} fall in certain ranges:

$$
\begin{aligned}
& y_{1}=y_{1 i} \text { if } y_{1 i}^{*} \in D_{1}\left(y_{1 i}\right) \\
& y_{2}=y_{2 i} \text { if } y_{2 i}^{*} \in D_{2}\left(y_{2 i}\right)
\end{aligned}
$$

D is a transformation from $\left(y_{1 i}^{*}, y_{2 i}^{*}\right)$ to $\left(y_{1 i}, y_{2 i}\right)$. For example, if $y 1$ and $y 2$ are censored variables with lower bound 0 , then

$$
\begin{array}{ll}
y_{1}=y_{1 i} \text { if } y_{1 i}^{*}>0, & y_{1}=0 \text { if } y_{1 i}^{*} \leq 0 \\
y_{2}=y_{2 i} \text { if } y_{2 i}^{*}>0, & y_{2}=0 \text { if } y_{2 i}^{*} \leq 0
\end{array}
$$

There are three cases for the \log likelihood of $\left(y_{1 i}, y_{2 i}\right)$. The first case is that $y_{1 i}=y_{1 i}^{*}$ and $y_{2 i}=y_{2 i}^{*}$. That is, this observation is mapped to one point in the space of latent variables. The log likelihood is computed from a bivariate normal density,

$$
\ell_{i}=\ln \left[\phi_{2}\left(\frac{y_{1}-\mathbf{x}_{1} \boldsymbol{\beta}_{1}}{\sigma_{1}}, \frac{y_{2}-\mathbf{x}^{\prime} \boldsymbol{\beta}_{2}}{\sigma_{2}}, \rho\right)\right]-\ln \sigma_{1}-\ln \sigma_{2}
$$

where $\phi_{2}(u, v, \rho)$ is the density function for standardized bivariate normal distribution with correlation ρ,

$$
\phi_{2}(u, v, \rho)=\frac{e^{-(1 / 2)\left(u^{2}+v^{2}-2 \rho u v\right) /\left(1-\rho^{2}\right)}}{2 \pi\left(1-\rho^{2}\right)^{1 / 2}}
$$

The second case is that one observed dependent variable is mapped to a point of its latent variable and the other dependent variable is mapped to a segment in the space of its latent variable. For example, in the bivariate censored model specified, if observed $y 1>0$ and $y 2=0$, then $y 1^{*}=y 1$ and $y 2^{*} \in(-\infty, 0]$. In general, the log likelihood for one observation can be written as follows (the subscript i is dropped for simplicity): If one set is a single point and the other set is a range, without loss of generality, let $D_{1}\left(y_{1}\right)=\left\{y_{1}\right\}$ and $D_{2}\left(y_{2}\right)=\left[L_{2}, R_{2}\right]$,

$$
\begin{aligned}
\ell_{i} & =\ln \left[\phi\left(\frac{y_{1}-\mathbf{x}_{1} \boldsymbol{\beta}_{\mathbf{1}}}{\sigma_{1}}\right)\right]-\ln \sigma_{1} \\
& +\ln \left[\Phi\left(\frac{R_{2}-\mathbf{x}_{\mathbf{2}}{ }^{\prime} \boldsymbol{\beta}_{2}-\rho \frac{y_{1}-\mathbf{x}^{\prime} \boldsymbol{\beta}_{1}}{\sigma_{1}}}{\sigma_{2}}\right)-\Phi\left(\frac{L_{2}-\mathbf{x}_{\mathbf{2}}{ }^{\prime} \boldsymbol{\beta}_{2}-\rho \frac{y_{1}-\mathbf{x}_{1}{ }^{\prime} \boldsymbol{\beta}_{1}}{\sigma_{1}}}{\sigma_{2}}\right)\right]
\end{aligned}
$$

where ϕ and Φ are the density function and the cumulative probability function for standardized univariate normal distribution.

The third case is that both dependent variables are mapped to segments in the space of latent variables. For example, in the bivariate censored model specified, if observed $y 1=0$ and $y 2=0$, then $y 1^{*} \in(-\infty, 0]$ and $y 2^{*} \in(-\infty, 0]$. In general, if $D_{1}\left(y_{1}\right)=\left[L_{1}, R_{1}\right]$ and $D_{2}\left(y_{2}\right)=\left[L_{2}, R_{2}\right]$, the \log likelihood is

$$
\ell_{i}=\ln \int_{\frac{L_{1}-x_{1} \beta_{1}}{\sigma_{1}}}^{\frac{R_{1}-x_{1}^{\prime} \beta_{1}}{\sigma_{1}}} \int_{\frac{L_{2}-x_{2}{ }^{\prime} \boldsymbol{\beta}_{2}}{\sigma_{2}}}^{\frac{R_{2}-x_{2}^{\prime} \boldsymbol{\beta}_{2}}{\sigma_{2}}} \phi_{2}(u, v, \rho) d u d v
$$

Selection Models

In sample selection models, one or several dependent variables are observed when another variable takes certain values. For example, the standard Heckman selection model can be defined as

$$
\begin{aligned}
& z_{i}^{*}=\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}+u_{i} \\
& z_{i}= \begin{cases}1 & \text { if } z_{i}^{*}>0 \\
0 & \text { if } z_{i}^{*} \leq 0\end{cases} \\
& y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i} \quad \text { if } z_{i}=1
\end{aligned}
$$

where u_{i} and ϵ_{i} are jointly normal with zero mean, standard deviations of 1 and σ, and correlation of $\rho . z$ is the variable that the selection is based on, and y is observed when z has a value of

1. Least squares regression using the observed data of y produces inconsistent estimates of $\boldsymbol{\beta}$. Maximum likelihood method is used to estimate selection models. It is also possible to estimate these models by using Heckman's method, which is more computationally efficient. But it can be shown that the resulting estimates, although consistent, are not asymptotically efficient under normality assumption. Moreover, this method often violates the constraint on correlation coefficient $|\rho| \leq 1$.

The log-likelihood function of the Heckman selection model is written as

$$
\begin{aligned}
\ell & =\sum_{i \in\left\{z_{i}=0\right\}} \ln \left[1-\Phi\left(\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \\
& +\sum_{i \in\left\{z_{i}=1\right\}}\left\{\ln \phi\left(\frac{y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}{\sigma}\right)-\ln \sigma+\ln \Phi\left(\frac{\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}+\rho \frac{y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}{\sigma}}{\sqrt{1-\rho^{2}}}\right)\right\}
\end{aligned}
$$

Only one variable is allowed for the selection to be based on, but the selection may lead to several variables. For example, in the following switching regression model,

$$
\begin{aligned}
& z_{i}^{*}=\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}+u_{i} \\
& z_{i}= \begin{cases}1 & \text { if } z_{i}^{*}>0 \\
0 & \text { if } z_{i}^{*} \leq 0\end{cases} \\
& y_{1 i}=\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+\epsilon_{1 i} \quad \text { if } z_{i}=0 \\
& y_{2 i}=\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+\epsilon_{2 i} \quad \text { if } z_{i}=1
\end{aligned}
$$

z is the variable that the selection is based on. If $z=0$, then y_{1} is observed. If $z=1$, then y_{2} is observed. Because it is never the case that $y 1$ and $y 2$ are observed at the same time, the correlation between y_{1} and y_{2} cannot be estimated. Only the correlation between z and y_{1} and the correlation between z and y_{2} can be estimated. This estimation uses the maximum likelihood method.

A brief example of the code for this model can be found in "Example 21.4: Sample Selection Model" on page 1422.

The Heckman selection model can include censoring or truncation. For a brief example of the code for these models see "Example 21.5: Sample Selection Model with Truncation and Censoring" on page 1423. The following example shows a variable y_{i} that is censored from below at zero.

$$
\begin{aligned}
& z_{i}^{*}=\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}+u_{i} \\
& z_{i}= \begin{cases}1 & \text { if } z_{i}^{*}>0 \\
0 & \text { if } z_{i}^{*} \leq 0\end{cases} \\
& y_{i}^{*}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i} \quad \text { if } z_{i}=1 \\
& y_{i}= \begin{cases}y_{i}^{*} & \text { if } y_{i}^{*}>0 \\
0 & \text { if } y_{i}^{*} \leq 0\end{cases}
\end{aligned}
$$

In this case, the log-likelihood function of the Heckman selection model needs to be modified to include the censored region.

$$
\begin{aligned}
\ell & =\sum_{\left\{i \mid z_{i}=0\right\}} \ln \left[1-\Phi\left(\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \\
& +\sum_{\left\{i \mid z_{i}=1, y_{i}=y_{i}^{*}\right\}}\left\{\ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]-\ln \sigma+\ln \left[\Phi\left(\frac{\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}+\rho \frac{y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}{\sigma}}{\sqrt{1-\rho^{2}}}\right)\right]\right\} \\
& +\sum_{\left\{i \mid z_{i}=1, y_{i}=0\right\}} \ln \int_{-\infty}^{\frac{-\mathbf{x}_{i}^{\prime} \beta}{\sigma}} \int_{-\mathbf{w}_{\mathbf{i}}^{\prime} \gamma}^{\infty} \phi_{2}(u, v, \rho) d u d v
\end{aligned}
$$

In case y_{i} is truncated from below at zero instead of censored, the likelihood function can be written as

$$
\begin{aligned}
\ell & =\sum_{\left\{i \mid z_{i}=0\right\}} \ln \left[1-\Phi\left(\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}\right)\right] \\
& +\sum_{\left\{i \mid z_{i}=1\right\}}\left\{\ln \left[\phi\left(\frac{y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}{\sigma}\right)\right]-\ln \sigma+\ln \left[\Phi\left(\frac{\mathbf{w}_{i}^{\prime} \boldsymbol{\gamma}+\rho \frac{y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \boldsymbol{\beta}}{\sigma}}{\sqrt{1-\rho^{2}}}\right)\right]-\ln \left[\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta} / \sigma\right)\right]\right\}
\end{aligned}
$$

Multivariate Limited Dependent Models

The multivariate model is similar to bivariate models. The generic form of the multivariate limited dependent variable model is

$$
\begin{aligned}
y_{1 i}^{*} & =\mathbf{x}_{1 i}^{\prime} \boldsymbol{\beta}_{1}+\epsilon_{1 i} \\
y_{2 i}^{*} & =\mathbf{x}_{2 i}^{\prime} \boldsymbol{\beta}_{2}+\epsilon_{2 i} \\
& \cdots \\
y_{m i}^{*} & =\mathbf{x}_{m i}^{\prime} \boldsymbol{\beta}_{m}+\epsilon_{m i}
\end{aligned}
$$

where m is the number of models to be estimated. The vector ϵ has multivariate normal distribution with mean 0 and variance-covariance matrix Σ. Similar to bivariate models, the likelihood may involve computing multivariate normal integrations. This is done using Monte Carlo integration. (See Genz (1992) and Hajivassiliou and McFadden (1998).)

When the number of equations, N, increases in a system, the number of parameters increases at the rate of N^{2} because of the correlation matrix. When the number of parameters is large, sometimes the optimization converges but some of the standard deviations are missing. This usually means that the model is over-parameterized. The default method for computing the covariance is to use the inverse Hessian matrix. The Hessian is computed by finite differences, and in over-parameterized cases, the inverse cannot be computed. It is recommended that you reduce the number of parameters in such cases. Sometimes using the outer product covariance matrix (COVEST=OP option) may also help.

Tests on Parameters

Tests on Parameters

In general, the hypothesis tested can be written as

$$
H_{0}: \mathbf{h}(\theta)=0
$$

where $\mathbf{h}(\theta)$ is an r by 1 vector valued function of the parameters θ given by the r expressions specified in the TEST statement.

Let \hat{V} be the estimate of the covariance matrix of $\hat{\theta}$. Let $\hat{\theta}$ be the unconstrained estimate of θ and $\tilde{\theta}$ be the constrained estimate of θ such that $h(\tilde{\theta})=0$. Let

$$
A(\theta)=\partial h(\theta) /\left.\partial \theta\right|_{\hat{\theta}}
$$

Using this notation, the test statistics for the three kinds of tests are computed as follows.
The Wald test statistic is defined as

$$
W=h^{\prime}(\hat{\theta})\left(A(\hat{\theta}) \hat{V} A^{\prime}(\hat{\theta})\right)^{-1} h(\hat{\theta})
$$

The Wald test is not invariant to reparameterization of the model (Gregory 1985; Gallant 1987, p. 219). For more information about the theoretical properties of the Wald test, see Phillips and Park (1988).

The Lagrange multiplier test statistic is

$$
L M=\lambda^{\prime} A(\tilde{\theta}) \tilde{V} A^{\prime}(\tilde{\theta}) \lambda
$$

where λ is the vector of Lagrange multipliers from the computation of the restricted estimate $\tilde{\theta}$.
The likelihood ratio test statistic is

$$
L R=2(L(\hat{\theta})-L(\tilde{\theta}))
$$

where $\tilde{\theta}$ represents the constrained estimate of θ and L is the concentrated log-likelihood value.
For each kind of test, under the null hypothesis the test statistic is asymptotically distributed as a χ^{2} random variable with r degrees of freedom, where r is the number of expressions in the TEST statement. The p-values reported for the tests are computed from the $\chi^{2}(r)$ distribution and are only asymptotically valid.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation to its small sample distribution than that of the other two tests. However, the Wald test has the lowest computational cost, since it does not require computation of the constrained estimate $\tilde{\theta}$.

The following is an example of using the TEST statement to perform a likelihood ratio test:

```
proc qlim;
    model y = x1 x2 x3;
    test x1 = 0, x2 * . 5 + 2 * x3 = 0 /lr;
run;
```


Output to SAS Data Set

XBeta, Predicted, Residual

Xbeta is the structural part on the right-hand side of the model. Predicted value is the predicted dependent variable value. For censored variables, if the predicted value is outside the boundaries, it is reported as the closest boundary. For discrete variables, it is the level whose boundaries Xbeta falls between. Residual is defined only for continuous variables and is defined as

$$
\text { Residual }=\text { Observed }- \text { Predicted }
$$

Error Standard Deviation

Error standard deviation is σ_{i} in the model. It varies only when the HETERO statement is used.

Marginal Effects

Marginal effect is defined as a contribution of one control variable to the response variable. For the binary choice model with two response categories, $\mu_{0}=-\infty, \mu_{1}=0, \mu_{0}=-\infty$; and ordinal response model with M response categories, μ_{0}, \cdots, μ_{M}, define

$$
R_{i, j}=\mu_{j}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}
$$

The probability that the unobserved dependent variable is contained in the j th category can be written as

$$
P\left[\mu_{j-1}<y_{i}^{*} \leq \mu_{j}\right]=F\left(R_{i, j}\right)-F\left(R_{i, j-1}\right)
$$

The marginal effect of changes in the regressors on the probability of $y_{i}=j$ is then

$$
\frac{\partial \operatorname{Prob}\left[y_{i}=j\right]}{\partial \mathbf{x}}=\left[f\left(\mu_{j-1}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)-f\left(\mu_{j}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right] \boldsymbol{\beta}
$$

where $f(x)=\frac{d F(x)}{d x}$. In particular,

$$
f(x)=\frac{d F(x)}{d x}= \begin{cases}\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} & \text { (probit) } \\ \frac{e^{-x}}{\left[1+e^{(-x)}\right]^{2}} & \text { (logit) }\end{cases}
$$

The marginal effects in the Box-Cox regression model are

$$
\frac{\partial E\left[y_{i}\right]}{\partial \mathbf{x}}=\boldsymbol{\beta} \frac{x^{\lambda_{k}-1}}{y^{\lambda_{0}-1}}
$$

The marginal effects in the truncated regression model are

$$
\frac{\partial E\left[y_{i} \mid L_{i}<y_{i}^{*}<R_{i}\right]}{\partial \mathbf{x}}=\boldsymbol{\beta}\left[1-\frac{\left(\phi\left(a_{i}\right)-\phi\left(b_{i}\right)\right)^{2}}{\left(\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)\right)^{2}}+\frac{a_{i} \phi\left(a_{i}\right)-b_{i} \phi\left(b_{i}\right)}{\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)}\right]
$$

where $a_{i}=\frac{L_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma_{i}}$ and $b_{i}=\frac{R_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma_{i}}$.
The marginal effects in the censored regression model are

$$
\frac{\partial E\left[y \mid \mathbf{x}_{i}\right]}{\partial \mathbf{x}}=\boldsymbol{\beta} \times \operatorname{Prob}\left[L_{i}<y_{i}^{*}<R_{i}\right]
$$

Inverse Mills Ratio, Expected and Conditionally Expected Values

Expected and conditionally expected values are computed only for continuous variables. The inverse Mills ratio is computed for censored or truncated continuous, binary discrete, and selection endogenous variables.

Let L_{i} and R_{i} be the lower boundary and upper boundary, respectively, for the y_{i}. Define $a_{i}=$ $\frac{L_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma_{i}}$ and $b_{i}=\frac{R_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}{\sigma_{i}}$. Then the inverse Mills ratio is defined as

$$
\lambda=\frac{\left(\phi\left(a_{i}\right)-\phi\left(b_{i}\right)\right)}{\left(\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)\right)}
$$

for a continuous variable and defined as

$$
\lambda=\frac{\phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}{\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)}
$$

for a binary discrete variable.
The expected value is the unconditional expectation of the dependent variable. For a censored variable, it is

$$
E\left[y_{i}\right]=\Phi\left(a_{i}\right) L_{i}+\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\lambda \sigma_{i}\right)\left(\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)\right)+\left(1-\Phi\left(b_{i}\right)\right) R_{i}
$$

For a left-censored variable ($R_{i}=\infty$), this formula is

$$
E\left[y_{i}\right]=\Phi\left(a_{i}\right) L_{i}+\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\lambda \sigma_{i}\right)\left(1-\Phi\left(a_{i}\right)\right)
$$

where $\lambda=\frac{\phi\left(a_{i}\right)}{1-\Phi\left(a_{i}\right)}$.
For a right-censored variable ($L_{i}=-\infty$), this formula is

$$
E\left[y_{i}\right]=\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\lambda \sigma_{i}\right) \Phi\left(b_{i}\right)+\left(1-\Phi\left(b_{i}\right)\right) R_{i}
$$

where $\lambda=-\frac{\phi\left(b_{i}\right)}{\Phi\left(b_{i}\right)}$.
For a noncensored variable, this formula is

$$
E\left[y_{i}\right]=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}
$$

The conditional expected value is the expectation given that the variable is inside the boundaries:

$$
E\left[y_{i} \mid L_{i}<y_{i}<R_{i}\right]=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\lambda \sigma_{i}
$$

Probability

Probability applies only to discrete responses. It is the marginal probability that the discrete response is taking the value of the observation. If the PROBALL option is specified, then the probability for all of the possible responses of the discrete variables is computed.

OUTEST= Data Set

The OUTEST= data set contains all the parameters estimated in a MODEL statement. The OUTEST= option can be used when the PROC QLIM call contains one MODEL statement:

```
proc qlim data=a outest=e;
    model y = x1 x2 x3;
    endogenous y ~ censored(lb=0);
run;
```

Each parameter contains the estimate for the corresponding parameter in the corresponding model. In addition, the OUTEST= data set contains the following variables:
NAME the name of the independent variable
TYPE type of observation. PARM indicates the row of coefficients; STD indicates the row of standard deviations of the corresponding coefficients.
STATUS convergence status for optimization

The rest of the columns correspond to the explanatory variables.
The OUTEST = data set contains one observation for the MODEL statement, giving the parameter estimates for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations for the MODEL statement, giving the rows of the covariance matrix of parameter estimates. For covariance observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter associated with that row of the covariance matrix. If the CORROUT option is specified, the OUTEST= data set includes additional observations for the MODEL statement, giving the rows of the correlation matrix of parameter estimates. For correlation observations, the value of the _TYPE_ variable is CORR, and the _NAME_ variable identifies the parameter associated with that row of the correlation matrix.

Naming

Naming of Parameters

When there is only one equation in the estimation, parameters are named in the same way as in other SAS procedures such as REG, PROBIT, etc. The constant in the regression equation is called Intercept. The coefficients on independent variables are named by the independent variables. The standard deviation of the errors is called _Sigma. If there are Box-Cox transformations, the coefficients are named _Lambdai, where i increments from 1, or as specified by the user. The limits for the discrete dependent variable are named _Limiti. If the LIMIT=varying option is specified, then _Limiti starts from 1. If the LIMIT=varying option is not specified, then _Limit1 is set to 0 and the limit parameters start from $i=2$. If the HETERO statement is included, the coefficients of the independent variables in the hetero equation are called _H. x, where x is the name of the independent variable. If the parameter name includes interaction terms, it needs to be enclosed in quotation marks followed by N. The following example restricts the parameter that includes the interaction term to be greater than zero:

```
proc qlim data=a;
    model y = x1|x2;
    endogenous y ~ discrete;
    restrict "x1*x2"N>0;
run;
```

When there are multiple equations in the estimation, the parameters in the main equation are named in the format of $y . x$, where y is the name of the dependent variable and x is the name of the independent variable. The standard deviation of the errors is called _Sigma. y. The correlation of the errors is called _Rho for bivariate model. For the model with three variables it is _Rho. $y 1 . y 2$,_Rho.y1.y3, _Rho.y2.y3. The construction of correlation names for multivariate models is analogous. Box-Cox parameters are called _Lambdai. y and limit variables are called _Limiti.y. Parameters in the HETERO statement are named as _H.y.x. In the OUTEST= data set, all variables are changed from ' '.' to '_'.

Naming of Output Variables

The following table shows the option in the OUTPUT statement, with the corresponding variable names and their explanation.

Option	Name	Explanation
PREDICTED	P_y	Predicted value of y
RESIDUAL	RESID_y	Residual of y, (y-PredictedY)
XBETA	XBETA_y	Structure part ($\mathbf{x}^{\prime} \boldsymbol{\beta}$) of y equation
ERRSTD	ERRSTD_y	Standard deviation of error term
PROB	PROB_y	Probability that y is taking the observed value in this observation (discrete y only)
PROBALL	PROB $i_{\text {_ }} \mathrm{y}$	Probability that y is taking the i th value (discrete y only)
MILLS	MILLS_y	Inverse Mills ratio for y
EXPECTED	EXPCT_y	Unconditional expected value of y
CONDITIONAL	CEXPCT_y	Conditional expected value of y, condition on the truncation.
MARGINAL	MEFF_x	Marginal effect of x on $y\left(\frac{\partial y}{\partial x}\right)$ with single equation
	MEFF_y_x	Marginal effect of x on $y\left(\frac{\partial y}{\partial x}\right)$ with multiple equations
	MEFF_Pi_x	Marginal effect of x on $y\left(\frac{\partial P \operatorname{rob}(y=i)}{\partial x}\right)$ with single equation and discrete y
	MEFF_Pi_y_x	Marginal effect of x on $y\left(\frac{\partial \operatorname{Prob}(y=i)}{\partial x}\right)$ with multiple equations and discrete y

If you prefer to name the output variables differently, you can use the RENAME option in the data set. For example, the following statements rename the residual of y as Resid:

```
proc qlim data=one;
    model y = x1-x10 / censored;
    output out=outds(rename=(resid_y=resid)) residual;
run;
```


ODS Table Names

PROC QLIM assigns a name to each table it creates. You can use these names to denote the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the Table 21.2.

Table 21.2 ODS Tables Produced in PROC QLIM by the Model Statement

ODS Table Name	Description	Option
	ODS Tables Created by the Model Statement	
ResponseProfile	Response Profile	default
ClassLevels	Class Levels	default
FitSummary	Summary of Non-linear Estimation	default
GoodnessOfFit	Pseudo-R ${ }^{2}$ Measures	default
ConvergenceStatus	Convergence Status	default
ParameterEstimates	Parameter Estimates	default
CovB	Covariance of Parameter Estimates	COVB
CorrB	Correlation of Parameter Estimates	CORRB
LinCon	Linear Constraints	ITPRINT
InputOptions	Input Options	ITPRINT
ProblemDescription	Problem Description	ITPRINT
IterStart	Optimization Start	ITPRINT
IterHist	Iteration History	ITPRINT
IterStop	Optimization Results	ITPRINT
ConvergenceStatus	Convergence Status	ITPRINT
ParameterEstimatesResults	Resulting Parameters	ITPRINT
LinConSol	Linear Constraints Evaluated at Solution	ITPRINT
TestResults	ODS Tables Created by the Test Statement	
	Test Results	default

Examples: QLIM Procedure

Example 21.1: Ordered Data Modeling

Cameron and Trivedi (1986) studied Australian Health Survey data. Variable definitions are given in Cameron and Trivedi (1998, p. 68).

The dependent variable, dvisits, has nine ordered values. The following SAS statements estimate the ordinal probit model:

```
/*-- Ordered Discrete Responses --*/
proc qlim data=docvisit;
    model dvisits \(=\) sex age agesq income levyplus
                        freepoor freerepa illness actdays hscore
    chcond1 chcond2 / discrete;
run;
```

The output of the QLIM procedure for ordered data modeling is shown in Output 21.1.1.
Output 21.1.1 Ordered Data Modeling

Binary Data			
The QLIM Procedure			
Discrete Response Profile of dvisits			
Index	Value	Frequency	Percent
1	0	4141	79.79
2	1	782	15.07
3	2	174	3.35
4	3	30	0.58
5	4	24	0.46
6	5	9	0.17
7	6	12	0.23
8	7	12	0.23
9	8	6	0.12

Output 21.1.1 continued

```
Model Fit Summary
\begin{tabular}{lr} 
Number of Endogenous Variables & 1 \\
Endogenous Variable & dvisits \\
Number of Observations & 5190 \\
Log Likelihood & -3138 \\
Maximum Absolute Gradient & 0.0003675 \\
Number of Iterations & 82 \\
Optimization Method & Quasi-Newton \\
AIC & 6316 \\
Schwarz Criterion & 6447
\end{tabular}
```

Measure
Likelihood Ratio (R)
Upper Bound of R (U)
Aldrich-Nelson
Cragg-Uhler 1
Cragg-Uhler 2
Estrella
Adjusted Estrella
McFadden's LRI Veall-Zimmermann McKelvey-Zavoina

```
Goodness-of-Fit Measures
\(\mathrm{N}=\#\) of observations, \(\mathrm{K}=\) \# of regressors
```

Output 21.1.1 continued

Parameter	Parameter Estimates				Approx
			Standard		
	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	-1.378705	0.147413	-9.35	$<.0001$
sex	1	0.131885	0.043785	3.01	0.0026
age	1	-0.534190	0.815907	-0.65	0.5126
agesq	1	0.857308	0.898364	0.95	0.3399
income	1	-0.062211	0.068017	-0.91	0.3604
levyplus	1	0.137030	0.053262	2.57	0.0101
freepoor	1	-0.346045	0.129638	-2.67	0.0076
freerepa	1	0.178382	0.074348	2.40	0.0164
illness	1	0.150485	0.015747	9.56	$<.0001$
actdays	1	0.100575	0.005850	17.19	$<.0001$
hscore	1	0.031862	0.009201	3.46	0.0005
chcond1	1	0.061601	0.049024	1.26	0.2089
chcond2	1	0.135321	0.067711	2.00	0.0457
_Limit2	1	0.938884	0.031219	30.07	<. 0001
_Limit3	1	1.514288	0.049329	30.70	$<.0001$
Limit4	1	1.711660	0.058151	29.43	$<.0001$
_Limit5	1	1.952860	0.072014	27.12	$<.0001$
Limit6	1	2.087422	0.081655	25.56	$<.0001$
_Limit7	1	2.333786	0.101760	22.93	$<.0001$
_Limit8	1	2.789796	0.156189	17.86	<. 0001

By default, ordinal probit/logit models are estimated assuming that the first threshold or limit parameter $\left(\mu_{1}\right)$ is 0 . However, this parameter can also be estimated when the LIMIT1=VARYING option is specified. The probability that y_{i}^{*} belongs to the j th category is defined as

$$
P\left[\mu_{j-1}<y_{i}^{*}<\mu_{j}\right]=F\left(\mu_{j}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)-F\left(\mu_{j-1}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)
$$

where $F(\cdot)$ is the logistic or standard normal CDF, $\mu_{0}=-\infty$ and $\mu_{9}=\infty$. Output 21.1.2 lists ordinal probit estimates computed in the following program. Note that the intercept term is suppressed for model identification when μ_{1} is estimated.

```
/*-- Ordered Probit --*/
proc qlim data=docvisit;
    model dvisits = sex age agesq income levyplus
                        freepoor freerepa illness actdays hscore
                        chcond1 chcond2 / discrete(d=normal) limit1=varying;
run;
```

Output 21.1.2 Ordinal Probit Parameter Estimates with LIMIT1=VARYING

Binary Data					
The QLIM Procedure					
Parameter Estimates					
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
sex	1	0.131885	0.043785	3.01	0.0026
age	1	-0.534181	0.815915	-0.65	0.5127
agesq	1	0.857298	0.898371	0.95	0.3399
income	1	-0.062211	0.068017	-0.91	0.3604
levyplus	1	0.137031	0.053262	2.57	0.0101
freepoor	1	-0.346045	0.129638	-2.67	0.0076
freerepa	1	0.178382	0.074348	2.40	0.0164
illness	1	0.150485	0.015747	9.56	<. 0001
actdays	1	0.100575	0.005850	17.19	$<.0001$
hscore	1	0.031862	0.009201	3.46	0.0005
chcond1	1	0.061602	0.049024	1.26	0.2089
chcond2	1	0.135322	0.067711	2.00	0.0457
_Limit1	1	1. 378706	0.147415	9.35	$<.0001$
_Limit2	1	2.317590	0.150206	15.43	<. 0001
_Limit3	1	2.892994	0.155198	18.64	<. 0001
_Limit4	1	3.090367	0.158263	19.53	<. 0001
_Limit5	1	3.331566	0.164065	20.31	<. 0001
_Limit6	1	3.466128	0.168799	20.53	<. 0001
_Limit7	1	3.712493	0.179756	20.65	<. 0001
_Limit8	1	4.168502	0.215738	19.32	<. 0001

Example 21.2: Tobit Analysis

The following statements show a subset of the Mroz (1987) data set. In these data, Hours is the number of hours the wife worked outside the household in a given year, Yrs_Ed is the years of education, and Yrs_Exp is the years of work experience. A Tobit model will be fit to the hours worked with years of education and experience as covariates.

By the nature of the data it is clear that there are a number of women who committed some positive number of hours to outside work ($y_{i}>0$ is observed). There are also a number of women who did not work at all ($y_{i}=0$ is observed). This gives us the following model:

$$
\begin{aligned}
& y_{i}^{*}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i} \\
& y_{i}= \begin{cases}y_{i}^{*} & \text { if } y_{i}^{*}>0 \\
0 & \text { if } y_{i}^{*} \leq 0\end{cases}
\end{aligned}
$$

where $\epsilon_{i} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$. The set of explanatory variables is denoted by \mathbf{x}_{i}.

```
title1 'Estimating a Tobit model';
```

```
data subset;
    input Hours Yrs_Ed Yrs_Exp @@;
    if Hours eq O then Lower=.;
        else Lower=Hours;
datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
```



```
1568 16 19 1316 17 7 0 17 15
;
/*-- Tobit Model --*/
proc qlim data=subset;
    model hours = yrs_ed yrs_exp;
    endogenous hours ~ censored(lb=0);
run;
```

The output of the QLIM procedure is shown in Output 21.2.1.
Output 21.2.1 Tobit Analysis Results

Estimating a Tobit model					
The QLIM Procedure					
Model Fit Summary					
	Number of Endogenous Variables 1				
	Endogenous Variable			hours	
	Number of Observations			17	
	Log Likelihood			74.93700	
	Maximum Absolute Gradient			18953E-6	
	Number of Iterations			23	
	Optimization Method			-Newton	
	AIC			57.87400	
	Schwarz Criterion			61. 20685	
	Parameter Estimates				
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	Pr > $\|t\|$
Intercept	1	-5598.295129	27.692220	-202.16	$<.0001$
Yrs_Ed	1	373.123254	53.988877	6.91	$<.0001$
Yrs_Exp	1	63.336247	36.551299	1.73	0.0831
_Sigma	1	1582.859635	390.076480	4.06	<. 0001

In the "Parameter Estimates" table there are four rows. The first three of these rows correspond to the vector estimate of the regression coefficients $\boldsymbol{\beta}$. The last one is called _Sigma, which corresponds to the estimate of the error variance σ.

Example 21.3: Bivariate Probit Analysis

This example shows how to estimate a bivariate probit model. Note the INIT statement in the following program, which sets the initial values for some parameters in the optimization:

```
data a;
    keep y1 y2 x1 x2;
    do i = 1 to 500;
            x1 = rannor( 19283 );
            x2 = rannor( 98721 );
            u1 = rannor( 76527 );
            u2 = rannor( 65721 );
            y11 = 1 + 2 * x1 + 3 * x2 + u1;
            y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
            if ( y11 > 0 ) then y1 = 1;
            else y1 = 0;
            if ( y2l > 0 ) then y2 = 1;
            else y2 = 0;
            output;
    end;
run;
/*-- Bivariate Probit --*/
proc qlim data=a method=qn;
    init y1.x1 2.8, y1.x2 2.1, _rho .1;
    model y1 = x1 x2;
    model y2 = x1 x2;
    endogenous y1 y2 ~ discrete;
run;
```

The output of the QLIM procedure is shown in Output 21.3.1.
Output 21.3.1 Bivariate Probit Analysis Results

Output 21.3.1 continued

Parameter	DF	Parameter Estimates		t Value	Approx	
			Standard			
		Estimate	Error		Pr > \|t	
y1. Intercept	1	1.003639	0.153678	6.53	$<.0001$	
y1.x1	1	2.244374	0.256062	8.76	$<.0001$	
y1.x2	1	3.273441	0.341581	9.58	<. 0001	
y2.Intercept	1	3.621164	0.457173	7.92	<. 0001	
$\mathrm{y}^{2} . \mathrm{x} 1$	1	4.551525	0.576547	7.89	<. 0001	
$\mathrm{y}^{2} . \mathrm{x} 2$	1	-2.442769	0.332295	-7.35	$<.0001$	
_Rho	1	0.144097	0.336459	0.43	0.6685	

Example 21.4: Sample Selection Model

This example illustrates the use of PROC QLIM for sample selection models. The data set is the same one from Mroz (1987). The goal is to estimate a wage offer function for married women, accounting for potential selection bias. Of the 753 women, the wage is observed for 428 working women. The labor force participation equation estimated in the introductory example is used for selection. The wage equation uses log wage (iwage) as the dependent variable. The explanatory variables in the wage equation are the woman's years of schooling (educ), wife's labor experience (exper), and square of experience (expersq). The program is as follows:

```
/*-- Sample Selection --*/
proc qlim data=mroz;
    model inlf = nwifeinc educ exper expersq
                                    age kidslt6 kidsge6 /discrete;
    model lwage = educ exper expersq / select(inlf=1);
run;
```

The output of the QLIM procedure is shown in Output 21.4.1.

Output 21.4.1 Sample Selection

Note the correlation estimate is insignificant. This indicates that selection bias is not a big problem in the estimation of wage equation.

Example 21.5: Sample Selection Model with Truncation and Censoring

In this example the data are generated such that the selection variable is discrete and the variable Y is truncated from below by zero. The program follows, with the results shown in Output 21.5.1:

```
data trunc;
    keep z y x1 x2;
    do i = 1 to 500;
        x1 = rannor( 19283 );
        x2 = rannor( 98721 );
```

```
            u1 = rannor( 76527 );
            u2 = rannor( 65721 );
            zl = 1 + 2 * x1 + 3 * x2 + u1;
            y = 3 + 4 * x1 - 2 * x2 + u1*. 2 + u2;
            if ( zl > O ) then z = 1;
            else z = 0;
            if y>=0 then output;
        end;
run;
/*-- Sample Selection with Truncation --*/
proc qlim data=trunc method=qn;
        model z = x1 x2 / discrete;
        model y = x1 x2 / select(z=1) truncated(lb=0);
run;
```

Output 21.5.1 Sample Selection with Truncation

Binary Data					
The QLIM Procedure					
Model Fit Summary					
	Number of Endogenous Variables 2				
	Endogenous Variable			z y	
	Number of Observations			379	
	Log Likelihood			. 10722	
	Maximum Absolute Gradient			535E-6	
	Number of Iterations			17	
	Optimization Method			Newton	
	AIC			. 21444	
	Schwarz Criterion			735.71473	
	Parameter Estimates				
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
y.Intercept	1	3.014158	0.128548	23.45	$<.0001$
y.x1	1	3.995671	0.099599	40.12	$<.0001$
y.x2	1	-1.972697	0.096385	-20.47	<. 0001
_Sigma.y	1	0.923428	0.047233	19.55	<. 0001
z. Intercept	1	0.949444	0.190265	4.99	<. 0001
z. $\times 1$	1	2.163928	0.288384	7.50	$<.0001$
z. x 2	1	3.134213	0.379251	8.26	<. 0001
_Rho	1	0.494356	0.176542	2.80	0.0051

In the following statements the data are generated such that the selection variable is discrete and the variable Y is censored from below by zero. The results are shown in Output 21.5.2.

```
data cens;
    keep z y x1 x2;
    do i = 1 to 500;
```

```
    x1 = rannor( 19283 );
    x2 = rannor( 98721 );
    u1 = rannor( 76527 );
    u2 = rannor( 65721 );
    zl = 1 + 2 * x1 + 3 * x2 + u1;
    yl = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
    if ( zl > 0 ) then z = 1;
    else z = 0;
    if ( yl > 0 ) then y = yl;
    else y = 0;
        output;
        end;
run;
/*-- Sample Selection with Censoring --*/
proc qlim data=cens method=qn;
    model z = x1 x2 / discrete;
    model y = x1 x2 / select(z=1) censored(lb=0);
run;
```

Output 21.5.2 Sample Selection with Censoring

Binary Data					
The QLIM Procedure					
Model Fit Summary					
	Number of Endogenous Variables 2				
	Endogenous Variable			z y	
	Number of Observations			500	
	Log Likelihood			. 78508	
	Maximum Absolute Gradient			443E-6	
				19	
	Optimization Method			Newton	
	AIC			. 57015	
	Schwarz Criterion		849.28702		
	Parameter Estimates				
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
y.Intercept	1	3.074276	0.111617	27.54	$<.0001$
y.x1	1	3.963619	0.085796	46.20	<. 0001
Y. x 2	1	-2.023548	0.088714	-22.81	<. 0001
_Sigma.y	1	0.920860	0.043278	21.28	$<.0001$
z.Intercept	1	1.013610	0.154081	6.58	<. 0001
z. x 1	1	2.256922	0.255999	8.82	$<.0001$
z. x 2	1	3. 302692	0.342168	9.65	<. 0001
_Rho	1	0.350776	0.197093	1.78	0.0751

Example 21.6: Types of Tobit Models

The following five examples show how to estimate different types of Tobit models (see "Types of Tobit Models" on page 1400). Output 21.6.1 through Output 21.6.5 show the results of the corresponding programs.

Type 1 Tobit

```
data a1;
    keep y x;
    do i = 1 to 500;
        x = rannor( 19283 );
        u = rannor( 76527 );
        yl = 1 + 2 * x + u;
        if ( yl > 0 ) then y = yl;
            else y = 0;
            output;
    end;
run;
/*-- Type 1 Tobit --*/
proc qlim data=a1 method=qn;
    model y = x;
    endogenous y ~ censored(lb=0);
run;
```

Output 21.6.1 Type 1 Tobit

Type 2 Tobit

```
data a2;
    keep y1 y2 x1 x2;
    do i = 1 to 500;
            x1 = rannor( 19283 );
            x2 = rannor( 98721 );
            u1 = rannor( 76527 );
            u2 = rannor( 65721 );
            y11 = 1 + 2 * x1 + 3 * x2 + u1;
            y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
            if ( y1l > 0 ) then y1 = 1;
            else y1 = 0;
            if ( y11 > 0 ) then y2 = y2l;
            else y2 = 0;
            output;
        end;
run;
/*-- Type 2 Tobit --*/
proc qlim data=a2 method=qn;
    model y1 = x1 x2 / discrete;
    model y2 = x1 x2 / select(y1=1);
run;
```

Output 21.6.2 Type 2 Tobit

Output 21.6.2 continued

Parameter	DF	Parameter Estimates			Approx
			Standard		
		Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
y2. Intercept	1	3.066992	0.106903	28.69	$<.0001$
$\mathrm{y}^{2} . \mathrm{x} 1$	1	4.004874	0.072043	55.59	$<.0001$
$\mathrm{y}^{2} . \mathrm{x} 2$	1	-2.079352	0.087544	-23.75	<. 0001
_Sigma. y^{2}	1	0.940559	0.039321	23.92	$<.0001$
y1.Intercept	1	1.017140	0.154975	6.56	<. 0001
y1.x1	1	2.253080	0.256097	8.80	$<.0001$
y1.x2	1	3.305140	0.343695	9.62	$<.0001$
_Rho	1	0.292992	0.210073	1.39	0.1631

Type 3 Tobit

```
data a3;
    keep y1 y2 x1 x2;
    do i = 1 to 500;
        x1 = rannor( 19283 );
        x2 = rannor( 98721 );
        u1 = rannor( 76527 );
        u2 = rannor( 65721 );
        y1l = 1 + 2 * x1 + 3 * x2 + u1;
        y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
        if ( y11 > 0 ) then y1 = y1l;
        else y1 = 0;
        if ( y11 > 0 ) then y2 = y2l;
        else y2 = 0;
        output;
    end;
run;
/*-- Type 3 Tobit --*/
proc qlim data=a3 method=qn;
    model y1 = x1 x2 / censored(lb=0);
    model y2 = x1 x2 / select (y1>0);
run;
```

Output 21.6.3 Type 3 Tobit

Binary Data					
The QLIM Procedure					
Model Fit Summary					
	Number of Endogenous Variables 2				
	$\begin{array}{lr}\text { Number of Endogenous Variables } \\ \text { Endogenous Variable } & \text { y } 1 \text { y } 2\end{array}$				
	Number of Observations 500				
	Log Likelihood			. 94087	
	Maximum Absolute Gradient			1691E-6	
	Number of Iterations			16	
	Optimization Method			-Newton	
	AIC			1696	
	Schwarz Criterion			1734	
	Parameter Estimates				
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
y 2 . Intercept	1	3.081206	0.080121	38.46	$<.0001$
$\mathrm{y}^{2} \times 1$	1	3.998361	0.063734	62.73	$<.0001$
$\mathrm{y}^{2} . \mathrm{x} 2$	1	-2.088280	0.072876	-28.66	$<.0001$
_Sigma.y2	1	0.939799	0.039047	24.07	<. 0001
y1. Intercept	1	0.981975	0.067351	14.58	<. 0001
$\mathrm{y} 1 . \mathrm{x} 1$	1	2.032675	0.059363	34.24	$<.0001$
$\mathrm{y} 1 . \mathrm{x} 2$	1	2.976609	0.065584	45.39	$<.0001$
_Sigma.y1	1	0.969968	0.039795	24.37	$<.0001$
_Rho	1	0.226281	0.057672	3.92	$<.0001$

Type 4 Tobit

```
data a4;
    keep y1 y2 y3 x1 x2;
    do i = 1 to 500;
        x1 = rannor( 19283 );
        x2 = rannor( 98721 );
        u1 = rannor( 76527 );
        u2 = rannor( 65721 );
        u3 = rannor( 12019 );
        y11 = 1 + 2 * x1 + 3 * x2 + u1;
        y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
        y31 = 0 - 1 * x1 + 1 * x2 + u1*.1 - u2*.5 + u3*.5;
        if ( y1l > 0 ) then y1 = y1l;
        else y1 = 0;
        if ( y1l > 0 ) then y2 = y2l;
        else y2 = 0;
        if ( y11 <= 0 ) then y3 = y31;
        else y3 = 0;
        output;
    end;
```

run;

```
/*-- Type 4 Tobit --*/
proc qlim data=a4 method=qn;
        model y1 = x1 x2 / censored(lb=0);
        model y2 = x1 x2 / select (y1>0);
        model y3 = x1 x2 / select (y1<=0);
run;
```

Output 21.6.4 Type 4 Tobit

Binary Data						
The QLIM Procedure						
Model Fit Summary						
	Number of Endogenous Variables 3					
	Endogenous Variab					
	Number of Observations 500					
	Log Likelihood			-1128		
	Maximum Absolute Gradient			0000161		
	Number of Iterations			21		
	Optimization Method Qu			Newton		
	AIC			2285		
	Schwarz Criterion			2344		
	Parameter Estimates					
	DF		Standard		Approx	
Parameter		Estimate	Error	t Value	Pr > \|t	
y2.Intercept	1	2.894656	0.076079	38.05	$<.0001$	
$\mathrm{y}^{2} . \mathrm{x} 1$	1	4.072704	0.062675	64.98	<. 0001	
$\mathrm{y}^{2} . \mathrm{x} 2$	1	-1.901163	0.076874	-24.73	<. 0001	
_Sigma. y^{2}	1	0.981655	0.039564	24.81	$<.0001$	
y3.Intercept	1	0.064594	0.179441	0.36	0.7189	
y ${ }^{3} \times 1$	1	-0.938384	0.096570	-9.72	<. 0001	
y ${ }^{3} . \mathrm{x} 2$	1	1.035798	0.123104	8.41	<. 0001	
_Sigma.y ${ }^{3}$	1	0.743124	0.038240	19.43	<. 0001	
y1.Intercept	1	0.987370	0.067861	14.55	$<.0001$	
y1.x1	1	2.050408	0.060819	33.71	<. 0001	
y1.x2	1	2.982190	0.072552	41.10	$<.0001$	
_Sigma.y1	1	1.032473	0.040971	25.20	<. 0001	
_Rho. $\mathrm{y}^{1} \cdot \mathrm{y}^{2}$	1	0.291587	0.053436	5.46	$<.0001$	
_Rho. $\mathrm{Y}^{1} \cdot \mathrm{y}^{3}$	1	-0.031665	0.260057	-0.12	0.9031	

Type 5 Tobit

```
data a5;
    keep y1 y2 y3 x1 x2;
    do i = 1 to 500;
        x1 = rannor( 19283 );
        x2 = rannor( 98721 );
```

```
        u1 = rannor( 76527 );
        u2 = rannor( 65721 );
        u3 = rannor( 12019 );
        y1l = 1 + 2 * x1 + 3 * x2 + u1;
        y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
        y31 = 0 - 1 * x1 + 1 * x2 + u1*.1 - u2*.5 + u3*.5;
        if ( y11 > 0 ) then y1 = 1;
        else y1 = 0;
        if ( y1l > 0 ) then y2 = y2l;
        else y2 = 0;
        if ( y1l <= 0 ) then y3 = y3l;
        else y3 = 0;
        output;
    end;
run;
/*-- Type 5 Tobit --*/
proc qlim data=a5 method=qn;
    model y1 = x1 x2 / discrete;
    model y2 = x1 x2 / select (y1>0);
    model y3 = x1 x2 / select (y1<=0);
run;
```

Output 21.6.5 Type 5 Tobit

Output 21.6.5 continued

Parameter	DF	Parameter Estimates			Approx
			Standard		
		Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
y 2 . Intercept	1	2.887523	0.095193	30.33	$<.0001$
$\mathrm{y}^{2} . \mathrm{x} 1$	1	4.078926	0.069623	58.59	$<.0001$
$\mathrm{y}^{2} . \mathrm{x} 2$	1	-1.898898	0.086578	-21.93	<. 0001
_Sigma. Y^{2}	1	0.983059	0.039987	24.58	$<.0001$
y3.Intercept	1	0.071764	0.171522	0.42	0.6757
y3.x1	1	-0.935299	0.092843	-10.07	$<.0001$
y3.x2	1	1.039954	0.120697	8.62	$<.0001$
_Sigma.y ${ }^{\text {a }}$	1	0.743083	0.038225	19.44	$<.0001$
y1.Intercept	1	1.067578	0.142789	7.48	<. 0001
y1.x1	1	2.068376	0.226020	9.15	<. 0001
y1.x2	1	3.157385	0.314743	10.03	$<.0001$
_Rho. $\mathrm{y}^{1} \cdot \mathrm{y}^{2}$	1	0.312369	0.177010	1.76	0.0776
_Rho.y1.y ${ }^{\text {3 }}$	1	-0.018225	0.234886	-0.08	0.9382

Example 21.7: Stochastic Frontier Models

This example illustrates the estimation of stochastic frontier production and cost models.
First, a production function model is estimated. The data for this example were collected by Christensen Associates; they represent a sample of 125 observations on inputs and output for 10 airlines between 1970 and 1984. The explanatory variables (inputs) are fuel (LF), materials (LM), equipment (LE), labor (LL), and property (LP), and (LQ) is an index that represents passengers, charter, mail, and freight transported.

The following statements create the dataset:

```
title1 'Stochastic Frontier Production Model';
data airlines;
    input TS FIRM NI LQ LF LM LE LL LP;
datalines;
1 1 15 -0.0484 0.2473 0.2335 0.2294 0.2246 0.2124
1 1 15 -0.0133 0.2603 0.2492 0.241 0.2216 0.1069
2 1 15 0.088 0.2666 0.3273 0.3365 0.2039 0.0865
... more lines ...
```

The following statements estimate a stochastic frontier exponential production model that uses Christensen Associates data:

```
/*-- Stochastic Frontier Production Model --*/
proc qlim data=airlines method=congra;
    model LQ=LF LM LE LL LP;
```

```
    endogenous LQ ~ frontier (type=exponential production);
run;
```

Output 21.7.1 shows the results from this production model.
Output 21.7.1 Stochastic Frontier Production Model

Stochastic Frontier Production Model						
The QLIM Procedure						
Model Fit Summary						
Number of Endogenous Variables 1						
Endogenous Variable						
Number of Observations 125						
Log Likelihood 83.27815						
Maximum Absolute Gradient 0.0005771						
Number of Iterations 78						
Optimization Method Conjugate-Gradie						
AIC -150.55630						
Schwarz Criterion -127.92979						
Sigma 0.12445						
Lambda				0.557		
Parameter Estimates						
			Standard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	-0.085048	0.024528	-3.47	0.0005	
LF	1	-0.115805	0.124178	-0.93	0.3510	
LM	1	0.756252	0.078755	9.60	$<.0001$	
LE	1	0.424916	0.081893	5.19	$<.0001$	
LL	1	-0.136417	0.089702	-1. 52	0.1283	
LP	1	0.098966	0.042776	2.31	0.0207	
_Sigma_v	1	0.108688	0.010063	10.80	<. 0001	
_Sigma_u	1	0.060611	0.017603	3.44	0.0006	

Similarly, the stochastic frontier production function can be estimated with (type=half) or (type=truncated) options that represent half-normal and truncated normal production or cost models.

In the next step, stochastic frontier cost function is estimated. The data for the cost model are provided by Christensen and Greene (1976). The data describe costs and production inputs of 145 U.S. electricity producers in 1955. The model being estimated follows the nonhomogenous version of the Cobb-Douglas cost function:

$$
\log \left(\frac{\text { Cost }}{\text { FPrice }}\right)=\beta_{0}+\beta_{1} \log \left(\frac{\text { KPrice }}{\text { FPrice }}\right)+\beta_{2} \log \left(\frac{\text { LPrice }}{\text { FPrice }}\right)+\beta_{3} \log (\text { Output })+\beta_{4} \frac{1}{2} \log (\text { Output })^{2}+\epsilon
$$

All dollar values are normalized by fuel price. The quadratic \log of the output is added to capture nonlinearities due to scale effects in cost functions. New variables, log_C_PF, log_PK_PF, $\log _{_} P L _P F, \log _{_} y$, and $\log _y _$sq, are created to reflect transformations. The following statements create the data set and transformed variables:

```
data electricity;
    input Firm Year Cost Output LPrice LShare KPrice KShare FPrice FShare;
datalines;
    1 1955 .0820 2.0 2.090 . 3164 183.000 .4521 17.9000 . 2315
    2 1955 . 6610 3.0 2.050 . 2073 174.000 .6676 35.1000 . 1251
\begin{tabular}{llllllllll}
3 & 1955 & .9900 & 4.0 & 2.050 & .2349 & 171.000 & .5799 & 35.1000 & .1852
\end{tabular}
\(4 \quad 1955 \quad .3150 \quad 4.0 \quad 1.830 \quad .1152 \quad 166.000 \quad .7857 \quad 32.2000 \quad .0990\)
... more lines ...
/* Data transformations */
data electricity;
    set electricity;
    label Firm="firm index"
            Year="1955 for all observations"
            Cost="Total cost"
            Output="Total output"
            LPrice="Wage rate"
            LShare="Cost share for labor"
            KPrice="Capital price index"
            KShare="Cost share for capital"
            FPrice="Fuel price"
            FShare"Cost share for fuel";
    log_C_PF=log(Cost/FPrice);
    log_PK_PF=log(KPrice/FPrice);
    log_PL_PF=log(LPrice/FPrice);
    log_y=log(Output);
    log_y_sq=log_y**2/2;
run;
```

The following statements estimate a stochastic frontier exponential cost model that uses Christensen and Greene (1976) data:

```
/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;
    model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
    endogenous log_C_PF ~ frontier (type=exponential cost);
run;
```

Output 21.7.2 shows the results.

Output 21.7.2 Exponential Distribution

Stochastic Frontier Production Model					
The QLIM Procedure					
Model Fit Summary					
	Number of Endogenous Variables 1				
	Endogenous Variable			log_C_PF	
	Number of Observations			159	
	Log Likelihood			3.30430	
	Maximum Absolute Gradient			0458E-6	
	Number of Iterations			21	
	Optimization Method Q			Quasi-Newton	
	AIC			0.60860	
	Schwarz Criterion			2.09093	
	Sigma			0.30750	
	Lambda			1.71345	
	Parameter Estimates				
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	-4.983211	0.543328	-9.17	$<.0001$
log_PK_PF	1	0.090242	0.109202	0.83	0.4086
log_PL_PF	1	0.504299	0.118263	4.26	$<.0001$
log_y	1	0.427182	0.066680	6.41	$<.0001$
log_y_sq	1	0.066120	0.010079	6.56	$<.0001$
_Sigma_v	1	0.154998	0.020271	7.65	$<.0001$
_Sigma_u	1	0.265581	0.033614	7.90	<. 0001

Similarly, the stochastic frontier cost model can be estimated with (type=half) or (type=truncated) options that represent half-normal and truncated normal errors.

The following statements illustrate the half-normal option:

```
/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;
    model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
    endogenous log_C_PF ~ frontier (type=half cost);
run;
```

Output 21.7.3 shows the result.

Output 21.7.3 Half-Normal Distribution

Stochastic Frontier Production Model					
The QLIM Procedure					
Model Fit Summary					
	Number of Endogenous Variables				
	Endogenous Variable			log_C_PF	
	Number of Observations			159	
	Log Likelihood			4. 95304	
	Maximum Absolute Gradient			0001150	
	Number of Iterations			22	
	Optimization Method			-Newton	
	AIC			3.90607	
	Schwarz Criterion			5. 38840	
	Sigma			0.42761	
	Lambda			1.80031	
	Parameter Estimates				
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	1	-4.434634	0.690197	-6.43	$<.0001$
log_PK_PF	1	0.069624	0.136250	0.51	0.6093
log_PL_PF	1	0.474578	0.146812	3.23	0.0012
log_y	1	0.256874	0.080777	3.18	0.0015
log_y_sq	1	0.088051	0.011817	7.45	$<.0001$
_Sigma_v	1	0.207637	0.039222	5.29	$<.0001$
_Sigma_u	1	0.373810	0.073605	5.08	$<.0001$

The following statements illustrate the truncated normal option:

```
/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;
    model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
    endogenous log_C_PF ~ frontier (type=truncated cost);
run;
```

Output 21.7.4 shows the results.

Output 21.7.4 Truncated Normal Distribution

Stochastic Frontier Production Model						
The QLIM Procedure						
Model Fit Summary						
	Number of Endogenous Variables 1					
	Endogenous Variable			log_C_PF		
	Number of Observations			159		
	Log Likelihood			60.32110		
	Maximum Absolute Gradient			4225		
	Number of Iterations			4		
	Optimization Method			i-Newton		
	AIC			36.64220		
	Schwarz Criterion			61.19343		
	Sigma			0.37350		
	Lambda			0.70753		
	Parameter Estimates					
			Standard		Approx	
Parameter	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	-3.770440	0.839388	-4.49	$<.0001$	
log_PK_PF	1	-0.045852	0.176682	-0.26	0.7952	
log_PL_PF	1	0.602961	0.191454	3.15	0.0016	
log_y	1	0.094966	0.071124	1.34	0.1818	
log_y_sq	1	0.113010	0.012225	9.24	<. 0001	
_Sigma_v	1	0.304905	0.047868	6.37	$<.0001$	
_Sigma_u	1	0.215728	0.068725	3.14	0.0017	
${ }_{-} \mathrm{Mu}$	1	0.477097	0.116295	4.10	<. 0001	

If no (Production) or (Cost) option is specified, the stochastic frontier production model is estimated by default.

References

Abramowitz, M. and Stegun, A. (1970), Handbook of Mathematical Functions, New York: Dover Press.

Aigner, C., Lovell, C. A. K., Schmidt, P. (1977), "Formulation and Estimation of Stochastic Frontier Production Function Models," Journal of Econometrics, 6:1 (July), 21-37

Aitchison, J. and Silvey, S. (1957), "The Generalization of Probit Analysis to the Case of Multiple Responses," Biometrika, 44, 131-140.

Amemiya, T. (1978a), "The Estimation of a Simultaneous Equation Generalized Probit Model," Econometrica, 46, 1193-1205.

Amemiya, T. (1978b), "On a Two-Step Estimate of a Multivariate Logit Model," Journal of Econometrics, 8, 13-21.

Amemiya, T. (1981), "Qualitative Response Models: A Survey," Journal of Economic Literature, 19, 483-536.

Amemiya, T. (1984), "Tobit Models: A Survey," Journal of Econometrics, 24, 3-61.
Amemiya, T. (1985), Advanced Econometrics, Cambridge: Harvard University Press.
Ben-Akiva, M. and Lerman, S. R. (1987), Discrete Choice Analysis, Cambridge: MIT Press.
Bera, A. K., Jarque, C. M., and Lee, L.-F. (1984), "Testing the Normality Assumption in Limited Dependent Variable Models," International Economic Review, 25, 563-578.

Bloom, D. E. and Killingsworth, M. R. (1985), "Correcting for Truncation Bias Caused by a Latent Truncation Variable," Journal of Econometrics, 27, 131-135.

Box, G. E. P. and Cox, D. R. (1964), "An Analysis of Transformations," Journal of the Royal Statistical Society, Series B., 26, 211-252.

Cameron, A. C. and Trivedi, P. K. (1986), "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators," Journal of Applied Econometrics, 1, 29-53.

Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.

Christensen, L. and W. Greene, 1976, "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, 84, pp. 655-676.

Coelli, T. J., Prasada Rao, D. S., Battese, G. E. (1998), An Introduction to Efficiency and Productivity Analysis, London: Kluwer Academic Publisher.

Copley, P. A., Doucet, M. S., and Gaver, K. M. (1994), "A Simultaneous Equations Analysis of Quality Control Review Outcomes and Engagement Fees for Audits of Recipients of Federal Financial Assistance," The Accounting Review, 69, 244-256.

Cox, D. R. (1970), Analysis of Binary Data, London: Metheun.
Cox, D. R. (1972), "Regression Models and Life Tables," Journal of the Royal Statistical Society, Series B, 20, 187-220.

Cox, D. R. (1975), "Partial Likelihood," Biometrika, 62, 269-276.
Deis, D. R. and Hill, R. C. (1998), "An Application of the Bootstrap Method to the Simultaneous Equations Model of the Demand and Supply of Audit Services," Contemporary Accounting Research, 15, 83-99.

Estrella, A. (1998), "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business and Economic Statistics, 16, 198-205.

Gallant, A. R. (1987), Nonlinear Statistical Models, New York: Wiley.

Genz, A. (1992), "Numerical Computation of Multivariate Normal Probabilities," Journal of Computational and Graphical Statistics, 1, 141-150.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge: Cambridge University Press.

Gourieroux, C., Monfort, A., Renault, E., and Trognon, A. (1987), "Generalized Residuals," Journal of Econometrics, 34, 5-32.

Greene, W. H. (1997), Econometric Analysis, Upper Saddle River, N.J.: Prentice Hall.
Gregory, A. W. and Veall, M. R. (1985), "On Formulating Wald Tests for Nonlinear Restrictions," Econometrica, 53, 1465-1468.

Hajivassiliou, V. A. (1993), "Simulation Estimation Methods for Limited Dependent Variable Models," in Handbook of Statistics, Vol. 11, ed. G. S. Maddala, C. R. Rao, and H. D. Vinod, New York: Elsevier Science Publishing.

Hajivassiliou, V. A., and McFadden, D. (1998), "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, 66, 863-896.

Heckman, J. J. (1978), "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, 46, 931-959.

Hinkley, D. V. (1975), "On Power Transformations to Symmetry," Biometrika, 62, 101-111.
Kim, M. and Hill, R. C. (1993), "The Box-Cox Transformation-of-Variables in Regression," Empirical Economics, 18, 307-319.

King, G. (1989b), Unifying Political Methodology: The Likelihood Theory and Statistical Inference, Cambridge: Cambridge University Press.

Kumbhakar, S. C. and Knox Lovell, C. A. (2000), Stochastic Frontier Anaysis, New York: Cambridge University Press.

Lee, L.-F. (1981), "Simultaneous Equations Models with Discrete and Censored Dependent Variables," in Structural Analysis of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, Cambridge: MIT Press

Long, J. S. (1997), Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, CA: Sage Publications.

McFadden, D. (1974), "Conditional Logit Analysis of Qualitative Choice Behavior," in Frontiers in Econometrics, ed. P. Zarembka, New York: Academic Press.

McFadden, D. (1981), "Econometric Models of Probabilistic Choice," in Structural Analysis of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, Cambridge: MIT Press.

McKelvey, R. D. and Zavoina, W. (1975), "A Statistical Model for the Analysis of Ordinal Level Dependent Variables," Journal of Mathematical Sociology, 4, 103-120.

Meeusen, W. and van Den Broeck, J. (1977), "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, 18:2(Jun), 435-444

Mroz, T. A. (1987), "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, 55, 765-799.

Mroz, T. A. (1999), "Discrete Factor Approximations in Simultaneous Equation Models: Estimating the Impact of a Dummy Endogenous Variable on a Continuous Outcome,"Journal of Econometrics, 92, 233-274.

Nawata, K. (1994), "Estimation of Sample Selection Bias Models by the Maximum Likelihood Estimator and Heckman's Two-Step Estimator," Economics Letters, 45, 33-40.

Parks, R. W. (1967), "Efficient Estimation of a System of Regression Equations When Disturbances Are Both Serially and Contemporaneously Correlated," Journal of the American Statistical Association, 62, 500-509.

Phillips, C. B. and Park, J. Y. (1988), "On Formulating Wald Tests of Nonlinear Restrictions," Econometrica, 56, 1065-1083.

Powers, D. A. and Xie, Y. (2000), Statistical Methods for Categorical Data Analysis, San Diego: Academic Press.

Wooldridge, J. M. (2002), Econometric Analysis of Cross Section of Panel Data, Cambridge, MA: MIT Press.

Chapter 22

The SIMILARITY Procedure (Experimental)

Contents
Overview: SIMILARITY Procedure 1442
Getting Started: SIMILARITY Procedure 1444
Syntax: SIMILARITY Procedure 1446
Functional Summary 1446
PROC SIMILARITY Statement 1447
BY Statement 1450
FCMPOPT Statement 1451
ID Statement 1451
INPUT Statement 1454
TARGET Statement 1456
Details: SIMILARITY Procedure 1462
Accumulation 1463
Missing Value Interpretation 1465
Zero Value Interpretation 1465
Time Series Transformation 1465
Time Series Differencing 1466
Time Series Missing Value Trimming 1466
Time Series Descriptive Statistics 1466
Input and Target Sequences 1467
Sliding Sequences 1467
Time Warping 1467
Sequence Normalization 1467
Sequence Scaling 1468
Similarity Measures 1468
User-Defined Functions and Subroutines 1468
Output Data Sets 1476
OUT= Data Set 1477
OUTMEASURE= Data Set 1477
OUTSUM= Data Set 1478
OUTSEQUENCE= Data Set 1479
OUTPATH= Data Set 1480
STATUS Variable Values 1480
Printed Output 1481
ODS Tables Names 1482
ODS Graphics 1482
Examples: SIMILARITY Procedure 1485
Example 22.1: Accumulating Transactional Data into Time Series Data 1485
Example 22.2: Similarity Analysis 1486
Example 22.3: Sliding Similarity Analysis 1504
Example 22.4: Searching for Historical Analogies 1506
References 1509

Overview: SIMILARITY Procedure

The SIMILARITY procedure computes similarity measures associated with time-stamped data, time series, and/or other sequentially ordered numeric data. The procedure computes similarity measures for time-stamped transactional data (transactions) with respect to time by accumulating the data into a time series format (time series). The procedure computes similarity measures for sequentially ordered numeric data (sequences) by respecting the ordering of the data.

Given two ordered numeric sequences (input and target), a similarity measure is a metric that measures the distance between the input and target sequences while taking into account the ordering of the data. The SIMILARITY procedure computes similarity measures between an input sequence and a target sequence, as well as similarity measures that "slide" the target sequence with respect to the input sequence. The "slides" can be by observation index (sliding-sequence similarity measures) or by seasonal index (seasonal-sliding-sequence similarity measures).

In order to compare the raw input and target time-stamped data, the raw data must be accumulated to a time series format. After the input and target time series is formed, the two accumulated time series can be compared as two ordered numeric sequences.

For raw time-stamped data, after the transactional data are accumulated to form time series and any missing values are interpreted, each accumulated time series can be functionally transformed, if desired. Transformations are useful when you want to stabilize the time series before computing the similarity measures. Transformations performed by the SIMILARITY procedure include the following:

- $\log (\mathrm{LOG})$
- square-root (SQRT)
- logistic (LOGISTIC)
- Box-Cox (BOXCOX)
- user-defined transformations

Each time series can be transformed further by using simple and/or seasonal differencing. Additional time series transformations can be performed by using various time series transformation and analysis techniques provided by this procedure or other procedures in SAS/ETS.

After optionally transforming each time series, the accumulated and transformed time series can be stored in an output data set (OUT= data set).

After optional accumulation and transformation, each of these time series are the "working series," which can now be analyzed as sequences of numeric data. Each of these sequences can be a target sequence, an input sequence, or both a target and an input sequence. Throughout the remainder of this chapter, the term "original sequence" applies to both the original input and target sequence. The term "working sequence" applies to a version both the original input and target sequence under investigation.

Each original sequence can be normalized prior to similarity analysis. Normalizations are useful when you want to compare the "shape" or "profile" of the time series. Normalizations performed by the SIMILARITY procedure include the following:

- standard (STANDARD)
- absolute (ABSOLUTE)
- user-defined normalizations

After each original sequence is optionally normalized as described above, each working input sequence can be scaled to the target sequence prior to similarity analysis. Scaling is useful when you want to compare the input sequence to the target sequence while discounting the variation of the target sequence. Input sequence scaling performed by the SIMILARITY procedure include the following:

- standard (STANDARD)
- sbsolute (ABSOLUTE)
- user-defined scaling

Once the working input sequence is optionally scaled to the target sequence as described above, similarity measures can be computed. Similarity measures computed by the SIMILARITY procedure include:

- squared deviation (SQRDEV)
- absolute deviation (ABSDEV)
- mean square deviation (MSQRDEV)
- mean absolute deviation (MABSDEV)
- user-defined similarity measures

In computing the similarity measure between two time series, tasks are needed for transforming time series, normalizing sequences, scaling sequences, and computing metrics or measures. The SIMILARITY procedure provides built-in routines to perform these tasks. The SIMILARITY procedure also provides a facility that allows you to extend the procedure with user-defined routines.

All results of the similarity analysis can be stored in output data sets, printed, or graphed using the Output Delivery System (ODS).

The SIMILARITY procedure can process large amounts of time-stamped transactional data, time series, or sequential data. Therefore, the analysis results are useful for large-scale time series analysis, analogous time series forecasting, new product forecasting, or time series (temporal) data mining.

In SAS/ETS, the EXPAND procedure can be used for frequency conversion and transformations of time series. The TIMESERIES procedure can be used for large-scale time series analysis. In SAS/STAT, the DISTANCE procedure can be used to compute various measures of distance, dissimilarity, or similarity between observations (rows) of a SAS data set.

Getting Started: SIMILARITY Procedure

This section outlines the use of the SIMILARITY procedure and gives a cursory description of some of the analysis techniques that can be performed on time-stamped transactional data, time series, or sequentially-ordered numeric data.

Given an input data set that contains numerous transaction variables recorded over time at no specific frequency, the SIMILARITY procedure can form equally spaced input and target time series as follows:

```
PROC SIMILARITY DATA=<input-data-set>
    OUT=<output-data-set>
    OUTSUM=<summary-data-set>;
    ID <time-ID-variable> INTERVAL=<frequency>
            ACCUMULATE=<statistic>;
    INPUT <input-time-stamp-variables>;
    TARGET <target-time-stamp-variables>;
RUN;
```

The SIMILARITY procedure forms time series from the input time-stamped transactional data. It can provide results in output data sets or in other output formats using the Output Delivery System (ODS). The examples in this section are more fully illustrated in the section "Examples: SIMILARITY Procedure" on page 1485.

Time-stamped transactional data are often recorded at no fixed interval. Analysts often want to use time series analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated to form a fixed-interval time series.

Suppose that a bank wants to analyze the transactions associated with each of its customers over time. Further, suppose that the data set WORK.TRANSACTIONS contains three variables related to the customer transactions (CUSTOMER, DATE, and WITHDRAWAL) and one variable that contains an example fraudulent behavior (FRAUD).

The following statements illustrate how to use the SIMILARITY procedure to accumulate timestamped transactional data to form a daily time series based on the accumulated daily totals of each type of transaction (WITHDRAWALS and FRAUD).

```
proc similarity data=transactions out=timedata;
    by customer;
    id date interval=day accumulate=total;
    input withdrawals;
    target fraud;
run;
```

The OUT=TIMEDATA option specifies that the resulting time series data for each customer is to be stored in the data set WORK.TIMEDATA. The INTERVAL=DAY option specifies that the transactions are to be accumulated on a daily basis. The ACCUMULATE=TOTAL option specifies that the sum of the transactions are to be accumulated. After the transactional data are accumulated into a time series format, the time series data can be normalized so that the "shape" or "profile" is analyzed.

For example, the following statements build on the previous statements and demonstrate normalization of the accumulated time series.

```
proc similarity data=transactions out=timedata;
    by customer;
    id date interval=day accumulate=total;
    input withdrawals / NORMALIZE=STANDARD;
    target fraud / NORMALIZE=STANDARD;
run;
```

The NORMALIZE=STANDARD option specifies that each accumulated time series observation is normalized by subtracting the mean and then dividing by the standard deviation of the accumulated time series. The WORK.TIMEDATA data set now contains the accumulated and normalized time series data for each customer.

After the transactional data are accumulated into a time series format and normalized to mean of zero and standard deviation of one, similarity analysis can be performed on the accumulated and normalized time series.

For example, the following statements build on the previous statements and demonstrate similarity analysis of the accumulated and normalized time series.

```
proc similarity data=transactions
    out=timedata OUTSUM=SUMMARY;
    by customer;
    id date interval=day accumulate=total;
    input withdrawals / normalize=standard;
    target fraud / normalize=standard SIMILARITY=MABSDEV;
run;
```

The SIMILARITY=MABSDEV option specifies the accumulated and normalized time series data associated with the variables WITHDRAWALS and FRAUD are to be compared by using mean absolute deviation. The OUTSUM=SUMMARY option specifies that the similarity analysis summary for each customer is to be stored in the data set WORK.SUMMARY.

Syntax: SIMILARITY Procedure

The following statements are used with the SIMILARITY procedure.

```
PROC SIMILARITY options;
    BY variables ;
    ID variable INTERVAL= interval options;
    FCMPOPT options;
    INPUT variable-list / options;
    TARGET variable-list/options;
```


Functional Summary

The statements and options that control the SIMILARITY procedure are summarized in the following table.

Table 22.1 SIMILARITY Functional Summary

Description	Statement	Option

Statements

specify BY-group processing BY
specify the time ID variable
specify the FCMP options
specify input variables to analyze
specify target variables to analyze

Data Set Options

specify the input data set specify the time series output data set specify measure summary output data set specify path output data set specify sequence output data set specify summary output data set

PROC SIMILARITY	DATA= $=$
PROC SIMILARITY	OUT $=$
PROC SIMILARITY	OUTMEASURE= $=$
PROC SIMILARITY	OUTPATH= $=$
PROC SIMILARITY	OUTSEQUENCE=
PROC SIMILARITY	OUTSUM=

User-Defined Functions and Subroutine Options

specify FCMP quiet mode
FCMPOPT QUIET=
FCMPOPT TRACE=

Accumulation and Seasonality Options

specify accumulation frequency
specify length of seasonal cycle
specify interval alignment
specify time ID variable values are not sorted ID

INTERVAL= SEASONALITY= ALIGN= NOTSORTED

Description	Statement	Option
specify starting time ID value specify ending time ID value specify accumulation statistic specify missing value interpretation specify zero value interpretation specify missing value trimming	ID ID ID, INPUT, TARGET ID, INPUT, TARGET ID, INPUT, TARGET INPUT, TARGET	$\begin{aligned} & \text { START= } \\ & \text { END= } \\ & \text { ACCUMULATE= } \\ & \text { SETMISS= } \\ & \text { ZEROMISS= } \\ & \text { TRIMMISS= } \end{aligned}$
Time Series Transformation Options specify simple differencing specify seasonal differencing specify transformation	INPUT, TARGET INPUT, TARGET INPUT, TARGET	DIF= SDIF= TRANSFORM=
Input Sequence Options specify normalization specify scaling	INPUT INPUT	NORMALIZE= SCALE=
Target Sequence Options specify normalization	TARGET	NORMALIZE=
Similarity Measure Options specify compression limits specify expansion limits specify similarity measure specify similarity measure and path specify sequence slide	TARGET TARGET TARGET TARGET TARGET	COMPRESS= EXPAND= MEASURE= PATH= SLIDE=
Printing and Graphical Control Options specify time ID format specify printed output specify detailed printed output specify graphical output	ID PROC SIMILARITY PROC SIMILARITY PROC SIMILARITY	FORMAT= PRINT= PRINTDETAILS PLOTS=
Miscellaneous Options specify that analysis variables are processed in ascending order specify the ordering of the processsing of the input and target variables	PROC SIMILARITY PROC SIMILARITY	SORTNAMES ORDER=

PROC SIMILARITY Statement

PROC SIMILARITY options;

The following options can be used in the PROC SIMILARITY statement.

DATA=SAS-data-set

names the SAS data set that contains the time series, transactional, or sequence input data for the procedure. If the DATA= option is not specified, the most recently created SAS data set is used.

ORDER=

specifies the order that the variables listed in the INPUT and TARGET statements are processed. This ordering affects the OUTSEQUENCE=, OUTPATH=, OUTMEASURE=, and OUTSUM = data sets, as well as the printed and graphical output. The SORTNAMES option also affects the ordering of the analysis.

OUT=SAS-data-set

names the output data set to contain the time series variables specified in the subsequent INPUT and TARGET statements. If an ID variable is specified, it is also included in the OUT = data set. The values are accumulated based on the ID statement INTERVAL= option or the ACCUMULATE= options or both. The values are transformed based on the INPUT or TARGET statement TRANSFORM=, DIF=, and/ or SDIF= options in this order. The OUT= data set is particularly useful when you want to further analyze, model, or forecast the resulting time series with other SAS/ETS procedures.

OUTMEASURE=SAS-data-set

names the output data set to contain the detailed similarity measures by time ID value. The form of the OUTMEASURE $=$ data set is determined by the PROC SIMILARITY statement SORTNAMES and ORDER= options.

OUTPATH=SAS-data-set

names the output data set to contain the path used to compute the similarity measures for each slide and warp. The form of the OUTPATH= data set is determined by the PROC SIMILARITY statement SORTNAMES and ORDER= options.

OUTSEQUENCE=SAS-data-set

names the output data set to contain the sequences used to compute the similarity measures for each slide and warp. The form of the OUTSEQUENCE= data set is determined by the PROC SIMILARITY statement SORTNAMES and ORDER= options.

OUTSUM=SAS-data-set

names the output data set to contain the similarity measure summary. The OUTSUM= data set is particularly useful when analyzing large numbers of series and only the summary of the results are needed. The form of the OUTSUM= data set is determined by the PROC SIMILARITY statement SORTNAMES and ORDER= options.

INPUT specifies that each INPUT variable is processed and then the TARGET variables are processed. The results are stored and printed based only on the INPUT variables.
INPUTTARGET specifies that each INPUT variable is processed and then the TARGET variables are processed. The results are stored and printed based on both the INPUT and TARGET variables. This is the default.

TARGET specifies that each TARGET variable is processed and then the INPUT variables are processed. The results are stored and printed based only on the TARGET variables.

TARGETINPUT specifies that each TARGET variable is processed and then the INPUT variables are processed. The results are stored and printed based on both the TARGET and INPUT variables.

PLOTS=option

PLOTS=(options ...)
specifies the graphical output desired. The options are separated by spaces. By default, the SIMILARITY procedure produces no graphical output. The following graphical options are available:

ALL same as PLOTS=(INPUTS TARGETS SEQUENCES NORMALIZED SCALED DISTANCES PATHS MAPS WARPS COST MEASURES).

COSTS plots time warp costs graphics.
DISTANCES plots similarity absolute and relative distances graphics. (OUTPATH= data set)

INPUTS plots input variable time series graphics. (OUT= data set)
MAPS plots time warp maps graphics. (OUTPATH= data set)
MEASURES plots similarity measure graphics. (OUTMEASURE= data set)
NORMALIZED plots both the input and target variable normalized sequence graphics. These plots are displayed only when the INPUT or TARGET statement NORMALIZE= option is specified.

PATHS plots time warp paths graphics. (OUTPATH= data set)
SCALED plots both the input variable scaled sequence graphics. These plots are displayed only when the INPUT statement SCALE= option is specified.
SEQUENCES plots both the input and target variable sequence graphics. (OUTSEQUENCE= data set)
TARGETS plots target variable time series graphics. (OUT= data set)
WARPS plots time warps graphics. (OUTPATH= data set)

PRINT=option

PRINT=(options ...)
specifies the printed output desired. The options are separated by spaces. By default, the SIMILARITY procedure produces no printed output. The following printing options are available:

DESCSTATS prints the descriptive statistics for the working time series.
PATHS prints the path statistics table.
COSTS prints the cost statistics table.
WARPS prints the warp summary table.

SLIDES prints the slides summary table.
SUMMARY prints the similarity measure summary table.
ALL same as PRINT=(DESCSTATS PATHS COSTS WARPS SLIDES SUMMARY).

PRINTDETAILS

specifies that output requested with the PRINT= option be printed in greater detail.

SEASONALITY=integer

specifies the length of the seasonal cycle where integer ranges from one to 10,000 . For example, SEASONALITY=3 means that every group of three time periods forms a seasonal cycle. By default, the length of the seasonal cycle is one (no seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For example, INTERVAL=MONTH implies that the length of the seasonal cycle is twelve.

SORTNAMES

specifies that the variables specified in the INPUT and TARGET statements are processed in order sorted by the variable names. By default, the SIMILARITY procedure processes the variables in the order they are listed. The ORDER= option also affects the ordering of the analysis.

BY Statement

A BY statement can be used with PROC SIMILARITY to obtain separate dummy variable definitions for groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement for the SIMILARITY procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FCMPOPT Statement

FCMPOPT options;

The FCMPOPT statement specifies the options related to user-defined functions and subroutines.
The following options can be used with the FCMPOPT statement:

QUIET=ON | OFF

specifies whether the nonfatal errors and warnings generated by the user-defined SAS language functions and subroutines are printed to the log. Nonfatal errors are usually associated with operations with missing values. The default is QUIET=ON.

TRACE=ON | OFF

specifies whether the user-defined SAS language functions and subroutines tracings are printed to the log. Tracings are the results of every operation executed. This option is generally used for debugging. The default is TRACE=OFF.

ID Statement

ID variable INTERVAL= interval options ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable's values are assumed to be SAS date, time, or datetime values. In addition, the ID statement specifies the (desired) frequency associated with the time series. The ID statement options also specify how the observations are accumulated and how the time ID values are aligned to form the time series. The options specified affect all variables listed in subsequent INPUT and TARGET statements. If an ID statement is specified, the INTERVAL= option must also be specified. The other ID statement options are optional. If an ID statement is not specified, the observation number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement.

ACCUMULATE=option

specifies how the data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option. The ID variable contains the time ID values. Each time ID variable value corresponds to a specific time period. The accumulated values form the time series, which is used in subsequent analysis.

The ACCUMULATE= option is particularly useful when there are zero or more than one input observations coinciding with a particular time period (for example, time-stamped transactional data). The EXPAND procedure offers additional frequency conversions and transformations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each time period based on the ID variable and the frequency specified by the INTERVAL= option:

NONE	No accumulation occurs; the ID variable values must be equally spaced with respect to the frequency. This is the default option. Observations are accumulated based on the total sum of their val- ues.
TOTAL	Observations are accumulated based on the average of their val- ues.
AVERAGE AVG	
Observations are accumulated based on the minimum of their val-	
ues.	

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying how accumulated missing values are treated. If missing values should be interpreted as zero, then SETMISSING=0 should be used. The DETAILS section describes accumulation in greater detail.

ALIGN=option

controls the alignment of SAS dates that are used to identify output observations. The ALIGN = option accepts the following values: BEGINNINGIBEGIB, MIDDLEIMIDIM, and ENDINGIENDIE. ALIGN=BEGINNING is the default.

END=option

specifies a SAS date, datetime, or time value that represents the end of the data. If the last time ID variable value is less than the $\mathrm{END}=$ value, the series is extended with missing values. If the last time ID variable value is greater than the $\mathrm{END}=$ value, the series is truncated. For example, END="\&sysdate"D uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. The START= and END= options can be used to ensure that data associated within each BY group contains the same number of observations.

FORMAT=format

specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default format is implied by the INTERVAL= option. For example, FORMAT=DATE9. specifies that the DATE9. SAS format is to be used. Notice that the terminating "." is required when specifying a SAS format.

INTERVAL= interval

specifies the frequency of the accumulated time series. For example, if the input data set consists of quarterly observations, then INTERVAL=QTR should be used. If the SEASONALITY= option is not specified, the length of the seasonal cycle is implied from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL= option determines the time periods for the accumulation of observations.

NOTSORTED

specifies that the time ID values are not in sorted order. The SIMILARITY procedure sorts the data with respect to the time ID prior to analysis if the NOTSORTED option is specified.

SETMISSING=option | number

specifies how missing values (either actual or accumulated) are interpreted in the accumulated time series. If a number is specified, missing values are set to that number. If a missing value indicates an unknown value, the SETMISSING= option should not be used. If a missing value indicates no value, then SETMISSING=0 should be used. You typically use SETMISSING=0 for transactional data, because no recorded data usually implies no activity. The following options can also be used to determine how missing values are assigned:

MISSING Missing values are set to missing. This is the default option.
AVERAGE I AVG Missing values are set to the accumulated average value.
MINIMUM I MIN
MEDIAN I MED
MAXIMUM I MAX
FIRST
LAST
PREVIOUS I PREV
Missing values are set to the accumulated minimum value.
Missing values are set to the accumulated median value.
Missing values are set to the accumulated maximum value.
Missing values are set to the accumulated first nonmissing value.
Missing values are set to the accumulated last nonmissing value.
Missing values are set to the previous period's accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.

NEXT Missing values are set to the next period's accumulated nonmissing value. Missing values at the end of the accumulated series remain missing.

START= option

specifies a SAS date, datetime, or time value that represents the beginning of the data. If the first time ID variable value is greater than the START= value, the series is prepended with missing values. If the first time ID variable value is less than the START= value, the series is truncated. The START= and END= options can be used to ensure that data associated with each BY group contains the same number of observations.

ZEROMISS=option

specifies how beginning and/or ending zero values (either actual or accumulated) are interpreted in the accumulated time series. The following options can also be used to determine how beginning and/or ending zero values are assigned:

NONE Beginning and/or ending zeros are unchanged. This is the default.
LEFT Beginning zeros are set to missing.
RIGHT Ending zeros are set to missing.
BOTH Both beginning and ending zeros are set to missing.
If the accumulated series is all missing and/or zero, the series is not changed.

INPUT Statement

INPUT variable-list < / options > ;

The INPUT statement lists the input numeric variables in the DATA= data set whose values are to be accumulated to form the time series or represent ordered numeric sequences (when no ID statement is specified).

An input data set variable can be specified in only one INPUT or TARGET statement. Any number of INPUT statements can be used. The following options can be used with an INPUT statement.

ACCUMULATE=option

specifies how the data set observations are accumulated within each time period for the variables listed in the INPUT statement. If the ACCUMULATE= option is not specified in the INPUT statement, accumulation is determined by the ACCUMULATE= option of the ID statement. If the ACCUMULATE= option is not specified on the ID statement or the INPUT statement, no accumulation is performed. See the ID statement ACCUMULATE= option for more details.

DIF=(numlist)

specifies the differencing to be applied to the accumulated time series. The list of differencing orders must be separated by spaces or commas. For example, $\mathrm{DIF}=(1,3)$ specifies first, then third order, differencing. Differencing is applied after time series transformation. The TRANSFORM = option is applied before the DIF= option. Simple differencing is useful when you want to detrend the time series before computing the similarity measures.

NORMALIZE=Argumentoption

specifies the sequence normalization to be applied to the working input sequence. The following normalization options are provided:

NONE No normalization is applied. This option is the default.
ABSOLUTE Absolute normalization is applied.
STANDARD Standard normalization is applied.

User-Defined Normalization is computed by a user-defined subroutine created using the FCMP procedure, where User-Defined is the subroutine name.

Normalization is applied to the working input sequence, which can be a subset of the working input time series if the SLIDE=INDEX or SLIDE=SEASON options are specified.

SCALE=option

specifies the scaling of the working input sequence with respect to the working target sequence. Scaling is performed after normalization. The following scaling options are provided:

NONE No scaling is applied. This option is the default.
ABSOLUTE
Absolute scaling is applied.
STANDARD Standard scaling is applied.
User-Defined \quad Scaling is computed by a user-defined subroutine created using the FCMP procedure, where User-Defined is the subroutine name.

Scaling is applied to the working input sequence, which can be a subset of the working input time series if the SLIDE=INDEX or SLIDE=SEASON options are specified.

SDIF=(numlist)

specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal differencing orders must be separated by spaces or commas. For example, $\operatorname{SDIF}=(1,3)$ specifies first, then third, order seasonal differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the SDIF= option. Seasonal differencing is useful when you want to deseasonalize the time series before computing the similarity measures.

SETMISSING=option | number

SETMISS=option | number

specifies how missing values (either actual or accumulated) are interpreted in the accumulated time series or ordered sequence for variables listed in the INPUT statement. If the SETMISSING= option is not specified in the INPUT statement, missing values are set based on the SETMISSING= option of the ID statement. If the SETMISSING= option is not specified on the ID statement or the INPUT statement, no missing value interpretation is performed. See the ID statement SETMISSING= option for more details.

TRANSFORM= option

specifies the time series transformation to be applied to the accumulated time series. The following transformations are provided:

NONE No transformation is applied. This option is the default.
LOG Logarithmic transformation is applied.
SQRT Square-root transformation is applied.
LOGISTIC Logistic transformation is applied.

BOXCOX(number) Box-Cox transformation with parameter is applied, where the real number is between -5 and 5 .

User-Defined Transformation is computed by a user-defined subroutine created using the FCMP procedure where User-Defined is the subroutine name.

When the TRANSFORM= option is specified, the time series must be strictly positive unless a user-defined function is used.

TRIMMISSING= option

TRIMMISSING= option
specifies how missing values (either actual or accumulated) are trimmed from the accumulated time series or ordered sequence for variables listed in the INPUT statement. The following trimming options are provided:

NONE No missing value trimming is applied.
LEFT Beginning missing values are trimmed.
RIGHT Ending missing values are trimmed.
BOTH Both beginning and ending missing value are trimmed. This is the default.

ZEROMISS= option

specifies how beginning and/or ending zero values (either actual or accumulated) are interpreted in the accumulated time series or ordered sequence for variables listed in the INPUT statement. If the ZEROMISS= option is not specified in the INPUT statement, beginning and/or ending zero values are set based on the ZEROMISS= option of the ID statement. If the ZERO = option is not specified on the ID statement or the INPUT statement, no zero value interpretation is performed. ZEROMISS= option of the ID statement. See the ID statement ZEROMISS $=$ option for more details.

TARGET Statement

TARGET variable-list < / options > ;

The TARGET statement lists the numeric target variables in the DATA= data set whose values are to be accumulated to form the time series or represent ordered numeric sequences (when no ID statement is specified).

An input data set variable can be specified in only one INPUT or TARGET statement. Any number of TARGET statements can be used. The following options can be used with a TARGET statement.

ACCUMULATE=option

specifies how the data set observations are accumulated within each time period for the variables listed in the TARGET statement. If the ACCUMULATE= option is not specified in the TARGET statement, accumulation is determined by the ACCUMULATE= option of the ID statement. If the ACCUMULATE= option is not specified on the ID statement or the

TARGET statement, no accumulation is performed. See the ID statement ACCUMULATE= option for more details.

COMPRESS=option | (options)

specifies the sliding sequence (global) and warping (local) compression range of the target sequence with respect to the input sequence. Compression of the target sequence is the same as expansion of the input sequence and vice versa. The compression limits are defined based on the length of the target sequence and are imposed on the target sequence. The following compression options are provided:

GLOBALABS=integer specifies the absolute global compression, where integer ranges from zero to 10,000 . GLOBALABS=0 implies no global compression, which is the default unless the GLOBALPCT= option is specified.

GLOBALPCT=number specifies global compression as a percentage of the length of the target sequence, where number ranges from zero to 100. GLOBALPCT $=0$ implies no global compression, which is the default. GLOBALPCT=100 implies maximum allowable compression.
LOCALABS=integer specifies the absolute local compression, where integer ranges from zero to 10,000 . The default is maximum allowable absolute local compression unless the LOCALPCT= option is specified.

LOCALPCT=number specifies local compression as a percentage of the length of the input sequence, where number ranges from zero to 100 . The percentage specified by the LOCALPCT= option must be less than the GLOBALPCT= option. LOCALPCT=0 implies no local compression. LOCALPCT=100 implies maximum allowable local compression. The default is LOCALPCT=100.

If the SLIDE=NONE or the SLIDE=SEASON option is specified in the TARGET statement, the global compression options are ignored. To disallow local compression, use the option COMPRESS $=($ LOCALPCT $=0$ LOCALABS $=0$).

If the SLIDE=INDEX option is specified, the global compression options are not ignored. To completely disallow both global and local compression, use the option COMPRESS=(GLOBALPCT=0 LOCALPCT=0) or COMPRESS=(GLOBALABS=0 LOCALABS=0). To allow only local compression, use the option COMPRESS=(GLOBALPCT=0 GLOBALABS $=0$). These are the default compression options.

The above options can be used in combination to specify the desired amount of global and local compression as the following examples illustrate.

Let L_{c} denote the global compression limit and l_{c} denote the local compression limit.
COMPRESS=(GLOBALPCT=20) specifies the global and local compression to range from zero to $L_{c}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$.

COMPRESS=(GLOBALPCT=20 GLOBALABS=10) allows for the global and local compression to range from zero to $L_{c}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 10\right)\right)$.

COMPRESS=(LOCALPCT=10) allows for the local compression to range from zero to $l_{c}=$ $\min \left(\left\lfloor 0.1 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$.

COMPRESS $=($ LOCALPCT $=20$ LOCALABS $=5$) allows for the local compression to range from zero to $l_{c}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 5\right)\right)$.

COMPRESS=(GLOBALPCT=20 LOCALPCT=20) allows for the global compression to range from zero to $L_{c}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$ and allows for the local compression to range from zero to $l_{c}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$.

COMPRESS=(GLOBALPCT=20 GLOBALABS=10 LOCALPCT=10 LOCALABS=5) allows for the global compression to range from zero to $L_{c}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 10\right)\right)$ and allows for the local compression to range from zero to $l_{c}=\min \left(\left\lfloor 0.1 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 5\right)\right)$.

Suppose T_{z} is the length of the input time series and N_{y} is the length of the target sequence. The valid global compression limit, L_{c}, is always limited by the length of the target sequence: $0 \leq L_{c}<N_{y}$.

Suppose N_{x} is the length of the input sequence, and N_{y} is the length of the target sequence. The valid local compression limit, l_{c}, is always limited by the lengths of the input and target sequence: $\max \left(0,\left(N_{y}-N_{x}\right)\right) \leq l_{c}<N_{y}$.

DIF=(numlist)

specifies the differencing to be applied to the accumulated time series. The list of differencing orders must be separated by spaces or commas. For example, DIF= $(1,3)$ specifies first, then third, order differencing. Differencing is applied after time series transformation. The TRANSFORM = option is applied before the DIF= option. Simple differencing is useful when you want to detrend the time series before computing the similarity measures.

EXPAND=option | (options)

specifies the sliding sequence (global) and warping (local) expansion range of the target sequence with respect to the input sequence. Expansion of the target sequence is the same as compression of the input sequence and vice versa. The expansion limits are defined based on the length of the input sequence, but are imposed on the target sequence. The following expansion options are provided:

GLOBALABS=integer specifies the absolute global expansion, where integer ranges from zero to 10,000 . GLOBALABS $=0$ implies no global expansion, which is the default unless the GLOBALPCT= option is specified.
GLOBALPCT=number specifies global expansion as a percentage of the length of the target sequence, where number ranges from zero to 100 . GLOBALPCT $=0$ implies no global expansion, which is the default unless the GLOBAL$\mathrm{ABS}=$ option is specified. GLOBALPCT=100 implies maximum allowable global expansion.
LOCALABS=integer specifies the absolute local expansion, where integer ranges from zero to 10,000 . The default is maximal allowable absolute local expansion unless the LOCALPCT= option is specified.
LOCALPCT=number specifies local expansion as a percentage of the length of the target sequence, where number ranges from zero to 100 . LOCALPCT=0 implies no local expansion. LOCALPCT=100 implies maximum allowable local expansion. The default is LOCALPCT $=100$.

If the SLIDE=NONE or the SLIDE=SEASON option is specified in the TARGET statement, the global expansion options are ignored. To disallow local expansion, use the option EXPAND=(LOCALPCT=0 LOCALABS=0).

If the SLIDE=INDEX option is specified, the global expansion options are not ignored. To completely disallow both global and local expansion, use the option EXPAND=(GLOBALPCT=0 LOCALPCT=0) or EXPAND=(GLOBALABS=0 LOCAL$\mathrm{ABS}=0$). To allow only local expansion, use the option EXPAND=(GLOBALPCT=0 GLOBALABS $=0$). These are the default expansion options.

The above options can be used in combination to specify the desired amount of global and local expansion as the following examples illustrate.

Let L_{e} denote the global expansion limit and l_{e} denote the local expansion limit.
EXPAND=(GLOBALPCT=20) allows for the global and local expansion to range from zero to $L_{e}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$.

EXPAND=(GLOBALPCT=20 GLOBALABS=10) allows for the global and local expansion to range from zero to $L_{e}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 10\right)\right)$.

EXPAND $=\left(\right.$ LOCALPCT=10) allows for the local expansion to range from zero to $l_{e}=$ $\min \left(\left\lfloor 0.1 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$.

EXPAND $=($ LOCALPCT $=10$ LOCALABS=5) allows for the local expansion to range from zero to $l_{e}=\min \left(\left\lfloor 0.1 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 5\right)\right)$.

EXPAND=(GLOBALPCT=20 LOCALPCT=10) allows for the global expansion to range from zero to $L_{e}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$ and allows for the local expansion to range from zero to $l_{e}=\min \left(\left\lfloor 0.1 N_{y}\right\rfloor,\left(N_{y}-1\right)\right)$.

EXPAND=(GLOBALPCT=20 GLOBALABS=10 LOCALPCT=10 LOCALABS=5) allows for the global expansion to range from zero to $L_{e}=\min \left(\left\lfloor 0.2 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 10\right)\right)$ and allows for the local expansion to range from zero to $l_{e}=\min \left(\left\lfloor 0.1 N_{y}\right\rfloor, \min \left(\left(N_{y}-1\right), 5\right)\right)$.

Suppose T_{z} is the length of the input time series and N_{y} is the length of the target sequence. The valid global expansion limit, L_{e}, is always limited by the length of the input time series: $0 \leq L_{e}<T_{z}$.

Suppose N_{x} is the length of the input sequence and N_{y} is the length of the target sequence. The valid local expansion limit, l_{e}, is always limited by the lengths of the input and target sequence: $\max \left(0,\left(N_{x}-N_{y}\right)\right) \leq l_{e}<N_{x}$.

MEASURE=option

specifies the similarity measure to be computed by using the working input and target sequences. The following similarity measures are provided:

SQRDEV squared deviation. This option is the default.
ABSDEV absolute deviation
MSQRDEV mean squared deviation
MSQRDEVINP mean squared deviation relative to the length of the input sequence

MSQRDEVTAR
MSQRDEVMIN MSQRDEVMAX MABSDEV

MABSDEVINP
MABSDEVTAR MABSDEVMIN MABSDEVMAX User-Defined
mean squared deviation relative to the length of the target sequence mean squared deviation relative to the minimum valid path length mean squared deviation relative to the maximum valid path length mean absolute deviation mean absolute deviation relative to the length of the input sequence mean absolute deviation relative to the length of the target sequence mean absolute deviation relative to the minimum valid path length mean absolute deviation relative to the maximum valid path length
Measure computed by a user-defined function created by using the FCMP procedure, where User-Defined is the function name

NORMALIZE=option

specifies the sequence normalization to be applied to the working target sequence. The following normalization options are provided:

NONE No normalization is applied. This option is the default.

ABSOLUTE
STANDARD
User-Defined Normalization computed by a user-defined subroutine, created by using the FCMP procedure, where User-Defined is the subroutine name.

PATH=option

specifies the similarity measure and warping path information to be computed using the working input and target sequences. The following similarity measures and warping path are provided:

User-Defined measure and path computed by a user-defined subroutine created by using the FCMP procedure, where User-Defined is the subroutine name

For computational efficiency, the PATH= option should be only used when it is desired to compute both the similarity measure and the warping path information. If only the similarity measure is needed, use the MEASURE $=$ option. If both the MEASURE $=$ and PATH $=$ option are specified in the TARGET statement, the PATH= option takes precedence.

SDIF=(numlist)

specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal differencing orders must be separated by spaces or commas. For example, SDIF $=(1,3)$ specifies first, then third, order seasonal differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the SDIF= option. Seasonal differencing is useful when you want to deseasonalize the time series before computing the similarity measures.

SETMISS= option | number

option specifies how missing values (either actual or accumulated) are interpreted in the accumulated time series for variables listed in the TARGET statement. If the SETMISSING= option is not specified in the TARGET statement, missing values are set, based on the SETMISSING= option of the ID statement. If the SETMISSING= option is not specified on the ID statement or the TARGET statement, no missing value interpretation is performed. See the ID statement SETMISSING= option for more details.

SLIDE=option

specifies the sliding of the target sequence with respect to the input sequence. The following slides are provided:

NONE No sequence sliding. The input time series is compared with the target sequence directly with no sliding. This option is the default.

INDEX Slide by time index. The input time series is compared with the target sequence by observation index.

SEASON Slide by seasonal index. The input time series is compared with the target sequence by seasonal index.

NOTE: The SLIDE= option takes precedence over the COMPRESS $=$ and EXPAND= option.

TRANSFORM= option

specifies the time series transformation to be applied to the accumulated time series. The following transformations are provided:

NONE No transformation is applied. This option is the default.
LOG Logarithmic transformation is applied.
SQRT Square-root transformation is applied.
LOGISTIC Logistic transformation is applied.
BOXCOX(number) Box-Cox transformation with parameter is applied, where the real number is between -5 and 5

User-Defined transformation is computed by a user-defined subroutine created by using the FCMP procedure, where User-Defined is the subroutine name.

When the TRANSFORM= option is specified, the time series must be strictly positive unless a user-defined function is used.

TRIMMISSING=option

TRIMMISS= option

specifies how missing values (either actual or accumulated) are trimmed from the accumulated time series or ordered sequence for variables listed in the TARGET statement. The following trimming options are provided:

NONE No missing value trimming is applied.
LEFT Beginning missing values are trimmed.

RIGHT Ending missing values are trimmed.
BOTH
Both beginning and ending missing values are trimmed. This is the default.

ZEROMISS=option

specifies how beginning and/or ending zero values (either actual or accumulated) are interpreted in the accumulated time series or ordered sequence for variables listed in the TARGET statement. If the ZEROMISS = option is not specified in the TARGET statement, beginning and/or ending values are set based on the ZEROMISS = option of the ID statement. See the ID statement ZEROMISS= option for more details.

Details: SIMILARITY Procedure

The SIMILARITY procedure can be used to form time series data from transactional data.

1. accumulation	ACCUMULATE=option
2. missing value interpretation	SETMISSING= option
3. zero value interpretation	ZEROMISS = option

The accumulated time series can then be transformed to form the working time series. Transformations are useful when you want to stabilize the time series before computing the similarity measures. Simple and seasonal differencing are useful when you want to detrend or deseasonalize the time series before computing the similarity measures. Often, but not always, the TRANSFORM=, DIF=, and SDIF $=$ options should be specified in the same way for both the target and input variables.

1. time series transformation

TRANSFORM $=$ option
2. time series differencing \quad DIF $=$ and SDIF $=$ option
3. time series missing value trimming TRIMMISSING= option
4. time series descriptive statistics PRINT=DESCSTATS option

After the working series is formed, it can be treated as an ordered sequence that can be normalized or scaled. Normalizations are useful when you want to compare the "shape" or "profile" of the time series. Scaling is useful when you want to compare the input sequence to the target sequence while discounting the variation of the target sequence.

1. normalization
2. scaling

NORMALIZE= option
SCALE $=$ option

After the working sequences are formed, similarity measures can be computed between input and target sequences.

1. sliding
SLIDE= option
2. warping
COMPRESS $=$ and EXPAND $=$ option
3. similarity measure
MEASURE $=$ and PATH $=$ option

The SLIDE= option is used to specify observation-index sliding, seasonal-index sliding, or no sliding. The COMPRESS $=$ and EXPAND= options are used to specify the warping limits. The MEASURE $=$ and PATH $=$ options are used to specify how the similarity measures are computed.

Accumulation

If the ACCUMULATE= option is specified in the ID, INPUT, or TARGET statement, data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option in the ID statement. The ID variable contains the time ID values. Each time ID value corresponds to a specific time period. Accumulation is particularly useful when the input data set contains transactional data, whose observations are not spaced with respect to any particular time interval. The accumulated values form the time series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999	10
19MAR1999	30
11MAY1999	50
12MAY1999	20
23MAY1999	20

If the INTERVAL=MONTH is specified, all of the preceding observations fall within three time periods of March 1999, April 1999, and May 1999. The observations are accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the data are accumulated as follows:

```
O1MAR1999 40
O1APR1999
O1MAY1999 90
```

If the ACCUMULATE=AVERAGE option is specified, the data are accumulated as follows:

```
O1MAR1999 20
01APR1999 .
O1MAY1999 30
```

If the ACCUMULATE=MINIMUM option is specified, the data are accumulated as follows:

O1MAR1999	10
O1APR1999	.
O1MAY1999	20

If the ACCUMULATE=MEDIAN option is specified, the data are accumulated as follows:

O1MAR1999	20
01APR1999	.
O1MAY1999	20

If the ACCUMULATE=MAXIMUM option is specified, the data are accumulated as follows:

```
O1MAR1999 30
O1APR1999 .
O1MAY1999 50
```

If the ACCUMULATE=FIRST option is specified, the data are accumulated as follows:

O1MAR1999	10
O1APR1999	\cdot
O1MAY1999	50

If the ACCUMULATE=LAST option is specified, the data are accumulated as follows:

O1MAR1999	30
O1APR1999	\cdot
O1MAY1999	20

If the ACCUMULATE=STDDEV option is specified, the data are accumulated as follows:

O1MAR1999	14.14
O1APR1999	.
O1MAY1999	17.32

As can be seen from the preceding examples, even though the data set observations contained no missing values, the accumulated time series can have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. But sometimes missing values are known, such as when missing values are created from accumulation and no observations should be interpreted as no (zero) value. In the former case, the SETMISSING= option in the ID, INPUT, or TARGET statement can be used to interpret how missing values are treated. The SETMISSING=0 option should be used when missing observations are to be treated as no (zero) values. In other cases, missing values should be interpreted as global values, such as minimum or maximum values of the accumulated series. The accumulated and interpreted time series is used in subsequent analyses.

Zero Value Interpretation

When querying certain databases for time stamp data based on a particular time range, time periods that contain no data are sometimes assigned zero values. For certain analyses, it is more desirable to assign these values to missing. Often, these beginning or ending zero values need to be interpreted as missing values. The ZEROMISS = option in the ID, INPUT, or TARGET statement specifies that the beginning, ending, or both the beginning and ending values are to be interpreted as zero values.

Time Series Transformation

Transformations are useful when you want to stabilize the time series before computing the similarity measures. There are four transformations available, for strictly positive series only. Let $y_{t}>0$ be the original time series, and let w_{t} be the transformed series. The transformations are defined as follows:
$\log \quad$ is the logarithmic transformation,

$$
w_{t}=\ln \left(y_{t}\right)
$$

Logistic is the logistic transformation,

$$
w_{t}=\ln \left(c y_{t} /\left(1-c y_{t}\right)\right)
$$

where the scaling factor c is

$$
c=\left(1-e^{-6}\right) 10^{-\operatorname{ceil}\left(\log _{10}\left(\max \left(y_{t}\right)\right)\right)}
$$

and ceil (x) is the smallest integer greater than or equal to x.
Square root is the square root transformation,

$$
w_{t}=\sqrt{y_{t}}
$$

Box-Cox is the Box-Cox transformation,

$$
w_{t}= \begin{cases}\frac{y_{t}^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \ln \left(y_{t}\right), & \lambda=0\end{cases}
$$

User-Defined is the transformation computed by a user-defined subroutine created by using the FCMP procedure, where User-Defined is the subroutine name.

Other time series transformations can be performed prior to invoking the SIMILARITY procedure by using the EXPAND procedure of SAS/ETS or the DATA step.

Time Series Differencing

After optionally transforming the series, the accumulated series can be simply or seasonally differenced using the INPUT or TARGET statement DIF= and SDIF= option. Simple and seasonal differencing are useful when you want to detrend or deseasonalize the time series before computing the similarity measures.

For example, suppose y_{t} is a monthly time series, the following examples of the DIF= and SDIF= options demonstrate how to simply and seasonally difference the time series.
$\operatorname{DIF}=(1,3)$ specifies first, then third, order differencing. $\operatorname{SDIF}=(1,3)$ specifies first, then third, order seasonal differencing.

Additionally, assuming that y_{t} is strictly positive, the INPUT or TARGET statement TRANSFORM $=$ option and the DIF= and SDIF $=$ options can be combined.

Time Series Missing Value Trimming

Sometimes time series missing values are interpreted as unknown values or are generated due to functional transformation or differencing. Either way the time series can contain missing values. The missing values can be trimmed from the beginning, the end, or both the beginning and the end of the time series with the TRIMMISS= option on the INPUT and TARGET statement.

Time Series Descriptive Statistics

After a series has been optionally accumulated and transformed with missing values interpreted, descriptive statistics can be computed for the resulting working series by specifying the PRINT=DESCSTATS option. This option produces an ODS table that contains the sum, mean, minimum, maximum, and standard deviation of the working series.

Input and Target Sequences

After the input and target working series are formed, they can be treated as two ordered sequences. Given an input time sequence, x_{i}, for $i=1$ to N_{x}, where i is the input sequence index, and a target time sequence, y_{j}, for $j=1$ to N_{y}, where j is the target sequence index, these sequences analayzed for similarity.

Sliding Sequences

Similarity measures can be computed between the target sequence and any contiguous subsequences of the input time series.

There are three types of sequence sliding:

- No Sliding
- Slide by Time Index
- Slide by Season Index

For more information see Leonard et al (2008).

Time Warping

Time warping allows for the comparison between target and input sequences of differing lengths by compressing or expanding the input sequence with respect the target sequence while respecting the order of the sequence elements.

For more information see Leonard et al (2008).

Sequence Normalization

The working (input or target) sequence can be normalized to prior to further analysis. Let q_{i} be the original sequence with mean, μ_{q}, and standard deviation, σ_{q}; and let r_{t} be the normalized sequence. The normalizations are defined as follows:

- Standard is the standard normalization

$$
r_{i}=\left(q_{i}-\mu_{q}\right) / \sigma_{q}
$$

- Absolute is the absolute normalization

$$
r_{i}=\left(q_{i}-\min \left(q_{i}\right)\right) /\left(\max \left(q_{i}-\min \left(q_{i}\right)\right)\right.
$$

- User-Defined User-defined normalization

Sequence Scaling

The working input sequence can be scaled to the working target sequence. Sequence scaling is applied after normalization. Let y_{j} be the working target sequence with mean, μ_{y}, and standard deviation, σ_{y}. Let x_{i} be the working input sequence and let q_{i} be the scaled sequence. The scaling is defined as follows:

- Standard is the standard normalization

$$
q_{i}=\left(x_{i}-\mu_{y}\right) / \sigma_{y}
$$

- Absolute is the absolute scaling

$$
q_{i}=\left(x_{i}-\min \left(y_{j}\right)\right) /\left(\max \left(y_{j}-\min \left(y_{j}\right)\right)\right.
$$

- User-Defined is a user-defined scaling

Similarity Measures

The working input sequence can be compared to the working target sequence.
For more information see Leonard et al (2008).

User-Defined Functions and Subroutines

A user-defined routine can be written in the SAS language by using the FCMP procedure or the C language by using both the FCMP procedure and the PROTO procedure, respectively. The SIMILARITY procedure cannot use C language routines directly. The procedure can only use SAS language routines that might or might not call C language routines. Creating user-defined routines is more completely described in the FCMP procedure and the PROTO procedure documentation. The FCMP and PROTO procedures are part of Base SAS software.

The SAS language provides integrated memory management and exception handling such as operations on missing values. The C language provides flexibility and allows the integration of existing C language libraries. However, proper memory management and exception handling are solely the
responsibility of the user. Additionally, the support for standard C libraries is restricted. If given a choice, it is highly recommended that user-defined functions and subroutines be written in the SAS language using the FCMP procedure.

For each of the tasks described above, the following sections describe the required subroutine/function signature and provide examples of using a user-defined routine with the SIMILARITY procedure.

Time Series Transformations

A user-defined transformation subroutine has the following subroutine signature:

```
SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*] );
```

where the array-name is the time series to be transformed.
For example, to duplicate the functionality of the built-in TRANSFORM=LOG option in the INPUT and TARGET statement, the following SAS statements create a user-defined version of this transformation called MYTRANSFORM and store this subroutine in the catalog SASUSER.MYSIMILAR.

```
proc fcmp outlib=sasuser.mysimilar.package;
    subroutine mytransform( series[*] );
        outargs series;
        length = DIM(series);
        do i = 1 to length;
            value = series[i];
            if value > 0 then do;
                series[i] = log( value );
            end;
            else do;
                series[i] = .;
            end;
        end;
    endsub;
run;
```

This user-defined subroutine can be specified in the TRANSFORM= option of the INPUT or TARGET statement as follows:

```
options cmplib = sasuser.mysimilar;
proc similarity ...;
...
```

```
input myinput / transform=mytransform;
target mytarget / transform=mytransform;
run;
```


Sequence Normalizations

A user-defined normalization subroutine has the following signature:

```
SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*] );
```

where the array-name is the sequence to be normalized.
For example, to duplicate the functionality of the built-in NORMALIZE=ABSOLUTE option in the INPUT and TARGET statement, the following SAS stements create a user-defined version of this normalization called MYNORMALIZE and store this subroutine in the catalog SASUSER.MYSIMILAR.

```
proc fcmp outlib=sasuser.mysimilar.package;
    subroutine mynormalize( sequence[*] );
        outargs sequence;
        length = DIM(sequence);
        minimum = .; maximum = .;
        do i = 1 to length;
            value = sequence[i];
            if nmiss(minimum) | nmiss (maximum) then do;
                minimum = value;
                maximum = value;
            end;
            if nmiss(value) = 0 then do;
                if value < minimum then minimum = value;
                if value > maximum then maximum = value;
            end;
        end;
        do i = 1 to length;
            value = sequence[i];
            if nmiss( value ) | minimum > maximum then do;
                sequence[i] = .;
            end;
            else do;
                sequence[i] = (value - minimum) / (maximum - minimum);
            end;
        end;
    endsub;
run;
```

This user-defined subroutine can be specified in the NORMALIZE= option of INPUT or TARGET statement as follows:

```
options cmplib = sasuser.mysimilar;
proc similarity ...;
    input myinput / normalize=mynormalize;
    target mytarget / normalize=mynormalize;
    ...
run;
```


Sequence Scaling

A user-defined scaling subroutine has the following signature:

```
SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*], <ARRAY-NAME>[*] );
```

where the first array-name is the target sequence and the second array-name is the input sequence to be scaled.

For example, to duplicate the functionality of the built-in SCALE=ABSOLUTE option in the INPUT statement, the following SAS statements create a user-defined version of this scaling called MYSCALE and store this subroutine in the catalog SASUSER.MYSIMILAR.

```
proc fcmp outlib=sasuser.mysimilar.package;
    subroutine myscale( target[*], input[*] );
        outargs input;
        length = DIM(target);
        minimum = .; maximum = .;
        do i = 1 to length;
            value = target[i];
            if nmiss(minimum) | nmiss(maximum) then do;
                minimum = value;
                maximum = value;
            end;
            if nmiss(value) = 0 then do;
                if value < minimum then minimum = value;
                if value > maximum then maximum = value;
            end;
        end;
        do i = 1 to length;
            value = input[i];
            if nmiss( value ) | minimum > maximum then do;
                input[i] = .;
```

```
                end;
                else do;
                    input[i] = (value - minimum) / (maximum - minimum);
        end;
        end;
    endsub;
run;
```

This user-defined subroutine can be specified in the SCALE= option of INPUT statement as follows:

```
options cmplib=sasuser.mysimilar;
proc similarity ...;
    input myinput / scale=myscale;
run;
```


Similarity Measures

A user-defined similarity measure function has the following signature:

```
FUNCTION <FUNCTION-NAME> ( <ARRAY-NAME>[*], <ARRAY-NAME> [*] );
```

where the first array-name is the target sequence and the second array-name is the input sequence. The return value of the function is the similarity measure associated with the target sequence and the input sequence.

For example, to duplicate the functionality of the built-in MEASURE=ABSDEV option in the TARGET statement with no warping, the following SAS statements create a user-defined version of this measure called MYMEASURE and store this subroutine in the catalog SASUSER.MYSIMILAR.

```
proc fcmp outlib=sasuser.mysimilar.package;
    function mymeasure( target[*], input[*] );
    length = min(DIM(target), DIM(input));
    sum = 0; num = 0;
    do i = 1 to length;
        x = input[i];
        w = target[i];
        if nmiss(x) = 0& nmiss(w) = 0 then do;
            d = x - w;
            sum = sum + abs(d);
        end;
    end;
```

```
        if num <= 0 then return(.);
    return(sum);
    endsub;
run;
```

This user-defined function can be specified in the MEASURE $=$ option of TARGET statement as follows:

```
options cmplib=sasuser.mysimilar;
proc similarity ...;
    ..
    target mytarget / measure=mymeasure;
    ...
run;
```

For another example, to duplicate the functionality of the built-in MEASURE=SQRDEV and MEASURE=ABSDEV options by using the C language, the following SAS statements create a userdefined C language version of these measures called DTW_SQRDEV_C and DTW_ABSDEV_C; and store these functions in the catalog SASUSER.CSIMIL.CFUNCS. DTW refers to dynamic time warping. These C language functions can be then called by SAS language functions and subroutines.

```
proc proto package=sasuser.csimil.cfuncs;
mapmiss double = 999999999;
double dtw_sqrdev_c( double * target / iotype=input,
    int targetLength,
    double * input / iotype=input,
    int inputLength );
externc dtw_sqrdev_c;
    double dtw_sqrdev_c( double * target,
                int targetLength,
                double * input,
                int inputLength )
    {
        int i,j;
        double x,w,d;
        double * prev = (double *)malloc( sizeof(double)*targetLength);
        double * curr = (double *)malloc( sizeof(double)*inputLength);
        if ( prev == 0 || curr == 0 ) return 999999999;
        x = input[0];
        for ( j=0; j<targetLength; j++ ) {
            w = target[j];
            d = x - w;
```

```
        d = d*d;
        if ( j == 0 ) prev[j] = d;
        else
    prev[j] = d + prev[j-1];
    }
for (i=1; i<inputLength; i++ ) {
        x = input[i];
        j = 0;
        w = target[j];
        d = x - w;
        d = d*d;
        curr[j] = d + prev[j];
        for (j=1; j<targetLength; j++ ) {
            w = target[j];
            d = x - w;
            d = d*d;
            curr[j] = d + fmin( prev[j],
                                    fmin( prev[j-1], curr[j]));
        }
        if ( i < targetLength ) {
            for( j=0; j<inputLength; j++ )
                prev[j] = curr[j];
    }
}
    d = curr[inputLength-1];
free( (char*) prev);
free( (char*) curr);
return( d );
    }
externcend;
double dtw_absdev_c( double * target / iotype=input,
                                    int targetLength,
                                    double * input / iotype=input,
                                    int inputLength );
externc dtw_absdev_c;
    double dtw_absdev_c( double * target,
                    int targetLength,
                        double * input,
                        int inputLength )
    {
        int i,j;
        double x,w,d;
        double * prev = (double *)malloc( sizeof(double)*targetLength);
        double * curr = (double *)malloc( sizeof(double)*inputLength);
        if ( prev == 0 || curr == 0 ) return 999999999;
        x = input[0];
        for ( j=0; j<targetLength; j++ ) {
            w = target[j];
```

```
    d = x - w;
    d = fabs(d);
    if (j == 0) prev[j] = d;
    else prev[j] = d + prev[j-1];
        }
        for (i=1; i<inputLength; i++ ) {
            x = input[i];
            j = 0;
            w = target[j];
            d = x - w;
            d = fabs(d);
            curr[j] = d + prev[j];
            for (j=1; j<targetLength; j++) {
            w = target[j];
            d = x - w;
            d = fabs(d);
            curr[j] = d + fmin( prev[j],
                                    fmin( prev[j-1], curr[j] ));
            }
            if ( i < inputLength) {
            for ( j=0; j<targetLength; j++ )
                prev[j] = curr[j];
            }
            }
            d = curr[inputLength-1];
            free( (char*) prev);
            free( (char*) curr);
            return( d );
        }
externcend;
run;
```

The preceding SAS statements create two C language functions which can then be used in SAS language functions and/or subroutines. However, these functions cannot be directly used by the SIMILARITY procedure. In order to use these C language functions in the SIMILARITY procedure, two SAS language functions must be created that call these two C language functions. The following SAS statements create two user-defined SAS language versions of these measures called DTW_SQRDEV and DTW_ABSDEV and stores these functions in the catalog SASUSER.MYSIMILAR.FUNCS. These SAS language functions use the previously created C language function; the SAS language functions can then be used by the SIMILARITY procedure.

```
proc fcmp outlib=sasuser.mysimilar.funcs
    inlib=sasuser.cfuncs;
    function dtw_sqrdev( target[*], input[*] );
```

```
        dev = dtw_sqrdev_c(target,DIM(target),input,DIM(input));
        return( dev );
    endsub;
    function dtw_absdev( target[*], input[*] );
    dev = dtw_absdev_c(target,DIM(target),input,DIM(input));
    return( dev );
endsub;
run;
```

This user-defined function can be specified in the MEASURE $=$ option of TARGET statement as follows:

```
options cmplib=sasuser.mysimilar;
proc similarity ...;
    target mytarget / measure=dtw_sqrdev;
    target yourtarget / measure=dtw_absdev;
run;
```


Similarity Measures and Warping Path

A user-defined similarity measure and warping path information function has the following signature:

```
FUNCTION <FUNCTION-NAME> ( <ARRAY-NAME> [*], <ARRAY-NAME> [*],
    <ARRAY-NAME>[*], <ARRAY-NAME>[*],
    <ARRAY-NAME>[*] );
```

where the first array-name is the target sequence, the second array-name is the input sequence, the third array-name is the returned target sequence indices, the fourth array-name is the returned input sequence indices, the fifth array-name is the returned path distances. The returned value of the function is the similarity measure. The last three returned arrays are used to compute the path and cost statistics.

The returned sequence indices must represent a valid warping path, that is, integers greater than zero and less than or equal to the sequence length and recorded in ascending order. The returned path distances must be nonnegative numbers.

Output Data Sets

The SIMILARITY procedure can create the OUT $=$, OUTSUM $=$, OUTMEASURE $=$, OUTSEQUENCE=, and OUTPATH= data sets. In general, these data sets contain the variables listed in
the BY statement. The ID statement time ID variable is also included in the data sets when the time dimension is important. If an analysis step related to an output data step fails, then the values of this step are not recorded or are set to missing in the related output data set, and appropriate error and/or warning messages are recorded in the SAS log.

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, INPUT, and TARGET statements. If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN=, INTERVAL=, START=, and END= options. The values of the variables specified in the INPUT and TARGET statements are accumulated based on the ACCUMULATE= option, missing values are interpreted based on the SETMISSING= option, and zero values are interpreted using the ZEROMISS= option. The accumulated time series is transformed based on the TRANSFORM=, DIF $=$, and/ or SDIF= options.

OUTMEASURE= Data Set

The OUTMEASURE $=$ data set records the similarity measures between each INPUT and TARGET statement variable with respect to each time ID value. The form of the OUTMEASURE= data set depends on the SORTNAMES and ORDER= option. The OUTMEASURE= data set contains the variables specified in the BY statement as well as the variables listed below.

For ORDER=INPUTTARGET and ORDER=TARGETINPUT, the OUTMEASURE= data set has the following form:

INPUT	input variable name
_TARGET__	target variable name
TIMEID	time ID values
INPSEQ	input sequence values
TARSEQ	target sequence values
SIM	similarity measures

The OUTMEASURE= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_ when ORDER=INPUTTARGET. The OUTMEASURE= data set is ordered by the variables _TARGET_, then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT.

For ORDER=INPUT, the OUTMEASURE= data set has the following form:

INPUT	input variable name
TIMEID	time ID values
INPSEQ	input sequence values

target-names
similarity measures associated with each TARGET statement variable name

The OUTMEASURE= data set is ordered by the variables _INPUT_, then _TIMEID_.
For ORDER=TARGET, the OUTMEASURE= data set has the following form:
TARGET target variable name
TIMEID time ID values
TARSEQ target sequence values
input-names similarity measures associated with each INPUT statement variable name

The OUTMEASURE= data set is ordered by the variables _TARGET_, then _TIMEID_.

OUTSUM= Data Set

The OUTSUM= data set summarizes the similarity measures between each INPUT and TARGET statement variable. The form of the OUTSUM= data set depends on the SORTNAMES and OR$\mathrm{DER}=$ option. If the SORTNAMES option is specified, each variable (INPUT or TARGET) is analyzed in ascending order. The OUTSUM= data set contains the variables specified in the BY statement as well as the variables listed below.

For ORDER=INPUTTARGET and ORDER=TARGETINPUT, the OUTSUM= data set has the following form:

INPUT ${-}$	input variable name
_TARGET	target variable name
STATUS	status flag that indicates whether the requested analyses were successful
TIMEID $_{-}$	time ID values
SIM $_{-}$	similarity measure summary

The OUTSUM= data set is ordered by the variables _INPUT_, then _TARGET_ when ORDER=INPUTTARGET. The OUTSUM= data set is ordered by the variables _TARGET_, then _INPUT_ when ORDER=TARGETINPUT.

For ORDER=INPUT, the OUTSUM= data set has the following form:
INPUT input variable name
STATUS status flag that indicates whether the requested analyses were successful
target-names similarity measure summary associated with each TARGET statement variable name

The OUTSUM= data set is ordered by the variable _INPUT_.
For ORDER=TARGET, the OUTSUM= data set has the following form:
TARGET target variable name
STATUS status flag that indicates whether the requested analyses were successful
input-names similarity measure summary associated with each INPUT statement variable name

The OUTSUM= data set is ordered by the variable _TARGET_.

OUTSEQUENCE= Data Set

The OUTSEQUENCE= data set records the input and target sequences associated with each INPUT and TARGET statement variable. This data set records the input and target sequence values for each slide index and for each warp index associated with the slide index. The sequence values recorded are normalized and scaled based on the NORMALIZE = and SCALE= options. This data set also contains the similarity measure associated with the two sequences.

The OUTSEQUENCE= data set contains the variables specified in the BY statement as well as the variables listed below.

INPUT	input variable name
TARGET	target variable name
_TIMEID__	time ID values
SLIDE	slide index
WARP	warp Index
INPSEQ	input sequence values
TARSEQ	target sequence values
SIM	similarity measure
STATUS	sequence Status

The sorting of the OUTSEQUENCE= data set depends on the SORTNAMES and the ORDER= option.

The OUTSEQUENCE= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_ when ORDER=INPUTTARGET or ORDER=INPUT. The OUTSEQUENCE= data set is ordered by the variables _TARGET_, then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT or ORDER=TARGET.

If there are a large number of slides and/or warps, this data set may be large.

OUTPATH= Data Set

The OUTPATH= data set records the path analysis between each INPUT and TARGET statement variable. This data set records the path sequences for each slide index and for each warp index associated with the slide index. The sequence values recorded are normalized and scaled based on the NORMALIZE $=$ and SCALE $=$ options.

The OUTPATH= data set contains the variables specified in the BY statement as well as the variables listed below.

INPUT	input variable name
TARGET	target variable name
TIMEID	time ID values
_SLIDE__ $^{\text {_SARP_ }}$	slide index
WARP	warp index
INPSEQ	input sequence values
TARSEQ	target sequence values
INPPTH	input path index
TARPTH	target path index
METRIC	distance metric values

The sorting of the OUTPATH= data set depends on the SORTNAMES and the ORDER= option.
The OUTPATH= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_ when ORDER=INPUTTARGET or ORDER=INPUT. The OUTPATH = data set is ordered by the variables _TARGET_, then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT or ORDER=TARGET.

If there are a large number of slides and/or warps, this data set may be large.

STATUS_Variable Values

The _STATUS_ variable contains a code that specifies whether the similarity analysis has been successful or not. The _STATUS_ variable can take the following values:

0	Success
3000	Accumulation failure
4000	Missing value interpretation failure
6000	Series is all missing
7000	Transformation failure

11000 Input contains imbedded missing values
12000 Target contains imbedded missing values
13000 Scaling failure
14000 Measure failure
15000 Path failure
16000 Slide summarization failure

Printed Output

The SIMILARITY procedure optionally produces printed output by using the Output Delivery System (ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT = and PRINTDETAILS options in the PROC SIMILARITY statement.

The sort, order, and form of the printed output depends on both the SORTNAMES option and the ORDER= option. If the SORTNAMES option is specified, each variable (INPUT or TARGET) is analyzed in ascending order. For ORDER=INPUTTARGET, the printed output is ordered by the INPUT statement variables (row) and then by the TARGET statement variables (row). For ORDER=TARGETINPUT, the printed output is ordered by the TARGET statement variables (row) and then by the INPUT statement variables (row). For ORDER=INPUT, the printed output is ordered by the INPUT statement variables (row) and then the TARGET statement variables (column). For ORDER=TARGET, the printed output is ordered by the TARGET statement variables (row) and then the INPUT statement variables (column).

In general, if an analysis step related to printed output fails, the values of this step are not printed and appropriate error and/or warning messages are recorded in the SAS log. The printed output is similar to the output data set, these similarities are described below.

PRINT=COSTS

prints the costs statistics.

PRINT=DESCSTATS

prints the descriptive statistics.

PRINT=PATHS

prints the path statistics.

PRINT=SLIDES

prints the sliding sequence summary.

PRINT=SUMMARY
prints the summary of similarity measures similar to the OUTSUM= data set.

PRINT=WARPS

prints the warp summary.

PRINTDETAILS

prints each table with greater detail.

ODS Tables Names

The table below relates the PRINT= options to ODS tables:
Table 22.2 ODS Tables Produced in PROC SIMILARITY

ODS Table Name	Description	Option
CostStatistics	Cost statistics	PRINT=COSTS
DescStats	Descriptive statistics	PRINT=DESCSTATS
PathLimits	Path limits	PRINT=PATHS
PathStatistics	Path statistics	PRINT=PATHS
SlideMeasuresSummary	Summary of measure per slide	PRINT=SLIDES
MeasuresSummary	Measures summary	PRINT=SUMMARY
InputMeasuresSummary	Measures summary	PRINT=SUMMARY
TargetMeasuresSummary	Measures summary	PRINT=SUMMARY
WarpMeasuresSummary	Summary of measure per warp	PRINT=WARPS

The tables are related to a single series within a BY group.

ODS Graphics

This section describes the use of ODS for creating graphics with the SIMILARITY procedure.

To request these graphs, you must specify the ODS GRAPHICS statement. In addition, you can specify the PLOTS= option in the PROC SIMILARITY statement as described in Table 22.3.

ODS Graph Names

PROC SIMILARITY assigns a name to each graph it creates by using ODS. You can use these names to selectively reference the graphs. The names are listed in Table 22.3.

Table 22.3 ODS Graphics Produced by PROC SIMILARITY

ODS Graph Name	Plot Description	Statement	PLOTS $=$ Option
CostsPlot	Costs plot	SIMILARITY	PLOTS $=$ COSTS
PathDistancePlot	Path distances plot	SIMILARITY	PLOTS=DISTANCES
PathDistanceHistogram	Path distances histogram	SIMILARITY	PLOTS=DISTANCES
PathRelativeDistancePlot	Path relative distances plot	SIMILARITY	PLOTS=DISTANCES
PathRelativeDistanceHistogram	Path relative distances histogram	SIMILARITY	PLOTS=DISTANCES
SeriesPlot	Input time series plot	SIMILARITY	PLOTS=INPUTS
TargetSequencePlot	Target sequence plot	SIMILARITY	PLOTS=TARGETS
SequencePlot	Sequence plot	SIMILARITY	PLOTS=SEQUENCES
SimilarityPlot	Similarity measures plot	SIMILARITY	PLOTS=MEASURES
PathPlot	Path plot	SIMILARITY	PLOTS=PATHS
PathSequencesPlot	Path sequences plot	SIMILARITY	PLOTS=MAPS
PathSequencesScaledPlot	Scaled path sequences map plot	SIMILARITY	PLOTS=MAPS
WarpPlot	Warping plot	SIMILARITY	PLOTS=WARPS
ScaledWarpPlot	Scaled warping plot	SIMILARITY	PLOTS=WARPS

Time Series Plots

The time series plots (SeriesPlot) illustrate the input time series to be compared. The horizontal axis represents the input series time ID values, and the vertical axis represents the input series values.

Sequence Plots

The sequence plots (SequencePlot) illustrate the target and input sequences to be compared. The horizontal axis represents the (target or input) sequence index, and the vertical axis represents the (target or input) sequence values.

Path Plots

The path plot (PathPlot) and path limits plot (PathPlot) illustrate the path through the distance matrix. The horizontal axis represents the input sequence index, and the vertical axis represents the target sequence index. The dots represent the path coordinates. The upper parallel line represents the compression limit and the lower parallel line represents the expansion limit. These plots visualize the path through the distance matrix. Vertical movements indicate compression, and horizontal movements represent expansion of the target sequence with respect to the input sequence. These plots are useful for visualizing the amount of expansion and compression along the path.

Time Warp Plots

The time warp plot (WarpPlot) and scaled time warp plot (ScaledWarpPlot) illustrate the time warping. The horizontal axis represents the (input and target) sequence index. The upper line plot represents the target sequence. The lower line plot represents the input sequence. The lines that connect the input and target sequence values represent the mapping between the input and target sequence indices along the optimal path. These plots visualize the warping of the time index with respect to the input and target sequence values. Expansion of a single target sequence value occurs when it is mapped to more than one input sequence value. Expansion of a single input sequence value occurs when it is mapped to more than one target sequence value. The plots are useful for visualizing the mapping between the input and target sequence values along the path. The plots are useful for comparing the path sequences or input and target sequence after time warping.

Path Sequence Plots

The path sequence plot (PathSequencesPlot) and scaled path sequence plot (PathSequencesScaledPlot) illustrate the sequence mapping along the optimal path. The horizontal axis represents the path index. The dashed line represents the time warped input sequence. The solid line represents the time warped target sequence. These plots visualize the mapping between the input and target sequence values with respect to the path index. The scaled plot with the input and target sequence values are scaled and evenly separated for visual convenience.

Path Distance Plots

The path distance plots (PathDistancePlot) and path relative distance plots (PathRelativeDistancePlot) illustrate the path (relative) distances. The horizontal axis represents the path index. The vertical needles represent the (relative) distances. The horizontal reference lines indicate one and two standard deviations.

The path distance histogram (PathDistanceHistogram) and path relative distance histogram (PathDistanceRelativeHistogram) illustrate the distribution of the path (relative) distances. The bars represent the histogram, and the solid line represents a normal distribution with the same mean and variance.

Cost Plots

The cost plot (CostPlot) and cost limits plot (CostPlot) illustrate the cost of traversing the distance matrix. The horizontal axis represents the input sequence index, and the vertical axis represents the target sequence index. The colors/shading within the plot illustrate the incremental cost of traversing the distance matrix. The upper parallel line represents the compression limit, and the lower parallel line represents the expansion limit.

Examples: SIMILARITY Procedure

Example 22.1: Accumulating Transactional Data into Time Series Data

This example uses the SIMILARITY procedure to illustrates the accumulation of time-stamped transactional data that has been recorded at no particular frequency into time series data at a specific frequency. After the time series is created, the various SAS/ETS procedures related to time series analysis, similarity analysis, seasonal adjustment/decomposition, modeling, and forecasting can be used to further analyze the time series data.

Suppose that the input data set WORK.RETAIL contains variables STORE and TIMESTAMP and numerous other numeric transaction variables. The BY variable STORE contains values that break up the transactions into groups (BY groups). The time ID variable TIMESTAMP contains SAS date values recorded at no particular frequency. The other data set variables contain the numeric transaction values to be analyzed. It is further assumed that the input data set is sorted by the variables STORE and TIMESTAMP.

The following statements form monthly time series from the transactional data based on the median value (ACCUMULATE=MEDIAN) of the transactions recorded with each time period. The accumulated time series values for time periods with no transactions are set to zero instead of missing (SETMISS=0). Only transactions recorded between the first day of 1998 (START='01JAN1998'D) and last day of 2000 (END='31JAN2000'D) are considered and if needed are extended to include this range.

```
proc similarity data=work.retail out=mseries;
    by store;
    id timestamp interval=month
                    accumulate=median
                        setmiss=0
                        start='01jan1998'd
            end ='31dec2000'd;
    var _NUMERIC_;
run;
```

The monthly time series data are stored in the data WORK.MSERIES. Each BY group associated with the BY variable STORE contains an observation for each of the 36 months associated with the
years 1998, 1999, and 2000. Each observation contains the variable STORE, TIMESTAMP, and each of the analysis variables in the input DATA= data set.

After each set of transactions has been accumulated to form corresponding time series, accumulated time series can be analyzed by using various time series analysis techniques. For example, exponentially weighted moving averages can be used to smooth each series. The following statements use the EXPAND procedure to smooth the analysis variable named STOREITEM.

```
proc expand data=mseries
    out=smoothed
    from=month;
    by store;
    id timestamp;
    convert storeitem=smooth / transform=(ewma 0.1);
run;
```

The smoothed series is stored in the data set WORK.SMOOTHED. The variable SMOOTH contains the smoothed series.

If the time ID variable TIMESTAMP contained SAS datetime values instead of SAS date values, the INTERVAL=, START=, and END= options in the SIMILARITY procedure must be changed accordingly, and the following statements could be used to accumulate the datetime transactions to a monthly interval:

```
proc similarity data=work.retail
    out=tseries;
    by store;
    id timestamp interval=dtmonth
            accumulate=median
            setmiss=0
            start='01jan1998:00:00:00' dt
            end ='31dec2000:00:00:00'dt;
    var _NUMERIC_;
run;
```

The monthly time series data are stored in the data WORK.TSERIES, and the time ID values use a SAS datetime representation.

Example 22.2: Similarity Analysis

This simple example illustrates how to compare two time sequences using similarity analysis. The following statements create an example data set that contains two time sequences of differing lengths.

```
data test;
input i y x;
datalines;
1 2 3
2 4 5
3 6 3
4 7 3
```

```
5 3 3
6 6
7 9 3
8 3
9 10 .
10 11 .
;
run;
```

The following statements perform similarity analysis on the example data set:

```
ods graphics on;
proc similarity data=test out=_null_
    print=all plot=all;
    input x;
    target y / measure=absdev;
run;
```

The DATA=TEST option specifies that the input data set WORK.TEST is to be used in the analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The PRINT=ALL and PLOTS=ALL options specify that all ODS tables and graphs are to be produced. The INPUT statement specifies that the input variable is X. The TARGET statement specifies that the target variable is Y and that the similarity measure is computed using absolute deviation (MEASURE=ABSDEV).

Output 22.2.1 Description Statistics of the Input Variable, x

The SIMILARITY Procedure	
Time Series Descriptive Statistics	
Variable	\mathbf{x}
Number of Observations	10
Number of Missing Observations	2
Minimum	3
Maximum	8
Mean	4.25
Standard Deviation	1.908627

Output 22.2.2 Plot of Input Variable, x

Output 22.2.3 Target Sequence Plot

Output 22.2.4 Sequence Plot

Output 22.2.5 Path Plot

Output 22.2.6 Path Sequences Plot

Output 22.2.7 Path Sequences Scaled Plot

Output 22.2.8 Path Distance Plot

Output 22.2.9 Path Distance Histogram

Output 22.2.10 Path Relative Distance Plot

Output 22.2.11 Path Relative Distance Histogram

Output 22.2.12 Path Limits

		Path Limits			
Limit	Specified	Specified	Minimum	Maximum	
	Absolute	Percentage	Allowed	Allowed	Applied
Compression	None	None			9

Output 22.2.13 Path Statistics

Output 22.2.14 Cost Plot

Output 22.2.15 Cost Statistics

Cost	Cost Statistics					
	Number	Total	Average	Standard Deviation	Minimum	Maximum
Absolute	12	15.00000	1.250000	1.138180	0	3.000000
Relative	12	2.25844	0.188203	0.160922	0	0.500000
	Cost Statistics					
		Input	Target	Minimum	Maxim	
	Cost	Mean	Mean	Path Mean	Path Me	
	Absolute	1.875000	1.500000	1.875000	0.88235	
	Relative	0.282305	0.225844	0.282305	0.1328	
	Relative Costs based on Target Sequence values					

Output 22.2.16 Time Warp Plot

Output 22.2.17 Time Warp Scaled Plot

The following statements repeat the above similarity analysis on the example data set with warping limits:

```
ods graphics on;
proc similarity data=test out=_null_
    print=all plot=all;
    input x;
    target y / measure=absdev
    compress=(localabs=2)
    expand=(localabs=2);
run;
```

The COMPRESS=(LOCALABS=2) option limits local absolute compression to 2. The EXPAND=(LOCALABS=2) option limits local absolute expansion to 2 .

Output 22.2.18 Path Plot with Warping Limits

Output 22.2.19 Warped Path Limits

		Path Limits			
Limit	Specified	Specified	Minimum	Maximum	
Absolute	Percentage	Allowed	Allowed	Applied	
Compression	2	None	2	9	2
Expansion	2	None	0	7	2

Output 22.2.20 Cost Plot with Warping Limits

The following statements repeat the above similarity analysis on the example data set but store the results in output data sets:

```
proc similarity data=test out=series
outsequence=sequences outpath=path outsum=summary;
input x;
target y / measure=absdev
compress=(localabs=2)
expand=(localabs=2);
run;
```

The OUT=SERIES, OUTSEQUENCE=SEQUENCES, OUTPATH=PATH, and OUTSUM=SUMMARY options specify that the output time series, time sequences, path analysis, and summary data sets be created, respectively.

Example 22.3: Sliding Similarity Analysis

This example illustrates how to compare two time sequences using sliding similarity analysis. The SASHELP.WORKERS data set contains two similar time series variables (ELECTRIC and MASONRY), which represent employment over time. The following statements create an example data set that contains two time series of differing lengths, where the variable MASONRY has the first 12 and last 7 observations set to missing to simulate the lack of data associated with the target series.

```
data workers; set sashelp.workers;
    if '01JAN1978'D <= date < '01JAN1982'D then masonry = masonry;
    else masonry = .;
run;
```

The goal of sliding similarity measures analysis is find the slide index that corresponds to the most similar subsequence of the input series when compared to the target sequence. The following statements perform sliding similarity analysis on the example data set:

```
proc similarity data=workers out=_NULL_ print=(slides summary);
    id date interval=month;
    input electric;
    target masonry / slide=index measure=msqrdev
    expand=(localabs=3 globalabs=3)
    compress=(localabs=3 globalabs=3);
run;
```

The DATA=WORKERS option specifies that the input data set WORK.WORKERS is to be used in the analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The PRINT=(SLIDES SUMMARY) option specifies that the ODS tables related to the sliding similarity measures and their summary are produced. The INPUT statement specifies that the input variable is ELECTRIC. The TARGET statement specifies that the target variable is MASONRY and that the similarity measure is computed using mean squared deviation (MEASURE=MSQRDEV). The SLIDE=INDEX option specifies observation index sliding. The COMPRESS=(LOCALABS=3 GLOBALABS=3) option limits local and global absolute compression to 3. The EXPAND=(LOCALABS=3 GLOBALABS=3) option limits local and global absolute expansion to 3 .

Output 22.3.1 Summary of the Slide Measures

Output 22.3.2 Minimum Measure

	Minimum Measure Summary
Input	
Variable	MASONRY
ELECTRIC	322.5460

This analysis results in 23 slides based on the observation index with the minimum measure (322.5460) occurring at slide index 14 which corresponds to the time value FEB1978. Note that the original data set SASHELP.WORKERS was modified beginning at the time value JAN1978. This similarity analysis justifies the belief the ELECTRIC lags MASONRY by one month based on the time series cross-correlation analysis despite the lack of target data (MASONRY).

The goal of seasonal sliding similarity measures is to find the seasonal slide index which corresponds to the most similar seasonal subsequence of the input series when compared to the target
sequence. The following statements repeat the above similarity analysis on the example data set with seasonal sliding:

```
proc similarity data=workers out=_NULL_ print=(slides summary);
    id date interval=month;
    input electric;
    target masonry / slide=season measure=msqrdev;
run;
```

Output 22.3.3 Summary of the Seasonal Slide Measures

Output 22.3.4 Seasonal Minimum Measure

Minimum Measure Summary	
Input Variable	MASONRY
Electric	641.9273

The analysis differs from the previous analysis in that the slides are performed based on the seasonal index (SLIDE=SEASON) with no warping. With a seasonality of 12 , two seasonal slides are considered at slide indices 0 and 12 with the minimum measure (641.9273) occurring at slide index 12 which corresponds to the time value JAN1978. Note that the original data set SASHELP.WORKERS was modified beginning at the time value JAN1978. This similarity analysis justifies the belief that ELECTRIC and MASONRY have similar seasonal properties based on seasonal decomposition analysis despite the lack of target data (MASONRY).

Example 22.4: Searching for Historical Analogies

This example illustrates how to search for historical analogies by using seasonal sliding similarity analysis of transactional time stamp data. The SASHELP.TIMEDATA data set contains the variable (VOLUME), which represents activity over time. The following statements create an example data
set that contains two time series of differing lengths, where the variable HISTORY represents the historical activity and RECENT represents the more recent activity.

```
data timedata; set sashelp.timedata;
    drop volume;
    recent = .;
    history = volume;
    if datetime >= '20AUG2000:00:00:00'DT then do;
        recent = volume;
        history = .;
    end;
run;
```

The goal of seasonal sliding similarity measures is to find the seasonal slide index that corresponds to the most similar seasonal subsequence of the input series when compared to the target sequence. The following statements perform similarity analysis on the example data set with seasonal sliding:

```
proc similarity data=timedata out=_NULL_ outsequence=sequences
                outsum=summary;
    id datetime interval=dtday accumulate=total
        start='27JUL1997:00:00:00' dt end=' 210CT2000:11:59:59'DT;
    input history / normalize=absolute;
    target recent / slide=season normalize=absolute measure=mabsdev;
run;
```

The DATA=TIMEDATA option specifies that the input data set WORK.TIMEDATA is to be used in the analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The OUTSEQUENCE=SEQUENCES and OUTSUM=SUMMARY options specify the output sequences and summary data sets, respectively. The ID statement specifies that the time ID variable is DATETIME, which is to be accumulated on a daily basis (INTERVAL=DTDAY) by summing the transactions (ACCUMULATE=TOTAL). The ID statement also specifies that the data is accumulated on the weekly boundaries starting on the week of 27JUL1997 and ending on the week of 15OCT2000 (START='27JUL1997:00:00:00'DT END='21OCT2000:11:59:59'DT). The INPUT statement specifies that the input variable is HISTORY, which is to be normalized using absolute normalization (NORMALIZE=ABSOLUTE). The TARGET statement specifies that the target variable is RECENT, which is to be normalized by using absolute normalization (NORMALIZE=ABSOLUTE) and that the similarity measure is computed by using mean absolute deviation (MEASURE=MABSDEV). The SLIDE=SEASON options specifies season index sliding.

To illustrate the results of the similarity analysis, the output sequence data set must be subset by using the output summary data set.

```
data _NULL_; set summary;
    call symput('MEASURE', left(trim(putn(recent,'BEST20.'))));
run;
data result; set sequences;
    by _SLIDE_;
    retain flag 0;
    if first._SLIDE_ then do;
        if (&measure - 0.00001 < _SIM_ < &measure + 0.00001)
        then flag = 1;
```

```
    end;
    if flag then output;
    if last._SLIDE_ then flag = 0;
run;
```

The following statements generate a cross series plot of the results:

```
proc timeseries data=result out=_NULL_ crossplot=series;
    id datetime interval=dtday;
    var _TARSEQ_;
    crossvar _INPSEQ_;
run;
```

The cross series plot illustrates that the historical time series analogy most similar to the most recent time series data that started on 20AUG2000 occurred on 02AUG1998.

Output 22.4.1 Cross Series Plot of the Historical Time Series

References

Barry, M.J. and Linoff, G.S. (1997), Data Mining Techniques: For Marketing, Sales, and Customer Support, New York: John Wiley \& Sons, Inc.

Han, J. and Kamber, M. (2001), Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann Publishers.

Leonard, M.J. and Wolfe, B. L. (2005), Mining Transactional and Time Series Data, SUGI 30.
Leonard, M.J., Elsheimer, D.B., and Sloan, J. (2008), An Introduction to Similarity Analysis Using SAS, SAS Forum 2008.

Pyle, D. (1999), Data Preparation for Data Mining, San Francisco: Morgan Kaufman Publishers, Inc.

Sankoff, D. and Kruskal, J. B. (2001), Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Stanford, CA: CSLI Publications.

Chapter 23

The SIMLIN Procedure

Contents

Overview: SIMLIN Procedure . 1511
Getting Started: SIMLIN Procedure . 1512
Prediction and Simulation . 1513
Syntax: SIMLIN Procedure . 1514
Functional Summary . 1514
PROC SIMLIN Statement . 1515
BY Statement . 1516
ENDOGENOUS Statement . 1516
EXOGENOUS Statement . 1517
ID Statement . 1517
LAGGED Statement . 1517
OUTPUT Statement . 1517
Details: SIMLIN Procedure . 1518
Defining the Structural Form . 1519
Computing the Reduced Form . 1519
Dynamic Multipliers . 1519
Multipliers for Higher Order Lags . 1520
EST= Data Set . 1521
DATA= Data Set . 1522
OUTEST= Data Set . 1522
OUT= Data Set . 1523
Printed Output . 1523
ODS Table Names . 1525
Examples: SIMLIN Procedure . 1525
Example 23.1: Simulating Klein's Model I 1525
Example 23.2: Multipliers for a Third-Order System 1534
References . 1539

Overview: SIMLIN Procedure

The SIMLIN procedure reads the coefficients for a set of linear structural equations, which are usually produced by the SYSLIN procedure. PROC SIMLIN then computes the reduced form
and, if input data are given, uses the reduced form equations to generate predicted values. PROC SIMLIN is especially useful when dealing with sets of structural difference equations. The SIMLIN procedure can perform simulation or forecasting of the endogenous variables.

The SIMLIN procedure can be applied only to models that are:

- linear with respect to the parameters
- linear with respect to the variables
- square (as many equations as endogenous variables)
- nonsingular (the coefficients of the endogenous variables form an invertible matrix)

Getting Started: SIMLIN Procedure

The SIMLIN procedure processes the coefficients in a data set created by the SYSLIN procedure using the OUTEST= option or by another regression procedure such as PROC REG. To use PROC SIMLIN you must first produce the coefficient data set and then specify this data set on the EST= option of the PROC SIMLIN statement. You must also tell PROC SIMLIN which variables are endogenous and which variables are exogenous. List the endogenous variables in an ENDOGENOUS statement, and list the exogenous variables in an EXOGENOUS statement.

The following example illustrates the creation of an OUTEST= data set with PROC SYSLIN and the computation and printing of the reduced form coefficients for the model with PROC SIMLIN.

```
proc syslin data=in outest=e;
    model y1 = y2 x1;
    model y2 = y1 x2;
run;
proc simlin est=e;
    endogenous y1 y2;
    exogenous x1 x2;
run;
```

If the model contains lagged endogenous variables you must also use a LAGGED statement to tell PROC SIMLIN which variables contain lagged values, which endogenous variables they are lags of, and the number of periods of lagging. For dynamic models, the TOTAL and INTERIM= options can be used on the PROC SIMLIN statement to compute and print total and impact multipliers. (See "Dynamic Multipliers" later in this section for an explanation of multipliers.)

In the following example the variables Y1LAG1, Y2LAG1, and Y2LAG2 contain lagged values of the endogenous variables Y1 and Y2. Y1LAG1 and Y2LAG1 contain values of Y1 and Y2 for the previous observation, while Y2LAG2 contains 2 period lags of Y2. The LAGGED statement specifies the lagged relationships, and the TOTAL and INTERIM= options request multiplier analysis. The INTERIM=2 option prints matrices showing the impact that changes to the exogenous variables have on the endogenous variables after 1 and 2 periods.

```
data in; set in;
    y1lag1 = lag(y1);
    y2lag1 = lag(y2);
    y2lag2 = lag2(y2);
run;
proc syslin data=in outest=e;
    model y1 = y2 y1lag1 y2lag2 x1;
    model y2 = y1 y2lag1 x2;
run;
proc simlin est=e total interim=2;
    endogenous y1 y2;
    exogenous x1 x2;
    lagged y1lag1 y1 1 y2lag1 y2 1 y2lag2 y2 2;
run;
```

After the reduced form of the model is computed, the model can be simulated by specifying an input data set on the PROC SIMLIN statement and using an OUTPUT statement to write the simulation results to an output data set. The following example modifies the PROC SIMLIN step from the preceding example to simulate the model and stores the results in an output data set.

```
proc simlin est=e total interim=2 data=in;
    endogenous y1 y2;
    exogenous x1 x2;
    lagged y1lag1 y1 1 y2lag1 y2 1 y2lag2 y2 2;
    output out=sim predicted=y1hat y2hat
        residual=y1resid y2resid;
run;
```


Prediction and Simulation

If an input data set is specified with the DATA= option in the PROC SIMLIN statement, the procedure reads the data and uses the reduced form equations to compute predicted and residual values for each of the endogenous variables. (If no data set is specified with the DATA= option, no simulation of the system is performed, and only the reduced form and multipliers are computed.)

The character of the prediction is based on the START= value. Until PROC SIMLIN encounters the START= observation, actual endogenous values are found and fed into the lagged endogenous terms. Once the START= observation is reached, dynamic simulation begins, where predicted values are fed into lagged endogenous terms until the end of the data set is reached.

The predicted and residual values generated here are different from those produced by the SYSLIN procedure since PROC SYSLIN uses the structural form with actual endogenous values. The predicted values computed by the SIMLIN procedure solve the simultaneous equation system. These reduced-form predicted values are functions only of the exogenous and lagged endogenous variables and do not depend on actual values of current period endogenous variables.

Syntax: SIMLIN Procedure

The following statements can be used with PROC SIMLIN:

```
PROC SIMLIN options;
    BY variables;
    ENDOGENOUS variables;
    EXOGENOUS variables;
    ID variables;
    LAGGED lag-var endogenous-var number ellipsis ;
    OUTPUT OUT=SAS-data-set options;
```


Functional Summary

The statements and options controlling the SIMLIN procedure are summarized in the following table.

Description	Statement	Option

Data Set Options

specify input data set containing structural co- PROC SIMLIN EST= efficients
specify type of estimates read from EST $=$ data \quad PROC SIMLIN \quad TYPE $=$
set
write reduced form coefficients and multipliers
PROC SIMLIN OUTEST=
to an output data set
specify the input data set for simulation
write predicted and residual values to an out-
PROC SIMLIN
DATA= put data set

Printing Control Options

print the structural coefficients
suppress printing of reduced form coefficients
suppress all printed output
PROC SIMLIN
PROC SIMLIN
PROC SIMLIN
ESTPRINT
NORED
NOPRINT

Dynamic Multipliers

compute interim multipliers
compute total multipliers

PROC SIMLIN	INTERIM=
PROC SIMLIN	TOTAL

Declaring the Role of Variables

specify BY-group processing
specify the endogenous variables
specify the exogenous variables
BY
ENDOGENOUS
specify identifying variables
EXOGENOUS
ID

Description	Statement	Option
specify lagged endogenous variables	LAGGED	
Controlling the Simulation specify the starting observation for dynamic simulation	PROC SIMLIN	START=

PROC SIMLIN Statement

PROC SIMLIN options ;
The following options can be used in the PROC SIMLIN statement:

DATA $=$ SAS-data-set

specifies the SAS data set containing input data for the simulation. If the DATA= option is used, the data set specified must supply values for all exogenous variables throughout the simulation. If the DATA= option is not specified, no simulation of the system is performed, and only the reduced form and multipliers are computed.

EST= SAS-data-set

specifies the input data set containing the structural coefficients of the system. If EST= is omitted the most recently created SAS data set is used. The EST= data set is normally a "TYPE=EST" data set produced by the OUTEST= option of PROC SYSLIN. However, you can also build the EST = data set with a SAS DATA step. See "The EST = Data Set" later in this chapter for details.

ESTPRINT

prints the structural coefficients read from the EST= data set.

INTERIM= n

requests that interim multipliers be computed for interims 1 through n. If not specified, no interim multipliers are computed. This feature is available only if there are no lags greater than 1.

NOPRINT

suppresses all printed output.

NORED

suppresses the printing of the reduced form coefficients.

OUTEST= SAS-data-set

specifies an output SAS data set to contain the reduced form coefficients and multipliers, in addition to the structural coefficients read from the EST= data set. The OUTEST= data set has the same form as the EST= data set. If the OUTEST= option is not specified, the reduced form coefficients and multipliers are not written to a data set.

START $=n$
specifies the observation number in the DATA= data set where the dynamic simulation is to be started. By default, the dynamic simulation starts with the first observation in the DATA= data set for which all variables (including lags) are not missing.

TOTAL

requests that the total multipliers be computed. This feature is available only if there are no lags greater than 1 .

TYPE= value

specifies the type of estimates to be read from the EST= data set. The TYPE= value must match the value of the _TYPE_ variable for the observations that you want to select from the EST $=$ data set (TYPE=2SLS, for example).

BY Statement

BY variables ;

A BY statement can be used with PROC SIMLIN to obtain separate analyses for groups of observations defined by the BY variables.

The BY statement can be applied to one or both of the EST= and the DATA= input data set. When a BY statement is used and both an EST= and a DATA= input data set are specified, PROC SIMLIN checks to see if one or both of the data sets contain the BY variables.

Thus, there are three ways of using the BY statement with PROC SIMLIN:

1. If the BY variables are found in the EST= data set only, PROC SIMLIN simulates over the entire DATA= data set once for each set of coefficients read from the BY groups in the EST= data set.
2. If the BY variables are found in the DATA= data set only, PROC SIMLIN performs separate simulations over each BY group in the DATA= data set, using the single set of coefficients in the $\mathrm{EST}=$ data set.
3. If the BY variables are found in both the $\mathrm{EST}=$ and the DATA= data sets, PROC SIMLIN performs separate simulations over each BY group in the DATA= data set using the coefficients from the corresponding BY group in the EST= data set.

ENDOGENOUS Statement

ENDOGENOUS variables;

List the names of the endogenous (jointly dependent) variables in the ENDOGENOUS statement. The ENDOGENOUS statement can be abbreviated as ENDOG or ENDO.

EXOGENOUS Statement

EXOGENOUS variables;
List the names of the exogenous (independent) variables in the EXOGENOUS statement. The EXOGENOUS statement can be abbreviated as EXOG or EXO.

ID Statement

ID variables ;

The ID statement can be used to restrict the variables copied from the DATA= data set to the OUT= data set. Use the ID statement to list the variables you want copied to the OUT= data set besides the exogenous, endogenous, lagged endogenous, and BY variables. If the ID statement is omitted, all the variables in the DATA= data set are copied to the OUT= data set.

LAGGED Statement

LAGGED lag-var endogenous-var number ellipsis ;

For each lagged endogenous variable, specify the name of the lagged variable, the name of the endogenous variable that was lagged, and the degree of the lag. Only one LAGGED statement is allowed.

The following is an example of the use of the LAGGED statement:

```
proc simlin est=e;
    endog y1 y2;
    lagged y1lag1 y1 1 y2lag1 y2 1 y2lag3 y2 3;
run;
```

This statement specifies that the variable Y1LAG1 contains the values of the endogenous variable Y1 lagged one period; the variable Y2LAG1 refers to the values of Y2 lagged one period; and the variable Y2LAG3 refers to the values of Y2 lagged three periods.

OUTPUT Statement

OUTPUT OUT= SAS-data-set options ;

The OUTPUT statement specifies that predicted and residual values be put in an output data set. A DATA= input data set must be supplied if the OUTPUT statement is used, and only one OUTPUT statement is allowed. The following options can be used in the OUTPUT statement:

OUT= SAS-data-set

names the output SAS data set to contain the predicted values and residuals. If OUT= is not specified, the output data set is named using the DATA n convention.

PREDICTED= names

$\mathrm{P}=$ names

names the variables in the output data set that contain the predicted values of the simulation. These variables correspond to the endogenous variables in the order in which they are specified in the ENDOGENOUS statement. Specify up to as many names as there are endogenous variables. If you specify names on the PREDICTED= option for only some of the endogenous variables, predicted values for the remaining variables are not output. The names must not match any variable name in the input data set.

RESIDUAL= names
$\mathbf{R}=$ names
names the variables in the output data set that contain the residual values from the simulation. The residuals are the differences between the actual values of the endogenous variables from the DATA= data set and the predicted values from the simulation. These variables correspond to the endogenous variables in the order in which they are specified in the ENDOGENOUS statement. Specify up to as many names as there are endogenous variables. The names must not match any variable name in the input data set.

The following is an example of the use of the OUTPUT statement. This example outputs predicted values for Y1 and Y2 and outputs residuals for Y1.

```
proc simlin est=e;
    endog y1 y2;
    output out=b predicted=y1hat y2hat
    residual=y1resid;
run;
```


Details: SIMLIN Procedure

The following sections explain the structural and reduced forms, dynamic multipliers, input data sets, and the model simulation process in more detail.

Defining the Structural Form

An EST= input data set supplies the coefficients of the equation system. The data set containing the coefficients is normally a "TYPE=EST" data set created by the OUTEST= option of PROC SYSLIN or another regression procedure. The data set contains the special variables _TYPE_, _DEPVAR_, and INTERCEPT. You can also supply the structural coefficients of the system to PROC SIMLIN in a data set produced by a SAS DATA step as long as the data set is of the form TYPE=EST. Refer to SAS/STAT software documentation for a discussion of the special TYPE=EST type of SAS data set.

Suppose that there is a $g \times 1$ vector of endogenous variables \boldsymbol{y}_{t}, an $l \times 1$ vector of lagged endogenous variables \mathbf{y}_{t}^{L}, and a $k \times 1$ vector of exogenous variables \boldsymbol{x}_{t}, including the intercept. Then, there are g structural equations in the simultaneous system that can be written

$$
\mathbf{G} \mathbf{y}_{t}=\mathbf{C} \mathbf{y}_{t}^{L}+\mathbf{B} \mathbf{x}_{t}
$$

where \mathbf{G} is the matrix of coefficients of current period endogenous variables, \mathbf{C} is the matrix of coefficients of lagged endogenous variables, and \mathbf{B} is the matrix of coefficients of exogenous variables. \mathbf{G} is assumed to be nonsingular.

Computing the Reduced Form

First, the SIMLIN procedure computes reduced form coefficients by premultiplying by $\mathbf{G}^{\mathbf{- 1}}$:

$$
\mathbf{y}_{t}=\mathbf{G}^{-1} \mathbf{C} \mathbf{y}_{t}^{L}+\mathbf{G}^{-1} \mathbf{B} \mathbf{x}_{t}
$$

This can be written as

$$
\mathbf{y}_{t}=\Pi_{1} \mathbf{y}_{t}^{L}+\Pi_{2} \mathbf{x}_{t}
$$

where $\Pi_{1}=\mathbf{G}^{-1} \mathbf{C}$ and $\Pi_{2}=\mathbf{G}^{-1} \mathbf{B}$ are the reduced form coefficient matrices.
The reduced form matrices $\Pi_{1}=\mathbf{G}^{-1} \mathbf{C}$ and $\Pi_{2}=\mathbf{G}^{-1} \mathbf{B}$ are printed unless the NORED option is specified in the PROC SIMLIN statement. The structural coefficient matrices \mathbf{G}, \mathbf{C}, and \mathbf{B} are printed when the ESTPRINT option is specified.

Dynamic Multipliers

For models that have only first-order lags, the equation of the reduced form of the system can be rewritten

$$
\mathbf{y}_{t}=\mathbf{D} \mathbf{y}_{t-1}+\Pi_{2} \mathbf{x}_{t}
$$

\mathbf{D} is a matrix formed from the columns of Π_{1} plus some columns of zeros, arranged in the order in which the variables meet the lags. The elements of Π_{2} are called impact multipliers because they show the immediate effect of changes in each exogenous variable on the values of the endogenous variables. This equation can be rewritten as

$$
\mathbf{y}_{t}=\mathbf{D}^{2} \mathbf{y}_{t-2}+\mathbf{D} \Pi_{2} \mathbf{x}_{t-1}+\Pi_{2} \mathbf{x}_{t}
$$

The matrix formed by the product $\mathbf{D} \Pi_{2}$ shows the effect of the exogenous variables one lag back; the elements in this matrix are called interim multipliers and are computed and printed when the INTERIM = option is specified in the PROC SIMLIN statement. The i th period interim multipliers are formed by $\mathbf{D}^{i} \Pi_{2}$.

The series can be expanded as

$$
\mathbf{y}_{t}=\mathbf{D}^{\infty} \mathbf{y}_{t-\infty}+\sum_{i=0}^{\infty} \mathbf{D}^{i} \Pi_{2} \mathbf{x}_{t-i}
$$

A permanent and constant setting of a value for x has the following cumulative effect:

$$
\left(\sum_{i=0}^{\infty} \mathbf{D}^{i}\right) \Pi_{2} \mathbf{x}=(\mathbf{I}-\mathbf{D})^{-1} \Pi_{2} \mathbf{x}
$$

The elements of (I-D) $)^{-1} \Pi_{2}$ are called the total multipliers. Assuming that the sum converges and that (I-D) is invertible, PROC SIMLIN computes the total multipliers when the TOTAL option is specified in the PROC SIMLIN statement.

Multipliers for Higher Order Lags

The dynamic multiplier options require the system to have no lags of order greater than one. This limitation can be circumvented, since any system with lags greater than one can be rewritten as a system where no lag is greater than one by forming new endogenous variables that are single-period lags.

For example, suppose you have the third-order single equation

$$
y_{t}=a y_{t-3}+b \mathbf{x}_{t}
$$

This can be converted to a first-order three-equation system by introducing two additional endogenous variables, $y_{1, t}$ and $y_{2, t}$, and computing corresponding first-order lagged variables for each endogenous variable: $y_{t-1}, y_{1, t-1}$, and $y_{2, t-1}$. The higher order lag relations are then produced by adding identities to link the endogenous and identical lagged endogenous variables:

$$
\begin{aligned}
& y_{1, t}=y_{t-1} \\
& y_{2, t}=y_{1, t-1} \\
& y_{t}=a y_{2, t-1}+b \mathbf{X}_{t}
\end{aligned}
$$

This conversion using the SYSLIN and SIMLIN procedures requires three steps:

1. Add the extra endogenous and lagged endogenous variables to the input data set using a DATA step. Note that two copies of each lagged endogenous variable are needed for each lag reduced, one to serve as an endogenous variable and one to serve as a lagged endogenous variable in the reduced system.
2. Add IDENTITY statements to the PROC SYSLIN step to equate each added endogenous variable to its lagged endogenous variable copy.
3. In the PROC SIMLIN step, declare the added endogenous variables in the ENDOGENOUS statement and define the lag relations in the LAGGED statement.

See Example 23.2 for an illustration of how to convert an equation system with higher-order lags into a larger system with only first-order lags.

EST= Data Set

Normally, PROC SIMLIN uses an EST= data set produced by PROC SYSLIN with the OUTEST= option. This data set is in the form expected by PROC SIMLIN. If there is more than one set of estimates produced by PROC SYSLIN, you must use the TYPE= option in the PROC SIMLIN statement to select the set to be simulated. Then PROC SIMLIN reads from the EST= data set only those observations with a _TYPE_ value corresponding to the TYPE= option (for example, TYPE=2SLS) or with a _TYPE_ value of IDENTITY.

The SIMLIN procedure can only solve square, nonsingular systems. If you have fewer equations than endogenous variables, you must specify IDENTITY statements in the PROC SYSLIN step to bring the system up to full rank. If there are g endogenous variables and $m<g$ stochastic equations with unknown parameters, then you use m MODEL statements to specify the equations with parameters to be estimated and you must use $g-m$ IDENTITY statements to complete the system.

You can build your own EST = data set with a DATA step rather than use PROC SYSLIN. The EST= data set must contain the endogenous variables, the lagged endogenous variables (if any), and the exogenous variables in the system (if any). If any of the equations have intercept terms, the variable INTERCEPT must supply these coefficients. The EST= data set should also contain the special character variable comp _DEPVAR_ to label the equations.

The EST= data set must contain one observation for each equation in the system. The values of the lagged endogenous variables must contain the \mathbf{C} coefficients. The values of the exogenous variables and the INTERCEPT variable must contain the \mathbf{B} coefficients. The values of the endogenous variables, however, must contain the negatives of the \mathbf{G} coefficients. This is because the SYSLIN procedure writes the coefficients to the OUTEST= data set in the form

$$
0=\mathbf{H y}_{t}+\mathbf{C} \mathbf{y}_{t}^{L}+\mathbf{B} \mathbf{x}_{t}
$$

where $\mathbf{H}=-\mathbf{G}$.
See "Multipliers for Higher Order Lags" and Example 23.2 later in this chapter for more information on building the EST= data set.

DATA= Data Set

The DATA= data set must contain all of the exogenous variables. Values for all of the exogenous variables are required for each observation for which predicted endogenous values are desired. To forecast past the end of the historical data, the DATA= data set should contain nonmissing values for all of the exogenous variables and missing values for the endogenous variables for the forecast periods, in addition to the historical data. (See Example 23.1 for an illustration.)

In order for PROC SIMLIN to output residuals and compute statistics of fit, the DATA= data set must also contain the endogenous variables with nonmissing actual values for each observation for which residuals and statistics are to be computed.

If the system contains lags, initial values must be supplied for the lagged variables. This can be done by including either the lagged variables or the endogenous variables, or both, in the DATA= data set. If the lagged variables are not in the DATA= data set or if they have missing values in the early observations, PROC SIMLIN prints a warning and uses the endogenous variable values from the early observations to initialize the lags.

OUTEST= Data Set

The OUTEST = data set contains all the variables read from the EST= data set. The variables in the OUTEST= data set are as follows.

- the BY statement variables, if any
- _TYPE_, a character variable that identifies the type of observation
- _DEPVAR_, a character variable containing the name of the dependent variable for the observation
- the endogenous variables
- the lagged endogenous variables
- the exogenous variables
- INTERCEPT, a numeric variable containing the intercept values
- _MODEL_, a character variable containing the name of the equation
- _SIGMA_, a numeric variable containing the estimated error variance of the equation (output only if present in the EST= data set)

The observations read from the EST= data set that supply the structural coefficients are copied to the OUTEST= data set, except that the signs of endogenous coefficients are reversed. For these observations, the _TYPE_ variable values are the same as in the EST= data set.

In addition, the OUTEST= data set contains observations with the following _TYPE_values:

REDUCED the reduced form coefficients. The endogenous variables for this group of observations contain the inverse of the endogenous coefficient matrix \mathbf{G}. The lagged endogenous variables contain the matrix $\Pi_{1}=\mathbf{G}^{-1} \mathbf{C}$. The exogenous variables contain the matrix $\Pi_{2}=\mathbf{G}^{-1} \mathbf{B}$.
IMULT i the interim multipliers, if the INTERIM= option is specified. There are $g n$ observations for the interim multipliers, where g is the number of endogenous variables and n is the value of the $\operatorname{INTERIM}=n$ option. For these observations the _TYPE_ variable has the value IMULT i, where the interim number i ranges from 1 to n.
The exogenous variables in groups of g observations that have a _TYPE_ value of IMULT i contain the matrix $\mathbf{D}^{i} \Pi_{2}$ of multipliers at interim i. The endogenous and lagged endogenous variables for this group of observations are set to missing.
TOTAL the total multipliers, if the TOTAL option is specified. The exogenous variables in this group of observations contain the matrix (I-D $)^{-1} \Pi_{2}$. The endogenous and lagged endogenous variables for this group of observations are set to missing.

OUT= Data Set

The OUT= data set normally contains all of the variables in the input DATA= data set, plus the variables named in the PREDICTED= and RESIDUAL= options in the OUTPUT statement.

You can use an ID statement to restrict the variables that are copied from the input data set. If an ID statement is used, the OUT= data set contains only the BY variables (if any), the ID variables, the endogenous and lagged endogenous variables (if any), the exogenous variables, plus the PREDICTED $=$ and RESIDUAL $=$ variables.

The OUT= data set contains an observation for each observation in the DATA= data set. When the actual value of an endogenous variable is missing in the DATA= data set, or when the DATA= data set does not contain the endogenous variable, the corresponding residual is missing.

Printed Output

Structural Form

The following items are printed as they are read from the EST= input data set. Structural zeros are printed as dots in the listing of these matrices.

1. Structural Coefficients for Endogenous Variables. This is the \mathbf{G} matrix, with g rows and g columns.
2. Structural Coefficients for Lagged Endogenous Variables. These coefficients make up the C matrix, with g rows and l columns.
3. Structural Coefficients for Exogenous Variables. These coefficients make up the B matrix, with g rows and k columns.

Reduced Form

1. The reduced form coefficients are obtained by inverting \mathbf{G} so that the endogenous variables can be directly expressed as functions of only lagged endogenous and exogenous variables.
2. Inverse Coefficient Matrix for Endogenous Variables. This is the inverse of the \mathbf{G} matrix.
3. Reduced Form for Lagged Endogenous Variables. This is $\Pi_{1}=\mathbf{G}^{-1} \mathbf{C}$, with g rows and l columns. Each value is a dynamic multiplier that shows how past values of lagged endogenous variables affect values of each of the endogenous variables.
4. Reduced Form for Exogenous Variables. This is $\Pi_{2}=\mathbf{G}^{-1} \mathbf{B}$, with g rows and k columns. Its values are called impact multipliers because they show the immediate effect of each exogenous variable on the value of the endogenous variables.

Multipliers

Interim and total multipliers show the effect of a change in an exogenous variable over time.

1. Interim Multipliers. These are the interim multiplier matrices. They are formed by multiplying Π_{2} by powers of \mathbf{D}. The d th interim multiplier is $\mathbf{D}^{d} \Pi_{2}$. The interim multiplier of order d shows the effects of a change in the exogenous variables after d periods. Interim multipliers are only available if the maximum lag of the endogenous variables is 1 .
2. Total Multipliers. This is the matrix of total multipliers, $\mathrm{T}=(\mathbf{I}-\mathbf{D})^{-1} \Pi_{2}$. This matrix shows the cumulative effect of changes in the exogenous variables. Total multipliers are only available if the maximum lag is one.

Statistics of Fit

If the DATA = option is used and the DATA= data set contains endogenous variables, PROC SIMLIN prints a statistics-of-fit report for the simulation. The statistics printed include the following. (Summations are over the observations for which both y_{t} and \hat{y}_{t} are nonmissing.)

1. the number of nonmissing errors. (Number of observations for which both y_{t} and \hat{y}_{t} are nonmissing.)
2. the mean error: $\frac{1}{n} \sum\left(y_{t}-\hat{y}_{t}\right)$
3. the mean percent error: $\frac{100}{n} \sum \frac{\left(y_{t}-\hat{y}_{t}\right)}{y_{t}}$
4. the mean absolute error: $\frac{1}{n} \sum\left|y_{t}-\hat{y}_{t}\right|$
5. the mean absolute percent error $\frac{100}{n} \sum \frac{\left|y_{t}-\hat{y}_{t}\right|}{y_{t}}$
6. the root mean square error: $\sqrt{\frac{1}{n} \sum\left(y_{t}-\hat{y}_{t}\right)^{2}}$
7. the root mean square percent error: $\sqrt{\frac{100}{n} \sum\left(\frac{\left(y_{t}-\hat{y}_{t}\right)}{y_{t}}\right)^{2}}$

ODS Table Names

PROC SIMLIN assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 23.2 ODS Tables Produced in PROC SIMLIN

ODS Table Name	Description	Option
Endogenous	Structural Coefficients for Endogenous Vari- ables	default
LaggedEndogenous	Structural Coefficients for Lagged Endoge- nous Variables	default
Exogenous	Structural Coefficients for Exogenous Vari- ables	default
InverseCoeff	Inverse Coefficient Matrix for Endogenous	default
RedFormLagEndo	Variables	Reduced Form for Lagged Endogenous Vari- ables
default		
RedFormExog	Reduced Form for Exogenous Variables	default
InterimMult	Interim Multipliers	INTERIM=option
TotalMult	Total Multipliers	TOTAL=option
FitStatistics	Fit statistics	default

Examples: SIMLIN Procedure

Example 23.1: Simulating Klein's Model I

In this example, the SIMLIN procedure simulates a model of the U.S. economy called Klein's Model I. The SAS data set KLEIN is used as input to the SYSLIN and SIMLIN procedures.

```
data klein;
    input year c p w i x wp g t k wsum;
    date=mdy(1,1,year);
    format date year.;
    y = c + i + g - t;
    yr = year - 1931;
    klag = lag( k );
    plag = lag( p );
    xlag = lag( x );
    if year >= 1921;
    label c ='consumption'
        p ='profits'
        w ='private wage bill'
        i ='investment'
        k ='capital stock'
        y ='national income'
        x ='private production'
        wsum='total wage bill'
        wp ='govt wage bill'
        g ='govt demand'
        t ='taxes'
        klag='capital stock lagged'
        plag='profits lagged'
        xlag='private product lagged'
        yr ='year-1931';
datalines;
1920 . 12.7 . . 44.9 . . . 182.8
... more lines ...
```

First, the model is specified and estimated using the SYSLIN procedure, and the parameter estimates are written to an OUTEST= data set. The printed output produced by the SYSLIN procedure is not shown here; see Example 26.1 in Chapter 26 for the printed output of the PROC SYSLIN step.

```
title1 'Simulation of Klein''s Model I using SIMLIN';
proc syslin 3sls data=klein outest=a;
    instruments klag plag xlag wp g t yr;
    endogenous c p w i x wsum k y;
    consume: model c = p plag wsum;
    invest: model i = p plag klag;
    labor: model w = x xlag yr;
    product: identity x = c + i + g;
    income: identity y = c + i + g - t;
    profit: identity p = x - w - t;
    stock: identity k = klag + i;
    wage: identity wsum = w + wp;
run;
```

The OUTEST= data set A created by the SYSLIN procedure contains parameter estimates to be used by the SIMLIN procedure. The OUTEST= data set is shown in Output 23.1.1.

Output 23.1.1 The OUTEST= Data Set Created by PROC SYSLIN

Using the OUTEST= data set A produced by the SYSLIN procedure, the SIMLIN procedure can now compute the reduced form and simulate the model. The following statements perform the simulation.

```
title1 'Simulation of Klein''s Model I using SIMLIN';
proc simlin data=klein
    est=a type=3sls
    estprint
    total interim=2
    outest=b;
    endogenous c p w i x wsum k y;
    exogenous wp g t yr;
    lagged klag k 1 plag p 1 xlag x 1;
    id year;
    output out=c p=chat phat what ihat xhat wsumhat khat yhat
    r=cres pres wres ires xres wsumres kres yres;
run;
```

The reduced form coefficients and multipliers are added to the information read from EST= data set A and written to the OUTEST= data set B. The predicted and residual values from the simulation are written to the OUT= data set C specified in the OUTPUT statement.

The SIMLIN procedure first prints the structural coefficient matrices read from the EST= data set, as shown in Output 23.1.2 through Output 23.1.4.

Output 23.1.2 SIMLIN Procedure Output - Endogenous Structural Coefficients

ulation of Klein's Model I using SIMLI				
The SIMLIN Procedure				
Structural Coefficients for Endogenous Variables				
Variable	c	p	w	i
c	1.0000	-0.1249	.	.
i	.	0.0131	.	1.0000
w	.	.	1.0000	.
x	-1.0000	-	.	-1.0000
y	-1.0000	${ }^{\circ}$	${ }^{\circ}$	-1.0000
p	.	1.0000	1.0000	.
k		.	.	-1.0000
wsum		-	-1.0000	.
	ural Coe	nts for E	ous Varia	
Variable	x	wsum	k	y
c	.	-0.7901	.	.
i		.	.	.
w	-0.4005	-	.	.
x	1.0000	.	.	\cdot
y		.	.	1.0000
p	-1.0000	.	${ }^{\circ}$.
k	.	${ }^{\text {. }}$	1.0000	.
wsum	-	1.0000	.	.

Output 23.1.3 SIMLIN Procedure Output - Lagged Endogenous Structural Coefficients

Structural Coefficients for Lagged Endogenous Variables			
Variable	klag	plag	xlag
c	.	0.1631	.
i	-0.1948	0.7557	.
w	.	.	0.1813
x		.	.
y	.	.	.
p		.	
k	1.0000	.	.
wsum	.	.	

Output 23.1.4 SIMLIN Procedure Output - Exogenous Structural Coefficients

Variable	Structural Coefficients for Exogenous Variables				
	wp	g	t	yr	Intercept
c	.	.	.	-	16.4408
i	28.1778
w	-	-	-	0.1497	1.7972
x	.	1.0000	-	.	0
y	.	1.0000	-1.0000	.	0
p	.	.	-1.0000	-	0
k	-	.	.	.	0
wsum	1.0000	-	-	-	0

The SIMLIN procedure then prints the inverse of the endogenous variables coefficient matrix, as shown in Output 23.1.5.

Output 23.1.5 SIMLIN Procedure Output - Inverse Coefficient Matrix

Inverse Coefficient Matrix for Endogenous Variables				
Variable	C	i	w	x
c	1.6347	0.6347	1.0957	0.6347
p	0.9724	0.9724	-0.3405	0.9724
w	0.6496	0.6496	1.4406	0.6496
i	-0.0127	0.9873	0.004453	-0.0127
\mathbf{x}	1.6219	1.6219	1.1001	1.6219
wsum	0.6496	0.6496	1.4406	0.6496
k	-0.0127	0.9873	0.004453	-0.0127
Y	1.6219	1.6219	1.1001	0.6219
Inverse Coefficient Matrix for Endogenous Variables				
Variable	Y	p	k	wsum
C	0	0.1959	0	1.2915
P	0	1.1087	0	0.7682
w	0	0.0726	0	0.5132
i	0	-0.0145	0	-0.0100
\mathbf{x}	0	0.1814	0	1.2815
wsum	0	0.0726	0	1.5132
k	0	-0.0145	1.0000	-0.0100
Y	1.0000	0.1814	0	1.2815

The SIMLIN procedure next prints the reduced form coefficient matrices, as shown in Output 23.1.6.

Output 23.1.6 SIMLIN Procedure Output - Reduced Form Coefficients

Reduced Form for Lagged Endogenous Variables			
Variable	klag	plag	xlag
c	-0.1237	0.7463	0.1986
p	-0.1895	0.8935	-0.0617
w	-0.1266	0.5969	0.2612
i	-0.1924	0.7440	0.000807
x	-0.3160	1.4903	0.1994
wsum	-0.1266	0.5969	0.2612
k	0.8076	0.7440	0.000807
y	-0.3160	1.4903	0.1994

Output 23.1.6 continued

Variable	Reduced Form for Exogenous Variables				
	wp	g	t	yr	Intercept
C	1.2915	0.6347	-0.1959	0.1640	46.7273
p	0.7682	0.9724	-1.1087	-0.0510	42.7736
w	0.5132	0.6496	-0.0726	0.2156	31.5721
i	-0.0100	-0.0127	0.0145	0.000667	27.6184
x	1.2815	1.6219	-0.1814	0.1647	74.3457
wsum	1.5132	0.6496	-0.0726	0.2156	31.5721
k	-0.0100	-0.0127	0.0145	0.000667	27.6184
Y	1.2815	1.6219	-1.1814	0.1647	74.3457

The multiplier matrices (requested by the INTERIM=2 and TOTAL options) are printed next, as shown in Output 23.1.7 and Output 23.1.8.

Output 23.1.7 SIMLIN Procedure Output - Interim Multipliers

Variable	Interim Multipliers for Interim 1				
	wp	g	t	yr	Intercept
C	0.829130	1.049424	-0.865262	-. 0054080	43.27442
p	0.609213	0.771077	-0.982167	-. 0558215	28.39545
w	0.794488	1.005578	-0.710961	0.0125018	41.45124
i	0.574572	0.727231	-0.827867	-. 0379117	26.57227
\mathbf{x}	1.403702	1.776655	-1.693129	-. 0433197	69.84670
wsum	0.794488	1.005578	-0.710961	0.0125018	41.45124
k	0.564524	0.714514	-0.813366	-. 0372452	54.19068
Y	1.403702	1.776655	-1.693129	-. 0433197	69.84670
Interim Multipliers for Interim 2					
Variable	wp	g	t	yr	Intercept
c	0.663671	0.840004	-0.968727	-. 0456589	28.36428
p	0.350716	0.443899	-0.618929	-. 0401446	10.79216
w	0.658769	0.833799	-0.925467	-. 0399178	28.33114
i	0.345813	0.437694	-0.575669	-. 0344035	10.75901
\mathbf{x}	1.009485	1.277698	-1.544396	-. 0800624	39.12330
wsum	0.658769	0.833799	-0.925467	-. 0399178	28.33114
k	0.910337	1.152208	-1.389035	-. 0716486	64.94969
Y	1.009485	1.277698	-1.544396	-. 0800624	39.12330

Output 23.1.8 SIMLIN Procedure Output - Total Multipliers

Variable	Total Multipliers				
	wp	g	t	$\mathrm{y}^{\mathbf{r}}$	Intercept
c	1.881667	1.381613	-0.685987	0.1789624	41.3045
P	0.786945	0.996031	-1.286891	-. 0748290	15.4770
w	1.094722	1.385582	-0.399095	0.2537914	25.8275
i	0.000000	0.000000	-0.000000	0.0000000	0.0000
\mathbf{x}	1.881667	2.381613	-0.685987	0.1789624	41.3045
wsum	2.094722	1.385582	-0.399095	0.2537914	25.8275
k	2.999365	3.796275	-4.904859	-. 2852032	203.6035
Y	1.881667	2.381613	-1.685987	0.1789624	41.3045

The last part of the SIMLIN procedure output is a table of statistics of fit for the simulation, as shown in Output 23.1.9.

Output 23.1.9 SIMLIN Procedure Output - Simulation Statistics

Variable	Fit Statistics						
	N	Mean Error	Mean Pct Error	Mean Abs Error	Mean Abs Pct Error	RMS Error	RMS Pct Error
C	21	0.1367	-0.3827	3.5011	6.69769	4.3155	8.1701
p	21	0.1422	-4.0671	2.9355	19.61400	3.4257	26.0265
w	21	0.1282	-0.8939	3.1247	8.92110	4.0930	11.4709
i	21	0.1337	105.8529	2.4983	127.13736	2.9980	252.3497
\mathbf{x}	21	0.2704	-0.9553	5.9622	10.40057	7.1881	12.5653
wsum	21	0.1282	-0.6669	3.1247	7.88988	4.0930	10.1724
k	21	-0.1424	-0.1506	3.8879	1.90614	5.0036	2.4209
Y	21	0.2704	-1.3476	5.9622	11.74177	7.1881	14.2214

The OUTEST= output data set contains all the observations read from the EST= data set, and in addition contains observations for the reduced form and multiplier matrices. The following statements produce a partial listing of the OUTEST= data set, as shown in Output 23.1.10.

```
proc print data=b;
    where _type_ = 'REDUCED' | _type_ = 'IMULT1';
    run;
```

Output 23.1.10 Partial Listing of OUTEST= Data Set

The actual and predicted values for the variable C are plotted in Output 23.1.11.

```
title2 'Plots of Simulation Results';
proc sgplot data=c;
    scatter x=year y=c;
    series x=year y=chat / markers markerattrs=(symbol=plus);
    refline 1941.5 / axis=x;
run;
```

Output 23.1.11 Plot of Actual and Predicted Consumption

Example 23.2: Multipliers for a Third-Order System

This example shows how to fit and simulate a single equation dynamic model with third-order lags. It then shows how to convert the third-order equation into a three equation system with only firstorder lags, so that the SIMLIN procedure can compute multipliers. (See the section "Multipliers for Higher Order Lags" earlier in this chapter for more information.)

The input data set TEST is created from simulated data. A partial listing of the data set TEST produced by PROC PRINT is shown in Output 23.2.1.

Output 23.2.1 Partial Listing of Input Data Set

Obs	Simulate Equation with Third-Order Lags Listing of Simulated Input Data					
	Y	ylag1	ylag2	ylag3	x	n
1	8.2369	8.5191	6.9491	7.8800	-1.2593	1
2	8.6285	8.2369	8.5191	6.9491	-1.6805	2
3	10.2223	8.6285	8.2369	8.5191	-1.9844	3
4	10.1372	10.2223	8.6285	8.2369	-1.7855	4
5	10.0360	10.1372	10.2223	8.6285	-1.8092	5
6	10.3560	10.0360	10.1372	10.2223	-1.3921	6
7	11.4835	10.3560	10.0360	10.1372	-2.0987	7
8	10.8508	11.4835	10.3560	10.0360	-1.8788	8
9	11.2684	10.8508	11.4835	10.3560	-1.7154	9
10	12.6310	11.2684	10.8508	11.4835	-1.8418	10

The REG procedure processes the input data and writes the parameter estimates to the OUTEST= data set A.

```
title2 'Estimated Parameters';
proc reg data=test outest=a;
    model y=ylag3 x;
run;
title2 'Listing of OUTEST= Data Set';
proc print data=a;
run;
```

Output 23.2.2 shows the printed output produced by the REG procedure, and Output 23.2.3 displays the OUTEST= data set A produced.

Output 23.2.2 Estimates and Fit Information from PROC REG

Output 23.2.2 continued

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t	
Intercept	1	0.14239	0.23657	0.60	0.5523	
ylag3	1	0.77121	0.01723	44.77	<. 0001	
\times	1	-1.77668	0.10843	-16.39	<. 0001	

Output 23.2.3 The OUTEST= Data Set Created by PROC REG

Simulate Equation with Third-Order Lags Listing of OUTEST= Data Set								
Obs	_MODEL	_TYPE_	_DEPVAR	_RMSE	Intercept	ylag3	x	y
1	MODEL1	PARMS	y	0.22675	0.14239	0.77121	-1.77668	-1

The SIMLIN procedure processes the TEST data set using the estimates from PROC REG. The following statements perform the simulation and write the results to the OUT= data set OUT2.

```
title2 'Simulation of Equation';
proc simlin est=a data=test nored;
    endogenous y;
    exogenous x;
    lagged ylag3 y 3;
    id n;
    output out=out1 predicted=yhat residual=yresid;
run;
```

The printed output from the SIMLIN procedure is shown in Output 23.2.4.
Output 23.2.4 Output Produced by PROC SIMLIN

The following statements plot the actual and predicted values, as shown in Output 23.2.5.

```
title2 'Plots of Simulation Results';
proc sgplot data=out1;
```

```
    scatter x=n y=y;
    series x=n y=yhat / markers markerattrs=(symbol=plus);
run;
```

Output 23.2.5 Plot of Predicted and Actual Values

Next, the input data set TEST is modified by creating two new variables, YLAG1X and YLAG2X, that are equal to YLAG1 and YLAG2. These variables are used in the SYSLIN procedure. (The estimates produced by PROC SYSLIN are the same as before and are not shown.) A listing of the OUTEST= data set B created by PROC SYSLIN is shown in Output 23.2.6.

```
data test2;
    set test;
    ylag1x=ylag1;
    ylag2x=ylag2;
run;
title2 'Estimation of parameters and definition of identities';
proc syslin data=test2 outest=b;
    endogenous y ylag1x ylag2x;
    model y=ylag3 x;
    identity ylag1x=ylag1;
    identity ylag2x=ylag2;
run;
```

```
title2 'Listing of OUTEST= data set from PROC SYSLIN';
proc print data=b;
run;
```

Output 23.2.6 Listing of OUTEST= Data Set Created from PROC SYSLIN

Simulate Equation with Third-Order Lags Listing of OUTEST= data set from PROC SYSLIN															
								I							
			-		-	-		n							
			S		D	D	-	t							
	-		T	M	E		S	e						Y	Y
	T		A		P		I	r	Y			Y		1	1
	Y		T	D	V		G	c	1			1		a	a
0	P		U		A		M	e	a			a		g	g
b	E		S	L	R		A	p	g		g	g		1	2
s	-		-	-	-		-	t	3	\mathbf{x}	1	2	y	x	x
1	OLS	0	Conve	Y			0.22675	0.14239	0.77121	-1.77668			-1		
2	IDENTITY	0	Conve			ylag1x	-	0.00000	.	.	1	.	.	-1	.
3	IDENTITY	0	Conve			ylag2x	-	0.00000	-	-	.	1	.	.	-1

The SIMLIN procedure is used to compute the reduced form and multipliers. The OUTEST= data set B from PROC SYSLIN is used as the EST= data set for the SIMLIN procedure. The following statements perform the multiplier analysis.

```
title2 'Simulation of transformed first-order equation system';
proc simlin est=b data=test2 total interim=2;
    endogenous y ylag1x ylag2x;
    exogenous x;
    lagged ylag1 y 1 ylag2 ylag1x 1 ylag3 ylag2x 1;
    id n;
    output out=out2 predicted=yhat residual=yresid;
run;
```

Output 23.2.7 shows the interim 2 and total multipliers printed by the SIMLIN procedure.
Output 23.2.7 Interim 2 and Total Multipliers

Simulate Equation with Third-Order Lags

Simulation of transformed first-order equation system
The SIMLIN Procedure
Interim Multipliers for Interim 2

Variable

y
ylag1x
ylag2x

Output 23.2.7 continued

	Total Multipliers	
Variable		x
		Intercept
y	-7.765556	0.6223455
ylag1x	-7.765556	0.6223455
ylag2x	-7.765556	0.6223455

References

Maddala, G.S (1977), Econometrics, New York: McGraw-Hill Book Co.
Pindyck, R.S. and Rubinfeld, D.L. (1991), Econometric Models and Economic Forecasts, Third Edition, New York: McGraw-Hill Book Co.

Theil, H. (1971), Principles of Econometrics, New York: John Wiley \& Sons, Inc.

Chapter 24

The SPECTRA Procedure

Contents

Overview: SPECTRA Procedure . 1541
Getting Started: SPECTRA Procedure . 1543
Syntax: SPECTRA Procedure . 1544
Functional Summary . 1544
PROC SPECTRA Statement . 1545
BY Statement . 1546
VAR Statement . 1547
WEIGHTS Statement . 1547
Details: SPECTRA Procedure . 1548
Input Data . 1548
Missing Values . 1548
Computational Method . 1548
Kernels . 1549
White Noise Test . 1551
Transforming Frequencies . 1552
OUT= Data Set . 1552
Printed Output . 1554
ODS Table Names: SPECTRA procedure 1554
Examples: SPECTRA Procedure . 1555
Example 24.1: Spectral Analysis of Sunspot Activity 1555
Example 24.2: Cross-Spectral Analysis . 1562
References . 1565

Overview: SPECTRA Procedure

The SPECTRA procedure performs spectral and cross-spectral analysis of time series. You can use spectral analysis techniques to look for periodicities or cyclical patterns in data.

The SPECTRA procedure produces estimates of the spectral and cross-spectral densities of a multivariate time series. Estimates of the spectral and cross-spectral densities of a multivariate time series are produced using a finite Fourier transform to obtain periodograms and cross-periodograms. The
periodogram ordinates are smoothed by a moving average to produce estimated spectral and crossspectral densities. PROC SPECTRA can also test whether or not the data are white noise.

PROC SPECTRA uses the finite Fourier transform to decompose data series into a sum of sine and cosine waves of different amplitudes and wavelengths. The Fourier transform decomposition of the series x_{t} is

$$
x_{t}=\frac{a_{0}}{2}+\sum_{k=1}^{m}\left[a_{k} \cos \left(\omega_{k} t\right)+b_{k} \sin \left(\omega_{k} t\right)\right]
$$

where

t	is the time subscript $, t=1,2, \ldots, n$
x_{t}	are the equally spaced time series data
n	is the number of observations in the time series
m	is the number of frequencies in the Fourier decomposition: $m=\frac{n}{2}$ if n is even; $m=\frac{n-1}{2}$ if n is odd a_{0} a_{k}
b_{k}	is the mean term: $a_{0}=2 \bar{x}$
ω_{k}	are the cosine coefficients
are the sine coefficients	
are the Fourier frequencies: $\omega_{k}=\frac{2 \pi k}{n}$	

Functions of the Fourier coefficients a_{k} and b_{k} can be plotted against frequency or against wave length to form periodograms. The amplitude periodogram J_{k} is defined as follows:

$$
J_{k}=\frac{n}{2}\left(a_{k}^{2}+b_{k}^{2}\right)
$$

Several definitions of the term periodogram are used in the spectral analysis literature. The following discussion refers to the J_{k} sequence as the periodogram.

The periodogram can be interpreted as the contribution of the k th harmonic ω_{k} to the total sum of squares (in an analysis of variance sense) in the decomposition of the process into two-degree-offreedom components for each of the m frequencies. When n is even, $\sin \left(\omega_{\frac{n}{2}}\right)$ is zero, and thus the last periodogram value is a one-degree-of-freedom component.
The periodogram is a volatile and inconsistent estimator of the spectrum. The spectral density estimate is produced by smoothing the periodogram. Smoothing reduces the variance of the estimator but introduces a bias. The weight function used for the smoothing process, W() , often called the kernel or spectral window, is specified with the WEIGHTS statement. It is related to another weight function, $w()$, the lag window, that is used in other methods to taper the correlogram rather than to smooth the periodogram. Many specific weighting functions have been suggested in the literature (Fuller 1976, Jenkins and Watts 1968, Priestly 1981). Table 24.3 later in this chapter gives the relevant formulas when the WEIGHTS statement is used.

Letting i represent the imaginary unit $\sqrt{-1}$, the cross-periodogram is defined as follows:

$$
J_{k}^{x y}=\frac{n}{2}\left(a_{k}^{x} a_{k}^{y}+b_{k}^{x} b_{k}^{y}\right)+i \frac{n}{2}\left(a_{k}^{x} b_{k}^{y}-b_{k}^{x} a_{k}^{y}\right)
$$

The cross-spectral density estimate is produced by smoothing the cross-periodogram in the same way as the periodograms are smoothed using the spectral window specified by the WEIGHTS statement.

The SPECTRA procedure creates an output SAS data set whose variables contain values of the periodograms, cross-periodograms, estimates of spectral densities, and estimates of cross-spectral densities. The form of the output data set is described in the section "OUT= Data Set" on page 1552.

Getting Started: SPECTRA Procedure

To use the SPECTRA procedure, specify the input and output data sets and options for the analysis you want in the PROC SPECTRA statement, and list the variables to analyze in the VAR statement. The procedure produces no printed output unless the WHITETEST option is specified in the PROC SPECTRA statement. The periodogram, spectral density, and other results are written to the OUT= data set, depending on the options used.

For example, to compute the Fourier transform of a variable X in a data set A , use the following statements:

```
proc spectra data=a out=b coef;
    var x;
run;
```

This PROC SPECTRA step writes the Fourier coefficients a_{k} and b_{k} to the variables COS_01 and SIN_01 in the output data set B.

When a WEIGHTS statement is specified, the periodogram is smoothed by a weighted moving average to produce an estimate of the spectral density of the series. The following statements write a spectral density estimate for X to the variable $\mathrm{S}_{-} 01$ in the output data set B .

```
proc spectra data=a out=b s;
    var x;
    weights 1 2 3 4 3 2 1;
run;
```

When the VAR statement specifies more than one variable, you can perform cross-spectral analysis by specifying the CROSS option in the PROC SPECTRA statemnet. The CROSS option by itself produces the cross-periodograms for all two-way combinations of the variables listed in the VAR statement. For example, the following statements write the real and imaginary parts of the crossperiodogram of X and Y to the variables RP_01_02 and IP_01_02 in the output data set B .

```
proc spectra data=a out=b cross;
    var x y;
run;
```

To produce cross-spectral density estimates, specify both the CROSS option and the S option. The cross-periodogram is smoothed using the weights specified by the WEIGHTS statement in the same way as the spectral density. The squared coherency and phase estimates of the cross-spectrum are computed when the K and PH options are used.

The following example computes cross-spectral density estimates for the variables X and Y .

```
proc spectra data=a out=b cross s;
    var x y;
    weights 1 2 3 4 3 2 1;
run;
```

The real part and imaginary part of the cross-spectral density estimates are written to the variables CS_01_02 and QS_01_02, respectively.

Syntax: SPECTRA Procedure

The following statements are used with the SPECTRA procedure:
PROC SPECTRA options;
BY variables ;
VAR variables;
WEIGHTS < weights > < kernel> ;

Functional Summary

Table 24.1 summarizes the statements and options that control the SPECTRA procedure.

Table 24.1 SPECTRA Functional Summary

Description	Statement	Option
Statements specify BY-group processing specify the variables to be analyzed specify weights for spectral density estimates	BY	WEIGHTS

Table 24.1 continued

Description	Statement	Option
output the periodogram	PROC SPECTRA	P
output the spectral density estimates	PROC SPECTRA	S
output cross-spectral analysis results	PROC SPECTRA	CROSS
output squared coherency of the crossspectrum	PROC SPECTRA	K
output the phase of the cross-spectrum	PROC SPECTRA	PH
Smoothing Options		
specify the Bartlett kernel	WEIGHTS	BART
specify the Parzen kernel	WEIGHTS	PARZEN
specify the quadratic spectral kernel	WEIGHTS	QS
specify the Tukey-Hanning kernel	WEIGHTS	TUKEY
specify the truncated kernel	WEIGHTS	TRUNCAT
Other Options		
subtract the series mean	PROC SPECTRA	ADJMEAN
specify an alternate quadrature spectrum estimate	PROC SPECTRA	ALTW
request tests for white noise	PROC SPECTRA	WHITETEST

PROC SPECTRA Statement

PROC SPECTRA options;
The following options can be used in the PROC SPECTRA statement:

A

outputs the amplitude variables ($\mathrm{A} _n n _m m$) of the cross-spectrum.

ADJMEAN

CENTER

subtracts the series mean before performing the Fourier decomposition. This sets the first periodogram ordinate to 0 rather than $2 n$ times the squared mean. This option is commonly used when the periodograms are to be plotted to prevent a large first periodogram ordinate from distorting the scale of the plot.

ALTW

specifies that the quadrature spectrum estimate is computed at the boundaries in the same way as the spectral density estimate and the cospectrum estimate are computed.

COEF

outputs the Fourier cosine and sine coefficients of each series.

CROSS

is used with the P and S options to output cross-periodograms and cross-spectral densities when more than one variable is listed in the VAR statement.

DATA=SAS-data-set
names the SAS data set that contains the input data. If the DATA= option is omitted, the most recently created SAS data set is used.

K
outputs the squared coherency variables ($\mathrm{K} _n n _m m$) of the cross-spectrum. The $\mathrm{K} _n n _m m$ variables are identically 1 unless weights are given in the WEIGHTS statement and the S option is specified.

OUT=SAS-data-set

names the output data set created by PROC SPECTRA to store the results. If the OUT= option is omitted, the output data set is named by using the DATA n convention.

P
outputs the periodogram variables. The variables are named $\mathrm{P}_{_} n n$, where $n n$ is an index of the original variable with which the periodogram variable is associated. When both the P and CROSS options are specified, the cross-periodogram variables RP_nn_mm and IP_nn_mm are also output.

PH
outputs the phase variables ($\mathrm{PH} _n n _m m$) of the cross-spectrum.

S
outputs the spectral density estimates. The variables are named S_nn, where $n n$ is an index of the original variable with which the estimate variable is associated. When both the S and CROSS options are specified, the cross-spectral variables CS_nn _mm and QS_nn _mm are also output.

WHITETEST

prints two tests of the hypothesis that the data are white noise. See the section "White Noise Test" on page 1551 for details.

Note that the CROSS, A, K , and PH options are meaningful only if more than one variable is listed in the VAR statement.

BY Statement

BY variables ;

A BY statement can be used with PROC SPECTRA to obtain separate analyses for groups of observations defined by the BY variables.

VAR Statement

VAR variables ;

The VAR statement specifies one or more numeric variables that contain the time series to analyze. The order of the variables in the VAR statement list determines the index, $n n$, used to name the output variables. The VAR statement is required.

WEIGHTS Statement

WEIGHTS weight-constants | kernel-specification;

The WEIGHTS statement specifies the relative weights used in the moving average applied to the periodogram ordinates to form the spectral density estimates. A WEIGHTS statement must be used to produce smoothed spectral density estimates. You can specify the relative weights in two ways: you can specify them explicitly as explained in the section "Using Weight Constants Specification" on page 1547 , or you can specify them implicitly by using the kernel specification as explained in the section "Using Kernel Specifications" on page 1547. If the WEIGHTS statement is not used, only the periodogram is produced.

Using Weight Constants Specification

Any number of weighting constants can be specified. The constants should be positive and symmetric about the middle weight. The middle constant (or the constant to the right of the middle if an even number of weight constants are specified) is the relative weight of the current periodogram ordinate. The constant immediately following the middle one is the relative weight of the next periodogram ordinate, and so on. The actual weights used in the smoothing process are the weights specified in the WEIGHTS statement scaled so that they sum to $\frac{1}{4 \pi}$.

The moving average reflects at each end of the periodogram. The first periodogram ordinate is not used; the second periodogram ordinate is used in its place.

For example, a simple triangular weighting can be specified using the following WEIGHTS statement:

```
weights 1 2 3 2 1;
```


Using Kernel Specifications

You can specify five different kernels in the WEIGHTS statement. The syntax for the statement is

WEIGHTS [PARZEN][BART][TUKEY][TRUNCAT][QS][ce] ;

where $c>=0$ and $e>=0$ are used to compute the bandwidth parameter as

$$
1(q)=c q^{e}
$$

and q is the number of periodogram ordinates +1 :

$$
q=\text { floor }(n / 2)+1
$$

To specify the bandwidth explicitly, set $c=$ to the desired bandwidth and $e=0$.
For example, a Parzen kernel can be specified using the following WEIGHTS statement:

```
weights parzen 0.5 0;
```

For details, see the section "Kernels" on page 1549.

Details: SPECTRA Procedure

Input Data

Observations in the data set analyzed by the SPECTRA procedure should form ordered, equally spaced time series. No more than 99 variables can be included in the analysis.

Data are often detrended before analysis by the SPECTRA procedure. This can be done by using the residuals output by a SAS regression procedure. Optionally, the data can be centered using the ADJMEAN option in the PROC SPECTRA statement, since the zero periodogram ordinate corresponding to the mean is of little interest from the point of view of spectral analysis.

Missing Values

Missing values are excluded from the analysis by the SPECTRA procedure. If the SPECTRA procedure encounters missing values for any variable listed in the VAR statement, the procedure determines the longest contiguous span of data that has no missing values for the variables listed in the VAR statement and uses that span for the analysis.

Computational Method

If the number of observations n factors into prime integers that are less than or equal to 23 , and the product of the square-free factors of n is less than 210, then PROC SPECTRA uses the fast

Fourier transform developed by Cooley and Tukey and implemented by Singleton (1969). If n cannot be factored in this way, then PROC SPECTRA uses a Chirp-Z algorithm similar to that proposed by Monro and Branch (1976). To reduce memory requirements, when n is small, the Fourier coefficients are computed directly using the defining formulas.

Kernels

Kernels are used to smooth the periodogram by using a weighted moving average of nearby points. A smoothed periodogram is defined by the following equation.

$$
\hat{J}_{i}(1(q))=\sum_{\tau=-1(q)}^{1(q)} \mathrm{w}\left(\frac{\tau}{1(q)}\right) \tilde{J}_{i+\tau}
$$

where $\mathrm{w}(x)$ is the kernel or weight function. At the endpoints, the moving average is computed cyclically; that is,

$$
\tilde{J}_{i+\tau}= \begin{cases}J_{i+\tau} & 0<=i+\tau<=q \\ J_{-(i+\tau)} & i+\tau<0 \\ J_{q-(i+\tau)} & i+\tau>q\end{cases}
$$

The SPECTRA procedure supports the following kernels. They are listed with their default bandwidth functions.

Bartlett: KERNEL BART

$$
\begin{aligned}
\mathrm{w}(x) & = \begin{cases}1-|x| & |x| \leq 1 \\
0 & \text { otherwise }\end{cases} \\
1(q) & =\frac{1}{2} q^{1 / 3}
\end{aligned}
$$

Parzen: KERNEL PARZEN

$$
\begin{aligned}
\mathrm{w}(x) & = \begin{cases}1-6|x|^{2}+6|x|^{3} & 0 \leq|x| \leq \frac{1}{2} \\
2(1-|x|)^{3} & \frac{1}{2} \leq|x| \leq 1 \\
0 & \text { otherwise }\end{cases} \\
\mathrm{l}(q) & =q^{1 / 5}
\end{aligned}
$$

Quadratic spectral: KERNEL QS

$$
\begin{aligned}
\mathrm{w}(x) & =\frac{25}{12 \pi^{2} x^{2}}\left(\frac{\sin (6 \pi x / 5)}{6 \pi x / 5}-\cos (6 \pi x / 5)\right) \\
\mathrm{l}(q) & =\frac{1}{2} q^{1 / 5}
\end{aligned}
$$

Tukey-Hanning: KERNEL TUKEY

$$
\begin{aligned}
\mathrm{w}(x) & = \begin{cases}(1+\cos (\pi x)) / 2 & |x| \leq 1 \\
0 & \text { otherwise }\end{cases} \\
\mathrm{l}(q) & =\frac{2}{3} q^{1 / 5}
\end{aligned}
$$

Truncated: KERNEL TRUNCAT

$$
\begin{aligned}
\mathrm{w}(x) & = \begin{cases}1 & |x| \leq 1 \\
0 & \text { otherwise }\end{cases} \\
1(q) & =\frac{1}{4} q^{1 / 5}
\end{aligned}
$$

A summary of the default values of the bandwidth parameters, c and e , associated with the kernel smoothers in PROC SPECTRA are listed below in Table 24.2:

Table 24.2 Bandwidth Parameters

Kernel	c	e
Bartlett	$1 / 2$	$1 / 3$
Parzen	1	$1 / 5$
quadratic	$1 / 2$	$1 / 5$
Tukey-Hanning	$2 / 3$	$1 / 5$
truncated	$1 / 4$	$1 / 5$

Figure 24.1 Kernels for Smoothing

See Andrews (1991) for details about the properties of these kernels.

White Noise Test

PROC SPECTRA prints two test statistics for white noise when the WHITETEST option is specified: Fisher's Kappa (Davis 1941, Fuller 1976) and Bartlett's Kolmogorov-Smirnov statistic (Bartlett 1966, Fuller 1976, Durbin 1967).

If the time series is a sequence of independent random variables with mean 0 and variance σ^{2}, then the periodogram, J_{k}, will have the same expected value for all k. For a time series with nonzero autocorrelation, each ordinate of the periodogram, J_{k}, will have different expected values. The Fisher's Kappa statistic tests whether the largest J_{k} can be considered different from the mean of the J_{k}. Critical values for the Fisher's Kappa test can be found in Fuller 1976.

The Kolmogorov-Smirnov statistic reported by PROC SPECTRA has the same asymptotic distribution as Bartlett's test (Durbin 1967). The Kolmogorov-Smirnov statistic compares the normalized cumulative periodogram with the cumulative distribution function of a uniform $(0,1)$ random variable. The normalized cumulative periodogram, F_{j}, of the series is

$$
F_{j}=\frac{\sum_{k=1}^{j} J_{k}}{\sum_{k=1}^{m} J_{k}}, j=1,2 \ldots, m-1
$$

where $m=\frac{n}{2}$ if n is even or $m=\frac{n-1}{2}$ if n is odd. The test statistic is the maximum absolute difference of the normalized cumulative periodogram and the uniform cumulative distribution function. Approximate p-values for Bartlett's Kolmogorov-Smirnov test statistics are provided with the test statistics. Small p-values cause you to reject the null-hypothesis that the series is white noise.

Transforming Frequencies

The variable FREQ in the data set created by the SPECTRA procedure ranges from 0 to π. Sometimes it is preferable to express frequencies in cycles per observation period, which is equal to $\frac{2}{\pi}$ FREQ.

To express frequencies in cycles per unit time (for example, in cycles per year), multiply FREQ by $\frac{d}{2 \pi}$, where d is the number of observations per unit of time. For example, for monthly data, if the desired time unit is years then d is 12 . The period of the cycle is $\frac{2 \pi}{d \times \text { FREQ }}$, which ranges from $\frac{2}{d}$ to infinity.

OUT= Data Set

The OUT $=$ data set contains $\frac{n}{2}+1$ observations, if n is even, or $\frac{n+1}{2}$ observations, if n is odd, where n is the number of observations in the time series or the span of data being analyzed if missing values are present in the data. See the section "Missing Values" on page 1548 for details.

The variables in the new data set are named according to the following conventions. Each variable to be analyzed is associated with an index. The first variable listed in the VAR statement is indexed as 01 , the second variable as 02 , and so on. Output variables are named by combining indexes with prefixes. The prefix always identifies the nature of the new variable, and the indices identify the original variables from which the statistics were obtained.

Variables that contain spectral analysis results have names that consist of a prefix, an underscore, and the index of the variable analyzed. For example, the variable S_01 contains spectral density estimates for the first variable in the VAR statement. Variables that contain cross-spectral analysis results have names that consist of a prefix, an underscore, the index of the first variable, another underscore, and the index of the second variable. For example, the variable A_01_02 contains the amplitude of the cross-spectral density estimate for the first and second variables in the VAR statement.

Table 24.3 shows the formulas and naming conventions used for the variables in the OUT= data set. Let X be variable number $n n$ in the VAR statement list and let Y be variable number $m m$ in the VAR statement list. Table 24.3 shows the output variables that contain the results of the spectral and cross-spectral analysis of X and Y.

In Table 24.3 the following notation is used. Let W_{j} be the vector of $2 p+1$ smoothing weights given by the WEIGHTS statement, normalized to sum to $\frac{1}{4 \pi}$. Note that the weights are either explicitly provided using the constant specification or are implicitly determined by the kernel specification in the WEIGHTS statement.

The subscript of W_{j} runs from W_{-p} to W_{p}, so that W_{0} is the middle weight in the list. Let $\omega_{k}=\frac{2 \pi k}{n}$, where $k=0,1, \ldots$, floor $\left(\frac{n}{2}\right)$.

Table 24.3 Variables Created by PROC SPECTRA
Variable Description

FREQ frequency in radians from 0 to π
(Note: Cycles per observation is $\frac{\text { FREQ }}{2 \pi}$.)
PERIOD period or wavelength: $\frac{2 \pi}{\text { FREQ }}$
(Note: PERIOD is missing for FREQ=0.)
COS_nn cosine transform of X:
$a_{k}^{x}=\frac{2}{n} \sum_{t=1}^{n} X_{t} \cos \left(\omega_{k}(t-1)\right)$
SIN_nn \quad sine transform of X: $b_{k}^{x}=\frac{2}{n} \sum_{t=1}^{n} X_{t} \sin \left(\omega_{k}(t-1)\right)$
P_nn periodogram of X: $J_{k}^{x}=\frac{n}{2}\left[\left(a_{k}^{x}\right)^{2}+\left(b_{k}^{x}\right)^{2}\right]$
S_nn spectral density estimate of X:
$F_{k}^{x}=\sum_{j=-p}^{p} W_{j} J_{k+j}^{x}$
(except across endpoints)
RP_nn_mm real part of cross-periodogram X and Y : $\operatorname{real}\left(J_{k}^{x y}\right)=\frac{n}{2}\left(a_{k}^{x} a_{k}^{y}+b_{k}^{x} b_{k}^{y}\right)$

IP_nn _mm imaginary part of cross-periodogram of X and Y :
$\operatorname{imag}\left(J_{k}^{x y}\right)=\frac{n}{2}\left(a_{k}^{x} b_{k}^{y}-b_{k}^{x} a_{k}^{y}\right)$
CS_nn _mm cospectrum estimate (real part of cross-spectrum) of X and Y :
$C_{k}^{x y}=\sum_{j=-p}^{p} W_{j}$ real $\left(J_{k+j}^{x y}\right)($ except across endpoints)

QS_nn_mm quadrature spectrum estimate (imaginary part of cross-spectrum) of X and Y:
$Q_{k}^{x y}=\sum_{j=-p}^{p} W_{j} \operatorname{imag}\left(J_{k+j}^{x y}\right)($ except across endpoints)

A_nn _mm amplitude (modulus) of cross-spectrum of X and Y :
$A_{k}^{x y}=\sqrt{\left(C_{k}^{x y}\right)^{2}+\left(Q_{k}^{x y}\right)^{2}}$
K_nn_mm coherency squared of X and Y : $K_{k}^{x y}=\left(A_{k}^{x y}\right)^{2} /\left(F_{k}^{x} F_{k}^{y}\right)$

PH_nn_mm phase spectrum in radians of X and Y : $\Phi_{k}^{x y}=\arctan \left(Q_{k}^{x y} / C_{k}^{x y}\right)$

Printed Output

By default PROC SPECTRA produces no printed output.
When the WHITETEST option is specified, the SPECTRA procedure prints the following statistics for each variable in the VAR statement:

1. the name of the variable
2. M-1, the number of two-degree-of-freedom periodogram ordinates used in the test
3. $\operatorname{MAX}\left(\mathrm{P}\left({ }^{*}\right)\right)$, the maximum periodogram ordinate
4. $\operatorname{SUM}\left(\mathrm{P}^{(*)}\right)$, the sum of the periodogram ordinates
5. Fisher's Kappa statistic
6. Bartlett's Kolmogorov-Smirnov test statistic
7. Approximate p-value for Bartlett's Kolmogorov-Smirnov test statistic

See the section "White Noise Test" on page 1551 for details.

ODS Table Names: SPECTRA procedure

PROC SPECTRA assigns a name to each table it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 24.4 ODS Tables Produced in PROC SPECTRA

ODS Table Name	Description	Option
WhiteNoiseTest	white noise test	WHITETEST
Kappa	Fishers Kappa statistic	WHITETEST
Bartlett	Bartletts Kolmogorov-Smirnov statistic	WHITETEST

Examples: SPECTRA Procedure

Example 24.1: Spectral Analysis of Sunspot Activity

This example analyzes Wolfer's sunspot data (Anderson 1971). The following statements read and plot the data.

```
title "Wolfer's Sunspot Data";
data sunspot;
    input year wolfer @@;
datalines;
... more lines ...
proc sgplot data=sunspot;
    series x=year y=wolfer / markers markerattrs=(symbol=circlefilled);
    xaxis values=(1740 to 1930 by 10);
    yaxis values=(0 to 1600 by 200);
run;
```

The plot of the sunspot series is shown in Output 24.1.1.

Output 24.1.1 Plot of Original Sunspot Data

The spectral analysis of the sunspot series is performed by the following statements:

```
proc spectra data=sunspot out=b p s adjmean whitetest;
    var wolfer;
    weights 1 2 3 4 3 2 1;
run;
proc print data=b(obs=12);
run;
```

The PROC SPECTRA statement specifies the P and S options to write the periodogram and spectral density estimates to the OUT= data set B. The WEIGHTS statement specifies a triangular spectral window for smoothing the periodogram to produce the spectral density estimate. The ADJMEAN option zeros the frequency 0 value and avoids the need to exclude that observation from the plots. The WHITETEST option prints tests for white noise.

The Fisher's Kappa test statistic of 16.070 is larger than the 5% critical value of 7.2 , so the null hypothesis that the sunspot series is white noise is rejected (see the table of critical values in Fuller (1976)).

The Bartlett's Kolmogorov-Smirnov statistic is 0.6501 , and its approximate p-value is <0.0001. The small p-value associated with this test leads to the rejection of the null hypothesis that the spectrum represents white noise.

The printed output produced by PROC SPECTRA is shown in Output 24.1.2. The output data set B created by PROC SPECTRA is shown in part in Output 24.1.3.

Output 24.1.2 White Noise Test Results

	Wolfer's Sunspot Data The SPECTRA Procedure Test for White Noise for Variable wolfer Fisher's Kappa: (M-1) *Max ($\mathrm{P}(*)$)/Sum ($\mathrm{P}(*)$) Kappa 16.70489 Bartlett's Kolmogorov-Smirnov Statistic: Maximum absolute difference of the standardized partial sums of the periodogram and the CDF of a uniform (0,1) random variable. Test Statistic Approximate P-Value $\begin{array}{r} 0.650055 \\ <.0001 \end{array}$

Output 24.1.3 First 12 Observations of the OUT= Data Set

Wolfer's Sunspot Data				
Obs	FREQ	PERIOD	P_01	S_01
1	0.00000	.	0.00	59327.52
2	0.03570	176.000	3178.15	61757.98
3	0.07140	88.000	2435433.22	69528.68
4	0.10710	58.667	1077495.76	66087.57
5	0.14280	44.000	491850.36	53352.02
6	0.17850	35.200	2581.12	36678.14
7	0.21420	29.333	181163.15	20604.52
8	0.24990	25.143	283057.60	15132.81
9	0.28560	22.000	188672.97	13265.89
10	0.32130	19.556	122673.94	14953.32
11	0.35700	17.600	58532.93	16402.84
12	0.39270	16.000	213405.16	18562.13

The following statements plot the periodogram and spectral density estimate by the frequency and period.

```
proc sgplot data=b;
    series x=freq y=p_01 / markers markerattrs=(symbol=circlefilled);
run;
```

```
proc sgplot data=b;
    series x=period y=p_01 / markers markerattrs=(symbol=circlefilled);
run;
proc sgplot data=b;
    series x=freq y=s_01 / markers markerattrs=(symbol=circlefilled);
run;
proc sgplot data=b;
    series x=period y=s_01 / markers markerattrs=(symbol=circlefilled);
run;
```

The periodogram is plotted against the frequency in Output 24.1.4 and plotted against the period in Output 24.1.5. The spectral density estimate is plotted against the frequency in Output 24.1.6 and plotted against the period in Output 24.1.7.

Output 24.1.4 Plot of Periodogram by Frequency

Output 24.1.5 Plot of Periodogram by Period

Output 24.1.6 Plot of Spectral Density Estimate by Frequency

Output 24.1.7 Plot of Spectral Density Estimate by Period

Since PERIOD is the reciprocal of frequency, the plot axis for PERIOD is stretched for low frequencies and compressed at high frequencies. One way to correct for this is to use a WHERE statement to restrict the plots and exclude the low frequency components. The following statements plot the spectral density for periods less than 50 .

```
proc sgplot data=b;
    where period < 50;
    series x=period y=s_01 / markers markerattrs=(symbol=circlefilled);
    refline 11 / axis=x;
run;
```

The spectral analysis of the sunspot series confirms a strong 11-year cycle of sunspot activity. The plot makes this clear by drawing a reference line at the 11 year period, which highlights the position of the main peak in the spectral density.

Output 24.1.8 shows the plot. Contrast Output 24.1.8 with Output 24.1.7.

Output 24.1.8 Plot of Spectral Density Estimate by Period to 50 Years

Example 24.2: Cross-Spectral Analysis

This example uses simulated data to show cross-spectral analysis for two variables X and $\mathrm{Y} . \mathrm{X}$ is generated by an $\operatorname{AR}(1)$ process; Y is generated as white noise plus an input from X lagged 2 periods. All output options are specified in the PROC SPECTRA statement. PROC CONTENTS shows the contents of the OUT= data set.

```
data a;
    xl = 0; xll = 0;
    do i = - 10 to 100;
        x = .4 * xl + rannor(123);
        y = .5 * xll + rannor(123);
        if i > O then output;
        xll = xl; xl = x;
    end;
run;
proc spectra data=a out=b cross coef a k p ph s;
    var x y;
```

```
    weights 1 1.5 2 4 8 9 8 4 2 1.5 1;
run;
proc contents data=b position;
run;
```

The PROC CONTENTS report for the output data set B is shown in Output 24.2.1.
Output 24.2.1 Contents of PROC SPECTRA OUT= Data Set

The following statements plot the amplitude of the cross-spectrum estimate against frequency and against period for periods less than 25 .

```
proc sgplot data=b;
    series x=freq y=a_01_02 / markers markerattrs=(symbol=circlefilled);
    xaxis values=(0 to 4 by 1);
run;
```

The plot of the amplitude of the cross-spectrum estimate against frequency is shown in Output 24.2.2.

Output 24.2.2 Plot of Cross-Spectrum Amplitude by Frequency

The plot of the cross-spectrum amplitude against period for periods less than 25 observations is shown in Output 24.2.3.

```
proc sgplot data=b;
    where period < 25;
    series x=period y=a_01_02 / markers markerattrs=(symbol=circlefilled);
    xaxis values=(0 to 30 by 5);
run;
```

Output 24.2.3 Plot of Cross-Spectrum Amplitude by Period

References

Anderson, T. W. (1971), The Statistical Analysis of Time Series, New York: John Wiley \& Sons.
Andrews, D. W. K. (1991), "Heteroscedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, 59 (3), 817-858.

Bartlett, M. S. (1966), An Introduction to Stochastic Processes, Second Edition, Cambridge: Cambridge University Press.

Brillinger, D. R. (1975), Time Series: Data Analysis and Theory, New York: Holt, Rinehart and Winston, Inc.

Davis, H. T. (1941), The Analysis of Economic Time Series, Bloomington, IN: Principia Press.
Durbin, J. (1967), "Tests of Serial Independence Based on the Cumulated Periodogram," Bulletin of Int. Stat. Inst., 42, 1039-1049.

Fuller, W. A. (1976), Introduction to Statistical Time Series, New York: John Wiley \& Sons.

Gentleman, W. M. and Sande, G. (1966), "Fast Fourier Transforms-for Fun and Profit," AFIPS Proceedings of the Fall Joint Computer Conference, 19, 563-578.

Jenkins, G. M. and Watts, D. G. (1968), Spectral Analysis and Its Applications, San Francisco: Holden-Day.

Miller, L. H. (1956), "Tables of Percentage Points of Kolmogorov Statistics," Journal of American Statistical Association, 51, 111.

Monro, D. M. and Branch, J. L. (1976), "Algorithm AS 117. The Chirp Discrete Fourier Transform of General Length," Applied Statistics, 26, 351-361.

Nussbaumer, H. J. (1982), Fast Fourier Transform and Convolution Algorithms, Second Edition, New York: Springer-Verlag.

Owen, D. B. (1962), Handbook of Statistical Tables, Addison Wesley.
Parzen, E. (1957), "On Consistent Estimates of the Spectrum of a Stationary Time Series," Annals of Mathematical Statistics, 28, 329-348.

Priestly, M. B. (1981), Spectral Analysis and Time Series, New York: Academic Press, Inc.
Singleton, R. C. (1969), "An Algorithm for Computing the Mixed Radix Fast Fourier Transform," I.E.E.E. Transactions of Audio and Electroacoustics, AU-17, 93-103.

Chapter 25

The STATESPACE Procedure

Contents

Overview: STATESPACE Procedure . 1568
The State Space Model . 1568
How PROC STATESPACE Works . 1569
Getting Started: STATESPACE Procedure . 1570
Automatic State Space Model Selection . 1571
Specifying the State Space Model . 1578
Syntax: STATESPACE Procedure . 1580
Functional Summary . 1581
PROC STATESPACE Statement . 1582
BY Statement . 1586
FORM Statement . 1586
ID Statement . 1586
INITIAL Statement . 1587
RESTRICT Statement . 1587
VAR Statement . 1587
Details: STATESPACE Procedure . 1588
Missing Values . 1588
Stationarity and Differencing . 1588
Preliminary Autoregressive Models . 1590
Canonical Correlation Analysis . 1593
Parameter Estimation . 1596
Forecasting . 1597
Relation of ARMA and State Space Forms 1599
OUT= Data Set . 1601
OUTAR= Data Set . 1601
OUTMODEL= Data Set . 1602
Printed Output . 1603
ODS Table Names . 1605
Examples: STATESPACE Procedure . 1605
Example 25.1: Series J from Box and Jenkins 1605
References . 1611

Overview: STATESPACE Procedure

The STATESPACE procedure uses the state space model to analyze and forecast multivariate time series. The STATESPACE procedure is appropriate for jointly forecasting several related time series that have dynamic interactions. By taking into account the autocorrelations among all the variables in a set, the STATESPACE procedure can give better forecasts than methods that model each series separately.

By default, the STATESPACE procedure automatically selects a state space model appropriate for the time series, making the procedure a good tool for automatic forecasting of multivariate time series. Alternatively, you can specify the state space model by giving the form of the state vector and the state transition and innovation matrices.

The methods used by the STATESPACE procedure assume that the time series are jointly stationary. Nonstationary series must be made stationary by some preliminary transformation, usually by differencing. The STATESPACE procedure enables you to specify differencing of the input data. When differencing is specified, the STATESPACE procedure automatically integrates forecasts of the differenced series to produce forecasts of the original series.

The State Space Model

The state space model represents a multivariate time series through auxiliary variables, some of which might not be directly observable. These auxiliary variables are called the state vector. The state vector summarizes all the information from the present and past values of the time series that is relevant to the prediction of future values of the series. The observed time series are expressed as linear combinations of the state variables. The state space model is also called a Markovian representation, or a canonical representation, of a multivariate time series process. The state space approach to modeling a multivariate stationary time series is summarized in Akaike (1976).

The state space form encompasses a very rich class of models. Any Gaussian multivariate stationary time series can be written in a state space form, provided that the dimension of the predictor space is finite. In particular, any autoregressive moving average (ARMA) process has a state space representation and, conversely, any state space process can be expressed in an ARMA form (Akaike 1974). More details on the relation of the state space and ARMA forms are given in the section "Relation of ARMA and State Space Forms" on page 1599.

Let \mathbf{x}_{t} be the $r \times 1$ vector of observed variables, after differencing (if differencing is specified) and subtracting the sample mean. Let \mathbf{z}_{t} be the state vector of dimension $s, s \geq r$, where the first r components of \mathbf{z}_{t} consist of \mathbf{x}_{t}. Let the notation $\mathbf{x}_{t+k \mid t}$ represent the conditional expectation (or prediction) of \mathbf{x}_{t+k} based on the information available at time t. Then the last $s-r$ elements of \mathbf{z}_{t} consist of elements of $\mathbf{x}_{t+k \mid t}$, where $k>0$ is specified or determined automatically by the procedure.

There are various forms of the state space model in use. The form of the state space model used by the STATESPACE procedure is based on Akaike (1976). The model is defined by the following
state transition equation :

$$
\mathbf{z}_{t+1}=\mathbf{F z}_{t}+\mathbf{G e}_{t+1}
$$

In the state transition equation, the $s \times s$ coefficient matrix \mathbf{F} is called the transition matrix; it determines the dynamic properties of the model.

The $s \times r$ coefficient matrix \mathbf{G} is called the input matrix; it determines the variance structure of the transition equation. For model identification, the first r rows and columns of \mathbf{G} are set to an $r \times r$ identity matrix.

The input vector \mathbf{e}_{t} is a sequence of independent normally distributed random vectors of dimension r with mean $\mathbf{0}$ and covariance matrix $\Sigma_{\text {ee }}$. The random error \mathbf{e}_{t} is sometimes called the innovation vector or shock vector.

In addition to the state transition equation, state space models usually include a measurement equation or observation equation that gives the observed values \mathbf{x}_{t} as a function of the state vector \mathbf{z}_{t}. However, since PROC STATESPACE always includes the observed values \mathbf{x}_{t} in the state vector \mathbf{z}_{t}, the measurement equation in this case merely represents the extraction of the first r components of the state vector.

The measurement equation used by the STATESPACE procedure is

$$
\mathbf{x}_{t}=\left[\mathbf{I}_{r} \mathbf{0}\right] \mathbf{z}_{t}
$$

where \mathbf{I}_{r} is an $r \times r$ identity matrix. In practice, PROC STATESPACE performs the extraction of \mathbf{x}_{t} from \mathbf{z}_{t} without reference to an explicit measurement equation.

In summary:

\mathbf{x}_{t}	is an observation vector of dimension r.
\mathbf{z}_{t}	is a state vector of dimension s, whose first r elements are \mathbf{x}_{t} and whose last $s-r$ elements are conditional prediction of future \mathbf{x}_{t}.
\mathbf{F}	is an $s \times s$ transition matrix.
\mathbf{G}	is an $s \times r$ input matrix, with the identity matrix \mathbf{I}_{r} forming the first r rows and columns.
\mathbf{e}_{t}	is a sequence of independent normally distributed random vectors of dimension r with mean $\mathbf{0}$ and covariance matrix $\Sigma_{\text {ee }}$.

How PROC STATESPACE Works

The design of the STATESPACE procedure closely follows the modeling strategy proposed by Akaike (1976). This strategy employs canonical correlation analysis for the automatic identification of the state space model.

Following Akaike (1976), the procedure first fits a sequence of unrestricted vector autoregressive (VAR) models and computes Akaike's information criterion (AIC) for each model. The vector
autoregressive models are estimated using the sample autocovariance matrices and the Yule-Walker equations. The order of the VAR model that produces the smallest Akaike information criterion is chosen as the order (number of lags into the past) to use in the canonical correlation analysis.

The elements of the state vector are then determined via a sequence of canonical correlation analyses of the sample autocovariance matrices through the selected order. This analysis computes the sample canonical correlations of the past with an increasing number of steps into the future. Variables that yield significant correlations are added to the state vector; those that yield insignificant correlations are excluded from further consideration. The importance of the correlation is judged on the basis of another information criterion proposed by Akaike. See the section "Canonical Correlation Analysis Options" on page 1583 for details. If you specify the state vector explicitly, these model identification steps are omitted.

After the state vector is determined, the state space model is fit to the data. The free parameters in the \mathbf{F}, \mathbf{G}, and $\boldsymbol{\Sigma}_{\text {ee }}$ matrices are estimated by approximate maximum likelihood. By default, the \mathbf{F} and \mathbf{G} matrices are unrestricted, except for identifiability requirements. Optionally, conditional least squares estimates can be computed. You can impose restrictions on elements of the \mathbf{F} and \mathbf{G} matrices.

After the parameters are estimated, the Kalman filtering technique is used to produce forecasts from the fitted state space model. If differencing was specified, the forecasts are integrated to produce forecasts of the original input variables.

Getting Started: STATESPACE Procedure

The following introductory example uses simulated data for two variables X and Y . The following statements generate the X and Y series.

```
data in;
    x=10; y=40;
    x1=0; y1=0;
    a1=0; b1=0;
    iseed=123;
    do t=-100 to 200;
        a=rannor(iseed);
        b=rannor(iseed);
        dx = 0.5*x1 + 0.3*y1 + a - 0.2*a1 - 0.1*b1;
        dy = 0.3*x1 + 0.5*y1 + b;
        x = x + dx + . 25;
        y = y + dy + . 25;
        if t >= 0 then output;
        x1 = dx; y1 = dy;
        a1 = a; b1 = b;
    end;
    keep t x y;
run;
```

The simulated series X and Y are shown in Figure 25.1.

Figure 25.1 Example Series

Automatic State Space Model Selection

The STATESPACE procedure is designed to automatically select the best state space model for forecasting the series. You can specify your own model if you want, and you can use the output from PROC STATESPACE to help you identify a state space model. However, the easiest way to use PROC STATESPACE is to let it choose the model.

Stationarity and Differencing

Although PROC STATESPACE selects the state space model automatically, it does assume that the input series are stationary. If the series are nonstationary, then the process might fail. Therefore the first step is to examine your data and test to see if differencing is required. (See the section "Stationarity and Differencing" on page 1588 for further discussion of this issue.)

The series shown in Figure 25.1 are nonstationary. In order to forecast X and Y with a state space model, you must difference them (or use some other detrending method). If you fail to difference
when needed and try to use PROC STATESPACE with nonstationary data, an inappropriate state space model might be selected, and the model estimation might fail to converge.

The following statements identify and fit a state space model for the first differences of X and Y , and forecast X and Y 10 periods ahead:

```
proc statespace data=in out=out lead=10;
    var x(1) y(1);
    id t;
run;
```

The DATA= option specifies the input data set and the OUT= option specifies the output data set for the forecasts. The LEAD= option specifies forecasting 10 observations past the end of the input data. The VAR statement specifies the variables to forecast and specifies differencing. The notation $\mathrm{X}(1) \mathrm{Y}(1)$ specifies that the state space model analyzes the first differences of X and Y .

Descriptive Statistics and Preliminary Autoregressions

The first page of the printed output produced by the preceding statements is shown in Figure 25.2.
Figure 25.2 Descriptive Statistics and VAR Order Selection

Figure 25.2 continued

Descriptive statistics are printed first, giving the number of nonmissing observations after differencing and the sample means and standard deviations of the differenced series. The sample means are subtracted before the series are modeled (unless the NOCENTER option is specified), and the sample means are added back when the forecasts are produced.

Let X_{t} and Y_{t} be the observed values of X and Y , and let x_{t} and y_{t} be the values of X and Y after differencing and subtracting the mean difference. The series \mathbf{x}_{t} modeled by the STATEPSPACE procedure is

$$
\mathbf{x}_{t}=\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{l}
(1-B) X_{t}-0.144316 \\
(1-B) Y_{t}-0.164871
\end{array}\right]
$$

where B represents the backshift operator.
After the descriptive statistics, PROC STATESPACE prints the Akaike information criterion (AIC) values for the autoregressive models fit to the series. The smallest AIC value, in this case 5.517 at lag 2, determines the number of autocovariance matrices analyzed in the canonical correlation phase.

A schematic representation of the autocorrelations is printed next. This indicates which elements of the autocorrelation matrices at different lags are significantly greater than or less than 0 .

The second page of the STATESPACE printed output is shown in Figure 25.3.
Figure 25.3 Partial Autocorrelations and VAR Model

Schematic Representation of Partial Autocorrelations										
Name/Lag	1	2	3	4	5	6	7	8	9	10
x	++	+.		-
Y	++	.		.	.	-	.	-		\cdots
+ is > 2 *std error, - is < -2 *std error, . is between										
Yule-Walker Estimates for Minimum AIC										
		\mathbf{x}			Y	x			Y	
x		0.2		0.2		0.170812		0.133554		
Y		0.2		0.4		-0.00537		-0.00048		

Figure 25.3 shows a schematic representation of the partial autocorrelations, similar to the autocorrelations shown in Figure 25.2. The selection of a second order autoregressive model by the AIC statistic looks reasonable in this case because the partial autocorrelations for lags greater than 2 are not significant.

Next, the Yule-Walker estimates for the selected autoregressive model are printed. This output shows the coefficient matrices of the vector autoregressive model at each lag.

Selected State Space Model Form and Preliminary Estimates

After the autoregressive order selection process has determined the number of lags to consider, the canonical correlation analysis phase selects the state vector. By default, output for this process is not printed. You can use the CANCORR option to print details of the canonical correlation analysis. See the section "Canonical Correlation Analysis Options" on page 1583 for an explanation of this process.

After the state vector is selected, the state space model is estimated by approximate maximum likelihood. Information from the canonical correlation analysis and from the preliminary autoregression is used to form preliminary estimates of the state space model parameters. These preliminary estimates are used as starting values for the iterative estimation process.

The form of the state vector and the preliminary estimates are printed next, as shown in Figure 25.4.
Figure 25.4 Preliminary Estimates of State Space Model

Figure 25.4 first prints the state vector as $\mathrm{X}[\mathrm{T} ; \mathrm{T}] \mathrm{Y}[\mathrm{T} ; \mathrm{T}] \mathrm{X}[\mathrm{T}+1 ; \mathrm{T}]$. This notation indicates that
the state vector is

$$
\mathbf{z}_{t}=\left[\begin{array}{c}
x_{t \mid t} \\
y_{t \mid t} \\
x_{t+1 \mid t}
\end{array}\right]
$$

The notation $x_{t+1 \mid t}$ indicates the conditional expectation or prediction of x_{t+1} based on the information available at time t, and $x_{t \mid t}$ and $y_{t \mid t}$ are x_{t} and y_{t}, respectively.

The remainder of Figure 25.4 shows the preliminary estimates of the transition matrix \mathbf{F}, the input matrix \mathbf{G}, and the covariance matrix $\boldsymbol{\Sigma}_{e e}$.

Estimated State Space Model

The next page of the STATESPACE output prints the final estimates of the fitted model, as shown in Figure 25.5. This output has the same form as in Figure 25.4, but it shows the maximum likelihood estimates instead of the preliminary estimates.

Figure 25.5 Fitted State Space Model

The estimated state space model shown in Figure 25.5 is

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{t+1 \mid t+1} \\
y_{t+1 \mid t+1} \\
x_{t+2 \mid t+1}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 0 & 1 \\
0.297 & 0.474 & -0.020 \\
0.230 & 0.228 & 0.256
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
y_{t} \\
x_{t+1 \mid t}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0.257 & 0.202
\end{array}\right]\left[\begin{array}{l}
e_{t+1} \\
n_{t+1}
\end{array}\right] \\
\operatorname{var}\left[\begin{array}{l}
e_{t+1} \\
n_{t+1}
\end{array}\right] & =\left[\begin{array}{ll}
0.945 & 0.101 \\
0.101 & 1.015
\end{array}\right]
\end{aligned}
$$

The next page of the STATESPACE output lists the estimates of the free parameters in the \mathbf{F} and \mathbf{G} matrices with standard errors and t statistics, as shown in Figure 25.6.

Figure 25.6 Final Parameter Estimates

Convergence Failures

The maximum likelihood estimates are computed by an iterative nonlinear maximization algorithm, which might not converge. If the estimates fail to converge, warning messages are printed in the output.

If you encounter convergence problems, you should recheck the stationarity of the data and ensure that the specified differencing orders are correct. Attempting to fit state space models to nonstationary data is a common cause of convergence failure. You can also use the MAXIT= option to increase the number of iterations allowed, or experiment with the convergence tolerance options DETTOL $=$ and PARMTOL=.

Forecast Data Set

The following statements print the output data set. The WHERE statement excludes the first 190 observations from the output, so that only the forecasts and the last 10 actual observations are printed.

```
proc print data=out;
    id t;
    where t > 190;
```

run;
The PROC PRINT output is shown in Figure 25.7.
Figure 25.7 OUT= Data Set Produced by PROC STATESPACE

t	x	FOR1	RES1	STD1	y	FOR2	RES2	STD2
191	34.8159	33.6299	1.18600	0.97221	58.7189	57.9916	0.72728	1.00733
192	35.0656	35.6598	-0.59419	0.97221	58.5440	59.7718	-1.22780	1.00733
193	34.7034	35.5530	-0.84962	0.97221	59.0476	58.5723	0.47522	1.00733
194	34.6626	34.7597	-0.09707	0.97221	59.7774	59.2241	0.55330	1.00733
195	34.4055	34.8322	-0.42664	0.97221	60.5118	60.1544	0.35738	1.00733
196	33.8210	34.6053	-0.78434	0.97221	59.8750	60.8260	-0.95102	1.00733
197	34.0164	33.6230	0.39333	0.97221	58.4698	59.4502	-0.98046	1.00733
198	35.3819	33.6251	1.75684	0.97221	60.6782	57.9167	2.76150	1.00733
199	36.2954	36.0528	0.24256	0.97221	60.9692	62.1637	-1.19450	1.00733
200	37.8945	37.1431	0.75142	0.97221	60.8586	61.4085	-0.54984	1.00733
201	.	38.5068	.	0.97221	.	61.3161	.	1.00733
202	.	39.0428	.	1.59125	-	61.7509	.	1.83678
203	-	39.4619	.	2.28028	.	62.1546	-	2.62366
204	-	39.8284	-	2.97824	.	62.5099	-	3.38839
205	.	40.1474	.	3.67689	.	62.8275	-	4.12805
206	-	40.4310	-	4.36299	-	63.1139	.	4.84149
207	.	40.6861	.	5.03040	.	63.3755	.	5.52744
208	-	40.9185	-	5.67548	.	63.6174	.	6.18564
209	-	41.1330	-	6.29673	-	63.8435	.	6.81655
210	-	41.3332	.	6.89383	-	64.0572	-	7.42114

The OUT= data set produced by PROC STATESPACE contains the VAR and ID statement variables. In addition, for each VAR statement variable, the OUT= data set contains the variables FOR i, RESi, and STD i. These variables contain the predicted values, residuals, and forecast standard errors for the i th variable in the VAR statement list. In this case, X is listed first in the VAR statement, so FOR1 contains the forecasts of X, while FOR2 contains the forecasts of Y.

The following statements plot the forecasts and actuals for the series.

```
proc sgplot data=out noautolegend;
    where t > 150;
    series x=t y=for1 / markers
        markerattrs=(symbol=circle color=blue)
        lineattrs=(pattern=solid color=blue);
    series x=t y=for2 / markers
        markerattrs=(symbol=circle color=blue)
        lineattrs=(pattern=solid color=blue);
    series x=t y=x / markers
        markerattrs=(symbol=circle color=red)
        lineattrs=(pattern=solid color=red);
    series x=t y=y / markers
        markerattrs=(symbol=circle color=red)
        lineattrs=(pattern=solid color=red);
    refline 200.5 / axis=x;
run;
```

The forecast plot is shown in Figure 25.8. The last 50 observations are also plotted to provide context, and a reference line is drawn between the historical and forecast periods.

Figure 25.8 Plot of Forecasts

Controlling Printed Output

By default, the STATESPACE procedure produces a large amount of printed output. The NOPRINT option suppresses all printed output. You can suppress the printed output for the autoregressive model selection process with the PRINTOUT=NONE option. The descriptive statistics and state space model estimation output are still printed when PRINTOUT=NONE is specified. You can produce more detailed output with the PRINTOUT=LONG option and by specifying the printing control options CANCORR, COVB, and PRINT.

Specifying the State Space Model

Instead of allowing the STATESPACE procedure to select the model automatically, you can use FORM and RESTRICT statements to specify a state space model.

Specifying the State Vector

Use the FORM statement to control the form of the state vector. You can use this feature to force PROC STATESPACE to estimate and forecast a model different from the model it would select automatically. You can also use this feature to reestimate the automatically selected model (possibly with restrictions) without repeating the canonical correlation analysis.

The FORM statement specifies the number of lags of each variable to include in the state vector. For example, the statement FORM X 3; forces the state vector to include $x_{t \mid t}, x_{t+1 \mid t}$, and $x_{t+2 \mid t}$. The following statement specifies the state vector $\left(x_{t \mid t}, y_{t \mid t}, x_{t+1 \mid t}\right)$, which is the same state vector selected in the preceding example:

```
form x 2 y 1;
```

You can specify the form for only some of the variables and allow PROC STATESPACE to select the form for the other variables. If only some of the variables are specified in the FORM statement, canonical correlation analysis is used to determine the number of lags included in the state vector for the remaining variables not specified by the FORM statement. If the FORM statement includes specifications for all the variables listed in the VAR statement, the state vector is completely defined and the canonical correlation analysis is not performed.

Restricting the F and G matrices

After you know the form of the state vector, you can use the RESTRICT statement to fix some parameters in the \mathbf{F} and \mathbf{G} matrices to specified values. One use of this feature is to remove insignificant parameters by restricting them to 0 .

In the introductory example shown in the preceding section, the $\mathrm{F}[2,3]$ parameter is not significant. (The parameters estimation output shown in Figure 25.6 gives the t statistic for $\mathrm{F}[2,3]$ as -0.06 . $\mathrm{F}[3,3]$ and $\mathrm{F}[3,1]$ also have low significance with $t<2$.)

The following statements reestimate this model with $\mathrm{F}[2,3]$ restricted to 0 . The FORM statement is used to specify the state vector and thus bypass the canonical correlation analysis.

```
proc statespace data=in out=out lead=10;
    var x(1) y(1);
    id t;
    form x 2 y 1;
    restrict f(2,3)=0;
run;
```

The final estimates produced by these statements are shown in Figure 25.10.

Figure 25.9 Results Using RESTRICT Statement
The STATESPACE Procedure
Selected Statespace Form and Fitted Model

Figure 25.10 Restricted Parameter Estiamtes

Syntax: STATESPACE Procedure

The STATESPACE procedure uses the following statements:

```
PROC STATESPACE options;
    BY variable... ;
    FORM variable value ... ;
    ID variable;
    INITIAL F (row,column)=value . . G(row,column)=value ... ;
    RESTRICT F (row,column)=value . . G (row,column)=value . . ;
    VAR variable (difference, difference, ...) ... ;
```


Functional Summary

Table 25.1 summarizes the statements and options used by PROC STATESPACE.
Table 25.1 STATESPACE Functional Summary

Description	Statement	Option
Input Data Set Options specify the input data set prevent subtraction of sample mean specify the ID variable specify the observed series and differencing	PROC STATESPACE PROC STATESPACE ID VAR	DATA= NOCENTER
Options for Autoregressive Estimates specify the maximum order specify maximum lag for autocovariances output only minimum AIC model specify the amount of detail printed write preliminary AR models to a data set	PROC STATESPACE PROC STATESPACE PROC STATESPACE PROC STATESPACE PROC STATESPACE	ARMAX= LAGMAX= MINIC PRINTOUT= OUTAR=
Options for Canonical Correlation Analysi print the sequence of canonical correlations specify upper limit of dimension of state vector specify the minimum number of lags specify the multiplier of the degrees of freedom	PROC STATESPACE PROC STATESPACE PROC STATESPACE PROC STATESPACE	CANCORR DIMMAX= PASTMIN= SIGCORR=
Options for State Space Model Estimation specify starting values print covariance matrix of parameter estimates specify the convergence criterion specify the convergence criterion print the details of the iterations specify an upper limit of the number of lags specify maximum number of iterations allowed	INITIAL PROC STATESPACE	COVB DETTOL= PARMTOL= ITPRINT KLAG= MAXIT= NOEST
suppress the final estimation	PROC STATESPACE	NOEST

Description	Statement	Option
write the state space model parameter estimates to an output data set use conditional least squares for final estimates specify criterion for testing for singularity	PROC STATESPACE PROC STATESPACE PROC STATESPACE	OUTMODEL= RESIDEST SINGULAR=
Options for Forecasting start forecasting before end of the input data specify the time interval between observations specify multiple periods in the time series specify how many periods to forecast specify the output data set for forecasts print forecasts	PROC STATESPACE PROC STATESPACE PROC STATESPACE PROC STATESPACE PROC STATESPACE PROC STATESPACE	BACK= INTERVAL= INTPER= LEAD= OUT= PRINT
Options to Specify the State Space Model specify the state vector specify the parameter values	FORM RESTRICT	
BY Groups specify BY-group processing	BY	
Printing suppresses all printed output	NOPRINT	

PROC STATESPACE Statement

PROC STATESPACE options ;

The following options can be specified in the PROC STATESPACE statement.

Printing Options

NOPRINT

suppresses all printed output.

Input Data Options

DATA=SAS-data-set
specifies the name of the SAS data set to be used by the procedure. If the DATA= option is omitted, the most recently created SAS data set is used.

LAGMAX $=k$
specifies the number of lags for which the sample autocovariance matrix is computed. The

LAGMAX $=$ option controls the number of lags printed in the schematic representation of the autocorrelations.

The sample autocovariance matrix of $\operatorname{lag} i$, denoted as \mathbf{C}_{i}, is computed as

$$
\mathbf{C}_{i}=\frac{1}{N-1} \sum_{t=1+i}^{N} \mathbf{x}_{t} \mathbf{x}_{t-i}^{\prime}
$$

where \mathbf{x}_{t} is the differenced and centered data and N is the number of observations. (If the NOCENTER option is specified, 1 is not subtracted from N.) LAGMAX $=k$ specifies that \mathbf{C}_{0} through \mathbf{C}_{k} are computed. The default is LAGMAX=10.

NOCENTER

prevents subtraction of the sample mean from the input series (after any specified differencing) before the analysis.

Options for Preliminary Autoregressive Models

ARMAX=n

specifies the maximum order of the preliminary autoregressive models. The ARMAX= option controls the autoregressive orders for which information criteria are printed, and controls the number of lags printed in the schematic representation of partial autocorrelations. The default is ARMAX=10. See the section "Preliminary Autoregressive Models" on page 1590 for details.

MINIC

writes to the OUTAR= data set only the preliminary Yule-Walker estimates for the VAR model that produces the minimum AIC. See the section "OUTAR= Data Set" on page 1601 for details.

OUTAR=SAS-data-set

writes the Yule-Walker estimates of the preliminary autoregressive models to a SAS data set. See the section "OUTAR= Data Set" on page 1601 for details.

PRINTOUT=SHORT | LONG | NONE

determines the amount of detail printed. PRINTOUT=LONG prints the lagged covariance matrices, the partial autoregressive matrices, and estimates of the residual covariance matrices from the sequence of autoregressive models. PRINTOUT=NONE suppresses the output for the preliminary autoregressive models. The descriptive statistics and state space model estimation output are still printed when PRINTOUT=NONE is specified. PRINTOUT=SHORT is the default.

Canonical Correlation Analysis Options

CANCORR

prints the canonical correlations and information criterion for each candidate state vector considered. See the section "Canonical Correlation Analysis Options" on page 1583 for details.

DIMMAX=n
specifies the upper limit to the dimension of the state vector. The DIMMAX=option can be used to limit the size of the model selected. The default is DIMMAX $=10$.

PASTMIN=n

specifies the minimum number of lags to include in the canonical correlation analysis. The default is PASTMIN=0. See the section "Canonical Correlation Analysis Options" on page 1583 for details.

SIGCORR=value

specifies the multiplier of the degrees of freedom for the penalty term in the information criterion used to select the state space form. The default is SIGCORR=2. The larger the value of the SIGCORR= option, the smaller the state vector tends to be. Hence, a large value causes a simpler model to be fit. See the section "Canonical Correlation Analysis Options" on page 1583 for details.

State Space Model Estimation Options

COVB

prints the inverse of the observed information matrix for the parameter estimates. This matrix is an estimate of the covariance matrix for the parameter estimates.

DETTOL=value
specifies the convergence criterion. The DETTOL= and PARMTOL= option values are used together to test for convergence of the estimation process. If, during an iteration, the relative change of the parameter estimates is less than the PARMTOL= value and the relative change of the determinant of the innovation variance matrix is less than the DETTOL= value, then iteration ceases and the current estimates are accepted. The default is DETTOL=1E-5.

ITPRINT

prints the iterations during the estimation process.

KLAG=n

sets an upper limit for the number of lags of the sample autocovariance matrix used in computing the approximate likelihood function. If the data have a strong moving average character, a larger KLAG= value might be necessary to obtain good estimates. The default is KLAG=15. See the section "Parameter Estimation" on page 1596 for details.

MAXIT=n

sets an upper limit to the number of iterations in the maximum likelihood or conditional least squares estimation. The default is MAXIT=50.

NOEST

suppresses the final maximum likelihood estimation of the selected model.

OUTMODEL=SAS-data-set

writes the parameter estimates and their standard errors to a SAS data set. See the section "OUTMODEL= Data Set" on page 1602 for details.

PARMTOL=value

specifies the convergence criterion. The DETTOL= and PARMTOL= option values are used together to test for convergence of the estimation process. If, during an iteration, the relative change of the parameter estimates is less than the PARMTOL= value and the relative change of the determinant of the innovation variance matrix is less than the DETTOL= value, then iteration ceases and the current estimates are accepted. The default is PARMTOL=0.001.

RESIDEST

computes the final estimates by using conditional least squares on the raw data. This type of estimation might be more stable than the default maximum likelihood method but is usually more computationally expensive. See the section "Parameter Estimation" on page 1596 for details about the conditional least squares method.

SINGULAR=value

specifies the criterion for testing for singularity of a matrix. A matrix is declared singular if a scaled pivot is less than the SINGULAR= value when sweeping the matrix. The default is SINGULAR=1E-7.

Forecasting Options

$B A C K=n$

starts forecasting n periods before the end of the input data. The BACK= option value must not be greater than the number of observations. The default is $\mathrm{BACK}=0$.

INTERVAL=interval

specifies the time interval between observations. The INTERVAL= value is used in conjunction with the ID variable to check that the input data are in order and have no missing periods. The INTERVAL = option is also used to extrapolate the ID values past the end of the input data. See Chapter 4, "Date Intervals, Formats, and Functions," for details about the INTERVAL= values allowed.

INTPER=n

specifies that each input observation corresponds to n time periods. For example, the options INTERVAL=MONTH and INTPER=2 specify bimonthly data and are equivalent to specifying INTERVAL=MONTH2. If the INTERVAL= option is not specified, the INTPER=option controls the increment used to generate ID values for the forecast observations. The default is INTPER=1.

LEAD $=n$

specifies how many forecast observations are produced. The forecasts start at the point set by the $\mathrm{BACK}=$ option. The default is $\mathrm{LEAD}=0$, which produces no forecasts.

OUT=SAS-data-set

writes the residuals, actual values, forecasts, and forecast standard errors to a SAS data set. See the section "OUT= Data Set" on page 1601 for details.

PRINT

prints the forecasts.

BY Statement

```
BY variable... ;
```

A BY statement can be used with the STATESPACE procedure to obtain separate analyses on observations in groups defined by the BY variables.

FORM Statement

```
FORM variable value ... ;
```

The FORM statement specifies the number of times a variable is included in the state vector. Values can be specified for any variable listed in the VAR statement. If a value is specified for each variable in the VAR statement, the state vector for the state space model is entirely specified, and automatic selection of the state space model is not performed.

The FORM statement forces the state vector, \mathbf{z}_{t}, to contain a specific variable a given number of times. For example, if Y is one of the variables in \mathbf{x}_{t}, then the statement

```
form y 3;
```

forces the state vector to contain $Y_{t}, Y_{t+1 \mid t}$, and $Y_{t+2 \mid t}$, possibly along with other variables.
The following statements illustrate the use of the FORM statement:

```
proc statespace data=in;
    var x y;
    form x 3 y 2;
run;
```

These statements fit a state space model with the following state vector:

$$
\mathbf{z}_{\mathbf{t}}=\left[\begin{array}{c}
x_{t \mid t} \\
y_{t \mid t} \\
x_{t+1 \mid t} \\
y_{t+1 \mid t} \\
x_{t+2 \mid t}
\end{array}\right]
$$

ID Statement

ID variable ;
The ID statement specifies a variable that identifies observations in the input data set. The variable specified in the ID statement is included in the OUT= data set. The values of the ID variable are extrapolated for the forecast observations based on the values of the INTERVAL= and INTPER= options.

INITIAL Statement

INITIAL $\quad F$ (row,column)= value $\ldots G($ row, column $)=$ value \ldots;
The INITIAL statement gives initial values to the specified elements of the \mathbf{F} and \mathbf{G} matrices. These initial values are used as starting values for the iterative estimation.

Parts of the \mathbf{F} and \mathbf{G} matrices represent fixed structural identities. If an element specified is a fixed structural element instead of a free parameter, the corresponding initialization is ignored.

The following is an example of an INITIAL statement:

```
initial f(3,2)=0 g(4,1)=0 g(5,1)=0;
```


RESTRICT Statement

RESTRICT $F($ row,column $)=$ value $\ldots G$ (row,column)= value \ldots;
The RESTRICT statement restricts the specified elements of the \mathbf{F} and \mathbf{G} matrices to the specified values.

To use the restrict statement, you need to know the form of the model. Either specify the form of the model with the FORM statement, or do a preliminary run (perhaps with the NOEST option) to find the form of the model that PROC STATESPACE selects for the data.

The following is an example of a RESTRICT statement:

```
restrict f(3,2)=0 g(4,1)=0 g(5,1)=0 ;
```

Parts of the \mathbf{F} and \mathbf{G} matrices represent fixed structural identities. If a restriction is specified for an element that is a fixed structural element instead of a free parameter, the restriction is ignored.

VAR Statement

VAR variable (difference, difference, ...) ... ;
The VAR statement specifies the variables in the input data set to model and forecast. The VAR statement also specifies differencing of the input variables. The VAR statement is required.

Differencing is specified by following the variable name with a list of difference periods separated by commas. See the section "Stationarity and Differencing" on page 1588 for more information about differencing of input variables.

The order in which variables are listed in the VAR statement controls the order in which variables are included in the state vector. Usually, potential inputs should be listed before potential outputs.

For example, assuming the input data are monthly, the following VAR statement specifies modeling and forecasting of the one period and seasonal second difference of X and Y :

```
var x(1,12) y(1,12);
```

In this example, the vector time series analyzed is

$$
\mathbf{x}_{t}=\left[\begin{array}{c}
(1-B)\left(1-B^{12}\right) X_{t}-\bar{x} \\
(1-B)\left(1-B^{12}\right) Y_{t}-\bar{y}
\end{array}\right]
$$

where B represents the back shift operator and \bar{x} and \bar{y} represent the means of the differenced series. If the NOCENTER option is specified, the mean differences are not subtracted.

Details: STATESPACE Procedure

Missing Values

The STATESPACE procedure does not support missing values. The procedure uses the first contiguous group of observations with no missing values for any of the VAR statement variables. Observations at the beginning of the data set with missing values for any VAR statement variable are not used or included in the output data set.

Stationarity and Differencing

The state space model used by the STATESPACE procedure assumes that the time series are stationary. Hence, the data should be checked for stationarity. One way to check for stationarity is to plot the series. A graph of series over time can show a time trend or variability changes.

You can also check stationarity by using the sample autocorrelation functions displayed by the ARIMA procedure. The autocorrelation functions of nonstationary series tend to decay slowly. See Chapter 7, "The ARIMA Procedure," for more information.

Another alternative is to use the STATIONARITY= option in the IDENTIFY statement in PROC ARIMA to apply Dickey-Fuller tests for unit roots in the time series. See Chapter 7, "The ARIMA Procedure," for more information about Dickey-Fuller unit root tests.

The most popular way to transform a nonstationary series to stationarity is by differencing. Differencing of the time series is specified in the VAR statement. For example, to take a simple first difference of the series X , use this statement:

In this example, the change in X from one period to the next is analyzed. When the series has a seasonal pattern, differencing at a period equal to the length of the seasonal cycle can be desirable. For example, suppose the variable X is measured quarterly and shows a seasonal cycle over the year. You can use the following statement to analyze the series of changes from the same quarter in the previous year:

```
var x(4);
```

To difference twice, add another differencing period to the list. For example, the following statement analyzes the series of second differences $\left(X_{t}-X_{t-1}\right)-\left(X_{t-1}-X_{t-2}\right)=X_{t}-2 X_{t-1}+X_{t-2}$:

```
var x(1,1);
```

The following statement analyzes the seasonal second difference series:

```
var x(1,4);
```

The series that is being modeled is the 1-period difference of the 4-period difference:
$\left(X_{t}-X_{t-4}\right)-\left(X_{t-1}-X_{t-5}\right)=X_{t}-X_{t-1}-X_{t-4}+X_{t-5}$.
Another way to obtain stationary series is to use a regression on time to detrend the data. If the time series has a deterministic linear trend, regressing the series on time produces residuals that should be stationary. The following statements write residuals of X and Y to the variable RX and RY in the output data set DETREND.

```
data a;
    set a;
    t=_n_;
run;
proc reg data=a;
    model x y = t;
    output out=detrend r=rx ry;
run;
```

You then use PROC STATESPACE to forecast the detrended series RX and RY. A disadvantage of this method is that you need to add the trend back to the forecast series in an additional step. A more serious disadvantage of the detrending method is that it assumes a deterministic trend. In practice, most time series appear to have a stochastic rather than a deterministic trend. Differencing is a more flexible and often more appropriate method.

There are several other methods to handle nonstationary time series. For more information and examples, see Brockwell and Davis (1991).

Preliminary Autoregressive Models

After computing the sample autocovariance matrices, PROC STATESPACE fits a sequence of vector autoregressive models. These preliminary autoregressive models are used to estimate the autoregressive order of the process and limit the order of the autocovariances considered in the state vector selection process.

Yule-Walker Equations for Forward and Backward Models

Unlike a univariate autoregressive model, a multivariate autoregressive model has different forms, depending on whether the present observation is being predicted from the past observations or from the future observations.

Let \mathbf{x}_{t} be the r-component stationary time series given by the VAR statement after differencing and subtracting the vector of sample means. (If the NOCENTER option is specified, the mean is not subtracted.) Let n be the number of observations of \mathbf{x}_{t} from the input data set.

Let \mathbf{e}_{t} be a vector white noise sequence with mean vector $\mathbf{0}$ and variance matrix $\boldsymbol{\Sigma}_{p}$, and let \mathbf{n}_{t} be a vector white noise sequence with mean vector $\mathbf{0}$ and variance matrix $\boldsymbol{\Omega}_{p}$. Let p be the order of the vector autoregressive model for \mathbf{x}_{t}.

The forward autoregressive form based on the past observations is written as follows:

$$
\mathbf{x}_{t}=\sum_{i=1}^{p} \boldsymbol{\Phi}_{i}^{p} \mathbf{x}_{t-i}+\mathbf{e}_{t}
$$

The backward autoregressive form based on the future observations is written as follows:

$$
\mathbf{x}_{t}=\sum_{i=1}^{p} \boldsymbol{\Psi}_{i}^{p} \mathbf{x}_{t+i}+\mathbf{n}_{t}
$$

Letting E denote the expected value operator, the autocovariance sequence for the \mathbf{x}_{t} series, $\boldsymbol{\Gamma}_{i}$, is

$$
\boldsymbol{\Gamma}_{i}=E \mathbf{x}_{t} \mathbf{x}_{t-i}^{\prime}
$$

The Yule-Walker equations for the autoregressive model that matches the first p elements of the autocovariance sequence are

$$
\left[\begin{array}{cccc}
\boldsymbol{\Gamma}_{0} & \boldsymbol{\Gamma}_{1} & \cdots & \boldsymbol{\Gamma}_{p-1} \\
\boldsymbol{\Gamma}_{1}^{\prime} & \boldsymbol{\Gamma}_{0} & \cdots & \boldsymbol{\Gamma}_{p-2} \\
\vdots & \vdots & & \vdots \\
\boldsymbol{\Gamma}_{p-1}^{\prime} & \boldsymbol{\Gamma}_{p-2}^{\prime} & \cdots & \boldsymbol{\Gamma}_{0}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\Phi}_{1}^{p} \\
\boldsymbol{\Phi}_{2}^{p} \\
\vdots \\
\boldsymbol{\Phi}_{p}^{p}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\Gamma}_{1} \\
\boldsymbol{\Gamma}_{2} \\
\vdots \\
\boldsymbol{\Gamma}_{p}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cccc}
\boldsymbol{\Gamma}_{0} & \boldsymbol{\Gamma}_{1}^{\prime} & \cdots & \boldsymbol{\Gamma}_{p-1}^{\prime} \\
\boldsymbol{\Gamma}_{1} & \boldsymbol{\Gamma}_{0} & \cdots & \boldsymbol{\Gamma}_{p-2}^{\prime} \\
\vdots & \vdots & & \vdots \\
\boldsymbol{\Gamma}_{p-1} & \boldsymbol{\Gamma}_{p-2} & \cdots & \boldsymbol{\Gamma}_{0}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\Psi}_{1}^{p} \\
\boldsymbol{\Psi}_{2}^{p} \\
\vdots \\
\boldsymbol{\Psi}_{p}^{p}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\Gamma}_{1}^{\prime} \\
\boldsymbol{\Gamma}_{2}^{\prime} \\
\vdots \\
\boldsymbol{\Gamma}_{p}^{\prime}
\end{array}\right]
$$

Here $\boldsymbol{\Phi}_{i}^{p}$ are the coefficient matrices for the past observation form of the vector autoregressive model, and $\boldsymbol{\Psi}_{i}^{p}$ are the coefficient matrices for the future observation form. More information about the Yule-Walker equations in the multivariate setting can be found in Whittle (1963) and Ansley and Newbold (1979).

The innovation variance matrices for the two forms can be written as follows:

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{p}=\boldsymbol{\Gamma}_{0}-\sum_{i=1}^{p} \boldsymbol{\Phi}_{i}^{p} \boldsymbol{\Gamma}_{i}^{\prime} \\
& \boldsymbol{\Omega}_{p}=\boldsymbol{\Gamma}_{0}-\sum_{i=1}^{p} \boldsymbol{\Psi}_{i}^{p} \boldsymbol{\Gamma}_{i}
\end{aligned}
$$

The autoregressive models are fit to the data by using the preceding Yule-Walker equations with $\boldsymbol{\Gamma}_{i}$ replaced by the sample covariance sequence $\mathbf{C}_{\mathbf{i}}$. The covariance matrices are calculated as

$$
\mathbf{C}_{i}=\frac{1}{N-1} \sum_{t=i+1}^{N} \mathbf{x}_{t} \mathbf{x}_{t-i}^{\prime}
$$

Let $\widehat{\boldsymbol{\Phi}}_{p}, \widehat{\boldsymbol{\Psi}}_{p}, \widehat{\boldsymbol{\Sigma}}_{p}$, and $\widehat{\boldsymbol{\Omega}}_{p}$ represent the Yule-Walker estimates of $\boldsymbol{\Phi}_{p}, \boldsymbol{\Psi}_{p}, \boldsymbol{\Sigma}_{p}$, and $\boldsymbol{\Omega}_{p}$, respectively. These matrices are written to an output data set when the OUTAR= option is specified.

When the PRINTOUT=LONG option is specified, the sequence of matrices $\widehat{\boldsymbol{\Sigma}}_{p}$ and the corresponding correlation matrices are printed. The sequence of matrices $\widehat{\boldsymbol{\Sigma}}_{p}$ is used to compute Akaike information criteria for selection of the autoregressive order of the process.

Akaike Information Criterion

The Akaike information criterion (AIC) is defined as -2 (maximum of log likelihood $)+2$ (number of parameters). Since the vector autoregressive models are estimates from the Yule-Walker equations, not by maximum likelihood, the exact likelihood values are not available for computing the AIC. However, for the vector autoregressive model the maximum of the log likelihood can be approximated as

$$
\ln (L) \approx-\frac{n}{2} \ln \left(\left|\widehat{\boldsymbol{\Sigma}}_{p}\right|\right)
$$

Thus, the AIC for the order p model is computed as

$$
A I C_{p}=n \ln \left(\left|\widehat{\boldsymbol{\Sigma}}_{p}\right|\right)+2 p r^{2}
$$

You can use the printed AIC array to compute a likelihood ratio test of the autoregressive order. The log-likelihood ratio test statistic for testing the order p model against the order $p-1$ model is

$$
-n \ln \left(\left|\widehat{\boldsymbol{\Sigma}}_{p}\right|\right)+n \ln \left(\left|\widehat{\boldsymbol{\Sigma}}_{p-1}\right|\right)
$$

This quantity is asymptotically distributed as a χ^{2} with r^{2} degrees of freedom if the series is autoregressive of order $p-1$. It can be computed from the AIC array as

$$
A I C_{p-1}-A I C_{p}+2 r^{2}
$$

You can evaluate the significance of these test statistics with the PROBCHI function in a SAS DATA step or with a χ^{2} table.

Determining the Autoregressive Order

Although the autoregressive models can be used for prediction, their primary value is to aid in the selection of a suitable portion of the sample covariance matrix for use in computing canonical correlations. If the multivariate time series \mathbf{x}_{t} is of autoregressive order p, then the vector of past values to lag p is considered to contain essentially all the information relevant for prediction of future values of the time series.

By default, PROC STATESPACE selects the order p that produces the autoregressive model with the smallest $A I C_{p}$. If the value p for the minimum $A I C_{p}$ is less than the value of the PASTMIN $=$ option, then p is set to the PASTMIN= value. Alternatively, you can use the ARMAX= and PASTMIN $=$ options to force PROC STATESPACE to use an order you select.

Significance Limits for Partial Autocorrelations

The STATESPACE procedure prints a schematic representation of the partial autocorrelation matrices that indicates which partial autocorrelations are significantly greater than or significantly less than 0 . Figure 25.11 shows an example of this table.

Figure 25.11 Significant Partial Autocorrelations

Schematic Representation of Partial Autocorrelations										
Name/Lag	1	2	3	4	5	6	7	8	9	10
\mathbf{x}	++	+ .		.	- .	. -	-	- -
Y	++	.					\ldots	-	-	-
+ is > 2*std error, - is < -2*std error, . is between										

The partial autocorrelations are from the sample partial autoregressive matrices $\widehat{\boldsymbol{\Phi}}_{p}^{p}$. The standard errors used for the significance limits of the partial autocorrelations are computed from the sequence of matrices $\boldsymbol{\Sigma}_{p}$ and $\boldsymbol{\Omega}_{p}$.

Under the assumption that the observed series arises from an autoregressive process of order $p-1$, the p th sample partial autoregressive matrix $\widehat{\boldsymbol{\Phi}}_{p}^{p}$ has an asymptotic variance matrix $\frac{1}{n} \boldsymbol{\Omega}_{p}^{-1} \otimes \boldsymbol{\Sigma}_{p}$.
The significance limits for $\widehat{\boldsymbol{\Phi}}_{p}^{p}$ used in the schematic plot of the sample partial autoregressive sequence are derived by replacing $\boldsymbol{\Omega}_{p}$ and $\boldsymbol{\Sigma}_{p}$ with their sample estimators to produce the variance estimate, as follows:

$$
\widehat{\operatorname{Var}}\left(\widehat{\boldsymbol{\Phi}}_{p}^{p}\right)=\left(\frac{1}{n-r p}\right) \widehat{\boldsymbol{\Omega}}_{p}^{-1} \otimes \widehat{\boldsymbol{\Sigma}}_{p}
$$

Canonical Correlation Analysis

Given the order p, let \mathbf{p}_{t} be the vector of current and past values relevant to prediction of \mathbf{x}_{t+1} :

$$
\mathbf{p}_{t}=\left(\mathbf{x}_{t}^{\prime}, \mathbf{x}_{t-1}^{\prime}, \cdots, \mathbf{x}_{t-p}^{\prime}\right)^{\prime}
$$

Let \mathbf{f}_{t} be the vector of current and future values:

$$
\mathbf{f}_{t}=\left(\mathbf{x}_{t}^{\prime}, \mathbf{x}_{t+1}^{\prime}, \cdots, \mathbf{x}_{t+p}^{\prime}\right)^{\prime}
$$

In the canonical correlation analysis, consider submatrices of the sample covariance matrix of \mathbf{p}_{t} and \mathbf{f}_{t}. This covariance matrix, \mathbf{V}, has a block Hankel form:

$$
\mathbf{V}=\left[\begin{array}{ccccc}
\mathbf{C}_{0} & \mathbf{C}_{1}^{\prime} & \mathbf{C}_{2}^{\prime} & \cdots & \mathbf{C}_{p}^{\prime} \\
\mathbf{C}_{1}^{\prime} & \mathbf{C}_{2}^{\prime} & \mathbf{C}_{3}^{\prime} & \cdots & \mathbf{C}_{p+1}^{\prime} \\
\vdots & \vdots & \vdots & & \vdots \\
\mathbf{C}_{p}^{\prime} & \mathbf{C}_{p+1}^{\prime} & \mathbf{C}_{p+2}^{\prime} & \cdots & \mathbf{C}_{2 p}^{\prime}
\end{array}\right]
$$

State Vector Selection Process

The canonical correlation analysis forms a sequence of potential state vectors \mathbf{z}_{t}^{j}. Examine a sequence \mathbf{f}_{t}^{j} of subvectors of \mathbf{f}_{t}, form the submatrix \mathbf{V}^{j} that consists of the rows and columns of \mathbf{V} that correspond to the components of \mathbf{f}_{t}^{j}, and compute its canonical correlations.

The smallest canonical correlation of \mathbf{V}^{j} is then used in the selection of the components of the state vector. The selection process is described in the following discussion. For more details about this process, see Akaike (1976).

In the following discussion, the notation $\mathbf{x}_{t+k \mid t}$ denotes the wide sense conditional expectation (best linear predictor) of \mathbf{x}_{t+k}, given all \mathbf{x}_{s} with s less than or equal to t. In the notation $x_{i, t+1}$, the first subscript denotes the i th component of \mathbf{x}_{t+1}.

The initial state vector \mathbf{z}_{t}^{1} is set to \mathbf{x}_{t}. The sequence \mathbf{f}_{t}^{j} is initialized by setting

$$
\mathbf{f}_{t}^{1}=\left(\mathbf{z}_{t}^{1^{\prime}}, x_{1, t+1 \mid t}\right)^{\prime}=\left(\mathbf{x}_{t}^{\prime}, x_{1, t+1 \mid t}\right)^{\prime}
$$

That is, start by considering whether to add $x_{1, t+1 \mid t}$ to the initial state vector \mathbf{z}_{t}^{1}.
The procedure forms the submatrix \mathbf{V}^{1} that corresponds to \mathbf{f}_{t}^{1} and computes its canonical correlations. Denote the smallest canonical correlation of \mathbf{V}^{1} as $\rho_{\text {min }}$. If $\rho_{\text {min }}$ is significantly greater than $0, x_{1, t+1 \mid t}$ is added to the state vector.

If the smallest canonical correlation of \mathbf{V}^{1} is not significantly greater than 0 , then a linear combination of \mathbf{f}_{t}^{1} is uncorrelated with the past, \mathbf{p}_{t}. Assuming that the determinant of \mathbf{C}_{0} is not 0 , (that is, no input series is a constant), you can take the coefficient of $x_{1, t+1 \mid t}$ in this linear combination to be 1 . Denote the coefficients of \mathbf{z}_{t}^{1} in this linear combination as ℓ. This gives the relationship:

$$
x_{1, t+1 \mid t}=\ell^{\prime} \mathbf{x}_{t}
$$

Therefore, the current state vector already contains all the past information useful for predicting $x_{1, t+1}$ and any greater leads of $x_{1, t}$. The variable $x_{1, t+1 \mid t}$ is not added to the state vector, nor are any terms $x_{1, t+k \mid t}$ considered as possible components of the state vector. The variable x_{1} is no longer active for state vector selection.

The process described for $x_{1, t+1 \mid t}$ is repeated for the remaining elements of \mathbf{f}_{t}. The next candidate for inclusion in the state vector is the next component of \mathbf{f}_{t} that corresponds to an active variable. Components of \mathbf{f}_{t} that correspond to inactive variables that produced a zero $\rho_{\text {min }}$ in a previous step are skipped.
Denote the next candidate as $x_{l, t+k \mid t}$. The vector \mathbf{f}_{t}^{j} is formed from the current state vector and $x_{l, t+k \mid t}$ as follows:

$$
\mathbf{f}_{t}^{j}=\left(\mathbf{z}_{t}^{j^{\prime}}, x_{l, t+k \mid t}\right)^{\prime}
$$

The matrix \mathbf{V}^{j} is formed from \mathbf{f}_{t}^{j} and its canonical correlations are computed. The smallest canonical correlation of \mathbf{V}^{j} is judged to be either greater than or equal to 0 . If it is judged to be greater than $0, x_{l, t+k \mid t}$ is added to the state vector. If it is judged to be 0 , then a linear combination of \mathbf{f}_{t}^{j} is uncorrelated with the \mathbf{p}_{t}, and the variable x_{l} is now inactive.

The state vector selection process continues until no active variables remain.

Testing Significance of Canonical Correlations

For each step in the canonical correlation sequence, the significance of the smallest canonical correlation $\rho_{\text {min }}$ is judged by an information criterion from Akaike (1976). This information criterion is

$$
-n \ln \left(1-\rho_{\min }^{2}\right)-\lambda(r(p+1)-q+1)
$$

where q is the dimension of \mathbf{f}_{t}^{j} at the current step, r is the order of the state vector, p is the order of the vector autoregressive process, and λ is the value of the SIGCORR=option. The default is $\operatorname{SIGCORR}=2$. If this information criterion is less than or equal to $0, \rho_{\min }$ is taken to be 0 ; otherwise, it is taken to be significantly greater than 0 . (Do not confuse this information criterion with the AIC.)

Variables in $\mathbf{x}_{t+p \mid t}$ are not added in the model, even with positive information criterion, because of the singularity of \mathbf{V}. You can force the consideration of more candidate state variables by increasing the size of the \mathbf{V} matrix by specifying a PASTMIN= option value larger than p.

Printing the Canonical Correlations

To print the details of the canonical correlation analysis process, specify the CANCORR option in the PROC STATESPACE statement. The CANCORR option prints the candidate state vectors, the canonical correlations, and the information criteria for testing the significance of the smallest canonical correlation.

Bartlett's χ^{2} and its degrees of freedom are also printed when the CANCORR option is specified. The formula used for Bartlett's χ^{2} is

$$
\chi^{2}=-(n-.5(r(p+1)-q+1)) \ln \left(1-\rho_{\text {min }}^{2}\right)
$$

with $r(p+1)-q+1$ degrees of freedom.
Figure 25.12 shows the output of the CANCORR option for the introductory example shown in the "Getting Started: STATESPACE Procedure" on page 1570.

```
proc statespace data=in out=out lead=10 cancorr;
    var x(1) y(1);
    id t;
run;
```

Figure 25.12 Canonical Correlations Analysis

$\mathbf{x}(\mathrm{T} ; \mathrm{T})$	The STATESPACE Procedure Canonical Correlations Analysis				
	$\mathrm{Y}(\mathrm{T} ; \mathrm{T})$	$\mathbf{x}(T+1 ; T)$	Information Criterion	Chi Square	DF
1	1	0.237045	3.566167	11.4505	4

New variables are added to the state vector if the information criteria are positive. In this example, $\mathbf{y}_{t+1 \mid t}$ and $\mathbf{x}_{t+2 \mid t}$ are not added to the state space vector because the information criteria for these models are negative.

If the information criterion is nearly 0 , then you might want to investigate models that arise if the opposite decision is made regarding $\rho_{\min }$. This investigation can be accomplished by using a FORM statement to specify part or all of the state vector.

Preliminary Estimates of F

When a candidate variable $x_{l, t+k \mid t}$ yields a zero $\rho_{\min }$ and is not added to the state vector, a linear combination of \mathbf{f}_{t}^{j} is uncorrelated with the \mathbf{p}_{t}. Because of the method used to construct the \mathbf{f}_{t}^{j}
sequence, the coefficient of $x_{l, t+k \mid t}$ in \mathbf{I} can be taken as 1 . Denote the coefficients of \mathbf{z}_{t}^{j} in this linear combination as \mathbf{l}.

This gives the relationship:

$$
x_{l, t+k \mid t}=\mathbf{I}^{\prime} \mathbf{z}_{t}^{j}
$$

The vector \mathbf{I} is used as a preliminary estimate of the first r columns of the row of the transition matrix \mathbf{F} corresponding to $x_{l, t+k-1 \mid t}$.

Parameter Estimation

The model is $\mathbf{z}_{t+1}=\mathbf{F} \mathbf{z}_{t}+\mathbf{G} \mathbf{e}_{t+1}$, where \mathbf{e}_{t} is a sequence of independent multivariate normal innovations with mean vector $\mathbf{0}$ and variance $\Sigma_{\text {ee }}$. The observed sequence \mathbf{x}_{t} composes the first r components of \mathbf{z}_{t}, and thus $\mathbf{x}_{t}=\mathbf{H} \mathbf{z}_{t}$, where \mathbf{H} is the $r \times s$ matrix $\left[\mathbf{I}_{r} \mathbf{0}\right]$.

Let \mathbf{E} be the $r \times n$ matrix of innovations:

$$
\mathbf{E}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \cdots & \mathbf{e}_{n}
\end{array}\right]
$$

If the number of observations n is reasonably large, the \log likelihood L can be approximated up to an additive constant as follows:

$$
L=-\frac{n}{2} \ln \left(\left|\boldsymbol{\Sigma}_{\mathbf{e e}}\right|\right)-\frac{1}{2} \operatorname{trace}\left(\boldsymbol{\Sigma}_{\mathbf{e e}}^{-1} \mathbf{E} \mathbf{E}^{\prime}\right)
$$

The elements of $\boldsymbol{\Sigma}_{\mathbf{e e}}$ are taken as free parameters and are estimated as follows:

$$
\mathbf{S}_{0}=\frac{1}{n} \mathbf{E} \mathbf{E}^{\prime}
$$

Replacing $\boldsymbol{\Sigma}_{\mathbf{e e}}$ by \mathbf{S}_{0} in the likelihood equation, the log likelihood, up to an additive constant, is

$$
\mathbf{L}=-\frac{n}{2} \ln \left(\left|\mathbf{S}_{0}\right|\right)
$$

Letting B be the backshift operator, the formal relation between \mathbf{x}_{t} and \mathbf{e}_{t} is

$$
\begin{aligned}
& \mathbf{x}_{t}=\mathbf{H}(\mathbf{I}-B \mathbf{F})^{-1} \mathbf{G} \mathbf{e}_{t} \\
& \mathbf{e}_{t}=\left(\mathbf{H}(\mathbf{I}-B \mathbf{F})^{-1} \mathbf{G}\right)^{-1} \mathbf{x}_{t}=\sum_{i=0}^{\infty} \boldsymbol{\Xi}_{i \mathbf{x}_{t-i}}
\end{aligned}
$$

Letting \mathbf{C}_{i} be the i th lagged sample covariance of \mathbf{x}_{t} and neglecting end effects, the matrix \mathbf{S}_{0} is

$$
\mathbf{S}_{0}=\sum_{i, j=0}^{\infty} \boldsymbol{\Xi}_{i} \mathbf{C}_{-i+j} \mathbf{\Xi}_{j}^{\prime}
$$

For the computation of \mathbf{S}_{0}, the infinite sum is truncated at the value of the KLAG= option. The value of the $\mathrm{KLAG}=$ option should be large enough that the sequence $\boldsymbol{\Xi}_{i}$ is approximately 0 beyond that point.

Let $\boldsymbol{\theta}$ be the vector of free parameters in the \mathbf{F} and \mathbf{G} matrices. The derivative of the log likelihood with respect to the parameter $\boldsymbol{\theta}$ is

$$
\frac{\partial L}{\partial \boldsymbol{\theta}}=-\frac{n}{2} \operatorname{trace}\left(\mathbf{S}_{0}^{-1} \frac{\partial \mathbf{S}_{0}}{\partial \boldsymbol{\theta}}\right)
$$

The second derivative is

$$
\frac{\partial^{2} \mathbf{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}=\frac{n}{2}\left(\operatorname{trace}\left(\mathbf{S}_{0}^{-1} \frac{\partial \mathbf{S}_{0}}{\partial \boldsymbol{\theta}^{\prime}} \mathbf{S}_{0}^{-1} \frac{\partial \mathbf{S}_{0}}{\partial \boldsymbol{\theta}}\right)-\operatorname{trace}\left(\mathbf{S}_{0}^{-1} \frac{\partial^{2} \mathbf{S}_{0}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right)\right)
$$

Near the maximum, the first term is unimportant and the second term can be approximated to give the following second derivative approximation:

$$
\frac{\partial^{2} L}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}} \cong-n \operatorname{trace}\left(\mathbf{S}_{0}^{-1} \frac{\partial \mathbf{E}}{\partial \boldsymbol{\theta}} \frac{\partial \mathbf{E}^{\prime}}{\partial \boldsymbol{\theta}^{\prime}}\right)
$$

The first derivative matrix and this second derivative matrix approximation are computed from the sample covariance matrix \mathbf{C}_{0} and the truncated sequence $\boldsymbol{\Xi}_{i}$. The approximate likelihood function is maximized by a modified Newton-Raphson algorithm that employs these derivative matrices.

The matrix \mathbf{S}_{0} is used as the estimate of the innovation covariance matrix, $\boldsymbol{\Sigma}_{\mathbf{e e}}$. The negative of the inverse of the second derivative matrix at the maximum is used as an approximate covariance matrix for the parameter estimates. The standard errors of the parameter estimates printed in the parameter estimates tables are taken from the diagonal of this covariance matrix. The parameter covariance matrix is printed when the COVB option is specified.

If the data are nearly nonstationary, a better estimate of $\boldsymbol{\Sigma}_{\text {ee }}$ and the other parameters can sometimes be obtained by specifying the RESIDEST option. The RESIDEST option estimates the parameters by using conditional least squares instead of maximum likelihood.

The residuals are computed using the state space equation and the sample mean values of the variables in the model as start-up values. The estimate of \mathbf{S}_{0} is then computed using the residuals from the i th observation on, where i is the maximum number of times any variable occurs in the state vector. A multivariate Gauss-Marquardt algorithm is used to minimize $\left|\mathbf{S}_{0}\right|$. See Harvey (1981a) for a further description of this method.

Forecasting

Given estimates of \mathbf{F}, \mathbf{G}, and $\boldsymbol{\Sigma}_{\mathbf{e e}}$, forecasts of \mathbf{x}_{t} are computed from the conditional expectation of \mathbf{z}_{t}.

In forecasting, the parameters \mathbf{F}, \mathbf{G}, and $\boldsymbol{\Sigma}_{\text {ee }}$ are replaced with the estimates or by values specified in the RESTRICT statement. One-step-ahead forecasting is performed for the observation \mathbf{x}_{t}, where $t \leq n-b$. Here n is the number of observations and b is the value of the BACK=option. For the observation \mathbf{x}_{t}, where $t>n-b, m$-step-ahead forecasting is performed for $m=t-n+b$. The forecasts are generated recursively with the initial condition $\mathbf{z}_{0}=0$.

The m-step-ahead forecast of \mathbf{z}_{t+m} is $\mathbf{z}_{t+m \mid t}$, where $\mathbf{z}_{t+m \mid t}$ denotes the conditional expectation of \mathbf{z}_{t+m} given the information available at time t. The m-step-ahead forecast of \mathbf{x}_{t+m} is $\mathbf{x}_{t+m \mid t}=\mathbf{H z}_{t+m \mid t}$, where the matrix $\mathbf{H}=\left[\mathbf{I}_{r} \mathbf{0}\right]$.

Let $\Psi_{i}=\mathbf{F}^{i} \mathbf{G}$. Note that the last $s-r$ elements of \mathbf{z}_{t} consist of the elements of $\mathbf{x}_{u \mid t}$ for $u>t$.
The state vector \mathbf{z}_{t+m} can be represented as

$$
\mathbf{z}_{t+m}=\mathbf{F}^{m} \mathbf{z}_{t}+\sum_{i=0}^{m-1} \boldsymbol{\Psi}_{i} \mathbf{e}_{t+m-i}
$$

Since $\mathbf{e}_{t+i \mid t}=\mathbf{0}$ for $i>0$, the m-step-ahead forecast $\mathbf{z}_{t+m \mid t}$ is

$$
\mathbf{z}_{t+m \mid t}=\mathbf{F}^{m} \mathbf{z}_{t}=\mathbf{F}_{t+m-1 \mid t}
$$

Therefore, the m-step-ahead forecast of \mathbf{x}_{t+m} is

$$
\mathbf{x}_{t+m \mid t}=\mathbf{H} \mathbf{z}_{t+m \mid t}
$$

The m-step-ahead forecast error is

$$
\mathbf{z}_{t+m}-\mathbf{z}_{t+m \mid t}=\sum_{i=0}^{m-1} \boldsymbol{\Psi}_{i} \mathbf{e}_{t+m-i}
$$

The variance of the m-step-ahead forecast error is

$$
\mathbf{V}_{z, m}=\sum_{i=0}^{m-1} \boldsymbol{\Psi}_{i} \boldsymbol{\Sigma}_{\mathbf{e e}} \Psi_{i}^{\prime}
$$

Letting $\mathbf{V}_{z, 0}=\mathbf{0}$, the variance of the m-step-ahead forecast error of $\mathbf{z}_{t+m}, \mathbf{V}_{z, m}$, can be computed recursively as follows:

$$
\mathbf{V}_{z, m}=\mathbf{V}_{z, m-1}+\boldsymbol{\Psi}_{m-1} \boldsymbol{\Sigma}_{\mathrm{ee}} \boldsymbol{\Psi}_{m-1}^{\prime}
$$

The variance of the m-step-ahead forecast error of \mathbf{x}_{t+m} is the $r \times r$ left upper submatrix of $\mathbf{V}_{z, m}$; that is,

$$
\mathbf{V}_{x, m}=\mathbf{H} \mathbf{V}_{z, m} \mathbf{H}^{\prime}
$$

Unless the NOCENTER option is specified, the sample mean vector is added to the forecast. When differencing is specified, the forecasts $\mathbf{x}_{t+m \mid t}$ plus the sample mean vector are integrated back to produce forecasts for the original series.

Let \mathbf{y}_{t} be the original series specified by the VAR statement, with some 0 values appended that correspond to the unobserved past observations. Let B be the backshift operator, and let $\boldsymbol{\Delta}(B)$ be the $s \times s$ matrix polynomial in the backshift operator that corresponds to the differencing specified by the VAR statement. The off-diagonal elements of $\boldsymbol{\Delta}_{i}$ are 0 . Note that $\boldsymbol{\Delta}_{0}=\mathbf{I}_{s}$, where \mathbf{I}_{s} is the $s \times s$ identity matrix. Then $\mathbf{z}_{t}=\boldsymbol{\Delta}(B) \mathbf{y}_{t}$.

This gives the relationship

$$
\mathbf{y}_{t}=\boldsymbol{\Delta}^{-1}(B) \mathbf{z}_{t}=\sum_{i=0}^{\infty} \boldsymbol{\Lambda}_{i} \mathbf{z}_{t-i}
$$

where $\boldsymbol{\Delta}^{-1}(B)=\sum_{i=0}^{\infty} \boldsymbol{\Lambda}_{i} B^{i}$ and $\boldsymbol{\Lambda}_{0}=\mathbf{I}_{s}$.
The m-step-ahead forecast of \mathbf{y}_{t+m} is

$$
\mathbf{y}_{t+m \mid t}=\sum_{i=0}^{m-1} \boldsymbol{\Lambda}_{i} \mathbf{z}_{t+m-i \mid t}+\sum_{i=m}^{\infty} \boldsymbol{\Lambda}_{i} \mathbf{z}_{t+m-i}
$$

The m-step-ahead forecast error of \mathbf{y}_{t+m} is

$$
\sum_{i=0}^{m-1} \boldsymbol{\Lambda}_{i}\left(\mathbf{z}_{t+m-i}-\mathbf{z}_{t+m-i \mid t}\right)=\sum_{i=0}^{m-1}\left(\sum_{u=0}^{i} \boldsymbol{\Lambda}_{u} \boldsymbol{\Psi}_{i-u}\right) \mathbf{e}_{t+m-i}
$$

Letting $\mathbf{V}_{y, 0}=\mathbf{0}$, the variance of the m-step-ahead forecast error of $\mathbf{y}_{t+m}, \mathbf{V}_{y, m}$, is

$$
\begin{aligned}
\mathbf{V}_{y, m} & =\sum_{i=0}^{m-1}\left(\sum_{u=0}^{i} \boldsymbol{\Lambda}_{u} \boldsymbol{\Psi}_{i-u}\right) \boldsymbol{\Sigma}_{\mathrm{ee}}\left(\sum_{u=0}^{i} \boldsymbol{\Lambda}_{u} \boldsymbol{\Psi}_{i-u}\right)^{\prime} \\
& =\mathbf{V}_{y, m-1}+\left(\sum_{u=0}^{m-1} \boldsymbol{\Lambda}_{u} \boldsymbol{\Psi}_{m-1-u}\right) \boldsymbol{\Sigma}_{\mathrm{ee}}\left(\sum_{u=0}^{m-1} \boldsymbol{\Lambda}_{u} \boldsymbol{\Psi}_{m-1-u}\right)^{\prime}
\end{aligned}
$$

Relation of ARMA and State Space Forms

Every state space model has an ARMA representation, and conversely every ARMA model has a state space representation. This section discusses this equivalence. The following material is adapted from Akaike (1974), where there is a more complete discussion. Pham-Dinh-Tuan (1978) also contains a discussion of this material.

Suppose you are given the following ARMA model:

$$
\boldsymbol{\Phi}(B) \mathbf{x}_{t}=\boldsymbol{\Theta}(B) \mathbf{e}_{t}
$$

or, in more detail,

$$
\begin{equation*}
\mathbf{x}_{t}-\boldsymbol{\Phi}_{1} \mathbf{x}_{t-1}-\cdots-\boldsymbol{\Phi}_{p} \mathbf{x}_{t-p}=\mathbf{e}_{t}+\boldsymbol{\Theta}_{1} \mathbf{e}_{t-1}+\cdots+\boldsymbol{\Theta}_{q} \mathbf{e}_{t-q} \tag{1}
\end{equation*}
$$

where \mathbf{e}_{t} is a sequence of independent multivariate normal random vectors with mean $\mathbf{0}$ and variance
matrix $\boldsymbol{\Sigma}_{\mathbf{e e}}, \mathrm{B}$ is the backshift operator $\left(B \mathbf{x}_{t}=\mathbf{x}_{t-1}\right), \boldsymbol{\Phi}(B)$ and $\boldsymbol{\Theta}(B)$ are matrix polynomials in B , and \mathbf{x}_{t} is the observed process.

If the roots of the determinantial equation $|\boldsymbol{\Phi}(B)|=0$ are outside the unit circle in the complex plane, the model can also be written as

$$
\mathbf{x}_{t}=\boldsymbol{\Phi}^{-1}(B) \boldsymbol{\Theta}(B) \mathbf{e}_{t}=\sum_{i=0}^{\infty} \boldsymbol{\Psi}_{i} \mathbf{e}_{t-i}
$$

The $\boldsymbol{\Psi}_{i}$ matrices are known as the impulse response matrices and can be computed as $\boldsymbol{\Phi}^{-1}(B) \boldsymbol{\Theta}(B)$.

You can assume $p>q$ since, if this is not initially true, you can add more terms $\boldsymbol{\Phi}_{i}$ that are identically 0 without changing the model.

To write this set of equations in a state space form, proceed as follows. Let $\mathbf{x}_{t+i \mid t}$ be the conditional expectation of \mathbf{x}_{t+i} given \mathbf{x}_{w} for $w \leq t$. The following relations hold:

$$
\begin{aligned}
& \mathbf{x}_{t+i \mid t}=\sum_{j=i}^{\infty} \boldsymbol{\Psi}_{j} \mathbf{e}_{t+i-j} \\
& \mathbf{x}_{t+i \mid t+1}=\mathbf{x}_{t+i \mid t}+\boldsymbol{\Psi}_{i-1} \mathbf{e}_{t+1}
\end{aligned}
$$

However, from equation (1) you can derive the following relationship:

$$
\begin{equation*}
\mathbf{x}_{t+p \mid t}=\boldsymbol{\Phi}_{1} \mathbf{x}_{t+p-1 \mid t}+\cdots+\boldsymbol{\Phi}_{p} \mathbf{x}_{t} \tag{2}
\end{equation*}
$$

Hence, when $i=p$, you can substitute for $\mathbf{x}_{t+p \mid t}$ in the right-hand side of equation (2) and close the system of equations.

This substitution results in the following model in the state space form $\mathbf{z}_{t+1}=\mathbf{F z}_{t}+\mathbf{G e}_{t+1}$:

$$
\left[\begin{array}{c}
\mathbf{x}_{t+1} \\
\mathbf{x}_{t+2 \mid t+1} \\
\vdots \\
\mathbf{x}_{t+p \mid t+1}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & \mathbf{I} & 0 & \cdots & 0 \\
0 & 0 & \mathbf{I} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\boldsymbol{\Phi}_{p} & \boldsymbol{\Phi}_{p-1} & & \cdots & \boldsymbol{\Phi}_{1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{t} \\
\mathbf{x}_{t+1 \mid t} \\
\vdots \\
\mathbf{x}_{t+p-1 \mid t}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{I} \\
\boldsymbol{\Psi}_{1} \\
\vdots \\
\boldsymbol{\Psi}_{p-1}
\end{array}\right] \mathbf{e}_{t+1}
$$

Note that the state vector \mathbf{z}_{t} is composed of conditional expectations of \mathbf{x}_{t} and the first r components of \mathbf{z}_{t} are equal to \mathbf{x}_{t}.

The state space form can be cast into an ARMA form by solving the system of difference equations for the first r components.

When converting from an ARMA form to a state space form, you can generate a state vector larger than needed; that is, the state space model might not be a minimal representation. When going from a state space form to an ARMA form, you can have nontrivial common factors in the autoregressive and moving average operators that yield an ARMA model larger than necessary.

If the state space form used is not a minimal representation, some but not all components of $\mathbf{x}_{t+i \mid t}$ might be linearly dependent. This situation corresponds to $\left[\boldsymbol{\Phi}_{p} \boldsymbol{\Theta}_{p-1}\right]$ being of less than full rank when $\boldsymbol{\Phi}(B)$ and $\boldsymbol{\Theta}(B)$ have no common nontrivial left factors. In this case, \mathbf{z}_{t} consists of a subset
of the possible components of $\left[\mathbf{x}_{t+i \mid t}\right] \quad i=1,2, \cdots, p-1$. However, once a component of $\mathbf{x}_{t+i \mid t}$ (for example, the j th one) is linearly dependent on the previous conditional expectations, then all subsequent j th components of $\mathbf{x}_{t+k \mid t}$ for $k>i$ must also be linearly dependent. Note that in this case, equivalent but seemingly different structures can arise if the order of the components within \mathbf{x}_{t} is changed.

OUT= Data Set

The forecasts are contained in the output data set specified by the OUT= option in the PROC STATESPACE statement. The OUT= data set contains the following variables:

- the BY variables
- the ID variable
- the VAR statement variables. These variables contain the actual values from the input data set.
- FOR i, numeric variables that contain the forecasts. The variable FOR i contains the forecasts for the i th variable in the VAR statement list. Forecasts are one-step-ahead predictions until the end of the data or until the observation specified by the BACK= option.
- RESi, numeric variables that contain the residual for the forecast of the i th variable in the VAR statement list. For forecast observations, the actual values are missing and the RES i variables contain missing values.
- STDi, numeric variables that contain the standard deviation for the forecast of the i th variable in the VAR statement list. The values of the STD i variables can be used to construct univariate confidence limits for the corresponding forecasts. However, such confidence limits do not take into account the covariance of the forecasts.

OUTAR= Data Set

The OUTAR= data set contains the estimates of the preliminary autoregressive models. The OUTAR= data set contains the following variables:

- ORDER, a numeric variable that contains the order p of the autoregressive model that the observation represents
- AIC, a numeric variable that contains the value of the information criterion $A I C_{p}$
- SIGFl, numeric variables that contain the estimate of the innovation covariance matrices for the forward autoregressive models. The variable SIGF l contains the l th column of $\widehat{\boldsymbol{\Sigma}}_{p}$ in the observations with $\mathrm{ORDER}=p$.
- SIGB l, numeric variables that contain the estimate of the innovation covariance matrices for the backward autoregressive models. The variable SIGB l contains the l th column of $\widehat{\boldsymbol{\Omega}}_{p}$ in the observations with ORDER $=p$.
- FOR $k _l$, numeric variables that contain the estimates of the autoregressive parameter matrices for the forward models. The variable FOR $k _l$ contains the l th column of the lag k autoregressive parameter matrix $\widehat{\boldsymbol{\Phi}}_{k}^{p}$ in the observations with ORDER $=p$.
- BAC $k _l$, numeric variables that contain the estimates of the autoregressive parameter matrices for the backward models. The variable BAC $__{l} l$ contains the l th column of the lag k autoregressive parameter matrix $\widehat{\boldsymbol{\Psi}}_{k}^{p}$ in the observations with ORDER $=p$.

The estimates for the order p autoregressive model can be selected as those observations with OR$\mathrm{DER}=p$. Within these observations, the k, l th element of $\boldsymbol{\Phi}_{i}^{p}$ is given by the value of the FOR $i _l$ variable in the k th observation. The k, l th element of $\boldsymbol{\Psi}_{i}^{p}$ is given by the value of $\mathrm{BAC} i_{l} l$ variable in the k th observation. The k, l th element of $\boldsymbol{\Sigma}_{p}$ is given by SIGFl in the k th observation. The k, l th element of $\boldsymbol{\Omega}_{p}$ is given by SIGB l in the k th observation.

Table 25.2 shows an example of the OUTAR= data set, with ARMAX=3 and \mathbf{x}_{t} of dimension 2. In Table 25.2, (i, j) indicate the i, j th element of the matrix.

Table 25.2 Values in the OUTAR= Data Set

Obs	ORDER	AIC	SIGF1	SIGF2	SIGB1	SIGB2	FOR1_1	FOR1_2	FOR2_1	FOR2_2	FOR3_1
1	0	AIC_{0}	$\boldsymbol{\Sigma}^{\text {O }}$ (1, 1)	$\boldsymbol{\Sigma}_{0(1,2)}$	$\boldsymbol{\Omega}_{0(1,1)}$	$\boldsymbol{\Omega}_{0(1,2)}$					
2	0	AIC_{0}	$\boldsymbol{\Sigma}_{0(2,1)}$	$\boldsymbol{\Sigma}_{0(2,2)}$	$\boldsymbol{\Omega}_{0(2,1)}$	$\boldsymbol{\Omega}_{0(2,2)}$.	
3	1	AIC_{1}	$\boldsymbol{\Sigma}_{1(1,1)}$	$\boldsymbol{\Sigma}_{1(1,2)}$	$\boldsymbol{\Omega}_{1(1,1)}$	$\boldsymbol{\Omega}_{1(1,2)}$	$\boldsymbol{\Phi}_{1}^{1}(1,1)$	$\boldsymbol{\Phi}_{1}^{1}(1,2)$.	.	
4	1	AIC_{1}	$\boldsymbol{\Sigma}_{1(2,1)}$	$\boldsymbol{\Sigma}_{1(1,2)}$	$\boldsymbol{\Omega}_{1(2,1)}$	$\boldsymbol{\Omega}_{1(1,2)}$	$\boldsymbol{\Phi}_{1}^{1}{ }_{(2,1)}$	$\boldsymbol{\Phi}_{1}^{1}{ }_{(2,2)}$			
5	2	AIC_{2}	$\boldsymbol{\Sigma}_{2(1,1)}$	$\boldsymbol{\Sigma}_{2(1,2)}$	$\boldsymbol{\Omega}_{2(1,1)}$	$\boldsymbol{\Omega}_{2(1,2)}$	$\boldsymbol{\Phi}_{1}^{2}(1,1)$	$\boldsymbol{\Phi}_{1}^{2}(1,2)$	$\boldsymbol{\Phi}_{2}^{2}(1,1)$	$\boldsymbol{\Phi}_{2}^{2}(1,2)$.
6	2	AIC_{2}	$\boldsymbol{\Sigma}_{2(2,1)}$	$\boldsymbol{\Sigma}_{2(1,2)}$	$\boldsymbol{\Omega}_{2(2,1)}$	$\boldsymbol{\Omega}_{2(1,2)}$	$\boldsymbol{\Phi}_{1}^{2}(2,1)$	$\boldsymbol{\Phi}_{1}^{2}(2,2)$	$\boldsymbol{\Phi}_{2}^{2}{ }^{2}(2,1)$	$\boldsymbol{\Phi}_{2}^{2}{ }^{2}(2,2)$	
7	3	AIC_{3}	$\boldsymbol{\Sigma}_{3(1,1)}$	$\boldsymbol{\Sigma}_{3(1,2)}$	$\boldsymbol{\Omega}_{3(1,1)}$	$\boldsymbol{\Omega}_{3(1,2)}$	$\boldsymbol{\Phi}_{1}^{3}(1,1)$	$\boldsymbol{\Phi}_{1}^{3}(1,2)$	$\boldsymbol{\Phi}_{2}^{3}(1,1)$	$\boldsymbol{\Phi}_{2}^{3}(1,2)$	$\boldsymbol{\Phi}_{3}^{3}{ }_{(1,1)}$
8	3	AIC_{3}	$\boldsymbol{\Sigma}_{3(2,1)}$	$\boldsymbol{\Sigma}_{3(1,2)}$	$\boldsymbol{\Omega}_{3(2,1)}$	$\boldsymbol{\Omega}_{3(1,2)}$	$\boldsymbol{\Phi}_{1}^{3}(2,1)$	$\boldsymbol{\Phi}_{1}^{3}(2,2)$	$\boldsymbol{\Phi}_{2}^{3}(2,1)$	$\boldsymbol{\Phi}_{2}^{3}(2,2)$	$\boldsymbol{\Phi}_{3}^{\mathbf{3}(2,1)}$

Obs FOR3_2 BACK1_1 BACK1_2 BACK2_1 BACK2_2 BACK3_1 BACK3_2

1	.				.		
2							
3		$\boldsymbol{\Psi}_{1}^{1}{ }_{(1,1)}$	$\boldsymbol{\Psi}_{1}^{1}{ }_{(1,2)}$.		.
4	.	$\boldsymbol{\Psi}_{1}^{1}(2,1)$	$\boldsymbol{\Psi}_{1}^{1}(2,2)$		${ }^{\text {a }}$.	.	.
5		$\Psi_{1}^{2}(1,1)$	$\boldsymbol{\Psi}_{1}^{2}(1,2)$	$\boldsymbol{\Psi}_{2}^{2}{ }_{(1,1)}$	$\boldsymbol{\Psi}_{2}^{2}(1,2)$.	.
6		$\Psi_{1}^{2}(2,1)$	$\boldsymbol{\Psi}_{1}^{2}(2,2)$	$\Psi_{2}^{2}(2,1)$	$\Psi_{2}^{2}(2,2)$		
7	$\boldsymbol{\Phi}_{3}^{3}{ }_{(1,2)}$	$\boldsymbol{\Psi}_{1}^{3}(1,1)$	$\Psi_{1}^{3}(1,2)$	$\Psi_{2}^{3}(1,1)$	$\Psi_{2}^{3}(1,2)$	$\Psi_{3}^{3}(1,1)$	$\Psi_{3}^{3}{ }_{(1,2)}$
8	$\boldsymbol{\Phi}_{3}^{3}(2,2)$	$\Psi_{1}^{3}(2,1)$	$\Psi_{1}^{3}(2,2)$	$\Psi_{2}^{3}(2,1)$	$\Psi_{2}^{3}(2,2)$	$\boldsymbol{\Psi}_{3}^{3}(2,1)$	$\Psi_{3}^{3}(2,2)$

The estimated autoregressive parameters can be used in the IML procedure to obtain autoregressive estimates of the spectral density function or forecasts based on the autoregressive models.

OUTMODEL= Data Set

The OUTMODEL= data set contains the estimates of the \mathbf{F} and \mathbf{G} matrices and their standard errors, the names of the components of the state vector, and the estimates of the innovation covariance matrix. The variables contained in the OUTMODEL= data set are as follows:

- the BY variables
- STATEVEC, a character variable that contains the name of the component of the state vector corresponding to the observation. The STATEVEC variable has the value STD for standard deviations observations, which contain the standard errors for the estimates given in the preceding observation.
- $\mathrm{F}_{-} j$, numeric variables that contain the columns of the \mathbf{F} matrix. The variable $\mathrm{F}_{-} j$ contains the j th column of \mathbf{F}. The number of $\mathrm{F}_{-} j$ variables is equal to the value of the DIMMAX= option. If the model is of smaller dimension, the extraneous variables are set to missing.
- $G_{_} j$, numeric variables that contain the columns of the \mathbf{G} matrix. The variable $\mathrm{G}_{-} j$ contains the j th column of \mathbf{G}. The number of $G_{-} j$ variables is equal to r, the dimension of \mathbf{x}_{t} given by the number of variables in the VAR statement.
- SIG_ $_{-} j$, numeric variables that contain the columns of the innovation covariance matrix. The variable SIG $_{-} j$ contains the j th column of $\boldsymbol{\Sigma}_{e e}$. There are r variables SIG $_{j} j$.

Table 25.3 shows an example of the OUTMODEL $=$ data set, with $\mathbf{x}_{t}=\left(x_{t}, y_{t}\right)^{\prime}$, $\mathbf{z}_{t}=\left(x_{t}, y_{t}, x_{t+1 \mid t}\right)^{\prime}$, and DIMMAX=4. In Table 25.3, $\mathbf{F}_{i, j}$ and $\mathbf{G}_{i, j}$ are the i, j th elements of \mathbf{F} and \mathbf{G} respectively. Note that all elements for $\mathrm{F}_{-} 4$ are missing because \mathbf{F} is a 3×3 matrix.

Table 25.3 Value in the OUTMODEL= Data Set

Obs	STATEVEC	F_1	F_2	F_3	F_4	G_1	G_2	SIG_1	SIG_2
1	X (T; T)	0	0	1	.	1	0	$\boldsymbol{\Sigma}_{1,1}$	$\boldsymbol{\Sigma}_{1,2}$
2	STD			.					.
3	Y(T;T)	$\mathbf{F}_{2,1}$	$\mathbf{F}_{2,2}$	F 2,3	.	0	1	$\boldsymbol{\Sigma}_{2,1}$	$\boldsymbol{\Sigma}_{2,2}$
4	STD	std $\mathbf{F}_{2,1}$	$\operatorname{std} \mathbf{F}_{2,2}$	$\operatorname{std} \mathbf{F}$ 2,3
5	$\mathrm{X}(\mathrm{T}+1 ; \mathrm{T})$	$\mathrm{F}_{3,1}$	$\mathbf{F}_{3,2}$	$\mathbf{F}_{3,3}$.	G 3,1	G 3,2	.	.
6	STD	$\operatorname{std} \mathbf{F}_{3,1}$	$\operatorname{std} \mathbf{F}_{3,2}$	$\operatorname{std} \mathbf{F}$ 3,3	.	std G $\mathbf{3 , 1}$	std G $\mathbf{3 , 2}^{\text {a }}$.	-

Printed Output

The printed output produced by the STATESPACE procedure includes the following:

1. descriptive statistics, which include the number of observations used, the names of the variables, their means and standard deviations (Std), and the differencing operations used
2. the Akaike information criteria for the sequence of preliminary autoregressive models
3. if the PRINTOUT=LONG option is specified, the sample autocovariance matrices of the input series at various lags
4. if the PRINTOUT=LONG option is specified, the sample autocorrelation matrices of the input series
5. a schematic representation of the autocorrelation matrices, showing the significant autocorrelations
6. if the PRINTOUT=LONG option is specified, the partial autoregressive matrices. (These are Φ_{p}^{p} as described in the section "Preliminary Autoregressive Models" on page 1590.)
7. a schematic representation of the partial autocorrelation matrices, showing the significant partial autocorrelations
8. the Yule-Walker estimates of the autoregressive parameters for the autoregressive model with the minimum AIC
9. if the PRINTOUT=LONG option is specified, the autocovariance matrices of the residuals of the minimum AIC model. This is the sequence of estimated innovation variance matrices for the solutions of the Yule-Walker equations.
10. if the PRINTOUT=LONG option is specified, the autocorrelation matrices of the residuals of the minimum AIC model
11. If the CANCORR option is specified, the canonical correlations analysis for each potential state vector considered in the state vector selection process. This includes the potential state vector, the canonical correlations, the information criterion for the smallest canonical correlation, Bartlett's χ^{2} statistic ("Chi Square") for the smallest canonical correlation, and the degrees of freedom of Bartlett's χ^{2}.
12. the components of the chosen state vector
13. the preliminary estimate of the transition matrix, \mathbf{F}, the input matrix, \mathbf{G}, and the variance matrix for the innovations, $\boldsymbol{\Sigma}_{\text {ee }}$
14. if the ITPRINT option is specified, the iteration history of the likelihood maximization. For each iteration, this shows the iteration number, the number of step halvings, the determinant of the innovation variance matrix, the damping factor Lambda, and the values of the parameters.
15. the state vector, printed again to aid interpretation of the following listing of \mathbf{F} and \mathbf{G}
16. the final estimate of the transition matrix \mathbf{F}
17. the final estimate of the input matrix \mathbf{G}
18. the final estimate of the variance matrix for the innovations $\boldsymbol{\Sigma}_{\mathbf{e e}}$
19. a table that lists the estimates of the free parameters in \mathbf{F} and \mathbf{G} and their standard errors and t statistics
20. if the COVB option is specified, the covariance matrix of the parameter estimates
21. if the COVB option is specified, the correlation matrix of the parameter estimates
22. if the PRINT option is specified, the forecasts and their standard errors

ODS Table Names

PROC STATESPACE assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 25.4 ODS Tables Produced in PROC STATESPACE

ODS Table Name	Description	Option
NObs	number of observations	default
Summary	simple summary statistics table	default
InfoCriterion	information criterion table	default
CovLags	covariance matrices of input series	PRINTOUT=LONG
CorrLags	correlation matrices of input series	PRINTOUT=LONG
PartialAR	partial autoregressive matrices	PRINTOUT=LONG
YWEstimates	Yule-Walker estimates for minimum AIC	default
CovResiduals	covariance of residuals	PRINTOUT=LONG
CorrResiduals	residual correlations from AR models	PRINTOUT=LONG
StateVector	state vector table	default
CorrGraph	schematic representation of correlations	default
TransitionMatrix	transition matrix	default
InputMatrix	input matrix	default
VarInnov	variance matrix for the innovation	default
CovB	covariance of parameter estimates	COVB
CorrB	correlation of parameter estimates	COVB
CanCorr	canonical correlation analysis	CANCORR
IterHistory	iterative fitting table	ITPRINT
ParameterEstimates	parameter estimates table	default
Forecasts	forecasts table	PRINT
ConvergenceStatus	convergence status table	default

Examples: STATESPACE Procedure

Example 25.1: Series J from Box and Jenkins

This example analyzes the gas furnace data (series J) from Box and Jenkins. (The data are not shown; see Box and Jenkins (1976) for the data.)

First, a model is selected and fit automatically using the following statements.

```
title1 'Gas Furnace Data';
title2 'Box & Jenkins Series J';
title3 'Automatically Selected Model';
proc statespace data=seriesj cancorr;
    var x y;
run;
```

The results for the automatically selected model are shown in Output 25.1.1.
Output 25.1.1 Results for Automatically Selected Model

Output 25.1.1 continued

Output 25.1.2 Results for Automatically Selected Model

Output 25.1.3 Results for Automatically Selected Model

$\mathbf{x}(T ; T)$	Gas Furnace Data Box \& Jenkins Series J Automatically Selected Model The STATESPACE Procedure Canonical Correlations Analysis				
1	1	0.804883	292.9228	304.7481	8

Output 25.1.4 Results for Automatically Selected Model

Output 25.1.5 Results for Automatically Selected Model
Variance Matrix for Innovation

$$
\begin{array}{ll}
0.035274 & -0.00734 \\
-0.00734 & 0.097569
\end{array}
$$

Output 25.1.6 Results for Automatically Selected Model

Gas Furnace Data Box \& Jenkins Series J Automatically Selected Model The STATESPACE Procedure Selected Statespace Form and Fitted Model				
$\mathbf{x}(\mathrm{T} ; \mathrm{T})$	$y(T ; T)$	$\mathbf{x}(\mathrm{T}+1 ; \mathrm{T})$	$\mathrm{Y}(\mathrm{T}+1 ; \mathrm{T})$	$\mathrm{Y}(\mathrm{T}+2 ; \mathrm{T})$

Output 25.1.6 continued

Estimate of Transition Matrix				
0	0	1	0	0
0	0	0	1	0
-0.86192	0.030609	1.724235	-0.05483	0
0	0	0	0	1
-0.34839	0.292124	-0.09435	-1.09823	1.671418
Input Matrix for Innovation				
		1	0	
		0	1	
			16	
		21	95	
			04	

Output 25.1.7 Results for Automatically Selected Model

The two series are believed to have a transfer function relation with the gas rate (variable X) as the input and the CO_{2} concentration (variable Y) as the output. Since the parameter estimates shown in Output 25.1.1 support this kind of model, the model is reestimated with the feedback parameters restricted to 0 . The following statements fit the transfer function (no feedback) model.

```
title3 'Transfer Function Model';
proc statespace data=seriesj printout=none;
```

```
    var x y;
    restrict f(3,2)=0 f(3,4)=0
    g(3,2)=0 g(4,1)=0 g(5,1)=0;
run;
```

The last two pages of the output are shown in Output 25.1.8.
Output 25.1.8 STATESPACE Output for Transfer Function Model

Output 25.1.9 STATESPACE Output for Transfer Function Model

```
Variance Matrix for Innovation
    0.036995 -0.0072
        -0.0072 0.095712
```


Output 25.1.9 continued

References

Akaike, H. (1974), "Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Processes," Annals of the Institute of Statistical Mathematics, 26, 363-387.

Akaike, H. (1976), "Canonical Correlations Analysis of Time Series and the Use of an Information Criterion," in Advances and Case Studies in System Identification, eds. R. Mehra and D.G. Lainiotis, New York: Academic Press.

Anderson, T.W. (1971), The Statistical Analysis of Time Series, New York: John Wiley \& Sons.
Ansley, C.F. and Newbold, P. (1979), "Multivariate Partial Autocorrelations," Proceedings of the Business and Economic Statistics Section, American Statistical Association, 349-353.

Box, G.E.P. and Jenkins, G. (1976), Time Series Analysis: Forecasting and Control, San Francisco: Holden-Day.

Brockwell, P.J. and Davis, R.A. (1991), Time Series: Theory and Methods, 2nd Edition, SpringerVerlag.

Hannan, E.J. (1970), Multiple Time Series, New York: John Wiley \& Sons.
Hannan, E.J. (1976), "The Identification and Parameterization of ARMAX and State Space Forms," Econometrica, 44, 713-722.

Harvey, A.C. (1981a), The Econometric Analysis of Time Series, New York: John Wiley \& Sons.
Harvey, A.C. (1981b), Time Series Models, New York: John Wiley \& Sons.
Jones, R.H. (1974), "Identification and Autoregressive Spectrum Estimation," IEEE Transactions
on Automatic Control, AC-19, 894-897.
Pham-Dinh-Tuan (1978), "On the Fitting of Multivariate Processes of the Autoregressive Moving Average Type," Biometrika, 65, 99-107.

Priestley, M.B. (1980), "System Identification, Kalman Filtering, and Stochastic Control," in Directions in Time Series, eds. D.R. Brillinger and G.C. Tiao, Institute of Mathematical Statistics.

Whittle, P. (1963), "On the Fitting of Multivariate Autoregressions and the Approximate Canonical Factorization of a Spectral Density Matrix," Biometrika, 50, 129-134.

Chapter 26

The SYSLIN Procedure

Contents

Overview: SYSLIN Procedure 1614
Getting Started: SYSLIN Procedure 1615
An Example Model 1615
Variables in a System of Equations 1616
Using PROC SYSLIN 1617
OLS Estimation 1617
Two-Stage Least Squares Estimation 1619
LIML, K-Class, and MELO Estimation 1621
SUR, 3SLS, and FIML Estimation 1621
Computing Reduced Form Estimates 1625
Restricting Parameter Estimates 1626
Testing Parameters 1628
Saving Residuals and Predicted Values 1630
Plotting Residuals 1631
Syntax: SYSLIN Procedure 1632
Functional Summary 1633
PROC SYSLIN Statement 1634
BY Statement 1637
ENDOGENOUS Statement 1637
IDENTITY Statement 1638
INSTRUMENTS Statement 1638
MODEL Statement 1638
OUTPUT Statement 1640
RESTRICT Statement 1641
SRESTRICT Statement 1642
STEST Statement 1643
TEST Statement 1644
VAR Statement 1646
WEIGHT Statement 1646
Details: SYSLIN Procedure 1647
Input Data Set 1647
Estimation Methods 1647
ANOVA Table for Instrumental Variables Methods 1650
The R-Square Statistics 1651
Computational Details 1651
Missing Values 1654
OUT= Data Set 1655
OUTEST= Data Set 1655
OUTSSCP= Data Set 1656
Printed Output 1657
ODS Table Names 1659
ODS Graphics 1660
Examples: SYSLIN Procedure 1661
Example 26.1: Klein's Model I Estimated with LIML and 3SLS 1661
Example 26.2: Grunfeld's Model Estimated with SUR 1668
Example 26.3: Illustration of ODS Graphics 1672
References 1676

Overview: SYSLIN Procedure

The SYSLIN procedure estimates parameters in an interdependent system of linear regression equations.

Ordinary least squares (OLS) estimates are biased and inconsistent when current period endogenous variables appear as regressors in other equations in the system. The errors of a set of related regression equations are often correlated, and the efficiency of the estimates can be improved by taking these correlations into account. The SYSLIN procedure provides several techniques that produce consistent and asymptotically efficient estimates for systems of regression equations.

The SYSLIN procedure provides the following estimation methods:

- ordinary least squares (OLS)
- two-stage least squares (2SLS)
- limited information maximum likelihood (LIML)
- K-class
- seemingly unrelated regressions (SUR)
- iterated seemingly unrelated regressions (ITSUR)
- three-stage least squares (3SLS)
- iterated three-stage least squares (IT3SLS)
- full information maximum likelihood (FIML)
- minimum expected loss (MELO)

Other features of the SYSLIN procedure enable you to:

- impose linear restrictions on the parameter estimates
- test linear hypotheses about the parameters
- write predicted and residual values to an output SAS data set
- write parameter estimates to an output SAS data set
- write the crossproducts matrix (SSCP) to an output SAS data set
- use raw data, correlations, covariances, or cross products as input

Getting Started: SYSLIN Procedure

This section introduces the use of the SYSLIN procedure. The problem of dependent regressors is introduced using a supply and demand example. This section explains the terminology used for variables in a system of regression equations and introduces the SYSLIN procedure statements for declaring the roles the variables play. The syntax used for the different estimation methods and the output produced is shown.

An Example Model

In simultaneous systems of equations, endogenous variables are determined jointly rather than sequentially. Consider the following supply and demand functions for some product:

$$
\begin{aligned}
& Q_{D}=a_{1}+b_{1} P+c_{1} Y+d_{1} S+\epsilon_{1}(\text { demand }) \\
& Q_{S}=a_{2}+b_{2} P+c_{2} U+\epsilon_{2}(\text { supply }) \\
& Q=Q_{D}=Q_{S} \text { (market equilibrium) }
\end{aligned}
$$

The variables in this system are as follows:
$\mathrm{Q}_{D} \quad$ quantity demanded
Qs quantity supplied

Q
$\mathrm{P} \quad$ price per unit
Y income
S
price of substitutes
the observed quantity sold, which equates quantity supplied and quantity demanded in equilibrium
unit cost
ϵ_{1}
the random error term for the demand equation
ϵ_{2}
the random error term for the supply equation
In this system, quantity demanded depends on price, income, and the price of substitutes. Consumers normally purchase more of a product when prices are lower and when income and the price of substitute goods are higher. Quantity supplied depends on price and the unit cost of production. Producers supply more when price is high and when unit cost is low. The actual price and quantity sold are determined jointly by the values that equate demand and supply.

Since price and quantity are jointly endogenous variables, both structural equations are necessary to adequately describe the observed values. A critical assumption of OLS is that the regressors are uncorrelated with the residual. When current endogenous variables appear as regressors in other equations (endogenous variables depend on each other), this assumption is violated and the OLS parameter estimates are biased and inconsistent. The bias caused by the violated assumptions is called simultaneous equation bias. Neither the demand nor supply equation can be estimated consistently by OLS.

Variables in a System of Equations

Before explaining how to use the SYSLIN procedure, it is useful to define some terms. The variables in a system of equations can be classified as follows:

- Endogenous variables, which are also called jointly dependent or response variables, are the variables determined by the system. Endogenous variables can also appear on the right-hand side of equations.
- Exogenous variables are independent variables that do not depend on any of the endogenous variables in the system.
- Predetermined variables include both the exogenous variables and lagged endogenous variables, which are past values of endogenous variables determined at previous time periods. PROC SYSLIN does not compute lagged values; any lagged endogenous variables must be computed in a preceding DATA step.
- Instrumental variables are predetermined variables used in obtaining predicted values for the current period endogenous variables by a first-stage regression. The use of instrumental variables characterizes estimation methods such as two-stage least squares and three-stage least squares. Instrumental variables estimation methods substitute these first-stage predicted values for endogenous variables when they appear as regressors in model equations.

Using PROC SYSLIN

First specify the input data set and estimation method in the PROC SYSLIN statement. If any model uses dependent regressors, and you are using an instrumental variables regression method, declare the dependent regressors with an ENDOGENOUS statement and declare the instruments with an INSTRUMENTS statement. Next, use MODEL statements to specify the structural equations of the system.

The use of different estimation methods is shown by the following examples. These examples use the simulated dataset WORK.IN given below.

```
data in;
    label q = "Quantity"
                p = "Price"
                s = "Price of Substitutes"
                y = "Income"
                u = "Unit Cost";
    drop i e1 e2;
    p = 0; q = 0;
    do i = 1 to 60;
        y = 1 + .05*i + .15*rannor(123);
        u = 2 + .05*rannor(123) + .05*rannor(123);
        s = 4 - . 001*(i-10)*(i-110) + . 5*rannor(123);
        e1 = .15 * rannor(123);
        e2 = . 15 * rannor(123);
        demandx = 1 + . 3 * y + . 35 * s + e1;
        supplyx = -1 - 1 * u + e2 - .4*e1;
        q = 1.4/2.15 * demandx + .75/2.15 * supplyx;
        p = ( - q + supplyx ) / -1.4;
        output;
    end;
run;
```


OLS Estimation

PROC SYSLIN performs OLS regression if you do not specify a method of estimation in the PROC SYSLIN statement. OLS does not use instruments, so the ENDOGENOUS and INSTRUMENTS statements can be omitted.

The following statements estimate the supply and demand model shown previously:

```
proc syslin data=in;
    demand: model q = p y s;
    supply: model q = p u;
run;
```

The PROC SYSLIN output for the demand equation is shown in Figure 26.1, and the output for the
supply equation is shown in Figure 26.2.
Figure 26.1 OLS Results for Demand Equation

Figure 26.2 OLS Results for Supply Equation

Figure 26.2 continued

For each MODEL statement, the output first shows the model label and dependent variable name and label. This is followed by an analysis-of-variance table for the model, which shows the model, error, and total mean squares, and an F test for the no-regression hypothesis. Next, the procedure prints the root mean squared error, dependent variable mean and coefficient of variation, and the R^{2} and adjusted R^{2} statistics.

Finally, the table of parameter estimates shows the estimated regression coefficients, standard errors, and t tests. You would expect the price coefficient in a demand equation to be negative. However, note that the OLS estimate of the price coefficient P in the demand equation (0.1233) has a positive sign. This could be caused by simultaneous equation bias.

Two-Stage Least Squares Estimation

In the supply and demand model, P is an endogenous variable, and consequently the OLS estimates are biased. The following example estimates this model using two-stage least squares.

```
proc syslin data=in 2sls;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    supply: model q = p u;
run;
```

The 2SLS option in the PROC SYSLIN statement specifies the two-stage least squares method. The ENDOGENOUS statement specifies that P is an endogenous regressor for which first-stage predicted values are substituted. You need to declare an endogenous variable in the ENDOGENOUS statement only if it is used as a regressor; thus although Q is endogenous in this model, it is not necessary to list it in the ENDOGENOUS statement.

Usually, all predetermined variables that appear in the system are used as instruments. The INSTRUMENTS statement specifies that the exogenous variables Y, U, and S are used as instruments for the first-stage regression to predict P .

The 2SLS results are shown in Figure 26.3 and Figure 26.4. The first-stage regressions are not shown. To see the first-stage regression results, use the FIRST option in the PROC SYSLIN statement.

Figure 26.3 2SLS Results for Demand Equation

Figure 26.4 2 SLS Results for Supply Equation

Figure 26.4 continued

The 2SLS output is similar in form to the OLS output. However, the 2SLS results are based on predicted values for the endogenous regressors from the first stage instrumental regressions. This makes the analysis-of-variance table and the R^{2} statistics difficult to interpret. See the sections "ANOVA Table for Instrumental Variables Methods" on page 1650 and "The R-Square Statistics" on page 1651 for details.

Note that, unlike the OLS results, the 2SLS estimate for the P coefficient in the demand equation (-1.115) is negative.

LIML, K-Class, and MELO Estimation

To obtain limited information maximum likelihood, general K-class, or minimum expected loss estimates, use the ENDOGENOUS, INSTRUMENTS, and MODEL statements as in the 2SLS case but specify the LIML, $\mathrm{K}=$, or MELO option instead of 2SLS in the PROC SYSLIN statement. The following statements show this for K-class estimation.

```
proc syslin data=in k=.5;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    supply: model q = p u;
run;
```

For more information about these estimation methods, see the section "Estimation Methods" on page 1647 and consult econometrics textbooks.

SUR, 3SLS, and FIML Estimation

In a multivariate regression model, the errors in different equations might be correlated. In this case, the efficiency of the estimation might be improved by taking these cross-equation correlations into
account.

Seemingly Unrelated Regression

Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation, is a generalization of OLS for multi-equation systems. Like OLS, the SUR method assumes that all the regressors are independent variables, but SUR uses the correlations among the errors in different equations to improve the regression estimates. The SUR method requires an initial OLS regression to compute residuals. The OLS residuals are used to estimate the cross-equation covariance matrix.

The SUR option in the PROC SYSLIN statement specifies seemingly unrelated regression, as shown in the following statements:

```
proc syslin data=in sur;
    demand: model q = p y s;
    supply: model q = p u;
run;
```

INSTRUMENTS and ENDOGENOUS statements are not needed for SUR, because the SUR method assumes there are no endogenous regressors. For SUR to be effective, the models must use different regressors. SUR produces the same results as OLS unless the model contains at least one regressor not used in the other equations.

Three-Stage Least Squares

The three-stage least squares method generalizes the two-stage least squares method to take into account the correlations between equations in the same way that SUR generalizes OLS. Three-stage least squares requires three steps: first-stage regressions to get predicted values for the endogenous regressors; a two-stage least squares step to get residuals to estimate the cross-equation correlation matrix; and the final 3SLS estimation step.

The 3SLS option in the PROC SYSLIN statement specifies the three-stage least squares method, as shown in the following statements.

```
proc syslin data=in 3sls;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    supply: model q = p u;
run;
```

The 3SLS output begins with a two-stage least squares regression to estimate the cross-model correlation matrix. This output is the same as the 2SLS results shown in Figure 26.3 and Figure 26.4, and is not repeated here. The next part of the 3SLS output prints the cross-model correlation matrix computed from the 2SLS residuals. This output is shown in Figure 26.5 and includes the crossmodel covariances, correlations, the inverse of the correlation matrix, and the inverse covariance matrix.

Figure 26.5 Estimated Cross-Model Covariances Used for 3SLS Estimates
The SYSLIN Procedure
Three-Stage Least Squares Estimation
Cross Model Covariance

The final 3SLS estimates are shown in Figure 26.6.
Figure 26.6 Three-Stage Least Squares Results

Figure 26.6 continued

Variable	Model Dependent Variable Label				SUPPLY q uantity	
	Parameter Estimates					
	DF	Parameter Estimate	Standard Error	t Value	Pr > $\|t\|$	Variable Label
Intercept	1	-0.51878	0.490999	-1.06	0.2952	Intercept
p	1	1.333080	0.059271	22.49	<. 0001	Price
u	1	-1.14623	0.243491	-4.71	$<.0001$	Unit Cost

This output first prints the system weighted mean squared error and system weighted R^{2} statistics. The system weighted MSE and system weighted R^{2} measure the fit of the joint model obtained by stacking all the models together and performing a single regression with the stacked observations weighted by the inverse of the model error variances. See the section "The R-Square Statistics" on page 1651 for details.

Next, the table of 3SLS parameter estimates for each model is printed. This output has the same form as for the other estimation methods.

Note that, in some cases, the 3SLS and 2SLS results can be the same. Such a case could arise because of the same principle that causes OLS and SUR results to be identical, unless an equation includes a regressor not used in the other equations of the system. However, the application of this principle is more complex when instrumental variables are used. When all the exogenous variables are used as instruments, linear combinations of all the exogenous variables appear in the third-stage regressions through substitution of first-stage predicted values.

In this example, 3SLS produces different (and, it is hoped, more efficient) estimates for the demand equation. However, the 3SLS and 2SLS results for the supply equation are the same. This is because the supply equation has one endogenous regressor and one exogenous regressor not used in other equations. In contrast, the demand equation has fewer endogenous regressors than exogenous regressors not used in other equations in the system.

Full Information Maximum Likelihood

The FIML option in the PROC SYSLIN statement specifies the full information maximum likelihood method, as shown in the following statements.

```
proc syslin data=in fiml;
    endogenous p q;
    instruments y u s;
    demand: model q = p y s;
    supply: model q = p u;
run;
```

The FIML results are shown in Figure 26.7.

Figure 26.7 FIML Results

Computing Reduced Form Estimates

A system of structural equations with endogenous regressors can be represented as functions of only the predetermined variables. For this to be possible, there must be as many equations as endogenous variables. If there are more endogenous variables than regression models, you can use IDENTITY statements to complete the system. See the section "Reduced Form Estimates" on page 1653 for details.

The REDUCED option in the PROC SYSLIN statement prints reduced form estimates. The following statements show this by using the 3SLS estimates of the structural parameters.

```
proc syslin data=in 3sls reduced;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    supply: model q = p u;
```

```
run;
```

The first four pages of this output were as shown previously and are not repeated here. (See Figure 26.3, Figure 26.4, Figure 26.5, and Figure 26.6.) The final page of the output from this example contains the reduced form coefficients from the 3SLS structural estimates, as shown in Figure 26.8.

Figure 26.8 Reduced Form 3SLS Results

The SYSLIN Procedure				
Endogenous Variables				
		p	q	
	DEMAND	1.176543	1	
	SUPPLY	-1.33308	1	
Exogenous Variables				
	Intercept	y	s	u
DEMAND	1.980269	0.404117	0.359204	0
SUPPLY	-0.51878	0	0	-1.14623
Inverse Endogenous Variables				
		DEMAND	SUPPLY	
	p	0.398466	-0.39847	
	q	0.531187	0.468813	
Reduced Form				
	Intercept	y	s	u
p	0.995788	0.161027	0.143131	0.456735
q	0.808682	0.214662	0.190804	-0.53737

Restricting Parameter Estimates

You can impose restrictions on the parameter estimates with RESTRICT and SRESTRICT statements. The RESTRICT statement imposes linear restrictions on parameters in the equation specified by the preceding MODEL statement. The SRESTRICT statement imposes linear restrictions that relate parameters in different models.

To impose restrictions involving parameters in different equations, use the SRESTRICT statement. Specify the parameters in the linear hypothesis as model-label.regressor-name. (If the MODEL statement does not have a label, you can use the dependent variable name as the label for the model,
provided the dependent variable uniquely labels the model.)
Tests for the significance of the restrictions are printed when RESTRICT or SRESTRICT statements are used. You can label RESTRICT and SRESTRICT statements to identify the restrictions in the output.

The RESTRICT statement in the following example restricts the price coefficient in the demand equation to equal 0.015 . The SRESTRICT statement restricts the estimate of the income coefficient in the demand equation to be 0.01 times the estimate of the unit cost coefficient in the supply equation.

```
proc syslin data=in 3sls;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    peq015: restrict p = .015;
    supply: model q = p u;
    yeq01u: srestrict demand.y = . 01 * supply.u;
run;
```

The restricted estimation results are shown in Figure 26.9.
Figure 26.9 Restricted Estimates

Variable	```The SYSLIN Procedure Three-Stage Least Squares Estimation Model DEMAND Dependent Variable q Label Quantity```					
	Parameter Estimates					
	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$	Variable Label
Intercept	1	-0.46584	0.053307	-8.74	$<.0001$	Intercept
p	1	0.015000	0	.	.	Price
Y	1	-0.00679	0.002357	-2.88	0.0056	Income
s	1	0.325589	0.009872	32.98	$<.0001$	Price of Substitutes
RESTRICT	-1	50.59353	7.464988	6.78	$<.0001$	PEQ015
	Model SUPPLY Dependent Variable q Label Quantity					
	Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|t\|$	Variable Label
Intercept	1	-1.31894	0.477633	-2.76	0.0077	Intercept
p	1	1.291718	0.059101	21.86	$<.0001$	Price
u	1	-0.67887	0.235679	-2.88	0.0056	Unit Cost

Figure 26.9 continued

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > $\|t\|$	Variable Label
RESTRICT	-1	342.3605	38.12094	8.98	<. 0001	YEQ01U

The standard error for P in the demand equation is 0 , since the value of the P coefficient was specified by the RESTRICT statement and not estimated from the data. The "Parameter Estimates" table for the demand equation contains an additional row for the restriction specified by the RESTRICT statement. The parameter estimate for the restriction is the value of the Lagrange multiplier used to impose the restriction. The restriction is highly significant $(t=6.777)$, which means that the data are not consistent with the restriction, and the model does not fit as well with the restriction imposed. See the section "RESTRICT Statement" on page 1641 for details.

Following the "Parameter Estimates" table for the supply equation, the results for the cross model restrictions are printed. This shows that the restriction specified by the SRESTRICT statement is not consistent with the data $(t=8.98)$. See the section "SRESTRICT Statement" on page 1642 for details.

Testing Parameters

You can test linear hypotheses about the model parameters with TEST and STEST statements. The TEST statement tests hypotheses about parameters in the equation specified by the preceding MODEL statement. The STEST statement tests hypotheses that relate parameters in different models.

For example, the following statements test the hypothesis that the price coefficient in the demand equation is equal to 0.015 .

```
/*--- 3SLS Estimation with Tests ---*/
proc syslin data=in 3sls;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    test_1: test p = .015;
    supply: model q = p u;
run;
```

The TEST statement results are shown in Figure 26.10. This reports an F test for the hypothesis specified by the TEST statement. In this case, the F statistic is 6.79 (3.879/.571) with 1 and 113 degrees of freedom. The p value for this F statistic is 0.0104 , which indicates that the hypothesis tested is almost but not quite rejected at the 0.01 level. See the section "TEST Statement" on page 1644 for details.

Figure 26.10 TEST Statement Results

To test hypotheses that involve parameters in different equations, use the STEST statement. Specify the parameters in the linear hypothesis as model-label.regressor-name. (If the MODEL statement does not have a label, you can use the dependent variable name as the label for the model, provided the dependent variable uniquely labels the model.)

For example, the following statements test the hypothesis that the income coefficient in the demand equation is 0.01 times the unit cost coefficient in the supply equation:

```
proc syslin data=in 3sls;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    supply: model q = p u;
    stest1: stest demand.y = . 01 * supply.u;
run;
```

The STEST statement results are shown in Figure 26.11. The form and interpretation of the STEST statement results are like the TEST statement results. In this case, the F test produces a p value less than 0.0001 , and strongly rejects the hypothesis tested. See the section "STEST Statement" on page 1643 for details.

Figure 26.11 STEST Statement Results

You can combine TEST and STEST statements with RESTRICT and SRESTRICT statements to perform hypothesis tests for restricted models. Of course, the validity of the TEST and STEST statement results depends on the correctness of any restrictions you impose on the estimates.

Saving Residuals and Predicted Values

You can store predicted values and residuals from the estimated models in a SAS data set. Specify the OUT= option in the PROC SYSLIN statement and use the OUTPUT statement to specify names
for new variables to contain the predicted and residual values.
For example, the following statements store the predicted quantity from the supply and demand equations in a data set PRED:

```
/*--- Saving Output Data from 3SLS Estimation ---*/
proc syslin data=in out=pred 3sls;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    output predicted=q_demand;
    supply: model q = p u;
    output predicted=q_supply;
run;
```


Plotting Residuals

You can plot the residuals against the regressors by using the PROC SGPLOT. For example, the following statements plot the 2SLS residuals for the demand model against price, income, and price of substitutes.

```
proc syslin data=in 2sls out=out;
    endogenous p;
    instruments y u s;
    demand: model q = p y s;
    output residual=residual_q;
run;
proc sgplot data=out;
    scatter x=p y=residual_q;
    refline 0 / axis=y;
run;
proc sgplot data=out;
    scatter x=y y=residual_q;
    refline 0 / axis=y;
run;
proc sgplot data=out;
    scatter x=s y=residual_q;
    refline 0 / axis=y;
run;
```

The plot for income is shown in Figure 26.12. The other plots are not shown.

Figure 26.12 Plot of Residuals against Income

Syntax: SYSLIN Procedure

The SYSLIN procedure uses the following statements:
PROC SYSLIN options ;
BY variables;
ENDOGENOUS variables;
IDENTITY identities;
INSTRUMENTS variables;
MODEL response = regressors / options ;
OUTPUT PREDICTED = variable RESIDUAL= variable ;
RESTRICT restrictions;
SRESTRICT restrictions;
STEST equations ;
TEST equations ;
VAR variables ;
WEIGHT variable ;

Functional Summary

The SYSLIN procedure statements and options are summarized in the following table.

Description	Statement	Option
Data Set Options		
specify the input data set	PROC SYSLIN	DATA=
specify the output data set	PROC SYSLIN	OUT=
write parameter estimates to an output data set	PROC SYSLIN	OUTEST=
write covariances to the OUTEST $=$ data set	PROC SYSLIN	OUTCOV
		OUTCOV3
write the SSCP matrix to an output data set	PROC SYSLIN	OUTSSCP=

Estimation Method Options

specify full information maximum likelihood estimation
specify iterative SUR estimation
specify iterative 3SLS estimation
specify K-class estimation
specify limited information maximum likelihood estimation specify minimum expected loss estimation specify ordinary least squares estimation specify seemingly unrelated estimation specify two-stage least squares estimation specify three-stage least squares estimation specify Fuller's modification to LIML specify convergence criterion specify maximum number of iterations use diagonal of \mathbf{S} instead of \mathbf{S}
exclude RESTRICT statements in final stage specify criterion for testing for singularity specify denominator for variance estimates

PROC SYSLIN

PROC SYSLIN	ITSUR
PROC SYSLIN	IT3SLS
PROC SYSLIN	$\mathrm{K}=$
PROC SYSLIN	LIML

PROC SYSLIN	MELO
PROC SYSLIN	OLS
PROC SYSLIN	SUR
PROC SYSLIN	2SLS
PROC SYSLIN	3SLS
PROC SYSLIN	ALPHA=
PROC SYSLIN	CONVERGE=
PROC SYSLIN	MAXIT=
PROC SYSLIN	SDIAG
PROC SYSLIN	NOINCLUDE
PROC SYSLIN	SINGULAR=
PROC SYSLIN	VARDEF=

PROC SYSLIN	ALL
PROC SYSLIN	FIRST
PROC SYSLIN	ITPRINT
PROC SYSLIN	REDUCED
PROC SYSLIN	SIMPLE
PROC SYSLIN	USSCP
MODEL	CORRB

FIML

TSUR

LIML

MELO
OLS
SUR
PROC SYSLIN 2SLS
PROC SYSLIN 3SLS
PROC SYSLIN ALPHA=
PROC SYSLIN CONVERGE=
PROC SYSLIN MAXIT=
PROC SYSLIN SDIAG
PROC SYSLIN NOINCLUDE
PROC SYSLIN VARDEF=

Printing Control Options

print all results
print first-stage regression statistics
print estimates and SSE at each iteration
print the reduced form estimates
print descriptive statistics
print uncorrected SSCP matrix
print correlations of the parameter estimates

Description	Statement	Option
print covariances of the parameter estimates	MODEL	COVB
print Durbin-Watson statistics	MODEL	DW
print Basmann's test	MODEL	OVERID
plot residual values against regressors	MODEL	PLOT
print standardized parameter estimates	MODEL	STB
print unrestricted parameter estimates	MODEL	UNREST
print the model crossproducts matrix	MODEL	XPX
print the inverse of the crossproducts matrix	MODEL	I
suppress printed output	MODEL	NOPRINT
suppress all printed output	PROC SYSLIN	NOPRINT

Model Specification

specify structural equations
suppress the intercept parameter
specify linear relationship among variables
perform weighted regression
MODEL
MODEL
NOINT
IDENTITY
WEIGHT

Tests and Restrictions on Parameters

place restrictions on parameter estimates
place restrictions on parameter estimates
test linear hypothesis
RESTRICT
SRESTRICT
test linear hypothesis
STEST
TEST

Other Statements

specify BY-group processing
specify the endogenous variables
specify instrumental variables
write predicted and residual values to a data
set
name variable for predicted values
name variable for residual values
include additional variables in $X^{\prime} X$ matrix

BY
ENDOGENOUS
INSTRUMENTS
OUTPUT
OUTPUT
OUTPUT
VAR

PREDICTED= RESIDUAL=

PROC SYSLIN Statement

PROC SYSLIN options ;

The following options can be used with the PROC SYSLIN statement.

Data Set Options

DATA $=$ SAS-data-set

specifies the input data set. If the DATA= option is omitted, the most recently created SAS data set is used. In addition to ordinary SAS data sets, PROC SYSLIN can analyze data sets of TYPE=CORR, TYPE=COV, TYPE=UCORR, TYPE=UCOV, and TYPE=SSCP. See the section "Special TYPE= Input Data Sets" on page 1647 for details.

OUT=SAS-data-set

specifies an output SAS data set for residuals and predicted values. The OUT= option is used in conjunction with the OUTPUT statement. See the section "OUT= Data Set" on page 1655 for details.

OUTEST=SAS-data-set

writes the parameter estimates to an output data set. See the section "OUTEST= Data Set" on page 1655 for details.

OUTCOV

COVOUT
writes the covariance matrix of the parameter estimates to the OUTEST= data set in addition to the parameter estimates.

OUTCOV3

COV3OUT
writes covariance matrices for each model in a system to the OUTEST= data set when the 3SLS, SUR, or FIML option is used.

OUTSSCP=SAS-data-set

writes the sum-of-squares-and-crossproducts matrix to an output data set. See the section "OUTSSCP= Data Set" on page 1656 for details.

Estimation Method Options

2SLS

specifies the two-stage least squares estimation method.

3SLS

specifies the three-stage least squares estimation method.

ALPHA=value

specifies Fuller's modification to the LIML estimation method. See the section "Fuller's Modification to LIML" on page 1654 for details.

CONVERGE=value

specifies the convergence criterion for the iterative estimation methods IT3SLS, ITSUR, and FIML. The default is CONVERGE=0.0001.

FIML
specifies the full information maximum likelihood estimation method.

ITSUR

specifies the iterative seemingly unrelated estimation method.
IT3SLS
specifies the iterative three-stage least squares estimation method.
$\mathrm{K}=$ value
specifies the K-class estimation method.
LIML
specifies the limited information maximum likelihood estimation method.

MAXITER=n

specifies the maximum number of iterations allowed for the IT3SLS, ITSUR, and FIML estimation methods. The MAXITER= option can be abbreviated as MAXIT=. The default is MAXITER=30.

MELO

specifies the minimum expected loss estimation method.

NOINCLUDE

excludes the RESTRICT statements from the final stage for the 3SLS, IT3SLS, SUR, and ITSUR estimation methods.

OLS

specifies the ordinary least squares estimation method. This is the default.

SDIAG

uses the diagonal of \mathbf{S} instead of \mathbf{S} to do the estimation, where \mathbf{S} is the covariance matrix of equation errors. See the section "Uncorrelated Errors across Equations" on page 1654 for details.

SINGULAR=value

specifies a criterion for testing singularity of the crossproducts matrix. This is a tuning parameter used to make PROC SYSLIN more or less sensitive to singularities. The value must be between 0 and 1 . The default is SINGULAR=1E-8.

SUR

specifies the seemingly unrelated estimation method.

Printing Control Options

ALL
specifies the CORRB, COVB, DW, I, OVERID, PLOT, STB, and XPX options for every MODEL statement.

FIRST

prints first-stage regression statistics for the endogenous variables regressed on the instruments. This output includes sums of squares, estimates, variances, and standard deviations.

ITPRINT

prints parameter estimates, system-weighted residual sum of squares, and R^{2} at each iteration for the IT3SLS and ITSUR estimation methods. For the FIML method, the ITPRINT option prints parameter estimates, negative of log-likelihood function, and norm of gradient vector at each iteration.

NOPRINT

suppresses all printed output. Specifying NOPRINT in the PROC SYSLIN statement is equivalent to specifying NOPRINT in every MODEL statement.

REDUCED

prints the reduced form estimates. If the REDUCED option is specified, you should specify any IDENTITY statements needed to make the system square. See the section "Reduced Form Estimates" on page 1653 for details.

SIMPLE

prints descriptive statistics for the dependent variables. The statistics printed include the sum, mean, uncorrected sum of squares, variance, and standard deviation.

USSCP

prints the uncorrected sum-of-squares-and-crossproducts matrix.

USSCP2

prints the uncorrected sum-of-squares-and-crossproducts matrix for all variables used in the analysis, including predicted values of variables generated by the procedure.

VARDEF=DF | N | WEIGHT | WGT

specifies the denominator to use in calculating cross-equation error covariances and parameter standard errors and covariances. The default is VARDEF=DF, which corrects for model degrees of freedom. VARDEF=N specifies no degrees-of-freedom correction. VARDEF=WEIGHT specifies the sum of the observation weights. VARDEF=WGT specifies the sum of the observation weights minus the model degrees of freedom. See the section "Computation of Standard Errors" on page 1653 for details.

BY Statement

BY variables ;
A BY statement can be used with PROC SYSLIN to obtain separate analyses on observations in groups defined by the BY variables.

ENDOGENOUS Statement

ENDOGENOUS variables;

The ENDOGENOUS statement declares the jointly dependent variables that are projected in the first-stage regression through the instrument variables. The ENDOGENOUS statement is not needed for the SUR, ITSUR, or OLS estimation methods. The default ENDOGENOUS list consists of all the dependent variables in the MODEL and IDENTITY statements that do not appear in the INSTRUMENTS statement.

IDENTITY Statement

IDENTITY equation ;

The IDENTITY statement specifies linear relationships among variables to write to the OUTEST= data set. It provides extra information in the OUTEST= data set but does not create or compute variables. The OUTEST= data set can be processed by the SIMLIN procedure in a later step.

The IDENTITY statement is also used to compute reduced form coefficients when the REDUCED option in the PROC SYSLIN statement is specified. See the section "Reduced Form Estimates" on page 1653 for details.

The equation given by the IDENTITY statement has the same form as equations in the MODEL statement. A label can be specified for an IDENTITY statement as follows:
label : IDENTITY ...;

INSTRUMENTS Statement

INSTRUMENTS variables;

The INSTRUMENTS statement declares the variables used in obtaining first-stage predicted values. All the instruments specified are used in each first-stage regression. The INSTRUMENTS statement is required for the 2SLS, 3SLS, IT3SLS, LIML, MELO, and K-class estimation methods. The INSTRUMENTS statement is not needed for the SUR, ITSUR, OLS, or FIML estimation methods.

MODEL Statement

MODEL response = regressors / options ;
The MODEL statement regresses the response variable on the left side of the equal sign against the regressors listed on the right side.

Models can be given labels. Model labels are used in the printed output to identify the results for different models. Model labels are also used in SRESTRICT and STEST statements to refer to parameters in different models. If no label is specified, the response variable name is used as the label for the model. The model label is specified as follows:

```
label: MODEL ...;
```

The following options can be used in the MODEL statement after a slash (/).

ALL

specifies the CORRB, COVB, DW, I, OVERID, PLOT, STB, and XPX options.

ALPHA=value

specifies the α parameter for Fuller's modification to the LIML estimation method. See the section "Fuller's Modification to LIML" on page 1654 for details.

CORRB

prints the matrix of estimated correlations between the parameter estimates.

COVB

prints the matrix of estimated covariances between the parameter estimates.

DW

prints Durbin-Watson statistics and autocorrelation coefficients for the residuals. If there are missing values, d^{\prime} is calculated according to Savin and White (1978). Use the DW option only if the data set to be analyzed is an ordinary SAS data set with time series observations sorted in time order. The Durbin-Watson test is not valid for models with lagged dependent regressors.

I
prints the inverse of the crossproducts matrix for the model, $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. If restrictions are specified, the crossproducts matrix printed is adjusted for the restrictions. See the section "Computational Details" on page 1651 for details.

K=value

specifies K-class estimation.

NOINT

suppresses the intercept parameter from the model.

NOPRINT

suppresses the normal printed output.

OVERID

prints Basmann's (1960) test for over identifying restrictions. See the section "Overidentification Restrictions" on page 1654 for details.

PLOT

plots residual values against regressors. A plot of the residuals for each regressor is printed.
STB
prints standardized parameter estimates. Sometimes known as a standard partial regression coefficient, a standardized parameter estimate is a parameter estimate multiplied by the standard deviation of the associated regressor and divided by the standard deviation of the response variable.

UNREST

prints parameter estimates computed before restrictions are applied. The UNREST option is valid only if a RESTRICT statement is specified.

XPX

prints the model crossproducts matrix, $X^{\prime} X$. See the section "Computational Details" on page 1651 for details.

OUTPUT Statement

```
OUTPUT < PREDICTED=variable > < RESIDUAL=variable > ;
```

The OUTPUT statement writes predicted values and residuals from the preceding model to the data set specified by the OUT= option in the PROC SYSLIN statement. An OUTPUT statement must come after the MODEL statement to which it applies. The OUT= option must be specified in the PROC SYSLIN statement.

The following options can be specified in the OUTPUT statement:

PREDICTED=variable

names a new variable to contain the predicted values for the response variable. The PREDICTED $=$ option can be abbreviated as $\operatorname{PREDICT}=$, PRED $=$, or $\mathrm{P}=$.

RESIDUAL=variable

names a new variable to contain the residual values for the response variable. The RESIDUAL $=$ option can be abbreviated as $\mathrm{RESID}=$ or $\mathrm{R}=$.

For example, the following statements create an output data set named B. In addition to the variables in the input data set, the data set B contains the variable YHAT, with values that are predicted values of the response variable Y, and YRESID, with values that are the residual values of Y.

```
proc syslin data=a out=b;
    model y = x1 x2;
    output p=yhat r=yresid;
run;
```

For example, the following statements create an output data set named PRED. In addition to the variables in the input data set, the data set PRED contains the variables Q_DEMAND and Q_SUPPLY, with values that are predicted values of the response variable Q for the demand and supply equations respectively, and R_DEMAND and R_SUPPLY, with values that are the residual values of the demand and supply equations respectively.

```
proc syslin data=in out=pred;
    demand: model q = p y s;
    output p=q_demand r=r_demand;
    supply: model q = p u;
    output p=q_supply r=r_supply;
run;
```

See the section "OUT= Data Set" on page 1655 for details.

RESTRICT Statement

RESTRICT equation , ..., equation ;
The RESTRICT statement places restrictions on the parameter estimates for the preceding MODEL statement. Any number of RESTRICT statements can follow a MODEL statement. Each restriction is written as a linear equation. If more than one restriction is specified in a single RESTRICT statement, the restrictions are separated by commas.

Parameters are referred to by the name of the corresponding regressor variable. Each name used in the equation must be a regressor in the preceding MODEL statement. The keyword INTERCEPT is used to refer to the intercept parameter in the model.

RESTRICT statements can be given labels. The labels are used in the printed output to distinguish results for different restrictions. Labels are specified as follows:

label : RESTRICT ...;

The following is an example of the use of the RESTRICT statement, in which the coefficients of the regressors X 1 and X 2 are required to sum to 1 .

```
proc syslin data=a;
    model y = x1 x2;
    restrict x1 + x2 = 1;
run;
```

Variable names can be multiplied by constants. When no equal sign appears, the linear combination is set equal to 0 . Note that the parameters associated with the variables are restricted, not the variables themselves. Here are some examples of valid RESTRICT statements:

```
restrict x1 + x2 = 1;
restrict x1 + x2 - 1;
restrict 2 * x1 = x2 + x3 , intercept + x4 = 0;
restrict x1 = x2 = x3 = 1;
restrict 2 * x1 - x2;
```

Restricted parameter estimates are computed by introducing a Lagrangian parameter λ for each restriction (Pringle and Rayner 1971). The estimates of these Lagrangian parameters are printed in the "Parameter Estimates" table. If a restriction cannot be applied, its parameter value and degrees of freedom are listed as 0 .

The Lagrangian parameter λ measures the sensitivity of the sum of squared errors (SSE) to the restriction. If the restriction is changed by a small amount ϵ, the SSE is changed by $2 \lambda \epsilon$.

The t ratio tests the significance of the restrictions. If λ is zero, the restricted estimates are the same as the unrestricted.

Any number of restrictions can be specified on a RESTRICT statement, and any number of RESTRICT statements can be used. The estimates are computed subject to all restrictions specified. However, restrictions should be consistent and not redundant.

NoTE: The RESTRICT statement is not supported for the FIML estimation method.

SRESTRICT Statement

SRESTRICT equation , ..., equation ;

The SRESTRICT statement imposes linear restrictions that involve parameters in two or more MODEL statements. The SRESTRICT statement is like the RESTRICT statement but is used to impose restrictions across equations, whereas the RESTRICT statement applies only to parameters in the immediately preceding MODEL statement.

Each restriction is written as a linear equation. Parameters are referred to as label.variable, where label is the model label and variable is the name of the regressor to which the parameter is attached. (If the MODEL statement does not have a label, you can use the dependent variable name as the label for the model, provided the dependent variable uniquely labels the model.) Each variable name used must be a regressor in the indicated MODEL statement. The keyword INTERCEPT is used to refer to intercept parameters.

SRESTRICT statements can be given labels. The labels are used in the printed output to distinguish results for different restrictions. Labels are specified as follows:
label : SRESTRICT ...;
The following is an example of the use of the SRESTRICT statement, in which the coefficient for the regressor X 2 is constrained to be the same in both models.

```
proc syslin data=a 3sls;
    endogenous y1 y2;
    instruments x1 x2;
    model y1 = y2 x1 x2;
    model y2 = y1 x2;
    srestrict y1.x2 = y2.x2;
run;
```

When no equal sign is used, the linear combination is set equal to 0 . Thus, the restriction in the preceding example can also be specified as
srestrict $\mathrm{y} 1 . \mathrm{x} 2-\mathrm{y}$. x 2 ;

Any number of restrictions can be specified on an SRESTRICT statement, and any number of SRESTRICT statements can be used. The estimates are computed subject to all restrictions specified. However, restrictions should be consistent and not redundant.

When a system restriction is requested for a single equation estimation method (such as OLS or 2SLS), PROC SYSLIN produces the restricted estimates by actually using a corresponding system method. For example, when SRESTRICT is specified along with OLS, PROC SYSLIN produces the restricted OLS estimates via a two-step process equivalent to using SUR estimation with the SDIAG option. First, the unrestricted OLS results are produced. Then, the GLS (SUR) estimation with the system restriction is performed, using the diagonal of the covariance matrix of the residuals. When SRESTRICT is specified along with 2SLS, PROC SYSLIN produces the restricted 2SLS estimates via a multistep process equivalent to using 3SLS estimation with the SDIAG option. First, the unrestricted 2SLS results are produced. Then, the GLS (3SLS) estimation with the system restriction is performed, using the diagonal of the covariance matrix of the residuals.

The results of the SRESTRICT statements are printed after the parameter estimates for all the models in the system. The format of the SRESTRICT statement output is the same as the "Parameter Estimates" table. In this output the parameter estimate is the Lagrangian parameter λ used to impose the restriction.

The Lagrangian parameter λ measures the sensitivity of the system sum of square errors to the restriction. The system SSE is the system MSE shown in the printed output multiplied by the degrees of freedom. If the restriction is changed by a small amount ϵ, the system SSE is changed by $2 \lambda \epsilon$.

The t ratio tests the significance of the restriction. If λ is zero, the restricted estimates are the same as the unrestricted estimates.

The model degrees of freedom are not adjusted for the cross-model restrictions imposed by SRESTRICT statements.

Note: The SRESTRICT statement is not supported for the LIML and the FIML estimation methods.

STEST Statement

STEST equation , ..., equation / options ;

The STEST statement performs an F test for the joint hypotheses specified in the statement.
The hypothesis is represented in matrix notation as

$$
\mathbf{L} \beta=\mathbf{c}
$$

and the F test is computed as

$$
\frac{(\mathbf{L} b-\mathbf{c})^{\prime}\left(\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right)^{-1}(\mathbf{L} b-\mathbf{c})}{m \hat{\sigma}^{2}}
$$

where b is the estimate of β, m is the number of restrictions, and $\hat{\sigma}^{2}$ is the system weighted mean squared error. See the section "Computational Details" on page 1651 for information about the matrix $\mathbf{X}^{\prime} \mathbf{X}$.

Each hypothesis to be tested is written as a linear equation. Parameters are referred to as label.variable, where label is the model label and variable is the name of the regressor to which
the parameter is attached. (If the MODEL statement does not have a label, you can use the dependent variable name as the label for the model, provided the dependent variable uniquely labels the model.) Each variable name used must be a regressor in the indicated MODEL statement. The keyword INTERCEPT is used to refer to intercept parameters.

STEST statements can be given labels. The label is used in the printed output to distinguish different tests. Any number of STEST statements can be specified. Labels are specified as follows:

```
label: STEST ...;
```

The following is an example of the STEST statement:

```
proc syslin data=a 3sls;
    endogenous y1 y2;
    instruments x1 x2;
    model y1 = y2 x1 x2;
    model y2 = y1 x2;
    stest y1.x2 = y2.x2;
run;
```

The test performed is exact only for ordinary least squares, given the OLS assumptions of the linear model. For other estimation methods, the F test is based on large sample theory and is only approximate in finite samples.

If RESTRICT or SRESTRICT statements are used, the tests computed by the STEST statement are conditional on the restrictions specified. The validity of the tests can be compromised if incorrect restrictions are imposed on the estimates.

The following are examples of STEST statements:

```
stest a.x1 + b.x2 = l;
stest 2 * b.x2 = c.x3 + c.x4 ,
    a.intercept + b.x2 = 0;
stest a.x1 = c.x2 = b.x3 = 1;
stest 2 * a.x1 - b.x2 = 0;
```

The PRINT option can be specified in the STEST statement after a slash (/):

PRINT

prints intermediate calculations for the hypothesis tests.
NOTE: The STEST statement is not supported for the FIML estimation method.

TEST Statement

```
TEST equation , ..., equation / options ;
```

The TEST statement performs F tests of linear hypotheses about the parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to be tested. If more than one equation is specified, the equations are separated by commas.

Variable names must correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the corresponding regressor. The keyword INTERCEPT is used to refer to the model intercept.

TEST statements can be given labels. The label is used in the printed output to distinguish different tests. Any number of TEST statements can be specified. Labels are specified as follows:

```
label : TEST ...;
```

The following is an example of the use of TEST statement, which tests the hypothesis that the coefficients of X1 and X2 are the same:

```
proc syslin data=a;
    model y = x1 x2;
    test x1 = x2;
run;
```

The following statements perform F tests for the hypothesis that the coefficients of X1 and X2 are equal, for the hypothesis that the sum of the X 1 and X 2 coefficients is twice the intercept, and for the joint hypothesis.

```
proc syslin data=a;
    model y = x1 x2;
    x1eqx2: test x1 = x2;
    sumeq2i: test x1 + x2 = 2 * intercept;
    joint: test x1 = x2, x1 + x2 = 2 * intercept;
run;
```

The following are additional examples of TEST statements:

```
test x1 + x2 = 1;
test x1 = x2 = x3 = 1;
test 2 * x1 = x2 + x3, intercept + x4 = 0;
test 2 * x1 - x2;
```

The TEST statement performs an F test for the joint hypotheses specified. The hypothesis is represented in matrix notation as follows:

$$
\mathbf{L} \beta=\mathbf{c}
$$

The F test is computed as

$$
\frac{(\mathbf{L} b-\mathbf{c})^{\prime}\left(\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{L}^{\prime}\right)^{-1}(\mathbf{L} b-\mathbf{c})}{m \hat{\sigma}^{2}}
$$

where b is the estimate of β, m is the number of restrictions, and $\hat{\sigma}^{2}$ is the model mean squared error. See the section "Computational Details" on page 1651 for information about the matrix $\mathbf{X}^{\prime} \mathbf{X}$.

The test performed is exact only for ordinary least squares, given the OLS assumptions of the linear model. For other estimation methods, the F test is based on large sample theory and is only approximate in finite samples.

If RESTRICT or SRESTRICT statements are used, the tests computed by the TEST statement are conditional on the restrictions specified. The validity of the tests can be compromised if incorrect restrictions are imposed on the estimates.

The PRINT option can be specified in the TEST statement after a slash (/):

PRINT

prints intermediate calculations for the hypothesis tests.
NOTE: The TEST statement is not supported for the FIML estimation method.

VAR Statement

VAR variables ;
The VAR statement is used to include variables in the crossproducts matrix that are not specified in any MODEL statement. This statement is rarely used with PROC SYSLIN and is used only with the OUTSSCP = option in the PROC SYSLIN statement.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement is used to perform weighted regression. The WEIGHT statement names a variable in the input data set whose values are relative weights for a weighted least squares fit. If the weight value is proportional to the reciprocal of the variance for each observation, the weighted estimates are the best linear unbiased estimates (BLUE).

Details: SYSLIN Procedure

Input Data Set

PROC SYSLIN does not compute new values for regressors. For example, if you need a lagged variable, you must create it with a DATA step. No values are computed by IDENTITY statements; all values must be in the input data set.

Special TYPE= Input Data Sets

The input data set for most applications of the SYSLIN procedure contains standard rectangular data. However, PROC SYSLIN can also process input data in the form of a crossproducts, covariance, or correlation matrix. Data sets that contain such matrices are identified by values of the TYPE= data set option.

These special kinds of input data sets can be used to save computer time. It takes $n k^{2}$ operations, where n is the number of observations and k is the number of variables, to calculate cross products; the regressions are of the order k^{3}. When n is in the thousands and k is much smaller, you can save most of the computer time in later runs of PROC SYSLIN by reusing the SSCP matrix rather than recomputing it.

The SYSLIN procedure can process TYPE=CORR, COV, UCORR, UCOV, or SSCP data sets. TYPE=CORR and TYPE=COV data sets, usually created by the CORR procedure, contain means and standard deviations, and correlations or covariances. TYPE=SSCP data sets, usually created in previous runs of PROC SYSLIN, contain sums of squares and cross products. See the SAS/STAT User's Guide for more information about special SAS data sets.

When special SAS data sets are read, you must specify the TYPE= data set option. PROC CORR and PROC SYSLIN automatically set the type for output data sets; however, if you create the data set by some other means, you must specify its type with the TYPE= data set option.

When the special data sets are used, the DW (Durbin-Watson test) and PLOT options in the MODEL statement cannot be performed, and the OUTPUT statements are not valid.

Estimation Methods

A brief description of the methods used by the SYSLIN procedure follows. For more information about these methods, see the references at the end of this chapter.

There are two fundamental methods of estimation for simultaneous equations: least squares and maximum likelihood. There are two approaches within each of these categories: single equation methods (also referred to as limited information methods) and system methods (also referred to as
full information methods). System methods take into account cross-equation correlations of the disturbances in estimating parameters, while single equation methods do not.

OLS, 2SLS, MELO, K-class, SUR, ITSUR, 3SLS, and IT3SLS use the least squares method; LIML and FIML use the maximum likelihood method.

OLS, 2SLS, MELO, K-class, and LIML are single equation methods. The system methods are SUR, ITSUR, 3SLS, IT3SLS, and FIML.

Single Equation Estimation Methods

Single equation methods do not take into account correlations of errors across equations. As a result, these estimators are not asymptotically efficient compared to full information methods; however, there are instances in which they may be preferred. (See the section "Choosing a Method for Simultaneous Equations" on page 1650 for details.)

Let y_{i} be the dependent endogenous variable in equation i, and X_{i} and Y_{i} be the matrices of exogenous and endogenous variables appearing as regressors in the same equation.

The 2SLS method owes its name to the fact that, in a first stage, the instrumental variables are used as regressors to obtain a projected value \hat{Y}_{i} that is uncorrelated with the residual in equation i. In a second stage, \hat{Y}_{i} replaces Y_{i} on the right-hand side to obtain consistent least squares estimators.

Normally, the predetermined variables of the system are used as the instruments. It is possible to use variables other than predetermined variables from your system as instruments; however, the estimation might not be as efficient. For consistent estimates, the instruments must be uncorrelated with the residual and correlated with the endogenous variables.

The LIML method results in consistent estimates that are equal to the 2SLS estimates when an equation is exactly identified. LIML can be viewed as a least-variance ratio estimation or as a maximum likelihood estimation. LIML involves minimizing the ratio $\lambda=\left(r v a r_{-} e q\right) /\left(r v a r_{-} s y s\right)$, where $r v a r_{-} e q$ is the residual variance associated with regressing the weighted endogenous variables on all predetermined variables that appear in that equation, and rvar_sys is the residual variance associated with regressing weighted endogenous variables on all predetermined variables in the system.

The MELO method computes the minimum expected loss estimator. MELO estimators "minimize the posterior expectation of generalized quadratic loss functions for structural coefficients of linear structural models" (Judge et al. 1985, p. 635).

K-class estimators are a class of estimators that depends on a user-specified parameter k. A k value less than 1 is recommended but not required. The parameter k can be deterministic or stochastic, but its probability limit must equal 1 for consistent parameter estimates. When all the predetermined variables are listed as instruments, they include all the other single equation estimators supported by PROC SYSLIN. The instance when some of the predetermined variables are not listed among the instruments is not supported by PROC SYSLIN for the general K-class estimation. However, it is supported for the other methods.

For $k=1$, the K -class estimator is the 2SLS estimator, while for $k=0$, the K-class estimator is the OLS estimator. The K-class interpretation of LIML is that $k=\lambda$. Note that k is stochastic in the LIML method, unlike for OLS and 2SLS.

MELO is a Bayesian K-class estimator. It yields estimates that can be expressed as a matrixweighted average of the OLS and 2SLS estimates. MELO estimators have finite second moments and hence finite risk. Other frequently used K-class estimators might not have finite moments under some commonly encountered circumstances, and hence there can be infinite risk relative to quadratic and other loss functions.

One way of comparing K-class estimators is to note that when $k=1$, the correlation between regressor and the residual is completely corrected for. In all other cases, it is only partially corrected for.

See "Computational Details" on page 1651 for more details about K-class estimators.

SUR and 3SLS Estimation Methods

SUR might improve the efficiency of parameter estimates when there is contemporaneous correlation of errors across equations. In practice, the contemporaneous correlation matrix is estimated using OLS residuals. Under two sets of circumstances, SUR parameter estimates are the same as those produced by OLS: when there is no contemporaneous correlation of errors across equations (the estimate of the contemporaneous correlation matrix is diagonal) and when the independent variables are the same across equations.

Theoretically, SUR parameter estimates are always at least as efficient as OLS in large samples, provided that your equations are correctly specified. However, in small samples the need to estimate the covariance matrix from the OLS residuals increases the sampling variability of the SUR estimates. This effect can cause SUR to be less efficient than OLS. If the sample size is small and the cross-equation correlations are small, then OLS is preferred to SUR. The consequences of specification error are also more serious with SUR than with OLS.

The 3SLS method combines the ideas of the 2SLS and SUR methods. Like 2SLS, the 3SLS method uses \hat{Y} instead of Y for endogenous regressors, which results in consistent estimates. Like SUR, the 3SLS method takes the cross-equation error correlations into account to improve large sample efficiency. For 3SLS, the 2SLS residuals are used to estimate the cross-equation error covariance matrix.

The SUR and 3SLS methods can be iterated by recomputing the estimate of the cross-equation covariance matrix from the SUR or 3SLS residuals and then computing new SUR or 3SLS estimates based on this updated covariance matrix estimate. Continuing this iteration until convergence produces ITSUR or IT3SLS estimates.

FIML Estimation Method

The FIML estimator is a system generalization of the LIML estimator. The FIML method involves minimizing the determinant of the covariance matrix associated with residuals of the reduced form of the equation system. From a maximum likelihood standpoint, the LIML method involves assuming that the errors are normally distributed and then maximizing the likelihood function subject to restrictions on a particular equation. FIML is similar, except that the likelihood function is maximized subject to restrictions on all of the parameters in the model, not just those in the equation being estimated.

Note: The RESTRICT, SRESTRICT, TEST, and STEST statements are not supported when the FIML method is used.

Choosing a Method for Simultaneous Equations

A number of factors should be taken into account in choosing an estimation method. Although system methods are asymptotically most efficient in the absence of specification error, system methods are more sensitive to specification error than single equation methods.

In practice, models are never perfectly specified. It is a matter of judgment whether the misspecification is serious enough to warrant avoidance of system methods.

Another factor to consider is sample size. With small samples, 2SLS might be preferred to 3SLS. In general, it is difficult to say much about the small sample properties of K-class estimators because the results depend on the regressors used.

LIML and FIML are invariant to the normalization rule imposed but are computationally more expensive than 2SLS or 3SLS.

If the reason for contemporaneous correlation among errors across equations is a common, omitted variable, it is not necessarily best to apply SUR. SUR parameter estimates are more sensitive to specification error than OLS. OLS might produce better parameter estimates under these circumstances. SUR estimates are also affected by the sampling variation of the error covariance matrix. There is some evidence from Monte Carlo studies that SUR is less efficient than OLS in small samples.

ANOVA Table for Instrumental Variables Methods

In the instrumental variables methods (2SLS, LIML, K-class, MELO), first-stage predicted values are substituted for the endogenous regressors. As a result, the regression sum of squares (RSS) and the error sum of squares (ESS) do not sum to the total corrected sum of squares for the dependent variable (TSS). The analysis-of-variance table included in the second-stage results gives these sums of squares and the mean squares that are used for the F test, but this table is not a variance decomposition in the usual sense.

The F test shown in the instrumental variables case is a valid test of the no-regression hypothesis that the true coefficients of all regressors are 0 . However, because of the first-stage projection of the regression mean square, this is a Wald-type test statistic, which is asymptotically F but not exactly F-distributed in finite samples. Thus, for small samples the F test is only approximate when instrumental variables are used.

The R-Square Statistics

As explained in the section "ANOVA Table for Instrumental Variables Methods" on page 1650, when instrumental variables are used, the regression sum of squares (RSS) and the error sum of squares (ESS) do not sum to the total corrected sum of squares. In this case, there are several ways that the R^{2} statistic can be defined.

The definition of R^{2} used by the SYSLIN procedure is

$$
\mathrm{R}^{2}=\frac{R S S}{R S S+E S S}
$$

This definition is consistent with the F test of the null hypothesis that the true coefficients of all regressors are zero. However, this R^{2} might not be a good measure of the goodness of fit of the model.

System Weighted R-Square and System Weighted Mean Squared Error

The system weighted R^{2}, printed for the 3SLS, IT3SLS, SUR, ITSUR, and FIML methods, is computed as follows.

$$
\mathbf{R}^{2}=\mathbf{Y}^{\prime} \mathbf{W} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \mathbf{W} \mathbf{Y} / \mathbf{Y}^{\prime} \mathbf{W} \mathbf{Y}
$$

In this equation, the matrix $\mathbf{X}^{\prime} \mathbf{X}$ is $\mathbf{R}^{\prime} \mathbf{W R}$ and \mathbf{W} is the projection matrix of the instruments:

$$
\mathbf{W}=\mathbf{S}^{-1} \otimes \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}
$$

The matrix \mathbf{Z} is the instrument set, \mathbf{R} is the regressor set, and \mathbf{S} is the estimated cross-model covariance matrix.

The system weighted MSE, printed for the 3SLS, IT3SLS, SUR, ITSUR, and FIML methods, is computed as follows:

$$
M S E=\frac{1}{t d f}\left(\mathbf{Y}^{\prime} \mathbf{W} \mathbf{Y}-\mathbf{Y}^{\prime} \mathbf{W R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \mathbf{W} \mathbf{Y}\right)
$$

In this equation, $t d f$ is the sum of the error degrees of freedom for the equations in the system.

Computational Details

This section discusses various computational details.

Computation of Least Squares-Based Estimators

Let the system be composed of G equations and let the i th equation be expressed in this form:

$$
y_{i}=Y_{i} \boldsymbol{\beta}_{i}+X_{i} \boldsymbol{\gamma}_{i}+\mathbf{u}
$$

where
$y_{i} \quad$ is the vector of observations on the dependent variable
$Y_{i} \quad$ is the matrix of observations on the endogenous variables included in the equation
$\boldsymbol{\beta}_{i} \quad$ is the vector of parameters associated with Y_{i}
$X_{i} \quad$ is the matrix of observations on the predetermined variables included in the equation
$\boldsymbol{\gamma}_{i} \quad$ is the vector of parameters associated with X_{i}
$\mathbf{u} \quad$ is a vector of errors
Let $\hat{V}_{i}=Y_{i}-\hat{Y}_{i}$, where \hat{Y}_{i} is the projection of Y_{i} onto the space spanned by the instruments matrix Z.

Let

$$
\boldsymbol{\delta}_{i}=\left[\begin{array}{c}
\boldsymbol{\beta}_{i} \\
\boldsymbol{\gamma}_{i}
\end{array}\right]
$$

be the vector of parameters associated with both the endogenous and exogenous variables.
The K-class of estimators (Theil 1971) is defined by

$$
\hat{\boldsymbol{\delta}}_{i, k}=\left[\begin{array}{cc}
Y_{i}^{\prime} Y_{i}-k \hat{V}_{i}^{\prime} \hat{V}_{i} & Y_{i}^{\prime} X_{i} \\
X_{i}^{\prime} Y_{i} & X_{i}^{\prime} X_{i}
\end{array}\right]^{-1}\left[\begin{array}{c}
\left(Y_{i}-k V_{i}\right)^{\prime} y_{i} \\
X_{i}^{\prime} y_{i}
\end{array}\right]
$$

where k is a user-defined value.
Let

$$
\mathbf{R}=\left[Y_{i} X_{i}\right]
$$

and

$$
\hat{\mathbf{R}}=\left[\hat{Y}_{i} X_{i}\right]
$$

The 2SLS estimator is defined as

$$
\hat{\boldsymbol{\delta}}_{i, 2 S L S}=\left[\hat{R}_{i}^{\prime} \hat{R}_{i}\right]^{-1} \hat{R}_{i}^{\prime} y_{i}
$$

Let \mathbf{y} and $\boldsymbol{\delta}$ be the vectors obtained by stacking the vectors of dependent variables and parameters for all G equations, and let \mathbf{R} and $\hat{\mathbf{R}}$ be the block diagonal matrices formed by R_{i} and \hat{R}_{i}, respectively.

The SUR and ITSUR estimators are defined as

$$
\hat{\delta}_{(I T) S U R}=\left[\mathbf{R}^{\prime}\left(\hat{\Sigma}^{-1} \otimes \mathbf{I}\right) \mathbf{R}\right]^{-1} \mathbf{R}^{\prime}\left(\hat{\Sigma}^{-1} \otimes \mathbf{I}\right) \mathbf{y}
$$

while the 3SLS and IT3SLS estimators are defined as

$$
\hat{\delta}_{(I T) 3 S L S}=\left[\hat{\mathbf{R}}^{\prime}\left(\hat{\Sigma}^{-1} \otimes \mathbf{I}\right) \hat{\mathbf{R}}\right]^{-1} \hat{\mathbf{R}}^{\prime}\left(\hat{\Sigma}^{-1} \otimes \mathbf{I}\right) \mathbf{y}
$$

where \mathbf{I} is the identity matrix, and $\hat{\Sigma}$ is an estimator of the cross-equation correlation matrix. For 3SLS, $\hat{\Sigma}$ is obtained from the 2SLS estimation, while for SUR it is derived from the OLS estimation. For IT3SLS and ITSUR, it is obtained iteratively from the previous estimation step, until convergence.

Computation of Standard Errors

The VARDEF= option in the PROC SYSLIN statement controls the denominator used in calculating the cross-equation covariance estimates and the parameter standard errors and covariances. The values of the VARDEF $=$ option and the resulting denominator are as follows:
$\mathrm{N} \quad$ uses the number of nonmissing observations.
DF uses the number of nonmissing observations less the degrees of freedom in the model.
WEIGHT uses the sum of the observation weights given by the WEIGHTS statement.
WDF uses the sum of the observation weights given by the WEIGHTS statement less the degrees of freedom in the model.

The VARDEF= option does not affect the model mean squared error, root mean squared error, or R^{2} statistics. These statistics are always based on the error degrees of freedom, regardless of the VARDEF= option. The VARDEF= option also does not affect the dependent variable coefficient of variation (CV).

Reduced Form Estimates

The REDUCED option in the PROC SYSLIN statement computes estimates of the reduced form coefficients. The REDUCED option requires that the equation system be square. If there are fewer models than endogenous variables, IDENTITY statements can be used to complete the equation system.

The reduced form coefficients are computed as follows. Represent the equation system, with all endogenous variables moved to the left-hand side of the equations and identities, as

$$
B Y=\Gamma X
$$

Here \mathbf{B} is the estimated coefficient matrix for the endogenous variables \mathbf{Y}, and $\boldsymbol{\Gamma}$ is the estimated coefficient matrix for the exogenous (or predetermined) variables \mathbf{X}.

The system can be solved for \mathbf{Y} as follows, provided \mathbf{B} is square and nonsingular:

$$
\mathbf{Y}=\mathbf{B}^{-1} \boldsymbol{\Gamma} \mathbf{X}
$$

The reduced form coefficients are the matrix $\mathbf{B}^{-1} \boldsymbol{\Gamma}$.

Uncorrelated Errors across Equations

The SDIAG option in the PROC SYSLIN statement computes estimates by assuming uncorrelated errors across equations. As a result, when the SDIAG option is used, the 3SLS estimates are identical to 2SLS estimates, and the SUR estimates are the same as the OLS estimates.

Overidentification Restrictions

The OVERID option in the MODEL statement can be used to test for overidentifying restrictions on parameters of each equation. The null hypothesis is that the predetermined variables that do not appear in any equation have zero coefficients. The alternative hypothesis is that at least one of the assumed zero coefficients is nonzero. The test is approximate and rejects the null hypothesis too frequently for small sample sizes.

The formula for the test is given as follows. Let $y_{i}=\beta_{i} \mathbf{Y}_{i}+\gamma_{i} \mathbf{Z}_{i}+e_{i}$ be the i th equation. \mathbf{Y}_{i} are the endogenous variables that appear as regressors in the i th equation, and \mathbf{Z}_{i} are the instrumental variables that appear as regressors in the i th equation. Let N_{i} be the number of variables in \mathbf{Y}_{i} and \mathbf{Z}_{i}.
Let $v_{i}=y_{i}-\mathbf{Y}_{i} \hat{\beta}_{i}$. Let \mathbf{Z} represent all instrumental variables, T be the total number of observations, and K be the total number of instrumental variables. Define \hat{l} as follows:

$$
\hat{l}=\frac{v_{i}^{\prime}\left(\mathbf{I}-\mathbf{Z}_{i}\left(\mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i}\right)^{-1} \mathbf{Z}_{i}^{\prime}\right) v_{i}}{v_{i}^{\prime}\left(\mathbf{I}-\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}\right) v_{i}}
$$

Then the test statistic

$$
\frac{T-K}{K-N_{i}}(\hat{l}-1)
$$

is distributed approximately as an F with $K-N_{i}$ and $T-K$ degrees of freedom. See Basmann (1960) for more information.

Fuller's Modification to LIML

The ALPHA= option in the PROC SYSLIN and MODEL statements parameterizes Fuller's modification to LIML. This modification is $k=\gamma-(\alpha /(n-g))$, where α is the value of the ALPHA= option, γ is the LIML k value, n is the number of observations, and g is the number of predetermined variables. Fuller's modification is not used unless the ALPHA= option is specified. See Fuller (1977) for more information.

Missing Values

Observations that have a missing value for any variable in the analysis are excluded from the computations.

OUT= Data Set

The output SAS data set produced by the OUT= option in the PROC SYSLIN statement contains all the variables in the input data set and the variables that contain predicted values and residuals specified by OUTPUT statements.

The residuals are computed as actual values minus predicted values. Predicted values never use lags of other predicted values, as would be desirable for dynamic simulation. For these applications, PROC SIMLIN is available to predict or simulate values from the estimated equations.

OUTEST= Data Set

The OUTEST $=$ option produces a TYPE=EST output SAS data set that contains estimates from the regressions. The variables in the OUTEST= data set are as follows:

BY variables identifies the BY statement variables that are included in the OUTEST= data set.
identifies the estimation type for the observations. The _TYPE_ value INST indicates first-stage regression estimates. Other values indicate the estimation method used: 2SLS indicates two-stage least squares results, 3SLS indicates three-stage least squares results, LIML indicates limited information maximum likelihood results, and so forth. Observations added by IDENTITY statements have the _TYPE_ value IDENTITY.
STATUS identifies the convergence status of the estimation. _STATUS_ equals 0 when convergence criteria are met. Otherwise, _STATUS_ equals 1 when the estimation converges with a note, 2 when it converges with a warning, or 3 when it fails to converge.
MODEL identifies the model label. The model label is the label specified in the MODEL statement or the dependent variable name if no label is specified. For first-stage regression estimates, _MODEL_ has the value FIRST.
DEPVAR identifies the name of the dependent variable for the model.
NAME identifies the names of the regressors for the rows of the covariance matrix, if the COVOUT option is specified. _NAME_ has a blank value for the parameter estimates observations. The _NAME_variable is not included in the OUTEST= data set unless the COVOUT option is used to output the covariance of parameter estimates matrix.
SIGMA contains the root mean squared error for the model, which is an estimate of the standard deviation of the error term. The _SIGMA_ variable contains the same values reported as Root MSE in the printed output.
INTERCEPT identifies the intercept parameter estimates.
regressors identifies the regressor variables from all the MODEL statements that are included in the OUTEST= data set. Variables used in IDENTIFY statements are also included in the OUTEST= data set.

The parameter estimates are stored under the names of the regressor variables. The intercept parameters are stored in the variable INTERCEPT. The dependent variable of the model is given a coefficient of -1 . Variables that are not in a model have missing values for the OUTEST= observations for that model.

Some estimation methods require computation of preliminary estimates. All estimates computed are output to the OUTEST= data set. For each BY group and each estimation, the OUTEST= data set contains one observation for each MODEL or IDENTITY statement. Results for different estimations are identified by the _TYPE_ variable.

For example, consider the following statements:

```
proc syslin data=a outest=est 3sls;
    by b;
    endogenous y1 y2;
    instruments x1-x4;
    model y1 = y2 x1 x2;
    model y2 = y1 x3 x4;
    identity x1 = x3 + x4;
run;
```

The 3SLS method requires both a preliminary 2SLS stage and preliminary first-stage regressions for the endogenous variable. The OUTEST= data set thus contains three different kinds of estimates. The observations for the first-stage regression estimates have the _TYPE_ value INST. The observations for the 2SLS estimates have the _TYPE_ value 2SLS. The observations for the final 3SLS estimates have the _TYPE_ value 3SLS.

Since there are two endogenous variables in this example, there are two first-stage regressions and two _TYPE_=INST observations in the OUTEST= data set. Since there are two model statements, there are two OUTEST= observations with _TYPE_=2SLS and two observations with _TYPE_=3SLS. In addition, the OUTEST= data set contains an observation with the _TYPE_ value IDENTITY that contains the coefficients specified by the IDENTITY statement. All these observations are repeated for each BY group in the input data set defined by the values of the BY variable B.

When the COVOUT option is specified, the estimated covariance matrix for the parameter estimates is included in the OUTEST= data set. Each observation for parameter estimates is followed by observations that contain the rows of the parameter covariance matrix for that model. The row of the covariance matrix is identified by the variable _NAME_. For observations that contain parameter estimates, _NAME_is blank. For covariance observations, _NAME_ contains the regressor name for the row of the covariance matrix and the regressor variables contain the covariances.

See Example 26.1 for an example of the OUTEST= data set.

OUTSSCP= Data Set

The OUTSSCP $=$ option produces a TYPE=SSCP output SAS data set that contains sums of squares and cross products. The data set contains all variables used in the MODEL, IDENTITY, and VAR
statements. Observations are identified by the variable _NAME_.
The OUTSSCP= data set can be useful when a large number of observations are to be explored in many different SYSLIN runs. The sum-of-squares-and-crossproducts matrix can be saved with the OUTSSCP= option and used as the DATA= data set on subsequent SYSLIN runs. This is much less expensive computationally because PROC SYSLIN never reads the original data again. In the step that creates the OUTSSCP= data set, include in the VAR statement all the variables you expect to use.

Printed Output

The printed output produced by the SYSLIN procedure is as follows:

1. If the SIMPLE option is used, a table of descriptive statistics is printed that shows the sum, mean, sum of squares, variance, and standard deviation for all the variables used in the models.
2. If the FIRST option is specified and an instrumental variables method is used, first-stage regression results are printed. The results show the regression of each endogenous variable on the variables in the INSTRUMENTS list.
3. The results of the second-stage regression are printed for each model. (See the following section "Printed Output for Each Model" on page 1657 for details.)
4. If a systems method like 3SLS, SUR, or FIML is used, the cross-equation error covariance matrix is printed. This matrix is shown four ways: the covariance matrix itself, the correlation matrix form, the inverse of the correlation matrix, and the inverse of the covariance matrix.
5. If a systems method like 3SLS, SUR, or FIML is used, the system weighted mean squared error and system weighted R^{2} statistics are printed. The system weighted MSE and R^{2} measure the fit of the joint model obtained by stacking all the models together and performing a single regression with the stacked observations weighted by the inverse of the model error variances.
6. If a systems method like 3SLS, SUR, or FIML is used, the final results are printed for each model.
7. If the REDUCED option is used, the reduced form coefficients are printed. These consist of the structural coefficient matrix for the endogenous variables, the structural coefficient matrix for the exogenous variables, the inverse of the endogenous coefficient matrix, and the reduced form coefficient matrix. The reduced form coefficient matrix is the product of the inverse of the endogenous coefficient matrix and the exogenous structural coefficient matrix.

Printed Output for Each Model

The results printed for each model include the analysis-of-variance table, the "Parameter Estimates" table, and optional items requested by TEST statements or by options in the MODEL statement.

The printed output produced for each model is described in the following.
The analysis-of-variance table includes the following:

- the model degrees of freedom, sum of squares, and mean square
- the error degrees of freedom, sum of squares, and mean square. The error mean square is computed by dividing the error sum of squares by the error degrees of freedom and is not affected by the VARDEF= option.
- the corrected total degrees of freedom and total sum of squares. Note that for instrumental variables methods, the model and error sums of squares do not add to the total sum of squares.
- the F ratio, labeled "F Value," and its significance, labeled "PROB $>\mathrm{F}$," for the test of the hypothesis that all the nonintercept parameters are 0
- the root mean squared error. This is the square root of the error mean square.
- the dependent variable mean
- the coefficient of variation (CV) of the dependent variable
- the R^{2} statistic. This R^{2} is computed consistently with the calculation of the F statistic. It is valid for hypothesis tests but might not be a good measure of fit for models estimated by instrumental variables methods.
- the R^{2} statistic adjusted for model degrees of freedom, labeled "Adj R-SQ"

The "Parameter Estimates" table includes the following:

- estimates of parameters for regressors in the model and the Lagrangian parameter for each restriction specified
- a degrees of freedom column labeled DF. Estimated model parameters have 1 degree of freedom. Restrictions have a DF of -1 . Regressors or restrictions dropped from the model due to collinearity have a DF of 0 .
- the standard errors of the parameter estimates
- the t statistics, which are the parameter estimates divided by the standard errors
- the significance of the t tests for the hypothesis that the true parameter is 0 , labeled " $\operatorname{Pr}>|t|$." As previously noted, the significance tests are strictly valid in finite samples only for OLS estimates but are asymptotically valid for the other methods.
- the standardized regression coefficients, if the STB option is specified. This is the parameter estimate multiplied by the ratio of the standard deviation of the regressor to the standard deviation of the dependent variable.
- the labels of the regressor variables or restriction labels

In addition to the analysis-of-variance table and the "Parameter Estimates" table, the results printed for each model can include the following:

- If TEST statements are specified, the test results are printed.
- If the DW option is specified, the Durbin-Watson statistic and first-order autocorrelation coefficient are printed.
- If the OVERID option is specified, the results of Basmann's test for overidentifying restrictions are printed.
- If the PLOT option is used, plots of residual against each regressor are printed.
- If the COVB or CORRB options are specified, the results for each model also include the covariance or correlation matrix of the parameter estimates. For systems methods like 3SLS and FIML, the COVB and CORB output is printed for the whole system after the output for the last model, instead of separately for each model.

The third-stage output for 3SLS, SUR, IT3SLS, ITSUR, and FIML does not include the analysis-of-variance table. When a systems method is used, the second-stage output does not include the optional output, except for the COVB and CORRB matrices.

ODS Table Names

PROC SYSLIN assigns a name to each table it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. If the estimation method used is 3SLS, IT3SLS, ITSUR or SUR, you can obtain tables by specifying ODS OUTPUT CorrResiduals, InvCorrResiduals, InvCovResiduals.

Table 26.2 ODS Tables Produced in PROC SYSLIN

ODS Table Name	Description	Option
ANOVA	Summary of the SSE, MSE for the equations	default
AugXPXMat	Model crossproducts	XPX or USSCP
AutoCorrStat	Autocorrelation statistics	DW
ConvergenceStatus	Convergence status	default
CorrB	Correlations of parameters	CORRB
CorrResiduals	Correlations of residuals	
CovB	Covariance of parameters	COVB
CovResiduals	Covariance of residuals	
EndoMat	Endogenous variables	REDUCED
ExogMat	Exogenous variables	default
FitStatistics	Statistics of fit	
InvCorrResiduals	Inverse correlations of residuals	
InvCovResiduals	Inverse covariance of residuals	

Table 26.2 (continued)

ODS Table Name	Description	Option
InvEndoMat	Inverse endogenous variables	REDUCED
InvXPX	$X^{\prime} X$ inverse for system	I
IterHistory	Iteration printing	ITPRINT
MissingValues	Missing values generated by the program	default
ModelVars	Name and label for the model	default
ParameterEstimates	Parameter estimates	default
RedMat	Reduced form	REDUCED
SimpleStatistics	Descriptive statistics	SIMPLE
SSCP	Model crossproducts	XPX or USSCP
TestResults	Test for overidentifying restrictions	
Weight	Weighted model statistics	

ODS Graphics

This section describes the use of ODS for creating graphics with the SYSLIN procedure.

ODS Graph Names

PROC SYSLIN assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when you use ODS. The names are listed in Table 26.3.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 26.3 ODS Graphics Produced by PROC SYSLIN

ODS Graph Name	Plot Description
ActualByPredicted	Predicted versus actual plot
QQPlot	Q-Q plot of residuals
ResidualHistogram	Histogram of the residuals
ResidualPlot	Residual plot

Examples: SYSLIN Procedure

Example 26.1: Klein's Model I Estimated with LIML and 3SLS

This example uses PROC SYSLIN to estimate the classic Klein Model I. For a discussion of this model, see Theil (1971). The following statements read the data.

```
*---------------------------Klein's Model I----------------------------------
| By L.R. Klein, Economic Fluctuations in the United States, 1921-1941 |
| (1950), NY: John Wiley. A macro-economic model of the U.S. with |
| three behavioral equations, and several identities. See Theil, p.456.|
*-------------------------------------------------------------------------------
data klein;
input year c p w i x wp g t k wsum;
    date=mdy(1,1,year);
    format date monyy.;
    y =c+i+g-t;
    yr =year-1931;
    klag=lag(k);
    plag=lag(p);
    xlag=lag(x);
    label year='Year'
            date='Date'
            c ='Consumption'
            p ='Profits'
            w ='Private Wage Bill'
            i ='Investment'
            k ='Capital Stock'
            y ='National Income'
            x ='Private Production'
            wsum='Total Wage Bill'
            wp ='Govt Wage Bill'
            g ='Govt Demand'
            i ='Taxes'
            klag='Capital Stock Lagged'
            plag='Profits Lagged'
            xlag='Private Product Lagged'
            yr ='YEAR-1931';
datalines;
\begin{tabular}{rrrrrrrrrrr}
1920 & .9 & 12.7 &. &. & 44.9 &. &. &. & 182.8 &. \\
1921 & 41.9 & 12.4 & 25.5 & -0.2 & 45.6 & 2.7 & 3.9 & 7.7 & 182.6 & 28.2 \\
1922 & 45.0 & 16.9 & 29.3 & 1.9 & 50.1 & 2.9 & 3.2 & 3.9 & 184.5 & 32.2 \\
1923 & 49.2 & 18.4 & 34.1 & 5.2 & 57.2 & 2.9 & 2.8 & 4.7 & 189.7 & 37.0 \\
1924 & 50.6 & 19.4 & 33.9 & 3.0 & 57.1 & 3.1 & 3.5 & 3.8 & 192.7 & 37.0 \\
1925 & 52.6 & 20.1 & 35.4 & 5.1 & 61.0 & 3.2 & 3.3 & 5.5 & 197.8 & 38.6 \\
1926 & 55.1 & 19.6 & 37.4 & 5.6 & 64.0 & 3.3 & 3.3 & 7.0 & 203.4 & 40.7 \\
1927 & 56.2 & 19.8 & 37.9 & 4.2 & 64.4 & 3.6 & 4.0 & 6.7 & 207.6 & 41.5 \\
1928 & 57.3 & 21.1 & 39.2 & 3.0 & 64.5 & 3.7 & 4.2 & 4.2 & 210.6 & 42.9 \\
1929 & 57.8 & 21.7 & 41.3 & 5.1 & 67.0 & 4.0 & 4.1 & 4.0 & 215.7 & 45.3
\end{tabular}
```

```
... more lines ...
```

The following statements estimate the Klein model using the limited information maximum likelihood method. In addition, the parameter estimates are written to a SAS data set with the OUTEST= option.

```
proc syslin data=klein outest=b liml;
    endogenous c p w i x wsum k y;
    instruments klag plag xlag wp g t yr;
    consume: model c = p plag wsum;
    invest: model i = p plag klag;
    labor: model w = x xlag yr;
run;
proc print data=b;
run;
```

The PROC SYSLIN estimates are shown in Output 26.1.1 through Output 26.1.3.
Output 26.1.1 LIML Estimates for Consumption

Output 26.1.2 LIML Estimates for Investments

Output 26.1.3 LIML Estimates for Labor

The SYSLIN Procedure Limited-Information Maximum Likelihood Estimation Model LABOR Dependent Variable Label Private Wage Bill						
Analysis of Variance						
Source		DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model Error Corrected Total		3	696.1485	232.0495	393.62	<. 0001
		17	10.02192	0.589525		
		20	794.9095			
Root MSE			0.76781	R-Square	0.98581	
Dependent Mean			36.36190	Adj R-Sq	0.98330	
Coeff Var						

Output 26.1.3 continued

Variable	DF	Parameter Estimate	Parameter Estimates			
			Standard Error	t Value	$\operatorname{Pr}>\|t\|$	Variable Label
Intercept	1	1.526187	1.320838	1.16	0.2639	Intercept
\mathbf{x}	1	0.433941	0.075507	5.75	<. 0001	Private Production
xlag	1	0.151321	0.074527	2.03	0.0583	Private Product
						Lagged
yr	1	0.131593	0.035995	3.66	0.0020	YEAR-1931

The OUTEST = data set is shown in part in Output 26.1.4. Note that the data set contains the parameter estimates and root mean squared errors, _SIGMA_, for the first-stage instrumental regressions as well as the parameter estimates and σ for the LIML estimates for the three structural equations.

Output 26.1.4 The OUTEST = Data Set

Obs	_TYPE	_STATUS_				MODEL	DEPVAR_ _SIGMA				Intercept			klag		plag		
1	LIML	0	Converged			CONSUME	C		1.55079		17.1477			.		0.39603		
2	LIML	0	Converged			INVEST	i		1.43479		22.5908			-0.16826		0.68039		
3	LIML	Converged				LABOR	w	0.76781			1.5262							
Obs	xlag		wp	g	t	yr	c		p	w		i			w	um	k	Y
1	.		-	-	-	.	-1	-0.	22251	.		.	.		0.8	256	.	-
2	.		-	-	-	.	.	0.	07518	.		-1	.		.		-	-
3	0.15132		-	-	-	0.13159	-	-		-1		.	0.4	3394	-		-	-

The following statements estimate the model using the 3SLS method. The reduced form estimates are produced by the REDUCED option; IDENTITY statements are used to make the model complete.

```
proc syslin data=klein 3sls reduced;
    endogenous c p w i x wsum k y;
    instruments klag plag xlag wp g t yr;
    consume: model c = p plag wsum;
    invest: model i = p plag klag;
    labor: model w = x xlag yr;
    product: identity x = c + i + g;
    income: identity y = c + i + g - t;
    profit: identity p = y - w;
    stock: identity k = klag + i;
    wage: identity wsum = w + wp;
run;
```

The preliminary 2SLS results and estimated cross-model covariance matrix are not shown. The 3SLS estimates are shown in Output 26.1.5 through Output 26.1.7. The reduced form estimates are shown in Output 26.1.8 through Output 26.1.11.

Output 26.1.5 3SLS Estimates for Consumption

The SYSLIN Procedure Three-Stage Least Squares Estimation							
	System Weighted MSE 5.9342						
	Degrees of freedom						
	System Weighted R-Square 0.9550						
	Model				CONSUME		
	Dependent Variable				c		
	Label				sumption		
	Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		Variable Label
Intercept	1	16.44079	1.449925	11.34	$<.0001$	Intercept	
p	1	0.124890	0.120179	1.04	0.3133	Profits	
plag	1	0.163144	0.111631	1.46	0.1621	Profits Lagged	
wsum	1	0.790081	0.042166	18.74	<. 0001	Total Wage Bill	

Output 26.1.6 3SLS Estimates for Investments

	Model Dependent Variable Label				INVEST i Taxes	
	Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$	Variable Label
Intercept	1	28.17785	7.550853	3.73	0.0017	Intercept
p	1	-0.01308	0.179938	-0.07	0.9429	Profits
plag	1	0.755724	0.169976	4.45	0.0004	Profits Lagged
klag	1	-0.19485	0.036156	-5.39	<. 0001	Capital Stock Lagged

Output 26.1.7 3SLS Estimates for Labor

Model	LABOR
Dependent Variable Label	wrivate Wage Bill

Output 26.1.7 continued

Variable	DF	Parameter Estimate	Parameter Estimates				
			Standard Error	t Value	Pr > \|t		Variable Label
Intercept	1	1.797218	1.240203	1.45	0.1655	Intercept	
\mathbf{x}	1	0.400492	0.035359	11.33	<. 0001	Private Production	
xlag	1	0.181291	0.037965	4.78	0.0002	Private Product	
						Lagged	
yr	1	0.149674	0.031048	4.82	0.0002	YEAR-1931	

Output 26.1.8 Reduced Form Estimates

Endogenous Variables				
	c	P	w	i
CONSUME	1	-0.12489	0	0
INVEST	0	0.013079	0	1
LABOR	0	0	1	0
PRODUCT	-1	0	0	-1
INCOME	-1	0	0	-1
PROFIT	0	1	1	0
STOCK	0	0	0	-1
WAGE	0	0	-1	0
Endogenous Variables				
	x	wsum	k	Y
CONSUME	0	-0.79008	0	0
INVEST	0	0	0	0
LABOR	-0.40049	0	0	0
PRODUCT	1	0	0	0
INCOME	0	0	0	1
PROFIT	0	0	0	-1
STOCK	0	0	1	0
WAGE	0	1	0	0

Output 26.1.9 Reduced Form Estimates

Exogenous Variables				
	Intercept	plag	klag	xlag
CONSUME	16.44079	0.163144	0	0
INVEST	28.17785	0.755724	-0.19485	0
LABOR	1.797218	0	0	0.181291
PRODUCT	0	0	0	0
INCOME	0	0	0	0
PROFIT	0	0	0	0
STOCK	0	0	1	0
WAGE	0	0	0	0
Exogenous Variables				
	y^{r}	g	t	wp
CONSUME	0	0	0	0
INVEST	0	0	0	0
LABOR	0.149674	0	0	0
PRODUCT	0	1	0	0
INCOME	0	1	-1	0
PROFIT	0	0	0	0
STOCK	0	0	0	0
WAGE	0	0	0	1

Output 26.1.10 Reduced Form Estimates

Inverse Endogenous Variables				
	CONSUME	INVEST	LABOR	PRODUCT
c	1.634654	0.634654	1.095657	0.438802
p	0.972364	0.972364	-0.34048	-0.13636
w	0.649572	0.649572	1.440585	0.576943
i	-0.01272	0.987282	0.004453	0.001783
\mathbf{x}	1.621936	1.621936	1.10011	1.440585
wsum	0.649572	0.649572	1.440585	0.576943
k	-0.01272	0.987282	0.004453	0.001783
Y	1.621936	1.621936	1.10011	0.440585
Inverse Endogenous Variables				
	INCOME	PROFIT	STOCK	WAGE
C	0.195852	0.195852	0	1.291509
p	1.108721	1.108721	0	0.768246
w	0.072629	0.072629	0	0.513215
i	-0.0145	-0.0145	0	-0.01005
\mathbf{x}	0.181351	0.181351	0	1.281461
wsum	0.072629	0.072629	0	1.513215
k	-0.0145	-0.0145	1	-0.01005
Y	1.181351	0.181351	0	1.281461

Output 26.1.11 Reduced Form Estimates

Reduced Form				
	Intercept	plag	klag	xlag
C	46.7273	0.746307	-0.12366	0.198633
P	42.77363	0.893474	-0.18946	-0.06173
w	31.57207	0.596871	-0.12657	0.261165
i	27.6184	0.744038	-0.19237	0.000807
\mathbf{x}	74.3457	1.490345	-0.31603	0.19944
wsum	31.57207	0.596871	-0.12657	0.261165
k	27.6184	0.744038	0.80763	0.000807
Y	74.3457	1.490345	-0.31603	0.19944
Reduced Form				
	y^{r}	g	t	wp
C	0.163991	0.634654	-0.19585	1.291509
p	-0.05096	0.972364	-1.10872	0.768246
w	0.215618	0.649572	-0.07263	0.513215
i	0.000667	-0.01272	0.014501	-0.01005
\mathbf{x}	0.164658	1.621936	-0.18135	1.281461
wsum	0.215618	0.649572	-0.07263	1.513215
k	0.000667	-0.01272	0.014501	-0.01005
Y	0.164658	1.621936	-1.18135	1.281461

Example 26.2: Grunfeld's Model Estimated with SUR

The following example was used by Zellner in his classic 1962 paper on seemingly unrelated regressions. Different stock prices often move in the same direction at a given point in time. The SUR technique might provide more efficient estimates than OLS in this situation.

The following statements read the data. (The prefix GE stands for General Electric and WH stands for Westinghouse.)

```
*---------Zellner's Seemingly Unrelated Technique---------------*
| A. Zellner, "An Efficient Method of Estimating Seemingly |
| Unrelated Regressions and Tests for Aggregation Bias," |
| JASA 57(1962) pp.348-364 |
| I
| J.C.G. Boot, "Investment Demand: an Empirical Contribution |
| to the Aggregation Problem," IER 1(1960) pp.3-30. |
|
| Y. Grunfeld, "The Determinants of Corporate Investment," |
| Unpublished thesis, Chicago, 1958 |
data grunfeld;
    input year ge_i ge_f ge_c wh_i wh_f wh_c;
```

label ge_i $=$ 'Gross Investment, GE'
ge_c = 'Capital Stock Lagged, GE'
ge_f = 'Value of Outstanding Shares Lagged, GE'
wh_i = 'Gross Investment, WH'
wh_c = 'Capital Stock Lagged, WH'
wh_f = 'Value of Outstanding Shares Lagged, WH';
datalines;

```
... more lines ...
```

The following statements compute the SUR estimates for the Grunfeld model.

```
proc syslin data=grunfeld sur;
    ge: model ge_i = ge_f ge_c;
    westing: model wh_i = wh_f wh_c;
run;
```

The PROC SYSLIN output is shown in Output 26.2.1 through Output 26.2.5.
Output 26.2.1 PROC SYSLIN Output for SUR

Output 26.2.2 PROC SYSLIN Output for SUR

Output 26.2.3 PROC SYSLIN Output for SUR

| The SYSLIN Procedure |
| :---: | :---: |
| Seemingly Unrelated Regression Estimation |
| Cross Model Covariance |

Output 26.2.3 continued

Output 26.2.4 PROC SYSLIN Output for SUR

Output 26.2.5 PROC SYSLIN Output for SUR

Model Dependent Variable Label	WESTING
wh_i	

Output 26.2.5 continued

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t		Variable Label
Intercept	1	-1.25199	7.545217	-0.17	0.8702	Intercept	
wh_f	1	0.057630	0.014546	3.96	0.0010	Value of Outstanding Shares Lagged, WH	
wh_c	1	0.063978	0.053041	1.21	0.2443	Capital Stock Lagged, wH	

Example 26.3: Illustration of ODS Graphics

This example illustrates the use of ODS graphics. This is a continuation of the section "Example 26.1: Klein's Model I Estimated with LIML and 3SLS" on page 1661. These graphical displays are requested by specifying the ODS GRAPHICS statement before running PROC SYSLIN. For information about the graphics available in the SYSLIN procedure, see the section "ODS Graphics" on page 1660.

The following statements show how to generate ODS graphics plots with the SYSLIN procedure. The plots of residuals for each one of the equations in the model are displayed in Figure 26.3.1 through Figure 26.3.3.

```
*---------------------------Klein's Model I--------------------------------
| By L.R. Klein, Economic Fluctuations in the United States, 1921-1941 |
| (1950), NY: John Wiley. A macro-economic model of the U.S. with |
| three behavioral equations, and several identities. See Theil, p.456.|
*------------------------------------------------------------------------------
data klein;
input year c p w i x wp g t k wsum;
    date=mdy (1, 1, year);
    format date monyy.;
    y =c+i+g-t;
    yr =year-1931;
    klag=lag(k);
    plag=lag(p);
    xlag=lag(x);
    label year=' Year'
            date='Date'
            c =' Consumption'
            p ='Profits'
            w ='Private Wage Bill'
            i ='Investment'
            k ='Capital Stock'
            y ='National Income'
            x ='Private Production'
            wsum='Total Wage Bill'
```

```
        wp ='Govt Wage Bill'
        g ='Govt Demand'
        i ='Taxes'
        klag='Capital Stock Lagged'
        plag='Profits Lagged'
        xlag='Private Product Lagged'
        yr ='YEAR-1931';
datalines;
\begin{tabular}{rrrrrrrrrrr} 
\\
1920 &. & 12.7 &. &.\(\dot{44.9}\) &. &. &. & 182.8 &. \\
1921 & 41.9 & 12.4 & 25.5 & -0.2 & 45.6 & 2.7 & 3.9 & 7.7 & 182.6 & 28.2 \\
1922 & 45.0 & 16.9 & 29.3 & 1.9 & 50.1 & 2.9 & 3.2 & 3.9 & 184.5 & 32.2 \\
1923 & 49.2 & 18.4 & 34.1 & 5.2 & 57.2 & 2.9 & 2.8 & 4.7 & 189.7 & 37.0 \\
1924 & 50.6 & 19.4 & 33.9 & 3.0 & 57.1 & 3.1 & 3.5 & 3.8 & 192.7 & 37.0 \\
1925 & 52.6 & 20.1 & 35.4 & 5.1 & 61.0 & 3.2 & 3.3 & 5.5 & 197.8 & 38.6 \\
1926 & 55.1 & 19.6 & 37.4 & 5.6 & 64.0 & 3.3 & 3.3 & 7.0 & 203.4 & 40.7 \\
1927 & 56.2 & 19.8 & 37.9 & 4.2 & 64.4 & 3.6 & 4.0 & 6.7 & 207.6 & 41.5 \\
1928 & 57.3 & 21.1 & 39.2 & 3.0 & 64.5 & 3.7 & 4.2 & 4.2 & 210.6 & 42.9 \\
1929 & 57.8 & 21.7 & 41.3 & 5.1 & 67.0 & 4.0 & 4.1 & 4.0 & 215.7 & 45.3
\end{tabular}
... more lines ...
ods graphics on;
proc syslin data=klein outest=b liml plots(unpack only)=residual ;
    endogenous c p w i x wsum k y;
    instruments klag plag xlag wp g t yr;
    consume: model c = p plag wsum;
    invest: model i = p plag klag;
    labor: model w = x xlag yr;
run;
```

Output 26.3.1 Residuals Diagnostic Plots for Consumption

Output 26.3.2 Residuals Diagnostic Plots for Investments

Output 26.3.3 Residuals Diagnostic Plots for Labor

References

Basmann, R.L. (1960), "On Finite Sample Distributions of Generalized Classical Linear Identifiability Test Statistics," Journal of the American Statistical Association, 55, 650-659.

Fuller, W.A. (1977), "Some Properties of a Modification of the Limited Information Estimator," Econometrica, 45, 939-952.

Hausman, J.A. (1975), "An Instrumental Variable Approach to Full Information Estimators for Linear and Certain Nonlinear Econometric Models," Econometrica, 43, 727-738.

Johnston, J. (1984), Econometric Methods, Third Edition, New York: McGraw-Hill.
Judge, George G., W. E. Griffiths, R. Carter Hill, Helmut Lutkepohl, and Tsoung-Chao Lee (1985), The Theory and Practice of Econometrics, Second Edition, New York: John Wiley \& Sons.

Maddala, G.S. (1977), Econometrics, New York: McGraw-Hill.
Park, S.B. (1982), "Some Sampling Properties of Minimum Expected Loss (MELO) Estimators of

Structural Coefficients," Journal of the Econometrics, 18, 295-311.
Pindyck, R.S. and Rubinfeld, D.L. (1981), Econometric Models and Economic Forecasts, Second Edition, New York: McGraw-Hill.

Pringle, R.M. and Rayner, A.A. (1971), Generalized Inverse Matrices with Applications to Statistics, New York: Hafner Publishing Company.

Rao, P. (1974), "Specification Bias in Seemingly Unrelated Regressions," in Essays in Honor of Tinbergen, Volume 2, New York: International Arts and Sciences Press.

Savin, N.E. and White, K.J. (1978), "Testing for Autocorrelation with Missing Observations," Econometrics, 46, 59-66.

Theil, H. (1971), Principles of Econometrics, New York: John Wiley \& Sons.
Zellner, A. (1962), "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias," Journal of the American Statistical Association, 57, 348-368.

Zellner, A. (1978), "Estimation of Functions of Population Means and Regression Coefficients: A Minimum Expected Loss (MELO) Approach," Journal of the Econometrics, 8, 127-158.

Zellner, A. and Park, S. (1979), "Minimum Expected Loss (MELO) Estimators for Functions of Parameters and Structural Coefficients of Econometric Models," Journal of the American Statistical Association, 74, 185-193.

Chapter 27

The TIMESERIES Procedure

Contents

Overview: TIMESERIES Procedure . 1680
Getting Started: TIMESERIES Procedure . 1681
Syntax: TIMESERIES Procedure . 1683
Functional Summary . 1684
PROC TIMESERIES Statement . 1686
BY Statement . 1688
CORR Statement . 1689
CROSSCORR Statement . 1690
DECOMP Statement . 1691
ID Statement . 1693
SEASON Statement . 1696
TREND Statement . 1697
VAR and CROSSVAR Statements . 1698
Details: TIMESERIES Procedure . 1699
Accumulation . 1700
Missing Value Interpretation . 1701
Time Series Transformation . 1702
Time Series Differencing . 1702
Descriptive Statistics . 1703
Seasonal Decomposition . 1703
Correlation Analysis . 1705
Cross-Correlation Analysis . 1706
Data Set Output . 1707
OUT= Data Set . 1707
OUTCORR= Data Set . 1707
OUTCROSSCORR= Data Set . 1708
OUTDECOMP= Data Set . 1709
OUTSEASON= Data Set . 1710
OUTSUM= Data Set . 1711
OUTTREND= Data Set . 1712
_STATUS_Variable Values . 1713
Printed Output . 1713
ODS Table Names . 1714
ODS Graphics Names . 1714
Examples: TIMESERIES Procedure1715
Example 27.1: Accumulating Transactional Data into Time Series Data 1715
Example 27.2: Trend and Seasonal Analysis 1717
Example 27.3: Illustration of ODS Graphics 1721
References 1725

Overview: TIMESERIES Procedure

The TIMESERIES procedure analyzes time-stamped transactional data with respect to time and accumulates the data into a time series format. The procedure can perform trend and seasonal analysis on the transactions. After the transactional data are accumulated, time domain and frequency domain analysis can be performed on the accumulated time series.

For seasonal analysis of the transaction data, various statistics can be computed for each season. For trend analysis of the transaction data, various statistics can be computed for each time period. The analysis is similar to applying the MEANS procedure of Base SAS software to each season or time period of concern.

After the transactional data are accumulated to form a time series and any missing values are interpreted, the accumulated time series can be functionally transformed using log, square root, logistic, or Box-Cox transformations. The time series can be further transformed using simple and/or seasonal differencing. After functional and difference transformations have been applied, the accumulated and transformed time series can be stored in an output data set. This working time series can then be analyzed further using various time series analysis techniques provided by this procedure or other SAS/ETS procedures.

Time series analyses performed by the TIMESERIES procedure include:

- descriptive (global) statistics
- seasonal decomposition/adjustment analysis
- correlation analysis
- cross-correlation analysis

All results of the transactional or time series analysis can be stored in output data sets or printed using the Output Delivery System (ODS).

The TIMESERIES procedure can process large amounts of time-stamped transactional data. Therefore, the analysis results are useful for large-scale time series analysis or (temporal) data mining. All of the results can be stored in output data sets in either a time series format (default) or in a coordinate format (transposed). The time series format is useful for preparing the data for subsequent analysis with other SAS/ETS procedures. For example, the working time series can be further analyzed, modeled, and forecast with other SAS/ETS procedures. The coordinate format is useful
when using this procedure with SAS/STAT procedures or SAS Enterprise Miner. For example, clustering time-stamped transactional data can be achieved by using the results of this procedure with the clustering procedures of SAS/STAT and the nodes of SAS Enterprise Miner.

The EXPAND procedure can be used for the frequency conversion and transformations of time series output from this procedure.

Getting Started: TIMESERIES Procedure

This section outlines the use of the TIMESERIES procedure and gives a cursory description of some of the analysis techniques that can be performed on time-stamped transactional data.

Given an input data set that contains numerous transaction variables recorded over time at no specific frequency, the TIMESERIES procedure can form time series as follows:

```
PROC TIMESERIES DATA=<input-data-set>
    OUT=<output-data-set>;
    ID <time-ID-variable> INTERVAL=<frequency>
                        ACCUMULATE=<statistic>;
    VAR <time-series-variables>;
RUN;
```

The TIMESERIES procedure forms time series from the input time-stamped transactional data. It can provide results in output data sets or in other output formats by using the Output Delivery System (ODS).

Time-stamped transactional data are often recorded at no fixed interval. Analysts often want to use time series analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated to form a fixed-interval time series.

Suppose that a bank wants to analyze the transactions associated with each of its customers over time. Further, suppose that the data set WORK.TRANSACTIONS contains four variables that are related to these transactions: CUSTOMER, DATE, WITHDRAWAL, and DEPOSITS. The following examples illustrate possible ways to analyze these transactions by using the TIMESERIES procedure.

To accumulate the time-stamped transactional data to form a daily time series based on the accumulated daily totals of each type of transaction (WITHDRAWALS and DEPOSITS), the following TIMESERIES procedure statements can be used:

```
proc timeseries data=transactions
    out=timeseries;
    by customer;
    id date interval=day accumulate=total;
    var withdrawals deposits;
run;
```

The OUT=TIMESERIES option specifies that the resulting time series data for each customer is to be stored in the data set WORK.TIMESERIES. The INTERVAL=DAY option specifies that the transactions are to be accumulated on a daily basis. The ACCUMULATE=TOTAL option specifies that the sum of the transactions is to be calculated. After the transactional data is accumulated into a time series format, many of the procedures provided with SAS/ETS software can be used to analyze the resulting time series data.

For example, the ARIMA procedure can be used to model and forecast each customer's withdrawal data by using an $\operatorname{ARIMA}(0,1,1)(0,1,1)_{\mathrm{s}}$ model (where the number of seasons is $s=7$ days in a week) using the following statements:

```
proc arima data=timeseries;
    identify var=withdrawals(1,7) noprint;
    estimate q=(1)(7) outest=estimates noprint;
    forecast id=date interval=day out=forecasts;
quit;
```

The OUTEST=ESTIMATES data set contains the parameter estimates of the model specified. The OUT=FORECASTS data set contains forecasts based on the model specified. See the SAS/ETS ARIMA procedure for more detail.

A single set of transactions can be very large and must be summarized in order to analyze them effectively. Analysts often want to examine transactional data for trends and seasonal variation. To analyze transactional data for trends and seasonality, statistics must be computed for each time period and season of concern. For each observation, the time period and season must be determined and the data must be analyzed based on this determination.

The following statements illustrate how to use the TIMESERIES procedure to perform trend and seasonal analysis of time-stamped transactional data.

```
proc timeseries data=transactions out=out
    outseason=season outtrend=trend;
    by customer;
    id date interval=day accumulate=total;
    var withdrawals deposits;
run;
```

Since the INTERVAL=DAY option is specified, the length of the seasonal cycle is seven (7) where the first season is Sunday and the last season is Saturday. The output data set specified by the OUTSEASON=SEASON option contains the seasonal statistics for each day of the week by each customer. The output data set specified by the OUTTREND=TREND option contains the trend statistics for each day of the calendar by each customer.

Often it is desired to seasonally decompose into seasonal, trend, cycle, and irregular components or to seasonally adjust a time series. The following techniques describe how the changing seasons influence the time series.

The following statements illustrate how to use the TIMESERIES procedure to perform seasonal adjustment/decomposition analysis of time-stamped transactional data.

```
proc timeseries data=transactions
    out=out
    outdecomp=decompose;
    by customer;
    id date interval=day accumulate=total;
    var withdrawals deposits;
run;
```

The output data set specified by the OUTDECOMP=DECOMPOSE data set contains the decomposed/adjusted time series for each customer.

A single time series can be very large. Often, a time series must be summarized with respect to time lags in order to be efficiently analyzed using time domain techniques. These techniques help describe how a current observation is related to the past observations with respect to the time (season) lag.

The following statements illustrate how to use the TIMESERIES procedure to perform time domain analysis of time-stamped transactional data.

```
proc timeseries data=transactions
    out=out
    outcorr=timedomain;
    by customer;
    id date interval=day accumulate=total;
    var withdrawals deposits;
run;
```

The output data set specified by the OUTCORR=TIMEDOMAIN data set contains the time domain statistics, such as sample autocorrelations and partial autocorrelations, by each customer.

By default, the TIMESERIES procedure produces no printed output.

Syntax: TIMESERIES Procedure

The following statements are used with the TIMESERIES procedure:

```
PROC TIMESERIES options;
    BY variables;
    CORR statistics-list / options;
    CROSSCORR statistics-list / options;
    CROSSVAR variable-list / options ;
    DECOMP component-list / options;
    ID variable INTERVAL= interval-option;
    SEASON statistics-list / options;
    TREND statistics-list / options ;
    VAR variable-list / options;
```


Functional Summary

Table 27.1 summarizes the statements and options that control the TIMESERIES procedure.
Table 27.1 TIMESERIES Functional Summary

Description	Statement	Option

Statements

specify BY-group processing
specify variables to analyze
specify cross variables to analyze
specify the time ID variable
specify correlation options
specify cross-correlation options
specify decomposition options
specify seasonal statistics options
specify trend statistics options
BY
VAR
CROSSVAR
ID
CORR
CROSSCORR
DECOMP
SEASON
TREND

Data Set Options

specify the input data set specify the output data set specify correlations output data set specify cross-correlations output data set specify decomposition output data set specify seasonal statistics output data set specify summary statistics output data set specify trend statistics output data set

PROC TIMESERIES	DATA $=$
PROC TIMESERIES	OUT $=$
PROC TIMESERIES	OUTCORR= $=$
PROC TIMESERIES	OUTCROSSCORR=
PROC TIMESERIES	OUTDECOMP=
PROC TIMESERIES	OUTSEASON= $=$
PROC TIMESERIES	OUTSUM $=$
PROC TIMESERIES	OUTTREND=

Accumulation and Seasonality Options

specify accumulation frequency
specify length of seasonal cycle
specify interval alignment
specify that time ID variable values not be sorted
specify starting time ID value
specify ending time ID value
specify accumulation statistic
ID
PROC TIMESERIES
ID
ID
specify missing value interpretation

Time-Stamped Data Seasonal Statistics Options

specify the form of the output data set
SEASON
TRANSPOSE=

Description	Statement	Option
Time-Stamped Data Trend Statistics Op- tions		
specify the form of the output data set specify the number of time periods to be stored	TREND	TREND

PROC TIMESERIES Statement

PROC TIMESERIES options;

The following options can be used in the PROC TIMESERIES statement:

DATA $=$ SAS-data-set

names the SAS data set that contains the input data for the procedure to create the time series. If the DATA= option is not specified, the most recently created SAS data set is used.

CROSSPLOTS= option | (options)

specifies the cross-variable graphical output desired. By default, the TIMESERIES procedure produces no graphical output. The following plotting options are available:

SERIES plots the time series (OUT= data set).
CCF plots the cross-correlation functions (OUTCROSSCORR= data set).
ALL same as PLOTS=(SERIES CCF).
For example, CROSSPLOTS=SERIES plots the two time series. The CROSSPLOTS= option produces graphical output for these results by using the Output Delivery System (ODS). The CROSSPLOTS $=$ option produces results similar to the data sets listed in parentheses next to the preceding options.

MAXERROR= number

limits the number of warning and error messages that are produced during the execution of the procedure to the specified value. The default is MAXERRORS=50. This option is particularly useful in BY-group processing where it can be used to suppress the recurring messages.

OUT= SAS-data-set
names the output data set to contain the time series variables specified in the subsequent VAR and CROSSVAR statements. If BY variables are specified, they are also included in the OUT= data set. If an ID variable is specified, it is also included in the OUT= data set. The values are accumulated based on the ID statement INTERVAL= or the ACCUMULATE= option or both. The OUT= data set is particularly useful when you want to further analyze, model, or forecast the resulting time series with other SAS/ETS procedures.

OUTCORR= SAS-data-set

names the output data set to contain the univariate time domain statistics.

OUTCROSSCORR= SAS-data-set

names the output data set to contain the cross-correlation statistics.

OUTDECOMP= SAS-data-set

names the output data set to contain the decomposed and/or seasonally adjusted time series.

OUTSEASON= SAS-data-set

names the output data set to contain the seasonal statistics. The statistics are computed for each season as specified by the ID statement INTERVAL= option or the PROC TIMESERIES
statement SEASONALITY= option. The OUTSEASON= data set is particularly useful when analyzing transactional data for seasonal variations.

OUTSUM= SAS-data-set

names the output data set to contain the descriptive statistics. The descriptive statistics are based on the accumulated time series when the ACCUMULATE= and/or SETMISSING= options are specified in the ID or VAR statements. The OUTSUM= data set is particularly useful when analyzing large numbers of series and a summary of the results are needed.

OUTTREND= SAS-data-set

names the output data set to contain the trend statistics. The statistics are computed for each time period as specified by the ID statement INTERVAL= option. The OUTTREND= data set is particularly useful when analyzing transactional data for trends.

PLOTS= option | (options)

specifies the univariate graphical output desired. By default, the TIMESERIES procedure produces no graphical output. The following plotting options are available:

SERIES plots the time series (OUT= data set).
RESIDUAL plots the residual time series (OUT= data set).
CYCLES plots the seasonal cycles (OUT= data set).
CORR plots the correlation panel (OUTCORR= data set).
ACF
PACF plots the partial autocorrelation function (OUTCORR= data set).
IACF plots the inverse autocorrelation function (OUTCORR= data set).
WN plots the white noise probabilities (OUTCORR= data set).
DECOMP plots the seasonal adjustment panel (OUTDECOMP= data set).
TCS
plots the trend-cycle-seasonal component (OUTDECOMP= data set).
TCC
plots the trend-cycle component (OUTDECOMP= data set).
SIC
plots the seasonal-irregular component (OUTDECOMP= data set).
SC
SA
PCSA

IC
plots the seasonal component (OUTDECOMP= data set).
plots the seasonal adjusted component (OUTDECOMP= data set).
plots the percent change in the seasonal adjusted component (OUTDECOMP= data set).

IC
plots the irregular component (OUTDECOMP= data set).
TC plots the trend component (OUTDECOMP= data set).
CC plots the cycle component (OUTDECOMP= data set).
ALL same as PLOTS=(SERIES ACF PACF IACF WN).

For example, PLOTS=SERIES plots the time series. The PLOTS= option produces graphical output for these results by using the Output Delivery System (ODS). The PLOTS= option produces results similar to the data sets listed in parentheses next to the preceding options.

PRINT= option | (options)

specifies the printed output desired. By default, the TIMESERIES procedure produces no printed output. The following printing options are available:

DECOMP prints the seasonal decomposition/adjustment table (OUTDECOMP= data set).

SEASONS prints the seasonal statistics table (OUTSEASON= data set).
DESCSTATS prints the descriptive statistics for the accumulated time series (OUTSUM= data set).

SUMMARY prints the descriptive statistics table for all time series (OUTSUM= data set).

TRENDS prints the trend statistics table (OUTTREND= data set).
For example, PRINT=SEASONS prints the seasonal statistics. The PRINT= option produces printed output for these results by using the Output Delivery System (ODS). The PRINT= option produces results similar to the data sets listed in parentheses next to the preceding options.

PRINTDETAILS

specifies that output requested with the PRINT= option be printed in greater detail.

SEASONALITY= number

specifies the length of the seasonal cycle. For example, SEASONALITY=3 means that every group of three time periods forms a seasonal cycle. By default, the length of the seasonal cycle is one (no seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For example, INTERVAL=MONTH implies that the length of the seasonal cycle is 12 .

SORTNAMES

specifies that the variables specified in the VAR and CROSSVAR statements be processed in sorted order by the variable names. This option allows the output data sets to be presorted by the variable names.

BY Statement

A BY statement can be used with PROC TIMESERIES to obtain separate dummy variable definitions for groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement for the TIMESERIES procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CORR Statement

CORR statistics < / options > ;
A CORR statement can be used with the TIMESERIES procedure to specify options related to time domain analysis of the accumulated time series. Only one CORR statement is allowed.

The following time domain statistics are available:
LAG time lag

N
ACOV
ACF
ACFSTD
ACF2STD
ACFNORM
ACFPROB
ACFLPROB
PACF
PACFSTD
PACF2STD
PACFNORM
PACFPROB
PACFLPROB
IACF
IACFSTD
IACF2STD
IACFNORM
IACFPROB
number of variance products
autocovariances
autocorrelations
autocorrelation standard errors
two standard errors beyond autocorrelations
normalized autocorrelations
autocorrelation probabilities
autocorrelation log probabilities
partial autocorrelations
partial autocorrelation standard errors
two standard errors beyond partial autocorrelations
partial normalized autocorrelations
partial autocorrelation probabilities
partial autocorrelation log probabilities
inverse autocorrelations
inverse autocorrelation standard errors
two standard errors beyond inverse autocorrelations
normalized inverse autocorrelations
inverse autocorrelation probabilities

IACFLPROB
 WN
 WNPROB
 WNLPROB
 inverse autocorrelation log probabilities
 white noise test statistics
 white noise test probabilities
 white noise test log probabilities

If none of the correlation statistics are specified, the default is as follows:

```
corr lag n acov acf acfstd pacf pacfstd iacf iacfstd wn wnprob;
```

The following options can be specified in the CORR statement following the slash (/):

NLAG= number

specifies the number of lags to be stored in the OUTCORR= data set or to be plotted. The default is 24 or three times the length of the seasonal cycle, whichever is smaller. The LAGS= option takes precedence over the NLAG= option.

LAGS $=$ (numlist)
specifies the list of lags to be stored in OUTCORR= data set or to be plotted. The list of lags must be separated by spaces or commas. For example, $\operatorname{LAGS}=(1,3)$ specifies the first then third lag.

NPARMS = number
specifies the number of parameters used in the model that created the residual time series. The number of parameters determines the degrees of freedom associated with the Ljung-Box statistics. The default is NPARMS $=0$. This option is useful when analyzing the residuals of a time series model with the number of parameters specified by NPARMS=number option.

TRANSPOSE= NO|YES

TRANSPOSE=YES specifies that the OUTCORR= data set is recorded with the lags as the column names instead of with the correlation statistics as the column names. The TRANSPOSE $=$ NO option is useful for graphing the correlation results with SAS/GRAPH procedures. The TRANSPOSE=YES option is useful for analyzing the correlation results from other SAS procedures such as the CLUSTER procedure of SAS/STAT or SAS Enterprise Miner. The default is TRANSPOSE=NO.

CROSSCORR Statement

CROSSCORR statistics < / options > ;

A CROSSCORR statement can be used with the TIMESERIES procedure to specify options that are related to cross-correlation analysis of the accumulated time series. Only one CROSSCORR statement is allowed.

The following time domain statistics are available:

LAG	time lag
N	number of variance products
CCOV	cross covariances
CCF	cross-correlations
CCFSTD	cross-correlation standard errors
CCF2STD	two standard errors beyond cross-correlation
CCFNORM	normalized cross-correlations
CCFPROB	cross-correlation probabilities
CCFLPROB	cross-correlation log probabilities

If none of the cross-correlation statistics are specified, the default is as follows:

```
crosscorr lag n ccov ccf ccfstd;
```

The following options can be specified in the CROSSCORR statement following the slash (/):

NLAG= number

specifies the number of lags to be stored in the OUTCROSSCORR= data set or to be plotted. The default is 24 or three times the length of the seasonal cycle, whichever is smaller. The LAGS $=$ option takes precedence over the NLAG= option.

LAGS=(numlist)

specifies a list of lags to be stored in OUTCROSSCORR= data set or to be plotted. The list of lags must be separated by spaces or commas. For example, LAGS $=(1,3)$ specifies the first then third lag.

TRANSPOSE= NO|YES

TRANSPOSE=YES specifies that the OUTCROSSCORR= data set be recorded with the lags as the column names instead of with the cross-correlation statistics as the column names. The TRANSPOSE=NO option is useful for graphing the cross-correlation results with SAS/GRAPH procedures. The TRANSPOSE=YES option is useful for analyzing the cross-correlation results from using other procedures such as the CLUSTER procedure of SAS/STAT or SAS Enterprise Miner. The default is TRANSPOSE=NO.

DECOMP Statement

DECOMP components < / options > ;
A DECOMP statement can be used with the TIMESERIES procedure to specify options related to classical seasonal decomposition of the time series data. Only one DECOMP statement is allowed. The options specified affect all variables listed in the VAR statements. Decomposition can be performed only when the length of the seasonal cycle specified by the PROC TIMESERIES statement SEASONALITY = option or implied by the ID statement INTERVAL= option is greater than one.

The following seasonal decomposition components are available:

ORIG \| originAL	original series
TCC I TRENDCYCLE	trend-cycle component
SIC I SEASONIRREGULAR	seasonal-irregular component
SC I seasonal	seasonal component
SCSTD	seasonal component standard errors
TCS I TRENDCYCLESEASON	trend-cycle-seasonal component
IC I IRREGULAR	irregular component
SA \| ADJUSTED	seasonally adjusted series
PCSA	percent change seasonally adjusted series
TC	trend component
CC ICYCLE	cycle component

If none of the components are specified, the default is as follows:

```
decomp orig tcc sc ic sa;
```

The following options can be specified in the DECOMP statement following the slash (/):

MODE $=$ option

specifies the type of decomposition to be used to decompose the time series. The following values can be specified for the MODE= option:

ADD | ADDITIVE additive decomposition
MULT I MULTIPLICATIVE multiplicative decomposition
LOGADD I LOGADDITIVE log-additive decomposition
PSEUDOADD । PSEUDOADDITIVE pseudo-additive decomposition
MULTORADD multiplicative or additive decomposition, depending on data
Multiplicative and \log additive decomposition require strictly positive time series. If the accumulated time series contains nonpositive values and the MODE=MULT or MODE=LOGADD option is specified, an error results. Pseudo-additive decomposition requires a nonnegative-valued time series. If the accumulated time series contains negative values and the MODE=PSEUDOADD option is specified, an error results. The MODE=MULTORADD option specifies that multiplicative decomposition be used when the accumulated time series contains only positive values, that pseudo-additive decomposition be used when the accumulated time series contains only nonnegative values, and that additive decomposition be used otherwise. The default is MODE=MULTORADD.

LAMBDA = number

specifies the Hodrick-Prescott filter parameter for trend-cycle decomposition. The default is LAMBDA=1600. Filtering applies when the trend component or the cycle component is requested. If filtering is not specified, this option is ignored.

NPERIODS= number

specifies the number of time periods to be stored in the OUTDECOMP= data set when the TRANSPOSE=YES option is specified. If the TRANSPOSE=NO option is specified, the NPERIODS $=$ option is ignored. If the NPERIODS $=$ option is positive, the first or beginning time periods are recorded. If the NPERIODS= option is negative, the last or ending time periods are recorded. The NPERIODS= option specifies the number of OUTDECOMP= data set variables to contain the seasonal decomposition and is therefore limited to the maximum allowable number of SAS variables. If the number of time periods exceeds this limit, a warning is printed in the log and the number periods stored is reduced to the limit.

If the NPERIODS = option is not specified, all of the periods specified between the ID statement START= and END= options are stored. If either of the START= or END= options are not specified, the default magnitude is the seasonality specified by the PROC TIMESERIES statement SEASONALITY= option or implied by the ID statement INTERVAL= option. If only the START= option is specified, the default sign is positive. If only the END=option is specified, the default sign is negative.

TRANSPOSE= NO | YES

TRANSPOSE=YES specifies that the OUTDECOMP= data set be recorded with the time periods as the column names instead of with the statistics as the column names. The first and last time periods stored in the OUTDECOMP= data set correspond to the period of the ID statement START= option and END= option, respectively. If only the ID statement END= option is specified, the last time ID value of each accumulated time series corresponds to the last time period column. If only the ID statement START= option is specified, the first time ID value of each accumulated time series corresponds to the first time period column. If neither the START= option nor the END= option is specified with the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. The TRANSPOSE=NO option is useful for analyzing or displaying the decomposition results with SAS/GRAPH procedures. The TRANSPOSE=YES option is useful for analyzing the decomposition results from using other SAS procedures or SAS Enterprise Miner. The default is TRANSPOSE=NO.

ID Statement

ID variable INTERVAL=interval < options> ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable's values are assumed to be SAS date, time, or datetime values. In addition, the ID statement specifies the (desired) frequency associated with the time series. The ID statement options also specify how the observations are accumulated and how the time ID values are aligned to form the time series. The information specified affects all variables listed in subsequent VAR statements. If the ID statement is specified, the INTERVAL= option must also be used. If an ID statement is not specified, the observation number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement:

ACCUMULATE= option

specifies how the data set observations are to be accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option. The ID variable contains the time ID values. Each time ID variable value corresponds to a specific time period. The accumulated values form the time series, which is used in subsequent analysis.

The ACCUMULATE= option is useful when there are zero or more than one input observations that coincide with a particular time period (for example, time-stamped transactional data). The EXPAND procedure offers additional frequency conversions and transformations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each time period based on the ID variable and the frequency specified by the INTERVAL= option:

NONE No accumulation occurs; the ID variable values must be equally spaced with respect to the frequency. This is the default option.
TOTAL Observations are accumulated based on the total sum of their values.
AVERAGE I AVG Observations are accumulated based on the average of their values.
MINIMUM \| MIN Observations are accumulated based on the minimum of their values.
MEDIAN I MED Observations are accumulated based on the median of their values.
MAXIMUM I MAX Observations are accumulated based on the maximum of their values.
Observations are accumulated based on the number of nonmissing observations.

NMISS Observations are accumulated based on the number of missing observations.

NOBS Observations are accumulated based on the number of observations.
FIRST
Observations are accumulated based on the first of their values.
LAST
Observations are accumulated based on the last of their values.
STDDEV ISTD Observations are accumulated based on the standard deviation of their values.

CSS Observations are accumulated based on the corrected sum of squares of their values.

USS Observations are accumulated based on the uncorrected sum of squares of their values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying how accumulated missing values are to be treated. If missing values should be interpreted as zero, then SETMISSING=0 should be used. The section "Details: TIMESERIES Procedure" on page 1699 describes accumulation in greater detail.

ALIGN= option

controls the alignment of SAS dates used to identify output observations. The ALIGN= option accepts the following values: BEGINNINGIBEGIB, MIDDLEIMIDIM, and ENDINGIENDIE. BEGINNING is the default.

END= option

specifies a SAS date, datetime, or time value that represents the end of the data. If the last time ID variable value is less than the END= value, the series is extended with missing values. If the last time ID variable value is greater than the END= value, the series is truncated. For example, END="\&sysdate"D uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. The START= and END= options can be used to ensure that data associated within each BY group contains the same number of observations.

FORMAT= format

specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default format is implied from the INTERVAL= option.

INTERVAL= interval

specifies the frequency of the accumulated time series. For example, if the input data set consists of quarterly observations, then INTERVAL=QTR should be used. If the PROC TIMESERIES statement SEASONALITY= option is not specified, the length of the seasonal cycle is implied from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL= option determines the time periods for the accumulation of observations. The INTERVAL= option is required and must be the first option specified in the ID statement.

NOTSORTED

specifies that the time ID values not be in sorted order. The TIMESERIES procedure sorts the data with respect to the time ID prior to analysis.

SETMISSING= option | number

specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated time series. If a number is specified, missing values are set to the number. If a missing value indicates an unknown value, this option should not be used. If a missing value indicates no value, SETMISSING=0 should be used. You would typically use SETMISSING=0 for transactional data because no recorded data usually implies no activity. The following options can also be used to determine how missing values are assigned:

MISSING
AVERAGE I AVG
MINIMUM / MIN
MEDIAN I MED
MAXIMUM I MAX
FIRST
LAST
PREVIOUS I PREV

NEXT

Missing values are set to missing. This is the default option.
Missing values are set to the accumulated average value.
Missing values are set to the accumulated minimum value.
Missing values are set to the accumulated median value.
Missing values are set to the accumulated maximum value.
Missing values are set to the accumulated first nonmissing value.
Missing values are set to the accumulated last nonmissing value.
Missing values are set to the previous period's accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.

Missing values are set to the next period's accumulated nonmissing value. Missing values at the end of the accumulated series remain missing.

START= option

specifies a SAS date, datetime, or time value that represents the beginning of the data. If the first time ID variable value is greater than the START= value, the series is prepended with missing values. If the first time ID variable value is less than the START= value, the series is truncated. The START= and END= options can be used to ensure that data associated with each by group contains the same number of observations.

SEASON Statement

SEASON statistics < / options > ;
A SEASON statement can be used with the TIMESERIES procedure to specify options that are related to seasonal analysis of the time-stamped transactional data. Only one SEASON statement is allowed. The options specified affect all variables specified in the VAR statements. Seasonal analysis can be performed only when the length of the seasonal cycle specified by the PROC TIMESERIES statement SEASONALITY= option or implied by the ID statement INTERVAL=option is greater than one.

The following seasonal statistics are available:

NOBS	number of observations
N	number of nonmissing observations
NMISS	number of missing observations
MINIMUM	minimum value
MAXIMUM	maximum value
RANGE	range value
SUM	summation value
MEAN	mean value
STDDEV	standard deviation
CSS	corrected sum of squares
USS	uncorrected sum of squares
MEDIAN	median value

If none of the season statistics are specified, the default is as follows:
season n min max mean std;

The following option can be specified in the SEASON statement following the slash (/):

TRANSPOSE= NO | YES

TRANSPOSE=YES specifies that the OUTSEASON= data set be recorded with the seasonal
indices as the column names instead of with the statistics as the column names. The TRANSPOSE=NO option is useful for graphing the seasonal analysis results with SAS/GRAPH procedures. The TRANSPOSE=YES option is useful for analyzing the seasonal analysis results using other SAS procedures or SAS Enterprise Miner. The default is TRANSPOSE=NO.

TREND Statement

TREND statistics < / options > ;
A TREND statement can be used with the TIMESERIES procedure to specify options related to trend analysis of the time-stamped transactional data. Only one TREND statement is allowed. The options specified affect all variables specified in the VAR statements.

The following trend statistics are available:

NOBS	number of observations
N	number of nonmissing observations
NMISS	number of missing observations
MINIMUM	minimum value
MAXIMUM	maximum value
RANGE	range value
sum	summation value
MEAN	mean value
STDDEV	standard deviation
CSS	corrected sum of squares
USS	uncorrected sum of squares
MEDIAN	median value

If none of the trend statistics are specified, the default is as follows:

```
trend n min max mean std;
```

The following options can be specified in the TREND statement following the slash (/):

NPERIODS= number

specifies the number of time periods to be stored in the OUTTREND= data set when the TRANSPOSE=YES option is specified. If the TRANSPOSE option is not specified, the NPERIODS $=$ option is ignored. The NPERIODS $=$ option specifies the number of OUTTREND= data set variables to contain the trend statistics and is therefore limited to the maximum allowable number of SAS variables.

If the NPERIODS= option is not specified, all of the periods specified between the ID statement START= and END= options is stored. If either of the START= or END= options are not
specified, the default is the seasonality specified by the PROC TIMESERIES statement SEASONALITY= option or implied by the ID statement INTERVAL= option. If the seasonality is zero, the default is NPERIODS=5.

TRANSPOSE= NO | YES

TRANSPOSE=YES specifies that the OUTTREND= data set be recorded with the time periods as the column names instead of with the statistics as the column names. The first and last time periods stored in the OUTTREND= data set correspond to the period of the ID statement START= and END= options, respectively. If only the ID statement END= option is specified, the last time ID value of each accumulated time series corresponds to the last time period column. If only the ID statement START= option is specified, the first time ID value of each accumulated time series corresponds to the first time period column. If neither the START= option nor the END= option is specified with the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. The TRANSPOSE=NO option is useful for analyzing or displaying the trend analysis results with SAS/GRAPH procedures. The TRANSPOSE=YES option is useful for analyzing the trend analysis results from using other SAS procedures or SAS Enterprise Miner. The default is TRANSPOSE=YES.

VAR and CROSSVAR Statements

```
VAR variable-list < / options > ;
CROSSVAR variable-list < / options > ;
```

The VAR and CROSSVAR statements list the numeric variables in the DATA= data set whose values are to be accumulated to form the time series.

An input data set variable can be specified in only one VAR or CROSSVAR statement. Any number of VAR and CROSSVAR statements can be used. The following options can be used with the VAR and CROSSVAR statements:

ACCUMULATE= option

specifies how the data set observations are to be accumulated within each time period for the variables listed in the VAR or CROSSVAR statement. If the ACCUMULATE= option is not specified in the VAR or CROSSVAR statement, accumulation is determined by the ACCUMULATE= option of the ID statement. See the ID statement ACCUMULATE= option for more details.

DIF=(numlist)

specifies the differencing to be applied to the accumulated time series. The list of differencing orders must be separated by spaces or commas. For example, $\operatorname{DIF}=(1,3)$ specifies first then third order differencing. Differencing is applied after time series transformation. The TRANSFORM = option is applied before the DIF= option.

SDIF=(numlist)

specifies the seasonal differencing to be applied to the accumulated time series. The list
of seasonal differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first then third order seasonal differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the SDIF= option.

SETMISS= option | number

SETMISSING= option | number

specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated time series for variables listed in the VAR or CROSSVAR statement. If the SETMISSING= option is not specified in the VAR or CROSSVAR statement, missing values are set based on the SETMISSING= option of the ID statement. See the ID statement SETMISSING= option for more details.

TRANSFORM= option

specifies the time series transformation to be applied to the accumulated time series. The following transformations are provided:

NONE No transformation is applied. This option is the default.
LOG logarithmic transformation
SQRT square-root transformation
LOGISTIC logistic transformation
$\operatorname{BOXCOX}(n) \quad$ Box-Cox transformation with parameter number where the number is between -5 and 5

When the TRANSFORM= option is specified, the time series must be strictly positive.

Details: TIMESERIES Procedure

The TIMESERIES procedure can be used to perform trend and seasonal analysis on transactional data. For trend analysis, various sample statistics are computed for each time period defined by the time ID variable and INTERVAL= option. For seasonal analysis, various sample statistics are computed for each season defined by the INTERVAL= or the SEASONALITY= option. For example, if the transactional data ranges from June 1990 to January 2000 and the data are to be accumulated on a monthly basis, then the trend statistics are computed for every month: June 1990, July 1990, \ldots, January 2000. The seasonal statistics are computed for each season: January, February, ..., December.

The TIMESERIES procedure can be used to form time series data from transactional data. The accumulated time series can then be analyzed using time series techniques. The data is analyzed in the order described.

1. accumulation
2. missing value interpretation

ACCUMULATE= option
SETMISSING= option
3. time series transformation
4. time series differencing
5. descriptive statistics
6. seasonal decomposition
7. correlation analysis
8. cross-correlation analysis

TRANSFORM= option
DIF $=$ and $\mathrm{SDIF}=$ option
OUTSUM= option, PRINT=DESCSTATS
DECOMP statement, OUTDECOMP= option
CORR statement, OUTCORR= option
CROSSCORR statement, OUTCROSSCORR= option

Accumulation

If the ACCUMULATE= option in the ID, VAR, or CROSSVAR statement is specified, data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the ID statement INTERVAL= option. The ID variable contains the time ID values. Each time ID value corresponds to a specific time period. Accumulation is useful when the input data set contains transactional data, whose observations are not spaced with respect to any particular time interval. The accumulated values form the time series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999	10
19MAR1999	30
11MAY1999	50
12MAY1999	20
23MAY1999	20

If the INTERVAL=MONTH is specified, all of the above observations fall within a three-month period of time between March 1999 and May 1999. The observations are accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the resulting time series is:

```
O1MAR1999 40
O1APR1999
O1MAY1999 90
```

If the ACCUMULATE=AVERAGE option is specified, the resulting time series is:

O1MAR1999	20
O1APR1999	.
O1MAY1999	30

If the ACCUMULATE=MINIMUM option is specified, the resulting time series is:

```
O1MAR1999 10
O1APR1999 .
O1MAY1999 20
```

If the ACCUMULATE=MEDIAN option is specified, the resulting time series is:

```
O1MAR1999 20
01APR1999
O1MAY1999 20
```

If the ACCUMULATE=MAXIMUM option is specified, the resulting time series is:

```
O1MAR1999 30
01APR1999
O1MAY1999 50
```

If the ACCUMULATE=FIRST option is specified, the resulting time series is:

```
O1MAR1999 10
O1APR1999
O1MAY1999 50
```

If the ACCUMULATE=LAST option is specified, the resulting time series is:

```
O1MAR1999 30
O1APR1999
O1MAY1999 20
```

If the ACCUMULATE=STDDEV option is specified, the resulting time series is:

```
O1MAR1999
O1APR1999
O1MAY1999 17.32
```

As can be seen from the above examples, even though the data set observations contain no missing values, the accumulated time series can have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. But sometimes missing values are known, such as when missing values are created from accumulation and no observations should
be interpreted as no value-that is, zero. In the former case, the SETMISSING= option can be used to interpret how missing values are treated. The SETMISSING=0 option should be used when missing observations are to be treated as no (zero) values. In other cases, missing values should be interpreted as global values, such as minimum or maximum values of the accumulated series. The accumulated and interpreted time series is used in subsequent analyses.

Time Series Transformation

There are four transformations available for strictly positive series only. Let $y_{t}>0$ be the original time series, and let w_{t} be the transformed series. The transformations are defined as follows:

Log is the logarithmic transformation.

$$
w_{t}=\ln \left(y_{t}\right)
$$

Logistic is the logistic transformation.

$$
w_{t}=\ln \left(c y_{t} /\left(1-c y_{t}\right)\right)
$$

where the scaling factor c is

$$
c=\left(1-10^{-6}\right) 10^{-\operatorname{ceil}\left(\log _{10}\left(\max \left(y_{t}\right)\right)\right)}
$$

and $\operatorname{ceil}(x)$ is the smallest integer greater than or equal to x.
Square root is the square root transformation.

$$
w_{t}=\sqrt{y_{t}}
$$

Box Cox is the Box-Cox transformation.

$$
w_{t}= \begin{cases}\frac{y_{t}^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \ln \left(y_{t}\right), & \lambda=0\end{cases}
$$

More complex time series transformations can be performed by using the EXPAND procedure of SAS/ETS.

Time Series Differencing

After optionally transforming the series, the accumulated series can be simply or seasonally differenced by using the VAR and CROSSVAR statement DIF= and SDIF= options. For example, suppose y_{t} is a monthly time series. The following examples of the DIF= and SDIF= options demonstrate how to simply and seasonally difference the time series.

```
dif=(1) sdif=(1)
dif=(1,12)
```

Additionally, assuming y_{t} is strictly positive, the VAR and CROSSVAR statement TRANSFORM=, DIF $=$, and SDIF $=$ options can be combined.

Descriptive Statistics

Descriptive statistics can be computed from the working series by specifying the OUTSUM= option or PRINT=DESCSTATS.

Seasonal Decomposition

Seasonal decomposition/analysis can be performed on the working series by specifying the OUTDECOMP= option, the PRINT=DECOMP option, or one of the PLOTS= options associated with decomposition in the PROC TIMESERIES statement. The DECOMP statement enables you to specify options related to decomposition. The TIMESERIES procedure uses classical decomposition. More complex seasonal decomposition/adjustment analysis can be performed by using the X 11 or the X12 procedure of SAS/ETS.

The DECOMP statement MODE= option determines the mode of the seasonal adjustment decomposition to be performed. There are four modes: multiplicative (MODE=MULT), additive (MODE=ADD), pseudo-additive (MODE=PSEUDOADD), and log-additive (MODE=LOGADD) decomposition. The default is MODE=MULTORADD which specifies MODE=MULT for series that are strictly positive, MODE=PSEUDOADD for series that are nonnegative, and MODE=ADD for series that are not nonnegative.

When MODE=LOGADD is specified, the components are exponentiated to the original metric.
The DECOMP statement LAMBDA= option specifies the Hodrick-Prescott filter parameter (Hodrick and Prescott 1980). The default is LAMBDA=1600. The Hodrick-Prescott filter is used to decompose the trend-cycle component into the trend component and cycle component in an additive fashion. A smaller parameter assigns less significance to the cycle; that is, LAMBDA=0 implies no cycle component.

The notation and keywords associated with seasonal decomposition/adjustment analysis are defined in Table 27.2.

Table 27.2 Seasonal Adjustment Formulas

Component	Keyword	MODE= Option	Formula
original series	ORIGINAL	MULT	$O_{t}=T C_{t} S_{t} I_{t}$
		ADD	$O_{t}=T C_{t}+S_{t}+I_{t}$
		LOGADD	$\log \left(O_{t}\right)=T C_{t}+S_{t}+I_{t}$
		PSEUDOADD	$O_{t}=T C_{t}\left(S_{t}+I_{t}-1\right)$
trend-cycle component	TCC	MULT	centered moving average of O_{t}
		ADD	centered moving average of O_{t}
		LOGADD	centered moving average of $\log \left(O_{t}\right)$
		PSEUDOADD	centered moving average of O_{t}
seasonal-irregular component	SIC	MULT	$S I_{t}=S_{t} I_{t}=O_{t} / T C_{t}$
		ADD	$S I_{t}=S_{t}+I_{t}=O_{t}-T C_{t}$
		LOGADD	$S I_{t}=S_{t}+I_{t}=\log \left(O_{t}\right)-T C_{t}$
		PSEUDOADD	$S I_{t}=S_{t}+I_{t}-1=O_{t} / T C_{t}$
seasonal component	SC	MULT	seasonal Averages of $S I_{t}$
		ADD	seasonal Averages of $S I_{t}$
		LOGADD	seasonal Averages of $S I_{t}$
		PSEUDOADD	seasonal Averages of $S I_{t}$
irregular component	IC	MULT	$I_{t}=S I_{t} / S_{t}$
		ADD	$I_{t}=S I_{t}-S_{t}$
		LOGADD	$I_{t}=S I_{t}-S_{t}$
		PSEUDOADD	$I_{t}=S I_{t}-S_{t}+1$
trend-cycle-seasonal component	TCS	MULT	$T C S_{t}=T C_{t} S_{t}=O_{t} / I_{t}$
		ADD	$T C S_{t}=T C_{t}+S_{t}=O_{t}-I_{t}$
		LOGADD	$T C S_{t}=T C_{t}+S_{t}=O_{t}-I_{t}$
		PSEUDOADD	$T C S_{t}=T C_{t} S_{t}$
trend component	TC	MULT	$T_{t}=T C_{t}-C_{t}$
		ADD	$T_{t}=T C_{t}-C_{t}$
		LOGADD	$T_{t}=T C_{t}-C_{t}$
		PSEUDOADD	$T_{t}=T C_{t}-C_{t}$
cycle component	CC	MULT	$C_{t}=T C_{t}-T_{t}$
		ADD	$C_{t}=T C_{t}-T_{t}$
		LOGADD	$C_{t}=T C_{t}-T_{t}$
		PSEUDOADD	$C_{t}=T C_{t}-T_{t}$
seasonally adjusted series	SA	MULT	$S A_{t}=O_{t} / S_{t}=T C_{t} I_{t}$
		ADD	$S A_{t}=O_{t}-S_{t}=T C_{t}+I_{t}$
		LOGADD	$S A_{t}=O_{t} / \exp \left(S_{t}\right)=\exp \left(T C_{t}+I_{t}\right)$
		PSEUDOADD	$S A_{t}=T C_{t} I_{t}$

The trend-cycle component is computed from the s-period centered moving average as follows:

$$
T C_{t}=\sum_{k=-\lfloor s / 2\rfloor}^{\lfloor s / 2\rfloor} y_{t+k} / s
$$

The seasonal component is obtained by averaging the seasonal-irregular component for each season.

$$
S_{k+j s}=\sum_{t=k \bmod s} \frac{S I_{t}}{T / s}
$$

where $0 \leq j \leq T / s$ and $1 \leq k \leq s$. The seasonal components are normalized to sum to one (multiplicative) or zero (additive).

Correlation Analysis

Correlation analysis can be performed on the working series by specifying the OUTCORR= option or one of the PLOTS= options that are associated with correlation. The CORR statement enables you to specify options that are related to correlation analysis.

Autocovariance Statistics

LAGS
$h \in\{0, \ldots, H\}$
N
ACOV
ACOV
N_{h} is the number of observed products at lag h, ignoring missing values
$\hat{\gamma}(h)=\frac{1}{T} \sum_{t=h+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-h}-\bar{y}\right)$
$\hat{\gamma}(h)=\frac{1}{N_{h}} \sum_{t=h+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-h}-\bar{y}\right)$ when embedded missing values are present

Autocorrelation Statistics

ACF

$$
\hat{\rho}(h)=\hat{\gamma}(h) / \hat{\gamma}(0)
$$

ACFSTD
$\operatorname{Std}(\hat{\rho}(h))=\sqrt{\frac{1}{T}\left(1+2 \sum_{j=1}^{h-1} \hat{\rho}(j)^{2}\right)}$
ACFNORM
$\operatorname{Norm}(\hat{\rho}(h))=\hat{\rho}(h) / \operatorname{Std}(\hat{\rho}(h))$
ACFPROB $\quad \operatorname{Prob}(\hat{\rho}(h))=2(1-\Phi(|\operatorname{Norm}(\hat{\rho}(h))|))$
ACFLPROB $\quad \log \operatorname{Prob}(\hat{\rho}(h))=-\log _{10}(\operatorname{Prob}(\hat{\rho}(h))$
ACF2STD

$$
\operatorname{Flag}(\hat{\rho}(h))= \begin{cases}1 & \hat{\rho}(h)>2 \operatorname{Std}(\hat{\rho}(h)) \\ 0 & -2 \operatorname{Std}(\hat{\rho}(h))<\hat{\rho}(h)<2 \operatorname{Std}(\hat{\rho}(h)) \\ -1 & \hat{\rho}(h)<-2 \operatorname{Std}(\hat{\rho}(h))\end{cases}
$$

Partial Autocorrelation Statistics

PACF

$$
\hat{\varphi}(h)=\Gamma_{(0, h-1)}\left\{\gamma_{j}\right\}_{j=1}^{h}
$$

PACFSTD $\quad \operatorname{Std}(\hat{\varphi}(h))=1 / \sqrt{N_{0}}$
$\operatorname{PCFNORM} \quad \operatorname{Norm}(\hat{\varphi}(h))=\hat{\varphi}(h) / \operatorname{Std}(\hat{\varphi}(h))$
$\operatorname{PACFPROB} \quad \operatorname{Prob}(\hat{\varphi}(h))=2(1-\Phi(|\operatorname{Norm}(\hat{\varphi}(h))|))$
$\operatorname{PACFLPROB} \quad \log \operatorname{Prob}(\hat{\varphi}(h))=-\log _{10}(\operatorname{Prob}(\hat{\varphi}(h))$

PACF2STD

$$
\operatorname{Flag}(\hat{\varphi}(h))= \begin{cases}1 & \hat{\varphi}(h)>2 \operatorname{Std}(\hat{\varphi}(h)) \\ 0 & -2 \operatorname{Std}(\hat{\varphi}(h))<\hat{\varphi}(h)<2 \operatorname{Std}(\hat{\varphi}(h)) \\ -1 & \hat{\varphi}(h)<-2 \operatorname{Std}(\hat{\varphi}(h))\end{cases}
$$

Inverse Autocorrelation Statistics

IACF $\quad \hat{\theta}(h)$
IACFSTD $\quad \operatorname{Std}(\hat{\theta}(h))=1 / \sqrt{N_{0}}$
$\operatorname{IACFNORM} \quad \operatorname{Norm}(\hat{\theta}(h))=\hat{\theta}(h) / \operatorname{Std}(\hat{\theta}(h))$
$\operatorname{IACFPROB} \quad \operatorname{Prob}(\hat{\theta}(h))=2(1-\Phi(|\operatorname{Norm}(\hat{\theta}(h))|))$
IACFLPROB $\quad \log \operatorname{Prob}(\hat{\theta}(h))=-\log _{10}(\operatorname{Prob}(\hat{\theta}(h))$

IACF2STD

$$
\operatorname{Flag}(\hat{\theta}(h))= \begin{cases}1 & \hat{\theta}(h)>2 \operatorname{Std}(\hat{\theta}(h)) \\ 0 & -2 \operatorname{Std}(\hat{\theta}(h))<\hat{\theta}(h)<2 \operatorname{Std}(\hat{\theta}(h)) \\ -1 & \hat{\theta}(h)<-2 \operatorname{Std}(\hat{\theta}(h))\end{cases}
$$

White Noise Statistics

WN
$Q(h)=T(T+2) \sum_{j=1}^{h} \rho(j)^{2} /(T-j)$
WN $\quad Q(h)=\sum_{j=1}^{h} N_{j} \rho(j)^{2}$ when embedded missing values are present
WNPROB $\quad \operatorname{Prob}(Q(h))=\chi_{\max (1, h-p)}(Q(h))$
WNLPROB $\quad \log \operatorname{Prob}(Q(h))=-\log _{10}(\operatorname{Prob}(Q(h))$

Cross-Correlation Analysis

Cross-correlation analysis can be performed on the working series by specifying the OUTCROSSCORR= option or one of the CROSSPLOTS $=$ options that are associated with cross-correlation. The CROSSCORR statement enables you to specify options that are related to cross-correlation analysis.

Cross-Correlation Statistics

LAGS $\quad h \in\{0, \ldots, H\}$
N
CCOV
N_{h} is the number of observed products at lag h, ignoring missing values
CCOV
$\hat{\gamma}_{x, y}(h)=\frac{1}{T} \sum_{t=h+1}^{T}\left(x_{t}-\bar{x}\right)\left(y_{t-h}-\bar{y}\right)$
CCOV

CCF
$\hat{\gamma}_{x, y}(h)=\frac{1}{N_{h}} \sum_{t=h+1}^{T}\left(x_{t}-\bar{x}\right)\left(y_{t-h}-\bar{y}\right)$ when embedded missing values are present

$$
\hat{\rho}_{x, y}(h)=\hat{\gamma}_{x, y}(h) / \sqrt{\hat{\gamma}_{x}(0) \hat{\gamma}_{y}(0)}
$$

CCFSTD

$$
\operatorname{Std}\left(\hat{\rho}_{x, y}(h)\right)=1 / \sqrt{N_{0}}
$$

CCFNORM

$$
\operatorname{Norm}\left(\hat{\rho}_{x, y}(h)\right)=\hat{\rho}_{x, y}(h) / \operatorname{Std}\left(\hat{\rho}_{x, y}(h)\right)
$$

CCFPROB

$$
\operatorname{Prob}\left(\hat{\rho}_{x, y}(h)\right)=2\left(1-\Phi\left(\left|\operatorname{Norm}\left(\hat{\rho}_{x, y}(h)\right)\right|\right)\right)
$$

CCFLPROB

$$
\log \operatorname{Prob}\left(\hat{\rho}_{x, y}(h)\right)=-\log _{10}\left(\operatorname{Prob}\left(\hat{\rho}_{x, y}(h)\right)\right.
$$

$$
\operatorname{Flag}\left(\hat{\rho}_{x, y}(h)\right)= \begin{cases}1 & \hat{\rho}_{x, y}(h)>2 \operatorname{Std}\left(\hat{\rho}_{x, y}(h)\right) \\ 0 & -2 \operatorname{Std}\left(\hat{\rho}_{x, y}(h)\right)<\hat{\rho}_{x, y}(h)<2 \operatorname{Std}\left(\hat{\rho}_{x, y}(h)\right) \\ -1 & \hat{\rho}_{x, y}(h)<-2 \operatorname{Std}\left(\hat{\rho}_{x, y}(h)\right)\end{cases}
$$

Data Set Output

The TIMESERIES procedure can create the OUT=, OUTCORR=, OUTCROSSCORR=, OUTDECOMP=, OUTSEASON=, OUTSUM=, and OUTTREND= data sets. In general, these data sets contain the variables listed in the BY statement. If an analysis step that is related to an output data step fails, the values of this step are not recorded or are set to missing in the related output data set, and appropriate error and/or warning messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, VAR, and CROSSVAR statements. If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN $=$ and INTERVAL $=$ options. The values of the variables specified in the VAR and CROSSVAR statements are accumulated based on the ACCUMULATE $=$ option, and missing values are interpreted based on the SETMISSING= option.

OUTCORR= Data Set

The OUTCORR= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTCORR= data set records the correlations for each variable specified in a VAR statement (not the CROSSVAR statement).

When the CORR statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to correlation statistics specified in the CORR statement options and the variable values are related to the NLAG= or LAGS $=$ option.

NAME	variable name
LAG	time lag
N	number of variance products
ACOV	autocovariances
ACF	autocorrelations

ACFSTD	autocorrelation standard errors
ACF2STD	two standard errors beyond autocorrelation
ACFNORM	normalized autocorrelations
ACFPROB	autocorrelation probabilities
ACFLPROB	autocorrelation log probabilities
PACF	partial autocorrelations
PACFSTD	partial autocorrelation standard errors
PACF2STD	two standard errors beyond partial autocorrelation
PACFNORM	partial normalized autocorrelations
PACFPROB	partial autocorrelation probabilities
PACFLPROB	partial autocorrelation log probabilities
IACF	inverse autocorrelations
IACFSTD	inverse autocorrelation standard errors
IACF2STD	two standard errors beyond inverse autocorrelation
IACFNORM	normalized inverse autocorrelations
IACFPROB	inverse autocorrelation probabilities
IACFLPROB	inverse autocorrelation log probabilities
WN	white noise test Statistics
WNPROB	white noise test probabilities
WNLPROB	white noise test log probabilities

The preceding correlation statistics are computed for each specified time lag.
When the CORR statement TRANSPOSE=YES option is specified, the variable values are related to correlation statistics specified in the CORR statement and the variable names are related to the NLAG= or LAGS $=$ options.
NAME variable name
STAT correlation statistic name
LABEL correlation statistic label
LAG $h \quad$ correlation statistics for lag h

OUTCROSSCORR= Data Set

The OUTCROSSCORR= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTCROSSCORR= data set records the cross-correlations for each variable specified in a VAR and the CROSSVAR statements.

When the CROSSCORR statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to cross-correlation statistics specified in the CROSSCORR statement options and the variable values are related to the NLAG= or LAGS= option.

NAME	variable name
CROSS	cross variable name
LAG	time lag
N	number of variance products
CCOV	cross-covariances
CCF	cross-correlations
CCFSTD	cross-correlation standard errors
CCF2STD	two standard errors beyond cross-correlation
CCFNORM	normalized cross-correlations
CCFPROB	cross-correlation probabilities
CCFLPROB	cross-correlation log probabilities

The preceding cross-correlation statistics are computed for each specified time lag.
When the CROSSCORR statement TRANSPOSE=YES option is specified, the variable values are related to cross-correlation statistics specified in the CROSSCORR statement and the variable names are related to the NLAG= or LAGS= options.

NAME	variable name
CROSS	cross variable name
STAT $_{-}$	cross-correlation statistic name
LABEL	cross-correlation statistic label
LAG h	cross-correlation statistics for lag h

OUTDECOMP= Data Set

The OUTDECOMP= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTDECOMP= data set records the seasonal decomposition/adjustments for each variable specified in a VAR statement (not the CROSSVAR statement).

When the DECOMP statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to decomposition/adjustments specified in the DECOMP statement and the variable values are related to the ID statement INTERVAL= option and the PROC TIMESERIES statement SEASONALITY= option.

NAME	variable name
MODE	mode of decomposition

TIMEID	time ID values
SEASON	seasonal index
ORIGINAL	original series values
TCC	trend-cycle component
SIC	seasonal-irregular component
SC	seasonal component
SCSTD	seasonal component standard errors
TCS	trend-cycle-seasonal component
IC	irregular component
SA	seasonally adjusted series
PCSA	percent change seasonally adjusted series
TC	trend component
CC	cycle component

The preceding decomposition components are computed for each time period.
When the DECOMP statement TRANSPOSE=YES option is specified, the variable values are related to decomposition/adjustments specified in the DECOMP statement and the variable names are related to the ID statement INTERVAL= option, the PROC TIMESERIES statement SEASONALITY = option, and the DECOMP statement NPERIODS= option.

NAME	variable name
MODE	mode of decomposition name
COMP $_{-}$	decomposition component name
LABEL	decomposition component label
PERIOD t	decomposition component value for time period t

OUTSEASON= Data Set

The OUTSEASON= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTSEASON= data set records the seasonal statistics for each variable specified in a VAR statement (not the CROSSVAR statement).

When the SEASON statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to seasonal statistics specified in the SEASON statement and the variable values are related to the ID statement INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

NAME	variable name
_TIMEID__	time ID values

SEASON	seasonal index
NOBS	number of observations
N	number of nonmissing observations
NMISS	number of missing observations
MINIMUM	minimum value
MAXIMUM	maximum value
RANGE	maximum value
SUM	summation value
MEAN	mean value
STDDEV	standard deviation
CSS	corrected sum of squares
USS	uncorrected sum of squares
MEDIAN	median value

The preceding statistics are computed for each season.
When the SEASON statement TRANSPOSE=YES option is specified, the variable values are related to seasonal statistics specified in the SEASON statement and the variable names are related to the ID statement INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

NAME	variable name
STAT ${-}$	season statistic name
LABEL	season statistic name
SEASON s	season statistic value for season s

OUTSUM= Data Set

The OUTSUM= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTSUM= data set records the descriptive statistics for each variable specified in a VAR statement (not the CROSSVAR statement).

Variables related to descriptive statistics are based on the ACCUMULATE= and SETMISSING= options in the ID and VAR statements:
NAME variable name
STATUS status flag that indicates whether the requested analyses were successful
NOBS number of observations
N
number of nonmissing observations

NMISS	number of missing observations
MINIMUM	minimum value
MAXIMUM	maximum value
AVG	average value
STDDEV	standard deviation

The OUTSUM = data set contains the descriptive statistics of the (accumulated) time series.

OUTTREND= Data Set

The OUTTREND= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTTREND= data set records the trend statistics for each variable specified in a VAR statement (not the CROSSVAR statement).

When the TREND statement TRANSPOSE=NO option is omitted or explicitly specified, the variable names are related to trend statistics specified in the TREND statement and the variable values are related to the ID statement INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

NAME	variable name
TIMEID	time ID values
SEASON	seasonal index
NOBS	number of observations
N	number of nonmissing observations
NMISS	number of missing observations
MINIMUM	minimum value
MAXIMUM	maximum value
RANGE	maximum value
SUM	summation value
MEAN	mean value
STDDEV	standard deviation
CSS	corrected sum of squares
USS	uncorrected sum of squares
MEDIAN	median value

The preceding statistics are computed for each time period.
When the TREND statement TRANSPOSE=YES option is specified, the variable values related to trend statistics specified in the TREND statement and the variable name are related to the ID statement INTERVAL=, the PROC TIMESERIES statement SEASONALITY= option, and the TREND statement NPERIODS= option.
NAME variable name
STAT trend statistic name
LABEL trend statistic name
PERIOD $t \quad$ trend statistic value for time period t

STATUS_Variable Values

The _STATUS_ variable contains a code that specifies whether the analysis has been successful or not. The _STATUS_ variable can take the following values:

0 success
1000 transactional trend statistics failure
2000 transactional seasonal statistics failure
correlation analysis failure

Printed Output

The TIMESERIES procedure optionally produces printed output by using the Output Delivery System (ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT= and PRINTDETAILS options associated with the PROC TIMESERIES statement. In general, if an analysis step related to printed output fails, the values of this step are not printed and appropriate error and/or warning messages are recorded in the log. The printed output is similar to the output data set, and these similarities are described below. The printed output produced by different printing option values is described as follows:

PRINT=DECOMP prints the seasonal decomposition similar to the OUTDECOMP= data set.
PRINT=DESCSTATS prints a table of descriptive statistics for each variable.
PRINT=SEASONS prints the seasonal statistics similar to the OUTSEASON= data set.
PRINT=SUMMARY prints the summary statistics similar to the OUTSUM= data set.
PRINT=TRENDS prints the trend statistics similar to the OUTTREND= data set.

PRINTDETAILS prints each table with greater detail.
If PRINT=SEASONS and the PRINTDETAILS options are both specified, all seasonal statistics are printed.

ODS Table Names

Table 27.3 relates the PRINT= options to ODS tables:
Table 27.3 ODS Tables Produced in PROC TIMESERIES

ODS Table Name	Description	Statement	Option
SeasonalDecomposition	seasonal decomposition	PRINT	DECOMP
DescStats	descriptive statistics	PRINT	DESCSTATS
GlobalStatistics	global statistics	PRINT	SEASONS
SeasonStatistics	season statistics	PRINT	SEASONS
StatisticsSummary	statistics summary	PRINT	SUMMARY
TrendStatistics	trend statistics	PRINT	TRENDS
GlobalStatistics	global statistics	PRINT	TRENDS

The tables are related to a single series within a BY group.

ODS Graphics Names

This section describes the graphical output produced by the TIMESERIES procedure. To request these graphs, you must specify the ODS GRAPHICS ON; statement in your SAS program before the PROC TIMESERIES step, and you must specify the PLOTS $=$ or CROSSPLOTS $=$ option in the PROC TIMESERIES statement.

PROC TIMESERIES assigns a name to each graph it creates. These names are listed in Table 27.4.
Table 27.4 ODS Graphics Produced by PROC TIMESERIES

ODS Graph Name	Plot Description	Statement	Option
ACFPlot	autocorrelation function	PLOTS	ACF
ACFNORMPlot	normalized autocorrelation function	PLOTS	ACF
CCFNORMPlot	normalized cross-correlation function	CROSSPLOTS	CCF
CCFPlot	cross-correlation function	CROSSPLOTS	CCF
CorrelationPlots	correlation graphics panel	PLOTS	CORR
CrossSeriesPlot	cross series plot	CROSSPLOTS	SERIES
CycleComponentPlot	cycle component	PLOTS	CC
DecompositionPlots	decomposition graphics panel	PLOTS	DECOMP

Table 27.4 (continued)

ODS Graph Name	Plot Description	Statement	Option
IACFPlot	inverse autocorrelation function	PLOTS	IACF
IACFNORMPlot	normalized inverse autocorrelation func-	PLOTS	IACF
	tion		
IrregularComponentPlot	irregular component	PLOTS	IC
PACFPlot	partial autocorrelation function	PLOTS	PACF
PACFNORMPlot	standardized partial autocorrelation func-	PLOTS	PACF
	tion		
PercentChangeAdjustedplot	percent-change seasonally adjusted	PLOTS	PCSA
ResidualPlot	residual time series plot	PLOTS	RESIDUAL
SeasonallyAdjustedPlot	seasonally adjusted	PLOTS	SA
SeasonalComponentPlot	seasonal component	PLOTS	SC
SeasonalCyclePlot	seasonal cycles plot	PLOTS	CYCLES
SeasonalIrregularComponentPlot	seasonal-irregular component	PLOTS	SIC
SeriesPlot	time series plot	PLOTS	SERIES
TrendComponentPlot	trend component	PLOTS	TCC
TrendCycleComponentPlot	trend-cycle component	PLOTS	TCS
TrendCycleSeasonalPlot	trend-cycle-seasonal component	PLOTS	WN
WhiteNoiseLogProbabilityPlot	white noise log probability	PLOTS	WN
WhiteNoiseProbabilityPlot	white noise probability		

Examples: TIMESERIES Procedure

Example 27.1: Accumulating Transactional Data into Time Series Data

This example illustrates using the TIMESERIES procedure to accumalate time-stamped transactional data that has been recorded at no particular frequency into time series data at a specific frequency. After the time series is created, the various SAS/ETS procedures related to time series analysis, seasonal adjustment/decomposition, modeling, and forecasting can be used to further analyze the time series data.

Suppose that the input data set WORK.RETAIL contains variables STORE and TIMESTAMP and numerous other numeric transaction variables. The BY variable STORE contains values that break up the transactions into groups (BY groups). The time ID variable TIMESTAMP contains SAS date values recorded at no particular frequency. The other data set variables contain the numeric transaction values to be analyzed. It is further assumed that the input data set is sorted by the variables STORE and TIMESTAMP. The following statements form monthly time series from the transactional data based on the median value (ACCUMULATE=MEDIAN) of the transactions recorded with each time period. Also, the accumulated time series values for time periods with no transactions are set to zero instead of to missing (SETMISS=0) and only transactions recorded between the first day of 1998 (START='01JAN1998'D) and last day of 2000 ($\mathrm{END}=$ '31JAN2000'D) are considered and,
if needed, extended to include this range.

```
proc timeseries data=retail out=mseries;
    by store;
    id timestamp interval=month
                accumulate=median
                setmiss=0
                start='01jan1998'd
                end ='31dec2000'd;
    var _numeric_;
run;
```

The monthly time series data are stored in the data WORK.MSERIES. Each BY group associated with the BY variable STORE contains an observation for each of the 36 months associated with the years 1998, 1999, and 2000. Each observation contains the variable STORE, TIMESTAMP, and each of the analysis variables in the input data set.

After each set of transactions has been accumulated to form corresponding time series, accumulated time series can be analyzed using various time series analysis techniques. For example, exponentially weighted moving averages can be used to smooth each series. The following statements use the EXPAND procedure to smooth the analysis variable named STOREITEM.

```
proc expand data=mseries out=smoothed from=month;
    by store;
    id date;
    convert storeitem=smooth / transform=(ewma 0.1);
run;
```

The smoothed series are stored in the data set WORK.SMOOTHED. The variable SMOOTH contains the smoothed series.

If the time ID variable TIMESTAMP contains SAS datetime values instead of SAS date values, the INTERVAL=, START=, and END= options must be changed accordingly and the following statements could be used:

```
proc timeseries data=retail out=tseries;
    by store;
    id timestamp interval=dtmonth
            accumulate=median
            setmiss=0
            start='01jan1998:00:00:00' dt
            end ='31dec2000:00:00:00'dt;
    var _numeric_;
run;
```

The monthly time series data are stored in the data WORK.TSERIES, and the time ID values use a SAS datetime representation.

Example 27.2: Trend and Seasonal Analysis

This example illustrates using the TIMESERIES procedure for trend and seasonal analysis of timestamped transactional data.

Suppose that the data set SASHELP.AIR contains two variables: DATE and AIR. The variable DATE contains sorted SAS date values recorded at no particular frequency. The variable AIR contains the transaction values to be analyzed.

The following statements accumulate the transactional data on an average basis to form a quarterly time series and perform trend and seasonal analysis on the transactions.

```
proc timeseries data=sashelp.air
    out=series
    outtrend=trend
    outseason=season print=seasons;
    id date interval=qtr accumulate=avg;
    var air;
run;
```

The time series is stored in the data set WORK.SERIES, the trend statistics are stored in the data set WORK.TREND, and the seasonal statistics are stored in the data set WORK.SEASON. Additionally, the seasonal statistics are printed (PRINT=SEASONS) and the results of the seasonal analysis are shown in Output 27.2.1.

Output 27.2.1 Seasonal Statistics Table

The TIMESERIES Procedure						
Season Statistics for Variable AIR						
Season						Standard
Index	N	Minimum	Maximum	Sum	Mean	Deviation
1	36	112.0000	419.0000	8963.00	248.9722	95.65189
2	36	121.0000	535.0000	10207.00	283.5278	117.61839
3	36	136.0000	622.0000	12058.00	334.9444	143.97935
4	36	104.0000	461.0000	9135.00	253.7500	101.34732

Using the trend statistics stored in the WORK.TREND data set, the following statements plot various trend statistics associated with each time period over time.

```
title1 "Trend Statistics";
proc sgplot data=trend;
    series x=date y=max / lineattrs=(pattern=solid);
    series x=date y=mean / lineattrs=(pattern=solid);
    series x=date y=min / lineattrs=(pattern=solid);
    yaxis display=(nolabel);
    format date year4.;
run;
```

The results of this trend analysis are shown in Output 27.2.2.
Output 27.2.2 Trend Statistics Plot

Using the trend statistics stored in the WORK.TREND data set, the following statements chart the sum of the transactions associated with each time period for the second season over time.

```
title1 "Trend Statistics for 2nd Season";
proc sgplot data=trend;
    where _season_ = 2;
    vbar date / freq=sum;
    format date year4.;
    yaxis label='Sum';
run;
```

The results of this trend analysis are shown in Output 27.2.3.

Output 27.2.3 Trend Statistics Bar Chart

Using the trend statistics stored in the WORK.TREND data set, the following statements plot the mean of the transactions associated with each time period by each year over time.

```
data trend;
    set trend;
    year = year(date);
run;
title1 "Trend Statistics by Year";
proc sgplot data=trend;
    series x=_season_ y=mean / group=year lineattrs=(pattern=solid);
    xaxis values=(1 to 4 by 1);
run;
```

The results of this trend analysis are shown in Output 27.2.4.

Output 27.2.4 Trend Statistics

Using the season statistics stored in the WORK.SEASON data set, the following statements plot various season statistics for each season.

```
title1 "Seasonal Statistics";
proc sgplot data=season;
    series x=_season_ y=max / lineattrs=(pattern=solid);
    series x=_season_ y=mean / lineattrs=(pattern=solid);
    series x=_season_ y=min / lineattrs=(pattern=solid);
    yaxis display=(nolabel);
    xaxis values=(1 to 4 by 1);
run;
```

The results of this seasonal analysis are shown in Output 27.2.5.

Output 27.2.5 Seasonal Statistics Plot

Example 27.3: Illustration of ODS Graphics

This example illustrates the use of ODS graphics.
The following statements use the SASHELP.WORKERS data set to study the time series of electrical workers and its interaction with the series of masonry workers. The series plot, the correlation panel, the seasonal adjustment panel, and all cross-series plots are requested. Output 27.3.1 through Output 27.3.4 show a selection of the plots created.

The graphical displays are requested by specifying the ODS GRAPHICS statement and the PLOTS= or CROSSPLOTS $=$ options in the PROC TIMESERIES statement. For information about the graphics available in the TIMESERIES procedure, see the section "ODS Graphics Names" on page 1714.

```
title "Illustration of ODS Graphics";
proc timeseries data=sashelp.workers out=_null_
    plots=(series corr decomp)
    crossplots=all;
    id date interval=month;
    var electric;
```

crossvar masonry;
run;
Output 27.3.1 Series Plot

Output 27.3.2 Correlation Panel

Output 27.3.3 Seasonal Decomposition Panel

Output 27.3.4 Cross-Correlation Plot

References

Greene, W.H. (1999), Econometric Analysis, Fourth Edition, New York: Macmillan.
Hodrick, R. and Prescott, E. (1980), "Post-War U.S. Business Cycles: An Empirical Investigation," Discussion Paper 451, Carnegie Mellon University.

Makridakis, S. and Wheelwright, S.C. (1978), Interactive Forecasting: Univariate and Multivariate Methods, Second Edition, San Francisco: Holden-Day, 198-201.

Pyle, D. (1999), Data Preparation for Data Mining, San Francisco: Morgan Kaufman Publishers, Inc.

Stoffer, D.S., Toloi, C.M.C. (1992), "A Note on the Ljung-Box-Pierce Portmanteau Statistic with Missing Data," Statistics and Probability Letters 13, 391-396.

Wheelwright, S.C. and Makridakis, S. (1973), Forecasting Methods for Management, Third Edition, New York: Wiley-Interscience, 123-133.

Chapter 28

The TSCSREG Procedure

Contents

Overview: The TSCSREG Procedure 1727
Getting Started: The TSCSREG Procedure 1728
Specifying the Input Data 1728
Unbalanced Data 1728
Specifying the Regression Model 1729
Estimation Techniques 1730
Introductory Example 1731
Syntax: The TSCSREG Procedure 1733
Functional Summary 1733
PROC TSCSREG Statement 1734
BY Statement 1735
ID Statement 1735
MODEL Statement 1736
TEST Statement 1737
Details: The TSCSREG Procedure 1738
ODS Table Names 1738
Examples: The TSCSREG Procedure 1739
Acknowledgments: TSCSREG Procedure 1739
References: TSCSREG Procedure 1740

Overview: The TSCSREG Procedure

The TSCSREG (time series cross section regression) procedure analyzes a class of linear econometric models that commonly arise when time series and cross-sectional data are combined. The TSCSREG procedure deals with panel data sets that consist of time series observations on each of several cross-sectional units.

The TSCSREG procedure is very similar to the PANEL procedure; for full description, syntax details, models, and estimation methods, see Chapter 19, "The PANEL Procedure." The TSCSREG procedure is no longer being updated, and it shares the code base with the PANEL procedure.

Getting Started: The TSCSREG Procedure

Specifying the Input Data

The input data set used by the TSCSREG procedure must be sorted by cross section and by time within each cross section. Therefore, the first step in using PROC TSCSREG is to make sure that the input data set is sorted. Normally, the input data set contains a variable that identifies the cross section for each observation and a variable that identifies the time period for each observation.

To illustrate, suppose that you have a data set A that contains data over time for each of several states. You want to regress the variable Y on regressors X1 and X2. Cross sections are identified by the variable STATE, and time periods are identified by the variable DATE. The following statements sort the data set A appropriately:

```
proc sort data=a;
    by state date;
run;
```

The next step is to invoke the TSCSREG procedure and specify the cross section and time series variables in an ID statement. List the variables in the ID statement exactly as they are listed in the BY statement.

```
proc tscsreg data=a;
    id state date;
```

Alternatively, you can omit the ID statement and use the CS= and TS= options on the PROC TSCSREG statement to specify the number of cross sections in the data set and the number of time series observations in each cross section.

Unbalanced Data

In the case of fixed-effects and random-effects models, the TSCSREG procedure is capable of processing data with different numbers of time series observations across different cross sections. You must specify the ID statement to estimate models that use unbalanced data. The missing time series observations are recognized by the absence of time series ID variable values in some of the cross sections in the input data set. Moreover, if an observation with a particular time series ID value and cross-sectional ID value is present in the input data set, but one or more of the model variables are missing, that time series point is treated as missing for that cross section.

Specifying the Regression Model

Next, specify the linear regression model with a MODEL statement, as shown in the following statements.

```
proc tscsreg data=a;
    id state date;
    model y = x1 x2;
run;
```

The MODEL statement in PROC TSCSREG is specified like the MODEL statement in other SAS regression procedures: the dependent variable is listed first, followed by an equal sign, followed by the list of regressor variables.

The reason for using PROC TSCSREG instead of other SAS regression procedures is that you can incorporate a model for the structure of the random errors. It is important to consider what kind of error structure model is appropriate for your data and to specify the corresponding option in the MODEL statement.

The error structure options supported by the TSCSREG procedure are FIXONE, FIXTWO, RANONE, RANTWO, FULLER, PARKS, and DASILVA. See "Details: The TSCSREG Procedure" on page 1738 for more information about these methods and the error structures they assume.

By default, the two-way random-effects error model structure is used while Fuller-Battese and Wansbeek-Kapteyn methods are used for the estimation of variance components in balanced data and unbalanced data, respectively. Thus, the preceding example is the same as specifying the RANTWO option, as shown in the following statements:

```
proc tscsreg data=a;
    id state date;
    model y = x1 x2 / rantwo;
run;
```

You can specify more than one error structure option in the MODEL statement; the analysis is repeated using each method specified. You can use any number of MODEL statements to estimate different regression models or estimate the same model by using different options.

In order to aid in model specification within this class of models, the procedure provides two specification test statistics. The first is an F statistic that tests the null hypothesis that the fixed-effects parameters are all zero. The second is a Hausman m-statistic that provides information about the appropriateness of the random-effects specification. It is based on the idea that, under the null hypothesis of no correlation between the effects variables and the regressors, OLS and GLS are consistent, but OLS is inefficient. Hence, a test can be based on the result that the covariance of an efficient estimator with its difference from an inefficient estimator is zero. Rejection of the null hypothesis might suggest that the fixed-effects model is more appropriate.

The procedure also provides the Buse R-square measure, which is the most appropriate goodness-of-fit measure for models estimated by using GLS. This number is interpreted as a measure of the
proportion of the transformed sum of squares of the dependent variable that is attributable to the influence of the independent variables. In the case of OLS estimation, the Buse R-square measure is equivalent to the usual R -square measure.

Estimation Techniques

If the effects are fixed, the models are essentially regression models with dummy variables that correspond to the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is equivalent to best linear unbiased estimation.

The output from TSCSREG is identical to what one would obtain from creating dummy variables to represent the cross-sectional and time (fixed) effects. The output is presented in this manner to facilitate comparisons to the least squares dummy variables estimator (LSDV). As such, the inclusion of a intercept term implies that one dummy variable must be dropped. The actual estimation of the fixed-effects models is not LSDV. LSDV is much too cumbersome to implement. Instead, TSCSREG operates in a two step fashion. In the first step, the following occurs:

- One-way fixed-effects model: In the one-way fixed-effects model, the data is transformed by removing the cross-sectional means from the dependent and independent variables. The following is true:

$$
\begin{aligned}
& \tilde{y}_{i t}=y_{i t}-\bar{y}_{i} . \\
& \tilde{\mathbf{x}}_{i t}=\mathbf{x}_{i t}-\overline{\mathbf{x}}_{i} .
\end{aligned}
$$

- Two-way fixed-effects model: In the two-way fixed-effects model, the data is transformed by removing the cross-sectional and time means and adding back the overall means:

$$
\begin{aligned}
& \tilde{y}_{i t}=y_{i t}-\bar{y}_{i \cdot}-\bar{y}_{\cdot t}+\overline{\bar{y}} \\
& \tilde{\mathbf{x}}_{i t}=\mathbf{x}_{i t}-\overline{\mathbf{x}}_{i} \cdot-\overline{\mathbf{x}}_{\cdot t}+\overline{\overline{\mathbf{x}}}
\end{aligned}
$$

where the symbols:
$y_{i t}$ and $\mathbf{x}_{i t}$ are the dependent variable (a scalar) and the explanatory variables (a vector whose columns are the explanatory variables not including a constant), respectively
\bar{y}_{i} and $\overline{\mathbf{x}}_{i}$. are cross section means
\bar{y}_{t} and $\overline{\mathbf{x}}_{t}$ are time means
$\overline{\bar{y}}$ and $\overline{\overline{\mathbf{x}}}$ are the overall means
The second step consists of running OLS on the properly demeaned series, provided that the data are balanced. The unbalanced case is slightly more difficult, because the structure of the missing data must be retained. For this case, PROC TSCSREG uses a slight specialization on Wansbeek and Kapteyn.

The other alternative is to assume that the effects are random. In the one-way case, $E\left(\nu_{i}\right)=0$, $E\left(v_{i}^{2}\right)=\sigma_{v}^{2}$, and $E\left(\nu_{i} \nu_{j}\right)=0$ for $i \neq j$, and ν_{i} is uncorrelated with $\epsilon_{i t}$ for all i and t. In the twoway case, in addition to all of the preceding, $E\left(e_{t}\right)=0, E\left(e_{t}^{2}\right)=\sigma_{e}^{2}$, and $E\left(e_{t} e_{s}\right)=0$ for $t \neq s$, and the e_{t} are uncorrelated with the ν_{i} and the $\epsilon_{i t}$ for all i and t. Thus, the model is a variance components model, with the variance components $\sigma_{v}^{2}, \sigma_{e}^{2}$, and σ_{ϵ}^{2}, to be estimated. A crucial implication of such a specification is that the effects are independent of the regressors. For randomeffects models, the estimation method is an estimated generalized least squares (EGLS) procedure that involves estimating the variance components in the first stage and using the estimated variance covariance matrix thus obtained to apply generalized least squares (GLS) to the data.

Introductory Example

The following example uses the cost function data from Greene (1990) to estimate the variance components model. The variable OUTPUT is the log of output in millions of kilowatt-hours, and COST is the log of cost in millions of dollars. Refer to Greene (1990) for details.

```
title1;
data greene;
    input firm year output cost @@;
    df1 = firm = 1;
    df2 = firm = 2;
    df3 = firm = 3;
    df4 = firm = 4;
    df5 = firm = 5;
    d60 = year = 1960;
    d65 = year = 1965;
    d70 = year = 1970;
datalines;
... more lines ...
```

Usually you cannot explicitly specify all the explanatory variables that affect the dependent variable. The omitted or unobservable variables are summarized in the error disturbances. The TSCSREG procedure used with the RANTWO option specifies the two-way random-effects error model where the variance components are estimated by the Fuller-Battese method, because the data are balanced and the parameters are efficiently estimated by using the GLS method. The variance components model used by the Fuller-Battese method is

$$
y_{i t}=\sum_{k=1}^{K} X_{i t k} \boldsymbol{\beta}_{k}+v_{i}+e_{t}+\epsilon_{i t} i=1, \ldots, N ; t=1, \ldots, T
$$

The following statements fit this model.

```
proc sort data=greene;
    by firm year;
run;
```

```
proc tscsreg data=greene;
    model cost = output / rantwo;
    id firm year;
run;
```

The TSCSREG procedure output is shown in Figure 28.1. A model description is printed first; it reports the estimation method used and the number of cross sections and time periods. The variance components estimates are printed next. Finally, the table of regression parameter estimates shows the estimates, standard errors, and t tests.

Figure 28.1 The Variance Components Estimates

Syntax: The TSCSREG Procedure

The following statements are used with the TSCSREG procedure.

```
PROC TSCSREG options;
    BY variables;
    ID cross-section-id-variable time-series-id-variable;
    MODEL dependent = regressor-variables / options ;
    TEST equation1 <,equation2. . . > ;
```


Functional Summary

The statements and options used with the TSCSREG procedure are summarized in the following table.

Table 28.1 Functional Summary

Description	Statement	Option
Data Set Options specify the input data set write parameter estimates to an output data set include correlations in the OUTEST= data set include covariances in the OUTEST= data set specify number of time series observations specify number of cross sections	TSCSREG TSCSREG TSCSREG TSCSREG TSCSREG TSCSREG	DATA= OUTEST= CORROUT COVOUT TS= $\mathrm{CS}=$
Declaring the Role of Variables specify BY-group processing specify the cross section and time ID variables	$\begin{aligned} & \text { BY } \\ & \text { ID } \end{aligned}$	
Printing Control Options print correlations of the estimates print covariances of the estimates suppress printed output perform tests of linear hypotheses	MODEL MODEL MODEL TEST	CORRB COVB NOPRINT
Model Estimation Options specify the one-way fixed-effects model specify the two-way fixed-effects model specify the one-way random-effects model specify the two-way random-effects model specify Fuller-Battese method specify PARKS	MODEL MODEL MODEL MODEL MODEL MODEL	FIXONE FIXTWO RANONE RANTWO FULLER PARKS

Description	Statement	Option
specify Da Silva method	MODEL	DASILVA
specify order of the moving-average error process for Da Silva method	MODEL	$\mathrm{M}=$
print Φ matrix for Parks method	MODEL	PHI
print autocorrelation coefficients for Parks method	MODEL	RHO
suppress the intercept term	MODEL	NOINT
control check for singularity	MODEL	SINGULAR=

PROC TSCSREG Statement

PROC TSCSREG options ;

The following options can be specified in the PROC TSCSREG statement.

DATA=SAS-data-set

names the input data set. The input data set must be sorted by cross section and by time period within cross section. If you omit the DATA= option, the most recently created SAS data set is used.

TS=number

specifies the number of observations in the time series for each cross section. The TS= option value must be greater than 1 . The TS= option is required unless an ID statement is used. Note that the number of observations for each time series must be the same for each cross section and must cover the same time period.

CS=number

specifies the number of cross sections. The $\mathrm{CS}=$ option value must be greater than 1 . The $\mathrm{CS}=$ option is required unless an ID statement is used.

OUTEST=SAS-data-set
the parameter estimates. When the OUTEST= option is not specified, the OUTEST= data set is not created.

OUTCOV

COVOUT
writes the covariance matrix of the parameter estimates to the OUTEST= data set.

OUTCORR

CORROUT
writes the correlation matrix of the parameter estimates to the OUTEST= data set.
In addition, any of the following MODEL statement options can be specified in the PROC TSCSREG statement: CORRB, COVB, FIXONE, FIXTWO, RANONE, RANTWO,

FULLER, PARKS, DASILVA, NOINT, NOPRINT, M=, PHI, RHO, and SINGULAR=. When specified in the PROC TSCSREG statement, these options are equivalent to specifying the options for every MODEL statement.

BY Statement

```
BY variables;
```

A BY statement can be used with PROC TSCSREG to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the input data set must be sorted by the BY variables as well as by cross section and time period within the BY groups.

When both an ID statement and a BY statement are specified, the input data set must be sorted first with respect to BY variables and then with respect to the cross section and time series ID variables. For example,

```
proc sort data=a;
    by byvar1 byvar2 csid tsid;
run;
proc tscsreg data=a;
    by byvar1 byvar2;
    id csid tsid;
run;
```

When both a BY statement and an ID statement are used, the data set might have a different number of cross sections or a different number of time periods in each BY group. If no ID statement is used, the $\mathrm{CS}=N$ and $\mathrm{TS}=T$ options must be specified and each BY group must contain $N \times T$ observations.

ID Statement

ID cross-section-id-variable time-series-id-variable ;
The ID statement is used to specify variables in the input data set that identify the cross section and time period for each observation.

When an ID statement is used, the TSCSREG procedure verifies that the input data set is sorted by the cross section ID variable and by the time series ID variable within each cross section. The TSCSREG procedure also verifies that the time series ID values are the same for all cross sections.

To make sure the input data set is correctly sorted, use PROC SORT with a BY statement with the variables listed exactly as they are listed in the ID statement to sort the input data set. For example,

```
proc sort data=a;
```

```
    by csid tsid;
run;
proc tscsreg data=a;
    id csid tsid;
    ... etc. ...
run;
```

If the ID statement is not used, the TS= and CS= options must be specified on the PROC TSCSREG statement. Note that the input data must be sorted by time within cross section, regardless of whether the cross section structure is given by an ID statement or by the options TS= and CS=.

If an ID statement is specified, the time series length T is set to the minimum number of observations for any cross section, and only the first T observations in each cross section are used. If both the ID statement and the $\mathrm{TS}=$ and $\mathrm{CS}=$ options are specified, the $\mathrm{TS}=$ and $\mathrm{CS}=$ options are ignored.

MODEL Statement

MODEL response $=$ regressors / options ;

The MODEL statement specifies the regression model and the error structure assumed for the regression residuals. The response variable on the left side of the equal sign is regressed on the independent variables listed after the equal sign. Any number of MODEL statements can be used. For each model statement, only one response variable can be specified on the left side of the equal sign.

The error structure is specified by the FIXONE, FIXTWO, RANONE, RANTWO, FULLER, PARKS, and DASILVA options. More than one of these options can be used, in which case the analysis is repeated for each error structure model specified.

Models can be given labels up to 32 characters in length. Model labels are used in the printed output to identify the results for different models. If no label is specified, the response variable name is used as the label for the model. The model label is specified as follows:
label: MODEL response = regressors / options ;
The following options can be specified on the MODEL statement after a slash (/).

CORRB

CORR
prints the matrix of estimated correlations between the parameter estimates.

COVB

VAR

prints the matrix of estimated covariances between the parameter estimates.

FIXONE

specifies that a one-way fixed-effects model be estimated with the one-way model that corresponds to group effects only.

FIXTWO

specifies that a two-way fixed-effects model be estimated.

RANONE

specifies that a one-way random-effects model be estimated.

RANTWO

specifies that a two-way random-effects model be estimated.

FULLER

specifies that the model be estimated by using the Fuller-Battese method, which assumes a variance components model for the error structure.

PARKS

specifies that the model be estimated by using the Parks method, which assumes a first-order autoregressive model for the error structure.

DASILVA

specifies that the model be estimated by using the Da Silva method, which assumes a mixed variance-component moving-average model for the error structure.

$\mathbf{M}=$ number

specifies the order of the moving-average process in the Da Silva method. The $\mathrm{M}=$ value must be less than $T-1$. The default is $\mathrm{M}=1$.

PHI

prints the Φ matrix of estimated covariances of the observations for the Parks method. The PHI option is relevant only when the PARKS option is used.

RHO

prints the estimated autocorrelation coefficients for the Parks method.

NOINT

NOMEAN

suppresses the intercept parameter from the model.

NOPRINT

suppresses the normal printed output.

SINGULAR=number

specifies a singularity criterion for the inversion of the matrix. The default depends on the precision of the computer system.

TEST Statement

```
TEST equation < , equation ... > < / options > ;
```

The TEST statement performs F tests of linear hypotheses about the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the corresponding regressor. The keyword INTERCEPT refers to the coefficient of the intercept.

The following statements illustrate the use of the TEST statement:

```
proc tscsreg;
    model y = x1 x2 x3;
    test x1 = 0, x2 *.5 + 2 * x3= 0;
    test_int: test intercept=0, x3 = 0;
```

Note that a test of the following form is not permitted:
test_bad: test $x 2 / 2+2$ * $x 3=0$;

Do not use the division sign in test/restrict statements.

Details: The TSCSREG Procedure

Models, estimators, and methods are covered in detail in Chapter 19, "The PANEL Procedure."

ODS Table Names

PROC TSCSREG assigns a name to each table it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Table 28.2 ODS Tables Produced in PROC TSCSREG

ODS Table Name	Description	Option
ODS Tables Created by the MODEL Statement		
ModelDescription	Model description	default
FitStatistics	Fit statistics	default
FixedEffectsTest	F test for no fixed effects	FIXONE,
		FIXTWO,
		RANONE,
		RANTWO
ParameterEstimates	Parameter estimates	default
CovB	Covariance of parameter estimates	COVB

Table 28.2 continued

ODS Table Name	Description	Option
CorrB	Correlations of parameter estimates	CORRB
VarianceComponents	Variance component estimates	FULLER,
		DASILVA,
		M=, RANONE,
		RANTWO
RandomEffectsTest	Hausman test for random effects	FULLER,
		DASILVA,
		M=, RANONE,
	First order autoregressive parameter	PARKS, RHO
AR1Estimates	estimates	PARKS
EstimatedPhiMatrix	Estimated phi matrix	DASILVA, M=
EstimatedAutocovariances	Estimates of autocovariances	
ODS Tables Created by the TEST Statement		
TestResults	Test results	

Examples: The TSCSREG Procedure

For examples of analysis of panel data, see Chapter 19, "The PANEL Procedure."

Acknowledgments: TSCSREG Procedure

The original TSCSREG procedure was developed by Douglas J. Drummond and A. Ronald Gallant, and contributed to the Version 5 SUGI Supplemental Library in 1979. The original code was changed substantially over the years. Additional new methods as well as other new features are currently included in the PANEL PROCEDURE. SAS Institute would like to thank Dr. Drummond and Dr. Gallant for their contribution of the original version of the TSCSREG procedure.

References: TSCSREG Procedure

Greene, W. H. (1990), Econometric Analysis, First Edition, New York: Macmillan Publishing Company.

Chapter 29

The UCM Procedure

Contents

Overview: UCM Procedure . 1742

Getting Started: UCM Procedure . 1743
A Seasonal Series with Linear Trend . 1743
Syntax: UCM Procedure . 1750
Functional Summary . 1751
PROC UCM Statement . 1753
AUTOREG Statement . 1757
BLOCKSEASON Statement . 1758
BY Statement . 1760
CYCLE Statement . 1760
DEPLAG Statement . 1762
ESTIMATE Statement . 1763
FORECAST Statement . 1765
ID Statement . 1767
IRREGULAR Statement . 1768
LEVEL Statement . 1771
MODEL Statement . 1772
NLOPTIONS Statement . 1772
OUTLIER Statement . 1773
RANDOMREG Statement . 1773
SEASON Statement . 1774
SLOPE Statement . 1777
SPLINEREG Statement . 1778
SPLINESEASON Statement . 1779
Details: UCM Procedure . 1781
An Introduction to Unobserved Component Models 1781
The UCMs as State Space Models . 1787
Outlier Detection . 1796
Missing Values . 1797
Parameter Estimation . 1797
Computational Issues . 1799
Displayed Output . 1800
Statistical Graphics . 1800
ODS Table Names . 1810
ODS Graph Names 1813
OUTFOR= Data Set 1817
OUTEST= Data Set 1818
Statistics of Fit 1819
Examples: UCM Procedure 1820
Example 29.1: The Airline Series Revisited 1820
Example 29.2: Variable Star Data 1826
Example 29.3: Modeling Long Seasonal Patterns 1829
Example 29.4: Modeling Time-Varying Regression Effects Using the RAN- DOMREG Statement 1833
Example 29.5: Trend Removal Using the Hodrick-Prescott Filter 1839
Example 29.6: Using Splines to Incorporate Nonlinear Effects 1841
Example 29.7: Detection of Level Shift 1846
Example 29.8: ARIMA Modeling (Experimental) 1849
References 1853

Overview: UCM Procedure

The UCM procedure analyzes and forecasts equally spaced univariate time series data by using an unobserved components model (UCM). The UCMs are also called structural models in the time series literature. A UCM decomposes the response series into components such as trend, seasonals, cycles, and the regression effects due to predictor series. The components in the model are supposed to capture the salient features of the series that are useful in explaining and predicting its behavior. Harvey (1989) is a good reference for time series modeling that uses the UCMs. Harvey calls the components in a UCM the "stylized facts" about the series under consideration. Traditionally, the ARIMA models and, to some limited extent, the exponential smoothing models have been the main tools in the analysis of this type of time series data. It is fair to say that the UCMs capture the versatility of the ARIMA models while possessing the interpretability of the smoothing models. A thorough discussion of the correspondence between the ARIMA models and the UCMs, and the relative merits of UCM and ARIMA modeling, is given in Harvey (1989). The UCMs are also very similar to another set of models, called the dynamic models, that are popular in the Bayesian time series literature (West and Harrison 1999). In SAS/ETS you can use PROC ARIMA for ARIMA modeling (see Chapter 7, "The ARIMA Procedure"), PROC ESM for exponential smoothing modeling (see Chapter 13, "The ESM Procedure"), and use the Time Series Forecasting System for a point-and-click interface to ARIMA and exponential smoothing modeling.

You can use the UCM procedure to fit a wide range of UCMs that can incorporate complex trend, seasonal, and cyclical patterns and can include multiple predictors. It provides a variety of diagnostic tools to assess the fitted model and to suggest the possible extensions or modifications. The components in the UCM provide a succinct description of the underlying mechanism governing the series. You can print, save, or plot the estimates of these component series. Along with the standard forecast and residual plots, the study of these component plots is an essential part of time series
analysis using the UCMs. Once a suitable UCM is found for the series under consideration, it can be used for a variety of purposes. For example, it can be used for the following:

- forecasting the values of the response series and the component series in the model
- obtaining a model-based seasonal decomposition of the series
- obtaining a "denoised" version and interpolating the missing values of the response series in the historical period
- obtaining the full sample or "smoothed" estimates of the component series in the model

Getting Started: UCM Procedure

The analysis of time series using the UCMs involves recognizing the salient features present in the series and modeling them suitably. The UCM procedure provides a variety of models for estimating and forecasting the commonly observed features in time series. These models are discussed in detail later in the section "An Introduction to Unobserved Component Models" on page 1781. First the procedure is illustrated using an example.

A Seasonal Series with Linear Trend

The airline passenger series, given as Series G in Box and Jenkins (1976), is often used in time series literature as an example of a nonstationary seasonal time series. This series is a monthly series consisting of the number of airline passengers who traveled during the years 1949 to 1960 . Its main features are a steady rise in the number of passengers from year to year and the seasonal variation in the numbers during any given year. It also exhibits an increase in variability around the trend. A \log transformation is used to stabilize this variability. The following DATA step prepares the log-transformed passenger series analyzed in this example:

```
data seriesG;
    set sashelp.air;
    logair = log( air );
run;
```

The following statements produce a time series plot of the series by using the TIMESERIES procedure (see Chapter 27, "The TIMESERIES Procedure"). The trend and seasonal features of the series are apparent in the plot in Figure 29.1.

```
proc timeseries data=seriesG plot=series;
    id date interval=month;
    var logair;
run;
```

Figure 29.1 Series Plot of Log-Transformed Airline Passenger Series

In this example this series is modeled using an unobserved component model called the basic structural model (BSM). The BSM models a time series as a sum of three stochastic components: a trend component μ_{t}, a seasonal component γ_{t}, and random error ϵ_{t}. Formally, a BSM for a response series y_{t} can be described as

$$
y_{t}=\mu_{t}+\gamma_{t}+\epsilon_{t}
$$

Each of the stochastic components in the model is modeled separately. The random error ϵ_{t}, also called the irregular component, is modeled simply as a sequence of independent, identically distributed (i.i.d.) zero-mean Gaussian random variables. The trend and the seasonal components can be modeled in a few different ways. The model for trend used here is called a locally linear time trend. This trend model can be written as follows:

$$
\begin{aligned}
\mu_{t} & =\mu_{t-1}+\beta_{t-1}+\eta_{t}, & & \eta_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\eta}^{2}\right) \\
\beta_{t} & =\beta_{t-1}+\xi_{t}, & & \xi_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\xi}^{2}\right)
\end{aligned}
$$

These equations specify a trend where the level μ_{t} as well as the slope β_{t} is allowed to vary over time. This variation in slope and level is governed by the variances of the disturbance terms η_{t} and ξ_{t} in their respective equations. Some interesting special cases of this model arise when you
manipulate these disturbance variances. For example, if the variance of ξ_{t} is zero, the slope will be constant (equal to β_{0}); if the variance of η_{t} is also zero, μ_{t} will be a deterministic trend given by the line $\mu_{0}+\beta_{0} t$. The seasonal model used in this example is called a trigonometric seasonal. The stochastic equations governing a trigonometric seasonal are explained later (see the section "Modeling Seasons" on page 1783). However, it is interesting to note here that this seasonal model reduces to the familiar regression with deterministic seasonal dummies if the variance of the disturbance terms in its equations is equal to zero. The following statements specify a BSM with these three components:

```
proc ucm data=seriesG;
    id date interval=month;
    model logair;
    irregular;
    level;
    slope;
    season length=12 type=trig print=smooth;
    estimate;
    forecast lead=24 print=decomp;
run;
```

The PROC UCM statement signifies the start of the UCM procedure, and the input data set, seriesG, containing the dependent series is specified there. The optional ID statement is used to specify a date, datetime, or time identification variable, date in this example, to label the observations. The INTERVAL=MONTH option in the ID statement indicates that the measurements were collected on a monthly basis. The model specification begins with the MODEL statement, where the response series is specified (logair in this case). After this the components in the model are specified using separate statements that enable you to control their individual properties. The irregular component ϵ_{t} is specified using the IRREGULAR statement and the trend component μ_{t} is specified using the LEVEL and SLOPE statements. The seasonal component γ_{t} is specified using the SEASON statement. The specifics of the seasonal characteristics such as the season length, its stochastic evolution properties, etc., are specified using the options in the SEASON statement. The seasonal component used in this example has a season length of 12 , corresponding to the monthly seasonality, and is of the trigonometric type. Different types of seasonals are explained later (see the section "Modeling Seasons" on page 1783).

The parameters of this model are the variances of the disturbance terms in the evolution equations of μ_{t}, β_{t}, and γ_{t} and the variance of the irregular component ϵ_{t}. These parameters are estimated by maximizing the likelihood of the data. The ESTIMATE statement options can be used to specify the span of data used in parameter estimation and to display and save the results of the estimation step and the model diagnostics. You can use the estimated model to obtain the forecasts of the series as well as the components. The options in the individual component statements can be used to display the component forecasts-for example, PRINT=SMOOTH option in the SEASON statement requests the displaying of smoothed forecasts of the seasonal component γ_{t}. The series forecasts and forecasts of the sum of components can be requested using the FORECAST statement. The option PRINT=DECOMP in the FORECAST statement requests the printing of the smoothed trend μ_{t} and the trend plus seasonal component $\left(\mu_{t}+\gamma_{t}\right)$.

The parameter estimates for this model are displayed in Figure 29.2.

Figure 29.2 BSM for the Logair Series

The UCM Procedure					
Final Estimates of the Free Parameters					
			Approx		Approx
Component	Parameter	Estimate	Std Error	t Value	$\operatorname{Pr}>\|t\|$
Irregular	Error Variance	0.00023436	0.0001079	2.17	0.0298
Level	Error Variance	0.00029828	0.0001057	2.82	0.0048
Slope	Error Variance	$8.47911 \mathrm{E}-13$	$6.2271 \mathrm{E}-10$	0.00	0.9989
Season	Error Variance	0.00000356	$1.32347 \mathrm{E}-6$	2.69	0.0072

The estimates suggest that except for the slope component, the disturbance variances of all the components are significant-that is, all these components are stochastic. The slope component, however, appears to be deterministic because its error variance is quite insignificant. It might then be useful to check if the slope component can be dropped from the model-that is, if $\beta_{0}=0$. This can be checked by examining the significance analysis table of the components given in Figure 29.3.

Figure 29.3 Component Significance Analysis for the Logair Series

Significance Analysis of Components (Based on the Final State)			
Component	DF	Chi-Square	Pr > ChiSq
Irregular	1	0.08	0.7747
Level	1	117867	<. 0001
Slope	1	43.78	<. 0001
Season	11	507.75	<. 0001

This table provides the significance of the components in the model at the end of the estimation span. If a component is deterministic, this analysis is equivalent to checking whether the corresponding regression effect is significant. However, if a component is stochastic, then this analysis pertains only to the portion of the series near the end of the estimation span. In this example the slope appears quite significant and should be retained in the model, possibly as a deterministic component. Note that, on the basis of this table, the irregular component's contribution appears insignificant toward the end of the estimation span; however, since it is a stochastic component, it cannot be dropped from the model on the basis of this analysis alone. The slope component can be made deterministic by holding the value of its error variance fixed at zero. This is done by modifying the SLOPE statement as follows:

```
slope variance=0 noest;
```

After a tentative model is fit, its adequacy can be checked by examining different goodness-of-fit measures and other diagnostic tests and plots that are based on the model residuals. Once the model appears satisfactory, it can be used for forecasting. An interesting feature of the UCM procedure is that, apart from the series forecasts, you can request the forecasts of the individual components
in the model. The plots of component forecasts can be useful in understanding their contributions to the series. In order to obtain the plots, you need to turn ODS Graphics on by using the oDS GRAPhICS ON; statement. The following statements illustrate some of these features:

```
ods graphics on;
proc ucm data=seriesG;
    id date interval = month;
    model logair;
    irregular;
    level plot=smooth;
    slope variance=0 noest;
    season length=12 type=trig
        plot=smooth;
    estimate;
    forecast lead=24 plot=decomp;
run;
```

The table given in Figure 29.4 shows the goodness-of-fit statistics that are computed by using the one-step-ahead prediction errors (see the section "Statistics of Fit" on page 1819). These measures indicate a good agreement between the model and the data. Additional diagnostic measures are also printed by default but are not shown here.

Figure 29.4 Fit Statistics for the Logair Series

The UCM Procedure	
Fit Statistics Based on Residuals	
Mean Squared Error	0.00147
Root Mean Squared Error	0.03830
Mean Absolute Percentage Error	0.54132
Maximum Percent Error	2.19097
R-Square	0.99061
Adjusted R-Square	0.99046
Random Walk R-Square	0.87288
Amemiya's Adjusted R-Square	0.99017
Number of non-missing residuals used for	
computing the fit statistics = 131	

The first plot, shown in Figure 29.5, is produced by the PLOT=SMOOTH option in the LEVEL statement, it shows the smoothed level of the series.

Figure 29.5 Smoothed Trend in the Logair Series

The second plot (Figure 29.6), produced by the PLOT=SMOOTH option in the SEASON statement, shows the smoothed seasonal component by itself.

Figure 29.6 Smoothed Seasonal in the Logair Series

The plot of the sum of the trend and seasonal component, produced by the PLOT=DECOMP option in the FORECAST statement, is shown in Figure 29.7. You can see that, at least visually, the model seems to fit the data well. In all these decomposition plots the component estimates are extrapolated for two years in the future based on the LEAD $=24$ option specified in the FORECAST statement.

Figure 29.7 Smoothed Trend plus Seasonal in the Logair Series

Syntax: UCM Procedure

The UCM procedure uses the following statements:

```
PROC UCM < options> ;
    AUTOREG < options> ;
    BLOCKSEASON options;
    BY variables;
    CYCLE < options> ;
    DEPLAG options;
    ESTIMATE < options> ;
    FORECAST < options> ;
    ID variable options;
    IRREGULAR < options> ;
LEVEL < options > ;
MODEL dependent variable <= regressors> ;
NLOPTIONS options;
OUTLIER options;
RANDOMREG regressors </ options> ;
SEASON options;
SLOPE < options> ;
SPLINEREG regressor <options> ;
SPLINESEASON options;
```

The PROC UCM and MODEL statements are required. In addition, the model must contain at least one component with nonzero disturbance variance.

Functional Summary

The statements and options controlling the UCM procedure are summarized in the following table. Most commonly needed scenarios are listed; see the individual statements for additional details. You can use the PRINT= and PLOT= options in the individual component statements for printing and plotting the corresponding component forecasts.

Table 29.1 Functional Summary

Description	Statement	Option
Data Set Options specify the input data set write parameter estimates to an output data set write series and component forecasts to an output data set	PROC UCM ESTIMATE FORECAST	DATA= OUTEST= OUTFOR=
Model Specification specify the dependent variable and simple predictors specify predictors with time-varying coefficients specify a nonlinear predictor	MODEL RANDOMREG SPLINEREG	

Table 29.1 continued

Description	Statement	Option
specify the irregular component specify the random walk trend specify the locally linear trend specify a cycle component specify a dummy seasonal component specify a trigonometric seasonal component drop some harmonics from a trigonometric seasonal component	IRREGULAR	SEASON
specify a list of harmonics to keep in a trigono-	SEVEL	SEASON

Table 29.1 continued

Description	Statement	Option
get a plot of p-values for the portmanteau white noise test get a time series plot of residuals with overlaid	ESTIMATE	PLOT $=$ WN
LOESS smoother		

Series Decomposition and Forecasting

specify the number of periods to forecast in the future
specify the significance level of the forecast confidence interval
request printing of smoothed series decompo- FORECAST sition
request printing of one-step-ahead and multi step-ahead forecasts
request plotting of smoothed series decomposition
request plotting of one-step-ahead and multi FORECAST step-ahead forecasts

BY Groups

specify BY group processing BY

Global Printing and Plotting Options

turn off all the printing for the procedure
turn on all the printing options for the proce
PROC UCM
NOPRINT dure
turn off all the plotting for the procedure
turn on all the plotting options for the proce-
FORECAST
LEAD=

FORECAST ALPHA=

FORECAST
PRINT=FORECASTS

FORECAST
PLOT=DECOMP

PLOT=FORECASTS
dure
turn on a variety of plotting options for the pro- PROC UCM
PRINTALL

PROC UCM
PLOTS=NONE
PROC UCM
PLOTS=ALL
cedure

ID

specify a variable that provides the time index ID
for the series values

PROC UCM Statement

PROC UCM < options > ;

The PROC UCM statement is required. The following options can be used in the PROC UCM statement:

DATA=SAS-data-set

specifies the name of the SAS data set containing the time series. If the DATA= option is not specified in the PROC UCM statement, the most recently created SAS data set is used.

NOPRINT

turns off all the printing for the procedure. The subsequent print options in the procedure are ignored.

PLOTS< (global-plot-options) > < = plot-request < (options) >>
PLOTS< (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) \gg) > controls the plots produced with ODS Graphics. When you specify only one plot request, you can omit the parentheses around the plot request.
Here are some examples:

```
plots=none
plots=all
plots=residuals(acf loess)
plots(noclm)=(smooth(decomp) residual(panel loess))
```

You must enable ODS Graphics before requesting plots, as shown in the following example. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide).

```
ods graphics on;
proc ucm;
    model y = x;
    irregular;
    level;
run;
proc ucm plots=all;
    model y = x;
    irregular;
    level;
run;
```

The first PROC UCM step does not specify the PLOTS= option, so the default plot that displays the series forecasts in the forecast region is produced. The PLOTS=ALL option in the second PROC UCM step produces all the plots that are appropriate for the specified model.

In addition to the PLOTS= option in the PROC UCM statement, you can request plots by using the PLOT= option in other statements of the UCM procedure. This way of requesting plots provides finer control over the plot production. If you have enabled ODS Graphics but do not specify any specific plot request, then PROC UCM produces the plot of series forecasts in the forecast horizon by default.

Global Plot Options:

The global-plot-options apply to all relevant plots generated by the UCM procedure. The following global-plot-option is supported:

NOCLM

suppresses the confidence limits in all the component and forecast plots.

Specific Plot Options:

The following list describes the specific plots and their options:

ALL

produces all plots appropriate for the particular analysis.
NONE
suppresses all plots.
FILTER (< filter-plot-options >)
produces time series plots of the filtered component estimates. The following filter-plot-options are available:

ALL

produces all the filtered component estimate plots appropriate for the particular analysis.

LEVEL

produces a time series plot of the filtered level component estimate, provided the model contains the level component.

SLOPE

produces a time series plot of the filtered slope component estimate, provided the model contains the slope component.

CYCLE

produces time series plots of the filtered cycle component estimates for all cycle components in the model, if there are any.

SEASON

produces time series plots of the filtered season component estimates for all seasonal components in the model, if there are any.

DECOMP

produces time series plots of the filtered estimates of the series decomposition.

RESIDUAL (< residual-plot-options >)

produces the residuals plots. The following residual-plot-options are available:

ALL

produces all the residual diagnostics plots appropriate for the particular analysis.

ACF

produces the autocorrelation plot of residuals.

CUSUM

produces the plot of cumulative residuals against time.

CUSUMSQ

produces the plot of cumulative squared residuals against time.

HISTOGRAM

produces the histogram of residuals.

LOESS

produces a scatter plot of residuals against time, which has an overlaid loess-fit.
PACF
produces the partial-autocorrelation plot of residuals.
PANEL
produces a summary panel of the residual diagnostics consisting of the following:

- histogram of residuals
- normal quantile plot of residuals
- the residual-autocorrelation-plot
- the residual-partial-autocorrelation-plot

QQ produces a normal quantile plot of residuals.

RESIDUAL

produces a needle plot of residuals against time.
WN
produces the plot of Ljung-Box white-noise test p-values at different lags (in log scale).

SMOOTH (< smooth-plot-options >)

produces time series plots of the smoothed component estimates. The following smooth-plot-options are available:

ALL
produces all the smoothed component estimate plots appropriate for the particular analysis.

LEVEL

produces time series plot of the smoothed level component estimate, provided the model contains the level component.

SLOPE

produces time series plot of the smoothed slope component estimate, provided the model contains the slope component.

CYCLE

produces time series plots of the smoothed cycle component estimates for all cycle components in the model, if there are any.

SEASON

produces time series plots of the smoothed season component estimates for all season components in the model, if there are any.

DECOMP

produces time series plots of the smoothed estimates of the series decomposition.

PRINTALL

turns on all the printing options for the procedure. The subsequent NOPRINT options in the procedure are ignored.

AUTOREG Statement

```
AUTOREG <options> ;
```

The AUTOREG statement specifies an autoregressive component in the model. An autoregressive component is a special case of cycle that corresponds to the frequency of zero or π. It is modeled separately for easier interpretation. A stochastic equation for an autoregressive component r_{t} can be written as follows:

$$
r_{t}=\rho r_{t-1}+v_{t}, \quad v_{t} \sim \text { i.i.d. } \quad N\left(0, \sigma_{v}^{2}\right)
$$

The damping factor ρ can take any value in the interval ($-1,1$), including -1 but excluding 1. If $\rho=$ 1 , the autoregressive component cannot be distinguished from the random walk level component. If $\rho=-1$, the autoregressive component corresponds to a seasonal component with a season length of 2 , or a nonstationary cycle with period 2 . If $|\rho|<1$, then the autoregressive component is stationary. The following example illustrates the AUTOREG statement. This statement includes an autoregressive component in the model. The damping factor ρ and the disturbance variance σ_{v}^{2} are estimated from the data.
autoreg;

NOEST=RHO

NOEST=VARIANCE

NOEST=(RHO VARIANCE)

fixes the values of ρ and σ_{v}^{2} to those specified in the RHO $=$ and VARIANCE $=$ options.

PLOT=FILTER

PLOT=SMOOTH
PLOT $=($ < FILTER > < SMOOTH >)
requests plotting of the filtered or smoothed estimate of the autoreg component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)

requests printing of the filtered or smoothed estimate of the autoreg component.

RHO=value

specifies an initial value for the damping factor ρ during the parameter estimation process. The value of ρ must be in the interval $(-1,1)$, including -1 but excluding 1 .

VARIANCE=value

specifies an initial value for the disturbance variance σ_{v}^{2} during the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

BLOCKSEASON Statement

```
BLOCKSEASON NBLOCKS = integer BLOCKSIZE = integer <options> ;
```

The BLOCKSEASON or BLOCKSEASONAL statement is used to specify a seasonal component γ_{t} that has a special block structure. The seasonal γ_{t} is called a block seasonal of block size m and number of blocks k if its season length, s, can be factored as $s=m * k$ and its seasonal effects have a block form - that is, the first m seasonal effects are all equal to some number τ_{1}, the next m effects are all equal to some number τ_{2}, and so on.

This type of seasonal structure can be appropriate in some cases; for example, consider a series that is recorded on an hourly basis. Further assume that, in this particular case, the hour-of-the-day effect and the day-of-the-week effect are additive. In this situation the hour-of-the-week seasonality, having a season length of 168 , can be modeled as a sum of two components. The hour-of-the-day effect is modeled using a simple seasonal of season length 24 , while the day-of-the-week is modeled as a block seasonal component that has the days of the week as blocks. This day-of-the-week block seasonal component has seven blocks, each of size 24.

A block seasonal specification requires, at the minimum, the block size m and the number of blocks in the seasonal k. These are specified using the BLOCKSIZE $=$ and NBLOCKS $=$ option, respectively. In addition, you might need to specify the position of the first observation of the series by using the OFFSET= option if it is not at the beginning of one of the blocks. In the example just considered, this corresponds to a situation where the first series measurement is not at the start of the day. Suppose that the first measurement of the series corresponds to the hour between 6:00 and 7:00 a.m., which is the seventh hour within that day or at the seventh position within that block. This is specified as OFFSET=7.

The other options in this statement are very similar to the options in the SEASON statement; for example, a block seasonal can also be of one of the two types, DUMMY and TRIG. There can be
more than one block seasonal component in the model, each specified using a separate BLOCKSEASON statement. No two block seasonals in the model can have the same NBLOCKS= and BLOCKSIZE= specifications. The following example illustrates the use of the BLOCKSEASON statement to specify the additive, hour-of-the-week seasonal model:

```
season length=24 type=trig;
blockseason nblocks=7 blocksize=24;
```


BLOCKSIZE=integer

specifies the block size, m. This is a required option in this statement. The block size can be any integer larger than or equal to two. Typical examples of block sizes are 24, corresponding to the hours of the day when a day is being used as a block in hourly data, or 60, corresponding to the minutes in an hour when an hour is being used as a block in data recorded by minutes, etc.

NBLOCKS=integer

specifies the number of blocks, k. This is a required option in this statement. The number of blocks can be any integer greater than or equal to two.

NOEST

specifies the value of the disturbance variance parameter to the value specified in the VARIANCE $=$ option.

OFFSET=integer

specifies the position of the first measurement within the block, if the first measurement is not at the start of a block. The OFFSET= value must be between one and the block size. The default value is one. The first measurement refers to the start of the estimation span and the forecast span. If these spans differ, their starting measurements must be separated by an integer multiple of the block size.

PLOT=FILTER

PLOT=SMOOTH

PLOT=F_ANNUAL

PLOT=S_ANNUAL

PLOT=(< plot request > . . < plot request >)

requests plots of the season component. When you specify only one plot request, you can omit the parentheses around the plot request. You can use the FILTER and SMOOTH options to plot the filtered and smoothed estimates of the season component γ_{t}. You can use the F_ANNUAL and S_ANNUAL options to get the plots of "annual" variation in the filtered and smoothed estimates of γ_{t}. The annual plots are useful to see the change in the contribution of a particular month over the span of years. Here "month" and "year" are generic terms that change appropriately with the interval type being used to label the observations and the season length. For example, for monthly data with a season length of 12 , the usual meaning applies, while for daily data with a season length of 7 , the days of the week serve as months and the weeks serve as years. The first period in each block is plotted over the years.

PRINT=FILTER

PRINT=SMOOTH
PRINT=(< FILTER > < SMOOTH >)
requests the printing of the filtered or smoothed estimate of the block seasonal component γ_{t}.
TYPE=DUMMY | TRIG
specifies the type of the block seasonal component. The default type is DUMMY.

VARIANCE=value

specifies an initial value for the disturbance variance, σ_{ω}^{2}, in the γ_{t} equation at the start of the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

BY Statement

BY variables ;

A BY statement can be used in the UCM procedure to process a data set in groups of observations defined by the BY variables. The model specified using the MODEL and other component statements is applied to all the groups defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. The variables are one or more variables in the input data set.

CYCLE Statement

CYCLE < options > ;

The CYCLE statement is used to specify a cycle component, ψ_{t}, in the model. The stochastic equation governing a cycle component of period p and damping factor ρ is as follows:

$$
\left[\begin{array}{c}
\psi_{t} \\
\psi_{t}^{*}
\end{array}\right]=\rho\left[\begin{array}{cc}
\cos \lambda & \sin \lambda \\
-\sin \lambda & \cos \lambda
\end{array}\right]\left[\begin{array}{l}
\psi_{t-1} \\
\psi_{t-1}^{*}
\end{array}\right]+\left[\begin{array}{c}
v_{t} \\
v_{t}^{*}
\end{array}\right]
$$

where ν_{t} and ν_{t}^{*} are independent, zero-mean, Gaussian disturbances with variance σ_{v}^{2} and $\lambda=$ $2 * \pi / p$ is the angular frequency of the cycle. Any p strictly greater than two is an admissible value for the period, and the damping factor ρ can be any value in the interval $(0,1)$, including one but excluding zero. The cycles with frequency zero and π, which correspond to the periods equal to infinity and two, respectively, can be specified using the AUTOREG statement. The values of ρ less than one give rise to a stationary cycle, while $\rho=1$ gives rise to a nonstationary cycle. As a default, values of ρ, p, and σ_{v}^{2} are estimated from the data. However, if necessary, you can fix the values of some or all of these parameters.

There can be multiple cycles in a model, each specified using a separate CYCLE statement. The examples that follow illustrate the use of the CYCLE statement.

The following statements request including two cycles in the model. The parameters of each of these cycles are estimated from the data.

```
cycle;
cycle;
```

The following statement requests inclusion of a nonstationary cycle in the model. The cycle period p and the disturbance variance σ_{v}^{2} are estimated from the data.

```
cycle rho=1 noest=rho;
```

In the following statement a nonstationary cycle with a fixed period of 12 is specified. Moreover, a starting value is supplied for σ_{v}^{2}.

```
cycle period=12 rho=1 variance=4 noest=(rho period);
```


NOEST=PERIOD

NOEST=RHO

NOEST=VARIANCE

```
NOEST=( < RHO > < PERIOD > < VARIANCE > )
```

fixes the values of the component parameters to those specified in the $\mathrm{RHO}=, \mathrm{PERIOD}=$, and VARIANCE $=$ options. This option enables you to fix any combination of parameter values.

PERIOD=value

specifies an initial value for the cycle period during the parameter estimation process. Period value must be strictly greater than 2 .

PLOT=FILTER

PLOT=SMOOTH

PLOT=(< FILTER > < SMOOTH >)

requests plotting of the filtered or smoothed estimate of the cycle component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)

requests the printing of a filtered or smoothed estimate of the cycle component ψ_{t}.

RHO=value

specifies an initial value for the damping factor in this component during the parameter estimation process. Any value in the interval $(0,1)$, including one but excluding zero, is an acceptable initial value for the damping factor.

VARIANCE=value

specifies an initial value for the disturbance variance parameter, σ_{v}^{2}, to be used during the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

DEPLAG Statement

$$
\text { DEPLAG LAGS }=\text { order }<\text { PHI }=\text { value } \ldots><\text { NOEST }>\text {; }
$$

The DEPLAG statement is used to specify the lags of the dependent variable to be included as predictors in the model. The following examples illustrate the use of DEPLAG statement.

If the dependent series is denoted by y_{t}, the following statement specifies the inclusion of $\phi_{1} y_{t-1}+$ $\phi_{2} y_{t-2}$ in the model. The parameters ϕ_{1} and ϕ_{2} are estimated from the data.

```
deplag lags=2;
```

The following statement requests including $\phi_{1} y_{t-1}+\phi_{2} y_{t-4}-\phi_{1} \phi_{2} y_{t-5}$ in the model. The values of ϕ_{1} and ϕ_{2} are fixed at 0.8 and -1.2 .

```
deplag lags=(1)(4) phi=0.8 -1.2 noest;
```

The dependent lag parameters are not constrained to lie in any particular region. In particular, this implies that a UCM that contains only an irregular component and dependent lags, resulting in a traditional autoregressive model, is not constrained to be a stationary model. In the DEPLAG statement, if an initial value is supplied for any one of the parameters, the initial values must also be supplied for all other parameters.

LAGS=order

LAGS $=(\operatorname{lag}, \ldots$, lag $) \ldots(\operatorname{lag}, \ldots, \operatorname{lag})$
is a required option in this statement. LAGS $=\left(I_{1}, I_{2}, \ldots, I_{k}\right)$ defines a model with specified lags of the dependent variable included as predictors. LAGS=order is equivalent to LAGS=(1, $2, \ldots$, order).

A concatenation of parenthesized lists specifies a factored model. For example, LAGS $=(1)(12)$ specifies that the lag values, 1,12 , and 13 , corresponding to the following polynomial in the backward shift operator, be included in the model

$$
\left(1-\phi_{1,1} B\right)\left(1-\phi_{2,1} B^{12}\right)
$$

Note that, in this case, the coefficient of the thirteenth lag is constrained to be the product of the coefficients of the first and twelfth lags.

NOEST

fixes the values of the parameters to those specified in PHI= option.

PHI=value . . .

lists starting values for the coefficients of the lagged dependent variable. The order of the values listed corresponds with the order of the lags specified in the LAGS= option.

ESTIMATE Statement

ESTIMATE < options > ;
The ESTIMATE statement is an optional statement used to control the overall model-fitting environment. Using this statement, you can control the span of observations used to fit the model by using the SKIPFIRST= and BACK= options. This can be useful in model diagnostics. You can request a variety of goodness-of-fit statistics and other model diagnostic information including different residual diagnostic plots. Note that the ESTIMATE statement is not used to control the nonlinear optimization process itself. That is done using the NLOPTIONS statement, where you can control the number of iterations, choose between the different optimization techniques, and so on. You can save the estimated parameters and other related information in a data set by using the OUTEST= option. You can request the optimization of the profile likelihood, the likelihood obtained by concentrating out a disturbance variance, for parameter estimation by using the PROFILE option. The following example illustrates the use of this statement:

```
estimate skipfirst=12 back=24;
```

This statement requests that the initial 12 measurements and the last 24 measurements be excluded during the model-fitting process. The actual observation span used to fit the model is decided as follows: Suppose that n_{0} and n_{1} are the observation numbers of the first and the last nonmissing values of the response variable, respectively. As a result of SKIPFIRST=12 and BACK=24, the measurements between observation numbers $n_{0}+12$ and $n_{1}-24$ form the estimation span. Of course, the model fitting might not take place if there are insufficient data in the resulting span. The model fitting does not take place if there are regressors in the model that have missing values in the estimation span.

BACK=integer

SKIPLAST=integer

indicates that some ending part of the data needs to be ignored during the parameter estimation. This can be useful when you want to study the forecasting performance of a model on the observed data. BACK=10 results in skipping the last 10 measurements of the response series during the parameter estimation. The default is $\mathrm{BACK}=0$.

EXTRADIFFUSE= k

enables continuation of the diffuse filtering iterations for k additional iterations beyond the first instance where the initialization of the diffuse state would have otherwise taken place. If the specified k is larger than the sample size, the diffuse iterations continue until the end of the sample. Note that one-step-ahead residuals are produced only after the diffuse state is initialized. Delaying the initialization leads to a reduction in the number of one-step-ahead residuals available for computing the residual diagnostic measures. This option is useful when you want to ignore the first few one-step-ahead residuals that often have large variance.

NOPROFILE

requests that the usual likelihood be optimized for parameter estimation. For more information, see the section "Parameter Estimation by Profile Likelihood Optimization" on page 1798.

OUTEST=SAS-data-set
specifies an output data set for the estimated parameters.
In the ESTIMATE statement, the PLOT= option is used to obtain different residual diagnostic plots. The different possibilities are as follows:

PLOT=ACF
PLOT=MODEL
PLOT=LOESS
PLOT=HISTOGRAM
PLOT=PACF
PLOT=PANEL
PLOT=QQ
PLOT=RESIDUAL
PLOT=WN
PLOT $=($ < plot request > . . $<$ plot request >)
requests different residual diagnostic plots. The different options are as follows:

ACF

produces the residual-autocorrelation plot.

CUSUM

produces the plot of cumulative residuals against time.

CUSUMSQ

produces the plot of cumulative squared residuals against time.

MODEL

produces the plot of one-step-ahead forecasts in the estimation span.

HISTOGRAM

produces the histogram of residuals.

LOESS

produces a scatter plot of residuals against time, which has an overlaid loess-fit.

PACF

produces the residual-partial-autocorrelation plot.

PANEL

produces a summary panel of the residual diagnostics consisting of

- histogram of residuals
- normal quantile plot of residuals
- the residual-autocorrelation-plot
- the residual-partial-autocorrelation-plot

QQ produces a normal quantile plot of residuals.

RESIDUAL

produces a needle plot of residuals against time.

WN

produces a plot of p-values, in log-scale, at different lags for the Ljung-Box portmanteau white noise test statistics.

PRINT=NONE

suppresses all the printed output related to the model fitting, such as the parameter estimates, the goodness-of-fit statistics, and so on.

PROFILE

requests that the profile likelihood, obtained by concentrating out one of the disturbance variances from the likelihood, be optimized for parameter estimation. By default, the profile likelihood is not optimized if any of the disturbance variance parameters is held fixed to a nonzero value. For more information see the section "Parameter Estimation by Profile Likelihood Optimization" on page 1798.

SKIPFIRST=integer

indicates that some early part of the data needs to be ignored during the parameter estimation. This can be useful if there is a reason to believe that the model being estimated is not appropriate for this portion of the data. SKIPFIRST=10 results in skipping the first 10 measurements of the response series during the parameter estimation. The default is SKIPFIRST=0.

FORECAST Statement

```
FORECAST < options> ;
```

The FORECAST statement is an optional statement that is used to specify the overall forecasting environment for the specified model. It can be used to specify the span of observations, the historical period, to use to compute the forecasts of the future observations. This is done using the SKIPFIRST $=$ and BACK= options. The number of periods to forecast beyond the historical period, and the significance level of the forecast confidence interval, is specified using the LEAD= and ALPHA= options. You can request one-step-ahead series and component forecasts by using the PRINT= option. You can save the series forecasts, and the model-based decomposition of the series, in a data set by using the OUTFOR= option. The following example illustrates the use of this statement:

```
forecast skipfirst=12 back=24 lead=30;
```

This statement requests that the initial 12 and the last 24 response values be excluded during the forecast computations. The forecast horizon, specified using the LEAD $=$ option, is 30 periods; that is, multistep forecasting begins at the end of the historical period and continues for 30 periods. The actual observation span used to compute the multistep forecasting is decided as follows: Suppose that n_{0} and n_{1} are the observation numbers of the first and the last nonmissing values of the response variable, respectively. As a result of SKIPFIRST $=12$ and $\mathrm{BACK}=24$, the historical period, or the
forecast span, begins at $n_{0}+12$ and ends at $n_{1}-24$. Multistep forecasts are produced for the next 30 periods-that is, for the observation numbers $n_{1}-23$ to $n_{1}+6$. Of course, the forecast computations can fail if the model has regressor variables that have missing values in the forecast span. If the regressors contain missing values in the forecast horizon-that is, between the observations $n_{1}-23$ and $n_{1}+6$-the forecast horizon is reduced accordingly.

ALPHA=value

specifies the significance level of the forecast confidence intervals; for example, ALPHA $=0.05$, which is the default, results in a 95% confidence interval.

BACK=integer

SKIPLAST=integer

specifies the holdout sample for the evaluation of the forecasting performance of the model. For example, $\mathrm{BACK}=10$ results in treating the last 10 observed values of the response series as unobserved. A post-sample-prediction-analysis table is produced for comparing the predicted values with the actual values in the holdout period. The default is $\mathrm{BACK}=0$.

EXTRADIFFUSE=k

enables continuation of the diffuse filtering iterations for k additional iterations beyond the first instance where the initialization of the diffuse state would have otherwise taken place. If the specified k is larger than the sample size, the diffuse iterations continue until the end of the sample. Note that one-step-ahead forecasts are produced only after the diffuse state is initialized. Delaying the initialization leads to reduction in the number of one-step-ahead forecasts. This option is useful when you want to ignore the first few one-step-ahead forecasts that often have large variance.

LEAD=integer

specifies the number of periods to forecast beyond the historical period defined by the SKIPFIRST $=$ and $\mathrm{BACK}=$ options; for example, LEAD $=10$ results in the forecasting of 10 future values of the response series. The default is $L E A D=12$.

OUTFOR=SAS-data-set

specifies an output data set for the forecasts. The output data set contains the ID variable (if specified), the response and predictor series, the one-step-ahead and out-of-sample response series forecasts, the forecast confidence intervals, the smoothed values of the response series, and the smoothed forecasts produced as a result of the model-based decomposition of the series.

PLOT=DECOMP

PLOT=DECOMPVAR
PLOT=FDECOMP
PLOT=FDECOMPVAR
PLOT=FORECASTS
PLOT=TREND
PLOT $=($ < plot request $>\ldots$ < plot request >)
requests forecast and model decomposition plots. The FORECASTS option provides the plot of the series forecasts, the TREND and DECOMP options provide the plots of the smoothed trend and other decompositions, the DECOMPVAR option can be used to plot the variance of
these components, and the FDECOMP and FDECOMPVAR options provide the same plots for the filtered decomposition estimates and their variances.

```
PRINT=DECOMP
PRINT=FDECOMP
PRINT=FORECASTS
PRINT=NONE
PRINT=( < print request > . . < print request > )
```

controls the printing of the series forecasts and the printing of smoothed model decomposition estimates. By default, the series forecasts are printed only for the forecast horizon specified by the LEAD= option; that is, the one-step-ahead predicted values are not printed. You can request forecasts for the entire forecast span by specifying the PRINT=FORECASTS option. Using PRINT=DECOMP, you can get smoothed estimates of the following effects: trend, trend plus regression, trend plus regression plus cycle, and sum of all components except the irregular. If some of these effects are absent in the model, then they are ignored. Similarly you can get filtered estimates of these effects by using PRINT=FDECOMP. You can use PRINT=NONE to suppress the printing of all the forecast output.

SKIPFIRST=integer

indicates that some early part of the data needs to be ignored during the forecasting calculations. This can be useful if there is a reason to believe that the model being used for forecasting is not appropriate for this portion of the data. SKIPFIRST=10 results in skipping the first 10 measurements of the response series during the forecast calculations. The default is SKIPFIRST=0.

ID Statement

ID variable INTERVAL=value < ALIGN=value > ;
The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable's values are assumed to be SAS date, time, or datetime values. In addition, the ID statement specifies the frequency associated with the time series. The ID statement options also specify how the observations are aligned to form the time series. If the ID statement is specified, the INTERVAL= option must also be specified. If the ID statement is not specified, the observation number, with respect to the BY group, is used as the time ID. The values of the ID variable are extrapolated for the forecast observations based on the values of the INTERVAL= option.

ALIGN=value

controls the alignment of SAS dates used to identify output observations. The ALIGN= option has the following possible values: BEGINNING \| BEG \| B, MIDDLE \| MID \| M, and ENDING \mid END $\mid \mathrm{E}$. The default is BEGINNING. The ALIGN= option is used to align the ID variable with the beginning, middle, or end of the time ID interval specified by the INTERVAL= option.

INTERVAL=value

specifies the time interval between observations. This option is required in the ID statement.

INTERVAL=value is used in conjunction with the ID variable to check that the input data are in order and have no gaps. The INTERVAL= option is also used to extrapolate the ID values past the end of the input data. For a complete discussion of the intervals supported, please see Chapter 4, "Date Intervals, Formats, and Functions."

IRREGULAR Statement

IRREGULAR < options> ;

The IRREGULAR statement is used to include an irregular component in the model. There can be at most one IRREGULAR statement in the model specification. The irregular component corresponds to the overall random error, ϵ_{t}, in the model. By default the irregular component is modeled as white noise-that is, as a sequence of independent, identically distributed, zero-mean, Gaussian random variables. However, as an experimental feature in this release of the UCM procedure, you can also model it as an autoregressive moving-average (ARMA) process. The options for specifying an ARMA model for the irregular component are given in a separate subsection: "ARMA Specification (Experimental)" on page 1769.

The options in this statement enable you to specify the value of σ_{ϵ}^{2} and to output the forecasts of ϵ_{t}. As a default, σ_{ϵ}^{2} is estimated using the data. Two examples of the IRREGULAR statement are given next. In the first example the statement is in its simplest form, resulting in the inclusion of an irregular component that is white noise with unknown variance:

```
irregular;
```

The following statement provides a starting value for σ_{ϵ}^{2}, to be used in the nonlinear parameter estimation process. It also requests the printing of smoothed predictions of ϵ_{t}. The smoothed irregulars are useful in model diagnostics.

```
irregular variance=4 print=smooth;
```


NOEST

fixes the value of σ_{ϵ}^{2} to the value specified in the VARIANCE $=$ option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=(< FILTER > < SMOOTH >)

requests plotting of the filtered or smoothed estimate of the irregular component.

PRINT=FILTER

PRINT=SMOOTH
PRINT=(< FILTER > < SMOOTH >) requests printing of the filtered or smoothed estimate of the irregular component.

VARIANCE=value

specifies an initial value for σ_{ϵ}^{2} during the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

ARMA Specification (Experimental)

This section details the options for specifying an ARMA model for the irregular component. The specification of ARMA models requires some notation, which is explained first.

Let B denote the backshift operator-that is, for any sequence $\epsilon_{t}, B \epsilon_{t}=\epsilon_{t-1}$. The higher powers of B represent larger shifts (for example, $B^{3} \epsilon_{t}=\epsilon_{t-3}$). A random sequence ϵ_{t} follows a zeromean ARMA $(p, q) \times(P, Q)_{s}$ model with nonseasonal autoregressive order p, seasonal autoregressive order P, nonseasonal moving-average order q, and seasonal moving-average order Q, if it satisfies the following difference equation specified in terms of the polynomials in the backshift operator:

$$
\phi(B) \Phi\left(B^{s}\right) \epsilon_{t}=\theta(B) \Theta\left(B^{s}\right) a_{t}
$$

where a_{t} is a white noise sequence and s is the season length. The polynomials ϕ, Φ, θ, and Θ are of orders p, P, q, and Q, respectively, which can be any nonnegative integers. The season length s must be a positive integer. For example, ϵ_{t} satisfies an $\operatorname{ARMA}(1,1)$ model-that is, $p=1, q=$ $1, P=0$, and $Q=0$-if

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+a_{t}-\theta_{1} a_{t-1}
$$

for some coefficients ϕ_{1} and θ_{1} and a white noise sequence a_{t}. Similarly ϵ_{t} satisfies an $\operatorname{ARMA}(1,1) \times(1,1)_{12}$ model if

$$
\epsilon_{t}=\phi_{1} \epsilon_{t-1}+\Phi_{1} \epsilon_{t-12}-\phi_{1} \Phi_{1} \epsilon_{t-13}+a_{t}-\theta_{1} a_{t-1}-\Theta_{1} a_{t-12}+\theta_{1} \Theta_{1} a_{t-13}
$$

for some coefficients $\phi_{1}, \Phi_{1}, \theta_{1}$, and Θ_{1} and a white noise sequence a_{t}. The ARMA process is stationary and invertible if the defining polynomials ϕ, Φ, θ, and Θ have all their roots outside the unit circle-that is, their absolute values are strictly larger than 1.0. It is assumed that the ARMA model specified for the irregular component is stationary and invertible-that is, the coefficients of the polynomials ϕ, Φ, θ, and Θ are constrained so that the stationarity and invertibility conditions are satisfied. The unknown coefficients of these polynomials become part of the model parameter vector that is estimated using the data.

The notation for a closely related class of models, autoregressive integrated movingaverage (ARIMA) models, is also given here. A random sequence y_{t} is said to follow an $\operatorname{ARIMA}(p, d, q) \times(P, D, Q)_{s}$ model if, for some nonnegative integers d and D, the differenced series $\epsilon_{t}=(1-B)^{d}\left(1-B^{s}\right)^{D} y_{t}$ follows an $\operatorname{ARMA}(p, q) \times(P, Q)_{s}$ model. The integers d and D are called nonseasonal and seasonal differencing orders, respectively. You can specify ARIMA models by using the DEPLAG statement for specifying the differencing orders and by using the IRREGULAR statement for the ARMA specification. See Example 29.8 for an example of ARIMA $(0,1,1) \times(0,1,1)_{12}$ model specification. Brockwell and Davis (1991) can be consulted for additional information about ARIMA models.

You can use options of the IRREGULAR statement to specify the desired ARMA model and to request printed and graphical output. Several examples of the IRREGULAR statement are given next.

The following statement specifies an irregular component that is modeled as an ARMA(1,1) process. It also requests plotting its smoothed estimate.

```
irregular p=1 q=1 plot=smooth;
```

The following statement specifies an $\operatorname{ARMA}(1,1) \times(1,1)_{12}$ model. It also fixes the coefficient of the first-order seasonal moving-average polynomial to 0.1 . The other coefficients and the white noise variance are estimated using the data.

```
irregular p=1 sp=1 q=1 sq=1 s=12 sma=0.1 noest=(sma);
```

$\operatorname{AR}=\phi_{1} \phi_{2} \ldots \phi_{p}$
lists the starting values of the coefficients of the nonseasonal autoregressive polynomial:

$$
\phi(B)=1-\phi_{1} B-\ldots-\phi_{p} B^{p}
$$

where the order p is specified in the $\mathrm{P}=$ option. The coefficients ϕ_{i} must define a stationary autoregressive polynomial.
$\mathbf{M A}=\theta_{1} \theta_{2} \ldots \theta_{q}$
lists the starting values of the coefficients of the nonseasonal moving-average polynomial:

$$
\theta(B)=1-\theta_{1} B-\ldots-\theta_{q} B^{q}
$$

where the order q is specified in the $\mathrm{Q}=$ option. The coefficients θ_{i} must define an invertible moving-average polynomial.

NOEST=(<VARIANCE> <AR> <SAR> <MA> <SMA>)

fixes the values of the ARMA parameters and the value of the white noise variance to those specified in the $A R=, S A R=, M A=, S M A=$, or VARIANCE= options.

$\mathbf{P}=$ integer

specifies the order of the nonseasonal autoregressive polynomial. The order can be any nonnegative integer; the default value is 0 . In practice the order is a small integer such as 1,2 , or 3.

Q=integer

specifies the order of the nonseasonal moving-average polynomial. The order can be any nonnegative integer; the default value is 0 . In practice the order is a small integer such as 1 , 2 , or 3 .

S=integer

specifies the season length used during the specification of the seasonal autoregressive or seasonal moving-average polynomial. The season length can be any positive integer; for example, $S=4$ might be an appropriate value for a quarterly series. The default value is $S=1$.
$\operatorname{SAR}=\Phi_{1} \Phi_{2} \ldots \Phi_{P}$
lists the starting values of the coefficients of the seasonal autoregressive polynomial:

$$
\Phi\left(B^{s}\right)=1-\Phi_{1} B^{s}-\ldots-\Phi_{P} B^{s P}
$$

where the order P is specified in the $\mathrm{SP}=$ option and the season length s is specified in the $\mathrm{S}=$ option. The coefficients Φ_{i} must define a stationary autoregressive polynomial.
$\mathbf{S M A}=\Theta_{1} \Theta_{2} \ldots \Theta_{Q}$
lists the starting values of the coefficients of the seasonal moving-average polynomial:

$$
\Theta\left(B^{s}\right)=1-\Theta_{1} B^{s}-\ldots-\Theta_{Q} B^{s Q}
$$

where the order Q is specified in the $\mathrm{SQ}=$ option and the season length s is specified in the $\mathrm{S}=$ option. The coefficients Θ_{i} must define an invertible moving-average polynomial.

SP=integer

specifies the order of the seasonal autoregressive polynomial. The order can be any nonnegative integer; the default value is 0 . In practice the order is a small integer such as 1 or 2.

SQ=integer

specifies the order of the seasonal moving-average polynomial. The order can be any nonnegative integer; the default value is 0 . In practice the order is a small integer such as 1 or 2.

LEVEL Statement

LEVEL < options> ;

The LEVEL statement is used to include a level component in the model. The level component, either by itself or together with a slope component (see the SLOPE statement), forms the trend component, μ_{t}, of the model. If the slope component is absent, the resulting trend is a random walk (RW) specified by the following equations:

$$
\mu_{t}=\mu_{t-1}+\eta_{t}, \quad \eta_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\eta}^{2}\right)
$$

If the slope component is present, signified by the presence of a SLOPE statement, a locally linear trend (LLT) is obtained. The equations of LLT are as follows:

$$
\begin{array}{lll}
\mu_{t}=\mu_{t-1}+\beta_{t-1}+\eta_{t}, & \eta_{t} \sim i . i . d . \quad N\left(0, \sigma_{\eta}^{2}\right) \\
\beta_{t} & =\beta_{t-1}+\xi_{t}, & \\
\xi_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\xi}^{2}\right)
\end{array}
$$

In either case, the options in the LEVEL statement are used to specify the value of σ_{η}^{2} and to request forecasts of μ_{t}. The SLOPE statement is used for similar purposes in the case of slope β_{t}. The following examples illustrate the use of the LEVEL statement. Assuming that a SLOPE statement is not added subsequently, a simple random walk trend is specified by the following statement:

level;

The following statements specify a locally linear trend with value of σ_{η}^{2} fixed at 4 . It also requests printing of filtered values of μ_{t}. The value of σ_{ξ}^{2}, the disturbance variance in the slope equation, is estimated from the data.

```
level variance=4 noest print=filter;
slope;
```


CHECKBREAK

turns on the checking of breaks in the level component.

NOEST

fixes the value of σ_{η}^{2} to the value specified in the VARIANCE= option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=(< FILTER > < SMOOTH >)

requests plotting of the filtered or smoothed estimate of the level component.

PRINT=FILTER

PRINT=SMOOTH
PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the level component.

VARIANCE=value

specifies an initial value for σ_{η}^{2}, the disturbance variance in the μ_{t} equation at the start of the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

MODEL Statement

MODEL dependent < = regressors > ;
The MODEL statement specifies the response variable and, optionally, the predictor or regressor variables for the UCM model. This is a required statement in the UCM procedure. The predictors specified in the MODEL statement are assumed to have a linear and time-invariant relationship with the response. The predictors that have time-varying regression coefficients are specified separately in the RANDOMREG statement. Similarly, the predictors that have a nonlinear effect on the response variable are specified separately in the SPLINEREG statement. Only one MODEL statement can be specified.

NLOPTIONS Statement

NLOPTIONS <options> ;

PROC UCM uses the nonlinear optimization (NLO) subsystem to perform the nonlinear optimization of the likelihood function during the estimation of model parameters. You can use the NLOPTIONS statement to control different aspects of this optimization process. For most problems the
default settings of the optimization process are adequate. However, in some cases it might be useful to change the optimization technique or to change the maximum number of iterations. This can be done by using the TECH= and MAXITER= options in the NLOPTIONS statement as follows:

```
nloptions tech=dbldog maxiter=200;
```

This sets the maximum number of iterations to 200 and changes the optimization technique to DBLDOG rather than the default technique, TRUREG, used in PROC UCM. A discussion of the full range of options that can be used with the NLOPTIONS statement is given in Chapter 6, "Nonlinear Optimization Methods." In PROC UCM all these options are available except the options related to the printing of the optimization history. In this version of PROC UCM all the printed output from the NLO subsystem is suppressed.

OUTLIER Statement

OUTLIER < options > ;
The OUTLIER statement enables you to control the reporting of the additive outliers (AO) and level shifts (LS) in the response series. The AOs are searched by default. You can turn on the search for LSs by using the CHECKBREAK option in the LEVEL statement.

ALPHA=significance-level

specifies the significance level for reporting the outliers. The default is 0.05 .

MAXNUM=number

limits the number of outliers to search. The default is MAXNUM=5.

MAXPCT=number

is similar to the MAXNUM= option. In the MAXPCT= option you can limit the number of outliers to search for according to a percentage of the series length. The default is MAX$\operatorname{PCT}=1$. When both of these options are specified, the minimum of the two search numbers is used.

PRINT=SHORT | DETAIL

enables you to control the printed output of the outlier search. The PRINT=SHORT option, which is the default, produces an outlier summary table containing the most significant outliers, either AO or LS, discovered in the outlier search. The PRINT=DETAIL option produces, in addition to the outlier summary table, separate tables containing the AO and LS structural break chi-square statistics computed at each time point in the estimation span.

RANDOMREG Statement

RANDOMREG regressors </ options > ;

The RANDOMREG statement is used to specify regressors with time-varying regression coefficients. Each regression coefficient-say, β_{t} - is assumed to evolve as a random walk:

$$
\beta_{t}=\beta_{t-1}+\eta_{t}, \quad \eta_{t} \sim \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

Of course, if the random walk disturbance variance σ^{2} is zero, then the regression coefficient is not time varying, and it reduces to the standard regression setting. There can be multiple RANDOMREG statements, and each statement can contain one or more regressors. The regressors in a given RANDOMREG statement form a group that is assumed to share the same disturbance variance parameter. The random walks associated with different regressors are assumed to be independent. For an example of using this statement see Example 29.4. See the section "Reporting Parameter Estimates for Random Regressors" on page 1794 for additional information about the way parameter estimates are reported for this type of regressors.

NOEST

fixes the value of σ^{2} to the value specified in the VARIANCE $=$ option.

PLOT=FILTER

PLOT=SMOOTH
PLOT=(< FILTER > < SMOOTH >)
requests plotting of filtered or smoothed estimate of the time-varying regression coefficient.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the time-varying regression coefficient.

VARIANCE=value

specifies an initial value for σ^{2} during the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SEASON Statement

```
SEASON LENGTH = integer < options> ;
```

The SEASON or SEASONAL statement is used to specify a seasonal component, γ_{t}, in the model. A seasonal component can be one of the two types, DUMMY or TRIG. A DUMMY seasonal with season length s satisfies the following stochastic equation:

$$
\sum_{i=0}^{s-1} \gamma_{t-i}=\omega_{t}, \quad \omega_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\omega}^{2}\right)
$$

The equations for a TRIG (short for trigonometric) seasonal component are as follows:

$$
\gamma_{t}=\sum_{j=1}^{[s / 2]} \gamma_{j, t}
$$

where $[s / 2]$ equals $s / 2$ if s is even and $(s-1) / 2$ if it is odd. The sinusoids, also called harmonics, $\gamma_{j, t}$ have frequencies $\lambda_{j}=2 \pi j / s$ and are specified by the matrix equation

$$
\left[\begin{array}{l}
\gamma_{j, t} \\
\gamma_{j, t}^{*}
\end{array}\right]=\left[\begin{array}{ll}
\cos \lambda_{j} & \sin \lambda_{j} \\
-\sin \lambda_{j} & \cos \lambda_{j}
\end{array}\right]\left[\begin{array}{l}
\gamma_{j, t-1} \\
\gamma_{j, t-1}^{*}
\end{array}\right]+\left[\begin{array}{l}
\omega_{j, t} \\
\omega_{j, t}^{*}
\end{array}\right]
$$

where the disturbances $\omega_{j, t}$ and $\omega_{j, t}^{*}$ are assumed to be independent and, for fixed $j, \omega_{j, t}$ and $\omega_{j, t}^{*} \sim N\left(0, \sigma_{\omega}^{2}\right)$. If s is even, then the equation for $\gamma_{s / 2, t}^{*}$ is not needed and $\gamma_{s / 2, t}$ is given by

$$
\gamma_{s / 2, t}=-\gamma_{s / 2, t-1}+\omega_{s / 2, t}
$$

In the TRIG seasonal case, the option KEEPH= or DROPH= can be used to obtain subset trigonometric seasonals that contain only a subset of the full set of harmonics $\gamma_{j, t}, j=1,2, \ldots,[s / 2]$. This is particularly useful when the season length s is large and the seasonal pattern is relatively smooth.

Note that whether the seasonal type is DUMMY or TRIG, there is only one parameter, the disturbance variance σ_{ω}^{2}, in the seasonal model.

There can be more than one seasonal component in the model, necessarily with different season lengths if the seasons are full. You can have multiple subset season components with the same season length, if you need to use separate disturbance variances for different sets of harmonics. Each seasonal component is specified using a separate SEASON statement. A model with multiple seasonal components can easily become quite complex and might need a large amount of data and computing resources for its estimation and forecasting. The examples that follow illustrate the use of SEASON statement.

The following statement specifies a DUMMY type (default) seasonal component with a season length of four, corresponding to the quarterly seasonality. The disturbance variance σ_{ω}^{2} is estimated from the data.

season length=4;

The following statement specifies a trigonometric seasonal with monthly seasonality. It also provides a starting value for σ_{ω}^{2}.

```
season length=12 type=trig variance=4;
```


DROPHARMONICS|DROPH=number-list | n TO m BY p

enables you to drop some harmonics $\gamma_{j, t}$ from the full set of harmonics used to obtain a trigonometric seasonal. The drop list can include any integer between 1 and $[s / 2], s$ being the season length. For example, the following specification results in a specification of a trigonometric seasonal with a season length 12 that consists of only the first four harmonics

$$
\gamma_{j, t}, j=1,2,3,4:
$$

```
season length=12 type=trig DROPH=5 6;
```

The last two high frequency harmonics are dropped. The DROPH= option cannot be used with the KEEPH= option.

KEEPHARMONICS|KEEPH=number-list | n TO m BY p
enables you to keep only the harmonics $\gamma_{j, t}$ listed in the option to obtain a trigonometric seasonal. The keep list can include any integer between 1 and $[s / 2], s$ being the season length. For example, the following specification results in a specification of a trigonometric seasonal with a season length of 12 that consists of all the six harmonics $\gamma_{j, t}, j=1, \ldots 6$:

```
season length=12 type=trig KEEPH=1 to 3;
season length=12 type=trig KEEPH=4 to 6;
```

However, these six harmonics are grouped into two groups, each having its own disturbance variance parameter. The DROPH= option cannot be used with the KEEPH= option.

LENGTH=integer

specifies the season length, s. This is a required option in this statement. The season length can be any integer greater than or equal to 2 . Typical examples of season lengths are 12 , corresponding to the monthly seasonality, or 4 , corresponding to the quarterly seasonality.

NOEST

fixes the value of the disturbance variance parameter to the value specified in the VARIANCE= option.

PLOT=FILTER

PLOT=SMOOTH
PLOT=F_ANNUAL
PLOT=S_ANNUAL
PLOT=(<plot request> . . . <plot request>)
requests plots of the season component. When you specify only one plot request, you can omit the parentheses around the plot request. You can use the FILTER and SMOOTH options to plot the filtered and smoothed estimates of the season component γ_{t}. You can use the F_ANNUAL and S_ANNUAL options to get the plots of "annual" variation in the filtered and smoothed estimates of γ_{t}. The annual plots are useful to see the change in the contribution of a particular month over the span of years. Here "month" and "year" are generic terms that change appropriately with the interval type being used to label the observations and the season length. For example, for monthly data with a season length of 12 , the usual meaning applies, while for daily data with a season length of 7 , the days of the week serve as months and the weeks serve as years.

PRINT=HARMONICS

requests printing of the summary of harmonics present in the seasonal component. This option is valid only for the trigonometric seasonal component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< print request > . . < print request >)

requests printing of the filtered or smoothed estimate of the seasonal component γ_{t}.
TYPE=DUMMY | TRIG
specifies the type of the seasonal component. The default type is DUMMY.

VARIANCE=value

specifies an initial value for the disturbance variance, σ_{ω}^{2}, in the γ_{t} equation at the start of the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SLOPE Statement

```
SLOPE < options> ;
```

The SLOPE statement is used to include a slope component in the model. The slope component cannot be used without the level component (see the LEVEL statement). The level and slope specifications jointly define the trend component of the model. A SLOPE statement without the accompanying LEVEL statement is ignored. The equations of the trend, defined jointly by the level μ_{t} and slope β_{t}, are as follows:

$$
\begin{array}{rlrl}
\mu_{t} & =\mu_{t-1}+\beta_{t-1}+\eta_{t}, & & \eta_{t} \sim i . i . d . \\
\beta_{t} & =\beta_{t-1}+\xi_{t}, & & \xi_{t} \sim \text { i.i.d. } \\
\left.\sigma_{\eta}^{2}\right) \\
\left(0, \sigma_{\xi}^{2}\right)
\end{array}
$$

The SLOPE statement is used to specify the value of the disturbance variance, σ_{ξ}^{2}, in the slope equation, and to request forecasts of β_{t}. The following examples illustrate this statement:

```
level;
slope;
```

The preceding statements fit a model with a locally linear trend. The disturbance variances σ_{η}^{2} and σ_{ξ}^{2} are estimated from the data. You can request a locally linear trend with fixed slope by using the following statements:

```
level;
slope variance=0 noest;
```


NOEST

fixes the value of the disturbance variance, σ_{ξ}^{2}, to the value specified in the VARIANCE $=$ option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=(< FILTER > < SMOOTH >)

requests plotting of the filtered or smoothed estimate of the slope component.

PRINT=FILTER

PRINT=SMOOTH
PRINT=(< FILTER > < SMOOTH >) requests printing of the filtered or smoothed estimate of the slope component β_{t}.

VARIANCE=value

specifies an initial value for the disturbance variance, σ_{ξ}^{2}, in the β_{t} equation at the start of the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SPLINEREG Statement

SPLINEREG regressor <options> ;

The SPLINEREG statement is used to specify a regressor that has a nonlinear relationship with the dependent series that can be approximated by a given B-spline. If the specified spline has degree d and is based on n internal knots, then it is known that it can be written as a linear combination of $(n+d+1)$ regressors that are derived from the original regressor. The span of these $(n+d+1)$ derived regressors includes constant; therefore, to avoid multicollinearity with the level component, one of these regressors is dropped. Specifying the SPLINEREG statement is equivalent to specifying a RANDOMREG statement with these derived regressors. There can be multiple SPLINEREG statements. You must specify at least one interior knot, either using the NKNOTS= option or the KNOTS = option. For additional information about splines, see Chapter 90, "The TRANSREG Procedure" (SAS/STAT User's Guide). For an example of using this statement, see Example 29.6. See the section "Reporting Parameter Estimates for Random Regressors" on page 1794 for additional information about the way parameter estimates are reported for this type of regressors.

DEGREE=integer

specifies the degree of the spline. It can be any integer larger than or equal to zero. The default value is 3 . The polynomial degree should be a small integer, usually $0,1,2$, or 3 . Larger values are rarely useful. If you have any doubt as to what degree to specify, use the default.

KNOTS=number-list | n TO m BY p

specifies the interior knots or break points. The values in the knot list must be nondecreasing and must lie between the minimum and the maximum of the spline regressor values in the input data set. The first time you specify a value in the knot list, it indicates a discontinuity in the nth (from DEGREE= n) derivative of the transformation function at the value of the knot. The second mention of a value indicates a discontinuity in the $(n-1)$ th derivative of the transformation function at the value of the knot. Knots can be repeated any number of times for decreasing smoothness at the break points, but the values in the knot list can never decrease.

You cannot use the KNOTS= option with the NKNOTS= option. You should keep the number of knots small.

NKNOTS=m

creates m knots, the first at the $100 /(m+1)$ percentile, the second at the $200 /(m+1)$ percentile, and so on. Knots are always placed at data values; there is no interpolation. For example, if NKNOTS $=3$, knots are placed at the 25 th percentile, the median, and the 75 th percentile. The value specified for the NKNOTS $=$ option must be ≥ 1. You cannot use the NKNOTS=option with the KNOTS= option.

NOTE: Specifying knots by using the NKNOTS= option can result in different sets of knots in the estimation and forecast stages if the distributions of regressor values in the estimation and forecast spans differ. The estimation span is based on the BACK= and SKIPFIRST= options in the ESTIMATE statement, and the forecast span is based on the BACK= and SKIPFIRST= options in the FORECAST statement.

NOEST

fixes the value of the regression coefficient random walk disturbance variance to the value specified in the VARIANCE= option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=(< FILTER > < SMOOTH >)

requests plotting of filtered or smoothed estimate of the time-varying regression coefficient.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)

requests printing of filtered or smoothed estimate of the time-varying regression coefficient.

VARIANCE=value

specifies an initial value for the regression coefficient random walk disturbance variance during the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SPLINESEASON Statement

SPLINESEASON LENGTH = integer KNOTS= integer ${ }_{1}$ integer ${ }_{2} \ldots$ <options> ;
The SPLINESEASON statement is used to specify a seasonal pattern that is to be approximated by a given B-spline. If the specified spline has degree d and is based on n internal knots, then it can be written as a linear combination of $(n+d)$ regressors that are derived from the seasonal dummy regressors. The SPLINESEASON specification is equivalent to specifying a RANDOMREG specification with these derived regressors. Such approximation is useful only if the season length is relatively large, at least larger than $(n+d)$. For additional information about splines, see Chapter 90, "The TRANSREG Procedure" (SAS/STAT User's Guide). For an example of using this statement, see Example 29.3.

DEGREE=integer

specifies the degree of the spline. It can be any integer greater than or equal to zero. The default value is 3 .

KNOTS=integer ${ }_{1}$ integer $_{2} \ldots$

lists the internal knots. This list of values must be a nondecreasing sequence of integers within the range of 2 to $(s-1)$, where s is the season length specified in the LENGTH= option. This is a required option in this statement.

LENGTH=integer

specifies the season length, s. This is a required option in this statement. The length can be any integer greater than or equal to three.

NOEST

fixes the value of the regression coefficient random walk disturbance variance to the value specified in the VARIANCE= option.

OFFSET=integer

specifies the position of the first measurement within the season, if the first measurement is not at the start of the season. The OFFSET= value must be between one and the season length. The default value is one. The first measurement refers to the start of the estimation span and the forecast span. If these spans differ, their starting measurements must be separated by an integer multiple of the season length.

PLOT=FILTER

PLOT=SMOOTH

PLOT=(< FILTER > < SMOOTH >)
requests plots of the season component. When you specify only one plot request, you can omit the parentheses around the plot request. You can use the FILTER and SMOOTH options to plot the filtered and smoothed estimates of the season component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)

requests the printing of the filtered or smoothed estimate of the spline season component.
RKNOTS=(knot, . . . knot) ... (knot, . . . , knot)
specifies a grouping of knots such that the knots within the same group have identical seasonal values. The knots specified in this option must already be present in the list specified by the KNOTS= option. The knot groups must be non-overlapping and without any repeated knots.

VARIANCE=value

specifies an initial value for the regression coefficient random walk disturbance variance during the parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

Details: UCM Procedure

An Introduction to Unobserved Component Models

A UCM decomposes the response series into components such as trend, seasons, cycles, and the regression effects due to predictor series. The following model shows a possible scenario:

$$
\begin{aligned}
y_{t} & =\mu_{t}+\gamma_{t}+\psi_{t}+\sum_{j=1}^{m} \beta_{j} x_{j t}+\epsilon_{t} \\
\epsilon_{t} & \sim \text { i.i.d. } N\left(0, \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

The terms μ_{t}, γ_{t}, and ψ_{t} represent the trend, seasonal, and cyclical components, respectively. In fact the model can contain multiple seasons and cycles, and the seasons can be of different types. For simplicity of discussion the preceding model contains only one of each of these components. The regression term, $\sum_{j=1}^{m} \beta_{j} x_{j t}$, includes contribution of regression variables with fixed regression coefficients. A model can also contain regression variables that have time varying regression coefficients or that have a nonlinear relationship with the dependent series (see "Incorporating Predictors of Different Kinds" on page 1793). The disturbance term ϵ_{t}, also called the irregular component, is usually assumed to be Gaussian white noise. In some cases it is useful to model the irregular component as a stationary ARMA process. See the section "Modeling the Irregular Component" on page 1785 for additional information.

By controlling the presence or absence of various terms and by choosing the proper flavor of the included terms, the UCMs can generate a rich variety of time series patterns. A UCM can be applied to variables after transforming them by transforms such as \log and difference.

The components μ_{t}, γ_{t}, and ψ_{t} model structurally different aspects of the time series. For example, the trend μ_{t} models the natural tendency of the series in the absence of any other perturbing effects such as seasonality, cyclical components, and the effects of exogenous variables, while the seasonal component γ_{t} models the correction to the level due to the seasonal effects. These components are assumed to be statistically independent of each other and independent of the irregular component. All of the component models can be thought of as stochastic generalizations of the relevant deterministic patterns in time. This way the deterministic cases emerge as special cases of the stochastic models. The different models available for these unobserved components are discussed next.

Modeling the Trend

As mentioned earlier, the trend in a series can be loosely defined as the natural tendency of the series in the absence of any other perturbing effects. The UCM procedure offers two ways to model the trend component μ_{t}. The first model, called the random walk (RW) model, implies that the trend remains roughly constant throughout the life of the series without any persistent upward or downward drift. In the second model the trend is modeled as a locally linear time trend (LLT). The

RW model can be described as

$$
\mu_{t}=\mu_{t-1}+\eta_{t}, \quad \eta_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\eta}^{2}\right)
$$

Note that if $\sigma_{\eta}^{2}=0$, then the model becomes $\mu_{t}=$ constant. In the LLT model the trend is locally linear, consisting of both the level and slope. The LLT model is

$$
\begin{aligned}
& \mu_{t}=\mu_{t-1}+\beta_{t-1}+\eta_{t}, \quad \eta_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\eta}^{2}\right) \\
& \beta_{t}=\beta_{t-1}+\xi_{t}, \quad \xi_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\xi}^{2}\right)
\end{aligned}
$$

The disturbances η_{t} and ξ_{t} are assumed to be independent. There are some interesting special cases of this model obtained by setting one or both of the disturbance variances σ_{η}^{2} and σ_{ξ}^{2} equal to zero. If σ_{ξ}^{2} is set equal to zero, then you get a linear trend model with fixed slope. If σ_{η}^{2} is set to zero, then the resulting model usually has a smoother trend. If both the variances are set to zero, then the resulting model is the deterministic linear time trend: $\mu_{t}=\mu_{0}+\beta_{0} t$.

You can incorporate these trend patterns in your model by using the LEVEL and SLOPE statements.

Modeling a Cycle

A deterministic cycle ψ_{t} with frequency $\lambda, 0<\lambda<\pi$, can be written as

$$
\psi_{t}=\alpha \cos (\lambda t)+\beta \sin (\lambda t)
$$

If the argument t is measured on a continuous scale, then ψ_{t} is a periodic function with period $2 \pi / \lambda$, amplitude $\gamma=\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}$, and phase $\phi=\tan ^{-1}(\beta / \alpha)$. Equivalently, the cycle can be written in terms of the amplitude and phase as

$$
\psi_{t}=\gamma \cos (\lambda t-\phi)
$$

Note that when ψ_{t} is measured only at the integer values, it is not exactly periodic, unless $\lambda=$ $(2 \pi j) / k$ for some integers j and k. The cycles in their pure form are not used very often in practice. However, they are very useful as building blocks for more complex periodic patterns. It is well known that the periodic pattern of any complexity can be written as a sum of pure cycles of different frequencies and amplitudes. In time series situations it is useful to generalize this simple cyclical pattern to a stochastic cycle that has a fixed period but time-varying amplitude and phase. The stochastic cycle considered here is motivated by the following recursive formula for computing ψ_{t} :

$$
\left[\begin{array}{l}
\psi_{t} \\
\psi_{t}^{*}
\end{array}\right]=\left[\begin{array}{ll}
\cos \lambda & \sin \lambda \\
-\sin \lambda & \cos \lambda
\end{array}\right]\left[\begin{array}{l}
\psi_{t-1} \\
\psi_{t-1}^{*}
\end{array}\right]
$$

starting with $\psi_{0}=\alpha$ and $\psi_{0}^{*}=\beta$. Note that ψ_{t} and ψ_{t}^{*} satisfy the relation

$$
\psi_{t}^{2}+\psi_{t}^{* 2}=\alpha^{2}+\beta^{2} \quad \text { for all } t
$$

A stochastic generalization of the cycle ψ_{t} can be obtained by adding random noise to this recursion and by introducing a damping factor, ρ, for additional modeling flexibility. This model can be described as follows:

$$
\left[\begin{array}{c}
\psi_{t} \\
\psi_{t}^{*}
\end{array}\right]=\rho\left[\begin{array}{lc}
\cos \lambda & \sin \lambda \\
-\sin \lambda & \cos \lambda
\end{array}\right]\left[\begin{array}{l}
\psi_{t-1} \\
\psi_{t-1}^{*}
\end{array}\right]+\left[\begin{array}{c}
v_{t} \\
v_{t}^{*}
\end{array}\right]
$$

where $0 \leq \rho \leq 1$, and the disturbances v_{t} and v_{t}^{*} are independent $N\left(0, \sigma_{v}^{2}\right)$ variables. The resulting stochastic cycle has a fixed period but time-varying amplitude and phase. The stationarity properties of the random sequence ψ_{t} depend on the damping factor ρ. If $\rho<1, \psi_{t}$ has a stationary distribution with mean zero and variance $\sigma_{v}^{2} /\left(1-\rho^{2}\right)$. If $\rho=1, \psi_{t}$ is nonstationary.

You can incorporate a cycle in a UCM by specifying a CYCLE statement. You can include multiple cycles in the model by using separate CYCLE statements for each included cycle.

As mentioned before, the cycles are very useful as building blocks for constructing more complex periodic patterns. Periodic patterns of almost any complexity can be created by superimposing cycles of different periods and amplitudes. In particular, the seasonal patterns, general periodic patterns with integer periods, can be constructed as sums of cycles. This important topic of modeling the seasonal components is considered next.

Modeling Seasons

The seasonal fluctuations are a common source of variation in time series data. These fluctuations arise because of the regular changes in seasons or some other periodic events. The seasonal effects are regarded as corrections to the general trend of the series due to the seasonal variations, and these effects sum to zero when summed over the full season cycle. Therefore the seasonal component γ_{t} is modeled as a stochastic periodic pattern of an integer period s such that the sum $\sum_{i=0}^{s-1} \gamma_{t-i}$ is always zero in the mean. The period s is called the season length. Two different models for the seasonal component are considered here. The first model is called the dummy variable form of the seasonal component. It is described by the equation

$$
\sum_{i=0}^{s-1} \gamma_{t-i}=\omega_{t}, \quad \omega_{t} \sim \text { i.i.d. } N\left(0, \sigma_{\omega}^{2}\right)
$$

The other model is called the trigonometric form of the seasonal component. In this case γ_{t} is modeled as a sum of cycles of different frequencies. This model is given as follows:

$$
\gamma_{t}=\sum_{j=1}^{[s / 2]} \gamma_{j, t}
$$

where [$s / 2$] equals $s / 2$ if s is even and $(s-1) / 2$ if it is odd. The cycles $\gamma_{j, t}$ have frequencies $\lambda_{j}=2 \pi j / s$ and are specified by the matrix equation

$$
\left[\begin{array}{l}
\gamma_{j, t} \\
\gamma_{j, t}^{*}
\end{array}\right]=\left[\begin{array}{ll}
\cos \lambda_{j} & \sin \lambda_{j} \\
-\sin \lambda_{j} & \cos \lambda_{j}
\end{array}\right]\left[\begin{array}{l}
\gamma_{j, t-1} \\
\gamma_{j, t-1}^{*}
\end{array}\right]+\left[\begin{array}{l}
\omega_{j, t} \\
\omega_{j, t}^{*}
\end{array}\right]
$$

where the disturbances $\omega_{j, t}$ and $\omega_{j, t}^{*}$ are assumed to be independent and, for fixed $j, \omega_{j, t}$ and $\omega_{j, t}^{*} \sim N\left(0, \sigma_{\omega}^{2}\right)$. If s is even, then the equation for $\gamma_{s / 2, t}^{*}$ is not needed and $\gamma_{s / 2, t}$ is given by

$$
\gamma_{s / 2, t}=-\gamma_{s / 2, t-1}+\omega_{s / 2, t}
$$

The cycles $\gamma_{j, t}$ are called harmonics. If the seasonal component is deterministic, the decomposition of the seasonal effects into these harmonics is identical to its Fourier decomposition. In this case the sum of squares of the seasonal factors equals the sum of squares of the amplitudes of these harmonics. In many practical situations, the contribution of the high-frequency harmonics is negligible and can be ignored, giving rise to a simpler description of the seasonal. In the case of stochastic seasonals, the situation might not be so transparent; however, similar considerations still apply. Note that if the disturbance variance $\sigma_{\omega}^{2}=0$, then both the dummy and the trigonometric forms of seasonal components reduce to constant seasonal effects. That is, the seasonal component reduces to a deterministic function that is completely determined by its first $s-1$ values.

In the UCM procedure you can specify a seasonal component in a variety of ways, the SEASON statement being the simplest of these. The dummy and the trigonometric seasonal components discussed so far can be considered as saturated seasonal components that put no restrictions on the $s-1$ seasonal values. In some cases a more parsimonious representation of the seasonal might be more appropriate. This is particularly useful for seasonal components with large season lengths. In the UCM procedure you can obtain parsimonious representations of the seasonal components by one of the following ways:

- Use a subset trigonometric seasonal component obtained by deleting a few of the [s/2] harmonics used in its sum. For example, a slightly smoother seasonal component of length 12, corresponding to the monthly seasonality, can be obtained by deleting the highest-frequency harmonic of period 2. That is, such a seasonal component will be a sum of five stochastic cycles that have periods $12,6,4,3$, and 2.4 . You can specify such subset seasonal components by using the KEEPH= or DROPH= option in the SEASON statement.
- Approximate the seasonal pattern by a suitable spline approximation. You can do this by using the SPLINESEASON statement.
- A block-seasonal pattern is a seasonal pattern where the pattern is divided into a few blocks of equal length such that the season values within a block are the same-for example, a monthly seasonal pattern that has only four different values, one for each quarter. In some situations a long seasonal pattern can be approximated by the sum of block season and a simple season, the length of the simple season being equal to the block length of the block season. You can obtain such approximation by using a combination of BLOCKSEASON and SEASON statements.
- Consider a seasonal component of a large season length as a sum of two or more seasonal components that are each of much smaller season lengths. This can be done by specifying more than one SEASON statements.

Note that the preceding techniques of obtaining parsimonious seasonal components can also enable you to specify seasonal components that are more general than the simple saturated seasonal components. For example, you can specify a saturated trigonometric seasonal component that has some of its harmonics evolving according to one disturbance variance parameter while the others evolve with another disturbance variance parameter.

Modeling an Autoregression

An autoregression of order one can be thought of as a special case of a cycle when the frequency λ is either 0 or π. Modeling this special case separately helps interpretation and parameter estimation. The autoregression component r_{t} is modeled as follows:

$$
r_{t}=\rho r_{t-1}+v_{t}, \quad v_{t} \sim \text { i.i.d. } \quad N\left(0, \sigma_{v}^{2}\right)
$$

where $-1 \leq \rho<1$. An autoregression can also provide an alternative to the IRREGULAR component when the model errors show some autocorrelation. You can incorporate an autoregression in your model by using the AUTOREG statement.

Modeling Regression Effects

A predictor variable can affect the response variable in a variety of ways. The UCM procedure enables you to model several different types of predictor-response relationships:

- The predictor-response relationship is linear, and the regression coefficient does not change with time. This is the simplest kind of relationship and such predictors are specified in the MODEL statement.
- The predictor-response relationship is linear, but the regression coefficient does change with time. Such predictors are specified in the RANDOMREG statement. Here the regression coefficient is assumed to evolve as a random walk.
- The predictor-response relationship is nonlinear and the relationship can change with time. This type of relationship can be approximated by an appropriate time-varying spline. Such predictors are specified in the SPLINEREG statement.

A response variable can depend on its own past values-that is, lagged dependent values. Such a relationship can be specified in the DEPLAG statement.

Modeling the Irregular Component

The components-such as trend, seasonal and regression effects, and nonstationary cycles-are used to capture the structural dynamics of a response series. In contrast, the stationary cycles and the autoregression are used to capture the transient aspects of the response series that are important for its short-range prediction but have little impact on its long-term forecasts. The irregular component represents the residual variation remaining in the response series that is modeled using an appropriate selection of structural and transient effects. In most cases, the irregular component can be assumed to be simply Gaussian white noise. In some other cases, however, the residual variation can be more complicated. In such situations, it might be necessary to model the irregular component as a stationary ARMA process. Moreover, you can use the ARMA irregular component together with the dependent lag specification (see the DEPLAG statement) to specify an $\operatorname{ARIMA}(p, d, q) \times(P, D, Q)_{s}$ model for the response series. See the IRREGULAR statement for the explanation of the ARIMA notation. See Example 29.8 for an example of modeling a series by using an $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{12}$ model.

The Model Parameters

The parameter vector in a UCM consists of the variances of the disturbance terms of the unobserved components, the damping coefficients and frequencies in the cycles, the damping coefficient in the autoregression, and the regression coefficients in the regression terms. These parameters are estimated by maximizing the likelihood. It is possible to restrict the values of the model parameters to user-specified values.

Model Specification

A UCM is specified by describing the components in the model. For example, consider the model

$$
y_{t}=\mu_{t}+\gamma_{t}+\epsilon_{t}
$$

consisting of the irregular, level, slope, and seasonal components. This model is called the basic structural model (BSM) by Harvey (1989). The syntax for a BSM with monthly seasonality of trigonometric type is as follows:

```
model y;
irregular;
level;
slope;
season length=12 type=trig;
```

Similarly the following syntax specifies a BSM with a response variable y, a regressor x, and dummy-type monthly seasonality:

```
model y = x;
irregular;
level;
slope variance=0 noest;
season length=12 type=dummy;
```

Moreover, the disturbance variance of the slope component is restricted to zero, giving rise to a local linear trend with fixed slope.

A model can contain multiple cycle and seasonal components. In such cases the model syntax contains a separate statement for each of these multiple cycle or seasonal components; for example, the syntax for a model containing irregular and level components along with two cycle components could be as follows:

```
model y = x;
irregular;
level;
cycle;
cycle;
```


The UCMs as State Space Models

The UCMs considered in PROC UCM can be thought of as special cases of more general models, called (linear) Gaussian state space models (GSSM). A GSSM can be described as follows:

$$
\begin{aligned}
y_{t} & =Z_{t} \alpha_{t} \\
\alpha_{t+1} & =T_{t} \alpha_{t}+\zeta_{t+1}, \quad \zeta_{t} \sim \mathrm{~N}\left(0, Q_{t}\right) \\
\alpha_{1} & \sim \mathrm{~N}(0, P)
\end{aligned}
$$

The first equation, called the observation equation, relates the response series y_{t} to a state vector α_{t} that is usually unobserved. The second equation, called the state equation, describes the evolution of the state vector in time. The system matrices Z_{t} and T_{t} are of appropriate dimensions and are known, except possibly for some unknown elements that become part of the parameter vector of the model. The noise series ζ_{t} consists of independent, zero-mean, Gaussian vectors with covariance matrices Q_{t}. For most of the UCMs considered here, the system matrices Z_{t} and T_{t}, and the noise covariances Q_{t}, are time invariant-that is, they do not depend on time. In a few cases, however, some or all of them can depend on time. The initial state vector α_{1} is assumed to be independent of the noise series, and its covariance matrix P can be partially diffuse. A random vector has a partially diffuse covariance matrix if it can be partitioned such that one part of the vector has a properly defined probability distribution, while the covariance matrix of the other part is infinitethat is, you have no prior information about this part of the vector. The covariance of the initial state α_{1} is assumed to have the following form:

$$
P=P_{*}+\kappa P_{\infty}
$$

where P_{*} and P_{∞} are nonnegative definite, symmetric matrices and κ is a constant that is assumed to be close to ∞. In the case of UCMs considered here, P_{∞} is always a diagonal matrix that consists of zeros and ones, and, if a particular diagonal element of P_{∞} is one, then the corresponding row and column in P_{*} are zero.

The state space formulation of a UCM has many computational advantages. In this formulation there are convenient algorithms for estimating and forecasting the unobserved states $\left\{\alpha_{t}\right\}$ by using the observed series $\left\{y_{t}\right\}$. These algorithms also yield the in-sample and out-of-sample forecasts and the likelihood of $\left\{y_{t}\right\}$. The state space representation of aCM does not need to be unique. In the representation used here, the unobserved components in the UCM often appear as elements of the state vector. This makes the elements of the state interpretable and, more important, the sample estimates and forecasts of these unobserved components are easily obtained. For additional information about the computational aspects of the state space modeling, see Durbin and Koopman (2001). Next, some notation is developed to describe the essential quantities computed during the analysis of the state space models.

Let $\left\{y_{t}, t=1, \ldots, n\right\}$ be the observed sample from a series that satisfies a state space model. Next, for $1 \leq t \leq n$, let the one-step-ahead forecasts of the series, the states, and their variances be defined as follows, using the usual notation to denote the conditional expectation and conditional
variance:

$$
\begin{aligned}
\hat{\alpha}_{t} & =\mathrm{E}\left(\alpha_{t} \mid y_{1}, y_{2}, \ldots, y_{t-1}\right) \\
\Gamma_{t} & =\operatorname{Var}\left(\alpha_{t} \mid y_{1}, y_{2}, \ldots, y_{t-1}\right) \\
\hat{y}_{t} & =\mathrm{E}\left(y_{t} \mid y_{1}, y_{2}, \ldots, y_{t-1}\right) \\
F_{t} & =\operatorname{Var}\left(y_{t} \mid y_{1}, y_{2}, \ldots, y_{t-1}\right)
\end{aligned}
$$

These are also called the filtered estimates of the series and the states. Similarly, for $t \geq 1$, let the following denote the full-sample estimates of the series and the state values at time t :

$$
\begin{aligned}
\tilde{\alpha}_{t} & =\mathrm{E}\left(\alpha_{t} \mid y_{1}, y_{2}, \ldots, y_{n}\right) \\
\Delta_{t} & =\operatorname{Var}\left(\alpha_{t} \mid y_{1}, y_{2}, \ldots, y_{n}\right) \\
\tilde{y}_{t} & =\mathrm{E}\left(y_{t} \mid y_{1}, y_{2}, \ldots, y_{n}\right) \\
G_{t} & =\operatorname{Var}\left(y_{t} \mid y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

If the time t is in the historical period- that is, if $1 \leq t \leq n$ - then the full-sample estimates are called the smoothed estimates, and if t lies in the future then they are called out-of-sample forecasts. Note that if $1 \leq t \leq n$, then $\tilde{y}_{t}=y_{t}$ and $G_{t}=0$, unless y_{t} is missing.

All the filtered and smoothed estimates ($\hat{\alpha}_{t}, \tilde{\alpha}_{t}, \ldots, G_{t}$, and so on) are computed by using the Kalman filtering and smoothing (KFS) algorithm, which is an iterative process. If the initial state is diffuse, as is often the case for the UCMs, its treatment requires modification of the traditional KFS, which is called the diffuse KFS (DKFS). The details of DKFS implemented in the UCM procedure can be found in de Jong and Chu-Chun-Lin (2003). Additional information on the state space models can be found in Durbin and Koopman (2001). The likelihood formulas described in this section are taken from the latter reference.

In the case of diffuse initial condition, the effect of the improper prior distribution of α_{1} manifests itself in the first few filtering iterations. During these initial filtering iterations the distribution of the filtered quantities remains diffuse; that is, during these iterations the one-step-ahead series and state forecast variances F_{t} and Γ_{t} have the following form:

$$
\begin{aligned}
& F_{t}=F_{* t}+\kappa F_{\infty t} \\
& \Gamma_{t}=\Gamma_{* t}+\kappa \Gamma_{\infty t}
\end{aligned}
$$

The actual number of iterations-say, I - affected by this improper prior depends on the nature of the vectors Z_{t}, the number of nonzero diagonal elements of P_{∞}, and the pattern of missing values in the dependent series. After I iterations, $\Gamma_{\infty t}$ and $F_{\infty t}$ become zero and the one-step-ahead series and state forecasts have proper distributions. These first I iterations constitute the initialization phase of the DKFS algorithm. The post-initialization phase of the DKFS and the traditional KFS is the same. In the state space modeling literature the pre-initialization and post-initialization phases are some times called pre-collapse and post-collapse phases of the diffuse Kalman filtering. In certain missing value patterns it is possible for I to exceed the sample size; that is, the sample information can be insufficient to create a proper prior for the filtering process. In these cases, parameter estimation and forecasting is done on the basis of this improper prior, and some or all
of the series and component forecasts can have infinite variances (or zero precision). The forecasts that have infinite variance are set to missing. The same situation can occur if the specified model contains components that are essentially multicollinear. In these situations no residual analysis is possible; in particular, no residuals-based goodness-of-fit statistics are produced.

The \log likelihood of the sample $\left(L_{\infty}\right)$, which takes account of this diffuse initialization step, is computed by using the one-step-ahead series forecasts as follows:

$$
L_{\infty}\left(y_{1}, \ldots, y_{n}\right)=-\frac{(n-d)}{2} \log 2 \pi-\frac{1}{2} \sum_{t=1}^{I} w_{t}-\frac{1}{2} \sum_{t=I+1}^{n}\left(\log F_{t}+\frac{v_{t}^{2}}{F_{t}}\right)
$$

where d is the number of diffuse elements in the initial state $\alpha_{1}, \nu_{t}=y_{t}-Z_{t} \hat{\alpha}_{t}$ are the one-stepahead residuals, and

$$
\begin{aligned}
w_{t} & =\log F_{\infty t} & & \text { if } F_{\infty t}>0 \\
& =\log F_{* t}+\frac{v_{t}^{2}}{F_{* t}} & & \text { if } F_{\infty t}=0
\end{aligned}
$$

If y_{t} is missing at some time t, then the corresponding summand in the log likelihood expression is deleted, and the constant term is adjusted suitably. Moreover, if the initialization step does not complete-that is, if I exceeds the sample size - then the value of d is reduced to the number of diffuse states that are successfully initialized.

The portion of the \log likelihood that corresponds to the post-initialization period is called the nondiffuse \log likelihood $\left(L_{0}\right)$. The nondiffuse log likelihood is given by

$$
L_{0}\left(y_{1}, \ldots, y_{n}\right)=-\frac{1}{2} \sum_{t=I+1}^{n}\left(\log F_{t}+\frac{v_{t}^{2}}{F_{t}}\right)
$$

In the case of UCMs considered in PROC UCM, it often happens that the diffuse part of the likelihood, $\sum_{t=1}^{I} w_{t}$, does not depend on the model parameters, and in these cases the maximization of nondiffuse and diffuse likelihoods is equivalent. However, in some cases, such as when the model consists of dependent lags, the diffuse part does depend on the model parameters. In these cases the maximization of the diffuse and nondiffuse likelihood can produce different parameter estimates.

In some situations it is convenient to reparameterize the nondiffuse initial state covariance P_{*} as $\sigma^{2} P_{*}$ and the state noise covariance Q_{t} as $\sigma^{2} Q_{t}$ for some common scalar parameter σ^{2}. In this case the preceding log-likelihood expression, up to a constant, can be written as

$$
L_{\infty}\left(y_{1}, \ldots, y_{n}\right)=-\frac{1}{2} \sum_{t=1}^{I} w_{t}-\frac{1}{2} \sum_{t=I+1}^{n} \log F_{t}-\frac{1}{2 \sigma^{2}} \sum_{t=I+1}^{n} \frac{v_{t}^{2}}{F_{t}}-\frac{(n-d)}{2} \log \sigma^{2}
$$

Solving analytically for the optimum, the maximum likelihood estimate of σ^{2} can be shown to be

$$
\hat{\sigma}^{2}=\frac{1}{(n-d)} \sum_{t=I+1}^{n} \frac{v_{t}^{2}}{F_{t}}
$$

When this expression of σ^{2} is substituted back into the likelihood formula, an expression called the profile likelihood ($L_{\text {profile }}$) of the data is obtained:

$$
-2 L_{\text {profile }}\left(y_{1}, \ldots, y_{n}\right)=\sum_{t=1}^{I} w_{t}+\sum_{t=I+1}^{n} \log F_{t}+(n-d) \log \left(\sum_{t=I+1}^{n} \frac{v_{t}^{2}}{F_{t}}\right)
$$

In some situations the parameter estimation is done by optimizing the profile likelihood (see the section "Parameter Estimation by Profile Likelihood Optimization" on page 1798 and the PROFILE option in the ESTIMATE statement).

In the remainder of this section the state space formulation of UCMs is further explained by using some particular UCMs as examples. The examples show that the state space formulation of the UCMs depends on the components in the model in a simple fashion; for example, the system matrix T is usually a block diagonal matrix with blocks that correspond to the components in the model. The only exception to this pattern is the UCMs that consist of the lags of dependent variable. This case is considered at the end of the section.

In what follows, $\operatorname{Diag}[a, b, \ldots]$ denotes a diagonal matrix with diagonal entries $[a, b, \ldots]$, and the transpose of a matrix T is denoted as T^{\prime}.

Local Level Model

Recall that the dynamics of a local level model are

$$
\begin{aligned}
y_{t} & =\mu_{t}+\epsilon_{t} \\
\mu_{t} & =\mu_{t-1}+\beta_{t-1}+\eta_{t} \\
\beta_{t} & =\beta_{t-1}+\xi_{t}
\end{aligned}
$$

Here y_{t} is the response series and ϵ_{t}, η_{t}, and ξ_{t} are independent, zero-mean Gaussian disturbance sequences with variances $\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}$, and σ_{ξ}^{2}, respectively. This model can be formulated as a state space model where the state vector $\alpha_{t}=\left[\epsilon_{t} \mu_{t} \beta_{t}\right]^{\prime}$ and the state noise $\zeta_{t}=\left[\epsilon_{t} \eta_{t} \xi_{t}\right]^{\prime}$. Note that the elements of the state vector are precisely the unobserved components in the model. The system matrices T and Z and the noise covariance Q corresponding to this choice of state and state noise vectors can be seen to be time invariant and are given by

$$
Z=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right], \quad T=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \text { and } Q=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}\right]
$$

The distribution of the initial state vector α_{1} is diffuse, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, 0,0\right]$ and $P_{\infty}=$ Diag $[0,1,1]$. The parameter vector θ consists of all the disturbance variances-that is, $\theta=$ $\left(\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}\right)$.

Basic Structural Model

The basic structural model (BSM) is obtained by adding a seasonal component, γ_{t}, to the local level model. In order to economize on the space, the state space formulation of a BSM with a relatively
short season length, season length $=4$ (quarterly seasonality), is considered here. The pattern for longer season lengths such as 12 (monthly) and 52 (weekly) is easy to see.

Let us first consider the dummy form of seasonality. In this case the state and state noise vectors are $\alpha_{t}=\left[\begin{array}{lllll}\epsilon_{t} & \mu_{t} & \beta_{t} & \gamma_{1, t} & \gamma_{2, t}\end{array} \gamma_{3, t}\right]^{\prime}$ and $\zeta_{t}=\left[\begin{array}{lllll}\epsilon_{t} & \eta_{t} & \xi_{t} & \omega_{t} & 0\end{array}\right]^{\prime}$, respectively. The first three elements of the state vector are the irregular, level, and slope components, respectively. The remaining elements, $\gamma_{i, t}$, are lagged versions of the seasonal component $\gamma_{t} . \gamma_{1, t}$ corresponds to lag zero-that is, the same as $\gamma_{t}, \gamma_{2, t}$ to lag 1 and $\gamma_{3, t}$ to lag 2. The system matrices are

$$
Z=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0
\end{array} 0\right], \quad T=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and $Q=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}, \sigma_{\omega}^{2}, 0,0\right]$. The distribution of the initial state vector α_{1} is diffuse, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, 0,0,0,0,0\right]$ and $P_{\infty}=\operatorname{Diag}[0,1,1,1,1,1]$.

In the case of the trigonometric type of seasonality, $\alpha_{t}=\left[\epsilon_{t} \mu_{t} \beta_{t} \gamma_{1, t} \gamma_{1, t}^{*} \gamma_{2, t}\right]^{\prime}$ and $\zeta_{t}=$ $\left[\epsilon_{t} \eta_{t} \xi_{t} \omega_{1, t} \omega_{1, t}^{*} \omega_{2, t}\right]^{\prime}$. The disturbance sequences, $\omega_{j, t}, 1 \leq j \leq 2$, and $\omega_{1, t}^{*}$, are independent, zero-mean, Gaussian sequences with variance σ_{ω}^{2}. The system matrices are

$$
Z=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0
\end{array} 1\right], \quad T=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \lambda_{1} & \sin \lambda_{1} & 0 \\
0 & 0 & 0 & -\sin \lambda_{1} & \cos \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & \cos \lambda_{2}
\end{array}\right]
$$

and $Q=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}, \sigma_{\omega}^{2}, \sigma_{\omega}^{2}, \sigma_{\omega}^{2}\right]$. Here $\lambda_{j}=(2 \pi j) / 4$. The distribution of the initial state vector α_{1} is diffuse, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, 0,0,0,0,0\right]$ and $P_{\infty}=\operatorname{Diag}[0,1,1,1,1,1]$. The parameter vector in both the cases is $\theta=\left(\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}, \sigma_{\omega}^{2}\right)$.

Seasons with Blocked Seasonal Values

Block seasonals are special seasonal components that impose a special block structure on the seasonal effects. Let us consider a BSM with monthly seasonality that has a quarterly block structurethat is, months within the same quarter are assumed to have identical effects except for some random perturbation. Such a seasonal component is a block seasonal with block size m equal to 3 and the number of blocks k equal to 4 . The state space structure for such a model with dummy-type seasonality is as follows: The state and state noise vectors are $\alpha_{t}=\left[\epsilon_{t} \mu_{t} \beta_{t} \gamma_{1, t} \gamma_{2, t} \gamma_{3, t}\right]^{\prime}$ and $\zeta_{t}=\left[\begin{array}{lllll}\epsilon_{t} & \eta_{t} & \xi_{t} & \omega_{t} & 0\end{array}\right]^{\prime}$, respectively. The first three elements of the state vector are the irregular, level, and slope components, respectively. The remaining elements, $\gamma_{i, t}$, are lagged versions of the seasonal component $\gamma_{t} \cdot \gamma_{1, t}$ corresponds to lag zero-that is, the same as $\gamma_{t}, \gamma_{2, t}$ to lag m and $\gamma_{3, t}$
to lag $2 m$. All the system matrices are time invariant, except the matrix T. They can be seen to be $Z=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}\right], Q=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}, \sigma_{\omega}^{2}, 0,0\right]$, and

$$
T_{t}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

when t is a multiple of the block size m, and

$$
T_{t}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

otherwise. Note that when t is not a multiple of m, the portion of the T_{t} matrix corresponding to the seasonal is identity. The distribution of the initial state vector α_{1} is diffuse, with $P_{*}=$ $\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, 0,0,0,0,0\right]$ and $P_{\infty}=\operatorname{Diag}[0,1,1,1,1,1]$.
Similarly in the case of the trigonometric form of seasonality, $\alpha_{t}=\left[\epsilon_{t} \mu_{t} \beta_{t} \gamma_{1, t} \gamma_{1, t}^{*} \gamma_{2, t}\right]^{\prime}$ and $\zeta_{t}=\left[\epsilon_{t} \eta_{t} \xi_{t} \omega_{1, t} \omega_{1, t}^{*} \omega_{2, t}\right]^{\prime}$. The disturbance sequences, $\omega_{j, t}, 1 \leq j \leq 2$, and $\omega_{1, t}^{*}$, are independent, zero-mean, Gaussian sequences with variance σ_{ω}^{2}. $Z=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}\right]$], $Q=$ $\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}, \sigma_{\omega}^{2}, \sigma_{\omega}^{2}, \sigma_{\omega}^{2}\right]$, and

$$
T_{t}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \lambda_{1} & \sin \lambda_{1} & 0 \\
0 & 0 & 0 & -\sin \lambda_{1} & \cos \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & \cos \lambda_{2}
\end{array}\right]
$$

when t is a multiple of the block size m, and

$$
T_{t}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

otherwise. As before, when t is not a multiple of m, the portion of the T_{t} matrix corresponding to the seasonal is identity. Here $\lambda_{j}=(2 \pi j) / 4$. The distribution of the initial state vector α_{1} is diffuse, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, 0,0,0,0,0\right]$ and $P_{\infty}=\operatorname{Diag}[0,1,1,1,1,1]$. The parameter vector in both the cases is $\theta=\left(\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}, \sigma_{\omega}^{2}\right)$.

Cycles and Autoregression

The preceding examples have illustrated how to build a state space model corresponding to a UCM that includes components such as irregular, trend, and seasonal. There you can see that the state vector and the system matrices have a simple block structure with blocks corresponding to the components in the model. Therefore, here only a simple model consisting of a single cycle and an irregular component is considered. The state space form for more complex UCMs consisting of multiple cycles and other components can be easily deduced from this example.

Recall that a stochastic cycle ψ_{t} with frequency $\lambda, 0<\lambda<\pi$, and damping coefficient ρ can be modeled as

$$
\left[\begin{array}{c}
\psi_{t} \\
\psi_{t}^{*}
\end{array}\right]=\rho\left[\begin{array}{ll}
\cos \lambda & \sin \lambda \\
-\sin \lambda & \cos \lambda
\end{array}\right]\left[\begin{array}{l}
\psi_{t-1} \\
\psi_{t-1}^{*}
\end{array}\right]+\left[\begin{array}{c}
v_{t} \\
v_{t}^{*}
\end{array}\right]
$$

where ν_{t} and ν_{t}^{*} are independent, zero-mean, Gaussian disturbances with variance σ_{v}^{2}. In what follows, a state space form for a model consisting of such a stochastic cycle and an irregular component is given.

The state vector $\alpha_{t}=\left[\epsilon_{t} \psi_{t} \psi_{t}^{*}\right]^{\prime}$, and the state noise vector $\zeta_{t}=\left[\begin{array}{lll}\epsilon_{t} & v_{t} & v_{t}^{*}\end{array}\right]^{\prime}$. The system matrices are

$$
Z=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] T=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho \cos \lambda & \rho \sin \lambda \\
0 & -\rho \sin \lambda & \rho \cos \lambda
\end{array}\right] \quad Q=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\nu}^{2}, \sigma_{\nu}^{2}\right]
$$

The distribution of the initial state vector α_{1} is proper, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\psi}^{2}, \sigma_{\psi}^{2}\right]$, where $\sigma_{\psi}^{2}=\sigma_{v}^{2}\left(1-\rho^{2}\right)^{-1}$. The parameter vector $\theta=\left(\sigma_{\epsilon}^{2}, \rho, \lambda, \sigma_{v}^{2}\right)$.

An autoregression r_{t} can be considered as a special case of cycle with frequency λ equal to 0 or π. In this case the equation for ψ_{t}^{*} is not needed. Therefore, for a UCM consisting of an autoregressive component and an irregular component, the state space model simplifies to the following form.

The state vector $\alpha_{t}=\left[\epsilon_{t} r_{t}\right]^{\prime}$, and the state noise vector $\zeta_{t}=\left[\epsilon_{t} \nu_{t}\right]^{\prime}$. The system matrices are

$$
Z=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad T=\left[\begin{array}{ll}
0 & 0 \\
0 & \rho
\end{array}\right] \text { and } Q=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\nu}^{2}\right]
$$

The distribution of the initial state vector α_{1} is proper, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{r}^{2}\right]$, where $\sigma_{r}^{2}=$ $\sigma_{v}^{2}\left(1-\rho^{2}\right)^{-1}$. The parameter vector $\theta=\left(\sigma_{\epsilon}^{2}, \rho, \sigma_{v}^{2}\right)$.

Incorporating Predictors of Different Kinds

In the UCM procedure, predictors can be incorporated in a UCM in a variety of ways: simple time-invariant linear predictors are specified in the MODEL statement, predictors with time-varying coefficients can be specified in the RANDOMREG statement, and predictors that have a nonlinear relationship with the response variable can be specified in the SPLINEREG statement. As with earlier examples, how to obtain a state space form of a UCM consisting of such variety of predictors is illustrated using a simple special case. Consider a random walk trend model with predictors
x, u_{1}, u_{2}, and v. Let us assume that x is a simple regressor specified in the MODEL statement, u_{1} and u_{2} are random regressors with time-varying regression coefficients that are specified in the same RANDOMREG statement, and v is a nonlinear regressor specified on a SPLINEREG statement. Let us further assume that the spline associated with v has degree one and is based on two internal knots. As explained in the section "SPLINEREG Statement" on page 1778, using v is equivalent to using (nknots + degree $)=(2+1)=3$ derived (random) regressors: say, s_{1}, s_{2}, s_{3}. In all there are $(1+2+3)=6$ regressors, the first one being a simple regressor and the others being time-varying coefficient regressors. The time-varying regressors are in two groups, the first consisting of u_{1} and u_{2} and the other consisting of s_{1}, s_{2}, and s_{3}. The dynamics of this model are as follows:

$$
\begin{aligned}
y_{t} & =\mu_{t}+\beta x_{t}+\kappa_{1 t} u_{1 t}+\kappa_{2 t} u_{2 t}+\sum_{i=1}^{3} \gamma_{i t} s_{i t}+\epsilon_{t} \\
\mu_{t} & =\mu_{t-1}+\eta_{t} \\
\kappa_{1 t} & =\kappa_{1(t-1)}+\xi_{1 t} \\
\kappa_{2 t} & =\kappa_{2(t-1)}+\xi_{2 t} \\
\gamma_{1 t} & =\gamma_{1(t-1)}+\zeta_{1 t} \\
\gamma_{2 t} & =\gamma_{2(t-1)}+\zeta_{2 t} \\
\gamma_{3 t} & =\gamma_{3(t-1)}+\zeta_{3 t}
\end{aligned}
$$

All the disturbances $\epsilon_{t}, \eta_{t}, \xi_{1 t}, \xi_{2 t}, \zeta_{1 t}, \zeta_{2 t}$, and $\zeta_{3 t}$ are independent, zero-mean, Gaussian variables, where $\xi_{1 t}, \xi_{2 t}$ share a common variance parameter σ_{ξ}^{2} and $\zeta_{1 t}, \zeta_{2 t}, \zeta_{3 t}$ share a common variance σ_{ζ}^{2}. These dynamics can be captured in the state space form by taking state $\alpha_{t}=$ $\left[\begin{array}{lllll}\epsilon_{t} & \mu_{t} \beta \kappa_{1 t} \kappa_{2 t} & \gamma_{1 t} & \gamma_{2 t} & \gamma_{3 t}\end{array}\right]^{\prime}$, state disturbance $\zeta_{t}=\left[\begin{array}{lllll}\epsilon_{t} & \eta_{t} & 0 & \xi_{1 t} & \xi_{2 t}\end{array} \zeta_{1 t} \zeta_{2 t} \zeta_{3 t}\right]^{\prime}$, and the system matrices

$$
\begin{aligned}
Z_{t} & =\left[11 x_{t} u_{1 t} u_{2 t} s_{1 t} s_{2 t} s_{3 t}\right] \\
T & =\operatorname{Diag}[0,1,1,1,1,1,1,1] \\
Q & =\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, 0, \sigma_{\xi}^{2}, \sigma_{\xi}^{2}, \sigma_{\zeta}^{2}, \sigma_{\zeta}^{2}, \sigma_{\zeta}^{2}\right]
\end{aligned}
$$

Note that the regression coefficients are elements of the state vector and that the system vector Z_{t} is not time invariant. The distribution of the initial state vector α_{1} is diffuse, with $P_{*}=\operatorname{Diag}\left[\sigma_{\epsilon}^{2}, 0,0,0,0,0,0,0\right]$ and $P_{\infty}=\operatorname{Diag}[0,1,1,1,1,1,1,1]$. The parameters of this model are the disturbance variances, $\sigma_{\epsilon}^{2}, \sigma_{\eta}^{2}, \sigma_{\xi}^{2}$, and σ_{ζ}^{2}, which get estimated by maximizing the likelihood. The regression coefficients, time-invariant β and time-varying $\kappa_{1 t}, \kappa_{2 t}, \gamma_{1 t}, \gamma_{2 t}$ and $\gamma_{3 t}$, get implicitly estimated during the state estimation (smoothing).

Reporting Parameter Estimates for Random Regressors

If the random walk disturbance variance associated with a random regressor is held fixed at zero, then its coefficient is no longer time-varying. In the UCM procedure the random regressor parameter estimates are reported differently if the random walk disturbance variance associated with a random regressor is held fixed at zero. The following points explain how the parameter estimates are reported in the parameter estimates table and in the OUTEST= data set.

- If the random walk disturbance variance associated with a random regressor is not held fixed, then its estimate is reported in the parameter estimates table and in the OUTEST= data set.
- If more that one random regressor is specified in a RANDOMREG statement, then the first regressor in the list is used as a representative of the list while reporting the corresponding common variance parameter estimate.
- If the random walk disturbance variance is held fixed at zero, then the parameter estimates table and the OUTEST = data set contain the corresponding regression parameter estimate rather than the variance parameter estimate.
- Similar considerations apply in the case of the derived random regressors associated with a spline-regressor.

ARMA Irregular Component (Experimental)

The state space form for the irregular component that follows an $\operatorname{ARMA}(p, q) \times(P, Q)_{s}$ model is described in this section. The notation for ARMA models is explained in the IRREGULAR statement. A number of alternate state space forms are possible in this case; the one given here is based on Jones (1980). With slight abuse of notation, let $p=p+s P$ denote the effective autoregressive order and $q=q+s Q$ denote the effective moving-average order of the model. Similarly, let ϕ be the effective autoregressive polynomial and θ be the effective moving-average polynomial in the backshift operator with coefficients $\phi_{1}, \ldots, \phi_{p}$ and $\theta_{1}, \ldots, \theta_{q}$, obtained by multiplying the respective nonseasonal and seasonal factors. Then, a random sequence ϵ_{t} that follows an $\operatorname{ARMA}(p, q) \times(P, Q)_{s}$ model with a white noise sequence a_{t} has a state space form with state vector of size $m=\max (p, q+1)$. The system matrices, which are time invariant, are as follows: $Z=\left[\begin{array}{lll}1 & 0 & \ldots\end{array}\right]$. The state transition matrix T, in a blocked form, is given by

$$
T=\left[\begin{array}{cc}
0 & I_{m-1} \\
\phi_{m} & \cdots
\end{array} \phi_{1} .\right]
$$

where $\phi_{i}=0$ if $i>p$ and I_{m-1} is an ($m-1$) dimensional indentity matrix. The covariance of the state disturbance matrix $Q=\sigma^{2} \psi \psi^{\prime}$ where σ^{2} is the variance of the white noise sequence a_{t} and the vector $\psi=\left[\psi_{0} \ldots \psi_{m-1}\right]^{\prime}$ contains the first m values of the impulse response function-that is, the first m coefficients in the expansion of the ratio θ / ϕ. Since ϵ_{t} is a stationary sequence, the initial state is nondiffuse and $P_{\infty}=0$. The description of P_{*}, the covariance matrix of the initial state, is a little involved; the details are given in Jones (1980).

Models with Dependent Lags

The state space form of a UCM consisting of the lags of the dependent variable is quite different from the state space forms considered so far. Let us consider an example to illustrate this situation. Consider a model that has random walk trend, two simple time-invariant regressors, and that also includes a few-say, k-lags of the dependent variable. That is,

$$
\begin{aligned}
& y_{t}=\sum_{i=1}^{k} \phi_{i} y_{t-i}+\mu_{t}+\beta_{1} x_{1 t}+\beta_{2} x_{2 t}+\epsilon_{t} \\
& \mu_{t}=\mu_{t-1}+\eta_{t}
\end{aligned}
$$

The state space form of this augmented model can be described in terms of the state space form of a model that has random walk trend with two simple time-invariant regressors. A superscript dagger (\dagger) has been added to distinguish the augmented model state space entities from the corresponding entities of the state space form of the random walk with predictors model. With this notation, the state vector of the augmented model $\alpha_{t}^{\dagger}=\left[\begin{array}{ccccc}\alpha_{t}^{\prime} & y_{t} & y_{t-1} & \ldots & y_{t-k+1}\end{array}\right]^{\prime}$ and the new state noise vector $\zeta_{t}^{\dagger}=\left[\begin{array}{llll}\zeta_{t}^{\prime} & u_{t} & 0 & \ldots\end{array}\right]^{\prime}$, where u_{t} is the matrix product $Z_{t} \zeta_{t}$. Note that the length of the new state vector is $k+$ length $\left(\alpha_{t}\right)=k+4$. The new system matrices, in block form, are

$$
Z_{t}^{\dagger}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & \ldots & 0
\end{array}\right], \quad T_{t}^{\dagger}=\left[\begin{array}{cccc}
T_{t} & 0 & \ldots & 0 \\
Z_{t+1} T_{t} & \phi_{1} & \ldots & \phi_{k} \\
0 & I_{k-1, k-1} & & 0
\end{array}\right]
$$

where $I_{k-1, k-1}$ is the $k-1$ dimensional identity matrix and

$$
Q_{t}^{\dagger}=\left[\begin{array}{ccc}
Q_{t} & Q_{t} Z_{t}^{\prime} & 0 \\
Z_{t} Q_{t} & Z_{t} Q_{t} Z_{t}^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Note that the T and Q matrices of the random walk with predictors model are time invariant, and in the expressions above their time indices are kept because they illustrate the pattern for more general models. The initial state vector is diffuse, with

$$
P_{*}^{\dagger}=\left[\begin{array}{cc}
P_{*} & 0 \\
0 & 0
\end{array}\right], \quad P_{\infty}^{\dagger}=\left[\begin{array}{cc}
P_{\infty} & 0 \\
0 & I_{k, k}
\end{array}\right]
$$

The parameters of this model are the disturbance variances σ_{ϵ}^{2} and σ_{η}^{2}, the lag coefficients $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$, and the regression coefficients β_{1} and β_{2}. As before, the regression coefficients get estimated during the state smoothing, and the other parameters are estimated by maximizing the likelihood.

Outlier Detection

In time series analysis it is often useful to detect changes over time in the characteristics of the response series. In the UCM procedure you can search for two types of changes, additive outliers (AO) and level shifts (LS). An additive outlier is an unusual value in the series, the cause of which might be a data recording error or a temporary shock to the series generation process. A level shift represents a permanent shift, either up or down, in the level of the series. You can control different aspects of the outlier search, such as the significance level of the reported outliers, by choosing different options in the OUTLIER statement. The search for AOs is done by default, whereas the CHECKBREAK option in the LEVEL statement must be used to turn on the search for LSs.

The outlier detection process implemented in the UCM procedure is based on de Jong and Penzer (1998). In this approach the fitted model is taken to be the null model, and the series values and level shifts that are not adequately accounted for by the null model are flagged as outliers. The unusualness of a response series value at a particular time point t_{0}, with respect to the fitted model, can be judged by estimating its value based on the rest of the data (that is, the series obtained
by deleting the series value at t_{0}) and comparing the estimated value to the observed value. If the difference between the estimated and observed values is statistically significant, then such value can be regarded as an AO. Note that this difference between the estimated and observed values is also the regression coefficient of a dummy regressor that takes the value 1.0 at t_{0} and is 0.0 elsewhere, assuming such a regressor is added to the null model. In this way the series value at t_{0} is regarded as AO if the regression coefficient of this dummy regressor is significant. Similarly, you can say that a level shift has occurred at a time point t_{0} if the regression coefficient of a regressor, which is 0.0 before t_{0} and 1.0 at t_{0} and thereafter, is statistically significant. De Jong and Penzer (1998) provide an efficient way to compute such AO and LS regression coefficients and their standard errors at all time points in the series. The outlier summary table, which is produced by default, simply lists the most statistically significant candidates among these.

Missing Values

Embedded missing values in the dependent variable usually cause no problems in UCM modeling. However, no embedded missing values are allowed in the predictor variables. Certain patterns of missing values in the dependent variable can lead to failure of the initialization step of the diffuse Kalman filtering for some models. For example, if in a monthly series all values are missing for a certain month—say, May—then a BSM with monthly seasonality leads to such a situation. However, in this case the initialization step can complete successfully for a nonseasonal model such as local linear model.

Parameter Estimation

The parameter vector in a UCM consists of the variances of the disturbance terms of the unobserved components, the damping coefficients and frequencies in the cycles, the damping coefficient in the autoregression, the lag coefficients of the dependent lags, and the regression coefficients in the regression terms. The regression coefficients are always part of the state vector and are estimated by state smoothing. The remaining parameters are estimated by maximizing either the full diffuse likelihood or the nondiffuse likelihood. The decision to use the full diffuse likelihood or the nondiffuse likelihood depends on the presence or absence of the dependent lag coefficients in the parameter vector. If the parameter vector does not contain any dependent lag coefficients, then the full diffuse likelihood is used. If, on the other hand, the parameter vector does contain some dependent lag coefficients, then the parameters are estimated by maximizing the nondiffuse likelihood. The optimization of the full diffuse likelihood is often unstable when the parameter vector contains dependent lag coefficients. In this sense, when the parameter vector contains dependent lag coefficients, the parameter estimates are not true maximum likelihood estimates.

The optimization of the likelihood, either full or nondiffuse, is carried out using one of several nonlinear optimization algorithms. The user can control many aspects of the optimization process by using the NLOPTIONS statement and by providing the starting values of the parameters while specifying the corresponding components. However, in most cases the default settings work quite well. The optimization process is not guaranteed to converge to a maximum likelihood estimate. In
most cases the difficulties in parameter estimation are associated with the specification of a model that is not appropriate for the series being modeled.

Parameter Estimation by Profile Likelihood Optimization

If a disturbance variance, such as the disturbance variance of the irregular component, is a part of the UCM and is a free parameter, then it can be profiled out of the likelihood. This means solving analytically for its optimum and plugging this expression back into the likelihood formula, giving rise to the so-called profile likelihood. The expression of the profile likelihood and the MLE of the profiled variance are given earlier in the section "The UCMs as State Space Models" on page 1787, where the computation of the likelihood of the state space model is also discussed.

In some situations the optimization of the profile likelihood can be more efficient because the number of parameters to optimize is reduced by one; however, for a variety of reasons such gains might not always be observed. Moreover, in theory the estimates obtained by optimizing the profile likelihood and the usual likelihood should be the same, but in practice this might not hold because of numerical rounding and other conditions.

In the UCM procedure, by default the usual likelihood is optimized if any of the disturbance variance parameters is held fixed to a nonzero value by using the NOEST option in the corresponding component statement. In other cases the decision whether to optimize the profile likelihood or the usual likelihood is based on several factors that are difficult to document. You can choose which likelihood to optimize during parameter estimation by specifying the PROFILE option for the profile likelihood optimization or the NOPROFILE option for the usual likelihood optimization. In the presence of the PROFILE option, the disturbance variance to profile is checked in a specific order, so that if the irregular component disturbance variance is free then it is always chosen. The situation in other cases is more complicated.

Profiling in the Presence of Fixed Variance Parameters

Note that when the parameter estimation is done by optimizing the profile likelihood, the interpretation of the variance parameters that are held fixed to nonzero values changes. In the presence of the PROFILE option, the disturbance variances that are held at a fixed value by using the NOEST option in their respective component statements are interpreted as being restricted to be that fixed multiple of the profiled variance rather than being fixed at that nominal value. That is, implicitly, the parameter estimation is done under the restriction of holding the disturbance variance ratio fixed at a given value rather than the disturbance variance itself. See Example 29.5 for an example of this type of restriction to obtain a UC model that is equivalent to the famous Hodrick-Prescott filter.

t values

The t values reported in the table of parameter estimates are approximations whose accuracy depends on the validity of the model, the nature of the model, and the length of the observed series. The distributional properties of the maximum likelihood estimates of general unobserved components models have not been explored fully; therefore the probability values that correspond to a t distribution should be interpreted carefully, as they can be misleading. This is particularly true if the
parameters in question are close to the boundary of the parameter space. The two sources by Harvey $(1989,2001)$ are good references for information about this topic. For some parameters, such as, the cycle period, the reported t values are uninformative because comparison of the estimated parameter with zero is never needed. In such cases the t values and the corresponding probability values should be ignored.

Computational Issues

Convergence Problems

As explained in the section "Parameter Estimation" on page 1797, the model parameters are estimated by nonlinear optimization of the likelihood. This process is not guaranteed to succeed. For some data sets, the optimization algorithm can fail to converge. Nonconvergence can result from a number of causes, including flat or ridged likelihood surfaces and ill-conditioned data. It is also possible for the algorithm to converge to a point that is not the global optimum of the likelihood.

If you experience convergence problems, the following points might be helpful:

- Data that are extremely large or extremely small can adversely affect results because of the internal tolerances used during the filtering steps of the likelihood calculation. Rescaling the data can improve stability.
- Examine your model for redundancies in the included components and regressors. If some of the included components or regressors are nearly collinear to each other, then the optimization process can become unstable.
- Experimenting with different options offered by the NLOPTIONS statement can help.
- Lack of convergence can indicate model misspecification or a violation of the normality assumption.

Computer Resource Requirements

The computing resources required for the UCM procedure depend on several factors. The memory requirement for the procedure is largely dependent on the number of observations to be processed and the size of the state vector underlying the specified model. If n denotes the sample size and m denotes the size of the state vector, the memory requirement for the smoothing stage of the Kalman filter is of the order of $6 \times 8 \times n \times m^{2}$ bytes, ignoring the lower-order terms. If the smoothed component estimates are not needed then the memory requirement is of the order of $6 \times 8 \times\left(m^{2}+n\right)$ bytes. Besides m and n, the computing time for the parameter estimation depends on the type of components included in the model. For example, the parameter estimation is usually faster if the model parameter vector consists only of disturbance variances, because in this case there is an efficient way to compute the likelihood gradient.

Displayed Output

The default printed output produced by the UCM procedure is described in the following list:

- brief information about the input data set, including the data set name and label, and the name of the ID variable specified in the ID statement
- summary statistics for the data in the estimation and forecast spans, including the names of the variables in the model, their categorization as dependent or predictor, the index of the beginning and ending observations in the spans, the total number of observations and the number of missing observations, the smallest and largest measurements, and the mean and standard deviation
- information about the model parameters at the start of the model-fitting stage, including the fixed parameters in the model and the initial estimates of the free parameters in the model
- convergence status of the likelihood optimization process if any parameter estimation is done
- estimates of the free parameters at the end of the model fitting-stage, including the parameter estimates, their approximate standard errors, t statistics, and the approximate p-value
- the likelihood-based goodness-of-fit statistics, including the full likelihood, the portion of the likelihood corresponding to the diffuse initialization, the sum of squares of residuals normalized by their standard errors, and the information criteria: AIC, AICC, HQIC, BIC, and CAIC
- the fit statistics that are based on the raw residuals (observed minus predicted), including the mean squared error (MSE), the root mean squared error (RMSE), the mean absolute percentage error (MAPE), the maximum percentage error (MAXPE), the R square, the adjusted R square, the random walk R square, and Amemiya's R square
- the significance analysis of the components included in the model that is based on the estimation span
- brief information about the components included in the model
- additive outliers in the series, if any are detected
- the multistep series forecasts
- post-sample-prediction analysis table that compares the multistep forecasts with the observed series values, if the BACK= option is used in the FORECAST statement

Statistical Graphics

This section provides information about the basic ODS statistical graphics produced by the UCM procedure. To request graphics with PROC UCM, you must first enable ODS Graphics by specifying the ods Graphics on; statement. See Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide), for more information.

You can obtain most plots relevant to the specified model by using the global PLOTS= option in the PROC UCM statement. The plot of series forecasts in the forecast horizon is produced by default. You can further control the production of individual plots by using the PLOT= options in the different statements.

The main types of plots available are as follows:

- Time series plots of the component estimates, either filtered or smoothed, can be requested by using the PLOT= option in the respective component statements. For example, the use of PLOT=SMOOTH option in a CYCLE statement produces a plot of smoothed estimate of that cycle.
- Residual plots for model diagnostics can be obtained by using the PLOT= option in the ESTIMATE statement.
- Plots of series forecasts and model decompositions can be obtained by using the PLOT= option in the FORECAST statement.

The following example is a simple illustration of the available plot options.

Analysis of Sunspot Data: Illustration of ODS Graphics

In this example a well-known series, Wolfer's sunspot data (Anderson 1971), is considered. The data consist of yearly sunspot numbers recorded from 1749 to 1924 . These sunspot numbers are known to have a cyclical pattern with a period of about eleven years. The following DATA step creates the input data set:

```
data sunspot;
    input year wolfer @@;
    year = mdy(1,1, year);
    format year year4.;
datalines;
1749 809 1750 834 1751 477 1752 478 1753 307 1754 122 1755 
1756 102 1757 324 1758 476 1759 540 1760 629 1761 859 1762 612
... more lines ...
```

The following statements specify a UCM that includes a cycle component and a random walk trend component:

```
ods graphics on;
proc ucm data=sunspot;
    id year interval=year;
    model wolfer;
    irregular;
    level ;
    cycle plot=(filter smooth);
    estimate back=24 plot=(loess panel cusum wn);
```

```
    forecast back=24 lead=24 plot=(forecasts decomp);
run;
```

The following subsections explain the graphics produced by the above statements.

Component Plots

The plots in Figure 29.8 and Figure 29.9, produced by specifying PLOT=(FILTER SMOOTH) in the CYCLE statement, show the filtered and smoothed estimates, respectively, of the cycle component in the model. Note that the smoothed estimate appears smoother than the filtered estimate. This is always true because the filtered estimate of a component at time t is based on the observations prior to time t-that is, it uses measurements from the first observation up to the $(t-1)$ th observation. On the other hand, the corresponding smoothed estimate uses all the available observations-that is, all the measurements from the first observation to the last. This makes the smoothed estimate of the component more precise than the filtered estimate for the time points within historical period. In the forecast horizon, both filtered and smoothed estimates are identical, being based on the same set of observations.

Figure 29.8 Sunspots Series: Filtered Cycle

Figure 29.9 Sunspots Series: Smoothed Cycle

Residual Diagnostics

If the fitted model is appropriate for the given data, then the corresponding one-step-ahead residuals should be approximately white-that is, uncorrelated-and approximately normal. Moreover, the residuals should not display any discernible pattern. You can detect departures from these conditions graphically. Different residual diagnostic plots can be requested by using the PLOT=option in the ESTIMATE statement.

The normality can be checked by examining the histogram and the normal quantile plot of residuals. The whiteness can be checked by examining the ACF and PACF plots that show the sample autocorrelation and sample partial-autocorrelation at different lags. The diagnostic panel shown in Figure 29.10, produced by specifying PLOT=PANEL, contains these four plots.

Figure 29.10 Sunspots Series: Residual Diagnostics

The residual histogram and Q-Q plot show no serious violation of normality. The histogram appears reasonably symmetric and follows the overlaid normal density curve reasonably closely. Similarly in the Q-Q plot the residuals follow the reference line fairly closely. The ACF and PACF plots also do not exhibit any violation of the whiteness assumption; the correlations at all nonzero lags seem to be insignificant.

The residual whiteness can also be formally tested by using the Ljung-Box portmanteau test. The plot in Figure 29.11, produced by specifying PLOT=WN, shows the p-values of the Ljung-Box test statistics at different lags. In these plots the p-values for the first few lags, equal to the number of estimated parameters in the model, are not shown because they are always missing. This portion of the plot is shaded blue to indicate this fact. In the case of this model, five parameters are estimated so the p-values for the first five lags are not shown. The p-values are displayed on a \log scale in such a way that higher bars imply more extreme test statistics. In this plot some early p-values appear extreme. However, these p-values are based on large sample theory, which suggests that these statistics should be examined for lags larger than the square root of sample size. In this example it means that the p-values for the first $\sqrt{154} \approx 12$ lags can be ignored. With this consideration, the plot shows no violation of whiteness since the p-values after the 12th lag do not appear extreme.

Figure 29.11 Sunspots Series: Ljung-Box Portmanteau Test

The plot in Figure 29.12, produced by specifying PLOT=LOESS, shows the residuals plotted against time with an overlaid LOESS curve. This plot is useful for checking whether any discernible pattern remains in the residuals. Here again, no significant pattern appears to be present.

Figure 29.12 Sunspots Series: Residual Loess Plot

The plot in Figure 29.13, produced by specifying PLOT=CUSUM, shows the cumulative residuals plotted against time. This plot is useful for checking structural breaks. Here, there appears to be no evidence of structural break since the cumulative residuals remain within the confidence band throughout the sample period. Similarly you can request a plot of the squared cumulative residuals by specifying PLOT=CUSUMSQ.

Figure 29.13 Sunspots Series: CUSUM Plot

Brockwell and Davis (1991) can be consulted for additional information on diagnosing residuals. For more information on CUSUM and CUSUMSQ plots, you can consult Harvey (1989).

Forecast and Series Decomposition Plots

You can use the PLOT= option in the FORECAST statement to obtain the series forecast plot and the series decomposition plots. The series decomposition plots show the result of successively adding different components in the model starting with the trend component. The IRREGULAR component is left out of this process. The following two plots, produced by specifying PLOT=DECOMP, show the results of successive component addition for this example. The first plot, shown in Figure 29.14, shows the smoothed trend component and the second plot, shown in Figure 29.15, shows the sum of smoothed trend and cycle.

Figure 29.14 Sunspots Series: Smoothed Trend

Figure 29.15 Sunspots Series: Smoothed Trend plus Cycle

Finally, Figure 29.16 shows the forecast plot.

Figure 29.16 Sunspots Series: Series Forecasts

ODS Table Names

The UCM procedure assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 29.2.

Table 29.2 ODS Tables Produced by PROC UCM

ODS Table Name	Description	Statement
Tables Summarizing the Estimation and Forecast Spans		
EstimationSpan	Estimation span summary information	default
ForecastSpan	Forecast span summary in- formation	default
Tables Related to Model Parameters		
ConvergenceStatus	Convergence status of the es- timation process	default

Table 29.2 continued

ODS Table Name	Description	Statement	Option
FixedParameters	Fixed parameters in the model		default
InitialParameters	Initial estimates of the free parameters		default
ParameterEstimates	Final estimates of the free parameters		default
Tables Related to Model Information and Diagnostics			
BlockSeasonDescription	Information about the block seasonals in the model		default
ComponentSignificance	Significance analysis of the components in the model		default
CycleDescription	Information about the cycles in the model		default
FitStatistics	Fit statistics based on the one-step-ahead predictions		default
FitSummary	Likelihood-based fit statistics		default
OutlierSummary	Summary table of the detected outliers		default
SeasonDescription	Information about the seasonals in the model		default
SeasonHarmonics	Summary of harmonics in a trigonometric seasonal component	SEASON	PRINT=HARMONICS
SplineSeasonDescription	Information about the splineseasonals in the model		default
TrendInformation	Summary information of the level and slope components		default
Tables Related to Filtered Component Estimates			
FilteredAutoReg	Filtered estimate of an autoreg component	AUTOREG	PRINT=FILTER
FilteredBlockSeason	Filtered estimate of a block seasonal component	BLOCKSEASON	PRINT=FILTER
FilteredCycle	Filtered estimate of a cycle component	CYCLE	PRINT=FILTER
FilteredIrregular	Filtered estimate of the irregular component	IRREGULAR	PRINT=FILTER
FilteredLevel	Filtered estimate of the level component	LEVEL	PRINT=FILTER
FilteredRandomReg	Filtered estimate of the timevarying random-regression coefficient	RANDOMREG	PRINT=FILTER

Table 29.2 continued

ODS Table Name	Description	Statement	Option
FilteredSeason	Filtered estimate of a sea- sonal component	SEASON	PRINT=FILTER
FilteredSlope	Filtered estimate of the slope component	SLOPE	PRINT=FILTER
FilteredSplineReg	Filtered estimate of the time- varying spline-regression co- efficient	SPLINEREG	PRINT=FILTER
FilteredSplineSeason	Filtered estimate of a spline- seasonal component	SPLINESEASON PRINT=FILTER	

Table 29.2 continued

ODS Table Name	Description	Statement	Option
Forecasts PostSamplePrediction	Dependent series forecasts Forecasting performance in the holdout period	FORECAST	BACK=
SmoothedAllExceptIrreg	Smoothed estimate of sum of all components except the ir-	FORECAST	PRINT=DECOMP
regular component	BoothedTrend	Smoothed estimate of trend FORECAST	PRINT= DECOMP
SmoothedTrendReg	Smoothed estimate of trend plus regression	FORECAST	PRINT=DECOMP
SmoothedTrendRegCyc	Smoothed estimate of trend plus regression plus cycles and autoreg	FORECAST	PRINT=DECOMP

Note: The tables are related to a single series within a BY group. In the case of models that contain multiple cycles, seasonal components, or block seasonal components, the corresponding component estimate tables are sequentially numbered. For example, if a model contains two cycles and a seasonal component and the PRINT=SMOOTH option is used for each of them, the ODS tables containing the smoothed estimates will be named SmoothedCycle1, SmoothedCycle2, and SmoothedSeason. Note that the seasonal table is not numbered because there is only one seasonal component.

ODS Graph Names

To request graphics with PROC UCM, you must first enable ODS Graphics by specifying the oDS graphics on; statement. See Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide), for more information. You can reference every graph produced through ODS Graphics with a name. The names of the graphs that PROC UCM generates are listed in Table 29.3, along with the required statements and options.

Table 29.3 ODS Graphics Produced by PROC UCM

ODS Graph Name	Description	Statement	Option
Plots Related to Residual Analysis ErrorACFPlot	Prediction error auto- correlation plot	ESTIMATE	PLOT=ACF
ErrorPACFPlot	Prediction partial-autocorrelation plot	ESTIMATE	PLOT=PACF

Table 29.3 continued

ODS Graph Name	Description	Statement	Option
ErrorHistogram	Prediction error histogram	ESTIMATE	PLOT=NORMAL
ErrorQQPlot	Prediction error normal quantile plot	ESTIMATE	PLOT=QQ
ErrorPlot	Plot of prediction errors	ESTIMATE	PLOT=RESIDUAL
ErrorWhiteNoiseLogProbPlot	Plot of p-values at different lags for the Ljung-Box portmanteau white noise test statistics	ESTIMATE	PLOT $=W \mathrm{~W}$
CUSUMPlot	Plot of cumulative residuals	ESTIMATE	PLOT=CUSUM
CUSUMSQPlot	Plot of cumulative squared residuals	ESTIMATE	PLOT=CUSUMSQ
ModelPlot	Plot of one-step-ahead forecasts in the estimation span	ESTIMATE	PLOT=MODEL
PanelResidualPlot	Panel of residual diagnostic plots	ESTIMATE	PLOT=PANEL
ResidualLoessPlot	Time series plot of residuals with superimposed LOESS smoother	ESTIMATE	PLOT=LOESS
Plots Related to Filtered Component Estimates			
FilteredAutoregPlot	Plot of filtered autoreg component	AUTOREG	PLOT=FILTER
FilteredBlockSeasonPlot	Plot of filtered block season component	BLOCKSEASON	PLOT=FILTER
FilteredCyclePlot	Plot of filtered cycle component	CYCLE	PLOT=FILTER
FilteredIrregularPlot	Plot of filtered irregular component	IRREGULAR	PLOT=FILTER
FilteredLevelPlot	Plot of filtered level component	LEVEL	PLOT=FILTER
FilteredRandomRegPlot	Plot of filtered timevarying regression coefficient	RANDOMREG	PLOT=FILTER
FilteredSeasonPlot	Plot of filtered season component	SEASON	PLOT=FILTER
FilteredSlopePlot	Plot of filtered slope component	SLOPE	PLOT=FILTER

Table 29.3 continued

ODS Graph Name	Description	Statement	Option
FilteredSplineRegPlot	Plot of filtered time- varying regression co- efficient	SPLINEREG	PLOT=FILTER
FilteredSplineSeasonPlot	Plot of filtered spline-- season component	SPLINESEASON	PLOT=FILTER
AnnualSeasonPlot	Plot of annual variation in the filtered season component	SEASON	PLOT=F_ANNUAL

Plots Related to Smoothed Component Estimates

SmoothedAutoregPlot	Plot of smoothed au- toreg component	AUTOREG	PLOT=SMOOTH
SmoothedBlockSeasonPlot	Plot of smoothed block season component	BLOCKSEASON	PLOT=SMOOTH
SmoothedCyclePlot	Plot of smoothed cycle component	CYCLE	PLOT=SMOOTH
SmoothedIrregularPlot	Plot of smoothed irreg-- ular component	IRREGULAR	PLOT=SMOOTH
SmoothedLevelPlot	Plot of smoothed level component	LEVEL	PLOT=SMOOTH
SmoothedRandomRegPlot	Plot of smoothed time- varying regression co- efficient	RANDOMREG	PLOT=SMOOTH
SmoothedSeasonPlot	Plot of smoothed sea- son component	SEASON	PLOT=SMOOTH
SmoothedSlopePlot	Plot of smoothed slope component	SLOPE	PLOT=SMOOTH
SmoothedSplineRegPlot	Plot of smoothed time- varying regression co- efficient	SPLINEREG	PLOT=SMOOTH
SmoothedSplineSeasonPlot	Plot of smoothed spline-season compo-	SPLINESEASON	PLOT=SMOOTH
AnnualSeasonPlot	nent	Plot of annual variation in the smoothed season component	SEASON

Plots Related to Series Decomposition and Forecasting ForecastsOnlyPlot

Series forecasts beyond the historical period

Table 29.3 continued

ODS Graph Name	Description	Statement	Option
ForecastsPlot	One-step-ahead as well as multistepahead forecasts	FORECAST	PLOT=FORECASTS
FilteredAllExceptIrregPlot	Plot of sum of all filtered components except the irregular component	FORECAST	PLOT $=$ FDECOMP
FilteredTrendPlot	Plot of filtered trend	FORECAST	PLOT $=$ FDECOMP
FilteredTrendRegCycPlot	Plot of sum of filtered trend, cycles, and regression effects	FORECAST	PLOT = FDECOMP
FilteredTrendRegPlot	Plot of filtered trend plus regression effects	FORECAST	PLOT $=$ FDECOMP
SmoothedAllExceptIrregPlot	Plot of sum of all smoothed components except the irregular component	FORECAST	PLOT $=$ DECOMP
SmoothedTrendPlot	Plot of smoothed trend	FORECAST	PLOT $=$ TREND
SmoothedTrendRegPlot	Plot of smoothed trend plus regression effects	FORECAST	PLOT $=$ DECOMP
SmoothedTrendRegCycPlot	Plot of sum of smoothed trend, cycles, and regression effects	FORECAST	$\mathrm{PLOT}=$ DECOMP
FilteredAllExceptIrregVarPlot	Plot of standard error of sum of all filtered components except the irregular	FORECAST	PLOT $=$ FDECOMPVAR
FilteredTrendVarPlot	Plot of standard error of filtered trend	FORECAST	PLOT $=$ FDECOMPVAR
FilteredTrendRegVarPlot	Plot of standard error of filtered trend plus regression effects	FORECAST	PLOT $=$ FDECOMPVAR
FilteredTrendRegCycVarPlot	Plot of standard error of filtered trend, cycles, and regression effects	FORECAST	PLOT $=$ FDECOMPVAR
SmoothedAllExceptIrregVarPlot	Plot of standard error of sum of all smoothed components except the irregular	FORECAST	PLOT $=$ DECOMPVAR
SmoothedTrendVarPlot	Plot of standard error of smoothed trend	FORECAST	PLOT $=$ DECOMPVAR

Table 29.3 continued

ODS Graph Name	Description	Statement	Option		
SmoothedTrendRegVarPlot	Plot of standard error of smoothed trend plus	FORECAST	PLOT= DECOMPVAR		
SmoothedTrendRegCycVarPlot	regression effects	Plot of standard error of smoothed trend, cy- cles, and regression ef- fects	FORECAST	PLOT= DECOMPVAR \quad \quad	
:---					

OUTFOR= Data Set

You can use the OUTFOR= option in the FORECAST statement to store the series and component forecasts produced by the procedure. This data set contains the following columns:

- the BY variables
- the ID variable. If an ID variable is not specified, then a numerical variable, _ID_, is created that contains the observation numbers from the input data set.
- the dependent series and the predictor series
- FORECAST, a numerical variable containing the one-step-ahead predicted values and the multistep forecasts
- RESIDUAL, a numerical variable containing the difference between the actual and forecast values
- STD, a numerical variable containing the standard error of prediction
- LCL and UCL, numerical variables containing the lower and upper forecast confidence limits
- S_SERIES and VS_SERIES, numerical variables containing the smoothed values of the dependent series and their variances
- S_IRREG and VS_IRREG, numerical variables containing the smoothed values of the irregular component and their variances. These variables are present only if the model has an irregular component.
- F_LEVEL, VF_LEVEL, S_LEVEL, and VS_LEVEL, numerical variables containing the filtered and smoothed values of the level component and the respective variances. These variables are present only if the model has a level component.
- F_SLOPE, VF_SLOPE, S_SLOPE, and VS_SLOPE, numerical variables containing the filtered and smoothed values of the slope component and the respective variances. These variables are present only if the model has a slope component.
- F_AUTOREG, VF_AUTOREG, S_AUTOREG, and VS_AUTOREG, numerical variables containing the filtered and smoothed values of the autoreg component and the respective variances. These variables are present only if the model has an autoreg component.
- F_CYCLE, VF_CYCLE, S_CYCLE, and VS_CYCLE, numerical variables containing the filtered and smoothed values of the cycle component and the respective variances. If there are multiple cycles in the model, these variables are sequentially numbered as F_CYCLE1, F_CYCLE2, etc. These variables are present only if the model has at least one cycle component.
- F_SEASON, VF_SEASON, S_SEASON, and VS_SEASON, numerical variables containing the filtered and smoothed values of the season component and the respective variances. If there are multiple seasons in the model, these variables are sequentially numbered as F_SEASON1, F_SEASON2, etc. These variables are present only if the model has at least one season component.
- F_BLKSEAS, VF_BLKSEAS, S_BLKSEAS, and VS_BLKSEAS, numerical variables containing the filtered and smoothed values of the blockseason component and the respective variances. If there are multiple block seasons in the model, these variables are sequentially numbered as F_BLKSEAS1, F_BLKSEAS2, etc.
- F_SPLSEAS, VF_SPLSEAS, S_SPLSEAS, and VS_SPLSEAS, numerical variables containing the filtered and smoothed values of the splineseason component and the respective variances. If there are multiple spline seasons in the model, these variables are sequentially numbered as F_SPLSEAS1, F_SPLSEAS2, etc. These variables are present only if the model has at least one splineseason component.
- Filtered and smoothed estimates, and their variances, of the time-varying regression coefficients of the variables specified in the RANDOMREG and SPLINEREG statements. A variable is not included if its coefficient is time-invariant, that is, if the associated disturbance variance is zero.
- S_TREG and VS_TREG, numerical variables containing the smoothed values of level plus regression component and their variances. These variables are present only if the model has at least one predictor variable or has dependent lags.
- S_TREGCYC and VS_TREGCYC, numerical variables containing the smoothed values of level plus regression plus cycle component and their variances. These variables are present only if the model has at least one cycle or an autoreg component.
- S_NOIRREG and VS_NOIRREG, numerical variables containing the smoothed values of the sum of all components except the irregular component and their variances. These variables are present only if the model has at least one seasonal or block seasonal component.

OUTEST= Data Set

You can use the OUTEST= option in the ESTIMATE statement to store the model parameters and the related estimation details. This data set contains the following columns:

- the BY variables
- COMPONENT, a character variable containing the name of the component corresponding to the parameter being described
- PARAMETER, a character variable containing the parameter name
- TYPE, a character variable indicating whether the parameter value was fixed by the user or estimated
- _STATUS_, a character variable indicating whether the parameter estimation process converged or failed or there was an error of some other kind
- ESTIMATE, a numerical variable containing the parameter estimate
- STD, a numerical variable containing the standard error of the parameter estimate. This has a missing value if the parameter value is fixed.
- TVALUE, a numerical variable containing the t-statistic. This has a missing value if the parameter value is fixed.
- PVALUE, a numerical variable containing the p-value. This has a missing value if the parameter value is fixed.

Statistics of Fit

This section explains the goodness-of-fit statistics reported to measure how well the specified model fits the data.

First the various statistics of fit that are computed using the prediction errors, $y_{t}-\hat{y}_{t}$, are considered. In these formulas, n is the number of nonmissing prediction errors and k is the number of fitted parameters in the model. Moreover, the sum of squared errors, $S S E=\sum\left(y_{t}-\hat{y}_{t}\right)^{2}$, and the total sum of squares for the series corrected for the mean, $S S T=\sum\left(y_{t}-\bar{y}\right)^{2}$, where \bar{y} is the series mean, and the sums are over all the nonmissing prediction errors.

Mean Squared Error

The mean squared prediction error, $M S E=\frac{1}{n} S S E$

Root Mean Squared Error

The root mean square error, $\mathrm{RMSE}=\sqrt{M S E}$

Mean Absolute Percent Error

The mean absolute percent prediction error, $\operatorname{MAPE}=\frac{100}{n} \sum_{t=1}^{n}\left|\left(y_{t}-\hat{y}_{t}\right) / y_{t}\right|$.
The summation ignores observations where $y_{t}=0$.
R-square
The R-square statistic, $R^{2}=1-S S E / S S T$.
If the model fits the series badly, the model error sum of squares, $S S E$, might be larger than $S S T$ and the R-square statistic will be negative.

Adjusted R-square

The adjusted R-square statistic, $1-\left(\frac{n-1}{n-k}\right)\left(1-R^{2}\right)$

Amemiya's Adjusted R-square

Amemiya's adjusted R-square, $1-\left(\frac{n+k}{n-k}\right)\left(1-R^{2}\right)$

Random Walk R-square

The random walk R-square statistic (Harvey's R-square statistic that uses the random walk model for comparison), $1-\left(\frac{n-1}{n}\right) S S E / R W S S E$, where $R W S S E=\sum_{t=2}^{n}\left(y_{t}-y_{t-1}-\mu\right)^{2}$, and $\mu=\frac{1}{n-1} \sum_{t=2}^{n}\left(y_{t}-y_{t-1}\right)$

Maximum Percent Error

The largest percent prediction error, $100 \max \left(\left(y_{t}-\hat{y}_{t}\right) / y_{t}\right)$. In this computation the observations where $y_{t}=0$ are ignored.

The likelihood-based fit statistics are reported separately (see the section "The UCMs as State Space Models" on page 1787). They include the full \log likelihood (L_{∞}), the diffuse part of the log likelihood, the normalized residual sum of squares, and several information criteria: AIC, AICC, HQIC, BIC, and CAIC. Let q denote the number of estimated parameters, n be the number of nonmissing measurements in the estimation span, and d be the number of diffuse elements in the initial state vector that are successfully initialized during the Kalman filtering process. Moreover, let $n^{*}=(n-d)$. The reported information criteria, all in smaller-is-better form, are described in Table 29.4:

Table 29.4 Information Criteria

Criterion	Formula	Reference
AIC	$-2 L_{\infty}+2 q$	Akaike (1974)
AICC	$-2 L_{\infty}+2 q n^{*} /\left(n^{*}-q-1\right)$	Hurvich and Tsai (1989)
		Burnham and Anderson (1998)
HQIC	$-2 L_{\infty}+2 q \log \log \left(n^{*}\right)$	Hannan and Quinn (1979)
BIC	$-2 L_{\infty}+q \log \left(n^{*}\right)$	Schwarz (1978)
CAIC	$-2 L_{\infty}+q\left(\log \left(n^{*}\right)+1\right)$	Bozdogan (1987)

Examples: UCM Procedure

Example 29.1: The Airline Series Revisited

The series in this example, the monthly airline passenger series, has already been discussed earlier; see the section "A Seasonal Series with Linear Trend" on page 1743. Recall that the series consists of monthly numbers of international airline travelers (from January 1949 to December 1960). Here additional output features of the UCM procedure are illustrated, such as how to use the ESTIMATE and FORECAST statements to limit the span of the data used in parameter estimation and forecasting. The following statements fit a BSM to the logarithm of the airline passenger numbers. The disturbance variance for the slope component is held fixed at value 0 ; that is, the trend is locally linear with constant slope. In order to evaluate the performance of the fitted model on observed data,
some of the observed data are withheld during parameter estimation and forecast computations. The observations in the last two years, years 1959 and 1960, are not used in parameter estimation, while the observations in the last year, year 1960, are not used in the forecasting computations. This is done using the BACK= option in the ESTIMATE and FORECAST statements. In addition, a panel of residual diagnostic plots is obtained using the PLOT=PANEL option in the ESTIMATE statement.

```
data seriesG;
    set sashelp.air;
    logair = log(air);
run;
proc ucm data = seriesG;
    id date interval = month;
    model logair;
    irregular;
    level;
    slope var = 0 noest;
    season length = 12 type=trig;
    estimate back=24 plot=panel;
    forecast back=12 lead=24 print=forecasts;
run;
```

The following tables display the summary of data used in estimation and forecasting (Output 29.1.1 and Output 29.1.2). These tables provide simple summary statistics for the estimation and forecast spans; they include useful information such as the beginning and ending dates of the span, the number of nonmissing values, etc.

Output 29.1.1 Observation Span Used in Parameter Estimation (partial output)

Variable	Type	First	Last	Nobs	Mean
logair	Dependent	JAN1949	DEC1958	120	5.43035

Output 29.1.2 Observation Span Used in Forecasting (partial output)

Variable	Type	First	Last	Nobs	Mean
logair	Dependent	JAN1949	DEC1959	132	5.48654

The following tables display the fixed parameters in the model, the preliminary estimates of the free parameters, and the final estimates of the free parameters (Output 29.1.3, Output 29.1.4, and Output 29.1.5).

Output 29.1.3 Fixed Parameters in the Model

	The UCM Procedure	
Fixed Parameters in the Model		
Component	Parameter	Value
Slope	Error Variance	0

Output 29.1.4 Starting Values for the Parameters to Be Estimated

Preliminary	Estimates of the Free Parameters	
Component	Parameter	Estimate
Irregular	Error Variance	6.64120
Level	Error Variance	2.49045
Season	Error Variance	1.26676

Output 29.1.5 Maximum Likelihood Estimates of the Free Parameters

Component	Final Estimates of the Free Parameters					
		Approx			Approx	
	Parameter	Estimate	Std Error	t Value	Pr > \|t	
Irregular	Error Variance	0.00018686	0.0001212	1.54	0.1233	
Level	Error Variance	0.00040314	0.0001566	2.57	0.0100	
Season	Error Variance	0.00000350	1.66319E-6	2.10	0.0354	

Two types of goodness-of-fit statistics are reported after a model is fit to the series (see Output 29.1.6 and Output 29.1.7). The first type is the likelihood-based goodness-of-fit statistics, which include the full likelihood of the data, the diffuse portion of the likelihood (see the section "Details: UCM Procedure" on page 1781), and the information criteria. The second type of statistics is based on the raw residuals, residual $=$ observed - predicted. If the model is nonstationary, then one-stepahead predictions are not available for some initial observations, and the number of values used in computing these fit statistics will be different from those used in computing the likelihood-based test statistics.

Output 29.1.6 Likelihood-Based Fit Statistics for the Airline Data

Likelihood Based Fit Statistics	
Statistic	Value
Full Log Likelihood	180.63
Diffuse Part of Log Likelihood	-13.93
Non-Missing Observations Used	120
Estimated Parameters	3
Initialized Diffuse State Elements	13
Normalized Residual Sum of Squares	107
AIC (smaller is better)	-355.3
BIC (smaller is better)	-347.2
AICC (smaller is better)	-355
HQIC (smaller is better)	-352
CAIC (smaller is better)	-344.2

Output 29.1.7 Residuals-Based Fit Statistics for the Airline Data

Fit Statistics Based on Residuals	
Mean Squared Error	0.00156
Root Mean Squared Error	0.03944
Mean Absolute Percentage Error	0.57677
Maximum Percent Error	2.19396
R-Square	0.98705
Adjusted R-Square	0.98680
Random Walk R-Square	0.86370
Amemiya's Adjusted R-Square	0.98630
Number of non-missing residuals used for	
computing the fit statistics = 107	

The diagnostic plots based on the one-step-ahead residuals are shown in Output 29.1.8. The residual histogram and the Q-Q plot show no reasons to question the approximate normality of the residual distribution. The remaining plots check for the whiteness of the residuals. The sample correlation plots, the autocorrelation function (ACF) and the partial autocorrelation function (PACF), also do not show any significant violations of the whiteness of the residuals. Therefore, on the whole, the model seems to fit the data well.

Output 29.1.8 Residual Diagnostics for the Airline Series Using a BSM

The forecasts are given in Output 29.1.9. In order to save the space,
the upper and lower confidence limit columns are dropped from the output, and only the rows corresponding to the year 1960 are shown. Recall that the actual measurements in the years 1959 and 1960 were withheld during the parameter estimation, and the ones in 1960 were not used in the forecast computations.

Output 29.1.9 Forecasts for the Airline Data

Obs	date	Forecast	StdErr	logair	Residual
133	JAN60	6.050	0.038	6.033	-0.017
134	FEB60	5.996	0.044	5.969	-0.027
135	MAR60	6.156	0.049	6.038	-0.118
136	APR60	6.124	0.053	6.133	0.010
137	MAY60	6.168	0.058	6.157	-0.011
138	JUN60	6.303	0.061	6.282	-0.021
139	JUL60	6.435	0.065	6.433	-0.002
140	AUG60	6.450	0.068	6.407	-0.043
141	SEP60	6.265	0.071	6.230	-0.035
142	OCT60	6.138	0.073	6.133	-0.005
143	NOV60	6.015	0.075	5.966	-0.049
144	DEC60	6.121	0.077	6.068	-0.053

The figure Output 29.1.10 shows the forecast plot. The forecasts in the year 1960 show that the model predictions were quite good.

Output 29.1.10 Forecast Plot of the Airline Series Using a BSM

Example 29.2: Variable Star Data

The series in this example is studied in detail in Bloomfield (2000). This series consists of brightness measurements (magnitude) of a variable star taken at midnight for 600 consecutive days. The data can be downloaded from a time series archive maintained by the University of York, England (http://www.york.ac.uk/depts/maths/data/ts/welcome.htm (series number 26)). The following DATA step statements read the data in a SAS data set.

```
data star;
    input magnitude @@;
    day = _n_;
datalines;
\begin{tabular}{rrrrrrrrrrrr}
25 & 28 & 31 & 32 & 33 & 33 & 32 & 31 & 28 & 25 & 22 & 18 \\
14 & 10 & 7 & 4 & 2 & 0 & 0 & 0 & 2 & 4 & 8 & 11 \\
15 & 19 & 23 & 26 & 29 & 32 & 33 & 34 & 33 & 32 & 30 & 27 \\
24 & 20 & 17 & 13 & 10 & 7 & 5 & 3 & 3 & 3 & 4 & 5 \\
7 & 10 & 13 & 16 & 19 & 22 & 24 & 26 & 27 & 28 & 29 & 28 \\
27 & 25 & 24 & 21 & 19 & 17 & 15 & 13 & 12 & 11 & 11 & 10
\end{tabular}
... more lines ...
```

The following statements use the TIMESERIES procedure to get a timeseries plot of the series (see Output 29.2.1).

```
proc timeseries data=star plot=series;
    var magnitude;
run;
```

Output 29.2.1 Plot of Star Brightness on Successive Days

The plot clearly shows the cyclic nature of the series. Bloomfield shows that the series is very well explained by a model that includes two deterministic cycles that have periods 29.0003 and 24.0001 days, a constant term, and a simple error term. He also mentions the difficulty involved in estimating the periods from the data (see Bloomfield 2000, Chapter 3). In his case the cycle periods are estimated by least squares, and the sum of squares surface has multiple local optima and ridges. The following statements show how to use the UCM procedure to fit this two-cycle model to the series. The constant term in the model is specified by holding the variance parameter of the level component to zero.

```
proc ucm data=star;
    model magnitude;
    irregular;
    level var=0 noest;
    cycle;
    cycle;
    estimate;
run;
```

The final parameter estimates and the goodness-of-fit statistics are shown in Output 29.2.2 and Output 29.2.3, respectively. The model fit appears to be good.

Output 29.2.2 Two-Cycle Model: Parameter Estimates

The UCM Procedure						
Final Estimates of the Free Parameters						
			Approx		Approx	
Component	Parameter	Estimate	Std Error	t Value	Pr > \|t	
Irregular	Error Variance	0.09257	0.0053845	17.19	$<.0001$	
Cycle_1	Damping Factor	1.00000	1.81175E-7	5519514	$<.0001$	
Cycle_1	Period	29.00036	0.0022709	12770.4	$<.0001$	
Cycle_1	Error Variance	0.00000882	$5.27213 \mathrm{E}-6$	1.67	0.0944	
Cycle_2	Damping Factor	1.00000	$2.11939 \mathrm{E}-7$	4718334	$<.0001$	
Cycle_2	Period	24.00011	0.0019128	12547.2	$<.0001$	
Cycle_2	Error Variance	0.00000535	$3.56374 \mathrm{E}-6$	1.50	0.1330	

Output 29.2.3 Two-Cycle Model: Goodness of Fit

Fit Statistics Based on Residuals	
Mean Squared Error	0.12072
Root Mean Squared Error	0.34745
Mean Absolute Percentage Error	2.65141
Maximum Percent Error	36.38991
R-Square	0.99850
Adjusted R-Square	0.99849
Random Walk R-Square	0.97281
Amemiya's Adjusted R-Square	0.99847
Number of non-missing residuals used for	
computing the fit statistics = 599	

A summary of the cycles in the model is given in Output 29.2.4.
Output 29.2.4 Two-Cycle Model: Summary

Name	Type	period	Rho	ErrorVar
Cycle_1	Stationary	29.00036	1.00000	0.00000882
Cycle_2	Stationary	24.00011	1.00000	0.00000535

Note that the estimated periods are the same as in Bloomfield's model, the damping factors are nearly equal to 1.0 , and the disturbance variances are very close to zero, implying persistent deterministic cycles. In fact, this model is identical to Bloomfield's model.

Example 29.3: Modeling Long Seasonal Patterns

This example illustrates some of the techniques you can use to model long seasonal patterns in a series. If the seasonal pattern is of moderate length and the underlying dynamics are simple, then it is easily modeled by using the basic settings of the SEASON statement and these additional techniques are not needed. However, if the seasonal pattern has a long season length and/or has a complex stochastic dynamics, then the techniques discussed here can be useful. You can obtain parsimonious models for a long seasonal pattern by using an appropriate subset of trigonometric harmonics, or by using a suitable spline function, or by using a block-season pattern in combination with a seasonal component of much smaller length. You can also vary the disturbance variances of the subcomponents that combine to form the seasonal component.

The time series used in this example consists of number of calls received per shift at a call center. Each shift is six hours long, and the first shift of the day begins at midnight, resulting in four shifts per day. The observations are available from December 15, 1999, to April 30, 2000. This series is seasonal with season length 28 , which is moderate, and in fact there is no particular need to use pattern approximation techniques in this case. However, it is adequate for demonstration purposes. The plan of this example is as follows. First an initial model with a full seasonal component is created. This model is used as a baseline for comparing alternate models created by the techniques that are being illustrated. In practice any candidate model is first checked for adequacy by using various diagnostic procedures. In this illustration the main focus is on the different ways a long seasonal pattern can be modeled and no model diagnostics are done for the models being entertained. The alternate models are compared by using the sum of absolute prediction errors in the holdout region.

The following DATA step statements create the input data set used in this example.

```
data callCenter;
    input calls @@;
    label calls= "Number of Calls Received in a 6 Hour Shift";
    start = '15dec99:00:00'dt;
    datetime = INTNX( 'dthour6', start, _n_-1 );
    format datetime datetime10.;
datalines;
\begin{tabular}{rrrrrrrrrr}
18 & 122 & 244 & 128 & 19 & 113 & 230 & 119 & 17 & 112 \\
219 & 93 & 14 & 73 & 139 & 53 & 11 & 32 & 74 & 56 \\
15 & 137 & 289 & 153 & 20 & 125 & 227 & 106 & 16 & 101
\end{tabular}
... more lines ...
```

Initial exploration of the series clearly indicates that the series does not show any significant trend, and time of day and day of the week have a significant influence on the number of calls received. These considerations suggest a simple random walk trend model along with a seasonal component of season length 28 , the total number of shifts in a week. The following statements specify this model. Note the PRINT=HARMONICS option in the SEASON statement, which produces a table that lists the full set of harmonics contributing to the seasonal along with the significance of their contribution. This table will be useful later in choosing a subset trigonometric model. The BACK=28 and the LEAD=28 specifications in the FORECAST statement create a holdout region of 28 observations. The sum of absolute prediction errors (SAE) in this holdout region are used to
compare the different models.

```
proc ucm data=callCenter;
    id datetime interval=dthour6;
    model calls;
    irregular;
    level;
    season length=28 type=trig
        print=(harmonics);
    estimate back=28;
    forecast back=28 lead=28;
run;
```

The forecasting performance of this model in the holdout region is shown in Output 29.3.1. The sum of absolute prediction errors $\mathrm{SAE}=516.22$, which appears in the last row of the holdout analysis table.

Output 29.3.1 Predictions in the Holdout Region: Baseline Model

Obs	datetime	Actual	Forecast	Error	SAE
525	24APR00:00	12	-4.004	16.004	16.004
526	24APR00:06	136	110.825	25.175	41.179
527	24APR00:12	295	262.820	32.180	73.360
528	24APR00:18	172	145.127	26.873	100.232
529	25APR00:00	20	2.188	17.812	118.044
530	25APR00:06	127	105.442	21.558	139.602
531	25APR00:12	236	217.043	18.957	158.559
532	25APR00:18	125	114.313	10.687	169.246
533	26APR00:00	16	2.855	13.145	182.391
534	26APR00:06	108	95.202	12.798	195.189
535	26APR00: 12	207	194.184	12.816	208.005
536	26APR00:18	112	97.687	14.313	222.317
537	27APR00:00	15	1.270	13.730	236.047
538	27APR00:06	98	85.875	12.125	248.172
539	27APR00:12	200	184.891	15.109	263.281
540	27APR00:18	113	93.113	19.887	283.168
541	28APR00:00	15	-1.120	16.120	299.288
542	28APR00:06	104	84.983	19.017	318.305
543	28APR00:12	205	177.940	27.060	345.365
544	28APR00:18	89	64.292	24.708	370.073
545	29APR00:00	12	-6.020	18.020	388.093
546	29APR00:06	68	46.286	21.714	409.807
547	29APR00:12	116	100.339	15.661	425.468
548	29APR00:18	54	34.700	19.300	444.768
549	30APR00:00	10	-6.209	16.209	460.978
550	30APR00:06	30	12.167	17.833	478.811
551	30APR00:12	66	49.524	16.476	495.287
552	30APR00:18	61	40.071	20.929	516.216

Now that a baseline model is created, the exploration for alternate models can begin. The review of the harmonic table in Output 29.3.2 shows that all but the last three harmonics are significant, and deleting any of them to form a subset trigonometric seasonal component will lead to a poorer model.

The last three harmonics, 12th, 13th and 14th, with periods of 2.333, 2.15 and 2.0 , respectively, do appear to be possible choices for deletion. Note that the disturbance variance of the seasonal component is not very insignificant (see Output 29.3.3); therefore the seasonal component is stochastic and the preceding logic, which is based on the final state estimate, provides only a rough guideline.

Output 29.3.2 Harmonic Analysis of the Season: Initial Model

Output 29.3.3 Parameter Estimates: Initial Model

Final Estimates of the Free Parameters					
		Approx			Approx
Component	Parameter	Estimate	Std Error	t Value	$\operatorname{Pr}>\|t\|$
Irregular	Error Variance	92.14591	13.10986	7.03	$<.0001$
Level	Error Variance	44.83595	10.65465	4.21	<. 0001
Season	Error Variance	0.01250	0.0065153	1.92	0.0551

The following statements fit a subset trigonometric model formed by dropping the last three harmonics by specifying the DROPH= option in the SEASON statement:

```
proc ucm data=callCenter;
    id datetime interval=dthour6;
    model calls;
    irregular;
    level;
    season length=28 type=trig droph=12 13 14;
    estimate back=28;
    forecast back=28 lead=28;
```

```
run;
```

The last row of the holdout region prediction analysis table for the preceding model is shown in Output 29.3.4. It shows that the subset trigonometric model has better prediction performance in the holdout region than the full trigonometric model, its $\mathrm{SAE}=471.53$ compared to the $\mathrm{SAE}=$ 516.22 for the full model.

Output 29.3.4 SAE for the Subset Trigonometric Model

Obs	datetime	Actual	Forecast	Error	SAE
552	$30 A P R 00: 18$	61	40.836	20.164	471.534

The following statements illustrate a spline approximation to this seasonal component. In the spline specification the knot placement is quite important, and usually some experimentation is needed. In the following model the knots are placed at the beginning and the middle of each day. Note that the knots at the beginning and end of the season, 1 and 28 in this case, should not be listed in the knot list because knots are always placed there anyway.

```
proc ucm data=callCenter;
    id datetime interval=dthour6;
    model calls;
    irregular;
    level;
    splineseason length=28
            knots=3 5 7 9 11 13 15 17 19 21 23 25 27
            degree=3;
    estimate back=28;
    forecast back=28 lead=28;
run;
```

The spline season model takes about half the time to fit that the baseline model takes. The last row of the holdout region prediction analysis table for this model is shown in Output 29.3.5, which shows that the spline season model performs even better than the previous two models in the holdout region, its $\mathrm{SAE}=313.79$ compared to $\mathrm{SAE}=471.53$ for the previous model.

Output 29.3.5 SAE for the Spline Season Model

Obs	datetime	Actual	Forecast	Error	SAE
552	$30 A P R 00: 18$	61	23.350	37.650	313.792

The following statements illustrate yet another way to approximate a long seasonal component. Here a combination of BLOCKSEASON and SEASON statements results in a seasonal component that is a sum of two seasonal patterns: one seasonal pattern is simply a regular season with season length 4 that captures the within-day seasonal pattern, and the other seasonal pattern is a block seasonal pattern that remains constant during the day but varies from day to day within a week.

Note the use of NLOPTIONS statement to change the optimization technique during the parameter estimation to DBLDOG, which in this case performs better than the default technique, TRUREG.

```
proc ucm data=callCenter;
    id datetime interval=dthour6;
    model calls;
    irregular;
    level;
    season length=4 type=trig;
    blockseason nblocks=7 blocksize=4
            type=trig;
    estimate back=28;
    forecast back=28 lead=28;
    nloptions tech=dbldog;
run;
```

This model also takes about half the time to fit that the baseline model takes. The last row of the holdout region prediction analysis table for this model is shown in Output 29.3.6, which shows that the block season model does slightly better than the baseline model but not as good as the other two models, its $\mathrm{SAE}=508.52$ compared to the $\mathrm{SAE}=516.22$ of the baseline model.

Output 29.3.6 SAE for the Block Season Model

Obs	datetime	Actual	Forecast	Error	SAE
552	30 APRO0:18	61	39.339	21.661	508.522

This example showed a few different ways to model a long seasonal pattern. It showed that parsimonious models for long seasonal patterns can be useful, and in some cases even more effective than the full model. Moreover, for very long seasonal patterns the high memory requirements and long computing times might make full models impractical.

Example 29.4: Modeling Time-Varying Regression Effects Using the RANDOMREG Statement

In April 1979 the Albuquerque Police Department began a special enforcement program aimed at reducing the number of DWI (driving while intoxicated) accidents. The program was administered by a squad of police officers, who used breath alcohol testing (BAT) devices and a van that houses a BAT device (Batmobile). These data were collected by the Division of Governmental Research of the University of New Mexico, under a contract with the National Highway Traffic Safety Administration of the U.S. Department of Transportation, to evaluate the Batmobile program. The first 29 observations are for a control period, and the next 23 observations are for the experimental (Batmobile) period. The data, freely available at http://lib.stat.cmu.edu/DASL/Datafiles/batdat.html, consist of two variables: ACC, which represents injuries and fatalities from Wednesday to Saturday nighttime accidents, and FUEL, which represents fuel consumption (millions of gallons) in Albu-
querque. The variables are measured quarterly starting from the first quarter of 1972 up to the last quarter of 1984 , covering the span of 13 years. The following DATA step statements create the input data set.

	t; rogram n_ > 29 $=$ INTN nat date	data bat; input ACC FUEL @@; batProgram = 0;			$\text { - } 1 \text {); }$
datalines;					
192	32.592	238	37.250	232	40.032
246	35.852	185	38.226	274	38.711
266	43.139	196	40.434	170	35.898
234	37.111	272	38.944	234	37.717
210	37.861	280	42.524	246	43.965
248	41.976	269	42.918	326	49.789
342	48.454	257	45.056	280	49.385
290	42.524	356	51.224	295	48.562
279	48.167	330	51.362	354	54.646
331	53.398	291	50.584	377	51.320
327	50.810	301	46.272	269	48.664
314	48.122	318	47.483	288	44.732
242	46.143	268	44.129	327	46.258
253	48.230	215	46.459	263	50.686
319	49.681	263	51.029	206	47.236
286	51.717	323	51.824	306	49.380
230	47.961	304	46.039	311	55.683
292	52.263				

There are a number of ways to study these data and the question of the effectiveness of the BAT program. One possibility is to study the before-after difference in the injuries and fatalities per million gallons of fuel consumed, by regressing ACC on the FUEL and the dummy variable BATPROGRAM, which is zero before the program began and one while the program is in place. However, it is possible that the effect of the Batmobiles might well be cumulative, because as awareness of the program becomes dispersed, its effectiveness as a deterrent to driving while intoxicated increases. This suggests that the regression coefficient of the BATPROGRAM variable might be time varying. The following program fits a model that incorporates these considerations. A seasonal component is included in the model since it is easy to see that the data show strong quarterly seasonality.

```
proc ucm data=bat;
    model acc = fuel;
    id date interval=qtr;
    irregular;
    level var=0 noest;
    randomreg batProgram / plot=smooth;
    season length=4 var=0 noest plot=smooth;
    estimate plot=(panel residual);
    forecast plot=forecasts lead=0;
run;
```

The model seems to fit the data adequately. No data are withheld for model validation because the series is relatively short. The plot of the time-varying coefficient of BATPROGRAM is shown in Output 29.4.1. As expected, it shows that the effectiveness of the program increases as awareness of the program becomes dispersed. The effectiveness eventually seems to level off. The residual diagnostic plots are shown in Output 29.4.2 and Output 29.4.3, the forecast plot is in Output 29.4.4, the goodness-of-fit statistics are in Output 29.4.5, and the parameter estimates are in Output 29.4.6.

Output 29.4.1 Time-Varying Regression Coefficient of BATPROGRAM

Output 29.4.2 Residuals for the Time-Varying Regression Model

Output 29.4.3 Residual Diagnostics for the Time-Varying Regression Model

Output 29.4.4 One-Step-Ahead Forecasts for the Time-Varying Regression Model

Output 29.4.5 Model Fit for the Time-Varying Regression Model

Fit Statistics Based on Residuals	
Mean Squared Error	866.75562
Root Mean Squared Error	29.44071
Mean Absolute Percentage Error	9.50326
Maximum Percent Error	14.15368
R-Square	0.32646
Adjusted R-Square	0.29278
Random Walk R-Square	0.63010
Amemiya's Adjusted R-Square	0.19175
Number of non-missing residuals used	
for computing the fit statistics = 22	

Output 29.4.6 Parameter Estimates for the Time-Varying Regression Model

Component	Final Estimates of the Free Parameters				
	Parameter	Estimate	Approx		Approx
			Std Error	t Value	$\operatorname{Pr}>\|t\|$
Irregular	Error Variance	480.92258	109.21980	4.40	$<.0001$
FUEL	Coefficient	6.23279	0.67533	9.23	$<.0001$
batProgram	Error Variance	84.22334	79.88166	1.05	0.2917

Example 29.5: Trend Removal Using the Hodrick-Prescott Filter

Hodrick-Prescott filter (see Hodrick and Prescott (1997)) is a popular tool in macroeconomics for fitting smooth trend to time series. It is well known that the trend computation according to this filter is equivalent to fitting the local linear trend plus irregular model with the level disturbance variance restricted to zero and the slope disturbance variance restricted to be a suitable multiple of the irregular component variance. The multiple used depends on the frequency of the series; for example, for quarterly series the commonly recommended multiple is $1 / 1600=0.000625$. For other intervals there is no consensus, but a frequently suggested value for monthly series is $1 / 14400$ and the value for an annual series can range from $1 / 400=0.0025$ to $1 / 7=0.15$. The data set considered in this example consists of quarterly GNP values for the United States from 1960 to 1991. In the UCM procedure statements that follow, the presence of the PROFILE option in the ESTIMATE statement implies that the restriction that the disturbance variance of the slope component be fixed at 0.000625 is interpreted differently: it implies that the disturbance variance of the slope component be restricted to be 0.000625 times the estimated irregular component variance, as needed for the Hodrick-Prescott filter. The plot of the fitted trend is shown in Output 29.5.1, and the plot of the smoothed irregular component, which corresponds to the detrended series, is given in Output 29.5.2. The detrended series can be further analyzed for business cycles.

```
proc ucm data=sashelp.gnp;
    id date interval=qtr;
    model gnp;
    irregular plot=smooth;
    level var=0 noest plot=smooth;
    slope var=0.000625 noest;
    estimate PROFILE;
    forecast plot=(decomp);
run;
```

Output 29.5.1 Smoothed Trend for the GNP Series as per the Hodrick-Prescott Filter

Output 29.5.2 Detrended GNP Series

Example 29.6: Using Splines to Incorporate Nonlinear Effects

The data in this example are created to mirror the electricity demand and temperature data recorded at a utility company in the midwest region of the United States. The data set (not shown), utility, has three variables: load, temp, and date. The load column contains the daily electricity demand, the temp column has the average daily temperature readings, and the date column records the observation date.

The following statements produce a plot, shown in Output 29.6.1, of electricity load versus temperature. Clearly the relationship is smooth but nonlinear: the load generally increases when the temperatures are away from the comfortable sixties.

```
proc sgplot data=utility;
    loess x=temp y=load / smooth=0.4;
run;
```

Output 29.6.1 Load versus Temperature Plot

The time series plot of the load (not shown) also shows that, apart from a day-of-the-week seasonal effect, there are no additional easily identifiable patterns in the series. The series has no apparent upward or downward trend. The following statements fit a UCM to the series that takes into account these observations. The particular choice of the model is a result of a little modeling exercise that compared a small number of competing models. The chosen model is adequate but by no means the best possible. The temperature effect is modeled by a deterministic three-degree spline with knots at $30,40,50,60$, and 75 . The knot locations and the degree were chosen by visual inspection of the plot (Output 29.6.1). An autoreg component is used in place of the simple irregular component, which improved the residual analysis. The last 60 days of data are withheld for out-of-sample forecast evaluation (note the BACK= option in both the ESTIMATE and FORECAST statements). The OUTLIER statement is used to increase the number of outliers reported to 10 . Since no CHECKBREAK option is used in the LEVEL statement, only the additive outliers are searched. In this example the use of the EXTRADIFFUSE= option in the ESTIMATE and FORECAST statements is useful for discarding some early one-step-ahead forecasts and residuals with large variance.

```
proc ucm data=utility;
    id date interval=day;
    model load;
```

```
    autoreg;
    level plot=smooth;
    splinereg temp knots=30 40 50 65 75 degree=3
    variance=0 noest;
    season length=7 var=0 noest;
estimate plot=panel back=60
    extradiffuse=50;
outlier maxnum=10;
forecast back=60 lead=60
    extradiffuse=50;
run;
```

The parameter estimates are given in Output 29.6.2, and the residual goodness-of-fit statistics are shown in Output 29.6.3. The residual diagnostic plots are shown in Output 29.6.4. The ACF and PACF plots appear satisfactory, but the normality plots, particularly the Q-Q plot, show possible violations. It appears that, at least in part, this nonNormal behavior of the residuals might be attributable to the outliers in the series. The outlier summary table, Output 29.6.5, shows the most likely outlying observations. Notice that most of these outliers are holidays, like July 4th, when the electricity load is lower than usual for that day of the week.

Output 29.6.2 Electricity Load: Parameter Estimates

Output 29.6.3 Electricity Load: Goodness of Fit

Fit Statistics Based on Residuals	
Mean Squared Error	2.90945
Root Mean Squared Error	1.70571
Mean Absolute Percentage Error	2.92586
Maximum Percent Error	14.96281
R-Square	0.92739
Adjusted R-Square	0.92721
Random Walk R-Square	0.69618
Amemiya's Adjusted R-Square	0.92684
Number of non-missing residuals used for	
computing the fit statistics = 791	

Output 29.6.4 Electricity Load: Residual Diagnostics

Output 29.6.5 Additive Outliers in the Electricity Load Series

| | | | | | Prob | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Obs | Time | Estimate | StdErr | ChiSq | DF | ChiSq |
| | | | | | | |
| 1281 | 04JUL2002 | -7.99908 | 1.3417486 | 35.54 | 1 | $<.0001$ |
| 916 | 04JUL2001 | -6.55778 | 1.338431 | 24.01 | 1 | $<.0001$ |
| 329 | 25NOV1999 | -5.85047 | 1.3379735 | 19.12 | 1 | $<.0001$ |
| 977 | 03SEP2001 | -5.67254 | 1.3389138 | 17.95 | 1 | $<.0001$ |
| 1341 | 02SEP2002 | -5.49631 | 1.337843 | 16.88 | 1 | $<.0001$ |
| 693 | 23NOV2000 | -5.27968 | 1.3374368 | 15.58 | 1 | $<.0001$ |
| 915 | 03JUL2001 | 5.06557 | 1.3375273 | 14.34 | 1 | 0.0002 |
| 1057 | 22NOV2001 | -5.01550 | 1.3386184 | 14.04 | 1 | 0.0002 |
| 551 | 04JUL2000 | -4.89965 | 1.3381557 | 13.41 | 1 | 0.0003 |
| 879 | 28MAY2001 | -4.76135 | 1.3375349 | 12.67 | 1 | 0.0004 |

The plot of the load forecasts for the withheld data is shown in Output 29.6.6.
Output 29.6.6 Electricity Load: Forecast Evaluation of the Withheld Data

Example 29.7: Detection of Level Shift

The series in this example consists of the yearly water level readings of the Nile River recorded at Aswan, Egypt (see Cobb (1978) and de Jong and Penzer (1998)). The readings are from the years 1871 to 1970 . The series does not show any apparent trend or any other distinctive patterns; however, there is a shift in the water level starting at the year 1899. This shift could be attributed to the start of construction of a dam near Aswan in that year. A time series plot of this series is given in Output 29.7.1. The following DATA step statements create the input data set.

```
data nile;
    input waterlevel @@;
    year = intnx( 'year', '1jan1871'd, _n_-1 );
    format year year4.;
datalines;
```



```
    995 935 1110 994 1020 960 1180 799 958 1140
```



```
    874
    831
    768
    649
    744
```



```
;
proc timeseries data=nile plot=series;
    id year interval=year;
    var waterlevel;
run;
```

Output 29.7.1 Nile Water Level

In this situation it is known that a shift in the water level occurred within the span of the series, and its effect can be easily taken into account by including an appropriate indicator variable as a regressor. However, in many situation such prior information is not available, and it is useful to detect such a shift in a data analytic fashion. You can check for breaks in the level by using the CHECKBREAK option in the LEVEL statement. The following statements fit a simple locally constant level plus error model to the series:

```
proc ucm data=nile;
    id year interval=year;
    model waterlevel;
    irregular;
    level plot=smooth checkbreak;
    estimate;
    forecast plot=decomp;
run;
```

The plot in Output 29.7.2 shows a noticeable drop in the smoothed water level around 1899.

Output 29.7.2 Smoothed Trend without the Shift of 1899

The "Outlier Summary" table in Output 29.7.3 shows the most likely types of breaks and their locations within the series span. The shift of 1899 is easily detected.

Output 29.7.3 Detection of Structural Breaks in the Nile River Level

Outlier Summary					
Standard					
Obs year Break Type	Estimate	Error	Square	DF	> ChiSq
291899 Level	-315.73791	97.639753	10.46	1	0.0012

The following statements specify a UCM that models the level of the river as a locally constant series with a shift in the year 1899, represented by a dummy regressor (SHIFT1899):

```
data nile;
    set nile;
    shift1899 = ( year >= '1jan1899'd );
run;
```

```
proc ucm data=nile;
    id year interval=year;
    model waterlevel = shift1899;
    irregular;
    level;
    estimate;
    forecast plot=decomp;
run;
```

The plot in Output 29.7.4 shows the smoothed trend, including the correction due to the shift in the year 1899. Notice the simplicity in the shape of the smoothed curve after the incorporation of the shift information.

Output 29.7.4 Smoothed Trend plus Shift of 1899

Example 29.8: ARIMA Modeling (Experimental)

This example shows how you can use the UCM procedure for ARIMA modeling. The parameter estimates and predictions for ARIMA models obtained by using PROC UCM will be close to those obtained by using PROC ARIMA (in the presence of the ML option in its ESTIMATE statement) if the model is stationary or if the model is nonstationary and there are no missing values in the
data. See Chapter 7, "The ARIMA Procedure," for additional details about the ARIMA procedure. However, if there are missing values in the data and the model is nonstationary, then the UCM and ARIMA procedures can produce significantly different parameter estimates and predictions. An article by Kohn and Ansley (1986) suggests a statistically sound method of estimation, prediction, and interpolation for nonstationary ARIMA models with missing data. This method is based on an algorithm that is equivalent to the Kalman filtering and smoothing algorithm used in the UCM procedure. The results of an illustrative example in their article are reproduced here using the UCM procedure. In this example an $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{12}$ model is applied to the logarithm of the air series in the sashelp.air data set. Four different missing value patterns are considered to highlight different aspects of the problem:

- Datal. The full data set of 144 observations.
- Data2. The set of 78 observations that omit January through November in each of the last 6 years.
- Data3. The data set with the 5 observations July 1949, June, July, and August 1957, and July 1960 missing.
- Data4. The data set with all July observations missing and June and August 1957 also missing.

The following DATA steps create these data sets:

```
data Data1;
    set sashelp.air;
    logair = log(air);
run;
data Data2;
    set data1;
    if year(date) >= 1955 and month(date) < 12 then logair = .;
run;
data Data3;
    set data1;
    if (year(date) = 1949 and month(date) = 7) then logair = .;
    if ( year(date) = 1957 and
                (month(date) = 6 or month(date) = 7 or month(date) = 8))
                then logair = .;
    if (year(date) = 1960 and month(date) = 7) then logair = .;
run;
data Data4;
    set data1;
    if month(date) = 7 then logair = .;
    if year(date) = 1957 and (month(date) = 6 or month(date) = 8)
        then logair = .;
run;
```

The following statements specify the $\operatorname{ARIMA}(0,1,1) \times(0,1,1)_{12}$ model for the logair series in the first data set (Data1):

```
proc ucm data=Data1;
    id date interval=month;
    model logair;
    irregular q=1 sq=1 s=12;
    deplag lags=(1)(12) phi=1 1 noest;
    estimate outest=est1;
    forecast outfor=for1;
run;
```

Note that the moving-average part of the model is specified by using the $\mathrm{Q}=, \mathrm{SQ}=$, and $\mathrm{S}=$ options in the IRREGULAR statement and the differencing operator, $(1-B)\left(1-B^{12}\right)$, is specified by using the DEPLAG statement. The model does not contain an intercept term; therefore no LEVEL statement is needed. The parameter estimates are saved in a data set EST1 by using the OUTEST= option in the ESTIMATE statement and the forecasts and the component estimates are saved in a data set FOR1 by using the OUTFOR= option in the FORECAST statement. The same analysis is performed on the other three data sets, but is not shown here.

Output 29.8.1 resembles Table 1 in Kohn and Ansley (1986). This table is generated by merging the parameter estimates from the four analyses. Only the moving-average parameter estimates and their standard errors are reported. The columns EST1 and STD1 correspond to the estimates for Data1. The parameter estimates and their standard errors for other three data sets are similarly named. Note that the parameter estimates closely match the parameter estimates in the article. However, their standard errors differ slightly. This difference could be the result of different ways of computing the Hessian at the optimum. The white noise error variance estimates are not reported here, but they agree quite closely with those in the article.

Output 29.8.1 Data Sets 1-4: Parameter Estimates and Standard Errors

P								
A								
R								
A								
M								
E	e	s	e	s	e	s	e	s
T	s	t	s	t	s	t	s	t
E	t	d	t	d	t	d	t	d
R	1	1	2	2	3	3	4	4
MA_1	0.402	0.090	0.457	0.121	0.408	0.092	0.431	0.091
SMA_1	0.557	0.073	0.758	0.236	0.566	0.075	0.573	0.074

Output 29.8.2 resembles Table 2 in Kohn and Ansley (1986). It contains forecasts and their standard errors for the four data sets. The numbers are very close to those in the article.

Output 29.8.2 Data Sets 1-4: Forecasts and Standard Errors

DATE	for1	std1	for2	std2	for3	std3	for4	std4
JAN61	6.110	0.037	6.084	0.052	6.110	0.037	6.111	0.037
FEB61	6.054	0.043	6.091	0.058	6.054	0.043	6.055	0.043
MAR61	6.172	0.048	6.247	0.063	6.173	0.048	6.174	0.048
APR61	6.199	0.053	6.205	0.068	6.199	0.053	6.200	0.052
MAY61	6.233	0.057	6.199	0.072	6.232	0.058	6.233	0.056
JUN61	6.369	0.061	6.308	0.076	6.367	0.062	6.368	0.060
JUL61	6.507	0.065	6.409	0.079	6.497	0.067	.	.
AUG61	6.503	0.069	6.414	0.082	6.503	0.069	6.503	0.067
SEP61	6.325	0.072	6.299	0.085	6.325	0.072	6.326	0.071
OCT61	6.209	0.075	6.174	0.087	6.209	0.076	6.209	0.074
NOV61	6.063	0.079	6.043	0.089	6.064	0.079	6.064	0.077
DEC61	6.168	0.082	6.174	0.086	6.168	0.082	6.169	0.080

Output 29.8.3 is based on Data2. It resembles Table 3 in Kohn and Ansley (1986). The columns S_SERIES and VS_SERIES in the OUTFOR= data set contain the interpolated values of logair and their variances. The estimate column in Output 29.8.3 reports interpolated values (which are the same as S_SERIES), and the std column reports their standard errors (which are computed as square root of VS_SERIES) for January-November 1957. The actual logair values for these months, which are missing in Data2, are also provided for comparison. The numbers are very close to those in the article.

Output 29.8.3 Data Set 2: Interpolated Values and Standard Errors

DATE	logair	estimate	std
JAN57	5.753	5.733	0.045
FEB57	5.707	5.738	0.049
MAR57	5.875	5.893	0.052
APR57	5.852	5.850	0.054
MAY57	5.872	5.843	0.055
JUN57	6.045	5.951	0.055
JUL57	6.142	6.051	0.055
AUG57	6.146	6.055	0.054
SEP57	6.001	5.938	0.052
OCT57	5.849	5.812	0.049
NOV57	5.720	5.680	0.045

Output 29.8.4 resembles Table 4 in Kohn and Ansley (1986). These numbers are based on Data3, and they also are very close to those in the article.

Output 29.8.4 Data Set 3: Interpolated Values and Standard Errors

DATE	logair	estimate	std
JUL49	4.997	5.013	0.031
JUN57	6.045	6.024	0.030
JUL57	6.142	6.147	0.031
AUG57	6.146	6.148	0.030
JUL60	6.433	6.409	0.031

Output 29.8.5 resembles Table 5 in Kohn and Ansley (1986). As before, the numbers are very close to those in the article.

Output 29.8.5 Data Set 4: Interpolated Values and Standard Errors

DATE	logair	estimate	std
JUN57	6.045	6.023	0.030
AUG57	6.146	6.147	0.030

The similarity between the outputs in this example and the results shown in Kohn and Ansley (1986) demonstrate that PROC UCM can be effectively used for nonstationary ARIMA models with missing data.

References

Akaike, H. (1974), "A New Look at the Statistical Model Identification," IEEE Transaction on Automatic Control, AC-19, 716-723.

Anderson, T. W. (1971), The Statistical Analysis of Time Series, New York: John Wiley \& Sons.
Bloomfield, P. (2000), Fourier Analysis of Time Series, Second Edition, New York: John Wiley \& Sons.

Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, San Francisco: Holden-Day.

Bozdogan, H. (1987), "Model Selection and Akaike's Information Criterion (AIC): The General Theory and Its Analytical Extensions," Psychometrika, 52, 345-370.

Brockwell, P.J., and Davis, R.A. (1991), Time Series: Theory and Methods, Second Edition, New York: Springer-Verlag.

Burnham, K. P. and Anderson, D. R. (1998), Model Selection and Inference: A Practical Information-Theoretic Approach, New York: Springer-Verlag.

Cobb, G. W. (1978), "The Problem of the Nile: Conditional Solution to a Change Point Problem," Biometrika, 65, 243-251.
de Jong, P. and Chu-Chun-Lin, S. (2003), "Smoothing with an Unknown Initial Condition," Journal of Time Series Analysis, vol. 24, no. 2, 141-148.
de Jong, P. and Penzer, J. (1998), "Diagnosing Shocks in Time Series," Journal of the American Statistical Association, vol. 93, no. 442, 796-806.

Durbin, J. and Koopman, S. J. (2001), Time Series Analysis by State Space Methods, Oxford: Oxford University Press.

Hannan, E.J. and Quinn, B.G. (1979), "The Determination of the Order of an Autoregression," Journal of the Royal Statistical Society, Series B, 41, 190-195.

Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.

Harvey, A. C. (2001), "Testing in Unobserved Components Models," Journal of Forecasting, 20, 1-19.

Hodrick, R. and Prescott, E. (1997) "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit, and Banking, 29, 1-16.

Hurvich, C. M. and Tsai, C.-L. (1989), "Regression and Time Series Model Selection in Small Samples," Biometrika, 76, 297-307.

Jones, Richard H. (1980), "Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations," Technometrics, 22, 389-396.

Kohn, R. and Ansley C. F. (1986), "Estimation, Prediction, and Interpolation for ARIMA models With Missing Data," Journal of the American Statistical Association, vol. 81, no. 395, 751-761.

Schwarz, G. (1978), "Estimating the Dimension of a Model," Annals of Statistics, 6, 461-464.
West, M. and Harrison, J. (1999) Bayesian Forecasting and Dynamic Models, Second Edition, New York: Springer-Verlag.

Chapter 30

The VARMAX Procedure

Contents

Overview: VARMAX Procedure 1856
Getting Started: VARMAX Procedure 1858
Vector Autoregressive Process 1858
Bayesian Vector Autoregressive Process 1866
Vector Error Correction Model 1867
Bayesian Vector Error Correction Model 1873
Vector Autoregressive Process with Exogenous Variables 1874
Parameter Estimation and Testing on Restrictions 1878
Causality Testing 1881
Syntax: VARMAX Procedure 1882
Functional Summary 1883
PROC VARMAX Statement 1885
BY Statement 1888
CAUSAL Statement 1889
COINTEG Statement 1890
ID Statement 1892
MODEL Statement 1892
GARCH Statement 1907
NLOPTIONS Statement 1908
OUTPUT Statement 1908
RESTRICT Statement 1909
TEST Statement 1911
Details: VARMAX Procedure 1912
Missing Values 1912
VARMAX Model 1912
Dynamic Simultaneous Equations Modeling 1916
Impulse Response Function 1919
Forecasting 1930
Tentative Order Selection 1935
VAR and VARX Modeling 1941
Bayesian VAR and VARX Modeling 1947
VARMA and VARMAX Modeling 1949
Model Diagnostic Checks 1957
Cointegration 1959
Vector Error Correction Modeling 1962
I(2) Model 1978
Multivariate GARCH Modeling 1981
Output Data Sets 1987
OUT= Data Set 1987
OUTEST= Data Set 1989
OUTHT= Data Set 1991
OUTSTAT= Data Set 1992
Printed Output 1994
ODS Table Names 1995
ODS Graphics 2000
Computational Issues 2001
Examples: VARMAX Procedure 2002
Example 30.1: Analysis of U.S. Economic Variables 2002
Example 30.2: Analysis of German Economic Variables 2013
Example 30.3: Numerous Examples 2025
Example 30.4: Illustration of ODS Graphics 2028
References 2031

Overview: VARMAX Procedure

Given a multivariate time series, the VARMAX procedure estimates the model parameters and generates forecasts associated with vector autoregressive moving-average processes with exogenous regressors (VARMAX) models. Often, economic or financial variables are not only contemporaneously correlated to each other, they are also correlated to each other's past values. The VARMAX procedure can be used to model these types of time relationships. In many economic and financial applications, the variables of interest (dependent, response, or endogenous variables) are influenced by variables external to the system under consideration (independent, input, predictor, regressor, or exogenous variables). The VARMAX procedure enables you to model the dynamic relationship both between the dependent variables and also between the dependent and independent variables.

VARMAX models are defined in terms of the orders of the autoregressive or moving-average process (or both). When you use the VARMAX procedure, these orders can be specified by options or they can be automatically determined. Criteria for automatically determining these orders include the following:

- Akaike information criterion (AIC)
- corrected AIC (AICC)
- Hannan-Quinn (HQ) criterion
- final prediction error (FPE)
- Schwarz Bayesian criterion (SBC), also known as Bayesian information criterion (BIC)

If you do not want to use the automatic order selection, the VARMAX procedure provides autoregressive order identification aids:

- partial cross-correlations
- Yule-Walker estimates
- partial autoregressive coefficients
- partial canonical correlations

For situations where the stationarity of the time series is in question, the VARMAX procedure provides tests to aid in determining the presence of unit roots and cointegration. These tests include the following:

- Dickey-Fuller tests
- Johansen cointegration test for nonstationary vector processes of integrated order one
- Stock-Watson common trends test for the possibility of cointegration among nonstationary vector processes of integrated order one
- Johansen cointegration test for nonstationary vector processes of integrated order two

For stationary vector times series (or nonstationary series made stationary by appropriate differencing), the VARMAX procedure provides for vector autoregressive and moving-average (VARMA) and Bayesian vector autoregressive (BVAR) models. To cope with the problem of high dimensionality in the parameters of the VAR model, the VARMAX procedure provides both vector error correction model (VECM) and Bayesian vector error correction model (BVECM). Bayesian models are used when prior information about the model parameters is available. The VARMAX procedure also allows independent (exogenous) variables with their distributed lags to influence dependent (endogenous) variables in various models such as VARMAX, BVARX, VECMX, and BVECMX models.

Forecasting is one of the main objectives of multivariate time series analysis. After successfully fitting the VARMAX, BVARX, VECMX, and BVECMX models, the VARMAX procedure computes predicted values based on the parameter estimates and the past values of the vector time series.

The model parameter estimation methods are the following:

- least squares (LS)
- maximum likelihood (ML)

The VARMAX procedure provides various hypothesis tests of long-run effects and adjustment coefficients by using the likelihood ratio test based on Johansen cointegration analysis. The VARMAX procedure offers the likelihood ratio test of the weak exogeneity for each variable.

After fitting the model parameters, the VARMAX procedure provides for model checks and residual analysis by using the following tests:

- Durbin-Watson (DW) statistics
- F test for autoregressive conditional heteroscedastic (ARCH) disturbance
- F test for AR disturbance
- Jarque-Bera normality test
- Portmanteau test

The VARMAX procedure supports several modeling features, including the following:

- seasonal deterministic terms
- subset models
- multiple regression with distributed lags
- dead-start model that does not have present values of the exogenous variables
- GARCH-type multivariate conditional heteroscedasticity models

The VARMAX procedure provides a Granger causality test to determine the Granger-causal relationships between two distinct groups of variables. It also provides the following:

- infinite order AR representation
- impulse response function (or infinite order MA representation)
- decomposition of the predicted error covariances
- roots of the characteristic functions for both the AR and MA parts to evaluate the proximity of the roots to the unit circle
- contemporaneous relationships among the components of the vector time series

Getting Started: VARMAX Procedure

This section outlines the use of the VARMAX procedure and gives five different examples of the kinds of models supported.

Vector Autoregressive Process

Let $\mathbf{y}_{t}=\left(y_{1 t}, \ldots, y_{k t}\right)^{\prime}, t=1,2, \ldots$, denote a k-dimensional time series vector of random variables of interest. The p th-order VAR process is written as

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\Phi_{1} \mathbf{y}_{t-1}+\cdots+\Phi_{p} \mathbf{y}_{t-p}+\boldsymbol{\epsilon}_{t}
$$

where the $\boldsymbol{\epsilon}_{t}$ is a vector white noise process with $\boldsymbol{\epsilon}_{t}=\left(\epsilon_{1 t}, \ldots, \epsilon_{k t}\right)^{\prime}$ such that $\mathrm{E}\left(\boldsymbol{\epsilon}_{t}\right)=0$, $\mathrm{E}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)=\Sigma$, and $\mathrm{E}\left(\boldsymbol{\epsilon}_{\boldsymbol{t}} \boldsymbol{\epsilon}_{s}^{\prime}\right)=0$ for $t \neq s ; \boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{k}\right)^{\prime}$ is a constant vector and Φ_{i} is a $k \times k$ matrix.

Analyzing and modeling the series jointly enables you to understand the dynamic relationships over time among the series and to improve the accuracy of forecasts for individual series by using the additional information available from the related series and their forecasts.

Example of Vector Autoregressive Model

Consider the first-order stationary bivariate vector autoregressive model

$$
\mathbf{y}_{t}=\left(\begin{array}{rr}
1.2 & -0.5 \\
0.6 & 0.3
\end{array}\right) \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}, \quad \text { with } \Sigma=\left(\begin{array}{rr}
1.0 & 0.5 \\
0.5 & 1.25
\end{array}\right)
$$

The following IML procedure statements simulate a bivariate vector time series from this model to provide test data for the VARMAX procedure:

```
proc iml;
    sig = {1.0 0.5, 0.5 1.25};
    phi = {1.2 -0.5, 0.6 0.3};
    /* simulate the vector time series */
    call varmasim(y,phi) sigma = sig n = 100 seed = 34657;
    cn = {'y1' 'y2'};
    create simull from y[colname=cn];
    append from y;
quit;
```

The following statements plot the simulated vector time series \mathbf{y}_{t} shown in Figure 30.1:

```
data simul1;
    set simul1;
    date = intnx( 'year', '01jan1900'd, _n_-1 );
    format date year4.;
run;
proc timeseries data=simull vectorplot=series;
    id date interval=year;
    var y1 y2;
run;
```

Figure 30.1 Plot of Generated Data Process

The following statements fit a $\operatorname{VAR}(1)$ model to the simulated data. First, you specify the input data set in the PROC VARMAX statement. Then, you use the MODEL statement to designate the dependent variables, y_{1} and y_{2}. To estimate a VAR model with mean zero, you specify the order of the autoregressive model with the $\mathrm{P}=$ option and the NOINT option. The MODEL statement fits the model to the data and prints parameter estimates and their significance. The PRINT=ESTIMATES option prints the matrix form of parameter estimates, and the PRINT=DIAGNOSE option prints various diagnostic tests. The LAGMAX $=3$ option is used to print the output for the residual diagnostic checks.

To output the forecasts to a data set, you specify the OUTPUT statement with the OUT= option. If you want to forecast five steps ahead, you use the LEAD $=5$ option. The ID statement specifies the yearly interval between observations and provides the Time column in the forecast output.

The VARMAX procedure output is shown in Figure 30.2 through Figure 30.10.

```
/*--- Vector Autoregressive Model ---*/
proc varmax data=simul1;
    id date interval=year;
    model y1 y2 / p=1 noint lagmax=3
    print=(estimates diagnose);
```

```
    output out=for lead=5;
run;
```

Figure 30.2 Descriptive Statistics

The VARMAX procedure first displays descriptive statistics. The Type column specifies that the variables are dependent variables. The column N stands for the number of nonmissing observations.

Figure 30.3 shows the type and the estimation method of the fitted model for the simulated data. It also shows the AR coefficient matrix in terms of lag 1, the parameter estimates, and their significance, which can indicate how well the model fits the data.

The second table schematically represents the parameter estimates and allows for easy verification of their significance in matrix form.

In the last table, the first column gives the left-hand-side variable of the equation; the second column is the parameter name $\operatorname{AR} l_{-} i_{-} j$, which indicates the (i, j) th element of the lag l autoregressive coefficient; the last column is the regressor that corresponds to the displayed parameter.

Figure 30.3 Model Type and Parameter Estimates

The fitted $\operatorname{VAR}(1)$ model with estimated standard errors in parentheses is given as

$$
\mathbf{y}_{t}=\left(\begin{array}{rr}
1.160 & -0.511 \\
(0.055) & (0.059) \\
0.546 & 0.385 \\
(0.058) & (0.062)
\end{array}\right) \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

Clearly, all parameter estimates in the coefficient matrix Φ_{1} are significant.

The model can also be written as two univariate regression equations.

$$
\begin{aligned}
& y_{1 t}=1.160 y_{1, t-1}-0.511 y_{2, t-1}+\epsilon_{1 t} \\
& y_{2 t}=0.546 y_{1, t-1}+0.385 y_{2, t-1}+\epsilon_{2 t}
\end{aligned}
$$

The table in Figure 30.4 shows the innovation covariance matrix estimates and the various information criteria results. The smaller value of information criteria fits the data better when it is compared to other models. The variable names in the covariance matrix are printed for convenience; $y 1$ means the innovation for $y 1$, and $y 2$ means the innovation for $y 2$.

Figure 30.4 Innovation Covariance Estimates and Information Criteria

Figure 30.5 shows the cross covariances of the residuals. The values of the lag zero are slightly different from Figure 30.4 due to the different degrees of freedom.

Figure 30.5 Multivariate Diagnostic Checks

Cross Covariances of Residuals			
Lag	Variable	y1	y^{2}
0	y1	1.24909	0.36398
	y^{2}	0.36398	1.34203
1	Y1	0.01635	0.03087
	y^{2}	-0.07210	-0.09834
2	y1	0.06591	0.07835
	y^{2}	0.01096	-0.05780
3	y1	-0.00203	0.08804
	y^{2}	-0.02129	0.07277

Figure 30.6 and Figure 30.7 show tests for white noise residuals. The output shows that you cannot reject the null hypothesis that the residuals are uncorrelated.

Figure 30.6 Multivariate Diagnostic Checks Continued

Figure 30.7 Multivariate Diagnostic Checks Continued

Portmanteau Test for Cross Correlations of Residuals			
Up To Lag	DF	Chi-Square	Pr > ChiSq
2	4	1.84	0.7659
3	8	2.57	0.9582

The VARMAX procedure provides diagnostic checks for the univariate form of the equations. The table in Figure 30.8 describes how well each univariate equation fits the data. From two univariate regression equations in Figure 30.3, the values of R^{2} in the second column are 0.84 and 0.80 for each equation. The standard deviations in the third column are the square roots of the diagonal elements of the covariance matrix from Figure 30.4. The F statistics are in the fourth column for hypotheses to test $\phi_{11}=\phi_{12}=0$ and $\phi_{21}=\phi_{22}=0$, respectively, where $\phi_{i j}$ is the (i, j) th element of the matrix Φ_{1}. The last column shows the p-values of the F statistics. The results show that each univariate model is significant.

Figure 30.8 Univariate Diagnostic Checks

Univariate Model ANOVA Diagnostics				
Variable	R-Square	Standard Deviation	F Value	Pr > F
y^{1}	0.8369	1.13523	497.67	<. 0001
y^{2}	0.7978	1.19096	382.76	<. 0001

The check for white noise residuals in terms of the univariate equation is shown in Figure 30.9. This output contains information that indicates whether the residuals are correlated and heteroscedastic. In the first table, the second column contains the Durbin-Watson test statistics to test the null hypothesis that the residuals are uncorrelated. The third and fourth columns show the Jarque-Bera normality test statistics and their p-values to test the null hypothesis that the residuals have normality. The last two columns show F statistics and their p-values for $\operatorname{ARCH}(1)$ disturbances to test the null hypothesis that the residuals have equal covariances. The second table includes F statistics and their p-values for $\operatorname{AR}(1), \operatorname{AR}(1,2), \operatorname{AR}(1,2,3)$ and $\operatorname{AR}(1,2,3,4)$ models of residuals to test the null hypothesis that the residuals are uncorrelated.

Figure 30.9 Univariate Diagnostic Checks Continued

The table in Figure 30.10 gives forecasts, their prediction errors, and 95% confidence limits. See the section "Forecasting" on page 1930 for details.

Figure 30.10 Forecasts

Forecasts						
	Standard					
Variable	Obs	Time	Forecast	Error	95\% Confidence	Limits
y1	101	2000	-3.59212	1.13523	-5.81713	-1.36711
	102	2001	-3.09448	1.70915	-6.44435	0.25539
	103	2002	-2.17433	2.14472	-6.37792	2.02925
	104	2003	-1.11395	2.43166	-5.87992	3.65203
	105	2004	-0.14342	2.58740	-5.21463	4.92779
y^{2}	101	2000	-2.09873	1.19096	-4.43298	0.23551
	102	2001	-2.77050	1.47666	-5.66469	0.12369
	103	2002	-2.75724	1.74212	-6.17173	0.65725
	104	2003	-2.24943	2.01925	-6.20709	1.70823
	105	2004	-1.47460	2.25169	-5.88782	2.93863

Bayesian Vector Autoregressive Process

The Bayesian vector autoregressive (BVAR) model is used to avoid problems of collinearity and over-parameterization that often occur with the use of VAR models. BVAR models do this by imposing priors on the AR parameters.

The following statements fit a BVAR(1) model to the simulated data. You specify the PRIOR= option with the hyperparameters. The LAMBDA=0.9 and THETA=0.1 options are hyperparameters controlling the prior covariance. Part of the VARMAX procedure output is shown in Figure 30.11.

```
/*--- Bayesian Vector Autoregressive Process ---*/
proc varmax data=simul1;
    model y1 y2 / p=1 noint
    prior=(lambda=0.9 theta=0.1);
run;
```

The output in Figure 30.11 shows that parameter estimates are slightly different from those in Figure 30.3. By choosing the appropriate priors, you might be able to get more accurate forecasts by using a BVAR model rather than by using an unconstrained VAR model. See the section "Bayesian VAR and VARX Modeling" on page 1947 for details.

Figure 30.11 Parameter Estimates for the BVAR(1) Model

The VARMAX Procedure						
Type of Model BVAR(1)						
Estimation Method Maximum Likelihood Estimatio						
Prior Lambda 0.						
Prior Theta 0.1						
Model Parameter Estimates						
Standard						
Equation	Parameter	Estimate	Error	Value	$>\|t\|$	Variable
y1	AR1_1_1	1.05623	0.05050	20.92	0.0001	y 1 (t-1)
	AR1_1_2	-0.34707	0.04824	-7.19	0.0001	$\mathrm{y}^{2}(\mathrm{t}-1)$
y^{2}	AR1_2_1	0.40068	0.04889	8.20	0.0001	y $1(t-1)$
	AR1_2_2	0.48728	0.05740	8.49	0.0001	$\mathrm{y}^{2}(\mathrm{t}-1)$
Covariances of Innovations						
Variable			y1	y^{2}		
y1			35807	0.44152		
y^{2}			44152	1.45070		

Vector Error Correction Model

A vector error correction model (VECM) can lead to a better understanding of the nature of any nonstationarity among the different component series and can also improve longer term forecasting over an unconstrained model.

The $\operatorname{VECM}(p)$ form with the cointegration rank $r(\leq k)$ is written as

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\delta}+\Pi \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where Δ is the differencing operator, such that $\Delta \mathbf{y}_{t}=\mathbf{y}_{t}-\mathbf{y}_{t-1} ; \Pi=\alpha \beta^{\prime}$, where α and β are $k \times r$ matrices; Φ_{i}^{*} is a $k \times k$ matrix.

It has an equivalent $\operatorname{VAR}(p)$ representation as described in the preceding section.

$$
\mathbf{y}_{t}=\delta+\left(I_{k}+\Pi+\Phi_{1}^{*}\right) \mathbf{y}_{t-1}+\sum_{i=2}^{p-1}\left(\Phi_{i}^{*}-\Phi_{i-1}^{*}\right) \mathbf{y}_{t-i}-\Phi_{p-1}^{*} \mathbf{y}_{t-p}+\boldsymbol{\epsilon}_{t}
$$

where I_{k} is a $k \times k$ identity matrix.

Example of Vector Error Correction Model

An example of the second-order nonstationary vector autoregressive model is

$$
\mathbf{y}_{t}=\left(\begin{array}{rr}
-0.2 & 0.1 \\
0.5 & 0.2
\end{array}\right) \mathbf{y}_{t-1}+\left(\begin{array}{rr}
0.8 & 0.7 \\
-0.4 & 0.6
\end{array}\right) \mathbf{y}_{t-2}+\boldsymbol{\epsilon}_{t}
$$

with

$$
\Sigma=\left(\begin{array}{rr}
100 & 0 \\
0 & 100
\end{array}\right) \text { and } \mathbf{y}_{0}=\binom{0}{0}
$$

This process can be given the following $\operatorname{VECM}(2)$ representation with the cointegration rank one:

$$
\Delta \mathbf{y}_{t}=\binom{-0.4}{0.1}(1,-2) \mathbf{y}_{t-1}-\left(\begin{array}{rr}
0.8 & 0.7 \\
-0.4 & 0.6
\end{array}\right) \Delta \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

The following PROC IML statements generate simulated data for the VECM(2) form specified above and plot the data as shown in Figure 30.12:

```
proc iml;
    sig = 100*i(2);
    phi = {-0.2 0.1, 0.5 0.2, 0.8 0.7, -0.4 0.6};
    call varmasim(y,phi) sigma=sig n=100 initial=0
                seed=45876;
    cn = {'y1' 'y2'};
    create simul2 from y[colname=cn];
    append from y;
quit;
data simul2;
    set simul2;
    date = intnx( 'year', '01jan1900'd, _n_-1 );
    format date year4. ;
run;
proc timeseries data=simul2 vectorplot=series;
    id date interval=year;
    var y1 y2;
run;
```

Figure 30.12 Plot of Generated Data Process

Cointegration Testing

The following statements use the Johansen cointegration rank test. The COINTTEST=(JOHANSEN) option does the Johansen trace test and is equivalent to specifying COINTTEST with no additional options or the COINTTEST=(JOHANSEN=(TYPE=TRACE)) option.

```
/*--- Cointegration Test ---*/
proc varmax data=simul2;
    model y1 y2 / p=2 noint dftest cointtest=(johansen);
run;
```

Figure 30.13 shows the output for Dickey-Fuller tests for the nonstationarity of each series and Johansen cointegration rank test between series.

Figure 30.13 Dickey-Fuller Tests and Cointegration Rank Test

In Dickey-Fuller tests, the second column specifies three types of models, which are zero mean, single mean, or trend. The third column (Rho) and the fifth column (Tau) are the test statistics for unit root testing. Other columns are their p-values. You can see that both series have unit roots. For a description of Dickey-Fuller tests, see the section "PROBDF Function for Dickey-Fuller Tests" on page 158 in Chapter 5, "SAS Macros and Functions."

In the cointegration rank test, the last two columns explain the drift in the model or process. Since the NOINT option is specified, the model is

$$
\Delta \mathbf{y}_{t}=\Pi \mathbf{y}_{t-1}+\Phi_{1}^{*} \Delta \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

The column Drift In ECM means there is no separate drift in the error correction model, and the column Drift In Process means the process has a constant drift before differencing.

H 0 is the null hypothesis, and H 1 is the alternative hypothesis. The first row tests $r=0$ against $r>0$; the second row tests $r=1$ against $r>1$. The Trace test statistics in the fourth column are computed by $-T \sum_{i=r+1}^{k} \log \left(1-\lambda_{i}\right)$ where T is the available number of observations and λ_{i} is the eigenvalue in the third column. By default, the critical values at 5% significance level are used for testing. You can compare the test statistics and critical values in each row. There is one cointegrated process in this example since the Trace statistic for testing $r=0$ against $r>0$ is greater than the critical value, but the Trace statistic for testing $r=1$ against $r>1$ is not greater than the critical value.

The following statements fit a VECM(2) form to the simulated data. From the result in Figure 30.13, the time series are cointegrated with rank $=1$. You specify the $\mathrm{ECM}=$ option with the RANK=1 option. For normalizing the value of the cointegrated vector, you specify the normalized variable
with the NORMALIZE= option. The PRINT=(IARR) option provides the VAR(2) representation. The VARMAX procedure output is shown in Figure 30.14 through Figure 30.16.

```
/*--- Vector Error-Correction Model ---*/
proc varmax data=simul2;
    model y1 y2 / p=2 noint lagmax=3
        ecm=(rank=1 normalize=y1)
        print=(iarr estimates);
run;
```

The $\mathrm{ECM}=$ option produces the estimates of the long-run parameter, $\boldsymbol{\beta}$, and the adjustment coefficient, $\boldsymbol{\alpha}$. In Figure 30.14, " 1 " indicates the first column of the $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ matrices. Since the cointegration rank is 1 in the bivariate system, $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are two-dimensional vectors. The estimated cointegrating vector is $\hat{\boldsymbol{\beta}}=(1,-1.96)^{\prime}$. Therefore, the long-run relationship between $y_{1 t}$ and $y_{2 t}$ is $y_{1 t}=1.96 y_{2 t}$. The first element of $\hat{\boldsymbol{\beta}}$ is 1 since y_{1} is specified as the normalized variable.

Figure 30.14 Parameter Estimates for the VECM(2) Form

Figure 30.15 shows the parameter estimates in terms of lag one coefficients, \mathbf{y}_{t-1}, and lag one first differenced coefficients, $\Delta \mathbf{y}_{t-1}$, and their significance. "Alpha * Beta'" indicates the coefficients of \mathbf{y}_{t-1} and is obtained by multiplying the "Alpha" and "Beta" estimates in Figure 30.14. The parameter AR1 $i_{-} j$ corresponds to the elements in the "Alpha * Beta'" matrix. The t values and p-values corresponding to the parameters AR $1_{-} i_{-} j$ are missing since the parameters AR $1_{-} i_{-} j$ have non-Gaussian distributions. The parameter AR2_i_j corresponds to the elements in the differenced lagged AR coefficient matrix. The "D_" prefixed to a variable name in Figure 30.15 implies differencing.

Figure 30.15 Parameter Estimates for the VECM(2) Form

The fitted model is given as

$$
\Delta \mathbf{y}_{t}=\left(\begin{array}{rr}
-0.467 & 0.913 \\
(0.048) & (0.094) \\
0.107 & -0.209 \\
(0.051) & (0.100)
\end{array}\right) \mathbf{y}_{t-1}+\left(\begin{array}{rr}
-0.743 & -0.746 \\
(0.045) & (0.048) \\
0.405 & -0.572 \\
(0.049) & (0.051)
\end{array}\right) \Delta \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

Figure 30.16 Change the VECM(2) Form to the VAR(2) Model

Infinite Order AR Representation			
Lag	Variable	y1	y^{2}
1	y^{1}	-0.21013	0.16674
	y^{2}	0.51160	0.21980
2	y 1	0.74332	0.74621
	y^{2}	-0.40493	0.57157
3	y1	0.00000	0.00000
	y^{2}	0.00000	0.00000

The PRINT=(IARR) option in the previous SAS statements prints the reparameterized coefficient estimates. For the LAGMAX=3 in the SAS statements, the coefficient matrix of lag 3 is zero.

The VECM(2) form in Figure 30.16 can be rewritten as the following second-order vector autoregressive model:

$$
\mathbf{y}_{t}=\left(\begin{array}{rr}
-0.210 & 0.167 \\
0.512 & 0.220
\end{array}\right) \mathbf{y}_{t-1}+\left(\begin{array}{rr}
0.743 & 0.746 \\
-0.405 & 0.572
\end{array}\right) \mathbf{y}_{t-2}+\boldsymbol{\epsilon}_{t}
$$

Bayesian Vector Error Correction Model

Bayesian inference on a cointegrated system begins by using the priors of $\boldsymbol{\beta}$ obtained from the $\operatorname{VECM}(p)$ form. Bayesian vector error correction models can improve forecast accuracy for cointegrated processes.

The following statements fit a BVECM(2) form to the simulated data. You specify both the PRIOR= and $\mathrm{ECM}=$ options for the Bayesian vector error correction model. The VARMAX procedure output is shown in Figure 30.17.

```
/*--- Bayesian Vector Error-Correction Model ---*/
proc varmax data=simul2;
    model y1 y2 / p=2 noint
        prior=( lambda=0.5 theta=0.2 )
        ecm=( rank=1 normalize=y1 )
        print=(estimates);
run;
```

Figure 30.17 shows the model type fitted to the data, the estimates of the adjustment coefficient $(\boldsymbol{\alpha})$, the parameter estimates in terms of lag one coefficients (\mathbf{y}_{t-1}), and lag one first differenced coefficients ($\Delta \mathbf{y}_{t-1}$).

Figure 30.17 Parameter Estimates for the BVECM(2) Form

Vector Autoregressive Process with Exogenous Variables

A VAR process can be affected by other observable variables that are determined outside the system of interest. Such variables are called exogenous (independent) variables. Exogenous variables can be stochastic or nonstochastic. The process can also be affected by the lags of exogenous variables. A model used to describe this process is called a $\operatorname{VARX}(p, s)$ model.

The VARX (p, s) model is written as

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\mathbf{x}_{t}=\left(x_{1 t}, \ldots, x_{r t}\right)^{\prime}$ is an r-dimensional time series vector and Θ_{i}^{*} is a $k \times r$ matrix.
For example, a VARX $(1,0)$ model is

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\Phi_{1} \mathbf{y}_{t-1}+\Theta_{0}^{*} \mathbf{x}_{t}+\boldsymbol{\epsilon}_{t}
$$

where $\mathbf{y}_{t}=\left(y_{1 t}, y_{2 t}, y_{3 t}\right)^{\prime}$ and $\mathbf{x}_{t}=\left(x_{1 t}, x_{2 t}\right)^{\prime}$.
The following statements fit the $\operatorname{VARX}(1,0)$ model to the given data:

```
data grunfeld;
    input year y1 y2 y3 x1 x2 x3;
    label y1='Gross Investment GE'
            y2='Capital Stock Lagged GE'
            y3='Value of Outstanding Shares GE Lagged'
            x1='Gross Investment W'
            x2='Capital Stock Lagged W'
            x3='Value of Outstanding Shares Lagged W';
datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 . 8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
... more lines ...
/*--- Vector Autoregressive Process with Exogenous Variables ---*/
proc varmax data=grunfeld;
    model y1-y3 = x1 x2 / p=1 lagmax=5
                                    printform=univariate
                                print=(impulsx=(all) estimates);
run;
```

The VARMAX procedure output is shown in Figure 30.18 through Figure 30.20.
Figure 30.18 shows the descriptive statistics for the dependent (endogenous) and independent (exogenous) variables with labels.

Figure 30.18 Descriptive Statistics for the $\operatorname{VARX}(1,0)$ Model

Figure 30.19 shows the parameter estimates for the constant, the lag zero coefficients of exogenous variables, and the lag one AR coefficients. From the schematic representation of parameter estimates, the significance of the parameter estimates can be easily verified. The symbol " C " means the constant and "XL0" means the lag zero coefficients of exogenous variables.

Figure 30.19 Parameter Estimates for the $\operatorname{VARX}(1,0)$ Model

Figure 30.20 shows the parameter estimates and their significance.

Figure 30.20 Parameter Estimates for the $\operatorname{VARX}(1,0)$ Model Continued

Model Parameter Estimates						
Standard						
Equation Parameter		Estimate	Error	Value	$>\|t\|$	Variable
y^{1}	CONST1	-12.01279	27.47108	-0.44	0.6691	
	XL0_1_1	1.69281	0.54395	3.11	0.0083	x1 (t)
	XLO_1_2	-0.00859	0.05361	-0.16	0.8752	x2 (t)
	AR1_1_1	0.23699	0.20668	1.15	0.2722	Y1 (t-1)
	AR1_1_2	0.00763	0.01627	0.47	0.6470	$\mathrm{y}^{2}(\mathrm{t}-1)$
	AR1_1_3	0.02941	0.04852	0.61	0.5548	$y^{3}(t-1)$
y^{2}	CONST2	702.08673	256.48046	2.74	0.0169	1
	XLO_2_1	-6.09850	5.07849	-1.20	0.2512	x1 (t)
	XLO_2_2	2.57980	0.50056	5.15	0.0002	x2 (t)
	AR1_2_1	-2.46656	1.92967	-1.28	0.2235	$\mathrm{y}^{1}(\mathrm{t}-1)$
	AR1_2_2	0.16379	0.15193	1.08	0.3006	$\mathrm{y}^{2}(\mathrm{t}-1)$
	AR1_2_3	-0.84090	0.45304	-1.86	0.0862	y 3 (t-1)
y^{3}	CONST3	-22.42110	10.31166	-2.17	0.0487	1
	XLO_3_1	-0.02317	0.20418	-0.11	0.9114	x1 (t)
	XLO_3_2	-0.01274	0.02012	-0.63	0.5377	x2 (t)
	AR1_3_1	0.95116	0.07758	12.26	0.0001	y 1 (t-1)
	AR1_3_2	0.00224	0.00611	0.37	0.7201	y2 (t-1)
	AR1_3_3	0.93801	0.01821	51.50	0.0001	y 3 (t-1)

The fitted model is given as

$$
\begin{aligned}
\left(\begin{array}{l}
y_{1 t} \\
y_{2 t} \\
y_{3 t}
\end{array}\right)= & \left(\begin{array}{r}
-12.013 \\
(27.471) \\
702.086 \\
(256.480) \\
-22.421 \\
(10.312)
\end{array}\right)+\left(\begin{array}{rrr}
1.693 & -0.009 \\
(0.544) & (0.054) \\
-6.099 & 2.580 \\
(5.078) & (0.501) \\
-0.023 & -0.013 \\
(0.204) & (0.020)
\end{array}\right)\left(\begin{array}{l}
x_{1 t} \\
\\
x_{2 t}
\end{array}\right) \\
& +\left(\begin{array}{rrr}
0.237 & 0.008 & 0.029 \\
(0.207) & (0.016) & (0.049) \\
-2.467 & 0.164 & -0.841 \\
(1.930) & (0.152) & (0.453) \\
0.951 & 0.002 & 0.938 \\
(0.078) & (0.006) & (0.018)
\end{array}\right)\left(\begin{array}{l}
y_{1, t-1} \\
y_{2, t-1} \\
y_{3, t-1}
\end{array}\right)+\left(\begin{array}{l}
\epsilon_{1 t} \\
\epsilon_{2 t} \\
\epsilon_{3 t}
\end{array}\right)
\end{aligned}
$$

Parameter Estimation and Testing on Restrictions

In the previous example, the $\operatorname{VARX}(1,0)$ model is written as

$$
\mathbf{y}_{t}=\delta+\Theta_{0}^{*} \mathbf{x}_{t}+\Phi_{1} \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

with

$$
\Theta_{0}^{*}=\left(\begin{array}{ll}
\theta_{11}^{*} & \theta_{12}^{*} \\
\theta_{21}^{*} & \theta_{22}^{*} \\
\theta_{31}^{*} & \theta_{32}^{*}
\end{array}\right) \quad \Phi_{1}=\left(\begin{array}{lll}
\phi_{11} & \phi_{12} & \phi_{13} \\
\phi_{21} & \phi_{22} & \phi_{23} \\
\phi_{31} & \phi_{32} & \phi_{33}
\end{array}\right)
$$

In Figure 30.20 of the preceding section, you can see several insignificant parameters. For example, the coefficients XL0_1_2, AR1_1_2, and AR1_3_2 are insignificant.

The following statements restrict the coefficients of $\theta_{12}^{*}=\phi_{12}=\phi_{32}=0$ for the $\operatorname{VARX}(1,0)$ model.

```
/*--- Models with Restrictions and Tests ---*/
proc varmax data=grunfeld;
    model y1-y3 = x1 x2 / p=1 print=(estimates);
    restrict }\textrm{XL}(0,1,2)=0,\operatorname{AR}(1,1,2)=0, \operatorname{AR}(1,3,2)=0
run;
```

The output in Figure 30.21 shows that three parameters $\theta_{12}^{*}, \phi_{12}$, and ϕ_{32} are replaced by the restricted values, zeros. In the schematic representation of parameter estimates, the three restricted parameters $\theta_{12}^{*}, \phi_{12}$, and ϕ_{32} are replaced by $*$.

Figure 30.21 Parameter Estimation with Restrictions

The output in Figure 30.22 shows the estimates of the Lagrangian parameters and their significance. Based on the p-values associated with the Lagrangian parameters, you cannot reject the null hypotheses $\theta_{12}^{*}=0, \phi_{12}=0$, and $\phi_{32}=0$ with the 0.05 significance level.

Figure 30.22 RESTRICT Statement Results

Testing of the Restricted Parameters				
Parameter	Estimate	Standard Error	t Value	Pr $>\|t\|$
XLO_1_2	1.74969	21.44026	0.08	0.9389
AR1_1_2	30.36254	70.74347	0.43	0.6899
AR1_3_2	55.42191	164.03075	0.34	0.7524

The TEST statement in the following example tests $\phi_{31}=0$ and $\theta_{12}^{*}=\phi_{12}=\phi_{32}=0$ for the VARX $(1,0)$ model:

```
proc varmax data=grunfeld;
    model y1-y3 = x1 x2 / p=1;
    test AR (1,3,1)=0;
    test XL (0,1,2)=0, AR (1,1,2)=0, AR (1,3,2)=0;
run;
```

The output in Figure 30.23 shows that the first column in the output is the index corresponding to each TEST statement. You can reject the hypothesis test $\phi_{31}=0$ at the 0.05 significance level, but you cannot reject the joint hypothesis test $\theta_{12}^{*}=\phi_{12}=\phi_{32}=0$ at the 0.05 significance level.

Figure 30.23 TEST Statement Results

The VARMAX Procedure			
Testing of the Parameters			
Test	DF	Chi-Square	Pr > ChiSq
1	1	150.31	$<.0001$
2	3	0.34	0.9522

Causality Testing

The following statements use the CAUSAL statement to compute the Granger causality test for a VAR(1) model. For the Granger causality tests, the autoregressive order should be defined by the $\mathrm{P}=$ option in the MODEL statement. The variable groups are defined in the MODEL statement as well. Regardless of whether the variables specified in the GROUP1 $=$ and GROUP2 $=$ options are designated as dependent or exogenous (independent) variables in the MODEL statement, the CAUSAL statement fits the $\operatorname{VAR}(\mathrm{p})$ model by considering the variables in the two groups as dependent variables.

```
/*--- Causality Testing ---*/
proc varmax data=grunfeld;
    model y1-y3 = x1 x2 / p=1 noprint;
    causal group1=(x1) group2=(y1-y3);
    causal group1=(y3) group2=(y1 y2);
run;
```

The output in Figure 30.24 is associated with the CAUSAL statement. The first CAUSAL statement fits the $\operatorname{VAR}(1)$ model by using the variables $y 1, y 2, y 3$, and $x 1$. The second CAUSAL statement fits the $\operatorname{VAR}(1)$ model by using the variables $y 1, y 3$, and $y 2$.

Figure 30.24 CAUSAL Statement Results

The null hypothesis of the Granger causality test is that GROUP1 is influenced only by itself, and not by GROUP2.

The first column in the output is the index corresponding to each CAUSAL statement. The output shows that you cannot reject that $x 1$ is influenced by itself and not by $(y 1, y 2, y 3)$ at the 0.05 significance level for Test 1 . You can reject that $y 3$ is influenced by itself and not by $(y 1, y 2)$ for Test 2. See the section "VAR and VARX Modeling" on page 1941 for details.

Syntax: VARMAX Procedure

```
PROC VARMAX options;
    BY variables;
    CAUSAL group1=(variables) group2=(variables) ;
    COINTEG rank=number < options> ;
    ID variable interval=value < option> ;
    MODEL dependent variables < =regressors> <, dependent variables < =regressors> ... >
        </ options>;
    GARCH options;
    NLOPTIONS options;
    OUTPUT < options > ;
    RESTRICT restrictions;
    TEST restrictions ;
```


Functional Summary

The statements and options used with the VARMAX procedure are summarized in the following table:

Table 30.1 VARMAX Functional Summary

Table 30.1 continued

Description	Statement	Option
print the cross-covariance matrices of the dependent variables	MODEL	COVY
print the covariance matrix of parameter estimates	MODEL	COVB
print the decomposition of the prediction error covariance matrix	MODEL	DECOMPOSE
print the residual diagnostics	MODEL	DIAGNOSE
print the contemporaneous relationships among the components of the vector time series	MODEL	DYNAMIC
print the parameter estimates	MODEL	ESTIMATES
print the infinite order AR representation	MODEL	IARR
print the impulse response function	MODEL	IMPULSE=
print the impulse response function in the transfer function	MODEL	IMPULSX=
print the partial autoregressive coefficient matrices	MODEL	PARCOEF
print the partial canonical correlation matrices	MODEL	PCANCORR
print the partial correlation matrices	MODEL	PCORR
print the eigenvalues of the companion matrix	MODEL	ROOTS
print the Yule-Walker estimates	MODEL	YW
Model Estimation and Order Selection Options center the dependent variables		
center the dependent variables	MODEL	CENTER
specify the degrees of differencing for the specified model variables	MODEL	DIF=
specify the degrees of differencing for all independent variables	MODEL	DIFX=
specify the degrees of differencing for all dependent variables	MODEL	DIFY=
specify the vector error correction model	MODEL	ECM=
specify the estimation method	MODEL	METHOD=
select the tentative order	MODEL	MINIC=
suppress the current values of independent variables	MODEL	NOCURRENTX
suppress the intercept parameters	MODEL	NOINT
specify the number of seasonal periods	MODEL	NSEASON=
specify the order of autoregressive polynomial	MODEL	$\mathrm{P}=$
specify the Bayesian prior model	MODEL	PRIOR=
specify the order of moving-average polynomial	MODEL	$\mathrm{Q}=$
center the seasonal dummies	MODEL	SCENTER
specify the degree of time trend polynomial	MODEL	TREND=
specify the denominator for error covariance matrix estimates	MODEL	VARDEF=
specify the lag order of independent variables	MODEL	XLAG=

Table 30.1 continued

Description	Statement	Option
GARCH Related Options		
specify the GARCH-type model	GARCH	FORM=
specify the order of the GARCH polynomial	GARCH	P=
specify the order of the ARCH polynomial	GARCH	Q=

Cointegration Related Options

print the results from the weak exogeneity test of the long-run parameters specify the restriction on the cointegrated coefficient matrix
specify the restriction on the adjustment coefficient matrix
specify the variable name whose cointegrating vectors are normalized specify a cointegration rank print the Johansen cointegration rank test
print the Stock-Watson common trends test
print the Dickey-Fuller unit root test
Tests and Restrictions on Parameters
test the Granger causality
place and test restrictions on parameter estimates
test hypotheses on parameter estimates

Forecasting Control Options

specify the size of confidence limits for forecasting start forecasting before end of the input data specify how many periods to forecast suppress the printed forecasts

COINTEG J=
COINTEG NORMALIZE=
COINTEG RANK=
MODEL COINTTEST= (JOHANSEN=)
MODEL COINTTEST=(SW=)
MODEL DFTEST=

CAUSAL GROUP1= GROUP2=
RESTRICT
TEST
COINTEG
COINTEG $\mathrm{H}=$

OUTPUT
ALPHA=
OUTPUT
OUTPUT LEAD=
OUTPUT NOPRINT

PROC VARMAX Statement

PROC VARMAX options;
The following options can be used in the PROC VARMAX statement:

DATA=SAS-data-set

specifies the input SAS data set. If the DATA= option is not specified, the PROC VARMAX statement uses the most recently created SAS data set.

OUTEST=SAS-data-set

writes the parameter estimates to the output data set.

COVOUT

OUTCOV

writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid only if the OUTEST= option is specified.

OUTSTAT=SAS-data-set

writes residual diagnostic results to an output data set. If the COINTTEST=(JOHANSEN) option is specified, the results of this option are also written to the output data set.

The following statements are the examples of these options in the PROC VARMAX statement:

```
proc varmax data=one outest=est outcov outstat=stat;
    model y1-y3 / p=1;
run;
proc varmax data=one outest=est outstat=stat;
    model y1-y3 / p=1 cointtest=(johansen);
run;
```

PLOTS< (global-plot-option) > = plot-request-option < (options)>
PLOTS< (global-plot-option) > = (plot-request-option < (options) > ... plot-request-option < (options) >)
controls the plots produced through ODS Graphics. When you specify only one plot, you can omit the parentheses around the plot request. Some examples follow:

```
plots=none
plots=all
plots (unpack)=residual(residual normal)
plots=(forecasts model)
```

You must enable ODS Graphics before requesting plots as shown in the following example. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide).

```
ods graphics on;
proc varmax data=one plots=impulse(simple);
    model y1-y3 / p=1;
run;
proc varmax data=one plots=(model residual);
    model y1-y3 / p=1;
run;
```

```
proc varmax data=one plots=forecasts;
    model y1-y3 / p=1;
    output lead=12;
run;
```

The first VARMAX program produces the simple response impulse plots. The second VARMAX program produces the plots associated with the model and prediction errors. The plots associated with prediction errors are the ACF, PACF, IACF, distribution, white-noise, and Normal quantile plots and the prediction error plot. The third VARMAX program produces the FORECASTS and FORECASTSONLY plots.

The global-plot-option applies to the impulse and prediction error analysis plots generated by the VARMAX procedure. The following global-plot-option is available:

UNPACK breaks a graphic that is otherwise paneled into individual component plots.
The following plot-request-options are available:
ALL produces all plots appropriate for the particular analysis.
FORECASTS < (forecasts-plot-options) > produces plots of the forecasts. The forecastsonly plot that shows the multistep forecasts in the forecast region is produced by default. The following forecasts-plot-options are available:

ALL produces the FORECASTSONLY and the FORECASTS plots. This is the default.

FORECASTS produces a plot that shows the one-step-ahead as well as the multistep forecasts.

FORECASTSONLY produces a plot that shows only the multistep forecasts.

IMPULSE $<$ (impulse-plot-options) > produces the plots of impulse response function and the impulse response of the transfer function.

ALL
ACCUM
ORTH
SIMPLE
produces all impulse plots. This is the default. produces the accumulated impulse plot. produces the orthogonalized impulse plot. produces the simple impulse plot.

MODEL produces plots of dependent variables listed in the MODEL statement and plots of the one-step-ahead predicted values for each dependent variables.
NONE suppresses all plots.
RESIDUAL < (residual-plot-options) > produces plots associated with the prediction errors obtained after modeling the data. The following residual-plot-options are available:

ALL
produces all plots associated with the analysis of the prediction errors. This is the default.

RESIDUAL produces prediction error plot.

DIAGNOSTICS

produces a panel of plots useful in assessing the autocorrelations and white-noise of the prediction errors. The panel consists of the following:

- the autocorrelation plot of the prediction errors
- the partial autocorrelation plot of the prediction errors
- the inverse autocorrelation plot of the prediction errors
- the \log scaled white noise plot of the prediction errors

NORMAL produces a panel of plots useful in assessing normality of the prediction errors. The panel consists of the following:

- distribution of the prediction errors with overlaid the normal curve
- normal quantile plot of the prediction errors

Other Options

In addition, any of the following MODEL statement options can be specified in the PROC VARMAX statement, which is equivalent to specifying the option for every MODEL statement: CENTER, DFTEST=, DIF=, DIFX=, DIFY=, LAGMAX=, METHOD=, MINIC=, NOCURRENTX, NOINT, NOPRINT, NSEASON=, P=, PRINT=, PRINTALL, PRINTFORM=, Q=, SCENTER, TREND $=$, VARDEF $=$, and XLAG= options.

The following is an example of the options in the PROC VARMAX statement:

```
proc varmax data=one lagmax=3 method=ml;
    model y1-y3 / p=1;
run;
```


BY Statement

BY variables ;

A BY statement can be used with PROC VARMAX to obtain separate analyses on observations in groups defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data using the SORT procedure with a similar BY statement.
- Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for the VARMAX procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables using the DATASETS procedure.

For more information about the BY statement, see in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

The following is an example of the BY statement:

```
proc varmax data=one;
    by region;
    model y1-y3 / p=1;
run;
```


CAUSAL Statement

CAUSAL GROUP1=(variables) GROUP2=(variables) ;
A CAUSAL statement prints the Granger causality test by fitting the $\operatorname{VAR}(p)$ model by using all variables defined in GROUP1 and GROUP2. Any number of CAUSAL statements can be specified. The CAUSAL statement proceeds with the MODEL statement and uses the variables and the autoregressive order, p, specified in the MODEL statement. Variables in the GROUP1= and GROUP2 $=$ options should be defined in the MODEL statement. If the $\mathrm{P}=0$ option is specified in the MODEL statement, the CAUSAL statement is not applicable.

The null hypothesis of the Granger causality test is that GROUP1 is influenced only by itself, and not by GROUP2. If the hypothesis test fails to reject the null, then the variables listed in GROUP1 might be considered as independent variables.

See the section "VAR and VARX Modeling" on page 1941 for details.
The following is an example of the CAUSAL statement. You specify the CAUSAL statement with the GROUP $1=$ and GROUP2 $=$ options.

```
proc varmax data=one;
    model y1-y3 = x1 / p=1;
    causal group1=(x1) group2=(y1-y3);
    causal group1=(y2) group2=(y1 y3);
run;
```

The first CAUSAL statement fits the $\operatorname{VAR}(1)$ model by using the variables $y 1, y 2, y 3$, and $x 1$ and tests the null hypothesis that $x 1$ causes the other variables, $y 1, y 2$, and $y 3$, but the other variables do not cause $x 1$. The second CAUSAL statement fits the $\operatorname{VAR}(1)$ model by using the variables $y 1$, $y 3$, and $y 2$ and tests the null hypothesis that $y 2$ causes the other variables, $y 1$ and $y 3$, but the other variables do not cause $y 2$.

COINTEG Statement

```
COINTEG RANK=number < H=(matrix) > < J=(matrix) >
    < EXOGENEITY > < NORMALIZE=variable > ;
```

The COINTEG statement fits the vector error correction model to the data, tests the restrictions of the long-run parameters and the adjustment parameters, and tests for the weak exogeneity in the long-run parameters. The cointegrated system uses the maximum likelihood analysis proposed by Johansen and Juselius (1990) and Johansen (1995a, 1995b). Only one COINTEG statement is allowed.

You specify the ECM= option in the MODEL statement or the COINTEG statement to fit the $\operatorname{VECM}(p)$. The $\mathrm{P}=$ option in the MODEL statement is used to specify the autoregressive order of the VECM.

The following statements are equivalent for fitting a VECM(2).

```
proc varmax data=one;
    model y1-y3 / p=2 ecm=(rank=1);
run;
proc varmax data=one;
    model y1-y3 / p=2;
    cointeg rank=1;
run;
```

To test restrictions of either $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$ or both, you specify either $\mathrm{J}=$ or $\mathrm{H}=$ or both, respectively. You specify the EXOGENEITY option in the COINTEG statement for tests of the weak exogeneity in the long-run parameters.

The following is an example of the COINTEG statement.

```
proc varmax data=one;
    model y1-y3 / p=2;
    cointeg rank=1 h=(1 0, -1 0, 0 1)
                j=(1 0, 0 0, 0 1) exogeneity;
run;
```

The following options can be used in the COINTEG statement:

EXOGENEITY

formulates the likelihood ratio tests for testing weak exogeneity in the long-run parameters. The null hypothesis is that one variable is weakly exogenous for the others.

H=(matrix)

specifies the restrictions H on the $k \times r$ or $(k+1) \times r$ cointegrated coefficient matrix $\boldsymbol{\beta}$ such that $\boldsymbol{\beta}=H \phi$, where H is known and ϕ is unknown. If the $\operatorname{VECM}(p)$ is specified with the COINTEG statement or with the ECM= option in the MODEL statement and the ECTREND
option is not included with the $\mathrm{ECM}=$ specification, then the H matrix has dimension $k \times m$. If the $\operatorname{VECM}(p)$ is specified with the COINTEG statement or with the $\mathrm{ECM}=$ option in the MODEL statement and the ECTREND option is also used, then the H matrix has dimension $(k+1) \times m$. Here k is the number of dependent variables, and m is $r \leq m<k$ where r is defined with the RANK=r option.

For example, consider a system that contains four variables and the RANK $=1$ option with $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)^{\prime}$. The restriction matrix for the test of $\beta_{1}+\beta_{2}=0$ can be specified as

```
cointeg rank=1 h=(1 0 0, -1 0 0, 0 1 0, 0 0 1);
```

Here the matrix H is 4×3 where $k=4$ and $m=3$, and each row of the matrix H is separated by commas.

When the series has no separate deterministic trend, the constant term should be restricted by $\boldsymbol{\alpha}_{\perp}^{\prime} \boldsymbol{\delta}=0$. In the preceding example, the $\boldsymbol{\beta}$ can be either $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, 1\right)^{\prime}$ or $\boldsymbol{\beta}=$ $\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, t\right)^{\prime}$. You can specify the restriction matrix for the previous test of $\beta_{1}+\beta_{2}=0$ as follows:

```
cointeg rank=1
    h=(1 0 0 0, -1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1);
```

When the cointegrated system contains three dependent variables and the RANK=2 option, you can specify the restriction matrix for the test of $\beta_{1 j}=-\beta_{2 j}$ for $j=1,2$ as follows:

```
cointeg rank=2 h=(1 0, -1 0, 0 1);
```


$\mathrm{J}=$ (matrix)

specifies the restrictions J on the $k \times r$ adjustment matrix $\boldsymbol{\alpha}$ such that $\boldsymbol{\alpha}=J \psi$, where J is known and ψ is unknown. The $k \times m$ matrix J is specified by using this option, where k is the number of dependent variables, m is $r \leq m<k$, and r is defined with the RANK $=r$ option.

For example, when the system contains four variables and the RANK $=1$ option is used, you can specify the restriction matrix for the test of $\alpha_{j}=0$ for $j=2,3,4$ as follows:

```
cointeg rank=1 j=(1, 0, 0, 0);
```

When the system contains three variables and the RANK=2 option, you can specify the restriction matrix for the test of $\alpha_{2 j}=0$ for $j=1,2$ as follows:

```
cointeg rank=2 j=(1 0, 0 0, 0 1);
```


NORMALIZE=variable

specifies a single dependent (endogenous) variable name whose cointegrating vectors are normalized. If the variable name is different from that specified in the COINTTEST $=($ JOHANSEN $=$) or $\mathrm{ECM}=$ option in the MODEL statement, the variable name specified in the COINTEG statement is used. If the normalized variable is not specified, cointegrating vectors are not normalized.

RANK=number

specifies the cointegration rank of the cointegrated system. This option is required in the COINTEG statement. The rank of cointegration should be greater than zero and less than the number of dependent (endogenous) variables. If the value of the RANK= option in the COINTEG statement is different from that specified in the ECM= option, the rank specified in the COINTEG statement is used.

ID Statement

```
ID variable INTERVAL=value < AL/GN=value > ;
```

The ID statement specifies a variable that identifies observations in the input data set. The datetime variable specified in the ID statement is included in the OUT= data set if the OUTPUT statement is specified. Note that the ID variable is usually a SAS datetime variable. The values of the ID variable are extrapolated for the forecast observations based on the value of the INTERVAL= option.

ALIGN=value

controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the following values: BEGINNING \mid BEG \mid B, MIDDLE \mid MID $\mid \mathrm{M}$, and ENDING | END | E. The default is BEGINNING. The ALIGN= option is used to align the ID variable to the beginning, middle, or end of the time ID interval specified by the INTERVAL= option.

INTERVAL=value

specifies the time interval between observations. This option is required in the ID statement. The INTERVAL= option is used in conjunction with the ID variable to check that the input data are in order and have no missing periods. The INTERVAL= option is also used to extrapolate the ID values past the end of the input data when the OUTPUT statement is specified.

The following is an example of the ID statement:

```
proc varmax data=one;
    id date interval=qtr align=mid;
    model y1-y3 / p=1;
run;
```


MODEL Statement

```
MODEL dependents < = regressors >
    <, dependents < = regressors > ... >
    < / options > ;
```

The MODEL statement specifies dependent (endogenous) variables and independent (exogenous) variables for the VARMAX model. The multivariate model can have the same or different independent variables corresponding to the dependent variables. As a special case, the VARMAX procedure allows you to analyze one dependent variable. Only one MODEL statement is allowed.

For example, the following statements are equivalent ways of specifying the multivariate model for the vector $(y 1, y 2, y 3)$:

```
model y1 y2 y3 </options>;
model y1-y3 </options>;
```

The following statements are equivalent ways of specifying the multivariate model with independent variables, where $y 1, y 2, y 3$, and $y 4$ are the dependent variables and $x 1, x 2, x 3, x 4$, and $x 5$ are the independent variables:

```
model y1 y2 y3 y4 = x1 x2 x3 x4 x5 </options>;
model y1 y2 y3 y4 = x1-x5 </options>;
model y1 = x1-x5, y2 = x1-x5, y3 y4 = x1-x5 </options>;
model y1-y4 = x1-x5 </options>;
```

When the multivariate model has different independent variables that correspond to each of the dependent variables, equations are separated by commas (,) and the model can be specified as illustrated by the following MODEL statement:

```
model y1 = x1-x3, y2 = x3-x5, y3 y4 = x1-x5 </options>;
```

The following options can be used in the MODEL statement after a forward slash (/):

CENTER

centers the dependent (endogenous) variables by subtracting their means. Note that centering is done after differencing when the DIF= or DIFY=option is specified. If there are exogenous (independent) variables, this option is not applicable.

```
model y1 y2 / p=1 center;
```


DIF(variable (number-list) < ... variable (number-list) >)

DIF=(variable (number-list) < ... variable (number-list) >)
specifies the degrees of differencing to be applied to the specified dependent or independent variables. The number-list must contain one or more numbers, each of which should be greater than zero. The differencing can be the same for all variables, or it can vary among variables. For example, the $\operatorname{DIF}=\left(y_{1}(1,4) y_{3}(1) x_{2}(2)\right)$ option specifies that the series y_{1} is differenced at lag 1 and at lag 4 , which is

$$
\left(1-B^{4}\right)(1-B) y_{1 t}=\left(y_{1 t}-y_{1, t-1}\right)-\left(y_{1, t-4}-y_{1, t-5}\right)
$$

the series y_{3} is differenced at lag 1 , which is $\left(y_{3 t}-y_{3, t-1}\right)$; and the series x_{2} is differenced at lag 2 , which is $\left(x_{2 t}-x_{2, t-2}\right)$.

The following uses the data $d y 1, y 2, x 1$, and $d x 2$, where $d y 1=(1-B) y_{1 t}$ and $d x 2=$ $(1-B)^{2} x_{2 t}$.

```
model y1 y2 = x1 x2 / p=1 dif=(y1(1) x2(2));
```


DIFX(number-list)

DIFX=(number-list)
specifies the degrees of differencing to be applied to all independent variables. The numberlist must contain one or more numbers, each of which should be greater than zero. For example, the DIFX=(1) option specifies that all of the independent series are differenced once at lag 1. The DIFX=(1,4) option specifies that all of the independent series are differenced at lag 1 and at lag 4. If independent variables are specified in the DIF $=$ option, then the DIFX= option is ignored.

The following statement uses the data $y 1, y 2, d x 1$, and $d x 2$, where $d x 1=(1-B) x_{1 t}$ and $d x 2=(1-B) x_{2 t}$.

```
    model y1 y2 = x1 x2 / p=1 difx(1);
```


DIFY(number-list)

DIFY=(number-list)

specifies the degrees of differencing to be applied to all dependent (endogenous) variables. The number-list must contain one or more numbers, each of which should be greater than zero. For details, see the DIFX= option. If dependent variables are specified in the DIF= option, then the DIFY= option is ignored.

```
model y1 y2 / p=1 dify(1);
```


METHOD=value

requests the type of estimates to be computed. The possible values of the METHOD= option are as follows:

LS specifies least squares estimates.
ML specifies maximum likelihood estimates.
When the $\mathrm{ECM}=$, $\mathrm{PRIOR}=$, and $\mathrm{Q}=$ options and the GARCH statement are specified, the default ML method is used regardless of the method given by the METHOD= option.

```
model y1 y2 / p=1 method=ml;
```


NOCURRENTX

suppresses the current values x_{t} of the independent variables. In general, the $\operatorname{VARX}(p, s)$ model is

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where p is the number of lags of the dependent variables included in the model, and s is the number of lags of the independent variables included in the model, including the contemporaneous values of x_{t}.

A VARX $(1,2)$ model can be specified as:

```
model y1 y2 = x1 x2 / p=1 xlag=2;
```

If the NOCURRENTX option is specified, it suppresses the current values \mathbf{x}_{t} and starts with \mathbf{x}_{t-1}. The $\operatorname{VARX}(p, s)$ model is redefined as:

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=1}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

This model with $p=1$ and $s=2$ can be specified as:

```
model y1 y2 = x1 x2 / p=1 xlag=2 nocurrentx;
```

NOINT
suppresses the intercept parameter $\boldsymbol{\delta}$.

```
model y1 y2 / p=1 noint;
```


NSEASON=number

specifies the number of seasonal periods. When the NSEASON=number option is specified, (n umber -1) seasonal dummies are added to the regressors. If the NOINT option is specified, the NSEASON= option is not applicable.

```
model y1 y2 / p=1 nseason=4;
```


SCENTER

centers seasonal dummies specified by the NSEASON= option. The centered seasonal dummies are generated by $c-(1 / s)$, where c is a seasonal dummy generated by the NSEASON $=s$ option.

```
model y1 y2 / p=1 nseason=4 scenter;
```


TREND=value

specifies the degree of deterministic time trend included in the model. Valid values are as follows:

LINEAR includes a linear time trend as a regressor.
QUAD includes linear and quadratic time trends as regressors.
The TREND=QUAD option is not applicable for a cointegration analysis.

```
model y1 y2 / p=1 trend=linear;
```


VARDEF=value

corrects for the degrees of freedom of the denominator for computing an error covariance matrix for the METHOD=LS option. If the METHOD=ML option is specified, the VARDEF=N option is always used. Valid values are as follows:

DF specifies that the number of nonmissing observation minus the number of regressors be used.

N specifies that the number of nonmissing observation be used.
model $\mathrm{y}^{1} \mathrm{y}^{2} / \mathrm{p}=1$ vardef=n;

Printing Control Options

LAGMAX=number

specifies the maximum number of lags for which results are computed and displayed by the PRINT=(CORRX CORRY COVX COVY IARR IMPULSE= IMPULSX= PARCOEF PCANCORR PCORR) options. This option is also used to limit the printed results for the cross covariances and cross-correlations of residuals. The default is LAGMAX $=\min (12, T$ 2), where T is the number of nonmissing observations.

```
model y1 y2 / p=1 lagmax=6;
```


NOPRINT

suppresses all printed output.
model y 1 y 2 / $\mathrm{p}=1$ noprint;

PRINTALL

requests all printing control options. The options set by the option PRINTALL are DFTEST=, MINIC $=$, PRINTFORM=BOTH, and PRINT=(CORRB CORRX CORRY COVB COVPE COVX COVY DECOMPOSE DYNAMIC IARR IMPULSE=(ALL) IMPULSX=(ALL) PARCOEF PCANCORR PCORR ROOTS YW).

You can also specify this option as the option ALL.

```
model y1 y2 / p=1 printall;
```


PRINTFORM= value

requests the printing format of the output generated by the PRINT= option and cross covariances and cross-correlations of residuals. Valid values are as follows:

BOTH prints output in both MATRIX and UNIVARIATE forms.
MATRIX prints output in matrix form. This is the default.
UNIVARIATE prints output by variables.

```
model y1 y2 / p=1 print=(impulse) printform=univariate;
```


Printing Options

PRINT=(options)

The following options can be used in the PRINT=() option. The options are listed within parentheses. If a number in parentheses follows an option listed below, then the option prints the number of lags specified by number in parentheses. The default is the number of lags specified by the LAGMAX=number option.

CORRB
prints the estimated correlations of the parameter estimates.

CORRX

CORRX(number)

prints the cross-correlation matrices of exogenous (independent) variables. The number should be greater than zero.

CORRY

CORRY(number)

prints the cross-correlation matrices of dependent (endogenous) variables. The number should be greater than zero.

COVB

prints the estimated covariances of the parameter estimates.

COVPE

COVPE(number)

prints the covariance matrices of number-ahead prediction errors for the
$\operatorname{VARMAX}(p, q, s)$ model. The number should be greater than zero. If the DIF= or DIFY= option is specified, the covariance matrices of multistep prediction errors are computed based on the differenced data. This option is not applicable when the PRIOR=option is specified. See the section "Forecasting" on page 1930 for details.

COVX

COVX(number)

prints the cross-covariance matrices of exogenous (independent) variables. The number should be greater than zero.

COVY

COVY(number)

prints the cross-covariance matrices of dependent (endogenous) variables. The number should be greater than zero.

DECOMPOSE

DECOMPOSE(number)

prints the decomposition of the prediction error covariances using up to the number of lags specified by number in parentheses for the $\operatorname{VARMA}(p, q)$ model. The number should be greater than zero. It can be interpreted as the contribution of innovations in one variable to the mean squared error of the multistep forecast of another variable. The DECOMPOSE option also prints proportions of the forecast error variance.

If the DIF= or DIFY= option is specified, the covariance matrices of multistep prediction errors are computed based on the differenced data. This option is not applicable when the PRIOR $=$ option is specified. See the section "Forecasting" on page 1930 for details.

DIAGNOSE

prints the residual diagnostics and model diagnostics.

DYNAMIC

prints the contemporaneous relationships among the components of the vector time series.

ESTIMATES

prints the coefficient estimates and a schematic representation of the significance and sign of the parameter estimates.

IARR

IARR(number)
prints the infinite order AR representation of a VARMA process. The number should be greater than zero. If the ECM= option and the COINTEG statement are specified, then the reparameterized AR coefficient matrices are printed.

IMPULSE

IMPULSE(number)

IMPULSE=(SIMPLE ACCUM ORTH STDERR ALL)

IMPULSE(number)=(SIMPLE ACCUM ORTH STDERR ALL)
prints the impulse response function. The number should be greater than zero. It investigates the response of one variable to an impulse in another variable in a system that involves a number of other variables as well. It is an infinite order MA representation of a VARMA process. See the section "Impulse Response Function" on page 1919 for details.

The following options can be used in the IMPULSE=() option. The options are specified within parentheses.

ACCUM
ALL

ORTH
SIMPLE
STDERR prints the standard errors of the impulse response function, the accumulated impulse response function, or the orthogonalized impulse response function.

If the exogenous variables are used to fit the model, then the STDERR option is ignored.

IMPULSX

IMPULSX(number)
IMPULSX=(SIMPLE ACCUM ALL)
IMPULSX(number)=(SIMPLE ACCUM ALL)
prints the impulse response function related to exogenous (independent) variables. The number should be greater than zero. See the section "Impulse Response Function" on page 1919 for details.

The following options can be used in the IMPULSX=() option. The options are specified within parentheses.

ACCUM
prints the accumulated impulse response matrices for the transfer function.
ALL is equivalent to specifying both SIMPLE and ACCUM.

SIMPLE prints the impulse response matrices for the transfer function. This is the default.

PARCOEF

PARCOEF(number)

prints the partial autoregression coefficient matrices, $\Phi_{m m}$ up to the lag number. The number should be greater than zero. With a VAR process, this option is useful for the identification of the order since the $\Phi_{m m}$ have the property that they equal zero for $m>p$ under the hypothetical assumption of a $\operatorname{VAR}(p)$ model. See the section "Tentative Order Selection" on page 1935 for details.

PCANCORR

PCANCORR(number)

prints the partial canonical correlations of the process at lag m and the test for testing $\Phi_{m}=0$ for $m>p$ up to the lag number. The number should be greater than zero. The lag m partial canonical correlations are the canonical correlations between \mathbf{y}_{t} and \mathbf{y}_{t-m}, after adjustment for the dependence of these variables on the intervening values $\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-m+1}$. See the section "Tentative Order Selection" on page 1935 for details.

PCORR

PCORR(number)

prints the partial correlation matrices. The number should be greater than zero. With a VAR process, this option is useful for a tentative order selection by the same property as the partial autoregression coefficient matrices, as described in the PRINT=(PARCOEF) option. See the section "Tentative Order Selection" on page 1935 for details.

ROOTS

prints the eigenvalues of the $k p \times k p$ companion matrix associated with the AR characteristic function $\Phi(B)$, where k is the number of dependent (endogenous) variables, and $\Phi(B)$ is the finite order matrix polynomial in the backshift operator B, such that $B^{i} \mathbf{y}_{t}=\mathbf{y}_{t-i}$. These eigenvalues indicate the stationary condition of the process since the stationary condition on the roots of $|\Phi(B)|=0$ in the $\operatorname{VAR}(p)$ model is equivalent to the condition in the corresponding VAR(1) representation that all eigenvalues of the companion matrix be less than one in absolute value. Similarly, you can use this option to check the invertibility of the MA process. In addition, when the GARCH statement is specified, this option prints the roots of the GARCH characteristic polynomials to check covariance stationarity for the GARCH process.

YW

prints Yule-Walker estimates of the preliminary autoregressive model for the dependent (endogenous) variables. The coefficient matrices are printed using the maximum order of the autoregressive process.

Some examples of the PRINT=option are as follows:

```
model y1 y2 / p=1 print=(covy(10) corry(10));
model y1 y2 / p=1 print=(parcoef pcancorr pcorr);
model y1 y2 / p=1 print=(impulse(8) decompose(6) covpe(6));
model y1 y2 / p=1 print=(dynamic roots yw);
```


Lag Specification Options

$\mathrm{P}=$ number

$\mathrm{P}=($ number-list)

specifies the order of the vector autoregressive process. Subset models of vector autoregressive orders can be specified by listing the desired set of lags. For example, you can specify the $\mathrm{P}=(1,3,4)$ option. The $\mathrm{P}=3$ option is equivalent to the $\mathrm{P}=(1,2,3)$ option. The default is $\mathrm{P}=0$.

If $\mathrm{P}=0$ and there are no exogenous (independent) variables, then the AR polynomial order is automatically determined by minimizing an information criterion. If $\mathrm{P}=0$ and the $\mathrm{PRIOR}=$ or ECM $=$ option or both are specified, then the AR polynomial order is determined automatically.

If the ECM= option is specified, then subset models of vector autoregressive orders are not allowed and the AR maximum order specified is used.

Examples illustrating the $\mathrm{P}=$ option follow:

```
model y1 y2 / p=3;
model y1 y2 / p=(1,3);
model y1 y2 / p=(1,3) prior;
```


$\mathrm{Q}=$ number

Q=(number-list)

specifies the order of the moving-average error process. Subset models of moving-average orders can be specified by listing the desired set of lags. For example, you can specify the $\mathrm{Q}=(1,5)$ option. The default is $\mathrm{Q}=0$.

```
model y1 y2 / p=1 q=1;
model y1 y2 / q=(2);
```


XLAG=number

XLAG=(number-list)

specifies the lags of exogenous (independent) variables. Subset models of distributed lags can be specified by listing the desired set of lags. For example, XLAG=(2) selects only a lag 2 of the exogenous variables. The default is XLAG=0. To exclude the present values of exogenous variables from the model, the NOCURRENTX option must be used.

```
model y1 y2 = x1-x3 / xlag=2 nocurrentx;
model y1 y2 = x1-x3 / p=1 xlag=(2);
```


Tentative Order Selection Options

MINIC

MINIC=(TYPE=value $\mathrm{P}=$ number $\mathrm{Q}=$ number $\mathrm{PERROR=number)}$
prints the information criterion for the appropriate AR and MA tentative order selection and for the diagnostic checks of the fitted model.

If the MINIC= option is not specified, all types of information criteria are printed for diagnostic checks of the fitted model.

The following options can be used in the MINIC=() option. The options are specified within parentheses.

$\mathrm{P}=$ number

$\mathbf{P}=\left(p_{\text {min }}: p_{\text {max }}\right)$
specifies the range of AR orders to be considered in the tentative order selection. The default is $\mathrm{P}=(0: 5)$. The $\mathrm{P}=3$ option is equivalent to the $\mathrm{P}=(0: 3)$ option.

PERROR=number

PERROR=($\left.p_{\epsilon, \text { min }}: p_{\epsilon, \max }\right)$
specifies the range of AR orders for obtaining the error series. The default is PERROR $=\left(p_{\text {max }}: p_{\text {max }}+q_{\max }\right)$.

$\mathrm{Q}=$ number

$\mathbf{Q}=\left(q_{\text {min }}: q_{\max }\right)$
specifies the range of MA orders to be considered in the tentative order selection. The default is $\mathrm{Q}=(0: 5)$.

TYPE=value

specifies the criterion for the model order selection. Valid criteria are as follows:
AIC specifies the Akaike information criterion.
AICC specifies the corrected Akaike information criterion. This is the default criterion.

FPE specifies the final prediction error criterion.
HQC specifies the Hanna-Quinn criterion.
SBC specifies the Schwarz Bayesian criterion. You can also specify this value as TYPE=BIC.

```
model y1 y2 / minic;
model y1 y2 / minic=(type=aic p=5);
```


Cointegration Related Options

Two options are related to integrated time series; one is the DFTEST option to test for a unit root and the other is the COINTTEST option to test for cointegration.

DFTEST

DFTEST=(DLAG=number)

DFTEST=(DLAG=(number) ... (number))
prints the Dickey-Fuller unit root tests. The DLAG=(number) ...(number) option specifies the regular or seasonal unit root test. Supported values of number are in $1,2,4,12$. If the number is greater than one, a seasonal Dickey-Fuller test is performed. If the TREND= option is specified, the seasonal unit root test is not available. The default is DLAG=1.

For example, the DFTEST=(DLAG=(1)(12)) option produces two tables: the Dickey-Fuller regular unit root test and the seasonal unit root test.

Some examples of the DFTEST= option follow:

```
model y1 y2 / p=2 dftest;
model y1 y2 / p=2 dftest=(dlag=4);
model y1 y2 / p=2 dftest=(dlag=(1) (12));
model y1 y2 / p=2 dftest cointtest;
```


COINTTEST

COINTTEST=(JOHANSEN < (=options) > SW < (=options) > SIGLEVEL=number)

The following options can be used with the COINTTEST=() option. The options are specified within parentheses.

JOHANSEN

JOHANSEN=(TYPE= value IORDER=number NORMALIZE= variable)

prints the cointegration rank test for multivariate time series based on Johansen's method. This test is provided when the number of dependent (endogenous) variables is less than or equal to 11. See the section "Vector Error Correction Modeling" on page 1962 for details.

The $\operatorname{VARX}(p, s)$ model can be written as the error correction model

$$
\Delta \mathbf{y}_{t}=\Pi \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where Π, Φ_{i}^{*}, A, and Θ_{i}^{*} are coefficient parameters; D_{t} is a deterministic term such as a constant, a linear trend, or seasonal dummies.

The $I(1)$ model is defined by one reduced-rank condition. If the cointegration rank is $r<k$, then there exist $k \times r$ matrices $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ of rank r such that $\Pi=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime}$.

The $I(1)$ model is rewritten as the $I(2)$ model

$$
\Delta^{2} \mathbf{y}_{t}=\Pi \mathbf{y}_{t-1}-\Psi \Delta \mathbf{y}_{t-1}+\sum_{i=1}^{p-2} \Psi_{i} \Delta^{2} \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\Psi=I_{k}-\sum_{i=1}^{p-1} \Phi_{i}^{*}$ and $\Psi_{i}=-\sum_{j=i+1}^{p-1} \Phi_{i}^{*}$.
The $I(2)$ model is defined by two reduced-rank conditions. One is that $\Pi=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime}$, where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are $k \times r$ matrices of full-rank r. The other is that $\boldsymbol{\alpha}_{\perp}^{\prime} \Psi \boldsymbol{\beta}_{\perp}=\boldsymbol{\xi} \eta^{\prime}$ where $\boldsymbol{\xi}$ and η are $(k-r) \times s$ matrices with $s \leq k-r ; \boldsymbol{\alpha}_{\perp}$ and $\boldsymbol{\beta}_{\perp}$ are $k \times(k-r)$ matrices of full-rank $k-r$ such that $\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}_{\perp}=0$ and $\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}_{\perp}=0$.

The following options can be used in the JOHANSEN=() option. The options are specified within parentheses.

IORDER=number specifies the integrated order.

IORDER $=1$ prints the cointegration rank test for an integrated order 1 and prints the long-run parameter, $\boldsymbol{\beta}$, and the adjustment coefficient, $\boldsymbol{\alpha}$. This is the default. If the IORDER=1 option is specified, then the AR order should be greater than or equal to 1 . When the $\mathrm{P}=0$ option, the value of P is set to 1 for the Johansen test.
IORDER $=2$ prints the cointegration rank test for integrated orders 1 and 2. If the IORDER=2 option is specified, then the AR order should be greater than or equal to 2 . If the $\mathrm{P}=1$ option with the IORDER=2 option, then the value of IORDER is set to 1 ; if the $\mathrm{P}=0$ option with the IORDER $=2$ option, then the value of P is set to 2 .

NORMALIZE=variable specifies the dependent (endogenous) variable name whose cointegration vectors are to be normalized. If the normalized variable is different from that specified in the ECM= option or the COINTEG statement, then the value specified in the COINTEG statement is used.
TYPE=value \quad specifies the type of cointegration rank test to be printed. Valid values are as follows:

MAX prints the cointegration maximum eigenvalue test.
TRACE prints the cointegration trace test. This is the default.
If the NOINT option is not specified, the procedure prints two different cointegration rank tests in the presence of the unrestricted and restricted deterministic terms (constant or linear trend) models. If the IORDER=2 option is specified, the procedure automatically determines that the TYPE=TRACE option.

Some examples illustrating the COINTTEST= option follow:

```
model y1 y2 / p=2 cointtest=(johansen=(type=max normalize=y1));
model y1 y2 / p=2 cointtest=(johansen=(iorder=2 normalize=y1));
```


SIGLEVEL=value

sets the size of cointegration rank tests and common trends tests.
The SIGLEVEL=value can be set to $0.1,0.05$, or 0.01 . The default is SIGLEVEL=0.05.

```
model y1 y2 / p=2 cointtest=(johansen siglevel=0.1);
model y1 y2 / p=2 cointtest=(sw siglevel=0.1);
```


SW

SW=(TYPE=value LAG=number)

prints common trends tests for a multivariate time series based on the Stock-Watson method. This test is provided when the number of dependent (endogenous) variables is less than or equal to 6 . See the section "Common Trends" on page 1960 for details.

The following options can be used in the $\mathrm{SW}=($) option. The options are listed within parentheses.

LAG=number specifies the number of lags. The default is $\mathrm{LAG}=\max (1, p)$ for the TYPE=FILTDIF or TYPE=FILTRES option, where p is the AR maximum order specified by the $\mathrm{P}=$ option; $\mathrm{LAG}=T^{1 / 4}$ for the TYPE=KERNEL option, where T is the number of nonmissing observations. If the specified LAG=number exceeds the default, then it is replaced by the default.
TYPE=value specifies the type of common trends test to be printed. Valid values are as follows:

FILTDIF prints the common trends test based on the filtering method applied to the differenced series. This is the default.
FILTRES prints the common trends test based on the filtering method applied to the residual series.
KERNEL prints the common trends test based on the kernel method.

```
model y1 y2 / p=2 cointtest=(sw);
model y1 y2 / p=2 cointtest=(sw=(type=kernel));
model y1 y2 / p=2 cointtest=(sw=(type=kernel lag=3));
```


Bayesian VARX Estimation Options

PRIOR

PRIOR=(prior-options)

specifies the prior value of parameters for the $\operatorname{BVARX}(p, s)$ model. The BVARX model allows for a subset model specification. If the ECM= option is specified with the PRIOR option, the $\operatorname{BVECMX}(p, s)$ form is fitted. To compute the standard errors of the forecasts, a bootstrap procedure is used. See the section "Bayesian VAR and VARX Modeling" on page 1947 for details.

The following options can be used with the PRIOR=(prior-options) option. The prior-options are listed within parentheses.

IVAR

IVAR=(variables)

specifies an integrated $\operatorname{BVAR}(p)$ model. The variables should be specified in the MODEL statement as dependent variables. If you use the IVAR option without variables, then it sets the overall prior mean of the first lag of each variable equal to one in its own equation and sets all other coefficients to zero. If variables are specified, it sets the prior mean of the first lag of the specified variables equal to one in its own equation and sets all other coefficients to zero. When the series $\mathbf{y}_{t}=\left(y_{1}, y_{2}\right)^{\prime}$ follows a bivariate $\operatorname{BVAR}(2)$ process, the IVAR or $\operatorname{IVAR}=\left(\begin{array}{ll}y_{1} & y_{2}\end{array}\right)$ option is equivalent to specifying MEAN=($\left.\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$.

If the $\mathrm{PRIOR}=(\mathrm{MEAN}=)$ or $\mathrm{ECM}=$ option is specified, the $\mathrm{IVAR}=$ option is ignored.

LAMBDA= value

specifies the prior standard deviation of the AR coefficient parameter matrices. It should be a positive number. The default is $\mathrm{LAMBDA}=1$. As the value of the $\mathrm{LAMBDA}=$ option is increased, the $\operatorname{BVAR}(p)$ model becomes closer to a $\operatorname{VAR}(p)$ model.

MEAN=(vector)

specifies the mean vector in the prior distribution for the AR coefficients. If the vector is not specified, the prior value is assumed to be a zero vector. See the section "Bayesian VAR and VARX Modeling" on page 1947 for details.

You can specify the mean vector by order of the equation. Let ($\delta, \Phi_{1}, \ldots, \Phi_{p}$) be the parameter sets to be estimated and $\Phi=\left(\Phi_{1}, \ldots, \Phi_{p}\right)$ be the AR parameter sets. The mean vector is specified by row-wise from Φ; that is, the $\operatorname{MEAN}=\left(\operatorname{vec}\left(\Phi^{\prime}\right)\right)$ option.

For the PRIOR=(mean) option in the $\operatorname{BVAR}(2)$,

$$
\Phi=\left(\begin{array}{llll}
\phi_{1,11} & \phi_{1,12} & \phi_{2,11} & \phi_{2,12} \\
\phi_{1,21} & \phi_{1,22} & \phi_{2,21} & \phi_{2,22}
\end{array}\right)=\left(\begin{array}{rrrr}
2 & 0.1 & 1 & 0 \\
0.5 & 3 & 0 & -1
\end{array}\right)
$$

where $\phi_{l, i j}$ is an element of Φ, l is a lag, i is associated with the first dependent variable, and j is associated with the second dependent variable.

```
model y1 y2 / p=2 prior=(mean=(2 0.1 1 0 0.5 3 0 -1));
```

The deterministic terms and exogenous variables are considered to shrink toward zero; you must omit prior means of exogenous variables and deterministic terms such as a constant, seasonal dummies, or trends.

For a Bayesian error correction model estimated when both the ECM= and PRIOR= options are used, a mean vector for only lagged AR coefficients, Φ_{i}^{*}, in terms of regressors $\Delta \mathbf{y}_{t-i}$, for $i=1, \ldots,(p-1)$ is used in the $\operatorname{VECM}(p)$ representation. The diffused prior variance of $\boldsymbol{\alpha}$ is used, since $\boldsymbol{\beta}$ is replaced by $\hat{\boldsymbol{\beta}}$ estimated in a nonconstrained $\operatorname{VECM}(p)$ form.

$$
\Delta \mathbf{y}_{t}=\alpha \mathbf{z}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\mathbf{z}_{t}=\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}$.
For example, in the case of a bivariate $(k=2) \operatorname{BVECM}(2)$ form, the option

$$
\text { MEAN }=\left(\phi_{1,11}^{*} \phi_{1,12}^{*} \phi_{1,21}^{*} \phi_{1,22}^{*}\right)
$$

where $\phi_{1, i j}^{*}$ is the (i, j) th element of the matrix Φ_{1}^{*}.

NREP=number

specifies the number of periods to compute the measure of forecast accuracy. The default is NREP $=0.5 T$, where T is the number of observations.

THETA=value

specifies the prior standard deviation of the AR coefficient parameter matrices. The value is in the interval $(0,1)$. The default is THETA=0.1. As the value of the THETA= option approaches 1, the specified $\operatorname{BVAR}(p)$ model approaches a $\operatorname{VAR}(p)$ model.

Some examples of the PRIOR= option follow:

```
model y1 y2 / p=2 prior;
model y1 y2 / p=2 prior=(theta=0.2 lambda=5);
model y1 y2 = x1 / p=2 prior=(theta=0.2 lambda=5);
model y1 y2 = x1 / p=2
    prior=(theta=0.2 lambda=5 mean=(2 0.1 1 0 0.5 3 0 -1));
```

See the section "Bayesian VAR and VARX Modeling" on page 1947 for details.

Vector Error Correction Model Options

ECM=(RANK=number NORMALIZE= emphvariable ECTREND)

specifies a vector error correction model.
The following options can be used in the $\mathrm{ECM}=($) option. The options are specified within parentheses.

NORMALIZE= variable

specifies a single dependent variable name whose cointegrating vectors are normalized. If the variable name is different from that specified in the COINTEG statement, then the value specified in the COINTEG statement is used.

RANK=number

specifies the cointegration rank. This option is required in the ECM= option. The value of the RANK= option should be greater than zero and less than or equal to the number of dependent (endogenous) variables, k. If the rank is different from that specified in the COINTEG statement, then the value specified in the COINTEG statement is used.

ECTREND

specifies the restriction on the drift in the $\operatorname{VECM}(p)$ form.

- There is no separate drift in the $\operatorname{VECM}(p)$ form, but a constant enters only through the error correction term.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha}\left(\boldsymbol{\beta}^{\prime}, \beta_{0}\right)\left(\mathbf{y}_{t-1}^{\prime}, 1\right)^{\prime}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

An example of the ECTREND option follows:

```
model y1 y2 / p=2 ecm=(rank=1 ectrend);
```

- There is a separate drift and no separate linear trend in the $\operatorname{VECM}(p)$ form, but a linear trend enters only through the error correction term.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha}\left(\boldsymbol{\beta}^{\prime}, \beta_{1}\right)\left(\mathbf{y}_{t-1}^{\prime}, t\right)^{\prime}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\delta_{0}+\boldsymbol{\epsilon}_{t}
$$

An example of the ECTREND option with the TREND= option follows:

```
model y1 y2 / p=2 ecm=(rank=1 ectrend) trend=linear;
```

If the NSEASON option is specified, then the NSEASON option is ignored; if the NOINT option is specified, then the ECTREND option is ignored.

Some examples of the ECM= option follow:

```
model y1 y2 / p=2 ecm=(rank=1 normalized=y1);
model y1 y2 / p=2 ecm=(rank=1 ectrend) trend=linear;
```

See the section "Vector Error Correction Modeling" on page 1962 for details.

GARCH Statement

GARCH options ;
The GARCH statement specifies a GARCH-type multivariate conditional heteroscedasticity model.
The following options can be used in the GARCH statement.

FORM= value

specifies the representation for a GARCH model. Valid values are as follows:
BEKK specifies a $B E K K$ representation. This is the default.
CCC specifies a constant conditional correlation representation.

OUTHT=SAS-data-set

writes the conditional covariance matrix to an output data set.

$\mathrm{P}=$ number

$\mathrm{P}=($ number-list)

specifies the order of the process or the subset of GARCH terms to be fitted. For example, you can specify the $\mathrm{P}=(1,3)$ option. The $\mathrm{P}=3$ option is equivalent to the $\mathrm{P}=(1,2,3)$ option. The default is $\mathrm{P}=0$.

Q=number

Q=(number-list)

specifies the order of the process or the subset of ARCH terms to be fitted. This option is required in the GARCH statement. For example, you can specify the $\mathrm{Q}=(2)$ option. The $\mathrm{Q}=2$ option is equivalent to the $\mathrm{Q}=(1,2)$ option.

For the VAR(1)-ARCH(1) model,

```
model y1 y2 / p=1;
garch q=1 form=bekk;
```

For the multivariate $\operatorname{GARCH}(1,1)$ model,

```
model y1 y2;
garch q=1 p=1 form=ccc;
```

Other multivariate GARCH-type models are

```
model y1 y2 = x1 / xlag=1;
garch q=1;
model y1 y2 / q=1;
garch q=1 p=1;
```

See the section "Multivariate GARCH Modeling" on page 1981 for details.

NLOPTIONS Statement

NLOPTIONS options;

The VARMAX procedure uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. For a list of all the options of the NLOPTIONS statement, see Chapter 6, "Nonlinear Optimization Methods."

An example of the NLOPTIONS statement follows:

```
proc varmax data=one;
    nloptions tech=qn;
    model y1 y2 / p=2;
run;
```

The VARMAX procedure uses the dual quasi-Newton optimization method by default when no NLOPTIONS statement is specified. However, it uses Newton-Raphson ridge optimization when the NLOPTIONS statement is specified.

The following example uses the TECH=QUANEW by default.

```
proc varmax data=one;
    model y1 y2 / p=2 method=ml;
run;
```

The next example uses the TECH=NRRIDG by default.

```
proc varmax data=one;
    nloptions maxiter=500 maxfunc=5000;
    model y1 y2 / p=2 method=ml;
run;
```


OUTPUT Statement

OUTPUT < options > ;

The OUTPUT statement generates and prints forecasts based on the model estimated in the previous MODEL statement and, optionally, creates an output SAS data set that contains these forecasts.

When the GARCH model is estimated, the upper and lower confidence limits of forecasts are calculated by assuming that the error covariance has homoscedastic conditional covariance.

ALPHA=number

sets the forecast confidence limit size, where number is between 0 and 1 . When you specify the ALPHA=number option, the upper and lower confidence limits define the $100(1-\alpha) \%$ confidence interval. The default is ALPHA $=0.05$, which produces 95% confidence intervals.

BACK=number

specifies the number of observations before the end of the data at which the multistep forecasts begin. The BACK= option value must be less than or equal to the number of observations minus the number of lagged regressors in the model. The default is $\mathrm{BACK}=0$, which means that the forecasts start at the end of the available data.

LEAD=number

specifies the number of multistep forecast values to compute. The default is LEAD=12.

NOPRINT

suppresses the printed forecast values of each dependent (endogenous) variable.

OUT=SAS-data-set

writes the forecast values to an output data set.
Some examples of the OUTPUT statements follow:

```
proc varmax data=one;
    model y1 y2 / p=2;
    output lead=6 back=2;
run;
proc varmax data=one;
    model y1 y2 / p=2;
    output out=for noprint;
run;
```


RESTRICT Statement

RESTRICT restriction, ..., restriction ;
The RESTRICT statement restricts the specified parameters to the specified values. Only one RESTRICT statement is allowed, but multiple restrictions can be specified in one RESTRICT statement.

The restriction's form is parameter=value and each restriction is separated by commas. Parameters are referred by the following keywords:

- $\operatorname{CONST}(i)$ is the intercept parameter of the i th time series $y_{i t}$
- $\operatorname{AR}(l, i, j)$ is the autoregressive parameter of the lag l value of the j th dependent (endogenous) variable, $y_{j, t-l}$, to the i th dependent variable at time $t, y_{i t}$
- MA (l, i, j) is the moving-average parameter of the lag l value of the j th error process, $\boldsymbol{\epsilon}_{j, t-l}$, to the i th dependent variable at time $t, y_{i t}$
- $\mathrm{XL}(l, i, j)$ is the exogenous parameter of the lag l value of the j th exogenous (independent) variable, $x_{j, t-l}$, to the i th dependent variable at time $t, y_{i t}$
- $\operatorname{SDUMMY}(i, j)$ is the j th seasonal dummy of the i th time series at time $t, y_{i t}$, where $j=$ $1, \ldots,($ nseason -1$)$, where nseason is based on the NSEASON $=$ option in the MODEL statement
- LTREND (i) is the linear trend parameter of the current value i th time series $y_{i t}$
- QTREND (i) is the quadratic trend parameter of the current value i th time series $y_{i t}$

The following keywords are for the fitted GARCH model. The indexes i and j refer to the position of the element in the coefficient matrix.

- $\operatorname{GCHC}(i, j)$ is the constant parameter of the covariance matrix, H_{t}, and (i, j) is $1 \leq i=j \leq$ k for $C C C$ representation and $1 \leq i \leq j \leq k$ for $B E K K$ representations, where k is the number of dependent variables
- $\operatorname{ACH}(l, i, j)$ is the ARCH parameter of the lag l value of $\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}$, where $i, j=1, \ldots, k$ for $B E K K$ representation and $i=j=1, \ldots, k$ for $C C C$ representation
- $\operatorname{GCH}(l, i, j)$ is the GARCH parameter of the lag l value of covariance matrix, H_{t}, where $i, j=1, \ldots, k$ for $B E K K$ representation and $i=j=1, \ldots, k$ for $C C C$ representation
- $\mathrm{CCC}(i, j)$ is the constant conditional correlation parameter for only the $C C C$ representation; (i, j) is $1 \leq i<j \leq k$

To use the RESTRICT statement, you need to know the form of the model. If the $\mathrm{P}=, \mathrm{Q}=$, and XLAG $=$ options are not specified, then the RESTRICT statement is not applicable.

Restricted parameter estimates are computed by introducing a Lagrangian parameter for each restriction (Pringle and Rayner 1971). The Lagrangian parameter measures the sensitivity of the sum of square errors to the restriction. The estimates of these Lagrangian parameters and their significance are printed in the restriction results table.

The following are examples of the RESTRICT statement. The first example shows a bivariate $(k=2)$ VAR(2) model,

```
proc varmax data=one;
    model y1 y2 / p=2;
    restrict AR (1,1,2)=0, AR (2,1,2)=0.3;
run;
```

The $\operatorname{AR}(1,1,2)$ and $\operatorname{AR}(2,1,2)$ parameters are fixed as $\operatorname{AR}(1,1,2)=0$ and $\operatorname{AR}(2,1,2)=0.3$, respectively, and other parameters are to be estimated.

The following shows a bivariate $(k=2) \operatorname{VARX}(1,1)$ model with three exogenous variables,

```
proc varmax data=two;
    model y1 = x1 x2, y2 = x2 x3 / p=1 xlag=1;
    restrict XL (0,1,1)=-1.2, XL (1,2,3)=0;
run;
```

The $\mathrm{XL}(0,1,1)$ and $\mathrm{XL}(1,2,3)$ parameters are fixed as $\mathrm{XL}(0,1,1)=-1.2$ and $\mathrm{XL}(1,2,3)=0$, respectively, and other parameters are to be estimated.

TEST Statement

TEST restriction, ..., restriction ;

The TEST statement performs the Wald test for the joint hypothesis specified in the statement. The restriction's form is parameter $=$ value, and each restriction is separated by commas. The restrictions are specified in the same manner as in the RESTRICT statement. See the RESTRICT statement for description of model parameter naming conventions used by the RESTRICT and TEST statements. Any number of TEST statements can be specified.

To use the TEST statement, you need to know the form of the model. If the $\mathrm{P}=, \mathrm{Q}=$, and $\mathrm{XLAG}=$ options are not specified, then the TEST statement is not applicable.

See the section "Granger Causality Test" on page 1944 for the Wald test.
The following is an example of the TEST statement. In the case of a bivariate ($k=2$) VAR(2) model,

```
proc varmax data=one;
    model y1 y2 / p=2;
    test AR (1, 1,2)=0, AR (2,1,2)=0;
run;
```

After estimating the parameters, the TEST statement tests the null hypothesis that $\operatorname{AR}(1,1,2)=0$ and $\operatorname{AR}(2,1,2)=0$.

Details: VARMAX Procedure

Missing Values

The VARMAX procedure currently does not support missing values. The procedure uses the first contiguous group of observations with no missing values for any of the MODEL statement variables. Observations at the beginning of the data set with missing values for any MODEL statement variables are not used or included in the output data set. At the end of the data set, observations can have dependent (endogenous) variables with missing values and independent (exogenous) variables with nonmissing values.

VARMAX Model

The vector autoregressive moving-average model with exogenous variables is called the VARMAX (p, q, s) model. The form of the model can be written as

$$
\mathbf{y}_{t}=\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}-\sum_{i=1}^{q} \Theta_{i} \boldsymbol{\epsilon}_{t-i}
$$

where the output variables of interest, $\mathbf{y}_{t}=\left(y_{1 t}, \ldots, y_{k t}\right)^{\prime}$, can be influenced by other input variables, $\mathbf{x}_{t}=\left(x_{1 t}, \ldots, x_{r t}\right)^{\prime}$, which are determined outside of the system of interest. The variables \mathbf{y}_{t} are referred to as dependent, response, or endogenous variables, and the variables \mathbf{x}_{t} are referred to as independent, input, predictor, regressor, or exogenous variables. The unobserved noise variables, $\boldsymbol{\epsilon}_{t}=\left(\epsilon_{1 t}, \ldots, \epsilon_{k t}\right)^{\prime}$, are a vector white noise process.

The VARMAX (p, q, s) model can be written

$$
\Phi(B) \mathbf{y}_{t}=\Theta^{*}(B) \mathbf{x}_{t}+\Theta(B) \boldsymbol{\epsilon}_{t}
$$

where

$$
\begin{aligned}
\Phi(B) & =I_{k}-\Phi_{1} B-\cdots-\Phi_{p} B^{p} \\
\Theta^{*}(B) & =\Theta_{0}^{*}+\Theta_{1}^{*} B+\cdots+\Theta_{s}^{*} B^{s} \\
\Theta(B) & =I_{k}-\Theta_{1} B-\cdots-\Theta_{q} B^{q}
\end{aligned}
$$

are matrix polynomials in B in the backshift operator, such that $B^{i} \mathbf{y}_{t}=\mathbf{y}_{t-i}$, the Φ_{i} and Θ_{i} are $k \times k$ matrices, and the Θ_{i}^{*} are $k \times r$ matrices.

The following assumptions are made:

- $\mathrm{E}\left(\boldsymbol{\epsilon}_{t}\right)=0, \mathrm{E}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)=\Sigma$, which is positive-definite, and $\mathrm{E}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{s}^{\prime}\right)=0$ for $t \neq s$.
- For stationarity and invertibility of the VARMAX process, the roots of $|\Phi(z)|=0$ and $|\Theta(z)|=0$ are outside the unit circle.
- The exogenous (independent) variables \mathbf{x}_{t} are not correlated with residuals $\boldsymbol{\epsilon}_{t}, \mathrm{E}\left(\mathbf{x}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)=0$. The exogenous variables can be stochastic or nonstochastic. When the exogenous variables are stochastic and their future values are unknown, forecasts of these future values are needed to forecast the future values of the endogenous (dependent) variables. On occasion, future values of the exogenous variables can be assumed to be known because they are deterministic variables. The VARMAX procedure assumes that the exogenous variables are nonstochastic if future values are available in the input data set. Otherwise, the exogenous variables are assumed to be stochastic and their future values are forecasted by assuming that they follow the $\operatorname{VARMA}(p, q)$ model, prior to forecasting the endogenous variables, where p and q are the same as in the VARMAX (p, q, s) model.

State-Space Representation

Another representation of the $\operatorname{VARMAX}(p, q, s)$ model is in the form of a state-variable or a statespace model, which consists of a state equation

$$
\mathbf{z}_{t}=F \mathbf{z}_{t-1}+K \mathbf{x}_{t}+G \boldsymbol{\epsilon}_{t}
$$

and an observation equation

$$
\mathbf{y}_{t}=H \mathbf{z}_{t}
$$

where

$$
\begin{aligned}
& \mathbf{z}_{t}=\left[\begin{array}{c}
\mathbf{y}_{t} \\
\vdots \\
\mathbf{y}_{t-p+1} \\
\mathbf{x}_{t} \\
\vdots \\
\mathbf{x}_{t-s+1} \\
\epsilon_{t} \\
\vdots \\
\epsilon_{t-q+1}
\end{array}\right], \quad K=\left[\begin{array}{c}
\Theta_{0}^{*} \\
0_{k \times r} \\
\vdots \\
0_{k \times r} \\
I_{r} \\
0_{r \times r} \\
\vdots \\
0_{r \times r} \\
0_{k \times r} \\
\vdots \\
0_{k \times r}
\end{array}\right], \quad G=\left[\begin{array}{c}
I_{k} \\
0_{k \times k} \\
\vdots \\
0_{k \times k} \\
0_{r \times k} \\
\vdots \\
0 r \times k \\
I_{k \times k} \\
0_{k \times k} \\
\vdots \\
0_{k \times k}
\end{array}\right] \\
& F=\left[\begin{array}{cccccccccccc}
\Phi_{1} & \cdots & \Phi_{p-1} & \Phi_{p} & \Theta_{1}^{*} & \cdots & \Theta_{s-1}^{*} & \Theta_{s}^{*} & -\Theta_{1} & \cdots & -\Theta_{q-1} & -\Theta_{q} \\
I_{k} & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & \cdots & I_{k} & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 & I_{r} & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & I_{r} & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & I_{k} & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & I_{k} & 0
\end{array}\right]
\end{aligned}
$$

and

$$
H=\left[I_{k}, 0_{k \times k}, \ldots, 0_{k \times k}, 0_{k \times r}, \ldots, 0_{k \times r}, 0_{k \times k}, \ldots, 0_{k \times k}\right]
$$

On the other hand, it is assumed that \mathbf{x}_{t} follows a $\operatorname{VARMA}(p, q)$ model

$$
\mathbf{x}_{t}=\sum_{i=1}^{p} A_{i} \mathbf{x}_{t-i}+\mathbf{a}_{t}-\sum_{i=1}^{q} C_{i} \mathbf{a}_{t-i}
$$

The model can also be expressed as

$$
A(B) \mathbf{x}_{t}=C(B) \mathbf{a}_{t}
$$

where $A(B)=I_{r}-A_{1} B-\cdots-A_{p} B^{p}$ and $C(B)=I_{r}-C_{1} B-\cdots-C_{q} B^{q}$ are matrix polynomials in B, and the A_{i} and C_{i} are $r \times r$ matrices. Without loss of generality, the AR and MA orders can be taken to be the same as the $\operatorname{VARMAX}(p, q, s)$ model, and \mathbf{a}_{t} and $\boldsymbol{\epsilon}_{t}$ are independent white noise processes.

Under suitable conditions such as stationarity, \mathbf{x}_{t} is represented by an infinite order moving-average process

$$
\mathbf{x}_{t}=A(B)^{-1} C(B) \mathbf{a}_{t}=\Psi^{x}(B) \mathbf{a}_{t}=\sum_{j=0}^{\infty} \Psi_{j}^{x} \mathbf{a}_{t-j}
$$

where $\Psi^{x}(B)=A(B)^{-1} C(B)=\sum_{j=0}^{\infty} \Psi_{j}^{x} B^{j}$.
The optimal minimum mean squared error (minimum MSE) i-step-ahead forecast of \mathbf{x}_{t+i} is

$$
\begin{aligned}
\mathbf{x}_{t+i \mid t} & =\sum_{j=i}^{\infty} \Psi_{j}^{x} \mathbf{a}_{t+i-j} \\
\mathbf{x}_{t+i \mid t+1} & =\mathbf{x}_{t+i \mid t}+\Psi_{i-1}^{x} \mathbf{a}_{t+1}
\end{aligned}
$$

For $i>q$,

$$
\mathbf{x}_{t+i \mid t}=\sum_{j=1}^{p} A_{j} \mathbf{x}_{t+i-j \mid t}
$$

The VARMAX (p, q, s) model has an absolutely convergent representation as

$$
\begin{aligned}
\mathbf{y}_{t} & =\Phi(B)^{-1} \Theta^{*}(B) \mathbf{x}_{t}+\Phi(B)^{-1} \Theta(B) \boldsymbol{\epsilon}_{t} \\
& =\Psi^{*}(B) \Psi^{x}(B) \mathbf{a}_{t}+\Phi(B)^{-1} \Theta(B) \boldsymbol{\epsilon}_{t} \\
& =V(B) \mathbf{a}_{t}+\Psi(B) \epsilon_{t}
\end{aligned}
$$

or

$$
\mathbf{y}_{t}=\sum_{j=0}^{\infty} V_{j} \mathbf{a}_{t-j}+\sum_{j=0}^{\infty} \Psi_{j} \boldsymbol{\epsilon}_{t-j}
$$

where $\Psi(B)=\Phi(B)^{-1} \Theta(B)=\sum_{j=0}^{\infty} \Psi_{j} B^{j}, \Psi^{*}(B)=\Phi(B)^{-1} \Theta^{*}(B)$, and $V(B)=$ $\Psi^{*}(B) \Psi^{x}(B)=\sum_{j=0}^{\infty} V_{j} B^{j}$.
The optimal (minimum MSE) i-step-ahead forecast of \mathbf{y}_{t+i} is

$$
\begin{aligned}
\mathbf{y}_{t+i \mid t} & =\sum_{j=i}^{\infty} V_{j} \mathbf{a}_{t+i-j}+\sum_{j=i}^{\infty} \Psi_{j} \boldsymbol{\epsilon}_{t+i-j} \\
\mathbf{y}_{t+i \mid t+1} & =\mathbf{y}_{t+i \mid t}+V_{i-1} \mathbf{a}_{t+1}+\Psi_{i-1} \boldsymbol{\epsilon}_{t+1}
\end{aligned}
$$

for $i=1, \ldots, v$ with $v=\max (p, q+1)$. For $i>q$,

$$
\begin{aligned}
\mathbf{y}_{t+i \mid t} & =\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+i-j \mid t}+\sum_{j=0}^{s} \Theta_{j}^{*} \mathbf{x}_{t+i-j \mid t} \\
& =\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+i-j \mid t}+\Theta_{0}^{*} \mathbf{x}_{t+i \mid t}+\sum_{j=1}^{s} \Theta_{j}^{*} \mathbf{x}_{t+i-j \mid t} \\
& =\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+i-j \mid t}+\Theta_{0}^{*} \sum_{j=1}^{p} A_{j} \mathbf{x}_{t+i-j \mid t}+\sum_{j=1}^{s} \Theta_{j}^{*} \mathbf{x}_{t+i-j \mid t} \\
& =\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+i-j \mid t}+\sum_{j=1}^{u}\left(\Theta_{0}^{*} A_{j}+\Theta_{j}^{*}\right) \mathbf{x}_{t+i-j \mid t}
\end{aligned}
$$

where $u=\max (p, s)$.
Define $\Pi_{j}=\Theta_{0}^{*} A_{j}+\Theta_{j}^{*}$. For $i=v>q$ with $v=\max (p, q+1)$, you obtain

$$
\begin{aligned}
& \mathbf{y}_{t+v \mid t}=\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+v-j \mid t}+\sum_{j=1}^{u} \Pi_{j} \mathbf{x}_{t+v-j \mid t} \text { for } u \leq v \\
& \mathbf{y}_{t+v \mid t}=\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+v-j \mid t}+\sum_{j=1}^{r} \Pi_{j} \mathbf{x}_{t+v-j \mid t} \text { for } u>v
\end{aligned}
$$

From the preceding relations, a state equation is

$$
\mathbf{z}_{t+1}=F \mathbf{z}_{t}+K \mathbf{x}_{t}^{*}+G \mathbf{e}_{t+1}
$$

and an observation equation is

$$
\mathbf{y}_{t}=H \mathbf{z}_{t}
$$

where

$$
\begin{aligned}
& \mathbf{z}_{t}=\left[\begin{array}{c}
\mathbf{y}_{t} \\
\mathbf{y}_{t+1 \mid t} \\
\vdots \\
\mathbf{y}_{t+v-1 \mid t} \\
\mathbf{x}_{t} \\
\mathbf{x}_{t+1 \mid t} \\
\vdots \\
\mathbf{x}_{t+v-1 \mid t}
\end{array}\right], \mathbf{x}_{t}^{*}=\left[\begin{array}{c}
\mathbf{x}_{t+v-u} \\
\mathbf{x}_{t+v-u+1} \\
\vdots \\
\mathbf{x}_{t-1}
\end{array}\right], \mathbf{e}_{t+1}=\left[\begin{array}{c}
\mathbf{a}_{t+1} \\
\boldsymbol{\epsilon}_{t+1}
\end{array}\right] \\
& F=\left[\begin{array}{ccccccccc}
0 & I_{k} & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & I_{k} & \cdots & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\vdots \\
\Phi_{v} & \Phi_{v-1} & \Phi_{v-2} & \cdots & \Phi_{1} & \Pi_{v} & \Pi_{v-1} & \Pi_{v-2} & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & I_{r} & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & I_{r} & \cdots \\
0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \cdots & 0 & A_{v} & A_{v-1} & A_{v-2} & \cdots \\
A_{1}
\end{array}\right] \\
& K=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\Pi_{u} & \Pi_{u-1} & \cdots & \Pi_{v+1} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right], G=\left[\begin{array}{cc}
V_{0} & I_{k} \\
V_{1} & \Psi_{1} \\
\vdots & \vdots \\
V_{v-1} & \Psi_{v-1} \\
I_{r} & 0_{r \times k} \\
\Psi_{1}^{x} & 0_{r \times k} \\
\vdots & \vdots \\
\Psi_{v-1}^{x} & 0_{r \times k}
\end{array}\right]
\end{aligned}
$$

and

$$
H=\left[I_{k}, 0_{k \times k}, \ldots, 0_{k \times k}, 0_{k \times r}, \ldots, 0_{k \times r}\right]
$$

Note that the matrix K and the input vector \mathbf{x}_{t}^{*} are defined only when $u>v$.

Dynamic Simultaneous Equations Modeling

In the econometrics literature, the VARMAX (p, q, s) model is sometimes written in a form that is slightly different than the one shown in the previous section. This alternative form is referred to as a dynamic simultaneous equations model or a dynamic structural equations model.

Since $\mathrm{E}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)=\Sigma$ is assumed to be positive-definite, there exists a lower triangular matrix A_{0} with ones on the diagonals such that $A_{0} \Sigma A_{0}^{\prime}=\Sigma^{d}$, where Σ^{d} is a diagonal matrix with positive diagonal elements.

$$
A_{0} \mathbf{y}_{t}=\sum_{i=1}^{p} A_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} C_{i}^{*} \mathbf{x}_{t-i}+C_{0} \boldsymbol{\epsilon}_{t}-\sum_{i=1}^{q} C_{i} \boldsymbol{\epsilon}_{t-i}
$$

where $A_{i}=A_{0} \Phi_{i}, C_{i}^{*}=A_{0} \Theta_{i}^{*}, C_{0}=A_{0}$, and $C_{i}=A_{0} \Theta_{i}$.
As an alternative form,

$$
A_{0} \mathbf{y}_{t}=\sum_{i=1}^{p} A_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} C_{i}^{*} \mathbf{x}_{t-i}+\mathbf{a}_{t}-\sum_{i=1}^{q} C_{i} \mathbf{a}_{t-i}
$$

where $A_{i}=A_{0} \Phi_{i}, C_{i}^{*}=A_{0} \Theta_{i}^{*}, C_{i}=A_{0} \Theta_{i} A_{0}^{-1}$, and $\mathbf{a}_{t}=C_{0} \epsilon_{t}$ has a diagonal covariance matrix Σ^{d}. The PRINT=(DYNAMIC) option returns the parameter estimates that result from estimating the model in this form.

A dynamic simultaneous equations model involves a leading (lower triangular) coefficient matrix for \mathbf{y}_{t} at lag 0 or a leading coefficient matrix for ϵ_{t} at lag 0 . Such a representation of the VARMAX (p, q, s) model can be more useful in certain circumstances than the standard representation. From the linear combination of the dependent variables obtained by $A_{0} \mathbf{y}_{t}$, you can easily see the relationship between the dependent variables in the current time.

The following statements provide the dynamic simultaneous equations of the $\operatorname{VAR}(1)$ model.

```
proc iml;
    sig = {1.0 0.5, 0.5 1.25};
    phi = {1.2 -0.5, 0.6 0.3};
    /* simulate the vector time series */
    call varmasim(y,phi) sigma = sig n = 100 seed = 34657;
    cn = {'y1' 'y2'};
    create simull from y[colname=cn];
    append from y;
quit;
data simul1;
    set simul1;
    date = intnx( 'year', '01jan1900'd, _n_-1 );
    format date year4.;
run;
proc varmax data=simul1;
    model y1 y2 / p=1 noint print=(dynamic);
run;
```

This is the same data set and model used in the section "Getting Started: VARMAX Procedure" on page 1858. You can compare the results of the VARMA model form and the dynamic simultaneous equations model form.

Figure 30.25 Dynamic Simultaneous Equations (DYNAMIC Option)

In Figure 30.4 in the section "Getting Started: VARMAX Procedure" on page 1858, the covariance of $\boldsymbol{\epsilon}_{\boldsymbol{t}}$ estimated from the VARMAX model form is

$$
\Sigma_{\epsilon}=\left(\begin{array}{ll}
1.28875 & 0.39751 \\
0.39751 & 1.41839
\end{array}\right)
$$

Figure 30.25 shows the results from estimating the model as a dynamic simultaneous equations model. By the decomposition of $\Sigma_{\boldsymbol{\epsilon}}$, you get a diagonal matrix ($\Sigma_{\mathbf{a}}$) and a lower triangular matrix $\left(A_{0}\right)$ such as $\Sigma_{\mathbf{a}}=A_{0} \Sigma_{\boldsymbol{\epsilon}} A_{0}^{\prime}$ where

$$
\Sigma_{\mathbf{a}}=\left(\begin{array}{rr}
1.28875 & 0 \\
0 & 1.29578
\end{array}\right) \text { and } A_{0}=\left(\begin{array}{rr}
1 & 0 \\
-0.30845 & 1
\end{array}\right)
$$

The lower triangular matrix $\left(A_{0}\right)$ is shown in the left side of the simultaneous equations model. The parameter estimates in equations system are shown in the right side of the two-equations system.

The simultaneous equations model is written as

$$
\left(\begin{array}{rr}
1 & 0 \\
-0.30845 & 1
\end{array}\right) \mathbf{y}_{t}=\left(\begin{array}{rr}
1.15977 & -0.51058 \\
0.18861 & 0.54247
\end{array}\right) \mathbf{y}_{t-1}+\mathbf{a}_{t}
$$

The resulting two-equation system can be written as

$$
\begin{aligned}
& y_{1 t}=1.15977 y_{1, t-1}-0.51058 y_{2, t-1}+a_{1 t} \\
& y_{2 t}=0.30845 y_{1 t}+0.18861 y_{1, t-1}+0.54247 y_{2, t-1}+a_{2 t}
\end{aligned}
$$

Impulse Response Function

Simple Impulse Response Function (IMPULSE=SIMPLE Option)

The VARMAX (p, q, s) model has a convergent representation

$$
\mathbf{y}_{t}=\Psi^{*}(B) \mathbf{x}_{t}+\Psi(B) \boldsymbol{\epsilon}_{t}
$$

where $\Psi^{*}(B)=\Phi(B)^{-1} \Theta^{*}(B)=\sum_{j=0}^{\infty} \Psi_{j}^{*} B^{j}$ and $\Psi(B)=\Phi(B)^{-1} \Theta(B)=\sum_{j=0}^{\infty} \Psi_{j} B^{j}$.
The elements of the matrices Ψ_{j} from the operator $\Psi(B)$, called the impulse response, can be interpreted as the impact that a shock in one variable has on another variable. Let $\psi_{j, i n}$ be the $i n^{t h}$ element of Ψ_{j} at lag j, where i is the index for the impulse variable, and n is the index for the response variable (impulse \rightarrow response). For instance, $\psi_{j, 11}$ is an impulse response to $y_{1 t} \rightarrow y_{1 t}$, and $\psi_{j, 12}$ is an impulse response to $y_{1 t} \rightarrow y_{2 t}$.

Accumulated Impulse Response Function (IMPULSE=ACCUM Option)

The accumulated impulse response function is the cumulative sum of the impulse response function, $\Psi_{l}^{a}=\sum_{j=0}^{l} \Psi_{j}$.

Orthogonalized Impulse Response Function (IMPULSE=ORTH Option)

The MA representation of a $\operatorname{VARMA}(p, q)$ model with a standardized white noise innovation process offers another way to interpret a VARMA (p, q) model. Since Σ is positive-definite, there is a lower triangular matrix P such that $\Sigma=P P^{\prime}$. The alternate MA representation of a $\operatorname{VARMA}(p, q)$ model is written as

$$
\mathbf{y}_{t}=\Psi^{o}(B) \mathbf{u}_{t}
$$

where $\Psi^{o}(B)=\sum_{j=0}^{\infty} \Psi_{j}^{o} B^{j}, \Psi_{j}^{o}=\Psi_{j} P$, and $\mathbf{u}_{t}=P^{-1} \boldsymbol{\epsilon}_{t}$.
The elements of the matrices Ψ_{j}^{o}, called the orthogonal impulse response, can be interpreted as the effects of the components of the standardized shock process \mathbf{u}_{t} on the process \mathbf{y}_{t} at lag j.

Impulse Response of Transfer Function (IMPULSX=SIMPLE Option)

The coefficient matrix Ψ_{j}^{*} from the transfer function operator $\Psi^{*}(B)$ can be interpreted as the effects that changes in the exogenous variables \mathbf{x}_{t} have on the output variable \mathbf{y}_{t} at lag j; it is called an impulse response matrix in the transfer function.

Impulse Response of Transfer Function (IMPULSX=ACCUM Option)

The accumulated impulse response in the transfer function is the cumulative sum of the impulse response in the transfer function, $\Psi_{l}^{* a}=\sum_{j=0}^{l} \Psi_{j}^{*}$.

The asymptotic distributions of the impulse functions can be seen in the section "VAR and VARX Modeling" on page 1941.

The following statements provide the impulse response and the accumulated impulse response in the transfer function for a $\operatorname{VARX}(1,0)$ model.

```
proc varmax data=grunfeld plot=impulse;
    model y1-y3 = x1 x2 / p=1 lagmax=5
        printform=univariate
        print=(impulsx=(all) estimates);
run;
```

In Figure 30.26, the variables $x 1$ and $x 2$ are impulses and the variables $y 1, y 2$, and $y 3$ are responses. You can read the table matching the pairs of impulse \rightarrow response such as $x 1 \rightarrow y 1, x 1 \rightarrow y 2$, $x 1 \rightarrow y 3, x 2 \rightarrow y 1, x 2 \rightarrow y 2$, and $x 2 \rightarrow y 3$. In the pair of $x 1 \rightarrow y 1$, you can see the long-run responses of $y 1$ to an impulse in $x 1$ (the values are 1.69281, 0.35399, 0.09090, and so on for lag 0 , $\operatorname{lag} 1, \operatorname{lag} 2$, and so on, respectively).

Figure 30.26 Impulse Response in Transfer Function (IMPULSX= Option)

Figure 30.27 shows the responses of $y 1, y 2$, and $y 3$ to a forecast error impulse in $x 1$.

Figure 30.27 Plot of Impulse Response in Transfer Function

Figure 30.28 shows the accumulated impulse response in transfer function.

Figure 30.28 Accumulated Impulse Response in Transfer Function (IMPULSX= Option)

Accumulated Impulse Response of Transfer Function by Variable			
Variable			
y1	0	1. 69281	-0.00859
	1	2.04680	0.00868
	2	2.13770	0.01582
	3	2.18906	0.01796
	4	2.23623	0.01867
	5	2.28243	0.01907
y^{2}	0	-6.09850	2.57980
	1	-11.25334	3.03425
	2	-14.29502	3.07816
	3	-16.53299	3.06440
	4	-18.51482	3.04793
	5	-20.38897	3.03340
y^{3}	0	-0.02317	-0.01274
	1	1.55159	-0.02709
	2	3.35390	-0.02311
	3	5.12414	-0.01249
	4	6.82848	-0.00052
	5	8.46762	0.01135

Figure 30.29 shows the accumulated responses of $y 1, y 2$, and $y 3$ to a forecast error impulse in $x 1$.

Figure 30.29 Plot of Accumulated Impulse Response in Transfer Function

The following statements provide the impulse response function, the accumulated impulse response function, and the orthogonalized impulse response function with their standard errors for a $\operatorname{VAR}(1)$ model. Parts of the VARMAX procedure output are shown in Figure 30.30, Figure 30.32, and Figure 30.34.

```
proc varmax data=simull plot=impulse;
    model y1 y2 / p=1 noint lagmax=5
    print=(impulse=(all))
    printform=univariate;
run;
```

Figure 30.30 is the output in a univariate format associated with the PRINT=(IMPULSE=) option for the impulse response function. The keyword STD stands for the standard errors of the elements. The matrix in terms of the lag 0 does not print since it is the identity. In Figure 30.30, the variables $y 1$ and $y 2$ of the first row are impulses, and the variables $y 1$ and $y 2$ of the first column are responses. You can read the table matching the impulse \rightarrow response pairs, such as $y 1 \rightarrow y 1, y 1 \rightarrow y 2$, $y 2 \rightarrow y 1$, and $y 2 \rightarrow y 2$. For example, in the pair of $y 1 \rightarrow y 1$ at lag 3, the response is 0.8055 . This represents the impact on y 1 of one-unit change in $y 1$ after 3 periods. As the lag gets higher, you can see the long-run responses of $y 1$ to an impulse in itself.

Figure 30.30 Impulse Response Function (IMPULSE= Option)

Figure 30.31 shows the responses of $y 1$ and $y 2$ to a forecast error impulse in $y 1$ with two standard errors.

Figure 30.31 Plot of Impulse Response

Figure 30.32 is the output in a univariate format associated with the PRINT=(IMPULSE=) option for the accumulated impulse response function. The matrix in terms of the lag 0 does not print since it is the identity.

Figure 30.32 Accumulated Impulse Response Function (IMPULSE= Option)

Accumulated Impulse Response by Variable			
Variable			
Response\Impulse	Lag	y1	y^{2}
y1	1	2.15977	-0.51058
	STD	0.05508	0.05898
	2	3.22589	-1.29929
	STD	0.21684	0.22776
	3	4.03144	-2.14728
	STD	0.52217	0.53649
	4	4.50241	-2.88504
	STD	0.96922	0.97088
	5	4.64556	-3.40953
	STD	1.51137	1.47122
y^{2}	1	0.54634	1.38499
	STD	0.05779	0.06188
	2	1.39030	1.25426
	STD	0.17614	0.18392
	3	2.29768	0.77302
	STD	0.36166	0.36874
	4	3.08711	0.12447
	STD	0.65129	0.65333
	5	3.64834	-0.52829
	STD	1.07510	1.06309

Figure 30.33 shows the accumulated responses of $y 1$ and $y 2$ to a forecast error impulse in $y 1$ with two standard errors.

Figure 30.33 Plot of Accumulated Impulse Response

Figure 30.34 is the output in a univariate format associated with the PRINT=(IMPULSE=) option for the orthogonalized impulse response function. The two right-hand side columns, $y 1$ and $y 2$, represent the $y 1 _i n n o v a t i o n ~ a n d ~ y 2 _i n n o v a t i o n ~ v a r i a b l e s . ~ T h e s e ~ a r e ~ t h e ~ i m p u l s e s ~ v a r i a b l e s . ~$ The left-hand side column contains responses variables, $y 1$ and $y 2$. You can read the table by matching the impulse \rightarrow response pairs such as y1_innovation $\rightarrow y 1, y 1 _$innovation \rightarrow $y 2$, $y 2$ _innovation $\rightarrow y 1$, and $y 2 _$innovation $\rightarrow y 2$.

Figure 30.34 Orthogonalized Impulse Response Function (IMPULSE= Option)

Orthogonalized Impulse Response by Variable			
Variable Response\Impulse		y1	y2
y1	0	1.13523	0.00000
	STD	0.08068	0.00000
	1	1.13783	-0.58120
	STD	0.10666	0.14110
	2	0.93412	-0.89782
	STD	0.13113	0.16776
	3	0.61756	-0.96528
	STD	0.15348	0.18595
	4	0.27633	-0.83981
	STD	0.16940	0.19230
	5	-0.02115	-0.59705
	STD	0.17432	0.18830
y^{2}	0	0.35016	1.13832
	STD	0.11676	0.08855
	1	0.75503	0.43824
	STD	0.06949	0.10937
	2	0.91231	-0.14881
	STD	0.10553	0.13565
	3	0.86158	-0.54780
	STD	0.12266	0.14825
	4	0.66909	-0.73827
	STD	0.13305	0.15846
	5	0.40856	-0.74304
	STD	0.14189	0.16765

In Figure 30.4, there is a positive correlation between $\varepsilon_{1 t}$ and $\varepsilon_{2 t}$. Therefore, shock in $y 1$ can be accompanied by a shock in $y 2$ in the same period. For example, in the pair of $y 1 _$innovation \rightarrow $y 2$, you can see the long-run responses of $y 2$ to an impulse in $y 1$ _innovation.

Figure 30.35 shows the orthogonalized responses of $y 1$ and $y 2$ to a forecast error impulse in $y 1$ with two standard errors.

Figure 30.35 Plot of Orthogonalized Impulse Response

Forecasting

The optimal (minimum MSE) l-step-ahead forecast of \mathbf{y}_{t+l} is

$$
\begin{aligned}
\mathbf{y}_{t+l \mid t} & =\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+l-j \mid t}+\sum_{j=0}^{s} \Theta_{j}^{*} \mathbf{x}_{t+l-j \mid t}-\sum_{j=l}^{q} \Theta_{j} \boldsymbol{\epsilon}_{t+l-j}, \quad l \leq q \\
\mathbf{y}_{t+l \mid t} & =\sum_{j=1}^{p} \Phi_{j} \mathbf{y}_{t+l-j \mid t}+\sum_{j=0}^{s} \Theta_{j}^{*} \mathbf{x}_{t+l-j \mid t}, l>q
\end{aligned}
$$

with $\mathbf{y}_{t+l-j \mid t}=\mathbf{y}_{t+l-j}$ and $\mathbf{x}_{t+l-j \mid t}=\mathbf{x}_{t+l-j}$ for $l \leq j$. For the forecasts $\mathbf{x}_{t+l-j \mid t}$, see the section "State-Space Representation" on page 1913.

Covariance Matrices of Prediction Errors without Exogenous (Independent) Variables

Under the stationarity assumption, the optimal (minimum MSE) l-step-ahead forecast of \mathbf{y}_{t+l} has an infinite moving-average form, $\mathbf{y}_{t+l \mid t}=\sum_{j=l}^{\infty} \Psi_{j} \boldsymbol{\epsilon}_{t+l-j}$. The prediction error of the optimal l-step-ahead forecast is $\mathbf{e}_{t+l \mid t}=\mathbf{y}_{t+l}-\mathbf{y}_{t+l \mid t}=\sum_{j=0}^{l-1} \Psi_{j} \boldsymbol{\epsilon}_{t+l-j}$, with zero mean and covariance matrix,

$$
\Sigma(l)=\operatorname{Cov}\left(\mathbf{e}_{t+l \mid t}\right)=\sum_{j=0}^{l-1} \Psi_{j} \Sigma \Psi_{j}^{\prime}=\sum_{j=0}^{l-1} \Psi_{j}^{o} \Psi_{j}^{o^{\prime}}
$$

where $\Psi_{j}^{o}=\Psi_{j} P$ with a lower triangular matrix P such that $\Sigma=P P^{\prime}$. Under the assumption of normality of the $\boldsymbol{\epsilon}_{t}$, the l-step-ahead prediction error $\mathbf{e}_{t+l \mid t}$ is also normally distributed as multivariate $N(0, \Sigma(l))$. Hence, it follows that the diagonal elements $\sigma_{i i}^{2}(l)$ of $\Sigma(l)$ can be used, together with the point forecasts $y_{i, t+l \mid t}$, to construct l-step-ahead prediction intervals of the future values of the component series, $y_{i, t+l}$.

The following statements use the COVPE option to compute the covariance matrices of the prediction errors for a VAR (1) model. The parts of the VARMAX procedure output are shown in Figure 30.36 and Figure 30.37.

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint lagmax=5
                printform=both
        print=(decompose(5) impulse=(all) covpe(5));
run;
```

Figure 30.36 is the output in a matrix format associated with the COVPE option for the prediction error covariance matrices.

Figure 30.36 Covariances of Prediction Errors (COVPE Option)

Figure 30.37 is the output in a univariate format associated with the COVPE option for the prediction error covariances. This printing format more easily explains the prediction error covariances of each variable.

Figure 30.37 Covariances of Prediction Errors

Prediction Error Covariances by Variable			
Variable	Lead	y1	y^{2}
y^{1}	1	1.28875	0.39751
	2	2.92119	1.00189
	3	4.59984	1.98771
	4	5.91299	3.04856
	5	6.69463	3.85346
y^{2}	1	0.39751	1.41839
	2	1.00189	2.18051
	3	1.98771	3.03498
	4	3.04856	4.07738
	5	3.85346	5.07010

Covariance Matrices of Prediction Errors in the Presence of Exogenous (Independent) Variables

Exogenous variables can be both stochastic and nonstochastic (deterministic) variables. Considering the forecasts in the VARMAX (p, q, s) model, there are two cases.

When exogenous (independent) variables are stochastic (future values not specified):

As defined in the section "State-Space Representation" on page 1913, $\mathbf{y}_{t+l \mid t}$ has the representation

$$
\mathbf{y}_{t+l \mid t}=\sum_{j=l}^{\infty} V_{j} \mathbf{a}_{t+l-j}+\sum_{j=l}^{\infty} \Psi_{j} \boldsymbol{\epsilon}_{t+l-j}
$$

and hence

$$
\mathbf{e}_{t+l \mid t}=\sum_{j=0}^{l-1} V_{j} \mathbf{a}_{t+l-j}+\sum_{j=0}^{l-1} \Psi_{j} \boldsymbol{\epsilon}_{t+l-j}
$$

Therefore, the covariance matrix of the l-step-ahead prediction error is given as

$$
\Sigma(l)=\operatorname{Cov}\left(\mathbf{e}_{t+l \mid t}\right)=\sum_{j=0}^{l-1} V_{j} \Sigma_{a} V_{j}^{\prime}+\sum_{j=0}^{l-1} \Psi_{j} \Sigma_{\epsilon} \Psi_{j}^{\prime}
$$

where Σ_{a} is the covariance of the white noise series \mathbf{a}_{t}, and \mathbf{a}_{t} is the white noise series for the $\operatorname{VARMA}(p, q)$ model of exogenous (independent) variables, which is assumed not to be correlated with $\boldsymbol{\epsilon}_{t}$ or its lags.

When future exogenous (independent) variables are specified:

The optimal forecast $\mathbf{y}_{t+l \mid t}$ of \mathbf{y}_{t} conditioned on the past information and also on known future values $\mathbf{x}_{t+1}, \ldots, \mathbf{x}_{t+l}$ can be represented as

$$
\mathbf{y}_{t+l \mid t}=\sum_{j=0}^{\infty} \Psi_{j}^{*} \mathbf{x}_{t+l-j}+\sum_{j=l}^{\infty} \Psi_{j} \boldsymbol{\epsilon}_{t+l-j}
$$

and the forecast error is

$$
\mathbf{e}_{t+l \mid t}=\sum_{j=0}^{l-1} \Psi_{j} \epsilon_{t+l-j}
$$

Thus, the covariance matrix of the l-step-ahead prediction error is given as

$$
\Sigma(l)=\operatorname{Cov}\left(\mathbf{e}_{t+l \mid t}\right)=\sum_{j=0}^{l-1} \Psi_{j} \Sigma_{\epsilon} \Psi_{j}^{\prime}
$$

Decomposition of Prediction Error Covariances

In the relation $\Sigma(l)=\sum_{j=0}^{l-1} \Psi_{j}^{o} \Psi_{j}^{o^{\prime}}$, the diagonal elements can be interpreted as providing a decomposition of the l-step-ahead prediction error covariance $\sigma_{i i}^{2}(l)$ for each component series $y_{i t}$ into contributions from the components of the standardized innovations $\boldsymbol{\epsilon}_{t}$.

If you denote the (i, n) th element of Ψ_{j}^{o} by $\psi_{j, i n}$, the MSE of $y_{i, t+h \mid t}$ is

$$
\operatorname{MSE}\left(y_{i, t+h \mid t}\right)=\mathrm{E}\left(y_{i, t+h}-y_{i, t+h \mid t}\right)^{2}=\sum_{j=0}^{l-1} \sum_{n=1}^{k} \psi_{j, i n}^{2}
$$

Note that $\sum_{j=0}^{l-1} \psi_{j, i n}^{2}$ is interpreted as the contribution of innovations in variable n to the prediction error covariance of the l-step-ahead forecast of variable i.

The proportion, $\omega_{l, i n}$, of the l-step-ahead forecast error covariance of variable i accounting for the innovations in variable n is

$$
\omega_{l, i n}=\sum_{j=0}^{l-1} \psi_{j, i n}^{2} / \operatorname{MSE}\left(y_{i, t+h \mid t}\right)
$$

The following statements use the DECOMPOSE option to compute the decomposition of prediction error covariances and their proportions for a VAR(1) model:

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint print=(decompose(15))
                printform=univariate;
run;
```

The proportions of decomposition of prediction error covariances of two variables are given in Figure 30.38. The output explains that about 91.356% of the one-step-ahead prediction error covariances of the variable $y_{2 t}$ is accounted for by its own innovations and about 8.644% is accounted for by $y_{1 t}$ innovations.

Figure 30.38 Decomposition of Prediction Error Covariances (DECOMPOSE Option)

Proportions of Prediction Error Covariances by Variable			
Variable	Lead	Y1	y^{2}
y1	1	1.00000	0.00000
	2	0.88436	0.11564
	3	0.75132	0.24868
	4	0.64897	0.35103
	5	0.58460	0.41540
y^{2}	1	0.08644	0.91356
	2	0.31767	0.68233
	3	0.50247	0.49753
	4	0.55607	0.44393
	5	0.53549	0.46451

Forecasting of the Centered Series

If the CENTER option is specified, the sample mean vector is added to the forecast.

Forecasting of the Differenced Series

If dependent (endogenous) variables are differenced, the final forecasts and their prediction error covariances are produced by integrating those of the differenced series. However, if the PRIOR option is specified, the forecasts and their prediction error variances of the differenced series are produced.

Let \mathbf{z}_{t} be the original series with some appended zero values that correspond to the unobserved past observations. Let $\Delta(B)$ be the $k \times k$ matrix polynomial in the backshift operator that corresponds to the differencing specified by the MODEL statement. The off-diagonal elements of Δ_{i} are zero, and the diagonal elements can be different. Then $\mathbf{y}_{t}=\Delta(B) \mathbf{z}_{t}$.

This gives the relationship

$$
\mathbf{z}_{t}=\Delta^{-1}(B) \mathbf{y}_{t}=\sum_{j=0}^{\infty} \Lambda_{j} \mathbf{y}_{t-j}
$$

where $\Delta^{-1}(B)=\sum_{j=0}^{\infty} \Lambda_{j} B^{j}$ and $\Lambda_{0}=I_{k}$.
The l-step-ahead prediction of \mathbf{z}_{t+l} is

$$
\mathbf{z}_{t+l \mid t}=\sum_{j=0}^{l-1} \Lambda_{j} \mathbf{y}_{t+l-j \mid t}+\sum_{j=l}^{\infty} \Lambda_{j} \mathbf{y}_{t+l-j}
$$

The l-step-ahead prediction error of \mathbf{z}_{t+l} is

$$
\sum_{j=0}^{l-1} \Lambda_{j}\left(\mathbf{y}_{t+l-j}-\mathbf{y}_{t+l-j \mid t}\right)=\sum_{j=0}^{l-1}\left(\sum_{u=0}^{j} \Lambda_{u} \Psi_{j-u}\right) \epsilon_{t+l-j}
$$

Letting $\Sigma_{\mathbf{z}}(0)=0$, the covariance matrix of the l-step-ahead prediction error of $\mathbf{z}_{t+l}, \Sigma_{\mathbf{z}}(l)$, is

$$
\begin{aligned}
\Sigma_{\mathbf{z}}(l) & =\sum_{j=0}^{l-1}\left(\sum_{u=0}^{j} \Lambda_{u} \Psi_{j-u}\right) \Sigma_{\epsilon}\left(\sum_{u=0}^{j} \Lambda_{u} \Psi_{j-u}\right)^{\prime} \\
& =\Sigma_{\mathbf{z}}(l-1)+\left(\sum_{j=0}^{l-1} \Lambda_{j} \Psi_{l-1-j}\right) \Sigma_{\epsilon}\left(\sum_{j=0}^{l-1} \Lambda_{j} \Psi_{l-1-j}\right)^{\prime}
\end{aligned}
$$

If there are stochastic exogenous (independent) variables, the covariance matrix of the l-step-ahead prediction error of $\mathbf{z}_{t+l}, \Sigma_{\mathbf{z}}(l)$, is

$$
\begin{aligned}
\Sigma_{\mathbf{z}}(l)= & \Sigma_{\mathbf{z}}(l-1)+\left(\sum_{j=0}^{l-1} \Lambda_{j} \Psi_{l-1-j}\right) \Sigma_{\epsilon}\left(\sum_{j=0}^{l-1} \Lambda_{j} \Psi_{l-1-j}\right)^{\prime} \\
& +\left(\sum_{j=0}^{l-1} \Lambda_{j} V_{l-1-j}\right) \Sigma_{a}\left(\sum_{j=0}^{l-1} \Lambda_{j} V_{l-1-j}\right)^{\prime}
\end{aligned}
$$

Tentative Order Selection

Sample Cross-Covariance and Cross-Correlation Matrices

Given a stationary multivariate time series \mathbf{y}_{t}, cross-covariance matrices are

$$
\Gamma(l)=\mathrm{E}\left[\left(\mathbf{y}_{t}-\boldsymbol{\mu}\right)\left(\mathbf{y}_{t+l}-\boldsymbol{\mu}\right)^{\prime}\right]
$$

where $\mu=\mathrm{E}\left(\mathbf{y}_{t}\right)$, and cross-correlation matrices are

$$
\rho(l)=D^{-1} \Gamma(l) D^{-1}
$$

where D is a diagonal matrix with the standard deviations of the components of \mathbf{y}_{t} on the diagonal. The sample cross-covariance matrix at lag l, denoted as $C(l)$, is computed as

$$
\hat{\Gamma}(l)=C(l)=\frac{1}{T} \sum_{t=1}^{T-l} \tilde{\mathbf{y}}_{t} \tilde{\mathbf{y}}_{t+l}^{\prime}
$$

where $\tilde{\mathbf{y}}_{t}$ is the centered data and T is the number of nonmissing observations. Thus, $\hat{\Gamma}(l)$ has (i, j) th element $\hat{\gamma}_{i j}(l)=c_{i j}(l)$. The sample cross-correlation matrix at lag l is computed as

$$
\hat{\rho}_{i j}(l)=c_{i j}(l) /\left[c_{i i}(0) c_{j j}(0)\right]^{1 / 2}, \quad i, j=1, \ldots, k
$$

The following statements use the CORRY option to compute the sample cross-correlation matrices and their summary indicator plots in terms of,+- , and \cdot, where + indicates significant positive cross-correlations, - indicates significant negative cross-correlations, and • indicates insignificant cross-correlations.

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint lagmax=3 print=(corry)
        printform=univariate;
run;
```

Figure 30.39 shows the sample cross-correlation matrices of $y_{1 t}$ and $y_{2 t}$. As shown, the sample autocorrelation functions for each variable decay quickly, but are significant with respect to two standard errors.

Figure 30.39 Cross-Correlations (CORRY Option)

Partial Autoregressive Matrices

For each $m=1,2, \ldots, p$ you can define a sequence of matrices $\Phi_{m m}$, which is called the partial autoregression matrices of lag m, as the solution for $\Phi_{m m}$ to the Yule-Walker equations of order m,

$$
\Gamma(l)=\sum_{i=1}^{m} \Gamma(l-i) \Phi_{i m}^{\prime}, \quad l=1,2, \ldots, m
$$

The sequence of the partial autoregression matrices $\Phi_{m m}$ of order m has the characteristic property that if the process follows the $\operatorname{AR}(p)$, then $\Phi_{p p}=\Phi_{p}$ and $\Phi_{m m}=0$ for $m>p$. Hence, the matrices $\Phi_{m m}$ have the cutoff property for a $\operatorname{VAR}(p)$ model, and so they can be useful in the identification of the order of a pure VAR model.

The following statements use the PARCOEF option to compute the partial autoregression matrices:

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint lagmax=3
                printform=univariate
                print=(corry parcoef pcorr
                    pcancorr roots);
run;
```

Figure 30.40 shows that the model can be obtained by an AR order $m=1$ since partial autoregression matrices are insignificant after lag 1 with respect to two standard errors. The matrix for lag 1 is the same as the Yule-Walker autoregressive matrix.

Figure 30.40 Partial Autoregression Matrices (PARCOEF Option)

Partial Correlation Matrices

Define the forward autoregression

$$
\mathbf{y}_{t}=\sum_{i=1}^{m-1} \Phi_{i, m-1} \mathbf{y}_{t-i}+\mathbf{u}_{m, t}
$$

and the backward autoregression

$$
\mathbf{y}_{t-m}=\sum_{i=1}^{m-1} \Phi_{i, m-1}^{*} \mathbf{y}_{t-m+i}+\mathbf{u}_{m, t-m}^{*}
$$

The matrices $P(m)$ defined by Ansley and Newbold (1979) are given by

$$
P(m)=\Sigma_{m-1}^{* 1 / 2} \Phi_{m m}^{\prime} \Sigma_{m-1}^{-1 / 2}
$$

where

$$
\Sigma_{m-1}=\operatorname{Cov}\left(\mathbf{u}_{m, t}\right)=\Gamma(0)-\sum_{i=1}^{m-1} \Gamma(-i) \Phi_{i, m-1}^{\prime}
$$

and

$$
\Sigma_{m-1}^{*}=\operatorname{Cov}\left(\mathbf{u}_{m, t-m}^{*}\right)=\Gamma(0)-\sum_{i=1}^{m-1} \Gamma(m-i) \Phi_{m-i, m-1}^{*^{\prime}}
$$

$P(m)$ are the partial cross-correlation matrices at lag m between the elements of \mathbf{y}_{t} and \mathbf{y}_{t-m}, given $\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-m+1}$. The matrices $P(m)$ have the cutoff property for a $\operatorname{VAR}(p)$ model, and so they can be useful in the identification of the order of a pure VAR structure.

The following statements use the PCORR option to compute the partial cross-correlation matrices:

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint lagmax=3
            print=(pcorr)
            printform=univariate;
run;
```

The partial cross-correlation matrices in Figure 30.41 are insignificant after lag 1 with respect to two standard errors. This indicates that an AR order of $m=1$ can be an appropriate choice.

Figure 30.41 Partial Correlations (PCORR Option)

Partial Canonical Correlation Matrices

The partial canonical correlations at lag m between the vectors \mathbf{y}_{t} and \mathbf{y}_{t-m}, given $\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-m+1}$, are $1 \geq \rho_{1}(m) \geq \rho_{2}(m) \cdots \geq \rho_{k}(m)$. The partial canonical correlations are the canonical correlations between the residual series $\mathbf{u}_{m, t}$ and $\mathbf{u}_{m, t-m}^{*}$, where $\mathbf{u}_{m, t}$ and $\mathbf{u}_{m, t-m}^{*}$ are defined in the previous section. Thus, the squared partial canonical correlations $\rho_{i}^{2}(m)$ are the eigenvalues of the matrix

$$
\left\{\operatorname{Cov}\left(\mathbf{u}_{m, t}\right)\right\}^{-1} \mathrm{E}\left(\mathbf{u}_{m, t} \mathbf{u}_{m, t-m}^{*^{\prime}}\right)\left\{\operatorname{Cov}\left(\mathbf{u}_{m, t-m}^{*}\right)\right\}^{-1} \mathrm{E}\left(\mathbf{u}_{m, t-m}^{*} \mathbf{u}_{m, t}^{\prime}\right)=\Phi_{m m}^{*^{\prime}} \Phi_{m m}^{\prime}
$$

It follows that the test statistic to test for $\Phi_{m}=0$ in the VAR model of order $m>p$ is approximately

$$
(T-m) \operatorname{tr}\left\{\Phi_{m m}^{*^{\prime}} \Phi_{m m}^{\prime}\right\} \approx(T-m) \sum_{i=1}^{k} \rho_{i}^{2}(m)
$$

and has an asymptotic chi-square distribution with k^{2} degrees of freedom for $m>p$.
The following statements use the PCANCORR option to compute the partial canonical correlations:

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint lagmax=3 print=(pcancorr);
run;
```

Figure 30.42 shows that the partial canonical correlations $\rho_{i}(m)$ between \mathbf{y}_{t} and \mathbf{y}_{t-m} are $\{0.918$, $0.773\},\{0.092,0.018\}$, and $\{0.109,0.011\}$ for lags $m=1$ to 3 . After lag $m=1$, the partial
canonical correlations are insignificant with respect to the 0.05 significance level, indicating that an AR order of $m=1$ can be an appropriate choice.

Figure 30.42 Partial Canonical Correlations (PCANCORR Option)

The VARMAX Procedure					
Partial Canonical Correlations					
Lag	Correlation1	Correlation2	DF	Chi-Square	Pr > ChiSq
1	0.91783	0.77335	4	142.61	$<.0001$
2	0.09171	0.01816	4	0.86	0.9307
3	0.10861	0.01078	4	1.16	0.8854

The Minimum Information Criterion (MINIC) Method

The minimum information criterion (MINIC) method can tentatively identify the orders of a $\operatorname{VARMA}(p, q)$ process. Note that Spliid (1983), Koreisha and Pukkila (1989), and Quinn (1980) proposed this method. The first step of this method is to obtain estimates of the innovations series, $\boldsymbol{\epsilon}_{t}$, from the $\operatorname{VAR}\left(p_{\epsilon}\right)$, where p_{ϵ} is chosen sufficiently large. The choice of the autoregressive order, p_{ϵ}, is determined by use of a selection criterion. From the selected $\operatorname{VAR}\left(p_{\epsilon}\right)$ model, you obtain estimates of residual series

$$
\tilde{\boldsymbol{\epsilon}}_{t}=\mathbf{y}_{t}-\sum_{i=1}^{p_{\epsilon}} \hat{\Phi}_{i}^{p_{\epsilon}} \mathbf{y}_{t-i}-\hat{\boldsymbol{\delta}}^{p_{\epsilon}}, \quad t=p_{\epsilon}+1, \ldots, T
$$

In the second step, you select the order (p, q) of the VARMA model for p in $\left(p_{\min }: p_{\max }\right)$ and q in $\left(q_{\min }: q_{\text {max }}\right)$

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}-\sum_{i=1}^{q} \Theta_{i} \tilde{\boldsymbol{\epsilon}}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

which minimizes a selection criterion like SBC or HQ.
The following statements use the MINIC= option to compute a table that contains the information criterion associated with various AR and MA orders:

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint minic=(p=3 q=3);
run;
```

Figure 30.43 shows the output associated with the $\mathrm{MINIC}=$ option. The criterion takes the smallest value at AR order 1.

Figure $30.43 \mathrm{MINIC}=$ Option

The VARMAX Procedure				
Minimum Information Criterion Based on AICC				
Lag	MA 0	MA 1	MA 2	MA 3
AR 0	3.3574947	3.0570091	2.7272377	2.3526368
AR 1	0.5544431	0.6507991	0.7120257	0.7859524
AR 2	0.6369334	0.7407785	0.802996	0.850487
AR 3	0.7235629	0.8131261	0.8395558	0.9094856

VAR and VARX Modeling

The p th-order VAR process is written as

$$
\mathbf{y}_{t}-\boldsymbol{\mu}=\sum_{i=1}^{p} \Phi_{i}\left(\mathbf{y}_{t-i}-\boldsymbol{\mu}\right)+\boldsymbol{\epsilon}_{t} \text { or } \Phi(B)\left(\mathbf{y}_{t}-\boldsymbol{\mu}\right)=\boldsymbol{\epsilon}_{t}
$$

with $\Phi(B)=I_{k}-\sum_{i=1}^{p} \Phi_{i} B^{i}$.
Equivalently, it can be written as

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t} \text { or } \Phi(B) \mathbf{y}_{t}=\boldsymbol{\delta}+\boldsymbol{\epsilon}_{t}
$$

with $\boldsymbol{\delta}=\left(I_{k}-\sum_{i=1}^{p} \Phi_{i}\right) \boldsymbol{\mu}$.

Stationarity

For stationarity, the VAR process must be expressible in the convergent causal infinite MA form as

$$
\mathbf{y}_{t}=\mu+\sum_{j=0}^{\infty} \Psi_{j} \boldsymbol{\epsilon}_{t-j}
$$

where $\Psi(B)=\Phi(B)^{-1}=\sum_{j=0}^{\infty} \Psi_{j} B^{j}$ with $\sum_{j=0}^{\infty}\left\|\Psi_{j}\right\|<\infty$, where $\|A\|$ denotes a norm for the matrix A such as $\|A\|^{2}=\operatorname{tr}\left\{A^{\prime} A\right\}$. The matrix Ψ_{j} can be recursively obtained from the relation $\Phi(B) \Psi(B)=I$; it is

$$
\Psi_{j}=\Phi_{1} \Psi_{j-1}+\Phi_{2} \Psi_{j-2}+\cdots+\Phi_{p} \Psi_{j-p}
$$

where $\Psi_{0}=I_{k}$ and $\Psi_{j}=0$ for $j<0$.
The stationarity condition is satisfied if all roots of $|\Phi(z)|=0$ are outside of the unit circle. The stationarity condition is equivalent to the condition in the corresponding $\operatorname{VAR}(1)$ representation, $\mathbf{Y}_{t}=\Phi \mathbf{Y}_{t-1}+\boldsymbol{\varepsilon}_{t}$, that all eigenvalues of the $k p \times k p$ companion matrix Φ be less than one in absolute value, where $\mathbf{Y}_{t}=\left(\mathbf{y}_{t}^{\prime}, \ldots, \mathbf{y}_{t-p+1}^{\prime}\right)^{\prime}, \boldsymbol{\varepsilon}_{t}=\left(\boldsymbol{\epsilon}_{t}^{\prime}, 0^{\prime}, \ldots, 0^{\prime}\right)^{\prime}$, and

$$
\Phi=\left[\begin{array}{ccccc}
\Phi_{1} & \Phi_{2} & \cdots & \Phi_{p-1} & \Phi_{p} \\
I_{k} & 0 & \cdots & 0 & 0 \\
0 & I_{k} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_{k} & 0
\end{array}\right]
$$

If the stationarity condition is not satisfied, a nonstationary model (a differenced model or an error correction model) might be more appropriate.

The following statements estimate a $\operatorname{VAR}(1)$ model and use the ROOTS option to compute the characteristic polynomial roots:

```
proc varmax data=simul1;
    model y1 y2 / p=1 noint print=(roots);
run;
```

Figure 30.44 shows the output associated with the ROOTS option, which indicates that the series is stationary since the modulus of the eigenvalue is less than one.

Figure 30.44 Stationarity (ROOTS Option)

Index	The VARMAX Procedure				
	Roots of AR Characteristic Polynomial				
	Real	Imaginary	Modulus	Radian	Degree
1	0.77238	0.35899	0.8517	0.4351	24.9284
2	0.77238	-0.35899	0.8517	-0.4351	-24.9284

Parameter Estimation

Consider the stationary $\operatorname{VAR}(p)$ model

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\mathbf{y}_{-p+1}, \ldots, \mathbf{y}_{0}$ are assumed to be available (for convenience of notation). This can be represented by the general form of the multivariate linear model,

$$
Y=X B+E \text { or } \mathbf{y}=\left(X \otimes I_{k}\right) \boldsymbol{\beta}+\mathbf{e}
$$

where

$$
\begin{aligned}
Y & =\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{T}\right)^{\prime} \\
B & =\left(\boldsymbol{\delta}, \Phi_{1}, \ldots, \Phi_{p}\right)^{\prime} \\
X & =\left(X_{0}, \ldots, X_{T-1}\right)^{\prime} \\
X_{t} & =\left(1, \mathbf{y}_{t}^{\prime}, \ldots, \mathbf{y}_{t-p+1}^{\prime}\right)^{\prime} \\
E & =\left(\boldsymbol{\epsilon}_{1}, \ldots, \boldsymbol{\epsilon}_{T}\right)^{\prime} \\
\mathbf{y} & =\operatorname{vec}\left(Y^{\prime}\right) \\
\boldsymbol{\beta} & =\operatorname{vec}\left(B^{\prime}\right) \\
\mathbf{e} & =\operatorname{vec}\left(E^{\prime}\right)
\end{aligned}
$$

with vec denoting the column stacking operator.
The conditional least squares estimator of $\boldsymbol{\beta}$ is

$$
\hat{\boldsymbol{\beta}}=\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \otimes I_{k}\right) \mathbf{y}
$$

and the estimate of Σ is

$$
\hat{\Sigma}=(T-(k p+1))^{-1} \sum_{t=1}^{T} \hat{\epsilon}_{t} \hat{\epsilon}_{t}^{\prime}
$$

where $\hat{\boldsymbol{\epsilon}}_{t}$ is the residual vectors. Consistency and asymptotic normality of the LS estimator are that

$$
\sqrt{T}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} N\left(0, \Gamma_{p}^{-1} \otimes \Sigma\right)
$$

where $X^{\prime} X / T$ converges in probability to Γ_{p} and \xrightarrow{d} denotes convergence in distribution.
The (conditional) maximum likelihood estimator in the $\operatorname{VAR}(p)$ model is equal to the (conditional) least squares estimator on the assumption of normality of the error vectors.

Asymptotic Distributions of Impulse Response Functions

As before, vec denotes the column stacking operator and vech is the corresponding operator that stacks the elements on and below the diagonal. For any $k \times k$ matrix A, the commutation matrix K_{k} is defined as $K_{k} \operatorname{vec}(A)=\operatorname{vec}\left(A^{\prime}\right)$; the duplication matrix D_{k} is defined as $D_{k} \operatorname{vech}(A)=\operatorname{vec}(A)$; the elimination matrix L_{k} is defined as $L_{k} \operatorname{vec}(A)=\operatorname{vech}(A)$.

The asymptotic distribution of the impulse response function (Lütkepohl 1993) is

$$
\sqrt{T} \operatorname{vec}\left(\hat{\Psi}_{j}-\Psi_{j}\right) \xrightarrow{d} N\left(0, G_{j} \Sigma_{\boldsymbol{\beta}} G_{j}^{\prime}\right) j=1,2, \ldots
$$

where $\Sigma_{\beta}=\Gamma_{p}^{-1} \otimes \Sigma$ and

$$
G_{j}=\frac{\partial \operatorname{vec}\left(\Psi_{j}\right)}{\partial \boldsymbol{\beta}^{\prime}}=\sum_{i=0}^{j-1} \mathbf{J}\left(\boldsymbol{\Phi}^{\prime}\right)^{j-1-i} \otimes \Psi_{i}
$$

where $\mathbf{J}=\left[I_{k}, 0, \ldots, 0\right]$ is a $k \times k p$ matrix and $\boldsymbol{\Phi}$ is a $k p \times k p$ companion matrix.
The asymptotic distribution of the accumulated impulse response function is

$$
\sqrt{T} \operatorname{vec}\left(\hat{\Psi}_{l}^{a}-\Psi_{l}^{a}\right) \xrightarrow{d} N\left(0, F_{l} \Sigma_{\boldsymbol{\beta}} F_{l}^{\prime}\right) l=1,2, \ldots
$$

where $F_{l}=\sum_{j=1}^{l} G_{j}$.
The asymptotic distribution of the orthogonalized impulse response function is

$$
\sqrt{T} \operatorname{vec}\left(\hat{\Psi}_{j}^{o}-\Psi_{j}^{o}\right) \xrightarrow{d} N\left(0, C_{j} \Sigma_{\boldsymbol{\beta}} C_{j}^{\prime}+\bar{C}_{j} \Sigma_{\boldsymbol{\sigma}}{\overline{C_{j}^{\prime}}}_{j}^{\prime}\right) j=0,1,2, \ldots
$$

where $C_{0}=0, C_{j}=\left(\Psi_{0}^{o^{\prime}} \otimes I_{k}\right) G_{j}, \bar{C}_{j}=\left(I_{k} \otimes \Psi_{j}\right) H$,

$$
H=\frac{\partial \operatorname{vec}\left(\Psi_{0}^{o}\right)}{\partial \boldsymbol{\sigma}^{\prime}}=L_{k}^{\prime}\left\{L_{k}\left(I_{k^{2}}+K_{k}\right)\left(\Psi_{0}^{o} \otimes I_{k}\right) L_{k}^{\prime}\right\}^{-1}
$$

and $\Sigma_{\boldsymbol{\sigma}}=2 D_{k}^{+}(\Sigma \otimes \Sigma) D_{k}^{+^{\prime}}$ with $D_{k}^{+}=\left(D_{k}^{\prime} D_{k}\right)^{-1} D_{k}^{\prime}$ and $\sigma=\operatorname{vech}(\mathrm{E})$.

Granger Causality Test

Let \mathbf{y}_{t} be arranged and partitioned in subgroups $\mathbf{y}_{1 t}$ and $\mathbf{y}_{2 t}$ with dimensions k_{1} and k_{2}, respectively $\left(k=k_{1}+k_{2}\right)$; that is, $\mathbf{y}_{t}=\left(\mathbf{y}_{1 t}^{\prime}, \mathbf{y}_{2 t}^{\prime}\right)^{\prime}$ with the corresponding white noise process $\boldsymbol{\epsilon}_{t}=\left(\epsilon_{1 t}^{\prime}, \boldsymbol{\epsilon}_{2 t}^{\prime}\right)^{\prime}$. Consider the $\operatorname{VAR}(p)$ model with partitioned coefficients $\Phi_{i j}(B)$ for $i, j=1,2$ as follows:

$$
\left[\begin{array}{ll}
\Phi_{11}(B) & \Phi_{12}(B) \\
\Phi_{21}(B) & \Phi_{22}(B)
\end{array}\right]\left[\begin{array}{l}
\mathbf{y}_{1 t} \\
\mathbf{y}_{2 t}
\end{array}\right]=\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]+\left[\begin{array}{l}
\epsilon_{1 t} \\
\epsilon_{2 t}
\end{array}\right]
$$

The variables $\mathbf{y}_{1 t}$ are said to cause $\mathbf{y}_{2 t}$, but $\mathbf{y}_{2 t}$ do not cause $\mathbf{y}_{1 t}$ if $\Phi_{12}(B)=0$. The implication of this model structure is that future values of the process $\mathbf{y}_{1 t}$ are influenced only by its own past and not by the past of $\mathbf{y}_{2 t}$, where future values of $\mathbf{y}_{2 t}$ are influenced by the past of both $\mathbf{y}_{1 t}$ and $\mathbf{y}_{2 t}$. If the future $\mathbf{y}_{1 t}$ are not influenced by the past values of $\mathbf{y}_{2 t}$, then it can be better to model $\mathbf{y}_{1 t}$ separately from $\mathbf{y}_{2 t}$.
Consider testing $H_{0}: C \boldsymbol{\beta}=c$, where C is a $s \times\left(k^{2} p+k\right)$ matrix of rank s and c is an s-dimensional vector where $s=k_{1} k_{2} p$. Assuming that

$$
\sqrt{T}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{d} N\left(0, \Gamma_{p}^{-1} \otimes \Sigma\right)
$$

you get the Wald statistic

$$
T(C \hat{\boldsymbol{\beta}}-c)^{\prime}\left[C\left(\hat{\Gamma}_{p}^{-1} \otimes \hat{\Sigma}\right) C^{\prime}\right]^{-1}(C \hat{\boldsymbol{\beta}}-c) \xrightarrow{d} \chi^{2}(s)
$$

For the Granger causality test, the matrix C consists of zeros or ones and c is the zero vector. See Lütkepohl(1993) for more details of the Granger causality test.

VARX Modeling

The vector autoregressive model with exogenous variables is called the $\operatorname{VARX}(p, s)$ model. The form of the $\operatorname{VARX}(p, s)$ model can be written as

$$
\mathbf{y}_{t}=\delta+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

The parameter estimates can be obtained by representing the general form of the multivariate linear model,

$$
Y=X B+E \text { or } \mathbf{y}=\left(X \otimes I_{k}\right) \boldsymbol{\beta}+\mathbf{e}
$$

where

$$
\begin{aligned}
Y & =\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{T}\right)^{\prime} \\
B & =\left(\boldsymbol{\delta}, \Phi_{1}, \ldots, \Phi_{p}, \Theta_{0}^{*}, \ldots, \Theta_{s}^{*}\right)^{\prime} \\
X & =\left(X_{0}, \ldots, X_{T-1}\right)^{\prime} \\
X_{t} & =\left(1, \mathbf{y}_{t}^{\prime}, \ldots, \mathbf{y}_{t-p+1}^{\prime}, \mathbf{x}_{t+1}^{\prime}, \ldots, \mathbf{x}_{t-s+1}^{\prime}\right)^{\prime} \\
E & =\left(\epsilon_{1}, \ldots, \boldsymbol{\epsilon}_{T}\right)^{\prime} \\
\mathbf{y} & =\operatorname{vec}\left(Y^{\prime}\right) \\
\boldsymbol{\beta} & =\operatorname{vec}\left(B^{\prime}\right) \\
\mathbf{e} & =\operatorname{vec}\left(E^{\prime}\right)
\end{aligned}
$$

The conditional least squares estimator of β can be obtained by using the same method in a $\operatorname{VAR}(p)$ modeling. If the multivariate linear model has different independent variables that correspond to dependent variables, the SUR (seemingly unrelated regression) method is used to improve the regression estimates.

The following example fits the ordinary regression model:

```
proc varmax data=one;
    model y1-y3 = x1-x5;
run;
```

This is equivalent to the REG procedure in the SAS/STAT software:

```
proc reg data=one;
    model y1 = x1-x5;
    model y2 = x1-x5;
    model y3 = x1-x5;
run;
```

The following example fits the second-order lagged regression model:

```
proc varmax data=two;
    model y1 y2 = x / xlag=2;
run;
```

This is equivalent to the REG procedure in the SAS/STAT software:

```
data three;
    set two;
    xlag1 = lag1(x);
    xlag2 = lag2(x);
run;
proc reg data=three;
    model y1 = x xlag1 xlag2;
    model y2 = x xlag1 xlag2;
run;
```

The following example fits the ordinary regression model with different regressors:

```
proc varmax data=one;
    model y1 = x1-x3, y2 = x2 x3;
run;
```

This is equivalent to the following SYSLIN procedure statements:

```
proc syslin data=one vardef=df sur;
    endogenous y1 y2;
    model y1 = x1-x3;
    model y2 = x2 x3;
run;
```

From the output in Figure 30.20 in the section "Getting Started: VARMAX Procedure" on page 1858, you can see that the parameters, XL0_1_2, XL0_2_1, XL0_3_1, and XL0_3_2 associated with the exogenous variables, are not significant. The following example fits the VARX $(1,0)$ model with different regressors:

```
proc varmax data=grunfeld;
    model y1 = x1, y2 = x2, y3 / p=1 print=(estimates);
run;
```

Figure 30.45 Parameter Estimates for the $\operatorname{VARX}(1,0)$ Model

The VARMAX Procedure			
XLag			
Lag	Variable	x1	x 2
0	y1	1.83231	-
	y^{2}	-	2.42110
	y^{3}	-	-

As you can see in Figure 30.45, the symbol '_' in the elements of matrix corresponds to endogenous variables that do not take the denoted exogenous variables.

Bayesian VAR and VARX Modeling

Consider the $\operatorname{VAR}(p)$ model

$$
\mathbf{y}_{t}=\delta+\Phi_{1} \mathbf{y}_{t-1}+\cdots+\Phi_{p} \mathbf{y}_{t-p}+\boldsymbol{\epsilon}_{t}
$$

or

$$
\mathbf{y}=\left(X \otimes I_{k}\right) \boldsymbol{\beta}+\mathbf{e}
$$

When the parameter vector $\boldsymbol{\beta}$ has a prior multivariate normal distribution with known mean $\boldsymbol{\beta}^{*}$ and covariance matrix V_{β}, the prior density is written as

$$
f(\boldsymbol{\beta})=\left(\frac{1}{2 \pi}\right)^{k^{2} p / 2}\left|V_{\beta}\right|^{-1 / 2} \exp \left[-\frac{1}{2}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right) V_{\beta}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)\right]
$$

The likelihood function for the Gaussian process becomes

$$
\begin{aligned}
\ell(\boldsymbol{\beta} \mid \mathbf{y})= & \left(\frac{1}{2 \pi}\right)^{k T / 2}\left|I_{T} \otimes \Sigma\right|^{-1 / 2} \times \\
& \exp \left[-\frac{1}{2}\left(\mathbf{y}-\left(X \otimes I_{k}\right) \boldsymbol{\beta}\right)^{\prime}\left(I_{T} \otimes \Sigma^{-1}\right)\left(\mathbf{y}-\left(X \otimes I_{k}\right) \boldsymbol{\beta}\right)\right]
\end{aligned}
$$

Therefore, the posterior density is derived as

$$
f(\boldsymbol{\beta} \mid \mathbf{y}) \propto \exp \left[-\frac{1}{2}(\boldsymbol{\beta}-\overline{\boldsymbol{\beta}})^{\prime} \bar{\Sigma}_{\beta}^{-1}(\boldsymbol{\beta}-\overline{\boldsymbol{\beta}})\right]
$$

where the posterior mean is

$$
\overline{\boldsymbol{\beta}}=\left[V_{\beta}^{-1}+\left(X^{\prime} X \otimes \Sigma^{-1}\right)\right]^{-1}\left[V_{\beta}^{-1} \beta^{*}+\left(X^{\prime} \otimes \Sigma^{-1}\right) \mathbf{y}\right]
$$

and the posterior covariance matrix is

$$
\bar{\Sigma}_{\beta}=\left[V_{\beta}^{-1}+\left(X^{\prime} X \otimes \Sigma^{-1}\right)\right]^{-1}
$$

In practice, the prior mean $\boldsymbol{\beta}^{*}$ and the prior variance V_{β} need to be specified. If all the parameters are considered to shrink toward zero, the null prior mean should be specified. According to Litterman (1986), the prior variance can be given by

$$
v_{i j}(l)= \begin{cases}(\lambda / l)^{2} & \text { if } i=j \\ \left(\lambda \theta \sigma_{i i} / l \sigma_{j j}\right)^{2} & \text { if } i \neq j\end{cases}
$$

where $v_{i j}(l)$ is the prior variance of the (i, j) th element of Φ_{l}, λ is the prior standard deviation of the diagonal elements of Φ_{l}, θ is a constant in the interval $(0,1)$, and $\sigma_{i i}^{2}$ is the i th diagonal element of Σ. The deterministic terms have diffused prior variance. In practice, you replace the $\sigma_{i i}^{2}$ by the diagonal element of the ML estimator of Σ in the nonconstrained model.

For example, for a bivariate BVAR(2) model,

$$
\begin{aligned}
& y_{1 t}=0+\phi_{1,11} y_{1, t-1}+\phi_{1,12} y_{2, t-1}+\phi_{2,11} y_{1, t-2}+\phi_{2,12} y_{2, t-2}+\epsilon_{1 t} \\
& y_{2 t}=0+\phi_{1,21} y_{1, t-1}+\phi_{1,22} y_{2, t-1}+\phi_{2,21} y_{1, t-2}+\phi_{2,22} y_{2, t-2}+\epsilon_{2 t}
\end{aligned}
$$

with the prior covariance matrix

$$
\begin{aligned}
V_{\beta}=\operatorname{Diag} \quad(& \infty, \lambda^{2},\left(\lambda \theta \sigma_{1} / \sigma_{2}\right)^{2},(\lambda / 2)^{2},\left(\lambda \theta \sigma_{1} / 2 \sigma_{2}\right)^{2}, \\
& \left.\infty,\left(\lambda \theta \sigma_{2} / \sigma_{1}\right)^{2}, \lambda^{2},\left(\lambda \theta \sigma_{2} / 2 \sigma_{1}\right)^{2},(\lambda / 2)^{2}\right)
\end{aligned}
$$

For the Bayesian estimation of integrated systems, the prior mean is set to the first lag of each variable equal to one in its own equation and all other coefficients at zero. For example, for a bivariate $\operatorname{BVAR}(2)$ model,

$$
\begin{aligned}
& y_{1 t}=0+1 y_{1, t-1}+0 y_{2, t-1}+0 y_{1, t-2}+0 y_{2, t-2}+\epsilon_{1 t} \\
& y_{2 t}=0+0 y_{1, t-1}+1 y_{2, t-1}+0 y_{1, t-2}+0 y_{2, t-2}+\epsilon_{2 t}
\end{aligned}
$$

Forecasting of BVAR Modeling

The mean squared error is used to measure forecast accuracy (Litterman 1986). The MSE of the forecast is

$$
M S E=\frac{1}{T} \sum_{t=1}^{T}\left(A_{t}-F_{t}^{S}\right)^{2}
$$

where A_{t} is the actual value at time t and F_{t}^{s} is the forecast made s periods earlier.

Bayesian VARX Modeling

The Bayesian vector autoregressive model with exogenous variables is called the $\operatorname{BVARX}(p, s)$ model. The form of the $\operatorname{BVARX}(p, s)$ model can be written as

$$
\mathbf{y}_{t}=\delta+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

The parameter estimates can be obtained by representing the general form of the multivariate linear model,

$$
\mathbf{y}=\left(X \otimes I_{k}\right) \boldsymbol{\beta}+\mathbf{e}
$$

The prior means for the AR coefficients are the same as those specified in $\operatorname{BVAR}(p)$. The prior means for the exogenous coefficients are set to zero.

Some examples of the Bayesian VARX model are as follows:

```
model y1 y2 = x1 / p=1 xlag=1 prior;
model y1 y2 = x1 / p=(1 3) xlag=1 nocurrentx
    prior=(lambda=0.9 theta=0.1);
```


VARMA and VARMAX Modeling

$\operatorname{A} \operatorname{VARMA}(p, q)$ process is written as

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}-\sum_{i=1}^{q} \Theta_{i} \boldsymbol{\epsilon}_{t-i}
$$

or

$$
\Phi(B) \mathbf{y}_{t}=\delta+\Theta(B) \epsilon_{t}
$$

where $\Phi(B)=I_{k}-\sum_{i=1}^{p} \Phi_{i} B^{i}$ and $\Theta(B)=I_{k}-\sum_{i=1}^{q} \Theta_{i} B^{i}$.

Stationarity and Invertibility

For stationarity and invertibility of the VARMA process, the roots of $|\Phi(z)|=0$ and $|\Theta(z)|=0$ are outside the unit circle.

Parameter Estimation

Under the assumption of normality of the $\boldsymbol{\epsilon}_{t}$ with mean vector zero and nonsingular covariance matrix Σ, consider the conditional (approximate) \log-likelihood function of a $\operatorname{VARMA}(p, q)$ model with mean zero.

Define $Y=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{T}\right)^{\prime}$ and $E=\left(\epsilon_{1}, \ldots, \boldsymbol{\epsilon}_{T}\right)^{\prime}$ with $B^{i} Y=\left(\mathbf{y}_{1-i}, \ldots, \mathbf{y}_{T-i}\right)^{\prime}$ and $B^{i} E=$ $\left(\boldsymbol{\epsilon}_{1-i}, \ldots, \boldsymbol{\epsilon}_{T-i}\right)^{\prime}$; define $\mathbf{y}=\operatorname{vec}\left(Y^{\prime}\right)$ and $\mathbf{e}=\operatorname{vec}\left(E^{\prime}\right)$. Then

$$
\mathbf{y}-\sum_{i=1}^{p}\left(I_{T} \otimes \Phi_{i}\right) B^{i} \mathbf{y}=\mathbf{e}-\sum_{i=1}^{q}\left(I_{T} \otimes \Theta_{i}\right) B^{i} \mathbf{e}
$$

where $B^{i} \mathbf{y}=\operatorname{vec}\left[\left(B^{i} Y\right)^{\prime}\right]$ and $B^{i} \mathbf{e}=\operatorname{vec}\left[\left(B^{i} E\right)^{\prime}\right]$.
Then, the conditional (approximate) log-likelihood function can be written as follows (Reinsel 1997):

$$
\begin{aligned}
\ell & =-\frac{T}{2} \log |\Sigma|-\frac{1}{2} \sum_{t=1}^{T} \epsilon_{t}^{\prime} \Sigma^{-1} \boldsymbol{\epsilon}_{t} \\
& =-\frac{T}{2} \log |\Sigma|-\frac{1}{2} \mathbf{w}^{\prime} \Theta^{\prime-1}\left(I_{T} \otimes \Sigma^{-1}\right) \Theta^{-1} \mathbf{w}
\end{aligned}
$$

where $\mathbf{w}=\mathbf{y}-\sum_{i=1}^{p}\left(I_{T} \otimes \Phi_{i}\right) B^{i} \mathbf{y}$, and Θ is such that $\mathbf{e}-\sum_{i=1}^{q}\left(I_{T} \otimes \Theta_{i}\right) B^{i} \mathbf{e}=\Theta \mathbf{e}$.
For the exact log-likelihood function of a $\operatorname{VARMA}(p, q)$ model, the Kalman filtering method is used transforming the VARMA process into the state-space form (Reinsel 1997).

The state-space form of the $\operatorname{VARMA}(p, q)$ model consists of a state equation

$$
\mathbf{z}_{t}=F \mathbf{z}_{t-1}+G \boldsymbol{\epsilon}_{t}
$$

and an observation equation

$$
\mathbf{y}_{t}=H \mathbf{z}_{t}
$$

where for $v=\max (p, q+1)$

$$
\begin{aligned}
\mathbf{z}_{t} & =\left(\mathbf{y}_{t}^{\prime}, \mathbf{y}_{t+1 \mid t}^{\prime}, \ldots, \mathbf{y}_{t+v-1 \mid t}^{\prime}\right)^{\prime} \\
F & =\left[\begin{array}{ccccc}
0 & I_{k} & 0 & \cdots & 0 \\
0 & 0 & I_{k} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Phi_{v} & \Phi_{v-1} & \Phi_{v-2} & \cdots & \Phi_{1}
\end{array}\right], \quad G=\left[\begin{array}{c}
I_{k} \\
\Psi_{1} \\
\vdots \\
\Psi_{v-1}
\end{array}\right]
\end{aligned}
$$

and

$$
H=\left[I_{k}, 0, \ldots, 0\right]
$$

The Kalman filtering approach is used for evaluation of the likelihood function. The updating equation is

$$
\hat{\mathbf{z}}_{t \mid t}=\hat{\mathbf{z}}_{t \mid t-1}+K_{t} \boldsymbol{\epsilon}_{t \mid t-1}
$$

with

$$
K_{t}=P_{t \mid t-1} H^{\prime}\left[H P_{t \mid t-1} H^{\prime}\right]^{-1}
$$

and the prediction equation is

$$
\hat{\mathbf{z}}_{t \mid t-1}=F \hat{\mathbf{z}}_{t-1 \mid t-1}, \quad P_{t \mid t-1}=F P_{t-1 \mid t-1} F^{\prime}+G \Sigma G^{\prime}
$$

with $P_{t \mid t}=\left[I-K_{t} H\right] P_{t \mid t-1}$ for $t=1,2, \ldots, n$.
The log-likelihood function can be expressed as

$$
\ell=-\frac{1}{2} \sum_{t=1}^{T}\left[\log \left|\Sigma_{t \mid t-1}\right|-\left(\mathbf{y}_{t}-\hat{\mathbf{y}}_{t \mid t-1}\right)^{\prime} \Sigma_{t \mid t-1}^{-1}\left(\mathbf{y}_{t}-\hat{\mathbf{y}}_{t \mid t-1}\right)\right]
$$

where $\hat{\mathbf{y}}_{t \mid t-1}$ and $\Sigma_{t \mid t-1}$ are determined recursively from the Kalman filter procedure. To construct the likelihood function from Kalman filtering, you obtain $\hat{\mathbf{y}}_{t \mid t-1}=H \hat{\mathbf{z}}_{t \mid t-1}, \hat{\boldsymbol{\epsilon}}_{t \mid t-1}=\mathbf{y}_{t}-\hat{\mathbf{y}}_{t \mid t-1}$, and $\Sigma_{t \mid t-1}=H P_{t \mid t-1} H^{\prime}$.

Define the vector $\boldsymbol{\beta}$

$$
\boldsymbol{\beta}=\left(\phi_{1}^{\prime}, \ldots, \phi_{p}^{\prime}, \theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}, \operatorname{vech}(\Sigma)\right)^{\prime}
$$

where $\phi_{i}=\operatorname{vec}\left(\Phi_{i}\right)$ and $\theta_{i}=\operatorname{vec}\left(\Theta_{i}\right)$.
The log-likelihood equations are solved by iterative numerical procedures such as the quasi-Newton optimization. The starting values for the AR and MA parameters are obtained from the least squares estimates.

Asymptotic Distribution of the Parameter Estimates

Under the assumptions of stationarity and invertibility for the VARMA model and the assumption that $\boldsymbol{\epsilon}_{t}$ is a white noise process, $\hat{\boldsymbol{\beta}}$ is a consistent estimator for $\boldsymbol{\beta}$ and $\sqrt{T}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ converges in distribution to the multivariate normal $N\left(0, V^{-1}\right)$ as $T \rightarrow \infty$, where V is the asymptotic information matrix of $\boldsymbol{\beta}$.

Asymptotic Distributions of Impulse Response Functions

Defining the vector $\boldsymbol{\beta}$

$$
\boldsymbol{\beta}=\left(\phi_{1}^{\prime}, \ldots, \phi_{p}^{\prime}, \theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right)^{\prime}
$$

the asymptotic distribution of the impulse response function for a $\operatorname{VARMA}(p, q)$ model is

$$
\sqrt{T} \operatorname{vec}\left(\hat{\Psi}_{j}-\Psi_{j}\right) \xrightarrow{d} N\left(0, G_{j} \Sigma_{\boldsymbol{\beta}} G_{j}^{\prime}\right) j=1,2, \ldots
$$

where $\Sigma_{\boldsymbol{\beta}}$ is the covariance matrix of the parameter estimates and

$$
G_{j}=\frac{\partial \operatorname{vec}\left(\Psi_{j}\right)}{\partial \boldsymbol{\beta}^{\prime}}=\sum_{i=0}^{j-1} \mathbf{H}^{\prime}\left(\mathbf{A}^{\prime}\right)^{j-1-i} \otimes \mathbf{J}^{i} \mathbf{J}^{\prime}
$$

where $\mathbf{H}=\left[I_{k}, 0, \ldots, 0, I_{k}, 0, \ldots, 0\right]^{\prime}$ is a $k(p+q) \times k$ matrix with the second I_{k} following after p block matrices; $\mathbf{J}=\left[I_{k}, 0, \ldots, 0\right]$ is a $k \times k(p+q)$ matrix; \mathbf{A} is a $k(p+q) \times k(p+q)$ matrix,

$$
\mathbf{A}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where

$$
A_{11}=\left[\begin{array}{ccccc}
\Phi_{1} & \Phi_{2} & \cdots & \Phi_{p-1} & \Phi_{p} \\
I_{k} & 0 & \cdots & 0 & 0 \\
0 & I_{k} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_{k} & 0
\end{array}\right] \quad A_{12}=\left[\begin{array}{cccc}
-\Theta_{1} & \cdots & -\Theta_{q-1} & -\Theta_{q} \\
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0
\end{array}\right]
$$

A_{21} is a $k q \times k p$ zero matrix, and

$$
A_{22}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
I_{k} & 0 & \cdots & 0 & 0 \\
0 & I_{k} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_{k} & 0
\end{array}\right]
$$

An Example of a VARMA(1,1) Model

Consider a VARMA $(1,1)$ model with mean zero

$$
\mathbf{y}_{t}=\Phi_{1} \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}-\Theta_{1} \boldsymbol{\epsilon}_{t-1}
$$

where ϵ_{t} is the white noise process with a mean zero vector and the positive-definite covariance matrix Σ.

The following IML procedure statements simulate a bivariate vector time series from this model to provide test data for the VARMAX procedure:

```
proc iml;
    sig = {1.0 0.5, 0.5 1.25};
    phi = {1.2 -0.5, 0.6 0.3};
    theta = {0.5 -0.2, 0.1 0.3};
    /* to simulate the vector time series */
    call varmasim(y,phi,theta) sigma=sig n=100 seed=34657;
    cn = {'y1' 'y2'};
    create simul3 from y[colname=cn];
    append from y;
run;
```

The following statements fit a VARMA $(1,1)$ model to the simulated data. You specify the order of the autoregressive model with the $\mathrm{P}=$ option and the order of moving-average model with the $\mathrm{Q}=\mathrm{op}$ tion. You specify the quasi-Newton optimization in the NLOPTIONS statement as an optimization method.

```
proc varmax data=simul3;
    nloptions tech=qn;
    model y1 y2 / p=1 q=1 noint print=(estimates);
run;
```

Figure 30.46 shows the initial values of parameters. The initial values were estimated using the least squares method.

Figure 30.46 Start Parameter Estimates for the VARMA(1, 1) Model

Figure 30.47 shows the default option settings for the quasi-Newton optimization technique.

Figure 30.47 Default Criteria for the quasi-Newton Optimization

Minimum Iterations	0
Maximum Iterations	200
Maximum Function Calls	2000
ABSGCONV Gradient Criterion	0.00001
GCONV Gradient Criterion	$1 \mathrm{E}-8$
ABSFCONV Function Criterion	0
FCONV Function Criterion	$2.220446 \mathrm{E}-16$
FCONV2 Function Criterion	0
FSIZE Parameter	0
ABSXCONV Parameter Change Criterion	0
XCONV Parameter Change Criterion	0
XSIZE Parameter	0
ABSCONV Function Criterion	34078 E 154
Line Search Method	2
Starting Alpha for Line Search	1
Line Search Precision LSPRECISION	0.4
DAMPSTEP Parameter for Line Search	.
Singularity Tolerance (SINGULAR)	$1 \mathrm{E}-8$

Figure 30.48 shows the iteration history of parameter estimates.
Figure 30.48 Iteration History of Parameter Estimates

Iter	Rest arts	Func Calls	Act Con	Objective Function	Obj Fun Change	Max Abs Gradient Element	Step Size	Slope Search Direc
1	0	38	0	121.86537	0.1020	6.3068	0.00376	-54.483
2	0	57	0	121.76369	0.1017	6.9381	0.0100	-33.359
3	0	76	0	121.55605	0.2076	5.1526	0.0100	-31.265
4	0	95	0	121. 36386	0.1922	5.7292	0.0100	-37.419
5	0	114	0	121.25741	0.1064	5.5107	0.0100	-17.708
6	0	133	0	121.22578	0.0316	4.9213	0.0240	-2.905
7	0	152	0	121.20582	0.0200	6.0114	0.0316	-1.268
8	0	171	0	121.18747	0.0183	5.5324	0.0457	-0.805
9	0	207	0	121.13613	0.0513	0.5829	0.628	-0.164
10	0	226	0	121.13536	0.000766	0.2054	1.000	-0.0021
11	0	245	0	121.13528	0.000082	0.0534	1.000	-0.0002
12	0	264	0	121.13528	2.537E-6	0.0101	1.000	-637E-8
13	0	283	0	121.13528	$1.475 \mathrm{E}-7$	0.000270	1.000	$-3 E-7$

Figure 30.49 shows the final parameter estimates.

Figure 30.49 Results of Parameter Estimates for the VARMA(1, 1) Model

Figure 30.50 shows the AR coefficient matrix in terms of lag 1, the MA coefficient matrix in terms of lag 1, the parameter estimates, and their significance, which is one indication of how well the model fits the data.

Figure 30.50 Parameter Estimates for the VARMA(1, 1) Model

The fitted VARMA(1,1) model with estimated standard errors in parentheses is given as

$$
\mathbf{y}_{t}=\left(\begin{array}{rr}
1.01809 & -0.38651 \\
(0.10256) & (0.09644) \\
0.39147 & 0.55290 \\
(0.10062) & (0.08421)
\end{array}\right) \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}-\left(\begin{array}{rr}
0.32291 & -0.02153 \\
(0.14530) & (0.14199) \\
-0.16566 & 0.58613 \\
(0.15699) & (0.14115)
\end{array}\right) \boldsymbol{\epsilon}_{t-1}
$$

VARMAX Modeling

A VARMAX (p, q, s) process is written as

$$
\mathbf{y}_{t}=\boldsymbol{\delta}+\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}-\sum_{i=1}^{q} \Theta_{i} \boldsymbol{\epsilon}_{t-i}
$$

or

$$
\Phi(B) \mathbf{y}_{t}=\boldsymbol{\delta}+\Theta^{*}(B) \mathbf{x}_{t}+\Theta(B) \boldsymbol{\epsilon}_{t}
$$

where $\Phi(B)=I_{k}-\sum_{i=1}^{p} \Phi_{i} B^{i}, \Theta^{*}(B)=\Theta_{0}^{*}+\Theta_{1}^{*} B+\cdots+\Theta_{s}^{*} B^{s}$, and $\Theta(B)=I_{k}-$ $\sum_{i=1}^{q} \Theta_{i} B^{i}$.

The dimension of the state-space vector of the Kalman filtering method for the parameter estimation of the VARMAX (p, q, s) model is large, which takes time and memory for computing. For convenience, the parameter estimation of the $\operatorname{VARMAX}(p, q, s)$ model uses the two-stage estimation method, which first estimates the deterministic terms and exogenous parameters, and then maximizes the log-likelihood function of a $\operatorname{VARMA}(p, q)$ model.

Some examples of VARMAX modeling are as follows:

```
model y1 y2 = x1 / q=1;
nloptions tech=qn;
model y1 y2 = x1 / p=1 q=1 xlag=1 nocurrentx;
nloptions tech=qn;
```


Model Diagnostic Checks

Multivariate Model Diagnostic Checks

- Information Criterion After fitting some candidate models to the data, various model selection criteria (normalized by T) can be used to choose the appropriate model. The following list includes the Akaike information criterion (AIC), the corrected Akaike information criterion
(AICC), the final prediction error criterion (FPE), the Hannan-Quinn criterion (HQC), and the Schwarz Bayesian criterion (SBC, also referred to as BIC):

$$
\begin{aligned}
\mathrm{AIC} & =\log (|\tilde{\Sigma}|)+2 r / T \\
\mathrm{AICC} & =\log (|\tilde{\Sigma}|)+2 r /(T-r / k) \\
\mathrm{FPE} & =\left(\frac{T+r / k}{T-r / k}\right)^{k}|\tilde{\Sigma}| \\
\mathrm{HQC} & =\log (|\tilde{\Sigma}|)+2 r \log (\log (T)) / T \\
\mathrm{SBC} & =\log (|\tilde{\Sigma}|)+r \log (T) / T
\end{aligned}
$$

where r denotes the number of parameters estimated, k is the number of dependent variables, T is the number of observations used to estimate the model, and $\tilde{\Sigma}$ is the maximum likelihood estimate of Σ. When comparing models, choose the model with the smallest criterion values. An example of the output was displayed in Figure 30.4.

- Portmanteau Q_{s} statistic The Portmanteau Q_{s} statistic is used to test whether correlation remains on the model residuals. The null hypothesis is that the residuals are uncorrelated. Let $C_{\epsilon}(l)$ be the residual cross-covariance matrices, $\hat{\rho}_{\epsilon}(l)$ be the residual cross-correlation matrices as

$$
C_{\epsilon}(l)=T^{-1} \sum_{t=1}^{T-l} \epsilon_{t} \epsilon_{t+l}^{\prime}
$$

and

$$
\hat{\rho}_{\epsilon}(l)=\hat{V}_{\epsilon}^{-1 / 2} C_{\epsilon}(l) \hat{V}_{\epsilon}^{-1 / 2} \text { and } \hat{\rho}_{\epsilon}(-l)=\hat{\rho}_{\epsilon}(l)^{\prime}
$$

where $\hat{V}_{\epsilon}=\operatorname{Diag}\left(\hat{\sigma}_{11}^{2}, \ldots, \hat{\sigma}_{k k}^{2}\right)$ and $\hat{\sigma}_{i i}^{2}$ are the diagonal elements of $\hat{\Sigma}$. The multivariate portmanteau test defined in Hosking (1980) is

$$
Q_{s}=T^{2} \sum_{l=1}^{s}(T-l)^{-1} \operatorname{tr}\left\{\hat{\rho}_{\epsilon}(l) \Sigma^{-1} \hat{\rho}_{\epsilon}(-l) \Sigma^{-1}\right\}
$$

The statistic Q_{s} has approximately the chi-square distribution with $k^{2}(s-p-q)$ degrees of freedom. An example of the output is displayed in Figure 30.7.

Univariate Model Diagnostic Checks

There are various ways to perform diagnostic checks for a univariate model. For details, see the section "Heteroscedasticity and Normality Tests" on page 374 in Chapter 8, "The AUTOREG Procedure." An example of the output is displayed in Figure 30.8 and Figure 30.9.

- Durbin-Watson (DW) statistics: The DW test statistics test for the first order autocorrelation in the residuals.
- Jarque-Bera normality test: This test is helpful in determining whether the model residuals represent a white noise process. This tests the null hypothesis that the residuals have normality.
- F tests for autoregressive conditional heteroscedastic (ARCH) disturbances: F test statistics test for the heteroscedastic disturbances in the residuals. This tests the null hypothesis that the residuals have equal covariances
- F tests for AR disturbance: These test statistics are computed from the residuals of the univariate $\operatorname{AR}(1), \operatorname{AR}(1,2), \operatorname{AR}(1,2,3)$ and $\operatorname{AR}(1,2,3,4)$ models to test the null hypothesis that the residuals are uncorrelated.

Cointegration

This section briefly introduces the concepts of cointegration (Johansen 1995b).

Definition 1. (Engle and Granger 1987): If a series y_{t} with no deterministic components can be represented by a stationary and invertible ARMA process after differencing d times, the series is integrated of order d, that is, $y_{t} \sim I(d)$.

Definition 2. (Engle and Granger 1987): If all elements of the vector \mathbf{y}_{t} are $I(d)$ and there exists a cointegrating vector $\boldsymbol{\beta} \neq 0$ such that $\boldsymbol{\beta}^{\prime} \mathbf{y}_{t} \sim I(d-b)$ for any $b>0$, the vector process is said to be cointegrated CI($d, b)$.

A simple example of a cointegrated process is the following bivariate system:

$$
\begin{aligned}
& y_{1 t}=\gamma y_{2 t}+\epsilon_{1 t} \\
& y_{2 t}=y_{2, t-1}+\epsilon_{2 t}
\end{aligned}
$$

with $\epsilon_{1 t}$ and $\epsilon_{2 t}$ being uncorrelated white noise processes. In the second equation, $y_{2 t}$ is a random walk, $\Delta y_{2 t}=\epsilon_{2 t}, \Delta \equiv 1-B$. Differencing the first equation results in

$$
\Delta y_{1 t}=\gamma \Delta y_{2 t}+\Delta \epsilon_{1 t}=\gamma \epsilon_{2 t}+\epsilon_{1 t}-\epsilon_{1, t-1}
$$

Thus, both $y_{1 t}$ and $y_{2 t}$ are $I(1)$ processes, but the linear combination $y_{1 t}-\gamma y_{2 t}$ is stationary. Hence $\mathbf{y}_{t}=\left(y_{1 t}, y_{2 t}\right)^{\prime}$ is cointegrated with a cointegrating vector $\boldsymbol{\beta}=(1,-\gamma)^{\prime}$.

In general, if the vector process \mathbf{y}_{t} has k components, then there can be more than one cointegrating vector $\boldsymbol{\beta}^{\prime}$. It is assumed that there are r linearly independent cointegrating vectors with $r<k$, which make the $k \times r$ matrix $\boldsymbol{\beta}$. The rank of matrix $\boldsymbol{\beta}$ is r, which is called the cointegration rank of \mathbf{y}_{t}.

Common Trends

This section briefly discusses the implication of cointegration for the moving-average representation. Let \mathbf{y}_{t} be cointegrated $C I(1,1)$, then $\Delta \mathbf{y}_{t}$ has the Wold representation:

$$
\Delta \mathbf{y}_{t}=\delta+\Psi(B) \epsilon_{t}
$$

where $\boldsymbol{\epsilon}_{t}$ is $i i d(0, \Sigma), \Psi(B)=\sum_{j=0}^{\infty} \Psi_{j} B^{j}$ with $\Psi_{0}=I_{k}$, and $\sum_{j=0}^{\infty} j\left|\Psi_{j}\right|<\infty$.
Assume that $\boldsymbol{\epsilon}_{t}=0$ if $t \leq 0$ and \mathbf{y}_{0} is a nonrandom initial value. Then the difference equation implies that

$$
\mathbf{y}_{t}=\mathbf{y}_{0}+\boldsymbol{\delta} t+\Psi(1) \sum_{i=0}^{t} \epsilon_{i}+\Psi^{*}(B) \boldsymbol{\epsilon}_{t}
$$

where $\Psi^{*}(B)=(1-B)^{-1}(\Psi(B)-\Psi(1))$ and $\Psi^{*}(B)$ is absolutely summable.
Assume that the rank of $\Psi(1)$ is $m=k-r$. When the process \mathbf{y}_{t} is cointegrated, there is a cointegrating $k \times r$ matrix $\boldsymbol{\beta}$ such that $\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}$ is stationary.

Premultiplying \mathbf{y}_{t} by $\boldsymbol{\beta}^{\prime}$ results in

$$
\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}=\boldsymbol{\beta}^{\prime} \mathbf{y}_{0}+\boldsymbol{\beta}^{\prime} \Psi^{*}(B) \boldsymbol{\epsilon}_{t}
$$

because $\boldsymbol{\beta}^{\prime} \Psi(1)=0$ and $\boldsymbol{\beta}^{\prime} \boldsymbol{\delta}=0$.
Stock and Watson (1988) showed that the cointegrated process \mathbf{y}_{t} has a common trends representation derived from the moving-average representation. Since the rank of $\Psi(1)$ is $m=k-r$, there is a $k \times r$ matrix H_{1} with rank r such that $\Psi(1) H_{1}=0$. Let H_{2} be a $k \times m$ matrix with rank m such that $H_{2}^{\prime} H_{1}=0$; then $A=C(1) H_{2}$ has rank m. The $H=\left(H_{1}, H_{2}\right)$ has rank k. By construction of H,

$$
\Psi(1) H=[0, A]=A S_{m}
$$

where $S_{m}=\left(0_{m \times r}, I_{m}\right)$. Since $\boldsymbol{\beta}^{\prime} \Psi(1)=0$ and $\boldsymbol{\beta}^{\prime} \boldsymbol{\delta}=0, \boldsymbol{\delta}$ lies in the column space of $\Psi(1)$ and can be written

$$
\delta=C(1) \tilde{\delta}
$$

where $\tilde{\delta}$ is a k-dimensional vector. The common trends representation is written as

$$
\begin{aligned}
\mathbf{y}_{t} & =\mathbf{y}_{0}+\Psi(1)\left[\tilde{\delta} t+\sum_{i=0}^{t} \boldsymbol{\epsilon}_{i}\right]+\Psi^{*}(B) \boldsymbol{\epsilon}_{t} \\
& =\mathbf{y}_{0}+\Psi(1) H\left[H^{-1} \tilde{\delta} t+H^{-1} \sum_{i=0}^{t} \boldsymbol{\epsilon}_{i}\right]+\mathbf{a}_{t} \\
& =\mathbf{y}_{0}+A \boldsymbol{\tau}_{t}+\mathbf{a}_{t}
\end{aligned}
$$

and

$$
\boldsymbol{\tau}_{t}=\pi+\boldsymbol{\tau}_{t-1}+\mathbf{v}_{t}
$$

where $\mathbf{a}_{t}=\Psi^{*}(B) \boldsymbol{\epsilon}_{t}, \pi=S_{m} H^{-1} \tilde{\boldsymbol{\delta}}, \boldsymbol{\tau}_{t}=S_{m}\left[H^{-1} \tilde{\boldsymbol{\delta}} t+H^{-1} \sum_{i=0}^{t} \boldsymbol{\epsilon}_{i}\right]$, and $\mathbf{v}_{t}=S_{m} H^{-1} \boldsymbol{\epsilon}_{t}$.
Stock and Watson showed that the common trends representation expresses \mathbf{y}_{t} as a linear combination of m random walks $\left(\boldsymbol{\tau}_{t}\right)$ with drift π plus $I(0)$ components (\mathbf{a}_{t}).

Test for the Common Trends

Stock and Watson (1988) proposed statistics for common trends testing. The null hypothesis is that the k-dimensional time series \mathbf{y}_{t} has m common stochastic trends, where $m \leq k$ and the alternative is that it has s common trends, where $s<m$. The test procedure of m versus s common stochastic trends is performed based on the first-order serial correlation matrix of \mathbf{y}_{t}. Let $\boldsymbol{\beta}_{\perp}$ be a $k \times m$ matrix orthogonal to the cointegrating matrix such that $\boldsymbol{\beta}_{\perp}^{\prime} \boldsymbol{\beta}=0$ and $\boldsymbol{\beta}_{\perp} \boldsymbol{\beta}_{\perp}^{\prime}=I_{m}$. Let $\mathbf{z}_{t}=\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}$ and $\mathbf{w}_{t}=\boldsymbol{\beta}_{\perp}^{\prime} \mathbf{y}_{t}$. Then

$$
\mathbf{w}_{t}=\boldsymbol{\beta}_{\perp}^{\prime} \mathbf{y}_{0}+\boldsymbol{\beta}_{\perp}^{\prime} \boldsymbol{\delta} t+\boldsymbol{\beta}_{\perp}^{\prime} \Psi(1) \sum_{i=0}^{t} \boldsymbol{\epsilon}_{i}+\boldsymbol{\beta}_{\perp}^{\prime} \Psi^{*}(B) \boldsymbol{\epsilon}_{t}
$$

Combining the expression of \mathbf{z}_{t} and \mathbf{w}_{t},

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{z}_{t} \\
\mathbf{w}_{t}
\end{array}\right] } & =\left[\begin{array}{c}
\boldsymbol{\beta}^{\prime} \mathbf{y}_{0} \\
\boldsymbol{\beta}_{\perp}^{\prime} \mathbf{y}_{0}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\boldsymbol{\beta}_{\perp}^{\prime} \boldsymbol{\delta}
\end{array}\right] t+\left[\begin{array}{c}
0 \\
\boldsymbol{\beta}_{\perp}^{\prime} \Psi(1)
\end{array}\right] \sum_{i=1}^{t} \boldsymbol{\epsilon}_{i} \\
& +\left[\begin{array}{c}
\boldsymbol{\beta}^{\prime} \Psi^{*}(B) \\
\boldsymbol{\beta}_{\perp}^{\prime} \Psi^{*}(B)
\end{array}\right] \boldsymbol{\epsilon}_{t}
\end{aligned}
$$

The Stock-Watson common trends test is performed based on the component \mathbf{w}_{t} by testing whether $\boldsymbol{\beta}_{\perp}^{\prime} \Psi(1)$ has rank m against rank s.

The following statements perform the Stock-Watson test for common trends:

```
proc iml;
    sig = 100*i(2);
    phi = {-0.2 0.1, 0.5 0.2, 0.8 0.7, -0.4 0.6};
    call varmasim(y,phi) sigma=sig n=100 initial=0
                    seed=45876;
    cn = {'y1' 'y2'};
    create simul2 from y[colname=cn];
    append from y;
quit;
data simul2;
    set simul2;
    date = intnx( 'year', '01jan1900'd, _n_-1 );
    format date year4. ;
run;
```

```
proc varmax data=simul2;
    model y1 y2 / p=2 cointtest=(sw);
run;
```

In Figure 30.51, the first column is the null hypothesis that \mathbf{y}_{t} has $m \leq k$ common trends; the second column is the alternative hypothesis that \mathbf{y}_{t} has $s<m$ common trends; the third column contains the eigenvalues used for the test statistics; the fourth column contains the test statistics using $\operatorname{AR}(p)$ filtering of the data. The table shows the output of the case $p=2$.

Figure 30.51 Common Trends Test (COINTTEST=(SW) Option)

The VARMAX Procedure					
Common Trend Test					
				5\%	
H0:	H1:			Critical	
Rank $=\mathrm{m}$	Rank $=s$	Eigenvalue	Filter	Value	Lag
1	0	1.000906	0.09	-14.10	2
2	0	0.996763	-0.32	-8.80	
	1	0.648908	-35.11	-23.00	

The test statistic for testing for 2 versus 1 common trends is more negative (-35.1) than the critical value (-23.0). Therefore, the test rejects the null hypothesis, which means that the series has a single common trend.

Vector Error Correction Modeling

This section discusses the implication of cointegration for the autoregressive representation. Assume that the cointegrated series can be represented by a vector error correction model according to the Granger representation theorem (Engle and Granger 1987). Consider the vector autoregressive process with Gaussian errors defined by

$$
\mathbf{y}_{t}=\sum_{i=1}^{p} \Phi_{i} \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

or

$$
\Phi(B) \mathbf{y}_{t}=\boldsymbol{\epsilon}_{t}
$$

where the initial values, $\mathbf{y}_{-p+1}, \ldots, \mathbf{y}_{0}$, are fixed and $\boldsymbol{\epsilon}_{t} \sim N(0, \Sigma)$. Since the AR operator $\Phi(B)$ can be re-expressed as $\Phi(B)=\Phi^{*}(B)(1-B)+\Phi(1) B$, where $\Phi^{*}(B)=I_{k}-\sum_{i=1}^{p-1} \Phi_{i}^{*} B^{i}$ with $\Phi_{i}^{*}=-\sum_{j=i+1}^{p} \Phi_{j}$, the vector error correction model is

$$
\Phi^{*}(B)(1-B) \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

or

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime}=-\Phi(1)=-I_{k}+\Phi_{1}+\Phi_{2}+\cdots+\Phi_{p}$.
One motivation for the $\operatorname{VECM}(p)$ form is to consider the relation $\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}=\mathbf{c}$ as defining the underlying economic relations and assume that the agents react to the disequilibrium error $\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}-\mathbf{c}$ through the adjustment coefficient α to restore equilibrium; that is, they satisfy the economic relations. The cointegrating vector, $\boldsymbol{\beta}$ is sometimes called the long-run parameters.

You can consider a vector error correction model with a deterministic term. The deterministic term D_{t} can contain a constant, a linear trend, and seasonal dummy variables. Exogenous variables can also be included in the model.

$$
\Delta \mathbf{y}_{t}=\Pi \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\Pi=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime}$.
The alternative vector error correction representation considers the error correction term at lag $t-p$ and is written as

$$
\Delta \mathbf{y}_{t}=\sum_{i=1}^{p-1} \Phi_{i}^{\sharp} \Delta \mathbf{y}_{t-i}+\Pi^{\sharp} \mathbf{y}_{t-p}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

If the matrix Π has a full-rank $(r=k)$, all components of \mathbf{y}_{t} are $I(0)$. On the other hand, \mathbf{y}_{t} are stationary in difference if $\operatorname{rank}(\Pi)=0$. When the rank of the matrix Π is $r<k$, there are $k-r$ linear combinations that are nonstationary and r stationary cointegrating relations. Note that the linearly independent vector $\mathbf{z}_{t}=\boldsymbol{\beta}^{\prime} \mathbf{y}_{t}$ is stationary and this transformation is not unique unless $r=1$. There does not exist a unique cointegrating matrix $\boldsymbol{\beta}$ since the coefficient matrix Π can also be decomposed as

$$
\Pi=\boldsymbol{\alpha} M M^{-1} \boldsymbol{\beta}^{\prime}=\boldsymbol{\alpha}^{*} \boldsymbol{\beta}^{*^{\prime}}
$$

where M is an $r \times r$ nonsingular matrix.

Test for the Cointegration

The cointegration rank test determines the linearly independent columns of Π. Johansen (1988, 1995a) and Johansen and Juselius (1990) proposed the cointegration rank test by using the reduced rank regression.

Different Specifications of Deterministic Trends

When you construct the $\operatorname{VECM}(p)$ form from the $\operatorname{VAR}(p)$ model, the deterministic terms in the $\operatorname{VECM}(p)$ form can differ from those in the $\operatorname{VAR}(p)$ model. When there are deterministic cointegrated relationships among variables, deterministic terms in the $\operatorname{VAR}(p)$ model are not present in the $\operatorname{VECM}(p)$ form. On the other hand, if there are stochastic cointegrated relationships in the $\operatorname{VAR}(p)$ model, deterministic terms appear in the $\operatorname{VECM}(p)$ form via the error correction term or as an independent term in the $\operatorname{VECM}(p)$ form. There are five different specifications of deterministic trends in the $\operatorname{VECM}(p)$ form.

- Case 1: There is no separate drift in the $\operatorname{VECM}(p)$ form.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

- Case 2: There is no separate drift in the $\operatorname{VECM}(p)$ form, but a constant enters only via the error correction term.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha}\left(\boldsymbol{\beta}^{\prime}, \beta_{0}\right)\left(\mathbf{y}_{t-1}^{\prime}, 1\right)^{\prime}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

- Case 3: There is a separate drift and no separate linear trend in the $\operatorname{VECM}(p)$ form.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\boldsymbol{\delta}_{0}+\boldsymbol{\epsilon}_{t}
$$

- Case 4: There is a separate drift and no separate linear trend in the $\operatorname{VECM}(p)$ form, but a linear trend enters only via the error correction term.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha}\left(\boldsymbol{\beta}^{\prime}, \beta_{1}\right)\left(\mathbf{y}_{t-1}^{\prime}, t\right)^{\prime}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\delta_{0}+\boldsymbol{\epsilon}_{t}
$$

- Case 5: There is a separate linear trend in the $\operatorname{VECM}(p)$ form.

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+\delta_{0}+\delta_{1} t+\boldsymbol{\epsilon}_{t}
$$

First, focus on Cases 1, 3, and 5 to test the null hypothesis that there are at most r cointegrating vectors. Let

$$
\begin{aligned}
Z_{0 t} & =\Delta \mathbf{y}_{t} \\
Z_{1 t} & =\mathbf{y}_{t-1} \\
Z_{2 t} & =\left[\Delta \mathbf{y}_{t-1}^{\prime}, \ldots, \Delta \mathbf{y}_{t-p+1}^{\prime}, D_{t}\right]^{\prime} \\
Z_{0} & =\left[Z_{01}, \ldots, Z_{0 T}\right]^{\prime} \\
Z_{1} & =\left[Z_{11}, \ldots, Z_{1 T}\right]^{\prime} \\
Z_{2} & =\left[Z_{21}, \ldots, Z_{2 T}\right]^{\prime}
\end{aligned}
$$

where D_{t} can be empty for Case 1,1 for Case 3 , and $(1, t)$ for Case 5 .
In Case 2, $Z_{1 t}$ and $Z_{2 t}$ are defined as

$$
\begin{aligned}
Z_{1 t} & =\left[\mathbf{y}_{t-1}^{\prime}, 1\right]^{\prime} \\
Z_{2 t} & =\left[\Delta \mathbf{y}_{t-1}^{\prime}, \ldots, \Delta \mathbf{y}_{t-p+1}^{\prime}\right]^{\prime}
\end{aligned}
$$

In Case $4, Z_{1 t}$ and $Z_{2 t}$ are defined as

$$
\begin{aligned}
& Z_{1 t}=\left[\mathbf{y}_{t-1}^{\prime}, t\right]^{\prime} \\
& Z_{2 t}=\left[\Delta \mathbf{y}_{t-1}^{\prime}, \ldots, \Delta \mathbf{y}_{t-p+1}^{\prime}, 1\right]^{\prime}
\end{aligned}
$$

Let Ψ be the matrix of parameters consisting of $\Phi_{1}^{*}, \ldots, \Phi_{p-1}^{*}, A$, and $\Theta_{0}^{*}, \ldots, \Theta_{s}^{*}$, where parameters A corresponds to regressors D_{t}. Then the $\operatorname{VECM}(p)$ form is rewritten in these variables as

$$
Z_{0 t}=\alpha \boldsymbol{\beta}^{\prime} Z_{1 t}+\Psi Z_{2 t}+\epsilon_{t}
$$

The log-likelihood function is given by

$$
\begin{aligned}
\ell= & -\frac{k T}{2} \log 2 \pi-\frac{T}{2} \log |\Sigma| \\
& -\frac{1}{2} \sum_{t=1}^{T}\left(Z_{0 t}-\alpha \beta^{\prime} Z_{1 t}-\Psi Z_{2 t}\right)^{\prime} \Sigma^{-1}\left(Z_{0 t}-\alpha \boldsymbol{\beta}^{\prime} Z_{1 t}-\Psi Z_{2 t}\right)
\end{aligned}
$$

The residuals, $R_{0 t}$ and $R_{1 t}$, are obtained by regressing $Z_{0 t}$ and $Z_{1 t}$ on $Z_{2 t}$, respectively. The regression equation of residuals is

$$
R_{0 t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} R_{1 t}+\hat{\boldsymbol{\epsilon}}_{t}
$$

The crossproducts matrices are computed

$$
S_{i j}=\frac{1}{T} \sum_{t=1}^{T} R_{i t} R_{j t}^{\prime}, \quad i, j=0,1
$$

Then the maximum likelihood estimator for $\boldsymbol{\beta}$ is obtained from the eigenvectors that correspond to the r largest eigenvalues of the following equation:

$$
\left|\lambda S_{11}-S_{10} S_{00}^{-1} S_{01}\right|=0
$$

The eigenvalues of the preceding equation are squared canonical correlations between $R_{0 t}$ and $R_{1 t}$, and the eigenvectors that correspond to the r largest eigenvalues are the r linear combinations of \mathbf{y}_{t-1}, which have the largest squared partial correlations with the stationary process $\Delta \mathbf{y}_{t}$ after correcting for lags and deterministic terms. Such an analysis calls for a reduced rank regression of $\Delta \mathbf{y}_{t}$ on \mathbf{y}_{t-1} corrected for ($\Delta \mathbf{y}_{t-1}, \ldots, \Delta \mathbf{y}_{t-p+1}, D_{t}$), as discussed by Anderson (1951). Johansen (1988) suggests two test statistics to test the null hypothesis that there are at most r cointegrating vectors

$$
\mathrm{H}_{0}: \lambda_{i}=0 \text { for } i=r+1, \ldots, k
$$

Trace Test

The trace statistic for testing the null hypothesis that there are at most r cointegrating vectors is as follows:

$$
\lambda_{\text {trace }}=-T \sum_{i=r+1}^{k} \log \left(1-\lambda_{i}\right)
$$

The asymptotic distribution of this statistic is given by

$$
\operatorname{tr}\left\{\int_{0}^{1}(d W) \tilde{W}^{\prime}\left(\int_{0}^{1} \tilde{W} \tilde{W}^{\prime} d r\right)^{-1} \int_{0}^{1} \tilde{W}(d W)^{\prime}\right\}
$$

where $\operatorname{tr}(A)$ is the trace of a matrix A, W is the $k-r$ dimensional Brownian motion, and \tilde{W} is the Brownian motion itself, or the demeaned or detrended Brownian motion according to the different specifications of deterministic trends in the vector error correction model.

Maximum Eigenvalue Test

The maximum eigenvalue statistic for testing the null hypothesis that there are at most r cointegrating vectors is as follows:

$$
\lambda_{\max }=-T \log \left(1-\lambda_{r+1}\right)
$$

The asymptotic distribution of this statistic is given by

$$
\max \left\{\int_{0}^{1}(d W) \tilde{W}^{\prime}\left(\int_{0}^{1} \tilde{W} \tilde{W}^{\prime} d r\right)^{-1} \int_{0}^{1} \tilde{W}(d W)^{\prime}\right\}
$$

where $\max (A)$ is the maximum eigenvalue of a matrix A. Osterwald-Lenum (1992) provided detailed tables of the critical values of these statistics.

The following statements use the JOHANSEN option to compute the Johansen cointegration rank trace test of integrated order 1:

```
proc varmax data=simul2;
    model y1 y2 / p=2 cointtest=(johansen=(normalize=y1));
run;
```

Figure 30.52 shows the output based on the model specified in the MODEL statement, an intercept term is assumed. In the "Cointegration Rank Test Using Trace" table, the column Drift In ECM means there is no separate drift in the error correction model and the column Drift In Process means the process has a constant drift before differencing. The "Cointegration Rank Test Using Trace" table shows the trace statistics based on Case 3 and the "Cointegration Rank Test Using Trace under Restriction" table shows the trace statistics based on Case 2. The output indicates that the series are cointegrated with rank 1 because the trace statistics are smaller than the critical values in both Case 2 and Case 3.

Figure 30.52 Cointegration Rank Test (COINTTEST=(JOHANSEN=) Option)

Figure 30.53 shows which result, either Case 2 (the hypothesis H0) or Case 3 (the hypothesis H1), is appropriate depending on the significance level. Since the cointegration rank is chosen to be 1 by the result in Figure 30.52, look at the last row that corresponds to rank $=1$. Since the p-value is 0.054 , the Case 2 cannot be rejected at the significance level 5%, but it can be rejected at the significance level 10%. For modeling of the two Case 2 and Case 3, see Figure 30.56 and Figure 30.57.

Figure 30.53 Cointegration Rank Test Continued

Figure 30.54 shows the estimates of long-run parameter (Beta) and adjustment coefficients (Alpha) based on Case 3.

Figure 30.54 Cointegration Rank Test Continued

Beta		
Variable	1	2
y1	1.00000	1.00000
y^{2}	-2.04869	-0.02854
	Alpha	
Variable	1	2
y^{1}	-0.46421	-0.00502
y^{2}	0.17535	-0.01275

Using the NORMALIZE= option, the first low of the "Beta" table has 1. Considering that the cointegration rank is 1 , the long-run relationship of the series is

$$
\begin{aligned}
\boldsymbol{\beta}^{\prime} y_{t} & =\left[\begin{array}{ll}
1 & -2.04869
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& =y_{1 t}-2.04869 y_{2 t} \\
y_{1 t} & =2.04869 y_{2 t}
\end{aligned}
$$

Figure 30.55 shows the estimates of long-run parameter (Beta) and adjustment coefficients (Alpha) based on Case 2.

Figure 30.55 Cointegration Rank Test Continued

Considering that the cointegration rank is 1 , the long-run relationship of the series is

$$
\begin{aligned}
\boldsymbol{\beta}^{\prime} y_{t} & =\left[\begin{array}{lll}
1 & -2.04366 & 6.75919
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right] \\
& =y_{1 t}-2.04366 y_{2 t}+6.75919 \\
y_{1 t} & =2.04366 y_{2 t}-6.75919
\end{aligned}
$$

Estimation of Vector Error Correction Model

The preceding log-likelihood function is maximized for

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =S_{11}^{-1 / 2}\left[v_{1}, \ldots, v_{r}\right] \\
\hat{\boldsymbol{\alpha}} & =S_{01} \hat{\boldsymbol{\beta}}\left(\hat{\boldsymbol{\beta}}^{\prime} S_{11} \hat{\boldsymbol{\beta}}\right)^{-1} \\
\hat{\Pi} & =\hat{\boldsymbol{\alpha}} \hat{\boldsymbol{\beta}}^{\prime} \\
\hat{\Psi} & =\left(Z_{2}^{\prime} Z_{2}\right)^{-1} Z_{2}^{\prime}\left(Z_{0}-Z_{1} \hat{\Pi}^{\prime}\right) \\
\hat{\Sigma} & =\left(Z_{0}-Z_{2} \hat{\Psi}^{\prime}-Z_{1} \hat{\Pi}^{\prime}\right)^{\prime}\left(Z_{0}-Z_{2} \hat{\Psi}^{\prime}-Z_{1} \hat{\Pi}^{\prime}\right) / T
\end{aligned}
$$

The estimators of the orthogonal complements of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are

$$
\hat{\boldsymbol{\beta}}_{\perp}=S_{11}\left[v_{r+1}, \ldots, v_{k}\right]
$$

and

$$
\hat{\boldsymbol{\alpha}}_{\perp}=S_{00}^{-1} S_{01}\left[v_{r+1}, \ldots, v_{k}\right]
$$

The ML estimators have the following asymptotic properties:

$$
\sqrt{T} \operatorname{vec}([\hat{\Pi}, \hat{\Psi}]-[\Pi, \Psi]) \xrightarrow{d} N\left(0, \Sigma_{c o}\right)
$$

where

$$
\Sigma_{c o}=\Sigma \otimes\left(\left[\begin{array}{cc}
\boldsymbol{\beta} & 0 \\
0 & I_{k}
\end{array}\right] \Omega^{-1}\left[\begin{array}{cc}
\boldsymbol{\beta}^{\prime} & 0 \\
0 & I_{k}
\end{array}\right]\right)
$$

and

$$
\Omega=\operatorname{plim} \frac{1}{T}\left[\begin{array}{cc}
\beta^{\prime} Z_{1}^{\prime} Z_{1} \beta & \beta^{\prime} Z_{1}^{\prime} Z_{2} \\
Z_{2}^{\prime} Z_{1} \beta & Z_{2}^{\prime} Z_{2}
\end{array}\right]
$$

The following statements are examples of fitting the five different cases of the vector error correction models mentioned in the previous section.

For fitting Case 1,

```
model y1 y2 / p=2 ecm=(rank=1 normalize=y1) noint;
```

For fitting Case 2,

```
model y1 y2 / p=2 ecm=(rank=1 normalize=y1 ectrend);
```

For fitting Case 3,

```
model y1 y2 / p=2 ecm=(rank=1 normalize=y1);
```

For fitting Case 4,

```
model y1 y2 / p=2 ecm=(rank=1 normalize=y1 ectrend)
    trend=linear;
```

For fitting Case 5,

```
model y1 y2 / p=2 ecm=(rank=1 normalize=y1) trend=linear;
```

From Figure 30.53 that uses the COINTTEST=(JOHANSEN) option, you can fit the model by using either Case 2 or Case 3 because the test was not significant at the 0.05 level, but was significant at the 0.10 level. Here both models are fitted to show the difference in output display. Figure 30.56 is for Case 2, and Figure 30.57 is for Case 3.

For Case 2,
proc varmax data=simul2;
model $y^{1} y^{2} / \mathrm{p}=2$ ecm=(rank=1 normalize=y1 ectrend) print=(estimates);
run;

Figure 30.56 Parameter Estimation with the ECTREND Option

Figure 30.56 can be reported as follows:

$$
\begin{aligned}
\Delta \mathbf{y}_{t}= & {\left[\begin{array}{rrr}
-0.48015 & 0.98126 & -3.24543 \\
0.12538 & -0.25624 & 0.84748
\end{array}\right]\left[\begin{array}{c}
y_{1, t-1} \\
y_{2, t-1} \\
1
\end{array}\right] } \\
& +\left[\begin{array}{rr}
-0.72759 & -0.77463 \\
0.38982 & -0.55173
\end{array}\right] \Delta \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
\end{aligned}
$$

The keyword "EC" in the "Model Parameter Estimates" table means that the ECTREND option is used for fitting the model.

For fitting Case 3 ,

```
proc varmax data=simul2;
    model y1 y2 / p=2 ecm=(rank=1 normalize=y1)
                        print=(estimates);
    run;
```

Figure 30.57 Parameter Estimation without the ECTREND Option

Figure 30.57 can be reported as follows:

$$
\begin{aligned}
\Delta \mathbf{y}_{t}= & {\left[\begin{array}{rr}
-0.46421 & 0.95103 \\
0.17535 & -0.35293
\end{array}\right] \mathbf{y}_{t-1}+\left[\begin{array}{rr}
-0.74052 & -0.76305 \\
0.34820 & -0.51194
\end{array}\right] \Delta \mathbf{y}_{t-1} } \\
& +\left[\begin{array}{r}
-2.60825 \\
3.43005
\end{array}\right]+\boldsymbol{\epsilon}_{t}
\end{aligned}
$$

Test for the Linear Restriction on the Parameters

Consider the example with the variables $m_{t} \log$ real money, $y_{t} \log$ real income, i_{t}^{d} deposit interest rate, and i_{t}^{b} bond interest rate. It seems a natural hypothesis that in the long-run relation, money and income have equal coefficients with opposite signs. This can be formulated as the hypothesis that the cointegrated relation contains only m_{t} and y_{t} through $m_{t}-y_{t}$. For the analysis, you can express these restrictions in the parameterization of H such that $\boldsymbol{\beta}=H \phi$, where H is a known
$k \times s$ matrix and ψ is the $s \times r(r \leq s<k)$ parameter matrix to be estimated. For this example, H is given by

$$
H=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Restriction $H_{0}: \boldsymbol{\beta}=H \phi$

When the linear restriction $\boldsymbol{\beta}=H \phi$ is given, it implies that the same restrictions are imposed on all cointegrating vectors. You obtain the maximum likelihood estimator of β by reduced rank regression of $\Delta \mathbf{y}_{t}$ on $H \mathbf{y}_{t-1}$ corrected for $\left(\Delta \mathbf{y}_{t-1}, \ldots, \Delta \mathbf{y}_{t-p+1}, D_{t}\right)$, solving the following equation

$$
\left|\rho H^{\prime} S_{11} H-H^{\prime} S_{10} S_{00}^{-1} S_{01} H\right|=0
$$

for the eigenvalues $1>\rho_{1}>\cdots>\rho_{s}>0$ and eigenvectors $\left(v_{1}, \ldots, v_{s}\right), S_{i j}$ given in the preceding section. Then choose $\hat{\phi}=\left(v_{1}, \ldots, v_{r}\right)$ that corresponds to the r largest eigenvalues, and the $\hat{\boldsymbol{\beta}}$ is $H \hat{\phi}$.

The test statistic for $H_{0}: \boldsymbol{\beta}=H \phi$ is given by

$$
T \sum_{i=1}^{r} \log \left\{\left(1-\rho_{i}\right) /\left(1-\lambda_{i}\right)\right\} \xrightarrow{d} \chi_{r(k-s)}^{2}
$$

If the series has no deterministic trend, the constant term should be restricted by $\boldsymbol{\alpha}_{\perp}^{\prime} \boldsymbol{\delta}_{0}=0$ as in Case 2. Then H is given by

$$
H=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The following statements test that $2 \beta_{1}+\beta 2=0$:

```
proc varmax data=simul2;
    model y1 y2 / p=2 ecm=(rank=1 normalize=y1);
    cointeg rank=1 h=(1,-2);
run;
```

Figure 30.58 shows the results of testing $H_{0}: 2 \beta_{1}+\beta 2=0$. The input H matrix is $H=(1-2)^{\prime}$. The adjustment coefficient is reestimated under the restriction, and the test indicates that you cannot reject the null hypothesis.

Figure 30.58 Testing of Linear Restriction (H= Option)

Test for the Weak Exogeneity and Restrictions of Alpha

Consider a vector error correction model:

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+A D_{t}+\boldsymbol{\epsilon}_{t}
$$

Divide the process \mathbf{y}_{t} into $\left(\mathbf{y}_{1 t}^{\prime}, \mathbf{y}_{2 t}^{\prime}\right)^{\prime}$ with dimension k_{1} and k_{2} and the Σ into

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

Similarly, the parameters can be decomposed as follows:

$$
\boldsymbol{\alpha}=\left[\begin{array}{l}
\boldsymbol{\alpha}_{1} \\
\boldsymbol{\alpha}_{2}
\end{array}\right] \quad \Phi_{i}^{*}=\left[\begin{array}{l}
\Phi_{1 i}^{*} \\
\Phi_{2 i}^{*}
\end{array}\right] \quad A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]
$$

Then the VECM(p) form can be rewritten by using the decomposed parameters and processes:

$$
\left[\begin{array}{c}
\Delta \mathbf{y}_{1 t} \\
\Delta \mathbf{y}_{2 t}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\alpha}_{1} \\
\boldsymbol{\alpha}_{2}
\end{array}\right] \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1}\left[\begin{array}{c}
\Phi_{1 i}^{*} \\
\Phi_{2 i}^{*}
\end{array}\right] \Delta \mathbf{y}_{t-i}+\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] D_{t}+\left[\begin{array}{l}
\boldsymbol{\epsilon}_{1 t} \\
\boldsymbol{\epsilon}_{2 t}
\end{array}\right]
$$

The conditional model for $\mathbf{y}_{1 t}$ given $\mathbf{y}_{2 t}$ is

$$
\begin{aligned}
\Delta \mathbf{y}_{1 t}= & \omega \Delta \mathbf{y}_{2 t}+\left(\alpha_{1}-\omega \alpha_{2}\right) \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1}\left(\Phi_{1 i}^{*}-\omega \Phi_{2 i}^{*}\right) \Delta \mathbf{y}_{t-i} \\
& +\left(A_{1}-\omega A_{2}\right) D_{t}+\boldsymbol{\epsilon}_{1 t}-\omega \boldsymbol{\epsilon}_{2 t}
\end{aligned}
$$

and the marginal model of $\mathbf{y}_{2 t}$ is

$$
\Delta \mathbf{y}_{2 t}=\alpha_{2} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{2 i}^{*} \Delta \mathbf{y}_{t-i}+A_{2} D_{t}+\boldsymbol{\epsilon}_{2 t}
$$

where $\omega=\Sigma_{12} \Sigma_{22}^{-1}$.
The test of weak exogeneity of $\mathbf{y}_{2 t}$ for the parameters $\left(\alpha_{1}, \boldsymbol{\beta}\right)$ determines whether $\alpha_{2}=0$. Weak exogeneity means that there is no information about $\boldsymbol{\beta}$ in the marginal model or that the variables $\mathbf{y}_{2 t}$ do not react to a disequilibrium.

Restriction $H_{0}: \boldsymbol{\alpha}=J \psi$

Consider the null hypothesis $H_{0}: \boldsymbol{\alpha}=J \psi$, where J is a $k \times m$ matrix with $r \leq m<k$.
From the previous residual regression equation

$$
R_{0 t}=\alpha \boldsymbol{\beta}^{\prime} R_{1 t}+\hat{\boldsymbol{\epsilon}}_{t}=J \psi \boldsymbol{\beta}^{\prime} R_{1 t}+\hat{\boldsymbol{\epsilon}}_{t}
$$

you can obtain

$$
\begin{aligned}
\bar{J}^{\prime} R_{0 t} & =\psi \boldsymbol{\beta}^{\prime} R_{1 t}+\bar{J}^{\prime} \hat{\boldsymbol{\epsilon}}_{t} \\
J_{\perp}^{\prime} R_{0 t} & =J_{\perp}^{\prime} \hat{\boldsymbol{\epsilon}}_{t}
\end{aligned}
$$

where $\bar{J}=J\left(J^{\prime} J\right)^{-1}$ and J_{\perp} is orthogonal to J such that $J_{\perp}^{\prime} J=0$.
Define

$$
\Sigma_{J J_{\perp}}=\bar{J}^{\prime} \Sigma J_{\perp} \text { and } \Sigma_{J_{\perp} J_{\perp}}=J_{\perp}^{\prime} \Sigma J_{\perp}
$$

and let $\omega=\Sigma_{J J_{\perp}} \Sigma_{J_{\perp} J_{\perp}}^{-1}$. Then $\bar{J}^{\prime} R_{0 t}$ can be written as

$$
\bar{J}^{\prime} R_{0 t}=\psi \boldsymbol{\beta}^{\prime} R_{1 t}+\omega J_{\perp}^{\prime} R_{0 t}+\bar{J}^{\prime} \hat{\boldsymbol{\epsilon}}_{t}-\omega J_{\perp}^{\prime} \hat{\boldsymbol{\epsilon}}_{t}
$$

Using the marginal distribution of $J_{\perp}^{\prime} R_{0 t}$ and the conditional distribution of $\bar{J}^{\prime} R_{0 t}$, the new residuals are computed as

$$
\begin{aligned}
\tilde{R}_{J t} & =\bar{J}^{\prime} R_{0 t}-S_{J J_{\perp}} S_{J_{\perp} J_{\perp}}^{-1} J_{\perp}^{\prime} R_{0 t} \\
\tilde{R}_{1 t} & =R_{1 t}-S_{1 J_{\perp}} S_{J_{\perp} J_{\perp}}^{-1} J_{\perp}^{\prime} R_{0 t}
\end{aligned}
$$

where

$$
S_{J J_{\perp}}=\bar{J}^{\prime} S_{00} J_{\perp}, S_{J_{\perp} J_{\perp}}=J_{\perp}^{\prime} S_{00} J_{\perp}, \quad \text { and } S_{J_{\perp} 1}=J_{\perp}^{\prime} S_{01}
$$

In terms of $\tilde{R}_{J t}$ and $\tilde{R}_{1 t}$, the MLE of $\boldsymbol{\beta}$ is computed by using the reduced rank regression. Let

$$
S_{i j . J_{\perp}}=\frac{1}{T} \sum_{t=1}^{T} \tilde{R}_{i t} \tilde{R}_{j t}^{\prime}, \text { for } i, j=1, J
$$

Under the null hypothesis $H_{0}: \boldsymbol{\alpha}=J \psi$, the MLE $\tilde{\boldsymbol{\beta}}$ is computed by solving the equation

$$
\left|\rho S_{11 . J_{\perp}}-S_{1 J . J_{\perp}} S_{J J . J_{\perp}}^{-1} S_{J 1 . J_{\perp}}\right|=0
$$

Then $\tilde{\boldsymbol{\beta}}=\left(v_{1}, \ldots, v_{r}\right)$, where the eigenvectors correspond to the r largest eigenvalues. The likelihood ratio test for $H_{0}: \boldsymbol{\alpha}=J \psi$ is

$$
T \sum_{i=1}^{r} \log \left\{\left(1-\rho_{i}\right) /\left(1-\lambda_{i}\right)\right\} \xrightarrow{d} \chi_{r(k-m)}^{2}
$$

The test of weak exogeneity of $\mathbf{y}_{2 t}$ is a special case of the test $\boldsymbol{\alpha}=J \psi$, considering $J=\left(I_{k_{1}}, 0\right)^{\prime}$. Consider the previous example with four variables ($m_{t}, y_{t}, i_{t}^{b}, i_{t}^{d}$). If $r=1$, you formulate the weak exogeneity of $\left(y_{t}, i_{t}^{b}, i_{t}^{d}\right)$ for m_{t} as $J=[1,0,0,0]^{\prime}$ and the weak exogeneity of i_{t}^{d} for $\left(m_{t}, y_{t}, i_{t}^{b}\right)$ as $J=\left[I_{3}, 0\right]^{\prime}$.

The following statements test the weak exogeneity of other variables, assuming $r=1$:

```
proc varmax data=simul2;
    model y1 y2 / p=2 ecm=(rank=1 normalize=y1);
    cointeg rank=1 exogeneity;
run;
```

Figure 30.59 shows that each variable is not the weak exogeneity of other variable.
Figure 30.59 Testing of Weak Exogeneity (EXOGENEITY Option)

The VARMAX Procedure			
Testing Weak Exogeneity of Each Variables			
Variable	DF	Chi-Square	Pr > ChiSq
y1	1	53.46	$<.0001$
y^{2}	1	8.76	0.0031

Forecasting of the VECM

Consider the cointegrated moving-average representation of the differenced process of \mathbf{y}_{t}

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\delta}+\Psi(B) \boldsymbol{\epsilon}_{t}
$$

Assume that $\mathbf{y}_{0}=0$. The linear process \mathbf{y}_{t} can be written as

$$
\mathbf{y}_{t}=\delta t+\sum_{i=1}^{t} \sum_{j=0}^{t-i} \Psi_{j} \boldsymbol{\epsilon}_{i}
$$

Therefore, for any $l>0$,

$$
\mathbf{y}_{t+l}=\boldsymbol{\delta}(t+l)+\sum_{i=1}^{t} \sum_{j=0}^{t+l-i} \Psi_{j} \boldsymbol{\epsilon}_{i}+\sum_{i=1}^{l} \sum_{j=0}^{l-i} \Psi_{j} \boldsymbol{\epsilon}_{t+i}
$$

The l-step-ahead forecast is derived from the preceding equation:

$$
\mathbf{y}_{t+l \mid t}=(t+l)+\sum_{i=1}^{t} \sum_{j=0}^{t+l-i} \Psi_{j} \boldsymbol{\epsilon}_{i}
$$

Note that

$$
\lim _{l \rightarrow \infty} \beta^{\prime} \mathbf{y}_{t+l \mid t}=0
$$

since $\lim _{l \rightarrow \infty} \sum_{j=0}^{t+l-i} \Psi_{j}=\Psi(1)$ and $\beta^{\prime} \Psi(1)=0$. The long-run forecast of the cointegrated system shows that the cointegrated relationship holds, although there might exist some deviations from the equilibrium status in the short-run. The covariance matrix of the predict error $\mathbf{e}_{t+l \mid t}=$ $\mathbf{y}_{t+l}-\mathbf{y}_{t+l \mid t}$ is

$$
\Sigma(l)=\sum_{i=1}^{l}\left[\left(\sum_{j=0}^{l-i} \Psi_{j}\right) \Sigma\left(\sum_{j=0}^{l-i} \Psi_{j}^{\prime}\right)\right]
$$

When the linear process is represented as a $\operatorname{VECM}(p)$ model, you can obtain

$$
\Delta \mathbf{y}_{t}=\Pi \mathbf{y}_{t-1}+\sum_{j=1}^{p-1} \Phi_{j}^{*} \Delta \mathbf{y}_{t-j}+\boldsymbol{\delta}+\boldsymbol{\epsilon}_{t}
$$

The transition equation is defined as

$$
\mathbf{z}_{t}=F \mathbf{z}_{t-1}+\mathbf{e}_{t}
$$

where $\mathbf{z}_{t}=\left(\mathbf{y}_{t-1}^{\prime}, \Delta \mathbf{y}_{t}^{\prime}, \Delta \mathbf{y}_{t-1}^{\prime}, \cdots, \Delta \mathbf{y}_{t-p+2}^{\prime}\right)^{\prime}$ is a state vector and the transition matrix is

$$
F=\left[\begin{array}{ccccc}
I_{k} & I_{k} & 0 & \cdots & 0 \\
\Pi & \left(\Pi+\Phi_{1}^{*}\right) & \Phi_{2}^{*} & \cdots & \Phi_{p-1}^{*} \\
0 & I_{k} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & I_{k} & 0
\end{array}\right]
$$

where 0 is a $k \times k$ zero matrix. The observation equation can be written

$$
\mathbf{y}_{t}=\boldsymbol{\delta} t+H \mathbf{z}_{t}
$$

where $H=\left[I_{k}, I_{k}, 0, \ldots, 0\right]$.
The l-step-ahead forecast is computed as

$$
\mathbf{y}_{t+l \mid t}=\delta(t+l)+H F^{l} \mathbf{z}_{t}
$$

Cointegration with Exogenous Variables

The error correction model with exogenous variables can be written as follows:

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

The following statements demonstrate how to fit $\operatorname{VECMX}(p, s)$, where $p=2$ and $s=1$ from the $\mathrm{P}=2$ and $\mathrm{XLAG}=1$ options:

```
proc varmax data=simul3;
    model y1 y2 = x1 / p=2 xlag=1 ecm=(rank=1);
run;
```

The following statements demonstrate how to $\operatorname{BVECMX}(2,1)$:

```
proc varmax data=simul3;
    model y1 y2 = x1 / p=2 xlag=1 ecm=(rank=1)
        prior=(lambda=0.9 theta=0.1);
run;
```


I(2) Model

The $\operatorname{VARX}(p, s)$ model can be written in the error correction form:

$$
\Delta \mathbf{y}_{t}=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \mathbf{y}_{t-1}+\sum_{i=1}^{p-1} \Phi_{i}^{*} \Delta \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

Let $\Phi^{*}=I_{k}-\sum_{i=1}^{p-1} \Phi_{i}^{*}$.
If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ have full-rank r, and $\operatorname{rank}\left(\boldsymbol{\alpha}_{\perp}^{\prime} \Phi^{*} \boldsymbol{\beta}_{\perp}\right)=k-r$, then \mathbf{y}_{t} is an $I(1)$ process.
If the condition $\operatorname{rank}\left(\boldsymbol{\alpha}_{\perp}^{\prime} \Phi^{*} \boldsymbol{\beta}_{\perp}\right)=k-r$ fails and $\boldsymbol{\alpha}_{\perp}^{\prime} \Phi^{*} \boldsymbol{\beta}_{\perp}$ has reduced-rank $\boldsymbol{\alpha}_{\perp}^{\prime} \Phi^{*} \boldsymbol{\beta}_{\perp}=\xi \eta^{\prime}$ where $\boldsymbol{\xi}$ and η are $(k-r) \times s$ matrices with $s \leq k-r$, then $\boldsymbol{\alpha}_{\perp}$ and $\boldsymbol{\beta}_{\perp}$ are defined as $k \times(k-r)$ matrices of full rank such that $\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}_{\perp}=0$ and $\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}_{\perp}=0$.

If $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ have full-rank s, then the process $\mathbf{y}_{\boldsymbol{t}}$ is $I(2)$, which has the implication of $I(2)$ model for the moving-average representation.

$$
\mathbf{y}_{t}=B_{0}+B_{1} t+C_{2} \sum_{j=1}^{t} \sum_{i=1}^{j} \epsilon_{i}+C_{1} \sum_{i=1}^{t} \epsilon_{i}+C_{0}(B) \epsilon_{t}
$$

The matrices C_{1}, C_{2}, and $C_{0}(B)$ are determined by the cointegration properties of the process, and B_{0} and B_{1} are determined by the initial values. For details, see Johansen (1995a).

The implication of the $I(2)$ model for the autoregressive representation is given by

$$
\Delta^{2} \mathbf{y}_{t}=\Pi \mathbf{y}_{t-1}-\Phi^{*} \Delta \mathbf{y}_{t-1}+\sum_{i=1}^{p-2} \Psi_{i} \Delta^{2} \mathbf{y}_{t-i}+A D_{t}+\sum_{i=0}^{s} \Theta_{i}^{*} \mathbf{x}_{t-i}+\boldsymbol{\epsilon}_{t}
$$

where $\Psi_{i}=-\sum_{j=i+1}^{p-1} \Phi_{i}^{*}$ and $\Phi^{*}=I_{k}-\sum_{i=1}^{p-1} \Phi_{i}^{*}$.

Test for I(2)

The $I(2)$ cointegrated model is given by the following parameter restrictions:

$$
H_{r, s}: \Pi=\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime} \text { and } \boldsymbol{\alpha}_{\perp}^{\prime} \Phi^{*} \boldsymbol{\beta}_{\perp}=\xi \eta^{\prime}
$$

where $\boldsymbol{\xi}$ and η are $(k-r) \times s$ matrices with $0 \leq s \leq k-r$. Let H_{r}^{0} represent the $I(1)$ model where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ have full-rank r, let $H_{r, s}^{0}$ represent the $I(2)$ model where $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ have full-rank s, and let $H_{r, s}$ represent the $I(2)$ model where $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ have rank $\leq s$. The following table shows the relation between the $I(1)$ models and the $I(2)$ models.

Table 30.2 Relation between the $I(1)$ and $I(2)$ Models

	I(2)								I(1)		
$r \backslash k-r-s$	k		k-1		...		1				
0	H_{00}	\subset	H_{01}	C	\cdots	C	$H_{0, k-1}$	\subset	$H_{0 k}$	=	H_{0}^{0}
1			H_{10}	\subset	\ldots	C	$H_{1, k-2}$	\subset	$H_{1, k-1}$	$=$	H_{1}^{0}
\vdots							!	!	!	\vdots	:
$k-1$							$H_{k-1,0}$	C	$H_{k-1,1}$	=	H_{k-1}^{0}

Johansen (1995a) proposed the two-step procedure to analyze the I (2) model. In the first step, the values of $(r, \boldsymbol{\alpha}, \boldsymbol{\beta})$ are estimated using the reduced rank regression analysis, performing the regression analysis $\Delta^{2} \mathbf{y}_{t}, \Delta \mathbf{y}_{t-1}$, and \mathbf{y}_{t-1} on $\Delta^{2} \mathbf{y}_{t-1}, \ldots, \Delta^{2} \mathbf{y}_{t-p+2}$, and D_{t}. This gives residuals $R_{0 t}$, $R_{1 t}$, and $R_{2 t}$, and residual product moment matrices

$$
M_{i j}=\frac{1}{T} \sum_{t=1}^{T} R_{i t} R_{j t}^{\prime} \text { for } i, j=0,1,2
$$

Perform the reduced rank regression analysis $\Delta^{2} \mathbf{y}_{t}$ on \mathbf{y}_{t-1} corrected for $\Delta \mathbf{y}_{t-1}$, $\Delta^{2} \mathbf{y}_{t-1}, \ldots, \Delta^{2} \mathbf{y}_{t-p+2}$, and D_{t}, and solve the eigenvalue problem of the equation

$$
\left|\lambda M_{22.1}-M_{20.1} M_{00.1}^{-1} M_{02.1}\right|=0
$$

where $M_{i j .1}=M_{i j}-M_{i 1} M_{11}^{-1} M_{1 j}$ for $i, j=0,2$.
In the second step, if $(r, \boldsymbol{\alpha}, \boldsymbol{\beta})$ are known, the values of $(s, \boldsymbol{\xi}, \boldsymbol{\eta})$ are determined using the reduced rank regression analysis, regressing $\hat{\boldsymbol{\alpha}}_{\perp}^{\prime} \Delta^{2} \mathbf{y}_{t}$ on $\hat{\boldsymbol{\beta}}_{\perp}^{\prime} \Delta \mathbf{y}_{t-1}$ corrected for $\Delta^{2} \mathbf{y}_{t-1}, \ldots, \Delta^{2} \mathbf{y}_{t-p+2}, D_{t}$, and $\hat{\boldsymbol{\beta}}^{\prime} \Delta \mathbf{y}_{t-1}$.

The reduced rank regression analysis reduces to the solution of an eigenvalue problem for the equation

$$
\mid \rho M_{\boldsymbol{\beta}_{\perp} \boldsymbol{\beta}_{\perp}, \boldsymbol{\beta}}-M_{\boldsymbol{\beta}_{\perp} \boldsymbol{\alpha}_{\perp}, \boldsymbol{\beta}} M_{\boldsymbol{\alpha}_{\perp} \boldsymbol{\alpha}_{\perp . \boldsymbol{\beta}}^{-1}}^{-M_{\boldsymbol{\alpha}_{\perp} \boldsymbol{\beta}_{\perp} \boldsymbol{\beta}} \mid=0}
$$

where

$$
\begin{aligned}
& M_{\boldsymbol{\beta}_{\perp} \boldsymbol{\beta}_{\perp} \cdot \boldsymbol{\beta}}=\boldsymbol{\beta}_{\perp}^{\prime}\left(M_{11}-M_{11} \boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} M_{11} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime} M_{11}\right) \boldsymbol{\beta}_{\perp} \\
& M_{\boldsymbol{\beta}_{\perp} \boldsymbol{\alpha}_{\perp} \cdot \boldsymbol{\beta}}=M_{\boldsymbol{\alpha}_{\perp} \boldsymbol{\beta}_{\perp . \beta}=\overline{\boldsymbol{\alpha}}_{\perp}^{\prime}\left(M_{01}-M_{01} \boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} M_{11} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime} M_{11}\right) \boldsymbol{\beta}_{\perp}} \\
& M_{\boldsymbol{\alpha}_{\perp} \boldsymbol{\alpha}_{\perp} \cdot \boldsymbol{\beta}}=\overline{\boldsymbol{\alpha}}_{\perp}^{\prime}\left(M_{00}-M_{01} \boldsymbol{\beta}\left(\boldsymbol{\beta}^{\prime} M_{11} \boldsymbol{\beta}\right)^{-1} \boldsymbol{\beta}^{\prime} M_{10}\right) \overline{\boldsymbol{\alpha}}_{\perp}
\end{aligned}
$$

where $\overline{\boldsymbol{\alpha}}=\boldsymbol{\alpha}\left(\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}\right)^{-1}$.
The solution gives eigenvalues $1>\rho_{1}>\cdots>\rho_{s}>0$ and eigenvectors $\left(v_{1}, \ldots, v_{s}\right)$. Then, the ML estimators are

$$
\begin{aligned}
& \hat{\eta}=\left(v_{1}, \ldots, v_{s}\right) \\
& \hat{\boldsymbol{\xi}}=M_{\boldsymbol{\alpha}_{\perp} \boldsymbol{\beta}_{\perp}, \boldsymbol{\beta} \hat{\eta}}
\end{aligned}
$$

The likelihood ratio test for the reduced rank model $H_{r, s}$ with rank $\leq s$ in the model $H_{r, k-r}=H_{r}^{0}$ is given by

$$
Q_{r, s}=-T \sum_{i=s+1}^{k-r} \log \left(1-\rho_{i}\right), s=0, \ldots, k-r-1
$$

The following statements compute the rank test to test for cointegrated order 2 :

```
proc varmax data=simul2;
    model y1 y2 / p=2 cointtest=(johansen=(iorder=2));
run;
```

The last two columns in Figure 30.60 explain the cointegration rank test with integrated order 1. The results indicate that there is the cointegrated relationship with the cointegration rank 1 with respect to the 0.05 significance level because the test statistic of 0.5552 is smaller than the critical value of 3.84. Now, look at the row associated with $r=1$. Compare the test statistic value, 211.84512, to the critical value, 3.84 , for the cointegrated order 2 . There is no evidence that the series are integrated order 2 at the 0.05 significance level.

Figure 30.60 Cointegrated I(2) Test (IORDER= Option)

The VARMAX Procedure				
Cointegration Rank Test for I (2)				
$\mathbf{r} \backslash \mathrm{k}-\mathrm{r}-\mathrm{s}$	2	1	Trace of $I(1)$	$\begin{gathered} 5 \% \text { CV of } \\ I(1) \end{gathered}$
0	720.40735	308.69199	61.7522	15.34
1		211.84512	0.5552	3.84
5\% CV I (2)	15.34000	3.84000		

Multivariate GARCH Modeling

Stochastic volatility modeling is important in many areas, particularly in finance. To study the volatility of time series, GARCH models are widely used because they provide a good approach to conditional variance modeling.

BEKK Representation

Engle and Kroner (1995) propose a general multivariate GARCH model and call it a BEKK representation. Let $\mathcal{F}(t-1)$ be the sigma field generated by the past values of $\boldsymbol{\epsilon}_{t}$, and let H_{t} be the conditional covariance matrix of the k-dimensional random vector $\boldsymbol{\epsilon}_{t}$. Let H_{t} be measurable with respect to $\mathcal{F}(t-1)$; then the multivariate GARCH model can be written as

$$
\begin{aligned}
\boldsymbol{\epsilon}_{t} \mid \mathcal{F}(t-1) & \sim N\left(0, H_{t}\right) \\
H_{t} & =C+\sum_{i=1}^{q} A_{i}^{\prime} \epsilon_{t-i} \boldsymbol{\epsilon}_{t-i}^{\prime} A_{i}+\sum_{i=1}^{p} G_{i}^{\prime} H_{t-i} G_{i}
\end{aligned}
$$

where C, A_{i} and G_{i} are $k \times k$ parameter matrices.

Consider a bivariate $\operatorname{GARCH}(1,1)$ model as follows:

$$
\begin{aligned}
H_{t}= & {\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{12} & c_{22}
\end{array}\right]+\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{\prime}\left[\begin{array}{cc}
\epsilon_{1, t-1}^{2} & \epsilon_{1, t-1} \epsilon_{2, t-1} \\
\epsilon_{2, t-1} \epsilon_{1, t-1} & \epsilon_{2, t-1}^{2}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] } \\
& +\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]^{\prime} H_{t-1}\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]
\end{aligned}
$$

or, representing the univariate model,

$$
\begin{aligned}
h_{11, t}= & c_{11}+a_{11}^{2} \epsilon_{1, t-1}^{2}+2 a_{11} a_{21} \epsilon_{1, t-1} \epsilon_{2, t-1}+a_{21}^{2} \epsilon_{2, t-1}^{2} \\
& +g_{11}^{2} h_{11, t-1}+2 g_{11} g_{21} h_{12, t-1}+g_{21}^{2} h_{22, t-1} \\
h_{12, t}= & c_{12}+a_{11} a_{12} \epsilon_{1, t-1}^{2}+\left(a_{21} a_{12}+a_{11} a_{22}\right) \epsilon_{1, t-1} \epsilon_{2, t-1}+a_{21} a_{22} \epsilon_{2, t-1}^{2} \\
& +g_{11} g_{12} h_{11, t-1}+\left(g_{21} g_{12}+g_{11} g_{22}\right) h_{12, t-1}+g_{21} g_{22} h_{22, t-1} \\
h_{22, t}= & c_{22}+a_{12}^{2} \epsilon_{1, t-1}^{2}+2 a_{12} a_{22} \epsilon_{1, t-1} \epsilon_{2, t-1}+a_{22}^{2} \epsilon_{2, t-1}^{2} \\
& +g_{12}^{2} h_{11, t-1}+2 g_{12} g_{22} h_{12, t-1}+g_{22}^{2} h_{22, t-1}
\end{aligned}
$$

For the $B E K K$ representation of the bivariate $\operatorname{GARCH}(1,1)$ model, the SAS statements are:

```
model y1 y2;
garch q=1 p=1 form=bekk;
```


CCC Representation

Bollerslev (1990) propose a multivariate GARCH model with time-varying conditional variances and covariances but constant conditional correlations.

The conditional covariance matrix H_{t} consists of

$$
H_{t}=D_{t} \Gamma D_{t}
$$

where D_{t} is a $k \times k$ stochastic diagonal matrix with element $\sigma_{i t}$ and Γ is a $k \times k$ time-invariant matrix with the typical element $\rho_{i j}$.

The elements of H_{t} are

$$
\begin{aligned}
h_{i i, t} & =c_{i}+\sum_{l=1}^{q} a_{i i, l} \epsilon_{i, t-l}^{2}+\sum_{l=1}^{p} g_{i i, l} h_{i i, t-l} \quad i, j=1, \ldots k \\
h_{i j, t} & =\rho_{i j}\left(h_{i i, t} h_{j j, t}\right)^{1 / 2} i \neq j
\end{aligned}
$$

Estimation of GARCH Model

The log-likelihood function of the multivariate GARCH model is written without a constant term

$$
\ell=-\frac{1}{2} \sum_{t=1}^{T}\left[\log \left|H_{t}\right|+\boldsymbol{\epsilon}_{t}^{\prime} H_{t}^{-1} \boldsymbol{\epsilon}_{t}\right]
$$

The log-likelihood function is maximized by an iterative numerical method such as quasi-Newton optimization. The starting values for the regression parameters are obtained from the least squares estimates. The covariance of $\boldsymbol{\epsilon}_{t}$ is used as the starting values for the GARCH constant parameters, and the starting value used for the other GARCH parameters is either 10^{-6} or 10^{-3} depending on the GARCH models representation. For the identification of the parameters of a $B E K K$ representation GARCH model, the diagonal elements of the GARCH constant, the ARCH, and the GARCH parameters are restricted to be positive.

Covariance Stationarity

Define the multivariate GARCH process as

$$
\mathbf{h}_{t}=\sum_{i=1}^{\infty} G(B)^{i-1}\left[\mathbf{c}+A(B) \boldsymbol{\eta}_{t}\right]
$$

where $\mathbf{h}_{t}=\operatorname{vec}\left(H_{t}\right), \mathbf{c}=\operatorname{vec}\left(C_{0}\right)$, and $\boldsymbol{\eta}_{t}=\operatorname{vec}\left(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}^{\prime}\right)$. This representation is equivalent to a $\operatorname{GARCH}(p, q)$ model by the following algebra:

$$
\begin{aligned}
\mathbf{h}_{t} & =\mathbf{c}+A(B) \boldsymbol{\eta}_{t}+\sum_{i=2}^{\infty} G(B)^{i-1}\left[\mathbf{c}+A(B) \boldsymbol{\eta}_{t}\right] \\
& =\mathbf{c}+A(B) \boldsymbol{\eta}_{t}+G(B) \sum_{i=1}^{\infty} G(B)^{i-1}\left[t m b c+A(B) \boldsymbol{\eta}_{t}\right] \\
& =\mathbf{c}+A(B) \boldsymbol{\eta}_{t}+G(B) \mathbf{h}_{t}
\end{aligned}
$$

Defining $A(B)=\sum_{i=1}^{q}\left(A_{i} \otimes A_{i}\right)^{\prime} B^{i}$ and $G(B)=\sum_{i=1}^{p}\left(G_{i} \otimes G_{i}\right)^{\prime} B^{i}$ gives a $B E K K$ representation.

The necessary and sufficient conditions for covariance stationarity of the multivariate GARCH process is that all the eigenvalues of $A(1)+G(1)$ are less than one in modulus.

An Example of a VAR(1)-ARCH(1) Model

The following DATA step simulates a bivariate vector time series to provide test data for the multivariate GARCH model:

```
data garch;
    retain seed 16587;
```

```
    esq1 = 0; esq2 = 0;
    ly1 = 0; ly2 = 0;
    do i = 1 to 1000;
    ht = 6.25 + 0.5*esq1;
    call rannor(seed,ehat);
    e1 = sqrt (ht)*ehat;
    ht = 1.25 + 0.7*esq2;
    call rannor(seed,ehat);
    e2 = sqrt (ht) *ehat;
    y1 = 2 + 1.2*ly1 - 0.5*ly2 + e1;
    y2 = 4 + 0.6*ly1 + 0.3*ly2 + e2;
    if i>500 then output;
    esq1 = e1*e1; esq2 = e2*e2;
    ly1 = y1; ly2 = y2;
end;
keep y1 y2;
run;
```

The following statements fit a $\operatorname{VAR}(1)-\operatorname{ARCH}(1)$ model to the data. For a VAR-ARCH model, you specify the order of the autoregressive model with the $\mathrm{P}=1$ option in the MODEL statement and the $\mathrm{Q}=1$ option in the GARCH statement. In order to produce the initial and final values of parameters, the $\mathrm{TECH}=\mathrm{QN}$ option is specified in the NLOPTIONS statement.

```
proc varmax data=garch;
    model y1 y2 / p=1
            print=(roots estimates diagnose);
    garch q=1;
    nloptions tech=qn;
run;
```

Figure 30.61 through Figure 30.65 show the details of this example. Figure 30.61 shows the initial values of parameters.

Figure 30.61 Start Parameter Estimates for the VAR(1)-ARCH(1) Model

Figure 30.62 shows the final parameter estimates.
Figure 30.62 Results of Parameter Estimates for the VAR(1)-ARCH(1) Model

Figure 30.63 shows the conditional variance using the $B E K K$ representation of the $\mathrm{ARCH}(1)$ model. The ARCH parameters are estimated by the vectorized parameter matrices.

$$
\begin{aligned}
\boldsymbol{\epsilon}_{t} \mid \mathcal{F}(t-1) & \sim N\left(0, H_{t}\right) \\
H_{t} & =\left[\begin{array}{cc}
8.35905 & -0.18250 \\
-0.18250 & 1.60275
\end{array}\right] \\
& +\left[\begin{array}{ll}
0.37757 & 0.05649 \\
0.03216 & 0.71002
\end{array}\right]^{\prime} \boldsymbol{\epsilon}_{t-1} \boldsymbol{\epsilon}_{t-1}^{\prime}\left[\begin{array}{ll}
0.37757 & 0.05649 \\
0.03216 & 0.71002
\end{array}\right]
\end{aligned}
$$

Figure 30.63 ARCH(1) Parameter Estimates for the VAR(1)-ARCH(1) Model

Figure 30.64 shows the AR parameter estimates and their significance.
The fitted VAR(1) model with the previous conditional covariance ARCH model is written as follows:

$$
\mathbf{y}_{t}=\left[\begin{array}{l}
1.94399 \\
4.07390
\end{array}\right]+\left[\begin{array}{cc}
1.22094 & -0.52712 \\
0.60826 & 0.30301
\end{array}\right] \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
$$

Figure 30.64 VAR(1) Parameter Estimates for the VAR(1)-ARCH(1) Model

Model Parameter Estimates							
Equation Parameter		Estimate	Standard				
		Error	t Value	$r>\|t\|$	Variable		
y1	CONST1		1.94399	0.21017	9.25	0.0001	1
	AR1_1_1	1.22095	0.02564	47.63	0.0001	$\mathrm{y}^{1}(\mathrm{t}-1)$	
	AR1_1_2	-0.52712	0.02836	-18.59	0.0001	$y^{2}(t-1)$	
y^{2}	CONST2	4.07390	0.10574	38.53	0.0001		
	AR1_2_1	0.60826	0.01231	49.42	0.0001	$\mathrm{y}^{1}(\mathrm{t}-1)$	
	AR1_2_2	0.30301	0.01498	20.23	0.0001	$y^{2}(t-1)$	

Figure 30.65 shows the roots of the AR and ARCH characteristic polynomials. The eigenvalues have a modulus less than one.

Figure 30.65 Roots for the VAR(1)-ARCH(1) Model

Index	Roots of AR Characteristic Polynomial				
	Real	Imaginary	Modulus	Radian	Degree
1	0.76198	0.33163	0.8310	0.4105	23.5197
2	0.76198	-0.33163	0.8310	-0.4105	-23.5197
Roots of GARCH Characteristic Polynomial					
Index	Real	Imaginary	Modulus	Radian	Degree
1	0.51180	0.00000	0.5118	0.0000	0.0000
2	0.26627	0.00000	0.2663	0.0000	0.0000
3	0.26627	0.00000	0.2663	0.0000	0.0000
4	0.13853	0.00000	0.1385	0.0000	0.0000

Output Data Sets

The VARMAX procedure can create the $\mathrm{OUT}=$, $\mathrm{OUTEST}=$, $\mathrm{OUTHT}=$, and OUTSTAT $=$ data sets. In general, if processing fails, the output is not recorded or is set to missing in the relevant output data set, and appropriate error and/or warning messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the forecast values produced by the OUTPUT statement. The following output variables can be created:

- the BY variables
- the ID variable
- the MODEL statement dependent (endogenous) variables. These variables contain the actual values from the input data set.
- FOR i, numeric variables that contain the forecasts. The FOR i variables contain the forecasts for the i th endogenous variable in the MODEL statement list. Forecasts are one-step-ahead predictions until the end of the data or until the observation specified by the BACK= option. Multistep forecasts can be computed after that point based on the LEAD= option.
- RESi, numeric variables that contain the residual for the forecast of the i th endogenous variable in the MODEL statement list. For multistep forecast observations, the actual values are missing and the RESi variables contain missing values.
- STD i, numeric variables that contain the standard deviation for the forecast of the i th endogenous variable in the MODEL statement list. The values of the STD i variables can be used to construct univariate confidence limits for the corresponding forecasts.
- LCIi, numeric variables that contain the lower confidence limits for the corresponding forecasts of the i th endogenous variable in the MODEL statement list.
- UCIi, numeric variables that contain the upper confidence limits for the corresponding forecasts of the i th endogenous variable in the MODEL statement list.

The OUT= data set contains the values shown in Table 30.3 and Table 30.4 for a bivariate case.

Table 30.3 OUT= Data Set

Obs	ID variable	y 1	FOR1	RES1	STD1	LCI1	UCI1
1	date	y_{11}	f_{11}	r_{11}	σ_{11}	l_{11}	u_{11}
2	date	y_{12}	f_{12}	r_{12}	σ_{11}	l_{12}	u_{12}
\vdots							

Table 30.4 OUT= Data Set Continued

Obs	y2	FOR2	RES2	STD2	LCI2	UCI2
1	y_{21}	f_{21}	r_{21}	σ_{22}	l_{21}	u_{21}
2	y_{22}	f_{22}	r_{22}	σ_{22}	l_{22}	u_{22}
\vdots						

Consider the following example:

```
proc varmax data=simull noprint;
    id date interval=year;
    model y1 y2 / p=1 noint;
    output out=out lead=5;
run;
```

```
proc print data=out(firstobs=98);
run;
```

The output in Figure 30.66 shows part of the results of the $\mathrm{OUT}=$ data set for the preceding example.
Figure 30.66 OUT= Data Set

Obs	date	y1	FOR1		RES1		STD1		LCI1	UCI1
98	1997	-0.58433	-0.	500	-0.	934	1.13		-2.360	12.09002
99	1998	-2.07170	-1.	649	-1.	522	1.13		-3. 23	$0 \quad 1.21853$
100	1999	-3.38342	-2.	612	-0.	730	1.13		-4.81	$3-0.36111$
101	2000	.	-3.	212	.		1.13		-5.81	$3-1.36711$
102	2001	.	-3.	448			1.70		-6.4	50.25539
103	2002	.	-2.	433			2.14		-6.37	22.02925
104	2003	.	-1.	395			2.43		-5.87	23.65203
105	2004	.	-0.	342			2.58		-5.21	4 4.92779
Obs	y^{2}	FOR2		RES2		STD2		LCI2		UCI2
98	0.64397	$7 \quad-0.34932$		0.99329		1.19096		-2. 68357		1. 98492
99	0.35925	-0.07132		0.43057		1.19096		-2. 40557		2.26292
100	-0.64999	$9-0.99354$		0.34355		1.19096		-3.32779		1.34070
101	-2.09873			.		1.19096		-4.43298		0.23551
102	-2.77050			.		1.47666		-5.66469		0.12369
103	-2.75724			.		1.74212		-6.17173		0.65725
104	-2.24943			.		2.01925		-6.20709		1.70823
105	-1.47460			.		2.25169		-5.88782		2.93863

OUTEST= Data Set

The OUTEST = data set contains estimation results of the fitted model produced by the VARMAX statement. The following output variables can be created:

- the BY variables
- NAME, a character variable that contains the name of endogenous (dependent) variables or the name of the parameters for the covariance of the matrix of the parameter estimates if the OUTCOV option is specified
- TYPE, a character variable that contains the value EST for parameter estimates, the value STD for standard error of parameter estimates, and the value COV for the covariance of the matrix of the parameter estimates if the OUTCOV option is specified
- CONST, a numeric variable that contains the estimates of constant parameters and their standard errors
- SEASON_i, a numeric variable that contains the estimates of seasonal dummy parameters and their standard errors, where $i=1, \ldots,(n$ season -1$)$, and n season is based on the NSEASON= option
- LTREND, a numeric variable that contains the estimates of linear trend parameters and their standard errors
- QTREND, a numeric variable that contains the estimates of quadratic trend parameters and their standard errors
- XLl_i, numeric variables that contain the estimates of exogenous parameters and their standard errors, where l is the lag l th coefficient matrix and $i=1, \ldots, r$, where r is the number of exogenous variables
- AR $l_{-} i$, numeric variables that contain the estimates of autoregressive parameters and their standard errors, where l is the lag l th coefficient matrix and $i=1, \ldots, k$, where k is the number of endogenous variables
- MAl_i, numeric variables that contain the estimates of moving-average parameters and their standard errors, where l is the lag l th coefficient matrix and $i=1, \ldots, k$, where k is the number of endogenous variables
- $\mathrm{ACH}_{l} _i$ are numeric variables that contain the estimates of the ARCH parameters of the covariance matrix and their standard errors, where l is the lag l th coefficient matrix and $i=1, \ldots, k$ for $B E K K$ and CCC representations, where k is the number of endogenous variables.
- $\mathrm{GCH} l _i$ are numeric variables that contain the estimates of the GARCH parameters of the covariance matrix and their standard errors, where l is the lag l th coefficient matrix and $i=1, \ldots, k$ for $B E K K$ and $C C C$ representations, where k is the number of endogenous variables.
- GCHC_i are numeric variables that contain the estimates of the constant parameters of the covariance matrix and their standard errors, where $i=1, \ldots, k$ for BEKK representation, k is the number of endogenous variables, and $i=1$ for $C C C$ representation.
- CCC_i are numeric variables that contain the estimates of the conditional constant correlation parameters for $C C C$ representation where $i=2, \ldots, k$.

The OUTEST $=$ data set contains the values shown Table 30.5 for a bivariate case.

Table 30.5 OUTEST = Data Set

Obs	NAME	TYPE	CONST	AR1_1	AR1_2	AR2_1	AR2_2
1	y1	EST	δ_{1}	$\phi_{1,11}$	$\phi_{1,12}$	$\phi_{2,11}$	$\phi_{2,12}$
2		STD	$\operatorname{se}\left(\delta_{1}\right)$	$\operatorname{se}\left(\phi_{1,11}\right)$	$\operatorname{se}\left(\phi_{1,12}\right)$	$\operatorname{se}\left(\phi_{2,11}\right)$	$\operatorname{se}\left(\phi_{2,12}\right)$
3	y 2	EST	δ_{2}	$\phi_{1,21}$	$\phi_{1,22}$	$\phi_{2,21}$	$\phi_{2,22}$
4		STD	$\operatorname{se}\left(\delta_{2}\right)$	$\operatorname{se}\left(\phi_{1,21}\right)$	$\operatorname{se}\left(\phi_{1,22}\right)$	$\operatorname{se}\left(\phi_{2,21}\right)$	$\operatorname{se}\left(\phi_{2,22}\right)$

Consider the following example:

```
proc varmax data=simul2 outest=est;
    model y1 y2 / p=2 noint
    ecm=(rank=1 normalize=y1)
```

```
        noprint;
run;
proc print data=est;
run;
```

The output in Figure 30.67 shows the results of the OUTEST= data set.
Figure 30.67 OUTEST = Data Set

Obs	NAME	TYPE	AR1_1	AR1_2	AR2_1	AR2_2
1	y1	EST	-0.46680	0.91295	-0.74332	-0.74621
2		STD	0.04786	0.09359	0.04526	0.04769
3	Y2	EST	0.10667	-0.20862	0.40493	-0.57157
4		STD	0.05146	0.10064	0.04867	0.05128

OUTHT= Data Set

The OUTHT= data set contains prediction of the fitted GARCH model produced by the GARCH statement. The following output variables can be created.

- the BY variables
- $\mathrm{H} i_{-} j$, numeric variables that contain the prediction of covariance, where $1 \leq i<j \leq k$, where k is the number of dependent variables

The OUTHT= data set contains the values shown in Table 30.6 for a bivariate case.

Table 30.6 OUTHT = Data Set

Obs	H1_1	H1_2	H2_2
1	h111	h121	h221
2	h112	h122	h222
$:$	$:$	$:$	$:$

Consider the following example of the OUTHT= option:

```
proc varmax data=garch;
    model y1 y2 / p=1
        print=(roots estimates diagnose);
    garch q=1 outht=ht;
run;
proc print data=ht(firstobs=495);
run;
```

The output in Figure 30.68 shows the part of the OUTHT = data set.
Figure $\mathbf{3 0 . 6 8}$ OUTHT = Data Set

Obs	h1_1	h1_2	h2_2
495	9.36568	-1.10406	2.44644
496	8.46807	-0.17464	1.60330
497	9.19686	0.09762	1.69639
498	8.40787	-0.33463	2.07687
499	8.88429	0.03646	1.69401
500	8.60844	-0.40260	1.79703

OUTSTAT= Data Set

The OUTSTAT = data set contains estimation results of the fitted model produced by the VARMAX statement. The following output variables can be created. The subindex i is $1, \ldots, k$, where k is the number of endogenous variables.

- the BY variables
- NAME, a character variable that contains the name of endogenous (dependent) variables
- SIGMA_i, numeric variables that contain the estimate of the innovation covariance matrix
- AICC, a numeric variable that contains the corrected Akaike's information criterion value
- HQC, a numeric variable that contains the Hannan-Quinn's information criterion value
- AIC, a numeric variable that contains the Akaike's information criterion value
- SBC, a numeric variable that contains the Schwarz Bayesian's information criterion value
- FPEC, a numeric variable that contains the final prediction error criterion value
- FValue, a numeric variable that contains the F statistics
- PValue, a numeric variable that contains p-value for the F statistics

If the JOHANSEN= option is specified, the following items are added:

- Eigenvalue, a numeric variable that contains eigenvalues for the cointegration rank test of integrated order 1
- RestrictedEigenvalue, a numeric variable that contains eigenvalues for the cointegration rank test of integrated order 1 when the NOINT option is not specified
- Beta_i, numeric variables that contain long-run effect parameter estimates, $\boldsymbol{\beta}$
- Alpha_i, numeric variables that contain adjustment parameter estimates, $\boldsymbol{\alpha}$

If the JOHANSEN=(IORDER=2) option is specified, the following items are added:

- EValueI2_i, numeric variables that contain eigenvalues for the cointegration rank test of integrated order 2
- EValueI1, a numeric variable that contains eigenvalues for the cointegration rank test of integrated order 1
- Eta i, numeric variables that contain the parameter estimates in integrated order $2, \eta$
- Xi_i, numeric variables that contain the parameter estimates in integrated order $2, \boldsymbol{\xi}$

The OUTSTAT= data set contains the values shown Table 30.7 for a bivariate case.

Table 30.7 OUTSTAT= Data Set

Obs	NAME	SIGMA_1	SIGMA_2	AICC	RSquare	FValue	PValue
1	y 1	σ_{11}	σ_{12}	aicc	R_{1}^{2}	F_{1}	prob $_{1}$
2	y 2	σ_{21}	σ_{22}	.	R_{2}^{2}	F_{2}	prob $_{2}$

Obs	EValueI2_1	EValueI2_2	EValueI1	Beta_1	Beta_2
1	e_{11}	e_{12}	e_{1}	β_{11}	β_{12}
2	e_{21}	\cdot	e_{2}	β_{21}	β_{21}

Obs	Alpha_1	Alpha_2	Eta_1	Eta_2	Xi_1	Xi_2
1	α_{11}	α_{12}	η_{11}	η_{12}	ξ_{11}	ξ_{12}
2	α_{21}	α_{22}	η_{21}	η_{22}	ξ_{21}	ξ_{22}

Consider the following example:

```
proc varmax data=simul2 outstat=stat;
    model y1 y2 / p=2 noint
        cointtest=(johansen=(iorder=2))
        ecm=(rank=1 normalize=y1)
        noprint;
run;
proc print data=stat;
run;
```

The output in Figure 30.69 shows the results of the OUTSTAT= data set.

Figure 30.69 OUTSTAT= Data Set

Printed Output

The default printed output produced by the VARMAX procedure is described in the following list:

- descriptive statistics, which include the number of observations used, the names of the variables, their means and standard deviations (STD), their minimums and maximums, the differencing operations used, and the labels of the variables
- a type of model to fit the data and an estimation method
- a table of parameter estimates that shows the following for each parameter: the variable name for the left-hand side of equation, the parameter name, the parameter estimate, the approximate standard error, t value, the approximate probability ($\operatorname{Pr}>|t|$), and the variable name for the right-hand side of equations in terms of each parameter
- the innovation covariance matrix
- the information criteria

If PRINT=ESTIMATES is specified, the VARMAX procedure prints the following list with the default printed output:

- the estimates of the constant vector (or seasonal constant matrix), the trend vector, the coefficient matrices of the distributed lags, the AR coefficient matrices, and the MA coefficient matrices
- the ALPHA and BETA parameter estimates for the error correction model
- the schematic representation of parameter estimates

If PRINT=DIAGNOSE is specified, the VARMAX procedure prints the following list with the default printed output:

- the cross-covariance and cross-correlation matrices of the residuals
- the tables of test statistics for the hypothesis that the residuals of the model are white noise:
- Durbin-Watson (DW) statistics
- F test for autoregressive conditional heteroscedastic (ARCH) disturbances
- F test for AR disturbance
- Jarque-Bera normality test
- Portmanteau test

ODS Table Names

The VARMAX procedure assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table:

Table 30.8 ODS Tables Produced in the VARMAX Procedure

ODS Table Name	Description	Option
ODS Tables Created by the MODEL Statement		
AccumImpulse	Accumulated impulse response matrices	$\begin{aligned} & \text { IMPULSE=(ACCUM) } \\ & \text { IMPULSE=(ALL) } \end{aligned}$
AccumImpulsebyVar	Accumulated impulse response by variable	$\begin{aligned} & \text { IMPULSE=(ACCUM) } \\ & \text { IMPULSE=(ALL) } \end{aligned}$
AccumImpulseX	Accumulated transfer function matrices	$\begin{aligned} & \text { IMPULSX=(ACCUM) } \\ & \text { IMPULSX=(ALL) } \end{aligned}$
AccumImpulseXbyVar Accumulated transfer function by variable		$\begin{aligned} & \text { IMPULSX=(ACCUM) } \\ & \text { IMPULSX=(ALL) } \end{aligned}$
Alpha	α coefficients	JOHANSEN=
AlphaInECM	α coefficients when rank=r	ECM=
AlphaOnDrift	α coefficients under the restriction of a deterministic term	JOHANSEN=
AlphaBetaInECM	$\Pi=\alpha \beta^{\prime}$ coefficients when rank=r	ECM=
ANOVA	Univariate model diagnostic checks for the residuals	PRINT=DIAGNOSE
ARCoef	AR coefficients	$\mathrm{P}=$
ARRoots	Roots of AR characteristic polynomial	ROOTS with $\mathrm{P}=$
Beta	β coefficients	JOHANSEN=
BetaInECM	β coefficients when rank=r	ECM=
BetaOnDrift	β coefficients under the restriction of a deterministic term	JOHANSEN=

Table 30.8 continued

ODS Table Name	Description	Option
Constant	Constant estimates	without NOINT
CorrB	Correlations of parameter estimates	CORRB
CorrResiduals	Correlations of residuals	PRINT=DIAGNOSE
CorrResidualsbyVar	Correlations of residuals by variable	PRINT=DIAGNOSE
CorrResidualsGraph	Schematic representation of correlations of residuals	PRINT=DIAGNOSE
CorrXGraph	Schematic representation of sample correlations of independent series	CORRX
CorrYGraph	Schematic representation of sample correlations of dependent series	CORRY
CorrXLags	Correlations of independent series	CORRX
CorrXbyVar	Correlations of independent series by variable	CORRX
CorrYLags	Correlations of dependent series	CORRY
CorrYbyVar	Correlations of dependent series by variable	CORRY
CovB	Covariances of parameter estimates	COVB
CovInnovation	Covariances of the innovations	default
CovPredictError	Covariance matrices of the prediction error	COVPE
CovPredictErrorbyVar	Covariances of the prediction error by variable	COVPE
CovResiduals	Covariances of residuals	PRINT=DIAGNOSE
CovResidualsbyVar	Covariances of residuals by variable	PRINT=DIAGNOSE
CovXLags	Covariances of independent series	COVX
CovXbyVar	Covariances of independent series by variable	COVX
CovYLags	Covariances of dependent series	COVY
CovYbyVar	Covariances of dependent series by variable	COVY
DecomposeCovPredictError	Decomposition of the prediction error covariances	DECOMPOSE
DecomposeCov- PredictErrorbyVar	Decomposition of the prediction error covariances by variable	DECOMPOSE
DFTest	Dickey-Fuller test	DFTEST
DiagnostAR	Test the AR disturbance for the residuals	PRINT=DIAGNOSE
DiagnostWN	Test the ARCH disturbance and normality for the residuals	PRINT=DIAGNOSE
DynamicARCoef	AR coefficients of the dynamic model	DYNAMIC
DynamicConstant	Constant estimates of the dynamic model	DYNAMIC
DynamicCov- Innovation	Covariances of the innovations of the dynamic model	DYNAMIC
DynamicLinearTrend	Linear trend estimates of the dynamic model	DYNAMIC

Table 30.8 continued

ODS Table Name	Description	Option
DynamicMACoef	MA coefficients of the dynamic model	DYNAMIC
DynamicSConstant	Seasonal constant estimates of the dynamic model	DYNAMIC
DynamicParameter- Estimates	Parameter estimates table of the dynamic model	DYNAMIC
DynamicParameterGraph	Schematic representation of the parameters of the dynamic model	DYNAMIC
DynamicQuadTrend	Quadratic trend estimates of the dynamic model	DYNAMIC
DynamicSeasonGraph	Schematic representation of the seasonal dummies of the dynamic model	DYNAMIC
DynamicXLagCoef	Dependent coefficients of the dynamic model	DYNAMIC
Hypothesis	Hypothesis of different deterministic terms in cointegration rank test	JOHANSEN=
HypothesisTest	Test hypothesis of different deterministic terms in cointegration rank test	JOHANSEN=
EigenvalueI2	Eigenvalues in integrated order 2	JOHANSEN= (IORDER=2)
Eta	η coefficients	JOHANSEN= (IORDER=2)
InfiniteARRepresent	Infinite order ar representation	IARR
InfoCriteria	Information criteria	default
LinearTrend	Linear trend estimates	TREND=
MACoef	MA coefficients	$\mathrm{Q}=$
MARoots	Roots of MA characteristic polynomial	ROOTS with $\mathrm{Q}=$
MaxTest	Cointegration rank test using the maximum eigenvalue	JOHANSEN= (TYPE=MAX)
Minic	Tentative order selection	MINIC MINIC=
ModelType	Type of model	default
NObs	Number of observations	default
OrthoImpulse	Orthogonalized impulse response matrices	$\begin{aligned} & \text { IMPULSE=(ORTH) } \\ & \text { IMPULSE=(ALL) } \end{aligned}$
OrthoImpulsebyVar	Orthogonalized impulse response by variable	$\begin{aligned} & \text { IMPULSE=(ORTH) } \\ & \text { IMPULSE=(ALL) } \end{aligned}$
ParameterEstimates	Parameter estimates table	default
ParameterGraph	Schematic representation of the parameters	PRINT=ESTIMATES
PartialAR	Partial autoregression matrices	PARCOEF
PartialARGraph	Schematic representation of partial autoregression	PARCOEF
PartialCanCorr	Partial canonical correlation analysis	PCANCORR
PartialCorr	Partial cross-correlation matrices	PCORR
PartialCorrby Var	Partial cross-correlations by variable	PCORR

Table 30.8 continued

ODS Table Name	Description	Option
PartialCorrGraph	Schematic representation of partial cross-correlations	PCORR
PortmanteauTest	Chi-square test table for residual crosscorrelations	PRINT=DIAGNOSE
ProportionCov- PredictError	Proportions of prediction error covariance decomposition	DECOMPOSE
ProportionCov- PredictErrorbyVar	Proportions of prediction error covariance decomposition by variable	DECOMPOSE
RankTestI2	Cointegration rank test in integrated order 2	JOHANSEN= (IORDER=2)
RestrictMaxTest	Cointegration rank test using the maximum eigenvalue under the restriction of a deterministic term	$\begin{aligned} & \text { JOHANSEN= } \\ & \text { (TYPE=MAX) } \\ & \text { without NOINT } \end{aligned}$
RestrictTraceTest	Cointegration rank test using the trace under the restriction of a deterministic term	JOHANSEN= (TYPE=TRACE) without NOINT
QuadTrend	Quadratic trend estimates	TREND=QUAD
SeasonGraph	Schematic representation of the seasonal dummies	PRINT=ESTIMATES
SConstant	Seasonal constant estimates	NSEASON=
SimpleImpulse	Impulse response matrices	$\begin{aligned} & \text { IMPULSE=(SIMPLE) } \\ & \text { IMPULSE=(ALL) } \end{aligned}$
SimpleImpulsebyVar	Impulse response by variable	$\begin{aligned} & \text { IMPULSE=(SIMPLE) } \\ & \text { IMPULSE=(ALL) } \end{aligned}$
SimpleImpulseX	Impulse response matrices of transfer function	$\begin{aligned} & \text { IMPULSX=(SIMPLE) } \\ & \text { IMPULSX=(ALL) } \end{aligned}$
SimpleImpulseXbyVar	Impulse response of transfer function by variable	$\begin{aligned} & \text { IMPULSX=(SIMPLE) } \\ & \text { IMPULSX=(ALL) } \end{aligned}$
Summary	Simple summary statistics	default
SWTest	Common trends test	SW=
TraceTest	Cointegration rank test using the trace	JOHANSEN= (TYPE=TRACE)
Xi	ξ coefficient matrix	JOHANSEN= (IORDER=2)
XLagCoef	Dependent coefficients	XLAG=
YWEstimates	Yule-Walker estimates	YW

ODS Tables Created by the GARCH Statement

ARCHCoef	ARCH coefficients	$\mathrm{Q}=$
GARCHCoef	GARCH coefficients	$\mathrm{P}=$
GARCHConstant	GARCH constant estimates	PRINT=ESTIMATES
GARCHParameter-	GARCH parameter estimates table	default
Estimates		

Table 30.8 continued

ODS Table Name	Description	Option
GARCHParameterGraph	Schematic representation of the garch parameters	PRINT=ESTIMATES
GARCHRoots	Roots of GARCH characteristic polynomial	ROOTS

ODS Tables Created by the COINTEG Statement or the ECM option

AlphaInECM	α coefficients when rank $=r$	PRINT=ESTIMATES
AlphaBetaInECM	$\Pi=\alpha \beta^{\prime}$ coefficients when rank=r	PRINT=ESTIMATES
AlphaOnAlpha	α coefficients under the restriction of α	$\mathrm{J}=$
AlphaOnBeta	α coefficients under the restriction of β	$\mathrm{H}=$
AlphaTestResults	Hypothesis testing of β	$\mathrm{J}=$
BetaInECM	β coefficients when rank $=r$	PRINT=ESTIMATES
BetaOnBeta	β coefficients under the restriction of β	$\mathrm{H}=$
BetaOnAlpha	β coefficients under the restriction of α	$\mathrm{J}=$
BetaTestResults	Hypothesis testing of β	$\mathrm{H}=$
GrangerRepresent	Coefficient of Granger representation	PRINT=ESTIMATES
HMatrix	Restriction matrix for β	$\mathrm{H}=$
JMatrix	Restriction matrix for α	$\mathrm{J}=$
WeakExogeneity	Testing weak exogeneity of each depen- dent variable with respect to BETA	EXOGENEITY

ODS Tables Created by the CAUSAL Statement

CausalityTest	Granger causality test	default
GroupVars	Two groups of variables	default

ODS Tables Created by the RESTRICT Statement
Restrict
Restriction table
default

ODS Tables Created by the TEST Statement

Test Wald test default

ODS Tables Created by the OUTPUT Statement

Forecasts Forecasts table without NOPRINT

Note that the ODS table names suffixed by "byVar" can be obtained with the PRINTFORM=UNIVARIATE option.

ODS Graphics

This section describes the use of ODS for creating statistical graphs with the VARMAX procedure.
To request these graphs, you must specify the ODS GRAPHICS ON statement.
When ODS GRAPHICS are in effect, the VARMAX procedure produces a variety of plots for each dependent variable.

The plots available are as follows:

- The procedure displays the following plots for each dependent variable in the MODEL statement with the PLOT= option in the VARMAX statement:
- impulse response function
- impulse response of the transfer function
- time series and predicted series
- prediction errors
- distribution of the prediction errors
- normal quantile of the prediction errors
- ACF of the prediction errors
- PACF of the prediction errors
- IACF of the prediction errors
- log scaled white noise test of the prediction errors
- The procedure displays forecast plots for each dependent variable in the OUTPUT statement with the PLOT= option in the VARMAX statement.

ODS Graph Names

The VARMAX procedure assigns a name to each graph it creates by using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 30.9.

Table 30.9 ODS Graphics Produced in the VARMAX Procedure

ODS Table Name	Plot Description	Statement		
ErrorACFPlot	Autocorrelation function of prediction errors	MODEL		
ErrorIACFPlot	Inverse autocorrelation function of pre- diction errors	MODEL		
ErrorPACFPlot	Partial autocorrelation function of pre- diction errors	MODEL		
ErrorDiagnosticsPanel	Diagnostics of prediction errors ErrorNormalityPanel	Histogram and Q-Q plot of prediction er- rors		MODEL
:---				

Table 30.9 continued

ODS Table Name	Plot Description	Statement
ErrorDistribution	Distribution of prediction errors	MODEL
ErrorQQPlot	Q-Q plot of prediction errors	MODEL
ErrorWhiteNoisePlot	White noise test of prediction errors Prediction errors	MODEL
ErrorPlot	Time series and predicted series	MODEL
ModelPlot	Accumulated impulse response function	MODEL
AccumulatedIRFPanel	AccumulatedIRFXPanel	Accumulated impulse response of trans- fer function
MODEL		
OrthogonalIRFPanel	Orthogonalized impulse response func- tion	MODEL
SimpleIRFPanel	Simple impulse response function Simple impulse response of transfer function	MODEL
ModelForecastsPlot	Time series and forecasts ForecastsOnlyPlot	Forecasts

Computational Issues

Computational Method

The VARMAX procedure uses numerous linear algebra routines and frequently uses the sweep operator (Goodnight 1979) and the Cholesky root (Golub and Van Loan 1983).

In addition, the VARMAX procedure uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks for the maximum likelihood estimation. The optimization requires intensive computation.

Convergence Problems

For some data sets, the computation algorithm can fail to converge. Nonconvergence can result from a number of causes, including flat or ridged likelihood surfaces and ill-conditioned data.

If you experience convergence problems, the following points might be helpful:

- Data that contain extreme values can affect results in PROC VARMAX. Rescaling the data can improve stability.
- Changing the TECH=, MAXITER=, and MAXFUNC= options in the NLOPTIONS statement can improve the stability of the optimization process.
- Specifying a different model that might fit the data more closely and might improve convergence.

Memory

Let T be the length of each series, k be the number of dependent variables, p be the order of autoregressive terms, and q be the order of moving-average terms. The number of parameters to estimate for a VARMA (p, q) model is

$$
k+(p+q) k^{2}+k *(k+1) / 2
$$

As k increases, the number of parameters to estimate increases very quickly. Furthermore the memory requirement for $\operatorname{VARMA}(p, q)$ quadratically increases as k and T increase.

For a VARMAX (p, q, s) model and GARCH-type multivariate conditional heteroscedasticity models, the number of parameters to estimate and the memory requirements are considerable.

Computing Time

PROC VARMAX is computationally intensive, and execution times can be long. Extensive CPU time is often required to compute the maximum likelihood estimates.

Examples: VARMAX Procedure

Example 30.1: Analysis of U.S. Economic Variables

Consider the following four-dimensional system of U.S. economic variables. Quarterly data for the years 1954 to 1987 are used (Lütkepohl 1993, Table E.3.).

```
title 'Analysis of U.S. Economic Variables';
data us_money;
    date=intnx( 'qtr', '01jan54'd, _n_-1 );
    format date yyq. ;
    input y1 y2 y3 y4 @@;
    y1=log(y1);
    y2=log(y2);
    label y1='log(real money stock M1)'
        y2='log(GNP in bil. of 1982 dollars)'
        y3='Discount rate on 91-day T-bills'
        y4='Yield on 20-year Treasury bonds';
datalines;
450.9 1406.8 0.010800000 0.026133333
453.0 1401.2 0.0081333333 0.025233333
... more lines ...
```

The following statements plot the series and proceed with the VARMAX procedure.

```
proc timeseries data=us_money vectorplot=series;
    id date interval=qtr;
    var y1 y2;
run;
```

Output 30.1.1 shows the plot of the variables $y 1$ and $y 2$.

Output 30.1.1 Plot of Data

The following statements plot the variables $y 3$ and $y 4$.

```
proc timeseries data=us_money vectorplot=series;
    id date interval=qtr;
    var y3 y4;
run;
```

Output 30.1.2 shows the plot of the variables $y 3$ and $y 4$.

Output 30.1.2 Plot of Data


```
proc varmax data=us_money;
    id date interval=qtr;
    model y1-y4 / p=2 lagmax=6 dftest
            print=(iarr(3) estimates diagnose)
            cointtest=(johansen=(iorder=2))
            ecm=(rank=1 normalize=y1);
    cointeg rank=1 normalize=y1 exogeneity;
run;
```

This example performs the Dickey-Fuller test for stationarity, the Johansen cointegrated test integrated order 2 , and the exogeneity test. The VECM(2) is fit to the data. From the outputs shown in Output 30.1.5, you can see that the series has unit roots and is cointegrated in rank 1 with integrated order 1. The fitted VECM(2) is given as

$$
\begin{aligned}
\Delta \mathbf{y}_{t}= & \left(\begin{array}{r}
0.0408 \\
0.0860 \\
0.0052 \\
-0.0144
\end{array}\right)+\left(\begin{array}{rrrr}
-0.0140 & 0.0065 & -0.2026 & 0.1306 \\
-0.0281 & 0.0131 & -0.4080 & 0.2630 \\
-0.0022 & 0.0010 & -0.0312 & 0.0201 \\
0.0051 & -0.0024 & 0.0741 & -0.0477
\end{array}\right) \mathbf{y}_{t-1} \\
& +\left(\begin{array}{rrrr}
0.3460 & 0.0913 & -0.3535 & -0.9690 \\
0.0994 & 0.0379 & 0.2390 & 0.2866 \\
0.1812 & 0.0786 & 0.0223 & 0.4051 \\
0.0322 & 0.0496 & -0.0329 & 0.1857
\end{array}\right) \Delta \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
\end{aligned}
$$

The Δ prefixed to a variable name implies differencing.
Output 30.1.3 through Output 30.1.14 show the details. Output 30.1.3 shows the descriptive statistics.

Output 30.1.3 Descriptive Statistics

Output 30.1.4 shows the output for Dickey-Fuller tests for the nonstationarity of each series. The null hypotheses is to test a unit root. All series have a unit root.

Output 30.1.4 Unit Root Tests

Variable	Type	Unit Root Test			
		Rho	$\mathrm{Pr}<$ Rho	Tau	Pr < Tau
y1	Zero Mean	0.05	0.6934	1.14	0.9343
	Single Mean	-2.97	0.6572	-0.76	0.8260
	Trend	-5.91	0.7454	-1.34	0.8725
y^{2}	Zero Mean	0.13	0.7124	5.14	0.9999
	Single Mean	-0.43	0.9309	-0.79	0.8176
	Trend	-9.21	0.4787	-2.16	0.5063
y^{3}	Zero Mean	-1.28	0.4255	-0.69	0.4182
	Single Mean	-8.86	0.1700	-2.27	0.1842
	Trend	-18.97	0.0742	-2.86	0.1803
y^{4}	Zero Mean	0.40	0.7803	0.45	0.8100
	Single Mean	-2.79	0.6790	-1.29	0.6328
	Trend	-12.12	0.2923	-2.33	0.4170

The Johansen cointegration rank test shows whether the series is integrated order either 1 or 2 as shown in Output 30.1.5. The last two columns in Output 30.1.5 explain the cointegration rank test with integrated order 1 . The results indicate that there is the cointegrated relationship with the cointegration rank 1 with respect to the 0.05 significance level because the test statistic of 20.6542 is smaller than the critical value of 29.38 . Now, look at the row associated with $r=1$. Compare the test statistic value and critical value pairs such as (219.62395, 29.38), (89.21508, 15.34), and (27.32609, 3.84). There is no evidence that the series are integrated order 2 at the 0.05 significance level.

Output 30.1.5 Cointegration Rank Test

Cointegration Rank Test for $\mathrm{I}(2)$					
$\mathbf{r} \backslash \mathrm{k}-\mathrm{r}-\mathrm{s}$	4	3	2	1	$\begin{aligned} & \text { Trace } \\ & \text { of } I(1) \end{aligned}$
0	384.60903	214.37904	107.93782	37.02523	55.9633
1		219.62395	89.21508	27.32609	20.6542
2			73.61779	22.13279	2.6477
3				38.29435	0.0149
5\% CV I (2)	47.21000	29.38000	15.34000	3.84000	
		Cointegrat Test for	Rank		
		$r \backslash k-r-s$	$\begin{aligned} & \text { CV of } \\ & I(1) \end{aligned}$		
		0	47.21		
		1	29.38		
		2	15.34		
		3	3.84		
		CV I (2)			

Output 30.1.6 shows the estimates of the long-run parameter, $\boldsymbol{\beta}$, and the adjustment coefficient, $\boldsymbol{\alpha}$.

Output 30.1.6 Cointegration Rank Test Continued

Beta				
Variable	1	2	3	4
y1	1.00000	1.00000	1.00000	1.00000
y^{2}	-0.46458	-0.63174	-0.69996	-0.16140
y3	14.51619	-1.29864	1.37007	-0.61806
y 4	-9.35520	7.53672	2.47901	1.43731
		Alpha		
Variable	1	2	3	4
y1	-0.01396	0.01396	-0.01119	0.00008
y^{2}	-0.02811	-0.02739	-0.00032	0.00076
y3	-0.00215	-0.04967	-0.00183	-0.00072
y 4	0.00510	-0.02514	-0.00220	0.00016

Output 30.1.7 shows the estimates $\boldsymbol{\eta}$ and $\boldsymbol{\xi}$.
Output 30.1.7 Cointegration Rank Test Continued

Eta				
Variable	1	2	3	4
y1	52.74907	41.74502	-20.80403	55.77415
y^{2}	-49.10609	-9.40081	98.87199	22.56416
y3	68.29674	-144.83173	-27.35953	15.51142
y 4	121.25932	271.80496	85.85156	-130.11599
Xi				
Variable	1	2	3	4
y1	-0.00842	-0.00052	-0.00208	-0.00250
y^{2}	0.00141	0.00213	-0.00736	-0.00058
y^{3}	-0.00445	0.00541	-0.00150	0.00310
y4	-0.00211	-0.00064	-0.00130	0.00197

Output 30.1.8 shows that the $\operatorname{VECM}(2)$ is fit to the data. The $\mathrm{ECM}=(\mathrm{RANK}=1)$ option produces the estimates of the long-run parameter, $\boldsymbol{\beta}$, and the adjustment coefficient, $\boldsymbol{\alpha}$.

Output 30.1.8 Parameter Estimates

Output 30.1.9 shows the parameter estimates in terms of the constant, the lag one coefficients (\mathbf{y}_{t-1}) contained in the $\alpha \beta^{\prime}$ estimates, and the coefficients associated with the lag one first differences ($\Delta \mathbf{y}_{t-1}$).

Output 30.1.9 Parameter Estimates Continued

Output 30.1.10 shows the parameter estimates and their significance.

Output 30.1.10 Parameter Estimates Continued

Model Parameter Estimates						
Equation Parameter		Standard				
		Estimate	Error	Value	$>\|t\|$	Variable
D_y1	CONST1	0.04076	0.01418	2.87	0.0048	1
	AR1_1_1	-0.01396	0.00495			y1 (t-1)
	AR1_1_2	0.00648	0.00230			y2 (t-1)
	AR1_1_3	-0.20263	0.07191			y 3 (t-1)
	AR1_1_4	0.13059	0.04634			y 4 (t-1)
	AR2_1_1	0.34603	0.06414	5.39	0.0001	D_y ${ }^{(t-1)}$
	AR2_1_2	0.09131	0.07334	1.25	0.2154	D_y ${ }^{2}(t-1)$
	AR2_1_3	-0.35351	0.11024	-3.21	0.0017	D_y ${ }^{(t-1)}$
	AR2_1_4	-0.96895	0.20737	-4.67	0.0001	D_y 4 (t-1)
D_y ${ }^{2}$	CONST2	0.08595	0.01679	5.12	0.0001	1
	AR1_2_1	-0.02811	0.00586			Y1 (t-1)
	AR1_2_2	0.01306	0.00272			y2 (t-1)
	AR1_2_3	-0.40799	0.08514			y 3 (t-1)
	AR1_2_4	0.26294	0.05487			y 4 (t-1)
	AR2_2_1	0.09936	0.07594	1.31	0.1932	D_y $1(t-1)$
	AR2_2_2	0.03791	0.08683	0.44	0.6632	D_y ${ }^{2}(t-1)$
	AR2_2_3	0.23900	0.13052	1.83	0.0695	D_y3 (t-1)
	AR2_2_4	0.28661	0.24552	1.17	0.2453	D_y 4 (t-1)
D_y ${ }^{3}$	CONST3	0.00518	0.01608	0.32	0.7476	1
	AR1_3_1	-0.00215	0.00562			y1 (t-1)
	AR1_3_2	0.00100	0.00261			y 2 (t-1)
	AR1_3_3	-0.03121	0.08151			y 3 (t-1)
	AR1_3_4	0.02011	0.05253			y 4 (t-1)
	AR2_3_1	0.18118	0.07271	2.49	0.0140	D_y ${ }^{(t-1)}$
	AR2_3_2	0.07859	0.08313	0.95	0.3463	D_y ${ }^{2}(t-1)$
	AR2_3_3	0.02234	0.12496	0.18	0.8584	D_y ${ }^{(t-1)}$
	AR2_3_4	0.40508	0.23506	1.72	0.0873	D_y 4 (t-1)
D_Y4	CONST4	-0.01438	0.00803	-1.79	0.0758	1
	AR1_4_1	0.00510	0.00281			Y1 (t-1)
	AR1_4_2	-0.00237	0.00130			y2 (t-1)
	AR1_4_3	0.07407	0.04072			y 3 (t-1)
	AR1_4_4	-0.04774	0.02624			y 4 (t-1)
	AR2_4_1	0.03222	0.03632	0.89	0.3768	D_y ${ }^{(t-1)}$
	AR2_4_2	0.04961	0.04153	1.19	0.2345	D_y ${ }^{2}(t-1)$
	AR2_4_3	-0.03292	0.06243	-0.53	0.5990	D_y ${ }^{(t-1)}$
	AR2_4_4	0.18568	0.11744	1.58	0.1164	D_y 4 (t-1)

Output 30.1.11 shows the innovation covariance matrix estimates, the various information criteria results, and the tests for white noise residuals. The residuals have significant correlations at lag 2 and 3. The Portmanteau test results into significant. These results show that a VECM(3) model might be better fit than the VECM(2) model is.

Output 30.1.11 Diagnostic Checks

Output 30.1.12 describes how well each univariate equation fits the data. The residuals for $y 3$ and $y 4$ are off from the normality. Except the residuals for $y 3$, there are no AR effects on other residuals. Except the residuals for $y 4$, there are no ARCH effects on other residuals.

Output 30.1.12 Diagnostic Checks Continued

The PRINT=(IARR) option provides the VAR(2) representation in Output 30.1.13.
Output 30.1.13 Infinite Order AR Representation

Lag	Infinite Order AR Representation				
	Variable	y^{1}	y^{2}	y3	y^{4}
1	y^{1}	1.33208	0.09780	-0.55614	-0.83836
	y^{2}	0.07125	1.05096	-0.16899	0.54955
	y3	0.17903	0.07959	0.99113	0.42520
	y^{4}	0.03732	0.04724	0.04116	1.13795
2	y1	-0.34603	-0.09131	0.35351	0.96895
	y^{2}	-0.09936	-0.03791	-0.23900	-0.28661
	y ${ }^{3}$	-0.18118	-0.07859	-0.02234	-0.40508
	y^{4}	-0.03222	-0.04961	0.03292	-0.18568
3	y1	0.00000	0.00000	0.00000	0.00000
	y^{2}	0.00000	0.00000	0.00000	0.00000
	y ${ }^{3}$	0.00000	0.00000	0.00000	0.00000
	y^{4}	0.00000	0.00000	0.00000	0.00000

Output 30.1.14 shows whether each variable is the weak exogeneity of other variables. The variable $y 1$ is not the weak exogeneity of other variables, $y 2, y 3$, and $y 4$; the variable $y 2$ is not the weak exogeneity of other variables, $y 1, y 3$, and $y 4$; the variable $y 3$ and $y 4$ are the weak exogeneity of other variables.

Output 30.1.14 Weak Exogeneity Test

Testing Weak Exogeneity of Each Variables			
Variable	DF	Chi-Square	Pr > ChiSq
y1 4	1	6.55	0.0105
y^{2}	1	12.54	0.0004
y^{3}	1	0.09	0.7695
y^{4}	1	1.81	0.1786

Example 30.2: Analysis of German Economic Variables

This example considers a three-dimensional VAR(2) model. The model contains the logarithms of a quarterly, seasonally adjusted West German fixed investment, disposable income, and consumption expenditures. The data used are in Lütkepohl (1993, Table E.1).

```
title 'Analysis of German Economic Variables';
data west;
    date = intnx( 'qtr', '01jan60'd, _n_-1 );
    format date yyq. ;
    input y1 y2 y3 @@;
    y1 = log(y1);
    y2 = log(y2);
    y3 = log(y3);
    label y1 = 'logarithm of investment'
            y2 = 'logarithm of income'
            y3 = 'logarithm of consumption';
datalines;
180}40451 415 179 465 421 185 485 434 192 4, 493 448
... more lines ...
data use;
    set west;
    where date < '01jan79'd;
    keep date y1 y2 y3;
run;
proc varmax data=use;
    id date interval=qtr;
    model y1-y3 / p=2 dify=(1)
                print=(decompose(6) impulse=(stderr) estimates diagnose)
```

printform=both lagmax=3;
causal group1=(y1) group2=(y2 y3); output lead=5;
run;
First, the differenced data is modeled as a VAR(2) with the following result:

$$
\begin{aligned}
\Delta \mathbf{y}_{t}= & \left(\begin{array}{r}
-0.01672 \\
0.01577 \\
0.01293
\end{array}\right)+\left(\begin{array}{rrr}
-0.31963 & 0.14599 & 0.96122 \\
0.04393 & -0.15273 & 0.28850 \\
-0.00242 & 0.22481 & -0.26397
\end{array}\right) \Delta \mathbf{y}_{t-1} \\
& +\left(\begin{array}{rrr}
-0.16055 & 0.11460 & 0.93439 \\
0.05003 & 0.01917 & -0.01020 \\
0.03388 & 0.35491 & -0.02223
\end{array}\right) \Delta \mathbf{y}_{t-2}+\boldsymbol{\epsilon}_{t}
\end{aligned}
$$

The parameter estimates AR1_1_2, AR1_1_3, AR2_1_2, and AR2_1_3 are insignificant, and the VARX model is fitted in the next step.

The detailed output is shown in Output 30.2.1 through Output 30.2.8.
Output 30.2.1 shows the descriptive statistics.
Output 30.2.1 Descriptive Statistics

Analysis of German Economic Variables						
The VARMAX Procedure						
Number of Observations 75						
Number of Pairwise Missing 0						
Observation(s) eliminated by differencing						
Simple Summary Statistics						
Standard						
Variable	Type	N	Mean	Deviation	Min	Max
y1	Dependent	75	0.01811	0.04680	-0.14018	0.19358
y^{2}	Dependent	75	0.02071	0.01208	-0.02888	0.05023
y^{3}	Dependent	75	0.01987	0.01040	-0.01300	0.04483
Simple Summary Statistics						
Variable Difference Label						
Y1 1 logarithm of investment						
$y^{2} 11$ logarithm of in						
$y^{3} 11$ logarithm of consumption						

Output 30.2.2 shows that a $\operatorname{VAR}(2)$ model is fit to the data.

Output 30.2.2 Parameter Estimates

Analysis of German Economic Variables				
The VARMAX Procedure				
	Type of Model		VAR (2)	
	Estimation Method		Squares Estimation	
Constant				
	Variable		Constant	
		-0.01672		
		0.01577		
		0.01293		
AR				
Lag	Variable	y1	y^{2}	y^{3}
1	y1	-0.31963	0.14599	0.96122
	y^{2}	0.04393	-0.15273	0.28850
	y 3	-0.00242	0.22481	-0.26397
2	y1	-0.16055	0.11460	0.93439
	y^{2}	0.05003	0.01917	-0.01020
	y^{3}	0.03388	0.35491	-0.02223

Output 30.2.3 shows the parameter estimates and their significance.

Output 30.2.3 Parameter Estimates Continued

Output 30.2.4 shows the innovation covariance matrix estimates, the various information criteria results, and the tests for white noise residuals. The residuals are uncorrelated except at lag 3 for $y 2$ variable.

Output 30.2.4 Diagnostic Checks

Output 30.2.5 describes how well each univariate equation fits the data. The residuals are off from the normality, but have no AR effects. The residuals for $y 1$ variable have the ARCH effect.

Output 30.2.5 Diagnostic Checks Continued

Output 30.2 .6 is the output in a matrix format associated with the PRINT=(IMPULSE=) option for the impulse response function and standard errors. The $y 3$ variable in the first row is an impulse variable. The $y 1$ variable in the first column is a response variable. The numbers, $0.96122,0.41555$, -0.40789 at lag 1 to 3 are decreasing.

Output 30.2.6 Impulse Response Function

Simple Impulse Response by Variable				
Variable				
Response\Impulse	Lag	y1	y^{2}	y^{3}
y1	1	-0.31963	0.14599	0.96122
	STD	0.12546	0.54567	0.66431
	2	-0.05430	0.26174	0.41555
	STD	0.12919	0.54728	0.66311
	3	0.11904	0.35283	-0.40789
	STD	0.08362	0.38489	0.47867
y^{2}	1	0.04393	-0.15273	0.28850
	STD	0.03186	0.13857	0.16870
	2	0.02858	0.11377	-0.08820
	STD	0.03184	0.13425	0.16250
	3	-0.00884	0.07147	0.11977
	STD	0.01583	0.07914	0.09462
y^{3}	1	-0.00242	0.22481	-0.26397
	STD	0.02568	0.11168	0.13596
	2	0.04517	0.26088	0.10998
	STD	0.02563	0.10820	0.13101
	3	-0.00055	-0.09818	0.09096
	STD	0.01646	0.07823	0.10280

The proportions of decomposition of the prediction error covariances of three variables are given in Output 30.2.7. If you see the $y 3$ variable in the first column, then the output explains that about 64.713% of the one-step-ahead prediction error covariances of the variable $y_{3 t}$ is accounted for by its own innovations, about 7.995% is accounted for by $y_{1 t}$ innovations, and about 27.292% is accounted for by $y_{2 t}$ innovations.

Output 30.2.7 Proportions of Prediction Error Covariance Decomposition

Proportions of Prediction Error Covariances by Variable				
Variable	Lead	y 1	y^{2}	y3
y1	1	1.00000	0.00000	0.00000
	2	0.95996	0.01751	0.02253
	3	0.94565	0.02802	0.02633
	4	0.94079	0.02936	0.02985
	5	0.93846	0.03018	0.03136
	6	0.93831	0.03025	0.03145
y^{2}	1	0.01754	0.98246	0.00000
	2	0.06025	0.90747	0.03228
	3	0.06959	0.89576	0.03465
	4	0.06831	0.89232	0.03937
	5	0.06850	0.89212	0.03938
	6	0.06924	0.89141	0.03935
y^{3}	1	0.07995	0.27292	0.64713
	2	0.07725	0.27385	0.64890
	3	0.12973	0.33364	0.53663
	4	0.12870	0.33499	0.53631
	5	0.12859	0.33924	0.53217
	6	0.12852	0.33963	0.53185

The table in Output 30.2.8 gives forecasts and their prediction error covariances.
Output 30.2.8 Forecasts

Forecasts						
	Standard					
Variable	Obs	Time	Forecast	Error	95\% Confidence	Limits
y1	77	1979:1	6.54027	0.04615	6.44982	6.63072
	78	1979:2	6.55105	0.05825	6.43688	6.66522
	79	1979:3	6.57217	0.06883	6.43725	6.70708
	80	1979:4	6.58452	0.08021	6.42732	6.74173
	81	1980:1	6.60193	0.09117	6.42324	6.78063
y^{2}	77	1979:1	7.68473	0.01172	7.66176	7.70770
	78	1979:2	7.70508	0.01691	7.67193	7.73822
	79	1979:3	7.72206	0.02156	7.67980	7.76431
	80	1979:4	7.74266	0.02615	7.69140	7.79392
	81	1980:1	7.76240	0.03005	7.70350	7.82130
y^{3}	77	1979:1	7.54024	0.00944	7.52172	7.55875
	78	1979:2	7.55489	0.01282	7.52977	7.58001
	79	1979:3	7.57472	0.01808	7.53928	7.61015
	80	1979:4	7.59344	0.02205	7.55022	7.63666
	81	1980:1	7.61232	0.02578	7.56179	7.66286

Output 30.2.9 shows that you cannot reject Granger noncausality from $(y 2, y 3)$ to $y 1$ using the 0.05 significance level.

Output 30.2.9 Granger Causality Tests

Granger-Causality Wald Test			
Test		Chi-Square	Pr > ChiSq
1	4	6.37	0.1734
		1 Variables: 2 Variables:	$\begin{aligned} & y^{1} \\ & y^{2} y^{3} \end{aligned}$

The following SAS statements show that the variable $y 1$ is the exogenous variable and fit the $\operatorname{VARX}(2,1)$ model to the data.

```
proc varmax data=use;
    id date interval=qtr;
    model y2 y3 = y1 / p=2 dify=(1) difx=(1) xlag=1 lagmax=3
        print=(estimates diagnose);
run;
```

The fitted $\operatorname{VARX}(2,1)$ model is written as

$$
\begin{aligned}
\binom{\Delta y_{2 t}}{\Delta y_{3 t}}= & \binom{0.01542}{0.01319}+\binom{0.02520}{0.05130} \Delta y_{1 t}+\binom{0.03870}{0.00363} \Delta y_{1, t-1} \\
& +\left(\begin{array}{rr}
-0.12258 & 0.25811 \\
0.24367 & -0.31809
\end{array}\right)\binom{\Delta y_{2, t-1}}{\Delta y_{3, t-1}} \\
& +\left(\begin{array}{rr}
0.01651 & 0.03498 \\
0.34921 & -0.01664
\end{array}\right)\binom{\Delta y_{2, t-2}}{\Delta y_{3, t-2}}+\binom{\epsilon_{1 t}}{\epsilon_{2 t}}
\end{aligned}
$$

The detailed output is shown in Output 30.2.10 through Output 30.2.13.
Output 30.2.10 shows the parameter estimates in terms of the constant, the current and the lag one coefficients of the exogenous variable, and the lag two coefficients of the dependent variables.

Output 30.2.10 Parameter Estimates

Output 30.2.11 shows the parameter estimates and their significance.

Output 30.2.11 Parameter Estimates Continued

Model Parameter Estimates						
Standard						
Equation Parameter		Estimate	Error	Value	$>\|t\|$	Variable
y^{2}	CONST1	0.01542	0.00443	3.48	0.0009	1
	XL0_1_1	0.02520	0.03130	0.81	0.4237	y 1 (t)
	XL1_1_1	0.03870	0.03252	1.19	0.2383	y $1(t-1)$
	AR1_1_1	-0.12258	0.13903	-0.88	0.3811	$\mathrm{y}^{2}(\mathrm{t}-1)$
	AR1_1_2	0.25811	0.17370	1.49	0.1421	y 3 (t-1)
	AR2_1_1	0.01651	0.13766	0.12	0.9049	$y^{2}(t-2)$
	AR2_1_2	0.03498	0.16783	0.21	0.8356	$y^{3}(t-2)$
y^{3}	CONST2	0.01319	0.00346	3.81	0.0003	1
	XL0_2_1	0.05130	0.02441	2.10	0.0394	y 1 (t)
	XL1_2_1	0.00363	0.02536	0.14	0.8868	$y^{1}(t-1)$
	AR1_2_1	0.24367	0.10842	2.25	0.0280	$\mathrm{y}^{2}(\mathrm{t}-1)$
	AR1_2_2	-0.31809	0.13546	-2.35	0.0219	y $3(t-1)$
	AR2_2_1	0.34921	0.10736	3.25	0.0018	$\mathrm{y}^{2}(\mathrm{t}-2)$
	AR2_2_2	-0.01664	0.13088	-0.13	0.8992	y 3 (t-2)

Output 30.2.12 shows the innovation covariance matrix estimates, the various information criteria results, and the tests for white noise residuals. The residuals is uncorrelated except at lag 3 for $y 2$ variable.

Output 30.2.12 Diagnostic Checks

Output 30.2.13 describes how well each univariate equation fits the data. The residuals are off from the normality, but have no ARCH and AR effects.

Output 30.2.13 Diagnostic Checks Continued

Example 30.3: Numerous Examples

The following are examples of syntax for model fitting:

```
/* Data 'a' Generated Process */
proc iml;
    sig = {1.0 0.5, 0.5 1.25};
    phi = {1.2 -0.5, 0.6 0.3};
    call varmasim(y,phi) sigma = sig n = 100 seed = 46859;
    cn = {'y1' 'y2'};
    create a from y[colname=cn];
    append from y;
run;;
/* when the series has a linear trend */
proc varmax data=a;
    model y1 y2 / p=1 trend=linear;
run;
/* Fit subset of AR order 1 and 3 */
proc varmax data=a;
    model y1 y2 / p=(1,3);
run;
```

```
/* Check if the series is nonstationary */
proc varmax data=a;
    model y1 y2 / p=1 dftest print=(roots);
run;
/* Fit VAR(1) in differencing */
proc varmax data=a;
    model y1 y2 / p=1 print=(roots) dify=(1);
run;
/* Fit VAR(1) in seasonal differencing */
proc varmax data=a;
    model y1 y2 / p=1 dify=(4) lagmax=5;
run;
/* Fit VAR(1) in both regular and seasonal differencing */
proc varmax data=a;
    model y1 y2 / p=1 dify=(1,4) lagmax=5;
run;
/* Fit VAR(1) in different differencing */
proc varmax data=a;
    model y1 y2 / p=1 dif=(y1 (1,4) y2(1)) lagmax=5;
run;
/* Options related to prediction */
proc varmax data=a;
    model y1 y2 / p=1 lagmax=3
                            print=(impulse covpe(5) decompose(5));
run;
/* Options related to tentative order selection */
proc varmax data=a;
    model y1 y2 / p=1 lagmax=5 minic
                                    print=(parcoef pcancorr pcorr);
run;
/* Automatic selection of the AR order */
proc varmax data=a;
    model y1 y2 / minic=(type=aic p=5);
run;
/* Compare results of LS and Yule-Walker Estimators */
proc varmax data=a;
    model y1 y2 / p=1 print=(yw);
run;
/* BVAR(1) of the nonstationary series y1 and y2 */
proc varmax data=a;
    model y1 y2 / p=1
        prior=(lambda=1 theta=0.2 ivar);
run;
```

```
/* BVAR(1) of the nonstationary series y1 */
proc varmax data=a;
    model y1 y2 / p=1
            prior=(lambda=0.1 theta=0.15 ivar=(y1));
run;
/* Data 'b' Generated Process */
proc iml;
    sig = { 0.5 0.14-0.08-0.03, 0.14 0.71 0.16 0.1,
            -0.08 0.16 0.65 0.23, -0.03 0.1 0.23 0.16};
    sig = sig * 0.0001;
    phi = {1.2 -0.5 0. 0.1, 0.6 0.3-0.2 0.5,
                0.4 0. -0.2 0.1, -1.0 0.2 0.7 -0.2};
    call varmasim(y,phi) sigma = sig n = 100 seed = 32567;
    cn = {'y1' 'y2' 'y3' 'y4'};
    create b from y[colname=cn];
    append from y;
quit;
/* Cointegration Rank Test using Trace statistics */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 cointtest;
run;
/* Cointegration Rank Test using Max statistics */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 cointtest=(johansen=(type=max));
run;
/* Common Trends Test using Filter(Differencing) statistics */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 cointtest=(sw);
run;
/* Common Trends Test using Filter(Residual) statistics */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 cointtest=(sw=(type=filtres lag=1));
run;
/* Common Trends Test using Kernel statistics */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 cointtest=(sw=(type=kernel lag=1));
run;
/* Cointegration Rank Test for I(2) */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 cointtest=(johansen=(iorder=2));
run;
/* Fit VECM(2) with rank=3 */
proc varmax data=b;
    model y1-y4 / p=2 lagmax=4 print=(roots iarr)
                                    ecm=(rank=3 normalize=y1);
```

```
run;
/* Weak Exogenous Testing for each variable */
proc varmax data=b outstat=bbb;
    model y1-y4 / p=2 lagmax=4
            ecm=(rank=3 normalize=y1);
    cointeg rank=3 exogeneity;
run;
/* Hypotheses Testing for long-run and adjustment parameter */
proc varmax data=b outstat=bbb;
    model y1-y4 / p=2 lagmax=4
                            ecm=(rank=3 normalize=y1);
    cointeg rank=3 normalize=y1
        h=(1 0 0, 0 1 0, -1 0 0, 0 0 1)
        j=(1 0 0, 0 1 0, 0 0 1, 0 0 0);
run;
/* ordinary regression model */
proc varmax data=grunfeld;
    model y1 y2 = x1-x3;
run;
/* Ordinary regression model with subset lagged terms */
proc varmax data=grunfeld;
    model y1 y2 = x1 / xlag=(1,3);
run;
/* VARX(1,1) with no current time Exogenous Variables */
proc varmax data=grunfeld;
    model y1 y2 = x1 / p=1 xlag=1 nocurrentx;
run;
/* VARX(1,1) with different Exogenous Variables */
proc varmax data=grunfeld;
    model y1 = x3, y2 = x1 x2 / p=1 xlag=1;
run;
/* VARX(1,2) in difference with current Exogenous Variables */
proc varmax data=grunfeld;
    model y1 y2 = x1 / p=1 xlag=2 difx=(1) dify=(1);
run;
```


Example 30.4: Illustration of ODS Graphics

This example illustrates the use of ODS Graphics. The graphical displays are requested by specifying the ODS GRAPHICS ON statement. For information about the graphics available in the VARMAX procedure, see the section "ODS Graphics" on page 2000.

The following statements use the SASHELP.WORKERS data set to study the time series of electrical
workers and its interaction with the series of masonry workers. The series and predict plots, the residual plot, and the forecast plot are created in Output 30.4.1 through Output 30.4.3. These are a selection of the plots created by the VARMAX procedure.

```
title "Illustration of ODS Graphics";
proc varmax data=sashelp.workers plot(unpack)=(residual model forecasts);
    id date interval=month;
    model electric masonry / dify=(1,12) noint p=1;
    output lead=12;
run;
```

Output 30.4.1 Series and Predicted Series Plots

Output 30.4.2 Residual Plot

Output 30.4.3 Series and Forecast Plots

References

Anderson, T. W. (1951), "Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions," Annals of Mathematical Statistics, 22, 327-351.

Ansley, C. F. and Newbold, P. (1979), "Multivariate Partial Autocorrelations," ASA Proceedings of the Business and Economic Statistics Section, 349-353.

Bollerslev, T. (1990), "Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," Review of Econometrics and Stochastics, 72, 498-505.

Engle, R. F. and Granger, C. W. J. (1987), "Co-integration and Error Correction: Representation, Estimation and Testing," Econometrica, 55, 251-276.

Engle, R. F. and Kroner, K. F. (1995), "Multivariate Simultaneous Generalized ARCH," Econometric Theory, 11, 122-150.

Golub, G. H. and Van Loan, C. F. (1983), Matrix Computations, Baltimore and London: Johns Hopkins University Press.

Goodnight, J. H. (1979), "A Tutorial on the SWEEP Operator," The American Statistician, 33, 149158.

Hosking, J. R. M. (1980), "The Multivariate Portmanteau Statistic," Journal of the American Statistical Association, 75, 602-608.

Johansen, S. (1988), "Statistical Analysis of Cointegration Vectors," Journal of Economic Dynamics and Control, 12, 231-254.

Johansen, S. (1995a), "A Statistical Analysis of Cointegration for I(2) Variables," Econometric Theory, 11, 25-59.

Johansen, S. (1995b), Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, New York: Oxford University Press.

Johansen, S. and Juselius, K. (1990), "Maximum Likelihood Estimation and Inference on Cointegration: With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, 52, 169-210.

Koreisha, S. and Pukkila, T. (1989), "Fast Linear Estimation Methods for Vector Autoregressive Moving Average Models," Journal of Time Series Analysis, 10, 325-339.

Litterman, R. B. (1986), "Forecasting with Bayesian Vector Autoregressions: Five Years of Experience," Journal of Business \& Economic Statistics, 4, 25-38.

Lütkepohl, H. (1993), Introduction to Multiple Time Series Analysis, Berlin: Springer-Verlag.
Osterwald-Lenum, M. (1992), "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, 54, 461-472.

Pringle, R. M. and Rayner, D. L. (1971), Generalized Inverse Matrices with Applications to Statistics, Second Edition, New York: McGraw-Hill Inc.

Quinn, B. G. (1980), "Order Determination for a Multivariate Autoregression," Journal of the Royal Statistical Society, B, 42, 182-185.

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, Second Edition, New York: Springer-Verlag.

Spliid, H. (1983), "A Fast Estimation for the Vector Autoregressive Moving Average Models with Exogenous Variables," Journal of the American Statistical Association, 78, 843-849.

Stock, J. H. and Watson, M. W. (1988), "Testing for Common Trends," Journal of the American Statistical Association, 83, 1097-1107.

Chapter 31

The X11 Procedure

Contents

Overview: X11 Procedure 2034
Getting Started: X11 Procedure 2034
Basic Seasonal Adjustment 2035
X-11-ARIMA 2038
Syntax: X11 Procedure 2040
Functional Summary 2041
PROC X11 Statement 2042
ARIMA Statement 2043
BY Statement 2046
ID Statement 2046
MACURVES Statement 2046
MONTHLY Statement 2047
OUTPUT Statement 2051
PDWEIGHTS Statement 2052
QUARTERLY Statement 2052
SSPAN Statement 2055
TABLES Statement 2056
VAR Statement 2056
Details: X11 Procedure 2056
Historical Development of X-11 2056
Implementation of the X-11 Seasonal Adjustment Method 2058
Computational Details for Sliding Spans Analysis 2062
Data Requirements 2064
Missing Values 2065
Prior Daily Weights and Trading-Day Regression 2065
Adjustment for Prior Factors 2066
The YRAHEADOUT Option 2067
Effect of Backcast and Forecast Length 2067
Details of Model Selection 2068
OUT= Data Set 2071
The OUTSPAN= Data Set 2071
OUTSTB= Data Set 2071
OUTTDR= Data Set 2072
Printed Output 2074

Overview: X11 Procedure

The X11 procedure, an adaptation of the U.S. Bureau of the Census X-11 Seasonal Adjustment program, seasonally adjusts monthly or quarterly time series. The procedure makes additive or multiplicative adjustments and creates an output data set containing the adjusted time series and intermediate calculations.

The X11 procedure also provides the X-11-ARIMA method developed by Statistics Canada. This method fits an ARIMA model to the original series, then uses the model forecast to extend the original series. This extended series is then seasonally adjusted by the standard X-11 seasonal adjustment method. The extension of the series improves the estimation of the seasonal factors and reduces revisions to the seasonally adjusted series as new data become available.

The X11 procedure incorporates sliding spans analysis. This type of analysis provides a diagnostic for determining the suitability of seasonal adjustment for an economic series.

Seasonal adjustment of a series is based on the assumption that seasonal fluctuations can be measured in the original series, $O_{t}, t=1, \ldots, n$, and separated from trend cycle, trading-day, and irregular fluctuations. The seasonal component of this time series, S_{t}, is defined as the intrayear variation that is repeated constantly or in an evolving fashion from year to year. The trend cycle component, C_{t}, includes variation due to the long-term trend, the business cycle, and other longterm cyclical factors. The trading-day component, D_{t}, is the variation that can be attributed to the composition of the calendar. The irregular component, I_{t}, is the residual variation. Many economic time series are related in a multiplicative fashion $\left(O_{t}=S_{t} C_{t} D_{t} I_{t}\right)$. A seasonally adjusted time series, $C_{t} I_{t}$, consists of only the trend cycle and irregular components.

Getting Started: X11 Procedure

The most common use of the X11 procedure is to produce a seasonally adjusted series. Eliminating the seasonal component from an economic series facilitates comparison among consecutive months or quarters. A plot of the seasonally adjusted series is often more informative about trends or location in a business cycle than a plot of the unadjusted series.

The following example shows how to use PROC X11 to produce a seasonally adjusted series, $C_{t} I_{t}$, from an original series $O_{t}=S_{t} C_{t} D_{t} I_{t}$.

In the multiplicative model, the trend cycle component C_{t} keeps the same scale as the original series O_{t}, while S_{t}, D_{t}, and I_{t} vary around 1.0. In all printed tables and in the output data set, these latter components are expressed as percentages, and thus will vary around 100.0 (in the additive case, they vary around 0.0).

The naming convention used in PROC X11 for the tables follows the original U.S. Bureau of the Census X-11 Seasonal Adjustment program specification (Shiskin, Young, and Musgrave 1967). Also, see the section "Printed Output" on page 2074. This convention is outlined in Figure 31.1.

The tables corresponding to parts $\mathrm{A}-\mathrm{C}$ are intermediate calculations. The final estimates of the individual components are found in the D tables: table D10 contains the final seasonal factors, table D12 contains the final trend cycle, and table D13 contains the final irregular series. If you are primarily interested in seasonally adjusting a series without consideration of intermediate calculations or diagnostics, you only need to look at table D11, the final seasonally adjusted series.

For further details about the X-11-ARIMA tables, see Ladiray and Quenneville (2001).

Basic Seasonal Adjustment

Suppose you have monthly retail sales data starting in September 1978 in a SAS data set named SALES. At this point you do not suspect that any calendar effects are present, and there are no prior adjustments that need to be made to the data.

In this simplest case, you need only specify the DATE= variable in the MONTHLY statement, which associates a SAS date value to each observation. To see the results of the seasonal adjustment, you must request table D11, the final seasonally adjusted series, in a TABLES statement.

```
data sales;
    input sales @@;
    date = intnx( 'month', '01sep1978'd, _n_-1 );
    format date monyy7.;
datalines;
... more lines ...
/*--- X-11 ARIMA ---*/
proc x11 data=sales;
    monthly date=date;
    var sales;
    tables d11;
run;
```

Figure 31.1 Basic Seasonal Adjustment
The X11 Procedure
X-11 Seasonal Adjustment Program
U. S. Bureau of the Census
Economic Research and Analysis Division
November 1, 1968

Figure 31.2 Basic Seasonal Adjustment

You can compare the original series, table B1, and the final seasonally adjusted series, table D11, by plotting them together. These tables are requested and named in the OUTPUT statement.

```
title 'Monthly Retail Sales Data (in $1000)';
proc x11 data=sales noprint;
    monthly date=date;
    var sales;
    output out=out b1=sales d11=adjusted;
run;
```

```
proc sgplot data=out;
    series x=date y=sales / markers
    markerattrs=(color=red symbol='asterisk')
    lineattrs=(color=red)
    legendlabel="original" ;
    series x=date y=adjusted / markers
                            markerattrs=(color=blue symbol='circle')
                    lineattrs=(color=blue)
                            legendlabel="adjusted" ;
    yaxis label='Original and Seasonally Adjusted Time Series';
run;
```

Figure 31.3 Plot of Original and Seasonally Adjusted Data

X-11-ARIMA

An inherent problem with the $\mathrm{X}-11$ method is the revision of the seasonal factor estimates as new data become available. The X-11 method uses a set of centered moving averages to estimate the seasonal components. These moving averages apply symmetric weights to all observations except those at the beginning and end of the series, where asymmetric weights have to be applied. These
asymmetric weights can cause poor estimates of the seasonal factors, which then can cause large revisions when new data become available.

While large revisions to seasonally adjusted values are not common, they can happen. When they do happen, it undermines the credibility of the X-11 seasonal adjustment method.

A method to address this problem was developed at Statistics Canada (Dagum 1980, 1982a). This method, known as X-11-ARIMA, applies an ARIMA model to the original data (after adjustments, if any) to forecast the series one or more years. This extended series is then seasonally adjusted, allowing symmetric weights to be applied to the end of the original data. This method was tested against a large number of Canadian economic series and was found to greatly reduce the amount of revisions as new data were added.

The X-11-ARIMA method is available in PROC X11 through the use of the ARIMA statement. The ARIMA statement extends the original series either with a user-specified ARIMA model or by an automatic selection process in which the best model from a set of five predefined ARIMA models is used.

The following example illustrates the use of the ARIMA statement. The ARIMA statement does not contain a user-specified model, so the best model is chosen by the automatic selection process. Forecasts from this best model are then used to extend the original series by one year. The following partial listing shows parameter estimates and model diagnostics for the ARIMA model chosen by the automatic selection process.

```
proc x11 data=sales;
    monthly date=date;
    var sales;
    arima;
run;
```

Figure 31.4 X-11-ARIMA Model Selection

Figure 31.4 continued

Table D11 (final seasonally adjusted series) is now constructed using symmetric weights on observations at the end of the actual data. This should result in better estimates of the seasonal factors and, thus, smaller revisions in Table D11 as more data become available.

Syntax: X11 Procedure

The X11 procedure uses the following statements:

```
PROC X11 options;
    ARIMA options;
    BY variables;
    ID variables;
    MACURVES option;
    MONTHLY options;
    OUTPUT OUT=dataset options;
    PDWEIGHTS option;
    QUARTERLY options;
    SSPAN options;
    TABLES tablenames;
    VAR variables;
```

Either the MONTHLY or QUARTERLY statement must be specified, depending on the type of time series data you have. The PDWEIGHTS and MACURVES statements can be used only with the MONTHLY statement. The TABLES statement controls the printing of tables, while the OUTPUT statement controls the creation of the OUT= data set.

Functional Summary

The statements and options controlling the X11 procedures are summarized in the following table.

Description	Statement	Option

Data Set Options

specify input data set
write the trading-day regression results to an output data set
write the stable seasonality test results to an output data set write table values to an output data set add extrapolated values to the output data set add year ahead estimates to the output data set write the sliding spans analysis results to an output data set

PROC X11
PROC X11

PROC X11

OUTPUT
PROC X11
PROC X11
PROC X11

PROC X11	NOPRINT
ARIMA	NOPRINT
ARIMA	PRINTALL
TABLES	
MONTHLY	PRINTOUT=
QUARTERLY	PRINTOUT=
MONTHLY	CHARTS=
QUARTERLY	CHARTS=
ARIMA	PRINTFP
MONTHLY	NDEC=
QUARTERLY	NDEC=
SSPAN	NOPRINT
SSPAN	PRINTALL

Date Information Options

specify a SAS date variable
specify the beginning date
specify the ending date
specify beginning year for trading-day regression

MONTHLY DATE=
QUARTERLY DATE=
MONTHLY START=
QUARTERLY START=
MONTHLY END=
QUARTERLY END=
MONTHLY

DATA=
OUTTDR=

OUTSTB=

OUT=
OUTEX
YRAHEADOUT
OUTSPAN=

PRINTOUT=
PRINTOUT= CHARTS = CHARTS= PRINTFP

PRINTALL

TDCOMPUTE=

Declaring the Role of Variables specify BY-group processing

PROC X11 Statement

PROC X11 options ;

The following options can appear in the PROC X11 statement:

DATA $=$ SAS-data-set

specifies the input SAS data set used. If it is omitted, the most recently created SAS data set is used.

OUTEXTRAP

adds the extra observations used in ARIMA processing to the output data set.
When ARIMA forecasting/backcasting is requested, extra observations are appended to the ends of the series, and the calculations are carried out on this extended series. The appended observations are not normally written to the OUT= data set. However, if OUTEXTRAP is specified, these extra observations are written to the output data set. If a DATE= variable is specified in the MONTHLY/QUARTERLY statement, the date variable is extrapolated to identify forecasts/backcasts. The OUTEXTRAP option can be abbreviated as OUTEX.

NOPRINT

suppresses any printed output. The NOPRINT option overrides any PRINTOUT=, CHARTS $=$, or TABLES statement and any output associated with the ARIMA statement.

OUTSPAN= SAS-data-set

specifies the output data set to store the sliding spans analysis results. Tables A1, C18, D10, and D11 for each span are written to this data set. See the section "The OUTSPAN= Data Set" on page 2071 for details.

OUTSTB= SAS-data-set

specifies the output data set to store the stable seasonality test results (table D8). All the information in the analysis of variance table associated with the stable seasonality test is contained in the variables written to this data set. See the section "OUTSTB= Data Set" on page 2071 for details.

OUTTDR= SAS-data-set

specifies the output data set to store the trading-day regression results (tables B15 and C15). All the information in the analysis of variance table associated with the trading-day regression is contained in the variables written to this data set. This option is valid only when TDREGR=PRINT, TEST, or ADJUST is specified in the MONTHLY statement. See the section "OUTTDR= Data Set" on page 2072 for details.

YRAHEADOUT

adds one-year-ahead forecast values to the output data set for tables C16, C18, and D10. The original purpose of this option was to avoid recomputation of the seasonal adjustment factors when new data became available. While computing costs were an important factor when the $\mathrm{X}-11$ method was developed, this is no longer the case and this option is obsolete. See the section "The YRAHEADOUT Option" on page 2067 for details.

ARIMA Statement

ARIMA options ;

The ARIMA statement applies the X-11-ARIMA method to the series specified in the VAR statement. This method uses an ARIMA model estimated from the original data to extend the series one or more years. The ARIMA statement options control the ARIMA model used and the estimation, forecasting, and printing of this model.

There are two ways of obtaining an ARIMA model to extend the series. A model can be given explicitly with the MODEL= and TRANSFORM= options. Alternatively, the best-fitting model from a set of five predefined models is found automatically whenever the MODEL= option is absent. See the section "Details of Model Selection" on page 2068 for details.

BACKCAST $=n$

specifies the number of years to backcast the series. The default is BACKCAST=0. See the section "Effect of Backcast and Forecast Length" on page 2067 for details.

CHICR= value

specifies the criteria for the significance level for the Box-Ljung chi-square test for lack of fit when testing the five predefined models. The default is CHICR $=0.05$. The CHICR= option values must be between 0.01 and 0.90 . The hypothesis being tested is that of model adequacy. Nonrejection of the hypothesis is evidence for an adequate model. Making the CHICR= value smaller makes it easier to accept the model. See the section "Criteria Details" on page 2069 for further details on the CHICR= option.

CONVERGE= value

specifies the convergence criterion for the estimation of an ARIMA model. The default value is 0.001 . The CONVERGE= value must be positive.

FORECAST= n

specifies the number of years to forecast the series. The default is FORECAST=1. See the section "Effect of Backcast and Forecast Length" on page 2067 for details.

MAPECR= value

specifies the criteria for the mean absolute percent error (MAPE) when testing the five predefined models. A small MAPE value is evidence for an adequate model; a large MAPE value results in the model being rejected. The MAPECR= value is the boundary for acceptance/rejection. Thus a larger MAPECR= value would make it easier for a model to pass the criteria. The default is MAPECR=15. The MAPECR= option values must be between 1 and 100. See the section "Criteria Details" on page 2069 for further details on the MAPECR= option.

MAXITER $=n$

specifies the maximum number of iterations in the estimation process. MAXITER must be between 1 and 60 ; the default value is 15 .

METHOD= CLS

METHOD= ULS

METHOD= ML

specifies the estimation method. ML requests maximum likelihood, ULS requests unconditional least squares, and CLS requests conditional least squares. METHOD=CLS is the default. The maximum likelihood estimates are more expensive to compute than the conditional least squares estimates. In some cases, however, they can be preferable. For further information on the estimation methods, see "Estimation Details" on page 248 in Chapter 7, "The ARIMA Procedure."

MODEL= ($\mathbf{P}=n 1$ Q=n2 SP=n3 SQ=n4 DIF=n5 SDIF=n6 < NOINT > < CENTER >)
specifies the ARIMA model. The AR and MA orders are given by $\mathrm{P}=n 1$ and $\mathrm{Q}=n 2$, respectively, while the seasonal AR and MA orders are given by $\mathrm{SP}=n 3$ and $\mathrm{SQ}=n 4$, respectively. The lag corresponding to seasonality is determined by the MONTHLY or QUARTERLY statement. Similarly, differencing and seasonal differencing are given by DIF=n5 and SDIF=n6, respectively.

For example

```
arima model=( p=2 q=1 sp=1 dif=1 sdif=1 );
```

specifies a $(2,1,1)(1,1,0) s$ model, where s, the seasonality, is either 12 (monthly) or 4 (quarterly). More examples of the MODEL= syntax are given in the section "Details of Model Selection" on page 2068.

NOINT
suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the parameter μ is omitted.)

CENTER

centers each time series by subtracting its sample mean. The analysis is done on the centered data. Later, when forecasts are generated, the mean is added back. Note that centering is done after differencing. The CENTER option is normally used in conjunction with the NOCONSTANT option of the ESTIMATE statement.

For example, to fit an $\operatorname{AR}(1)$ model on the centered data without an intercept, use the following ARIMA statement:

```
arima model=( p=1 center noint );
```


NOPRINT

suppresses the normal printout generated by the ARIMA statement. Note that the effect of specifying the NOPRINT option in the ARIMA statement is different from the effect of specifying the NOPRINT in the PROC X11 statement, since the former only affects ARIMA output.

OVDIFCR= value

specifies the criteria for the over-differencing test when testing the five predefined models. When the MA parameters in one of these models sum to a number close to 1.0 , this is an indication of over-parameterization and the model is rejected. The OVDIFCR= value is the boundary for this rejection; values greater than this value fail the over-differencing test. A larger OVDIFCR= value would make it easier for a model to pass the criteria. The default is OVDIFCR=0.90. The OVDIFCR= option values must be between 0.80 and 0.99 . See the section "Criteria Details" on page 2069 for further details on the OVDIFCR= option.

PRINTALL

provides the same output as the default printing for all models fit and, in addition, prints an estimation summary and chi-square statistics for each model fit. See "Printed Output" on page 2074 for details.

PRINTFP

prints the results for the initial pass of X11 made to exclude trading-day effects. This option has an effect only when the TDREGR= option specifies ADJUST, TEST, or PRINT. In these cases, an initial pass of the standard X11 method is required to get rid of calendar effects before doing any ARIMA estimation. Usually this first pass is not of interest, and by default no tables are printed. However, specifying PRINTFP in the ARIMA statement causes any tables printed in the final pass to also be printed for this initial pass.

TRANSFORM= (LOG) | LOG
TRANSFORM = (constant ** power)
The ARIMA statement in PROC X11 allows certain transformations on the series before estimation. The specified transformation is applied only to a user-specified model. If TRANSFORM= is specified and the MODEL= option is not specified, the transformation request is ignored and a warning is printed.

The LOG transformation requests that the natural log of the series be used for estimation. The resulting forecast values are transformed back to the original scale.

A general power transformation of the form $X_{t} \rightarrow\left(X_{t}+a\right)^{b}$ is obtained by specifying

```
transform= ( a ** b )
```

If the constant a is not specified, it is assumed to be zero. The specified ARIMA model is then estimated using the transformed series. The resulting forecast values are transformed back to the original scale.

BY Statement

BY variables ;

A BY statement can be used with PROC X11 to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the procedure expects the input DATA= data set to be sorted in order of the BY variables.

ID Statement

ID variables ;
If you are creating an output data set, use the ID statement to put values of the ID variables, in addition to the table values, into the output data set. The ID statement has no effect when an output data set is not created. If the DATE= variable is specified in the MONTHLY or QUARTERLY statement, this variable is included automatically in the OUTPUT data set. If no DATE= variable is specified, the variable _DATE_ is added.

The date variable (or_DATE_) values outside the range of the actual data (from ARIMA forecasting or backcasting, or from YRAHEADOUT) are extrapolated, while all other ID variables are missing.

MACURVES Statement

The MACURVES statement specifies the length of the moving-average curves for estimating the seasonal factors for any month. This statement can be used only with monthly time series data.

The month=option specifications consist of the month name (or the first three letters of the month name), an equal sign, and one of the following option values:
'3' specifies a three-term moving average for the month
'3X3' specifies a three-by-three moving average
'3X5' specifies a three-by-five moving average
'3X9' specifies a three-by-nine moving average
STABLE specifies a stable seasonal factor (average of all values for the month)
For example, the statement

```
macurves jan='3' feb=' 3x3' march=' 3x5' april=' 3x9';
```

uses a three-term moving average to estimate seasonal factors for January, a 3×3 (a three-term moving average of a three-term moving average) for February, a 3×5 (a three-term moving average of a five-term moving average) for March, and a 3×9 (a three-term moving average of a nine-term moving average) for April.

The numeric values used for the weights of the various moving averages and a discussion of the derivation of these weights are given in Shiskin, Young, and Musgrave (1967). A general discussion of moving average weights is given in Dagum (1985).

If the specification for a month is omitted, the X11 procedure uses a three-by-three moving average for the first estimate of each iteration and a three-by-five average for the second estimate.

MONTHLY Statement

MONTHLY options ;

The MONTHLY statement must be used when the input data to PROC X11 are a monthly time series. The MONTHLY statement specifies options that determine the computations performed by PROC X11 and what is included in its output. Either the DATE= or START= option must be used.

The following options can appear in the MONTHLY statement.

ADDITIVE

performs additive adjustments. If the ADDITIVE option is omitted, PROC X11 performs multiplicative adjustments.

CHARTS= STANDARD

CHARTS= FULL

CHARTS= NONE

specifies the charts produced by the procedure. The default is CHARTS=STANDARD, which specifies 12 monthly seasonal charts and a trend cycle chart. If you specify CHARTS=FULL (or CHARTS=ALL), the procedure prints additional charts of irregular and seasonal factors. To print no charts, specify CHARTS=NONE.

The TABLES statement can also be used to specify particular monthly charts to be printed. If no CHARTS = option is given, and a TABLES statement is given, the TABLES statement overrides the default value of CHARTS=STANDARD; that is, no charts (or tables) are printed except those specified in the TABLES statement. However, if both the CHARTS $=$ option and a TABLES statement are given, the charts corresponding to the CHARTS= option and those requested by the TABLES statement are printed.

For example, suppose you wanted only charts G1, the final seasonally adjusted series and trend cycle, and G4, the final irregular and final modified irregular series. You would specify the following statements:

```
monthly date=date;
tables g1 g4;
```


DATE= variable

specifies a variable that gives the date for each observation. The starting and ending dates are obtained from the first and last values of the DATE= variable, which must contain SAS date values. The procedure checks values of the DATE= variable to ensure that the input observations are sequenced correctly. This variable is automatically added to the OUTPUT= data set if one is requested and extrapolated if necessary. If the DATE= option is not specified, the START= option must be specified.

The DATE $=$ option and the START= and END= options can be used in combination to subset a series for processing. For example, suppose you have 12 years of monthly data ($144 \mathrm{ob}-$ servations, no missing values) beginning in January 1970 and ending in December 1981, and you wanted to seasonally adjust only six years beginning in January 1974. Specifying
monthly date=date start=jan1974 end=dec1979;
would seasonally adjust only this subset of the data. If instead you wanted to adjust the last eight years of data, only the START= option is needed:

```
monthly date=date start=jan1974;
```


END= mmmyyyy

specifies that only the part of the input series ending with the month and year given be adjusted (for example, END=DEC1970). See the DATE=variable option for using the START= and END $=$ options to subset a series for processing.

EXCLUDE= value

excludes from the trading-day regression any irregular values that are more than value standard deviations from the mean. The EXCLUDE=value must be between 0.1 and 9.9 , with the default value being 2.5 .

FULLWEIGHT= value

assigns weights to irregular values based on their distance from the mean in standard deviation units. The weights are used for estimating seasonal and trend cycle components. Irregular values less than the FULLWEIGHT= value (in standard deviation units) are assigned full weights of 1 , values that fall between the ZEROWEIGHT= and FULLWEIGHT= limits are assigned weights linearly graduated between 0 and 1 , and values greater than the ZEROWEIGHT= limit are assigned a weight of 0 .

For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3 standard deviations from the mean would be assigned a graduated weight. The FULLWEIGHT=value must be between 0.1 and 9.9 but must be less than the ZEROWEIGHT=value. The default is FULLWEIGHT=1.5.

LENGTH

includes length-of-month allowance in computing trading-day factors. If this option is omitted, length-of-month allowances are included with the seasonal factors.

NDEC= n

specifies the number of decimal places shown in the printed tables in the listing. This option has no effect on the precision of the variable values in the output data set.

PMFACTOR= variable

specifies a variable containing the prior monthly factors. Use this option if you have previous knowledge of monthly adjustment factors. The PMFACTOR= option can be used to make the following adjustments:

- adjust the level of all or part of a series with discontinuities
- adjust for the influence of holidays that fall on different dates from year to year, such as the effect of Easter on certain retail sales
- adjust for unreasonable weather influence on series, such as housing starts
- adjust for changing starting dates of fiscal years (for budget series) or model years (for automobiles)
- adjust for temporary dislocating events, such as strikes

See the section "Prior Daily Weights and Trading-Day Regression" on page 2065 for details and examples using the PMFACTOR= option.

PRINTOUT= STANDARD | LONG | FULL | NONE

specifies the tables to be printed by the procedure. If the PRINTOUT=STANDARD option is specified, between 17 and 27 tables are printed, depending on the other options that are specified. PRINTOUT=LONG prints between 27 and 39 tables, and PRINTOUT=FULL prints between 44 and 59 tables. Specifying PRINTOUT=NONE results in no tables being printed; however, charts are still printed. The default is PRINTOUT=STANDARD.

The TABLES statement can also be used to specify particular monthly tables to be printed. If no PRINTOUT= option is specified, and a TABLES statement is given, the TABLES statement overrides the default value of PRINTOUT=STANDARD; that is, no tables (or charts) are printed except those given in the TABLES statement. However, if both the PRINTOUT=
option and a TABLES statement are specified, the tables corresponding to the PRINTOUT= option and those requested by the TABLES statement are printed.

START= mmmyyyy

adjusts only the part of the input series starting with the specified month and year. When the DATE $=$ option is not used, the START= option gives the year and month of the first input observation - for example, START=JAN1966. START = must be specified if DATE= is not given. If START= is specified (and no DATE= option is given), and an OUT= data set is requested, a variable named _DATE_ is added to the data set, giving the date value for each observation. See the DATE= variable option for using the START= and END= options to subset a series.

SUMMARY

specifies that the data are already seasonally adjusted and the procedure is to produce summary measures. If the SUMMARY option is omitted, the X11 procedure performs seasonal adjustment of the input data before calculating summary measures.

TDCOMPUTE= year

uses the part of the input series beginning with January of the specified year to derive tradingday weights. If this option is omitted, the entire series is used.

TDREGR= NONE | PRINT | ADJUST | TEST

specifies the treatment of trading-day regression. TDREG=NONE omits the computation of the trading-day regression. TDREG=PRINT computes and prints the trading-day regressions but does not adjust the series. TDREG=ADJUST computes and prints the trading-day regression and adjusts the irregular components to obtain preliminary weights. TDREG=TEST adjusts the final series if the trading-day regression estimates explain significant variation on the basis of an F test (or residual trading-day variation if prior weights are used). The default is TDREGR=NONE.

See the section "Prior Daily Weights and Trading-Day Regression" on page 2065 for details and examples using the TDREGR= option.

If ARIMA processing is requested, any value of TDREGR other than the default TDREGR=NONE will cause PROC X11 to perform an initial pass (see the "Details: X11 Procedure" on page 2056 section and the PRINTFP option).

The significance level reported in Table C15 should be viewed with caution. The dependent variable in the trading-day regression is the irregular component formed by an averaging operation. This induces a correlation in the dependent variable and hence in the residuals from which the F test is computed. Hence the distribution of the trading-day regression F statistics differs from an exact F; see Cleveland and Devlin (1980) for details.

TRENDADJ

modifies extreme irregular values prior to computing the trend cycle estimates in the first iteration. If the TRENDADJ option is omitted, the trend cycle is computed without modifications for extremes.

TRENDMA= 9 | 13 | 23

specifies the number of terms in the moving average to be used by the procedure in estimating
the variable trend cycle component. The value of the TRENDMA= option must be 9,13 , or 23. If the TRENDMA= option is omitted, the procedure selects an appropriate moving average. For information about the number of terms in the moving average, see Shiskin, Young, and Musgrave (1967).

ZEROWEIGHT= value

assigns weights to irregular values based on their distance from the mean in standard deviation units. The weights are used for estimating seasonal and trend cycle components. Irregular values beyond the standard deviation limit specified in the ZEROWEIGHT= option are assigned zero weights. Values that fall between the two limits (ZEROWEIGHT= and FULLWEIGHT=) are assigned weights linearly graduated between 0 and 1 . For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3 standard deviations from the mean would be assigned a graduated weight. The ZEROWEIGHT=value must be between 0.1 and 9.9 but must be greater than the FULLWEIGHT=value. The default is ZEROWEIGHT=2.5.

The ZEROWEIGHT option can be used in conjunction with the FULLWEIGHT= option to adjust outliers from a monthly or quarterly series. See Example 31.3 later in this chapter for an illustration of this use.

OUTPUT Statement

OUTPUT OUT= SAS-data-set tablename=var1 var2 . . . ;

The OUTPUT statement creates an output data set containing specified tables. The data set is named by the OUT= option.

OUT= SAS-data-set

If OUT $=$ is omitted, the SAS System names the new data set by using the DATA n convention.
For each table to be included in the output data set, write the X11 table identification keyword, an equal sign, and a list of new variable names:
tablename $=\operatorname{var} 1 \operatorname{var} 2 \ldots$
The tablename keywords that can be used in the OUTPUT statement are listed in the section "Printed Output" on page 2074. The following is an example of a VAR statement and an OUTPUT statement:

```
var z1 z2 z3;
output out=out_x11 b1=s d11=w x y;
```

The variable s contains the table B1 values for the variable $z 1$, while the table D11 values for variables $z 1$, $z 2$, and $z 3$ are contained in variables w, x, and y, respectively. As this example shows, the list of variables following a tablename $=$ keyword can be shorter than the VAR variable list.

In addition to the variables named by tablename =varl var2 ..., the ID variables, and BY variables, the output data set contains a date identifier variable. If the DATE= option is given
in the MONTHLY or QUARTERLY statement, the DATE= variable is the date identifier. If no DATE = option is given, a variable named _DATE_ is the date identifier.

PDWEIGHTS Statement

```
PDWEIGHTS day=w ... ;
```

The PDWEIGHTS statement can be used to specify one to seven daily weights. The statement can only be used with monthly series that are seasonally adjusted using the multiplicative model. These weights are used to compute prior trading-day factors, which are then used to adjust the original series prior to the seasonal adjustment process. Only relative weights are needed; the X11 procedure adjusts the weights so that they sum to 7.0 . The weights can also be corrected by the procedure on the basis of estimates of trading-day variation from the input data.

See the section "Prior Daily Weights and Trading-Day Regression" on page 2065 for details and examples using the PDWEIGHTS statement.

Each day=w option specifies a weight (w) for the named day. The day can be any day, Sunday through Saturday. The day keyword can be the full spelling of the day, or the three-letter abbreviation. For example, SATURDAY=1.0 and SAT=1.0 are both valid. The weights w must be numeric value between 0.0 and 10.0.

The following is an example of a PDWEIGHTS statement:

```
pdweights sun=.2 mon=. 9 tue=1 wed=1 thu=1 fri=. 8 sat=.3;
```

Any number of days can be specified with one PDWEIGHTS statement. The default weight value for any day that is not specified is 0 . If you do not use a PDWEIGHTS statement, the program computes daily weights if TDREGR=ADJUST is specified. See Shiskin, Young, and Musgrave (1967) for details.

QUARTERLY Statement

QUARTERLY options;

The QUARTERLY statement must be used when the input data are quarterly time series. This statement includes options that determine the computations performed by the procedure and what is in the printed output. The DATE= option or the START= option must be used.

The following options can appear in the QUARTERLY statement.

ADDITIVE

performs additive adjustments. If this option is omitted, the procedure performs multiplicative adjustments.

CHARTS= STANDARD

CHARTS= FULL

CHARTS = NONE

specifies the charts to be produced by the procedure. The default value is CHARTS=STANDARD, which specifies four quarterly seasonal charts and a trend cycle chart. If you specify CHARTS=FULL (or CHARTS=ALL), the procedure prints additional charts of irregular and seasonal factors. To print no charts, specify CHARTS=NONE. The TABLES statement can also be used to specify particular charts to be printed. The presence of a TABLES statement overrides the default value of CHARTS=STANDARD; that is, if a TABLES statement is specified, and no CHARTS=option is specified, no charts (nor tables) are printed except those given in the TABLES statement. However, if both the CHARTS= option and a TABLES statement are given, the charts corresponding to the CHARTS $=$ option and those requested by the TABLES statement are printed.

For example, suppose you wanted only charts G1, the final seasonally adjusted series and trend cycle, and G4, the final irregular and final modified irregular series. This is accomplished by specifying the following statements:

```
quarterly date=date;
tables g1 g4;
```


DATE= variable

specifies a variable that gives the date for each observation. The starting and ending dates are obtained from the first and last values of the DATE= variable, which must contain SAS date values. The procedure checks values of the DATE= variable to ensure that the input observations are sequenced correctly. This variable is automatically added to the OUTPUT= data set if one is requested, and extrapolated if necessary. If the DATE= option is not specified, the $\mathrm{START}=$ option must be specified .

The DATE= option and the START= and END= options can be used in combination to subset a series for processing. For example, suppose you have a series with 10 years of quarterly data (40 observations, no missing values) beginning in '1970Q1' and ending in '1979Q4', and you want to seasonally adjust only four years beginning in '1974Q1' and ending in '1977Q4'. Specifying

```
quarterly date=variable start='1974q1' end='1977q4';
```

seasonally adjusts only this subset of the data. If instead you wanted to adjust the last six years of data, only the START= option is needed:

```
quarterly date=variable start='1974q1';
```

END = 'yyyyQq'
specifies that only the part of the input series ending with the quarter and year given be adjusted (for example, END='1973Q4'). The specification must be enclosed in quotes and q must be $1,2,3$, or 4 . See the DATE= variable option for using the START= and END= options to subset a series.

FULLWEIGHT= value

assigns weights to irregular values based on their distance from the mean in standard deviation
units. The weights are used for estimating seasonal and trend cycle components. Irregular values less than the FULLWEIGHT= value (in standard deviation units) are assigned full weights of 1 , values that fall between the ZEROWEIGHT= and FULLWEIGHT= limits are assigned weights linearly graduated between 0 and 1, and values greater than the ZEROWEIGHT= limit are assigned a weight of 0 .

For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3 standard deviations from the mean would be assigned a graduated weight. The default is FULLWEIGHT=1.5.

NDEC= n

specifies the number of decimal places shown on the output tables. This option has no effect on the precision of the variables in the output data set.

PRINTOUT= STANDARD
PRINTOUT= LONG
PRINTOUT= FULL

PRINTOUT= NONE

specifies the tables to print. If PRINTOUT=STANDARD is specified, between 17 and 27 tables are printed, depending on the other options that are specified. PRINTOUT=LONG prints between 27 and 39 tables, and PRINTOUT=FULL prints between 44 and 59 tables. Specifying PRINTOUT=NONE results in no tables being printed. The default is PRINTOUT=STANDARD.

The TABLES statement can also specify particular quarterly tables to be printed. If no PRINTOUT = is given, and a TABLES statement is given, the TABLES statement overrides the default value of PRINTOUT=STANDARD; that is, no tables (or charts) are printed except those given in the TABLES statement. However, if both the PRINTOUT= option and a TABLES statement are given, the tables corresponding to the PRINTOUT= option and those requested by the TABLES statement are printed.

START= 'yyyyQq'
adjusts only the part of the input series starting with the quarter and year given. When the DATE $=$ option is not used, the START= option gives the year and quarter of the first input observation (for example, START='1967Q1'). The specification must be enclosed in quotes, and q must be $1,2,3$, or 4 . START = must be specified if the DATE= option is not given. If START = is specified (and no DATE= is given), and an OUTPUT= data set is requested, a variable named _DATE_ is added to the data set, giving the date value for a given observation. See the DATE= option for using the START= and END= options to subset a series.

SUMMARY

specifies that the input is already seasonally adjusted and that the procedure is to produce summary measures. If this option is omitted, the procedure performs seasonal adjustment of the input data before calculating summary measures.

TRENDADJ

modifies extreme irregular values prior to computing the trend cycle estimates. If this option is omitted, the trend cycle is computed without modification for extremes.

ZEROWEIGHT= value

assigns weights to irregular values based on their distance from the mean in standard deviation units. The weights are used for estimating seasonal and trend cycle components. Irregular values beyond the standard deviation limit specified in the ZEROWEIGHT= option are assigned zero weights. Values that fall between the two limits (ZEROWEIGHT= and FULLWEIGHT=) are assigned weights linearly graduated between 0 and 1 . For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3 standard deviations from the mean would be assigned a graduated weight. The default is ZEROWEIGHT=2.5

The ZEROWEIGHT option can be used in conjunction with the FULLWEIGHT= option to adjust outliers from a monthly or quarterly series. See Example 31.3 later in this chapter for an illustration of this use.

SSPAN Statement

SSPAN options ;

The SSPAN statement applies sliding spans analysis to determine the suitability of seasonal adjustment for an economic series.

The following options can appear in the SSPAN statement:

NDEC= n

specifies the number of decimal places shown on selected sliding span reports. This option has no effect on the precision of the variables values in the OUTSPAN output data set.

CUTOFF= value

gives the percentage value for determining an excessive difference within a span for the seasonal factors, the seasonally adjusted series, and month-to-month and year-to-year differences in the seasonally adjusted series. The default value is 3.0. The use of the CUT$\mathrm{OFF}=$ value in determining the maximum percent difference (MPD) is described in the section "Computational Details for Sliding Spans Analysis" on page 2062. Caution should be used in changing the default CUTOFF=value. The empirical threshold ranges found by the U.S. Census Bureau no longer apply when value is changed.

TDCUTOFF= value

gives the percentage value for determining an excessive difference within a span for the trading-day factors. The default value is 2.0 . The use of the TDCUTOFF=value in determining the maximum percent difference (MPD) is described in the section "Computational Details for Sliding Spans Analysis" on page 2062. Caution should be used in changing the default TDCUTOFF=value. The empirical threshold ranges found by the U.S. Census Bureau no longer apply when the value is changed.

NOPRINT

suppresses all sliding span reports. See "Computational Details for Sliding Spans Analysis" on page 2062 for more details on sliding span reports.

PRINT

prints the summary sliding span reports S 0 through S 6.E.

PRINTALL

prints the summary sliding spans report S 0 through S 6.E, along with detail reports S 7.A through S 7.E.

TABLES Statement

TABLES tablenames ;

The TABLES statement prints the tables specified in addition to the tables that are printed as a result of the PRINTOUT= option in the MONTHLY or QUARTERLY statement. Table names are listed in Table 31.4 later in this chapter.

To print only selected tables, omit the PRINTOUT= option in the MONTHLY or QUARTERLY statement and list the tables to be printed in the TABLES statement. For example, to print only the final seasonal factors and final seasonally adjusted series, use the statement

```
tables d10 d11;
```


VAR Statement

VAR variables ;
The VAR statement is used to specify the variables in the input data set that are to be analyzed by the procedure. Only numeric variables can be specified. If the VAR statement is omitted, all numeric variables are analyzed except those appearing in a BY or ID statement or the variable named in the DATE= option in the MONTHLY or QUARTERLY statement.

Details: X11 Procedure

Historical Development of X-11

This section briefly describes the historical development of the standard X-11 seasonal adjustment method and the later development of the X-11-ARIMA method. Most of the following discussion is based on a comprehensive article by Bell and Hillmer (1984), which describes the history of $\mathrm{X}-11$ and the justification of using seasonal adjustment methods, such as $\mathrm{X}-11$, given the current
availability of time series software. For further discussions about statistical problems associated with the X-11 method, see Ghysels (1990).

Seasonal adjustment methods began to be developed in the 1920s and 1930s, before there were suitable analytic models available and before electronic computing devices were in existence. The lack of any suitable model led to methods that worked the same for any series - that is, methods that were not model-based and that could be applied to any series. Experience with economic series had shown that a given mathematical form could adequately represent a time series only for a fixed length; as more data were added, the model became inadequate. This suggested an approach that used moving averages. For further analysis of the properties of X-11 moving averages, see Cleveland and Tiao (1976).

The basic method was to break up an economic time series into long-term trend, long-term cyclical movements, seasonal movements, and irregular fluctuations.

Early investigators found that it was not possible to uniquely decompose the trend and cycle components. Thus, these two were grouped together; the resulting component is usually referred to as the "trend cycle component."

It was also found that estimating seasonal components in the presence of trend produced biased estimates of the seasonal components, but, at the same time, estimating trend in the presence of seasonality was difficult. This eventually lead to the iterative approach used in the X-11 method.

Two other problems were encountered by early investigators. First, some economic series appear to have changing or evolving seasonality. Secondly, moving averages were very sensitive to extreme values. The estimation method used in the X-11 method allows for evolving seasonal components. For the second problem, the X-11 method uses repeated adjustment of extreme values.

All of these problems encountered in the early investigation of seasonal adjustment methods suggested the use of moving averages in estimating components. Even with the use of moving averages instead of a model-based method, massive amounts of hand calculations were required. Only a small number of series could be adjusted, and little experimentation could be done to evaluate variations on the method.

With the advent of electronic computing in the 1950s, work on seasonal adjustment methods proceeded rapidly. These methods still used the framework previously described; variants of these basic methods could now be easily tested against a large number of series.

Much of the work was done by Julian Shiskin and others at the U.S. Bureau of the Census beginning in 1954 and culminating after a number of variants into the X-11 Variant of the Census Method II Seasonal Adjustment Program, which PROC X11 implements.

References for this work during this period include Shiskin and Eisenpress (1957), Shiskin (1958), and Marris (1961). The authoritative documentation for the X-11 Variant is in Shiskin, Young, and Musgrave (1967). This document is not equivalent to a program specification; however, the FORTRAN code that implements the X-11 Variant is in the public domain. A less detailed description of the X-11 Variant is given in U.S. Bureau of the Census (1969).

Development of the X-11-ARIMA Method

The X-11 method uses symmetric moving averages in estimating the various components. At the end of the series, however, these symmetric weights cannot be applied. Either asymmetric weights have to be used, or some method of extending the series must be found.

While various methods of extending a series have been proposed, the most important method to date has been the X-11-ARIMA method developed at Statistics Canada. This method uses Box-Jenkins ARIMA models to extend the series.

The Time Series Research and Analysis Division of Statistics Canada investigated 174 Canadian economic series and found five ARIMA models out of twelve that fit the majority of series well and reduced revisions for the most recent months. References that give details of various aspects of the X-11-ARIMA methodology include Dagum (1980, 1982a, c, 1983, 1988), Laniel (1985), Lothian and Morry (1978a), and Huot et al. (1986).

Differences between X11ARIMA/88 and PROC X11

The original implementation of the X-11-ARIMA method was by Statistics Canada in 1980 (Dagum 1980), with later changes and enhancements made in 1988 (Dagum 1988). The calculations performed by PROC X11 differ from those in X11ARIMA/88, which will result in differences in the final component estimates provided by these implementations.

There are three areas where Statistics Canada made changes to the original $\mathrm{X}-11$ seasonal adjustment method in developing X11ARIMA/80 (Monsell 1984). These are (a) selection of extreme values, (b) replacement of extreme values, and (c) generation of seasonal and trend cycle weights.

These changes have not been implemented in the current version of PROC X11. Thus the procedure produces results identical to those from previous versions of PROC X11 in the absence of an ARIMA statement.

Additional differences can result from the ARIMA estimation. X11ARIMA/88 uses conditional least squares (CLS), while CLS, unconditional least squares (ULS) and maximum likelihood (ML) are all available in PROC X11 by using the METHOD= option in the ARIMA statement. Generally, parameters estimates will differ for the different methods.

Implementation of the X-11 Seasonal Adjustment Method

The following steps describe the analysis of a monthly time series using multiplicative seasonal adjustment. Additional steps used by the X-11-ARIMA method are also indicated. Equivalent descriptions apply for an additive model if you replace divide with subtract where applicable.

In the multiplicative adjustment, the original series O_{t} is assumed to be of the form

$$
O_{t}=C_{t} S_{t} I_{t} P_{t} D_{t}
$$

where C_{t} is the trend cycle component, S_{t} is the seasonal component, I_{t} is the irregular component, P_{t} is the prior monthly factors component, and D_{t} is the trading-day component.

The trading-day component can be further factored as

$$
D_{t}=D_{r, t} D_{t r, t},
$$

where $D_{t r, t}$ are the trading-day factors derived from the prior daily weights, and $D_{r, t}$ are the residual trading-day factors estimated from the trading-day regression. For further information about estimating trading day variation, see Young (1965).

Additional Steps When Using the X-11-ARIMA Method

The X-11-ARIMA method consists of extending a given series by an ARIMA model and applying the usual X-11 seasonal adjustment method to this extended series. Thus in the simplest case in which there are no prior factors or calendar effects in the series, the ARIMA model selection, estimation, and forecasting are performed first, and the resulting extended series goes through the standard X-11 steps described in the next section.

If prior factor or calendar effects are present, they must be eliminated from the series before the ARIMA estimation is done because these effects are not stochastic.

Prior factors, if present, are removed first. Calendar effects represented by prior daily weights are then removed. If there are no further calendar effects, the adjusted series is extended by the ARIMA model, and this extended series goes through the standard X-11 steps without repeating the removal of prior factors and calendar effects from prior daily weights.

If further calendar effects are present, a trading-day regression must be performed. In this case it is necessary to go through an initial pass of the X-11 steps to obtain a final trading-day adjustment. In this initial pass, the series, adjusted for prior factors and prior daily weights, goes through the standard X-11 steps. At the conclusion of these steps, a final series adjusted for prior factors and all calendar effects is available. This adjusted series is then extended by the ARIMA model, and this extended series goes through the standard $\mathrm{X}-11$ steps again, without repeating the removal of prior factors and calendar effects from prior daily weights and trading-day regression.

The Standard X-11 Seasonal Adjustment Method

The standard X-11 seasonal adjustment method consists of the following steps. These steps are applied to the original data or the original data extended by an ARIMA model.

1. In step 1, the data are read, ignoring missing values until the first nonmissing value is found. If prior monthly factors are present, the procedure reads prior monthly P_{t} factors and divides them into the original series to obtain $O_{t} / P_{t}=C_{t} S_{t} I_{t} D_{t r, t} D_{r, t}$.

Seven daily weights can be specified to develop monthly factors to adjust the series for trading-day variation, $D_{t r, t}$; these factors are then divided into the original or prior adjusted series to obtain $C_{t} S_{t} I_{t} D_{r, t}$.
2. In steps 2,3 , and 4 , three iterations are performed, each of which provides estimates of the seasonal S_{t}, trading-day $D_{r, t}$, trend cycle C_{t}, and irregular components I_{t}. Each iteration refines estimates of the extreme values in the irregular components. After extreme values are
identified and modified, final estimates of the seasonal component, seasonally adjusted series, trend cycle, and irregular components are produced. Step 2 consists of three substeps:
a) During the first iteration, a centered, 12 -term moving average is applied to the original series O_{t} to provide a preliminary estimate \hat{C}_{t} of the trend cycle curve C_{t}. This moving average combines 13 (a 2 -term moving average of a 12 -term moving average) consecutive monthly values, removing the S_{t} and I_{t}. Next, it obtains a preliminary estimate $\widehat{S_{t} I_{t}}$ by

$$
\widehat{S_{t} I_{t}}=\frac{O_{t}}{\hat{C}_{t}}
$$

b) A moving average is then applied to the ${\widehat{S_{t} I_{t}}}^{\text {to obtain an estimate }} \hat{S}_{t}$ of the seasonal factors. $\widehat{S_{t} I_{t}}$ is then divided by this estimate to obtain an estimate \hat{I}_{t} of the irregular component. Next, a moving standard deviation is calculated from the irregular component and is used in assigning a weight to each monthly value for measuring its degree of extremeness. These weights are used to modify extreme values in $\widehat{S_{t} I_{t}}$. New seasonal factors are estimated by applying a moving average to the modified value of $\widehat{S_{t} I_{t}}$. A preliminary seasonally adjusted series is obtained by dividing the original series by these new seasonal factors. A second estimate of the trend cycle is obtained by applying a weighted moving average to this seasonally adjusted series.
c) The same process is used to obtain second estimates of the seasonally adjusted series and improved estimates of the irregular component. This irregular component is again modified for extreme values and then used to provide estimates of trading-day factors and refined weights for the identification of extreme values.
3. Using the same computations, a second iteration is performed on the original series that has been adjusted by the trading-day factors and irregular weights developed in the first iteration. The second iteration produces final estimates of the trading-day factors and irregular weights.
4. A third and final iteration is performed using the original series that has been adjusted for trading-day factors and irregular weights computed during the second iteration. During the third iteration, PROC X11 develops final estimates of seasonal factors, the seasonally adjusted series, the trend cycle, and the irregular components. The procedure computes summary measures of variation and produces a moving average of the final adjusted series.

Sliding Spans Analysis

The motivation for sliding spans analysis is to answer the question, When is a economic series unsuitable for seasonal adjustment? There have been a number of past attempts to answer this question: stable seasonality F test; moving seasonality F test, Q statistics, and others.

Sliding spans analysis attempts to quantify the stability of the seasonal adjustment process, and hence quantify the suitability of seasonal adjustment for a given series.

It is based on a very simple idea: for a stable series, deleting a small number of observations should not result in greatly different component estimates compared with the original, full series. Conversely, if deleting a small number of observations results in drastically different estimates, the series is unstable. For example, a drastic difference in the seasonal factors (Table D10) might result
from a dominating irregular component or sudden changes in the seasonally component. When the seasonal component estimates of a series is unstable in this manner, they have little meaning and the series is likely to be unsuitable for seasonal adjustment.

Sliding spans analysis, developed at the Statistical Research Division of the U.S. Census Bureau (Findley et al. 1990; Findley and Monsell 1986), performs a repeated seasonal adjustment on subsets or spans of the full series. In particular, an initial span of the data, typically eight years in length, is seasonally adjusted, and the Tables C18, the trading-day factors (if trading-day regression performed), D10, the seasonal factors, and D11, the seasonally adjusted series are retained for further processing. Next, one year of data is deleted from the beginning of the initial span and one year of data is added. This new span is seasonally adjusted as before, with the same tables retained. This process continues until the end of the data is reached. The beginning and ending dates of the spans are such that the last observation in the original data is also the last observation in the last span. This is discussed in more detail in the following paragraphs.

The following notation for the components or differences computed in the sliding spans analysis follows Findley et al. (1990). The meaning for the symbol $X_{t}(k)$ is component X in month (or quarter) t, computed from data in the k th span. These components are now defined.

- Seasonal Factors (Table D10): $S_{t}(k)$
- Trading-Day Factors (Table C18): $T D_{t}(k)$
- Seasonally Adjusted Data (Table D11): $S A_{t}(k)$
- Month-to-Month Changes in the Seasonally Adjusted Data: $M M_{t}(k)$
- Year-to-Year Changes in the Seasonally Adjusted Data: $Y Y_{t}(k)$

The key measure is the maximum percent difference across spans. For example, consider a series that begins in January 1972, ends in December 1984, and has four spans, each of length 8 years (see Figure 1 in Findley et al. (1990), p. 346). Consider $S_{t}(k)$ the seasonal factor (Table D10) for month t for span k, and let N_{t} denote the number of spans containing month t; that is,

$$
N_{t}=\{k: \operatorname{span} k \text { contains month } t\}
$$

In the middle years of the series there is overlap of all four spans, and N_{t} will be 4 . The last year of the series will have only one span, while the beginning can have 1 or 0 spans depending on the original length.

Since we are interested in how much the seasonal factors vary for a given month across the spans, a natural quantity to consider is

$$
\max _{k \in N_{t}} S_{t}(k)-\min _{k \in N_{t}} S_{t}(k)
$$

In the case of the multiplicative model, it is useful to compute a percentage difference; define the maximum percentage difference (MPD) at time t as

$$
M P D_{t}=\frac{\max _{k \epsilon N_{t}} S_{t}(k)-\min _{k \epsilon N_{t}} S_{t}(k)}{\min _{k \epsilon N_{t}} S_{t}(k)}
$$

The seasonal factor for month t is then unreliable if $M P D_{t}$ is large. While no exact significance level can be computed for this statistic, empirical levels have been established by considering over 500 economic series (Findley et al. 1990; Findley and Monsell 1986). For these series it was found that for four spans, stable series typically had less than 15% of the MPD values exceeding 3.0%, while in marginally stable series, between 15% and 25% of the MPD values exceeded 3.0%. A series in which 25% or more of the MPD values exceeded 3.0% is almost always unstable.

While these empirical values cannot be considered an exact significance level, they provide a useful empirical basis for deciding if a series is suitable for seasonal adjustment. These percentage values are shifted down when fewer than four spans are used.

Computational Details for Sliding Spans Analysis

Length and Number of Spans

The algorithm for determining the length and number of spans for a given series was developed at the U.S. Bureau of the Census, Statistical Research Division. A summary of this algorithm is as follows.

First, an initial length based on the MACURVE month=option specification is determined, and then the maximum number of spans possible using this length is determined. If this maximum number exceeds four, set the number of spans to four. If this maximum number is one or zero, there are not enough observations to perform the sliding spans analysis. In this case a note is written to the log and the sliding spans analysis is skipped for this variable.

If the maximum number of spans is two or three, the actual number of spans used is set equal to this maximum. Finally, the length is adjusted so that the spans begin in January (or the first quarter) of the beginning year of the span.

The remainder of this section gives the computation formulas for the maximum percentage difference (MPD) calculations along with the threshold regions.

Seasonal Factors (Table D10)

For the additive model, the MPD is defined as

$$
\max _{k \in N_{t}} S_{t}(k)-\min _{k \in N_{t}} S_{t}(k)
$$

For the multiplicative model, the MPD is

$$
M P D_{t}=\frac{\max _{k \epsilon N_{t}} S_{t}(k)-\min _{k \epsilon N_{t}} S_{t}(k)}{\min _{k \epsilon N_{t}} S_{t}(k)}
$$

A series for which less than 15% of the MPD values of D10 exceed 3.0% is stable; between 15% and 25% is marginally stable; and greater than 25% is unstable. Span reports S 2.A through S 2.C give the various breakdowns for the number of times the MPD exceeded these levels.

Trading Day Factor (Table C18)

For the additive model, the MPD is defined as

$$
\max _{k \in N_{t}} T D_{t}(k)-\min _{k \in N_{t}} T D_{t}(k)
$$

For the multiplicative model, the MPD is

$$
M P D_{t}=\frac{\max _{k \in N_{t}} T D_{t}(k)-\min _{k \in N_{t}} T D_{t}(k)}{\min _{k \in N_{t}} T D_{t}(k)}
$$

The U.S. Census Bureau currently gives no recommendation concerning MPD thresholds for the trading-day factors. Span reports S 3.A through S 3.C give the various breakdowns for MPD thresholds. When TDREGR=NONE is specified, no trading-day computations are done, and this table is skipped.

Seasonally Adjusted Data (Table D11)

For the additive model, the MPD is defined as

$$
\max _{k \in N_{t}} S A_{t}(k)-\min _{k \in N_{t}} S A_{t}(k)
$$

For the multiplicative model, the MPD is

$$
M P D_{t}=\frac{\max _{k \in N_{t}} S A_{t}(k)-\min _{k \in N_{t}} S A_{t}(k)}{\min _{k \in N_{t}} S A_{t}(k)}
$$

A series for which less than 15\% of the MPD values of D11 exceed 3.0\% is stable; between 15\% and 25% is marginally stable; and greater than 25% is unstable. Span reports S 4.A through S 4.C give the various breakdowns for the number of times the MPD exceeded these levels.

Month-to-Month Changes in the Seasonally Adjusted Data

Some additional notation is needed for the month-to-month and year-to-year differences. Define $N 1_{t}$ as

$$
N 1_{t}=\{k: \text { span } k \text { contains month } t \text { and } t-1\}
$$

For the additive model, the month-to-month change for span k is defined as

$$
M M_{t}(k)=S A_{t}-S A_{t-1}
$$

while for the multiplicative model

$$
M M_{t}(k)=\frac{S A_{t}-S A_{t-1}}{S A_{t-1}}
$$

Since this quantity is already in percentage form, the MPD for both the additive and multiplicative model is defined as

$$
M P D_{t}=\max _{k \in N 1_{t}} M M_{t}(k)-\min _{k \in N 1_{t}} M M_{t}(k)
$$

The current recommendation of the U.S. Census Bureau is that if 35% or more of the MPD values of the month-to-month differences of D11 exceed 3.0%, then the series is usually not stable; 40% exceeding this level clearly marks an unstable series. Span reports S 5.A. 1 through S 5.C give the various breakdowns for the number of times the MPD exceeds these levels.

Year-to-Year Changes in the Seasonally Adjusted Data

First define $N 12_{t}$ as

$$
N 12_{t}=\{k: \text { span } k \text { contains month } t \text { and } t-12\}
$$

(Appropriate changes in notation for a quarterly series are obvious.)
For the additive model, the month-to-month change for span k is defined as

$$
Y Y_{t}(k)=S A_{t}-S A_{t-12}
$$

while for the multiplicative model

$$
Y Y_{t}(k)=\frac{S A_{t}-S A_{t-12}}{S A_{t-12}}
$$

Since this quantity is already in percentage form, the MPD for both the additive and multiplicative model is defined as

$$
M P D_{t}=\max _{k \in N 1_{t}} Y Y_{t}(k)-\min _{k \in N 1_{t}} Y Y_{t}(k)
$$

The current recommendation of the U.S. Census Bureau is that if 10% or more of the MPD values of the month-to-month differences of D11 exceed 3.0%, then the series is usually not stable. Span reports S 6.A through S 6.C give the various breakdowns for the number of times the MPD exceeds these levels.

Data Requirements

The input data set must contain either quarterly or monthly time series, and the data must be in chronological order. For the standard X-11 method, there must be at least three years of observations (12 for quarterly time series or 36 for monthly) in the input data sets or in each BY group in the input data set if a BY statement is used.

For the X-11-ARIMA method, there must be at least five years of observations (20 for quarterly time series or 60 for monthly) in the input data sets or in each BY group in the input data set if a BY statement is used.

Missing Values

Missing values at the beginning of a series to be adjusted are skipped. Processing starts with the first nonmissing value and continues until the end of the series or until another missing value is found.

Missing values are not allowed for the DATE= variable. The procedure terminates if missing values are found for this variable.

Missing values found in the PMFACTOR= variable are replaced by 100 for the multiplicative model (default) and by 0 for the additive model.

Missing values can occur in the output data set. If the time series specified in the OUTPUT statement is not computed by the procedure, the values of the corresponding variable are missing. If the time series specified in the OUTPUT statement is a moving average, the values of the corresponding variable are missing for the first n and last n observations, where n depends on the length of the moving average. Additionally, if the time series specified is an irregular component modified for extremes, only the modified values are given, and the remaining values are missing.

Prior Daily Weights and Trading-Day Regression

Suppose that a detailed examination of retail sales at ZXY Company indicates that certain days of the week have higher amounts of sales. In particular, Thursday, Friday, and Saturday have approximately twice the amount of sales as Monday, Tuesday, and Wednesday, and no sales occur on Sunday. This means that months with five Saturdays would have higher amounts of sales than months with only four Saturdays.

This phenomenon is called a calendar effect; it can be handled in PROC X11 by using the PDWEIGHTS (prior daily weights) statement or the TDREGR=option (trading-day regression). The PDWEIGHTS statement and the TDREGR=option can be used separately or together.

If the relative weights are known (as in the preceding) it is appropriate to use the PDWEIGHTS statement. If further residual calendar variation is present, TDREGR=ADJUST should also be used. If you know that a calendar effect is present, but know nothing about the relative weights, use TDREGR=ADJUST without a PDWEIGHTS statement.

In this example, it is assumed that the calendar variation is due to both prior daily weights and residual variation. Thus both a PDWEIGHTS statement and TDREGR=ADJUST are specified.

Note that only the relative weights are needed; in the actual computations, PROC X11 normalizes the weights to sum to 7.0. If a day of the week is not present in the PDWEIGHTS statement, it is given a value of zero. Thus "sun=0" is not needed.

```
proc x11 data=sales;
    monthly date=date tdregr=adjust;
    var sales;
    tables a1 a4 b15 b16 c14 C15 c18 d11;
    pdweights mon=1 tue=1 wed=1 thu=2 fri=2 sat=2;
```

```
    output out=x11out a1=a1 a4=a4 b1=b1 c14=c14
    c16=c16 c18=c18 d11=d11;
run;
```

Tables of interest include A1, A4, B15, B16, C14, C15, C18, and D11. Table A4 contains the adjustment factors derived from the prior daily weights; Table C14 contains the extreme irregular values excluded from trading-day regression; Table C15 contains the trading-day-regression results; Table C16 contains the monthly factors derived from the trading-day regression; and Table C18 contains the final trading-day factors derived from the combined daily weights. Finally, Table D11 contains the final seasonally adjusted series.

Adjustment for Prior Factors

Suppose now that a strike at ZXY Company during July and August of 1988 caused sales to decrease an estimated 50%. Since this is a one-time event with a known cause, it is appropriate to prior adjust the data to reflect the effects of the strike. This is done in PROC X11 through the use of PMFACTOR=varname (prior monthly factor) in the MONTHLY statement.

In the following example, the PMFACTOR variable is named PMF. Since the estimate of the decrease in sales is 50%, PMF has a value of 50.0 for the observations corresponding to July and August 1988, and a value of 100.0 for the remaining observations.

This prior adjustment on SALES is performed by replacing SALES with the calculated value (SALES/PMF) * 100.0. A value of 100.0 for PMF leaves SALES unchanged, while a value of 50.0 for PMF doubles SALES. This value is the estimate of what SALES would have been without the strike. The following example shows how this prior adjustment is accomplished.

```
data sales2;
    set sales;
    if '01jul1988'd <= date <= '01aug1988'd then pmf = 50;
    else pmf = 100;
run;
proc x11 data=sales2;
    monthly date=date pmfactor=pmf;
    var sales;
    tables a1 a2 a3 d11;
    output out=x11out a1=a1 a2=a2 a3=a3 d11=d11;
run;
```

Table A2 contains the prior monthly factors (the values of PMF), and Table A3 contains the prior adjusted series.

The YRAHEADOUT Option

For monthly data, the YRAHEADOUT option affects only Tables C16 (regression trading-day adjustment factors), C18 (trading-day factors from combined daily weights), and D10 (seasonal factors). For quarterly data, only Table D10 is affected. Variables for all other tables have missing values for the forecast observations. The forecast values for a table are included only if that table is specified in the OUTPUT statement.

Tables C16 and C18 are calendar effects that are extrapolated by calendar composition. These factors are independent of the data once trading-day weights have been calculated. Table D10 is extrapolated by a linear combination of past values. If N is the total number of nonmissing observations for the analysis variable, this linear combination is given by

$$
D 10_{t}=\frac{1}{2}\left(3 \times D 10_{t-12}-D 10_{t-24}\right), \quad t=N+1, \ldots, N+12
$$

If the input data are monthly time series, 12 extra observations are added to the end of the output data set. (If a BY statement is used, 12 extra observations are added to the end of each BY group.) If the input data are a quarterly time series, four extra observations are added to the end of the output data set. (If a BY statement is used, four extra observations are added to each BY group.)

The DATE= variable (or _DATE_) is extrapolated for the extra observations generated by the YRAHEADOUT option, while all other ID variables will have missing values.

If ARIMA processing is requested, and if both the OUTEXTRAP and YRAHEADOUT options are specified in the PROC X11 statement, an additional 12 (or 4) observations are added to the end of output data set for monthly (or quarterly) data after the ARIMA forecasts, using the same linear combination of past values as before.

Effect of Backcast and Forecast Length

Based on a number of empirical studies (Dagum 1982a, b, c; Dagum and Laniel 1987), one year of forecasts minimize revisions when new data become available. Two and three years of forecasts show only small gains.

Backcasting improves seasonal adjustment but introduces permanent revisions at the beginning of the series and also at the end for series of length 8,9 , or 10 years. For series shorter than 7 years, the advantages of backcasting outweigh the disadvantages (Dagum 1988).

Other studies (Pierce 1980; Bobbit and Otto 1990; Buszuwski 1987) suggest "full forecasting"that is, using enough forecasts to allow symmetric weights for the seasonal moving averages for the most current data. For example, if a 3×9 seasonal moving average was specified for one or more months by using the MACURVES statement, five years of forecasts would be required. This is because the seasonal moving averages are performed on calendar months separately, and the 3×9 is an 11-term centered moving average, requiring five observations before and after the current observation. Thus

```
macurves dec='3x9';
```

would require five additional December values to compute the seasonal moving average.

Details of Model Selection

If an ARIMA statement is present but no MODEL= is given, PROC X11 estimates and forecasts five predefined models and selects the best. This section describes the details of the selection criteria and the selection process.

The five predefined models used by PROC X11 are the same as those used by X11ARIMA/88 from Statistics Canada. These particular models, shown in Table 31.2, were chosen on the basis of testing a large number of economics series (Dagum 1988) and should provide reasonable forecasts for most economic series.

Table 31.2 Five Predefined Models

Model \#	Specification	Multiplicative	Additive
1	$(0,1,1)(0,1,1) \mathrm{s}$	\log transform	no transform
2	$(0,1,2)(0,1,1) \mathrm{s}$	\log transform	no transform
3	$(2,1,0)(0,1,1) \mathrm{s}$	\log transform	no transform
4	$(0,2,2)(0,1,1) \mathrm{s}$	log transform	no transform
5	$(2,1,2)(0,1,1) \mathrm{s}$	no transform	no transform

The selection process proceeds as follows. The five models are estimated and one-step-ahead forecasts are produced in the order shown in Table 31.2. As each model is estimated, the following three criteria are checked:

- The mean absolute percent error (MAPE) for the last three years of the series must be less than 15%.
- The significance probability for the Box-Ljung chi-square for up to lag 24 for monthly (8 for quarterly) must greater than 0.05 .
- The over-differencing criteria must not exceed 0.9.

The descriptions of these three criteria are given in the section "Criteria Details" on page 2069. The default values for these criteria are those used by X11ARIMA/88 from Statistics Canada; these defaults can be changed by the MAPECR=, CHICR=, and OVDIFCR=options.

A model that fails any one of these three criteria is excluded from further consideration. In addition, if the ARIMA estimation fails for a given model, a warning is issued, and the model is excluded. The final set of all models considered consists of those that pass all three criteria and are estimated successfully. From this set, the model with the smallest MAPE for the last three years is chosen.

If all five models fail, ARIMA processing is skipped for the variable being processed, and the standard X-11 seasonal adjustment is performed. A note is written to the log with this information.

The chosen model is then used to forecast the series one or more years (determined by the FORECAST $=$ option in the ARIMA statement). These forecasts are appended to the original data (or the prior and calendar-adjusted data).

If a BACKCAST= option is specified, the chosen model form is used, but the parameters are reestimated using the reversed series. Using these parameters, the reversed series is forecast for the number of years specified by the BACKCAST= option. These forecasts are then reversed and appended to the beginning of the original series, or the prior and calendar-adjusted series, to produce the backcasts.

Note that the final selection rule (the smallest MAPE using the last three years) emphasizes the quality of the forecasts at the end of the series. This is consistent with the purpose of the X-11ARIMA methodology, which is to improve the estimates of seasonal factors and thus minimize revisions to recent past data as new data become available.

Criteria Details

Mean Absolute Percent Error (MAPE)

For the MAPE criteria testing, only the last three years of the original series (or prior and calendar adjusted series) is used in computing the MAPE.

Let $y_{t}, t=1, . ., n$, be the last three years of the series, and denote its one-step-ahead forecast by \hat{y}_{t}, where $n=36$ for a monthly series and $n=12$ for a quarterly series.

With this notation, the MAPE criteria are computed as

$$
M A P E=\frac{100}{n} \sum_{t=1}^{n} \frac{\left|y_{t}-\hat{y}_{t}\right|}{\left|y_{t}\right|}
$$

Box-Ljung Chi-Square

The Box-Ljung chi-square is a lack-of-fit test based on the model residuals. This test statistic is computed using the Ljung-Box formula

$$
\chi_{m}^{2}=n(n+2) \sum_{k=1}^{m} \frac{r_{k}^{2}}{(n-k)}
$$

where n is the number of residuals that can be computed for the time series, and

$$
r_{k}=\frac{\sum_{t=1}^{n-k} a_{t} a_{t+k}}{\sum_{t=1}^{n} a_{t}^{2}}
$$

where the a_{t} 's are the residual sequence. This formula has been suggested by Ljung and Box (1978) as yielding a better fit to the asymptotic chi-square distribution. Some simulation studies of the finite sample properties of this statistic are given by Davies, Triggs, and Newbold (1977) and by Ljung and Box (1978).

For monthly series, $m=24$, while for quarterly series, $m=8$.

Over-Differencing Test

From Table 31.2 you can see that all models have a single seasonal MA factor and at most two nonseasonal MA factors. Also, all models have seasonal and nonseasonal differencing. Consider model 2 applied to a monthly series y_{t} with $E\left(y_{t}\right)=\mu$:

$$
\left(1-B^{1}\right)\left(1-B^{12}\right)\left(y_{t}-\mu\right)=\left(1-\theta_{1} B-\theta_{2} B^{2}\right)\left(1-\theta_{3} B^{12}\right) a_{t}
$$

If $\theta_{3}=1.0$, then the factors $\left(1-\theta_{3} B^{12}\right)$ and $\left(1-B^{12}\right)$ will cancel, resulting in a lower-order model.

Similarly, if $\theta_{1}+\theta_{2}=1.0$,

$$
\left(1-\theta_{1} B-\theta_{2} B^{2}\right)=(1-B)(1-\alpha B)
$$

for some $\alpha \neq 0.0$. Again, this results in cancellation and a lower-order model.
Since the parameters are not exact, it is not reasonable to require that

$$
\theta_{3}<1.0 \text { and } \theta_{1}+\theta_{2}<1.0
$$

Instead, an approximate test is performed by requiring that

$$
\theta_{3} \leq 0.9 \text { and } \theta_{1}+\theta_{2} \leq 0.9
$$

The default value of 0.9 can be changed by the OVDIFCR= option. Similar reasoning applies to the other models.

ARIMA Statement Options for the Five Predefined Models

Table 31.3 lists the five predefined models and gives the equivalent MODEL= parameters in a PROC X11 ARIMA statement.

In all models except the fifth, a log transformation is performed before the ARIMA estimation for the multiplicative case; no transformation is performed for the additive case. For the fifth model, no transformation is done for either case.

The multiplicative case is assumed in the following table. The indicated seasonality s in the specification is either 12 (monthly) or 4 (quarterly). The MODEL statement assumes a monthly series.

Table 31.3 ARIMA Statements Options for Predefined Models

Model	ARIMA Statement Options
$(0,1,1)(0,1,1) \mathrm{s}$	MODEL $=(\mathrm{Q}=1 \mathrm{SQ}=1 \mathrm{DIF}=1 \mathrm{SDIF}=1)$ TRANSFORM=LOG
$(0,1,2)(0,1,1) \mathrm{s}$	MODEL $=(\mathrm{Q}=2 \mathrm{SQ}=1 \mathrm{DIF}=1 \mathrm{SDIF}=1)$ TRANSFORM=LOG
$(2,1,0)(0,1,1) \mathrm{s}$	MODEL= $(\mathrm{P}=2 \mathrm{SQ}=1 \mathrm{DIF}=1 \mathrm{SDIF}=1)$ TRANSFORM=LOG
$(0,2,2)(0,1,1) \mathrm{s}$	MODEL $=(\mathrm{Q}=2 \mathrm{SQ}=1 \mathrm{DIF}=2 \mathrm{SDIF}=1)$ TRANSFORM=LOG
$(2,1,2)(0,1,1) \mathrm{s}$	MODEL $=(\mathrm{P}=2 \mathrm{Q}=2$ SQ=1 DIF=1 SDIF=1 $)$

OUT= Data Set

The OUT= data set specified in the OUTPUT statement contains the BY variables, if any; the ID variables, if any; and the DATE= variable if the DATE= option is given, or _DATE_ if the DATE= option is not specified.

In addition, the variables specified by the option
tablename =var1 var2 . . . varn
are placed in the OUT= data set. A list of tables available for monthly and quarterly series is given later, in Table 31.4.

The OUTSPAN= Data Set

The OUTSPAN= option is specified in the PROC statement, and writes the sliding spans results to the specified output data set. The OUTSPAN= data set contains the following variables:

- A1, a numeric variable that is a copy of the original series truncated to the current span. Note that overlapping spans will contain identical values for this variable.
- C18, a numeric variable that contains the trading-day factors for the seasonal adjustment for the current span
- D10, a numeric variable that contains the seasonal factors for the seasonal adjustment for the current span
- D11, a numeric variable that contains the seasonally adjusted series for the current span
- DATE, a numeric variable that contains the date within the current span
- SPAN, a numeric variable that contains the current span. The first span is the earliest spanthat is the one with the earliest starting date.
- VARNAME, a character variable containing the name of each variable in the VAR list. A separate sliding spans analysis is performed on each variable in the VAR list.

OUTSTB= Data Set

The output data set produced by the OUTSTB= option of the PROC X11 statement contains the information in the analysis of variance on table D8 (Final Unmodified S-I Ratios). This analysis of variance, following table D8 in the printed output, tests for stable seasonality (Shiskin, Young, and Musgrave 1967, Appendix A). These data contain the following variables:

- VARNAME, a character variable containing the name of each variable in the VAR list
- TABLE, a character variable specifying the table from which the analysis of variance is performed. When ARIMA processing is requested, and two passes of X11 are required (when TDREGR=PRINT, TEST, or ADJUST), Table D8 and the stable seasonality test are computed twice: once in the initial pass, then again in the final pass. Both of these computations are put in the OUTSTB data set and are identified by D18.1 and D18.2, respectively.
- SOURCE, a character variable corresponding to the "source" column in the analysis of variance table following Table D8
- SS, a numeric variable containing the sum of squares associated with the corresponding source term
- DF, a numeric variable containing the degrees of freedom associated with the corresponding source term
- MS, a numeric variable containing the mean square associated with the corresponding source term. MS is missing for the source term "Total"
- F, a numeric variable containing the F statistic for the "Between" source term. F is missing for all other source terms.
- PROBF, a numeric variable containing the significance level for the F statistic. PROBF is missing for the source terms "Total" and "Error."

OUTTDR= Data Set

The trading-day regression results (tables B15 and C15) are written to the OUTTDR= data set, which contains the following variables:

- VARNAME, a character variable containing the name of the VAR variable being processed
- TABLE, a character variable containing the name of the table. It can have only the value B15 (Preliminary Trading-Day Regression) or C15 (Final Trading-Day Regression).
- _TYPE_, a character variable whose value distinguishes the three distinct table format types. These types are (a) the regression, (b) the listing of the standard error associated with length-of-month, and (c) the analysis of variance. The first seven observations in the OUTTDR data set correspond to the regression on days of the week; thus the _TYPE_ variable is given the value "REGRESS" (day-of-week regression coefficient). The next four observations correspond to $31-$, $30-, 29$-, and 28 -day months and are given the value _TYPE_=LOM_STD (length-of-month standard errors). Finally, the last three observations correspond to the analysis of variance table, and _TYPE_=ANOVA.
- PARM, a character variable, further identifying the nature of the observation. PARM is set to blank for the three _TYPE_=ANOVA observations.
- SOURCE, a character variable containing the source in the regression. This variable is missing for all _TYPE_=REGRESS and LOM_STD.
- CWGT, a numeric variable containing the combined trading-day weight (prior weight + weight found from regression). The variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- PRWGT, a numeric variable containing the prior weight. The prior weight is 1.0 if PDWEIGHTS are not specified. This variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- COEFF, a numeric variable containing the calculated regression coefficient for the given day. This variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- STDERR, a numeric variable containing the standard errors. For observations with _TYPE_=REGRESS, this is the standard error corresponding to the regression coefficient. For observations with _TYPE_=LOM_STD, this is standard error for the corresponding length-of-month. This variable is missing for all _TYPE_=ANOVA.
- T1, a numeric variable containing the t statistic corresponding to the test that the combined weight is different from the prior weight. This variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- T2, a numeric variable containing the t statistic corresponding to the test that the combined weight is different from 1.0. This variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- PROBT1, a numeric variable containing the significance level for t statistic T1. The variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- PROBT2, a numeric variable containing the significance level for t statistic T2. The variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.
- SS, a numeric variable containing the sum of squares associated with the corresponding source term. This variable is missing for all _TYPE_=REGRESS and LOM_STD.
- DF, a numeric variable containing the degrees of freedom associated with the corresponding source term. This variable is missing for all _TYPE_=REGRESS and LOM_STD.
- MS, a numeric variable containing the mean square associated with the corresponding source term. This variable is missing for the source term 'Total' and for all _TYPE_=REGRESS and LOM_STD.
- F, a numeric variable containing the F statistic for the 'Regression' source term. The variable is missing for the source terms 'Total' and 'Error', and for all _TYPE_=REGRESS and LOM_STD.
- PROBF, a numeric variable containing the significance level for the F statistic. This variable is missing for the source term 'Total' and 'Error' and for all _TYPE_=REGRESS and LOM_STD.

Printed Output

The output from PROC X11, both printed tables and the series written to the OUT= data set, depends on whether the data are monthly or quarterly. For the printed tables, the output depends further on the value of the PRINTOUT= option and the TABLE statement, along with other options specified.

The printed output is organized into tables identified by a part letter and a sequence number within the part. The seven major parts of the X11 procedure are as follows:

A	prior adjustments (optional)
B	preliminary estimates of irregular component weights and regression trading-day factors
C	final estimates of irregular component weights and regression trading-day factors
D	final estimates of seasonal, trend cycle, and irregular components
E	analytical tables
F	summary measures
G	charts

Table 31.4 describes the individual tables and charts. Most tables apply both to quarterly and monthly series. Those that apply only to a monthly time series are indicated by an " M " in the notes section, while " P " indicates the table is not a time series, and is only printed, not output to the OUT= data set.

Table 31.4 Table Names and Descriptions

Table	Description	Notes
A1	original series	M
A2	prior monthly adjustment factors	M
A3	original series adjusted for prior monthly factors	M
A4	prior trading-day adjustments	M
A5	prior adjusted or original series	M
A13	ARIMA forecasts	
A14	ARIMA backcasts	
A15	prior adjusted or original series extended by ARIMA backcasts	
	and forecasts	
B1	prior adjusted or original series	
B2	trend cycle	
B3	unmodified seasonal-irregular (S-I) ratios	
B4	replacement values for extreme S-I ratios	
B5	seasonal factors	
B6	seasonally adjusted series	
B7	trend cycle	
B8	unmodified S-I ratios	
B9	replacement values for extreme S-I ratios	

Table 31.4 continued

Table	Description	Notes
B10	seasonal factors	
B11	seasonally adjusted series	
B13	irregular series	
B14	extreme irregular values excluded from trading-day regression	M
B15	preliminary trading-day regression	M, P
B16	trading-day adjustment factors	M
B17	preliminary weights for irregular components	
B18	trading-day factors derived from combined daily weights	M
B19	original series adjusted for trading-day and prior variation	M
C1	original series modified by preliminary weights and adjusted for trading-day and prior variation	
C2	trend cycle	
C4	modified S-I ratios	
C5	seasonal factors	
C6	seasonally adjusted series	
C7	trend cycle	
C9	modified S-I ratios	
C10	seasonal factors	
C11	seasonally adjusted series	
C13	irregular series	
C14	extreme irregular values excluded from trading-day regression	M
C15	final trading-day regression	M, P
C16	final trading-day adjustment factors derived from regression coefficients	M
C17	final weight for irregular components	
C18	final trading-day factors derived from combined daily weights	M
C19	original series adjusted for trading-day and prior variation	M
D1	original series modified for final weights and adjusted for tradingday and prior variation	
D2	trend cycle	
D4	modified S-I ratios	
D5	seasonal factors	
D6	seasonally adjusted series	
D7	trend cycle	
D8	final unmodified S-I ratios	
D9	final replacement values for extreme S-I ratios	
D10	final seasonal factors	
D11	final seasonally adjusted series	
D12	final trend cycle	
D13	final irregular series	
E1	original series with outliers replaced	
E2	modified seasonally adjusted series	
E3	modified irregular series	
E4	ratios of annual totals	P
E5	percent changes in original series	

Table 31.4 continued

Table	Description	Notes
E6	percent changes in final seasonally adjusted series	
F1	MCD moving average	P
F2	summary measures chart of final seasonally adjusted series and trend cycle chart of S-I ratios with extremes, S-I ratios without extremes, and G1	P
G2	chal seasonal factors	
G3	final seasonal factors in calendar order chart of final irregular and final modified irregular series	P

The PRINTOUT= Option

The PRINTOUT= option controls printing for groups of tables. See the "TABLES Statement" on page 2056 for details on specifying individual tables. The following list gives the tables printed for each value of the PRINTOUT= option:

STANDARD (26 tables) A1-A4, B1, C13-C19, D8-D13, E1-E6, F1, F2
LONG (40 tables) A1-A5, A13-A15, B1, B2, B7, B10, B13-B15, C1, C7, C10, C13-C19, D1, D7-D11, D13, E1-E6, F1, F2

FULL (62 tables) A1-A5, A13-A15, B1-B11, B13-B19, C1-C11, C13-C19, D1, D2, D4-D12, E1-E6, F1, F2

The actual number of tables printed depends on the options and statements specified. If a table is not computed, it is not printed. For example, if TDREGR=NONE is specified, none of the tables associated with the trading-day are printed.

The CHARTS= Option

Of the four charts listed in Table 31.4, G1 and G2 are printed by default (CHARTS=STANDARD). Charts G3 and G4 are printed when CHARTS=FULL is specified. See the "TABLES Statement" on page 2056 for details on specifying individual charts.

Stable, Moving, and Combined Seasonality Tests on the Final Unmodified SI Ratios (Table D8)

PROC X11 displays four tests used to identify stable seasonality and moving seasonality and to measure identifiable seasonality. These tests are displayed after Table D8. They are "Stable Seasonality Test," "Moving Seasonality Test," "Nonparametric Test for the Presence of Seasonality Assuming Stability," and "Summary of Results and Combined Test for the Presence of Identifiable Seasonality." The motivation, interpretation, and statistical details of all these tests are now given.

Motivation

The seasonal component of this time series, S_{t}, is defined as the intrayear variation that is repeated constantly (stable) or in an evolving fashion from year to year (moving seasonality). If the increase in the seasonal factors from year to year is too large, then the seasonal factors will introduce distortion into the model. It is important to determine if seasonality is identifiable without distorting the series.

To determine if stable seasonality is present in a series, PROC X11 computes a one-way analysis of variance by using the seasons (months or quarters) as the factor on the Final Unmodified SI Ratios (Table D8). This is the appropriate table to use because the removal of the trend cycle is equivalent to detrending. PROC X11 prints this test, labeled "Stable Seasonality Test," immediately after the Table D8.

The X11 seasonal adjustment method tests for moving seasonality. Moving seasonality can be a source of distortion when seasonal factors are used in the model. PROC X11 computes and prints a test for moving seasonality. The test is a two-way analysis of variance that uses months (or quarters) and years. As in the "Stable Seasonality Test," this analysis of variance is performed on the Final Unmodified SI Ratios (Table D8). PROC X11 prints this test, labeled "Moving Seasonality Test," after the "Stable Seasonality Test."

PROC X11 next computes a nonparametric Kruskal-Wallis chi-squared test for stable seasonality, "Nonparametric Test for the Presence of Seasonality Assuming Stability." The Kruskal-Wallis test is performed on the ranks of the Final Unmodified SI Ratios (Table D8). For further details about the Kruskal-Wallis test, see Lehmann (1998, pp. 204-210).

The results of the preceding three tests are combined into a joint test to measure identifiable seasonality, "Summary of Results and Combined Test for the Presence of Identifiable Seasonality." This test combines the two F tests previously described, along with the Kruskal-Wallis chi-squared test for stable seasonality, to determine "identifiable" seasonality. This test is printed after "Nonparametric Test for the Presence of Seasonality Assuming Stability."

Interpretation and Statistical Details

The "Stable Seasonality Test" is a one-way analysis of variance on the "Final Unmodified SI Ratios" with seasons (months or quarters) as the factor.

To determine whether stable seasonality is present in a series, PROC X11 computes a one-way analysis of variance by using the seasons (months or quarters) as the factor on the Final Unmodified SI Ratios (Table D8). This is the appropriate table to use because the removal of the trend cycle is similar to detrending.

A large F statistic and a small significance level are evidence that a significant amount of variation in the SI-ratios is due to months or quarters, which in turn is evidence of seasonality; the null hypothesis of no month/quarter effect is rejected.

Conversely, a small F statistic and a large significance level (close to 1.0) are evidence that variation due to month or quarter could be due to random error, and the null hypothesis of no month/quarter effect is not rejected. The interpretation and utility of seasonal adjustment are problematic under such conditions.

The F test for moving seasonality is performed by a two-way analysis of variance. The two factors are seasons (months or quarters) and years. The years effect is tested separately; the null hypothesis is no effect due to years after accounting for variation due to months or quarters. For further details about the moving seasonality test, see Lothian (1984a, b, 1978) and Higginson (1975).

The significance level reported in both the moving and stable seasonality tests are only approximate. Table D8, the Final Unmodified SI Ratios, is constructed from an averaging operation that induces a correlation in the residuals from which the F test is computed. Hence the computed F statistic differs from an exact F statistic; see Cleveland and Devlin (1980) for details.

The test for identifiable seasonality is performed by combining the F tests for stable and moving seasonality, along with a Kruskal-Wallis test for stable seasonality. The following description is based on Lothian and Morry (1978b); other details can be found in $\operatorname{Dagum}(1988,1983)$.

Let F_{s} and F_{m} denote the F value for the stable and moving seasonality tests, respectively. The combined test is performed as shown in Table 31.5 and as follows:

1. If the null hypothesis in the stable seasonality test is not rejected at the 0.10% significance level (0.001), this is an indication that the series is not seasonal. PROC X11 displays "Identifiable Seasonality Not Present."
2. If the null hypothesis in step 1 is rejected, then compute the following quantities:

$$
\begin{aligned}
T_{1} & =\frac{7}{F_{m}} \\
T_{2} & =\frac{3 F_{m}}{F_{S}}
\end{aligned}
$$

Let T denote the simple average of T_{1} and T_{2} :

$$
T=\frac{\left(T_{1}+T_{2}\right)}{2}
$$

If the moving seasonality null hypothesis is not rejected at the 5.0% significance level (0.05) and if $T \geq 1.0$, the null hypothesis of identifiable seasonality not present is accepted and PROC X11 displays "Identifiable Seasonality Not Present."
3. If the null hypothesis of identifiable seasonality not present has not been accepted, but $T_{1} \geq$ $1.0, T_{2} \geq 1.0$, or the Kruskal-Wallis chi-squared test fails at the 0.10% significance level (0.001), then PROC X11 displays "Identifiable Seasonality Probably Not Present."
4. If the F_{S} and Kruskal-Wallis chi-squared tests pass, and if none of the combined measures described in steps 2 and 3 fail, then the null hypothesis of identifiable seasonality not present is rejected, and PROC X11 displays "Identifiable Seasonality Present."

Figure 31.5 Combined Seasonality Test Flowchart

Tables Written to the OUT= Data Set

All tables that are time series can be written to the OUT= data set. However, depending on the specified options and statements, not all tables are computed. When a table is not computed, but is requested in the OUTPUT statement, the resulting variable has all missing values.

For example, if the PMFACTOR= option is not specified, Table A2 is not computed, and requesting this table in the OUTPUT statement results in the corresponding variable having all missing values.

The trading-day regression results, Tables B15 and C15, although not written to the OUT= data set, can be written to an output data set; see the OUTTDR= option for details.

Printed Output Generated by Sliding Spans Analysis

Table S O.A
Table S 0.A gives the variable name, the length and number of spans, and the beginning and ending dates of each span.

Table S 0.B

Table $\mathrm{S} 0 . \mathrm{B}$ gives the summary of the two F tests performed during the standard X11 seasonal adjustments for stable and moving seasonality on Table D8, the final SI ratios. These tests are described in the section "Printed Output" on page 2074.

Table S 1.A

Table S 1.A gives the range analysis of seasonal factors. This includes the means for each month (or quarter) within a span, the maximum percentage difference across spans for each month, and the average. The minimum and maximum within a span are also indicated.

For example, for a monthly series and an analysis with four spans, the January row would contain a column for each span, with the value representing the average seasonal factor (Table D10) over all January calendar months occurring within the span. Beside each span column is a character column with either a MIN, MAX, or blank value, indicating which calendar month had the minimum and maximum value over that span.

Denote the average over the j th calendar month in span $k, k=1, \ldots, 4$, by $\bar{S}_{j}(k)$; then the maximum percent difference (MPD) for month j is defined by

$$
M P D_{j}=\frac{\max _{k=1, . ., 4} \bar{S}_{j}(k)-\min _{k=1, . ., 4} \bar{S}_{j}(k)}{\min _{k=1, . .4} \bar{S}_{j}(k)}
$$

The last numeric column of Table S 1.A is the average value over all spans for each calendar month, with the minimum and maximum row flagged as in the span columns.

Table S 1.B

Table S 1.B gives a summary of range measures for each span. The first column, Range Means, is calculated by computing the maximum and minimum over all months or quarters in a span, then taking the difference. The next column is the range ratio means, which is simply the ratio of the previously described maximum and minimum. The next two columns are the minimum and maximum seasonal factors over the entire span, while the range sf column is the difference of these. Finally, the last column is the ratio of the Max SF and Min SF columns.

Breakdown Tables

Table S 2.A. 1 begins the breakdown analysis for the various series considered in the sliding spans analysis. The key concept here is the MPD described above in the section "Table S 1.A" on page 2080 and in the section "Computational Details for Sliding Spans Analysis" on page 2062. For a month or quarter that appears in two or more spans, the maximum percentage difference is computed and tested against a cutoff level. If it exceeds this cutoff, it is counted as an instance of exceeding the level. It is of interest to see if such instances fall disproportionately in certain months and years. Tables S 2.A. 1 through S 6.A. 3 display this breakdown for all series considered.

Table S 2.A. 1

Table S 2.A. 1 gives the monthly (quarterly) breakdown for the seasonal factors (table D10). The first column identifies the month or quarter. The next column is the number of times the MPD for D10 exceeded 3.0\%, followed by the total count. The last is the average maximum percentage difference for the corresponding month or quarter.

Table S 2.A. 2

Table S 2.A. 2 gives the same information as Table S 2.A.1, but on a yearly basis.

Table S 2.A. 3

The description of Table S 2.A. 3 requires the definition of "Sign Change" and "Turning Point."
First, some motivation. Recall that for a highly stable series, adding or deleting a small number of observations should not affect the estimation of the various components of a seasonal adjustment procedure.

Consider Table D10, the seasonal factors in a sliding spans analysis that uses four spans. For a given observation t, looking across the four spans, we can easily pick out large differences if they occur. More subtle differences can occur when estimates go from above to below (or vice versa) a base level. In the case of multiplicative model, the seasonal factors have a base level of 100.0. So it is useful to enumerate those instances where both a large change occurs (an MPD value exceeding 3.0%) and a change of sign (with respect to the base) occur.

Let B denote the base value (which in general depends on the component being considered and the model type, multiplicative or additive). If, for span $1, S_{t}(1)$ is below B (i.e., $S_{t}(1)-B$ is negative) and for some subsequent span $k, S_{t}(k)$ is above B (i.e., $S_{t}(k)-B$ is positive), then a positive
"Change in Sign" has occurred at observation t. Similarly, if, for span $1, S_{t}(1)$ is above B, and for some subsequent span $k, S_{t}(k)$ is below B, then a negative "Change in Sign" has occurred. Both cases, positive or negative, constitute a "Change in Sign"; the actual direction is indicated in tables S 7.A through S 7.E, which are described below.

Another behavior of interest occurs when component estimates increase then decrease (or vice versa) across spans for a given observation. Using the preceding example, the seasonal factors at observation t could first increase, then decrease across the four spans.

This behavior, combined with an MPD exceeding the level, is of interest in questions of stability.
Again, consider Table D10, the seasonal factors in a sliding spans analysis that uses four spans. For a given observation t (containing at least three spans), note the level of D10 for the first span. Continue across the spans until a difference of 1.0% or greater occurs (or no more spans are left), noting whether the difference is up or down. If the difference is up, continue until a difference of 1.0% or greater occurs downward (or no more spans are left). If such an up-down combination occurs, the observation is counted as an up-down turning point. A similar description occurs for a down-up turning point. Tables S 7.A through S 7.E, described below, show the occurrence of turning points, indicating whether up-down or down-up. Note that it requires at least three spans to test for a turning point. Hence Tables S 2.A. 3 through S 6.A. 3 show a reduced number in the "Turning Point" row for the "Total Tested" column, and in Tables S 7.A through S 7.E, the turning points symbols can occur only where three or more spans overlap.

With these descriptions of sign change and turning point, we now describe Table S 2.A.3. The first column gives the type or category, the second column gives the total number of observations falling into the category, the third column gives the total number tested, and the last column gives the percentage for the number found in the category.

The first category (row) of the table is for flagged observations-that is, those observations where the MPD exceeded the appropriate cutoff level (3.0% is default for the seasonal factors). The second category is for level changes, while the third category is for turning points. The fourth category is for flagged sign changes - that is, for those observations that are sign changes, how many are also flagged. Note the total tested column for this category equals the number found for sign change, reflecting the definition of the fourth category.

The fifth column is for flagged turning points-that is, for those observations that are turning points, how many are also flagged.

The footnote to Table S 2.A. 3 gives the U.S. Census Bureau recommendation for thresholds, as described in the section "Computational Details for Sliding Spans Analysis" on page 2062.

Table S 2.B

Table S 2.B gives the histogram of flagged for seasonal factors (Table D10) using the appropriate cutoff value (default 3.0%). This table looks at the spread of the number of times the MPD exceeded the corresponding level. The range is divided up into four intervals: $3.0 \%-4.0 \%, 4.0 \%-5.0 \%$, $5.0 \%-6.0 \%$, and greater than 6.0%. The first column shows the symbol used in Table S 7.A, the second column gives the range in interval notation, and the last column gives the number found in the corresponding interval. Note that the sum of the last column should agree with the "Number Found" column of the "Flagged MPD" row in Table S 2.A.3.

Table S 2.C

Table S 2.C gives selected percentiles for the MPD for the seasonal factors (Table D10).

Tables S 3.A. 1 through S 3.A. 3

These table relate to the trading-day factors (Table C18) and follow the same format as Tables S 2.A. 1 through S 2.A.3. The only difference between these tables and Tables S 2.A. 1 through S 2.A. 3 is the default cutoff value of 2.0% instead of the 3.0% used for the seasonal factors.

Tables S 3.B, S 3.C

These tables, applied to the trading-day factors (Table C18), are the same format as Tables S 2.B through S 2.C. The default cutoff value is different, with corresponding differences in the intervals in S 3.B.

Tables S 4.A. 1 through S 4.A. 3

These tables relate to the seasonally adjusted series (Table D11) and follow the same format as Tables S 2.A. 1 through S 2.A.3. The same default cutoff value of 3.0% is used.

Tables S 4.B, S 4.C

These tables, applied to the seasonally adjusted series (Table D11), are the same format as tables S 2.B through S 2.C.

Tables S 5.A. 1 through S 5.A. 3

These table relate to the month-to-month (or quarter-to-quarter) differences in the seasonally adjusted series, and follow the same format as Tables S 2.A. 1 through S 2.A.3. The same default cutoff value of 3.0% is used.

Tables S 5.B, S 5.C

These tables, applied to the month-to-month (or quarter-to-quarter) differences in the seasonally adjusted series, are the same format as tables S 2.B through S 2.C. The same default cutoff value of 3.0% is used.

Tables S 6.A. 1 through S 6.A. 3

These table relate to the year-to-year differences in the seasonally adjusted series, and follow the same format as Tables S 2.A.1 through S 2.A.3. The same default cutoff value of 3.0% is used.

Tables S 6.B, S 6.C

These tables, applied to the year-to-year differences in the seasonally adjusted series, are the same format as tables S 2.B through S 2.C. The same default cutoff value of 3.0% is used.

Table S 7.A

Table S 7.A gives the entire listing of the seasonal factors (Table D10) for each span. The first column gives the date for each observation included in the spans. Note that the dates do not cover the entire original data set. Only those observations included in one or more spans are listed.

The next N columns (where N is the number of spans) are the individual spans starting at the earliest span. The span columns are labeled by their beginning and ending dates.

Following the last span is the "Sign Change" column. As explained in the description of Table S 2.A.3, a sign change occurs at a given observation when the seasonal factor estimates go from above to below, or below to above, a base level. For the seasonal factors, 100.0 is the base level for the multiplicative model, 0.0 for the additive model. A blank value indicates no sign change, a "U" indicates a movement "upward" from the base level and a "D" indicates a movement "downward" from the base level.

The next column is the "Turning Point" column. As explained in the description of Table S 2.A.3, a turning point occurs when there is an upward then downward movement, or downward then upward movement, of sufficient magnitude. A blank value indicates no turning point, a "U-D" indicates a movement "upward then downward," and a "D-U" indicates a movement "downward then upward."

The next column is the maximum percentage difference (MPD). This quantity, described in the section "Computational Details for Sliding Spans Analysis" on page 2062, is the main computation for sliding spans analysis. A measure of how extreme the MPD value is given in the last column, the "Level of Excess" column. The symbols used and their meaning are described in Table S 2.A.3. If a given observation has exceeded the cutoff, the level of excess column is blank.

Table S 7.B

Table S 7.B gives the entire listing of the trading-day factors (Table C18) for each span. The format of this table is exactly like that of Table S 7.A.

Table S 7.C

Table S 7.C gives the entire listing of the seasonally adjusted data (Table D11) for each span. The format of this table is exactly like that of Table S 7.A except for the "Sign Change" column, which is not printed. The seasonally adjusted data have the same units as the original data; there is no natural base level as in the case of a percentage. Hence the sign change is not appropriate for D11.

Table S 7.D

Table S 7.D gives the entire listing of the month-to-month (or quarter-to-quarter) changes in seasonally adjusted data for each span. The format of this table is exactly like that of Table S 7.A.

Table S 7.E

Table S 7.E gives the entire listing of the year-to-year changes in seasonally adjusted data for each span. The format of this table is exactly like that of Table S 7.A.

Printed Output from the ARIMA Statement

The information printed by default for the ARIMA model includes the parameter estimates, their approximate standard errors, t ratios, and variances, the standard deviation of the error term, and the AIC and SBC statistics for the model. In addition, a criteria summary for the chosen model is given that shows the values for each of the three test criteria and the corresponding critical values.

If the PRINTALL option is specified, a summary of the nonlinear estimation optimization and a table of Box-Ljung statistics is also produced. If the automatic model selection is used, this information is printed for each of the five predefined models. Finally, a model selection summary is printed, showing the final model chosen.

ODS Table Names

PROC X11 assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table.

Note: For monthly and quarterly tables, use the ODS names MonthlyTables and QuarterlyTables; For brevity, only the MonthlyTables are listed here; the QuarterlyTables are simply duplicates. Printing of individual tables can be specified by using the TABLES table_name, which is not listed here. Printing groups of tables is specified in the MONTHLY and QUARTERLY statements by specifying the option PRINTOUT=NONEISTANDARDILONGIFULL. The default is PRINTOUT=STANDARD.

Table 31.5 ODS Tables Produced in PROC X11

ODS Table Name	Description	Option

ODS Tables Created by the MONTHLY and QUARTERLY Statements

Preface	X11 Seasonal Adjustment Program infor- mation giving credits, dates, and so on	always printed un- less NOPRINT
A1	Table A1: original series A2	Table A2: prior monthly Table A3: original series adjusted for prior A3
A4	Table A4: prior trading day adjustment fac- tors with and without length of month ad- justment	

Table 31.5 continued

ODS Table Name	Description Option
A5	Table A5: original series adjusted for priors
B1	Table B1: original series or original series adjusted for priors
B2	Table B2: trend cycle-centered nn-term moving average
B3	Table B3: unmodified SI ratios
B4	Table B4: replacement values for extreme SI ratios
B5	Table B5: seasonal factors
B6	Table B6: seasonally adjusted series
B7	Table B7: trend cycle-Henderson curve
B8	Table B8: unmodified SI ratios
B9	Table B9: replacement values for extreme SI ratios
B10	Table B10: seasonal factors
B11	Table B11: seasonally adjusted series
B13	Table B13: irregular series
B15	Table B15: preliminary trading day regression
B16	Table B16: trading day adjustment factors derived from regression
B17	Table B17: preliminary weights for irregular component
B18	Table B18: trading day adjustment factors from combined weights
B19	Table B19: original series adjusted for preliminary combined trading day weights
C1	Table C1: original series adjusted for preliminary weights
C2	Table C2: trend cycle-centered nn-term moving average
C4	Table C4: modified SI ratios
C5	Table C5: seasonal factors
C6	Table C6: seasonally adjusted series
C7	Table C7 trend cycle-Henderson curve
C9	Table C9: modified SI ratios
C10	Table C10: seasonal factors
C11	Table C11: seasonally adjusted series
C13	Table C13: irregular series
C15	Table C15: final trading day regression
C16	Table C16: trading day adjustment factors derived from regression
C17	Table C17: final weights for irregular component

Table 31.5 continued

ODS Table Name	Description	Option
C18	Table C18: trading day adjustment factors from combined weights	
C19	Table C19: original series adjusted for final combined trading day weights	
D1	Table D1: original series adjusted for final weights nn-term moving average	
D4	Table D4: modified SI ratios	
D5	Table D5: seasonal factors	
D6	Table D6: seasonally adjusted series	
D7	Table D7: trend cycle-Henderson curve	
D8	Table D8: final unmodified SI ratios	
D10	Table D10: final seasonal factors	
D11	Table D11: final seasonally adjusted series	
D12	Table D12: final trend cycle-Henderson curve	
D13	Table D13: final irregular series	
E1	Table E1: original series modified for extremes	
E2	Table E2: modified seasonally adjusted series	
E3	Table E3: modified irregular series	
E5	Table E5: month-to-month changes in original series	
E6	Table E6: month-to-month changes in final seasonally adjusted series	
F1	Table F1: MCD moving average	
A13	Table A13: ARIMA forecasts	ARIMA statement
A14	Table A14: ARIMA backcasts	ARIMA statement
A15	Table A15: ARIMA extrapolation	ARIMA statement
B14	Table B14: irregular values excluded from trading day regression	
C14	Table C14: irregular values excluded from trading day regression	
D9	Table D9: final replacement values	
PriorDailyWgts	adjusted prior daily weights	
TDR_0	final/preliminary trading day regression, part 1	MONTHLY only, TDREGR=ADJUST, TEST
TDR_1	final/preliminary trading day regression, part 2	MONTHLY only, TDREGR=ADJUST, TEST

Table 31.5 continued

ODS Table Name	Description	Option
StandErrors	standard errors of trading day adjustment factors	MONTHLY only, TDREGR=ADJUST, TEST
D9A	year-to-year change in irregular and seasonal components and moving seasonality ratio	
StableSeasTest	stable seasonality test	
StableSeasFTest	moving seasonality test	
KruskalWallisTest	nonparametric test for the presence of seasonality assuming stability	
CombinedSeasonalityTest	summary of results and combined test for the presence of identifiable seasonality	
f2a	F2 summary measures, part 1	
f2b	F2 summary measures, part 2	
f2c	F2 summary measures, part 3	
f2d	I/C ratio for monthly/quarterly span	
f2f	average $\%$ change with regard to sign and standard deviation over span	
E4	differences or ratios of annual totals for original and adjusted series	
ChartG1	chart G1	
ChartG2	chart G2	

ODS Tables Created by the ARIMA Statement

CriteriaSummary	criteria summary	ARIMA statement
ConvergeSummary	convergence summary	
ArimaEst	ARIMA estimation results, part 1	
ArimaEst2	ARIMA estimation results, part 2	
Model_Summary	model summary	
Ljung_BoxQ	table of Ljung-Box Q statistics	
A13	Table A13: ARIMA forecasts	
A14	Table A14: ARIMA backcasts	
A15	Table A15: ARIMA extrapolation	

ODS Tables Created by the SSPAN Statement

SPR0A_1	S 0.A sliding spans analysis, number, length of spans
SpanDates	S 0.A sliding spans analysis: dates of spans

Table 31.5 continued

ODS Table Name	Description	Option
SPR0B	S 0.B summary of F tests for stable and moving seasonality	
SPR1_1	S 1.A range analysis of seasonal factors	
SPR1_b	S 1.B summary of range measures	
SPRXA	2XA. 1 breakdown of differences by month or quarter	
SPRXB_2	S X.B histogram of flagged observations	
SPRXA_2	S X.A. 2 breakdown of differences by year	
MpdStats	S X.C: statistics for maximum percentage differences	
S_X_A_3	S 2.X. 3 breakdown summary of flagged observations	
SPR7_X	S 7.X sliding spans analysis	PRINTALL

Examples: X11 Procedure

Example 31.1: Component Estimation—Monthly Data

This example computes and plots the final estimates of the individual components for a monthly series. In the first plot (Output 31.1.1), an overlaid plot of the original and seasonally adjusted data is produced. The trend in the data is more evident in the seasonally adjusted data than in the original data. This trend is even more clear in Output 31.1.3, the plot of Table D12, the trend cycle. Note that both the seasonal factors and the irregular factors vary around 100 , while the trend cycle and the seasonally adjusted data are in the scale of the original data.

From Output 31.1.2 the seasonal component appears to be slowly increasing, while no apparent pattern exists for the irregular series in Output 31.1.4.

```
data sales;
    input sales @@;
    date = intnx( 'month', '01sep1978'd, _n_-1 );
    format date monyy7.;
datalines;
... more lines ...
proc x11 data=sales noprint;
```

```
    monthly date=date;
    var sales;
    tables b1 d11;
    output out=out b1=series d10=d10 d11=d11
        d12=d12 d13=d13;
run;
title 'Monthly Retail Sales Data (in $1000)';
proc sgplot data=out;
    series x=date y=series / markers
                        markerattrs=(color=red symbol=' asterisk')
                        lineattrs=(color=red)
                            legendlabel="original" ;
    series x=date y=d11 / markers
                            markerattrs=(color=blue symbol='circle')
                    lineattrs=(color=blue)
                    legendlabel="adjusted" ;
    yaxis label='Original and Seasonally Adjusted Time Series';
run;
```

Output 31.1.1 Plots of Original and Seasonally Adjusted Data


```
title 'Monthly Seasonal Factors (in percent)';
proc sgplot data=out;
    series x=date y=d10 / markers markerattrs=(symbol=CircleFilled) ;
run;
title 'Monthly Retail Sales Data (in $1000)';
proc sgplot data=out;
    series x=date y=d12 / markers markerattrs=(symbol=CircleFilled) ;
run;
title 'Monthly Irregular Factors (in percent)';
proc sgplot data=out;
    series x=date y=d13 / markers markerattrs=(symbol=CircleFilled) ;
run;
```

Output 31.1.2 Plot of D10, the Final Seasonal Factors

Output 31.1.3 Plot of D12, the Final Trend Cycle

Output 31.1.4 Plot of D13, the Final Irregular Series

Example 31.2: Components Estimation—Quarterly Data

This example is similar to Example 31.1, except quarterly data are used. Tables B1, the original series, and D11, the final seasonally adjusted series, are printed by the TABLES statement. The OUTPUT statement writes the listed tables to an output data set.

```
data quarter;
    input date yyq6. +1 fy35rr 5.2;
    format date yyq6.;
datalines;
... more lines ...
title 'Monthly Retail Sales Data (in $1000)';
proc x11 data=quarter;
    var fy35rr;
    quarterly date=date;
    tables b1 d11;
```

output out=out b1=b1 d10=d10 d11=d11 d12=d12 d13=d13; run;

Output 31.2.1 X11 Procedure Quarterly Example

The X11 Procedure

X-11 Seasonal Adjustment Program
U. S. Bureau of the Census

Economic Research and Analysis Division
November 1, 1968

The $\mathrm{X}-11$ program is divided into seven major parts. Part Description
A. Prior adjustments, if any
B. Preliminary estimates of irregular component weights and regression trading day factors
C. Final estimates of above
D. Final estimates of seasonal, trend-cycle and irregular components
E. Analytical tables
F. Summary measures
G. Charts

Series - fy35rr
Period covered - 1st Quarter 1971 to 4th Quarter 1976

Monthly Retail Sales Data (in \$1000)

The X11 Procedure

Seasonal Adjustment of - fy 35 rr

Year	B1 Original Series				
	1st	2nd	3 rd	4th	Total
1971	6.590	6.010	6.510	6.180	25.290
1972	5.520	5.590	5.840	6.330	23.280
1973	6.520	7.350	9.240	10.080	33.190
1974	9.910	11.150	12.400	11.640	45.100
1975	9.940	8.160	8.220	8.290	34.610
1976	7.540	7.440	7.800	7.280	30.060
Avg	7.670	7.617	8.335	8.300	
	tal:	. 53 Mea	7.9804	. 1.9	

Output 31.2.2 X11 Procedure Quarterly Example, Table D11

D11 Final Seasonally Adjusted Series					
Year	1st	2nd	3rd	4th	Total
1971	6.877	6.272	6.222	5.956	25.326
1972	5.762	5.836	5.583	6.089	23.271
1973	6.820	7.669	8.840	9.681	33.009
1974	10.370	11.655	11.855	11.160	45.040
1975	10.418	8.534	7.853	7.947	34.752
1976	7.901	7.793	7.444	6.979	30.116
Avg	8.025	7.960	7.966	7.969	
	Total:	51 Mean:	7.9797	S.D.: 1.9	

Example 31.3: Outlier Detection and Removal

PROC X11 can be used to detect and replace outliers in the irregular component of a monthly or quarterly series.

The weighting scheme used in measuring the "extremeness" of the irregulars is developed iteratively; thus the statistical properties of the outlier adjustment method are unknown.

In this example, the data are simulated by generating a trend plus a random error. Two periods in the series were made "extreme" by multiplying one generated value by 2.0 and another by 0.10 . The additive model is appropriate based on the way the data were generated. Note that the trend in the generated data was modeled automatically by the trend cycle component estimation.

The detection of outliers is accomplished by considering Table D9, the final replacement values for extreme S-I ratios. This table indicates which observations had irregular component values more than FULLWEIGHT = standard deviation units from 0.0 (1.0 for the multiplicative model). The default value of the FULLWEIGHT = option is 1.5 ; a larger value would result in fewer observations being declared extreme.

In this example, FULLWEIGHT=3.0 is used to isolate the extreme inflated and deflated values generated in the DATA step. The value of ZEROWEIGHT= must be greater than FULLWEIGHT; it is given a value of 3.5 .

A plot of the original and modified series, Output 31.3.2, shows that the deviation from the trend line for the modified series is greatly reduced compared with the original series.

```
data a;
    retain seed 99831;
    do kk = 1 to 48;
        x = kk + 100 + rannor( seed );
        date = intnx( 'month', '01jan1970'd, kk-1 );
        if kk = 20 then x = 2 * x;
        else if kk = 30 then x = x / 10;
        output;
```

```
    end;
run;
proc x11 data=a;
    monthly date=date additive
                fullweight=3.0 zeroweight=3.5;
    var x;
    table d9;
    output out=b b1=original e1=e1;
run;
proc sgplot data=b;
    series x=date y=original / markers
                                    markerattrs=(color=red symbol='asterisk')
                                    lineattrs=(color=red)
                                    legendlabel="unmodified" ;
    series x=date y=e1 / markers
                                    markerattrs=(color=blue symbol='circle')
                                    lineattrs=(color=blue)
                                    legendlabel="modified" ;
    yaxis label='Original and Outlier Adjusted Time Series';
run;
```

Output 31.3.1 Detection of Extreme Irregulars

Monthly Retail Sales Data (in \$1000)						
The X11 Procedure						
Seasonal Adjustment of - x						
D9 Final Replacement Values for Extreme SI Ratios						
1970	-	-			-	-
1971	-	-			-	-
1972	-	-			-	-10.671
1973	-	-			-	-
	D9 Fin	Replacem	ues	reme	tios	
Year	JUL	AUG	SEP	OCT	NOV	DEC
1970	-	.			-	-
1971	.	11.180			-	.
1972	-	.			-	-
1973	.	.			-	-

Output 31.3.2 Plot of Modified and Unmodified Values

References

Bell, W. R. and Hillmer, S. C. (1984), "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business and Economic Statistics, 2(4).

Bobbit, L. G. and Otto, M. C. (1990), "Effects of Forecasts on the Revisions of Seasonally Adjusted Data Using the X-11 Adjustment Procedure," Proceedings of the Business and Economic Statistics Section of the American Statistical Association, 449-453.

Buszuwski, J. A. (1987), "Alternative ARIMA Forecasting Horizons When Seasonally Adjusting Producer Price Data with X-11-ARIMA," Proceedings of the Business and Economic Statistics Section of the American Statistical Association, 488-493.

Cleveland, W. P. and Tiao, G. C. (1976), "Decomposition of Seasonal Time Series: A Model for Census X-11 Program,"Journal of the American Statistical Association, 71(355).

Cleveland, W. S. and Devlin, S. J. (1980), "Calendar Effects in Monthly Time Series: Detection by Spectrum Analysis and Graphical Methods," Journal of the American Statistical Association, 75(No. 371), 487-496.

Dagum, E. B. (1980), The X-11-ARIMA Seasonal Adjustment Method, Statistics Canada.
Dagum, E. B. (1982a), "The Effects of Asymmetric Filters on Seasonal Factor Revision," Journal of the American Statistical Association, 77(380), 732-738.

Dagum, E. B. (1982b), "Revisions of Seasonally Adjusted Data Due to Filter Changes," Proceedings of the Business and Economic Section, the American Statistical Association, 39-45.

Dagum, E. B. (1982c), "Revisions of Time Varying Seasonal Filters," Journal of Forecasting, 1(Issue 2), 173-187.

Dagum, E. B. (1983), The X-11-ARIMA Seasonal Adjustment Method, Technical Report 12-564E, Statistics Canada.

Dagum, E. B. (1985), "Moving Averages," in S. Kotz and N. L. Johnson, eds., Encyclopedia of Statistical Sciences, volume 5, New York: John Wiley \& Sons.

Dagum, E. B. (1988), The X-11-ARIMA/88 Seasonal Adjustment Method: Foundations and User's Manual, Ottawa: Statistics Canada.

Dagum, E. B. and Laniel, N. (1987), "Revisions of Trend Cycle Estimators of Moving Average Seasonal Adjustment Method,"Journal of Business and Economic Statistics, 5(2), 177-189.

Davies, N., Triggs, C. M., and Newbold, P. (1977), "Significance Levels of the Box-Pierce Portmanteau Statistic in Finite Samples," Biometrika, 64, 517-522.

Findley, D. F. and Monsell, B. C. (1986), "New Techniques for Determining If a Time Series Can Be Seasonally Adjusted Reliably, and Their Application to U.S. Foreign Trade Series," in M. R. Perryman and J. R. Schmidt, eds., Regional Econometric Modeling, 195-228, Amsterdam: KluwerNijhoff.

Findley, D. F., Monsell, B. C., Shulman, H. B., and Pugh, M. G. (1990), "Sliding Spans Diagnostics for Seasonal and Related Adjustments," Journal of the American Statistical Association, 85(410), 345-355.

Ghysels, E. (1990), "Unit Root Tests and the Statistical Pitfalls of Seasonal Adjustment: The Case of U.S. Post War Real GNP,"Journal of Business and Economic Statistics, 8(2), 145-152.

Higginson, J. (1975), An F test for the Presence of Moving Seasonality When Using Census Method II-X-II Variant, StatCan Staff Paper STC2102E, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada, Ottawa.

Huot, G., Chui, L., Higginson, J., and Gait, N. (1986), "Analysis of Revisions in the Seasonal Adjustment of Data Using X11ARIMA Model-Based Filters," International Journal of Forecasting, 2, 217-229.

Ladiray, D. and Quenneville, B. (2001), Seasonal Adjustment with the X-11 Method, New York: Springer-Verlag.

Laniel, N. (1985), "Design Criteria for the 13-Term Henderson End-Weights," Working Paper, Methodology Branch, Ottawa: Statistics Canada.

Lehmann, E. L. (1998), Nonparametrics: Statistical Methods Based on Ranks, San Francisco: Holden-Day.

Ljung, G. M. and Box, G. E. P. (1978), "On a Measure of Lack of Fit in Time Series Models," Biometrika, 65(2), 297-303.

Lothian, J. (1978), The Identification and Treatment of Moving Seasonality in the X-11 Seasonal Adjustment Method, StatCan Staff Paper STC0803E, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada, Ottawa.

Lothian, J. (1984a), The Identification and Treatment of Moving Seasonality in the X-11-ARIMA Seasonal Adjustment Method, Statcan staff paper, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada, Ottawa.

Lothian, J. (1984b), "The Identification and Treatment of Moving Seasonality in X-11-ARIMA," in Proceedings of the Business and Economic Statistics Section of the American Statistical Association, 166-171.

Lothian, J. and Morry, M. (1978a), Selection of Models for the Automated X-11-ARIMA Seasonal Adjustment Program, StatCan Staff Paper STC1789, Seasonal Adjustment \& Time Series Analysis Staff, Statistics Canada, Ottawa.

Lothian, J. and Morry, M. (1978b), A Test for the Presence of Identifiable Seasonality When Using the X-11-ARIMA Program, StatCan Staff Paper STC2118, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada, Ottawa.

Marris, S. (1961), "The Treatment of Moving Seasonality in Census Method II," in Seasonal Adjustment on Electronic Computers, 257-309, Paris: Organisation for Economic Co-operation and Development.

Monsell, B. C. (1984), The Substantive Changes in the X-11 Procedure of X-11-ARIMA, SRD Research Report Census/SRD/RR-84/10, Bureau of the Census, Statistical Research Division.

Pierce, D. A. (1980), "Data Revisions with Moving Average Seasonal Adjustment Procedures," Journal of Econometrics, 14, 95-114.

Shiskin, J. (1958), "Decomposition of Economic Time Series," Science, 128(3338).
Shiskin, J. and Eisenpress, H. (1957), "Seasonal Adjustment by Electronic Computer Methods," Journal of the American Statistical Association, 52(280).

Shiskin, J., Young, A. H., and Musgrave, J. C. (1967), The X-11 Variant of the Census Method II Seasonal Adjustment Program, Technical Report 15, U.S. Department of Commerce, Bureau of the Census.
U.S. Bureau of the Census (1969), X-11 Information for the User, U.S. Department of Commerce, Washington, DC: Government Printing Office.

Young, A. H. (1965), Estimating Trading Day Variation in Monthly Economic Time Series, Technical Report 12, U.S. Department of Commerce, Bureau of the Census, Washington, DC.

Chapter 32

The X12 Procedure

Contents

Overview: X12 Procedure . 2102

Getting Started: X12 Procedure . 2103
Basic Seasonal Adjustment . 2104
Syntax: X12 Procedure . 2106
Functional Summary . 2107
PROC X12 Statement . 2109
BY Statement . 2111
ID Statement . 2111
EVENT Statement . 2112
INPUT Statement . 2113
ADJUST Statement . 2114
ARIMA Statement . 2115
ESTIMATE Statement . 2115
FORECAST Statement . 2116
IDENTIFY Statement . 2117
AUTOMDL Statement . 2118
OUTPUT Statement . 2121
OUTLIER Statement . 2122
REGRESSION Statement . 2124
TABLES Statement . 2129
TRANSFORM Statement . 2130
USERDEFINED Statement . 2131
VAR Statement . 2132
X11 Statement . 2132
Details: X12 Procedure . 2136
Missing Values . 2136
Combined Test for the Presence of Identifiable Seasonality 2136
Computations . 2138
Displayed Output/ODS Table Names/OUTPUT Tablename Keywords 2139
ODS Graphics . 2141
Special Data Sets . 2142
Examples: X12 Procedure . 2146
Example 32.1: Model Identification . 2146
Example 32.2: Model Estimation . 2150
Example 32.3: Seasonal Adjustment 2151
Example 32.4: RegARIMA Automatic Model Selection 2154
Example 32.5: Automatic Outlier Detection 2161
Example 32.6: User-Defined Regressors 2166
Example 32.7: MDLINFOIN= and MDLINFOOUT= Data Sets 2169
Example 32.8: Setting Regression Parameters 2174
Example 32.9: Illustration of ODS Graphics 2182
Acknowledgments: X12 Procedure 2184
References 2184

Overview: X12 Procedure

The X12 procedure, an adaptation of the U.S. Bureau of the Census X-12-ARIMA Seasonal Adjustment program (U.S. Bureau of the Census 2001c), seasonally adjusts monthly or quarterly time series. The procedure makes additive or multiplicative adjustments and creates an output data set that contains the adjusted time series and intermediate calculations.

The X-12-ARIMA program combines the capabilities of the X-11 program (Shiskin, Young, and Musgrave 1967) and the X-11-ARIMA/88 program (Dagum 1988) and also introduces some new features (Findley et al. 1998). One of the main enhancements involves the use of a regARIMA model, a regression model with ARIMA (autoregressive integrated moving average) errors. Thus, the X-12-ARIMA program contains methods developed by both the U.S. Census Bureau and Statistics Canada. In addition, the X-12-ARIMA automatic modeling routine is based on the TRAMO (time series regression with ARIMA noise, missing values, and outliers) method (Gomez and Maravall 1997a, b). The four major components of the X-12-ARIMA program are regARIMA modeling, model diagnostics, seasonal adjustment that uses enhanced X-11 methodology, and postadjustment diagnostics. Statistics Canada's X-11 method fits an ARIMA model to the original series, and then uses the model forecast to extend the original series. This extended series is then seasonally adjusted by the standard X-11 seasonal adjustment method. The extension of the series improves the estimation of the seasonal factors and reduces revisions to the seasonally adjusted series as new data become available.

Seasonal adjustment of a series is based on the assumption that seasonal fluctuations can be measured in the original series, $O_{t}, t=1, \ldots, n$, and separated from trend cycle, trading day, and irregular fluctuations. The seasonal component of this time series, S_{t}, is defined as the intrayear variation that is repeated consistently or in an evolving fashion from year to year. The trend cycle component, C_{t}, includes variation due to the long-term trend, the business cycle, and other longterm cyclical factors. The trading day component, D_{t}, is the variation that can be attributed to the composition of the calendar. The irregular component, I_{t}, is the residual variation. Many economic time series are related in a multiplicative fashion $\left(O_{t}=S_{t} C_{t} D_{t} I_{t}\right)$. Other economic series are related in an additive fashion ($O_{t}=S_{t}+C_{t}+D_{t}+I_{t}$). A seasonally adjusted time series, $C_{t} I_{t}$ or $C_{t}+I_{t}$, consists of only the trend cycle and irregular components. For more details about seasonal adjustment with the X-11 method, see Ladiray and Quenneville (2001).

Graphics are now available with the X12 procedure. For more information, see the section "ODS Graphics" on page 2141.

Getting Started: X12 Procedure

The most common use of the X12 procedure is to produce a seasonally adjusted series. Eliminating the seasonal component from an economic series facilitates comparison among consecutive months or quarters. A plot of the seasonally adjusted series is often more informative about trends or location in a business cycle than a plot of the unadjusted series.

The following example shows how to use PROC X12 to produce a seasonally adjusted series, $C_{t} I_{t}$, from an original series $O_{t}=S_{t} C_{t} D_{t} I_{t}$.

In the multiplicative model, the trend cycle component C_{t} keeps the same scale as the original series O_{t}, while S_{t}, D_{t}, and I_{t} vary around 1.0. In all displayed tables, these latter components are expressed as percentages and thus vary around 100.0 (in the additive case, they vary around $0.0)$. However, in the output data set, the data displayed as percentages in the displayed output are expressed as the decimal equivalent and thus vary around 1.0 in the multiplicative case.

The naming convention used in PROC X12 for the tables follows the convention used in the Census Bureau's X-12-ARIMA program; see X-12-ARIMA Reference Manual (U.S. Bureau of the Census 2001b) and X-12-ARIMA Quick Reference for UNIX (U.S. Bureau of the Census 2001a). Also see the section "Displayed Output/ODS Table Names/OUTPUT Tablename Keywords" on page 2139. The table names are outlined in Table 32.8.

The tables that correspond to parts A through C are intermediate calculations. The final estimates of the individual components are found in the D tables: Table D10 contains the final seasonal factors, Table D12 contains the final trend cycle, and Table D13 contains the final irregular series. If you are primarily interested in seasonally adjusting a series without consideration of intermediate calculations or diagnostics, you need to look only at Table D11, the final seasonally adjusted series. Tables in part E contain information about extreme values and changes in the original and seasonally adjusted series. The tables in part F are seasonal adjustment quality measures. Spectral analysis is performed in part G. For further information about the tables produced by the X11 statement, see Ladiray and Quenneville (2001).

Basic Seasonal Adjustment

Suppose that you have monthly retail sales data starting in September 1978 in a SAS data set named SALES. At this point, you do not suspect that any calendar effects are present, and there are no prior adjustments that need to be made to the data.

In this simplest case, you need only specify the DATE= variable in the PROC X12 statement and request seasonal adjustment in the X11 statement as shown in the following statements:

```
data sales;
    set sashelp.air;
    sales = air;
    date = intnx( 'month', '01sep78'd, _n_-1 );
    format date monyy.;
run;
proc x12 data=sales date=date;
    var sales;
    x11;
    ods select d11;
run ;
```

The results of the seasonal adjustment are in table D11 (the final seasonally adjusted series) in the displayed output as shown in Figure 32.1.

Figure 32.1 Basic Seasonal Adjustment

The X 12 Procedure							
Table D 11: Final Seasonally Adjusted Data For variable sales							
Year	JAN	FEB	MAR	APR	MAY	JUN	
	JUL	AUG	SEP	OCT	NOV	DEC	Total
1978	.	.	.	-	.	.	
	.	.	124.560	124.649	124.920	129.002	503.131
1979	125.087	126.759	125.252	126.415	127.012	130.041	
	128.056	129.165	127.182	133.847	133.199	135.847	1547.86
1980	128.767	139.839	143.883	144.576	148.048	145.170	
	140.021	153.322	159.128	161.614	167.996	165.388	1797.75
1981	175.984	166.805	168.380	167.913	173.429	175.711	
	179.012	182.017	186.737	197.367	183.443	184.907	2141.71
1982	186.080	203.099	193.386	201.988	198.322	205.983	
	210.898	213.516	213.897	218.902	227.172	240.453	2513.69
1983	231.839	224.165	219.411	225.907	225.015	226.535	
	221.680	222.177	222.959	212.531	230.552	232.565	2695.33
1984	237.477	239.870	246.835	242.642	244.982	246.732	
	251.023	254.210	264.670	266.120	266.217	276.251	3037.03
1985	275.485	281.826	294.144	286.114	293.192	296.601	
	293.861	309.102	311.275	319.239	319.936	323.663	3604.44
1986	326.693	330.341	330.383	330.792	333.037	332.134	
	336.444	341.017	346.256	350.609	361.283	362.519	4081.51
1987	364.951	371.274	369.238	377.242	379.413	376.451	
	378.930	375.392	374.940	373.612	368.753	364.885	4475.08
1988	371.618	383.842	385.849	404.810	381.270	388.689	
	385.661	377.706	397.438	404.247	414.084	416.486	4711.70
1989	426.716	419.491	427.869	446.161	438.317	440.639	
	450.193	454.638	460.644	463.209	427.728	485.386	5340.99
1990	477.259	477.753	483.841	483.056	481.902	499.200	
	484.893	485.245	3873.15
Avg	277.330	280.422	282.373	286.468	285.328	288.657	
	288.389	291.459	265.807	268.829	268.774	276.446	
		Total: 40	23 Mean:	280.02	S.D.: 111		
			Min :	124.56	Max: 49		

You can compare the original series (Table A1) and the final seasonally adjusted series (Table D11) by plotting them together as shown in Figure 32.2. These tables are requested in the OUTPUT statement and are written to the OUT= data set. Note that the default variable name used in the output data set is the input variable name followed by an underscore and the corresponding table name.

```
proc x12 data=sales date=date noprint;
    var sales;
    x11;
    output out=out a1 d11;
run;
```

```
proc sgplot data=out;
    series x=date y=sales_A1 / name = "A1" markers
    markerattrs=(color=red symbol=' asterisk')
    lineattrs=(color=red);
    series x=date y=sales_D11 / name= "D11" markers
                        markerattrs=(symbol=' circle')
                        lineattrs=(color=blue);
    yaxis label='Original and Seasonally Adjusted Time Series';
run;
```

Figure 32.2 Plot of Original and Seasonally Adjusted Data

Syntax: X12 Procedure

The X12 procedure uses the following statements:

```
PROC X12 options;
    VAR variables;
    BY variables;
    ID variables;
    EVENT variables;
    USERDEFINED variables;
    TRANSFORM options;
    ADJUST options;
    IDENTIFY options;
    AUTOMDL options;
    OUTLIER options;
    REGRESSION options;
    INPUT variables;
    ARIMA options;
    ESTIMATE options;
    X11 options;
    FORECAST options;
    OUTPUT options;
    TABLES options;
```

The PROC X12 statements perform basically the same function as the Census Bureau's X-12ARIMA specs. Specs (specifications) are used in X-12-ARIMA to control the computations and output. The PROC X12 statement performs some of the same functions as the Series spec in the Census Bureau's X-12-ARIMA software. The ADJUST statement performs some of the same functions as the Transform spec. The TRANSFORM, IDENTIFY, AUTOMDL, OUTLIER, REGRESSION, ARIMA, ESTIMATE, X11, and FORECAST statements are designed to perform the same functions as the corresponding X-12-ARIMA specs, although full compatibility is not yet available. The Census Bureau documentation X-12-ARIMA Reference Manual (U.S. Bureau of the Census 2001b) can provide added insight to the functionality of these statements.

Functional Summary

Table 32.1 summarizes the statements and options that control the X12 procedure.
Table 32.1 X12 Syntax Summary

Description	Statement	Option
Data Set Options specify input data set	PROC X12	DATA=
specify regression and ARIMA information	PROC X12	MDLINFOIN=
output regression and ARIMA information write table values to an output data set	PROC X12	OUTPUT

Description	Statement	Option
request tables that are not displayed by default	TABLES	
specify that the summary line not be displayed	TABLES	NOSUM
display iterations history	ESTIMATE	ITPRINT
display information on restarted iterations	ESTIMATE	PRINTERR
display regression model parameter estimates	IDENTIFY	PRINTREG
display automatic model information	AUTOMDL	PRINT=
Date Information Options		
specify the date variable	PROC X12	DATE=
specify the date of the first observation	PROC X12	START=
specify the beginning and/or ending date of the subset	PROC X12	SPAN=
specify the interval of the time series	PROC X12	INTERVAL=
specify the interval of the time series	PROC X12	SEASONS=

Declaring the Role of Variables

specify BY-group processing
BY
specify identifying variables
ID
specify the variables to be seasonally adjusted
VAR specify user-defined variables available for re-

USERDEFINED gression

Controlling the Table Computations

suppress trimming of leading/trailing missing
PROC X12
values
transform or prior-adjust the series transform or prior-adjust the series adjust the series by using a predefined adjustment variable
use differencing to identify the ARIMA part of the model
specify automatic outlier detection
estimate the regARIMA model specified by
the REGRESSION and ARIMA statements or the MDLINFOIN= option
specify seasonal adjustment
specify the number of forecasts to extend the series for seasonal adjustment

FORECAST LEAD=

REGRESSION PREDEFINED=
REGRESSION USERVAR= PROC X12 INEVENT=

Specifying the Regression Model

specify Census regression variables
specify user-defined regression variables specify user defined event definition data set specify user defined event regression variables

OUTLIER
ESTIMATE

X11
TRANSFORM
TRANSFORM
ADJUST
IDENTIFY

EVENT

NOTRIMMISS
FUNCTION= POWER= PREDEFINED=

Description	Statement	Option

Specifying the ARIMA Model

use X-12-ARIMA TRAMO-based method to AUTOMDL
choose a model
specify the ARIMA part of the model
ARIMA
MODEL=

PROC X12 Statement

PROC X12 options;

The PROC X12 statement provides information about the time series to be processed by PROC X12. Either the START= or the DATE= option must be specified.

The original series is displayed in Table A1. If there are missing values in the original series and a regARIMA model is specified or automatically selected, then Table MV1 is displayed. Table MV1 contains the original series with missing values replaced by the predicted values from the fitted model. Table B1 is displayed when the original data is altered (for example, through an ARIMA model estimation, prior adjustment factors, or regression) or the series is extended with forecasts.

Although the X-12-ARIMA method handles missing values, there are some restrictions. In order for PROC X12 to process the series, no month or quarter can contain missing values for all years. For instance, if the third quarter contained only missing values for all years, then processing is skipped for that series. In addition, if more than half the values for a month or a quarter are missing, then a warning message is displayed in the log file, and other errors might occur later in processing. If a series contains many missing values, other methods of missing value replacement should be considered prior to seasonally adjusting the series.

The following options can appear in the PROC X12 statement.

DATA=SAS-data-set

specifies the input SAS data set used. If this option is omitted, the most recently created SAS data set is used.

DATE=variable

DATEVAR=variable

specifies a variable that gives the date for each observation. Unless specified in the SPAN= option, the starting and ending dates are obtained from the first and last values of the DATE= variable, which must contain SAS date or datetime values. The procedure checks values of the DATE= variable to ensure that the input observations are sequenced correctly in ascending order. If the INTERVAL $=$ option or the SEASONS= option is specified, the values of the date variable must be consistent with the specified seasonality or interval. If neither the INTERVAL= option nor the SEASONS= option is specified, then the procedure tries to determine the type of data from the values of the date variable. This variable is automatically added to the OUT = data set if a data set is requested in an OUTPUT statement, and the date values for
the variable are extrapolated if necessary. If the DATE= option is not specified, the START= option must be specified.

START=mmmy
START=' $y y Q q$ '
STARTDATE=mmmy
STARTDATE='yyQq'
specifies the date of the first observation. Unless the SPAN= option is used, the starting and ending dates are the dates of the first and last observations, respectively. Either this option or the DATE= option is required. When using this option, use either the INTERVAL= option or the SEASONS= option to specify monthly or quarterly data. If neither the INTERVAL= option nor the SEASONS= option is present, monthly data are assumed. Note that for a quarterly date, the specification must be enclosed in quotes. A four-digit year can be specified; if a two-digit year is specified, the value specified in the YEARCUTOFF= SAS system option applies. When using the START= option with BY processing, the start date is applied to the first observation in each BY group.

SPAN=(mmmyy ,mmmyy)

SPAN=('yyQq', 'yyQq')
specifies the dates of the first and last observations to define a subset for processing. A single date in parentheses is interpreted to be the starting date of the subset. To specify only the ending date, use SPAN=(,mmmyy). If the starting or ending date is omitted, then the first or last date, respectively, of the input data set is assumed. A four-digit year can be specified; if a two-digit year is specified, the value specified in the YEARCUTOFF= SAS system option applies.

INTERVAL=interval

specifies the frequency of the input time series. If the input data consist of quarterly observations, then INTERVAL=QTR should be used. If the input data consist of monthly observations, then INTERVAL=MONTH should be used. If the INTERVAL= option is not specified and SEASONS=4, then INTERVAL=QTR is assumed; likewise, SEASONS=12 implies INTERVAL=MONTH. If both the INTERVAL= option and the SEASONS= option are specified, the values should not be conflicting. If neither the INTERVAL= option nor the SEASONS = option is specified and the START= option is specified, then the data are assumed to be monthly. If a date variable is specified using the DATE= option, it is not necessary to specify the INTERVAL= option or the SEASONS= option; however, if specified, the values of the INTERVAL= option or the SEASONS= option should not be in conflict with the values of the date variable. See Chapter 4, "Date Intervals, Formats, and Functions," for more details about intervals.

SEASONS=number

specifies the number of observations in a seasonal cycle. If the SEASONS= option is not specified and INTERVAL=QTR, then SEASONS=4 is assumed. If the SEASONS= option is not specified and INTERVAL=MONTH, then SEASONS=12 is assumed. If the SEASONS= option is specified, its value should not conflict with the values of the INTERVAL= option or the values of the date variable. See the preceding descriptions for the START=, DATE=, and INTERVAL= options for more details.

NOTRIMMISS

suppresses the default, by which leading and trailing missing values are trimmed from the series. If NOTRIMMISS is used, PROC X12 automatically generates missing value regressors for any missing value within the span of the series, including leading and trailing missing values.

INEVENT=SAS-data-set

specifies the input data set that defines any user-defined event variables. This option can be omitted if events are not specified or if only SAS predefined events are specified in an EVENT statement. For more information about the format of this data set, see the section "INEVENT = Data Set" on page 2144 for details.

MDLINFOIN=SAS-data-set

specifies an optional input data set that contains model information that can replace the information contained in the TRANSFORM, REGRESSION, ARIMA, and AUTOMDL statements. The MDLINFOIN= data set can contain BY-group and series names; it is useful for providing specific information about each series to be seasonally adjusted. See the section "MDLINFOIN = and MDLINFOOUT= Data Sets" on page 2142 for details.

MDLINFOOUT=SAS-data-set

specifies the optional output data set that contains the transformation, regression, and ARIMA information related to each seasonally adjusted series. The data set is sorted by the BY-group variables, if any, and by series names. The MDLINFOOUT= data set can be used as input for the MDLINFOIN= option. See the section "MDLINFOIN= and MDLINFOOUT= Data Sets" on page 2142 for details.

NOPRINT

suppresses any printed output.

BY Statement

BY variables ;
A BY statement can be used with PROC X12 to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the procedure expects the input DATA= data set to be sorted in order of the BY variables.

ID Statement

ID variables ;

If you are creating an output data set, use the ID statement to copy values of the ID variables, in addition to the table values, into the output data set. Or, if the VAR statement is omitted, all numeric variables that are not identified as BY variables, ID variables, the DATE= variable, or user-defined regressors are processed as time series. The ID statement has no effect when a VAR statement is
specified and an output data set is not created. If the DATE= variable is specified in the PROC X12 statement, this variable is included automatically in the OUTPUT data set. If no DATE= variable is specified, the variable _DATE_is added.

The date variable (or _DATE_) values outside the range of the actual data (from forecasting) are extrapolated, while all other ID variables are missing in the forecast horizon.

EVENT Statement

EVENT variables < / options > ;

The EVENT statement specifies EVENTs to be included in the regression portion of the regARIMA model. Multiple EVENT statements can be specified. If a MDLINFOIN= data set is not specified, then all variables specified in the EVENT statements are applied to all BY-groups and all time series that are processed. If a MDLINFOIN= data set is specified, then the EVENT statements applies only if no regression information for the BY-group and series is available in the MDLINFOIN= data set. The EVENTs specified in the EVENT statements either must be SAS predefined EVENTs or must be defined in the data set specified in the INEVENT=SAS-data-set option of the PROC X12 statement. For a list of SAS predefined EVENTs, see the section "EVENTKEY Statement" in Chapter 6, "The HPFEVENTS Procedure" (SAS High-Performance Forecasting User's Guide).

The EVENT statement can also be used to include outlier, level shift, and temporary change regressors that are available as predefined U.S. Census Bureau variables in the X-12-ARIMA program. For example, the following statements specify an additive outlier in January 1970 and a level shift that begins in July 1971:

```
proc x12 data=ICMETI seasons=12 start=jan1968;
    event AO01JAN1970D CBLS01JUL1971D;
```

and the following statements specify an additive outlier in the second quarter 1970 and a temporary change that begins in the fourth quarter 1971:

```
proc x12 data=ICMETI seasons=4 start='1970q1';
    event AOO1APR1970D TCO1OCT1971D;
```

The following options can appear in the EVENT statement.

$\mathrm{B}=($ value < F> ...)

specifies initial or fixed values for the EVENT parameters. For details about the $\mathrm{B}=$ option, see $\mathrm{B}=($ value $<F>\ldots$. .) in the section "REGRESSION Statement" on page 2124.

USERTYPE=AO

USERTYPE=CONSTANT
USERTYPE=EASTER
USERTYPE=HOLIDAY
USERTYPE=LABOR

USERTYPE=LOM
 USERTYPE=LOMSTOCK

USERTYPE=LOQ

USERTYPE=LPYEAR

USERTYPE=LS

USERTYPE=RP
USERTYPE=SCEASTER

USERTYPE=SEASONAL

USERTYPE=TC
USERTYPE=TD
USERTYPE=TDSTOCK

USERTYPE=THANKS

USERTYPE=USER

For details about the USERTYPE= option, see the USERTYPE= option in the section "REGRESSION Statement" on page 2124.

INPUT Statement

INPUT variables < / options > ;
The INPUT statement specifies variables in the PROC X12 DATA= data set that are to be used as regressors in the regression portion of the regARIMA model. The variables in the data set should contain the values for each observation that define the regressor. Future values of regression variables should also be included in the DATA= data set if the time series listed in the VAR statement is to be extended with regARIMA forecasts. Multiple INPUT statements can be specified. If a MDLINFOIN = data set is not specified, then all variables listed in the INPUT statements are applied to all BY-groups and all time series that are processed. If a MDLINFOIN= data set is specified, then the INPUT statements apply only if no regression information for the BY-group and series is available in the MDLINFOIN= data set.

The following options can appear in the INPUT statement.

$\mathrm{B}=$ (value <F>...)

specifies initial or fixed values for the INPUT variable parameters. For details about the $B=$ option, see the $B=(v a l u e<F>\ldots)$ option in the section "REGRESSION Statement" on page 2124.

USERTYPE=AO

USERTYPE=CONSTANT

USERTYPE=EASTER

USERTYPE=HOLIDAY

USERTYPE=LABOR

USERTYPE=LOQ

USERTYPE=LPYEAR

USERTYPE=LS

USERTYPE=RP
USERTYPE=SCEASTER
USERTYPE=SEASONAL
USERTYPE=TC
USERTYPE=TD
USERTYPE=TDSTOCK
USERTYPE=THANKS
USERTYPE=USER
For details about the USERTYPE= option, see the USERTYPE= option in the section "REGRESSION Statement" on page 2124.

ADJUST Statement

ADJUST options ;

The ADJUST statement adjusts the series for leap year and length-of-period factors prior to estimating a regARIMA model. The "Prior Adjustment Factors" table is associated with the ADJUST statement.

The following option can appear in the ADJUST statement.

PREDEFINED=LOM

PREDEFINED=LOQ

PREDEFINED=LPYEAR

specifies length-of-month adjustment, length-of-quarter adjustment, or leap year adjustment. PREDEFINED=LOM and PREDEFINED=LOQ are equivalent; the actual adjustment is determined by the interval of the time series. Also, since leap year adjustment is a limited form of length-of-period adjustment, only one type of predefined adjustment can be specified. The PREDEFINED= option should not be used in conjunction with PREDEFINED=TD or PREDEFINED=TD1COEF in the REGRESSION statement or MODE=ADD or MODE=PSEUDOADD in the X11 statement. PREDEFINED=LPYEAR cannot be specified unless the series is \log transformed.

If the series is to be transformed by using a Box-Cox or logistic transformation, the series is first adjusted according to the ADJUST statement, then transformed.

In the case of a length-of-month adjustment for the series with observations Y_{t}, each observation is first divided by the number of days in that month, m_{t}, and then multiplied by the average length of month (30.4375), resulting in ($30.4375 \times Y_{t}$) $/ m_{t}$. Length-of-quarter adjustments are performed in a similar manner, resulting in $\left(91.3125 \times Y_{t}\right) / q_{t}$, where q_{t} is the length in days of quarter t.

Forecasts of the transformed and adjusted data are transformed and adjusted back to the original scale for output.

ARIMA Statement

ARIMA options ;

The ARIMA statement specifies the ARIMA part of the regARIMA model. This statement defines a pure ARIMA model if no REGRESSION statements, INPUT statements, or EVENT statements are specified. The ARIMA part of the model can include multiplicative seasonal factors.

The following option can appear in the ARIMA statement.

MODEL=((p d q) (P D Q)s)

specifies the ARIMA model. The format follows standard Box-Jenkins notation (Box, Jenkins, and Reinsel 1994). The nonseasonal AR and MA orders are given by p and q, respectively, while the seasonal AR and MA orders are given by P and Q. The number of differences and seasonal differences are given by d and D, respectively. The notation $(p d q)$ and $(P D Q)$ can also be specified as (p, d, q) and (P, D, Q). The maximum lag of any AR or MA parameter is 36. The maximum value of a difference order, d or D, is 144. All values for p, d, q, P, D, and Q should be nonnegative integers. The lag that corresponds to seasonality is $s ; s$ should be a positive integer. If s is omitted, it is set equal to the value used in the SEASONS $=$ option in the PROC X12 statement.

For example, the following statements specify an ARIMA $(2,1,1)(1,1,0) 12$ model:

```
proc x12 data=ICMETI seasons=12 start=jan1968;
    arima model=((2,1,1)(1,1,0));
```


ESTIMATE Statement

ESTIMATE options;

The ESTIMATE statement estimates the regARIMA model. The regARIMA model is specified by the REGRESSION, INPUT, EVENT, and ARIMA statements or by the MDLINFOIN= data set. Estimation output includes point estimates and standard errors for all estimated AR, MA, and regression parameters; the maximum likelihood estimate of the variance $\sigma^{2} ; t$ statistics for individual regression parameters; χ^{2} statistics for assessing the joint significance of the parameters associated with certain regression effects (if included in the model); and likelihood-based model selection statistics (if the exact likelihood function is used). The regression effects for which χ^{2} statistics are produced are fixed seasonal effects.

Tables displayed in the output associated with estimation are "Exact ARMA Likelihood Estimation Iteration Tolerances," "Average Absolute Percentage Error in within-Sample Forecasts," "ARMA Iteration History," "AR/MA Roots," "Exact ARMA Likelihood Estimation Iteration Summary,"

"Regression Model Parameter Estimates," " Chi-Squared Tests for Groups of Regressors," "Exact ARMA Maximum Likelihood Estimation," and "Estimation Summary."

The following options can appear in the ESTIMATE statement.

MAXITER=value

specifies the maximum number of iterations (for estimating the AR and MA parameters) allowed. For models with regression variables, this limit applies to the total number of ARMA iterations over all iterations of the iterative generalized least squares (IGLS) algorithm. For models without regression variables, this is the maximum number of iterations allowed for the set of ARMA iterations. The default is MAXITER=200.

TOL=value

specifies the convergence tolerance for the nonlinear estimation. Absolute changes in the loglikelihood are compared to the TOL= value to check convergence of the estimation iterations. For models with regression variables, the TOL= value is used to check convergence of the IGLS iterations (where the regression parameters are reestimated for each new set of AR and MA parameters). For models without regression variables, there are no IGLS iterations, and the TOL= value is then used to check convergence of the nonlinear iterations used to estimate the AR and MA parameters. The default value is $\mathrm{TOL}=0.00001$. The minimum tolerance value is a positive value based on the machine precision and the length of the series. If a tolerance less than the minimum supported value is specified, an error message is displayed and the series is not processed.

ITPRINT

specifies that the "Iterations History" table be displayed. This includes detailed output for estimation iterations (including log-likelihood values and parameters) and counts of function evaluations and iterations. It is useful to examine the "Iterations History" table when errors occur within estimation iterations. By default, only successful iterations are displayed, unless the PRINTERR option is specified. An unsuccessful iteration is an iteration that is restarted due to a problem such as a root inside the unit circle. Successful iterations have a status of 0 . If restarted iterations are displayed, a note at the end of the table gives definitions for status codes that indicate a restarted iteration. For restarted iterations, the number of function evaluations and the number of iterations will be -1 , which is displayed as missing. If regression parameters are included in the model, then both IGLS and ARMA iterations are included in the table. The number of function evaluations is a cumulative total.

PRINTERR

causes restarted iterations to be included in the "Iterations History" table (if ITPRINT is specified) or creates the "Restarted Iterations" table (if ITPRINT is not specified). Whether or not PRINTERR is specified, a WARNING message is printed to the log file if any iteration is restarted during estimation.

FORECAST Statement

The FORECAST statement uses the estimated model to forecast the time series. The output contains point forecast and forecast statistics for the transformed and original series.

The following option can appear in the FORECAST statement.

LEAD=value

specifies the number of periods ahead to forecast. The default is the number of periods in a year (4 or 12), and the maximum is 60 .

Tables that contain forecasts, standard errors, and confidence limits are displayed in association with the FORECAST statement. If the data is transformed, then two tables are displayed: one table for the original data, and one table for the transformed data.

IDENTIFY Statement

IDENTIFY options ;

The IDENTIFY statement is used to produce plots of the sample autocorrelation function (ACF) and partial autocorrelation function (PACF) for identifying the ARIMA part of a regARIMA model. The sample ACF and PACF are produced for all combinations of the nonseasonal and seasonal differences of the data specified by the DIFF= and SDIFF= options. If the model includes a regression component (specified using the REGRESSION, INPUT, and EVENT statements or the MDLINFOIN = data set), then the ACFs and PACFs are calculated for the specified differences of the regression residuals. If the model does not include a regression component, then the ACFs and PACFs are calculated for the specified differences of the original data.

Tables displayed in association with identification are "Autocorrelation of Model Residuals" and "Partial Autocorrelation of Model Residuals." If the model includes a regression component (specified using the REGRESSION, INPUT, and EVENT statements or the MDLINFOIN= data set), then the "Regression Model Parameter Estimates" table is also available.

The following options can appear in the IDENTIFY statement.

DIFF=(order, order, order)

specifies orders of nonseasonal differencing to use in model identification. The value 0 specifies no differencing; the value 1 specifies one nonseasonal difference $(1-B)$; the value 2 specifies two nonseasonal differences $(1-B)^{2}$; and so forth. The ACFs and PACFs are produced for all orders of nonseasonal differencing specified, in combination with all orders of seasonal differencing specified in the SDIFF= option. The default is DIFF=(0). You can specify up to three values for nonseasonal differences.

SDIFF=(order, order, order)

specifies orders of seasonal differencing to use in model identification. The value 0 specifies no seasonal differencing; the value 1 specifies one seasonal difference $\left(1-B^{S}\right)$; the value 2 specifies two seasonal differences $\left(1-B^{s}\right)^{2}$; and so forth. Here the value for s corresponds to the period specified in the SEASONS= option in the PROC X12 statement. The value of the SEASONS $=$ option is supplied explicitly or is implicitly supplied through the INTERVAL= option or the values of the DATE= variable. The ACFs and PACFs are produced for all orders
of seasonal differencing specified, in combination with all orders of nonseasonal differencing specified in the DIFF= option. The default is $\operatorname{SDIFF}=(0)$. You can specify up to three values for seasonal differences.

For example, the following statement produces ACFs and PACFs for two levels of differencing: $(1-B)$ and $(1-B)\left(1-B^{s}\right)$:
identify $\operatorname{diff}=(1)$ sdiff=(0, 1);

PRINTREG

causes the "Regression Model Parameter Estimates" table to be printed if the REGRESSION statement is present. By default, the table is not printed.

AUTOMDL Statement

AUTOMDL options ;

The AUTOMDL statement is used to invoke the automatic model selection procedure of the X-12ARIMA method. This method is based largely on the TRAMO (time series regression with ARIMA noise, missing values, and outliers) method by Gomez and Maravall (1997a, b). If the AUTOMDL statement is used without the OUTLIER statement, then only missing values regressors are included in the regARIMA model. If the AUTOMDL and the OUTLIER statements are used, then both missing values regressors and regressors for automatically identified outliers are included in the regARIMA model.

If both the AUTOMDL statement and the ARIMA statement are present, the ARIMA statement is ignored. The ARIMA statement specifies the model, while the AUTOMDL statement allows the X12 procedure to select the model. If the AUTOMDL statement is specified and a data set is specified in the MDLINFOIN= option of the PROC X12 statement, then the AUTOMDL statement is ignored if the specified data set contains a model specification for the series. If no model for the series is specified in the data set specified in the MDLINFOIN= option, then the AUTOMDL (or ARIMA) statement is used to determine the model. Thus, it is possible to give a specific model for some series and automatically identify the model for other series by using both the MDLINFOIN= option and the AUTOMDL statement.

When AUTOMDL is specified, the X12 procedure compares a model selected using a TRAMO method to a default model. The TRAMO method is implemented first, and involves two parts: identifying the orders of differencing and identifying the ARIMA model. The table "ARIMA Estimates for Unit Root Identification" provides details about the identification of the orders of differencing, while the table "Results of Unit Root Test for Identifying Orders of Differencing" shows the orders of differencing selected by TRAMO. The table "Models Estimated by Automatic ARIMA Model Selection Procedure" provides details regarding the TRAMO automatic model selection, and the table "Best Five ARIMA Models Chosen by Automatic Modeling" ranks the best five models estimated using the TRAMO method. The next available table, "Comparison of Automatically Selected Model and Default Model," compares the model selected by the TRAMO method to a default model. At this point in the processing, if the default model is selected over the TRAMO model, then PROC X12 displays a note. No note is displayed if the TRAMO model is selected. PROC X12 then performs checks for unit roots, over-differencing, and insignificant ARMA coefficients. If the model
is changed due to any of these tests, a note is displayed. The last table, "Final Automatic Model Selection," shows the results of the automatic model selection.

The following options can appear in the AUTOMDL statement:

MAXORDER=(nonseasonal order, seasonal order)

specifies the maximum orders of nonseasonal and seasonal ARMA polynomials for the automatic ARIMA model identification procedure. The maximum order for the nonseasonal ARMA parameters should be between 1 and 4; the maximum order for the seasonal ARMA should be 1 or 2 .

DIFFORDER=(nonseasonal order, seasonal order)

specifies the fixed orders of differencing to be used in the automatic ARIMA model identification procedure. When the DIFFORDER= option is used, only the AR and MA orders are automatically identified. Acceptable values for the regular differencing orders are 0,1 , and 2 ; acceptable values for the seasonal differencing orders are 0 and 1 . If the MAXDIFF= option is also specified, then the DIFFORDER= option is ignored. There are no default values for DIFFORDER. If neither the DIFFORDER= option nor the MAXDIFF= option is specified, then the default is MAXDIFF=(2,1).

MAXDIFF=(nonseasonal order, seasonal order)

specifies the maximum orders of regular and seasonal differencing for the automatic identification of differencing orders. When MAXDIFF is specified, the differencing orders are identified first, and then the AR and MA orders are identified. Acceptable values for the regular differencing orders are 1 and 2 ; the only acceptable value for the seasonal differencing order is 1 . If both the MAXDIFF= option and the DIFFORDER option= are specified, then the DIFFORDER= option is ignored. If neither the DIFFORDER= nor the MAXDIFF= option is specified, the default is MAXDIFF= $(2,1)$.

NOINT

suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the parameter μ is omitted.)

PRINT=UNITROOTTEST

PRINT=AUTOCHOICE

PRINT=UNITROOTTESTMDL
PRINT=AUTOCHOICEMDL

PRINT=BEST5MODEL

lists the tables to be displayed in the output.
PRINT=AUTOCHOICE displays the tables titled "Comparison of Automatically Selected Model and Default Model" and "Final Automatic Model Selection." The "Comparison of Automatically Selected Model and Default Model" table compares a default model to the model chosen by the TRAMO-based automatic modeling method. The "Final Automatic Model Selection" table indicates which model has been chosen automatically. If the PRINT= option is not specified, then PRINT=AUTOCHOICE is displayed by default.

PRINT=UNITROOTTEST causes the table titled "Results of Unit Root Test for Identifying Orders of Differencing" to be printed. This table displays the orders that were automatically
selected by AUTOMDL. Unless the nonseasonal and seasonal differences are specified using the DIFFORDER= option, AUTOMDL automatically identifies the orders of differencing.

PRINT=UNITROOTMDL displays the table titled "ARIMA Estimates for Unit Root Identification." This table summarizes the various models that were considered by the TRAMO automatic selection method while identifying the orders of differencing and the statistics associated with those models. The unit root identification method first attempts to obtain the coefficients by using the Hannan-Rissanen method. If Hannan-Rissanen estimation cannot be performed, the algorithm attempts to obtain the coefficients by using conditional likelihood estimation.

PRINT=AUTOCHOICEMDL displays the table "Models Estimated by Automatic ARIMA Model Selection Procedure." This table summarizes the various models that were considered by the TRAMO automatic model selection method and their measures of fit.

PRINT=BEST5MODEL displays the table "Best Five ARIMA Models Chosen by Automatic Modeling." This table ranks the five best models that were considered by the TRAMO automatic modeling method.

BALANCED

specifies that the automatic modeling procedure prefer balanced models over unbalanced models. A balanced model is one in which the sum of AR, differencing, and seasonal differencing orders equal to the sum of MA and seasonal MA orders. Specifying BALANCED gives the same preference as the TRAMO program. If BALANCED is not specified, all models are given equal consideration.

HRINITIAL

specifies that Hannan-Rissanen estimation be done before exact maximum likelihood estimation to provide initial values. If HRINITIAL is specified, then models for which the HannanRissanen estimation has an unacceptable coefficient are rejected.

ACCEPTDEFAULT

specifies that the default model be chosen if its Ljung-Box Q is acceptable.

LJUNGBOXLIMIT=value

specifies acceptance criteria for confidence coefficient of the Ljung-Box Q statistic. If the Ljung-Box Q for a final model is greater than this value, the model is rejected, the outlier critical value is reduced, and outlier identification is redone with the reduced value (see the REDUCECV option). The value specified must be greater than 0 and less than 1 . The default value is 0.95 .

REDUCECV=value

specifies the percentage that the outlier critical value be reduced when a final model is found to have an unacceptable confidence coefficient for the Ljung-Box Q statistic. This value should be between 0 and 1 . The default value is 0.14286 .

ARMACV=value

specifies the threshold value for the t statistics associated with the highest order ARMA coefficients. As a check of model parsimony, the parameter estimates and t statistics of the highest order ARMA coefficients are examined to determine if the coefficient is insignificant.

An ARMA coefficient is considered to be insignificant if the absolute value of the parameter estimate is below 0.15 for 150 or fewer observations, and below 0.1 for more than 150 observations and the t value (displayed in the table "Exact ARMA Maximum Likelihood Estimation") is below the value specified in the ARMACV= option. If the highest order ARMA coefficient is found to be insignificant then the order of the ARMA model is reduced. For example, if AUTOMDL identifies a ($\left.\begin{array}{lll}1 & 1\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$ model and the parameter estimate of the seasonal MA lag of order 1 is -0.9 and its t value is -0.55 , then the ARIMA model is reduced to at least $\left(\begin{array}{lll}3 & 1 & 1\end{array}\right)\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$. After the model is reestimated, the check for insignificant coefficients is performed again. If $\mathrm{ARMACV}=0.54$ is specified in the preceding example, then the coefficient is not found to be insignificant and the model is not reduced.

If a constant regressor is allowed in the model and if the t value (displayed in the table "Regression Model Parameter Estimates") is below the ARMACV= critical value, then the constant regressor is considered to be insignificant and is removed. Note that if a constant regressor is added to or removed from the model and then the ARIMA model changes, then the t statistic for the constant regressor also changes. Thus, changing the ARMACV= value does not necessarily add or remove a constant term from the model.

The value specified in the ARMACV= option should be greater than zero. The default value is 1.0 .

OUTPUT Statement

OUTPUT OUT= SAS-data-set tablename1 tablename2 . . ;

The OUTPUT statement creates an output data set that contains specified tables. The data set is named by the OUT= option.

OUT=SAS-data-set

names the data set to contain the specified tables. If the OUT= option is omitted, the SAS System names the new data set by using the default DATA n convention.

For each table to be included in the output data set, you must specify the X12 tablename keyword. The keyword corresponds to the title label used by the Census Bureau X12-ARIMA software. Currently available tables are A1, A2, A6, A7, A8, A8AO, A8LS, A8TC, A9, A10, B1, C17, C20, D1, D7, D8, D9, D10, D10B, D10D, D11, D11A, D11F, D11R, D12, D13, D16, D16B, D18, E5, E6, E6A, E6R, E7, and MV1. If no table is specified in the OUTPUT statement, Table A1 is output to the OUT= data set by default.

The tablename keywords that can be used in the OUTPUT statement are listed in the section "Displayed Output/ODS Table Names/OUTPUT Tablename Keywords" on page 2139. The following is an example of a VAR statement and an OUTPUT statement:

```
var sales costs;
output out=out_x12 b1 d11;
```

Note that the default variable name used in the output data set is the input variable name followed by an underscore and the corresponding table name. The variable sales_B1 contains
the Table B1 values for the variable sales, the variable costs_B1 contains the Table B1 values for costs, while the Table D11 values for sales are contained in the variable sales_D11, and the variable costs_D11 contains the Table D11 values for costs. If necessary, the variable name is shortened so that the table name can be added. If the DATE= variable is specified in the PROC X12 statement, then that variable is included in the output data set; otherwise, a variable named _DATE_ is written to the OUT= data set as the date identifier.

OUTLIER Statement

OUTLIER options;

The OUTLIER statement specifies that the X12 procedure perform automatic detection of additive (point) outliers, temporary change outliers, level shifts, or any combination of the three when using the specified model. After outliers are identified, the appropriate regression variables are incorporated into the model as "Automatically Identified Outliers," and the model is reestimated. This procedure is repeated until no additional outliers are found.

The OUTLIER statement also identifies potential outliers and lists them in the table "Potential Outliers" in the displayed output. Potential outliers are identified by decreasing the critical value by 0.5 .

In the output, the default initial critical values used for outlier detection in a given analysis are displayed in the table "Critical Values to Use in Outlier Detection." Outliers that are detected and incorporated into the model are displayed in the output in the table "Regression Model Parameter Estimates," where the regression variable is listed as "Automatically Identified."

The following options can appear in the OUTLIER statement.

```
SPAN=(mmmyy ,mmmyy )
```

SPAN=('yyQq', 'yyQq')
gives the dates of the first and last observations to define a subset for searching for outliers. A single date in parentheses is interpreted to be the starting date of the subset. To specify only the ending date, use SPAN=(,mmmyy) or SPAN=(, 'yyQq'). If the starting or ending date is omitted, then the first or last date, respectively, of the input data set is assumed. A four-digit year can be specified; if a two-digit year is specified, the value specified in the YEARCUTOFF $=$ SAS system option applies.

TYPE=NONE

TYPE=(outlier types)

lists the outlier types to be detected by the automatic outlier identification method. TYPE=NONE turns off outlier detection. The valid outlier types are AO, LS, and TC. The default is TYPE=(AO LS).

$C V=$ value

specifies an initial critical value to use for detection of all types of outliers. The absolute value of the t statistic associated with an outlier parameter estimate is compared with the critical value to determine the significance of the outlier. If the $\mathrm{CV}=$ option is not specified, then the
default initial critical value is computed using a formula presented by Ljung (1993), which is based on the number of observations or model span used in the analysis. Table 32.2 gives default critical values for various series lengths. Increasing the critical value decreases the sensitivity of the outlier detection routine and can reduce the number of observations treated as outliers. The automatic model identification process might lower the critical value by a certain percentage, if the automatic model identification process fails to identify an acceptable model.

Table 32.2 Default Critical Values for Outlier Identification

Number of Observations	Outlier Critical Value
1	1.96
2	2.24
3	2.44
4	2.62
5	2.74
6	2.84
7	2.92
8	2.99
9	3.04
10	3.09
11	3.13
12	3.16
24	3.42
36	3.55
48	3.63
72	3.73
96	3.80
120	3.85
144	3.89
168	3.92
192	3.95
216	3.97
240	3.99
264	4.01
288	4.03
312	4.04
336	4.05
360	4.07

$A O C V=$ value

specifies a critical value to use for additive (point) outliers. If AOCV is specified, this value overrides any default critical value for AO outliers. See the $\mathrm{CV}=$ option for more details.

LSCV=value

specifies a critical value to use for level shift outliers. If LSCV is specified, this value overrides any default critical value for LS outliers. See the CV=option for more details.

TCCV=value

specifies a critical value to use for temporary change outliers. If TCCV is specified, this value overrides any default critical value for TC outliers. See the CV= option for more details.

REGRESSION Statement

REGRESSION PREDEFINED= variables < / options > ;

REGRESSION USERVAR= variables $</$ options $>$;
The REGRESSION statement includes regression variables in a regARIMA model or specifies regression variables whose effects are to be removed by the IDENTIFY statement to aid in ARIMA model identification. Predefined regression variables are selected with the PREDEFINED= option. User-defined regression variables are specified with the USERVAR= option. The currently available predefined variables are listed below in Table 32.3. Table A6 in the displayed output generated by the X12 procedure provides information related to trading day effects. Table A7 provides information related to holiday effects. Tables A8, A8AO, A8LS, and A8TC provide information related to outlier factors. Ramps and level shifts are combined in the A8LS table. The A8AO, A8LS and A8TC tables are available only when more than one outlier type is present in the model. Table A9 provides information about user-defined regression effects. Table A10 provides information about the user-defined seasonal component. Missing values in the span of an input series automatically create missing value regressors. See the NOTRIMMISS option of the PROC X12 statement and the section "Missing Values" on page 2136 for further details about missing values. Combining your model with additional predefined regression variables can result in a singularity problem. If a singularity occurs, then you might need to alter either the model or the choices of the predefined regressors in order to successfully perform the regression.

In order to seasonally adjust a series that uses a regARIMA model, the factors derived from the regression coefficients must be the same type as the factors generated by the seasonal adjustment procedure, so that combined adjustment factors can be derived and adjustment diagnostics can be generated. If the regARIMA model is applied to a log-transformed series, the regression factors are expressed in the form of ratios, which match seasonal factors generated by the multiplicative (or log-additive) adjustment modes. Conversely, if the regARIMA model is fit to the original series, the regression factors are measured on the same scale as the original series, which match seasonal factors generated by the additive adjustment mode. Note that the default transformation (no transformation) and the default seasonal adjustment mode (multiplicative) are in conflict. Thus when you specify the X11 statement and any of the REGRESSION, INPUT, or EVENT statements, it is necessary to also specify either a transform option (using the TRANSFORM statement) or a mode (using the MODE= option of the X11 statement) in order to seasonally adjust the data that uses the regARIMA model.

According to Ladiray and Quenneville (2001), "X-12-ARIMA is based on the same principle [as the X - 11 method] but proposes, in addition, a complete module, called Reg-ARIMA, that allows for the initial series to be corrected for all sorts of undesirable effects. These effects are estimated using regression models with ARIMA errors (Findley et al. [23])." In order to correct the series for effects in this manner, the REGRESSION statement must be specified. The effects that can be corrected in this manner are listed in the PREDEFINED $=$ option below.

Either the PREDEFINED= option or the USERVAR = option can be specified in a single REGRESSION statement, but not both. Multiple REGRESSION statements can be used.

The following options can appear in the REGRESSION statement.

```
PREDEFINED=CONSTANT < / B= >
PREDEFINED=LOM
PREDEFINED=LOMSTOCK
PREDEFINED=LOQ
PREDEFINED=LPYEAR
PREDEFINED=SEASONAL
PREDEFINED=TD
PREDEFINED=TDNOLPYEAR
PREDEFINED=TD1COEF
PREDEFINED=TD1NOLPYEAR
PREDEFINED=EASTER(value)
PREDEFINED=SCEASTER(value)
PREDEFINED=LABOR(value)
PREDEFINED=THANK(value)
PREDEFINED=TDSTOCK(value)
PREDEFINED=SINCOS(value ...)
```

lists the predefined regression variables to be included in the model. Data values for these variables are calculated by the program, mostly as functions of the calendar. Table 32.3 gives definitions for the available predefined variables. The values LOM and LOQ are actually equivalent: the actual regression is controlled by the PROC X12 SEASONS= option. Multiple predefined regression variables can be used. The syntax for using both a length-of-month and a seasonal regression can be in one of the following forms:

```
regression predefined=lom seasonal;
regression predefined=(lom seasonal);
regression predefined=lom predefined=seasonal;
```

Certain restrictions apply when you use more than one predefined regression variable. Only one of TD, TDNOLPYEAR, TD1COEF, or TD1NOLPYEAR can be specified. LPYEAR cannot be used with TD, TD1COEF, LOM, LOMSTOCK, or LOQ. LOM or LOQ cannot be used with TD or TD1COEF.

The following restriction also applies to the SINCOS predefined regression variable. If SINCOS is specified, then the INTERVAL= option or the SEASONS= option must also be specified because there are restrictions to this regression variable based on the frequency of the data.

The predefined regression variables TDSTOCK, SCEASTER, EASTER, LABOR, THANK, and SINCOS require extra parameters. Only one TDSTOCK regressor can be implemented in the regression model. If multiple TDSTOCK variables are specified, PROC X12 uses
the last TDSTOCK variable specified. For SCEASTER, EASTER, LABOR, THANK, and SINCOS, multiple regressors can be implemented in the model by specifying the variables with different parameters. The syntax for specifying two EASTER regressors with widths 7 and 14 would be:
regression predefined=easter(7) easter(14);
For SINCOS, specifying a parameter includes both the sine and the cosine regressor except for the highest order allowed (2 for quarterly data and 6 for monthly data.) The most common use of the SINCOS variable for quarterly data would be

```
regression predefined=sincos(1,2);
```

and for monthly data would be

```
regression predefined=sincos(1,2,3,4,5,6);
```

These statements include 3 and 11 regressors in the model, respectively.

Table 32.3 Predefined Regression Variables in X-12-ARIMA

Regression Effect	Variable Definitions
trend constant	$\begin{aligned} & (1-B)^{-d}\left(1-B^{s}\right)^{-D} I(t \geq 1) \\ & \text { where } I(t \geq 1)= \begin{cases}1 & \text { for } t \geq 1 \\ 0 & \text { for } t<1\end{cases} \end{aligned}$
length-of-month (monthly flow) LOM	$m_{t}-\bar{m}$ where $m_{t}=$ length of month t (in days) and $\bar{m}=30.4375$ (average length of month)
stock length-of-month LOMSTOCK	$\begin{gathered} S L O M_{t}= \begin{cases}m_{t}-\bar{m}-\mu(l) & \text { for } t=1 \\ S L O M_{t-1}+m_{t}-\bar{m} & \text { otherwise }\end{cases} \\ \mu(l)= \begin{cases}\text { where } \bar{m} \text { and } m_{t} \text { are defined in LOM and }\end{cases} \\ \begin{array}{ll} 0.375 & \text { when 1st February in series is a leap year } \\ 0.125 & \text { when 2nd February in series is a leap year } \\ -0.125 & \text { when 3rd February in series is a leap year } \\ -0.375 & \text { when 4th February in series is a leap year } \end{array} \end{gathered}$
length-of-quarter (quarterly flow) LOQ	$q_{t}-\bar{q}$ where $q_{t}=$ length of quarter t (in days) and $\bar{q}=91.3125$ (average length of quarter)
leap year (monthly and quarterly flow) LPYEAR	$L Y_{t}= \begin{cases}0.75 & \text { in leap year February (first quarter) } \\ -0.25 & \text { in other Februaries (first quarter) } \\ 0 & \text { otherwise }\end{cases}$

Regression Effect	Variable Definitions
fixed seasonal SEASONAL	$\begin{aligned} & M_{1, t}= \begin{cases}1 & \text { in January } \\ -1 & \text { in December } \\ 0 & \text { otherwise }\end{cases} \\ & , \ldots, M_{11, t}= \begin{cases}1 & \text { in November } \\ -1 & \text { in December } \\ 0 & \text { otherwise }\end{cases} \end{aligned}$
fixed seasonal $\operatorname{SINCOS}(w)$	$\sin \left(w_{j} t\right), \cos \left(w_{j} t\right)$, where $w_{j}=2 \pi j / 12,1 \leq j \leq s / 2$ and s is the seasonal period $\left(\right.$ drop $\sin \left(w_{j} t\right) \equiv 0$ for $\left.j=s / 2\right)$
trading day TD, TDNOLPYEAR	$\begin{aligned} & \left.T_{1, t}=\text { (no. of Mondays }\right)-(\text { no. of Sundays }) \\ & , \ldots, T_{6, t}=\text { (no. of Saturdays) }- \text { (no. of Sundays) } \end{aligned}$
one coefficient trading day TD1COEF, TD1NOLPYEAR	(no. of weekdays) - $\frac{5}{2}$ (no. of Saturdays and Sundays)
stock trading day TDSTOCK (w)	$\begin{aligned} & D_{1, t}= \begin{cases}1 & \tilde{w}^{t h} \text { day of month } t \text { is a Monday } \\ -1 & \tilde{w}^{t h} \text { day of month } t \text { is a Sunday } \\ 0 & \text { otherwise }\end{cases} \\ & , \ldots, D_{6, t}= \begin{cases}1 & \tilde{w}^{t h} \text { day of month } t \text { is a Saturday } \\ -1 & \tilde{w}^{t h} \text { day of month } t \text { is a Sunday } \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ where \tilde{w} is the smaller of w and the length of month t. For end-of-month stock series, set w to 31 ; that is, specify TDSTOCK(31). Restriction: $1 \leq w \leq 31$.
Statistics Canada Easter (monthly or quarterly flow) SCEASTER (w)	If Easter falls before April w, let n_{E} be the number of the w days on or before Easter that fall in March. Then: $E(w, t)= \begin{cases}n_{E} / w & \text { in March } \\ -n_{E} / w & \text { in April } \\ 0 & \text { otherwise }\end{cases}$ If Easter falls on or after April w, then $E(w, t)=0$. (Note: This variable is 0 except in March and April (or first and second quarter).) Restriction: $1 \leq w \leq 24$.

Table 32.3 continued

Regression Effect	Variable Definitions
Easter holiday EASTER(w)	$E(w, t)=\frac{1}{w} \times n_{t}$ and n_{t} is the number of the w days before Easter that fall in month (or quarter) t. (Note: This variable is 0 except in February, March, and April (or first and second quarter). It is nonzero in February only for $w>22$.) Restriction: $1 \leq w \leq 25$.
Labor Day $\operatorname{LABOR}(w)$	$L(w, t)=\frac{1}{w} \times[$ no. of the w days before Labor Day that fall in month $t]$ (Note: This variable is 0 except in August and September.) Restriction: $1 \leq w \leq 25$.
Thanksgiving THANK (w)	$T h C(w, t)=$ proportion of days from w days before Thanksgiving through December 24 that fall in month t (negative values of w indicate days after Thanksgiving). (Note: This variable is 0 except in November and December.) Restriction: $-8 \leq w \leq 17$.

USERVAR=(variables) < / B=value USERTYPE=option>

specifies variables in the PROC X12 DATA= data set that are to be used as regressors. The variables in the data set should contain the values for each observation that define the regressor; regression variables should also be defined for forecast values if the time series is to be extended with regARIMA forecasts. Missing values are not permitted within the data span, including forecasts, of the user-defined regressors. Example 32.6 shows how you would create an input data set that contains both the series to be seasonally adjusted and a user-defined input variable. Note that all regression variables in the USERVAR= option apply to all time series to be seasonally adjusted unless the MDLINFOIN= data set specifies different regression information.

B=(value <F>...)

specifies initial or fixed values for the regression parameters in the order in which they appear in the PREDEFINED= and USERVAR= options. Each B= list applies to the PREDEFINED= or USERVAR= variable list that immediately precedes the slash. The PREDEFINED= option and the USERVAR= option cannot be specified in the same REGRESSION statement; however, multiple REGRESSION statements can be specified.

For example, the following statements set an initial value for the user-defined regressor, x , of 1 :

```
regression predefined=LOM ;
regression uservar=x / b=1 2 ;
```

In this example, the $\mathrm{B}=$ option applies only to the USERVAR= statement. The value 2 is discarded since there is only one variable in the USERVAR $=$ list. To assign an initial value of 1 to the LOM regressor and 2 to the x regressor, use the following statements:

```
regression predefined=LOM / b=1;
regression uservar=x / b=2 ;
```

An F immediately following the numerical value indicates that this is not an initial value, but a fixed value. See Example 32.8 for an example that uses fixed parameters. In PROC X12, individual parameters can be fixed while other parameters in the same model are estimated.

USERTYPE=CONSTANT

USERTYPE=SEASONAL

USERTYPE=TD

USERTYPE=LOM
USERTYPE=LOQ

USERTYPE=LPYEAR

USERTYPE=TDSTOCK
USERTYPE=LOMSTOCK
USERTYPE=EASTER
USERTYPE=LABOR

USERTYPE=THANKS

USERTYPE=AO

USERTYPE=LS

USERTYPE=RP

USERTYPE=HOLIDAY

USERTYPE=SCEASTER

USERTYPE=USER

USERTYPE=TC

enables a user-defined variable to be processed in the same manner as a U.S. Census predefined variable. For instance, the U.S. Census Bureau EASTER (w) regression effects are included the "RegARIMA Holiday Component" table (A7). You should specify USERTYPE=EASTER to include a user-defined variable which would be processed exactly as the U.S. Census predefined $\operatorname{EASTER}(w)$ variable, including inclusion in the A7 table. Each USERTYPE= list applies to the USERVAR= variable list that immediately precedes the slash. USERTYPE= does not apply to U.S. Census predefined variables. The same rules for assigning $\mathrm{B}=$ values to regression variables apply for USERTYPE= options. See the example in $\mathrm{B}=($ value <F>...).

TABLES Statement

TABLES tablename1 tablename2 . . . options ;
The TABLES statement enables you to alter the display of the PROC X12 tables. You can specify the display of tables that are not displayed by default by PROC X12, and the NOSUM option enables you to suppress the printing of the period summary line in the time series tables.

tablename1 tablename2 ...

keywords that correspond to the title label used by the Census Bureau X12-ARIMA software. For each table to be included in the displayed output, you must specify the X12 tablename keyword. Currently available tables are C20, D1, and D7. Although these tables are not displayed by default, their values are sometimes useful in understanding the X-12ARIMA method. For further description of the available tables, see the section "Displayed Output/ODS Table Names/OUTPUT Tablename Keywords" on page 2139.

NOSUM

NOSUMMARY

NOSUMMARYLINE

applies to the tables available for output in the OUTPUT Statement. By default, these tables include a summary line that gives the average, total, or standard deviation for the historical data by period. The NOSUM option suppresses the display of the summary line in the listing. Also, if the tables are output with ODS, the summary line is not an observation in the data set. Thus, the output to the data set is only the time series, both the historical data and the forecast data, if available.

TRANSFORM Statement

TRANSFORM options;

The TRANSFORM statement transforms or adjusts the series prior to estimating a regARIMA model. With this statement, the series can be Box-Cox (power) transformed. The "Prior Adjustment Factors" table is associated with the TRANSFORM statement.

Only one of the following options can appear in the TRANSFORM statement.

POWER=value

transforms the input series, Y_{t}, by using a Box-Cox power transformation,

$$
Y_{t} \rightarrow y_{t}= \begin{cases}\log \left(Y_{t}\right) & \lambda=0 \\ \lambda^{2}+\left(Y_{t}^{\lambda}-1\right) / \lambda & \lambda \neq 0\end{cases}
$$

The power λ must be specified (for example, POWER $=0.33$). The default is no transformation $(\lambda=1)$; that is, $\mathrm{POWER}=1$. The log transformation ($\mathrm{POWER}=0$), square root transformation $($ POWER $=0.5)$, and the inverse transformation $($ POWER $=-1)$ are equivalent to the corresponding FUNCTION= option.

Table 32.4 Power Values Related to the Census Bureau Function Argument

FUNCTION $=$	Transformation	Range for Y_{t}	Equivalent Power Argument
NONE	Y_{t}	all values	power $=1$
LOG	$\log \left(Y_{t}\right)$	$Y_{t}>0$ for all t	power $=0$
SQRT	$2\left(\sqrt{Y_{t}}-0.875\right)$	$Y_{t} \geq 0$ for all t	power $=0.5$
INVERSE	$2-\frac{1}{Y_{t}}$	$Y_{t} \neq 0$ for all t	power $=-1$
LOGISTIC	$\log \left(\frac{Y_{t}}{1-Y_{t}}\right)$	$0<Y_{t}<1$ for all t	none equivalent

FUNCTION=NONE

FUNCTION=LOG

FUNCTION=SQRT
FUNCTION=INVERSE

FUNCTION=LOGISTIC

FUNCTION=AUTO

TYPE=NONE | LOG | SQRT | INVERSE | LOGISTIC | AUTO
the transformation to be applied to the series prior to estimating a regARIMA model. The transformation used by FUNCTION=NONE, LOG, SQRT, INVERSE, and LOGISTIC is related to the POWER= option as shown in Table 32.4. FUNCTION=AUTO uses selection based on Akaike's information criterion (AIC) to decide between a log transformation and no transformation. The default is FUNCTION=NONE.

However, the FUNCTION= and POWER= options are not completely equivalent. In some cases, using the FUNCTION= option causes the program to automatically select other options. For instance, FUNCTION=NONE causes the default mode to be MODE=ADD in the X11 statement. Also, the choice of transformation invoked by the FUNCTION=AUTO option can impact the default mode of the X11 statement.

Note that there are restrictions on the value used in the POWER and FUNCTION options when preadjustment factors for seasonal adjustment are generated from a regARIMA model. When seasonal adjustment is requested with the X11 statement, any value of the POWER option can be used for the purpose of forecasting the series with a regARIMA model. However, this is not the case when factors generated from the regression coefficients are used to adjust either the original series or the final seasonally adjusted series. In this case, the only accepted transformations are the log transformation, which can be specified as POWER=0 (for multiplicative or log-additive seasonal adjustments) and no transformation, which can be specified as POWER=1 (for additive seasonal adjustments). If no seasonal adjustment is performed, any POWER transformation can be used. The preceding restrictions also apply to FUNCTION=NONE and FUNCTION=LOG.

USERDEFINED Statement

USERDEFINED variables;

The USERDEFINED statement is used to identify the variables in the input data set that are available for user-defined regression. Only numeric variables can be specified. Note that specifying variables in the USERDEFINED statement does not include the variables as regressors. If a variable is specified in the INPUT statement or REGRESSION USERVAR= option, it is not necessary to include that variable in the USERDEFINED statement. However, if a variable is specified in the MDLINFOIN = data set and is not specified in an INPUT statement or in the REGRESSION USERVAR $=$ option, then the variable should be specified in the USERDEFINED statement in order to make the variable available for regression.

VAR Statement

VAR variables ;

The VAR statement is used to specify the variables in the input data set that are to be analyzed by the procedure. Only numeric variables can be specified. If the VAR statement is omitted, all numeric variables are analyzed except those that appear in a BY statement, ID statement, INPUT statement, USERDEFINED statement, the USERVAR = option of the REGRESSION statement, or the variable named in the DATE $=$ option in the PROC X12 statement.

X11 Statement

X11 options ;

The X11 statement is an optional statement for invoking seasonal adjustment by an enhanced version of the methodology of the Census Bureau X-11 and X-11Q programs. You can control the type of seasonal adjustment decomposition calculated with the MODE= option. The output includes the final tables and diagnostics for the X-11 seasonal adjustment method listed in Table 32.5. Tables C20, D1, and D7 are not displayed by default; you can display these tables by using the TABLES statement.

Table 32.5 Tables Related to X11 Seasonal Adjustment

Table Name	Description
B1	original series, adjusted for prior effects and forecast extended
C17	final weights for the irregular component
C20	final extreme value adjustment factors
D1	modified original data, D iteration
D7	preliminary trend cycle, D iteration
D8	final unmodified SI ratios (differences)
D8A	F tests for stable and moving seasonality, D8
D9	final replacement values for extreme SI ratios (differences), D it-
	eration
D9A	moving seasonality ratios for each period
D10	final seasonal factors
D10B	seasonal factors, adjusted for user-defined seasonal
D10D	final seasonal difference
D11	final seasonally adjusted series
D11A	final seasonally adjusted series with forced yearly totals
D11R	rounded final seasonally adjusted series (with forced yearly totals) D12
final trend cycle	
D13	final irregular component
D16	combined seasonal and trading day factors
D16B	final adjustment differences
D18	combined calendar adjustment factors
E4	ratio of yearly totals of original and seasonally adjusted series E5
percent changes (differences) in original series	
E6	percent changes (differences) in seasonally adjusted series
E6A	percent changes (differences) in seasonally adjusted series with
E6R	forced yearly totals (D11.A)
	percent changes (differences) in rounded seasonally adjusted se-
ries (D11.R)	

For more details about the X-11 seasonal adjustment diagnostics, see Shiskin, Young, and Musgrave (1967), Lothian and Morry (1978a), and Ladiray and Quenneville (2001).

The following options can appear in the X11 statement.
MODE=ADD
MODE=MULT
MODE=LOGADD
MODE=PSEUDOADD
determines the mode of the seasonal adjustment decomposition to be performed. There
are four choices: multiplicative (MODE=MULT), additive (MODE=ADD), pseudo-additive (MODE=PSEUDOADD), and log-additive (MODE=LOGADD) decomposition. If this option is omitted, the procedure performs multiplicative adjustments. Table 32.6 shows the values of the MODE= option and the corresponding models for the original (O) and the seasonally adjusted (SA) series.

Table 32.6 Modes of Seasonal Adjustment and Their Models

Value of Mode Option	Name	Model for O	Model for $S A$
MULT	multiplicative	$O=C \times S \times I$	$S A=C \times I$
ADD	additive	$O=C+S+I$	$S A=C+I$
PSEUDOADD	pseudo-additive	$O=C \times[S+I-1]$	$S A=C \times I$
LOGADD	log-additive	$\log (O)=C+S+I$	$S A=\exp (C+I)$

OUTFCST

OUTFORECAST

determines whether forecasts are included in certain tables sent to the output data set. If OUTFORECAST is specified, then forecast values are included in the output data set for tables A6, A7, A8, A9, A10, B1, D10, D10B, D10D, D16, D16B, and D18. The default is not to include forecasts.

SEASONALMA=S3X1

SEASONALMA=S3X3
SEASONALMA=S3X5
SEASONALMA=S3X9
SEASONALMA=S3X15
SEASONALMA=STABLE
SEASONALMA=X11DEFAULT
SEASONALMA=MSR
specifies which seasonal moving average (also called seasonal "filter") be used to estimate the seasonal factors. These seasonal moving averages are $n \times m$ moving averages, meaning that an n-term simple average is taken of a sequence of consecutive m-term simple averages. X11DEFAULT is the method used by the U.S. Census Bureau's X-11-ARIMA program. The default for PROC X12 is SEASONALMA=MSR, which is the methodology of Statistic Canada's X-11-ARIMA/88 program.

Table 32.7 describes the seasonal filter options available for the entire series:

Table 32.7 X-12-ARIMA Seasonal Filter Options and Descriptions

Filter Name	Description of Filter
S3X1	a 3×1 moving average
S3X3	a 3×3 moving average
S3X5	a 3×5 moving average S3X9 3×9 moving average
S3X15	a 3×15 moving average stable seasonal filter. A single seasonal factor for each calendar month or quarter is generated by calculating the simple average of all the values for each month or quarter (taken after detrending and outlier adjustment). a 3×3 moving average is used to calculate the initial seasonal factors in each iteration, and a 3×5 moving average to calculate the final seasonal factors filter chosen automatically by using the moving seasonality ratio of X-11-ARIMA/88 (Dagum 1988)
MSR	

TRENDMA=value

specifies which Henderson moving average be used to estimate the final trend cycle. Any odd number greater than one and less than or equal to 101 can be specified. Example: TRENDMA $=23$. If no selection is made, the program selects a trend moving average based on statistical characteristics of the data. For monthly series, a 9 -, 13-, or 23 -term Henderson moving average is selected. For quarterly series, the program chooses either a 5 - or a 7 -term Henderson moving average.

FINAL=AO

FINAL=LS
FINAL=TC
FINAL=ALL
lists the types of prior adjustment factors, obtained from the regression and outlier statements, that are to be removed from the final seasonally adjusted series. Additive outliers (FINAL=AO), level change and ramp outliers (FINAL=LS), and temporary change (FINAL=TC) can be removed. If this option is not specified, the final seasonally adjusted series contains these effects.

FORCE=TOTALS

FORCE=ROUND

FORCE=BOTH

specifies that the seasonally adjusted series be modified to (a) force the yearly totals of the seasonally adjusted series and the original series to be the same (FORCE=TOTALS), (b) adjust the seasonally adjusted values for each calendar year so that the sum of the rounded seasonally adjusted series for any year equals the rounded annual total (FORCE=ROUND), or (c) first force the yearly totals, then round the adjusted series (FORCE=BOTH). When FORCE=TOTALS, the differences between the annual totals is distributed over the seasonally adjusted values in a way that approximately preserves the month-to-month (or quarter-toquarter) movements of the original series. For more details, see Huot (1975) and Cholette
(1979). This forcing procedure is not recommended if the seasonal pattern is changing or if trading day adjustment is performed. Forcing the seasonally adjusted totals to be the same as the original series annual totals can degrade the quality of the seasonal adjustment, especially when the seasonal pattern is undergoing change. It is not natural if trading day adjustment is performed because the aggregate trading day effect over a year is variable and moderately different from zero.

Details: X12 Procedure

Missing Values

PROC X12 can process a series with missing values. Missing values in a series are considered to be one of two types:

- One type of missing value is a leading or trailing missing value, which occurs before the first nonmissing value or after the last nonmissing value, respectively, in the span of a series. The span of a series can be determined either explicitly by the SPAN= option of the PROC X12 statement or implicitly by the START= or DATE= options. By default, leading and trailing missing values are ignored. The NOTRIMMISS option of the PROC X12 statement causes leading and trailing missing values to also be processed using the X -12-ARIMA missing value method.
- The second type of missing value is an embedded missing value. These missing values occur between the first nonmissing value and the last nonmissing value in the span of the series. Embedded missing values are processed using X-12-ARIMA's missing value method described below.

When the X-12-ARIMA method encounters a missing value, it inserts an additive outlier for that observation into the set of regression variables for the model of the series and then replaces the missing observation with a value large enough to be considered an outlier during model estimation. After the regARIMA model is estimated, the X-12-ARIMA method adjusts the original series by using factors generated from these missing value outlier regressors. The adjusted values are estimates of the missing values, and the adjusted series is displayed in Table MV1.

Combined Test for the Presence of Identifiable Seasonality

The seasonal component of this time series, S_{t}, is defined as the intrayear variation that is repeated constantly (stable) or in an evolving fashion from year to year (moving seasonality). If the increase in the seasonal factors from year to year is too large, then the seasonal factors will introduce distortion into the model. It is important to determine if seasonality is identifiable without distorting the series.

For seasonality to be identifiable, the series should be identified as seasonal by using the "Test for the Presence of Seasonality Assuming Stability" and "Nonparametric Test for the Presence of Seasonality Assuming Stability." Also, since the presence of moving seasonality can cause distortion, it is important to evaluate the moving seasonality in conjunction with the stable seasonality to determine if the seasonality is identifiable.

The test for identifiable seasonality is performed by combining the F tests for stable and moving seasonality, along with a Kruskal-Wallis test for stable seasonality. The description below is based on Lothian and Morry (1978b); other details can be found in Dagum (1988, 1983).

Let F_{s} and F_{m} denote the F value for the stable and moving seasonality tests, respectively. The combined test is performed as shown in Table 32.3 and as follows:

1. If the null hypothesis in the stable seasonality test is not rejected at the 0.10% significance level (0.001), then since the series is not seasonal, PROC X12 displays "Identifiable Seasonality Not Present."
2. If the null hypothesis in step 1 is rejected, then compute the following quantities:

$$
\begin{aligned}
T_{1} & =\frac{7}{F_{m}} \\
T_{2} & =\frac{3 F_{m}}{F_{s}}
\end{aligned}
$$

Let T denote the simple average of T_{1} and T_{2} :

$$
T=\frac{\left(T_{1}+T_{2}\right)}{2}
$$

If the moving seasonality null hypothesis is not rejected at the 5.0% significance level (0.05) and if $T \geq 1.0$, the null hypothesis of identifiable seasonality not present is accepted and PROC X12 displays "Identifiable Seasonality Not Present."
3. If the null hypothesis of identifiable seasonality not present has not been accepted, but $T_{1} \geq$ $1.0, T_{2} \geq 1.0$, or the Kruskal-Wallis chi-squared test fails at the 0.10% significance level (0.001), then PROC X12 displays "Identifiable Seasonality Probably Not Present."
4. If the F_{S} and Kruskal-Wallis chi-squared tests pass, and if none of the combined measures described in steps 2 and 3 fail, then the null hypothesis of identifiable seasonality not present is rejected, and PROC X12 displays "Identifiable Seasonality Present."

The "Summary of Results for Combined Test for the Presence of Identifiable Seasonality" table displays the T_{1}, T_{2}, and T values and the significance levels for the stable seasonality test, the moving seasonality test, and the Kruskal-Wallis test. The last item in the table is the result of the combined test for identifiable seasonality.

Figure 32.3 Combined Seasonality Test Flowchart

Computations

For more details about the computations used in PROC X12, see X-12-ARIMA Reference Manual (U.S. Bureau of the Census 2001b).

For more details about the X-11 method of decomposition, see Seasonal Adjustment with the X-11 Method (Ladiray and Quenneville 2001).

Displayed Output/ODS Table Names/OUTPUT Tablename Keywords

The options specified in PROC X12 control both the tables produced by the procedure and the tables available for output to the OUT= data set specified in the OUTPUT statement.

The displayed output is organized into tables identified by a part letter and a sequence number within the part. The seven major parts of the X12 procedure are as follows:

A prior adjustments and regARIMA components (optional)
B preliminary estimates of irregular component weights and trading day regression factors (X11 method)
C final estimates of irregular component weights and trading day regression factors
D final estimates of seasonal, trend cycle, and irregular components
E analytical tables
F summary measures
G charts

Table 32.8 describes the individual tables and charts. " P " indicates that the table is displayed only and is not available for output to the OUT= data set. Data from displayed tables can be extracted into data sets by using the Output Delivery System (ODS). For more information about the features of the ODS Graphics system, including the many ways that you can control or customize the plots produced by SAS procedures, see Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide). For more information about the SAS Output Delivery system, see the SAS Output Delivery System: User's Guide.

When tables available through the OUTPUT statement are output using ODS, the summary line is included in the ODS output by default. The summary line gives the average, standard deviation, or total by each period. The value -1 for YEAR indicates that the summary line is a total; the value -2 for YEAR indicates that the summary line is an average; and the value -3 for YEAR indicates that the line is a standard deviation. The value of YEAR for historical and forecast values will be greater than or equal to zero. Thus, a negative value indicates a summary line. You can suppress the summary line altogether by specifying the NOSUM option in the TABLES statement. However, the NOSUM option also suppresses the display of the summary line in the displayed table.
" T " indicates that the table is available using the OUTPUT statement, but is not displayed by default; you must request that these tables be displayed by using the TABLES Statement. The actual number of tables displayed depends on the options and statements specified. If a table is not computed, it is not displayed.

Table 32.8 Table Names and Descriptions

Table	Description	Notes
IDENTIFY Tables	autocorrelation factors	P
ACF	partial autocorrelation factors	P

Table 32.8 continued

Table	Description	Notes
AUTOMDL Tables		
UnitRootTestModel	ARIMA estimates for unit root identification	P
UnitRootTest	results of unit root test for identifying orders of differencing	P
AutoChoiceModel	models estimated by automatic ARIMA model selection procedure	P
Best5Model	best five ARIMA models chosen by automatic modeling	P
AutomaticModelChoice	comparison of automatically selected model and default model	P
FinalModelChoice	final automatic model choice	P
Modeling Tables		
MissingExtreme	extreme or missing values	P
ARMAIterationTolerances	exact ARMA likelihood estimation iteration tolerances	P
IterHistory	ARMA iteration history	P
OutlierDetection	critical values to use in outlier detection	P
PotentialOutliers	potential outliers	P
ARMAIterationSummary	exact ARMA likelihood estimation iteration summary	P
RegParameterEstimates	regression model parameter estimates	P
RegressorGroupChiSq	chi-squared tests for groups of regressors	P
ARMAParameterEstimates	exact ARMA maximum likelihood estimation	P
AvgFcstErr	average absolute percentage error in within(out)sample fore(back)casts:	P
Roots	(non)seasonal (AR)MA roots	P
MLESummary	estimation summary	P
ForecastCL	forecasts, standard errors, and confidence limits	P
MV1	original series adjusted for missing value regressors	
Sequenced Tables		
A1	original series	
A2	prior-adjustment factors	
A6	regARIMA trading day component	
A7	regARIMA holiday component	
A8	regARIMA combined outlier component	
A8AO	regARIMA AO outlier component	
A8LS	regARIMA level change outlier component	
A8TC	regARIMA temporary change outlier component	
A9	regARIMA user-defined regression component	
A10	regARIMA user-defined seasonal component	
B1	prior-adjusted or original series	
C17	final weight for irregular components	
C20	final extreme value adjustment factors	T

Table 32.8 continued

Table	Description	Notes
D1	modified original data, D iteration	T
D7	preliminary trend cycle, D iteration	T
D8	final unmodified S-I ratios	
D8A	seasonality tests	P
D9	final replacement values for extreme S-I ratios	
D9A	moving seasonality ratio	P
D10	final seasonal factors	
D10B	seasonal factors, adjusted for user-defined seasonal	
D10D	final seasonal difference	
D11	final seasonally adjusted series	
D11A	final seasonally adjusted series with forced yearly totals	
D11F	factors applied to get adjusted series with forced yearly totals	
D11R	rounded final seasonally adjusted series (with forced yearly totals)	
D12	final trend cycle	
D13	final irregular series	
D16	combined adjustment factors	
D16B	final adjustment differences	
D18	combined calendar adjustment factors	
E4	ratios of annual totals	P
E5	percent changes in original series	
E6	percent changes in final seasonally adjusted series	
E6A	percent changes (differences) in seasonally adjusted series with forced yearly totals (D11.A)	
E6R	percent changes (differences) in rounded seasonally adjusted series (D11.R)	
E7	differences in final trend cycle	
F2A-I	summary measures	P
F3	quality assessment statistics	P
F4	day of the week trading day component factors	P
G	spectral analysis	P

ODS Graphics

This section describes the use of ODS for creating graphics with the X12 procedure. To request these graphs, you must specify the ODS GRAPHICS statement.

The graphics available through ODS GRAPHICS are ACF plots, PACF plots, and spectral graphs. ACF and PACF plots are not available unless the IDENTIFY statement is used. A spectral plot of the original series is always available; however additional spectral plots are provided when the X11
statement is used. When the ODS GRAPHICS statement is not used, the plots are integrated into the ACF, PACF, and spectral tables as a column of the table.

ODS Graph Names

PROC X12 assigns a name to each graph it creates by using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 32.9.

Table 32.9 ODS Graphics Produced by PROC X12

ODS Graph Name	Plot Description
ACFPlot	autocorrelation of model residuals
PACFPlot	partial autocorrelation of model residuals
SpectralPlot	spectral plot of original or adjusted series

Special Data Sets

The X12 procedure can input the MDLINFOIN= and output the MDLINFOOUT= data sets. The structure of both these data sets is the same. The difference is that when the MDLINFOIN= data set is read, only information relative to specifying a model is processed, whereas the MDLINFOOUT= data set contains the results of estimating a model. The X12 procedure can also read data sets that contain EVENT definition data. The structure of these data sets is the same as in the SAS ${ }^{\circledR} \mathrm{High}$ Performance Forecasting system.

MDLINFOIN= and MDLINFOOUT= Data Sets

The MDLINFOIN= and MDLINFOOUT= data sets can contain the following variables.
<by-variables> enable the model information to be specified by BY groups. BY variables can be included in this data set that match the BY variables used to process the series. If no BY variables are included, then the models specified by _NAME_ apply to all BY groups.
NAME should match the variable name of the time series to which the model is to be applied. Omit the _NAME_ variable if you are specifying the same model for all series in the BY group.
MODELTYPE specifies whether the observation contains regression or ARIMA information. For PROC X12,_MODELTYPE_ should either be REG to supply regression information or ARIMA to supply model information. If valid regression information exists in the MDLINFOIN= data set for the BY group and series being processed, then the REGRESSION, INPUT, and EVENT statements are ignored for that BY group and series. Likewise, if valid model information exists in the data set, then the AUTOMDL, ARIMA, and TRANSFORM statements are ignored. Valid values for the other variables in the data set depend on the value of the
MODELTYPE variable. While other values of _MODELTYPE_ might be permitted in other SAS procedures, PROC X12 recognizes only REG and ARIMA.
MODELPART further qualifies the regression or ARIMA information in the observation. For _MODELTYPE_= REG, valid values of _MODELPART_ are INPUT, EVENT, and PREDEFINED. A value of INPUT indicates that this observation refers to the user-defined variable whose name is given in _DSVAR_. Likewise, a value of EVENT indicates that the observation refers to the SAS or user-defined EVENT whose name is given in _DSVAR_. PREDEFINED indicates that the name given in _DSVAR_is a predefined U.S. Census Bureau variable. If only model information is included in the data set (that is, all observations have _MODELTYPE_= ARIMA) then the _MODELPART_ variable can be omitted. However, valid values for model information are FORECAST, ".", or blank.
COMPONENT further qualifies the regression or ARIMA information in the observation. For _MODELTYPE_= REG, the only valid value of _COMPONENT_ is SCALE. Other SAS procedures might allow other values. For _MODELTYPE_= ARIMA, the valid values of _COMPONENT_ are TRANSFORM, CONSTANT, NONSEASONAL, and SEASONAL. TRANSFORM indicates that the observation contains the information that would be supplied in the TRANSFORM statement. CONSTANT is specified to control the constant term in the model. NONSEASONAL and SEASONAL refer to the AR, MA, and differencing terms in the ARIMA model.
PARMTYPE further qualifies the regression or ARIMA information in the observation. For regression information, the value of _PARMTYPE_is the same as the value of the REGRESSION USERTYPE= option. Since the USERTYPE= option applies only to user-defined events and variables, the value of _PARMTYPE_ does not alter processing in observations where _MODELPART_= PREDEFINED. However, it is consistent to use a value for _PARMTYPE_ that matches the Census predefined variable. For the constant term in model information, _PARMTYPE_ should be SCALE. For transformation information, the value of _PARMTYPE_ should be NONE, LOG, LOGIT, SQRT, or BOXCOX. For ARIMA model information, _PARMTYPE_ should be AR, MA, or DIF.
specifies the variable name associated with this observation. For regression information, the value of _DSVAR_ is the name of the user-defined variable, the EVENT, or the Census predefined variable. For model information, _DSVAR_ should match the name of the series being processed. If the model information applies to more than one series, then _DSVAR_can be blank or ".".
VALUE contains a numerical value that is used as a parameter for certain types of information. For certain Census predefined variables, _VALUE_ is the associated parameter value. For example, the REGESSION statement option PREDEFINED=EASTER(6) would be implemented using _DSVAR_=EASTER and _VALUE_=6. For a BOXCOX transformation, _VALUE_ would be the associated parameter value. For _COMPONENT_=SEASONAL, if _VALUE_ is nonmissing, then _VALUE_ is used as the seasonal period. If _VALUE_ is missing for _COMPONENT_=SEASONAL, then the seasonal period is determined by the interval of the series.
FACTOR applies only to AR and MA ARIMA model information. The actual value of _FACTOR_ should be the same for all observations related to lags within the same ARIMA factor. So the value of _FACTOR_identifies lags that belong in the same factor.
identifies the degree for differencing and AR and MA lags. If _COMPONENT_=SEASONAL, then the value in _LAG_ is multiplied by the seasonal period indicated by the value of _VALUE_.
SHIFT contains the shift value for transfer functions. This value is not processed by PROC X12.
NOEST indicates whether a parameter associated with the observation is to be estimated. For example, the NOINT option would be indicated by constant information with _NOEST_=1 and _EST_=0. _NOEST_=1 indicates that the value in _EST_ is a fixed value. _NOEST_ pertains to the constant term, to AR and MA lags, and to regression information.
contains an initial or fixed value for a parameter associated with the observation that is to be estimated. _NOEST_= 1 indicates the value in _EST_ is a fixed value. _EST_ pertains to the constant term, to AR and MA lags, and to regression information. contains output information about estimated parameters.
PVALUE contains output information about estimated parameters. contains output information about estimated parameters.

INEVENT= Data Set

The INEVENT = data set can contain the following variables. When a variable is omitted from the data set, that variable is assumed to have the default value for all observations. The default values are given below.
NAME EVENT variable name. _NAME_ is displayed with the case preserved. Since _NAME_ is a SAS variable name, the event can be referenced by using any case. The _NAME_variable is required; there is no default.
CLASS class of EVENT: SIMPLE, COMBINATION, PREDEFINED. The default for _CLASS_ is SIMPLE.
contains either a date keyword (SIMPLE EVENT), a predefined EVENT variable name (PREDEFINED EVENT), or an EVENT name (COMBINATION event). All _KEYNAME_ values are displayed in upper case. However, if the _KEYNAME_ value refers to an EVENT name, then the actual name can be of mixed case. The default for _KEYNAME_is no keyname, designated by ".".
STARTDATE contains either the date timing value or the first date timing value to use in a do-list. The default for _STARTDATE_ is no date, designated by a missing value.
ENDDATE contains the last date timing value to use in a do-list. The default for _ENDDATE_ is no date, designated by a missing value.
DATEINTRVL contains the interval for the date do-list. The default for _DATEINTRVL_is no interval, designated by ".".
STARTDT contains either the datetime timing value or the first datetime timing value to use in a do-list. The default for _STARTDT_ is no datetime, designated by a missing value.
ENDDT contains the last datetime timing value to use in a do-list. The default for _ENDDT_ is no datetime, designated by a missing value.
DTINTRVL contains the interval for the datetime do-list. The default for _DTINTRVL_ is no interval, designated by ".".
STARTOBS contains either the observation number timing value or the first observation number timing value to use in a do-list. The default for _STARTOBS_ is no observation number, designated by a missing value.
ENDOBS contains the last observation number timing value to use in a do-list. The default for _ENDOBS_ is no observation number, designated by a missing value.
OBSINTRVL contains the interval length of the observation number do-list. The default for _OBSINTRVL_ is no interval, designated by ".".
TYPE type of EVENT. The default for _TYPE_ is POINT.
VALUE value for nonzero observation. The default for _VALUE_ is 1.0.
PULSE INTERVAL that defines the units for the DURATION values. The default for _PULSE_ is no interval, designated by ".".
_DUR_BEFORE_ number of durations before the timing value. The default for _DUR_BEFORE_ is 0 .
_DUR_AFTER_ number of durations after the timing value. The default for _DUR_AFTER_ is 0 .
_SLOPE_BEFORE_ determines whether the curve is GROWTH or DECAY before the timing value for _TYPE_=RAMP, _TYPE_=RAMPP, and _TYPE_=TC. The default for _SLOPE_BEFORE_ is GROWTH.
_SLOPE_AFTER_ determines whether the curve is GROWTH or DECAY after the timing value for _TYPE_=RAMP, _TYPE_=RAMPP, and _TYPE_=TC. The default for _SLOPE_AFTER_is GROWTH unless _TYPE_=TC; then the default is DECAY.
SHIFT number of _PULSE_= intervals to shift the timing value. The shift can be positive (forward in time) or negative (backward in time). If _PULSE_= is not specified, then the shift is in observations. The default for _SHIFT_ is 0 .
TCPARM parameter for EVENT of TYPE=TC. The default for _TCPARM_ is 0.5 .
RULE rule to use when combining events or when timing values of an event overlap. The default for _RULE_ is ADD.
PERIOD frequency interval at which the event should be repeated. If this value is missing, then the event is not periodic. The default for _PERIOD_ is no interval, designated by ".".
LABEL
label or description for the event. If you do not specify a label, then the default label value is displayed as ".". For events that produce dummy variables, either the user-supplied label or the default label is used. For COMPLEX events, the _LABEL_ value is merely a description of the group of events.

Examples: X12 Procedure

Example 32.1: Model Identification

An example of the statements typically invoked when using PROC X12 for model identification might follow the same format as the following example. This example invokes the X12 procedure and uses the TRANSFORM and IDENTIFY statements. It specifies the time series data, takes the logarithm of the series (TRANSFORM statement), and generates ACFs and PACFs for the specified levels of differencing (IDENTIFY statement). The ACFs and PACFs for Nonseasonal Order=1 and Seasonal Order $=1$ are shown in Output 32.1.1, Output 32.1.2, Output 32.1.3, and Output 32.1.4. The data set is the same as in the section "Basic Seasonal Adjustment" on page 2104.

The graphical displays are requested by specifying the ODS GRAPHICS statement. For more information about the graphics available in the X12 procedure, see the section "ODS Graphics" on page 2141.

```
ods graphics on;
proc x12 data=sales date=date;
    var sales;
    transform power=0;
    identify diff=(0,1) sdiff=(0,1);
run;
```

Output 32.1.1 ACFs (Nonseasonal Order=1 Seasonal Order=1)

The X12 Procedure					
Autocorrelation of Model Residuals					
Differencing: Nonseasonal Order=1 Seasonal Order=1					
Lag	Correlation	Error	Chi-Square	DF	Pr > ChiSq
1	-0.34112	0.08737	15.5957	1	$<.0001$
2	0.10505	0.09701	17.0860	2	0.0002
3	-0.20214	0.09787	22.6478	3	$<.0001$
4	0.02136	0.10101	22.7104	4	0.0001
5	0.05565	0.10104	23.1387	5	0.0003
6	0.03080	0.10128	23.2709	6	0.0007
7	-0.05558	0.10135	23.7050	7	0.0013
8	-0.00076	0.10158	23.7050	8	0.0026
9	0.17637	0.10158	28.1473	9	0.0009
10	-0.07636	0.10389	28.9869	10	0.0013
11	0.06438	0.10432	29.5887	11	0.0018
12	-0.38661	0.10462	51.4728	12	<. 0001
13	0.15160	0.11501	54.8664	13	$<.0001$
14	-0.05761	0.11653	55.3605	14	$<.0001$
15	0.14957	0.11674	58.7204	15	$<.0001$
16	-0.13894	0.11820	61.6452	16	$<.0001$
17	0.07048	0.11944	62.4045	17	$<.0001$
18	0.01563	0.11975	62.4421	18	$<.0001$
19	-0.01061	0.11977	62.4596	19	$<.0001$
20	-0.11673	0.11978	64.5984	20	<. 0001
21	0.03855	0.12064	64.8338	21	$<.0001$
22	-0.09136	0.12074	66.1681	22	$<.0001$
23	0.22327	0.12126	74.2099	23	$<.0001$
24	-0.01842	0.12436	74.2652	24	$<.0001$
25	-0.10029	0.12438	75.9183	25	<. 0001
26	0.04857	0.12500	76.3097	26	$<.0001$
27	-0.03024	0.12514	76.4629	27	$<.0001$
28	0.04713	0.12520	76.8387	28	$<.0001$
29	-0.01803	0.12533	76.8943	29	$<.0001$
30	-0.05107	0.12535	77.3442	30	$<.0001$
31	-0.05377	0.12551	77.8478	31	$<.0001$
32	0.19573	0.12569	84.5900	32	$<.0001$
33	-0.12242	0.12799	87.2543	33	$<.0001$
34	0.07775	0.12888	88.3401	34	$<.0001$
35	-0.15245	0.12924	92.5584	35	$<.0001$
36	-0.01000	0.13061	92.5767	36	$<.0001$

NOTE: The P-values approximate the probability of observing a Q-value at least this large when the model fitted is correct. When DF is positive, small values of P, customarily those below 0.05 indicate model inadequacy.

Output 32.1.2 Plot for ACFs (Nonseasonal Order=1 Seasonal Order=1)

Output 32.1.3 PACFs (Nonseasonal Order=1 Seasonal Order=1)

Output 32.1.4 Plot for PACFs (Nonseasonal Order=1 Seasonal Order=1)

Example 32.2: Model Estimation

After studying the output from Example 32.1 and identifying the ARIMA part of the model as, for example, ($\left.\begin{array}{lll}1 & 1\end{array}\right)\left(\begin{array}{lll}0 & 1 & 1\end{array}\right) 12$, you can replace the IDENTIFY statement with the ARIMA and ESTIMATE statements. The parameter estimates and estimation summary statistics are shown in Output 32.2.1.

```
proc x12 data=sales date=date;
    var sales;
    transform power=0;
    arima model=( (0,1,1) (0,1,1) );
    estimate;
run ;
```

Output 32.2.1 Estimation Data

Example 32.3: Seasonal Adjustment

Assuming that the model in Example 32.2 is satisfactory, a seasonal adjustment that uses forecast extension can be performed by adding the X11 statement to the procedure. By default, the data is forecast one year ahead at the end of the series. Table D8.A is shown in Output 32.3.1.

```
ods output D8A#1=SalesD8A_1;
ods output D8A#2=SalesD8A_2;
ods output D8A#3=SalesD8A_3;
ods output D8A#4=SalesD8A_4;
proc x12 data=sales date=date;
    var sales;
    transform power=0;
    arima model=( (0,1,1) (0,1,1) );
    estimate;
    x11;
run;
title 'Stable Seasonality Test';
proc print data=SalesD8A_1 LABEL;
run;
title 'Nonparametric Stable Seasonality Test';
proc print data=SalesD8A_2 LABEL;
run;
title 'Moving Seasonality Test';
proc print data=SalesD8A_3 LABEL;
run;
title 'Combined Seasonality Test';
proc print data=SalesD8A_4 LABEL NOOBS;
    var _NAME_ Name1 Label1 cValue1;
run;
```

Output 32.3.1 Table D8.A as Displayed

Output 32.3.1 continued

The four ODS statements in the preceding example direct output from the D8A tables into four data sets: SalesD8A_1, SalesD8A_2, SalesD8A_3, and SalesD8A_4. It is best to direct the output to four different data sets because the four tables associated with table D8A have varying formats. The ODS data sets are shown in Output 32.3.2, Output 32.3.3, Output 32.3.4, and Output 32.3.5.

Output 32.3.2 Table D8.A as Output in a Data Set by Using ODS

Stable Seasonality Test							
Obs	_NAME_	FT_SRC	Sum of Squares	DF	Mean Square	F-Value	FT_AST
1	sales	Between Months	23571.41	11	2142.855	190.9544	**
2	sales	Residual	1481.28	132	11.22182	.	
3	sales	Total	25052.69	143	.	.	

Output 32.3.3 Table D8.A as Output in a Data Set by Using ODS

Nonparametric Stable Seasonality Test				
		KruskalWallis	Probability	
Obs	NAME	Statistic	DF	Level
1	sales	131.9546	11	. 00%

Output 32.3.4 Table D8.A as Output in a Data Set by Using ODS

Output 32.3.5 Table D8.A as Output in a Data Set by Using ODS

Combined Seasonality Test			
_NAME	Name1	Label1	cValue1
sales		Seasonality Tests:	Probability Level
sales			
sales	P_STABLE	Stable Seasonality F-test	0.000
sales	P_MOV	Moving Seasonality F-test	0.001
sales	P_KW	Kruskal-Wallis Chi-square Test	0.000
sales			
sales		Combined Measures:	Value
sales			
sales	T1	T1 = 7/F_Stable	0.04
sales	T2	T2 = 3*F_Moving/F_Stable	0.05
sales	T	$T=(T 1+T 2) / 2$	0.04
sales			
sales	IDSeasTest	Combined Test of Identifiable S	Present

Example 32.4: RegARIMA Automatic Model Selection

This example demonstrates two of the new features available through the X-12-ARIMA method that are not available by using the previous $\mathrm{X}-11$ and $\mathrm{X}-11$-ARIMA methods: regARIMA modeling and TRAMO-based automatic model selection. Assume that the same data set is used as in the previous examples.

```
title 'TRAMO Automatic Model Identification';
ods select ModelEstimation.AutoModel.UnitRootTestModel
```

```
ModelEstimation.AutoModel.UnitRootTest
ModelEstimation.AutoModel.AutoChoiceModel
ModelEstimation.AutoModel.Best5Model
ModelEstimation.AutoModel.AutomaticModelChoice
ModelEstimation.AutoModel.FinalModelChoice
ModelEstimation.AutoModel.AutomdlNote;
proc x12 data=sales date=date;
    var sales;
    transform function=log;
    regression predefined=td;
    automdl maxorder=(1,1)
            print=unitroottest unitroottestmdl autochoicemdl best5model;
    estimate;
    x11;
    output out=out(obs=23) a1 a2 a6 b1 c17 c20 d1 d7 d8 d9 d10
                    d11 d12 d13 d16 d18;
run;
proc print data=out(obs=23);
    title 'Output Variables Related to Trading Day Regression';
run;
```

The automatic model selection output is shown in Output 32.4.1, Output 32.4.2, and Output 32.4.3. The first table, "ARIMA Estimate for Unit Root Identification," gives details of the method that TRAMO uses to automatically select the orders of differencing. The second table, "Results of Unit Root Test for Identifying Orders of Differencing," shows that a regular difference order of 1 and a seasonal difference order of 1 has been determined by TRAMO. The third table, "Models estimated by Automatic ARIMA Model Selection procedure," shows all the models examined by the TRAMO-based method. The fourth table, "Best Five ARIMA Models Chosen by Automatic Modeling," shows the top five models in order of rank and their BIC2 statistic. The fifth table, "Comparison of Automatically Selected Model and Default Model," compares the model selected by the TRAMO model to the default X-12-ARIMA model. The sixth table, "Final Automatic Model Selection," shows which model was actually selected.

Output 32.4.1 Output from the AUTOMDL Statement

Output 32.4.2 Output from the AUTOMDL Statement

Output 32.4.3 Output from the AUTOMDL Statement

Table 32.10 and Output 32.4.4 illustrate the regARIMA modeling method. Table 32.10 shows the relationship between the output variables in PROC X12 that results from a regARIMA model. Note that some of these formulas apply only to this example. Output 32.4.4 shows the values of these variables for the first 23 observations in the example.

Table 32.10 regARIMA Output Variables and Descriptions

Table	Title	Type	Formula
A1	time series data (for the span analyzed)	data	input
A2	prior-adjustment factors leap year (from trading day regression) adjustments	factor	calculated from regression
A6	regARIMA trading day component leap year prior adjustments included from Table A2	factor	calculated from regression
B1	original series (prior adjusted) (adjusted for regARIMA factors)	data	$B 1=A 1 / A 6^{*}$ * because only TD specified
C17	final weights for irregular component	factor	calculated using moving standard deviation
C20	final extreme value adjustment factors	factor	calculated using C16 and C17
D1	modified original data, D iteration	data	$\begin{aligned} & D 1=B 1 / C 20 * * \\ & D 1=C 19 / C 20 \\ & * * C 19=\mathrm{B} 1 \text { in this example } \end{aligned}$
D7	preliminary trend cycle, D iteration	data	calculated using Henderson moving average
D8	final unmodified SI ratios	factor	$\begin{aligned} & D 8=B 1 / D 7^{* * *} \\ & D 8=C 19 / D 7 \end{aligned}$ *** TD specified in regression
D9	final replacement values for SI ratios	factor	if C17 shows extreme values, $\begin{aligned} & D 9=D 1 / D 7 ; \\ & D 9=. \text { otherwise } \end{aligned}$
D10	final seasonal factors	factor	calculated using moving averages
D11	final seasonally adjusted data (also adjusted for trading day)	data	$\begin{aligned} & D 11=B 1 / D 10 * * * * \\ & D 11=C 19 / D 10 \\ & * * * * B 1=C 19 \text { for this example } \end{aligned}$
D12	final trend cycle	data	calculated using Henderson moving average
D13	final irregular component	factor	$D 13=D 11 / D 12$
D16	combined adjustment factors (includes seasonal, trading day factors)	factor	$D 16=A 1 / D 11$
D18	combined calendar adjustment factors (includes trading day factors)	factor	$\begin{aligned} & D 18=D 16 / D 10 \\ & D 18=A 6^{* * * * *} \end{aligned}$ ***** regression TD is the only calendar adjustment factor in this example

Output 32.4.4 Output Variables Related to Trading Day Regression

Example 32.5: Automatic Outlier Detection

This example demonstrates the use of the OUTLIER statement to automatically detect and remove outliers from a time series to be seasonally adjusted. The data set is the same as in the section "Basic Seasonal Adjustment" on page 2104 and the previous examples. Adding the OUTLIER statement to Example 32.3 requests that outliers be detected by using the default critical value as described in the section "OUTLIER Statement" on page 2122. The tables associated with outlier detection for this example are shown in Output 32.5.1. The first table shows the critical values; the second table shows that a single potential outlier was identified; the third table shows the estimates for the ARMA parameters. Since no outliers are included in the regression model, the "Regression Model Parameter Estimates" table is not displayed. Because only a potential outlier was identified, and not an actual outlier, in this case the A1 series and the B1 series are identical.

```
title 'Automatic Outlier Identification';
proc x12 data=sales date=date;
    var sales;
    transform function=log;
    arima model=( (0,1,1) (0,1,1) );
    outlier;
    estimate;
    x11;
    output out=nooutlier a1 b1 d10;
run ;
```

Output 32.5.1 PROC X12 Output When Potential Outliers Are Identified

Output 32.5.1 continued

Parameter	Exact ARMA	Maximum Likelihood Estimation For variable sales			
			Standard		
	Lag	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Nonseasonal MA	1	0.40181	0.07887	5.09	$<.0001$
Seasonal MA	12	0.55695	0.07626	7.30	<. 0001

In the next example, reducing the critical value to 3.3 causes the outlier identification routine to more aggressively identify outliers as shown in Output 32.5.2. The first table shows the critical values. The second table shows that three additive outliers and a level shift have been included in the regression model. The third table shows how the inclusion of outliers in the model affects the ARMA parameters.

```
proc x12 data=sales date=date;
    var sales;
    transform function=log;
    arima model=((0,1,1) (0,1,1));
    outlier cv=3.3;
    estimate;
    x11;
    output out=outlier(obs=50) a1 a8 a8ao a8ls b1 d10;
run;
proc print data=outlier(obs=50);
run;
```

Output 32.5.2 PROC X12 Output When Outliers Are Identified

Output 32.5.2 continued

Parameter	Exact ARMA Maximum Likelihood Estimation For variable sales					
	Standard					
	Lag	Estimate	Error	t Value	Pr > \|t	
Nonseasonal MA	1	0.33205	0.08239	4.03	$<.0001$	
Seasonal MA	12	0.49647	0.07676	6.47	$<.0001$	

The first 50 observations of the A1, A8, A8AO, A8LS, B1, and D10 series are displayed in Output 32.5.3. You can confirm the following relationships from the data.

$$
\begin{aligned}
& A 8=A 8 A O \times A 8 L S \\
& B 1=A 1 / A 8
\end{aligned}
$$

The seasonal factors are stored in the variable sales_D10.

Output 32.5.3 PROC X12 Output Series Related to Outlier Detection

Obs	DATE	sales_A1	Automatic Outlier Identification				
			sales_A8	$\begin{gathered} \text { sales_ } \\ \text { A8AO } \end{gathered}$	$\begin{gathered} \text { sales_ } \\ \text { A8LS } \end{gathered}$	sales_B1	$\begin{gathered} \text { sales_ } \\ \text { D10 } \end{gathered}$
1	SEP78	112	1.10156	1.00000	1.10156	101.674	0.90496
2	OCT78	118	1.10156	1.00000	1.10156	107.121	0.94487
3	N0V78	132	1.10156	1.00000	1.10156	119.830	1.04711
4	DEC78	129	1.10156	1.00000	1.10156	117.107	1.00119
5	JAN79	121	1.10156	1.00000	1.10156	109.844	0.94833
6	FEB79	135	1.10156	1.00000	1.10156	122.553	1.06817
7	MAR79	148	1.10156	1.00000	1.10156	134.355	1.18679
8	APR79	148	1.10156	1.00000	1.10156	134.355	1.17607
9	MAY79	136	1.10156	1.00000	1.10156	123.461	1.07565
10	JUN79	119	1.10156	1.00000	1.10156	108.029	0.91844
11	JUL79	104	1.10156	1.00000	1.10156	94.412	0.81206
12	AUG79	118	1.10156	1.00000	1.10156	107.121	0.91602
13	SEP79	115	1.10156	1.00000	1.10156	104.397	0.90865
14	OCT79	126	1.10156	1.00000	1.10156	114.383	0.94131
15	NOV79	141	1.10156	1.00000	1.10156	128.000	1.04496
16	DEC79	135	1.10156	1.00000	1.10156	122.553	0.99766
17	JAN80	125	1.10156	1.00000	1.10156	113.475	0.94942
18	FEB80	149	1.10156	1.00000	1.10156	135.263	1.07172
19	MAR80	170	1.10156	1.00000	1.10156	154.327	1.18663
20	APR80	170	1.10156	1.00000	1.10156	154.327	1.18105
21	MAY80	158	1.10156	1.00000	1.10156	143.433	1.07383
22	JUN80	133	1.10156	1.00000	1.10156	120.738	0.91930
23	JUL80	114	1.10156	1.00000	1.10156	103.490	0.81385
24	AUG80	140	1.10156	1.00000	1.10156	127.093	0.91466
25	SEP80	145	1.10156	1.00000	1.10156	131.632	0.91302
26	ОСт80	150	1.10156	1.00000	1.10156	136.171	0.93086
27	N0V80	178	1.10156	1.00000	1.10156	161.589	1.03965
28	DEC80	163	1.10156	1.00000	1.10156	147.972	0.99440
29	JAN81	172	1.21243	1.10065	1.10156	141.864	0.95136
30	FEB81	178	1.10156	1.00000	1.10156	161.589	1.07981
31	MAR81	199	1.10156	1.00000	1.10156	180.653	1.18661
32	APR81	199	1.10156	1.00000	1.10156	180.653	1.19097
33	MAY81	184	1.10156	1.00000	1.10156	167.036	1.06905
34	JUN81	162	1.10156	1.00000	1.10156	147.064	0.92446
35	JUL81	146	1.10156	1.00000	1.10156	132.539	0.81517
36	AUG81	166	1.10156	1.00000	1.10156	150.695	0.91148
37	SEP81	171	1.10156	1.00000	1.10156	155.234	0.91352
38	OCT81	180	1.10156	1.00000	1.10156	163.405	0.91632
39	N0V81	193	1.10156	1.00000	1.10156	175.206	1.03194
40	DEC81	181	1.10156	1.00000	1.10156	164.312	0.98879
41	JAN82	183	1.10156	1.00000	1.10156	166.128	0.95699
42	FEB82	218	1.10156	1.00000	1.10156	197.901	1.09125
43	MAR82	230	1.10156	1.00000	1.10156	208.795	1.19059
44	APR82	242	1.10156	1.00000	1.10156	219.688	1.20448
45	MAY82	209	1.10156	1.00000	1. 10156	189.731	1.06355
46	JUN82	191	1.10156	1.00000	1.10156	173.391	0.92897
47	JUL82	172	1.10156	1.00000	1.10156	156.142	0.81476
48	AUG82	194	1.10156	1.00000	1.10156	176.114	0.90667
49	SEP82	196	1.10156	1.00000	1.10156	177.930	0.91200
50	OCT82	196	1.10156	1.00000	1.10156	177.930	0.89970

From the two previous examples, you can examine how outlier detection affects the seasonally adjusted series. Output 32.5 .4 shows a plot of A1 versus B1 in the series where outliers are detected.
B1 has been adjusted for the additive outliers and the level shift.

```
proc sgplot data=outlier;
    series x=date y=sales_A1 / name='A1' markers
                                markerattrs=(color=red symbol=' circle')
        lineattrs=(color=red);
    series x=date y=sales_B1 / name='B1' markers
        markerattrs=(color=black symbol='asterisk')
        lineattrs=(color=black);
    yaxis label='Original and Outlier Adjusted Time Series';
run;
```

Output 32.5.4 Original Series and Outlier Adjusted Series

Output 32.5.5 compares the seasonal factors (table D10) of the series unadjusted for outliers to the series adjusted for outliers. The seasonal factors are based on the B1 series.

```
data both;
    merge nooutlier(rename=(sales_D10=unadj_D10)) outlier;
run;
title 'Results of Outlier Identification on Final Seasonal Factors';
proc sgplot data=both;
```

```
    series x=date y=unadj_D10 / name='unadjusted' markers
                        markerattrs=(color=red symbol=' circle')
                        lineattrs=(color=red)
                            legendlabel='Unadjusted for Outliers';
    series x=date y=sales_D10 / name='adjusted' markers
    markerattrs=(color=blue symbol='asterisk')
    lineattrs=(color=blue)
    legendlabel='Adjusted for Outliers';
    yaxis label='Final Seasonal Factors';
run;
```

Output 32.5.5 Seasonal Factors Based on Original and Outlier Adjusted Series

Example 32.6: User-Defined Regressors

This example demonstrates the use of the USERVAR= option in the REGRESSION statement to include user-defined regressors in the regARIMA model. The user-defined regressors must be defined as nonmissing values for the span of the series being modeled plus any forecast values. Suppose you have the data set SALESDATA with 132 monthly observations beginning in January of 1949.

```
title 'Data Set to be Seasonally Adjusted';
```

```
data salesdata;
    set sashelp.air(obs=132);
run;
```

Since the regARIMA model forecasts one year ahead, the user-defined regressor must be defined for 144 observations that start in January of 1949. You can construct a simple length-of-month regressor by using the following DATA step.

```
title 'User-defined Regressor for Data to be Seasonally Adjusted';
data regressors(keep=date LengthOfMonth);
    set sashelp.air;
    LengthOfMonth = INTNX('MONTH',date,1) - date;
run;
```

The two data sets must be merged in order to use them as input to PROC X12. The BY statement is used to align the regressors with the time series by the time ID variable DATE.

```
title 'Data Set Containing Series and Regressors';
data datain;
    merge regressors salesdata;
    by date;
run;
proc print data=datain(firstobs=121);
run;
```

The last 24 observations of the input data set are displayed in Output 32.6.1. Note that the regressor variable is defined for one year (12 observations) beyond the span of the time series to be seasonally adjusted.

Output 32.6.1 PROC X12 Input Data Set with User-Defined Regressor

The DATAIN data set is now ready to be used as input to PROC X12. Note that the DATE= variable and the user-defined regressors are automatically excluded from the variables to be seasonally adjusted.

```
title 'regARIMA Model with User-defined Regressor';
proc x12 data=datain date=DATE interval=MONTH;
    transform function=log;
    regression uservar=LengthofMonth;
    automdl;
    x11;
run;
```

The parameter estimates for the regARIMA model are shown in Output 32.6.2

Output 32.6.2 PROC X12 Output for User-Defined Regression Parameter

regARIMA Model with User-defined Regressor					
The X12 Procedure					
Regression Model Parameter Estimates					
Standard					
Type	Parameter	NoEst Est	Er	r t Value	$\operatorname{Pr}>\|t\|$
User Defined	LengthOfMonth	Est 0.	0.01	$4 \quad 2.55$	0.0119
Exact ARMA Maximum Likelihood Estimation For variable AIR					
			Standard		
Parameter	Lag	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$
Nonseasonal MA	1	0.33678	0.08506	3.96	0.0001
Seasonal MA	12	0.54078	0.07726	7.00	<. 0001

Example 32.7: MDLINFOIN= and MDLINFOOUT= Data Sets

This example illustrates the use of MDLINFOIN= and MDLINFOOUT= data sets. Using the data set shown, PROC X12 step identifies the model with outliers as displayed in Output 32.7.1. Output 32.7.2 shows the data set that represents the chosen model.

```
data b1;
    input y @@;
    datalines;
    112}11813212
    121 135 148 148
    136 119 104 118
    115126 141 135
    125 149 270 170
    158133114140
;
title 'Model Identification Output to MDLINFOOUT= Data Set';
proc x12 data=b1 start='1980q1' interval=qtr MdlInfoOut=mdl;
    automdl;
    outlier;
run ;
proc print data=mdl;
run;
```

Output 32.7.1 Displayed Model Identification with Outliers

Output 32.7.2 PROC X12 MDLINFOOUT= Data Set Model with Outlier Detection

Suppose that after examining the output from the preceding example, you decide that an Easter regressor should be added to the model. The following statements create a data set with the model identified above and adds a U.S. Census Bureau Predefined Easter(25) regression. The new model data set to be used as input in the MDLINFOIN= option is displayed in the data set shown in Output 32.7.3.

```
data pluseaster;
    _NAME_ = 'Y';
    _MODELTYPE_ = 'REG';
    _MODELPART_ = 'PREDEFINED';
    _COMPONENT_ = 'SCALE';
    _PARMTYPE_ = 'EASTER';
    _DSVAR_ = 'EASTER';
    _VALUE_ = 25;
run;
```

```
data mdlpluseaster;
    set mdl;
run;
proc append base=mdlpluseaster data=pluseaster force;
run;
proc print data=mdlpluseaster;
run;
```

Output 32.7.3 MDLINFOIN= Data Set Model with Easter(25) Regression Added

The following statement estimate the regression and ARIMA parameters by using the model described in the new data set mdlpluseaster. The results of estimating the new model are shown in Output 32.7.4.

```
proc x12 data=b1 start='1980q1' interval=qtr
    MdlInfoIn=mdlpluseaster MdlInfoOut=mdl2;
```

```
    estimate;
```

run;

Output 32.7.4 Estimate Model with Added Easter(25) Regression

The new model estimation results are displayed in the data set mdl2 shown in Output 32.7.5.

```
proc print data=mdl2;
run;
```

Output 32.7.5 MDLINFOOUT= Data Set, Estimation of Model with Easter(25) Regression Added

	Model Identification Output to MDLINFOOUT= Data Set										
		-		-	-	-					
		M		M	c	c	-				
		\bigcirc		-	\bigcirc	0	P				
		D		D	M	M	A				
		E		E	P	P	R	-			
	-	L		L	\bigcirc	0	M	D			
	N	T		P	N	N	T	S			
	A	Y		A	E	E	Y	v			
\bigcirc	M	P		R	N	N	P	A			
b	E	E		T	T	T	E	R			
s	-	-		-	-	-	-	-			
1	y	REG		PREDEFINED	D S	SCALE	EASTER	EASTER			
2	y	REG		EVENT		SCALE	AO	A001JUL1	84D		
3	y	ARIMA		FORECAST		NONSEASONAL	DIF	y			
4	y	ARIMA		FORECAST		NONSEASONAL	AR	y			
5	y	ARIMA		FORECAST		NONSEASONAL	AR	y			
		-				-	-	-	-		
	-	F	-	-		S	T	P	S	-	-
	v	A	S	N		T	v	v	T	S	L
	A	C -	H	\bigcirc	-	- D	A	A	A	c	A
	L	T L	I	E	E	E E	L	L	T	\bigcirc	B
\bigcirc	U	- A	F	S	S	S $\quad \mathrm{R}$	U	U	U	R	E
b	E	R G	T	T	T	T R	E	E	S	E	L
s	-	-	-	-	-	- -	_	-	-	-	-
1	25	. .	.	0	6.157	74.89162	1.2588	0.22193	.		
2	010	105.294	46.15636	17.1033	0.00000	.		
3	-	. 1	-		
4	.	11	.	0	0.444	40.20739	2.1397	0.04428	.		
5	.	12	.	0 -	-0.541	10.21656	-2.4959	0.02096	.		

Example 32.8: Setting Regression Parameters

This example illustrates the use of fixed regression parameters in PROC X12. Suppose that you have the same data set as in the section "Basic Seasonal Adjustment" on page 2104. You would like to use TRAMO to automatically identify a model with an U.S. Census Bureau Easter(25) regression. The displayed results are shown in Output 32.8.1.

```
title 'Estimate Easter(25) Parameter';
proc x12 data=sales date=date MdlInfoOut=mdlout1;
    var sales;
    regression predefined=easter(25);
    automdl;
run ;
```

Output 32.8.1 Automatic Model ID with Easter(25) Regression

The MDLINFOOUT= data set, mdlout1, that contains the model and parameter estimates is shown in Output 32.8.2.

```
proc print data=mdlout1;
run;
```

Output 32.8.2 MDLINFOOUT= Data Set, Estimation of Automatic Model ID with Easter(25) Regression

To fix the Easter(25) parameter while adding a regressor that is weighted according to the number of Saturdays in a month, either use the REGRESSION and EVENT statements or create a MDLINFOOUT = data set. The following statements show the method for using the REGRESSION statement to fix the EASTER parameter and the EVENT statement to add the SATURDAY regressor. The output is shown in Output 32.8.3.

```
title 'Use SAS Statements to Alter Model';
proc x12 data=sales date=date MdlInfoOut=mdlout2grm;
    var sales;
```

regression predefined=easter(25) / b=-5.029298 F;
event Saturday;
automdl;
run ;

Output 32.8.3 Automatic Model ID with Fixed Easter(25) and Saturday Regression

To fix the EASTER regressor and add the new SATURDAY regressor by using a DATA step, you would create the data set mdlin2 as shown. The data set mdlin2 is displayed in Output 32.8.4.

```
title 'Use a SAS DATA Step to Create a MdlInfoIn= Data Set';
data plusSaturday;
    _NAME_ = 'sales';
    _MODELTYPE_ = 'REG';
    _MODELPART_ = 'EVENT';
    _COMPONENT_ = 'SCALE';
    _PARMTYPE_ = 'USER';
    _DSVAR_ = 'SATURDAY';
run;
data mdlin2;
    set mdlout1;
    if ( _DSVAR_ = 'EASTER' ) then do;
        _NOEST_ = 1;
        _EST_ = -5.029298;
        end;
run;
proc append base=mdlin2 data=plusSaturday force;
run;
proc print data=mdlin2;
run;
```

Output 32.8.4 MDLINFOIN= Data Set, Fixed Easter(25) and Added Saturday Regression, Previously Identified Model

		Use a SAS DATA Step to Create a Mdlinfoln= Data Set								
		-		-	-					
		M		M	C	-				
		0		0	0	P				
		D		D	M	A				
		E		E	P	R				
	-	L		L	0	M				
	N	T		P	N	T				
	A	Y		A	E	Y				
0	M	P		R	N	P				
b	E	E		T	T	E				
s	-	-		-	-	-				
1	sales	REG		PREDEFINED	SCALE	EASTER	EAS			
2	sales	ARIMA		FORECAST	NONSEASONAL	, DIF	sal			
3	sales	ARIMA		FORECAST	SEASONAL	DIF	sal			
4	sales	ARIMA		FORECAST	NONSEASONAL	, $A R$	sal			
5	sales	ARIMA		FORECAST	NONSEASONAL	, $A R$	sal			
6	sales	ARIMA		FORECAST	NONSEASONAL	, AR	sal			
7	sales	ARIMA		FORECAST	NONSEASONAL	MA	sal			
8	sales	ARIMA		FORECAST	SEASONAL	MA	sal			
9	sales	REG		EVENT	SCALE	USER	SAT			
	-				-	-	-	-		
	$-\quad \mathbf{F}$	-	-		S	T	P	S	-	-
	$V \quad \mathrm{~A}$	S	N		T	V	V	T	S	L
	A C	$-\quad \mathrm{H}$	0	-	D	A	A	A	C	A
	L T	L I	E	E	E	L	L	T	0	B
0	U O	A F	S	S	R	U	U	U	R	E
b	E $\quad \mathrm{R}$	G T	T	T	R	E	E	S	E	L
s	-	- -	-	- -	-	-	-	-	-	-
1	25	.	1	-5.02930	3.50786	-1.4519	0.14894	-		
2	. .	1		
3	. .	1		
4	1	1	0	0.62148	0.09279	6.6980	0.00000	.		
5	1	2	0	0.23354	0.10385	2.2488	0.02621	-		
6	1	3	0	-0.07191	0.09055	-0.7942	0.42851	.		
7	1	1	0	0.97377	0.03771	25.8240	0.00000	-		
8	. 2	1	0	0.10558	0.10205	1.0346	0.30277	.		
9	-	-		

The data set mdlin2 can be used to replace the regression and model information contained in the REGRSSION, EVENT, and AUTOMDL statements. Note that the model specified in the mdlin2 data set is the same model as the automatically identified model. The following example uses the mdlin2 data set as input; the results are displayed in Output 32.8.5.

```
title 'Use Updated Data Set to Alter Model';
```

```
proc x12 data=sales date=date MdlInfoIn=mdlin2 MdlInfoOut=mdlout2DS;
    var sales;
    estimate;
run ;
```

Output 32.8.5 Estimate MDLINFOIN= File for Model with Fixed Easter(25) and Saturday Regression, Previously Identified Model

The following statements specify almost the same information as contained in the data set mdlin2. Note that the ARIMA statement is used to specify the lags of the model. However, the initial AR and MA parameter values are the default. When using the mdlin2 data set as input, the initial values can be specified. The results are displayed in Output 32.8.6.

```
title 'Use SAS Statements to Alter Model';
proc x12 data=sales date=date MdlInfoOut=mdlout3grm;
    var sales;
    regression predefined=easter(25) / b=-5.029298 F;
    event Saturday;
    arima model=((3 1 1) (0 1 1));
    estimate;
run ;
proc print data=mdlout3grm;
run;
```

Output 32.8.6 MDLINFOOUT= Statement, Fixed Easter(25) and Added Saturday Regression, Previously Identified Model

Use SAS Statements to Alter Model									
		-	-	-					
		M	M	C	-				
		0	0	0	P				
		D	D	M	A				
		E	E	P	R				
	-	L	L	0	M				
	N	T	P	N	T				
	A	Y	A	E	Y				
0	M	P	R	N	P				
b	E	E	T	T	E				
s	-	-	-	-	-				
1	sales	REG	EVENT	SCALE	USER	Sat	day		
2	sales	REG	PREDEFINED	SCALE	EASTER	R EAS			
3	sales	ARIMA	FORECAST	NONSEASONAL	DIF	sal			
4	sales	ARIMA	FORECAST	SEASONAL	DIF	sal			
5	sales	ARIMA	FORECAST	NONSEASONAL	AR	sal			
6	sales	ARIMA	FORECAST	NONSEASONAL	AR	sal			
7	sales	ARIMA	FORECAST	NONSEASONAL	AR	sal			
8	sales	ARIMA	FORECAST	NONSEASONAL	MA	sal			
9	sales	ARIMA	FORECAST	SEASONAL	MA	sal			
	-			-	-	-	-		
	$-\quad \mathbf{F}$	-	-	S	T	P	S	-	-
	$V \quad \mathrm{~A}$	S	N	T	V	V	T	S	L
	A C	- H	0	D	A	A	A	C	A
	L T	L I	E E	E	L	L	T	0	B
0	U O	A F	$S \quad S$	R	U	U	U	R	E
b	E \quad R	G T	$\mathbf{T} \quad \mathbf{T}$	R	E	E	S	E	L
s	- -	-	-	-	-	-	-	-	-
1	. -	- -	03.41760	1.07640	3.1750	0.00187	.		
2	25	. .	$1-5.02930$.	.	.	-		
3	. .	1	-		
4	. .	1	. 0		
5	1	1	$0 \quad 0.62228$	0.09175	6.7825	0.00000	.		
6	1	2	$0 \quad 0.30431$	0.10109	3.0103	0.00314	.		
7	1	3 .	$0-0.14864$	0.08859	-1.6779	0.09579	-		
8	1	1	$0 \quad 0.97128$	0.03796	25.5881	0.00000	.		
9	- 2	1 .	$0 \quad 0.11684$	0.10000	1.1684	0.24481	-		

The MDLINFOOUT= data set provides a method for comparing the results of the model identification. The data set mdlout3grm that is the result of using the ARIMA MODEL= option can be compared to the data set mdlout2DS that is the result of using the MDLINFOIN= data set with initial values for the AR and MA parameters. The mdlout2DS data set is shown in Output 32.8.7, and the results of the comparison are shown in Output 32.8.8. The slight difference in the estimated parameters can be attributed to the difference in the initial values for the AR and MA parameters.
proc print data=mdlout2DS;
run;
Output 32.8.7 MDLINFOOUT= Data Set, Fixed Easter(25) and Added Saturday Regression, Previously Identified Model

Use SAS Statements to Alter Model									
		-	-	-					
		M	M	C	-				
		0	0	0	P				
		D	D	M	A				
		E	E	P	R				
	-	L	L	0	M				
	N	T	P	N	T				
	A	Y	A	E	Y				
0	M	P	R	N	P				
b	E	E	T	T	E				
s	-	-	-	-	-				
1	sales	REG	EVENT	SCALE	USER	SAT	DAY		
2	sales	REG	PREDEFINED	SCALE	EASTER	EAS			
3	sales	ARIMA	FORECAST	NONSEASONAL	, DIF	sal			
4	sales	ARIMA	FORECAST	SEASONAL	DIF	sal			
5	sales	ARIMA	FORECAST	NONSEASONAL	, AR	sal			
6	sales	ARIMA	FORECAST	NONSEASONAL	, $A R$	sal			
7	sales	ARIMA	FORECAST	NONSEASONAL	, $A R$	sal			
8	sales	ARIMA	FORECAST	NONSEASONAL	, MA	sal			
9	sales	ARIMA	FORECAST	SEASONAL	MA	sal			
	-			-	-	-	-		
	-	-	-	S	T	P	S	-	-
	$V \quad \mathrm{~A}$	S	N	T	V	V	T	S	L
	A C	- H	0 -	D	A	A	A	C	A
	L I	L I	E E	E	L	L	T	0	B
0	U O	A $\quad \mathrm{F}$	$\mathrm{S} \quad \mathrm{S}$	R	U	U	U	R	E
b	E \quad R	G T	$\mathbf{T} \quad \mathbf{T}$	R	E	E	S	E	L
s	-	-	-	-	-	-	-	-	-
1	- .	- -	$0 \quad 3.41762$	1.07641	3.1750	0.00187	-		
2	25	- .	$1-5.02930$.	.	.	-		
3	. .	1	. .	-	.	.	.		
4	.	1	- .	-	-	-	-		
5	1	1	$0 \quad 0.62225$	0.09175	6.7817	0.00000	.		
6	1	2	$0 \quad 0.30429$	0.10109	3.0100	0.00314	-		
7	1	3	$0-0.14862$	0.08859	-1.6776	0.09584	.		
8	1	1	$0 \quad 0.97125$	0.03798	25.5712	0.00000	-		
9	2	1 .	$0 \quad 0.11691$	0.10000	1.1691	0.24451	.		

title 'Compare Results of SAS Statement Input and MdlInfoIn= Input';
proc compare base= mdlout3grm compare=mdlout2DS;
var _EST_;
run ;

Output 32.8.8 Compare Parameter Estimates from Different MDLINFOOUT= Data Sets

Example 32.9: Illustration of ODS Graphics

This example illustrates the use of ODS Graphics. Using the same data set as in the section "Basic Seasonal Adjustment" on page 2104 and the previous examples, a spectral plot of the original series is displayed in Output 32.9.1.

The graphical displays are requested by specifying the ODS GRAPHICS statement. For specific information about the graphics available in the X12 procedure, see the section "ODS Graphics" on page 2141.

```
ods graphics on;
proc x12 data=sales date=date;
    var sales;
run;
```

Output 32.9.1 Spectral Plot for Original Data

Acknowledgments: X12 Procedure

The X-12-ARIMA procedure was developed by the Time Series Staff of the Statistical Research Division, U.S. Census Bureau.

Brian Monsell is the primary programmer for the U.S. Census Bureau's X-12-ARIMA procedure and has been very helpful in the development of PROC X12.

The version of PROC X12 documented here was produced by converting the U.S. Census Bureau's FORTRAN code to the SAS development language and adding typical SAS procedure syntax. This conversion work was performed by SAS and resulted in the X12 procedure. Although several features were added during the conversion, credit for the statistical aspects and general methodology of the X12 procedure belongs to the U.S. Census Bureau.

The X-12-ARIMA seasonal adjustment program contains components developed from Statistics Canada's X-11-ARIMA program.

The X-12-ARIMA automatic modeling method is based on the work of Gomez and Maravall (1997a, b).

References

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control, Third Edition, Englewood Cliffs, NJ: Prentice Hall.

Cholette, P. A. (1979), A Comparison and Assessment of Various Adjustment Methods of Sub-annual Series to Yearly Benchmarks, StatCan Staff Paper STC2119, Seasonal Adjustment and Time Series Staff, Statistics Canada, Ottawa.

Dagum, E. B. (1983), The X-11-ARIMA Seasonal Adjustment Method, Technical Report 12-564E, Statistics Canada.

Dagum, E. B. (1988), The X-11-ARIMA/88 Seasonal Adjustment Method: Foundations and User's Manual, Ottawa: Statistics Canada.

Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., and Chen, B. C. (1998), "New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program," Journal of Business and Economic Statistics, 16, 127-176.

Gomez, V. and Maravall, A. (1997a), Guide for Using the Programs TRAMO and SEATS, Beta Version, Banco de España.

Gomez, V. and Maravall, A. (1997b), Program TRAMO and SEATS: Instructions for the User, Beta Version, Banco de España.

Huot, G. (1975), Quadratic Minimization Adjustment of Monthly or Quarterly Series to Annual Totals, StatCan Staff Paper STC2104, Statistics Canada, Seasonal Adjustment and Time Series Staff, Ottawa.

Ladiray, D. and Quenneville, B. (2001), Seasonal Adjustment with the X-11 Method, New York: Springer-Verlag.

Ljung, G. M. (1993), "On Outlier Detection in Time Series," Journal of the Royal Statistical Society, B, 55, 559-567.

Lothian, J. and Morry, M. (1978a), A Set of Quality Control Statistics for the X-11-ARIMA Seasonal Adjustment Method, StatCan Staff Paper STC1788E, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada, Ottawa.

Lothian, J. and Morry, M. (1978b), A Test for the Presence of Identifiable Seasonality When Using the X-11-ARIMA Program, StatCan Staff Paper STC2118, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada, Ottawa.

Shiskin, J., Young, A. H., and Musgrave, J. C. (1967), The X-11 Variant of the Census Method II Seasonal Adjustment Program, Technical Report 15, U.S. Department of Commerce, Bureau of the Census.
U.S. Bureau of the Census (2001a), X-12-ARIMA Quick Reference for UNIX, Version 0.2.8, Washington, DC.
U.S. Bureau of the Census (2001b), X-12-ARIMA Reference Manual, Version 0.2.8, Washington, DC.
U.S. Bureau of the Census (2001c), X-12-ARIMA Seasonal Adjustment Program, Version 0.2.8, Washington, DC.

Part III

Data Access Engines

Chapter 33

The SASECRSP Interface Engine

Contents

Overview: SASECRSP Interface Engine . 2190
Introduction . 2190
Opening a Database . 2190
Using Your Opened Database . 2192
Getting Started: SASECRSP Interface Engine . 2192
Structure of a SAS Data Set That Contains Time Series Data 2192
Reading CRSP Data Files . 2194
Using the SAS DATA Step . 2194
Using SAS Procedures . 2194
Using CRSP Date Formats, Informats, and Functions 2194
Syntax: SASECRSP Interface Engine . 2194
The LIBNAME libref SASECRSP Statement 2195
Details: SASECRSP Interface Engine . 2203
Using the Inset Option . 2203
The SAS Output Data Set . 2206
Understanding CRSP Date Formats, Informats, and Functions 2208
Examples: SASECRSP Interface Engine . 2212
Example 33.1: Specifying PERMNOs and RANGE on the LIBNAME State-
ment . 2212
Example 33.2: Using the LIBNAME Statement to Access All Keys 2214
Example 33.3: Accessing One PERMNO Using No RANGE 2216
Example 33.4: Specifying Keys Using the INSET= Option 2217
Example 33.5: Specifying Ranges for Individual Keys with the INSET= Option 2221
Example 33.6: Converting Dates By Using the CRSP Date Functions 2222
Example 33.7: Comparing Different Ways of Accessing CCM Data 2224
Example 33.8: Comparing PERMNO and GVKEY Access of CRSP Stock
Data . 2227
Example 33.9: Using Fiscal Date Range Restriction 2228
Example 33.10: Using Different Types of Range Restrictions in the INSET . 2230
Example 33.11: Using INSET Ranges with the LIBNAME RANGE Option 2233
Data Elements Reference: SASECRSP Interface Engine 2234
Available CRSP Stock Data Sets . 2238
Available Compustat Data Sets . 2242
Available CRSP Indices Data Sets . 2275

References

Acknowledgments 2287

Overview: SASECRSP Interface Engine

Introduction

The SASECRSP interface engine enables SAS users to access and process time series, events, portfolios, and group data that reside in CRSPAccess databases. It also provides a seamless interface between CRSP, COMPUSTAT, and SAS data processing. Currently, SASECRSP supports access of CRSP Stock databases, CRSP Indices databases and CRSP/Compustat Merged databases.

Opening a Database

The SASECRSP engine uses the LIBNAME statement to enable you to specify which CRSPAccess database you would like to access and how you would like to perform selection on that database.

To specify the database, you supply the combination of a physical path to indicate the location of the CRSPAccess data files and a set identifier (SETID) to identify the database desired from those available at the physical path. Specify one SETID from Table 33.1. Note that the CRSP environment variable CRSPDB_SASCAL must be defined before the SASECRSP engine can access the CRSPAccess database calendars that provide the time ID variables and enable the LIBNAME to successfully assign.

Table 33.1 CRSPAccess Databases SETIDs

SETID	Data Set
10	CRSP Stock, daily data
20	CRSP Stock, monthly data
200	CRSP/Compustat Merged (CCM) data
400	CRSP Indices data, monthly index groups
420	CRSP Indices data, monthly index series
440	CRSP Indices data, daily index groups
460	CRSP Indices data, daily index series

Usually you do not want to open the entire CRSPAccess database, so for efficiency purposes and ease of use, SASECRSP supports a variety of options for performing data selection on your CRSPAccess database with the LIBNAME statement. These options enable you to open and retrieve data for only the portion of the database you desire. The availability of some of these options depends on the type of database being opened.

CRSP Stock Databases

When accessing the CRSP Stock databases, you can select which securities you want to access by specifying their $P E R M N O$ s with the PERMNO $=$ option. $P E R M N O^{\mathrm{TM}}$ is CRSP's unique permanent issue identification number and the primary key for their stock databases. Alternatively, a number of secondary keys can also be used to select stock data. For example, you could use the PERMCO= option to read selected securities based on CRSP's unique permanent company identification number, $P E R M C O^{\mathrm{TM}}$. A full list of possible keys for accessing CRSP Stock data is shown in Table 33.2.

Table 33.2 Keys for Accessing CRSP Stock Data

Key	Access By
PERMNO	CRSP's unique permanent issue identification number
	This is the primary key for CRSP Stock databases.
PERMCO	CRSP's unique permanent company identification number
CUSIP	CUSIP number
HCUSIP	historical CUSIP
SICCD	standard industrial classification (SIC) code
TICKER	TICKER symbol (for active companies only)

CRSP/Compustat Merged Databases

When accessing Compustat data via the CCM database, you can select which companies you want to access by specifying their $G V K E Y \mathrm{~s}$. $G V K E Y^{\mathrm{TM}}$ is Compustat's unique identifer and primary key. You can specify a GVKEY to include with the GVKEY= option. Two secondary keys, PERMNO and PERMCO, are also supported for access via their respective PERMNO $=$ and PERMCO $=$ options. A full list of possible keys for accessing CCM data is shown in Table 33.3.

Table 33.3 Keys for Accessing CCM Data

Key	Access By
GVKEY	Compustat's unique identifer and primary key for CCM database
PERMNO	CRSP's unique permanent issue identification number
PERMCO	CRSP's unique permanent company identification number

CRSP Indices Databases

When accessing CRSP Indices data, you can select which indices you want to access by specifying their $I N D N O$ s. $I N D N O^{\mathrm{TM}}$ is the primary key for CRSP Indices databases. You can specify which INDNO to use with the INDNO= option. No secondary key access is supported for CRSP Indices. A full list of possible keys for accessing CRSP Indices data is shown in Table 33.4.

Table 33.4 Keys for Accessing Indices Data

Key	Access By
INDNO	CRSP's unique permanent index identifier number. This is the primary key for CRSP Indices databases and enables you to specify which index series or groups you want to select.

Regardless of the database you are accessing, you can always use the INSET = and RANGE= options for subsetting and selection. The RANGE= option subsets the data timewise. The INSET= option enables you to specify which issues or companies you want to select from the CRSP database by using an input SAS data set.

Using Your Opened Database

Once the LIBNAME is assigned, the database is opened. You can retrieve data for any member you want in the opened database. For a complete description of available data sets and their fields, see the section "Data Elements Reference: SASECRSP Interface Engine" on page 2234. You can also use the SAS DATA Step to perform further subsetting and to store the resulting time series in a SAS data set. Since CRSP and SAS use three different date representations, you can make use of the engine-provided CRSP date formats, informats, and functions for your data processing needs. See the section "Understanding CRSP Date Formats, Informats, and Functions" on page 2208, as well as Example 33.6 later in this chapter for more information about dates with SASECRSP.

SASECRSP for SAS 9.2 supports Linux, Solaris (SUNOS5.9), and Windows.

Getting Started: SASECRSP Interface Engine

Structure of a SAS Data Set That Contains Time Series Data

SAS requires time series data to be in a specific form that is recognizable by the SAS System. This form is a two-dimensional array, called a SAS data set, whose columns correspond to series variables and whose rows correspond to measurements of these variables at certain points in time. The time at which observations are recorded can be included in the data set as a time ID variable. Note that CRSP sets the date to the end of a time period as opposed to the beginning, and SASECRSP follows this convention. For example, the time ID variable for any particular month in a monthly time series occurs on the last trading day of that month.

The SASECRSP engine provides several different time ID variables depending on the data member opened. For most members, a time ID variable called CALDT is provided. CALDT provides a day-
based calendar date and is in a CRSP date format. This means dates are stored as an offset in an array of trading days or a trading day calendar. There are five different CRSP trading day calendars and the one used depends on the frequency of the data member. For example, the CRSP date for a daily time series refers to a daily trading day calendar.

The five trading day calendars are: annual, quarterly, monthly, weekly and daily. For your convenience, the format and informat for this field is set so the CRSP date is automatically converted to an Integer date representation when viewed or printed. For data programming, the SASECRSP engine provides 23 different user functions for date conversions between CRSP, SAS, and integer dates.

The CCM database contains members whose dates are based on the fiscal calendar of the corresponding company, so a comprehensive set of time ID variables are provided. CRSPDT, RCALDT and FISCALDT provide day-based dates, each with its own format.

CRSPDT This time ID variable provides a date in CRSP date format similar to CALDT. CRSPDT differs only in that its format and informat are not set for automatic conversion to integer dates because this is already provided by FISCALDT and RCALDT. For fiscal members, CRSPDT is one based on the fiscal calendar of the company.

FISCALDT This time ID variable provides the same date CRSPDT does, but in integer format. It is the result of performing a CRSP-to-Integer date conversion on CRSPDT. Since the date CRSPDT holds is fiscal, FISCALDT is also fiscal.

RCALDT This time ID variable is also an integer date, just like FISCALDT, but it has been shifted so the date is on calendar time as opposed to being fiscal.

For example, Microsoft's fiscal year ends in June, so if you look at its annual period descriptor for the 2002 fiscal year, its time ID variables are 78 for CRSPDT, 20021231 for its FISCALDT, and 20020628 for RCALDT. In summary, a total of three time ID variables are provided for fiscal time series members. One is in CRSP date format, and the other two are in integer format with the only difference between the two integer formats being that one of them is based on the fiscal calendar of the company while the other is not.

For more information about how CALDT, CRSPDT, and date conversions are handled, see the section "Understanding CRSP Date Formats, Informats, and Functions" on page 2208.

The CCM database also contains fiscal array members, which are all the segment data members. They are unlike the fiscal time series in that they are not associated with a calendar and also have their time ID variables embedded in the data as a data field. Generally both fiscal and calendar time ID variables are embedded. However, segment members segsrc, segcur, and segitm have only one fiscal time ID variable embedded. For your convenience, SASECRSP calculates and provides CALYR, the calendar version of the embedded fiscal time ID variable for these three segment members. Note that due to limitations of the data, all segment member time ID variables are year-based.

Reading CRSP Data Files

The SASECRSP engine supports reading time series, events, portfolios and group data from CRSPAccess databases. The SETID you specify determines the database that is read. See Table 33.1 for a list of possible databases. The CRSP environment variable CRSPDB_SASCAL must be defined before the SASECRSP engine can access the CRSPAccess database calendars that provide the time ID variables and enable the LIBNAME to successfully assign.

Using the SAS DATA Step

If desired, you can store the selected series in a SAS data set by using the SAS DATA step. You can also perform other operations on your data inside the DATA step. Once the data is in a SAS data set you can use it as you would any other SAS data set.

Using SAS Procedures

You can print the output SAS data set by using the PRINT procedure, and you can report information concerning the contents of your data set by using the CONTENTS procedure.

You can also create a view of the CRSPAccess database by using the SQL procedure in conjunction with a SASECRSP libref. See Example 33.11 later in this chapter for an example with PROC SQL.

Viewtable enables you to view your data by double-clicking on a SASECRSP libref in the LIBNAME window of the SAS Display Manager.

Using CRSP Date Formats, Informats, and Functions

Historically, CRSP has used two different methods to represent dates, and SAS has used a third. The SASECRSP engine provides 23 functions, 15 informats, and 10 formats to enable you to easily translate the dates from one internal representation to another. See the section "Understanding CRSP Date Formats, Informats, and Functions" on page 2208 for details.

Syntax: SASECRSP Interface Engine

The SASECRSP engine uses standard engine syntax. Options used by SASECRSP are summarized in Table 33.5 .

Table 33.5 Summary of LIBNAME libref

Option	Description
SETID=	specifies which CRSP database subset to open
	This option is required. See Table 33.1 for complete list of supported SETIDs.
PERMNO=	specifies a CRSP PERMNO to be selected for access
PERMCO=	specifies a CRSP PERMCO to be selected for access
CUSIP=	specifies a current CUSIP to be selected for access
HCUSIP=	specifies a historic CUSIP to be selected for access
TICKER=	specifies a TICKER to be selected for access (for active companies only)
SICCD=	specifies a SIC Code to be selected for access
GVKEY=	specifies a Compustat GVKEY to be selected for access
INDNO=	specifies a CRSP INDNO to be selected for access
RANGE=	specifies the range of data to keep in format 'YYYYMMDD-YYYYMMDD'
INSET= CRSPLINKPATH=	uses a SAS data set named setname as input for issues specifies location of the CRSP link history.
	This option is required for accessing CRSP data with Compustat's GVKEY.

The LIBNAME libref SASECRSP Statement

LIBNAME libref SASECRSP 'physical name ' options ;

The physical name required by the LIBNAME statement should point to the directory of CRSPAccess data files where the CRSP database you want to open is located. Note that the physical name must end in a slash for UNIX environments and a backslash for Windows environments.

The CRSP environment variable CRSPDB_SASCAL must be defined before the SASECRSP engine can access the CRSPAccess database calendars. The CRSP environment variable CRSPDB_SASCAL is necessary for the SASECRSP LIBNAME to assign successfully. This necessary environment variable should be defined automatically by either the CRSP software installation or, in later versions, the CRSP data installation. Since occasional instances occur where the variable is not set properly, always check to ensure the CRSPDB_SASCAL environment variable is set to the location where your most recent CRSP data resides. Remember to include the final slash or backslash required.

After the LIBNAME is assigned, you can access any of the available data sets/members within the opened database. For a complete description of available data sets and their fields, see the section "Data Elements Reference: SASECRSP Interface Engine" on page 2234.

The following options can be used in the LIBNAME libref SASECRSP statement:

SETID=crsp_setidnumber

Specifies the CRSP database you want to read from. SETID is a required option. Choose one

SETID from seven possible values in Table 33.1. The SETID limits the frequency selection of time series that are included in the SAS data set.

As an example, to access monthly CRSP Stock data, you would use the following statements:

```
LIBNAME myLib sasecrsp 'physical-name'
    SETID=20;
```


PERMNO=crsp_permnumber

By default, the SASECRSP engine reads all keys for the CRSPAccess database that you specified in your SASECRSP libref. The PERMNO= option enables you to select data from your CRSP database by the $P E R M N O$ (s) (or other keys) you specify. PERMNOs are CRSP's unique permanent issue identification number. There is no limit to the number of crsp_permnumber options that you can use.

From a performance standpoint, the PERMNO= option does efficient random access and reads only the data for the PERMNOs specified.

The following LIBNAME statement reads data only for Microsoft Corporation (PERMNO=10107) and International Business Machines Corporation (PERMNO=12490) using the primary PERMNO key, and thus is very efficient.

```
LIBNAME myLib sasecrsp 'physical-name'
    SETID=20
    PERMNO=10107
    PERMNO=12490;
```

The PERMCO=, CUSIP=, HCUSIP=, SICCD=, TICKER=, GVKEY=, and INDNO= options behave similarly and you can use them in conjunction with or in place of the PERMNO= option. For example you could have used the following statement to access monthly data for Microsoft and IBM:

```
LIBNAME myLib sasecrsp 'physical-name'
    SETID=20
    TICKER='MSFT'
    CUSIP=59491810;
```

Details on the use of other key selection options are described separately later.
PERMNOs specified by this option can select the companies or issues to keep for CRSP Stock or for CRSP/Compustat Merged databases, but PERMNO is not a supported option for CRSP Indices databases. Use the INDNO= option for the CRSP Indices database and use the PERMNO = option with CRSP US Stock and with CRSP/Compustat Merged databases. Details on the use of key selection options for each type of database follows.

STK Databases

PERMNO is the primary key for CRSP Stock databases. Every valid PERMNO you specify with the PERMNO= option keeps exactly one issue.

CCM Databases

PERMNO can be used as a secondary key for the CCM database through CRSPLink ${ }^{\mathrm{TM}}$. Linking between the CRSP and Compustat databases is a complex, many-to-many relationship
between PERMNO/PERMCOs and GVKEYs. When accessing CCM data by PERMNO, all GVKEYs that link to the given PERMNO are amalgamated to provide seamless access to all linked data. However, note that accessing CCM data by PERMNO is logically different than accessing it by its linked $G V K E Y(\mathrm{~s})$.

In particular, when the PERMNO you specify is linked to several different GVKEYs, one link is designated as the primary link. This designation is set by CRSP and its researchers, and serves in a specific role for the link information in the CCM database. Only data for the primary link is retrieved for the header. For other members, including all time series members, all links are examined, but data is extracted only for the active period of the links and only if the data is within any possible user-specified date restriction. If two or more GVKEY-to-PERMNO links overlap in time, data from the later (more recent) GVKEY is used. For more information about CRSP links, see "Link Used Array" in the CRSP/Compustat Merged Database Guide.

For example, $P E R M N O=10083$ is CRSP's unique issue identifier for Teknowledge Incorporated, and later (due to a name change) Cimflex Teknowledge Corporation. To access CCM data for IBM Corporation, Teknowledge Inc., and Cimflex Teknowledge Corp., you can use the following statement:

```
LIBNAME myLib1 sasecrsp 'physical-name'
    SETID=200
    GVKEY=6066 /* IBM */
    PERMNO=10083; /* Teknowledge and Cimflex */
```

Teknowledge Inc. and Cimflex Corp. have separate GVKEYs in the CCM database, so the previous statement is actually an example of using one PERMNO to access data for several (linked) GVKEYs. The first link to GVKEY=11947 spans March 5, 1986, to December 31, 1988, and the second link to GVKEY=15495 spans February 2, 1989, to September 9, 1993.

An alternate way of accessing the data is by using the linked GVKEYs directly as seen in this statement.

```
LIBNAME myLib2 sasecrsp 'physical-name'
    SETID=200
    GVKEY=6066
    GVKEY=11947
    GVKEY=15495;
```

These two LIBNAME statements look similar, but do not perform the same operation. myLib1 assumes you are selecting the issue data for PERMNO=10083, so only observations from the CCM database that are within the time period of the used links are accessed. In the previous example for myLib1, only data ranging from March 5, 1986, to December 31, 1988, are extracted for GVKEY=11947 and only data ranging from February 28, 1989, to September 9, 1993, are extracted for GVKEY=15496.

Furthermore, while both GVKEYs 11947 and 15495 are linked to the PERMNO, GVKEY 15495 is the primary link, and when accessing the header, only 15495 is used. If the two links overlap, the data from the later (more recent) GVKEY of 15495 is used.

In contrast, myLib2 uses an open range for all three specified keys. If there are data overlapping in time between GVKEY 11947 and 15495, data for both are reported. Similarly, when accessing the header, data for both 11947 and 15497 are retrieved.

IND Databases

INDNO is the primary key for accessing CRSP Indices databases. PERMNO is not available as a key for the IND (CRSP Indices) database; use INDNO for efficient access of IND database.

GVKEY=crsp_gvkey

The GVKEY $=$ option is similar to the PERMNO= option. It enables you to use the Compustat's Permanent SPC Identifier key (GVKEY) to select the companies or issues to keep. There is no limit to the number of crsp_gvkey options that you can use.

STK Databases

GVKEY can serve as a secondary key for accessing CRSP Stock databases. This requires the additional use of the CRSPLINKPATH= option. Linking between the Compustat and CRSP databases is a complex, many-to-many relationship between GVKEYs and PERMNO/PERMCOs. When accessing CRSP data by GVKEY, all links of the specified GVKEY are followed and processed. No additional logic is applied, and link ranges are ignored. Accessing CRSP data by GVKEY is identical to accessing CRSP data by all of its linked PERMNOs.

For example, Wolverine Exploration Co. and Amerac Energy Corp have different PERMNOs but the same GVKEY, and there are two identical ways of accessing CRSP Stock data on these two entities.

```
LIBNAME myLib1 sasecrsp 'physical-name'
    SETID=10
    PERMNO=13638 /* Wolverine Exploration */
    PERMNO=84641; /* Amerac Energy */
LIBNAME myLib2 sasecrsp 'physical-name'
    SETID=10
    CRSPLINKPATH=' physical-name'
    GVKEY=1544;
```

The CRSPLINKPATH= option is required when accessing CRSP Stock databases by GVKEY. See the discussion later in this section on the CRSPLINKPATH= option.

CCM Databases

GVKEY is the primary key for accessing the CCM database. Every valid GVKEY you specify keeps exactly one company.

IND Databases

INDNO is the primary key for accessing CRSP Indices databases; use INDNO instead of GVKEY for IND databases. GVKEY is not available as a key for accessing CRSP Indices databases.

PERMCO=crsp_permcompany

The PERMCO= option is similar to the PERMNO= option. It enables you to use the CRSP's unique permanent company identification key (PERMCO) to select the companies or issues to keep. There is no limit to the number of crsp_permcompany options that you can use.

STK Databases

PERMCO is a secondary key for accessing CRSP Stock databases. One PERMCO can map to multiple PERMNOs. Access by PERMCO is equivalent to access by all mapped PERMNOs.

CCM Databases

PERMCO can also be used as a secondary key for accessing the CCM database. Linking between the CRSP and CCM databases is a complex, many-to-many relationship. When accessing CCM data by PERMCO, all linking GVKEYs are amalgamated and processed. Link active ranges are respected. Only data for the primary link is returned for the header. In cases when the active ranges of various links overlap, the most recent link is used. See PERMNO= option for more details.

IND Databases

Use INDNO for accessing CRSP Indices databases. PERMCO is not available as a key for accessing CRSP Indices databases; use INDNO instead.

CUSIP=crsp_cusip

The CUSIP= option is similar to the PERMNO= option. It enables you to use the CUSIP key to select the companies or issues to keep. There is no limit to the number of crsp_cusip options that you can use.

STK Databases

CUSIP is a secondary key for accessing CRSP Stock databases. One CUSIP maps to one PERMNO.

CCM Databases

CUSIP is not available as a key for accessing CCM databases.

IND Databases

Use INDNO for accessing CRSP Indices databases. CUSIP is not available as a key for accessing CRSP Indices databases; use INDNO instead.

HCUSIP=crsp_hcusip

The HCUSIP= option is similar to the PERMNO= option. It enables you to use the historical CUSIP key, HCUSIP, to select the companies or issues to keep. There is no limit to the number of crsp_hcusip options that you can use.

STK Databases

HCUSIP is a secondary key for accessing CRSP Stock databases. One HCUSIP maps to one PERMNO.

CCM Databases

HCUSIP is not available as a key for accessing CCM databases.

IND Databases

Use INDNO for accessing CRSP Indices databases. HCUSIP is not available as a key for accessing CRSP Indices databases; use INDNO instead.

TICKER=crsp_ticker

The TICKER= option is similar to the PERMNO= option. It enables you to use the TICKER key to select the companies or issues to keep. There is no limit to the number of crsp_ticker options that you can use.

STK Databases

TICKER is a secondary key for accessing CRSP Stock databases. One TICKER maps to one PERMNO. Note that some PERMNOs are inaccessible by TICKER.

CCM Databases

TICKER is not available as a key for accessing CCM databases.

IND Databases

Use INDNO for accessing CRSP Indices databases. TICKER is not available as a key for accessing CRSP Indices databases; use INDNO instead.

SICCD=crsp_siccd

The SICCD= option is similar to the PERMNO= option. It enables you to use the Standard Industrial Classification (SIC) Code (SICCD) to select the companies or issues to keep. There is no limit to the number of crsp_siccd options that you can use.

STK Databases

SICCD is a secondary key for accessing CRSP Stock databases. One SICCD can map to multiple PERMNOs. All PERMNOs that have been classified once under the specified SICCD are mapped and data for them is retrieved. Access by SICCD is equivalent to access by all PERMNOs that have ever been classified under the specified SICCD.

CCM Databases

SICCD is not available as a key for accessing CCM databases.

IND Databases

Use INDNO for accessing CRSP Indices databases. SICCD is not available as a key for accessing CRSP Indices databases; use INDNO instead.

INDNO=crsp_indno

The INDNO= option is similar to the PERMNO= option. It enables you to use CRSP's permanent index number $I N D N O$ to select the companies or issues to keep. There is no limit to the number of crsp_indno options that you can use.

STK Databases

INDNO is not available as a key for accessing CRSP Stock databases, but it can be used in the combined CRSP Stock and Indices databases.

CCM Databases

$I N D N O$ is not available as a key for accessing CCM databases; use GVKEY instead.

IND Databases

INDNO is the primary key for accessing CRSP Indices databases. Every INDNO you specify keeps exactly one index series or group.

For example, you can use the following statement to access the CRSP NYSE Value-Weighted and Equal-Weighted daily market indices:

```
LIBNAME myLib3 sasecrsp 'physical-name'
    SETID=460
    INDNO=1000000 /* Value-Weighted */
    INDNO=1000001; /* Equal-Weighted */
```


CRSPLINKPATH='crsp_linkpath'

To access CRSP Stock data with GVKEYs, use the CRSPLINKPATH= option. CRSPLINKPATH= specifies the physical location where your CCM database resides. Note: The physical name must end in a slash for UNIX environments and a backslash for Windows environments.

RANGE='crsp_begdt-crsp_enddt'
To limit the time range of data read from your CRSPAccess database, specify the RANGE= option in your SASECRSP libref, where crsp_begdt is the beginning date in YYYYMMDD format and crsp_enddt is the ending date of the range in YYYYMMDD format.

As an example, to access monthly stock data for Microsoft Corporation and for International Business Machines Corporation for the first quarter of 1999, you can use the following statement:

```
LIBNAME myLib sasecrsp 'physical-name'
    SETID=20
    PERMNO=10107
    PERMNO=12490
    RANGE=' 19990101-19990331';
```

The given beginning and ending dates are interpreted as calendar dates by default. If you want these dates to be interpreted as fiscal dates, you must prepend the character ' f ' to the range.

For example, the following statement extracts data for the 1994 fiscal year of both Microsoft and IBM.

```
LIBNAME myLib sasecrsp 'physical-name'
    SETID=20
    PERMNO=10107
```

```
PERMNO=12490
RANGE=' f19940101-19941231';
```

The result of the previous statement is that data from actual calendar date July 1,1993, to June 30,1994, is extracted for Microsoft because its fiscal year end month is June. Data from January 1,1994, to December 31,1994, is extracted for IBM because its fiscal year end month is December. See Example 33.10 for a more detailed example.

The RANGE= option can be used on all CRSP Stock, Indices, and CCM members. When this option is applied to segment data members however, the behavior is slightly different in the following ways.

- Dates associated with segment member data records are in years and can resolve only to years. This is unique to segment members. All other CRSP data members have a date resolution to the day. For example, monthly time series, though monthly, resolve to the last trading day of the month. However, segment members have a maximum resolution of years because they are not mapped to a calendar in the CRSP/Compustat database. Hence, when range restrictions are applied to segment members, only the 'YYYY' year portion of the range is considered.
- Multiple dates are sometimes associated with a particular segment member record. In such cases, the preferred date for use in determining the date range restriction is the data year as opposed to the source year. This multiple date behavior is unique only to segment members. All other CRSP data members are associated with only one date.

INSET=‘setname[,keyfieldname,keyfieldtype,date1field,date2field,datetype]’

When you specify a SAS data set named setname as input for issues, the SASECRSP engine assumes that a default PERMNO field that contains selected CRSP PERMNOs is present in the data set. If optional parameters are used, they must all be specified. The only acceptable shorthand for dropping the parameters is to drop those at the very end, assuming they are all being omitted. Dropped parameters use their defaults.

The optional parameters are explained below:
keyfieldname label of the field that contains the keys to be selected. If unspecified, the default is "PERMNO".
keyfieldtype specifies the CRSPAccess key type of the provided keys. Possible key types are: PERMNO, PERMCO, CUSIP, HCUSIP, TICKER, SICCD, GVKEY or INDNO. If unspecified, the default is "PERMNO".
date1field beginning date of the specific date range restriction being applied to this key. If either datelfield or date2field is omitted, the default is for there to be no date range restriction.
date2field ending date of the specific date range restriction being applied to this key. If either datelfield or date2field is omitted, the default is for there to be no date range restriction.
datetype indicates whether the provided beginning and ending dates are calendar dates or fiscal dates. A fiscal date type means the dates given are based on the fiscal calendar of the respective company or GVKEY. A calendar date means the dates are based on the standard Julian calendar.
The strings 'calendar' and 'fiscal' are used to indicate the respective date types. If unspecified, the default type is calendar.

It is important to note that fiscal dates are applicable only to members with fiscal data. Fiscal members consists of all period descriptors, items, and segment members of the CCM database. If a fiscal date range is applied to nonfiscal members, it is ignored.

Individual date range restrictions specified by the inset can be used in combination with the RANGE $=$ option on the LIBNAME. In such a case, only data from the intersection of the individual date restriction and the global RANGE= option date restriction are read.

Details: SASECRSP Interface Engine

Using the Inset Option

To better illustrate the use of the INSET= option, some examples follow:

Basic Inset Use: Providing a List of PERMNOs

This example uses the INSET= option to extract monthly data for a portfolio of three companies. No date range restriction is used.

```
data testin1;
    permno = 10107; output;
    permno = 12490; output;
    permno = 14322; output;
run;
LIBNAME mstk sasecrsp 'physical-name'
    SETID=20
    INSET='testin1';
proc print data=mstk.stkhead (keep=permno permco begdt enddt hcomnam htick);
run;
```


General Use of Inset for Specifying Lists of Keys

The following example illustrates the use of the INSET=option to select a few Index Series from the Indices database, companies from the CCM database, and securities from the Stock database. Libref ind2 is used for accessing the Indices database with the two specified INDNOs. Libref comp2 is used to access the CCM database with the two specified PERMCOs. Libref sec3 is used to access the Stock database with the three specified TICKERs. Note the use of shorthand in specifying the INSET= option. The datelfield, date2field, and datetype fields are all omitted, thereby using the default of no range restriction (though the range restriction set by the RANGE= on the LIBNAME statement still applies). For details including sample output, see Example 33.4

```
data indices;
```

```
    indno=1000000; output; /* NYSE Value-Weighted Market Index */
    indno=1000001; output; /* NYSE Equal-Weighted Market Index */
run;
libname ind2 sasecrsp "%sysget(CRSP_MSTK)" setid=420
    inset='indices,INDNO,INDNO' range='19990101-19990401';
title2 'Total Returns for NYSE Value and Equal Weighted Market Indices';
proc print data=ind2.tret label;
run;
data companies;
    permco=8045; output; /* Oracle */
    permco=20483; output; /* Citigroup */
run;
libname comp2 sasecrsp "%sysget(CRSP_CST)" setid=200
    inset=' companies, PERMCO, PERMCO'
    range='20040101-20040531';
title2 'Link Info of Selected PERMCOs';
proc print data=comp2.link label; run;
title3 'Dividends Per Share for Oracle and Citigroup';
proc print data=comp2.div label; run;
data securities;
    ticker='BAC'; output; /* Bank of America */
    ticker='DUK'; output; /* Duke Energy */
    ticker='GSK'; output; /* GlaxoSmithKline */
run;
libname sec3 sasecrsp "%sysget(CRSP_MSTK)" setid=20
                        inset=' securities,TICKER,TICKER'
                        range='19970820-19970920';
title2 'PERMNOs and General Header Info of Selected TICKERs';
proc print data=sec3.stkhead (keep=permno htick htsymbol) label;
run;
title3 'Average Price for Bank of America, Duke and GlaxoSmithKline';
proc print data=sec3.prc label; run;
```


Key-Specific Date Range Restriction with Insets

Suppose you not only want to select keys with your inset, but also want to specify a date range restriction for each key individually. The following example shows how to do this. Again, shorthand enables you to omit the datetype field. The provided dates default to a calendar interpretation. For details including the sample output, see Example 33.5.

```
title2 'INSET=testin2 uses date ranges along with PERMNOs:';
title3 '10107, 12490, 14322, 25788';
title4 'Begin dates and end dates for each permno are used in the INSET';
```

```
data testin2;
    permno = 10107; date1 = 19980731; date2 = 19981231; output;
    permno = 12490; date1 = 19970101; date2 = 19971231; output;
    permno = 14322; date1 = 19950731; date2 = 19960131; output;
    permno = 25778; date1 = 19950101; date2 = 19950331; output;
run;
libname mstk2 sasecrsp "%sysget(CRSP_MSTK)" setid=20
                                    inset='testin2,PERMNO,PERMNO,DATE1,DATE2';
data b;
    set mstk2.prc;
run;
proc print data=b;
run;
```


Fiscal Date Range Restrictions with Insets

You can use fiscal dates on the date range restrictions inside insets by specifying the date type. The following example shows two identical accesses, except one inset uses the date range restriction in fiscal terms, and the other inset uses the date range restriction in calendar terms. For details including sample output, see Example 33.10.

```
data comp_fiscal;
    /* Crude Petroleum & Natural Gas */
    compkey=2416;
    begdate=19860101; enddate=19861231;
    datetype='fiscal';
    output;
    /* Commercial Intertech */
    compkey=3248;
    begdate=19940101; enddate=19941231;
    datetype='fiscal';
    output;
run;
data comp_calendar;
    /* Crude Petroleum & Natural Gas */
    compkey=2416;
    begdate=19860101; enddate=19861231;
    datetype=' calendar';
    output;
    /* Commercial Intertech */
    compkey=3248;
    begdate=19940101; enddate=19941231;
    datetype=' calendar';
    output;
```

```
run;
libname fisclib sasecrsp "%sysget(CRSP_CST)"
    SETID=200
    INSET=' comp_fiscal,compkey,gvkey,begdate,enddate,datetype';
libname callib sasecrsp "%sysget(CRSP_CST)"
    SETID=200
    INSET=' comp_calendar, compkey,gvkey,begdate, enddate, datetype' ;
title2 'Quarterly Period Descriptors with Fiscal Date Range';
proc print data=fisclib.qperdes(drop = peftnt1 peftnt2 peftnt3 peftnt4
    peftnt5 peftnt6 peftnt7 peftnt8 candxc flowcd spbond spdebt sppaper);
run;
title2 'Quarterly Period Descriptors with Calendar Date Range';
proc print data=callib.qperdes(drop = peftnt1 peftnt2 peftnt3 peftnt4
    peftnt5 peftnt6 peftnt7 peftnt8 candxc flowcd spbond spdebt sppaper);
run;
```


Inset Ranges in Conjunction with the LIBNAME Range

Suppose you want to specify individual date restrictions but also impose a common range. This example demonstrates two companies, each with its own date range restriction, but both companies are also subject to a common range set in the LIBNAME by the RANGE= option. As a result, data from August 1, 1999, to February 1, 2000, is retrieved for IBM, and data from January 1, 2001, to April 21, 2002, is retrieved for Microsoft. For details including sample output see Example 33.11.

```
data two_companies;
    gvkey=6066; date1=19800101; date2=20000201; output;
    gvkey=12141; date1=20010101; date2=20051231; output;
run;
libname mylib sasecrsp "%sysget(CRSP_CST)"
    SETID=200
    INSET=' two_companies,gvkey,gvkey,date1,date2'
    RANGE='19990801-20020421';
proc sql;
    select prcc.gvkey,prcc.caldt,prcc,ern
        from mylib.prcc as prcc, mylib.ern as ern
        where prcc.caldt = ern.caldt and
            prcc.gvkey = ern.gvkey;
quit;
```


The SAS Output Data Set

You can use the SAS DATA step to write the selected CRSP or Compustat data to a SAS data set. This enables you to easily analyze the data using SAS. When you specify the name of the output
data set on the DATA statement, it causes the engine supervisor to create a SAS data set using the specified name in either the SAS WORK library or, if specified, the USER library.

The contents of the SAS data set include the DATE of each observation, the series name of each series read from the CRSPAccess database, event variables, and the label or description of each series/event or array.

You can use PROC PRINT and PROC CONTENTS to print your output data set and its contents. Alternatively, you can view your SAS output observations by opening the desired output data set in the SAS Explorer. You can also use PROC SQL with your SASECRSP libref to create a custom view of your data.

In general, CRSP missing values are represented as ' \because ' in the SAS data set. When accessing the CRSP STOCK data, SASECRSP uses the mapping shown in Table 33.6 for converting CRSP missing values into SAS missing codes.

Table 33.6 Mapping of CRSP Stock Missing Values to SAS Missing Codes

CRSP Stock	SAS	Condition
-99	.	No valid price
-88	A	Out of range
-77	B	Off-exchange
-66	.C	No valid previous price
-55	.D	No delisting information
-44	.E	No valid comparison for an excess return

When accessing the CCM database, CRSP uses certain Compustat missing codes which SASECRSP then converts into SAS missing codes. Table 33.7 shows the mapping of Compustat missing codes for the CCM database.

Table 33.7 Mapping of Compustat and SAS Missing Codes

Compustat	SAS	Condition
0.0001	.	No data for data item
0.0002	.S	Data is only on a semi-annual basis
0.0003	.A	Data is only on an annual basis
0.0004	.C	Combined into other item
0.0007	.N	Data is not meaningful
0.0008	.I	Reported as insignificant

Missing value codes conform with Compustat's Strategic Insight and binary conventions for missing values. See Notes on Missing Values in the second chapter of the CRSP/Compustat Merged Database Guide for more information about how CRSP handles Compustat missing codes.

Understanding CRSP Date Formats, Informats, and Functions

CRSP has historically used two different methods to represent dates, while SAS has used a third. The three formats are SAS dates, CRSP dates, and integer dates. The SASECRSP engine provides 23 functions, 15 informats, and 10 formats to enable you to easily translate the dates from one internal representation to another. A SASECRSP LIBNAME assign must be active to use these date access methods. See Example 33.6, "Converting Dates Using the CRSP Date Functions."

SAS dates are stored internally as the number of days since January 1, 1960. The SAS method is an industry standard and provides a great deal of flexibility, including a wide variety of informats, formats, and functions.

CRSP dates are designed to ease time series storage and access. Internally, the dates are stored as an offset into an array of trading days or trading day calendar. Note that there are five different CRSP trading day calendars: Annual, Quarterly, Monthly, Weekly, and Daily. In this sense, there are five different types of CRSP dates, one for each frequency of calendar it references. The CRSP method provides fewer missing values and makes trading period calculations very easy. However, there are also many valid calendar dates that are not available in the CRSP trading calendars, and care must be taken when using other dates.

Integer dates are a way to represent dates that are platform independent and maintain the correct sort order. However, the distance between dates is not maintained.

The best way to illustrate these formats is with some sample data. Table 33.8 shows date representations for CRSP daily and monthly data.

Table 33.8 Date Representations for Daily and Monthly Data

Date	SAS Date	CRSP Date (Daily)	CRSP Date (Monthly)	Integer Date
July 31, 1962	942	21	440	19620731
August 31, 1962	973	44	441	19620831
Dec. 30, 1998	14,243	9190	NA* *	19981230
Dec. 31, 1998	14,244	9191	877	19981231

* Not available if an exact match is requested.

Having an understanding of the internal differences in representing SAS dates, CRSP dates, and CRSP integer dates helps you use the SASECRSP formats, informats, and functions effectively. Always keep in mind the frequency of the CRSP calendar that you are accessing when you specify a CRSP date.

The CRSP Date Formats

There are two types of formats for CRSP dates, and five frequencies are available for each of the two types. The two types are exact dates (CRSPDT*) and range dates (CRSPDR*), where the ${ }^{\prime *}$ ' can be A for annual, Q for quarterly, M for monthly, W for weekly, or D for daily. The ten
types are: CRSPDTA, CRSPDTQ, CRSPDTM, CRSPDTW, CRSPDTD, CRSPDRA, CRSPDRQ, CRSPDRM, CRSPDRW, and CRSPDRD.

Table 33.9 shows some samples that use the monthly and daily calendar as examples. The Annual (CRSPDTA and CRSPDRA), Quarterly (CRSPDTQ and CRSPDRQ), and the Weekly (CRSPDTW and CRSPDRW) formats work analogously.

Table 33.9 Sample CRSPDT Formats for Daily and Monthly Data

Date	CRSP Date Daily, Monthly	CRSPDTD Daily Date	CRSPDRD Daily Range	CRSPDTM Monthly Date	CRSPDRM Monthly Range
July 31,1962	21,440	19620731	$19620731+$	19620731	19620630,
August 31,1962	44,441	19620831	$19620831+$	19620831	19620731
Dec. 30,1998	9190, NA*	19981230	$19981230+$	NA*	19620831,
Dec. 31,1998	9191,877	19981231	$19981231+19981231$	19981201,	
					19981231

+ Daily ranges look similar to Monthly Ranges if they are Mondays or immediately following a trading holiday.
* When working with exact matches, no CRSP monthly date exists for December 30, 1998.

The @CRSP Date Informats

There are three types of informats for CRSP dates, and five frequencies are available for each of the three types. The three types are exact (@CRSPDT*), range (@CRSPDR*), and backward (@CRSPDB*) dates, where the '*' can be A for annual, Q for quarterly, M for monthly, W for weekly, or D for daily. The fifteen formats are: @CRSPDTA, @CRSPDTQ, @CRSPDTM, @CRSPDTW, @CRSPDTD, @CRSPDRA, @CRSPDRQ, @CRSPDRM, @CRSPDRW, @CRSPDRD, @CRSPDBA, @CRSPDBQ, @CRSPDBM, @CRSPDBW, and @CRSPDBD.

The five CRSPDT* informats find exact matches only. The five CRSPDR* informats look for an exact match, and if an exact match is not found, they go forward, matching the CRSPDR* formats. The five CRSPDB* informats look for an exact match, and if an exact match is not found, they go backward.

Table 33.10 shows a sample that uses only the CRSP monthly calendar as an example. The daily, weekly, quarterly, and annual frequencies work analogously.

Table 33.10 Sample @CRSP Date Informats Using Monthly Data

Input Date (Integer Date)	CRSP Date CRSPDTM	CRSP Date CRSPDRM	CRSP Date CRSPDBM	CRSPDTM Monthly Date	CRSPDRM Monthly Range
19620731	440	440	440	19620731	19620630 to
19620815					19620731
19620831	441	441	440	See below+	See below*
				19620831	19620801 to
					19620831

+ If missing, then missing. If 441, then 19620831. If 440, then 19620731.
* If missing, then missing. If 441, then 19620801 to 19620831. If 440, then 19620630 to 19620731.

The CRSP Date Functions

Table 33.11 shows the 23 date functions provided with the SASECRSP engine. These functions are used internally by the engine, but also are available to the end users. There are seven groups of functions. The first four have five functions each, one for each CRSP calendar frequency. The next two are for converting between SAS and Integer date formats. The last function does not convert between formats, but is a shifting function for shifting integer dates based on a fiscal calendar to normal calendar time. In this shift function, the second argument holds the fiscal year-end month of the fiscal calendar used.

Table 33.11 CRSP Date Functions

Function Group	Function Name	Argument One	Argument Two	Return Value
CRSP dates to integer dates for December 31, 1998				
Annual	crspdcia	74	None	19981231
Quarterly	crspdciq	293	None	19981231
Monthly	crspdcim	877	None	19981231
Weekly	crspdciw	1905	None	19981231
Daily	crspdcid	9191	None	19981231
CRSP dates to SAS dates for December 31, 1998				
Annual	crspdcsa	74	None	14,244
Quarterly	crspdcsq	293	None	14,244
Monthly	crspdcsm	877	None	14,244
Weekly	crspdcsw	1905	None	14,244
Daily	crspdcsd	9191	None	14,244

Integer dates to CRSP dates exact is illustrated, but can be forward or backward

Annual	crspdica	19981231	0	74
Quarterly	crspdicq	19981231	0	293
Monthly	crspdicm	19981231	0	877
Weekly	crspdicw	19981231	0	1905
Daily	crspdicd	19981231	0	9191

SAS dates to CRSP dates exact is illustrated, but can be forward or backward

Annual	crspdsca	14,244	0	74				
Quarterly	crspdscq	14,244	0	293				
Monthly	crspdscm	14,244	0	877				
Weekly	crspdscw	14,244	0	1905				
Daily	crspdscd	14,244	0	9191				
Integer dates to SAS dates for December 31, 1998								
Integer to SAS	crspdi2s					19981231	None	14,244
SAS dates to integer dates for December 31, 1998								
SAS to Integer	crspds2i	14,244	None	19981231				

Fiscal to calendar shifting of integer dates for December 31, 1998

| Fiscal to | Calendar | crspdf2c | 20021231 | 8 | 20020831 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Shift

Examples: SASECRSP Interface Engine

Example 33.1: Specifying PERMNOs and RANGE on the LIBNAME Statement

The following statements show how to set up a LIBNAME statement for extracting data for certain selected PERMNOs during a specific time period. The result is shown in Output 33.1.1.

```
title2 'Define a range inside the data range';
title3 'My range is ( 19950101-19960630 )';
libname _all_ clear;
libname testit1 sasecrsp "%sysget(CRSP_MSTK)"
    setid=20
    permno=81871 /* Desired PERMNOs are selected */
    permno=82200 /* via the libname PERMNO= option */
    permno=82224
    permno=83435
    permno=83696
    permno=83776
    permno=84788
    range='19950101-19960630';
proc print data=testit1.ask;
run;
```

Output 33.1.1 ASK Monthly Time Series Data with RANGE

Define a range inside the data range My range is (19950101-19960630)			
Obs	PERMNO	CALDT	ASK
1	81871	19950731	18.25000
2	81871	19950831	19.25000
3	81871	19950929	26.00000
4	81871	19951031	26.00000
5	81871	19951130	25.50000
6	81871	19951229	24.25000
7	81871	19960131	22.00000
8	81871	19960229	32.50000
9	81871	19960329	30.25000
10	81871	19960430	33.75000
11	81871	19960531	27.50000
12	81871	19960628	30.50000
13	82200	19950831	49.50000
14	82200	19950929	62.75000
15	82200	19951031	88.00000
16	82200	19951130	138.50000
17	82200	19951229	139.25000
18	82200	19960131	164.25000
19	82200	19960229	51.00000
20	82200	19960329	41.62500
21	82200	19960430	61.25000
22	82200	19960531	68.25000
23	82200	19960628	62.50000
24	82224	19950929	46.50000
25	82224	19951031	48.50000
26	82224	19951130	47.75000
27	82224	19951229	49.75000
28	82224	19960131	49.00000
29	82224	19960229	47.00000
30	82224	19960329	53.00000
31	82224	19960430	55.50000
32	82224	19960531	54.25000
33	82224	19960628	51.00000
34	83435	19960430	30.25000
35	83435	19960531	28.00000
36	83435	19960628	21.00000
37	83696	19960628	19.12500

Example 33.2: Using the LIBNAME Statement to Access All Keys

To set up the libref to access all keys, no key options such as PERMNO=, TICKER=, or GVKEY= are specified on the LIBNAME statement, and no INSET= option is used. Use of any of these options causes the engine to limit access to only specified keys or specified insets. When no such options are specified, the engine correctly defaults to selecting all keys in the database. Other LIBNAME options such as the RANGE= option can still be used normally to limit the time span of the data, in other words, to define the date range of observations.

In this example, no key-specifying options are used. This forces the engine to default to all PERMNOs in the monthly STK database. The range given on the LIBNAME behaves normally, and data is limited to the first two months of 1995.

```
title2 'Define a range inside the data range ';
title3 'My range is ( 19950101-19950228 )';
libname _all_ clear;
libname testit2 sasecrsp "%sysget(CRSP_MSTK)"
    setid=20
    range='19950101-19950228';
data a;
    set testit2.ask(obs=30);
run;
proc print data=a;
run;
```

The result is shown in Output 33.2.1.

Output 33.2.1 All PERMNOs of ASK Monthly with RANGE

Define a range inside the data range My range is (19950101-19950228)			
Obs	PERMNO	CALDT	ASK
1	10001	19950131	8.00000
2	10001	19950228	8.00000
3	10002	19950131	13.50000
4	10002	19950228	13.50000
5	10003	19950131	2.12500
6	10003	19950228	2.25000
7	10009	19950131	18.00000
8	10009	19950228	18.75000
9	10010	19950131	5.37500
10	10010	19950228	4.87500
11	10011	19950131	14.62500
12	10011	19950228	13.50000
13	10012	19950131	2.25000
14	10012	19950228	2.12500
15	10016	19950131	7.00000
16	10016	19950228	8.50000
17	10018	19950131	1.12500
18	10018	19950228	1.12500
19	10019	19950131	10.62500
20	10019	19950228	11.62500
21	10021	19950131	11.75000
22	10021	19950228	12.00000
23	10025	19950131	18.50000
24	10025	19950228	19.00000
25	10026	19950131	11.00000
26	10026	19950228	11.75000
27	10028	19950131	1.87500
28	10028	19950228	2.00000
29	10032	19950131	12.50000
30	10032	19950228	12.75000

Example 33.3: Accessing One PERMNO Using No RANGE

SASECRSP defaults to providing access to the entire range of available data when no range restriction is specified via the RANGE= option.

This example shows access of the entire range of available data for one particular PERMNO extracted from the monthly data set.

```
title2 'Select only PERMNO = 81871';
title3 'Valid trading dates (19890131--19981231)';
title4 'No range option, leave wide open';
libname _all_ clear;
libname testit3 sasecrsp "%sysget(CRSP_MSTK)"
    setid=20
    permno=81871;
data c;
    set testit3.ask;
run;
proc print data=c;
run;
```

The result is shown in Output 33.3.1.

Output 33.3.1 PERMNO=81871 of ASK Monthly without RANGE

```Select only PERMNO = 81871 Valid trading dates (19890131--19981231) No range option, leave wide open```			
Obs	PERMNO	CALDT	ASK
1	81871	19950731	18.25000
2	81871	19950831	19.25000
3	81871	19950929	26.00000
4	81871	19951031	26.00000
5	81871	19951130	25.50000
6	81871	19951229	24.25000
7	81871	19960131	22.00000
8	81871	19960229	32.50000
9	81871	19960329	30.25000
10	81871	19960430	33.75000
11	81871	19960531	27.50000
12	81871	19960628	30.50000
13	81871	19960731	26.12500
14	81871	19960830	19.12500
15	81871	19960930	19.50000
16	81871	19961031	14.00000
17	81871	19961129	18.75000
18	81871	19961231	24.25000
19	81871	19970131	29.75000
20	81871	19970228	24.37500
21	81871	19970331	15.00000
22	81871	19970430	18.25000
23	81871	19970530	25.12500
24	81871	19970630	31.12500
25	81871	19970731	35.00000
26	81871	19970829	33.00000
27	81871	19970930	26.81250
28	81871	19971031	18.37500
29	81871	19971128	16.50000
30	81871	19971231	16.25000
31	81871	19980130	22.75000
32	81871	19980227	21.00000
33	81871	19980331	22.50000
34	81871	19980430	16.12500
35	81871	19980529	11.12500
36	81871	19980630	13.43750
37	81871	19980731	22.87500
38	81871	19980831	17.75000
39	81871	19980930	24.25000
40	81871	19981030	26.00000

## Example 33.4: Specifying Keys Using the INSET= Option

The INSET= option enables you to select any companies and/or issues you want data for. This example selects two CRSP Index Series from the Indices database, two companies from the CCM
database, and four securities from the Stock database for data extraction. Note that because each CRSP database might be in a different location and has to be opened separately, a total of three different librefs are used, one for each database.

```
data indices;
 indno=1000000; output; /* NYSE Value-Weighted Market Index */
 indno=1000001; output; /* NYSE Equal-Weighted Market Index */
run;
libname _all_ clear;
libname ind2 sasecrsp "%sysget(CRSP_MSTK)"
 setid=420
 inset=' indices,INDNO, INDNO'
 range='19990101-19990401';
title2 'Total Returns for NYSE Value and Equal Weighted Market Indices';
proc print data=ind2.tret label;
run;
```

Output 33.4.1 shows the result of selecting two CRSP Index Series from the Indices database.
Output 33.4.1 IND Data Extracted Using INSET= Option

Total Returns for NYSE Value and Equal Weighted Market Indices			
Obs	INDNO	CALDT	TRET
1	1000000	19990129	0.012419
2	1000000	19990226	-0.024179
3	1000000	19990331	0.028591
4	1000001	19990129	-0.007822
5	1000001	19990226	-0.041127
6	1000001	19990331	0.015204

This example selects two companies from the CCM database.

```
data companies;
 permco=8045; output; /* Oracle */
 permco=20483; output; /* Citigroup */
run;
libname comp2 sasecrsp "%sysget(CRSP_CST)"
 setid=200
 inset=' companies, PERMCO, PERMCO'
 range=' 20040101-20040531';
title2 'Using the Link Info of Selected PERMCOs';
proc print data=comp2.link label;
run;
title3 'To Show Dividends Per Share for Oracle and Citigroup';
proc print data=comp2.div label;
```

run;
Output 33.4.2 shows the result of selecting two companies from the CCM database by using the CCM LINK data and the INSET= option.

Output 33.4.2 CCM LINK Data Extracted By Using INSET= Option

Obs	Using the Link Info of Selected PERMCOs						
	To Show Dividends Per Share for Oracle and Citigroup						
	GVKEY	LINKDT	LINKENDT	NPERMNO	NPERMCO	LINKTYPE	LINKFLAG
1	12142	19860312	20991231	10104	8045	LC	BBB
2	3243	19861029	20991231	70519	20483	LC	BBB

Output 33.4.3 shows the result of selecting two companies from the CCM database by using the CCM DIV data and the INSET= option.

Output 33.4.3 CCM DIV Data Extracted By Using INSET= Option

Using the Link Info of Selected PERMCOs			
To Show Di	Per	re for Ora	Citigroup
Obs	GVKEY	CALDT	DIV
1	12142	20040130	0.0000
2	12142	20040227	0.0000
3	12142	20040331	0.0000
4	12142	20040430	0.0000
5	12142	20040528	0.0000
6	3243	20040130	0.4000
7	3243	20040227	0.0000
8	3243	20040331	0.0000
9	3243	20040430	0.4000
10	3243	20040528	0.0000

This example selects three securities from the Stock database by using TICKERs in the INSET= option for data extraction.

```
data securities;
 ticker='BAC'; output; /* Bank of America */
 ticker='DUK'; output; /* Duke Energy */
 ticker='GSK'; output; /* GlaxoSmithKline */
run;
libname sec3 sasecrsp "%sysget(CRSP_MSTK)"
 setid=20
 inset='securities,TICKER,TICKER'
 range='19970820-19970920';
title2 'PERMNOs and General Header Info of Selected TICKERs';
```

```
proc print data=sec3.stkhead(keep=permno htick htsymbol) label;
run;
title3 'Average Price for Bank of America, Duke and GlaxoSmithKline';
proc print data=sec3.prc label;
run;
```

Output 33.4.4 shows the STK header data for the TICKERs specified by using the INSET= option.
Output 33.4.4 STK Header Data Extracted Using INSET= Option


Output 33.4.5 shows the STK price data for the TICKERs specified by using the INSET= option.
Output 33.4.5 STK Price Data Extracted Using INSET= Option

| PERMNOs and General Header Info of Selected TICKERs |
| :---: | :---: | :---: | :---: |
| Average Price for Bank of America, Duke and GlaxoSmithKline |

## Example 33.5: Specifying Ranges for Individual Keys with the INSET= Option

Insets enable you to define options specific to each individual key. This example uses an inset to select four PERMNOs and specifies a different date restriction for each PERMNO.

```
title2 'INSET=testin2 uses date ranges along with PERMNOs:';
title3 '10107, 12490, 14322, 25788';
title4 'Begin dates and end dates for each permno are used in the INSET';
data testin2;
 permno = 10107; date1 = 19980731; date2 = 19981231; output;
 permno = 12490; date1 = 19970101; date2 = 19971231; output;
 permno = 14322; date1 = 19950731; date2 = 19960131; output;
 permno = 25778; date1 = 19950101; date2 = 19950331; output;
run;
libname _all_ clear;
libname mstk2 sasecrsp "%sysget(CRSP_MSTK)"
 setid=20
 inset='testin2,PERMNO,PERMNO,DATE1,DATE2';
data b;
 set mstk2.prc;
run;
proc print data=b;
run;
```

Output 33.5.1 shows CRSP Stock price time series data selected by PERMNO in the INSET= option, where each PERMNO has its own time span specified in the INSET= option.

Output 33.5.1 PRC Monthly Time Series Using INSET= Option

INSET=t	2 uses 10107,   dates	te ranges 490, 14322	with PERM 88
Obs	PERMNO	CALDT	PRC
1	10107	19980731	109.93750
2	10107	19980831	95.93750
3	10107	19980930	110.06250
4	10107	19981030	105.87500
5	10107	19981130	122.00000
6	10107	19981231	138.68750
7	12490	19970131	156.87500
8	12490	19970228	143.75000
9	12490	19970331	137.25000
10	12490	19970430	160.50000
11	12490	19970530	86.50000
12	12490	19970630	90.25000
13	12490	19970731	105.75000
14	12490	19970829	101.37500
15	12490	19970930	106.00000
16	12490	19971031	98.50000
17	12490	19971128	109.50000
18	12490	19971231	104.62500
19	14322	19950731	32.62500
20	14322	19950831	32.37500
21	14322	19950929	36.87500
22	14322	19951031	34.00000
23	14322	19951130	39.37500
24	14322	19951229	39.00000
25	14322	19960131	41.50000
26	25778	19950131	49.87500
27	25778	19950228	57.25000
28	25778	19950331	59.37500

## Example 33.6: Converting Dates By Using the CRSP Date Functions

This example shows how to use the CRSP date functions and formats. The CRSPDTD formats are used for all the crspdt variables, while the YYMMDD format is used for the sasdt variables.

```
title2 'OUT= Data Set';
title3 'CRSP Functions for sasecrsp';
libname _all_ clear;
/* Always assign the LIBNAME sasecrsp first */
libname mstk sasecrsp "%sysget (CRSP_MSTK)"
 setid=20;
```

```
data a (keep = crspdt crspdt2 crspdt3
 sasdt sasdt2 sasdt3
 intdt intdt2 intdt3);
 format crspdt crspdt2 crspdt3 crspdtd8.;
 format sasdt sasdt2 sasdt3 yymmdd6.;
 format intdt intdt2 intdt3 8.;
 format exact 2.;
 crspdt = 1;
 sasdt = '2jul1962'd;
 intdt = 19620702;
 exact = 0;
/* Call the CRSP date to Integer function*/
 intdt2 = crspdcid(crspdt);
/* Call the SAS date to Integer function*/
 intdt3 = crspds2i(sasdt);
/* Call the Integer to Crsp date function*/
 crspdt2 = crspdicd(intdt,exact);
/* Call the Sas date to Crsp date conversion function*/
 crspdt3 = crspdscd(sasdt,exact);
/* Call the CRSP date to SAS date conversion function*/
 sasdt2 = crspdcsd(crspdt);
/* Call the Integer to Sas date conversion function*/
 sasdt3 = crspdi2s(intdt);
run;
title3 'PROC PRINT showing data for sasecrsp';
proc print data=a;
run;
title3 'PROC CONTENTS showing formats for sasecrsp';
proc contents data=a;
run;
```

Output 33.6.1 shows the OUT= data set created by the DATA step.
Output 33.6.1 Date Conversions By Using the CRSP Date Functions

Obs crspdt	PROC CONTENTS		OUT= Data Set   showing formats for sasecrsp					
	crspdt2	crspdt 3	sasdt	sasdt2	sasdt3	intdt	intdt2	intdt3
119251231	19620702	19620702	620702	251231	620702	19620702	19251231	19620702

Output 33.6.2 shows the contents of the OUT= data set by alphabetically listing the variables and their attributes.

## Output 33.6.2 Contents of Date Conversions By Using the CRSP Date Functions

Alphabetic List of Variables and Attributes				
\#	Variable	Type	Len	Format
1	crspdt	Num	8	CRSPDTD8.
2	crspdt2	Num	8	CRSPDTD8.
3	crspdt 3	Num	8	CRSPDTD8.
7	intdt	Num	8	8.
8	intdt2	Num	8	8.
9	intdt3	Num	8	8.
4	sasdt	Num	8	YYMMDD 6.
5	sasdt2	Num	8	YYMMDD6.
6	sasdt 3	Num	8	YYMMDD6.

## Example 33.7: Comparing Different Ways of Accessing CCM Data

You can use three different ways to select CCM data: by the primary key, GVKEY, or by either of the two secondary keys PERMNO and PERMCO. This section demonstrate the three different ways.

This example retrieves data on Cimflex Teknowledge Corporation which was previously known as Teknowledge Inc. This company is considered a single entity by the CRSP Stock database and is identified by $P E R M N O=10083$ and $P E R M C O=8026$. The Compustat database, however, considers Teknowledge Inc. and Cimflex Teknowledge Corporation as two separate entities, and each has its own GVKEY. Thus, PERMNO=10083 maps to GVKEYs 11947 and 15495, and $P E R M C O=8026$ has the identical relationship. Access by PERMNO and PERMCO are equivalent in this case, but differ from access by GVKEY. PERMNO/PERMCO access retrieves data only within the active period of the links, and only the primary linked GVKEY is used for header access. In contrast, GVKEY access provides wide-open, full data for both $G V K E Y$ s. See PERMNO= option for more details.

```
title1 'Comparing various access methods for CCM data';
libname _all_ clear;
/* assign libnames for the three different access methods */
libname crspla sasecrsp "%sysget(CRSP_CST)"
 setid=200
 permno=10083
 range='19870101-19900101';
libname crsp1b sasecrsp "%sysget(CRSP_CST)"
 setid=200
 permco=8026
 range='19870101-19900101';
libname crsp2 sasecrsp "%sysget(CRSP_CST)"
 setid=200
 gvkey=11947 gvkey=15495
 range='19870101-19900101';
```

```
title2 'PERMNO=10083 access of CCM data';
title3 'Sales (Net)';
data permnoaccess;
 set crspla.iqitems(keep=gvkey rcaldt fiscaldt iq2);
run;
proc print data=permnoaccess;
run;
```

Output 33.7.1 shows PERMNO access of CCM quarterly 'Sales (Net)' data.
Output 33.7.1 PERMNO Access of CCM Data

Obs	Comparing various access methods for CCM data PERMNO $=10083$ access of CCM data Sales (Net)			
	GVKEY	RCALDT	FISCALDT	IQ2
1	15495	19870331	19870930	4.5680
2	15495	19870630	19871231	5.0240
3	15495	19870930	19880331	4.4380
4	15495	19871231	19880630	3.8090
5	15495	19880331	19880930	3.5420
6	15495	19880630	19881230	2.5940
7	15495	19890331	19890331	6.4660
8	15495	19890630	19890630	10.1020
9	15495	19890929	19890929	12.0650
10	15495	19891229	19891229	10.8780

```
title2 'GVKEY=11947 and GVKEY=15495 access of CCM data';
title3 'Sales (Net)';
data gvkeyaccess;
 set crsp2.iqitems(keep=gvkey rcaldt fiscaldt iq2);
run;
proc print data=gvkeyaccess;
run;
```

Output 33.7.2 shows GVKEY access of CCM quarterly Sales data.

Output 33.7.2 GVKEY Access of CCM Data

	Comparing various access methods for CCM data GVKEY=11947 and GVKEY=15495 access of CCM data Sales (Net)			
Obs	GVKEY	RCALDT	FISCALDT	IQ2
1	11947	19870331	19870930	4.5680
2	11947	19870630	19871231	5.0240
3	11947	19870930	19880331	4.4380
4	11947	19871231	19880630	3.8090
5	11947	19880331	19880930	3.5420
6	11947	19880630	19881230	2.5940
7	11947	19880930	19890331	1.6850
8	11947	19881230	19890630	1.7080
9	15495	19880331	19880331	14.0660
10	15495	19880630	19880630	12.2770
11	15495	19880930	19880930	9.5960
12	15495	19881230	19881230	9.9800
13	15495	19890331	19890331	6.4660
14	15495	19890630	19890630	10.1020
15	15495	19890929	19890929	12.0650
16	15495	19891229	19891229	10.8780

title3 'LINK: Link information';
proc print data=crsp2.link;
run;
/* Show how PERMNO and PERMCO access are the same */
title4 'Proc compare of PERMNO vs. PERMCO access of CCM data'; proc compare base=crspla.iqitems compare=crsplb.iqitems brief; run;

Output 33.7.3 shows CRSP link information and comparison of GVKEY to PERMNO access.
Output 33.7.3 Link Information and Comparison

Obs	Comparing various access methods for CCM data GVKEY=11947 and GVKEY=15495 access of CCM data LINK: Link information   Proc compare of PERMNO vs. PERMCO access of CCM data						
	GVKEY	LINKDT	LINKENDT	NPERMNO	NPERMCO	LINKTYPE	LINKFLAG
1	11947	19860305	19890226	10083	8026	LC	BBB
2	15495	19880101	19890226	0	0	NR	XXX
3	15495	19890227	19930909	10083	8026	LC	BBB

Output 33.7.3 continued

```
 Comparing various access methods for CCM data
 GVKEY=11947 and GVKEY=15495 access of CCM data
 LINK: Link information
Proc compare of PERMNO vs. PERMCO access of CCM data
 The COMPARE Procedure
Comparison of CRSP1A.IQITEMS with CRSP1B.IQITEMS
 (Method=EXACT)
```

NOTE: No unequal values were found. All values compared are exactly equal.

## Example 33.8: Comparing PERMNO and GVKEY Access of CRSP Stock Data

You can access CRSP data using GVKEYs. Access in this manner requires the use of the CRSPLINKPATH = option, and is identical to access by its corresponding PERMNO $(s)$. Links between PERMNOs and GVKEYs are used without reference to their active period. Link information is used solely for finding corresponding GVKEYs. This example shows two ways of accessing CRSP Stock data: one by PERMNOs and the other by its corresponding GVKEY. Several members are compared, showing they are equivalent.

```
title 'Comparing PERMNO and GVKEY access of CRSP Stock data';
libname _all_ clear;
libname crsp1 sasecrsp "%sysget(CRSP_MSTK)"
 setid=20
 permno=13638 permno=84641
 range='19900101-19910101';
libname crsp2 sasecrsp "%sysget(CRSP_MSTK)"
 setid=20
 crsplinkpath="%sysget (CRSP_CST)"
 gvkey=1544
 range='19900101-19910101';
title1 'PERMNO=13638 and PERMNO=84641 access of CRSP data';
proc print data=crsp1.stkhead;
run;
%macro compareMember (memb);
 title1 "Proc compare on &memb between PERMNO and GVKEY";
 proc compare base=crsp1.&memb compare=crsp2.&memb brief;
 run;
%mend;
%compareMember(stkhead);
%compareMember(prc);
%compareMember(ret);
```

\%compareMember (askhi) ;
\%compareMember (vol);
Output 33.8.1 compares PERMNO with GVKEY access of CRSP Stock members STKHEAD, PRC, RET, ASKHI, AND VOL, showing that they are equal.

Output 33.8.1 Comparing PERMNO and GVKEY Access of CRSP Stock Data


## Example 33.9: Using Fiscal Date Range Restriction

Fiscal date ranges give you the flexibility of selecting company data by using fiscal year range sepcifications instead of calendar year range specifications. This example shows how to use this feature to extract data such as the 'Earnings Per Share' time series for several companies for the 1994 fiscal year.

```
title 'Extract data for fiscal year 1994 for several companies';
libname _all_ clear;
libname crsp1 sasecrsp "%sysget(CRSP_CST)"
 setid=200
 gvkey=6066 gvkey=12141 gvkey=10107
 range=' f19940101-19941231';
data rnd_eps (keep = gvkey rcaldt fiscaldt iq4 iq9 iq19 iq69);
 set crsp1.iqitems;
run;
proc print data=rnd_eps label;
run;
```

Output 33.9.1 shows Earnings Per Share for several companies for the 1994 fiscal year.

Output 33.9.1 Earnings Per Share by GVKEY Access for the 1994 Fiscal Year.


Note how two time ID variables are kept. Raw Calendar Trading Date provides the actual calendar date. Fiscal Trading Date provides the date according to the company's fiscal calendar which is dependent upon when its fiscal year-end month is. For example, Observation 8 is Microsoft's fourth fiscal quarter, hence a Fiscal Trading Date of December 30,1994. Since Microsoft's fiscal year ends in June, its fourth fiscal quarter corresponds to the second calendar quarter of the year, so the Raw Calendar Trading Date shows June 30,1994. The shift calculation of six months (in this case) required to compute the Raw Calendar Trading Date is done automatically by the SASECRSP engine.

Keep in mind that fiscal date ranges are applicable only to fiscal members. When fiscal date range restrictions are applied to nonfiscal members, they are ignored.

The missing value '. A' seen in observations 9 through 12 indicate that the data is reported only on an annual basis.

## Example 33.10: Using Different Types of Range Restrictions in the INSET

You can specify both calendar and fiscal date range restrictions with the INSET= option. This example shows how to use both types of date range restrictions.

Two INSETs, nearly identical except for the type of their date range restriction, are used for accessing the same database. Despite the many similarities, the different date range restriction types result in dissimilar output.

Note that the specification of the datetype in the INSET= option for comp_calendar is not required. The datetype default is the calendar type.

```
 data comp_fiscal;
 /* Crude Petroleum & Natural Gas */
 compkey=2416;
 begdate=19860101; enddate=19861231;
 datetype='fiscal';
 output;
 /* Commercial Intertech */
 compkey=3248;
 begdate=19940101; enddate=19941231;
 datetype=' fiscal';
 output;
run;
data comp_calendar;
 /* Crude Petroleum & Natural Gas */
 compkey=2416;
 begdate=19860101; enddate=19861231;
 datetype='calendar'; output;
 /* Commercial Intertech */
 compkey=3248;
 begdate=19940101; enddate=19941231;
 datetype=' calendar';
 output;
run;
libname _all_ clear;
libname fisclib sasecrsp "%sysget(CRSP_CST)"
 SETID=200
 INSET=' comp_fiscal, compkey,gvkey,begdate, enddate, datetype' ;
libname callib sasecrsp "%sysget(CRSP_CST)"
 SETID=200
 INSET=' comp_calendar, compkey,gvkey,begdate, enddate, datetype' ;
```

```
title1 'Quarterly Period Descriptors';
title2 'Using the Fiscal Date Range';
proc print data=fisclib.qperdes(drop = peftnt1 peftnt2 peftnt3 peftnt4
peftnt5 peftnt6 peftnt7 peftnt8
candxc flowcd spbond spdebt sppaper);
run;
```

Output 33.10.1 shows quarterly period descriptors for the 1986 and 1994 fiscal years.
Output 33.10.1 Using Inset with Fiscal Date Range


The next PRINT procedure uses the calendar datetype in its INSET= option instead of the fiscal datetype, producing different results for the Crude Petroleum and Natural Gas Company when the report is based on calendar dates instead of fiscal dates. The differences shown in observations 1 through 4 are due to Crude Petroleum and Natural Gas Company's fiscal year ending in March instead of December.

Since Commercial Intertech does not shift its fiscal year, but uses a fiscal year ending in December, the fiscal report and the calendar report match exactly for the company's corresponding observations 5 through 8 in Output 33.10.1 and Output 33.10.2 respectively.

```
title1 'Quarterly Period Descriptors';
title2 'Using the Calendar Date Range';
proc print data=callib.qperdes(drop = peftnt1 peftnt2 peftnt3 peftnt4
 peftnt5 peftnt6 peftnt7 peftnt8
 candxc flowcd spbond spdebt sppaper);
run;
```

Output 33.10.2 shows quarterly period descriptors for the designated calendar date range.
Output 33.10.2 Using Inset with Calendar Date Range


Fiscal date range restrictions are valid only for fiscal members and can be used in either the INSET=
option or the RANGE= option. Use calendar date ranges for nonfiscal members. Note: Fiscal date ranges are ignored when used with nonfiscal members.

## Example 33.11: Using INSET Ranges with the LIBNAME RANGE Option

It is possible to specify both individual range restrictions with an INSET and a global date range restriction via the RANGE= option on the LIBNAME statement. In such cases, only observations that satisfy both date range restrictions are returned. The effective range restriction becomes the intersection of the two specified range restrictions. If this intersection is empty, no observations are returned.

This example extracts data for two companies, IBM and Microsoft. Each company has an individual range restriction specified in the inset. Furthermore, a global range restriction is set by the RANGE= option on the LIBNAME statement. As a result the effective date range restriction for IBM becomes August 1, 1999, to February 1, 2000, and the effective date range restriction for Microsoft becomes January 1, 2001, to April 21, 2002.

```
data two_companies;
 gvkey=6066; date1=19800101; date2=20000201; output;
 gvkey=12141; date1=20010101; date2=20051231; output;
run;
libname _all_ clear;
libname mylib sasecrsp "%sysget(CRSP_CST)"
 SETID=200
 INSET=' two_companies,gvkey,gvkey,date1,date2'
 RANGE='19990801-20020421';
title1 'Two Companies, Two Range Selections';
title2 'Global RANGE Statement Used With Individual Inset Ranges';
title3 'Results Show Intersection of Both Range Restrictions';
proc sql;
 select prcc.gvkey,prcc.caldt,prcc,ern
 from mylib.prcc as prcc, mylib.ern as ern
 where prcc.caldt = ern.caldt and
 prcc.gvkey = ern.gvkey;
quit;
```

Output 33.11.1 shows the combined effect of both INSET and RANGE date restrictions on the closing prices and earnings per share for IBM and Microsoft.

Output 33.11.1 Mixing INSET Ranges with the RANGE= Option


For more about using the SQL procedure, see the chapter on SQL in Base SAS Procedures Guide.

## Data Elements Reference: SASECRSP Interface Engine

Data sets are made available based on the type of CRSP database opened. Table 33.12, Table 33.13, and Table 33.14 show summary views of the three types of CRSP databases (Stock, CCM, and Indices) and the data sets they make available. Details on the data sets including their specific fields can be found in sections immediately following the summary tables. You can also see the available data sets for an opened database via the SAS Explorer by opening a SASECRSP libref that you have previously assigned.

Table 33.12 Summary of All Available Data Sets by CRSP Database Type

CRSP   Database	Data Set Name	Reference Table Title	Reference   Table
STOCK	STKHEAD	Header Identification and Summary Data	Table 33.15
	NAMES	Name History Array	Table 33.16
	DISTS	Distribution Event Array	Table 33.17
	SHARES	Shares Outstanding Observation Array	Table 33.18
	DELIST	Delisting History Array	Table 33.19
	NASDIN	NASDAQ Information Array	Table 33.20
	PRC	Price or Bid/Ask Average Time Series	Table 33.21
	RET	Returns Time Series	Table 33.21
	BIDLO	Bid or Low Price Time Series	Table 33.21
	ASKHI	Ask or High Price Time Series	Table 33.21
	BID	Bid Time Series	Table 33.21
	ASK	Ask Time Series	Table 33.21
	RETX	Returns Without Dividends Time Series	Table 33.21
	SPREAD	Spread Between Bid and Ask	Table 33.21
	ALTPRC	Price Alternate Time Series	Table 33.21
	VOL	Volume Time Series	Table 33.21
	NUMTRD	Number of Trades Time Series	Table 33.21
	ALTPRCDT	Price Alternate Date Time Series	Table 33.21
	PORT1	Portfolio Data for Portfolio Type 1	Table 33.22
	PORT2	Portfolio Data for Portfolio Type 2	Table 33.22
	PORT3	Portfolio Data for Portfolio Type 3	Table 33.22
	PORT4	Portfolio Data for Portfolio Type 4	Table 33.22
	PORT5	Portfolio Data for Portfolio Type 5	Table 33.22
PORT6	Portfolio Data for Portfolio Type 6	Table 33.22	
PORT7	Portfolio Data for Portfolio Type 7	Table 33.22	
PORT8	Portfolio Data for Portfolio Type 8	Table 33.22	
PORT9	Portfolio Data for Portfolio Type 9	Table 33.22	
GROUP16	Group Data for Group Type 16	Table 33.22	

Table 33.13 Summary of All Available Data Sets by CRSP Database Type

| CRSP |
| :--- | :--- | :--- | :--- |
| Database | Data Set Name $\quad$ Reference Table Title | Reference |
| :--- |
| Table |

Table 33.14 Summary of All Available Data Sets by CRSP Database Type

CRSP   Database	Data Set Name	Reference Table Title	Reference   Table
IND	INDHEAD	Index Header Data	Table 33.41
	REBAL	Index Rebalancing History Arrays	Table 33.42
	REBAL	Index Rebalancing History Group Arrays	Table 33.43
	LIST	Index Membership List Arrays	Table 33.44
	LIST	Index Membership List Groups Arrays	Table 33.45
	USDCNT	Portfolio Used Count Array	Table 33.46
	TOTCNT	Portfolio Total Count Array	Table 33.47
	USDCNT	Portfolio Used Count Time Series Groups	Table 33.48
	TOTCNT	Portfolio Total Count Time Series Groups	Table 33.49
	USDVAL	Portfolio Used Value Array	Table 33.50
	TOTVAL	Portfolio Total Value Array	Table 33.51
	USDVAL	Portfolio Used Value Time Series Groups	Table 33.52
	TOTVAL	Portfolio Total Value Time Series Groups	Table 33.53
	TRET	Total Returns Time Series	Table 33.54
	ARET	Appreciation Returns Time Series	Table 33.55
	IRET	Income Returns Time Series	Table 33.56
	TRET	Total Returns Time Series Groups	Table 33.57
	ARET	Income Returns Time Series Groups	Table 33.58
	IRET	Income Returns Time Series Groups	Table 33.59
	TIND	Total Return Index Levels Time Series	Table 33.60
	AIND	Appreciation Index Levels Time Series	Table 33.61
	IIND	Income Index Levels Time Series	Table 33.62
	TIND	Total Return Index Levels Groups	Table 33.63
	AIND	Appreciation Index Levels Groups	Table 33.64
	IIND	Income Index Levels Time Series Groups	Table 33.65

## Available CRSP Stock Data Sets

## STKHEAD Data Set—Header Identification \& Summary Data

Table 33.15 STKHEAD Data Set—Header Identification \& Summary Data

Fields	Label	Type
PERMNO	PERMNO	Numeric
PERMCO	PERMCO	Numeric
COMPNO	NASDAQ Company Number	Numeric
ISSUNO	NASDAQ Issue Number	Numeric
HEXCD	Exchange Code Header	Numeric
HSHRCD	Share Code Header	Numeric
HSICCD	Standard Industrial Classification Code	Numeric
BEGDT	Begin of Stock Data	Numeric
ENDDT	End of Stock Data	Numeric
DLSTCD	Delisting Code Header	Numeric
HCUSIP	CUSIP Header	Character
HTICK	Ticker Symbol Header	Character
HCOMNAM	Company Name Header	Character
HTSYMBOL	Trading Symbol Header	Character
HNAICS	North American Industry Classification Header	Character
HPRIMEXC	Primary Exchange Header	Character
HTRDSTAT	Trading Status Header	Character
HSECSTAT	Security Status Header	Character

NAMES Data Set—Name History Array
Table 33.16 NAMES Data Set-Name History Array

Fields	Label	Type
PERMNO	PERMNO	Numeric
NAMEDT	Names Date	Numeric
NAMEENDT	Names Ending Date	Numeric
SHRCD	Share Code	Numeric
EXCHCD	Exchange Code	Numeric
SICCD	Standard Industrial Classification Code	Numeric
NCUSIP	CUSIP	Numeric
TICKER	Ticker Symbol	Character
COMNAM	Company Name	Character
SHRCLS	Share Class	Numeric
TSYMBOL	Trading Symbol	Character
NAICS	North American Industry Classification System	Character
PRIMEXCH	Primary Exchange	Character
TRDSTAT	Trading Status	Character

Table 33.16 continued

Fields	Label	Type
SECSTAT	Security Status	Character

## DISTS Data Set—Distribution Event Array

Table 33.17 DISTS Data Set—Distribution Event Array

Fields	Label	Type
PERMNO	PERMNO	Numeric
DISTCD	Distribution Code	Numeric
DIVAMT	Dividend Cash Amount	Numeric
FACPR	Factor to Adjust Price	Numeric
FACSHR	Factor to Adjust Share	Numeric
DCLRDT	Distribution Declaration Date	Numeric
EXDT	Ex-Distribution Date	Numeric
RCRDDT	Record Date	Numeric
PAYDT	Payment Date	Numeric
ACPERM	Acquiring PERMNO	Numeric
ACCOMP	Acquiring PERMCO	Numeric

## SHARES Data Set—Shares Outstanding Observation Array

Table 33.18 SHARES Data Set—Shares Outstanding Observation Array

Fields	Label	Type
PERMNO	PERMNO	Numeric
SHROUT	Shares Outstanding	Numeric
SHRSDT	Shares Observation Date	Numeric
SHRENDDT	Shares Observation End Date	Numeric
SHRFLG	Shares Outstanding Observation Flag	Numeric

## DELIST Data Set—Delisting History Array

Table 33.19 DELIST Data Set—Delisting History Array

Fields	Label	Type
PERMNO	PERMNO	Numeric
DLSTDT	Delisting Date	Numeric
DLSTCD	Delisting Code	Numeric
NWPERM	New PERMNO	Numeric
NWCOMP	New PERMCO	Numeric
NEXTD	Delisting Next Price Date	Numeric
DLAMT	Delisting Amount	Numeric
DLRETX	Delisting Return Without Dividends	Numeric
DLPRC	Delisting Price	Numeric

Table 33.19 continued

Fields	Label	Type
DLPDT	Delisting Amount Date	Numeric
DLRET	Delisting Return	Numeric

## NASDIN Data Set—NASDAQ Information Array

Table 33.20 NASDIN Data Set—NASDAQ Information Array

Fields	Label	Type
PERMNO	PERMNO	Numeric
TRTSCD	NASDAQ Traits Code	Numeric
TRTSDT	NASDAQ Traits Date	Numeric
TRTSENDT	NASDAQ Traits End Date	Numeric
NMSIND	NASDAQ National Market Indicator	Numeric
MMCNT	Market Maker Count	Numeric
NSDINX	Nasd Index Code	Numeric

## STOCK Time Series Data Sets

Table 33.21 STOCK Time Series Data Sets

Data Set Name, Long	Fields	Label	Type
Name			Numeric
PRC	PERMNO	PERMNO	Numeric
Price or Bid/Ask	CALDT	Calendar Trading Date	Numeric
Average Time Series	PRC	Price or Bid/Ask Aver	Numeric
RET	PERMNO	PERMNO	Numeric
Returns	CALDT	Calendar Trading Date	Numeric
Time Series	RET	Returns	Numeric
ASKHI	PERMNO	PERMNO	Numeric
Ask or High Price	CALDT	Calendar Trading Date	Numeric
Time Series	ASKHI	Ask or High Price	Numeric
BIDLO	PERMNO	PERMNO	Numeric
Bid or Low Price	CALDT	Calendar Trading Date	Numeric
Time Series	BIDLO	Bid or Low Price	Numeric
BID	PERMNO	PERMNO	Numeric
Bid	CALDT	Calendar Trading Date	Numeric
Time Series	BID	Bid	Numeric
ASK	PERMNO	PERMNO	Numeric
Ask	CALDT	Calendar Trading Date	Numeric
Time Series	ASK	Ask	Numeric
RETX	PERMNO	PERMNO	Numeric
Returns without	CALDT	Calendar Trading Date	Numeric
Dividends	RETX	Returns w/o Dividends	Numeric
SPREAD	PERMNO	PERMNO	Numeric
Spread Between Bid	CALDT	Calendar Trading Date	

Table 33.21 continued

Data Set Name, Long   Name	Fields	Label	Type
and Ask Time Series	SPREAD	Spread Between Bid Ask	Numeric
ALTPRC	PERMNO	PERMNO	Numeric
Price Alternate	CALDT	Calendar Trading Date	Numeric
Time Series	ALTPRC	Price Alternate	Numeric
VOL	PERMNO	PERMNO	Numeric
Volume Time Series	CALDT	Calendar Trading Date	Numeric
	VOL	Volume	Numeric
NUMTRD	PERMNO	PERMNO	Numeric
Number of Trades	CALDT	Calendar Trading Date	Numeric
Time Series	NUMTRD	Number of Trades	Numeric
ALTPRCDT	PERMNO	PERMNO	Numeric
Alternate Price	CALDT	Calendar Trading Date	Numeric
Date Time Series	ALTPRCDT	Alternate Price Date	Numeric

## Portfolio and Group Data Sets

Table 33.22 Portfolio and Group Data Sets

Data Set	Fields	Label	Type
PORT1	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT1	Portfolio Assignment for Portfolio Type 1	Numeric
Type 1	STAT1	Portfolio Statistic for Portfolio Type 1	Numeric
PORT2	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT2	Portfolio Assignment for Portfolio Type 2	Numeric
Type 2	STAT2	Portfolio Statistic for Portfolio Type 2	Numeric
PORT3	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT3	Portfolio Assignment for Portfolio Type 3	Numeric
Type 3	STAT3	Portfolio Statistic for Portfolio Type 3	Numeric
PORT4	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT4	Portfolio Assignment for Portfolio Type 4	Numeric
Type 4	STAT4	Portfolio Statistic for Portfolio Type 4	Numeric
PORT5	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT5	Portfolio Assignment for Portfolio Type 5	Numeric
Type 5	STAT5	Portfolio Statistic for Portfolio Type 5	Numeric
PORT6	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT6	Portfolio Assignment for Portfolio Type 6	Numeric
Type 6	STAT6	Portfolio Statistic for Portfolio Type 6	Numeric

Table 33.22 continued

Data Set	Fields	Label	Type
PORT7	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT7	Portfolio Assignment for Portfolio Type 7	Numeric
Type 7	STAT7	Portfolio Statistic for Portfolio Type 7	Numeric
PORT8	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT8	Portfolio Assignment for Portfolio Type 8	Numeric
Type 8	STAT8	Portfolio Statistic for Portfolio Type 8	Numeric
PORT9	PERMNO	PERMNO	Numeric
Portfolio data	CALDT	Calendar Trading Date	Numeric
for Portfolio	PORT9	Portfolio Assignment for Portfolio Type 9	Numeric
Type 9	STAT9	Portfolio Statistic for Portfolio Type 9	Numeric
GROUP16	PERMNO	PERMNO	Numeric
Group data	GRPDT	Group Beginning Date	Numeric
for Group	GRPENDDT	Group Ending Date	Numeric
Type 16	GRPFLAG	Group Flag of Associated Index	Numeric
	GRPSU	Group Subflag	Numeric

## Available Compustat Data Sets

## CSTHEAD Data Set-Compustat Header Data

Table 33.23 CSTHEAD Data Set-Compustat Header Data

Fields	Label	Type
GVKEY	GVKEY	Numeric
IPERM	Header CRSP issue PERMNO link	Numeric
ICOMP	Header CRSP company PERMCO link	Numeric
BEGYR	Annual date of earliest data (yyyy)	Numeric
ENDYR	Annual date of latest data (yyyy)	Numeric
BEGQTR	Quarterly date of earliest data (yyyy.q)	Numeric
ENDQTR	Quarterly date of latest data (yyyy.q)	Numeric
AVAILFLG	Code of available CST data types	Numeric
DNUM	Industry code	Numeric
FILE	File identification code	Numeric
ZLIST	Exchange listing and S\&P Index code	Numeric
STATE	State identification code	Numeric
COUNTY	County identification code	Numeric
STINC	State incorporation code	Numeric
FINC	Foreign incorporation code	Numeric
XREL	S\&P Industry Index relative code	Numeric
STK	Stock ownership code	Numeric
DUP	Duplicate file code	Numeric

Table 33.23 continued

Fields	Label	Type
CCNDX	Current Canadian Index Code	Numeric
GICS	Global Industry Class. Std. code	Numeric
IPODT	IPO date	Numeric
BEGDT	First date of Compustat data	Numeric
ENDDT	Last date of Compustat data	Numeric
FUNDF1	Fundamental File Identification Code 1	Numeric
FUNDF2	Fundamental File Identification Code 2	Numeric
FUNDF3	Fundamental File Identification Code 3	Numeric
NAICS	North American Industry Classification	Character
CPSPIN	Primary S\&P index marker	Character
CSSPIN	Secondary S\&P index marker	Character
CSSPII	Subset S\&P index marker	Character
SUBDBT	Current S\&P Subordinated Debt Rating	Character
CPAPER	Current S\&P Commercial Paper Rating	Character
SDBT	Current S\&P Senior Debt Rating	Character
SDBTIM	Current S\&P Senior Debt Rating-Footnote	Character
CNUM	CUSIP issuer code	Character
CIC	Issuer number	Character
CONAME	Company name	Character
INAME	Industry name	Character
SMBL	Stock ticker symbol	Character
EIN	Employer Identification Number	Character
INCORP	Incorporation ISO Country Code	Character
RCST3	Reserved 3	Character

## CSTNAME Data Set—Compustat Description History Array

Table 33.24 CSTNAME Data Set-Compustat Description History Array

Fields	Label	Type
GVKEY	GVKEY	Numeric
CHGDT	Effective date of this description	Numeric
CHGENDDT	Last effective date of this description	Numeric
DNUM	Industry code	Numeric
FILE	File identification code	Numeric
ZLIST	Exchange listing and S\&P Index code	Numeric
STATE	State identification code	Numeric
COUNTY	County identification code	Numeric
STINC	State incorporation code	Numeric
FINC	Foreign incorporation code	Numeric
XREL	S\&P Industry Index relative code	Numeric
STK	Stock ownership code	Numeric
DUP	Duplicate file code	Numeric
CCNDX	Current Canadian Index Code	Numeric
GICS	Global Industry Classification Std. code	Numeric

Table 33.24 continued

Fields	Label	Type
IPODT	IPO date	Numeric
RCST1	Reserved 1	Numeric
RCST2	Reserved 2	Numeric
FUNDF1	Fundamental File Identification Code 1	Numeric
FUNDF2	Fundamental File Identification Code 2	Numeric
FUNDF3	Fundamental File Identification Code 3	Numeric
NAICS	North American Industry Classification	Character
CPSPIN	Primary S\&P index marker	Character
CSSPIN	Secondary S\&P index marker	Character
CSSPII	Subset S\&P index marker	Character
SUBDBT	Current S\&P Subordinated Debt Rating	Character
CPAPER	Current S\&P Commercial Paper Rating	Character
SDBT	Current S\&P Senior Debt Rating	Character
SDBTIM	Current S\&P Senior Debt Rating-Footnote	Character
CNUM	CUSIP issuer code	Character
CIC	Issuer number	Character
CONAME	Company name	Character
INAME	Industry name	Character
SMBL	Stock ticker symbol	Character
EIN	Employer Identification Number	Character
INCORP	Incorporation ISO Country Code	Character
RCST3	Reserved 3	Character

## LINK Data Set—CRSP Compustat Link History

Table 33.25 LINK Data Set-CRSP Compustat Link History

Fields	Label	Type
GVKEY	GVKEY	Numeric
LINKDT	First date link is valid	Numeric
LINKENDT	Last date link is valid	Numeric
NPERMNO	CRSP PERMNO linked	Numeric
NPERMCO	CRSP PERMCO linked	Numeric
LINKTYPE	Link type code	Character
LINKFLAG	Linking Flag	Character

## APERDES Data Set—Annual Period Descriptors Time Series

Table 33.26 APERDES Data Set—Annual Period Descriptors Time Series

Fields	Label	Type
GVKEY	GVKEY	Numeric
CRSPDT	CRSP Date	Numeric
RCALDT	Raw Calendar Trading Date	Numeric
FISCALDT	Fiscal Trading Date	Numeric

Table 33.26 continued

Fields	Label	Type
DATYR	Data Year	Numeric
DATQTR	Data Quarter	Numeric
FISCYR	Fiscal year-end month of data	Numeric
CALYR	Calendar year	Numeric
CALQTR	Calendar quarter	Numeric
UPCODE	Update code	Numeric
SRCDOC	Source document code	Numeric
SPBOND	S\&P Senior Debt Rating	Numeric
SPDEBT	S\&P Subordinated Debt Rating	Numeric
SPPAPER	S\&P Commercial Paper Rating	Numeric
SPRANK	Common Stock Ranking	Numeric
MAJIND	Major Index Code	Numeric
INDIND	S\&P Industry Index Code	Numeric
REPDT	Report date of quarterly earnings	Numeric
FLOWCD	Flow of funds statement format code	Numeric
CANDXC	Canadian index code	Numeric
PEFTNT1	Period Descriptor Footnote 1 Source Document Code	Character
PEFTNT2	Period Descriptor Footnote 2 Month of Deletion	Character
PEFTNT3	Period Descriptor Footnote 3 Year of Deletion	Character
PEFTNT4	Period Descriptor Footnote 4 Reason For Deletion	Character
PEFTNT5	Period Descriptor Footnote 5 Unused	Character
PEFTNT6	Period Descriptor Footnote 6 Unused	Character
PEFTNT7	Period Descriptor Footnote 7 Unused	Character
PEFTNT8	Period Descriptor Footnote 8 Unused	Character

## QPERDES Data Set—Quarterly Period Descriptors Time Series

Table 33.27 QPERDES Data Set—Quarterly Period Descriptors Time Series

Fields	Label	Type
GVKEY	GVKEY	Numeric
CRSPDT	CRSP Date	Numeric
RCALDT	Raw Calendar Trading Date	Numeric
FISCALDT	Fiscal Trading Date	Numeric
DATYR	Data Year	Numeric
DATQTR	Data Quarter	Numeric
FISCYR	Fiscal year-end month of data	Numeric
CALYR	Calendar year	Numeric
CALQTR	Calendar quarter	Numeric
UPCODE	Update code	Numeric
SRCDOC	Source document code	Numeric
SPBOND	S\&P Senior Debt Rating	Numeric
SPDEBT	S\&P Subordinated Debt Rating	Numeric
SPPAPER	S\&P Commercial Paper Rating	Numeric
SPRANK	Common Stock Ranking	Numeric

Table 33.27 continued

Fields	Label	Type
MAJIND	Major Index Code	Numeric
INDIND	S\&P Industry Index Code	Numeric
REPDT	Report date of quarterly earnings	Numeric
FLOWCD	Flow of funds statement format code	Numeric
CANDXC	Canadian index code	Numeric
PEFTNT1	Period Descriptor Footnote 1 Comparability Status	Character
PEFTNT2	Period Descriptor Footnote 2 Company Status Alert	Character
PEFTNT3	Period Descriptor Footnote 3 S\&P Senior Debt Rating	Character
PEFTNT4	Period Descriptor Footnote 4 Reason For Deletion	Character
PEFTNT5	Period Descriptor Footnote 5 Unused	Character
PEFTNT6	Period Descriptor Footnote 6 Unused	Character
PEFTNT7	Period Descriptor Footnote 7 Unused	Character
PEFTNT8	Period Descriptor Footnote 8 Unused	Character

## IAITEMS Data Set—Annual Data Items

Table 33.28 IAITEMS Data Set—Annual Data Items

Fields	Label	Type
GVKEY	GVKEY	Numeric
CRSPDT	CRSP Date	Numeric
RCALDT	Raw Calendar Trading Date	Numeric
FISCALDT	Fiscal Trading Date	Numeric
IA1	Cash and Short Term Investments	Numeric
IA2	Receivables-Total	Numeric
IA3	Inventories-Total	Numeric
IA4	Current Assets-Total	Numeric
IA5	Current Liabilities Total	Numeric
IA6	Assets Total Liabilities and Stockholders' Equity Total	Numeric
IA7	Property, Plant, and Equipment Total (Gross)	Numeric
IA8	Property, Plant, and Equipment Total (Net)	Numeric
IA9	Long-Term Debt-Total	Numeric
IA10	Preferred Stock Liquidating Value	Numeric
IA11	Common Equity Tangible	Numeric
IA12	Sales (Net)	Numeric
IA13	Operating Income Before Depreciation	Numeric
IA14	Depreciation and Amortization Income Statement)	Numeric
IA15	Interest Expense	Numeric
IA16	Income Taxes-Total	Numeric
IA17	Special Items	Numeric
IA18	Income Before Extraordinary Items	Numeric
IA19	Dividends-Preferred	Numeric
IA20	Income Before Extraordinary Items Adj for Com Stk Equiv Dollar	Numeric
	Savings	Numeric
IA21	Dividends-Common	Numeric
IA22	Price-High	

Table 33.28 continued

Fields	Label	Type
IA23	Price-Low	Numeric
IA24	Price-Close	Numeric
IA25	Common Shares Outstanding	Numeric
IA26	Dividends Per Share by Ex-Date	Numeric
IA27	Adjustment Factor (Cumulative) by Ex-Date	Numeric
IA28	Common Shares Traded	Numeric
IA29	Employees	Numeric
IA30	Property, Plant, and Equipment Capital Expenditures (Schedule V)	Numeric
IA31	Investments and Advances Equity Method	Numeric
IA32	Investments and Advances-Other	Numeric
IA33	Intangibles	Numeric
IA34	Debt in Current Liabilities	Numeric
IA35	Deferred Taxes and Investment Tax Credit (Balance Sheet)	Numeric
IA36	Retained Earnings	Numeric
IA37	Invested Capital Total	Numeric
IA38	Minority Interest Balance Sheet	Numeric
IA39	Convertible Debt and Preferred Stock	Numeric
IA40	Common Shares Reserved for Conversion-Total	Numeric
IA41	Cost of Goods Sold	Numeric
IA42	Labor and Related Expense	Numeric
IA43	Pension and Retirement Expense	Numeric
IA44	Debt-Due in One Year	Numeric
IA45	Advertising Expense	Numeric
IA46	Research and Development Expense	Numeric
IA47	Rental Expense	Numeric
IA48	Extraordinary Items and Discontinued Operations	Numeric
IA49	Minority Interest (Income Account)	Numeric
IA50	Deferred Taxes (Income Account)	Numeric
IA51	Investment Tax Credit (Income Account)	Numeric
IA52	Net Operating Loss Carry Forward Unused Portion	Numeric
IA53	Earnings Per Share (Basic)-Including Extraordinary Items	Numeric
IA54	Common Shares Used to Calculate Earnings Per Share (Basic)	Numeric
IA55	Equity in Earnings	Numeric
IA56	Preferred Stock Redemption Value	Numeric
IA57	Earnings Per Share (Diluted)-Excluding Extraordinary Items	Numeric
IA58	Earnings Per Share (Basic)-Excluding Extraordinary Items	Numeric
IA59	Inventory Valuation Method	Numeric
IA60	Common Equity-Total	Numeric
IA61	Non-operating Income (Expense)	Numeric
IA62	Interest Income	Numeric
IA63	Income Taxes-Federal Current	Numeric
IA64	Income Taxes-Foreign Current	Numeric
IA65	Amortization of Intangibles	Numeric
IA66	Discontinued Operations	Numeric
IA67	Receivables Estimated Doubtful	

Table 33.28 continued

Fields	Label	Type
IA68	Current Assets-Other	Numeric
IA69	Assets-Other	Numeric
IA70	Accounts Payable	Numeric
IA71	Income Taxes Payable	Numeric
IA72	Current Liabilities Other	Numeric
IA73	Property, Plant, and Equipment-Construction in Progress (Net)	Numeric
IA74	Deferred Taxes (Balance Sheet)	Numeric
IA75	Liabilities-Other	Numeric
IA76	Inventories-Raw Materials	Numeric
IA77	Inventories-Work in Progress	Numeric
IA78	Inventories Finished Goods	Numeric
IA79	Debt-Convertible	Numeric
IA80	Debt—Subordinated	Numeric
IA81	Debt-Notes	Numeric
IA82	Debt-Debentures	Numeric
IA83	Long-Term Debt Other	Numeric
IA84	Debt-Capitalized Lease Obligations	Numeric
IA85	Common Stock	Numeric
IA86	Treasury Stock Memo Entry	Numeric
IA87	Treasury Stock Number of Common Shares	Numeric
IA88	Treasury Stock-Total Dollar Amount	Numeric
IA89	Pension Costs-Unfunded Vested Benefits	Numeric
IA90	Pension Costs-Unfunded Past or Prior Service	Numeric
IA91	Debt-Maturing In Second Year	Numeric
IA92	Debt-Maturing In Third Year	Numeric
IA93	Debt-Maturing In Fourth Year	Numeric
IA94	Debt-Maturing In Fifth Year	Numeric
IA95	Rental Commitments Minimum—Five Years Total	Numeric
IA96	Rental Commitments Minimum—First Year	Numeric
IA97	Retained Earnings Unrestricted	Numeric
IA98	Order Backlog	Numeric
IA99	Retained Earnings Restatement	Numeric
IA100	Common Shareholders	Numeric
IA101	Interest Expense on Long-Term Debt	Numeric
IA102	Excise Taxes	Numeric
IA103	Depreciation Expense (Schedule VI)	Numeric
IA104	Short-Term Borrowing Average	Numeric
IA105	Short-Term Borrowings Average Interest Rate	Numeric
IA106	Equity In Net Loss (Earnings) (Statement of Cash Flows)	Numeric
IA107	Sale of Property, Plant, and Equipment (Statement of Cash Flows)	Numeric
IA108	Sale of Common and Preferred Stock (Statement of Cash Flows)	Numeric
IA109	Sale of Investments (Statement of Cash Flows)	Numeric
IA110	Funds from Operations Total (Statement Changes)	Numeric
IA111	Long-Term Debt Issuance (Statement of Cash Flows)	Numeric
IA112	Sources of Funds Total (Statement of Changes)	

Table 33.28 continued

Fields	Label	Type
IA113	Increase in Investment (Statement of Cash Flows)	Numeric
IA114	Long-Term Debt Reduction (Statement of Cash Flows)	Numeric
IA115	Purchase of Common and Preferred Stock (Statement of Cash Flows)	Numeric
IA116	Uses of Funds-Total (Statement of Changes)	Numeric
IA117	Sales (Restated)	Numeric
IA118	Income Before Extraordinary Items (Restated)	Numeric
IA119	Earnings Per Share (Basic)—Excluding Extraordinary Items (Restated)	Numeric
IA120	Assets-Total (Restated)	Numeric
IA121	Working Capital (Restated)	Numeric
IA122	Pretax Income (Restated)	Numeric
IA123	Income Before Extraordinary Items (Statement of Cash Flows)	Numeric
IA124	Extraordinary Items \& Discontinued Operations (Statement of Cash Flows)	Numeric
IA125	Depreciation and Amortization (Statement of Cash Flows)	Numeric
IA126	Deferred Taxes (Statement of Cash Flows)	Numeric
IA127	Cash Dividends (Statement of Cash Flows)	Numeric
IA128	Capital Expenditures (Statement of Cash Flows)	Numeric
IA129	Acquisitions (Statement of Cash Flows)	Numeric
IA130	Preferred Stock Carrying Value	Numeric
IA131	Cost of Goods Sold (Restated)	Numeric
IA132	Selling, General, and Administrative Expense (Restated)	Numeric
IA133	Depreciation and Amortization Restated	Numeric
IA134	Interest Expenses (Restated)	Numeric
IA135	Income Taxes-Total (Restated)	Numeric
IA136	Extraordinary Items and Discontinued Operations (Restated)	Numeric
IA137	Earnings Per Share (Basic)—Including Extraordinary Items Restated)	Numeric
IA138	Common Shares Used To Calculate Earnings Per Share (Basic) Re- stated	Numeric
IA139	Earnings Per Share (Diluted)—Excluding Extraordinary Items (Restated)	Numeric
IA140	Earnings Per Share (Diluted)—Including Extraordinary Items (Restated)	Numeric
IA141	Property, Plant, and Equipment-Total Net (Restated)	Numeric
IA142	Long-Term Debt-Total (Restated)	Numeric
IA143	Retained Earnings (Restated)	Numeric
IA144	Stockholders' Equity (Restated)	Numeric
IA145	Capital Expenditures (Restated)	Numeric
IA146	Employees (Restated)	Numeric
IA147	Interest Capitalized	Numeric
IA148	Long-Term Debt Tied to Prime	Numeric
IA149	Auditor/Auditor's Opinion	Numeric
IA150	Foreign Currency Adjustment Income Account	Numeric

Table 33.28 continued

Fields	Label	Type
IA151	Receivables-Trade	Numeric
IA152	Deferred Charges	Numeric
IA153	Accrued Expense	Numeric
IA154	Debt-Subordinated Convertible	Numeric
IA155	Property, Plant, and Equipment-Buildings (Net)	Numeric
IA156	Property, Plant, and Equipment-Machinery and Equipment (Net)	Numeric
IA157	Property, Plant, and Equipment Natural Resources (Net)	Numeric
IA158	Property, Plant, and Equipment-Land and Improvements (Net)	Numeric
IA159	Property, Plant, and Equipment-Leases (Net)	Numeric
IA160	Prepaid Expense	Numeric
IA161	Income Tax Refund	Numeric
IA162	Cash	Numeric
IA163	Rental Income	Numeric
IA164	Rental Commitments Minimum-Second Year	Numeric
IA165	Rental Commitments Minimum-Third Year	Numeric
IA166	Rental Commitments Minimum-Fourth Year	Numeric
IA167	Rental Commitments Minimum-Fifth Year	Numeric
IA168	Compensating Balance	Numeric
IA169	Earnings Per Share (Diluted)-Including Extraordinary Items	Numeric
IA170	Pretax Income	Numeric
IA171	Common Shares Used to Calculate Earnings Per Share (Diluted)	Numeric
IA172	Net Income (Loss)	Numeric
IA173	Income Taxes-State Current	Numeric
IA174	Depletion Expense (Schedule VI)	Numeric
IA175	Preferred Stock Redeemable	Numeric
IA176	Blank	Numeric
IA177	Net Income (Loss) (Restated)	Numeric
IA178	Operating Income After Depreciation	Numeric
IA179	Working Capital (Balance Sheet)	Numeric
IA180	Working Capital Change Total (Statement of Changes)	Numeric
IA181	Liabilities-Total	Numeric
IA182	Property, Plant, and Equipment-Beginning Balance (Schedule V)	Numeric
IA183	Accounting Changes Cumulative Effect	Numeric
IA184	Property, Plant, and Equipment Retirements (Schedule V)	Numeric
IA185	Property, Plant, and Equipment-Other Changes (Schedule V)	Numeric
IA186	Inventories-Other	Numeric
IA187	Property, Plant, and Equipment-Ending Balance (Schedule V)	Numeric
IA188	Debt-Senior Convertible	Numeric
IA189	Selling, General, and Administrative Expense	Numeric
IA190	Non-operating Income (Expense)	Numeric
IA191	Common Stock Equivalents-Dollar Savings	Numeric
IA192	Extraordinary Items	Numeric
IA193	Short-Term Investments	Numeric
IA194	Receivables-Current Other	Numeric
IA195	Current Assets-Other Excluding Prepaid Expenses	Numeric

Table 33.28 continued

Fields	Label	Type
IA196	Depreciation, Depletion and Amortization (Accumulated) (Balance Sheet)	Numeric
IA197	Price-Fiscal Year High	Numeric
IA198	Price-Fiscal Year Low	Numeric
IA199	Price-Fiscal Year Close	Numeric
IA200	Common Shares Reserved for Conversion Convertible Debt	Numeric
IA201	Dividends Per Share by Payable Date	Numeric
IA202	Adjustment Factor (Cumulative) by Payable Date	Numeric
IA203	Common Shares Reserved for Conversion Preferred Stock	Numeric
IA204	Goodwill	Numeric
IA205	Assets-Other Excluding Deferred Charges	Numeric
IA206	Notes Payable	Numeric
IA207	Current Liabilities Other-Excluding Accrued Expenses	Numeric
IA208	Investment Tax Credit (Balance Sheet)	Numeric
IA209	Preferred Stock Nonredeemable	Numeric
IA210	Capital Surplus	Numeric
IA211	Income Taxes-Other	Numeric
IA212	Blank	Numeric
IA213	Sale of Prop, Plnt, \& Equip \& Sale of Invs Loss(Gain)(Stmt of Csh Flo)	Numeric
IA214	Preferred Stock Convertible	Numeric
IA215	Common Shares Reserved for Conversion Stock Options	Numeric
IA216	Stockholders' Equity Total	Numeric
IA217	Funds from Operations Other (Statement of Cash Flow)	Numeric
IA218	Sources of Funds Other (Statement of Changes)	Numeric
IA219	Uses of Funds-Other (Statement of Changes)	Numeric
IA220	Depreciation (Accumulated) Beginning Balance (Schedule VI)	Numeric
IA221	Depreciation (Accumulated) Retirements (Schedule VI)	Numeric
IA222	Depreciation (Accumulated)-Other Changes (Schedule VI)	Numeric
IA223	Depreciation (Accumulated)-Ending Balance (Schedule VI)	Numeric
IA224	Non-operating Income (Expense) (Restated)	Numeric
IA225	Minority Interest (Restated)	Numeric
IA226	Treasury Stock (Dollar Amount)-Common	Numeric
IA227	Treasury Stock (Dollar Amount)-Preferred	Numeric
IA228	Currency Translation Rate	Numeric
IA229	Common Shares Reserved for Conversion Warrants and Other	Numeric
IA230	Retained Earnings Cumulative Translation Adjustment	Numeric
IA231	Retained Earnings Other Adjustments	Numeric
IA232	Common Stock-Per Share Carrying Value	Numeric
IA233	Earnings per Share from Operations	Numeric
IA234	ADR Ratio	Numeric
IA235	Common Equity Liquidation Value	Numeric
IA236	Working Capital Change Other-Increase (Decrease) (Stmnt of Changes)	Numeric
IA237	Income Before Extraordinary Items Available for Common	Numeric

Table 33.28 continued

Fields	Label	Type
IA238	Marketable Securities Adjustment (Balance Sheet)	Numeric
IA239	Interest Capitalized Net Income Effect	Numeric
IA240	Inventories-LIFO Reserve	Numeric
IA241	Debt-Mortgages and Other Secured	Numeric
IA242	Dividends-Preferred In Arrears	Numeric
IA243	Pension Benefits Present Value of Vested	Numeric
IA244	Pension Benefits Present Value of Nonvested	Numeric
IA245	Pension Benefits Net Assets	Numeric
IA246	Pension Discount Rate (Assumed Rate of Return)	Numeric
IA247	Pension Benefits Information Date	Numeric
IA248	Acquisition-Income Contribution	Numeric
IA249	Acquisitions-Sales Contribution	Numeric
IA250	Property, Plant, and Equipment-Other (Net)	Numeric
IA251	Depreciation (Accumulated)-Land and Improvements	Numeric
IA252	Depreciation (Accumulated) Natural Resources	Numeric
IA253	Depreciation (Accumulated) Buildings	Numeric
IA254	Depreciation (Accumulated) Machinery and Equipment	Numeric
IA255	Depreciation (Accumulated)-Leases	Numeric
IA256	Depreciation (Accumulated) Construction in Progress	Numeric
IA257	Depreciation (Accumulated)-Other	Numeric
IA258	Net Income Adjusted for Common Stock Equivalents	Numeric
IA259	Retained Earnings Unadjusted	Numeric
IA260	Property, Plant, and Equipment-Land and Improvements at Cost	Numeric
IA261	Property, Plant, and Equipment-Natural Resources at Cost	Numeric
IA262	Blank	Numeric
IA263	Property, Plant, and Equipment-Buildings at Cost	Numeric
IA264	Property, Plant, and Equipment-Machinery and Equipment at Cost	Numeric
IA265	Property, Plant, and Equipment-Leases at Cost	Numeric
IA266	Property, Plant, and Equipment Construction in Progress at Cost	Numeric
IA267	Property, Plant, and Equipment-Other at Cost	Numeric
IA268	Debt Unamortized Debt Discount and Other	Numeric
IA269	Deferred Taxes Federal	Numeric
IA270	Deferred Taxes Foreign	Numeric
IA271	Deferred Taxes-State	Numeric
IA272	Pretax Income Domestic	Numeric
IA273	Pretax Income Foreign	Numeric
IA274	Cash \& Cash Equivalent Increase (Decrease) (Statement of Cash Flows)	Numeric
IA275	Blank	Numeric
IA276	S\&P Major Index Code Historical	Numeric
IA277	S\&P Industry Index Code—Historical	Numeric
IA278	Fortune Industry Code Historical	Numeric
IA279	Fortune Rank	Numeric
IA280	S\&P Long-Term Domestic Issuer Credit Rating Historical	Numeric
IA281	Blank	Numeric

Table 33.28 continued

Fields	Label	Type
IA282	S\&P Common Stock Ranking	Numeric
IA283	S\&P Short-Term Domestic Issuer Credit Rating-Historical	Numeric
IA284	Pension Vested Benefit Obligation	Numeric
IA285	Pension-Accumulated Benefit Obligation	Numeric
IA286	Pension-Projected Benefit Obligation	Numeric
IA287	Pension Plan Assets	Numeric
IA288	Pension-Unrecognized Prior Service Cost	Numeric
IA289	Pension-Other Adjustments	Numeric
IA290	Pension-Prepaid Accrued Cost	Numeric
IA291	Pension Vested Benefit Obligation Underfunded	Numeric
IA292	Periodic Postretirement Benefit Cost Net	Numeric
IA293	Pension-Accumulated Benefit Obligation (Underfunded)	Numeric
IA294	Pension-Projected Benefit Obligation (Underfunded)	Numeric
IA295	Periodic Pension Cost (Net)	Numeric
IA296	Pension Plan Assets (Underfunded)	Numeric
IA297	Pension-Unrecognized Prior Service Cost (Underfunded)	Numeric
IA298	Pension-Additional Minimum Liability	Numeric
IA299	Pension-Other Adjustments (Underfunded)	Numeric
IA300	Pension-Prepaid Accrued Cost (Underfunded)	Numeric
IA301	Changes in Current Debt (Statement of Cash Flows)	Numeric
IA302	Accounts Receivable Decrease (Increase) (Statement of Cash Flows)	Numeric
IA303	Inventory-Decrease (Increase) (Statement of Cash Flows)	Numeric
IA304	Accounts Payable \& Accrued Liabilities Inc (Decrease) (St Cash Flows)	Numeric
IA305	Income Taxes-Accrued Increase (Decrease) Statement of Cash Flow	Numeric
IA306	Blank	Numeric
IA307	Assets and Liabilities Other (Net Change) Statement of Cash Flow	Numeric
IA308	Operating Activities Net Cash Flow Statement of Cash Flow	Numeric
IA309	Short-Term Investments Change (Statement of Cash Flows)	Numeric
IA310	Investing Activities Other (Statement of Cash Flows)	Numeric
IA311	Investing Activities Net Cash Flow (Statement of Cash Flows)	Numeric
IA312	Financing Activities Other (Statement of Cash Flows)	Numeric
IA313	Financing Activities Net Cash Flow (Statement of Cash Flows)	Numeric
IA314	Exchange Rate Effect (Statement of Cash Flows)	Numeric
IA315	Interest Paid-Net (Statement of Cash Flows)	Numeric
IA316	Blank	Numeric
IA317	Income Taxes Paid (Statement of Cash Flows)	Numeric
IA318	Format Code (Statement of Cash Flows)	Numeric
IA319	Dilution Adjustment	Numeric
IA320	S\&P Subordinated Debt Rating	Numeric
IA321	Interest Income Total (Financial Services)	Numeric
IA322	Dilution Available Excluding Numeric	
IA323	Earnings per share from Operations (Diluted)	Numeric

Table 33.28 continued

Fields	Label	Type
IA324	Historical SIC Code	Numeric
IA325	Blank	Numeric
IA326	Blank	Numeric
IA327	Contingent Liabilities Guarantees	Numeric
IA328	Debt-Finance Subsidiary	Numeric
IA329	Debt-Consolidated Subsidiary	Numeric
IA330	Postretirement Benefit Asset (Liability) (Net)	Numeric
IA331	Pension Plans Service Cost	Numeric
IA332	Pension Plans Interest Cost	Numeric
IA333	Pension Plans Return on Plan Assets (Actual)	Numeric
IA334	Pension Plans-Other Periodic Cost Components (Net)	Numeric
IA335	Pension Plans-Rate of Compensation Increase	Numeric
IA336	Pension Plans Anticipated Long-Term Rate of Return on Plan Assets	Numeric
IA337	Risk-Adjusted Capital Ratio-Tier 1	Numeric
IA338	Blank	Numeric
IA339	Interest Expense Total (Financial Services)	Numeric
IA340	Net Interest Income (Tax Equivalent)	Numeric
IA341	Non-performing Assets Total	Numeric
IA342	Provision for Loan/Asset Losses	Numeric
IA343	Reserve for Loan/Asset Losses	Numeric
IA344	Net Interest Margin	Numeric
IA345	Blank	Numeric
IA346	Blank	Numeric
IA347	Blank	Numeric
IA348	Risk-Adjusted Capital Ratio-Total	Numeric
IA349	Net Charge-Offs	Numeric
IA350	Blank	Numeric
IA351	Current Assets Discontinued Operations	Numeric
IA352	Other Intangibles	Numeric
IA353	Long-Term Assets of Discontinued Operations	Numeric
IA354	Other Current Assets Excluding Discontinued	Numeric
IA355	Other Assets Excluding Discontinued Operations	Numeric
IA356	Deferred Revenue Current	Numeric
IA357	Accumulated Other Comprehensive Income	Numeric
IA358	Deferred Compensation	Numeric
IA359	Other Stockholders' Equity Adjustments	Numeric
IA360	Acquisition/Merger Pretax	Numeric
IA361	Acquisition/Merger After-Tax	Numeric
IA362	Acquisition/Merger Basic EPS Effect	Numeric
IA363	Acquisition/Merger Diluted EPS Effect	Numeric
IA364	Gain/Loss Pretax	Numeric
IA365	Gain/Loss After-Tax	Numeric
IA366	Gain/Loss Basic EPS Effect	Numeric
IA367	Gain/Loss Diluted EPS Effect	Numeric
IA368	Impairments of Goodwill Pretax	

Table 33.28 continued

Fields	Label	Type
IA369	Impairments of Goodwill After-Tax	Numeric
IA370	Impairments of Goodwill Basic EPS Effect	Numeric
IA371	Impairments of Goodwill Diluted EPS Effect	Numeric
IA372	Settlement (Litigation /Insurance) Pretax	Numeric
IA373	Settlement (Litigation /Insurance) Aftertax	Numeric
IA374	Settlement (Litigation /Insurance) Basic EPS	Numeric
IA375	Settlement (Litigation /Insurance) Diluted EPS	Numeric
IA376	Restructuring Costs Pretax	Numeric
IA377	Restructuring Costs Aftertax	Numeric
IA378	Restructuring Costs Basic EPS Effect	Numeric
IA379	Restructuring Costs Diluted EPS Effect	Numeric
IA380	Writedowns Pretax	Numeric
IA381	Writedowns After-Tax	Numeric
IA382	Writedowns Basic EPS Effect	Numeric
IA383	Writedowns Diluted EPS Effect	Numeric
IA384	Other Special Items Pretax	Numeric
IA385	Other Special Items Aftertax	Numeric
IA386	Other Special Items Basic EPS Effect	Numeric
IA387	Other Special Items Diluted EPS Effect	Numeric
IA388	In Process Research \& Development	Numeric
IA389	Thereafter Rent Commitments	Numeric
IA390	Accumulated Depreciation of Real Estate Property	Numeric
IA391	Total Real Estate Property	Numeric
IA392	Gain/Loss on Sale of Property	Numeric
IA393	Depreciation and Amortization of Property	Numeric
IA394	Goodwill Amortization	Numeric
IA395	See Footnote for 394	Numeric
IA396	Common Shares Issued	Numeric
IA397	Deferred Revenue Long-Term	Numeric
IA398	Stock Compensation Expense	Numeric
IA399	Implied Option Expense	Numeric
IA400	Blank	Numeric

## IQITEMS Data Set—Quarterly Data Items

Table 33.29 IQITEMS Data Set—Quarterly Data Items

Fields	Label	Type
GVKEY	GVKEY	Numeric
CRSPDT	CRSP Date	Numeric
RCALDT	Raw Calendar Trading Date	Numeric
FISCALDT	Fiscal Trading Date	Numeric
IQ1	Selling, General, and Administrative Expense	Numeric
IQ2	Sales (Net)	Numeric
IQ3	Minority Interest (Income Account)	Numeric

Table 33.29 continued

Fields	Label	Type
IQ4	Research and Development Expense	Numeric
IQ5	Depreciation and Amortization (Income Statement)	Numeric
IQ6	Income Taxes-Total	Numeric
IQ7	Earnings Per Share (Diluted)-Including Extraordinary Items	Numeric
IQ8	Income Before Extraordinary Items	Numeric
IQ9	Earnings Per Share (Diluted)-Excluding Extraordinary Items	Numeric
IQ10	Income Before Extraordinary Items-Adj for Com Stk Equiv Dollar Savings	Numeric
IQ11	Earnings Per Share (Basic)—Including Extraordinary Items	Numeric
IQ12	Price-Close 1st Month of Quarter	Numeric
IQ13	Price-Close 2nd Month of Quarter	Numeric
IQ14	Price-Close 3rd Month of Quarter	Numeric
IQ15	Common Shares Used to Calculate Earnings per Share (Basic)	Numeric
IQ16	Dividends per Share by Ex-Date	Numeric
IQ17	Adjustment Factor Cumulative by Ex-Date	Numeric
IQ18	Common Shares Traded	Numeric
IQ19	Earnings Per Share (Basic)—Excluding Extraordinary Items	Numeric
IQ20	Dividends-Common Indicated Annual	Numeric
IQ21	Operating Income Before Depreciation	Numeric
IQ22	Interest Expense	Numeric
IQ23	Pretax Income	Numeric
IQ24	Dividends-Preferred	Numeric
IQ25	Income Before Extraordinary Items Available for Common	Numeric
IQ26	Extraordinary Items and Discontinued Operations	Numeric
IQ27	Earnings Per Share (Basic) Excluding Extraordinary Items 12 Mo Moving	Numeric
IQ28	Common Shares Used to Calculate Earnings Per Share-12 Month Moving	Numeric
IQ29	Interest Income Total (Financial Services)	Numeric
IQ30	Cost of Goods Sold	Numeric
IQ31	Non-operating Income (Expense)	Numeric
IQ32	Special Items	Numeric
IQ33	Discontinued Operations	Numeric
IQ34	Foreign Currency Adjustment (Income Account)	Numeric
IQ35	Deferred Taxes (Income Account)	Numeric
IQ36	Cash and Short Term Investments	Numeric
IQ37	Receivables-Total	Numeric
IQ38	Inventories-Total	Numeric
IQ39	Current Assets-Other	Numeric
IQ40	Current Assets-Total	Numeric
IQ41	Depreciation, Depletion and Amortization (Accumulated) (Balance Sheet)	Numeric
IQ42	Property, Plant, and Equipment-Total (Net)	Numeric
IQ43	Assets-Other	Numeric
IQ44	Assets-Total/Liabilities and Stockholders Equity-Total	Numeric

Table 33.29 continued

Fields	Label	Type
IQ45	Debt in Current Liabilities	Numeric
IQ46	Accounts Payable	Numeric
IQ47	Income Taxes Payable	Numeric
IQ48	Current Liabilities Other	Numeric
IQ49	Current Liabilities Total	Numeric
IQ50	Liabilities-Other	Numeric
IQ51	Long-Term Debt-Total	Numeric
IQ52	Deferred Taxes and Investment Tax Credit (Balance Sheet)	Numeric
IQ53	Minority Interest (Balance Sheet)	Numeric
IQ54	Liabilities-Total	Numeric
IQ55	Preferred Stock Carrying Value	Numeric
IQ56	Common Stock	Numeric
IQ57	Capital Surplus	Numeric
IQ58	Retained Earnings	Numeric
IQ59	Common Equity-Total	Numeric
IQ60	Stockholders' Equity Total	Numeric
IQ61	Common Shares Outstanding	Numeric
IQ62	Invested Capital Total	Numeric
IQ63	Price-High 1st Month of Quarter	Numeric
IQ64	Price--High 2nd Month of Quarter	Numeric
IQ65	Price-High 3rd Month of Quarter	Numeric
IQ66	Price-Low 1st Month of Quarter	Numeric
IQ67	Price-Low 2nd Month of Quarter	Numeric
IQ68	Price-Low 3rd Month of Quarter	Numeric
IQ69	Net Income (Loss)	Numeric
IQ70	Interest Expense Total (Financial Services)	Numeric
IQ71	Preferred Stock Redeemable	Numeric
IQ72	Dividends per Share by Payable Date	Numeric
IQ73	Working Capital Change Other—Increase (Decrease) (Stmnt of	Numeric
IQ74	Changes)	
IQ75	Cash \& Cash Equivalents Increase (Decrease) (Statement of Cash	Numeric
IQ76	Flows)	
IQ77	Changes in Current Deb (Statement of Cash Flows)	Numeric
IQ78	Income Before Extraordinary Items (Statement of Cash Flows)	Numeric
IQ79	Depreciation and Amortization (Statement of Cash Flows)	Numeric
Extraordinary Items \& Discontinued Operation (Statement of Cash	Numeric	
IQ80	Flows)	
IQ81	Deferred Taxes (Statement of Cash Flows)	Numeric
IQ82	Equity in Net Loss (Earnings) (Statement of Cash Flows)	Numeric
IQ83	Funds from Operations Other (Statement of Cash Flows)	Numeric
IQ84	Funds from Operation Total (Statement of Charges)	Numeric
	Sale of Property, Plant and Equipment (Statement of Cash Flows)	Numeric
IQ5	Sale of Common and Preferred Stock (Statement of Cash Flows)	Numeric
Long-Term Debt Issuance (Statement of Cash Flows)	Numeric	

Table 33.29 continued

Fields	Label	Type
IQ87	Sources of Funds Other (Statement of Changes)	Numeric
IQ88	Sources of Funds Total (Statement of Changes)	Numeric
IQ89	Cash Dividends (Statement of Cash Flows)	Numeric
IQ90	Capital Expenditures (Statement of Cash Flows)	Numeric
IQ91	Increase in Investment (Statement of Cash Flows)	Numeric
IQ92	Long-Term Debt Reduction (Statement of Cash Flows)	Numeric
IQ93	Purchase of Common and Preferred Stock (Statement of Cash Flows)	Numeric
IQ94	Acquisitions (Statement of Cash Flows)	Numeric
IQ95	Uses of Funds-Other (Statement of Changes)	Numeric
IQ96	Uses of Funds-Total (Statement of Changes)	Numeric
IQ97	Net Interest Income (Tax Equivalent)	Numeric
IQ98	Treasury Stock Total Dollar Amount	Numeric
IQ99	Non-Performing Assets Total	Numeric
IQ100	Adjustment Factor (Cumulative) by Payable Date	Numeric
IQ101	Working Capital Change Total (Statement of Changes)	Numeric
IQ102	Sale of Prop, Plnt, \& Equip \& Sale of Invs Loss(Gain) (Stmt of Csh Flo)	Numeric
IQ103	Accounts Receivable Decrease (Increase) (Statement of Cash Flows)	Numeric
IQ104	Inventory-Decrease (Increase) (Statement of Cash Flows)	Numeric
IQ105	Accounts Payable \& Accrued Liabilities Inc (Decrease) (St Cash Flows)	Numeric
IQ106	Income Taxes-Accrued Increase (Decrease) (Statement of Cash Flows)	Numeric
IQ107	Assets and Liabilities Other (Net Change) (Statement of Cash Flows)	Numeric
IQ108	Operating Activities Net Cash Flow (Statement of Cash Flows)	Numeric
IQ109	Short-Term Investments Change (Statement of Cash Flows)	Numeric
IQ110	Investing Activities Other (Statement of Cash Flows)	Numeric
IQ111	Investing Activities Net Cash Flow (Statement of Cash Flows)	Numeric
IQ112	Financing Activities Other (Statement of Cash Flows)	Numeric
IQ113	Financing Activities Net Cash Flow (Statement of Cash Flows)	Numeric
IQ114	Exchange Rate Effect (Statement of Cash Flows)	Numeric
IQ115	Interest Paid-Net (Statement of Cash Flows)	Numeric
IQ116	Income Taxes Paid (Statement of Cash Flows)	Numeric
IQ117	Accounting Changes Cumulative Effect	Numeric
IQ118	Property, Plant and Equipment-Total (Gross)	Numeric
IQ119	Extraordinary Items	Numeric
IQ120	Common Stock Equivalents Dollar Savings	Numeric
IQ121	Currency Translation Rate	Numeric
IQ122	Accounts Payable Expanded	Numeric
IQ123	Blank	Numeric
IQ124	Common Shares for Diluted EPS	Numeric
IQ125	Dilution Adjustment	Numeric

Table 33.29 continued

Fields	Label	Type
IQ126	Dilution Available Excluding	Numeric
IQ127..IQ170	Blank	Numeric
IQ171	Provision for Loan/Asset Losses	Numeric
IQ172	Reserve for Loan/Asset Losses	Numeric
IQ173	Net Interest Margin	Numeric
IQ174	Risk-Adjusted Capital Ratio-Tier 1	Numeric
IQ175	Risk-Adjusted Capital Ratio-Total	Numeric
IQ176	Net Charge-Offs	Numeric
IQ177	Earnings per Share from Operations	Numeric
IQ178	Earnings per Share from Operations	Numeric
IQ179	Earnings per Share (Diluted)-Excluding Extraordinary Items 12	Numeric
	Mo Mov	
IQ180	Earnings per Share from Operations (Diluted) 12 Months Moving	Numeric
IQ181	Earnings per Share from Operations (Diluted)	Numeric
IQ182..IQ232	Blank	Numeric
IQ233	Total Long-Term Investments	Numeric
IQ234	Goodwill	Numeric
IQ235	Other Intangibles	Numeric
IQ236	Other Long-Term Assets	Numeric
IQ237	Unadjusted Retained Earnings	Numeric
IQ238	Accumulated Other Comprehensive Income	Numeric
IQ239	Deferred Compensation	Numeric
IQ240	Other Stockholders' Equity Adjustments	Numeric
IQ241	Acquisition/Merger Pretax	Numeric
IQ242	Acquisition/Merger After-Tax	Numeric
IQ243	Acquisition/Merger Basic EPS Effect	Numeric
IQ244	Acquisition/Merger Diluted EPS Effect	Numeric
IQ245	Gain/Loss Pretax	Numeric
IQ246	Gain/Loss After-Tax	Numeric
IQ247	Gain/Loss Diluted EPS Effect	Numeric
IQ248	Gain/Loss Basic EPS Effect	Numeric
IQ249	Impairments of Goodwill Pretax	Numeric
IQ250	Impairments of Goodwill After-Tax	Numeric
IQ251	Impairments of Goodwill Basic EPS Effect	Numeric
IQ252	Impairments of Goodwill Diluted EPS Effect	Numeric
IQ253	Settlement (Litigation/Insurance) Pretax	Numeric
IQ254	Settlement (Litigation/Insurance) Aftertax	Numeric
IQ255	Settlement (Litigation/Insurance) Basic EPS	Numeric
IQ256	Settlement (Litigation/Insurance)Diluted EP	Numeric
IQ257	Restructuring Costs Pretax	Numeric
IQ258	Restructuring Costs Aftertax	Numeric
IQ259	Restructuring Costs Basic EPS Effect	Numeric
IQ260	Restructuring Costs Diluted EPS Effect	Numeric
IQ261	Writedowns Pretax	IQ262

Table 33.29 continued

Fields	Label	Type
IQ263	Writedowns Basic EPS Effect	Numeric
IQ264	Writedowns Diluted EPS Effect	Numeric
IQ265	Other Special Items Pretax	Numeric
IQ266	Other Special Items Aftertax	Numeric
IQ267	Other Special Items Basic EPS Effect	Numeric
IQ268	Other Special Items Diluted EPS Effect	Numeric
IQ269	Accumulated Depreciation of Real Estate Property	Numeric
IQ270	Total Real Estate Property	Numeric
IQ271	Gain/Loss on Sale of Property	Numeric
IQ272	Depreciation and Amortization of Property	Numeric
IQ273	ADR Ratio	Numeric
IQ274	In Process Research \& Development	Numeric
IQ275	Goodwill Amortization	Numeric
IQ276	See Footnote for 275	Numeric
IQ277	Common Shares Issued	Numeric
IQ278	Stock Compensation Expense	Numeric
IQ279	Blank	Numeric
IQ280	Blank	Numeric

## BAITEMS Data Set—Bank Annual Data Items

Table 33.30 BAITEMS Data Set-Bank Annual Data Items

Fields	Label	Type
GVKEY	GVKEY	Numeric
CRSPDT	CRSP Date	Numeric
RCALDT	Raw Calendar Trading Date	Numeric
FISCALDT	Fiscal Trading Date	Numeric
BA1	Cash and Due from Bank	Numeric
BA2	U.S. Treasury Securities	Numeric
BA3	Securities of Other U.S. Government Agencies and Corporations	Numeric
BA4	Due from Banks (Memorandum Entry)	Numeric
BA5	Other Securities (Taxable)	Numeric
BA6	Total Taxable Investment Securities	Numeric
BA7	Obligations of States and Political Subdivisions	Numeric
BA8	Total Investment Securities	Numeric
BA9	Geographic Designation Code	Numeric
BA10	Trading Account Securities	Numeric
BA11	Federal Funds Sold and Securities Purchased under Agreements to	Numeric
	Resell	
BA12	Treasury Stock-Dollar Amount-Common	Numeric
BA13	Foreign Loans	Numeric
BA14	Real Estate Loans Total	Numeric
BA15	Real Estate Loans Insured or Guaranteed by U.S. Government	Numeric
BA16	Treasury Stock Dollar Amount Preferred	Numeric
BA17	Loans to Financial Institutions	Numeric

Table 33.30 continued

Fields	Label	Type
BA18	Loans for Purchasing or Carrying Securities	Numeric
BA19	Interest Income Total (Financial Services)	Numeric
BA20	Commercial or Industrial Loans	Numeric
BA21	Loans to Individuals for Household, Family, Other Consumer Ex-	Numeric
	penditures	
BA22	Other Loans	Numeric
BA23	Loans (Gross)	Numeric
BA24	Unearned Discount/	Numeric
BA25	Income Interest on Due from Banks (Restated)	Numeric
BA26	Interest Income on Fed Funds Sold \& Secs Purchased under Agmnt	Numeric
	to Resell	
BA27	Other Interest Income (Restated)	Numeric
BA28	Bank Premises, Furniture, and Fixture	Numeric
BA29	Real Estate Other than Bank Premises	Numeric
BA30	Investments in Nonconsolidated Subsidiaries	Numeric
BA31	Direct Lease Financing	Numeric
BA32	Customers' Liability to this Bank on Acceptances Outstanding	Numeric
BA33	Other Assets	Numeric
BA34	Intangible Assets	Numeric
BA35	Aggregate Miscellaneous Assets	Numeric
BA36	Total Assets (Gross)	Numeric
BA37	Trading Account Income (Restated)	Numeric
BA38	Other Current Operating Revenue (Restated)	Numeric
BA39	Interest Expense on Fed Funds Purch'd \& Secs Sold under Agmnts	Numeric
	to Repur	
BA40	Assets Held for Sale	Numeric
BA41	Total Demand Deposits	Numeric
BA42	Net Interest Margin	Numeric
BA43	Consumer Type Time Deposit	Numeric
BA44	Total Savings Deposits	Numeric
BA45	Money Market Certificates of Deposit	Numeric
BA46	All Other Time Deposit	Numeric
BA47	Total Time Deposits (Other than Savings)	Numeric
BA48	Risk-Adjusted Capital Ratio - Tier 1	Numeric
BA49	Interest on Long-Term Debt and Not Classified as Capital (Restated)	Numeric
BA50	Interest on Other Borrowed Money (Restated)	Numeric
BA51	Other Interest Expense (Restated)	Numeric
BA52	Salaries and Related Expenses (Restated)	Numeric
BA53	Total Deposits Worldwide	Numeric
BA54	Total Domestic Deposits	Numeric
BA55	Total Foreign Deposits	Numeric
BA56	Demand Deposits of IPC	Numeric
BA57	Time and Savings Deposits of IPC	Numeric
BA58	Deposits of U.S. Government	Numeric
BA59	Deposits of States and Political Subdivisions	
BA		

Table 33.30 continued

Fields	Label	Type
BA60	Deposits of Foreign Governments	Numeric
BA61	Deposits of Commercial Banks	Numeric
BA62	Certified and Officers Checks	Numeric
BA63	Other Deposits	Numeric
BA64	Risk-Adjusted Capital Ratio-Total	Numeric
BA65	Federal Funds Purchased \& Securities Sold under Agreements to Repurchase	Numeric
BA66	Commercial Paper	Numeric
BA67	Long-Term Debt Not Classified as Capital	Numeric
BA68	Other Liabilities for Borrowed Money	Numeric
BA69	Total Borrowings	Numeric
BA70	Valuation Portion of Reserve for Loan Losses	Numeric
BA71	Mortgage Indebtedness	Numeric
BA72	Acceptances Executed by or for the Account of this Bank and Outstanding	Numeric
BA73	Other Liabilities (Excluding Valuation Reserves)	Numeric
BA74	Deferred Portion of Reserve for Loan Losses	Numeric
BA75	Contingency Portion of Reserve for Loan Losses	Numeric
BA76	Total Liabilities (Excluding Valuation Reserves)	Numeric
BA77	Minority Interest in Consolidated Subsidiaries	Numeric
BA78	Reserve(s) for Bad Debt Losses on Loans	Numeric
BA79	Depreciation and Amortization	Numeric
BA80	Reserves on Securities	Numeric
BA81	Total Reserves on Loan and Securities	Numeric
BA82	Fixed Expense (Occupancy and Equipment - Net)(Restated)	Numeric
BA83	Other Current Operating Expense(Restated)	Numeric
BA84	Capital Notes and Debentures	Numeric
BA85	Minority Interest (Income Account)(Restated)	Numeric
BA86	Preferred Stock Par Value	Numeric
BA87	Number of Shares of Preferred Stock Outstanding	Numeric
BA88	Common Stock Par Value	Numeric
BA89	Number of Shares Authorized	Numeric
BA90	Number of Shares Outstanding	Numeric
BA91	Number of Shares Reserved for Conversion	Numeric
BA92	Treasury Stock-Cost	Numeric
BA93	Number of Treasury Shares Held	Numeric
BA94	Special Items	Numeric
BA95	Surplus	Numeric
BA96	Undivided Profits	Numeric
BA97	Reserves for Contingencies and Other Capital Reserves	Numeric
BA98	Total Extraordinary Items-Net of Taxes (Restated)	Numeric
BA99	Total Book Value	Numeric
BA100	Net Income Per Share Excluding Extraordinary Items (Restated)	Numeric
BA101	Total Liabilities, Reserves and Capital Accounts	Numeric
BA102	Total Capital Accounts and Minority Interest (Invested Capital)	Numeric

Table 33.30 continued

Fields	Label	Type
BA103	Net Current Op Erngs Per Share-Excluding Extraordinary Items Fully	Numeric
BA104	Foreign Exchange Gains and Losses	Numeric
BA105	Interest and Fees on Loans	Numeric
BA106	Interest Inc on Federal Funds Sold \& Secs Purchased und Agmnts to Resell	Numeric
BA107	Blank	Numeric
BA108	Interest and Discount on U.S. Treasury Securities	Numeric
BA109	Interest on Securities of U.S. Government Agencies and Corporations	Numeric
BA110	Interest and Dividends on Other Taxable Securities	Numeric
BA111	Total Taxable Investment Revenue	Numeric
BA112	Interest on Obligation of States \& Political Subdivisions	Numeric
BA113	Other Interest Income	Numeric
BA114	Trading Account Interest (Memorandum Entry)	Numeric
BA115	Total Interest and Dividends on Investment	Numeric
BA116	Aggregate Loan and Investment Revenue	Numeric
BA117	Trust Department Income	Numeric
BA118	Service Charges on Deposit Accounts	Numeric
BA119	Other Svce Charges, Collection \& Exchange Charges, Comms \& Fees	Numeric
BA120	Trading Account Income	Numeric
BA121	Other Current Operating Revenue	Numeric
BA122	Interest on Due from Banks	Numeric
BA123	Aggregate Other Current Operating Revenue	Numeric
BA124	Total Current Operating Revenue	Numeric
BA125	Number of Employees	Numeric
BA126	Salaries and Wages of Officers and Employees	Numeric
BA127	Pension and Employee Benefits	Numeric
BA128	Average Fed Funds Purch'd \& Securities Sold under Agmnts to Repurchase	Numeric
BA129	Interest on Deposits	Numeric
BA130	Interest Exp on Fed Fnds Purch'd \& Securities Sold under Agmnts to Repur	Numeric
BA131	Interest on Borrowed Money	Numeric
BA132	Interest on Long-Term Debt-Not Classified as Capital	Numeric
BA133	Total Interest on Deposits and Borrowing	Numeric
BA134	Interest on Capital Notes and Debentures	Numeric
BA135	Provision for Loan Losses	Numeric
BA136	Occupancy Expense of Bank Premises-Net	Numeric
BA137	Total Interest Expense	Numeric
BA138	Rental Income	Numeric
BA139	Furniture and Equipment Depreciation, Rental Cost, Servicing, Etc.	Numeric
BA140	Number of Employees(Restated)	Numeric
BA141	Number of Domestic Officers (Restated)	Numeric

Table 33.30 continued

Fields	Label	Type
BA142	Other Current Operating Expense	Numeric
BA143	Aggregate Other Current Operating Expense	Numeric
BA144	Total Current Operating Expense	Numeric
BA145	Current Operating Earnings before Income Tax	Numeric
BA146	Income Taxes Applicable to Current Operating Earnings	Numeric
BA147	Net Current Operating Earnings	Numeric
BA148	Minority Interest (Income Account)	Numeric
BA149	Net Current Operating Earnings after Minority Interest	Numeric
BA150	Average Cash and Due from Banks (Restated)	Numeric
BA151	Average Loans Domestic (Restated)	Numeric
BA152	Average Loans Foreign (Restated)	Numeric
BA153	Net Pre-Tax Profit or Loss on Securities Sold or Redeemed	Numeric
BA154	Average Fed Fnds Sold \& Secs Purchased under Agmnts to Resell (Rest)	Numeric
BA155	Average Trading Account Securities(Restated)	Numeric
BA156	Average Deposits(Restated)	Numeric
BA157	Tax Effect on Profit or Loss on Securities Sold or Redeemed	Numeric
BA158	Net Aft-Tax Profit/Loss on Secs Sld or Redmd Prior to Eff of Min Int	Numeric
BA159	Minority Interest in Aft-Tax Profit/Loss on Securities Sold or Redeemed	Numeric
BA160	Net After-Tax \& Aft-Min Int Profit/Loss on Secs Sld or Redeemed	Numeric
BA161	Net Income	Numeric
BA162	Preferred Dividend Deductions	Numeric
BA163	Savings Due to Common Stock Equivalents	Numeric
BA164	Net Income Available for Common	Numeric
BA165	Net Current Operating Earnings Available for Common	Numeric
BA166	Interest and Fees on Loans (Restated)	Numeric
BA167	Taxable Investment Income (Restated)	Numeric
BA168	Non-Taxable Investment Income (Restated)	Numeric
BA169	Total Interest Income (Restated)	Numeric
BA170	Trust Department Income (Restated)	Numeric
BA171	Total Current Operating Revenue (Restated)	Numeric
BA172	Interest on Deposits (Restated)	Numeric
BA173	Total Interest on Deposits and Borrowing (Restated)	Numeric
BA174	Interest on Capital Notes and Debentures (Restated)	Numeric
BA175	Total Interest Expense (Restated)	Numeric
BA176	Provision for Loan Losses (Restated)	Numeric
BA177	Cash Dividends Declared on Common Stock	Numeric
BA178	Cash Dividends Declared on Preferred Stock	Numeric
BA179	Total Current Operating Expense (Restated)	Numeric
BA180	Current Operating Earnings before Income Tax (Restated)	Numeric
BA181	Income Taxes Applicable to Current Operating Earnings (Restated)	Numeric
BA182	Net After-Tax \& Aft-Min Int Profit/Loss on Secs Sld/Redeemed (Rest)	Numeric

Table 33.30 continued

Fields	Label	Type
BA183	Net Income (Restated)	Numeric
BA184	Net Current Operating Earnings Per Share (Restated)	Numeric
BA185	Total Extraordinary Items Net of Taxes	Numeric
BA186	Common Shares Used in Calculating Earnings Per Shares (Restated)	Numeric
BA187	Additions to Reserves for Bad Debts Due to Mergers and Absorptions	Numeric
BA188	Additions to Reserves for Bad Debts Due to Recoveries Credt'd to Rsrvs	Numeric
BA189	Deductions from Reserves for Bad Debts Due to Losses Charged to Reserves	Numeric
BA190	Net Credit/Charge to Reserves for Bad Debts from Loan Recs or Chg-offs	Numeric
BA191	Transfers to Reserves for Bad Debts from Inc and/or to/from Undiv Prfts	Numeric
BA192	Average Preferred Stoc Par Value (Restated)	Numeric
BA193	Net Current Operating Earnings Per Share Excluding Extraordinary Items	Numeric
BA194	Net Income per Share Excluding Extraordinary Items	Numeric
BA195	Net Income per Share Including Extraordinary Items	Numeric
BA196	Common Shares Used in Calculating Earnings per Share	Numeric
BA197	Net Cur Op Earnings per Shares - Exc Extraordinary Items \& Fully Diluted	Numeric
BA198	Net Income per Share Excluding Extraordinary Items-Fully Diluted	Numeric
BA199	Net Income per Share Including Extraordinary Items-Fully Diluted	Numeric
BA200	Common Shares Used in Calculating Fully Diluted Earnings per Share	Numeric
BA201	Common Dividends Paid per Share by Ex-Date	Numeric
BA202	Annualized Dividend Rate	Numeric
BA203	Market Price-High	Numeric
BA204	Market Price-Low	Numeric
BA205	Market Price-Close	Numeric
BA206	Common Shares Traded	Numeric
BA207	Average Reserve for Bad Debt Losses on Loans(Restated)	Numeric
BA208	Number of Domestic Offices	Numeric
BA209	Number of Foreign Offices	Numeric
BA210	Average Loans(Restated)	Numeric
BA211	Average Assets (Gross)	Numeric
BA212	Average Loans (Gross)	Numeric
BA213	Average Cash and Due from Banks	Numeric
BA214	Average Taxable Investments	Numeric
BA215	Average Non-Taxable Investments	Numeric
BA216	Average Deposits	Numeric
BA217	Average Deposits Time and Savings	Numeric
BA218	Average Deposits Demand	Numeric

Table 33.30 continued

Fields	Label	Type
BA219	Average Borrowings	Numeric
BA220	Average Fed Funds Sold \& Secs Purchased under Agrmnts to Resell	Numeric
BA221	Average Book Value	Numeric
BA222	Average Fed Funds Purch'd \& Secs Sold under Agmnts to Repur-   chase	Numeric
BA223	Average Taxable Investments (Restated)	Numeric
BA224	Average Nontaxable Investments	Numeric
BA225	Average Assets(Restated)	Numeric
BA226	Average Deposits Time and Savings(Restated)	Numeric
BA227	Average Deposits Demand (Restated)	Numeric
BA228	Average Deposits Foreign (Restated)	Numeric
BA229	Average Borrowings (Restated)	Numeric
BA230	Average Long-Term Debt (Restated)	Numeric
BA231	Average Book Value (Restated)	Numeric
BA232	Adjustment Factor Cumulative by Ex-Date	Numeric

## BQITEMS Data Set—Bank Quarterly Data Items

Table 33.31 BQITEMS Data Set—Bank Quarterly Data Items

Fields	Label	Type
GVKEY	GVKEY	Numeric
CRSPDT	CRSP Date	Numeric
RCALDT	Raw Calendar Trading Date	Numeric
FISCALDT	Fiscal Trading Date	Numeric
BQ1	Cash and Due from Banks	Numeric
BQ2	U.S. Treasury Securities	Numeric
BQ3	Securities of Other U.S. Government Agencies and C	Numeric
BQ4	Due from Banks (Memorandum Entry)	Numeric
BQ5	Other Securities (Taxable)	Numeric
BQ6	Total Taxable Investment Securities	Numeric
BQ7	Obligations of States and Political Subdivisions	Numeric
BQ8	Total Investment Securities	Numeric
BQ9	Geographic Designation Code	Numeric
BQ10	Trading Account Securities	Numeric
BQ11	Federal Funds Sold \& Secs Purch'd under Agrmnts to	Numeric
BQ12	S\&P Senior Debt Rating	Numeric
BQ13	Unearned Discount/Income	Numeric
BQ14	Loans (Gross)	Numeric
BQ15	Treasury Stock Dollar Amount-Common	Numeric
BQ16	Treasury Stock-Dollar Amount-Preferred	Numeric
BQ17	Interest Income Total (Financial Services)	Numeric
BQ18	Assets Held for Sale	Numeric
BQ19	Bank Premises, Furniture, and Fixtures	Numeric
BQ20	Real Estate Other than Bank Premises	Numeric

Table 33.31 continued

Fields	Label	Type
BQ21	Investments in Nonconsolidated Subsidiaries	Numeric
BQ22	Direct Lease Financing	Numeric
BQ23	Customer's Liability to this Bank on Acceptances	Numeric
BQ24	Other Assets	Numeric
BQ25	Intangible Assets	Numeric
BQ26	Aggregate Miscellaneous Assets	Numeric
BQ27	Total Assets (Gross)	Numeric
BQ28	Net Interest Margin	Numeric
BQ29	Risk-Adjusted Capital Ratio-Tier 1	Numeric
BQ30	Total Demand Deposits	Numeric
BQ31	Average Investments	Numeric
BQ32	Average Loans (Gross)	Numeric
BQ33	Total Savings Deposits	Numeric
BQ34	Average Assets (Gross)	Numeric
BQ35	Average Deposits Demand	Numeric
BQ36	Total Time Deposits (Other than Savings)	Numeric
BQ37	Average Deposits Time and Savings	Numeric
BQ38	Average Deposits	Numeric
BQ39	Average Deposits Foreign	Numeric
BQ40	Average Borrowings	Numeric
BQ41	Average Total Stockholders' Equity	Numeric
BQ42	Total Deposits Worldwide	Numeric
BQ43	Total Domestic Deposit	Numeric
BQ44	Total Foreign Deposits	Numeric
BQ45	Risk-Adjusted Capital Ratio-Total	Numeric
BQ46	Federal Funds Purchased \& Secs Sold under Agrmnts	Numeric
BQ47	Commercial Paper	Numeric
BQ48	Long-Term Debt-Not Classified as Capital	Numeric
BQ49	Other Liabilities for Borrowed Money	Numeric
BQ50	Total Borrowings	Numeric
BQ51	Depreciation and Amortization	Numeric
BQ52	Mortgage Indebtedness	Numeric
BQ53	Acceptances Executed by or for Account of this Ban	Numeric
BQ54	Other Liabilities (Excluding Valuation Reserves)	Numeric
BQ55	Special Items	Numeric
BQ56	Blank	Numeric
BQ57	Total Liabilities (Excluding Valuation Reserves)	Numeric
BQ58	Minority Interest in Consolidated Subsidiaries	Numeric
BQ59	Reserve(s) for Bad Debt Losses on Loans	Numeric
BQ60	Valuation Portion of Reserves for Loan Losses	Numeric
BQ61	Deferred Portion of Reserve for Loan Losses	Numeric
BQ62	Contingency Portion of Reserve for Loan Losses	Numeric
BQ63	Blank	Numeric
BQ64	Capital Notes and Debentures	BQ65

Table 33.31 continued

Fields	Label	Type
BQ66	Preferred Stock Par Value	Numeric
BQ67	Common Stock Par Value	Numeric
BQ68	Number of Shares Outstanding	Numeric
BQ69	Surplus	Numeric
BQ70	Undivided Profits	Numeric
BQ71	Reserves for Contingencies \& Other Capital Reserve	Numeric
BQ72	Blank	Numeric
BQ73	Total Book Value	Numeric
BQ74	Blank	Numeric
BQ75	Total Liabilities, Reserves and Capital Accounts	Numeric
BQ76	Total Capital Accounts and Minority Interest (Invested Capital)	Numeric
BQ77	Report Date of Quarterly Earnings Per Share	Numeric
BQ78	Interest and Fees on Loans	Numeric
BQ79	Interest Inc on Fed Funds Sld \& Secs Purchased under Agrmnts to	Numeric
	Resell	
BQ80	Blank	Numeric
BQ81	Interest and Discount on U.S. Treasury Securities	Numeric
BQ82	Interest on Securities of U.S. Government Agencies	Numeric
BQ83	Interest and Dividends on Other Taxable Securities	Numeric
BQ84	Total Taxable Investment Revenue	Numeric
BQ85	Interest on Obligation of States and Political Subdivisions	Numeric
BQ86	Foreign Exchange Gains and Losses	Numeric
BQ87	Total Interest and Dividends on Investments	Numeric
BQ88	Other Interest Income	Numeric
BQ89	Trust Department Income	Numeric
BQ90	Service Charges on Deposit Accounts	Numeric
BQ91	Other Svce Charges, Collections \& Exchange Charges	Numeric
BQ92	Trading Account Income	Numeric
BQ93	Other Current Operating Revenue	Numeric
BQ94	Interest on Due from Banks	Numeric
BQ95	Aggregate Other Current Operating Revenue	Numeric
BQ96	Total Current Operating Revenue	Numeric
BQ97	Salaries and Wages of Officers and Employees	Numeric
BQ98	Pension and Employee Benefits	Numeric
BQ99	Blank	Numeric
BQ100	Interest on Deposits	Numeric
BQ101	Interest Expense on Fed Funds Purchased \& Secs Sld	Numeric
BQ102	Interest on Other Borrowed Money	Numeric
BQ103	Interest on Long-Term Debt-Not Classified as Cap	Numeric
BQ104	Total Interest Expense	Numeric
BQ105	Interest on Capital Notes and Debentures	Numeric
BQ106	Provision for Loan Losses	Numeric
BQ107	Occupancy Expense of Bank Premises-Net	Numeric
BQ108	Furniture and Equipment:Depreciation Rental, Costs, Servicing,	Numeric
	Etc.	

Table 33.31 continued

Fields	Label	Type
BQ109	Blank	Numeric
BQ110	Other Current Operating Expense	Numeric
BQ111	Aggregate Other Current Operating Expense	Numeric
BQ112	Total Current Operating Expense	Numeric
BQ113	Current Operating Earnings before Income Tax	Numeric
BQ114	Income Taxes Applicable to Current Operating Earnings	Numeric
BQ115	Net Current Operating Earnings	Numeric
BQ116	Minority Interest (Income Account)	Numeric
BQ117	Net Current Operating Earnings after Minority Interest	Numeric
BQ118	Net Pre-Tax Profit or Loss on Securities Sold or Redeemed	Numeric
BQ119	Blank	Numeric
BQ120	Blank	Numeric
BQ121	Tax Effect on Profit or Loss on Securities Sold or Redeemed	Numeric
BQ122	Minority Interest in After-Tax Profit or Loss on Sec sold or Redeemed	Numeric
BQ123	Net After-Tax \& After-Min Int Profit or Loss on Secs Sld or Redeemed	Numeric
BQ124	Net Income	Numeric
BQ125	Preferred Dividend Deductions	Numeric
BQ126	Savings Due to Common Stock Equivalents	Numeric
BQ127	Net Income Available for Common	Numeric
BQ128	Net Current Operating Earnings Available for Common	Numeric
BQ129	Cash Dividends Declared on Common Stock	Numeric
BQ130	Cash Dividends Declared on Preferred Stock	Numeric
BQ131	Net After-Tax Transfers bet Undivided Profits \& Valuation Reserves	Numeric
BQ132	Total Extraordinary Items Net of Taxes	Numeric
BQ133	Net Credit or Charge to Reserves for Bad Debts for Loan Recs or Crg-Offs	Numeric
BQ134	Blank	Numeric
BQ135	Common Dividends Paid per Share by Payable Date	Numeric
BQ136	Adjustment Factor Cumulative by Payable Date	Numeric
BQ137	Net Current Operating Earnings per Share Excluding Extraordinary Items	Numeric
BQ138	Net Income per Share Excluding Extraordinary Items	Numeric
BQ139	Net Income per Share Including Extraordinary Items	Numeric
BQ140	Common Shares Used in Calculating Quarterly Earnings per Share	Numeric
BQ141	Net Cur Op Erns per Share-Excluding Extraordinary Items 12 Mo Moving	Numeric
BQ142	Net Income per Share Excluding Extraordinary Items 12 Mo Moving	Numeric
BQ143	Net Income per Share Including Extraordinary Items 12 Mo Moving	Numeric
BQ144	Common Shares Used in Calculating 12 Mo Moving Earnings per Share	Numeric
BQ145	Net Current Op Earngs per Share-Extraordinary	Numeric
BQ146	Net Income per Share Excluding Extraordinary Items Fully Diluted	Numeric

Table 33.31 continued

Fields	Label	Type
BQ147	Net Income per Share Including Extraordinary Items Fully Diluted	Numeric
BQ148	Common Shares Used in Calculating Quartly Fully Diluted Earnings per Shr	Numeric
BQ149	Net Cur Op Erngs/Share Ex Extrd Items Fully Diluted 12 Mo Mov	Numeric
BQ150	Net Inc/Share Excldg Extraordinary Items-Fully	Numeric
BQ151	Net Inc per Share Inc Extraordinary Items-Fully Diluted-12 Mo Mov	Numeric
BQ152	Common Shrs Used in Calc 12 Mo Moving Fully Diluted 12 Mo Mov	Numeric
BQ153	Market Price 1st Month of Quarter High	Numeric
BQ154	Market Price 1st Month of Quarter Low	Numeric
BQ155	Market Price 1st Month of Quarter Close	Numeric
BQ156	Market Price 2nd Month of quarter High	Numeric
BQ157	Market Price 2nd Month of Quarter Low	Numeric
BQ158	Market Price 2nd Month of Quarter Close	Numeric
BQ159	Market Price 3rd Month of quarter High	Numeric
BQ160	Market Price 3rd Month of Quarter Low	Numeric
BQ161	Market Price 3rd Month of Quarter Close	Numeric
BQ162	Common Dividends Paid per Share by Ex-Date	Numeric
BQ163	Annualized Dividend Rate	Numeric
BQ164	Common Shares Traded (Quarterly)	Numeric
BQ165	Adjustment Factor Cumulative by Ex-Date	Numeric

## Time Series Data Sets

Table 33.32 Time Series Data Sets

Data Set	Fields	Label	Type
PRCH	GVKEY	GVKEY	Numeric
High Price	CALDT	Calendar Trading Date	Numeric
Time Series	PRCH	High Price	Numeric
PRCL	GVKEY	GVKEY	Numeric
Low Price	CALDT	Calendar Trading Date	Numeric
Time Series	PRCL	Low Price	Numeric
PRCC	GVKEY	GVKEY	Numeric
Closing Price	CALDT	Calendar Trading Date	Numeric
Time Series	PRCC	Closing Price	Numeric
DIV	GVKEY	GVKEY	Numeric
Dividends Per Share	CALDT	Calendar Trading Date	Numeric
Time Series	DIV	Dividends Per share	Numeric
ERN	GVKEY	GVKEY	Numeric
Earnings Per Share	CALDT	Calendar Trading Date	Numeric
Time Series	ERN	Earnings Per Share	Numeric
SHSTRD	GVKEY	GVKEY	Numeric
Shares Traded	CALDT	Calendar Trading Date	Numeric

Table 33.32 continued

Data Set	Fields	Label	Type
Time Series	SHSTRD	Shares Traded	Numeric
DIVRTE	GVKEY	GVKEY	Numeric
Annualized Dividend	CALDT	Calendar Trading Date	Numeric
Rate Time Series	DIVRTE	Annual'd Dividend Rate	Numeric
RAWADJ	GVKEY	GVKEY	Numeric
Adjustment Factor	CALDT	Calendar Trading Date	Numeric
Time Series	RAWADJ	Raw Adjustment Factor	Numeric
CUMADJ	GVKEY	GVKEY	Numeric
Cumulative Adjustment	CALDT	Calendar Trading Date	Numeric
Factor Time Series	CUMADJ	Cumulative Adjustment Factor	Numeric
BKV	GVKEY	GVKEY	Numeric
Book Value Per Share	CALDT	Calendar Trading Date	Numeric
Time Series	BKV	Book Value Per Share	Numeric
CHEQVM	GVKEY	GVKEY	Numeric
Cash Equivalent	CALDT	Calendar Trading Date	Numeric
Distribution	CHECQVM	Cash Equivalent Distributions	Numeric
CSHOQ	GVKEY	GVKEY	Numeric
Common Share	CALDT	Calendar Trading Date	Numeric
Outstanding	CSHOQ	Common Shares Outstanding	Numeric
NAVM	GVKEY	GVKEY	Numeric
Net Asset Value	CALDT	Calendar Trading Date	Numeric
Time Series	NAVM	Net Asset Value	Numeric
OEPS12	GVKEY	GVKEY	Numeric
Earnings/Share	CALDT	Calendar Trading Date	Numeric
From Operations	OEPS12	Earnings/Share from Operations	Numeric
GICS	GVKEY	GVKEY	Numeric
Global Industry Class	CALDT	Calendar Trading Date	Numeric
Standard Code	GICS	Global Industry Class. Std. code	Numeric
CPSPIN	GVKEY	GVKEY	Numeric
S\&P Index Primary	CALDT	Calendar Trading Date	Numeric
Marker Time Series	CPSPIN	S\&P Index Primary Marker	Character
DIVFT	GVKEY	GVKEY	Numeric
Dividends per	CALDT	Calendar Trading Date	Numeric
Share Footnotes	DIVFT	Dividends per share footnotes	Character
RAWADJFT	GVKEY	GVKEY	Numeric
Raw Adjustment	CALDT	Calendar Trading Date	Numeric
Factor Footnotes	RAWADJFT	Raw adjustment factor footnotes	Character
COMSTAFT	GVKEY	GVKEY	Numeric
Comparability Status	CALDT	Calendar Trading Date	Numeric
Footnotes	COMSTAFT	Comparability status footnotes	Character
ISAFT	GVKEY	GVKEY	Numeric
Issue Status Alert	CALDT	Calendar Trading Date	Numeric
Footnotes	ISAFT	Issue status alert footnotes	Character

## SEGSRC Data Set—Operating Segment Source History

Table 33.33 SEGSRC Data Set-Operating Segment Source History

Fields	Label	Type
GVKEY	GVKEY	Numeric
SRCYR	Segment Source year	Numeric
SRCFYR	Segment Source fiscal year end month	Numeric
CALYR	Calendar Year	Numeric
RCST1	Reserved 1	Numeric
SSRCE	Source Document code	Character
SUCODE	Update code	Character
CURCD	ISO currency code	Character
SRCCUR	Source ISO currency code	Character
HNAICS	Segment Primary historical NAICS	Character

## SEGPROD Data Set—Operating Segment Products History

Table 33.34 SEGPROD Data Set—Operating Segment Products History

Fields	Label	Type
GVKEY	GVKEY	Numeric
SRCYR	Segment Source year	Numeric
SRCFYR	Segment Source fiscal year end month	Numeric
CALYR	Calendar Year	Numeric
PDID	Product Identifier	Numeric
PSID	Segment Link segment identifier	Numeric
PSALE	External Revenues	Numeric
RCST1	Reserved 1	Numeric
PNAICS	Product NAICS code	Character
PSTYPE	Segment link segment type	Character
PNAME	Product Name	Character

## SEGCUST Data Set—Operating Segment Customer History

Table 33.35 SEGCUST Data Set—Operating Segment Customer History

Fields	Label	Type
GVKEY	GVKEY	Numeric
SRCYR	Segment Source year	Numeric
SRCFYR	Segment Source fiscal year end month	Numeric
CALYR	Calendar Year	Numeric
CDID	Customer Identifier (cio)	Numeric
CSID	Segment Link segment identifier	Numeric
CSALE	Customer Revenues	Numeric
RCST1	Reserved 1	Numeric
CTYPE	Customer type	Character

Table 33.35 continued

Fields	Label	Type
CGEOCD	Geographic area code	Character
CGEOAR	Geographic area type	Character
CSTYPE	Segment link - segment type	Character
CNAME	Customer Name	Character

## SEGDTL Data Set—Operating Segment Detail History

Table 33.36 SEGDTL Data Set—Operating Segment Detail History

Fields	Label	Type
GVKEY	GVKEY	Numeric
SRCYR	Segment Source year	Numeric
SRCFYR	Segment Source fiscal year end month	Numeric
CALYR	Calendar Year	Numeric
SID	Segment Identifier	Numeric
RCST1	Reserved 1	Numeric
STYPE	Segment type	Character
SOPTP1	Operating segment type 1	Character
SOPTP2	Operating segment type 2	Character
SGEOTP	Geographic segment type	Character
SNAME	Segment Name	Character

## SEGNAICS Data Set—Operating Segment NAICS History

Table 33.37 SEGNAICS Data Set-Operating Segment NAICS History

Fields	Label	Type
GVKEY	GVKEY	Numeric
SRCYR	Segment Source year	Numeric
SRCFYR	Segment Source fiscal year end month	Numeric
CALYR	Calendar Year	Numeric
SID	Segment Identifier	Numeric
RANK	Ranking	Numeric
SIC	Segment SIC Code	Numeric
RST1	Reserved 1	Numeric
SNAICS	Segment NAICS code	Character
STYPE	Segment type	Character

## SEGGEO Data Set-Geographic Segment History

Table 33.38 SEGGEO Data Set-Geographic Segment History

Fields	Label	Type
GVKEY	GVKEY	Numeric

Table 33.38 continued

Fields	Label	Type
SRCYR	Segment Source year	Numeric
SRCFYR	Segment Source fiscal year end month	Numeric
CALYR	Calendar Year	Numeric
SID	Segment Identifier	Numeric
RCST1	Reserved 1	Numeric
STYPE	Segment type	Character
SGEOCD	Geographic area code	Character
SGEOTP	Geographic segment type	Character

## SEGCUR Data Set-Segment Currency Data

Table 33.39 SEGCUR Data Set—Segment Currency Data

Fields	Label	Type
GVKEY	GVKEY	Numeric
DATYR	Segment Data year (year)	Numeric
DATFYR	Segment Data fiscal year end month (fyr)	Numeric
CALYR	Segment Calendar Year (cyr)	Numeric
SRCYRFYR	Segment Source year and source fiscal (fyr)	Numeric
XRATE	Period end exchange rate	Numeric
XRATE12	12-month moving Exchange rate	Numeric
SRCCUR	Source currency code	Character
CURCD	ISO Currency code (USD)	Character

## SEGITM Data Set—Segment Item Data

Table 33.40 SEGITM Data Set—Segment Item Data

Fields	Label	Type
GVKEY	GVKEY	Numeric
DATYR	Data year (year)	Numeric
FISCYR	Data Fiscal year end month (fyr)	Numeric
SRCYR	Source year	Numeric
SRCFYR	Source fiscal year end month	Numeric
CALYR	Data calendar year (cyr)	Numeric
SID	Segment Identifier	Numeric
EMP	Employees	Numeric
SALE	Net Sales	Numeric
OIBD	Operating income before depreciation	Numeric
DP	Depreciation and amortization	Numeric
OIAD	Operating income after depreciation	Numeric
CAPX	Capital expenditures	Numeric
IAT	Identifiable/total Assets	Numeric
EQEARN	Equity in earnings	Numeric
INVEQ	Investments at equity	Numeric

Table 33.40 continued

Fields	Label	Type
RD	Research and development	Numeric
OBKLG	Order backlog	Numeric
EXPORTS	Export sales	Numeric
INTSEG	Intersegment eliminations	Numeric
OPINC	Operating profit	Numeric
PI	Pretax income	Numeric
IB	Income Before Extraordinary Items	Numeric
NI	Net Income (loss)	Numeric
RCST1	Reserved 1	Numeric
RCST2	Reserved 2	Numeric
RCST3	Reserved 3	Numeric
SALEF	Footnote 1—sales	Character
OPINCF	Footnote 2-operating profit	Character
CAPXF	Footnote 3-capital expenditures	Character
EQEARNF	Footnote 4-equity in earnings	Character
EMPF	Footnote 5-employees	Character
RDF	Footnote 6-research and development	Character
STYPE	Segment type	Character

## Available CRSP Indices Data Sets

## INDHEAD Data Set—CRSP Index Header Data

Table 33.41 INDHEAD Data Set-CRSP Index Header Data

Fields	Label	Type
INDNO	Permanent index identification number	Numeric
INDCO	Permanent index group identification number	Numeric
PRIMFLAG	Index primary link	Numeric
PORTNUM	Portfolio number if subset series	Numeric
INDNAME	Index Name	Character
GROUPNAM	Index Group Name	Character

## REBAL Data Set—Index Rebalancing History Arrays

Table 33.42 REBAL Data Set-Index Rebalancing History Arrays

Fields	Label	Type
INDNO	INDNO	Numeric
RBEGDT	Rebalancing beginning date	Numeric
RENDDT	Rebalancing ending date	Numeric
USDCNT	Count used as of rebalancing	Numeric
MAXCNT	Maximum count during period	Numeric

Table 33.42 continued

Fields	Label	Type
TOTCNT	Available count as of rebalancing	Numeric
ENDCNT	Count at end of period	Numeric
MINID	Identifier at minimum value	Numeric
MAXID	Identifier at maximum value	Numeric
MINSTA	Smallest statistic in period	Numeric
MAXSTA	Largest statistic in period	Numeric
MEDSTA	Median statistic in period	Numeric
AVGSTA	Average statistic in period	Numeric

## REBAL Group Data Set—Index Rebalancing History Group Array

Table 33.43 REBAL Group Data Set-Index Rebalancing History Group Array

Fields	Label	Type
INDNO	INDNO	Numeric
RBEGDT1	Rebalancing beginning date for port 1	Numeric
RBEGDT2	Rebalancing beginning date for port 2	Numeric
RBEGDT3	Rebalancing beginning date for port 3	Numeric
RBEGDT4	Rebalancing beginning date for port 4	Numeric
RBEGDT5	Rebalancing beginning date for port 5	Numeric
RBEGDT6	Rebalancing beginning date for port 6	Numeric
RBEGDT7	Rebalancing beginning date for port 7	Numeric
RBEGDT8	Rebalancing beginning date for port 8	Numeric
RBEGDT9	Rebalancing beginning date for port 9	Numeric
RBEGDT10	Rebalancing beginning date for port 10	Numeric
RENDDT1	Rebalancing ending date for port 1	Numeric
RENDDT2	Rebalancing ending date for port 2	Numeric
RENDDT3	Rebalancing ending date for port 3	Numeric
RENDDT4	Rebalancing ending date for port 4	Numeric
RENDDT5	Rebalancing ending date for port 5	Numeric
RENDDT6	Rebalancing ending date for port 6	Numeric
RENDDT7	Rebalancing ending date for port 7	Numeric
RENDDT8	Rebalancing ending date for port 8	Numeric
RENDDT9	Rebalancing ending date for port 9	Numeric
RENDDT10	Rebalancing ending date for port 10	Numeric
USDCNT1	Count used as of rebalancing for port 1	Numeric
USDCNT2	Count used as of rebalancing for port 2	Numeric
USDCNT3	Count used as of rebalancing for port 3	Numeric
USDCNT4	Count used as of rebalancing for port 4	Numeric
USDCNT5	Count used as of rebalancing for port 5	Numeric
USDCNT6	Count used as of rebalancing for port 6	Numeric
USDCNT7	Count used as of rebalancing for port 7	Numeric
USDCNT8	Count used as of rebalancing for port 8	Numeric
USDCNT9	Count used as of rebalancing for port 9	Numeric
USDCNT10	Count used as of rebalancing for port10	Numeric

Table 33.43 continued

Fields	Label	Type
MAXCNT1	Maximum count during period for port 1	Numeric
MAXCNT2	Maximum count during period for port 2	Numeric
MAXCNT3	Maximum count during period for port 3	Numeric
MAXCNT4	Maximum count during period for port 4	Numeric
MAXCNT5	Maximum count during period for port 5	Numeric
MAXCNT6	Maximum count during period for port 6	Numeric
MAXCNT7	Maximum count during period for port 7	Numeric
MAXCNT8	Maximum count during period for port 8	Numeric
MAXCNT9	Maximum count during period for port 9	Numeric
MAXCNT10	Maximum count during period for port 10	Numeric
TOTCNT1	Available count as of rebalancing for port 1	Numeric
TOTCNT2	Available count as of rebalancing for port 2	Numeric
TOTCNT3	Available count as of rebalancing for port 3	Numeric
TOTCNT4	Available count as of rebalancing for port 4	Numeric
TOTCNT5	Available count as of rebalancing for port 5	Numeric
TOTCNT6	Available count as of rebalancing for port 6	Numeric
TOTCNT7	Available count as of rebalancing for port 7	Numeric
TOTCNT8	Available count as of rebalancing for port 8	Numeric
TOTCNT9	Available count as of rebalancing for port 9	Numeric
TOTCNT10	Available count as of rebalancing for port10	Numeric
ENDCNT1	Count at end of period for port 1	Numeric
ENDCNT2	Count at end of period for port 2	Numeric
ENDCNT3	Count at end of period for port 3	Numeric
ENDCNT4	Count at end of period for port 4	Numeric
ENDCNT5	Count at end of period for port 5	Numeric
ENDCNT6	Count at end of period for port 6	Numeric
ENDCNT7	Count at end of period for port 7	Numeric
ENDCNT8	Count at end of period for port 8	Numeric
ENDCNT9	Count at end of period for port 9	Numeric
ENDCNT10	Count at end of period for port 10	Numeric
MINID1	Identifier at minimum value for port 1	Numeric
MINID2	Identifier at minimum value for port 2	Numeric
MINID3	Identifier at minimum value for port 3	Numeric
MINID4	Identifier at minimum value for port 4	Numeric
MINID5	Identifier at minimum value for port 5	Numeric
MINID6	Identifier at minimum value for port 6	Numeric
MINID7	Identifier at minimum value for port 7	Numeric
MINID8	Identifier at minimum value for port 8	Numeric
MINID9	Identifier at minimum value for port 9	Numeric
MINID10	Identifier at minimum value for port 10	Numeric
MAXID1	Identifier at maximum value for port 1	Numeric
MAXID2	Identifier at maximum value for port 2	Numeric
MAXID3	Identifier at maximum value for port 3	Numeric
MAXID4	Identifier at maximum value for port 4	Numeric
MAXID5	Identifier at maximum value for port 5	Numeric

Table 33.43 continued

Fields	Label	Type
MAXID6	Identifier at maximum value for port 6	Numeric
MAXID7	Identifier at maximum value for port 7	Numeric
MAXID8	Identifier at maximum value for port 8	Numeric
MAXID9	Identifier at maximum value for port 9	Numeric
MAXID10	Identifier at maximum alue for port 10	Numeric
MINSTA1	Smallest statistic in period for port 1	Numeric
MINSTA2	Smallest statistic in period for port 2	Numeric
MINSTA3	Smallest statistic in period for port 3	Numeric
MINSTA4	Smallest statistic in period for port 4	Numeric
MINSTA5	Smallest statistic in period for port 5	Numeric
MINSTA6	Smallest statistic in period for port 6	Numeric
MINSTA7	Smallest statistic in period for port 7	Numeric
MINSTA8	Smallest statistic in period for port 8	Numeric
MINSTA9	Smallest statistic in period for port 9	Numeric
MINSTA10	Smallest statistic in period for port 10	Numeric
MAXSTA1	Largest statistic in period for port 1	Numeric
MAXSTA2	Largest statistic in period for port 2	Numeric
MAXSTA3	Largest statistic in period for port 3	Numeric
MAXSTA4	Largest statistic in period for port 4	Numeric
MAXSTA5	Largest statistic in period for port 5	Numeric
MAXSTA6	Largest statistic in period for port 6	Numeric
MAXSTA7	Largest statistic in period for port 7	Numeric
MAXSTA8	Largest statistic in period for port 8	Numeric
MAXSTA9	Largest statistic in period for port 9	Numeric
MAXSTA10	Largest statistic in period for port 10	Numeric
MEDSTA1	Median statistic in period for port 1	Numeric
MEDSTA2	Median statistic in period for port 2	Numeric
MEDSTA3	Median statistic in period for port 3	Numeric
MEDSTA4	Median statistic in period for port 4	Numeric
MEDSTA5	Median statistic in period for port 5	Numeric
MEDSTA6	Median statistic in period for port 6	Numeric
MEDSTA7	Median statistic in period for port 7	Numeric
MEDSTA8	Median statistic in period for port 8	Numeric
MEDSTA9	Median statistic in period for port 9	Numeric
MEDSTA10	Median statistic in period for port 10	Numeric
AVGSTA1	Average statistic in period for port 1	Numeric
AVGSTA2	Average statistic in period for port 2	Numeric
AVGSTA3	Average statistic in period for port 3	Numeric
AVGSTA4	Average statistic in period for port 4	Numeric
AVGSTA5	Average statistic in period for port 5	Numeric
AVGSTA6	Average statistic in period for port 6	Numeric
AVGSTA7	Average statistic in period for port 7	Numeric
AVGSTA8	Average statistic in period for port 8	Numeric
AVGSTA9	Average statistic in period for port 9	Numeric
AVGSTA10	Average statistic in period for port 10	Numeric

## LIST Data Set—Index Membership List Arrays

Table 33.44 LIST Data Set—Index Membership List Arrays

Fields	Label	Type
INDNO	INDNO	Numeric
PERMNO	Issue identifier	Numeric
BEGDT	First date included	Numeric
ENDDT	Last date included	Numeric
SUBIND	Code for subcategory of list	Numeric
WEIGHT	Weight during range	Numeric

## LIST Group Data Set—Index Membership List Group Arrays

Table 33.45 LIST Group Data Set—Index Membership List Group Arrays

Fields	Label	Type
INDNO	INDNO	Numeric
PERMNO1	Issue identifier	Numeric
BEGDT1	First date included	Numeric
ENDDT1	Last date included	Numeric
SUBIND1	Code for subcategory of list	Numeric
WEIGHT1	Weight during range	Numeric

## USDCNT Data Set—Portfolio Used Count Array

Table 33.46 USDCNT Data Set—Portfolio Used Count Array

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
USDCNT	Portfolio Used Count	Numeric

## TOTCNT Data Set—Portfolio Total Count Array

Table 33.47 TOTCNT Data Set—Portfolio Total Count Array

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TOTCNT	Portfolio Used Count	Numeric

USDCNT Group Data Set—Portfolio Used Time Series Group

Table 33.48 USDCNT Group Data Set—Portfolio Used Time Series Group

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
USDCNT1	Used Count for Port 1	Numeric
USDCNT2	Used Count for Port 2	Numeric
USDCNT3	Used Count for Port 3	Numeric
USDCNT4	Used Count for Port 4	Numeric
USDCNT5	Used Count for Port 5	Numeric
USDCNT6	Used Count for Port 6	Numeric
USDCNT7	Used Count for Port 7	Numeric
USDCNT8	Used Count for Port 8	Numeric
USDCNT9	Used Count for Port 9	Numeric
USDCNT10	Used Count for Port 10	Numeric
USDCNT11	Used Count for Port 11	Numeric
USDCNT12	Used Count for Port 12	Numeric
USDCNT13	Used Count for Port 13	Numeric
USDCNT14	Used Count for Port 14	Numeric
USDCNT15	Used Count for Port 15	Numeric
USDCNT16	Used Count for Port 16	Numeric
USDCNT17	Used Count for Port 17	Numeric

TOTCNT Group Data Set—Portfolio Total Count Time Series Groups

Table 33.49 TOTCNT Group Data Set—Portfolio Total Count Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TOTCNT1	Total Count for Port 1	Numeric
TOTCNT2	Total Count for Port 2	Numeric
TOTCNT3	Total Count for Port 3	Numeric
TOTCNT4	Total Count for Port 4	Numeric
TOTCNT5	Total Count for Port 5	Numeric
TOTCNT6	Total Count for Port 6	Numeric
TOTCNT7	Total Count for Port 7	Numeric
TOTCNT8	Total Count for Port 8	Numeric
TOTCNT9	Total Count for Port 9	Numeric
TOTCNT10	Total Count for Port10	Numeric
TOTCNT11	Total Count for Port11	Numeric
TOTCNT12	Total Count for Port12	Numeric
TOTCNT13	Total Count for Port13	Numeric
TOTCNT14	Total Count for Port14	Numeric
TOTCNT15	Total Count for Port15	Numeric
TOTCNT16	Total Count for Port16	Numeric

Table 33.49 continued

Fields	Label	Type
TOTCNT17	Total Count for Port17	Numeric

## USDVAL Data Set—Portfolio Used Value Array

Table 33.50 USDVAL Data Set—Portfolio Used Value Array

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
USDVAL	Portfolio Used Value	Numeric

## TOTVAL Data Set—Portfolio Total Value Array

Table 33.51 TOTVAL Data Set—Portfolio Total Value Array

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TOTVAL	Portfolio Total Value	Numeric

## USDVAL Group Data Set—Portfolio Used Value Time Series Groups

Table 33.52 USDVAL Group Data Set—Portfolio Used Value Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
USDVAL1	Used Value for Port 1	Numeric
USDVAL2	Used Value for Port 2	Numeric
USDVAL3	Used Value for Port 3	Numeric
USDVAL4	Used Value for Port 4	Numeric
USDVAL5	Used Value for Port 5	Numeric
USDVAL6	Used Value for Port 6	Numeric
USDVAL7	Used Value for Port 7	Numeric
USDVAL8	Used Value for Port 8	Numeric
USDVAL9	Used Value for Port 9	Numeric
USDVAL10	Used Value for Port 10	Numeric
USDVAL11	Used Value for Port 11	Numeric
USDVAL12	Used Value for Port 12	Numeric
USDVAL13	Used Value for Port 13	Numeric
USDVAL14	Used Value for Port 14	Numeric
USDVAL15	Used Value for Port 15	Numeric
USDVAL16	Used Value for Port 16	Numeric
USDVAL17	Used Value for Port 17	Numeric

## TOTVAL Group Data Set—Portfolio Total Value Time Series Groups

Table 33.53 TOTVAL Group Data Set—Portfolio Total Value Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TOTVAL1	Total Value for Port 1	Numeric
TOTVAL2	Total Value for Port 2	Numeric
TOTVAL3	Total Value for Port 3	Numeric
TOTVAL4	Total Value for Port 4	Numeric
TOTVAL5	Total Value for Port 5	Numeric
TOTVAL6	Total Value for Port 6	Numeric
TOTVAL7	Total Value for Port 7	Numeric
TOTVAL8	Total Value for Port 8	Numeric
TOTVAL9	Total Value for Port 9	Numeric
TOTVAL10	Total Value for Port10	Numeric
TOTVAL11	Total Value for Port11	Numeric
TOTVAL12	Total Value for Port12	Numeric
TOTVAL13	Total Value for Port13	Numeric
TOTVAL14	Total Value for Port14	Numeric
TOTVAL15	Total Value for Port15	Numeric
TOTVAL16	Total Value for Port16	Numeric
TOTVAL17	Total Value for Port17	Numeric

## TRET Data Set-Total Returns Time Series

Table 33.54 TRET Data Set-Total Returns Time Series

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TRET	Total Returns	Numeric

## ARET Data Set—Appreciation Returns Time Series

Table 33.55 ARET Data Set—Appreciation Returns Time Series

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
ARET	Appreciation Returns Time Series	Numeric

## IRET Data Set-Income Returns Time Series

Table 33.56 IRET Data Set-Income Returns Time Series

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
IRET	Income Returns	Numeric

## TRET Group Data Set-Total Returns Time Series Groups

Table 33.57 TRET Group Data Set—Total Returns Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TRET1	Total Returns for Port 1	Numeric
TRET2	Total Returns for Port 2	Numeric
TRET3	Total Returns for Port 3	Numeric
TRET4	Total Returns for Port 4	Numeric
TRET5	Total Returns for Port 5	Numeric
TRET6	Total Returns for Port 6	Numeric
TRET7	Total Returns for Port 7	Numeric
TRET8	Total Returns for Port 8	Numeric
TRET9	Total Returns for Port 9	Numeric
TRET10	Total Returns for Port 10	Numeric
TRET11	Total Returns for Port 11	Numeric
TRET12	Total Returns for Port 12	Numeric
TRET13	Total Returns for Port 13	Numeric
TRET14	Total Returns for Port 14	Numeric
TRET15	Total Returns for Port 15	Numeric
TRET16	Total Returns for Port 16	Numeric
TRET17	Total Returns for Port 17	Numeric

## ARET Group Data Set—Appreciation Returns Time Series Groups

Table 33.58 ARET Group Data Set—Appreciation Returns Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
ARET1	Appreciation Returns for Port 1	Numeric
ARET2	Appreciation Returns for Port 2	Numeric
ARET3	Appreciation Returns for Port 3	Numeric
ARET4	Appreciation Returns for Port 4	Numeric
ARET5	Appreciation Returns for Port 5	Numeric
ARET6	Appreciation Returns for Port 6	Numeric

Table 33.58 continued

Fields	Label	Type
ARET7	Appreciation Returns for Port 7	Numeric
ARET8	Appreciation Returns for Port 8	Numeric
ARET9	Appreciation Returns for Port 9	Numeric
ARET10	Appreciation Returns for Port 10	Numeric
ARET11	Appreciation Returns for Port 11	Numeric
ARET12	Appreciation Returns for Port 12	Numeric
ARET13	Appreciation Returns for Port 13	Numeric
ARET14	Appreciation Returns for Port 14	Numeric
ARET15	Appreciation Returns for Port 15	Numeric
ARET16	Appreciation Returns for Port 16	Numeric
ARET17	Appreciation Returns for Port 17	Numeric

## IRET Group Data Set—Income Returns Time Series Groups

Table 33.59 IRET Group Data Set—Income Returns Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
IRET1	Income Returns for Port 1	Numeric
IRET2	Income Returns for Port 2	Numeric
IRET3	Income Returns for Port 3	Numeric
IRET4	Income Returns for Port 4	Numeric
IRET5	Income Returns for Port 5	Numeric
IRET6	Income Returns for Port 6	Numeric
IRET7	Income Returns for Port 7	Numeric
IRET8	Income Returns for Port 8	Numeric
IRET9	Income Returns for Port 9	Numeric
IRET10	Income Returns for Port 10	Numeric
IRET11	Income Returns for Port 11	Numeric
IRET12	Income Returns for Port 12	Numeric
IRET13	Income Returns for Port 13	Numeric
IRET14	Income Returns for Port 14	Numeric
IRET15	Income Returns for Port 15	Numeric
IRET16	Income Returns for Port 16	Numeric
IRET17	Income Returns for Port 17	Numeric

TIND Data Set-Total Return Index Levels Time Series

Table 33.60 TIND Data Set—Total Return Index Levels Time Series

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TIND	Total Return Index Levels	Numeric

## AIND Data Set—Appreciation Index Levels Time Series

Table 33.61 AIND Data Set—Appreciation Index Levels Time Series

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
AIND	Appreciation Index Levels	Numeric

## IIND Data Set-Income Index Levels Time Series

Table 33.62 IIND Data Set-Income Index Levels Time Series

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
IIND	Income Index Levels	Numeric

## TIND Group Data Set—Total Return Index Levels Time Series Groups

Table 33.63 TIND Group Data Set—Total Return Index Levels Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
TIND1	Total Return Index Levels for Port 1	Numeric
TIND2	Total Return Index Levels for Port 2	Numeric
TIND3	Total Return Index Levels for Port 3	Numeric
TIND4	Total Return Index Levels for Port 4	Numeric
TIND5	Total Return Index Levels for Port 5	Numeric
TIND6	Total Return Index Levels for Port 6	Numeric
TIND7	Total Return Index Levels for Port 7	Numeric
TIND8	Total Return Index Levels for Port 8	Numeric
TIND9	Total Return Index Levels for Port 9	Numeric
TIND10	Total Return Index Levels for Port 10	Numeric
TIND11	Total Return Index Levels for Port 11	Numeric
TIND12	Total Return Index Levels for Port 12	Numeric
TIND13	Total Return Index Levels for Port 13	Numeric
TIND14	Total Return Index Levels for Port 14	Numeric
TIND15	Total Return Index Levels for Port 15	Numeric
TIND16	Total Return Index Levels for Port 16	Numeric
TIND17	Total Return Index Levels for Port 17	Numeric

## AIND Group Data Set—Appreciation Index Levels Groups

Table 33.64 AIND Group Data Set—Appreciation Index Levels Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
AIND1	Appreciation Index Levels for Port 1	Numeric
AIND2	Appreciation Index Levels for Port 2	Numeric
AIND3	Appreciation Index Levels for Port 3	Numeric
AIND4	Appreciation Index Levels for Port 4	Numeric
AIND5	Appreciation Index Levels for Port 5	Numeric
AIND6	Appreciation Index Levels for Port 6	Numeric
AIND7	Appreciation Index Levels for Port 7	Numeric
AIND8	Appreciation Index Levels for Port 8	Numeric
AIND9	Appreciation Index Levels for Port 9	Numeric
AIND10	Appreciation Index Levels for Port 10	Numeric
AIND11	Appreciation Index Levels for Port 11	Numeric
AIND12	Appreciation Index Levels for Port 12	Numeric
AIND13	Appreciation Index Levels for Port 13	Numeric
AIND14	Appreciation Index Levels for Port 14	Numeric
AIND15	Appreciation Index Levels for Port 15	Numeric
AIND16	Appreciation Index Levels for Port 16	Numeric
AIND17	Appreciation Index Levels for Port 17	Numeric

## IIND Group Data Set—Income Index Levels Time Series Groups

Table 33.65 IIND Group Data Set—Income Index Levels Time Series Groups

Fields	Label	Type
INDNO	INDNO	Numeric
CALDT	Calendar Trading Date	Numeric
IIND1	Income Index Levels for Port 1	Numeric
IIND2	Income Index Levels for Port 2	Numeric
IIND3	Income Index Levels for Port 3	Numeric
IIND4	Income Index Levels for Port 4	Numeric
IIND5	Income Index Levels for Port 5	Numeric
IIND6	Income Index Levels for Port 6	Numeric
IIND7	Income Index Levels for Port 7	Numeric
IIND8	Income Index Levels for Port 8	Numeric
IIND9	Income Index Levels for Port 9	Numeric
IIND10	Income Index Levels for Port 10	Numeric
IIND11	Income Index Levels for Port 11	Numeric
IIND12	Income Index Levels for Port 12	Numeric
IIND13	Income Index Levels for Port 13	Numeric
IIND14	Income Index Levels for Port 14	Numeric
IIND15	Income Index Levels for Port 15	Numeric
IIND16	Income Index Levels for Port 16	Numeric

Table 33.65 continued

Fields	Label	Type
IIND17	Income Index Levels for Port 17	Numeric

## References

Center for Research in Security Prices (2003), CRSP/Compustat Merged Database Guide, Chicago: The University of Chicago Graduate School of Business.

Center for Research in Security Prices (2003), CRSP Data Description Guide, Chicago: The University of Chicago Graduate School of Business, [http://www.crsp.uchicago.edu/support/documentation/index.html].

Center for Research in Security Prices (2002), CRSP Programmer's Guide, Chicago: The University of Chicago Graduate School of Business,
[http://www.crsp.uchicago.edu/support/documentation/index.html].
Center for Research in Security Prices (2003), CRSPAccess Database Format Release Notes, Chicago: The University of Chicago Graduate School of Business, [http://www.crsp.uchicago.edu/support/documentation/index.html].

Center for Research in Security Prices (2003), CRSP Utilities Guide, Chicago: The University of Chicago Graduate School of Business, [http://www.crsp.uchicago.edu/support/documentation/index.html].

Center for Research in Security Prices (2002), CRSP SFA Guide, Chicago: The University of Chicago Graduate School of Business, [http://www.crsp.uchicago.edu/support/documentation/index.html].

## Acknowledgments

Many people have been instrumental in the development of the ETS Interface engine. The individuals listed here have been especially helpful.

Janet Eder, Center for Research in Security Prices, University of Chicago Graduate School of Business.

Ken Kraus, Center for Research in Security Prices, University of Chicago Graduate School of Business.

Bob Spatz, Center for Research in Security Prices, University of Chicago Graduate School of Business.

Rick Langston, SAS Institute, Cary, NC.

Kelly Fellingham, SAS Institute, Cary, NC.
Peng Zang, SAS Institute, Atlanta, GA.
The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.

## Chapter 34

## The SASEFAME Interface Engine

Contents
Overview: SASEFAME Interface Engine ..... 2290
Getting Started: SASEFAME Interface Engine ..... 2290
Structure of a SAS Data Set Containing Time Series Data ..... 2290
Reading and Converting FAME Database Time Series ..... 2290
Using the SAS DATA Step ..... 2291
Using SAS Procedures ..... 2291
Using the SAS Windowing Environment ..... 2291
Using Remote FAME Data Access ..... 2291
Creating Views of Time Series Using SASEFAME LIBNAME Options ..... 2292
Syntax: SASEFAME Interface Engine ..... 2292
The LIBNAME libref SASEFAME Statement ..... 2293
Details: SASEFAME Interface Engine ..... 2297
The SAS Output Data Set ..... 2297
Mapping FAME Frequencies to SAS Time Intervals ..... 2298
Examples: SASEFAME Interface Engine ..... 2299
Example 34.1: Converting an Entire FAME Database ..... 2300
Example 34.2: Reading Time Series from the FAME Database ..... 2303
Example 34.3: Writing Time Series to the SAS Data Set ..... 2304
Example 34.4: Limiting the Time Range of Data ..... 2307
Example 34.5: Creating a View Using the SQL Procedure and SASEFAME ..... 2311
Example 34.6: Reading Other FAME Data Objects with the FAMEOUT= Option ..... 2316
Example 34.7: Remote FAME Access Using FAME CHLI ..... 2319
Example 34.8: Selecting Time Series Using CROSSLIST= Option and KEEP Statement ..... 2319
Example 34.9: Selecting Time Series Using CROSSLIST= Option with a FAME Namelist of Tickers ..... 2322
Example 34.10: Selecting Time Series Using CROSSLIST= Option with IN- SET= and WHERE=TICK ..... 2325
Example 34.11: Selecting Series Using FAMEOUT= Option ..... 2327
References: SASEFAME Interface Engine ..... 2336
Acknowledgments ..... 2337

## Overview: SASEFAME Interface Engine

The SASEFAME interface engine enables SAS users to access and process time series, case series, and formulas residing in a FAME database, and provides a seamless interface between FAME and SAS data processing.

FAME (Financial Analytic Modeling Environment) is an integrated, front-to-back market data and historical database solution for storing and managing real-time and high-volume time series data that is used by leading institutions in the financial, energy, and public sectors, as well as third-party content aggregators, software vendors, and individual investors. FAME provides real-time market data feeds, a Web-based desktop solution, application hosting, data delivery components, and tools for performing analytic modeling.

The SASEFAME engine uses the LIBNAME statement to enable you to specify which time series you would like to read from the FAME database, and how you would like to convert the selected time series to the same time scale. The SAS DATA step can then be used to perform further subsetting and to store the resulting time series in a SAS data set. You can perform more analysis if desired either in the same SAS session or in another session at a later time.

SASEFAME for SAS 8.2 supports Windows, Solaris, AIX, and HP-UX hosts.
SASEFAME for SAS 9.2 supports Windows, Solaris, AIX, Linux, Linux Opteron, and HP-UX hosts.

## Getting Started: SASEFAME Interface Engine

## Structure of a SAS Data Set Containing Time Series Data

SAS requires time series data to be in a specific form recognizable by the SAS System. This form is a two-dimensional array, called a SAS data set, whose columns correspond to series variables and whose rows correspond to measurements of these variables at certain time periods. The time periods at which observations are recorded can be included in the data set as a time ID variable. The SASEFAME engine provides a time ID variable named DATE.

## Reading and Converting FAME Database Time Series

The SASEFAME engine supports reading and converting time series stored in FAME databases. The SASEFAME engine uses the FAME WORK database to temporarily store the converted time series. All series specified by the FAME wildcard are written to the FAME WORK database. For
conversion of very large databases, you may want to define the FAME_TEMP environment variable to point to a location where there is ample space for FAME WORK.

SASEFAME provides seamless access to FAME databases via FAME's C Host Language Interface (CHLI). The FAME CHLI does not support writing more than 2 gigabytes to the FAME WORK area, and when this happens SASEFAME will terminate with a system error. The SASEFAME engine finishes the CHLI whenever a fatal error occurs. To restart the engine after a fatal error, terminate the current SAS session and bring up a new SAS session.

## Using the SAS DATA Step

If desired, you can store the converted series in a SAS data set by using the SAS DATA step. You can also perform other operations on your data inside the DATA step. Once your data is stored in a SAS data set you can use it as you would any other SAS data set.

## Using SAS Procedures

You can print the output SAS data set by using the PRINT procedure and report information concerning the contents of your data set by using the CONTENTS procedure, as in Example 34.1. You can create a view of the FAME database by using the SQL procedure to create your view using the SASEFAME engine in your libref, along with the using clause. See Example 34.5.

## Using the SAS Windowing Environment

You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment by selecting the SASEFAME libref in the LIBNAME window that you have previously defined in your LIBNAME statement. You can view your SAS output observations by double-clicking on the desired output data set libref in the LIBNAME window of the SAS windowing environment. You can type Viewtable on the SAS command line to view any of your SASEFAME tables, views, or librefs both for input and output data sets.

## Using Remote FAME Data Access

The remote access feature of the SASEFAME interface uses the FAME CHLI to communicate with your remote FAME server, and it is available to licensed CHLI customers who have FAME CHLI on both the remote and client machines.

As shown in Example 34.7, you simply provide the frdb_m port number and node name of your FAME master server in your libref. For more details, refer to "Starting the Master Server" in the Guide to FAME Database Servers.

## Creating Views of Time Series Using SASEFAME LIBNAME Options

You can perform selection based on names of your time series simply by using FAME wildcard specifications in your SASEFAME WILDCARD= option.

You can limit the time span of time series data by specifying a begin and end date range in your SASEFAME RANGE= option.

It is also easy to use the SAS input data set INSET= option to create a specific view of your FAME data. Multiple views can be created by using multiple LIBNAME statements with customized options tailored to the unique view that you want to create.

The INSET variables define the BY variables that enable you to view cross sections or slices of your data. When used in conjunction with the WHERE clause and the CROSSLIST= option, SASEFAME can show any or all of your BY groups in the same view or in multiple views. The INSET= option is invalid without a WHERE clause specifying the BY variables you want to use in your view, and it must be used with the CROSSLIST= option, as shown in Example 34.10. The CROSSLIST= option can be used without using the INSET= option as shown in Example 34.8 and Example 34.9.

## Syntax: SASEFAME Interface Engine

The SASEFAME engine uses standard engine syntax. Options used by SASEFAME are summarized in Table 34.1.

Table 34.1 Summary of LIBNAME libref SASEFAME Statement

Option	Description
CONVERT $=$	specifies the FAME frequency and the FAME technique   specifies a FAME wildcard to match data object series   names within the FAME database, which limits the selec-   nion of time series that are included in the SAS data set   RANGE $=$   INSET $=$   specifies the range of data to keep in format 'ddmonyyyy'd
- 'ddmonyyyy'd	
uses a SAS data set named setname and/or WHERE=	
FAMEOUT $=$	FAME namelist as selection input for BY variables such   as tickers or issues stored in a FAME string case series   specifies a FAME crosslist namelist to perform selection   based on the crossproduct of two FAME namelists   specifies the FAME data object class/type you want output   to the SAS data set

## The LIBNAME libref SASEFAME Statement

## LIBNAME libref SASEFAME 'physical name' options ;

Since physical name specifies the location of the folder where your FAME database resides, it should end in a backslash if you are in a Windows environment, or a forward slash if you are in a UNIX environment.

If you are accessing a remote FAME database by using FAME CHLI, you can use the following syntax for physical name:
'\#port_number@hostname physical_path_name'
The following options can be used in the LIBNAME libref SASEFAME statement.

## CONVERT=( FREQ=fame_frequency TECH=fame_technique)

specifies the FAME frequency and the FAME technique just as you would in the FAME CONVERT function. There are four possible values for fame_technique: CONSTANT (default), CUBIC, DISCRETE, or LINEAR. All FAME frequencies except PPY and YPP are supported by the SASEFAME engine.

For a more complete discussion of FAME frequencies and SAS time intervals, see the section "Mapping FAME Frequencies to SAS Time Intervals" on page 2298. For all possible fame_frequency values, refer to "Understanding Frequencies" in the User's Guide to FAME. For example:

```
LIBNAME libref sasefame 'physical-name'
 CONVERT=(TECH=CONSTANT FREQ=TWICEMONTHLY);
```


## WILDCARD="fame_wildcard"

By default, the SASEFAME engine reads all time series in the FAME database that you name in your SASEFAME libref. You can limit the time series read from the FAME database by specifying the WILDCARD= option in your LIBNAME statement. The fame_wildcard is a quoted string containing the FAME wildcard you want to use. The wildcard is used for matching against the data object names of series you want to select from the FAME database that resides in the library you are assigning.

For more information about wildcarding, see "Specifying Wildcards" in the User's Guide to FAME.

For example, to read all time series in the TEST library being accessed by the SASEFAME engine, you would specify

```
LIBNAME test sasefame 'physical name of test database'
 WILDCARD="?";
```

To read series with names such as A_DATA, B_DATA, or C_DATA, you could specify

```
LIBNAME test sasefame 'physical name of test database'
 WILDCARD="^_DATA";
```

When you use the WILDCARD= option, you are limiting the number of series that are read and converted to the desired frequency. This option can help you save resources when processing large databases or when processing a large number of observations, such as daily or hourly frequencies. Since the SASEFAME engine uses the FAME WORK database to store the converted time series, using wildcards is recommended to prevent your WORK space from getting too large. When the FAMEOUT= option is also specified, the wildcard is applied to the type of data object series you specify in the FAMEOUT= option.

## RANGE='fame_begdt'd-'fame_enddt'd

To limit the time range of data read from your FAME database, specify the RANGE= option in your SASEFAME libref, where fame_begdt is the beginning date in ddmonyyyy format and fame_enddt is the ending date of the range in ddmonyyyy format.

As an example, to read a series with a date range that spans the first quarter of 1999, you could use the following statement:

```
 LIBNAME test sasefame 'physical name of test database'
 RANGE='01jan1999'd - '31mar1999'd;
INSET=(setname WHERE=fame_bygroup)
```

When you specify a SAS data set named setname as input for a BY group such as tickers, the SASEFAME engine uses the fame_bygroup to select time series that are named using the following convention. Selected variable names are glued together by the ticker name concatenated with the glue character (such as DOT) to the series name that is specified in the CROSSLIST= option or the fame_namelist. See the following example that uses both the CROSSLIST $=$ option and the $\operatorname{INSET}=$ option with the WHERE= clause.

## CROSSLIST=( [ fame_namelist1 ] , fame_namelist2 )

There are two methods for performing the crosslist selection function. The first method uses two FAME namelists, and the second method uses one namelist and one BY group specified in the WHERE= clause of the $\operatorname{INSET}=$ option.

Using the CROSSLIST= option with the optional fame_namelistl causes the SASEFAME engine to perform a crossproduct of the first namelist's members with the second namelist's members, using a glue symbol "." to join the two.

For example, if your FAME database has a namelist named TICKER defined by
Ticker $=$ \{AOL, C, CVX, F, GM, HPQ, IBM, INDUA, INTC, SPX, SUNW, XOM\}
and your time series are named in fame_namelist 2 as adjust, close, high, low, open, volume, uclose, uhigh, ulow, uopen, uvolume when you specify

```
LIBNAME test sasefame 'physical name of test database'
 RANGE='01jan1999'd - '31mar1999'd
 CROSSLIST=(nl (ticker),
 {adjust, close, high, low, open, volume,
 uclose, uhigh, ulow, uopen, uvolume})
```

    ;
    then the 132 variables shown in Table 34.2 are selected by the CROSSLIST= option.
Table 34.2 SAS Variables Selected by CROSSLIST= Option

AOL.ADJUST	C.ADJUST	CVX.ADJUST	F.ADJUST
AOL.CLOSE	C.CLOSE	CVX.CLOSE	F.CLOSE
AOL.HIGH	C.HIGH	CVX.HIGH	F.HIGH
AOL.LOW	C.LOW	CVX.LOW	F.LOW
AOL.OPEN	C.OPEN	CVX.OPEN	F.OPEN
AOL.UCLOSE	C.UCLOSE	CVX.UCLOSE	F.UCLOSE
AOL.UHIGH	C.UHIGH	CVX.UHIGH	F.UHIGH
AOL.ULOW	C.ULOW	CVX.ULOW	F.ULOW
AOL.UOPEN	C.UOPEN	CVX.UOPEN	F.UOPEN
AOL.UVOLUME	C.UVOLUME	CVX.UVOLUME	F.UVOLUME
AOL.VOLUME	C.VOLUME	CVX.VOLUME	F.VOLUME
GM.ADJUST	HPQ.ADJUST	IBM.ADJUST	INDUA.ADJUST
GM.CLOSE	HPQ.CLOSE	IBM.CLOSE	INDUA.CLOSE
GM.HIGH	HPQ.HIGH	IBM.HIGH	INDUA.HIGH
GM.LOW	HPQ.LOW	IBM.LOW	INDUA.LOW
GM.OPEN	HPQ.OPEN	IBM.OPEN	INDUA.OPEN
GM.UCLOSE	HPQ.UCLOSE	IBM.UCLOSE	INDUA.UCLOSE
GM.UHIGH	HPQ.UHIGH	IBM.UHIGH	INDUA.UHIGH
GM.ULOW	HPQ.ULOW	IBM.ULOW	INDUA.ULOW
GM.UOPEN	HPQ.UOPEN	IBM.UOPEN	INDUA.UOPEN
GM.UVOLUME	HPQ.UVOLUME	IBM.UVOLUME	INDUA.UVOLUME
GM.VOLUME	HPQ.VOLUME	IBM.VOLUME	INDUA.VOLUME

Table 34.2 continued

INTC.ADJUST	SPX.ADJUST	SUNW.ADJUST	XOM.ADJUST
INTC.CLOSE	SPX.CLOSE	SUNW.CLOSE	XOM.CLOSE
INTC.HIGH	SPX.HIGH	SUNW.HIGH	XOM.HIGH
INTC.LOW	SPX.LOW	SUNW.LOW	XOM.LOW
INTC.OPEN	SPX.OPEN	SUNW.OPEN	XOM.OPEN
INTC.UCLOSE	SPX.UCLOSE	SUNW.UCLOSE	XOM.UCLOSE
INTC.UHIGH	SPX.UHIGH	SUNW.UHIGH	XOM.UHIGH
INTC.ULOW	SPX.ULOW	SUNW.ULOW	XOM.ULOW
INTC.UOPEN	SPX.UOPEN	SUNW.UOPEN	XOM.UOPEN
INTC.UVOLUME	SPX.UVOLUME	SUNW.UVOLUME	XOM.UVOLUME
INTC.VOLUME	SPX.VOLUME	SUNW.VOLUME	XOM.VOLUME

Instead of using two namelists, you can use the WHERE= clause from your INSET= option to perform the crossproduct of the BY variables specified in your INSET via the WHERE= clause, with the members named in your namelist. Suppose you have defined a SAS input dataset named INSETA and you want to use it as input for your CROSSLIST= option instead of using the FAME namelist:

```
DATA INSETA;
 LENGTH tick $5;
/* AOL, C, CVX, F, GM, HPQ, IBM, INDUA, INTC, SPX, SUNW, XOM */
 tick='AOL'; output;
 tick='C'; output;
 tick='CVX'; output;
 tick='F'; output;
 tick='GM'; output;
 tick='HPQ'; output;
 tick='IBM'; output;
 tick='INDUA'; output;
 tick='INTC'; output;
 tick='SPX'; output;
 tick='SUNW'; output;
 tick='XOM'; output;
RUN;
LIBNAME test sasefame 'physical name of test database'
 RANGE='01jan1999'd - '31mar1999'd
 INSET=(inseta, where=tick)
 CROSSLIST=(
 {adjust, close, high, low, open, volume,
 uclose, uhigh, ulow, uopen, uvolume})
 ;
```

Whether you use a SAS INSET with a WHERE clause or you use a FAME namelist for your CROSSLIST = selection, the two methods are equivalent ways of performing the same selection function. In the preceding example, the FAME ticker namelist corresponds to the SAS INSET's BY variable named TICK.

Note that the WHERE= fame_bygroup must match your BY variable name used in your INSET = in order for the CROSSLIST= option to perform the desired selection. If one of the time series listed in your fame_namelist2 does not exist, the SASEFAME engine stops processing the remainder of the namelist. For complete results you should make sure that your fame_namelist 2 is accurate and does not name unknown variables. The same holds true for fame_namelistl and the BY variable values named in your INSET= option and used in your $\mathrm{WHERE}=$ clause.

```
FAMEOUT=fame_data_object_class_type
```

specifies the class and type of the FAME data series objects you want in your SAS output data set. The possible values for fame_data_object_class_type are FORMULA, TIME, BOOLEAN, CASE, DATE, and STRING. If the FAMEOUT= option is not specified, numeric time series are output to the SAS data set. FAMEOUT=CASE defaults to case series of numeric type, so if you want another type of case series in your output, then you must specify it. Scalar data objects are not supported.

## Details: SASEFAME Interface Engine

## The SAS Output Data Set

You can use the SAS DATA step to write the selected time series from your FAME database to a SAS data set. This enables you to easily analyze the data by using SAS. You can specify the name of the output data set in the DATA statement. This causes the engine supervisor to create a SAS data set by using the specified name in either the SAS WORK library or, if specified, the USER library. For more about naming your SAS data set, see the section "Characteristics of SAS Data Libraries" in SAS Language Reference: Dictionary.

The contents of the SAS data set containing time series include the date of each observation, the name of each series read from the FAME database as specified by the WILDCARD option, and the label or FAME description of each series. Missing values are represented as '.' in the SAS data set. You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment by selecting the SASEFAME libref in the LIBNAME window that you have previously used in your LIBNAME statement. You can use PROC PRINT and PROC CONTENTS to print your output data set and its contents. You can use PROC SQL along with the SASEFAME engine to create a view of your SAS data set. You can view your SAS output observations by doubleclicking on the desired output data set libref in the LIBNAME window of the SAS windowing environment.

The DATE variable in the SAS data set contains the date of the observation. For FAME weekly intervals that end on a Friday, FAME reports the date on the Friday that ends the week, whereas SAS reports the date on the Saturday that begins the week.

A more detailed discussion of how to map FAME frequencies to SAS time intervals follows. For other types of data such as string case series, date case series, boolean case series, and formulas, see Example 34.11.

## Mapping FAME Frequencies to SAS Time Intervals

Table 34.3 summarizes the mapping of FAME frequencies to SAS time intervals. It is important to note that FAME frequencies often have a sample unit in parentheses following the keyword frequency. This sample unit is an end-of-interval unit. SAS dates are represented using beginning-of-interval notation. For more on SAS time intervals, see Chapter 4, "Date Intervals, Formats, and Functions." For more on FAME frequencies, see the section "Understanding Frequencies" in the User's Guide to FAME.

Table 34.3 Mapping FAME Frequencies

FAME Frequency	SAS Time Interval
WEEKLY (SUNDAY)	WEEK.2
WEEKLY (MONDAY)	WEEK.3
WEEKLY (TUESDAY)	WEEK.4
WEEKLY (WEDNESDAY)	WEEK.5
WEEKLY (THURSDAY)	WEEK.6
WEEKLY (FRIDAY)	WEEK.7
WEEKLY (SATURDAY)	WEEK.1
BIWEEKLY (ASUNDAY)	WEEK2.2
BIWEEKLY (AMONDAY)	WEEK2.3
BIWEEKLY (ATUESDAY)	WEEK2.4
BIWEEKLY (AWEDNESDAY)	WEEK2.5
BIWEEKLY (ATHURSDAY)	WEEK2.6
BIWEEKLY (AFRIDAY)	WEEK2.7
BIWEEKLY (ASATURDAY)	WEEK2.1
BIWEEKLY (BSUNDAY)	WEEK2.9
BIWEEKLY (BMONDAY)	WEEK2.10
BIWEEKLY (BTUESDAY)	WEEK2.11
BIWEEKLY (BWEDNESDAY)	WEEK2.12
BIWEEKLY (BTHURSDAY)	WEEK2.13
BIWEEKLY (BFRIDAY)	WEEK2.14
BIWEEKLY (BSATURDAY)	WEEK2.8
BIMONTHLY (NOVEMBER)	
BIMONTHLY	MONTH2.2
QUARTERLY (OCTOBER)	MONTH2.1
QUARTERLY (NOVEMBER)	QTR.3

Table 34.3 continued

FAME FREQUENCY	SAS TIME INTERVAL
ANNUAL (JANUARY)	YEAR.2
ANNUAL (FEBRUARY)	YEAR.3
ANNUAL (MARCH)	YEAR.4
ANNUAL (APRIL)	YEAR.5
ANNUAL (MAY)	YEAR.6
ANNUAL (JUNE)	YEAR.7
ANNUAL (JULY)	YEAR.8
ANNUAL (AUGUST)	YEAR.9
ANNUAL (SEPTEMBER)	YEAR.10
ANNUAL (OCTOBER)	YEAR.11
ANNUAL (NOVEMBER)	YEAR.12
ANNUAL	YEAR.1
SEMIANNUAL (JULY)	SEMIYEAR.2
SEMIANNUAL (AUGUST)	SEMIYEAR.3
SEMIANNUAL (SEPTEMBER)	SEMIYEAR.4
SEMIANNUAL (OCTOBER)	SEMIYEAR.5
SEMIANNUAL (NOVEMBER)	SEMIYEAR.6
SEMIANNUAL	SEMIYEAR.1
YPP	
PPY	not supported
	not supported
SECONDLY	
MINUTELY	SECOND
HOURLY	MINUTE
DAILY	HOUR
BUSINESS	
TENDAY	DAY
TWICEMONTHLY	WEEKDAY
MONTHLY	TENDAY

## Examples: SASEFAME Interface Engine

In this section, the examples were run on Windows, so the physical names used in the LIBNAME libref SASEFAME statement reflect the syntax necessary for that platform. In general, the Windows environments use backslashes in their pathname, and the UNIX environments use forward slashes.

## Example 34.1: Converting an Entire FAME Database

To enable conversion of all time series no wildcard is specified, so the default "?" wildcard is used. Always consider both the number of time series and the number of observations generated by the conversion process. The converted series are stored in the FAME WORK database during the SAS DATA step. You can further limit your resulting SAS data set by using KEEP, DROP, or WHERE statements inside your DATA step.

The following statements convert a FAME database and print out its contents:

```
options pagesize=60 linesize=80 validvarname=any ;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname famedir sasefame "%sysget(FAME_DATA)"
 convert=(freq=annual technique=constant);
libname mydir "%sysget(FAME_TEMP)";
data mydir.a; /* add data set to mydir */
 set famedir.oecd1;
 /* Read in oecdl.db data from the Organization */
 /* For Economic Cooperation and Development */
 where date between '01jan88'd and '31dec93'd;
run;
proc print data=mydir.a;
run;
```

In the preceding example, the FAME database is called oecd1.db and it resides in the famedir directory. The DATA statement names the SAS output data set 'a', which will reside in mydir. All time series in the FAME oecd1.db database will be converted to an annual frequency and stored in the mydir.a SAS data set. Since the time series variable names contain the special glue symbol '., , the SAS option statement specifies VALIDVARNAME=ANY. Refer to the SAS Language Reference: Dictionary for more about this option. The FAME environment variable is the location of the FAME installation, and on Windows, the log would look like this:

```
1 options validvarname=any;
2 %let FAME=%sysget (FAME);
3 %put (&FAME);
(C:\PROGRA~1\FAME)
4 %let FAMETEMP=%sysget (FAME_TEMP);
5 %put(&FAMETEMP);
(\\ge\U11\saskff\fametemp\)
6
7 libname famedir sasefame "&FAME\util"
8 convert=(freq=annual technique=constant);
```

```
NOTE: Libref FAMEDIR was successfully assigned as follows:
 Engine: FAMECHLI
 Physical Name: C:\PROGRA~1\FAME\util
9
10 libname mydir '\\dntsrc\usrtmp\saskff';
NOTE: Libref MYDIR was successfully assigned as follows:
 Engine: V9
 Physical Name: \\dntsrc\usrtmp\saskff
 data mydir.a; /* add data set to mydir */
 set famedir.oecd1;
AUS.DIRDES -- SERIES (NUMERIC by ANNUAL)
AUS.DIRDES copied to work data base as AUS.DIRDES.
```

For more about the glue DOT character, refer to "Glueing Names Together" in the User's Guide to FAME. In the preceding log, the variable name AUS.DIRDES uses the glue DOT between AUS and DIRDES.

The PROC PRINT statement creates Output 34.1.1 showing all of the observations in the mydir.a SAS data set.

Output 34.1.1 Listing of OUT=MYDIR.A of the OECD1 FAME Data


## Example 34.2: Reading Time Series from the FAME Database

Use the FAME wildcard option to limit the number of series converted. For example, suppose you want to read only series starting with "WSPCA". Output 34.2.1 and Output 34.2.2 show the results of the following sample code.

```
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname lib1 sasefame "%sysget(FAME_DATA)"
 wildcard="wspca?"
 convert=(technique=constant freq=twicemonthly);
libname lib2 "%sysget(FAME_TEMP)";
data lib2.twild(label='Annual Series from the FAMEECON.db');
 set lib1.subecon;
 where date between '01jan93'd and '31dec93'd;
 /* keep only */
 keep date wspca;
run;
proc contents data=lib2.twild;
run;
proc print data=lib2.twild;
run;
```

Output 34.2.1 Contents of OUT=LIB2.TWILD of the SUBECON FAME Data


The WILDCARD="WSPCA?" option limits reading only those series whose names begin with WSPCA. The KEEP statement further restricts the SAS data set to include only the series named WSPCA and the DATE variable. The time interval used for the conversion is TWICEMONTHLY.

Output 34.2.2 Listing of OUT=LIB2.TWILD of the SUBECON FAME Data

Obs	DATE	WSPCA
1	01JAN1993	8.59400
2	16JAN1993	8.50562
3	01FEB1993	8.47000
4	16FEB1993	8.31000
5	01MAR1993	8.27000
6	16MAR1993	8.29250
7	01APR1993	8.32400
8	16APR1993	8.56333
9	01MAY1993	8.37867
10	16MAY1993	8.26312
11	01JUN1993	8.21333
12	16JUN1993	8.14400
13	01JUL1993	8.09067
14	16JUL1993	8.09937
15	01AUG1993	7.98533
16	16AUG1993	7.91600

## Example 34.3: Writing Time Series to the SAS Data Set

You can use the KEEP or DROP statement to include or exclude certain series names from the SAS data set as shown in Output 34.3.1.

```
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname famedir sasefame "%sysget (FAME_DATA)"
 convert=(freq=annual technique=constant);
libname mydir "%sysget(FAME_TEMP)";
data mydir.a; /* add data set to mydir */
 set famedir.oecd1;
 drop 'ita.dirdes'n--' jpn.herd'n 'tur.dirdes'n--'usa.herd'n;
 where date between '01jan88'd and '31dec93'd;
run;
title2 "OECD1: TECH=constant, FREQ=annual";
title3 "drop using n-literals";
proc print data=mydir.a;
run;
```

Output 34.3.1 Listing of OUT=MYDIR.A of the OECD1 FAME Data

OECD1: TECH=constant, FREQ=annual drop using n-literals								
$\begin{array}{ccc} & \text { AUS. } & \text { AUT. } \\ \text { Obs DATE } & \text { DIRDES AUS. HERD } & \text { DIRDES }\end{array}$				BEL.AUT. HERD DIRDES BEL.HERD			CAN.   DIRDES CAN.HERD	
1	19887	7501072	90	.	37416	6572.70158	89.602	006
2	1989	.	.	.	. 18	8310.701737	37.0022	214
3	1990	.	.	.	18	8874.20185	$59.20 \quad 23$	347
4	1991	-	-	-	.	195	59.602	488
Obs	CHE .   DIRDES	CHE . HERD	DEU. DIRDES	DEU. HERD	DNK. DIRDES	DNK.HERD	ESP.   DIRDES	ESP . HERD
1	632.100	1532	3538.60	8780.00	258.100	2662	508.200	55365.5
2	-	1648	3777.20	9226.60	284.800	2951	623.600	69270.5
3		.	2953. 30	9700.00	.	.	723.600	78848.0
4	-	-	-	.	-	-	-	89908.0
Obs	FIN. DIRDES	FIN. HERD	FRA. DIRDES	FRA. HERD	GBR. DIRDES	GBR.HERD	GRC . DIRDES	GRC. HERD
1	247.700	1602.0	2573.50	19272.00	2627.00	1592.00	60.600	6674.50
2	259.700	1725.5	2856.50	21347.80	2844.10	- 1774.20	119.800	14485.20
3	271.000	1839.0	3005.20	22240.00	.	.	.	.
4		.	.	.	-	-	-	-
Obs	IRL. DIRDES	IRL. HERD	$\begin{gathered} \text { ISL. } \\ \text { DIRDES } \end{gathered}$	ISL. HERD	$\begin{gathered} \text { NLD. } \\ \text { DIRDES } \end{gathered}$	NLD. HERD	NOR. DIRDES	NOR. HERD
1	49.6000	37.0730	.	.	883	2105	.	-
2	50.2000	39.0130	10.3000	786.762	945	2202	308.900	2771.40
3	51.7000	.	11.0000	902.498	.	.	.	.
4	.	.	11.8000	990.865	.	.	352.000	3100.00
Obs	$\begin{gathered} \text { NZL. } \\ \text { DIRDES } \end{gathered}$	NZL. HERD	PRT. DIRDES	PRT. HERD	SWE. DIRDES	SWE. HERD	YUG . DIRDES	YUG. HERD
1	.	-	111.5	10158.20	-	2	233.000	29.81
2	78.7000	143.800	.	.	1076	11104	205.100	375.22
3	.	.	-	-	.	.	.	2588. 50
4	.	-	-	-	-	-	-	.

Note that the SAS option VALIDVARNAME=ANY was used at the beginning of this example due to special characters being present in the time series names. SAS variables that contain certain special characters are called $n$-literals and are referenced in SAS code as shown in this example.

You can rename your SAS variables by using the RENAME statement as follows. Output 34.3.2 shows how to use $n$-literals when selecting variables you want to keep, and how to rename some of your kept variables.

```
options validvarname=any;
```

```
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname famedir sasefame "%sysget(FAME_DATA)"
 convert=(freq=annual technique=constant);
libname mydir "%sysget(FAME_TEMP)";
data mydir.a; /* add data set to mydir */
 set famedir.oecd1;
 /* keep and rename */
 keep date 'ita.dirdes'n--' jpn.herd'n 'tur.dirdes'n--'usa.herd'n;
 rename 'ita.dirdes'n='italy.dirdes'n
 'jpn.dirdes'n=' japan.dirdes'n
 'tur.dirdes'n='turkey.dirdes'n
 'usa.dirdes'n=' united.states.of.america.dirdes'n ;
run;
title3 "keep statement using n-literals";
title4 "rename statement using n-literals";
proc print data=mydir.a;
run;
```

Output 34.3.2 Listing of OUT=MYDIR.A of the OECD1 FAME Data


## Example 34.4: Limiting the Time Range of Data

You can also limit the time range of the data in the SAS data set by using the RANGE= option in the LIBNAME statement or the WHERE statement in the DATA step to process the time ID variable DATE only when it falls in the range you are interested in.

All data for 1988, 1989, and 1990 are included in the SAS data set generated by using the RANGE='01JAN1988'D - '31DEC1990'D option or the WHERE DATE BETWEEN '01JAN88'D AND '31DEC90'D statement. The difference is that the range option uses less space in your FAME WORK database. If you have a very large database and want to use less space in your FAME WORK database while you are processing the oecd1 database, you should instead use the RANGE= option as shown in Output 34.4.1.

```
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname famedir SASEFAME "%sysget (FAME_DATA)"
 convert=(freq=annual technique=constant)
 range='01jan1988'd - '31dec1990'd;
libname mydir "%sysget(FAME_TEMP)";
data mydir.a; /* add data set to mydir */
 set famedir.oecd1;
 /* range on the libref restricts the dates *
 * read from famedir's oecdl database */
run;
proc print data=mydir.a;
run;
```

Output 34.4.1 Listing of OUT=MYDIR.A of the OECD1 FAME Data Using RANGE= Option


The WHERE statement can be used in the DATA step to process the time ID variable DATE only when it falls in the range you are interested in. In Output 34.4.2, you can see that the result from the WHERE statement is the same as the result in Output 34.4.1 using the RANGE= option.

```
options validvarname=any;
%let FAME=%sysget (FAME);
```

```
%put(&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname famedir SASEFAME "%Sysget (FAME_DATA)"
 convert=(freq=annual technique=constant);
libname mydir "%sysget(FAME_TEMP)";
data mydir.a; /* add data set to mydir */
 set famedir.oecd1;
 /* where only */
 where date between '01jan88'd and '31dec90'd;
run;
proc print data=mydir.a;
run;
```

Output 34.4.2 Listing of OUT=MYDIR.A of the OECD1 FAME Data Using WHERE Statement


Refer to the SAS Language Reference: Concepts for more information on KEEP, DROP, RENAME, and WHERE statements.

## Example 34.5: Creating a View Using the SQL Procedure and SASEFAME

The following statements create a view of OECD data by using the SQL procedure's FROM and USING clauses as shown in Output 34.5.1. Refer to the BASE SAS Procedures Guide for details on SQL views.

```
title1 'famesql5: PROC SQL Dual Embedded Libraries w/ FAME option';
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
title2 'OECD1: Dual Embedded Library Allocations with FAME Option';
proc sql;
 create view fameview as
 select date, 'fin.herd'n
 from lib1.oecd1
 using libname lib1 sasefame "%sysget (FAME_DATA)"
 convert=(tech=constant freq=annual),
 libname temp "%sysget (FAME_TEMP)";
quit;
title2 'OECD1: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;
```

Output 34.5.1 Printout of the FAME View of OECD Data
\(\left.\begin{array}{|c}famesql5: PROC SQL Dual Embedded Libraries w/ FAME option <br>

OECD1: Print of View from Embedded Library with FAME Option\end{array}\right]\)|  |  |  |
| :---: | :---: | :---: |
| Obs | DATE | FIN. HERD |
|  |  |  |
| 1 | 1985 | 1097.00 |
| 2 | 1986 | 1234.00 |
| 3 | 1987 | 1401.30 |
| 4 | 1988 | 1602.00 |
| 5 | 1989 | 1725.50 |
| 6 | 1990 | 1839.00 |
| 7 | 1991 | . |

The following statements create a view of DRI Basic Economic data by using the SQL procedure's FROM and USING clauses as shown in Output 34.5.2.

```
title2 'SUBECON: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;
```

```
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
proc sql;
 create view fameview as
 select date, gaa
 from lib1.subecon
 using libname lib1 sasefame "%sysget(FAME_DATA)"
 convert=(tech=constant freq=annual),
 libname temp "%sysget(FAME_TEMP)";
quit;
title2 'SUBECON: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;
```

Output 34.5.2 Printout of the FAME View of DRI Basic Economic Data


The following statements create a view of the DB77 database by using the SQL procedure's FROM and USING clauses, as shown in Output 34.5.3.

```
title2 'DB77: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
proc sql;
 create view fameview as
 select date, ann, 'qandom.x'n
 from lib1.db77
 using libname lib1 sasefame "%sysget (FAME_DATA)"
 convert=(tech=constant freq=annual),
 libname temp "%sysget(FAME_TEMP)";
 quit;
title2 'DB77: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;
```

Output 34.5.3 Printout of the FAME View of DB77 Data

| famesql5: PROC SQL Dual Embedded Libraries w/ FAME option |
| :---: | :---: | :---: | :---: | :---: |
| DB77: Print of View from Embedded Library with FAME Option |

The following statements create a view of the DRI economic database by using the SQL procedure's FROM and USING clauses, as shown in Output 34.5.4.

```
title2 'DRIECON: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
proc sql;
 create view fameview as
 select date, husts
 from lib1.driecon
 using libname lib1 sasefame "%sysget(FAME_DATA)"
```

```
 convert=(tech=constant freq=annual)
 range='01jan1980'd - '01jan2006'd ,
 libname temp "%sysget(FAME_TEMP)";
quit;
title2 'DRIECON: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;
```

Note that the SAS option VALIDVARNAME=ANY was used at the beginning of this example due to special characters being present in the time series names. The output from this example shows how each FAME view is the output of the SASEFAME engine's processing. Note that different engine options could have been used in the USING LIBNAME clause if desired.

Output 34.5.4 Printout of the FAME View of DRI Basic Economic Data


## Example 34.6: Reading Other FAME Data Objects with the FAMEOUT= Option

Suppose you want to see the source for your formulas or you are interested in string case series instead of numeric time series. You can designate the data objects that are output to your SAS data set using the FAMEOUT= option. In this example, the FAMEOUT=FORMULA option selects the formulas and their source definitions to be output as shown in Output 34.6.1. Note that the RANGE= option is ignored since no time series are selected when FAMEOUT=FORMULA is specified.

```
options validvarname=any ls=90;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname lib6 sasefame "%sysget(FAME_DATA)"
 fameout=formula
 convert=(frequency=business technique=constant)
 range='02jan1995'd - '25jul1997'd
 wildcard="?YIELD?" ;
data crout;
 set lib6.training;
 keep 'S.GM.YIELD.A'n -- 'S.XON.YIELD.A'n ;
run;
title2 'Contents of OUT=CROUT from the FAMEOUT=FORMULA Option';
title3 'Using WILDCARD="?YIELD?"';
proc contents
 data=crout;
run;
```

Output 34.6.1 Contents of OUT=CROUT from the FAMEOUT=FORMULA Option of the TRAINING FAME Data

```
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
 Contents of OUT=CROUT from the FAMEOUT=FORMULA Option
 Using WILDCARD="?YIELD?"
 The CONTENTS Procedure
 Alphabetic List of Variables and Attributes
```

                \# Variable Type Len
            S.GM.YIELD.A Char 82
            S.GM_PP.YIELD.A Char 82
            S.HWP.YIELD.A Char 82
            S.IBM.YIELD.A Char 82
            S.INDUT.YIELD.A Char 82
            S.SPAL.YIELD.A Char 82
            S.SPALN.YIELD.A Char 82
            S.SUNW.YIELD.A Char 82
            S.XOM.YIELD.A Char 82
            S.XON.YIELD.A Char 82
    The FAMEOUT=FORMULA option restricts the SAS data set to include only formulas. The WILDCARD="?YIELD?" option further limits reading only those formulas whose names "YIELD" in them. This output is shown in Output 34.6.2.

```
options validvarname=any linesize=79;
```

```
title2 'PROC PRINT of OUT=CROUT from the FAMEOUT=FORMULA Option';
title3 'Using WILDCARD="?YIELD?"';
proc print
 data=crout noobs;
run;
```

Output 34.6.2 Listing of OUT=CROUT from the FAMEOUT=FORMULA Option of the TRAINING FAME Data

```
 famesq15: PROC SQL Dual Embedded Libraries w/ FAME option
 PROC PRINT of OUT=CROUT from the FAMEOUT=FORMULA Option
 Using WILDCARD="?YIELD?"
 S.GM.YIELD.A
(%SPLC2TF (C37044210X01, IAD_DATE.H, IAD.H)/C37044210X01.CLOSE) *C37044210X01.ADJ
 S.GM_PP.YIELD.A
(%SPLC2TF (C37044210X01, IAD_DATE.H, IAD.H)/C37044210X01.CLOSE) *C37044210X01.ADJ
 S.HWP.YIELD.A
(%SPLC2TF (C42823610X01, IAD_DATE.H, IAD.H) /C42823610X01.CLOSE) *C42823610X01.ADJ
 S.IBM.YIELD.A
(%SPLC2TF (C45920010X01, IAD_DATE.H, IAD.H)/C45920010X01.CLOSE)*C45920010X01.ADJ
 S.INDUT.YIELD.A
(%SPLC2TF (C00000110X00, IAD_DATE.H, IAD.H)/C00000110X00.CLOSE) *C00000110X00.ADJ
 S.SPAL.YIELD.A
(%SPLC2TF (C00000117X00, IAD_DATE.H, IAD.H)/C00000117X00.CLOSE) *C00000117X00.ADJ
 S.SPALN.YIELD.A
(%SPLC2TF (C00000117X00, IAD_DATE.H, IAD.H) /C00000117X00.CLOSE) *C00000117X00.ADJ
 S.SUNW.YIELD.A
(%SPLC2TF (C86681010X60, IAD_DATE.H, IAD.H)/C86681010X60.CLOSE) *C86681010X60.ADJ
 S.XOM.YIELD.A
(%SPLC2TF (C30231G10X01, IAD_DATE.H, IAD.H)/C30231G10X01.CLOSE)*C30231G10X01.ADJ
 S.XON.YIELD.A
(%SPLC2TF (C30231G10X01, IAD_DATE.H, IAD.H)/C30231G10X01.CLOSE) *C30231G10X01.ADJ
```


## Example 34.7: Remote FAME Access Using FAME CHLI

Suppose you are running FAME in a client/server environment and have FAME CHLI capability allowing you access to your FAME server. You could access your FAME remote data by specifying the port number of the tcpip service that is defined for your frdb_m and the node name of your FAME master server in your physical path. In this example, the FAME server node name is STONES, and the port number is 5555 , which was designated in the FAME master command. Refer to "Starting the Master Server" in the Guide to FAME Database Servers for more information about starting your FAME master server. This output is shown in Output 34.7.1.

```
options ls=78;
title1 "DRIECON Database, Using FAME with REMOTE ACCESS VIA CHLI";
libname test1 sasefame '#5555@stones $FAME/util';
data a;
 set test1.driecon;
 keep YP ZA ZB;
 where date between '01jan98'd and '31dec03'd;
run;
proc means data=a n;
run;
```

Output 34.7.1 Summary Statistics for the Remote FAME Data

DRIECON Database, Using FAME with REMOTE ACCESS VIA CHLI The MEANS Procedure		
Variable	Label	N
YP	PERSONAL INCOME	5
ZA	CORPORATE PROFITS AFTER taX EXCLUDING IVA	4
ZB	CORPORATE PROFITS BEFORE TAX EXCLUDING IVA	4

## Example 34.8: Selecting Time Series Using CROSSLIST= Option and KEEP Statement

This example shows how to use two FAME namelists to perform selection. Note that fame_namelistl could be easily generated using the FAME WILDLIST function. For more about WILDLIST, refer to "The WILDLIST Function" in the FAME Command Reference Volume 2, Functions. In the following statements, 11 tickers are selected in fame_namelistl, but when you use the KEEP statement, the resulting data set contains only the desired IBM ticker shown in Output 34.8.1 and Output 34.8.2.

```
libname lib8 sasefame "%sysget(FAME_DATA)"
 convert=(frequency=business technique=constant)
 crosslist=(
 { IBM,SPALN, SUNW, XOM },
 { adjust, close, high, low, open, volume,
 uclose, uhigh, ulow,uopen,uvolume }
);
data trout;
 /* eleven companies, keep only the IBM ticker this time */
 set lib8.training;
 where date between '01mar02'd and '20mar02'd;
 keep IBM: ;
run;
title2 'Contents of OUT=trout for BYGROUP Tick=IBM.';
proc contents
 data=trout;
run;
title2 'TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=';
title3 'OUT=TROUT from the PRINT Procedure';
proc print
 data=trout;
run;
```

Output 34.8.1 Contents of the IBM Time Series in the Training FAME Data
DRIECON Database, Using FAME with REMOTE ACCESS VIA CHLI Contents of OUT=trout for BYGROUP Tick=IBM.

The CONTENTS Procedure
Alphabetic List of Variables and Attributes

\#	Variable	Type	Len
1	IBM. ADJUST	Num	8
2	IBM.CLOSE	Num	8
3	IBM. HIGH	Num	8
4	IBM.LOW	Num	8
5	IBM.OPEN	Num	8
6	IBM.UCLOSE	Num	8
7	IBM.UHIGH	Num	8
8	IBM.ULOW	Num	8
9	IBM. UOPEN	Num	8
10	IBM. UVOLUME	Num	8
11	IBM.VOLUME	Num	8

Output 34.8.2 Listing of Ticker IBM Time Series in the Training FAME Data


## Example 34.9: Selecting Time Series Using CROSSLIST= Option with a FAME Namelist of Tickers

This example demonstrates selection by using the CROSSLIST= option. Only the ticker "IBM" is specified in the KEEP statement from the 11 companies in the FAME ticker namelist. The results are shown in Output 34.9.1 and Output 34.9.2.

```
libname lib9 sasefame "%sysget(FAME_DATA)"
 convert=(frequency=business technique=constant)
 range='07jul1997'd - '25jul1997'd
 crosslist=(nl(ticker),
 { adjust, close, high, low, open, volume,
 uclose, uhigh, ulow, uopen, uvolume }
);
data crout;
 /* eleven companies in the FAME ticker namelist */
 set lib9.training;
 keep IBM: ;
run;
title2 'TRAINING DB, Pricing Timeseries for eleven Tickers in CROSSLIST=';
title3 'OUT=CROUT from the PRINT Procedure';
proc print data=crout;
run;
title2 'Contents of OUT=crout from the FAME Crosslist function';
title3 'Using TICKER namelist.';
proc contents data=crout;
run;
```

Output 34.9.1 Listing of OUT=CROUT Using CROSSLIST= Option in the Training FAME Data

Obs	DRIECON Database, Using FAME with REMOTE ACCESS VIA CHLI Contents of OUT=crout from the FAME Crosslist function Using TICKER namelist.					
	IBM.ADJUST	IBM. CLOSE	IBM. HIGH	IBM. LOW	IBM. OPEN	IBM. UCLOSE
1	0.5	47.2500	47.7500	47.0000	47.5000	94.500
2	0.5	47.8750	47.8750	47.2500	47.2500	95.750
3	0.5	48.0938	48.3438	47.6563	48.0000	96.188
4	0.5	47.8750	48.0938	47.0313	47.3438	95.750
5	0.5	47.8750	48.6875	47.8125	47.9063	95.750
6	0.5	47.6250	48.2188	47.0000	47.8125	95.250
7	0.5	48.0000	48.1250	46.6875	47.4375	96.000
8	0.5	48.8125	49.0000	47.6875	47.8750	97.625
9	0.5	49.8125	50.8750	48.5625	48.9063	99.625
10	0.5	52.2500	52.6250	50.0000	50.0000	104.500
11	0.5	51.8750	53.1563	51.0938	52.6250	103.750
12	0.5	51.5000	51.7500	49.6875	50.0313	103.000
13	0.5	52.5625	53.5000	51.5938	52.1875	105.125
14	0.5	53.9063	54.2188	52.2500	52.8125	107.813
15	0.5	53.5000	54.2188	52.8125	53.9688	107.000
Obs	IBM. UHIGH	IBM. ULOW	IBM. UOPEN	IBM. UV	UME IB	. VOLUME
1	95.500	94.000	95.000	129	2	64506
2	95.750	94.500	94.500	102		51398
3	96.688	95.313	96.000	177		88638
4	96.188	94.063	94.688	127		63950
5	97.375	95.625	95.813	137		68862
6	96.438	94.000	95.625	128		64488
7	96.250	93.375	94.875	149		74806
8	98.000	95.375	95.750	215		07720
9	101.750	97.125	97.813	315		57752
10	105.250	100.000	100.000	463		31740
11	106.313	102.188	105.250	328		64092
12	103.500	99.375	100.063	368		84138
13	107.000	103.188	104.375	219		09940
14	108.438	104.500	105.625	204		02044
15	108.438	105.625	107.938	146		73300

Output 34.9.2 Contents of OUT=CROUT Using CROSSLIST= Option in the Training FAME Data

Alphabetic List of Variables and Attributes			
\#	Variable	Type	Len
1	IBM. ADJUST	Num	8
2	IBM. CLOSE	Num	8
3	IBM. HIGH	Num	8
4	IBM. LOW	Num	8
5	IBM. OPEN	Num	8
6	IBM. UCLOSE	Num	8
7	IBM. UHIGH	Num	8
8	IBM. ULOW	Num	8
9	IBM. UOPEN	Num	8
10	IBM. UVOLUME	Num	8
11	IBM. VOLUME	Num	8

## Example 34.10: Selecting Time Series Using CROSSLIST= Option with INSET= and WHERE=TICK

Suppose instead of having a FAME namelist with the Tickers for companies whose data you are interested in, you have an input SAS data set (INSET) that specifies the tickers to select. You can specify your selection by using the WHERE statement as in the following statements. The results are shown in Output 34.10.1 and Output 34.10.2.

```
data inseta;
 length tick $5;
 /* need $5 so SPALN is not truncated */
 tick='AOL'; output;
 tick='C'; output;
 tick='CPQ'; output;
 tick='CVX'; output;
 tick='F'; output;
 tick='GM'; output;
 tick='HWP'; output;
 tick='IBM'; output;
 tick='SPALN'; output;
 tick='SUNW'; output;
 tick='XOM'; output;
run;
libname lib10 sasefame "%sysget(FAME_DATA)"
 convert=(frequency=business technique=constant)
 range='07jul1997'd - '25jul1997'd
 inset=(inseta where=tick)
 crosslist=
 ({adjust, close, high, low, open, volume,
 uclose, uhigh, ulow, uopen, uvolume});
data trout;
 /* eleven companies with unique TICKs specified in INSETA */
 set lib10.training;
 keep IBM: ;
run;
title2 'TRAINING DB, Pricing Timeseries for eleven Tickers in CROSSLIST=';
title3 'OUT=TROUT from the PRINT Procedure';
proc print data=trout;
run;
title2 'Contents of OUT=trout from the FAME Crosslist function';
title3 'Using INSET with WHERE=TICK.';
proc contents data=trout;
run;
```

Output 34.10.1 Listing of OUT=TROUT Using CROSSLIST= and INSET= Options in the Training FAME Data

Obs	DRIECON Database, Using FAME with REMOTE ACCESS VIA CHLI Contents of OUT=trout from the FAME Crosslist function Using INSET with WHERE=TICK.					
	IBM.ADJUST	IBM. CLOSE	IBM. HIGH	IBM. LOW	IBM. OPEN	IBM. UCLOSE
1	0.5	47.2500	47.7500	47.0000	47.5000	94.500
2	0.5	47.8750	47.8750	47.2500	47.2500	95.750
3	0.5	48.0938	48.3438	47.6563	48.0000	96.188
4	0.5	47.8750	48.0938	47.0313	47.3438	95.750
5	0.5	47.8750	48.6875	47.8125	47.9063	95.750
6	0.5	47.6250	48.2188	47.0000	47.8125	95.250
7	0.5	48.0000	48.1250	46.6875	47.4375	96.000
8	0.5	48.8125	49.0000	47.6875	47.8750	97.625
9	0.5	49.8125	50.8750	48.5625	48.9063	99.625
10	0.5	52.2500	52.6250	50.0000	50.0000	104.500
11	0.5	51.8750	53.1563	51.0938	52.6250	103.750
12	0.5	51.5000	51.7500	49.6875	50.0313	103.000
13	0.5	52.5625	53.5000	51.5938	52.1875	105.125
14	0.5	53.9063	54.2188	52.2500	52.8125	107.813
15	0.5	53.5000	54.2188	52.8125	53.9688	107.000
Obs	IBM. UHIGH	IBM. ULOW	IBM. UOPEN	IBM. UV	UME IB	. VOLUME
1	95.500	94.000	95.000	129		64506
2	95.750	94.500	94.500	102		51398
3	96.688	95.313	96.000	177		88638
4	96.188	94.063	94.688	127		63950
5	97.375	95.625	95.813	137		68862
6	96.438	94.000	95.625	128		64488
7	96.250	93.375	94.875	149		74806
8	98.000	95.375	95.750	215		07720
9	101.750	97.125	97.813	315		57752
10	105.250	100.000	100.000	463		31740
11	106.313	102.188	105.250	328		64092
12	103.500	99.375	100.063	368		84138
13	107.000	103.188	104.375	219		09940
14	108.438	104.500	105.625	204		02044
15	108.438	105.625	107.938	146		73300

Output 34.10.2 Contents of OUT=TROUT Using CROSSLIST= and INSET= Options in the Training FAME Data

Alphabetic List of Variables and Attributes			
\#	Variable	Type	Len
1	IBM. ADJUST	Num	8
2	IBM. CLOSE	Num	8
3	IBM. HIGH	Num	8
4	IBM. LOW	Num	8
5	IBM. OPEN	Num	8
6	IBM. UCLOSE	Num	8
7	IBM. UHIGH	Num	8
8	IBM. ULOW	Num	8
9	IBM. UOPEN	Num	8
10	IBM. UVOLUME	Num	8
11	IBM. VOLUME	Num	8

## Example 34.11: Selecting Series Using FAMEOUT= Option

This example shows how to read case series instead of time series. Case series can be numeric, boolean, string, date, or formulas that resolve to series. SASEFAME resolves all formulas that belong to the type of series data object that you specify in your FAMEOUT= option. If these object types are not specified, the FAMEOUT= option defaults to time series.

The first case shows writing of all boolean case series to your SAS data set, while the second shows selection of numeric case series; the third shows writing all date case series to your SAS data set, while the fourth shows selection of all the string case series. The last case shows output of the SOURCE for all the formula case series in the ALLTYPES data base.

In the first example, suppose you prefer to extract all boolean case series from your FAME data base. The following statements write all boolean case series to your SAS data set. The results are shown in Output 34.11.1 and Output 34.11.2.

```
title1 '***famallt: FAMEOUT option, Different Type Values***';
options validvarname=any;
%let FAME=%sysget (FAME);
%put (&FAME);
%let FAMETEMP=%sysget (FAME_TEMP);
%put (&FAMETEMP);
libname lib4 sasefame "%sysget(FAME_DATA)"
 fameout=boolcase wildcard="?" ;
data booout;
 set lib4.alltypes;
run;
title2 'Contents of OUT=booout';
```

```
title3 'Using FAMEOUT=CASE BOOLEAN option without range';
proc contents
 data=booout;
run;
title2 'ALLTYPES FAMEOUT=BOOLCASE and open wildcard for BOOLEAN CASE Series';
title3 'OUT=BOOOUT from the PRINT Procedure';
proc print
 data=booout;
run;
```

Output 34.11.1 Contents of OUT=BOOUT Using FAMEOUT=BOOLCASE and Open Wildcard for Boolean Case Series


Output 34.11.2 Listing of OUT=BOOOUT Using FAMEOUT=BOOLCASE and Open Wildcard for Boolean Case Series

***famallt: FAMEOUT option, Different Type Values*** ALLTYPES FAMEOUT=BOOLCASE and open wildcard for BOOLEAN CASE Series OUT=BOOOUT from the PRINT Procedure					
Obs	B000	B001	B002	воом	BOO_RES
1	0	1	0	1	.
2	0	0	1	0	.
3	0	0	0	251	.
4	0	1	1	1	.
5	0	1	0	1	.
6	0	0	.	0	.
7	0	0	.	0	.
8	0	1	.	1	.
9	0	.	0	.	.
10	0	.	.	.	.
11	1	.	.	.	.
12	1	.	.	.	.
13	1	.	1	.	.
14	1	.	.	.	.
15	1	.	.	.	.
16	1	.	.	.	.
17	1	.	0	.	.
18	1	.	.	.	.
19	1	.	.	.	.
20	1	.	.	.	.

Suppose instead of boolean case series, you prefer to see numeric case series. Case series can be numeric or boolean or string series or date series. In addition to the existing case series in your FAME database, you can have formulas that resolve to numeric case series. SASEFAME will resolve all formulas that belong to the class and type of series data object that you specify in your FAMEOUT= option. The following statements write all numeric case series to your SAS data set. The results are shown in Output 34.11.3 and Output 34.11.4.

```
libname lib5 sasefame "%sysget(FAME_DATA)"
 fameout=case wildcard="?" ;
data csout;
 set lib5.alltypes;
run;
title2 'Contents of OUT=csout';
title3 'Using FAMEOUT=CASE option without range';
proc contents
 data=csout;
run;
title2 'ALLTYPES, FAMEOUT=CASE and open wildcard for Numeric Case Series';
title3 'OUT=CSOUT from the PRINT Procedure';
proc print
 data=csout;
run;
```

Output 34.11.3 Contents of OUT=CSOUT Using FAMEOUT=CASE and Open Wildcard for Numeric Case Series


Output 34.11.4 Listing of OUT=CSOUT Using FAMEOUT=CASE and Open Wildcard for Numeric Case Series

***famallt: FAMEOUT option, Different Type Values*** ES, FAMEOUT=CASE and open wildcard for Numeric Case Series OUT=CSOUT from the PRINT Procedure											
						N					P
						U					R
						M					C
	F	N	N	N	N	-	P	P	P	P	-
0	R	U	U	U	U	R	R	R	R	R	R
b	M	M	M	M	M	E	C	C	C	C	E
s	1	0	1	2	M	S	0	1	2	M	S
1	0.00000	-9	0	1.33333	0	.	-18	0	1.33333	0	-
2	1.00000	-8	1	1.00000	1	.	-16	1	1.00000	1	-
3	0.66667	-7	2	0.66667	1.7014E38	.	-14	2	0.66667	1.7014E38	-
4	3.00000	-6	3	0.33333	3	.	-12	3	0.33333	3	.
5	4.00000	-5	4	0.00000	4	.	-10	4	0.00000	4	-
6	.	-4	5	.	5	.	-8	5	.	5	-
7	.	-3	6	.	6	-	-6	6	.	6	-
8	7.00000	-2	7	.	7	-	-4	7	.	7	-
9	.	-1	.	-1.33333	.	-	-2	.	-1.33333	.	-
10	-	0	.	.	.	-	0	.	.	.	-
11	-	1	.	-	-	-	2	-	-	-	-
12	-	2	.	.	.	-	4	.	.	.	-
13	-	3	.	-2.66667	-	-	6	.	-2.66667	-	-
14	-	4	.	.	.	-	8	.	.	.	-
15	-	5	-	-	.	-	10	-	-	-	-
16	-	6	.	.	.	-	12	.	.	.	-
17	.	7	.	-4.00000	-	-	14	.	-4.00000	-	.
18	.	8	.	.	.	-	16	.	.	-	-
19	.	9	-	-	-	-	18	-	-	.	.
20	.	10	-	.	.	.	20	.	.	-	-

Instead of numeric case series, you could decide to extract date case series. Case series can be numeric or boolean or string series or date series. In addition to the existing case series in your FAME database, you can have formulas that resolve to date case series. SASEFAME will resolve all formulas that belong to the class and type of series data object that you specify in your FAMEOUT= option. The following statements write all date case series to your SAS data set. The results are shown in Output 34.11.5 and Output 34.11.6.

```
libname lib6 sasefame "%sysget(FAME_DATA)"
 fameout=datecase wildcard="?" ;
data cdout;
 set lib6.alltypes;
run;
title2 'Contents of OUT=cdout';
title3 'Using FAMEOUT=DATECASE option without range';
proc contents
 data=cdout;
run;
```

```
title2 'ALLTYPES, FAMEOUT=DATECASE and open wildcard for Date Case Series';
title3 'OUT=CDOUT from the PRINT Procedure';
proc print
 data=cdout;
run;
```

Output 34.11.5 Contents of OUT=CDOUT Using FAMEOUT=DATECASE

***famallt: FAMEOUT option, Different Type Values*** Contents of OUT=cdout Using FAMEOUT=DATECASE option without range The CONTENTS Procedure					
Alphabetic List of Variables and Attributes					
\#	Variable	Type	Len	Format	Informat
1	DATO	Num	8	YEAR4.	4.
2	DAT1	Num	8	YEAR4.	4.
3	DAT2	Num	8	YEAR4.	4.
4	DATM	Num	8	YEAR4.	4.
5	DAT_RES	Num	8	YEAR4.	4.
6	FRM2	Num	8	YEAR4.	4.

Output 34.11.6 Listing of OUT=CDOUT Using FAMEOUT=DATECASE

***famallt: FAMEOUT option, Different Type Values***   ALLTYPES, FAMEOUT=DATECASE and open wildcard for Date Case Series OUT=CDOUT from the PRINT Procedure						
Obs	DATO	DAT1	DAT2	DATM	DAt_RES	FRM2
1	1991	1981	1987	1981		1987
2	1992	1982	1986	1982		1986
3	1993	1983	1985	1983		1985
4	1994	1984	1984	1984		1984
5	1995	1985	1983	1985		1983
6	1996	1986	.	1986	.	
7	1997	1987		1987		
8	1998	1988	.	1988		
9	1999	.	1979	.		1979
10	2000		.			
11	2001			.		
12	2002	.	.	.		
13	2003	.	1975	.		
14	2004		.	.	.	
15	2005	.	.	.		
16	2006					
17	2007	.	1971	.	.	
18	2008		.	.		
19	2009					
20	2010		.	.		

The next example shows how to extract string case series. Case series can be numeric or boolean or string series or date series. In addition to the existing string case series in your FAME database, you can have formulas that resolve to string case series. SASEFAME will resolve all formulas that belong to the class and type of series data object that you specify in your FAMEOUT= option. The following statements write all string case series to your SAS data set. The results are shown in Output 34.11.7 and Output 34.11.8.

```
libname lib7 sasefame "%sysget(FAME_DATA)"
 fameout=stringcase wildcard="?" ;
data cstrout;
 set lib7.alltypes;
run;
title2 'Contents of OUT=cstrout';
title3 'Using FAMEOUT=STRINGCASE option without range';
proc contents
 data=cstrout;
run;
title2 'ALLTYPES, FAMEOUT=STRINGCASE and open wildcard for STRING CASE Series';
title3 'OUT=CSTROUT from the PRINT Procedure';
proc print
 data=cstrout;
run;
```

Output 34.11.7 Contents of OUT=CSTROUT Using FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

```
famallt: FAMEOUT option, Different Type Values
 Contents of OUT=cstrout
 Using FAMEOUT=STRINGCASE option without range
The CONTENTS Procedure
```

Alphabetic List of Variables and Attributes

$\#$	Variable	Type	Len
1	STR0	Char	16
2	STR1	Char	16
3	STR2	Char	16
4	STRM	Char	16

Output 34.11.8 Listing of OUT=CSTROUT Using FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

```***famallt: FAMEOUT option, Different Type Values*** ALLTYPES, FAMEOUT=STRINGCASE and open wildcard for STRING CASE Series OUT=CSTROUT from the PRINT Procedure```				
Obs	STRO	STR1	STR2	STRM
1	-9	0	1.333333	0
2	-8	1	1	1
3	-7	2	0.6666667	2
4	-6	3	0.3333333	3
5	-5	4	0	4
6	-4	5		5
7	-3	6		
8	-2	7		7
9	-1		-1.333333	
10	0			
11	1			
12	2			
13	3		-2.666667	
14	4			
15	5			
16	6			
17	7		-4	
18	8			
19	9			
20	10			

Suppose you prefer to extract all the source for the formulas in your FAME database. The following statements show the source of all formulas written to your SAS data set. The results are shown in Output 34.11.9 and Output 34.11.10. Another example of FAMEOUT=FORMULA option is shown in Example 34.6.

```
libname lib8 sasefame "%sysget(FAME_DATA)"
    fameout=formula wildcard="?" ;
data cforout;
    set lib8.alltypes;
run;
title2 'Contents of OUT=cforout';
title3 'Using FAMEOUT=FORMULA option without range';
proc contents
    data=cforout;
run;
```

Output 34.11.9 Contents of OUT=CFOROUT Using FAMEOUT=FORMULA and Open Wildcard

famallt: FAMEOUT option, Different Type Values Contents of OUT=cforout Using FAMEOUT=FORMULA option without range The CONTENTS Procedure			
Alphabetic List of Variables and Attributes			
\#	Variable	Type	Len
1	S. DFRM	Char	27
2	S. FRM1	Char	27
3	S.FRM2	Char	27

```
title2 'ALLTYPES, FAMEOUT=FORMULA and open wildcard for FORMULA Series';
title3 'OUT=CFOROUT from the PRINT Procedure';
proc print
    data=cforout noobs;
run;
```

Output 34.11.10 Listing of OUT=CFOROUT Using FAMEOUT=FORMULA and Open Wildcard

```
    ***famallt: FAMEOUT option, Different Type Values***
ALLTYPES, FAMEOUT=FORMULA and open wildcard for FORMULA Series
    OUT=CFOROUT from the PRINT Procedure
    S.DFRM S.FRM1
    IF DBOO THEN DPRC ELSE DNUM IF BOO1 THEN NUM1 ELSE NUM2
        S.FRM2
    IF BOOO THEN DAT1 ELSE DAT2
```

If you want all series of every type, you can merge the resulting data sets together. For more about merging SAS data sets, see SAS Language Reference: Concepts.

References: SASEFAME Interface Engine

DRI/McGraw-Hill (1997), DataLink, Lexington, MA.
DRI/McGraw-Hill Data Search and Retrieval for Windows (1996), DRIPRO User's Guide, Lexington, MA.

SunGard Data Management Solutions (1998), Guide to FAME Database Servers, 888 Seventh Avenue, 12th Floor, New York, NY 10106 USA [http://www.fame.sungard.com/support.html], [http://www.data.sungard.com/]

SunGard Data Management Solutions (1995), User's Guide to FAME, Ann Arbor, MI [http://www.fame.sungard.com/support.html].

SunGard Data Management Solutions (1995), Reference Guide to Seamless C HLI, Ann Arbor, MI [http://www.fame.sungard.com/support.html].

SunGard Data Management Solutions(1995), Command Reference for Release 7.6, Vols. 1 and 2, Ann Arbor, MI [http://www.fame.sungard.com/support.html].

Organization For Economic Cooperation and Development (1992), Annual National Accounts: Volume I. Main Aggregates Content Documentation for Magnetic Tape Subscription, Paris, France.

Organization For Economic Cooperation and Development (1992), Annual National Accounts: Volume II. Detailed Tables Technical Documentation for Magnetic Tape Subscription, Paris, France.

Organization For Economic Cooperation and Development (1992), Main Economic Indicators Database Note, Paris, France.

Organization For Economic Cooperation and Development (1992), Main Economic Indicators Inventory, Paris, France.

Organization For Economic Cooperation and Development (1992), Main Economic Indicators OECD Statistics on Magnetic Tape Document, Paris, France.

Organization For Economic Cooperation and Development (1992), OECD Statistical Information Research and Inquiry System Magnetic Tape Format Documentation, Paris, France.

Organization For Economic Cooperation and Development (1992), Quarterly National Accounts Inventory of Series Codes, Paris, France.

Organization For Economic Cooperation and Development (1992), Quarterly National Accounts Technical Documentation, Paris, France.

Acknowledgments

Many people have been instrumental in the development of the ETS Interface engine. The individuals listed here have been especially helpful.

Jeff Kaplan, SunGard Data Management Solutions, Ann Arbor, MI.
Rick Langston, SAS Institute, Cary, NC.
Kelly Fellingham, SAS Institute, Cary, NC.
The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.

Chapter 35

The SASEHAVR Interface Engine

Contents
Overview: SASEHAVR Interface Engine 2340
Getting Started: SASEHAVR Interface Engine 2340
Structure of a SAS Data Set Containing Time Series Data 2340
Reading and Converting HAVER DLX Time Series 2340
Using the SAS DATA Step 2341
Using the SAS Windowing Environment 2341
Syntax: SASEHAVR Interface Engine 2342
The LIBNAME libref SASEHAVR Statement 2343
Details: SASEHAVR Interface Engine 2346
The SAS Output Data Set 2346
Mapping HAVER Frequencies to SAS Time Intervals 2346
Error Recovery for SASEHAVR 2347
Examples: SASEHAVR Interface Engine 2350
Example 35.1: Examining the Contents of a HAVER Database 2351
Example 35.2: Viewing Quarterly Time Series from a HAVER Database 2352
Example 35.3: Viewing Monthly Time Series from a HAVER Database 2353
Example 35.4: Viewing Weekly Time Series from a HAVER Database 2354
Example 35.5: Viewing Daily Time Series from a HAVER Database 2355
Example 35.6: Limiting the Range of Time Series from a HAVER Database 2356
Example 35.7: Using the WHERE Statement to Subset Time Series from a HAVER Database 2357
Example 35.8: Using the KEEP Option to Subset Time Series from a HAVER Database 2359
Example 35.9: Using the SOURCE Option to Subset Time Series from a HAVER Database 2361
Example 35.10: Using the GROUP Option to Subset Time Series from a HAVER Database 2363
Data Elements Reference: SASEHAVR Interface Engine 2369
HAVER ANALYTICS DLX Database Profile 2369
References 2376
Acknowledgments 2376

Overview: SASEHAVR Interface Engine

The SASEHAVR interface engine is a seamless interface between HAVER and SAS data processing that enables SAS users to read economic and financial time series data residing in a HAVER ANALYTICS DLX (Data Link Express) database. The HAVER ANALYTICS DLX economic and financial database offerings include United States Economic Indicators, Specialized Databases, Financial Indicators, Industry, Industrial Countries, Emerging Markets, International Organizations, Forecasts and As Reported Data, and United States Regional. For more details, see "Data Elements Reference: SASEHAVR Interface Engine" on page 2369.

The SASEHAVR engine uses the LIBNAME statement to enable you to specify how you would like to subset your HAVER data and how you would like to aggregate the selected time series to the same frequency. The SAS DATA step can then be used to perform further subsetting and to store the resulting time series into a SAS data set. You can perform more analysis if desired either in the same SAS session or in another session at a later time.

Getting Started: SASEHAVR Interface Engine

Structure of a SAS Data Set Containing Time Series Data

SAS represents time series data in a two-dimensional array called a SAS data set whose columns correspond to series variables and whose rows correspond to measurements of these variables at certain time periods. The time periods at which observations are recorded can be included in the data set as a time ID variable. The SASEHAVR engine provides a time ID variable called DATE. The DATE variable can be represented in any of the time intervals shown in the section "Mapping HAVER Frequencies to SAS Time Intervals" on page 2346.

Reading and Converting HAVER DLX Time Series

The SASEHAVR engine supports reading and converting time series stored in HAVER DLX databases. The SASEHAVR engine enables you to limit the range of data with the START= and $\mathrm{END}=$ libname options. Start dates and end dates are recommended on the libname statement to help you save resources when processing large databases or when processing a large number of observations.

The SASEHAVR engine enables you to convert or aggregate all selected time series to a desired frequency. By default, SASEHAVR selects the time series variables that match the frequency of the first selected variable. To select variables of one specific frequency, use the $\mathrm{FREQ}=$ option. If no selection criteria are specified, the first selected variable is the first physical DLXRecord read
from the HAVER database. To force aggregation of all selected variables to the frequency specified by the FREQ= option, the FORCE= FREQ option can be used. Aggregation is only supported from a more frequent time interval to a less frequent time interval, such as from weekly to monthly. If a conversion to a more frequent frequency is attempted, all missing values are returned by the HAVER DLX API (application programming interface). See "Aggregating to Quarterly Frequency Using the FORCE= FREQ Option" on page 2350. The FORCE= option is ignored if the FREQ= option is not specified.

Using the SAS DATA Step

If desired, you can store your selected time series in a SAS data set by using the SAS DATA step. You can further subset your data by using the WHERE, KEEP, or DROP statements in your DATA step.

For more efficient subsetting of time series by HAVER variables, by HAVER groups, or by HAVER sources, you can use the corresponding KEEP=, GROUP=, and SOURCE= option on the LIBNAME libref SASEHAVR statement . For your convenience, wildcarding is supported in these options.

There are three wildcard symbols: '*', '?' and ' $\#$ '. The '*' wildcard corresponds to any character string and will include any string pattern that corresponds to that position in the matching variable name. The '?' stands for any single alphanumeric character. Lastly, the '\#' wildcard corresponds to a single numeric character.

You can also deselect time series by HAVER variables, by HAVER groups, or by HAVER sources, by using the corresponding DROP=, DROPGROUP= or the DROPSOURCE= option. These options also support wildcarding to facilitate deselection based on variable names, group names, or source names.

Once your selected data is stored in a SAS data set, you can use it as you would any other SAS data set.

Using the SAS Windowing Environment

You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment by selecting the SASEHAVR libref in the LIBNAME window that you have previously defined in your LIBNAME statement. You can view your SAS output observations by double-clicking on the desired output data set libref in the LIBNAME window of the SAS windowing environment. You can type Viewtable on the SAS command line to view your SASEHAVR tables, views, or librefs. It is recommended that Viewtable be used for output data set viewing by storing your output data sets in a separate physical folder/library from your input data bases. When this guideline is followed, the default location for output data sets is SASWORK. When this guideline is not followed, it is expected that the following errors are likely to be encountered for some of your input databases being viewed:

```
ERROR: No variable selected with current options.
```

When this happens, you will notice that you get one error message for each input data base that does not have the selected options on the sasehavr libref that you have double-clicked on.

Syntax: SASEHAVR Interface Engine

The SASEHAVR engine uses standard engine syntax. Options used by SASEHAVR are summarized in the following table.

Table 35.1 Summary of LIBNAME libref SASEHAVR statement Options

Option	Description
FREQ=	specifies the HAVER frequency
FREQUENCY=	specifies the HAVER frequency
INTERVAL=	specifies the HAVER frequency
START=	specifies a HAVER start date to limit the selection of time series that begins with the specified date
STARTDATE=	specifies a HAVER start date to limit the selection of time series that begins with the specified date
STDATE=	specifies a HAVER start date to limit the selection of time series that begins with the specified date
BEGIN=	specifies a HAVER start date to limit the selection of time series that begins with the specified date
END=	specifies a HAVER end date to limit the selection of time series that ends with the specified date
ENDDATE=	specifies a HAVER end date to limit the selection of time series that ends with the specified date
ENDATE=	specifies a HAVER end date to limit the selection of time series that ends with the specified date
KEEP=	specifies a list of comma-delimited HAVER variables to keep in the output SAS data set
DROP=	specifies a list of comma-delimited HAVER variables to drop in the output SAS data set
GROUP=	specifies a list of comma-delimited HAVER groups to keep in the output SAS data set
KEEPGROUP=	specifies a list of comma-delimited HAVER groups to keep in the output SAS data set
DROPGROUP=	specifies a list of comma-delimited HAVER groups to drop in the output SAS data set
SOURCE=	specifies a list of comma-delimited HAVER sources to keep in the output SAS data set
KEEPSOURCE=	specifies a list of comma-delimited HAVER sources to keep in the output SAS data set
DROPSOURCE=	specifies a list of comma-delimited HAVER sources to drop in the output SAS data set
FORCE $=$ FREQ	specifies that all selected variables should be aggregated to the frequency specified in the FREQ= option

The LIBNAME libref SASEHAVR Statement

LIBNAME libref sasehavr 'physical name' options ;

The physical name specifies the location of the folder where your HAVER DLX database resides.

The following options can be used in the LIBNAME libref SASEHAVR statement:
FREQ=haver_frequency
specifies the HAVER frequency. All HAVER frequencies are supported by the SASEHAVR engine. Accepted frequency values are annual, year, yearly, quarter, quarterly, qtr, monthly, month, mon, week.1, week.2, week.3, week.4, week.5, week.6, week.7, weekly, week, daily, day.

START=start_date

specifies the start date for the time series in the form YYYYMMDD.
END=end_date
specifies the end date for the time series in the form YYYYMMDD.

KEEP=haver_variables

specifies the list of HAVER variables to be included in the output SAS data set. This list is comma-delimited and must be surrounded by quotes "".

DROP=haver_variables

specifies the list of HAVER variables to be excluded from the output SAS data set. This list is comma-delimited and must be surrounded by quotes "".

GROUP=haver_groups

specifies the list of HAVER groups to be included in the output SAS data set. This list is comma-delimited and must be surrounded by quotes "".

DROPGROUP=haver_groups

specifies the list of HAVER groups to be excluded from the output SAS data set. This list is comma-delimited and must be surrounded by quotes "".

SOURCE=haver_sources

specifies the list of HAVER sources to be included in the output SAS data set. This list is comma-delimited and must be surrounded by quotes "".

DROPSOURCE=haver_sources

specifies the list of HAVER sources to be excluded from the output SAS data set. This list is comma-delimited and must be surrounded by quotes "".

FORCE= FREQ

specifies that the selected variables are to be aggregated to the frequency in the FREQ=option. Aggregation is only supported from a more frequent time interval to a less frequent time interval, such as from weekly to monthly. See "Aggregating to Quarterly Frequency Using the FORCE= FREQ Option" on page 2350 for sample output and suggested error recovery from attempting a conversion that yields missing values when specifying a higher frequency conversion. This option is ignored if the FREQ= option is not set.

For a more complete discussion of HAVER frequencies and SAS time intervals see the section "Mapping HAVER Frequencies to SAS Time Intervals" on page 2346. As an example,

```
LIBNAME libref sasehavr 'physical-name'
FREQ=MONTHLY;
```

By default, the SASEHAVR engine reads all time series in the HAVER database that you reference when using your SASEHAVR libref. The haver_startdate is specified in the form YYYYMMDD. The start date is used to delimit the data to a specified start date.

For example, to read the time series in the TEST library starting on July 4, 1996, you would specify

```
LIBNAME test sasehavr 'physical-name'
    STARTDATE=19960704;
```

When you use the START= option, you are limiting the range of observations that are read from the time series and that are converted to the desired frequency. Start dates can help you save resources when processing large databases or when processing a large number of observations. It is also possible to select specific variables to be included or excluded from the SAS data set by using the KEEP= or the DROP= option.

```
LIBNAME test sasehavr 'physical-name'
    KEEP="ABC*, XYZ??";
LIBNAME test sasehavr 'physical-name'
    DROP="*SC*, #T#";
```

When the KEEP= or the DROP= option is used the resulting SAS data set will keep or drop the variables that you select in that option. There are three wildcards currently available: '*', '?' and '\#'. The '*' wildcard corresponds to any character string and will include any string pattern that corresponds to that position in the matching variable name. The '?' means that any single alphanumeric character is valid. And finally, the ' $\#$ ' wildcard corresponds to a single numeric character. You can also select time series in your data by using the GROUP= or the SOURCE $=$ option to select on GROUP name or on SOURCE name. Alternatively, you can deselect time series by using the DROPGROUP= or the DROPSOURCE $=$ option.

```
LIBNAME test sasehavr 'physical-name'
    GROUP="CBA, *ZYX";
LIBNAME test sasehavr 'physical-name'
    DROPGROUP="TKN*, XCZ?";
LIBNAME test sasehavr 'physical-name'
    SOURCE="FRB";
LIBNAME test sasehavr 'physical-name'
    DROPSOURCE="NYSE";
```

SASEHAVR selects only the variables that are of the specified frequency in the FREQ= option. If this option is not specified, SASEHAVR selects the variables that match the frequency of the first selected variable. If no other selection criterion are specified, by default, the first selected variable is the first physical DLXRecord read from the HAVER database. The FORCE= FREQ option can be specified to force the aggregation of all variables selected to be of the frequency specified in the FREQ= option. Aggregation is only supported from a more frequent time interval to a less frequent time interval, such as from weekly to monthly. See "Aggregating to Quarterly Frequency Using the FORCE= FREQ Option" on page 2350 for suggested recovery from using a frequency that does not aggregate the data appropriately. The FORCE= option is ignored if the FREQ= option is not specified.

Details: SASEHAVR Interface Engine

The SAS Output Data Set

You can use the SAS DATA step to write the HAVER converted series to a SAS data set. This enables the user to easily analyze the data using SAS. You can specify the name of the output data set on the DATA statement. This causes the engine supervisor to create a SAS data set using the specified name in either the SAS WORK library, or if specified, the USER library. For more about naming your SAS data set see the section "Characteristics of SAS Data Libraries" in SAS Language Reference: Dictionary.

The contents of the SAS data set include the DATE of each observation, the name of each series read from the HAVER database, and the label or HAVER description of each series. Missing values are represented as '.' in the SAS data set. You can use PROC PRINT and PROC CONTENTS to print your output data set and its contents. You can use PROC SQL along with the SASEHAVR engine to create a view of your SAS data set.

The DATE variable in the SAS data set contains the date of the observation. The SASEHAVR engine automatically maps the HAVER intervals to the appropriate corresponding SAS interval.

A more detailed discussion of how to map HAVER frequencies to SAS time intervals follows.

Mapping HAVER Frequencies to SAS Time Intervals

Table 35.2 summarizes the mapping of HAVER frequencies to SAS time intervals. For more information refer to "Date Intervals, Formats, and Functions" in SAS/ETS User's Guide.

Table 35.2 Mapping HAVER Frequencies to SAS Time Intervals

HAVER Frequency	SAS Time Interval	FREQ=
ANNUAL	YEAR	YEARLY
QUARTERLY	QTR	QTRLY
MONTHLY	MONTH	MON
WEEKLY (SUNDAY)	WEEK.1	WEEK.1
WEEKLY (MONDAY)	WEEK.2	WEEK.2
WEEKLY (TUESDAY)	WEEK.3	WEEK.3
WEEKLY (WEDNESDAY)	WEEK.4	WEEK.4
WEEKLY (THURSDAY)	WEEK.5	WEEK.5
WEEKLY (FRIDAY)	WEEK.6	WEEK.6
WEEKLY (SATURDAY)	WEEK.7	WEEK.7
WEEKLY WEEK.1-WEEK.7	WEEKLY	WEEKLY
DAILY	WEEKDAY17W	DAY

Error Recovery for SASEHAVR

Common errors are easy to avoid by noting the valid dates that are specified in the warning messages in your SAS log. Often you can get rid of errors by removing either your date restriction (START= and END= options), by removing your FORCE= FREQ option, or by letting the haver_frequency default to the original frequency rather than attempting a conversion.

Here are some common error scenarios and how to handle them.

Using the Optimum Range for Best Output Results

Suppose you see the following warnings in your SAS log:

```
libname kgs2 sasehavr "%sysget(HAVER_DATA)"
    start= 19550101 end=19600105
    keep="FCSEED, FCSEEI, FCSEEM, BGSX, BGSM, FXDUSBC"
    group="IO1, F56, M02, R30"
    source="JPM, CEN, OMB" ;
NOTE: Libref KGS2 was successfully assigned as follows:
    Engine: HAVERDLX
    Physical Name: C:\haver
data kgse9;
    set kgs2.haver;
NOTE: Defaulting to MONTHLY frequency.
WARNING: Start date (19550101) is not a valid date.
        Engine is ignoring your start date and using
        default. Setting the default Haver start date to 7001.
WARNING: End date (19600105) is not a valid date.
        Engine is ignoring your end date and using
        default. Setting the default Haver end date to 10103.
run;
```

NOTE: There were 375 observations read from the data set KGS2.HAVER.
NOTE: The data set WORK.KGSE9 has 375 observations and 4 variables.

The important diagnostic to note here is the warning message which tells you that the data starts in January of 1970 (HAVER date 7001), and ends in March, 2001 (HAVER date 10103). Since the specified range falls outside the range of data, no observations are in range so the engine uses the default range stated in the warning messages. Changing the START= and END= options to overlap the results in data spanning from JAN1970 to MAR2001. To view the entire range of selected data, remove the START = and END = options from your LIBNAME statement:

```
libname kgs sasehavr "%sysget (HAVER_DATA)"
    keep="FCSEED, FCSEEI, FCSEEM, BGSX, BGSM, FXDUSBC"
    group="IO1, F56, M02, R30"
    source="JPM, CEN,OMB" ;
```

```
NOTE: Libref KGS was successfully assigned as follows:
    Engine: HAVERDLX
    Physical Name: C:\haver
data kgse5;
    set kgs.haver;
NOTE: Defaulting to MONTHLY frequency.
    run;
```

NOTE: There were 375 observations read from the data set KGS.HAVER.
NOTE: The data set WORK.KGSE5 has 375 observations and 4 variables.

Using a Valid Range of Data With START= and END= Options

In this example, an error about an invalid range is issued:

```
libname lib1 sasehavr "%sysget(HAVER_DATA)" freq=Weekly
    start=20060301 end=20060531;
NOTE: Libref LIB1 was successfully assigned as follows:
    Engine: HAVERDLX
    Physical Name: C:\haver
libname lib2 "\\dntsrc\usrtmp\saskff" ;
NOTE: Libref LIB2 was successfully assigned as follows:
    Engine: V9
    Physical Name: \\dntsrc\usrtmp\saskff
data lib2.wweek;
    set lib1.intwkly;
ERROR: No observations found inside RANGE.
            The valid range for HAVER dates is (610104-1050318).
ERROR: No observations found in specified range.
            keep date m11: ;
        run;
```

WARNING: The variable date in the DROP, KEEP, or RENAME list
has never been referenced.
WARNING: The variable m11: in the DROP, KEEP, or RENAME list
has never been referenced.
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set LIB2. WWEEK may be incomplete.
When this step was stopped there were 0
observations and 0 variables.
WARNING: Data set LIB2. WWEEK was not replaced because this step was stopped.

In the preceding example, the important diagnostic message is the first error statement which tells you that the RANGE of HAVER dates is invalid for the specified frequency. A valid range is one that overlaps the dates (610104-1050318). Removing the range altogether will cause the engine to output the entire range of data.
libname lib1 sasehavr "\%sysget(HAVER_DATA)" freq=Weekly;

```
NOTE: Libref LIB1 was successfully assigned as follows:
    Engine: HAVERDLX
    Physical Name: C:\haver
libname lib2 "\\dntsrc\usrtmp\saskff" ;
NOTE: Libref LIB2 was successfully assigned as follows:
    Engine: v9
    Physical Name: \\dntsrc\usrtmp\saskff
data lib2.wweek;
    set lib1.intwkly;
    keep date m11: ;
run;
NOTE: There were 2307 observations read from the data set LIB1.INTWKLY.
NOTE: The data set LIB2.WWEEK has 2307 observations and 35 variables.
```

When giving a range of dates, since the $\mathrm{START}=, \mathrm{END}=$ options give day-based dates, its important to use dates that correspond to the FREQ= option, especially with weekly frequencies, such as week.1-week.7. Since the FREQ=week. 4 selects weeks that begin on Wednesday, the start and end dates need to be specified as Wednesday dates.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)" freq=Week.4
    start=20050302 end=20050309;
NOTE: Libref LIB1 was successfully assigned as follows:
    Engine: HAVERDLX
    Physical Name: \\tappan\crsp1\haver
title2 'Weekly dataset with freq=week.4 range is small';
libname lib2 "\\dntsrc\usrtmp\saskff" ;
NOTE: Libref LIB2 was successfully assigned as follows:
    Engine: V9
    Physical Name: \\dntsrc\usrtmp\saskff
data lib2.wweek;
    set lib1.intwkly;
    keep date m11: ;
run;
NOTE: There were 2 observations read from the data set LIB1.INTWKLY.
NOTE: The data set LIB2.WWEEK has 2 observations and 25 variables.
```

Giving bad dates (i.e., Tuesday dates) for a Wednesday FREQ=week. 4 will result in the following error.

```
ERROR: Fatal error in GetDate routine.
    Remove the range statement or change the START= date to
    be consistent with the freq=option.
ERROR: No observations found in specified range.
```


Aggregating to Quarterly Frequency Using the FORCE= FREQ Option

In the next example, 6 time series are selected by the KEEP=option, but their frequencies are annual, monthly, quarterly, so when the FREQ= weekly and FORCE= freq options are used, a diagnostic appears in the log stating that the engine is forcing the frequency to QUARTERLY for better date alignment of observations. The first selected variable is BALO which is a quarterly time series, which causes the default choice of freq to be quarterly:

```
title1 '***HAVKWC.SAS: KEEP= option tests with wildcards***';
%setup( ets );
    /*----------------*/
    /* Wildcard: * */
    /*-----------------*/
title2 "keep=B*, G*, I*";
title3 "6 valid variables are: BALO BGSM BGSX BPBCA G IUM";
libname lib1 sasehavr 'C:\haver\' keep="B*, G*, I*"
    freq=weekly force=freq;
NOTE: Libref LIB1 was successfully assigned as follows:
            Engine: HAVERDLX
            Physical Name: C:\haver\
data wc;
    set lib1.haver;
WARNING: Earliest Start Date in DLX Database matches QUARTERLY frequency
                better than the specified WEEKLY frequency.
                Engine is forcing the frequency to QUARTERLY for better date
                alignment of observations.
run;
NOTE: There were 221 observations read from the data set LIB1.HAVER.
NOTE: The data set WORK.WC has 221 observations and 7 variables.
```

Note that the time series IUM is an annual frequency, so the attempt to convert to a quarterly frequency produces all missing values in the output range because aggregation produces only missing values when going from a lower frequency to a higher (forced) frequency.

Examples: SASEHAVR Interface Engine

Before running the following sample code, set your HAVER_DATA environment variable to point to the ETS SASMISC folder containing sample HAVER databases. The provided sample data files are HAVERD.DAT, HAVERD.IDX, HAVERW.IDX, and HAVERW.DAT.

Example 35.1: Examining the Contents of a HAVER Database

To see which time series are in your HAVER database, use PROC CONTENTS with the SASEHAVR LIBNAME statement to read the contents.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=yearly start=19920101
    end=20041231
    force=freq;
data hwouty;
    set lib1.haverw;
run;
    title1 'Haver Analytics Database, HAVERW.DAT';
title2 'PROC CONTENTS for Time Series converted to yearly frequency';
proc contents data=hwouty;
run;
```

In the preceding example, the HAVER database is called haverw and it resides in the directory referenced in lib1. The DATA statement names the SAS output data set hwouty, which will reside in saswork. All time series in the HAVER haverw database are listed alphabetically in Output 35.1.1.

Output 35.1.1 Examining the Contents of HAVER Analytics Database, haverw.dat

You could use the following SAS statements to create a SAS data set named hwouty and to print its contents.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=yearly
    start=19920101
    end=20041231
    force=freq;
```

```
data hwouty;
    set lib1.haverw;
run;
title1 'Haver Analytics Database, Frequency=yearly, infile=haverw.dat';
title2 'Define a range inside the data range for OUT= dataset,';
title3 'Using the START=19920101 END=20041231 LIBNAME options.';
proc print data=hwouty;
run;
```

The preceding LIBNAME lib1 statement specifies that all time series in the haverw database be converted to yearly frequency but to only select the range of data from January 1,1992 , to December 31, 2004. The resulting SAS data set hwouty is shown in Output 35.1.2.

Output 35.1.2 Defining a Range Inside the Data Range for Yearly Time Series

Obs	Haver Analytics Database, Frequency=yearly, infile=haverw.dat Define a range inside the data range for OUT= dataset, Using the START=19920101 END=20041231 LIBNAME options.						
	DATE	FA	FCM1M	FM1	FTA1MA	FTB3	LICN
1	1992	3466.3	.	965.31	.	3.45415	407.340
2	1993	3624.6		1077.69		3.01654	344.934
3	1994	3875.8		1144.85		4.28673	340.054
4	1995	4209.3		1142.70		5.51058	357.038
5	1996	4399.1		1106.46		5.02096	351.358
6	1997	4820.3		1069.23		5.06885	321.513
7	1998	5254.8		1079.56		4.80726	317.077
8	1999	5608.1		1101.14		4.66154	301.581
9	2000	6115.4		1104.07		5.84644	301.108
10	2001	6436.2	2.31368	1136.31	11.753	3.44471	402.583
11	2002	7024.9	1.63115	1192.03	18.798	1.61548	402.796
12	2003	7302.9	1.02346	1268.40	16.089	1.01413	399.137
13	2004	7950.5	1.26642	1337.89	13.019	1.37557	345.109

Example 35.2: Viewing Quarterly Time Series from a HAVER Database

Consider the following statements for quarterly frequency conversion of all time series for the period spanning April 1, 2001, to December 31, 2004.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=quarterly
    start=20010401
    end=20041231
    force=freq;
```

data hwoutq;

```
    set lib1.haverw;
run;
title1 'HAVER Analytics Database, Frequency=quarterly, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20010401 END=20041231 LIBNAME options.';
proc print data=hwoutq;
run;
```

The resulting SAS data set hwoutq is shown in Output 35.2.1.
Output 35.2.1 Defining a Range Inside the Data Range for Quarterly Time Series

Obs	HAVER Analytics Database, Frequency=quarterly, infile=haverw. dat Define a range inside the data range for OUT= dataset Using the START=20010401 END=20041231 LIBNAME options.						
	DATE	FA	FCM1M	FM1	FTA1MA	FTB3	LICN
1	2001Q2	6225.4		1115.75	.	3.68308	356.577
2	2001Q3	6425.9	2.98167	1157.90	12.077	3.27615	368.408
3	2001Q4	6436.2	2.00538	1169.62	11.753	1.95308	477.685
4	2002Q1	6396.3	1.73077	1186.92	22.309	1.72615	456.292
5	2002Q2	6563.5	1.72769	1183.30	17.126	1.72077	368.592
6	2002Q3	6780.0	1.69231	1189.89	21.076	1.64769	352.892
7	2002Q4	7024.9	1.37385	1207.80	18.798	1.36731	433.408
8	2003Q1	7054.5	1.17846	1231.41	24.299	1.15269	458.746
9	2003Q2	7319.6	1.08000	1262.24	14.356	1.05654	386.185
10	2003Q3	7238.6	0.92000	1286.21	16.472	0.92885	361.346
11	2003Q4	7302.9	0.91538	1293.76	16.089	0.91846	390.269
12	2004Q1	7637.3	0.90231	1312.43	21.818	0.91308	400.585
13	2004Q2	7769.8	0.94692	1332.75	12.547	1.06885	310.508
14	2004Q3	7949.5	1.34923	1343.79	21.549	1.49393	305.862
15	2004Q4	7950.5	1.82429	1362.60	13.019	2.01731	362.171

Example 35.3: Viewing Monthly Time Series from a HAVER Database

Suppose you want to convert your time series to a monthly frequency like this:

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=monthly
    start=20040401
    end=20041231
    force=freq;
data hwoutm;
    set lib1.haverw;
run;
title1 'Haver Analytics Database, Frequency=monthly, infile=haverw.dat';
```

```
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040401 END=20041231 LIBNAME options.';
proc print data=hwoutm;
run;
```

The result from using the range of April 1, 2004, to December 31, 2004, is shown in Output 35.3.1.
Output 35.3.1 Defining a Range Inside the Data Range for Monthly Time Series

Obs	Haver Analytics Database, Frequency=monthly, infile=haverw.dat Define a range inside the data range for OUT= dataset Using the START=20040401 END=20041231 LIBNAME options.						
	DATE	FA	FCM1M	FM1	FTA1MA	FTB3	LICN
1	APR2004	7703.8	0.9140	1325.73	16.946	0.93900	317.36
2	MAY2004	7704.7	0.9075	1332.96	25.043	1.03375	297.00
3	JUN2004	7769.8	1.0275	1339.50	12.547	1.26625	315.45
4	JUL2004	7859.5	1.1840	1330.13	21.823	1.34900	357.32
5	AUG2004	7890.0	1.3650	1347.84	25.213	1.48000	276.70
6	SEP2004	7949.5	1.5400	1352.40	21.549	1.65000	270.70
7	ОСт2004	7967.6	1.6140	1355.28	21.322	1.74750	304.24
8	NOV2004	8053.4	1.9125	1366.06	21.862	2.05625	335.85
9	DEC2004	7950.5	1.9640	1365.60	13.019	2.20200	441.16

Example 35.4: Viewing Weekly Time Series from a HAVER Database

An example of weekly data spanning September 1, 2004, to December 31, 2004, is shown in Output 35.4.1.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=weekly
    start=20040901
    end=20041231;
data hwoutw;
    set lib1.haverw;
run;
title1 'HAVER Analytics Database, Frequency=weekly, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040901 END=20041231 LIBNAME options.';
proc print data=hwoutw;
run;
```

Output 35.4.1 Defining a Range Inside the Data Range for Weekly Time Series

Obs	HAVER Analytics Database, Frequency=weekly, infile=haverw. dat Define a range inside the data range for OUT= dataset Using the START=20040901 END=20041231 LIBNAME options.						
	DATE	FA	FCM1M	FM1	FTA1MA	FTB3	LICN
1	29AUG2004	7890.0	1.39	1360.8	27.342	1.515	275.2
2	05SEP2004	7906.2	1.46	1353.7	25.213	1.580	273.7
3	12SEP2004	7962.7	1.57	1338.3	25.255	1.635	250.6
4	19SEP2004	7982.1	1.57	1345.6	15.292	1.640	275.8
5	26 SEP 2004	7987.9	1.56	1359.7	15.068	1.685	282.7
6	030CT2004	7949.5	1.54	1366.0	21.549	1.710	279.6
7	100CT2004	7932.4	1.56	1362.3	17.183	1.685	338.7
8	170Ст2004	7956.9	1.59	1350.1	17.438	1.680	279.8
9	240Ст2004	7957.3	1.63	1346.0	12.133	1.770	317.6
10	310Ст2004	7967.6	1.75	1362.7	21.322	1.855	305.5
11	07NOV2004	7954.1	1.84	1350.4	22.028	1.950	354.8
12	14NOV2004	8009.7	1.89	1354.8	25.495	2.045	311.9
13	21NOV2004	7938.3	1.93	1364.5	24.000	2.075	356.0
14	28NOV2004	8053.4	1.99	1381.3	24.424	2.155	320.7
15	05DEC2004	8010.7	2.05	1379.3	21.862	2.195	472.7
16	12DEC2004	8054.8	2.08	1355.1	22.178	2.210	370.6
17	19DEC2004	8019.2	1.98	1358.3	12.066	2.200	374.7
18	26DEC2004	7995.5	1.89	1366.3	12.787	2.180	446.6

Example 35.5: Viewing Daily Time Series from a HAVER Database

Consider viewing the HAVER Analytics daily database named haverd. The contents of this database can be seen by submitting the following DATA step.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=daily
    start=20041201
    end=20041231;
data hwoutd;
    set lib1.haverd;
run;
title1 'HAVER Analytics Database, HAVERD.DAT';
title2 'PROC CONTENTS for Time Series converted to daily frequency';
proc contents data=hwoutd;
run;
```

Output 35.5.1 shows the output of PROC CONTENTS with the time id variable DATE followed by the time series variables FCM10, FCM1M, FFED, FFP1D, FXAUS, and TCC with their corresponding attributes such as type, length, format, and label.

Output 35.5.1 Examining the Contents of a Daily HAVER Analytics Database, haverd.dat

Example 35.6: Limiting the Range of Time Series from a HAVER Database

Suppose you limit the range of data to the month of December:

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=daily
    start=20041201
    end=20041231;
data hwoutd;
    set lib1.haverd;
run;
title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20041201 END=20041231 LIBNAME options.';
proc print data=hwoutd;
run;
```

Note that Output 35.6 .1 for daily conversion shows the frequency as the SAS time interval for WEEKDAY.

Output 35.6.1 Defining a Range Inside the Data Range for Daily Time Series

Obs	Haver Analytics Database, Frequency=daily, infile=haverd.dat Define a range inside the data range for OUT= dataset Using the START=20041201 END=20041231 LIBNAME options.						
	DATE	FCM10	FCM1M	FFED	FFP1D	FXAUS	тСС
1	01DEC2004	4.38	2.06	2.04	2.01	0.7754	7564
2	02DEC2004	4.40	2.06	2.00	1.98	0.7769	8502
3	03DEC2004	4.27	2.06	1.98	1.96	0.7778	7405
4	06DEC2004	4.24	2.09	2.04	1.98	0.7748	7019
5	07DEC2004	4.23	2.08	1.99	1.99	0.7754	15520
6	08DEC2004	4.14	2.08	2.01	1.98	0.7545	12329
7	09DEC2004	4.19	2.07	2.05	2.03	0.7532	5441
8	10DEC2004	4.16	2.07	2.09	2.07	0.7495	6368
9	13DEC2004	4.16	2.04	2.18	2.13	0.7592	11395
10	14DEC2004	4.14	2.01	2.24	2.22	0.7566	13695
11	15DEC2004	4.09	1.98	2.31	2.27	0.7652	39765
12	16DEC2004	4.19	1.93	2.26	2.24	0.7563	33640
13	17DEC2004	4.21	1.95	2.23	2.20	0.7607	32764
14	20DEC2004	4.21	1.97	2.26	2.21	0.7644	36216
15	21DEC2004	4.18	1.92	2.24	2.21	0.7660	35056
16	22DEC2004	4.21	1.84	2.25	2.22	0.7656	34599
17	23DEC2004	4.23	1.83	2.34	2.08	0.7654	24467
18	24DEC2004			2.27		0.7689	26898
19	27DEC2004	4.30	1.90	2.24	2.26	0.7777	31874
20	28DEC2004	4.31	1.88	2.24	2.24	0.7787	30513
21	29DEC2004	4.33	1.76	2.23	2.23	0.7709	34754
22	30DEC2004	4.27	1.68	2.24	2.18	0.7785	20045
23	31DEC2004	4.24	1.89	1.97	2.18	0.7805	24690

Example 35.7: Using the WHERE Statement to Subset Time Series from a HAVER Database

Using a WHERE statement in the DATA step can be useful for further subsetting.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=daily start=20041101 end=20041231;
data hwoutd;
    set lib1.haverd;
    where date between '01nov2004'd and '01dec2004'd;
run;
title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20041101 END=20041231 LIBNAME options.';
title4 'Subset further: where date between 01nov2004 and 31dec2004.';
proc print data=hwoutd;
run;
```

Output 35.7.1 shows that the time slice of November 1, 2004, to December 31, 2004, is narrowed further by the DATE test on the WHERE statement to stop at December 1, 2004.

Output 35.7.1 Defining a Range Using START=20041101 END=20041231 along with the WHERE statement

Obs	Haver Analytics Database, Frequency=daily, infile=haverd.dat Define a range inside the data range for OUT= dataset Using the START=20041101 END=20041231 LIBNAME options. Subset further: where date between 01 nov2004 and 31dec2004.						
	DATE	FCM10	FCM1M	FFED	FFP1D	FXAUS	TCC
1	01NOV2004	4.11	1.79	1.83	1.80	0.7460	35111
2	02NOV2004	4.10	1.86	1.74	1.74	0.7447	34091
3	03NOV2004	4.09	1.83	1.73	1.73	0.7539	14862
4	04NOV2004	4.10	1.85	1.77	1.75	0.7585	23304
5	05NOV2004	4.21	1.86	1.76	1.75	0.7620	19872
6	08NOV2004	4.22	1.88	1.80	1.84	0.7578	21095
7	09NOV2004	4.22	1.89	1.79	1.81	0.7618	16390
8	10NOV2004	4.25	1.88	1.92	1.85	0.7592	12872
9	11NOV2004	.	.	1.92	.		12872
10	12NOV2004	4.20	1.91	2.02	1.96	0.7685	28926
11	15NOV2004	4.20	1.92	2.06	2.03	0.7719	10480
12	16NOV2004	4.21	1.93	1.98	1.95	0.7728	13417
13	17NOV2004	4.14	1.90	1.99	1.93	0.7833	10506
14	18NOV2004	4.12	1.91	1.99	1.94	0.7786	6293
15	19NOV2004	4.20	1.98	1.99	1.93	0.7852	5100
16	22NOV2004	4.18	1.98	2.01	1.96	0.7839	6045
17	23NOV2004	4.19	1.99	2.00	1.95	0.7860	18135
18	24NOV2004	4.20	1.98	2.02	1.89	0.7863	14109
19	25NOV2004	.	.	2.02	.	.	14109
20	26NOV2004	4.24	2.01	2.01	1.97	0.7903	20588
21	29NOV2004	4.34	2.02	2.03	2.00	0.7852	24322
22	30NOV2004	4.36	2.07	2.02	2.04	0.7723	18033
23	01DEC2004	4.38	2.06	2.04	2.01	0.7754	7564

Example 35.8: Using the KEEP Option to Subset Time Series from a HAVER Database

To select specific time series, the $\mathrm{KEEP}=$ or $\mathrm{DROP}=$ option can also be used as follows.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=daily
    start=20041101
        end=20041231
        keep="FCM*";
data hwoutd;
    set lib1.haverd;
run;
title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20041101 END=20041231 LIBNAME options.';
title4 ' Subset further: Using keep="FCM*" LIBNAME option ';
proc print data=hwoutd;
run;
```

Output 35.8 .1 shows two series that are selected by using KEEP="FCM*" on the LIBNAME statement.

Output 35.8.1 Using the KEEP Option along with Defining a Range Using START=20041101 END=20041231

Haver Analytics Database, Frequency=daily, infile=haverd.dat Define a range inside the data range for OUT= dataset Using the START=20041101 END=20041231 LIBNAME options. Subset further: Using keep="FCM*" LIBNAME option

Obs	DATE	FCM10	FCM1M
1	01NOV2004	4.11	1.79
2	02NOV2004	4.10	1.86
3	03NOV2004	4.09	1.83
4	04NOV2004	4.10	1.85
5	05NOV2004	4.21	1.86
6	08NOV2004	4.22	1.88
7	09NOV2004	4.22	1.89
8	10NOV2004	4.25	1.88
9	11NOV2004	.	
10	12NOV2004	4.20	1.91
11	15NOV2004	4.20	1.92
12	16NOV2004	4.21	1.93
13	17NOV2004	4.14	1.90
14	18NOV2004	4.12	1.91
15	19NOV2004	4.20	1.98
16	22NOV2004	4.18	1.98
17	23NOV2004	4.19	1.99
18	24NOV2004	4.20	1.98
19	25NOV2004	-	
20	26NOV2004	4.24	2.01
21	29NOV2004	4.34	2.02
22	30NOV2004	4.36	2.07
23	01DEC2004	4.38	2.06
24	02DEC2004	4.40	2.06
25	03DEC2004	4.27	2.06
26	06DEC2004	4.24	2.09
27	07DEC2004	4.23	2.08
28	08DEC2004	4.14	2.08
29	09DEC2004	4.19	2.07
30	10DEC2004	4.16	2.07
31	13DEC2004	4.16	2.04
32	14DEC2004	4.14	2.01
33	15DEC2004	4.09	1.98
34	16DEC2004	4.19	1.93
35	17DEC2004	4.21	1.95
36	20DEC2004	4.21	1.97
37	21DEC2004	4.18	1.92
38	22DEC2004	4.21	1.84
39	23DEC2004	4.23	1.83
40	24DEC2004	.	.
41	27DEC2004	4.30	1.90
42	28DEC2004	4.31	1.88
43	29DEC2004	4.33	1.76
44	30DEC2004	4.27	1.68
45	31DEC2004	4.24	1.89

The DROP option can be used to drop specific variables from a HAVER database. To specify this option, use DROP= instead of KEEP=.

Example 35.9: Using the SOURCE Option to Subset Time Series from a HAVER Database

To select specific variables that belong to a certain source, the SOURCE= or DROPSOURCE= option can be used, similar to the way you use the KEEP= or DROP= option.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=daily
    start=20041101
    end=20041223
    source="FRB";
data hwoutd;
    set lib1.haverd;
run;
title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3'Using the START=20041101 END=20041223 LIBNAME options.';
title4 , Subset further: Using source="FRB" LIBNAME option';
proc print data=hwoutd;
run;
```

Output 35.9.1 shows two series that are selected by using SOURCE="FRB" on the LIBNAME statement.

Output 35.9.1 Using the SOURCE Option along with Defining a Range Using START=20041101 END=20041213

Haver Analytics Database, Frequency=daily, infile=haverd.dat Define a range inside the data range for OUT= dataset Using the START=20041101 END=20041223 LIBNAME options. Subset further: Using source="FRB" LIBNAME option

Obs	DATE	FCM10	FFED	FFP1D	FXAUS
1	01NOV2004	4.11	1.83	1.80	0.7460
2	02NOV2004	4.10	1.74	1.74	0.7447
3	03NOV2004	4.09	1.73	1.73	0.7539
4	04NOV2004	4.10	1.77	1.75	0.7585
5	05NOV2004	4.21	1.76	1.75	0.7620
6	08NOV2004	4.22	1.80	1.84	0.7578
7	09NOV2004	4.22	1.79	1.81	0.7618
8	10NOV2004	4.25	1.92	1.85	0.7592
9	11NOV2004	.	1.92	.	.
10	12NOV2004	4.20	2.02	1.96	0.7685
11	15NOV2004	4.20	2.06	2.03	0.7719
12	16NOV2004	4.21	1.98	1.95	0.7728
13	17NOV2004	4.14	1.99	1.93	0.7833
14	18NOV2004	4.12	1.99	1.94	0.7786
15	19NOV2004	4.20	1.99	1.93	0.7852
16	22NOV2004	4.18	2.01	1.96	0.7839
17	23NOV2004	4.19	2.00	1.95	0.7860
18	24NOV2004	4.20	2.02	1.89	0.7863
19	25NOV2004	.	2.02	.	.
20	26NOV2004	4.24	2.01	1.97	0.7903
21	29NOV2004	4.34	2.03	2.00	0.7852
22	30NOV2004	4.36	2.02	2.04	0.7723
23	01DEC2004	4.38	2.04	2.01	0.7754
24	02DEC2004	4.40	2.00	1.98	0.7769
25	03DEC2004	4.27	1.98	1.96	0.7778
26	06DEC2004	4.24	2.04	1.98	0.7748
27	07DEC2004	4.23	1.99	1.99	0.7754
28	08DEC2004	4.14	2.01	1.98	0.7545
29	09DEC2004	4.19	2.05	2.03	0.7532
30	10DEC2004	4.16	2.09	2.07	0.7495
31	13DEC2004	4.16	2.18	2.13	0.7592
32	14DEC2004	4.14	2.24	2.22	0.7566
33	15DEC2004	4.09	2.31	2.27	0.7652
34	16DEC2004	4.19	2.26	2.24	0.7563
35	17DEC2004	4.21	2.23	2.20	0.7607
36	20DEC2004	4.21	2.26	2.21	0.7644
37	21DEC2004	4.18	2.24	2.21	0.7660
38	22DEC2004	4.21	2.25	2.22	0.7656
39	23DEC2004	4.23	2.34	2.08	0.7654

Example 35.10: Using the GROUP Option to Subset Time Series from a HAVER Database

To select specific variables that belong to a certain group, the GROUP $=$ or $\operatorname{DROPGROUP}=$ option can also be used, similar to the way you use the KEEP $=$ or $\mathrm{DROP}=$ option.

Output 35.10.1, Output 35.10.2, and Output 35.10.3 show 3 different cross sections of the same database, haverw, by specifying 3 unique GROUP= options: GROUP="F*" on LIBNAME lib1, GROUP=" M^{*} " on LIBNAME lib2, and GROUP="E*" on LIBNAME lib3.

```
libname lib1 sasehavr "%sysget(HAVER_DATA)"
    freq=week. }
    force=freq
    start=20040102
    end=20041001
    group="F*";
data hwoutw;
    set lib1.haverw;
run;
title1 'Haver Analytics Database, Frequency=week.6, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3' Using the START=20040102 END=20041001 LIBNAME options.';
title4 ' Subset further: Using group="F*" LIBNAME option';
proc print data=hwoutw;
run;
```

Output 35.10.1 Using the GROUP=F* Option along with Defining a Range

Haver Analytics Database, Frequency=week.6, infile=haverw.dat Define a range inside the data range for OUT= dataset Using the START=20040102 END=20041001 LIBNAME options. Subset further: Using group="F*" LIBNAME option

Obs	DATE	FCM1M	FTA1MA	FTB3
1	02JAN2004	0.86	16.089	0.885
2	09JAN2004	0.88	12.757	0.920
3	16JAN2004	0.84	12.141	0.870
4	23JAN2004	0.79	12.593	0.875
5	30JAN2004	0.86	17.357	0.890
6	06FEB2004	0.90	21.759	0.920
7	13FEB2004	0.90	21.557	0.920
8	20FEB2004	0.92	21.580	0.915
9	27FEB2004	0.96	21.390	0.930
10	05MAR2004	0.97	24.119	0.940
11	12MAR2004	0.96	24.294	0.930
12	19MAR2004	0.94	23.334	0.945
13	$26 \mathrm{MAR2} 204$	0.95	21.400	0.930
14	02APR2004	0.95	21.818	0.945
15	09APR2004	0.94	17.255	0.930
16	16APR2004	0.92	14.143	0.915
17	23APR2004	0.89	14.136	0.935
18	30APR2004	0.87	16.946	0.970
19	07MAY2004	0.89	22.772	0.985
20	14MAY2004	0.89	23.113	1.060
21	21MAY2004	0.91	25.407	1.040
22	28MAY2004	0.94	25.043	1.050
23	04 JUN2004	0.97	27.847	1.130
24	11JUN2004	1.01	27.240	1.230
25	18JUN2004	1.05	17.969	1.390
26	25JUN2004	1.08	12.159	1.315
27	02JUL2004	1.11	12.547	1.355
28	09JUL2004	1.14	21.303	1.320
29	16 JUL2004	1.16	25.024	1.315
30	23JUL2004	1.21	25.327	1.330
31	30JUL2004	1.30	21.823	1.425
32	06AUG2004	1.34	21.631	1.465
33	13AUG2004	1.37	28.237	1.470
34	20AUG2004	1.36	26.070	1.470
35	27AUG2004	1.39	27.342	1.515
36	03SEP2004	1.46	25.213	1.580
37	10SEP2004	1.57	25.255	1.635
38	17SEP2004	1.57	15.292	1.640
39	24SEP2004	1.56	15.068	1.685
40	010CT2004	1.54	21.549	1.710

```
libname lib2 sasehavr "%sysget(HAVER_DATA)"
    freq=week. }
    force=freq start=20040102
    end=20041001
    group="M*";
data hwoutw;
    set lib2.haverw;
run;
title1 'Haver Analytics Database, Frequency=week.6, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3' Using the START=20040102 END=20041001 LIBNAME options.';
title4 ' Subset further: Using group="M*" LIBNAME option';
proc print data=hwoutw;
run;
```

Output 35.10.2 Using the GROUP=M* Option along with Defining a Range

Haver Analytics Database, Frequency=week.6, infile=haverw.dat Define a range inside the data range for OUT= dataset Using the START=20040102 END=20041001 LIBNAME options. Subset further: Using group="M*" LIBNAME option Obs DATE FA FM1			
1	02JAN2004	7302.9	1298.2
2	09JAN2004	7351.2	1294.3
3	16JAN2004	7378.5	1286.8
4	23JAN2004	7434.7	1296.7
5	30JAN2004	7492.4	1305.1
6	06FEB2004	7510.4	1303.1
7	13FEB2004	7577.8	1309.1
8	20FEB2004	7648.7	1317.0
9	27FEB2004	7530.6	1321.1
10	05MAR2004	7546.7	1316.2
11	12MAR2004	7602.0	1312.7
12	19MAR2004	7603.0	1324.0
13	26 MAR 2004	7625.5	1337.6
14	02APR2004	7637.3	1337.9
15	09APR2004	7667.4	1327.3
16	16APR2004	7692.5	1321.8
17	23APR2004	7698.4	1322.2
18	30APR2004	7703.8	1331.6
19	07MAY2004	7686.8	1342.5
20	14MAY2004	7734.6	1325.5
21	21MAY2004	7695.8	1330.1
22	28MAY2004	7704.7	1337.7
23	04 JUN2004	7715.1	1329.0
24	11JUN2004	7754.0	1324.4
25	18JUN2004	7753.2	1336.4
26	25JUN2004	7796.2	1345.8
27	02JUL2004	7769.8	1351.4
28	09JUL2004	7852.3	1330.1
29	16 JUL2004	7852.8	1326.3
30	23JUL2004	7854.7	1323.5
31	30JUL2004	7859.5	1340.6
32	06AUG2004	7847.9	1337.3
33	13AUG2004	7888.7	1340.1
34	20AUG2004	7851.8	1347.3
35	27AUG2004	7890.0	1360.8
36	03SEP2004	7906.2	1353.7
37	10SEP2004	7962.7	1338.3
38	17SEP2004	7982.1	1345.6
39	24SEP2004	7987.9	1359.7
40	010CT2004	7949.5	1366.0

```
libname lib3 sasehavr "%sysget (HAVER_DATA)"
    freq=week. }
    force=freq
    start=20040102
    end=20041001
    group="E*";
data hwoutw;
    set lib3.haverw;
run;
title1 'Haver Analytics Database, Frequency=week.6, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040102 END=20041001 LIBNAME options.';
title4 ' Subset further: Using group="E*" LIBNAME option';
proc print data=hwoutw;
run;
```

Output 35.10.3 Using the GROUP=E* Option along with Defining a Range

Haver Analytics Database, Frequency=week.6, infile=haverw.dat Define a range inside the data range for OUT= dataset Using the START=20040102 END=20041001 LIBNAME options. Subset further: Using group="E*" LIBNAME option		
1	02JAN2004	552.8
2	09JAN2004	677.9
3	16 JAN2004	490.8
4	23JAN2004	382.3
5	30JAN2004	406.3
6	06FEB2004	433.2
7	13 FEB 2004	341.6
8	20FEB2004	328.2
9	27FEB2004	342.1
10	05MAR2004	339.0
11	12MAR2004	312.1
12	19MAR2004	304.5
13	26MAR2004	296.8
14	02APR2004	304.2
15	09APR2004	350.7
16	16APR2004	335.0
17	23APR2004	313.7
18	30APR2004	283.2
19	07MAY2004	292.8
20	14MAY2004	297.1
21	21MAY2004	294.0
22	28MAY2004	304.1
23	04 JUN2004	308.2
24	11JUN2004	312.4
25	18JUN2004	322.5
26	25JUN2004	318.7
27	02JUL2004	349.9
28	09JUL2004	444.5
29	16JUL2004	394.4
30	23JUL2004	315.7
31	30JUL2004	282.1
32	06AUG2004	291.5
33	13AUG2004	268.0
34	20AUG2004	272.1
35	27AUG2004	275.2
36	03SEP2004	273.7
37	10SEP2004	250.6
38	17SEP2004	275.8
39	24SEP2004	282.7
40	010CT2004	279.6

Data Elements Reference: SASEHAVR Interface Engine

HAVER ANALYTICS DLX Database Profile

The HAVER DLX economic and financial database offerings include United States Economic Indicators, Specialized Databases, Financial Indicators, Industry, Industrial Countries, Emerging Markets, International Organizations, Forecasts and As Reported Data, and United States Regional. Table 35.3 is a list of available databases and the corresponding description of each.

Table 35.3 Available Data Offerings

Database Name	Offering Type	Description
USECON	U.S. Economic Indicators	HAVER Analytics' primary database of US Economic, Financial data
USNA	U.S. Economic Indicators	Complete US National Income and Product Accounts from the Bureau of Economic Analysis
SURVEYS	U.S. Economic Indicators	Business and Consumer Expectations, surveys
SURVEYW	U.S. Economic Indicators	Business and Consumer Expectations, weekly surveys
CPIDATA	U.S. Economic Indicators	Consumer Price Indexes, monthly in CPI Detailed Report
PPI	U.S. Economic Indicators	Producer Price Indexes by Bureau of Labor Statistics
PPIR	U.S. Economic Indicators	Producer Price Indexes by Bureau of Labor Statistics
LABOR	U.S. Economic Indicators	Employment and Earnings by Bureau of Labor Statistics
EMPL	U.S. Economic Indicators	Household Employment Survey, monthly by Bureau of Labor Statistics
CEW	U.S. Economic Indicators	Covered Employment and Wages, monthly, quarterly
IP	U.S. Economic Indicators	Industrial Production and Capacity Utilization by Federal Reserve Board
FFUNDS	U.S. Economic Indicators	Flow of Funds Data by Federal Reserve Board
CAPSTOCK	U.S. Economic Indicators	Capital Stock by Bureau of Economic Analysis
USINT	U.S. Economic Indicators	U.S. International Trade (TIC) data by Country and Product
CBDB	Specialized Databases	Conference Board Database, monthly

Table 35.3 continued

Database Name	Offering Type	Description
BCI	Specialized Databases	US Business Cycle Indicators
UMSCA	Specialized Databases	Consumer Sentiment Survey from The University of Michigan Surveys of Consumers
FIBER	Specialized Databases	Fiber Business Cycle Indicators from the Foundation of International Business and Economic Research
ECRI	Specialized Databases	Cyclical Indicators from Economic Cycle Research Institute, weekly and monthly
DAILY	Financial Indicators	U.S. Daily Statistics Data
INTDAILY	Financial Indicators	Country Daily Statistics
WEEKLY	Financial Indicators	U.S. Weekly Statistics
INTWKLY	Financial Indicators	Country Weekly Statistics
SPD	Financial Indicators	Standard and Poor's Industry Groups, daily
SPW	Financial Indicators	Standard and Poor's Industry Groups, weekly
SPM	Financial Indicators	Standard and Poor's Industry Groups, monthly
SPAH	Financial Indicators	Standard and Poor's Analysts' Annual Handbook, yearly
MSCID	Financial Indicators	Morgan Stanley Capital International, daily
MSCIW	Financial Indicators	Morgan Stanley Capital International, weekly
MSCIM	Financial Indicators	Morgan Stanley Capital International, monthly
BONDINDX	Financial Indicators	U.S. Bond Indexes
BONDS	Financial Indicators	CITIGROUP Bond Performance Indexes by CITIGROUP Global Markets, formerly Salomon Smith Barney
ICI	Financial Indicators	Mutual Fund Activity from the Investment Company Institute
QFR	Financial Indicators	Quarterly Financial Report Capacity Utilization by Federal Reserve Board
MBAMTG	Financial Indicators	Mortgage Delinquency Rates by Mortgage Bankers Association
DLINQ	Financial Indicators	Consumer Delinquency Rates by American Bankers Association, monthly

Table 35.3 continued

Database Name	Offering Type	Description
FDIC	Financial Indicators	FDIC Banking Statistics TIC data by Country and Product
GOVFIN	Financial Indicators	U.S. Government Financial Statistics by U.S. Treasury
INDUSTRY	Industry	U.S. Industry Statistics
REALTOR	Industry	Home Sales from National Association of Realtors
OGJ	Industry	U.S. and International Energy Statistics, from Pennwell Publishing's Oil and Gas Journal
OGJANN	Industry	U.S. and International Energy Statistics, from Pennwell Publishing's Oil and Gas Journal, annual
OILWKLY	Industry	Weekly Oil Statistics
EEI	Industry	U.S.Electric Output from the Edison Electric Institute, weekly
ASM	Industry	Annual Survey of Manufactures
RAILSHAR	Industry	Railcar Loadings from Association of American Railroads and Atlantic Systems
CHEMWEEK	Industry	Weekly Chemical Prices from the Chemical Division of Access Intelligence
BALTIC	Industry	Baltic Freight Indexes, from the Baltic Exchange in London
G10+	Industrial Countries	International Macroeconomic Data
PMI	Industrial Countries	Purchasing Managers Surveys by NTC Research
INTSRVYS	Industrial Countries	Country Surveys
JAPAN	Industrial Countries	Japan from Nomura Research Institute
JAPANW	Industrial Countries	Japan from Nomura Research Institute, weekly
CANSIM	Industrial Countries	Canada from Statistics Canada and the Bank of Canada
CANSIMR	Industrial Countries	Canada from Statistics Canada and the Bank of Canada
UK	Industrial Countries	United Kingdom
UKSRVYS	Industrial Countries	United Kingdom Surveys, by NTC Research
GERMANY	Industrial Countries	Germany from the Deutsche Bundesbank and Statistics Bundesamt
FRANCE	Industrial Countries	France, Statistics from INSEE, the Bank of France and the Ministry of France

Table 35.3 continued

Database Name	Offering Type	Description
ITALY	Industrial Countries	Italy, from Istituto Nazionale di Statistica and Banca d'Italia
SPAIN	Industrial Countries	Spain, from the Instituto Nacional de Estadistica and the Banco de Espana
IRELAND	Industrial Countries	Ireland, from the Central Statistics Office and Central Bank
NORDIC	Industrial Countries	Norway, Sweden, Denmark, Finland
ALPMED	Industrial Countries	Austria, Switzerland, Greece, Portugal
BENELUX	Industrial Countries	Belgium, Netherlands, Luxembourg, monthly
ANZ	Industrial Countries	Australia and New Zealand
EMERGELA	Emerging Markets	Latin American Macroeconomic Data
EMERGEPR	Emerging Markets	Asia/Pacific RIm Emerging Markets
CHINA	Emerging Markets	CEIC Premium China Database, from CEIC
EMERGECW	Emerging Markets	Central and Eastern Europe and Western Asia
EMERGEMA	Emerging Markets	Middle East and African Emerging Markets
EUROSTAT	International Organizations	European Union Data from EUROSTAT and OECD
OECDMEI	International Organizations	OECD Main Economic Indicators
OECDNAQ	International Organizations	OECD Quarterly National Accounts
OECDNA	International Organizations	OECD Annual National Accounts
OECDLFS	International Organizations	OECD Quarterly Labor Force
OUTLOOK	International Organizations	OECD Economic Outlook
IFS	International Organizations	International Financial Statistics from International Monetary Fund
IFSANN	International Organizations	International Financial Statistics, annual from International Monetary Fund
IMFDOTM	International Organizations	Direction of Trade Statistics, monthly from International Monetary Fund
IMFDOT	International Organizations	Direction of Trade Statistics from International Monetary Fund

Table 35.3 continued

Database Name	Offering Type	Description
WBPRICES	International Organizations	World Commodity Prices from World Development Prospects Group (Pinksheets)
WBDEBT	International Organizations	Global Development Finance from World Bank Debt Tables
UNPOP	International Organizations	United Nations Population Projections
INTCOMP	International Organizations	International Comparisons from Bureau of Labor Statistics
MA4CAST	Forecasts and As Reported Data	Short Term U.S. Economic Forecasts from Macroeconomic Advisors
MA4CSTL	Forecasts and As Reported Data	Long Term U.S. Economic Forecasts from Macroeconomic Advisors
CQM	Forecasts and As Reported Data	Canadian Quarterly Model from Centre for Spatial Economics
CPM	Forecasts and As Reported Data	Canadian Provincial Model from Centre for Spatial Economics
OEFQMACR	Forecasts and As Reported Data	OEF Global Macroeconomic Forecasts from Oxford Economic Forecasting
OEFMAJOR	Forecasts and As Reported Data	OEF Global Macroeconomic Forecasts from Oxford Economic Forecasting
OEFINTER	Forecasts and As Reported Data	OEF Global Macroeconomic Forecasts from Oxford Economic Forecasting
OEFMINOR	Forecasts and As Reported Data	OEF Global Macroeconomic Forecasts from Oxford Economic Forecasting
OEFQIND	Forecasts and As Reported Data	OEF Global Industry from Oxford Economic Forecasting
EIUIAMER	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit
EIUIASIA	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit
EIUIEEUR	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit

Table 35.3 continued

Database Name	Offering Type	Description
EIUIMENA	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit
EIUISUBS	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit
EIUIWEUR	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit
EIUIREGS	Forecasts and As Reported Data	EIU Market Indicators and Forecasts from the Economist Intelligence Unit
EIUDAMER	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDASIA	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDEEUR	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDMENA	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDSUBS	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDWEUR	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDOECD	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
EIUDREGS	Forecasts and As Reported Data	EIU Country Data from the Economist Intelligence Unit
AS1REPNA	Forecasts and As Reported Data	Action Economics Forecast Medians and As Reported Data
MMSAMER	Forecasts and As Reported Data	MMS Survey Medians and As First Reported Data from MMS International

Table 35.3 continued

Database Name	Offering Type	Description
MMSEUR	Forecasts and As Reported Data	MMS Survey Medians and As First Reported Data from MMS International
SURVEYS	Forecasts and As Reported Data	Economic Survey Forecasts
AS4CAST	Forecasts and As Reported Data	Historical Economic Forecasts
ASREPGDP	Forecasts and As Reported Data	As Reported U.S. Gross Dometic Product from Bureau of Economic Analysis
LABORR	U.S. Regional	Monthly Payroll Employment from Bureau of Labor Statistics
EMPLR	U.S. Regional	Labor Force and Unemployment from Bureau of Labor Statistics
EMPLC	U.S. Regional	Labor Force and Unemployment from Bureau of Labor Statistics
BEAEMPL	U.S. Regional	Annual Employment by Industry
BEAEMPM	U.S. Regional	Annual Employment by Industry
PERMITS	U.S. Regional	Residential Building Permits
PERMITY	U.S. Regional	Residential Building Permits
PERMITP	U.S. Regional	Residential Building Permits
PERMITC	U.S. Regional	Residential Building Permits
PERMITA	U.S. Regional	Residential Building Permits
REGIONAL	U.S. Regional	Selected Regional Indicators
REGIONAW	U.S. Regional	Selected Regional Indicators
PIQR	U.S. Regional	Personal Income
PIR	U.S. Regional	Personal Income
PIRMSA	U.S. Regional	Personal Income
PICOUNTY	U.S. Regional	Personal Income
PIRC1 to 9	U.S. Regional	Personal Income
MBAMTG	U.S. Regional	Mortgage Delinquincy Rates from Mortgage Bankers Association
DLINQR	U.S. Regional	Consumer Delinquincy Rates from American Bankers Association
BANKRUPT	U.S. Regional	Bankrupts by County and MSA
GSP	U.S. Regional	Gross State Product from BEA
USPOP	U.S. Regional	Population by Age and Sex
USPOPC	U.S. Regional	Population by Age and Sex
PORTS	U.S. Regional	Trade by Port
EXPRQ1 to 9	U.S. Regional	Exports by Industry and Country from the World Institute for Strategic Economic Research and the Census Bureau

Table 35.3 continued

Database Name	Offering Type	Description
EXPORTSR	U.S. Regional	Exports by Industry and Country from the World Institute for Strategic Economic Research and the Census Bureau Exports by Industry and Country from the World Institute for Strategic Economic Research and the Census Bureau Government Financial Statistics from the Census EXPORT99 U.S. Regional and Rockefeller Institute of Government

References

HAVER ANALYTICS (2001), DLX API Programmer's Reference, New York, NY. 10165 [http://www.haver.com/]

HAVER ANALYTICS (2005), DLX Database Profile, New York, NY. 10165
HAVER ANALYTICS (2005), DATA LINK EXPRESS, Time Series Data Base Management System, New York, NY. 10165 [http://www.haver.com/]

Acknowledgments

Many people have been instrumental in the development of the ETS Interface engine. The individuals listed here have been especially helpful.

Maurine Haver, HAVER ANALYTICS, New York, NY.
Lai Cheng, HAVER ANALYTICS, New York, NY.
Rick Langston, SAS Institute, Cary, NC.
The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.

Part IV

Time Series Forecasting System

Chapter 36

Overview of the Time Series Forecasting System

Contents
Introduction .
Using the Time Series Forecasting System .
SAS Software Products Needed .
S381

Introduction

The Time Series Forecasting system forecasts future values of time series variables by extrapolating trends and patterns in the past values of the series or by extrapolating the effect of other variables on the series. The system provides convenient point-and-click windows to control the time series analysis and forecasting tools of SAS/ETS software.

You can use the system in a fully automatic mode, or you can use the system's diagnostic features and time series modeling tools interactively to develop forecasting models customized to best predict your time series. The system provides both graphical and statistical features to help you choose the best forecasting method for each series.

The following is a brief summary of the features of the Time Series Forecasting system. You can use the system in the following ways:

- use a wide variety of forecasting methods, including several kinds of exponential smoothing models, Winters method, and ARIMA (Box-Jenkins) models. You can also produce forecasts by combining the forecasts from several models.
- use predictor variables in forecasting models. Forecasting models can include time trend curves, regressors, intervention effects (dummy variables), adjustments you specify, and dynamic regression (transfer function) models.
- view plots of the data, predicted versus actual values, prediction errors, and forecasts with confidence limits, as well as autocorrelations and results of white noise and stationarity tests. Any of these plots can be zoomed and can represent raw or transformed series.
- use hold-out samples to select the best forecasting method
- compare goodness-of-fit measures for any two forecasting models side by side or list all models sorted by a particular fit statistic
- view the predictions and errors for each model in a spreadsheet or compare the fit of any two models in a spreadsheet
- examine the fitted parameters of each forecasting model and their statistical significance
- control the automatic model selection process: the set of forecasting models considered, the goodness-of-fit measure used to select the best model, and the time period used to fit and evaluate models
- customize the system by adding forecasting models for the automatic model selection process and for point-and-click manual selection
- save your work in a project catalog
- print an audit trail of the forecasting process
- show source statements for PROC ARIMA code
- save and print system output including spreadsheets and graphs

Using the Time Series Forecasting System

Chapters starting from Chapter 37, "Getting Started with Time Series Forecasting," through Chapter 41, "Using Predictor Variables," contain a series of example sessions that show the major features of the system. Chapters from Chapter 42, "Command Reference," through Chapter 44, "Forecasting Process Details," serve as reference and provide more details about how the system operates. The reference chapters contain a complete list of system features.

To get started using the Time Series Forecasting system, it is a good idea to work through a few of the example sessions. Start with Chapter 37, "Getting Started with Time Series Forecasting," and use the system to reproduce the steps shown in the examples. Continue with the other chapters when you feel comfortable using the system.

The example sessions make use of time series data sets contained in the SASHELP library: air, citimon, citiqtr, citiyr, citiwk, citiday, gnp, retail, usecon, and workers. You can use these data sets to work through the example sessions or to experiment further with the system.

Once you are familiar with how the system operates, start working with your own data to build your own forecasting models. When you have questions, consult the reference chapters mentioned above for more information about particular features.

The Time Series Forecasting system forecasts time series, that is, variables that consist of ordered observations taken at regular intervals over time. Since the Time Series Forecasting system is a part of the SAS software system, time series values must be stored as variables in a SAS data set or data
view, with the observations representing the time periods. The data can also be stored in an external spreadsheet or data base if you license SAS/ACCESS software.

The Time Series Forecasting System chapters refer to series and variables. Since time series are stored as variables in SAS data sets or data views, these terms are used interchangeably. However, the term series is preferred when attention is focused on the sequence of data values, and the term variable is preferred when attention is focused on the data set.

SAS Software Products Needed

The Time Series Forecasting system is part of SAS/ETS software. To use it, you must have a license for SAS/ETS. To use the graphical display features of the system, you must also license SAS/GRAPH software.

Chapter 37

Getting Started with Time Series Forecasting

Contents
The Time Series Forecasting Window 2384
Outline of the Forecasting Process 2389
Specify the Input Data Set 2389
Provide a Valid Time ID Variable 2389
Select and Fit a Forecasting Model for Each Series 2390
Produce the Forecasts 2390
Save Your Work 2390
Summary 2391
The Input Data Set 2391
The Data Set Selection Window 2391
Time Series Data Sets, ID Variables, and Time Intervals 2395
Automatic Model Fitting Window 2396
Produce Forecasts Window 2404
The Forecast Data Set 2406
Forecasting Projects 2410
Saving and Restoring Project Information 2412
Sharing Projects 2416
Develop Models Window 2417
Introduction 2417
Fitting Models 2420
Model List and Statistics of Fit 2425
Model Viewer 2427
Prediction Error Plots 2429
Autocorrelation Plots 2430
White Noise and Stationarity Plots 2431
Parameter Estimates Table 2433
Statistics of Fit Table 2434
Changing to a Different Model 2435
Forecasts and Confidence Limits Plots 2436
Data Table 2437
Closing the Model Viewer 2438

This chapter outlines the forecasting process and introduces the major windows of the system through three example sessions.

The first example, beginning with the section "The Time Series Forecasting Window," shows how to use the system for fully automated forecasting of a set of time series. This example also introduces the system's features for viewing data and forecasts through tables and interactive graphs. It also shows how to save and restore forecasting work in SAS catalogs.

The second example, beginning with the section "Develop Models Window," introduces the features for developing the best forecasting models for individual time series. The chapter concludes with an example showing how to create dating variables for your data in the form expected by the system.

After working through the examples in this chapter, you should be able to do the following:

- select a data set of time series to work with and specify its periodicity and time ID variable
- use the automatic forecasting model selection feature to create forecasting models for the variables in a data set
- produce and save forecasts of variables in a data set
- examine your data and forecasts as tables of values and through interactive graphs
- save and restore your forecasting models by using project files in a SAS catalog and edit project information
- use some of the model development features to fit and select forecasting models for individual time series variables

This chapter introduces these topics and helps you get started using the system. Later chapters present these topics in greater detail and document more advanced features and options.

The Time Series Forecasting Window

There are several ways to get to the Time Series Forecasting System. If you prefer to use commands, invoke the system by entering forecast on the command line. You can optionally specify additional information on the command line; see Chapter 42, "Command Reference," for details.

If you are using the SAS windowing environment with pull-down menus, select the Solutions menu from the menu bar, select the Analysis item, and then select Time Series Forecasting System, as shown in Figure 37.1.

Figure 37.1 Time Series Forecasting System Menu Selection

Start the Time Series Forecasting System application
ce:Srogram Files\SAS

You can invoke the Forecasting System from the SAS Explorer window by opening an existing forecasting project. By default these projects are stored in the FMSPROJ catalog in the SASUSER library. Select SASUSER in the Explorer to display its contents. Then select FMSPROJ. This catalog is created the first time you use the Forecasting System. If you have saved projects, they appear in the Explorer with the forecasting graph icon, as shown in Figure 37.2. Double-click one of the projects, or select it with the right mouse button and then select Open from the pop-up menu, as shown in the figure. This opens the Forecasting System and opens the selected project.

Figure 37.2 Opening a Project from the Explorer

To invoke the Forecasting System in the SAS desktop environment, select the Solutions menu from the menu bar, select Desktop, and then open the Analysis folder. You can run the Time Series Forecasting System or the Time Series Viewer directly, or you can drag and drop. Figure 37.3 illustrates dragging a data set (known as a table in the Desktop environment) and dropping it on the Forecasting icon. In this example, the tables reside in a user-defined folder called Time Series Data.

Figure 37.3 Drag and Drop on the SAS Desktop

c: P Program Files $\backslash \mathrm{SAS}$

If you are using SAS/ASSIST software, select the Planning button and then select Forecasting from the pop-up menu.

Any of these methods takes you to the Time Series Forecasting window, as shown in Figure 37.4.

Figure 37.4 Time Series Forecasting Window

At the top of the window is a data selection area for specifying a project file and the input data set containing historical data (the known past values) for the time series variables that you want to forecast. This area also contains buttons for opening viewers to explore your input data either graphically, one series at a time, or as a table, one data set at a time.

The Project and Description fields are used to specify a project file for saving and restoring forecasting models created by the system. Using project files is discussed later, and these fields are ignored for now.

The lower part of the window contains six buttons:

Develop Models
opens the Develop Models window, which you use to develop and fit forecasting models interactively for individual time series.

Fit Models Automatically
opens the Automatic Model Fitting window, which you use to search automatically for the best forecasting model for multiple series in the input data set.

Produce Forecasts
opens the Produce Forecasts window, which you use to compute forecasts for all
the variables in the input data set for which forecasting models have been fit.

```
Manage Projects
```

opens the Manage Forecasting Project window, which lists the time series for which you have fit forecasting models. You can drill down on a series to see the models that have been fit. You can delete series or models from the project, re-evaluate or refit models, and explore models and forecasts graphically or in tabular form.

Exit
exits the Forecasting System.
Help
displays information about the Forecasting System.

Outline of the Forecasting Process

The examples shown in the following sections illustrate the basic process you use with the Forecasting System.

Specify the Input Data Set

Suppose you have a number of time series, variables recorded over time, for which you want to forecast future values. The past values of these time series are stored as variables in a SAS data set or data view. The observations of this data set correspond to regular time periods, such as days, weeks, or months. The first step in the forecasting process is to tell the system to use this data set by setting the Data Set field.

If your time series are not in a SAS data set, you must provide a way for the SAS System to access the data. You can use SAS features to read your data into a SAS data set; refer to SAS Language Reference. You can use a SAS/ACCESS product to establish a view of data in a database management system; refer to SAS/ACCESS documentation. You can use PROC SQL to create a SAS data view. You can use PROC DATASOURCE to read data from files supplied by supported data vendors; refer to Chapter 11, "The DATASOURCE Procedure," for more details.

Provide a Valid Time ID Variable

To use the Forecasting System, your data set must be dated: the data set must contain a time ID variable that gives the date of each observation. The time ID variable must represent the observation dates with SAS date values or with SAS datetime values (for hourly data or other frequencies less than a day), or you can use a simple time index.

When SAS date values are used, the ID variable contains dates within the time periods corresponding to the observations. For example, for monthly data, the values for the time ID variable can be the date of the first day of the month corresponding to each observation, or the time ID variable can contain the date of the last day in the month. (Any date within the period serves as the time ID for the observation.)

If your data set already contains a valid time ID variable with SAS date or datetime values, the next step is to specify this time ID variable in the Time ID field. If the time ID variable is named DATE, the system fills in the Time ID field automatically.

If your data set does not contain a time ID, you must add a valid time ID variable before beginning the forecasting process. The Forecasting System provides features that make this easy to do. See Chapter 38, "Creating Time ID Variables," for details.

Select and Fit a Forecasting Model for Each Series

If you are using the automated model selection feature, the system performs this step for you and chooses a forecasting model for each series automatically. All you need to do is select the Fit Models Automatically button and then select the variables to fit models for.

If you want more control over forecasting model selection, you can select the Develop Models button, select the series you want to forecast, and use the Develop Models window to specify a forecasting model. As part of this process, you can use the Time Series Viewer and Model Viewer graphical tools. Once you have selected a model for the first series, you can select a different series to work with and repeat the model development process until you have created forecasting models for all the series you want to forecast.

The system provides many features to help you choose the best forecasting model for each series. The features of the Develop Models window and graphical viewer tools are introduced in later sections.

Produce the Forecasts

Once a forecasting model has been fit for each series, select the Produce Forecasts button and use the Produce Forecasts window to compute forecast values and store them in a SAS data set.

Save Your Work

If you want only a single forecast, your task is now complete. But you might want to produce updated forecasts later, as more data becomes available. In this case, you want to save the forecasting models you have created, so that you do not need to repeat the model selection and fitting process.

To save your work, fill in the Project field with the name of a SAS catalog member in which the system will store the model information when you exit the system. Later, you will select the same catalog member name when you first enter the Forecasting System, and the model information will be reloaded.

Note that any number of people can work with the same project file. If you are working on a forecasting project as part of a team, you should take care to avoid conflicting updates to the project file by different team members.

Summary

This is the basic outline of how the Forecasting System works. The system offers many other features and options that you might need to use (for example, the time range of the data used to fit models and how far into the future to forecast). These options will become apparent as you work with the Forecasting System.

As an introductory example, the following sections use the Automatic Model Fitting and Produce Forecasts windows to perform automated forecasting of the series in an example data set.

The Input Data Set

As the first step, you must specify the input data set.
The Data Set field in the Time Series Forecasting window gives the name of the input data set containing the time series to forecast. Initially, this field is blank. You can specify the input data set by typing the data set name in this field. Alternatively, you can select the Browse button at the right of the Data Set field to select the data set from a list, as shown in the following section.

The Data Set Selection Window

Select the Browse button to the right of the Data Set field. This opens the Data Set Selection window, as shown in Figure 37.5.

Figure 37.5 Data Set Selection Window

The Libraries list shows the SAS librefs that are currently allocated in your SAS session. Initially, the SASUSER library is selected, and the SAS Data sets list shows the data sets available in your SASUSER library.

In the Libraries list, select the row that starts with SASHELP. The Data Set Selection window now lists the data sets in the SASHELP library, as shown in Figure 37.6.

Figure 37.6 SASHELP Library

c: Program Files $\backslash \mathrm{SAS}$

Use the vertical scroll bar on the SAS Data Sets list to scroll down the list until the data set CITIQTR appears. Then select the CITIQTR row. This selects the data set SASHELP.CITIQTR as the input data set.

Figure 37.7 shows the Data Set Selection window after selection of CITIQTR from the SAS Data Sets list.

Figure 37.7 CITIQTR Data Set Selected

c: Program Files $\backslash S A S$

Note that the Time ID field is now set to DATE and the Interval field is set to QTR. These fields are explained in the following section.

Now select the OK button to complete selection of the CITIQTR data set. This closes the Data Set Selection window and returns to the Time Series Forecasting window, as shown in Figure 37.8.

Figure 37.8 Time Series Forecasting Window

Time Series Data Sets, ID Variables, and Time Intervals

Before you continue with the example, it is worthwhile to consider how the system determined the values for the Time ID and Interval fields in the Data Set Selection window.

The Forecasting System requires that the input data set contain time series observations, with one observation for each time period. The observations must be sorted in increasing time order, and there must be no gaps in the sequence of observations. The time period of each observation must be identified by an ID variable, which is shown in the Time ID field.

If the data set contains a variable named DATE, TIME, or DATETIME, the system assumes that this variable is the SAS date or datetime valued ID variable, and the Time ID field is filled in automatically. The time ID variable for the SASHELP.CITIQTR data set is named DATE, and therefore the system set the Time ID field to DATE.

If the time ID variable for a data set is not named DATE, TIME, or DATETIME, you must specify the time ID variable name. You can specify the time ID variable either by typing the ID variable name in the Time ID field or by clicking the Select button.

If your data set does not contain a time ID variable with SAS date values, you can add a time ID variable using one of the windows described in Chapter 38, "Creating Time ID Variables."

Once the time ID variable is known, the Forecasting System examines the ID values to determine the time interval between observations. The data set SASHELP.CITIQTR contains quarterly observations. Therefore, the system determined that the data have a quarterly interval, and set the Interval field to QTR.

If the system cannot determine the data frequency from the values of the time ID variable, you must specify the time interval between observations. You can specify the time interval by using the Interval combo box. In addition to the interval names provided in the pop-up list, you can type in more complex interval names to specify an interval that is a multiple of other intervals or that has date values in the middle of the interval (such as monthly data with time ID values falling on the 10th day of the month).

See Chapter 3, "Working with Time Series Data," and Chapter 4, "Date Intervals, Formats, and Functions," for more information about time intervals, SAS date values, and ID variables for time series data sets.

Automatic Model Fitting Window

Before you can produce forecasts, you must fit forecasting models to the time series. Select the Fit Models Automatically button. This opens the Automatic Model Fitting window, as shown in Figure 37.9.

Figure 37.9 Automatic Model Fitting Window
File VAS View Tools Options Solutions Window Help

Time Series Forecasting

c: \Program Files $\backslash S A S$

The first part of the Automatic Model Fitting window confirms the project filename and the input data set name.

The Series to Process field shows the number and lists the names of the variables in the input data set to which the Automatic Model Fitting process will be applied. By default, all numeric variables (except the time ID variable) are processed. However, you can specify that models be generated for only a select subset of these variables.

Click the Select button to the right of the Series to Process field. This opens the Series to Process window, as shown in Figure 37.10.

Figure 37.10 Series to Process Window

Ec:Srogram Files\SAS

Use the mouse and the CTRL key to select the personal consumption expenditures series (GC), the personal consumption expenditures for durable goods series (GCD), and the disposable personal income series (GYD), as shown in Figure 37.11. (Remember to hold down the CTRL key as you make the selections; otherwise, selecting a second series will deselect the first.)

Figure 37.11 Selecting Series for Automatic Model Fitting

Now select the OK button. This returns you to the Automatic Model Fitting window. The Series to Process field now shows the selected variables.

The Selection Criterion field shows the goodness-of-fit measure that the Forecasting System will use to select the best fitting model for each series. By default, the selection criterion is the root mean squared error. To illustrate how you can control the selection criterion, this example uses the mean absolute percent error to select the best fitting models.

Click the Select button to the right of the Selection Criterion field. This opens a list of statistics of fit, as shown in Figure 37.12.

Figure 37.12 Choosing the Model Selection Criterion

Select Mean Absolute Percent Error and then select the OK button. The Automatic Model Fitting window now appears as shown in Figure 37.13.

Figure 37.13 Automatic Model Fitting Window

Project: SASUSER.FMSPROJ.PROJ

c: P Program Files $\backslash \mathrm{SAS}$

Now that all the options are set appropriately, select the Run button.
The Forecasting System now displays a notice, shown in Figure 37.14, confirming that models will be fit for three series using the automatic forecasting model search feature. This prompt is displayed because it is possible to fit models for a large number of series at once, which might take a lot of time. So the system gives you a chance to cancel if you accidentally ask to fit models for more series than you intended. Select the OK button.

Figure 37.14 Automatic Model Fitting Note

The system now fits several forecasting models to each of the three series you selected. While the models are being fit, the Forecasting System displays notices indicating what it is doing so that you can observe its progress, as shown in Figure 37.15.

Figure 37.15 "Working" Notice

c: Program Files $\backslash \mathrm{SAS}$

For each series, the system saves the model that produces the smallest mean absolute percent error. You can have the system save all the models fit by selecting Automatic Fit from the Options menu.

After the Automatic Model Fitting process has completed, the results are displayed in the Automatic Model Fitting Results window, as shown in Figure 37.16.

Figure 37.16 Automatic Model Fitting Results

c: \Program Files\SAS

This resizable window shows the list of series names and descriptive labels for the forecasting models chosen for them, as well as the values of the model selection criterion and other statistics of fit. Select the Close button.

This returns you to the Automatic Model Fitting window. You can now fit models for other series in this data set or change to a different data set and fit models for series in the new data set.

Select the Close button to return to the Time Series Forecasting window.

Produce Forecasts Window

Now that you have forecasting models for these three series, you are ready to produce forecasts. Select the Produce Forecasts button. This opens the Produce Forecasts window, as shown in Figure 37.17.

Figure 37.17 Produce Forecasts Window
SA

File View Tools Options Solutions Window Help

Produce Forecasts - Project SASUSER.FMSPROJ.PROJ

-

Input:

Data Set:	SASHELP.CITIQTR			Browse...
Time ID:	DATE	Select...	Create...	
Interval:	$\boxed{Q T R}$			
Series:	3: GC GCD GYD			Select...

Forecast Output:

c: $:$ Program Files $\backslash \mathrm{SAS}$

The Produce Forecasts window shows the input data set information and indicates the variables in the input data set for which forecasting models exist. Forecasts will be produced for these series. If you want to produce forecasts for only some of these series, use the Select button at the right of the Series field to select the series to forecast. The Data Set field in the Forecast Output box contains the name of the SAS data set in which the system will store the forecasts. The default output data set is WORK.FORECAST.

You can set the forecast horizon by using the controls on the line labeled Horizon. The default horizon is 12 periods. You can change it by specifying the number of periods, number of years, or the date of the last forecast period. Position the cursor in the date field and change the forecast ending date to 1 January 1996 by typing jan 1996 and pressing the ENTER key.

The window now appears as shown in Figure 37.18.

Figure 37.18 Produce Forecasts Window

Forecast Output:

c: \Program Files SAS

Now select the Run button to produce the forecasts. The system indicates that the forecasts have been stored in the output data set. Select ok to dismiss the notice.

The Forecast Data Set

The Forecasting System can save the forecasts to a SAS data set in three different formats. Depending on your needs, you might find one of these output formats more convenient. The output data set format is controlled by the Format combo box. You can select the following output formats. The simple format is the default.

Simple The data set contains time ID variables and the forecast variables, and it contains one observation per time period. Observations for earlier time periods contain actual values copied from the input data set; later observations contain the forecasts.

Interleaved The data set contains time ID variables, the variable TYPE, and the forecast variables. There are several observations per time period, with the meaning of
each observation identified by the TYPE variable.
Concatenated The data set contains the variable SERIES, time ID variables, and the variables ACTUAL, PREDICT, ERROR, UPPER, LOWER, and STD. There is one observation per time period per forecast series. The variable SERIES contains the name of the forecast series, and the data set is sorted by SERIES and DATE.

Simple Format Forecast Data Set

To see the simple format forecast data set that the system created, select the Output button. This opens a VIEWTABLE window to display the data set, as shown in Figure 37.19.

Figure 37.19 Forecast Data Set-Simple Format

قc:\Program Files\SAS

Figure 37.19 shows the default simple format. This form of the forecast data set contains time ID variables and the variables that you forecast. The forecast variables contain actual values or predicted values, depending on whether the date of the observation is within the range of data supplied in the input data set.

Select File and close to close the Viewtable window.

Interleaved Format Forecast Data Set

From the Produce Forecasts window, use the list to select the Interleaved format, as shown in Figure 37.20.

Figure 37.20 Forecast Data Set Options

Produce Forecasts - Project SASUSER.FMSPROJ.PROJ
Input:

Forecast Output:

Ec:SProgram Files\SAS

Now select the Run button again. The system presents a warning notice reminding you that the data set WORK.FORECAST already exists and asking if you want to replace it. Select Replace.

The forecasts are stored in the data set WORK.FORECAST again, this time in the Interleaved format. Dismiss the notice that the forecast was stored.

Now select the Output button again. This opens a Viewtable window to display the data set, as shown in Figure 37.21.

Figure 37.21 Forecast Data Set-Interleaved Format

NOTE: Table has been opened in browse mode.
c: 3 Program Files $\backslash \mathrm{SAS}$

In the interleaved format, there are several output observations for each input observation, identified by the TYPE variable. The values of the forecast variables for observations with different TYPE values are as follows.

ACTUAL actual values copied from the input data set ERROR the difference between the actual and predicted values LOWER the lower confidence limits

PREDICT the predicted values from the forecasting model These are within-sample, one-step-ahead predictions for observations within the historical period, or multistep predictions for observations within the forecast period
STD the estimated standard deviations of the prediction errors
UPPER the upper confidence limits
Select File and Close to close the VIEWTABLE window.

Concatenated Format Forecast Data Set

Use the list to select the Concatenated format. Create the forecast data set again, and then select the Output button.

The Viewtable window showing the concatenated format of the forecast data set appears, as shown in Figure 37.22.

Figure 37.22 Forecast Data Set-Concatenated Format

c: Pr Program Files $\backslash \mathrm{SAS}$

This completes the example of how to use the Produce Forecasts window. Select File and Close to close the Viewtable window. Select the Close button to return to the Time Series Forecasting window.

Forecasting Projects

The system collects all the forecasting models you create, together with the options you set, into a package called a forecasting project. You can save this information in a SAS catalog entry and
restore your work in later forecasting sessions. You can store any number of forecasting projects under different catalog entry names.

To see how this works, select the Manage Projects button. This opens the Manage Forecasting Project window, as shown in Figure 37.23.

Figure 37.23 Manage Forecasting Project Window

曰c: Program Files $\backslash \mathrm{SAS}$

The table in this window lists the series for which forecasting models have been fit, and it shows for each series the forecasting model used to produce the forecasts. This window provides several features that allow you to manage the information in your forecasting project.

You can select a row of the table to drill down to the list of models fit to the series. Select the GYD row of the table, either by double-clicking with the mouse or by clicking once to highlight the table row and then selecting List Models from the toolbar or from the Tools menu. This opens the Model List window for this series, as shown in Figure 37.24.

Figure 37.24 Model List Window
Model List for GYD \square
Data Set: SASHELP.CITIQTR Interval: QTR
Series: GYD: PERSN'L INCOME: DISPOSABLE PERSONAL INCO
Data Range: 1980:1 to 1991:4 W
Fit Range: 1980:1 to 1991:4
Evaluation Range: 1980:1 to 1991:4

Model Label	Fit Range	Evaluation Range	Mean Square Error	A
Linear (Holt) Exponential Smoothing	$1980: 1$ to 1991:4	$1980: 1$ to 1991:4	643.68126	

$\mathrm{c}:$:Program Files $\backslash \mathrm{SAS}$

Because the Automatic Model Fitting process kept only the best fitting model, only one model appears in the model list. You can fit and retain any number of models for each series, and all the models fit and kept will appear in the series' model list.

Select Close from the toolbar or from the File menu to return to the Manage Forecasting Project window.

Saving and Restoring Project Information

To illustrate how you can save your work between sessions, in this section you will exit and then re-enter the Forecasting System.

From the Manage Forecasting Project window, select File and Save as. This opens the Forecasting Project to Save window. In the Project Name field, type the name WORK.TEST.TESTPROJ. In the Description field, type "Test of forecasting project file." The window should now appear as shown in Figure 37.25.

Figure 37.25 Project to Save Name and Description

$\Xi_{\mathrm{c}: \text { PProgram Files\SAS }}$

Select the OK button. This returns you to the Project Management window and displays a message indicating that the project was saved.

Select Close from the toolbar or from the File menu to return to the Time Series Forecasting window. Now select the Exit button. The system asks if you are sure you want to exit the system; select Yes. The forecasting application now terminates.

Open the forecasting application again. A new project name is displayed by default.
Now restore the forecasting project you saved previously. Select the Browse button to the right of the Project field. This opens the Forecasting Project File Selection window, as shown in Figure 37.26.

Figure 37.26 Forecasting Project File Selection Window

c: SProgram Files \SAS

Select the WORK library from the Libraries list. The Catalogs list now shows all the SAS catalogs in the WORK library.

Select the TEST catalog. The Projects list now shows the list of forecasting projects in the catalog TEST. So far, you have created only one project file, TESTPROJ; so TESTPROJ is the only entry in the Projects list, as shown in Figure 37.27.

Figure 37.27 Forecasting Projects List

c: 3 Program Files $\backslash \mathrm{SAS}$

Select TESTPROJ from the Projects list and then select the OK button. This returns you to the Time Series Forecasting window.

The system loads the project information you saved in TESTPROJ and displays a message indicating this. The Project field is now set to WORK.TEST.TESTPROJ, and the description is the description you previously gave to TESTPROJ, as shown in Figure 37.28.

Figure 37.28 Time Series Forecasting Window after Loading Project

If you now select the Manage Projects button, you will see the list of series and forecasting models you created in the previous forecasting session.

Sharing Projects

If you plan to work with others on a forecasting project, you might need to consider how project information can be shared. The series, models, and results of your project are stored in a forecasting project (FMSPROJ) catalog entry in the location you specify, as illustrated in the previous section. You need only read access to the catalog to work with it, but you must have write access to save the project. Multiple users cannot open a project for update at the same time, but they can do so at different times if they all have write access to the catalog where it is stored.

Project options settings such as the model selection criterion and number of models to keep are stored in an SLIST catalog entry in the SASUSER or TSFSUSER library. Write access to this cata\log is required. If you have only read access to the SASUSER library, you can use the -RSASUSER option when starting SAS. You will be prompted for a location for the TSFSUSER library, if it is not already assigned. If you want to use TSFSUSER routinely, assign it before you start the Time

Series Forecasting System. Select New from the SAS Explorer file menu. In the New Library window, type TSFSUSER for the name. Click the Browse button and select the directory or folder you want to use. Turn on the enable at startup option so this library will be assigned automatically in subsequent sessions.

The SASUSER library is typically used for private settings saved by individual users. This is the default location for project options. If a work group shares a single options catalog (SASUSER or TSFSUSER points to the same location for all users), then only one user can use the system at a time.

Develop Models Window

In the first forecasting example, you used the Automatic Model Fitting window to fit and select the forecasting model for each series automatically. In addition to this automatic forecasting process, you can also work with time series one at a time to fit forecasting models and apply your own judgment to choose the best forecasting model for each series.

Using the Automatic Model Fitting feature, the system acts like a "black box." This section goes inside the black box to look at the kinds of forecasting methods that the system provides and introduces some of the tools the system offers to help you find the best forecasting model.

Introduction

From the Time Series Forecasting window, select the Browse button to the right of the Data Set field to open the Data Set Selection window. Select the USECON data set from the SASHELP library. This data set contains monthly data on the U.S. economy.

Select OK to close the selection window. Now select the Develop Models button. This opens the Series Selection window, as shown in Figure 37.29. You can enlarge this window for easier viewing of lists of data sets and series.

Figure 37.29 Series Selection Window

Select the series CHEMICAL: Sales of Chemicals and Allied Products, and then select the OK button.

This opens the Develop Models window, as shown in Figure 37.30.

Figure 37.30 Develop Models Window

$\sqsupseteq \mathrm{c}:$ (Program Files $\backslash \mathrm{SA} \mathrm{S}$

The Data Set, Interval, and Series fields in the upper part of the Develop Models window indicate the series with which you are currently working. You can change the settings of these fields by selecting the Browse button.

The Data Range, Fit Range, and Evaluation Range fields show the time period over which data are available for the current series, and what parts of that time period are used to fit forecasting models to the series and to evaluate how well the models fit the data. You can change the settings of these fields by selecting the Set Ranges button.

The bottom part of the Develop Models window consists of a table of forecasting models fit to the series. Initially, the list is empty, as indicated by the message "No models." You can fit any number of forecasting models to each series and designate which one you want to use to produce forecasts.

Graphical tools are available for exploring time series and fitted models. The two icons below the Browse button access the Time Series Viewer and the Model Viewer.

Select the left icon. This opens the Time Series Viewer window, as shown in Figure 37.31.

Figure 37.31 Chemical and Allied Product Series

c: P Program Files $\backslash \mathrm{SAS}$

The Time Series Viewer displays a plot of the CHEMICAL series. The Time Series Viewer offers many useful features, which are explored in later sections.

The Time Series Viewer appears in a separate resizable window. You can switch back and forth between the Time Series Viewer window and other windows. For now, return to the Develop Models window. You can close the Time Series Viewer window or leave it open. (To close the Time Series Viewer window, select close from the toolbar or from the File menu.)

Fitting Models

To open a menu of model fitting choices, select Edit from the menu bar and then select Fit Model, or select Fit Models from List in the toolbar, or simply select a blank line in the table as shown in Figure 37.32.

Figure 37.32 Menu of Model Fitting Choices

The Forecasting System provides several ways to specify forecasting models. The eight choices given by the menu shown in Figure 37.32 are as follows:

Fit Models Automatically
performs for the current series the same automatic model selection process that the Automatic Model Fitting window applies to a set of series.

Fit Models from List
presents a list of commonly used forecasting models for convenient point-andclick selection.

Fit Smoothing Model
displays the Smoothing Model Specification window, which enables you to specify several kinds of exponential smoothing and Winters method forecasting models.
displays the ARIMA Model Specification window, which enables you to specify many kinds of autoregressive integrated moving average (ARIMA) models, including seasonal ARIMA models and ARIMA models with regressors, transfer functions, and other predictors.

Fit Factored ARIMA Model
displays the Factored ARIMA Model Specification window, which enables you to specify more general ARIMA models, including subset models and models with unusual and/or multiple seasonal cycles. It also supports regressors, transfer functions, and other predictors.

Fit Custom Model
displays the Custom Model Specification window, which enables you to construct a forecasting model by specifying separate options for transforming the data, modeling the trend, modeling seasonality, modeling autocorrelation of the errors, and modeling the effect of regressors and other independent predictors.

Combine Forecasts
displays the Forecast Combination Model Specification window, which enables you to specify models that produce forecasts by combining, or averaging, the forecasts from other models. (This option is not available unless you have fit at least two models.)

Use External Forecasts
displays the External Forecast Model Specification window, which enables you to use judgmental or externally produced forecasts that have been saved in a separate series in the data set.

All of the forecasting models used by the system are ultimately specified through one of the four windows: Smoothing Method Specification, ARIMA Model Specification, Factored ARIMA Model Specification, or Custom Model Specification. You can specify the same models with either the ARIMA Model Specification window or the Custom Model Specification window, but the Custom Model Specification window can provide a more natural way to specify models for those who are less familiar with the Box-Jenkins style of time series model specification.

The Automatic Model feature, the Models to Fit window, and the Forecast Combination Model Specification window all deal with lists of forecasting models previously defined through the Smoothing Model, ARIMA Model, or Custom Model specification windows. These windows are discussed in detail in later sections.

To get started using the Develop Models window, select the Fit Models from List item from the menu shown in Figure 37.32. This opens the Models to Fit window, as shown in Figure 37.33.

Figure 37.33 Models to Fit Window

c: :Program Files $\backslash S A S$

You can select several models to fit at once by holding down the CTRL key as you make the selections. Select Linear Trend and Double (Brown) Exponential Smoothing, as shown in Figure 37.34, and then select the OK button.

Figure 37.34 Selecting Models to Fit

The system fits the two models you selected. After the models are fit, the labels of the two models and their goodness-of-fit statistic are added to the model table, as shown in Figure 37.35.

Figure 37.35 Fitted Models List

Model List and Statistics of Fit

In the model list, the Model Title column shows the descriptive labels for the two fitted models, in this case Linear Trend and Double Exponential Smoothing.

The column labeled Root Mean Square Error (or labeled Mean Absolute Percent Error if you continued from the example in the previous section) shows the goodness-of-fit criterion used to decide which model fits better. By default, the criterion used is the root mean square error, but you can choose a different measure of fit. The linear trend model has a root mean square error of 1203, while the double exponential smoothing model fits better, with a RMSE of only 869.

The left column labeled Forecast Model consists of check boxes that indicate which one of the models in the list has been selected as the model to use to produce the forecasts for the series. When new models are fit and added to the model list, the system sets the Forecast Model flags to designate the one model with the best fit-as measured by the selected goodness-of-fit statistic-as the forecast model. (In the case of ties, the first model with the best fit is selected.)

Because the Double Exponential Smoothing model has the smaller RMSE of the two models in the list, its Forecast Model check box is set. If you would rather produce forecasts by using the Linear

Trend model, choose it by selecting the corresponding check box in the Forecast Model column.
To use a different goodness-of-fit criterion, select the button with the current criterion name on it (Root Mean Square Error or Mean Absolute Percent Error). This opens the Model Selection Criterion window, as shown in Figure 37.36.

Figure 37.36 Model Selection Criterion Window

The system provides many measures of fit that you can use as the model selection criterion. To avoid confusion, only the most popular of the available fit statistics are shown in this window by default. To display the complete list, you can select the Show all option. You can control the subset of statistics listed in this window through the Statistics of Fit item in the Options menu on the Develop Models window.

Initially, Root Mean Square Error is selected. Select R-Square and then select the OK button. This changes the fit statistic displayed in the model list, as shown in Figure 37.37.

Figure 37.37 Model List with R-Square Statistics

c: :Program Files $\backslash \mathrm{SAS}$

Now that you have fit some models to the series, you can use the Model Viewer button to take a closer look at the predictions of these models.

Model Viewer

In the Develop Models window, select the row in the table containing the Linear Trend model so that this model is highlighted. The model list should now appear as shown in Figure 37.38.

Figure 37.38 Selecting a Model to View

Note that the Linear Trend model is now highlighted, but the Forecast Model column still shows the Double Exponential Smoothing model as the model chosen to produce the final forecasts for the series. Selecting a model in the list means that this is the model that menu items such as View Model, Delete, Edit, and Refit will act upon. Choosing a model by selecting its check box in the Forecast Model column means that this model will be used by the Produce Forecasts process to generate forecasts.

Now open the Model Viewer by selecting the right-hand icon under the Browse button, or by selecting Model Predictions in the toolbar or from the View menu. The Model Viewer displays the Linear Trend model, as shown in Figure 37.39.

Figure 37.39 Model Viewer: Actual and Predicted Values Plot

\% SAS -[Model Viewer]		

This graph shows the linear trend line representing the model predicted values together with a plot of the actual data values, which fluctuate about the trend line.

Prediction Error Plots

Select the second icon from the top in the vertical toolbar in the Model Viewer window. This switches the Viewer to display a plot of the model prediction errors (actual data values minus the predicted values), as shown in Figure 37.40.

Figure 37.40 Model Viewer: Prediction Errors Plot

If the model being viewed includes a transformation, prediction errors are defined as the difference between the transformed series actual values and model predictions. You can choose to graph instead the difference between the untransformed series values and untransformed model predictions, which are called model residuals. You can also graph normalized prediction errors or normalized model residuals. Use the Residual Plot Options submenu under the Options menu.

Autocorrelation Plots

Select the third icon from the top in the vertical toolbar. This switches the Viewer to display a plot of autocorrelations of the model prediction errors at different lags, as shown in Figure 37.41. Autocorrelations, partial autocorrelations, and inverse autocorrelations are displayed, with lines overlaid at plus and minus two standard errors. You can switch the graphs so that the bars represent significance probabilities by selecting the Correlation Probabilities item on the toolbar or from the View menu. For more information about the meaning and use of autocorrelation plots, see Chapter 7, "The ARIMA Procedure."

Figure 37.41 Model Viewer: Autocorrelations Plot

Ec: P Program Files $\backslash \mathrm{SAS}$

White Noise and Stationarity Plots

Select the fourth icon from the top in the vertical toolbar. This switches the Viewer to display a plot of white noise and stationarity tests on the model prediction errors, as shown in Figure 37.42.

Figure 37.42 Model Viewer: White Noise and Stationarity Plot

The white noise test bar chart shows significance probabilities of the Ljung-Box chi square statistic. Each bar shows the probability computed on autocorrelations up to the given lag. Longer bars favor rejection of the null hypothesis that the prediction errors represent white noise. In this example, they are all significant beyond the 0.001 probability level, so that you reject the null hypothesis. In other words, the high level of significance at all lags makes it clear that the linear trend model is inadequate for this series.

The second bar chart shows significance probabilities of the augmented Dickey-Fuller test for unit roots. For example, the bar at lag three indicates a probability of 0.0014 , so that you reject the null hypothesis that the series is nonstationary. The third bar chart is similar to the second except that it represents the seasonal lags. Since this series has a yearly seasonal cycle, the bars represent yearly intervals.

You can select any of the bars to display an interpretation. Select the fourth bar of the middle chart. This displays the Recommendation for Current View, as shown in Figure 37.43. This window gives an interpretation of the test represented by the bar that was selected; it is significant, therefore a stationary series is likely. It also gives a recommendation: You do not need to perform a simple difference to make the series stationary.

Figure 37.43 Model Viewer: Recommendation for Current View
File View Tools Solutions Window Help

Model Viewer

Prediction Error White Noise/Stationarity Test Probabilities \qquad Recommendation for Current View x roducts

Augmenteadichey-Fuller Test (AR I
Significance Probability: 0.0014 Conclusion: (0.05 significance) Stationary series is likely. Recommendation: No simple difference.

Parameter Estimates Table

Select the fifth icon from the top in the vertical toolbar to the right of the graph. This switches the Viewer to display a table of parameter estimates for the fitted model, as shown in Figure 37.44.

Figure 37.44 Model Viewer: Parameter Estimates Table

For the linear trend model, the parameters are the intercept and slope coefficients. The table shows the values of the fitted coefficients together with standard errors and t tests for the statistical significance of the estimates. The model residual variance is also shown.

Statistics of Fit Table

Select the sixth icon from the top in the vertical toolbar to the right of the table. This switches the Viewer to display a table of statistics of fit computed from the model prediction errors, as shown in Figure 37.45. The list of statistics displayed is controlled by selecting Statistics of Fit from the Options menu.

Figure 37.45 Model Viewer: Statistics of Fit Table

Changing to a Different Model

Select the first icon in the vertical toolbar to the right of the table to return the display to the predicted and actual values plots (Figure 37.39).

Now return to the Develop Models window, but do not close the Model Viewer window. You can use the Next Viewer icon in the toolbar or your system's window manager controls to switch windows. You can resize the windows to make them both visible.

Select the Double Exponential Smoothing model so that this line of the model list is highlighted. The Model Viewer window is now updated to display a plot of the predicted values for the Double Exponential Smoothing model, as shown in Figure 37.46. The Model Viewer is automatically updated to display the currently selected model, unless you specify Unlink (the third icon in the window's horizontal toolbar).

Figure 37.46 Model Viewer Plot for Exponential Smoothing Model

Forecasts and Confidence Limits Plots

Select the seventh icon from the top in the vertical toolbar to the right of the graph. This switches the Viewer to display a plot of forecast values and confidence limits, together with actual values and one-step-ahead within-sample predictions, as shown in Figure 37.47.

Figure 37.47 Model Viewer: Forecasts and Confidence Limits

Data Table

Select the last icon at the bottom of the vertical toolbar to the right of the graph. This switches the Viewer to display the forecast data set as a table, as shown in Figure 37.48.

Figure 37.48 Model Viewer: Forecast Data Table

To view the full data set, use the vertical and horizontal scroll bars on the data table or enlarge the window.

Closing the Model Viewer

Other features of the Model Viewer and Develop Models window are discussed later in this book. For now, close the Model Viewer window and return to the Time Series Forecasting window.

To close the Model Viewer window, select Close from the window's horizontal toolbar or from the File menu.

Chapter 38

Creating Time ID Variables

Contents

Creating a Time ID Value from a Starting Date and Frequency 2439
Using Observation Numbers as the Time ID . 2443
Creating a Time ID from Other Dating Variables 2446

The Forecasting System requires that the input data set contain a time ID variable. If the data you want to forecast are not in this form, you can use features of the Forecasting System to help you add time ID variables to your data set. This chapter shows examples of how to use these features.

Creating a Time ID Value from a Starting Date and Frequency

As a first example of adding a time ID variable, use the SAS data set created by the following statements. (Or use your own data set if you prefer.)

```
data no_id;
    input y @@;
datalines;
    10}151520\quad25 30 35 40 4
    50}555\quad60\quad65 70 75 80 85
run;
```

Submit these SAS statements to create the data set NO_ID. This data set contains the single variable Y. Assume that Y is a quarterly series and starts in the first quarter of 1991.

In the Time Series Forecasting window, use the Browse button to the right of the Data set field to bring up the Data set Selection window. Select the WORK library, and then select the NO_ID data set.

You must create a time ID variable for the data set. Click the Create button to the right of the Time ID field. This opens a menu of choices for creating the Time ID variable, as shown in Figure 38.1.

Figure 38.1 Time ID Creation Popup Menu

Select the first choice, Create from starting date and frequency. This opens the Time ID Creation from Starting Date window shown in Figure 38.2.

Figure 38.2 Time ID Creation from Starting Date Window

c: Program Files \SAS

Enter the starting date, 1991:1, in the Starting Date field.
Select the Interval list arrow and select QTR. The Interval value QTR means that the time interval between successive observations is a quarter of a year; that is, the data frequency is quarterly.

Now select the ok button. The system prompts you for the name of the new data set. If you want to create a new copy of the input data set with the DATE variable added, enter a name for the new data set. If you want to replace the NO_ID data set with the new copy containing DATE, just select the ok button without changing the name.

For this example, change the New name field to WITH_ID and select the ok button. The data set WITH_ID is created containing the series Y from NO_ID and the added ID variable DATE. The system returns to the Data Set Selection window, which now appears as shown in Figure 38.3.

Figure 38.3 Data Set Selection Window after Creating Time ID

Select the Table button to see the new data set WITH_ID. This opens a VIEWTABLE window for the data set WITH_ID, as shown in Figure 38.4. Select File and close to close the VIEWTABLE window.

Figure 38.4 Viewtable Display of Data Set with Time ID Added

NOTE: Table has been opened in browse mode.
c: C Program Files $\backslash \mathrm{SAS}$

Using Observation Numbers as the Time ID

Normally, the time ID variable contains date values. If you do not want to have dates associated with your forecasts, you can also use observation numbers as time ID variables. However, you still must have an ID variable. This can be illustrated by adding an observation index time ID variable to the data set NO_ID.

In the Data Set Selection window, select the data set NO_ID again. Select the Create button to the right of the Time ID field. Select the fourth choice, Create from observation numbers. This opens the Time ID Variable Creation window shown in Figure 38.5.

Figure 38.5 Create Time ID Variable Window

Select the ok button. This opens the New Data Set Name window. Enter "OBS_ID" in the New data set name field. Enter "T" in the New ID variable name field.

Now select the ok button. The new data set OBS_ID is created, and the system returns to the Data Set Selection window, which now appears as shown in Figure 38.6.

Figure 38.6 Data Set Selection Window after Creating Time ID

c: $:$ Program Files $\backslash S A S$

The Interval field for OBS_ID has the value ' 1 '. This means that the values of the time ID variable T increment by one between successive observations.

Select the Table button to look at the OBS_ID data set, as shown in Figure 38.7.

Figure 38.7 VIEWTABLE of Data Set with Observation Index ID

NOTE: Table has been opened in browse mode.

Select File and Close to close the VIEWTABLE window. Select the ok button from the Data Set Selection window to return to the Time Series Forecasting window.

Creating a Time ID from Other Dating Variables

Your data set might contain ID variables that date the observations in a different way than the SAS date valued ID variable expected by the forecasting system. For example, for monthly data, the data set might contain the ID variables YEAR and MONTH, which together date the observations.

In these cases, you can use the Forecasting System's Create Time ID features to compute a time ID variable with SAS date values from the existing dating variables. As an example of this, use the SAS data set read in by the following SAS statements:

```
data id_parts;
    input yr qtr y;
datalines;
```

```
91 1 10
91 2 15
91 3 20
91425
92 1 30
92 2 35
92 340
92445
93 1 50
93255
93 3 60
93465
94 1 70
94 2 75
94 3 80
94485
run;
```

Submit these SAS statements to create the data set ID_PARTS. This data set contains the three variables YR, QTR, and Y. YR and QTR are ID variables that together date the observations, but each variable provides only part of the date information. Because the forecasting system requires a single dating variable containing SAS date values, you need to combine YR and QTR to create a single variable DATE.

Type "ID_PARTS" in the Data Set field and press the ENTER key. (You could also use the Browse button to open the Data Set Selection window, as in the previous example, and complete this example from there.)

Select the Create button at the right of the Time ID field. This opens the menu of Create Time ID choices, as shown in Figure 38.8.

Figure 38.8 Adding a Time ID Variable

No valid time ID variable found. Please specify it.

Select the second choice, Create from existing variables. This opens the window shown in Figure 38.9.

Figure 38.9 Creating a Time ID Variable from Date Parts

c: Program Files $\backslash S A S$

In the Variables list, select YR. In the Date Part list, select YEAR as shown in Figure 38.10.

Figure 38.10 Specifying the ID Variable for Years

c: Program Files \SAS

Now click the right-pointing arrow button. The variable YR and the part code YEAR are added to the Existing Time IDs list.

Next select QTR from the Variables list, select QTR from the Date Part list, and click the arrow button. This adds the variable QTR and the part code QTR to the Existing Time IDs list, as shown in Figure 38.11.

Figure 38.11 Creating a Time ID Variable from Date Parts

Now select the ok button. This opens the New Data Set Name window. Change the New data set name field to NEWDATE, and then select the ok button.

The data set NEWDATE is created, and the system returns to the Time Series Forecasting window with NEWDATE as the selected Data Set. The Time ID field is set to DATE, and the Interval field is set to QTR.

Chapter 39

Specifying Forecasting Models

Contents

Series Diagnostics 2453
Models to Fit Window 2457
Automatic Model Selection 2459
Smoothing Model Specification Window 2462
ARIMA Model Specification Window 2465
Factored ARIMA Model Specification Window 2468
Custom Model Specification Window 2472
Editing the Model Selection List 2478
Forecast Combination Model Specification Window 2482
Incorporating Forecasts from Other Sources 2485

This chapter explores the tools available through the Develop Models window for investigating the properties of time series and for specifying and fitting models. The first section shows you how to diagnose time series properties in order to determine the class of models appropriate for forecasting series with such properties. Later sections show you how to specify and fit different kinds of forecasting models.

Series Diagnostics

The series diagnostics tool helps you determine the kinds of forecasting models that are appropriate for the data series so that you can limit the search for the best forecasting model. The series diagnostics address these three questions: Is a log transformation needed to stabilize the variance? Is a time trend present in the data? Is there a seasonal pattern to the data?

The automatic model fitting process, which you used in the previous chapter through the Automatic Model Fitting window, performs series diagnostics and selects trial models from a list according to the results. You can also look at the diagnostic information and make your own decisions as to the kinds of models appropriate for the series. The following example illustrates the series diagnostics features.

Select "Develop Models" from the Time Series Forecasting window. Select the library SASHELP, the data set CITIMON, and the series RCARD. This series represents domestic retail sales of passenger cars. To look at this series, select "View Series" from the Develop Models window. This opens the Time Series Viewer window, as shown in Figure 39.1.

Figure 39.1 Automobile Sales Series

c: :Program Files $\backslash \mathrm{SAS}$

Select "Diagnose Series" from the Tools menu. You can do this from the Develop Models window or from the Time Series Viewer window. Figure 39.2 shows this from the Develop Models window.

Figure 39.2 Selecting Series Diagnostics

Brings up the Series Diagnostic dialog

This opens the Series Diagnostics window, as shown in Figure 39.3.

Figure 39.3 Series Diagnostics Window

Each of the three series characteristics-need for log transformation, presence of a trend, and seasonality-has a set of options for Yes, No, and Maybe. Yes indicates that the series has the characteristic and that forecasting models fit to the series should be able to model and predict this behavior. No indicates that you do not need to consider forecasting models designed to predict series with this characteristic. Maybe indicates that models with and without the characteristic should be considered. Initially, all these values are set to Maybe.

To have the system diagnose the series characteristics, select the Automatic Series Diagnostics button. This runs the diagnostic routines described in Chapter 44, "Forecasting Process Details," and sets the options according to the results. In this example, Trend and Seasonality are changed from Maybe to Yes, while Log Transform remains set to Maybe.

These diagnostic criteria affect the models displayed when you use the Models to Fit window or the Automatic Model Selection model-fitting options described in the following section. You can set the criteria manually, according to your judgment, by selecting any of the options, whether you have used the Automatic Series Diagnostics button or not. For this exercise, leave them as set by the automatic diagnostics. Select the OK button to close the Series Diagnostics window.

Models to Fit Window

As you saw in the previous chapter, you can select models from a list. Invoke the Models to Fit window by clicking the middle of the table and selecting "Fit Models from List" from the menu. This can also be selected from the tool bar or the Fit Model submenu of the Edit menu. The Models to Fit window comes up, as shown in Figure 39.4.

Figure 39.4 Models to Fit Window

$\square_{\mathrm{c}: \text { :Program Files } 1 \mathrm{SAS}}$

Since you have performed series diagnostics, the models shown are the subset that fits the diagnostic criteria.

Suppose you want to consider models other than those in this subset because you are undecided about including a trend in the model. Select the Show all models option. Now the entire model selection list is shown. Scroll through the list until you find Log Seasonal Exponential Smoothing, as shown in Figure 39.5.

Figure 39.5 Selecting a Model from List

This is a nontrended model, which seems a good candidate. Select this model, and then select the OK button. The model is fit to the series and then appears in the table with the value of the selected fit criterion, as shown in Figure 39.6.

Figure 39.6 Develop Models Window Showing Model Fit

$\bigoplus_{\mathrm{c}: \text { PProgram Files } \backslash \mathrm{SAS}}$

You can edit the model list that appears in the Models to Fit window by selecting "Options" and "Model Selection List" from the menu bar or by selecting the Edit Model List toolbar icon. You can then delete models you are not interested in from the default list and add models using any of the model specification methods described in this chapter. When you save your project, the edited model selection list is saved in the project file. In this way, you can use the Select from List item and the Automatic Model Selection item to select models from a customized search set.

Automatic Model Selection

Automatic model selection is equivalent to choosing Select from List, as you did in the preceding section, fitting all the models in the subset list and then deleting all except the best fitting of the models. If series diagnostics have not yet been done, they are performed automatically to determine the model subset to fit. If you set the series diagnostics for log, trend, or seasonal criteria manually using the radio buttons, these choices are honored by the automatic fitting process.

Using automatic selection, the system does not pause to warn you of model fitting errors, such as failure of the estimates to converge (you can track these using the audit trail feature).

By default, only the best fitting model is kept. However, you can control the number of automatically fit models retained in the Develop Models list, and the following example shows how to do this.

From the menu bar, choose "Options" and "Automatic Fit." This opens the Automatic Model Selection Options window. Click the Models to Keep list arrow, and select "All models", as shown in Figure 39.7. Now select OK.

Figure 39.7 Selecting Number of Automatic Fit Models to Keep

Next, select "Fit Models Automatically" by clicking the middle of the table or using the toolbar or Edit menu. The Automatic Model Selection window appears, showing the diagnostic criteria in effect and the number of models to be fit, as shown in Figure 39.8.

Figure 39.8 Automatic Model Selection Window

c: Program Files $\backslash \mathrm{SAS}$

Select the OK button. After the models have been fit, all of them appear in the table, in addition to the model which you fit earlier, as shown in Figure 39.9.

Figure 39.9 Automatically Fit Models

c: $\mathrm{DP}_{\text {Program FilesiSAS }}$

Smoothing Model Specification Window

To fit exponential smoothing and Winters models not already provided in the Models to Fit window, select "Fit Smoothing Model" from the pop-up menu or toolbar or select "Smoothing Model" from the Fit Model submenu of the Edit menu. This opens the Smoothing Model Specification window, as shown in Figure 39.10.

Figure 39.10 Smoothing Model Specification Window

c:SProgram Files\SAS

The Smoothing Model Specification window consists of several parts. At the top is the series name and a field for the label of the model you are specifying. The model label is filled in with an automatically generated label as you specify options. You can type over the automatic label with your own label for the model. To restore the automatic label, enter a blank label.

The Smoothing Methods box lists the different methods available. Below the Smoothing Methods box is the Transformation field, which is used to apply the smoothing method to transformed series values.

The Smoothing Weights box specifies how the smoothing weights are determined. By default, the smoothing weights are automatically set to optimize the fit of the model to the data. See Chapter 44, "Forecasting Process Details," for more information about how the smoothing weights are fit.

Under smoothing methods, select "Winters Method - Additive." Notice the smoothing weights box to the right. The third item, Damping, is grayed out, while the other items, Level, Trend, and Season, show the word optimize. This tells you that these three smoothing weights are applicable to the smoothing method that you selected and that the system is currently set to optimize these weights for you.

Next, specify a transformation using the Transformation list. A menu of transformation choices pops up, as shown in Figure 39.11.

Figure 39.11 Transformation Options

You can specify a logarithmic, logistic, square root, or Box-Cox transformation. For this example, select "Square Root" from the list. The Transformation field is now set to Square Root.

This means that the system will first take the square roots of the series values, apply the additive version of the Winters method to the square root series, and then produce the predictions for the original series by squaring the Winters method predictions (and multiplying by a variance factor if the Mean Prediction option is set in the Forecast Options window). See Chapter 44, "Forecasting Process Details," for more information about predictions from transformed models.

The Smoothing Model Specification window should now appear as shown in Figure 39.12. Select the OK button to fit the model. The model is added to the table of fitted models in the Develop Models window.

Figure 39.12 Winter's Method Applied to Square Root Series

$\nabla_{\mathrm{c}: \text { :Program Files } 1 \mathrm{SAS}}$

ARIMA Model Specification Window

To fit ARIMA or Box-Jenkins models not already provided in the Models to Fit window, select the ARIMA model item from the pop-up menu, toolbar, or Edit menu. This opens the ARIMA Model Specification window, as shown in Figure 39.13.

Figure 39.13 ARIMA Model Specification Window
Eile View Tools Solutions Window Help

ARIMA Model Specification

Ser ies: RCARD: RETAIL SALES: NEW PASSENGER CARS, DOMEST
Model:

Transformation: None $\quad \geqslant$
Seasonal ARIMA Options:

Intercept:
Predictors

This ARIMA Model Specification window is structured according to the Box and Jenkins approach to time series modeling. You can specify the same time series models with the Custom Model Specification window and the ARIMA Model Specification window, but the windows are structured differently, and you may find one more convenient than the other.

At the top of the ARIMA Model Specification window is the name and label of the series and the label of the model you are specifying. The model label is filled in with an automatically generated label as you specify options. You can type over the automatic label with your own label for the model. To restore the automatic label, enter a blank label.

Using the ARIMA Model Specification window, you can specify autoregressive (p), differencing (d), and moving average (q) orders for both simple and seasonal factors. You can specify transformations with the Transformation list. You can also specify whether an intercept is included in the ARIMA model.

In addition to specifying seasonal and nonseasonal ARIMA processes, you can also specify predictor variables and other terms as inputs to the model. ARIMA models with inputs are sometimes called ARIMAX models or Box-Tiao models. Another term for this kind of model is dynamic regression.

In the lower part of the ARIMA Model Specification window is the list of predictors to the model
(initially empty). You can specify predictors by using the Add button. This opens a menu of different kinds of independent effects, as shown in Figure 39.14.

Figure 39.14 Add Predictors Menu

c: Program Files $\backslash \mathrm{SAS}$

The kinds of predictor effects allowed include time trends, regressors, adjustments, dynamic regression (transfer functions), intervention effects, and seasonal dummy variables. How to use different kinds of predictors is explained in Chapter 41, "Using Predictor Variables."

As an example, in the ARIMA Options box, set the order of differencing d to 1 and the moving average order q to 2 . You can either type in these values or click the arrows and select the values from pop-up lists.

These selections specify an ARIMA($0,1,2$) or IMA(1,2) model. (See Chapter 7, "The ARIMA Procedure," for more information about the notation used for ARIMA models.) Notice that the model label at the top is now IMA $(1,2)$ NOINT, meaning that the data are differenced once and a second-order moving-average term is included with no intercept.

In the Seasonal ARIMA Options box, set the seasonal moving-average order ℓ to 1 . This adds a first-order moving-average term at the seasonal (12 month) lag. Finally, select "Log" in the Transformation combo box.

The model label is now Log $\operatorname{ARIMA}(0,1,2)(0,0,1) \mathrm{s}$ NOINT, and the window appears as shown
in Figure 39.15.
Figure 39.15 Log $\operatorname{ARIMA}(0,1,2)(0,0,1) s$ Specified

ARIMA Model Specification

Ser ies: RCARD: RETAIL SALES: NEW PASSENGER CARS, DOMEST
Model: Log ARIMA $(0,1,2)(0,0,1) s$ NOINT

Transformation: Log $\boldsymbol{~}$

Seasonal ARIMA Options:

Intercept:

Predictors

Ec: P Program Files $\backslash \mathrm{SAS}$

Select the OK button to fit the model. The model is fit and added to the Develop Models table.

Factored ARIMA Model Specification Window

To fit a factored ARIMA model, select the Factored ARIMA model item from the pop-up menu, toolbar, or Edit menu. This brings up the Factored ARIMA Model Specification window, shown in Figure 39.16.

Figure 39.16 Factored ARIMA Model Specification Window

The Factored ARIMA Model Specification window is similar to the ARIMA Model Specification window and has the same features, but it uses a more general specification of the autoregressive (p), differencing (d), and moving-average (q) terms. To specify these terms, select the corresponding Set button, as shown in Figure 39.16. For example, to specify autoregressive terms, select the first Set button. This opens the AR Polynomial Specification Window, shown in Figure 39.17.

Figure 39.17 AR Polynomial Specification Window

To add AR polynomial terms, select the New button. This opens the Polynomial Specification Window, shown in Figure 39.18. Specify the first lag you want to include by using the Lag spin box, then select the Add button. Repeat this process, adding each lag you want to include in the current list. All lags must be specified. For example, if you add only lag 3, the model contains only lag 3 , not 1 through 3 .

As an example, add lags 1 and 3, then select the OK button. The AR Polynomial Specification Window now shows $(1,3)$ in the list of polynomials. Now select "New" again. Add lags 6 and 12 and select "OK". Now the AR Polynomial Specification Window shows $(1,3)$ and $(6,12)$ as shown in Figure 39.17. Select "OK" to close this window. The Factored ARIMA Model Specification Window now shows the factored model $\mathrm{p}=(1,3)(6,12)$. Use the same technique to specify the q terms, or moving-average part of the model. There is no limit to the number of lags or the number of factors you can include in the model.

Figure 39.18 Polynomial Specification Window

To specify differencing lags, select the middle Set button to open the Differencing Specification window. Specify lags using the spin box and add them to the list with the Add button. When you select "OK" to close the window, the differencing lags appear after $d=$ in the Factored ARIMA Specification Window, within a single pair of parentheses.

You can use the Factored ARIMA Model Specification Window to specify any model that you can specify with the ARIMA Model and Custom Model windows, but the notation is more similar to that of the ARIMA procedure (see Chapter 7, "The ARIMA Procedure"). Consider as an example the classic Airline model fit to the International Airline Travel series, SASHELP. AIr. This is a factored model with one moving-average term at lag one and one moving-average term at the seasonal lag, with first-order differencing at the simple and seasonal lags. Using the ARIMA Model Specification Window, you specify the value 1 for the q and d terms and also for the Q and D terms, which represent the seasonal lags. For monthly data, the seasonal lags represent lag 12, since a yearly seasonal cycle is assumed.

By contrast, the Factored ARIMA Model Specification Window makes no assumptions about seasonal cycles. The Airline model is written as IMA $d=(1,12) \quad q=(1)(12)$ noint. To specify the differencing terms, add the values 1 and 12 in the Differencing Specification Window and select OK. Then select "New" in the MA Polynomial Specification Window, add the value 1, and select OK. To add the factored term, select "New" again, add the value 12, and select OK. Remember to
select "No" in the Intercept radio box, since it is not selected by default. Select OK to close the Factored ARIMA Model Specification Window and fit the model.

You can show that the results are the same as they are when you specify the model by using the ARIMA Model Specification Window and when you select Airline Model from the default model list. If you are familiar with the ARIMA Procedure (Chapter 7, "The ARIMA Procedure"), you might want to turn on the Show Source Statements option before fitting the model, then examine the procedure source statements in the log window after fitting the model.

The strength of the Factored ARIMA Specification approach lies in its ability to contruct unusual ARIMA models, such as:

Subset models
These are models of order n, where fewer than n lags are specified. For example, an AR order 3 model might include lags 1 and 3 but not lag 2 .
Unusual seasonal cycles
For example, a monthly series might cycle two or four times per year instead of just once.

Multiple cycles
For example, a daily sales series might peak on a certain day each week and also once a year at the Christmas season. Given sufficient data, you can fit a three-factor model, such as IMA $d=(1) \quad q=(1)$ (7) (365).

Models with high order lags take longer to fit and often fail to converge. To save time, select the Conditional Least Squares or Unconditional Least Squares estimation method (see Figure 39.16). Once you have narrowed down the list of candidate models, change to the Maximum Likelihood estimation method.

Custom Model Specification Window

To fit a custom time series model not already provided in the Models to Fit window, select the Custom Model item from the pop-up menu, toolbar, or Edit menu. This opens the Custom Model Specification window, as shown in Figure 39.19.

Figure 39.19 Custom Model Specification Window
File View Tools Solutions Window Help

Custom Model Specification

Series: RCARD: RETAIL SALES: NEW PASSENGER CARS, DOMEST
Model:

Predictors

c:SProgram Files\SAS

You can specify the same time series models with the Custom Model Specification window and the ARIMA Model Specification window, but the windows are structured differently, and you might find one more convenient than the other.

At the top of the Custom Model Specification window is the name and label of the series and the label of the model you are specifying. The model label is filled in with an automatically generated label as you specify options. You can type over the automatic label with your own label for the model. To restore the automatic label, enter a blank label.

The middle part of the Custom Model Specification window consists of four fields: Transformation, Trend Model, Seasonal Model, and Error Model. These fields allow you to specify the model in four parts. Each part specifies how a different aspect of the pattern of the time series is modeled and predicted.

The Predictors list at the bottom of the Custom Model Specification window allows you to include different kinds of predictor variables in the forecasting model. The Predictors feature for the Custom Model Specification window is like the Predictors feature for the ARIMA Model Specification window, except that time trend predictors are provided through the Trend Model field and seasonal dummy variable predictors are provided through the Seasonal Model field.

To illustrate how to use the Custom Model Specification window, the following example specifies
the same model you fit by using the ARIMA Model Specification window.
First, specify the data transformation to use. Select "Log" using the Transformation combo box.
Second, specify how to model the trend in the series. Select First Difference in the Trend Model combo box, as shown in Figure 39.20.

Figure 39.20 Trend Model Options

c: \Program Files\SAS

Next, specify how to model the seasonal pattern in the series. Select "Seasonal ARIMA" in the Seasonal Model combo box, as shown in Figure 39.21.

Figure 39.21 Seasonal Model Options

c: P Program Files $\backslash \mathrm{SAS}$

This opens the Seasonal ARIMA Model Options window, as shown in Figure 39.22.

Figure 39.22 Seasonal ARIMA Model Options

c: P Program Files $\backslash \mathrm{SAS}$

Specify a first-order seasonal moving-average term by typing 1 or by selecting " 1 " from the Moving Average: $\mathrm{Q}=$ combo box pop-up menu, and then select the OK button.

Finally, specify how to model the autocorrelation pattern in the model prediction errors. Select the Set button to the right of the Error Model field. This opens the Error Model Options window, as shown in Figure 39.23. This window allows you to specify an ARMA error process. Set the Moving Average order q to 2, and then select the OK button.

Figure 39.23 Error Model Options

c: Program Files $\backslash \mathrm{SAS}$

The Custom Model Specification window should now appear as shown in Figure 39.24. The model label at the top of the Custom Model Specification window should now read Log ARIMA $(0,1,2)(0,0,1)$ s NoInt, just as it did when you used the ARIMA Model Specification window.

Figure 39.24 Log $\operatorname{ARIMA}(0,1,2)(0,0,1)$ s Specified
File View Tools Solutions Window Help

Custom Model Specification
Series: RCARD: RETAIL SALES: NEW PASSENGER CARS, DOMEST
Model: Log ARIMA $(0,1,2)(0,0,1) \mathrm{s}$ NOINT

Transformation: Log			Trend M	Mode 1 :	First Dif	v
Seasonal Model:	MA(1)		Error	Mode 1:	MA(2)	Set...
Intercept:	CYes	c-No				

Predictors

c: Program Files $\backslash S A S$

Now that you have seen how the Custom Model Specification window works, select "Cancel" to exit the window without fitting the model. This should return you to the Develop Models window.

Editing the Model Selection List

Now that you know how to specify new models that are not included in the system default model selection list, you can edit the model selection list to add models that you expect to use in the future or to delete models that you do not expect to use. When you save the forecasting project to a SAS catalog, the edited model selection list is saved with the project file, and the list is restored when you load the project.

There are two reasons why you would add a model to the model selection list. First, by adding the model to the list, you can fit the model to different time series by selecting it through the Fit Models from List action. You do not need to specify the model again every time you use it.

Second, once the model is added to the model selection list, it is available to the automatic model
selection process. The model is then considered automatically whenever you use the automatic model selection feature for any series.

To edit the model selection list, select "Model Selection List" from the Options menu as shown in Figure 39.25, or select the Edit Model List toolbar icon.

Figure 39.25 Model Selection List Option

Edits Model Selection List
曰c:SProgram Files\SAS

This selection brings up the Model Selection List editor window, as shown in Figure 39.26. This window consists of the model selection list and an "Auto Fit" column, which controls for each model whether the model is included in the list of models used by the automatic model selection process.

Figure 39.26 Model Selection List Window

To add a model to the list, select "Add Model" from the Edit menu and then select "Smoothing Model," "ARIMA Model," "Factored ARIMA Model," or "Custom Model" from the submenu. Alternatively, click the corresponding icon on the toolbar.

As an example, select "Smoothing Model." This brings up the Smoothing Model Specification window. Note that the series name is "-Null-." This means that you are not specifying a model to be fit to a particular series, but are specifying a model to be added to the selection list for later reference.

Specify a smoothing model. For example, select "Simple Smoothing" and then select the Square Root transformation. The window appears as shown in Figure 39.27.

Figure 39.27 Adding a Model Specification

Select the OK button to add the model to the end of the model selection list and return you to the Model Selection List window, as shown in Figure 39.28. You can now select the Fit Models from List model-fitting option to use the edited selection list.

Figure 39.28 Model Added to Selection List

If you want to delete one or more models from the list, select the model labels to highlight them in the list. Click a second time to clear a selected model. Then select "Delete" from the Edit pulldown menu, or the corresponding toolbar icon. As an example, delete the Square Root Simple Exponential Smoothing model that you just added.

The Model Selection List editor window gives you a lot of flexibility for managing multiple model lists, as explained in the section "Model Selection List Editor Window" on page 2611. For example, you can create your own model lists from scratch or modify or combine previously saved model lists and those provided with the software, and you can save them and designate one as the default for future projects.

Now select "Close" from the File menu (or the Close icon) to close the Model Selection List editor window.

Forecast Combination Model Specification Window

Once you have fit several forecasting models to a series, you face the question of which model to use to produce the final forecasts. One possible answer is to combine or average the forecasts from several models. Combining the predictions from several different forecasting methods is a popular approach to forecasting.

The way that you produce forecast combinations with the Time Series Forecasting System is to use the Forecast Combination Model Specification window to specify a new forecasting model that performs the averaging of forecasts from the models you want to combine. This new model is added to the list of fitted models just like other models. You can then use the Model Viewer window features and Model Fit Comparison window features to examine the fit of the combined model.

To specify a forecast combination model, select "Combine Forecasts" from the pop-up menu or toolbar, or select "Edit" and "Fit Model" from the menu bar. This brings up the Forecast Combination Model Specification window, as shown in Figure 39.29.

Figure 39.29 Forecast Combination Window

E:\Program Files $\backslash \mathrm{SAS}$

At the top of the Forecast Combination window is the name and label of the series and the label of the model you are specifying. The model label is filled in with an automatically generated label as you specify options. You can type over the automatic label with your own label for the model. To restore the automatic label, enter a blank label.

The middle part of the Forecast Combination window consists of the list of models that you have fit to the series. This table shows the label and goodness-of-fit measure for each model and the combining weight assigned to the model.

The weight column controls how much weight is given to each model in the combined forecasts. A missing weight means that the model is not used. Initially, all the models have missing weight values.

You can enter the weight values you want to use in the Weight column. Alternatively, you can select models from the Model Description column, and weight values for the models you select are set automatically. To remove a model from the combination, select it again. This resets its weight value to missing.

At the bottom of the Forecast Combination window are two buttons: Normalize Weights and Fit Regression Weights. The Normalize Weights button adjusts the nonmissing weight values so that they sum to one. The Fit Regression Weights button uses linear regression to compute the
weight values that produce the combination of model predictions with the best fit to the series.
If no models are selected, the Fit Regression Weights button fits weights for all the models in the list. You can compute regression weights for only some of the models by first selecting the models you want to combine and then selecting Fit Regression Weights. In this case, only the nonmissing Weight values are replaced with regression weights.

As an example of how to combine forecasting models, select all the models in the list. After you have finished selecting the models, all the models in the list should now have equal weight values, which implies a simple average of the forecasts.

Now select the Fit Regression Weights button. The system performs a linear regression of the series on the predictions from the models with nonmissing weight values and replaces the weight values with the estimated regression coefficients. These are the combining weights that produce the smallest mean square prediction error within the sample.

The Forecast Combination window should now appear as shown in Figure 39.30. (Note that some of the regression weight values are negative.)

Figure 39.30 Combining Models

c: Program Files $\backslash \mathrm{SAS}$

Select the OK button to fit the combined model. Now the Develop Models window shows this model to be the best fitting according to the root mean square error, as shown in Figure 39.31.

Figure 39.31 Develop Models Window Showing All Models Fit

Ec: Program Files $\backslash \mathrm{SAS}$

Notice that the combined model has a smaller root mean square error than any one of the models included in the combination. The confidence limits for forecast combinations are produced by taking a weighted average of the mean square prediction errors for the component forecasts, ignoring the covariance between the prediction errors.

Incorporating Forecasts from Other Sources

You might have forecasts from other sources that you want to include in the forecasting process. Examples of other forecasts you might want to use are "best guess" forecasts based on personal judgments, forecasts produced by government agencies or commercial forecasting services, planning scenarios, and reference or "base line" projections. Because such forecasts are produced externally to the Time Series Forecasting System, they are referred to as external forecasts.

You can include external forecasts in combination models to produce compromise forecasts that split the difference between the external forecast and forecasting models that you fit. You can use external forecasts to compare them to the forecasts from models that are fit by the system.

To include external forecasts in the Time Series Forecasting process, you must first supply the external forecast as a variable in the input data set. You then specify a special kind of forecasting "model" whose predictions are identical to the external forecast recorded in the data set.

As an example, suppose you have 12 months of sales data and five months of sales forecasts based on a consensus opinion of the sales staff. The following statements create a SAS data set containing made-up numbers for this situation.

```
data widgets;
    input date monyy5. sales staff;
    format date monyy5.;
    label sales = "Widget Sales"
            staff = "Sales Staff Consensus Forecast";
    datalines;
jun94 142.1
jul94 139.6
aug94 145.0
sep94 150.2 .
oct94 151.1 .
nov94 154.3 .
dec94 158.7 .
jan95 155.9 .
feb95 159.2 .
mar95 160.8 .
apr95 162.0 .
may95 163.3 .
jun95 . 166.
jul95 . 168.
aug95 . 170.
sep95 . 171.
oct95 . 177.
run;
```

Submit the preceding statements in the SAS Program Editor window. From the Time Series Forecasting window, select "Develop Models." In the Series Selection window, select the data set WORK.WIDGETS and the variable SALES. The Develop Models window should now appear as shown in Figure 39.32.

Figure 39.32 Develop Models Window

c: Program Files $\backslash \mathrm{SAS}$

Now select "Edit," "Fit Model," and "External Forecasts" from the menu bar of the Develop Models window, as shown in Figure 39.33, or the Use External Forecasts toolbar icon.

Figure 39.33 Adding a Model for an External Forecast Series

This selection opens the External Forecast Model Specification window. Select the STAFF variable as shown in Figure 39.34.

Figure 39.34 External Forecast Series Selected

Select the OK button. The external forecast model is now "fit" and added to the Develop Models list, as shown in Figure 39.35.

Figure 39.35 Model for External Forecast

You can now use this model for comparison with the predictions from other forecasting models that you fit, or you can include it in a forecast combination model.

Note that no fitting is actually performed for an external forecast model. The predictions of the external forecast model are simply the values of the external forecast series read from the input data set. The goodness-of-fit statistics for such models will depend on the values that the external forecast series contains for observations within the period of fit. In this case, no STAFF values are given for past periods, and therefore the fit statistics for the model are missing.

Chapter 40

Choosing the Best Forecasting Model

Contents

Time Series Viewer Features 2491
Model Viewer Prediction Error Analysis 2498
The Model Selection Criterion 2502
Sorting and Selecting Models 2504
Comparing Models 2505
Controlling the Period of Evaluation and Fit 2506
Refitting and Reevaluating Models 2508
Using Hold-out Samples 2508

The Time Series Forecasting System provides a variety of tools for identifying potential forecasting models and for choosing the best fitting model. It allows you to decide how much control you want to have over the process, from a hands-on approach to one that is completely automated. This chapter begins with an exploration of the tools available through the Series Viewer and Model Viewer. It presents an example of identifying models graphically and exercising your knowledge of model properties. The remainder of the chapter shows you how to compare models by using a variety of statistics and by controlling the fit and evaluation time ranges. It concludes by showing you how to refit existing models and how to compare models using hold-out samples.

Time Series Viewer Features

The Time Series Viewer is a graphical tool for viewing and analyzing time series. It can be used separately from the Time Series Forecasting System by using the TSVIEW command or by selecting Time Series Viewer from the Analysis pull-down menu under Solutions.

In this chapter you will use the Time Series Viewer to examine plots of your series before fitting models. Begin this example by invoking the Forecasting system and selecting the View Series Graphically button, as shown in Figure 40.1, or the View Series toolbar icon.

Figure 40.1 Invoking the Time Series Viewer

From the Series Selection window, select SASHELP as the library, WORKERS as the data set, and MASONRY as the time series, and then click the Graph button. The Time Series Viewer displays a plot of the series, as shown in Figure 40.2.

Figure 40.2 Series Plot

c: 3 Program Files $\backslash \mathrm{SAS}$

Select the Zoom In icon, the first one on the window's horizontal toolbar. Notice that the mouse cursor changes shape and that "Note: Click on a corner of the region, then drag to the other corner" appears on the message line. Outline an area, as shown in Figure 40.3, by clicking the mouse at the upper-left corner, holding the button down, dragging to the lower-right corner, and releasing the button.

Figure 40.3 Selecting an Area for Zoom

The zoomed plot should appear as shown in Figure 40.4.

Figure 40.4 Zoomed Plot

You can repeat the process to zoom in still further. To return to the previous view, select the Zoom Out icon, the second icon on the window's horizontal toolbar.

The third icon on the horizontal toolbar is used to link or unlink the viewer window. By default, the viewer is linked, meaning that it is automatically updated to reflect selection of a different time series. To see this, return to the Series Selection window by clicking on it or using the Window menu or Next Viewer toolbar icon. Select the Electric series in the Time Series Variables list box. Notice that the Time Series Viewer window is updated to show a plot of the ELECTRIC series. Select the Link/Unlink icon if you prefer to unlink the viewer so that it is not automatically updated in this way. Successive selections toggle between the linked and unlinked state. A note on the message line informs you of the state of the Time Series Viewer window.

When a Time Series Viewer window is linked, selecting View Series again makes the linked Viewer window active. When no Time Series Viewer window is linked, selecting View Series opens an additional Time Series Viewer window. You can bring up as many Time Series Viewer windows as you want.

Having seen the plot in Figure 40.2, you might suspect that the series is nonstationary and seasonal. You can gain further insight into this by examining the sample autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) plots. To switch
the display to the autocorrelation plots, select the second icon from the top on the vertical toolbar at the right side of the Time Series Viewer. The plot appears as shown in Figure 40.5.

Figure 40.5 Sample Autocorrelation Plots

Each bar represents the value of the correlation coefficient at the given lag. The overlaid lines represent confidence limits computed at plus and minus two standard errors. You can switch the graphs to show significance probabilities by selecting Correlation Probabilities under the Options pull-down menu, or by selecting the Toggle ACF Probabilities toolbar icon.

The slow decline of the ACF suggests that first differencing might be warranted. To see the effect of first differencing, select the simple difference icon, the fifth icon from the left on the window's horizontal toolbar. The plot now appears as shown in Figure 40.6.

Figure 40.6 ACF Plots with First Difference Applied

Эc:Sprogram Files\SAS

Since the ACF still displays slow decline at seasonal lags, seasonal differencing is appropriate (in addition to the first differencing already applied). Select the Seasonal Difference icon, the sixth icon from the left on the horizontal toolbar. The plot now appears as shown in Figure 40.7.

Figure 40.7 ACF Plot with Simple and Seasonal Differencing

Эc:SProgram Files $\backslash S A S$

Model Viewer Prediction Error Analysis

Leave the Time Series Viewer open for the remainder of this exercise. Drag it out of the way or push it to the background so that you can return to the Time Series Forecasting window. Select Develop Models, then click an empty part of the table to bring up the pop-up menu, and select Fit ARIMA Model. Define the ARIMA($0,1,0)(0,1,0)$ s model by selecting 1 for Differencing under ARIMA Options, 1 for Differencing under Seasonal ARIMA Options, and No for Intercept, as shown in Figure 40.8.

Figure 40.8 Specifying the ARIMA $(0,1,0)(0,1,0)$ s Model

When you select the ok button, the model is fit and you are returned to the Develop Models window. Click on an empty part of the table and choose Fit Models from List from the popup menu. Select Airline Model from the window. (Airline Model is a common name for the ARIMA $(0,1,1)(0,1,1) \mathrm{s}$ model, which is often used for seasonal data with a linear trend.) Select the ok button. Once the model has been fit, the table shows the two models and their root mean square errors. Notice that the Airline Model provides only a slight improvement over the differencing model, ARIMA $(0,1,0)(0,1,0)$ s. Select the first row to highlight the differencing model, as shown in Figure 40.9.

Figure 40.9 Selecting a Model

Now select the View Selected Model Graphically button, below the Browse button at the right side of the Develop Models window. The Model Viewer window appears, showing the actual data and model predictions for the MASONRY series. (Note that predicted values are missing for the first 13 observations due to simple and seasonal differencing.)

To examine the ACF plot for the model prediction errors, select the third icon from the top on the vertical toolbar. For this model, the prediction error ACF is the same as the ACF of the original data with first differencing and seasonal differencing applied. This differencing is apparent if you bring the Time Series Viewer back into view for comparison.

Return to the Develop Models Window by clicking on it or using the window pull-down menu or the Next Viewer toolbar icon. Select the second row of the table in the Develop Models window to highlight the Airline Model. The Model Viewer is automatically updated to show the prediction error ACF of the newly selected model, as shown in Figure 40.10.

Figure 40.10 Prediction Error ACF Plot for the Airline Model

Ec: Program Files\SAS

Another helpful tool available within the Model Viewer is the parameter estimates table. Select the fifth icon from the top of the vertical toolbar. The table gives the parameter estimates for the two moving-average terms in the Airline Model, as well as the model residual variance, as shown in Figure 40.11 .

Figure 40.11 Parameter Estimates for the Airline Model

You can adjust the column widths in the table by dragging the vertical borders of the column titles with the mouse. Notice that neither of the parameter estimates is significantly different from zero at the 0.05 level of significance, since $\operatorname{Prob}>|t|$ is greater than 0.05 . This suggests that the Airline Model should be discarded in favor of the more parsimonious differencing model, which has no parameters to estimate.

The Model Selection Criterion

Return to the Develop Models window (Figure 40.9) and notice the Root Mean Square Error button at the right side of the table banner. This is the model selection criterion-the statistic used by the system to select the best fitting model. So far in this example you have fit two models and have left the default criterion, root mean square error (RMSE), in effect. Because the Airline Model has the smaller value of this criterion and because smaller values of the RMSE indicate better fit, the system has chosen this model as the forecasting model, indicated by the check box in the Forecast Model column.

The statistics available as model selection criteria are a subset of the statistics available for informational purposes. To access the entire set, select options from the menu bar, and then select Statistics of Fit. The Statistics of Fit Selection window appears, as shown in Figure 40.12.

Figure 40.12 Statistics of Fit

$\sigma_{\mathrm{c}: \text { Program Files } 1 \mathrm{SAS}}$

By default, five of the more well known statistics are selected. You can select and deselect statistics by clicking the check boxes in the left column. For this exercise, select All, and notice that all the check boxes become checked. Select the ok button to close the window. Now if you choose Statistics of Fit in the Model Viewer window, all of the statistics will be shown for the selected model.

To change the model selection criterion, click the Root Mean Square Error button or select Options from the menu bar and then select Model Selection Criterion. Notice that most of the statistics of fit are shown, but those which are not relevant to model selection, such as number of observations, are not shown. Select Schwarz Bayesian Information Criterion and click ок. Since this statistic puts a high penalty on models with larger numbers of parameters, the $\operatorname{ARIMA}(0,1,0)(0,1,0)$ s model comes out with the better fit.

Notice that changing the selection criterion does not automatically select the model that is best according to that criterion. You can always choose the model you want to use for forecasts by
selecting its check box in the Forecast Model column.
Now bring up the Model Selection Criterion window again and select Akaike Information Criterion. This statistic puts a lesser penalty on number of parameters, and the Airline Model comes out as the better fitting model.

Sorting and Selecting Models

Select Sort Models on the Tools menu or from the toolbar. This sorts the current list of fitted models by the current selection criterion. Although some selection criteria assign larger values to better fitting models (for example, R-square) while others assign smaller values to better fitting models, Sort Models always orders models with the best fitting model-in this case, the Airline Model—at the top of the list.

When you select a model in the table, its name and criterion value become highlighted, and actions that apply to that model become available. If your system supports a right mouse button, you can click it to invoke a pop-up menu, as shown in Figure 40.13.

Figure 40.13 Right Mouse Button Pop-up Menu

Whether or not you have a right mouse button, the same choices are available under Edit and View from the menu bar. If the model viewer has been invoked, it is automatically updated to show the selected model, unless you have unlinked the viewer by using the Link/Unlink toolbar button.

Select the highlighted model in the table again. Notice that it is no longer highlighted. When no models are highlighted, the right mouse button pop-up menu changes, and items on the menu bar that apply to a selected model become unavailable. For example, you can choose Edit from the menu bar, but you can't choose the Edit Model or Delete Model selections unless you have highlighted a model in the table.

When you select the check box in the Forecast Model column of the table, the model in that row becomes the forecasting model. This is the model that will be used the next time forecasts are generated by choosing View Forecasts or by using the Produce Forecasts window. Note that this forecasting model flag is automatically set when you use Fit Automatic Model or when you fit an individual model that fits better, using the current selection criterion, than the current forecasting model.

Comparing Models

Select Tools and Compare Models from the menu bar. This displays the Model Fit Comparison table, as shown in Figure 40.14.

Figure 40.14 Model Comparison Window

The two models you have fit are shown as Model 1 and Model 2. When there are more than two models, you can bring any two of them into the table by selecting the up and down arrows. In this way, it is easy to do pairwise comparisons on any number of models, looking at as many statistics of fit as you like. Since you previously chose to display all statistics of fit, all of them are shown in the comparison table. Use the vertical scroll bar to move through the list.

After you have examined the model comparison table, select the Close button to return to the Develop Models window.

Controlling the Period of Evaluation and Fit

Notice the three time ranges shown on the Develop Models window (Figure 40.9). The data range shows the beginning and ending dates of the MASONRY time series. The period of fit shows the beginning and ending dates of data used to fit the models. The period of evaluation shows the beginning and ending dates of data used to compute statistics of fit. By default, the fit and evaluate ranges are the same as the data range. To change these ranges, select the set Ranges
button, or select Options and Time Ranges from the menu bar. This brings up the Time Ranges Specification window, as shown in Figure 40.15.

Figure 40.15 Time Ranges Specification Window

For this example, suppose the early data in the series is unreliable, and you want to use the range June 1978 to the latest available for both model fitting and model evaluation. You can either type JUN1978 in the From column for Period of Fit and Period of Evaluation, or you can advance these dates by clicking the right pointing arrows. The outer arrow advances the date by a large amount (in this case, by a year), and the inner arrow advances it by a single period (in this case, by a month). Once you have changed the Period of Fit and the Period of Evaluation to JUN1978 in the From column, select the ok button to return to the Develop Models window. Notice that these time ranges are updated at the top of the window, but the models already fit have not been affected. Your changes to the time ranges affect subsequently fit models.

Refitting and Reevaluating Models

If you fit the $\operatorname{ARIMA}(0,1,0)(0,1,0)$ s and Airline models again in the same way as before, they will be added to the model list, with the same names but with different values of the model selection criterion. Parameter estimates will be different, due to the new fit range, and statistics of fit will be different, due to the new evaluation range.

For this exercise, instead of specifying the models again, refit the existing models by selecting Edit from the menu bar and then selecting Refit Models and All Models. After the models have been refit, you should see the same two models listed in the table but with slightly different values for the selection criterion. The ARIMA $(0,1,0)(0,1,0)$ s and Airline models have now been fit to the MASONRY series by using data from June 1978 to July 1982, since this is the period of fit you specified. The statistics of fit have been computed for the period of evaluation, which was the same as the period of fit. If you had specified a period of evaluation different from the period of fit, the statistics would have been computed accordingly.

In practice, another common reason for refitting models is the availability of new data. For example, when data for a new month become available for a monthly series, you might add them to the input data set, then invoke the forecasting system, open the project containing models fit previously, and refit the models prior to generating new forecasts. Unless you specify the period of fit and period of evaluation in the Time Ranges Specification window, they default to the full data range of the series found in the input data set at the time of refitting.

If you prefer to apply previously fit models to revised data without refitting, use Reevaluate Models instead of Refit Models. This recomputes the statistics of fit by using the current evaluation range, but does not re-estimate the model parameters.

Using Hold-out Samples

One important application of model fitting where the period of fit is different from the period of evaluation is the use of hold-out samples. With this technique of model evaluation, the period of fit ends at a time point before the end of the data series, and the remainder of the data are held out as a nonoverlapping period of evaluation. With respect to the period of fit, the hold-out sample is a period in the future, used to compare the forecasting accuracy of models fit to past data.

For this exercise, use a hold-out sample of 12 months. Bring up the Time Ranges Specification window again by selecting the Set Ranges button. Set Hold-out Sample to 12 using the combo box, as shown in Figure 40.16. You can also type in a value. To specify a hold-out sample period in different units, you can use the Periods combo box. In this case, it allows you to select years as the unit, instead of periods.

Figure 40.16 Specifying the Hold-out Sample Size

Notice that setting the hold-out sample to 12 automatically sets the fit range to JUN1978-JUL1981 and the evaluation range to AUG1981-JUL1982. If you had set the period of fit and period of evaluation to these ranges, the hold-out sample would have been automatically set to 12 periods.

Select the OK button to return to the Develop Models window. Now refit the models again. Select Tools and Compare Models to compare the models now that they have been fit to the period June 1978 through July 1981 and evaluated for the hold-out sample period August 1981 through July 1982. Note that the fit statistics for the hold-out sample are based on one-step-ahead forecasts. (See Statistics of Fit in Chapter 44, "Forecasting Process Details.")

As shown in Figure 40.17, the ARIMA $(0,1,0)(0,1,0)$ s model now seems to provide a better fit to the data than does the Airline model. It should be noted that the results can be quite different if you choose a different size hold-out sample.

Figure 40.17 Using 12 Month Hold-out Sample

Chapter 41

Using Predictor Variables

Contents

Linear Trend . 2513
Time Trend Curves . 2515
Regressors . 2518
Adjustments . 2522
Dynamic Regressor . 2523
Interventions . 2527
The Intervention Specification Window . 2528
Specifying a Trend Change Intervention . 2530
Specifying a Level Change Intervention . 2532
Modeling Complex Intervention Effects . 2533
Fitting the Intervention Model . 2535
Limitations of Intervention Predictors . 2538
Seasonal Dummies . 2539
References . 2542

Forecasting models predict the future values of a series by using two sources of information: the past values of the series and the values of other time series variables. Other variables used to predict a series are called predictor variables.

Predictor variables that are used to predict the dependent series can be variables in the input data set, such as regressors and adjustment variables, or they can be special variables computed by the system as functions of time, such as trend curves, intervention variables, and seasonal dummies.

You can specify seven different types of predictors in forecasting models by using the ARIMA Model or Custom Model Specification windows. You cannot specify predictor variables with the Smoothing Model Specification window.

Figure 41.1 shows the menu of options for adding predictors to an ARIMA model that is opened by clicking the Add button. The Add menu for the Custom Model Specification menu is similar.

Figure 41.1 Add Predictors Menu

These types of predictors are as follows.
Linear Trend adds a variable that indexes time as a predictor series. A straight line time trend is fit to the series by regression when you specify a linear trend.
Trend Curve provides a menu of various functions of time that you can add to the model to fit nonlinear time trends. The Linear Trend option is a special case of the Trend Curve option for which the trend curve is a straight line.
Regressors allows you to predict the series by regressing it on other variables in the data set.

Adjustments
allows you to specify other variables in the data set that supply adjustments to the forecast.

Dynamic Regressor
allows you to select a predictor variable from the input data set and specify a complex model for the way that the predictor variable affects the dependent series.
Interventions
allows you to model the effect of special events that "intervene" to change the pattern of the dependent series. Examples of intervention effects are strikes, tax increases, and special sales promotions.

Seasonal Dummies adds seasonal indicator or "dummy" variables as regressors to model seasonal effects.

You can add any number of predictors to a forecasting model, and you can combine predictor variables with other model options.

The following sections explain these seven kinds of predictors in greater detail and provide examples of their use. The examples illustrate these different kinds of predictors by using series in the SASHELP.USECON data set.

Select the Develop Models button from the main window. Select the data set SASHELP.USECON and select the series PETROL. Then select the view Series Graphically button from the Develop Models window. The plot of the example series PETROL appears as shown in Figure 41.2.

Figure 41.2 Sales of Petroleum and Coal

Linear Trend

From the Develop Models window, select fit Arima model. From the ARIMA Model Specification window, select Add and then select Linear Trend from the menu (shown in Figure 41.1).

A linear trend is added to the Predictors list, as shown in Figure 41.3.
Figure 41.3 Linear Trend Predictor Specified

ARIMA Model Specification

Series: PETROL: Sales: Petroleum and Coal Products
Model: Linear Trend

Seasonal ARIMA Options:

Transformation: None $\boldsymbol{~}$
Intercept:

Predictors

Trend Curve _LINEAR_: Linear Trend

The description for the linear trend item shown in the Predictors list has the following meaning. The first part of the description, Trend Curve, describes the type of predictor. The second part, _LINEAR_, gives the variable name of the predictor series. In this case, the variable is a time index that the system computes. This variable is included in the output forecast data set. The final part, Linear Trend, describes the predictor.

Notice that the model you have specified consists only of the time index regressor _LINEAR_ and an intercept. Although this window is normally used to specify ARIMA models, in this case no ARIMA model options are specified, and the model is a simple regression on time.

Select the ok button. The Linear Trend model is fit and added to the model list in the Develop Models window.

Now open the Model Viewer by using the View Model Graphically icon or the Model Predictions item under the View pull-down menu or toolbar. This displays a plot of the model predictions and actual series values, as shown in Figure 41.4. The predicted values lie along the least squares trend line.

Figure 41.4 Linear Trend Model

\% SAS -[Model Viewer]		

Time Trend Curves

From the Develop Models window, select Fit ARImA Model. From the ARIMA Model Specification window, select Add and then select Trend Curve from the menu (shown in Figure 41.1). A menu of different kinds of trend curves is displayed, as shown in Figure 41.5.

Figure 41.5 Time Trend Curves Menu

These trend curves work in a similar way as the Linear Trend option (which is a special case of a trend curve and one of the choices on the menu), but with the Trend Curve menu you have a choice of various nonlinear time trends.

Select Quadratic Trend. This adds a quadratic time trend to the Predictors list, as shown in Figure 41.6.

Figure 41.6 Quadratic Trend Specified

c: P Program Files SA S

Now select the ok button. The quadratic trend model is fit and added to the list of models in the Develop Models window. The Model Viewer displays a plot of the quadratic trend model, as shown in Figure 41.7.

Figure 41.7 Quadratic Trend Model

This curve does not fit the PETROL series very well, but the View Model plot illustrates how time trend models work. You might want to experiment with different trend models to see what the different trend curves look like.

Some of the trend curves require transforming the dependent series. When you specify one of these curves, a notice is displayed reminding you that a transformation is needed, and the Transformation field is automatically filled in. Therefore, you cannot control the Transformation specification when some kinds of trend curves are specified.

See the section "Time Trend Curves" on page 2515 in Chapter 44, "Forecasting Process Details," for more information about the different trend curves.

Regressors

From the Develop Models window, select Fit ARImA Model. From the ARIMA Model Specification window, select Add and then select Regressors from the menu (shown in Figure 41.1).

This displays the Regressors Selection window, as shown in Figure 41.8. This window allows you to select any number of other series in the input data set as regressors to predict the dependent series.

Figure 41.8 Regressors Selection Window

ARIMA Model Specification
Regressors Selection

『c: Pr Program Files $\backslash \mathrm{SAS}$

For this example, select CHEMICAL, Sales: Chemicals and Allied Products, and VEHICLES, Sales: Motor Vehicles and Parts. (Note: You do not need to use the CTRL key when selecting more than one regressor.) Then select the ok button. The two variables you selected are added to the Predictors list as regressor type predictors, as shown in Figure 41.9.

Figure 41.9 Regressors Selected

c: P Program Files SAS

You must have forecasts of the future values of the regressor variables in order to use them as predictors. To do this, you can specify a forecasting model for each regressor, have the system automatically select forecasting models for the regressors, or supply predicted future values for the regressors in the input data set.

Even if you have supplied future values for a regressor variable, the system requires a forecasting model for the regressor. Future values that you supply in the input data set take precedence over predicted values from the regressor's forecasting model when the system computes the forecasts for the dependent series.

Select the ok button. The system starts to fit the regression model but then stops and displays a warning that the regressors that you selected do not have forecasting models, as shown in Figure 41.10.

Figure 41.10 Regressors Needing Models Warning

$\Xi \mathrm{c}: \$ Program Files $\backslash \mathrm{SAS}$

If you want the system to create forecasting models automatically for the regressor variables by using the automatic model selection process, select the ok button. If not, you can select the Cancel button to abort fitting the regression model.

For this example, select the ok button. The system now performs the automatic model selection process for CHEMICAL and VEHICLES. The selected forecasting models for CHEMICAL and VEHICLES are added to the model lists for those series. If you switch the current time series in the Develop Models window to CHEMICAL or VEHICLES, you will see the model that the system selected for that series.

Once forecasting models have been fit for all regressors, the system proceeds to fit the regression model for PETROL. The fitted regression model is added to the model list displayed in the Develop Models window.

Adjustments

An adjustment predictor is a variable in the input data set that is used to adjust the forecast values produced by the forecasting model. Unlike a regressor, an adjustment variable does not have a regression coefficient. No model fitting is performed for adjustments. Nonmissing values of the adjustment series are simply added to the model prediction for the corresponding period. Missing adjustment values are ignored. If you supply adjustment values for observations within the period of fit, the adjustment values are subtracted from the actual values, and the model is fit to these adjusted values.

To add adjustments, select Add and then select Adjustments from the pop-up menu (shown in Figure 41.1). This displays the Adjustments Selection window. The Adjustments Selection window functions the same as the Regressor Selection window (which is shown in Figure 41.8). You can select any number of adjustment variables as predictors.

Unlike regressors, adjustments do not require forecasting models for the adjustment variables. If a variable that is used as an adjustment does have a forecasting model fit to it, the adjustment variable's forecasting model is ignored when the variable is used as an adjustment.

You can use forecast adjustments to account for expected future events that have no precedent in the past and so cannot be modeled by regression. For example, suppose you are trying to forecast the sales of a product, and you know that a special promotional campaign for the product is planned during part of the period you want to forecast. If such sales promotion programs have been frequent in the past, then you can record the past and expected future level of promotional efforts in a variable in the data set and use that variable as a regressor in the forecasting model.

However, if this is the first sales promotion of its kind for this product, you have no way to estimate the effect of the promotion from past data. In this case, the best you can do is to make an educated guess at the effect the promotion will have and add that guess to what your forecasting model would predict in the absence of the special sales campaign.

Adjustments are also useful for making judgmental alterations to forecasts. For example, suppose you have produced forecast sales data for the next 12 months. Your supervisor believes that the forecasts are too optimistic near the end and asks you to prepare a forecast graph in which the numbers that you have forecast are reduced by 1000 in the last three months. You can accomplish this task by editing the input data set so that it contains observations for the actual data range of sales plus 12 additional observations for the forecast period, and a new variable called, for example, ADJUSTMENT. The variable ADJUSTMENT contains the value 1000 for the last three observations and is missing for all other observations. You fit the same model previously selected for forecasting by using the ARIMA Model Specification or Custom Model Specification window, but with an adjustment added that uses the variable ADJUSTMENT. Now when you graph the forecasts by using the Model Viewer, the last three periods of the forecast are reduced by 1000. The confidence limits are unchanged, which helps draw attention to the fact that the adjustments to the forecast deviate from what would be expected statistically.

Dynamic Regressor

Selecting Dynamic Regressor from the Add Predictors menu (shown in Figure 41.1) allows you to specify a complex time series model of the way that a predictor variable influences the series that you are forecasting.

When you specify a predictor variable as a simple regressor, only the current period value of the predictor effects the forecast for the period. By specifying the predictor with the Dynamic Regression option, you can use past values of the predictor series, and you can model effects that take place gradually.

Dynamic regression models are an advanced feature that you are unlikely to find useful unless you have studied the theory of statistical time series analysis. You might want to skip this section if you are not trained in time series modeling.

The term dynamic regression was introduced by Pankratz (1991) and refers to what Box and Jenkins (1976) named transfer function models. In dynamic regression, you have a time series model, similar to an ARIMA model, that predicts how changes in the predictor series affect the dependent series over time.

The dynamic regression model relates the predictor variable to the expected value of the dependent series in the same way that an ARIMA model relates the fluctuations of the dependent series about its conditional mean to the random error term (which is also called the innovation series). Refer to Pankratz (1991) and Box and Jenkins (1976) for more information about dynamic regression or transfer function models. See also Chapter 7, "The ARIMA Procedure."

From the Develop Models window, select fit ARImA Model. From the ARIMA Model Specification window, select Add and then select Linear Trend from the menu (shown in Figure 41.1).

Now select Add and select Dynamic Regressor. This displays the Dynamic Regressors selection window, as shown in Figure 41.11.

Figure 41.11 Dynamic Regressors Selection Window

You can select only one predictor series when specifying a dynamic regression model. For this example, select vehicles, Sales: Motor Vehicles and Parts. Then select the or button.

This displays the Dynamic Regression Specification window, as shown in Figure 41.12.

Figure 41.12 Dynamic Regression Specification Window

This window consists of four parts. The Input Transformations fields enable you to transform or lag the predictor variable. For example, you might use the lagged logarithm of the variable as the predictor series.

The Order of Differencing fields enable you to specify simple and seasonal differencing of the predictor series. For example, you might use changes in the predictor variable instead of the variable itself as the predictor series.

The Numerator Factors and Denominator Factors fields enable you to specify the orders of simple and seasonal numerator and denominator factors of the transfer function.

Simple regression is a special case of dynamic regression in which the dynamic regression model consists of only a single regression coefficient for the current value of the predictor series. If you select the ok button without specifying any options in the Dynamic Regression Specification window, a simple regressor will be added to the model.

For this example, use the Simple Order combo box for Denominator Factors and set its value to 1. The window now appears as shown in Figure 41.13.

Figure 41.13 Distributed Lag Regression Specified

This model is equivalent to regression on an exponentially weighted infinite distributed lag of VEHICLES (in the same way an MA(1) model is equivalent to single exponential smoothing).

Select the ok button to add the dynamic regressor to the model predictors list.
In the ARIMA Model Specification window, the Predictors list should now contain two items, a linear trend and a dynamic regressor for VEHICLES, as shown in Figure 41.14.

Figure 41.14 Dynamic Regression Model

This model is a multiple regression of PETROL on a time trend variable and an infinite distributed lag of VEHICLES. Select the OK button to fit the model.

As with simple regressors, if VEHICLES does not already have a forecasting model, an automatic model selection process is performed to find a forecasting model for VEHICLES before the dynamic regression model for PETROL is fit.

Interventions

An intervention is a special indicator variable, computed automatically by the system, that identifies time periods affected by unusual events that influence or intervene in the normal path of the time series you are forecasting. When you add an intervention predictor, the indicator variable of the intervention is used as a regressor, and the impact of the intervention event is estimated by regression analysis.

To add an intervention to the Predictors list, you must use the Intervention Specification window to specify the time or times that the intervening event took place and to specify the type of intervention.

You can add interventions either through the Interventions item of the Add action or by selecting Tools from the menu bar and then selecting Define Interventions.

Intervention specifications are associated with the series. You can specify any number of interventions for each series, and once you define interventions you can select them for inclusion in forecasting models. If you select the Include Interventions option in the options menu, any interventions that you have previously specified for a series are automatically added as predictors to forecasting models for the series.

From the Develop Models window, invoke the series viewer by selecting the View Series Graphically icon or Series under the View menu. This displays the Time Series Viewer, as was shown in Figure 41.2.

Note that the trend in the PETROL series shows several clear changes in direction. The upward trend in the first part of the series reverses in 1981. There is a sharp drop in the series towards the end of 1985, after which the trend is again upwardly sloped. Finally, in 1991 the series takes a sharp upward excursion but quickly returns to the trend line.

You might have no idea what events caused these changes in the trend of the series, but you can use these patterns to illustrate the use of intervention predictors. To do this, you fit a linear trend model to the series, but modify that trend line by adding intervention effects to model the changes in trend you observe in the series plot.

The Intervention Specification Window

From the Develop Models window, select Fit Arima model. From the ARIMA Model Specification window, select Add and then select Linear Trend from the menu (shown in Figure 41.1).

Select Add again and then select Interventions. If you have any interventions already defined for the series, this selection displays the Interventions for Series window. However, since you have not previously defined any interventions, this list is empty. Therefore, the system assumes that you want to add an intervention and displays the Intervention Specification window instead, as shown in Figure 41.15.

Figure 41.15 Interventions Specification Window

The top of the Intervention Specification window shows the current series and the label for the new intervention (initially blank). At the right side of the window is a scrollable table showing the values of the series. This table helps you locate the dates of the events you want to model.

At the left of the window is an area titled Intervention Specification that contains the options for defining the intervention predictor. The Date field specifies the time that the intervention occurs. You can type a date value in the Date field, or you can set the Date value by selecting a row from the table of series values at the right side of the window.

The area titled Type of Intervention controls the kind of indicator variable constructed to model the intervention effect. You can specify the following kinds of interventions:

Point is used to indicate an event that occurs in a single time period. An example of a point event is a strike that shuts down production for part of a time period. The value of the intervention's indicator variable is zero except for the date specified.

Step is used to indicate a continuing event that changes the level of the series. An example of a step event is a change in the law, such as a tax rate increase. The value of the intervention's indicator variable is zero before the date specified and 1 thereafter.

Ramp is used to indicate a continuing event that changes the trend of the series. The value of the intervention's indicator variable is zero before the date specified, and it increases linearly with time thereafter.

The areas titled Effect Time Window and Effect Decay Pattern specify how to model the effect that the intervention has on the dependent series. These options are not used for simple interventions, they will be discussed later in this chapter.

Specifying a Trend Change Intervention

In the Time Series Viewer window position the mouse over the highest point in 1981 and select the point. This displays the data value, 19425, and date, February 1981, of that point in the upper-right corner of the Time Series Viewer, as shown in Figure 41.16.

Figure 41.16 Identifying the Turning Point

Now that you know the date that the trend reversal occurred, enter that date in the Date field of the Intervention Specification window. Select Ramp as the type of intervention. The window should now appear as shown in Figure 41.17.

Figure 41.17 Ramp Intervention Specified

Select the ok button. This adds the intervention to the list of interventions for the PETROL series, and returns you to the Interventions for Series window, as shown in Figure 41.18.

Figure 41.18 Interventions for Series Window

This window allows you to select interventions for inclusion in the forecasting model. Since you need to define other interventions, select the Add button. This returns you to the Intervention Specification window (shown in Figure 41.15).

Specifying a Level Change Intervention

Now add an intervention to account for the drop in the series in late 1985. You can locate the date of this event by selecting points in the Time Series Viewer plot or by scrolling through the data values table in the Interventions Specification window. Use the latter method so that you can see how this works.

Scrolling through the table, you see that the drop was from 15262 in December 1985, to 13937 in January 1986, to 12002 in February, to 10834 in March. Since the drop took place over several periods, you could use another ramp type intervention. However, this example represents the drop as a sudden event by using a step intervention and uses February 1986 as the approximate time of the drop.

Select the table row for February 1986 to set the Date field. Select Step as the intervention type. The window should now appear as shown in Figure 41.19.

Figure 41.19 Step Intervention Specified

Select the ok button to add this intervention to the list for the series.
Since the trend reverses again after the drop, add a ramp intervention for the same date as the step intervention. Select Add from the Interventions for Series window. Enter FEB86 in the Date field, select Ramp, and then select the ok button.

Modeling Complex Intervention Effects

You have now defined three interventions to model the changes in trend and level. The excursion near the end of the series remains to be dealt with.

Select Add from the Interventions for Series window. Scroll through the data values and select the date on which the excursion began, August 1990. Leave the intervention type as Point.

The pattern of the series from August 1990 through January 1991 is more complex than a simple
shift in level or trend. For this pattern, you need a complex intervention model for an event that causes a sharp rise followed by a rapid return to the previous trend line. To specify this model, use the Effect Time Window and Effect Decay Rate options.

The Effect Time Window option controls the number of lags of the intervention's indicator variable used to model the effect of the intervention on the dependent series. For a simple intervention, the number of lags is zero, which means that the effect of the intervention is modeled by fitting a single regression coefficient to the intervention's indicator variable.

When you set the number of lags greater than zero, regression coefficients are fit to lags of the indicator variable. This allows you to model interventions whose effects take place gradually, or to model rebound effects. For example, severe weather might reduce production during one period but cause an increase in production in the following period as producers struggle to catch up. You could model this by using a point intervention with an effect time window of 1 lag. This would fit two coefficients for the intervention, one for the immediate effect and one for the delayed effect.

The Effect Decay Pattern option controls how the effect of the intervention dissipates over time. None specifies that there is no gradual decay: for point interventions, the effect ends immediately; for step and ramp interventions, the effect continues indefinitely. Exp specifies that the effect declines at an exponential rate. Wave specifies that the effect declines like an exponentially damped sine wave (or as the sum of two exponentials, depending on the fit to the data).

If you are familiar with time series analysis, these options might be clearer if you note that together the Effect Time Window and Effect Decay Pattern options define the numerator and denominator orders of a transfer function or dynamic regression model for the indicator variable of the intervention. See the section "Dynamic Regressor" on page 2523 for more information.

For this example, select 2 lags as the value of the Event Time Window option, and select Exp as the Effect Decay Pattern option. The window should now appear as shown in Figure 41.20.

Figure 41.20 Complex Intervention Model

Select the ok button to add the intervention to the list.

Fitting the Intervention Model

The Interventions for Series window now contains definitions for four intervention predictors. Select all four interventions, as shown in Figure 41.21.

Figure 41.21 Interventions for Series Window

Select the ок button. This returns you to the ARIMA Model Specification window, which now lists items in the Predictors list, as shown in Figure 41.22.

Figure 41.22 Linear Trend with Interventions Specified

$\mathrm{c}:$ PProgram Files $\backslash \mathrm{SA}: S$

Select the ok button to fit this model. After the model is fit, bring up the Model Viewer. You will see a plot of the model predictions, as shown in Figure 41.23.

Figure 41.23 Linear Trend with Interventions Model

You can use the Zoom In feature to take a closer look at how the complex intervention effect fits the excursion in the series starting in August 1990.

Limitations of Intervention Predictors

Note that the model you have just fit is intended only to illustrate the specification of interventions. It is not intended as an example of good forecasting practice.

The use of continuing (step and ramp type) interventions as predictors has some limitations that you should consider. If you model a change in trend with a simple ramp intervention, then the trend in the data before the date of the intervention has no influence on the forecasts. Likewise, when you use a step intervention, the average level of the series before the intervention has no influence on the forecasts.

Only the final trend and level at the end of the series are extrapolated into the forecast period. If a linear trend is the only pattern of interest, then instead of specifying step or ramp interventions, it would be simpler to adjust the period of fit so that the model ignores the data before the final trend
or level change.
Step and ramp interventions are valuable when there are other patterns in the data-such as seasonality, autocorrelated errors, and error variance-that are stable across the changes in level or trend. Step and ramp interventions enable you to fit seasonal and error autocorrelation patterns to the whole series while fitting the trend only to the latter part of the series.

Point interventions are a useful tool for dealing with outliers in the data. A point intervention will fit the series value at the specified date exactly, and it has the effect of removing that point from the analysis. When you specify an effect time window, a point intervention will exactly fit as many additional points as the number of lags specified.

Seasonal Dummies

A Seasonal Dummies predictor is a special feature that adds to the model seasonal indicator or "dummy" variables to serve as regressors for seasonal effects.

From the Develop Models window, select Fit ARImA Model. From the ARIMA Model Specification window, select Add and then select Seasonal Dummies from the menu (shown in Figure 41.1).

A Seasonal Dummies input is added to the Predictors list, as shown in Figure 41.24.

Figure 41.24 Seasonal Dummies Specified

Select the ok button. A model consisting of an intercept and 11 seasonal dummy variables is fit and added to the model list in the Develop Models window. This is effectively a mean model with a separate mean for each month.

Now return to the Model Viewer, which displays a plot of the model predictions and actual series values, as shown in Figure 41.25. This is obviously a poor model for this series, but it serves to illustrate how seasonal dummy variables work.

Figure 41.25 Seasonal Dummies Model

c: Program Files $\backslash \mathrm{SAS}$

Now select the parameter estimates icon, the fifth from the top on the vertical toolbar. This displays the Parameter Estimates table, as shown in Figure 41.26.

Figure 41.26 Parameter Estimates for Seasonal Dummies Model

Since the data for this example are monthly, the Seasonal Dummies option added 11 seasonal dummy variables. These include a dummy regressor variable that is 1.0 for January and 0 for other months, a regressor that is 1.0 only for February, and so forth through November.

Because the model includes an intercept, no dummy variable is added for December. The December effect is measured by the intercept, while the effect of other seasons is measured by the difference between the intercept and the estimated regression coefficient for the season's dummy variable.

The same principle applies for other data frequencies: the "Seasonal Dummy 1" parameter always refers to the first period in the seasonal cycle; and, when an intercept is present in the model, there is no seasonal dummy parameter for the last period in the seasonal cycle.

References

Box, G.E.P. and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control, San Francisco: Holden-Day.

Pankratz, Alan (1991), Forecasting with Dynamic Regression Models, New York: John Wiley \& Sons.

Chapter 42

Command Reference

Contents

TSVIEW Command and Macro 2545
Syntax 2545
Examples 2546
FORECAST Command and Macro 2546
Syntax 2547
Examples 2550

TSVIEW Command and Macro

The TSVIEW command invokes the Time Series Viewer. This is a component of the Time Series Forecasting System that can also be used as a standalone graphical viewer for any time series data set or view. See the section "Time Series Viewer Window" in Chapter 43, "Window Reference," for more information.

The TSVIEW command must be specified from the command line or an SCL program. If you need to submit from the program editor, use the \%TSVIEW macro instead. You can use the macro within a data step program, but you must submit it within the SAS windowing environment.

If the TSVIEW command or \%TSVIEW macro is issued without arguments, the Series Selection window appears to enable you to select an input data set and series. This is equivalent to selecting "Time Series Viewer" from the Analysis submenu of the Solutions menu. By specifying the DATA= and VAR= arguments, you can bring up the Time Series Viewer window directly. The ID= and INTERVAL = arguments are useful when the system cannot determine them automatically from the data.

Syntax

The TSVIEW command has the following form:
TSVIEW [options] ;
The \%TSVIEW macro has the following form:
\%TSVIEW [(option, ..., option)] ;
The following options can be specified for the command and the macro.

DATA=data set name

specifies the name of the SAS data set containing the input data.

VAR=time series variable name

specifies the series variable name. It must be a numeric variable contained in the data set.

ID=time id variable name

specifies the time ID variable name for the data set. If the $\mathrm{ID}=$ option is not specified, the system attempts to locate the variables named DATE, DATETIME, and TIME in the data set specified by the DATA= option.

INTERVAL=interval name

specifies the time ID interval between observations in the data set.

Examples

TSVIEW Command

tsview data=sashelp.air var=air
tsview data=dept.prod var=units id=period interval=qtr

\%TSVIEW Macro

```
%tsview( data=sashelp.air, var=air);
%tsview( data=dept.prod, var=units, id=period, interval=qtr);
```


FORECAST Command and Macro

The FORECAST command invokes the Time Series Forecasting System. The command must be specified from the command line or an SCL program. If you need to submit from the program editor, use the \%FORECAST macro instead. You can use the macro within a data step program, but you must submit it within the SAS windowing environment.

If the FORECAST command or \%FORECAST macro is issued without arguments, the Time Series Forecasting window appears. This is equivalent to selecting "Time Series Forecasting System" from the Analysis submenu of the Solutions menu.

Using the arguments, it is possible to do the following:

- Bring up the system with information already filled into some of the fields
- Bring up the system starting at a different window than the default Time Series Forecasting window
- Run the system in unattended mode so that a task such as creating a forecast data set is accomplished without any user interaction. By submitting such commands repeatedly from a SAS/AF or SAS/EIS application, it is possible to do "batch" processing for many data sets or by-group processing for many subsets of a data set. You can create a project in unattended mode and later open it for inspection interactively. You can also create a project interactively in order to set options, fit a model, or edit the list of models, and then use this project later in unattended mode.

The Forecast Command Builder, a point-and-click SAS/AF application, makes it easy to specify, run, save, and rerun forecasting jobs by using the FORECAST command. To use it, enter the following on the command line (not the program editor):

```
%FCB
or
AF C=SASHELP.FORCAST.FORCCMD.FRAME.
```


Syntax

The FORECAST command has the following form:

FORECAST [options] ;

The \%FORECAST macro has the following form:
\%FORECAST [(option, ..., option)] ;

The following options can be specified for the command and the macro.

PROJECT=project name

specifies the name of the SAS catalog entry in which forecasting models and other results are stored and from which previously stored results are loaded into the forecasting system.

DATA=data set name

specifies the name of the SAS data set containing the input data.

VAR=time series variable name

specifies the series variable name. It must be a numeric variable contained in the data set.

ID=time id variable name

specifies the time ID variable name for the data set. If the ID= option is not specified, the system attempts to locate the variables named DATE, DATETIME, and TIME in the data set specified by the DATA= option. However, it is recommended that you specify the time ID variable whenever you are using the ENTRY= argument.

INTERVAL=interval name

specifies the time ID interval between observations in the data set. Commonly used intervals are year, semiyear, qtr, month, semimonth, week, weekday, day, hour, minute, and second. See Chapter 4, "Date Intervals, Formats, and Functions," for information about more complex interval specifications. If the INTERVAL= option is not specified, the system attempts to determine the interval based on the time ID variable. However, it is recommended that you specify the interval whenever you are using the ENTRY= argument.

STAT=statistic

specifies the name of the goodness-of-fit statistic to be used as the model selection criterion. The default is RMSE. Valid names are

sse	sum of square error
mse	mean square error
rmse	root mean square error
mae	mean absolute error
mape	mean absolute percent error
aic	Akaike information criterion
sbc	Schwarz Bayesian information criterion
rsquare	R-square
adjrsq	adjusted R-square
rwrsq	random walk R-square
arsq	Amemiya's adjusted R-square
apc	Amemiya's prediction criterion

CLIMIT=integer

specifies the level of the confidence limits to be computed for the forecast. This integer represents a percentage; for example, 925 indicates 92.5% confidence limits. The default is 95 -that is, 95% confidence limits.

HORIZON=integer

specifies the number of periods into the future for which forecasts are computed. The default is 12 periods. The maximum is 9999 .

ENTRY=name

The name of an entry point into the system. Valid names are
devmod
viewmod
main starts the system at the Time Series Forecasting window (default).
starts the system at the Develop Models window.
starts the system at the Model Viewer window. Specify a project that contains a forecasting model by using the PROJECT= option. If a project containing a model is not specified, the message "No forecasting model to view" appears.
viewser starts the system at the Time Series Viewer window.
autofit runs the system in unattended mode, fitting a forecasting model automatically and saving it in a project. If PROJECT= is not specified, the default project name SASUSER.FMSPROJ.PROJ is used.
forecast runs the system in unattended mode to generate a forecast data set. The name of this data set is specified by the OUT= parameter. If OUT= is not specified, a window appears to prompt for the name and label of the output data set. If PROJECT= is not specified, the default project name SASUSER.FMSPROJ.PROJ is used. If the project does not exist or does not contain a forecasting model for the specified series, automatic model fitting is performed and the forecast is computed by using the automatically selected model. If the project exists and contains a forecasting model for the specified series, the forecast is computed by using this model. If the series covers a different time range than it did when the project was created, use the REFIT or REEVAL keyword to reset the time ranges.

OUT=argument

specifies one or two-level name of a SAS data set in which forecasts are saved. Use in conjunction with ENTRY=FORECAST. If omitted, the system prompts for the name of the forecast data set.

KEEP=argument

specifies the number of models to keep in the project when automatic model fitting is performed. This corresponds to Models to Keep in the Automatic Model Selection Options window. A value greater than 9 indicates that all models are kept. The default is 1 .

DIAG=YES|NO

specifies which models to search with regard to series diagnostics. DIAG= YES causes the automatic model selection process to search only over those models that are consistent with the series diagnostics. DIAG= NO causes the automatic model selection process to search over all models in the selection list, without regard for the series diagnostics. This corresponds to Models to Fit in the Automatic Model Selection Options window. The default is YES.

REFIT=keyword

(for macro usage) refits a previously saved forecasting model by using the current fit range; that is, it reestimates the model parameters. Refitting also causes the model to be reevaluated (statistics of fit recomputed), and it causes the time ranges to be reset if the data range has changed (for example, if new observations have been added to the series). This keyword has no effect if you do not use the PROJECT= argument to reference an existing project containing a forecasting model. Use the REFIT keyword if you have added new data to the input series and you want to refit the forecasting model and update the forecast by using the new time ranges. Be sure to use the same project, data set, and series names that you used previously.

REEVAL=keyword

(for macro usage) reevaluates a previously saved forecasting model by using the current evaluation range; that is, it recomputes the statistics of fit. Reevaluating also causes the time ranges to be reset if the data range has changed (for example, if new observations have been
added to the series). It does not refit the model parameters. This keyword has no effect if you also specify REFIT, or if you do not use the PROJECT= argument to reference an existing project containing a forecasting model. Use the REEVAL keyword if you have added new data to the input series and want to update your forecast by using a previously fit forecasting model and the same project, data set, and series names that you used previously.

Examples

FORECAST Command

The following command opens the Time Series Forecasting window with the data set name and series name filled in. The time ID variable is also filled in since the data set contains the variable DATE. The interval is filled in because the system recognizes that the observations are monthly.

```
forecast data=sashelp.air var=air
```

The following command opens the Time Series Forecasting window with the project, data set name, series, time ID, and interval fields filled in, assuming that the project SAMPROJ was previously saved either interactively or by using unattended mode as depicted below. Previously fit models appear when the Develop Models or Manage Projects window is opened.

```
forecast project=samproj
```

The following command runs the system in unattended mode, fitting a model automatically, storing it in the project SAMPROJ in the default catalog SASUSER.FMSPROJ, and placing the forecasts in the data set WORK.SAMPOUT.

```
forecast data=sashelp.workers var=electric id=date interval=month
project=samproj entry=forecast out=sampout
```

The following command assumes that a new month's data have been added to the data set from the previous example and that an updated forecast is needed that uses the previously fit model. Time ranges are automatically updated to include the new data since the REEVAL keyword is included. Substitute REFIT for REEVAL if you want the system to reestimate the model parameters.

```
forecast data=sashelp.workers var=electric id=date interval=month
project=samproj entry=forecast out=sampout reeval
```

The following command opens the model viewer with the project created in the previous example and with 99 percent confidence limits in the forecast graph.

```
forecast data=sashelp.workers var=electric id=date interval=month
```

project=samproj entry=viewmod climit=99

The final example illustrates using unattended mode with an existing project that has been defined interactively. In this example, the goal is to add a model to the model selection list, to specify that all models in that list be fit, and that all models which are fit successfully be retained.

First open the Time Series Forecasting window and specify a new project name, WORKPROJ. Then select Develop Models, choosing SASHELP.WORKERS as the data set and MASONRY as the series. Now select "Model Selection List" from the Options menu. In the Model Selection List window, click Actions, then Add, and then ARIMA Model. Define the model ARIMA ($0,1,0$) ($0,1,0$) s NOINT by setting the differencing value to 1 under both ARIMA Options and Seasonal ARIMA options. Select ok to save the model and ok to close the Model Selection List window. Now select "Automatic Fit" from the Options menu. In the Automatic Model Selection Options window, select "All autofit models in selection list" in the Models to fit radio box, select "All models" from the Models to keep combo box, and then click ok to close the window. Select "Save Project" from the File menu, and then close the Develop Models window and the Time Series Forecasting window. You now have a project with a new model added to the selection list, options set for automatic model fitting, and one series selected but no models fit.

Now enter the command:

```
forecast data=sashelp.workers var=electric id=date interval=month
project=workproj entry=forecast out=workforc
```

The system runs in unattended mode to update the project and create the forecast data set WORKFORC. Check the messages in the Log window to find out if the run was successful and which model was selected for forecasting. To see the forecast data set, issue the command viewtable workforc. To see the contents of the project, open the Time Series Forecasting window, open the project WORKPROJ, and select "Manage Projects." You will see that the variable ELECTRIC was added to the project and has a forecasting model. Select this row in the table and then select List Models from the Tools menu. You will see that all of the models in the selection list which fit successfully are there, including the new model you added to the selection list.

\%FORECAST Macro

This example demonstrates the use of the \%FORECAST macro to start the Time Series Forecasting System from a SAS program submitted from the Editor window. The SQL procedure is used to create a view of a subset of a products data set. Then the \%FORECAST macro is used to produce forecasts.

```
proc sql;
    create view selprod as
    select * from products
    where type eq 'A'
    order by date;
run;
%forecast(data=selprod, var=amount, id=date, interval=day,
    entry=forecast, out=typea, proj=proda, refit= );
```


Chapter 43

Window Reference

Contents

Overview 2554
Adjustments Selection Window 2554
AR/MA Polynomial Specification Window 2555
ARIMA Model Specification Window 2557
ARIMA Process Specification Window 2560
Automatic Model Fitting Window 2561
Automatic Model Fitting Results Window 2565
Automatic Model Selection Options Window 2568
Custom Model Specification Window 2569
Data Set Selection Window 2573
Default Time Ranges Window 2575
Develop Models Window 2576
Differencing Specification Window 2584
Dynamic Regression Specification Window 2585
Dynamic Regressors Selection Window 2586
Error Model Options Window 2587
External Forecast Model Specification Window 2588
Factored ARIMA Model Specification Window 2589
Forecast Combination Model Specification Window 2591
Forecasting Project File Selection Window 2593
Forecast Options Window 2595
Intervention Specification Window 2595
Interventions for Series Window 2597
Manage Forecasting Project Window 2599
Model Fit Comparison Window 2605
Model List Window 2606
Model Selection Criterion Window 2610
Model Selection List Editor Window 2611
Model Viewer Window 2615
Models to Fit Window 2621
Polynomial Specification Window 2622
Produce Forecasts Window 2623
Regressors Selection Window 2627
Save Data As 2628
Save Graph As 2630
Seasonal ARIMA Model Options Window 2631
Series Diagnostics Window 2632
Series Selection Window 2633
Series to Process Window 2636
Series Viewer Transformations Window 2637
Smoothing Model Specification Window 2639
Smoothing Weight Optimization Window 2641
Statistics of Fit Selection Window 2643
Time ID Creation - 1,2,3 Window 2644
Time ID Creation from Several Variables Window 2644
Time ID Creation from Starting Date Window 2646
Time ID Creation Using Informat Window 2647
Time ID Variable Specification Window 2648
Time Ranges Specification Window 2649
Time Series Forecasting Window 2651
Time Series Simulation Window 2653
Time Series Viewer Window 2654

Overview

This chapter provides a reference to the various windows of the Time Series Forecasting System. The windows are presented in alphabetical order by name. Each section describes the purpose of the window, how to open it, its controls, fields, and menus. For windows that have their own menus, there is a description of each menu item under the heading "Menu Bar." These windows also have a toolbar with icons that duplicate the more commonly used menu items. Each icon has a screen tip: a brief description that appears when you hover the mouse cursor over the icon. If you don't see the screen tips, open the SAS Preferences window, under the Options submenu of the Tools menu. Select the View tab and make sure the "Screen tips" check box is checked.

Adjustments Selection Window

Use the Adjustments Selection window to select input variables for use as adjustments to the forecasts and add them to the Predictors list. Invoke this window from the pop-up menu that appears when you select the Add button of the ARIMA Model Specification window or Custom Model Specification window. For more information, see the "Adjustments" section in Chapter 41, "Using Predictor Variables."

Controls and Fields

Dependent
is the name and variable label of the current series.
Adjustments
is a table that lists the names and labels in the input data set available for selection as adjustments. The variables you select are highlighted. Selecting a highlighted row again deselects that variable.

OK
closes the Adjustments Selection window and adds the selected variables as adjustments in the model.

Cancel
closes the window without adding any adjustments.
Reset
resets all selections to their initial values upon entry to the window.

AR/MA Polynomial Specification Window

Use these windows to specify the autoregressive and moving-average terms in a factored ARIMA model. Access the AR Polynomial Specification window from the Set button next to the Autoregressive term in the Factored ARIMA Model Specification window. Access the MA Polynomial Specification window from the Set button next to the Moving Average term.

AR Polynomial Specification x

Controls and Fields

List of Polynomials

Lists the polynomials that have been specified. Each polynomial is represented by a commadelimited list of lag values enclosed in parentheses.

New
Opens the Polynomial Specification window to add a new polynomial to the model.
Edit
Opens the Polynomial Specification window to edit a polynomial that has been selected. If no polynomial is selected, this button is unavailable.

Remove
Removes a selected polynomial from the list. If none are selected, this button is unavailable.

Remove All
Clears the list of polynomials.
Move Up
Moves a selected polynomial up one position in the list. If no polynomial is selected, or the first one is selected, this button is unavailable.

Move Down
Moves a selected polynomial down one position in the list. If no polynomial is selected, or the last one is selected, this button is unavailable.

Closes the window and returns the specified list of polynomials to the Factored ARIMA Model Specification window.

Closes the window and discards any changes made to the list of polynomials.

ARIMA Model Specification Window

Use the ARIMA Model Specification window to specify and fit an ARIMA model with or without predictor effects as inputs. Access it from the Develop Models menu, where it is invoked from the Fit Model item under Edit in the menu bar, or from the pop-up menu when you click an empty area of the model table.

Controls and Fields

Series
is the name and variable label of the current series.
Model
is a descriptive label for the model that you specify. You can type a label in this field or allow the system to provide a label. If you leave the label blank, a label is generated automatically based on the options you specify.

ARIMA Options
specify the orders of the ARIMA model. You can either type in a value or click the arrow to select from a list.

Autoregressive
defines the order of the autoregressive part of the model.
Differencing
defines the order of simple differencing-for example, first difference or second difference.

Moving Average
defines the order of the moving-average part of the model.
Seasonal ARIMA Options
specify the orders of the seasonal part of the ARIMA model. You can either type in a value or click the arrow to select from a list.

Autoregressive
defines the order of the seasonal autoregressive part of the model.
Differencing
defines the order of seasonal differencing-for example, first difference or second difference at the seasonal lags.

Moving Average
defines the order of the seasonal moving-average part of the model.
Transformation
defines the series transformation for the model. When a transformation is specified, the ARIMA model is fit to the transformed series, and forecasts are produced by applying the inverse transformation to the ARIMA model predictions. The available transformations are:
Log, Logistic, Square Root, Box-Cox, and None.
Intercept
specify whether a mean or intercept parameter is included in the ARIMA model. By default, the Intercept option is set to No when the model includes differencing and Yes when there is no differencing.

Predictors
lists the predictor effects included as inputs in the model.
OK
closes the ARIMA Model Specification window and fits the model.
Cancel
closes the ARIMA Model Specification window without fitting the model. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the ARIMA Model Specification window. This might be useful when editing an existing model specification; otherwise, Reset has the same function as Clear.

Clear
resets all options to their default values.
Add
opens a menu of types of predictors to add to the Predictors list.

Delete
deletes the selected (highlighted) entry from the Predictors list.
Edit
edits the selected (highlighted) entry in the Predictors list.

Mouse Button Actions

You can select or deselect entries in the Predictors list by clicking them. The selected (highlighted) predictor effect is acted on by the Delete and Edit buttons. Double-clicking on a predictor in the list invokes an appropriate edit action for that predictor.

If you right-click an entry in the Predictors list, the system displays the following menu of actions that encompass the features of the Add, Delete, and Edit buttons.

```
Add Linear Trend
adds a Linear Trend item to the Predictors list.
```

Add Trend Curve
opens a menu of different time trend curves and adds the curve you select to the Predictors list. Certain trend curve specifications also set the Transformation field.

Add Regressors
opens the Regressors Selection window to enable you to select other series in the input data set as regressors to predict the dependent series and add them to the Predictors list.

Add Adjustments
opens the Adjustments Selection window to enable you to select other series in the input data set for use as adjustments to the forecasts and add them to the Predictors list.

Add Dynamic Regressor
opens the Dynamic Regressor Selection window to enable you to select a series in the input data set as a predictor of the dependent series and also specify a transfer function model for the effect of the predictor series.

Add Interventions
opens the Interventions for Series window to enable you to define and select intervention effects and add them to the Predictors list.

Add Seasonal Dummies
adds a Seasonal Dummies predictor item to the Predictors list.
Edit Predictor
edits the selected (highlighted) entry in the Predictors list.
Delete Predictors
deletes the selected (highlighted) entry from the Predictors list.

ARIMA Process Specification Window

Use the ARIMA Process Specification window to define ARIMA processes for simulation. Invoke this window from the Add Series button in the Time Series Simulation window.

ARIMA Process Specification

Series Name: Y1
Ser ies Label: (1-0.3*B-0.15*B2+0.4*B3)(1-B)Y = E

Controls and Fields

Series Name

is the variable name for the series to be simulated.
Series Label
is the variable label for the series to be simulated.
Series Mean
is the mean of the simulated series.
Transformation
defines the series transformation.
Simple Differencing
is the order of simple differencing for the series.
Seasonal Differencing
is the order of seasonal differencing for the series.
AR Parameters
is a table of autoregressive terms for the simulated ARIMA process. Enter a value for Factor,

Lag, and Value for each term of the AR part of the process you want to simulate. For a nonfactored AR model, make the Factor values the same for all terms. For a factored AR model, use different Factor values to group the terms into the factors.

```
MA Parameters
```

is a table of moving-average terms for the simulated ARIMA process. Enter a value for Factor, Lag, and Value for each term of the MA part of the process you want to simulate. For a nonfactored MA model, make the Factor values the same for all terms. For a factored MA model, use different Factor values to group the terms into the factors.

OK
closes the ARIMA Process Specification window and adds the specified process to the Series to Generate list in the Time Series Simulation window.

Cancel
closes the window without adding to the Series to Generate list. Any options you specified are lost.

```
Reset
```

 resets all the fields to their initial values upon entry to the window.
 Clear
resets all the fields to their default values.

Automatic Model Fitting Window

Use the Automatic Model Fitting window to perform automatic model selection on all series or selected series in an input data set. Invoke this window by using the Fit Models Automatically button on the Time Series Forecasting window. Note that you can also perform automatic model fitting, one series at a time, from the Develop Models window.

File	View	Tools	Options	Solutions	Window	Help	
Automatic Model Fitting							-
Project: SASUSER.FMSPROJ.PROJ							
Input Data Set: SASHELP.USECON							Browse
Time ID: DATE						Select...	Create
Interval: MONTH $\boldsymbol{~}$							
Ser ies to Process: 11: AIRRPMD AIRRPMT CHEMICAL COAL...							Select...
Selection Criterion: Root Mean Square Error							Select...
$\underset{\text { Run }}{\star}$						Models Fit	$\stackrel{9}{\text { Close }}$

Controls and Fields

Project
the name of the SAS catalog entry in which the results of the model search process are stored.

```
Input Data Set
```

is the name of the current input data set. You can type in a one-level or two-level data set name here.

Browse button
opens the Data Set Selection window for selecting an input data set.
Time ID
is the name of the ID variable for the input data set. You can type in the variable name here or use the Select or Create button.
time ID select button
opens the Time ID Variable Specification window.
time ID Create button
opens a menu of choices of methods for creating a time ID variable for the input data set. Use this feature if the input data set does not already contain a valid time ID variable.

Interval
is the time interval between observations (data frequency) in the current input data set. You can type in an interval name or select one by using the combo box pop-up menu.

Series to Process

indicates the number and names of time series variables for which forecasting model selection will be applied.

Series to Process Select button
opens the Series to Process window to let you select the series for which you want to fit models.

Selection Criterion
shows the goodness-of-fit statistic that will be used to determine the best fitting model for each series.

Selection Criterion Select button
opens the Model Selection Criterion window to enable you to select the goodness-of-fit statistic that will be used to determine the best fitting model for each series.
Run button
begins the automatic model fitting process.
Models Fit button
opens the Automatic Model Fitting Results window to display the models fit during the current invocation of the Automatic Model Fitting window. The results appear automatically when model fitting is complete, but this button enables you to redisplay the results window.

Close button
Closes the Automatic Model Fitting window.

Menu Bar

File

Import Data
is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

```
Export Data
```

is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print Setup
opens the Print Setup window, which allows you to access your operating system print setup.

Close
closes the Automatic Model Fitting window.

View

```
Input Data Set
```

opens a Viewtable window to browse the current input data set.
Models Fit
opens Automatic Model Fitting Results window to show the forecasting models fit during the current invocation of the Automatic Model Fitting window. This is the same as the Models Fit button.

Tools

Fit Models
performs the automatic model selection process for the selected series. This is the same as the Run button.

Default Time Ranges
opens the Default Time Ranges window to enable you to control how the system sets the time ranges for series.

Model Selection List
opens the Model Selection List editor window. Use this action to control the forecasting models considered by the automatic model selection process and displayed in the Models to Fit window.

Model Selection Criterion
opens the Model Selection Criterion window, which presents a list of goodness-of-fit statistics and enables you to select the fit statistic that is displayed in the table and used by the automatic model selection process to determine the best fitting model. This action is the same as the Selection Criterion Select button.

Statistics of Fit
opens the Statistics of Fit Selection window, which presents a list of statistics that the system can display. Use this action to customize the list of statistics shown in the Statistics of Fit table and available for selection in the Model Selection Criterion menu.

Forecast Options
opens the Forecast Options window, which enables you to control the widths of forecast confidence limits and control the kind of predicted values computed for models that include series transformations.

Forecast Data Set
see Produce Forecasts window.

Alignment of Dates

Beginning
aligns dates that the system generates to identify forecast observations in output data sets to the beginning of the time intervals.

Middle aligns dates that the system generates to identify forecast observations in output data sets to the midpoints of the time intervals.

End
aligns dates that the system generates to identify forecast observations in output data sets to the end of the time intervals.

Automatic Fit
opens the Automatic Model Selection Options window, which enables you to control the
number of models retained by the automatic model selection process and whether the models considered for automatic selection are subset according to the series diagnostics.

```
Tool Bar Type
```

Image Only
displays the toolbar items as icons without text.
Label Only
displays the toolbar items as text without icon images. Both
displays the toolbar items with both text and icon images.

Include Interventions
controls whether intervention effects defined for the current series are automatically added as predictors to the models considered by the automatic selection process. A check mark or filled check box next to this item indicates that the option is turned on.

Print Audit Trail
prints to the SAS log information about the models fit by the system. A check mark or filled check box next to this item indicates that the audit option is turned on.

Show Source Statements
controls whether SAS statements submitted by the forecasting system are printed in the SAS log. When the Show Source Statements option is selected, the system sets the SAS system option SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option. Note that only some of the functions performed by the forecasting system are accomplished by submitting SAS statements. A check mark or filled check box next to this item indicates that the option is turned on.

Automatic Model Fitting Results Window

This resizable window displays the models fit by the most recent invocation of the Automatic Model Fitting window. It appears automatically after Automatic Model Fitting runs, and can be opened repeatedly from that window by using the Models Fit button or by selecting Models Fit from the View menu. Once you exit the Automatic Model Fitting window, the Automatic Model Fitting Results window cannot be opened again until you fit additional models by using Automatic Model Fitting.

Table Contents The results table displays the series name in the first column and the model label in the second column. If you have chosen to retain more than one model by using the Automatic Model Selection Options window, more than one row appears in the table for each series; that is, there is a row for each model fit. If you have already fit models to the same series before invoking the Automatic Model Fitting window, those models do not appear here, since the Automatic Model Fitting Results window is intended to show the results of the current operation of Automatic Model Fitting. To see all models that have been fit, use the Manage Projects window.

The third column of the table shows the values of the current model selection criterion statistic. Additional columns show the values of other fit statistics. The set of statistics shown are selectable by using the Statistics of Fit Selection window.

The table can be sorted by any column other than Series Name by clicking on the column heading.

Controls and Fields

Graph
opens the Model Viewer window on the model currently selected in the table.
Stats
opens the Statistics of Fit Selection window. This controls the set of goodness-of-fit statistics displayed in the table and in other parts of the Time Series Forecasting System.

Compare

opens the Model Fit Comparison window for the series currently selected in the table. This button is unavailable if the currently selected row in the table represents a series for which fewer than two models have been fit.

Save
opens an output data set dialog, enabling you to specify a SAS data set to which the contents of the table is saved. Note that this operation saves what you see in the table. If you want to save the models themselves for use in a future session, use the Manage Projects window.

Print
prints the contents of the table.
Close
closes the window and returns to the Automatic Model Fitting window.

Menu Bar

File

Save
opens an output data set dialog, enabling you to specify a SAS data set to which the contents of the table is saved. This is the same as the Save button.

Print
prints the contents of the table. This is the same as the Print button.
Import Data
is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

Export Data
is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print Setup
opens the Print Setup window, which allows you to access your operating system print setup.

Close
closes the window and returns to the Automatic Model Fitting window.

View

Model Predictions
opens the Model Viewer to display a predicted and actual plot for the currently highlighted model.

Prediction Errors
opens the Model Viewer to display the prediction errors for the currently highlighted model.

Prediction Error Autocorrelations
opens the Model Viewer to display the prediction error autocorrelations, partial autocorrelations, and inverse autocorrelations for the currently highlighted model.

Prediction Error Tests
opens the Model Viewer to display graphs of white noise and stationarity tests on the prediction errors of the currently highlighted model.

Parameter Estimates
opens the Model Viewer to display the parameter estimates table for the currently highlighted model.

Statistics of Fit
opens the Model Viewer window to display goodness-of-fit statistics for the currently highlighted model.

Forecast Graph
opens the Model Viewer to graph the forecasts for the currently highlighted model.
Forecast Table
opens the Model Viewer to display forecasts for the currently highlighted model in a table.

Tools

Compare Models
opens the Model Fit Comparison window to display fit statistics for selected pairs of forecasting models. This item is unavailable until you select a series in the table for which the automatic model fitting run selected two or more models.

Options

Statistics of Fit
opens the Statistics of Fit Selection window. This is the same as the Stats button.
Column Labels
selects long or short column labels for the table. Long column labels are used by default.
ID Columns
freezes or unfreezes the series and model columns. By default they are frozen so that they remain visible when you scroll the table horizontally to view other columns.

Automatic Model Selection Options Window

Use the Automatic Model Selection Options window to control the automatic selection process. This window is available from the Automatic Fit item of the Options menu in the Develop Models window, Automatic Model Fitting window, and Produce Forecasts window.

Automatic Model Selection Options

Models to fit:
C Subset by series diagnostics CAll autofit models in selection list

Models to keep: Best model
OK Cancel Help

Controls and Fields

Models to fit

Subset by series diagnostics
when selected, causes the automatic model selection process to search only over those models consistent with the series diagnostics.

All models in selection list
when selected, causes the automatic model selection process to search over all models in the search list, without regard for the series diagnostics.

Models to keep
specifies how many of the models tried by the automatic model selection process are retained and added to the model list for the series. You can specify the best fitting model only, the best n models, where n can be 1 through 9 , or all models tried.

OK
closes the window and saves the automatic model selection options you specified.
Cancel
closes the window without changing the automatic model selection options.

Custom Model Specification Window

Use the Custom Model Specification window to specify and fit an ARIMA model with or without predictor effects as inputs. Access it from the Develop Models window, where it is invoked from the Fit Model item under the Edit menu, or from the pop-up menu when you click an empty area of the model table.

Custom Model Specification

Ser ies: HSTOTAL: Housing Starts, Total Private
Model:

Predictors

Cancel
Reset

Controls and Fields

Series
is the name and variable label of the current series.
Model
is a descriptive label for the model that you specify. You can type a label in this field or allow the system to provide a label. If you leave the label blank, a label is generated automatically based on the options you specify.

Transformation

defines the series transformation for the model. When a transformation is specified, the model is fit to the transformed series, and forecasts are produced by applying the inverse transformation to the resulting forecasts. The following transformations are available:

Log
specifies a logarithmic transformation.
Logistic
specifies a logistic transformation.
Square Root
specifies a square root transformation.
Box-Cox
specifies a Box-Cox transform and opens a window to specify the Box-Cox λ parameter.
None
specifies no series transformation.

Trend Model

controls the model options to model and forecast the series trend. Select from the following:

Linear Trend
adds a Linear Trend item to the Predictors list.
Trend Curve
brings of a menu of different time trend curves and adds the curve you select to the Predictors list.

First Difference
specifies differencing the series.
Second Difference
specifies second-order differencing of the series.
None
specifies no model for the series trend.

Seasonal Model
controls the model options to model and forecast the series seasonality. Select from the following:

Seasonal ARIMA
opens the Seasonal ARIMA Model Options window to enable you to specify an ARIMA model for the seasonal pattern in the series.

Seasonal Difference
specifies differencing the series at the seasonal lag.
Seasonal Dummy Regressors
adds a Seasonal Dummies predictor item to the Predictors list.
None
specifies no seasonal model.

Error Model
displays the current settings of the autoregressive and moving-average terms, if any, for modeling the prediction error autocorrelation pattern in the series.

set button

opens the Error Model Options window to enable you to set the autoregressive and movingaverage terms for modeling the prediction error autocorrelation pattern in the series.

```
Intercept
```

specifies whether a mean or intercept parameter is included in the model. By default, the Intercept option is set to No when the model includes differencing and set to Yes when there is no differencing.

Predictors
is a list of the predictor effects included as inputs in the model.
OK
closes the Custom Model Specification window and fits the model.

Cancel
closes the Custom Model Specification window without fitting the model. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the Custom Model Specification window. This might be useful when editing an existing model specification; otherwise, Reset has the same function as Clear.

Clear
resets all options to their default values.
Add
opens a menu of types of predictors to add to the Predictors list. Select from the following:

Linear Trend
adds a Linear Trend item to the Predictors list.
Trend Curve
opens a menu of different time trend curves and adds the curve you select to the Predictors list.

Regressors
opens the Regressors Selection window to enable you to select other series in the input data set as regressors to predict the dependent series and add them to the Predictors list.

Adjustments
opens the Adjustments Selection window to enable you to select other series in the input data set for use as adjustments to the forecasts and add them to the Predictors list.

Dynamic Regressor
opens the Dynamic Regressor Selection window to enable you to select a series in the input data set as a predictor of the dependent series and also specify a transfer function model for the effect of the predictor series.

Interventions
opens the Interventions for Series window to enable you to define and select intervention effects and add them to the Predictors list.

Seasonal Dummies
adds a Seasonal Dummies predictor item to the Predictors list. This is unavailable if the series interval is not one which has a seasonal cycle.

Delete
deletes the selected (highlighted) entry from the Predictors list.
Edit
edits the selected (highlighted) entry in the Predictors list.

Mouse Button Actions

You can select or deselect entries in the Predictors list by clicking them. The selected (highlighted) predictor effect is acted on by the Delete and Edit buttons. Double-clicking on a predictor in the list invokes an appropriate edit action for that predictor.

If you right-click an entry in the Predictors list and press the right mouse button, the system displays a menu of actions that encompass the features of the Add, Delete, and Edit buttons.

Data Set Selection Window

Use this resizable window to select a data set to process by specifying a library and a SAS data set or view. These selections can be made by typing, by selecting from lists, or by a combination of the two. In addition, you can control the time ID variable and time interval, and you can browse the data set.

Access this window by using the Browse button to the right of the Data Set field in the Time Series Forecasting, Automatic Model Fitting, and Produce Forecasts windows. It functions in the same way as the Series Selection window, except that it does not allow you to select or view a time series variable.

Controls and Fields

```
Library
```

is a SAS libname assigned within the current SAS session. If you know the libname associated with the data set of interest, you can type it in this field. If it is a valid choice, it will appear in the libraries list and will be highlighted. The SAS Data Sets list will be populated with data sets associated with that libname. See also Libraries under Selection Lists.

```
Data Set
```

is the name of a SAS data set (data file or data view) that resides under the selected libname.

If you know the name, you can type it in and press Return. If it is a valid choice, it will appear in the SAS Data Sets list and will be highlighted.

Time ID
is the name of the ID variable for the selected input data set. To specify the ID variable, you can type the ID variable name in this field or select the control arrows to the right of the field.
Time ID select button
opens the Time ID Variable Specification window.
Time ID Create button
opens a menu of methods for creating a time ID variable for the input data set. Use this feature if the data set does not already contain a valid time ID variable.

Interval
is the time interval between observations (data frequency) in the selected data set. If the interval is not automatically identified by the system, you can type in the interval name or select it from a list by clicking the combo box arrow. For more information about intervals, see Chapter 4, "Date Intervals, Formats, and Functions," in this book.

OK
closes the Data Set Selection window and makes the selected data set the current input data set.

Cancel
closes the window without applying any selections made.
Table
opens a Viewtable window for browsing the selected data set.
Reset
resets the fields to their initial values upon entry to the window.
Refresh
updates all fields and lists in the window. If you assign a new libname without exiting the Data Set Selection window, use the refresh action to update the Libraries list so that it will include the newly assigned libname.

Selection Lists

Libraries
displays a list of currently assigned libnames. You can select a libname by clicking it with the left mouse button, which is equivalent to typing its name in the Library field.
If you cannot locate the library or directory you are interested in, go to the SAS Explorer window, select "New" from the File menu, then select "Library" and "OK." This opens the New Library window. You also assign a libname by submitting a libname statement from the Editor window. Select the Refresh button to make the new libname available in the libraries list.
displays a list of the SAS data sets (data files or data views) contained in the selected library. You can select one of these by clicking with the left mouse button, which is equivalent to typing its name in the Data set field. You can double-click a data set name to select it and exit the window.

Default Time Ranges Window

Use the Default Time Ranges window to control how the period of fit and evaluation and the forecasting horizon are determined for each series when you do not explicitly set these ranges for a particular series. Invoke this window from the Options menu of the Develop Models, Automatic Model Fitting, Produce Forecasts, and Manage Forecasting Project windows. The settings you make in this window affect subsequently selected series; they do not alter the time ranges of series you have already selected.

Controls and Fields

Forecast Horizon
specifies the forecast horizon as either a number of periods or years from the last nonmissing data value or as a fixed date. You can type a number or date value in this field. Date value must be entered in a form recognized by a SAS date informat. (See SAS Language Reference: Concepts for information about SAS date informats.)

```
Forecast Horizon Units
```

indicates whether the value in the forecast horizon field represents periods or years or a date. Click the arrow and select one from the pop-up list.

Hold-out Sample Size
specifies that a number of observations, number of years, or percent of the data at the end of the data range be used for the period of evaluation with the remainder of data used as the period of fit.

Hold-out Sample Size Units

indicates whether the hold-out sample size represents periods or years or percent of data range.

```
Period of Fit
```

specifies how much of the data range for a series is to be used as the period of fit for models fit to the series. ALL indicates that all the available data is used. You can specify a number of periods, number of years, or a fixed date, depending on the value of the units field to the right. When you specify a date, the start of the period of fit is the specified date or the first nonmissing series value, whichever is more recent. Date value must be entered in a form
recognized by a SAS date informat. (See SAS Language Reference: Concepts for information about SAS date informats.) When you specify the number of periods or years, the start of the period of fit is computed as the date that number of periods or years from the end of the data.

Period of Fit Units indicates whether the period-of-fit value represents periods or years or a date.

OK
closes the window and stores the specified changes.
Cancel
closes the window without saving changes. Any options you specified are lost.

```
Defaults
```

resets all options to their default values.
Reset
resets the options to their initial values upon entry to the window.

Develop Models Window

This resizable window provides access to all of the Forecasting System's interactive model fitting and graphical tools. Use it to fit forecasting models to an individual time series and choose the best model to use to produce the final forecasts of the series. Invoke this window by using the Develop Models button on the Time Series Forecasting window.

Controls and Fields

```
Data Set
```

is the name of the current input data set.
Interval
is the time interval (data frequency) for the input data set.
Series
is the variable name and label of the current time series.

Browse button
opens the Series Selection window to enable you to change the current input data set or series.
Data Range
is the date of the first and last nonmissing data values available for the current series in the input data set.

Fit Range
is the current period of fit setting. This is the range of data that will be used to fit models to the series.

Evaluation Range
is the current period of evaluation setting. This is the range of data that will be used to calculate the goodness-of-fit statistics for models fit to the series.

Set Ranges button
opens the Time Ranges Specification window to enable you to change the fit range or evalua-
tion range. Note: A new fit range is applied when new models are fit or when existing models are refit. A new evaluation range is applied when new models are fit or when existing models are refit or reevaluated. Changing the ranges does not automatically refit or reevaluate any models in the table: Use the Refit Models or Reevaluate Models items under the Edit menu.

View Series Graphically icon
opens the Time Series Viewer window to display plots of the current series.
View Selected Model Graphically icon
opens the Model Viewer to display graphs and tables for the currently highlighted model.
Forecast Model
is the column of the model table that contains check boxes to select which model is used to produce the final forecasts for the current series.

Model Title
is the column of the model table that contains the descriptive labels of the forecasting models fit to the current series.

Root Mean Square Error (or other statistic name) button
is the button above the right side of the table. It displays the name of the current model selection criterion: a statistic that measures how well each model in the table fits the values of the current series for observations within the evaluation range. Clicking this button opens the Model Selection Criterion window to let you to select a different statistic. When you select a statistic, the model table the Develop Models window is updated to show current values of that statistic.

Menu Bar

File

New Project
opens a dialog that lets you create a new project, assign it a name and description, and make it the active project.

Open Project
opens a dialog that lets you select and load a previously saved project.
Save Project
saves the current state of the system (including all the models fit to a series) to the current project catalog entry.

Save Project as
saves the current state of the system with a prompt for the name of the catalog entry in which to store the information.

Clear Project
clears the system, deleting all the models for all series.
Save Forecast
writes forecasts from the currently highlighted model to an output data set.

Save Forecast As
prompts for an output data set name and saves the forecasts from the currently highlighted model.

```
Output Forecast Data Set
```

opens a dialog for specifying the default data set used when you select "Save Forecast."

```
Import Data
```

is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

Export Data

is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print Setup
opens the Print Setup window, which enables you to access your operating system print setup.
closes the Develop Models window and returns to the main window.

Fit Model

Automatic Fit
invokes the automatic model selection process.
Select From List
opens the Models to Fit window.
Smoothing Model
opens the Smoothing Model Specification window.
ARIMA Model
opens the ARIMA Model Specification window.
Custom Model
opens the Custom Model Specification window.
Combine Forecasts
opens the Forecast Combination Model Specification window.
External Forecasts
opens the External Forecast Model Specification window.
Edit Model
enables you to modify the specification of the currently highlighted model in the table and fit the modified model. The new model replaces the current model in the table.
deletes the currently highlighted model from the model table.

```
Refit Models
```

All Models
refits all models in the table by using data within the current fit range.
Selected Model
refits the currently highlighted model by using data within the current fit range.
Reevaluate Models

All Models
recomputes statistics of fit for all models in the table by using data within the current evaluation range.

Selected Model
recomputes statistics of fit for the currently highlighted model by using data within the current evaluation range.

View

Project
opens the Manage Forecasting Project window.
Data Set
opens a Viewtable window to display the current input data set.
Series
opens the Time Series Viewer window to display plots of the current series. This is the same as the View Series Graphically icon.

Model Predictions
opens the Model Viewer to display a predicted versus actual plot for the currently highlighted model. This is the same as the View Selected Model Graphically icon.

Prediction Errors
opens the Model Viewer to display the prediction errors for the currently highlighted model.

Prediction Error Autocorrelations
opens the Model Viewer to display the prediction error autocorrelations, partial autocorrelations, and inverse autocorrelations for the currently highlighted model.

```
Prediction Error Tests
```

opens the Model Viewer to display graphs of white noise and stationarity tests on the prediction errors of the currently highlighted model.

Parameter Estimates
opens the Model Viewer to display the parameter estimates table for the currently highlighted model.
opens the Model Viewer window to display goodness-of-fit statistics for the currently highlighted model.

Forecast Graph

opens the Model Viewer to graph the forecasts for the currently highlighted model.
Forecast Table
opens the Model Viewer to display forecasts for the currently highlighted model in a table.

Tools

Diagnose Series
opens the Series Diagnostics window to determine the kinds of forecasting models appropriate for the current series.

Define Interventions
opens the Interventions for Series window to enable you to edit or add intervention effects for use in modeling the current series.

```
Sort Models
```

sorts the models in the table by the values of the currently displayed fit statistic.
Compare Models
opens the Model Fit Comparison window to display fit statistics for selected pairs of forecasting models. This is unavailable if there are fewer than two models in the table.

Generate Data
opens the Time Series Simulation window. This window enables you to simulate ARIMA time series processes and is useful for educational exercises or testing the system.

Options

Time Ranges
opens the Time Ranges Specification window to enable you to change the fit and evaluation time ranges and the forecast horizon. This action is the same as the Set Ranges button.

Default Time Ranges
opens the Default Time Ranges window to enable you to control how the system sets the time ranges for series when you do not explicitly set time ranges with the Time Ranges Specification window. Settings made by using this window do not affect series you are already working with; they take effect when you select a new series.

Model Selection List
opens the Model Selection List editor window. Use this action to edit the set of forecasting models considered by the automatic model selection process and displayed by the Models to Fit window.

Model Selection Criterion
opens the Model Selection Criterion window, which presents a list of goodness-of-fit statistics and enables you to select the fit statistic that is displayed in the table and used by the automatic model selection process to determine the best fitting model. This action is the same as clicking the button above the table which displays the name of the current model selection criterion.

Statistics of Fit
opens the Statistics of Fit Selection window, which presents a list of statistics that the system can display. Use this action to customize the list of statistics shown in the Model Viewer, Automatic Model Fitting Results, and Model Fit Comparison windows and available for selection in the Model Selection Criterion menu.

Forecast Options
opens the Forecast Options window, which enables you to control the widths of forecast confidence limits and control the kind of predicted values computed for models that include series transformations.

Alignment of Dates

Beginning
aligns dates that the system generates to identify forecast observations in output data sets to the beginning of the time intervals.

Middle
aligns dates that the system generates to identify forecast observations in output data sets to the midpoints of the time intervals.

End
aligns dates that the system generates to identify forecast observations in output data sets to the end of the time intervals.

Automatic Fit
opens the Automatic Model Selection Options window, which enables you to control the number of models retained by the automatic model selection process and whether the models considered for automatic selection are subset according to the series diagnostics.

Include Interventions
controls whether intervention effects defined for the current series are automatically added as predictors to the models considered by the automatic selection process and displayed by the Models to Fit window. When the Include Interventions option is selected, the series interventions are also automatically added to the predictors list when you specify a model in the ARIMA and Custom Models Specification windows. A check mark or filled check box next to this item indicates that the option is turned on.

Print Audit Trail
prints to the SAS log information about the models fit by the system. A check mark or filled check box next to this item indicates that the audit option is turned on.

Show Source Statements
Controls whether SAS statements submitted by the forecasting system are printed in the SAS log. When the Show Source Statements option is selected, the system sets the SAS system option SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option. Note that only some of the functions performed by the forecasting system are accomplished by submitting SAS statements. A check mark or filled check box next to this item indicates that the option is turned on.

Left Mouse Button Actions for the Model Table

When the cursor is over the description of a model in the table, the left mouse button selects (highlights) or deselects that model. On some computer systems, you can double-click to open the Model Viewer window for the selected model.

When the cursor is over an empty part of the model table, the left mouse button opens a menu of model fitting choices. These choices are the same as those in the Fit Model submenu of the Edit menu.

Right Mouse Button Actions for the Model Table

When a model in the table is selected, the right mouse opens a menu of actions that apply to the highlighted model. The actions available in this menu are as follows.

View Model

opens the Model Viewer for the selected model. This action is the same as the View Model Graphically icon.

```
View Parameter Estimates
```

opens the Model Viewer to display the parameter estimates table for the currently highlighted model. This is the same as the Parameter Estimates item in the View menu.

```
View Statistics of Fit
```

opens the Model Viewer to display a table of goodness-of-fit statistics for the currently highlighted model. This is the same as the Statistics of Fit item in the View menu.

```
Edit Model
```

enables you to modify the specification of the currently highlighted model in the table and fit the modified model. This is the same as the Edit Model item in the Edit menu.

```
Refit Model
```

refits the highlighted model by using data within the current fit range. This is the same as the Selected Model item under the Refit Models submenu of the Edit menu.

```
Reevaluate Model
```

reevaluates the highlighted model by using data within the evaluation fit range. This is the same as the Selected Model item under the Reevaluate Models submenu of the Edit menu.

```
Delete Model
```

deletes the currently highlighted model from the model table. This is the same as the Delete Model item under the Edit menu.

View Forecasts
opens the Model Viewer to display the forecasts for the currently highlighted model. This is the same as the Forecast Graph item under the View menu.

When the model list is empty or when no model is selected, the right mouse button opens the same menu of model fitting actions as the left mouse button.

Differencing Specification Window

Use the Differencing Specification window to specify the list of differencing lags $\mathrm{d}=(\operatorname{lag}, \ldots$, lag) in a factored ARIMA model. To specify a first difference, add the value 1 ($\mathrm{d}=(1)$). To specify a second difference (difference twice at lag 1), add the value 1 again ($\mathrm{d}=(1,1)$). For first differencing at lags 1 and 12 , use the values 1 and $12(\mathrm{~d}=(1,12))$.

Differencing Specification \quad - $|\square| x \mid$

Controls and Fields

Lag

specifies a lag value to add to the list. Type in a positive integer or select one by clicking the spin box arrows. Duplicates are allowed.

Add
adds the value in the Lag spin box to the list of differencing lags.
Remove
deletes a selected lag from the list of differencing lags.
OK
closes the window and returns the specified list to the Factored ARIMA Model Specification window.

Cancel

closes the window and discards any lags added to the list.

Dynamic Regression Specification Window

Use the Dynamic Regression Specification window to specify a dynamic regression or transfer function model for the effect of the predictor variable. It is invoked from the Dynamic Regressors Selection window.

Controls and Fields

```
Series
```

is the name and variable label of the current series.
Input Model
is a descriptive label for the dynamic regression model. You can type a label in this field or allow the system to provide the label. If you leave the label blank, a label is generated automatically based on the options you specify. When no options are specified, the label is the name and variable label of the predictor variable.

```
Input Transformation
```

displays the transformation specified for the predictor variable. When a transformation is specified, the transfer function model is fit to the transformed input variable.

Lagging periods

is the pure delay in the effect of the predictor, l.

```
Simple Order of Differencing
```

is the order of differencing, d. Set this field to 1 to use the changes in the predictor variable.

```
Seasonal Order of Differencing
```

is the order of seasonal differencing, D. Set this field to 1 to difference the predictor variable at the seasonal lags-for example, to use the year-over-year or week-over-week changes in the predictor variable.

Simple Order Numerator Factors
is the order of the numerator factor of the transfer function, p.
Seasonal Order Numerator Factors
is the order of the seasonal numerator factor of the transfer function, P.
Simple Order Denominator Factors
is the order of the denominator factor of the transfer function, q.
Seasonal Order Denominator Factors
is the order of the seasonal denominator factor of the transfer function, Q.
ok
closes the window and adds the dynamic regression model specified to the model predictors list.

Cancel
closes the window without adding the dynamic regression model. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the window. This might be useful when editing a predictor specification; otherwise, Reset has the same function as Clear.

Clear
resets all options to their default values.

Dynamic Regressors Selection Window

Use the Dynamic Regressors Selection window to select an input variable as a dynamic regressor. Access this window from the pop-up menu which appears when you select the Add button of the ARIMA Model Specification window or Custom Model Specification window.

Controls and Fields

Dependent
is the name and variable label of the current series.
Dynamic Regressors
is a table listing the variables in the input data set. Select one variable in this list as the predictor series.
opens the Dynamic Regression Specification window for you to specify the form of the dynamic regression for the selected predictor series, and then closes the Dynamic Regressors Selection window and adds the specified dynamic regression to the model predictors list.
closes the window without adding the dynamic regression model. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the window.

Error Model Options Window

Use the Error Model Options window to specify the autoregressive and moving-average orders for the residual autocorrelation part of a model defined by using the Custom Model Specification window. Access it by using the Set button of that window.

Controls and Fields

ARIMA Options
Use these combo boxes to specify the orders of the ARIMA model. You can either type in a value or click the combo box arrow to select from a pop-up list.

Autoregressive
defines the order of the autoregressive part of the model.
Moving Average
defines the order of the moving-average term.

OK
closes the Error Model Options window and returns to the Custom Model Specification window.

Cancel
closes the Error Model Options window and returns to the Custom Model Specification window, discarding any changes made.

Reset
resets all options to their initial values upon entry to the window.

External Forecast Model Specification Window

Use the External Forecast Model Specification window to add to the current project forecasts produced externally to the Time Series Forecasting System. To add an external forecast, select a variable from the selection list and choose the OK button. The name of the selected variable will be added to the list of models fit, and the values of this variable will be used as the forecast. For more information, see "Incorporating Forecasts from Other Sources" in the "Specifying Forecasting Models" chapter.

External Forecast Model Specification

Ser ies: HSTOTAL: Housing Starts, Total Private

Model:

Forecast

AIRRPMD	Airline Revenue Passenger
AIRRPMT	Airline Revenue Passenger
CHEMICAL	Sales: Chemicals and Al1i
COAL	Bituminous Coal Productio
DURABLES	Sales: Durable Goods Indu
HS1FAM	Housing Starts, One-famil
NONDUR	Sales: Nondurable Goods
PETROL	Sales: Petroleum and Coal
TOBACCO	Sales: Tobacco Products
VEHICLES	Sales: Motor Vehicles and

Controls and Fields

OK
closes the window and adds the external forecast to the project.
Cancel
closes the window without adding an external forecast to the project.
Reset
deselects any selection made in the selection list.

Factored ARIMA Model Specification Window

Use the ARIMA Model Specification window to specify an ARIMA model by using the notation:

```
p = (lag, ..., lag) ...(lag, ..., lag)
d = (lag, ..., lag)
q = (lag, ..., lag) ...(lag, ..., lag)
```

where p , d , and q represent autoregressive, differencing, and moving-average terms, respectively.
Access it from the Develop Models menu, where it is invoked from the Fit Model item under Edit in the menu bar, or from the pop-up menu when you click an empty area of the model table.

The Factored ARIMA Model Specification window is identical to the ARIMA Model Specification window, except that the p , d , and q terms are specified in a more general and less limited way. Only those controls and fields that differ from the ARIMA Model Specification window are described here.

Controls and Fields

Model
is a descriptive label for the model. You can type a label in this field or allow the system to provide a label. If you leave the label blank, a label is generated automatically based on the p, d, and q terms that you specify. For example, if you specify $p=(1,2,3), d=(1)$, $q=(12)$ and no intercept, the model label is ARIMA $p=(1,2,3) d=(1) \quad q=(12)$ NOINT. For monthly data, this is equivalent to the model $\operatorname{ARIMA}(3,1,0)(0,0,1) \mathrm{s}$ NOINT as specified in the ARIMA Model Specification window or the Custom Model Specification window.

ARIMA Options

Specifies the ARIMA model in terms of the autoregressive lags (p), differencing lags (d), and moving-average lags (q).

Autoregressive
defines the autoregressive part of the model. Select the Set button to open the AR Polynomial

Specification window, where you can add any set of autoregressive lags grouped into any number of factors.

Differencing
specifies differencing to be applied to the input data. Select the Set button to open the Differencing Specification window, where you can specify any set of differncing lags.

Moving Average
defines the moving-average part of the model. Select the Set button to open the MA Polynomial Specification window, where you can add any set of moving-average lags grouped into any number of factors.

Estimation Method
specifies the method used to estimate the model parameters. The Conditional Least Squares and Unconditional Least Squares methods generally require fewer computing resources and are more likely to succeed in fitting complex models. The Maximum Likelihood method requires more resources but provides a better fit in some cases. See also Estimation Details in Chapter 7, "The ARIMA Procedure."

Forecast Combination Model Specification Window

Use the Forecast Combination Model Specification window to produce forecasts by averaging the forecasts of two or more forecasting models. The specified combination of models is added to the model list for the series. Access this window from the Develop Models window whenever two or more models have been fit to the current series. It is invoked by selecting Combine Forecasts from the Fit Model submenu of the Edit menu, or from the pop-up menu which appears when you click an empty part of the model table.

Controls and Fields

```
Series
```

is the name and variable label of the current series.
Model
is a descriptive label for the model that you specify. You can type a label in this field or allow the system to provide a label. If you leave the label blank, a label is generated automatically based on the options you specify.

Weight

is a column of the forecasting model table that contains the weight values for each model. The forecasts for the combined model are computed as a weighted average of the predictions from the models in the table that use these weights. Models with missing weight values are not included in the forecast combination. You can type weight values in these fields or you can use other features of the window to set the weights.

Model Description

is a column of the forecasting model table that contains the descriptive labels of the forecasting models fit to the current series that are available for combination.

Root Mean Square Error (or other statistic name) button
is the button above the right side of the table. It displays the name of the current model selection criterion: a statistic that measures how well each model in the table fits the values of the current series for observations within the evaluation range. Clicking this button opens the Model Selection Criterion window to enable you to select a different statistic.

Normalize Weights button
replaces each nonmissing value in the Weights column with the current value divided by the sum of the weights. The resulting weights are proportional to original weights and sum to 1 .

Fit Regression Weights button
computes weight values for the models in the table by regressing the series on the predictions from the models. The values in the Weights column are replaced by the estimated coefficients produced by this linear regression. If some weight values are nonmissing and some are missing, only models with nonmissing weight values are included in the regression. If all weights are missing, all models are used.
closes the Forecast Combination Model Specification window and fits the model.
Cancel
closes the Forecast Combination Model Specification window without fitting the model. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the Forecast Combination Model Specification window. This might be useful when editing an existing model specification; otherwise, Reset has the same function as Clear.

Clear
resets all options to their default values.

Mouse Button Actions

You can select or deselect models for inclusion in the combination model by positioning the mouse cursor over the model description and pressing the left mouse button. When you select a model in this way, the weights are automatically updated.

The newly selected model is given a weight equal to the average weight of the previously selected models, and all the nonmissing weights are normalized to sum to 1 . When you use the mouse to remove a model from the combination, the weight of the deselected model is set to missing and the remaining nonmissing weights are normalized to sum to 1 .

Forecasting Project File Selection Window

Use the Forecasting Project File Selection window to locate and load a previously stored forecasting project. Access it from the project Browse button of the Manage Forecasting Project window or the Time Series Forecasting window or from the Open Project item under the File menu of the Develop Models window.

Forecasting Project File Selection

Selection Lists

Libraries
is a list of currently assigned libraries. When you select a library from this list, the catalogs in that library are shown in the catalog selection list.

Catalogs
is a list of catalogs contained in the currently selected library. When you select a catalog from this list, any forecasting project entries stored in that catalog are shown in the projects selection list.

Projects
is a list of forecasting project entries contained in the currently selected catalog.

Controls and Fields

OK
closes the window and opens the selected project.
Cancel
closes the window without selecting a project.
Delete
deletes the selected project file.
Reset
restores selections to those which were set before the window was opened.

Forecast Options Window

Use the Forecast Options window to set options to control how forecasts and confidence limits are computed. It is available from the Forecast Options item in the Options menu of the Develop Models window, Automatic Model Fitting window, Produce Forecasts, and Manage Projects windows.

Forecast Options				x
Confidence Limits: 0.95				
Predictions	for T	Transformed	Models:	
C Mean	CMedian			
OK	Cance I		Help	

Controls and Fields

Confidence Limits
specifies the size of the confidence limits for the forecast values. For example, a value of 0.95 specifies 95% confidence intervals. You can type in a number or select from the pop-up list.

Predictions for transformed models
controls how forecast values are computed for models that employ a series transformation. See the section Predictions for Transformed Models in Chapter 44, "Forecasting Process Details," for more information. The values are as follows.

Mean
specifies that forecast values be predictions of the conditional mean of the series.
Median
specifies that forecast values be predictions of the conditional median of the series.

OK
closes the window and saves the option settings you specified.
Cancel
closes the window without changing the forecast options. Any options you specified are lost.

Intervention Specification Window

Use the Intervention Specification window to specify intervention effects to model the impact on the series of unusual events. Access it from the Intervention for Series window. For more information,
see the section "Interventions" on page 2527.

Controls and Fields

```
Series
```

is the name and variable label of the current series.
Label
is a descriptive label for the intervention effect that you specify. You can type a label in this field or allow the system to provide the label. If you leave the label blank, a label is generated automatically based on the options you specify.

Date
is the date that the intervention occurs. You can type a date value in this field, or you can set the date by selecting a row of the data table on the right side of the window.

Type of Intervention

Point
specifies that the intervention variable is zero except for the specified date.
Step
specifies that the intervention variable is zero before the specified date and a constant 1.0 after the date.

Ramp
specifies that the intervention variable is an increasing linear function of time after the date of the intervention and zero before the intervention date.

Number of lags
specifies the numerator order for the transfer function model for the intervention effect. Select a value from the pop-up list.

Effect Decay Pattern
specifies the denominator order for the transfer function model for the intervention effect. The value "Exp" specifies a single lag denominator factor; the value "Wave" specifies a two-lag denominator factor.

OK
closes the window and adds the intervention effect specified to the series interventions list.
Cancel
closes the window without adding the intervention. Any options you specified are lost.
Reset
resets all options to their initial values upon entry to the window. This might be useful when editing an intervention specification; otherwise, Reset has the same function as Clear.

Clear
resets all options to their default values.

Interventions for Series Window

Use the Interventions for Series window to create and edit a list of intervention effects to model the impact on the series of unusual events and to select intervention effects as predictors for forecasting models. Access it from the Add button pop-up menu of the ARIMA Model Specification or Custom Model Specification window, or by selecting Define Interventions from the Tools in the Develop Models window. For more information, see the section "Interventions" on page 2527.

Interventions for Series

x

Series: HSTOTAL: Housing Starts, Total Private

Interventions
Point:JAN1975
Sten:MAY1990

Controls and Fields

Series
is the name and variable label of the current series.
OK
closes the window. If you access this window from the ARIMA Model Specification window or the Custom Model Specification window, any interventions that are selected (highlighted) in the list are added to the model. If you access this window from the Tools menu, all interventions in the list are saved for the current series.

Cancel
closes the window without returning a selection or changing the interventions list. Any options you specified are lost.

Reset
resets the list as it was on entry to the window.
Clear
deletes all interventions from the list.
Add
opens the Intervention Specification window to specify a new intervention effect and add it to the list.

Delete
deletes the currently selected (highlighted) entries from the list.
Edit
opens the Intervention Specification window to edit the currently selected (highlighted) intervention.

Mouse Button Actions

To select or deselect interventions, position the mouse cursor over the intervention's label in the Interventions list and press the left mouse button.

When you position the mouse cursor in the Interventions list and press the right mouse button, a menu containing the actions Add, Delete, and Edit appears. These actions are the same as the Add, Delete, and Edit buttons.

Double-clicking on an intervention in the list invokes an Edit action for that intervention specification.

Manage Forecasting Project Window

Use this resizable window to work with collections of series, models, and options called projects. The window contains a project name, a description field, and a table of information about all the series for which you have fit forecasting models. Access it by using the Manage Projects button on the Time Series Forecasting window.

File	Edit View	Tools Optio	ns Solutions	Window Help
Manage Forecasting Project				
$\begin{aligned} \text { Project Name: } & \text { SASUSER.FMSPROJ.PROJ }\end{aligned}$				
Series Name \mid Series Frequency \mid Input Data Set Name ${ }^{\text {a }}$ Forecasting Model				
HSTOTAL		MONTH	sashelp.usecon	
VEHICLES		MONTH	sashelp.usecon	Winters Method -- Multiplicative
tobacco		MONTH	sashelp.usecon	Log Linear Trend with Autoregressiv
AIRRPMD		MONTH	sashelp.usecon	
AIRRPMT		MONTH	sashelp.usecon	Log ARIMA (0,1,2)(0,1,1)s NOINT
CHEMICAL		MONTH	sashelp.usecon	Log ARIMA $(2,1,2)(0,1,1) \mathrm{N}$ NOINT
COAL		MONTH	sashelp.usecon	Linear Trend with Autoregressive Eir
durables		MONTH	sashelp.usecon	Log Winters Method -- Multiplicative
HS1FAM		MONTH	sashelp.usecon	Log Seasonal Exponential Smoothin
NONDUR		MONTH	sashelp.usecon	Log Winters Method -. Additive
PETROL		MONTH	sashelp.usecon	Log ARIMA $(0,1,1)(1,0,0) \leqslant$ NOINT
				$\stackrel{\square}{+}$

Controls and Fields

Project Name
is the name of the SAS catalog entry in which forecasting models and other results will be stored and from which previously stored results are loaded into the forecasting system. You can specify the project by typing a SAS catalog entry name in this field or by selecting the Browse button to the right of this field. If you specify the name of an existing catalog entry, the information in the project file is loaded. If you specify a one-level name, it is assumed to be the name of a project in the "fmsproj" catalog in the "sasuser" library. For example, typing samproj is equivalent to typing sasuser.fmsproj.samproj.
project Browse button
opens the Forecasting Project File Selection window to enable you to select and load the project from a list of previously stored project files.

Description
is a descriptive label for the forecasting project. The description you type in this field will be stored with the catalog entry shown in the Project field if you save the project.

Series List Table

The table of series for which forecasting models have been fit contains the following columns.

Series Name
is the name of the time series variable represented in the given row of the table.
Series Frequency
is the time interval (data frequency) for the time series.
Input Data Set Name
is the input data set that provided the data for the series.
Forecasting Model
is the descriptive label for the forecasting model selected for the series.
Statistic Name
is the statistic of fit for the forecasting model selected for the series.
Number of Models
is the total number of forecasting models fit to the series. If there is more than one model for
a series, use the Model List window to see a list of models.

```
Series Label
```

is the variable label for the series.

```
Time ID Variable Name
```

is the time ID variable for the input data set for the series.
Series Data Range
is the time range of the nonmissing values of the series.
Model Fit Range
is the period of fit used for the series.

Model Evaluation Range
is the evaluation period used for the series.
Forecast Range
is the forecast period set for the series.

Menu Bar

File

New

opens a dialog which lets you create a new project, assign it a name and description, and make it the active project.

Open
opens a dialog that lets you select and load a previously saved project.
Close
closes the Manage Forecasting Project window and returns to the main window.
Save
saves the current state of the system (including all the models fit to a series) to the current project catalog entry.

Save As
saves the current state of the system with a prompt for the name of the catalog entry in which to store the information.

Save to Data Set
saves the current project file information in a SAS data set. The contents of the data set are the same as the information displayed in the series list table.

Delete
deletes the current project file.
Import Data
is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

Export Data
is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print
prints the current project file information.
Print Setup
opens the Print Setup window, which allows you to access your operating system print setup.

Delete Series
deletes all models for the selected (highlighted) row of the table and removes the series from the project.

Clear
resets the system, deleting all series and models from the project.
Reset
restores the Manage Forecasting Project window to its initial state.

View

Data Set
opens a Viewtable window to display the input data set for the selected (highlighted) series.

Series
opens the Time Series Viewer window to display plots of the selected (highlighted) series.

Model
opens the Model Viewer window to show the current forecasting model for the selected series.

Forecast
opens the Model Viewer to display plots of the forecasts produced by the forecasting model for the selected (highlighted) series.

Tools

Diagnose Series
opens the Series Diagnostics window to perform the automatic series diagnostic process to determine the kinds of forecasting models appropriate for the selected (highlighted) series.

List Models
opens the Model List window for the selected (highlighted) series, which displays a list of all the models that you fit for the series. This action is the same as double-clicking the mouse on the table row.

Generate Data
opens the Time Series Simulation window. This window enables you to simulate ARIMA time series processes and is useful for educational exercises or testing the system.

Refit Models

All Series
refits all the models for all the series in the project by using data within the current fit range.

Selected Series
refits all the models for the currently highlighted series by using data within the current fit range.

```
Reevaluate Models
```

All Series
reevaluates all the models for all the series in the project by using data within the current evaluation fit range.

Selected Series
reevaluates all the models for the currently highlighted series by using data within the current evaluation range.

Options

Time Ranges
opens the Time Ranges Specification window to enable you to change the fit and evaluation time ranges and the forecast horizon.

Default Time Ranges
opens the Default Time Ranges window to enable you to control how the system sets the time ranges for series when you do not explicitly set time ranges with the Time Ranges Specification window. Settings made by using this window do not affect series you are already working with; they take effect when you select a new series.

```
Model Selection List
```

opens the Model Selection List editor window. Use this to edit the set of forecasting models considered by the automatic model selection process and displayed by the Models to Fit window.

Statistics of Fit
opens the Statistics of Fit Selection window, which controls which of the available statistics will be displayed.

Forecast Options
opens the Forecast Options window, which enables you to control the widths of forecast confidence limits and control the kind of predicted values computed for models that include series transformations.

Column Labels
enables you to set long or short column labels. Long labels are used by default.
Include Interventions
controls whether intervention effects defined for the current series are automatically added as predictors to the models considered by the automatic selection process and displayed by the Model Selection List editor window. When the Include Interventions option is selected, the series interventions are also automatically added to the predictors list when you specify a model in the ARIMA and Custom Models Specification windows.

Print Audit Trail
prints to the SAS log information about the models fit by the system. A check mark or filled check box next to this item indicates that the audit option is turned on.

Show Source Statements
controls whether SAS statements submitted by the forecasting system are printed in the SAS log. When the Show Source Statements option is selected, the system sets the SAS system option SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option. Note that only some of the functions performed by the forecasting system are accomplished by submitting SAS statements. A check mark or filled check box next to this item indicates that the option is turned on.

Left Mouse Button Actions

If you select a series in the table by positioning the cursor over the table row and clicking with the left mouse button once, that row of the table is highlighted. Menu bar actions such as Delete Series will apply to the highlighted row of the table.

If you select a series in the table by positioning the cursor over the table row and double-clicking with the left mouse button, the system opens the Model List window for that series, which displays a list of all the models that you fit for the series. This is the same as the List Models action under Tools in the menu bar.

Right Mouse Button Actions

Clicking the right mouse button invokes a pop-up menu of actions applicable to the highlighted series. The actions in this menu are as follows.

```
Delete Series
```

deletes the highlighted series and its models from the project. This is the same as Delete Series in the Edit menu.

```
Refit All Models
```

refits all models attached to the highlighted series by using data within the current fit range. This is the same as the Selected Series item under Refit Models in the Tools menu.

Reevaluate All Models
reevaluates all models attached to the highlighted series by using data within the current evaluation range. This is the same as the Selected Series item under Reevaluate Models in the Tools menu.

List Models
invokes the Model List window. This is the same as List Models under the Tools menu.

```
View Series
```

opens the Time Series Viewer window to display plots of the highlighted series. This is the same as the Series item under the View menu.

View Forecasting Model
invokes the Model Viewer window to display the forecasting model for the highlighted series. This is the same as the Model item under the View menu.

View Forecast
opens the Model Viewer window to display the forecasts for the highlighted series. This is the same as the Forecast item under the View menu.

Refresh
updates information shown in the Manage Forecasting Project window.

Model Fit Comparison Window

Use the Model Fit Comparison window to compare goodness-of-fit statistics for any two models fit to the current series. Access it from the Tools menu of the Develop Models window and the Automatic Model Fitting Results window whenever two or more models have been fit to the series.

Controls and Fields

```
Series
```

identifies the current time series variable.

Range

displays the starting and ending dates of the series data range.
Model 1
shows the model currently identified as Model 1.
Model 1 upward arrow button
enables you to change the model identified as Model 1 if it is not already the first model in the
list of models associated with the series. Select this button to cycle upward through the list of models.

Model 1 downward arrow button
enables you to change the model identified as Model 1 if it is not already the last model in the list of models. Select this button to cycle downward through the list of models.

Model 2
shows the model currently identified as Model 2.
Model 2 upward arrow button
enables you to change the model identified as Model 2 if it is not already the first model in the list of models associated with the series. Select this button to cycle upward through the list of models.

Model 2 downward arrow button
enables you to change the model identified as Model 2 if it is not already the last model in the list of models. Select this button to cycle downward through the list of models.

Close
closes the Model Fit Comparison window.
Save
opens a dialog for specifying the name and label of a SAS data set to which the statistics will be saved. The data set will contain all available statistics and their values for Model 1 and Model 2, as well as a flag variable that is set to 1 for those statistics that were displayed.

Print
prints the contents of the table to the SAS Output window. If you find that the contents do not appear immediately in the Output window, you need to set scrolling options. Select "Preferences" under the Options submenu of the Tools menu. In the Preferences window, select the Advanced tab, then set output scroll lines to a number greater than zero.
If you want to route the contents to a printer, go to the Output window and select "Print" from the File menu.

Statistics
opens the Statistics of Fit Selection window for controlling which statistics are displayed.

Model List Window

This resizable window shows all of the models that have been fit to a particular series in a project. Access it from the Manage Forecasting Project window by selecting a series in the series list table and choosing "List Models" from the Tools menu or by double-clicking the series.

Controls and Fields

```
Data Set
```

is the name of the current input data set.
Interval
is the time interval (data frequency) for the input data set.
Series
is the variable name and label of the current time series.
Data Range
is the date of the first and last nonmissing data values available for the current series in the input data set.

Fit Range
is the current period of fit setting. This is the range of data that will be used to fit models to the series. It might be different from the fit ranges shown in the table, which were in effect when the models were fit.

Evaluation Range
is the current period of evaluation setting. This is the range of data that will be used to calculate the goodness-of-fit statistics for models fit to the series. It might be different from the evaluation ranges shown in the table, which were in effect when the models were fit.

View Series Graphically icon
opens the Time Series Viewer window to display plots of the current series.

View Model Graphically icon
opens the Model Viewer to display graphs and tables for the currently highlighted model.

Model List Table

The table of models fit to the series contains columns that show the model label, the fit range and evaluation range used to fit the models, and all of the currently selected fit statistics. You can change the selection of fit statistics by using the Statistics of Fit Selection window.

Click on column headings to sort the table by a particular column. If a model is highlighted, clicking with the right mouse button invokes a pop-up menu that provides actions applicable to the highlighted model. It includes the following items.

```
View Model
```

opens the Model Viewer on the selected model. This is the same as "Model Predictions" under the View menu.

View Parameter Estimates
opens the Model Viewer to display the parameter estimates table for the currently highlighted model. This is the same as "Parameter Estimates" under the View menu.

View Statistics of Fit
opens the Model Viewer to display the statistics of fit table for the currently highlighted model. This is the same as "Statistics of FIt" under the View menu.

Edit Model
opens the appropriate model specification window for changing the attributes of the highlighted model and fitting the modified model.

Refit Model
refits the highlighted model using the current fit range.
Reevaluate Model
reevaluates the highlighted model using the current evaluation range.
Delete Model
deletes the highlighted model from the project.
View Forecasts
opens the Model Viewer to show the forecasts for the highlighted model. This is the same as "Forecast Graph" under the View menu.

Menu Bar

```
File
```


Save

opens a dialog which lets you save the contents of the table to a specified SAS data set.
Import Data
is available if you license SAS/Access software. It opens an Import Wizard, which you
can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

```
Export Data
```

is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

```
Print
```

sends the contents of the table to a printer as defined through Print Setup.
Print Setup
opens the Print Setup window, which allows you to access your operating system print setup.

Close
closes the window and returns to the Manage Forecasting Projects window.

Edit

Edit Model

enables you to modify the specification of the currently highlighted model in the table and fit the modified model. The new model replaces the current model in the table.

```
Refit Model
```

refits the currently highlighted model using data within the current fit range.
Reevaluate Model
recomputes statistics of fit for the currently highlighted model using data within the current evaluation range.

```
Delete Model
```

deletes the currently highlighted model from the model table.
Reset
restores the contents of the Model List window to the state initially displayed.

View

Series

opens the Time Series Viewer window to display plots of the current series. This is the same as the View Series Graphically icon.

Model Predictions

opens the Model Viewer to display a predicted and actual plot for the currently highlighted model. This is the same as the View Model Graphically icon.
opens the Model Viewer to display the prediction errors for the currently highlighted model.
opens the Model Viewer to display the prediction error autocorrelations, partial autocorrelations, and inverse autocorrelations for the currently highlighted model.

Prediction Error Tests
opens the Model Viewer to display graphs of white noise and stationarity tests on the prediction errors of the currently highlighted model.

Parameter Estimates
opens the Model Viewer to display the parameter estimates table for the currently highlighted model.

Statistics of Fit
opens the Model Viewer window to display goodness-of-fit statistics for the currently highlighted model.

Forecast Graph
opens the Model Viewer to graph the forecasts for the currently highlighted model.
Forecast Table
opens the Model Viewer to display forecasts for the currently highlighted model in a table.

Options

Statistics of Fit
opens the Statistics of Fit Selection window, which presents a list of statistics that the system can display. Use this action to customize the list of statistics shown in the Model Viewer, Automatic Model Fitting Results, and Model Fit Comparison windows and available for selection in the Model Selection Criterion menu.

Column Labels
enables you to set long or short column labels. Long labels are used by default.

Model Selection Criterion Window

Use the Model Selection Criterion window to select the model selection criterion statistic used by the automatic selection process to determine the best fitting forecasting model. Model selection criterion statistics are a subset of those shown in the Statistics of Fit Selection window, since some statistics of fit, such as number of observations, are not useful for model selection.

This window is available from the Model Selection Criterion item of the Options menu of the Develop Models window, Automatic Model Fitting window, and Produce Forecasts window.

Model Selection Criterion

```
Sum of Square Error
Mean Square Error
Root Mean Square Error
Mean Absolute Error
Mean Absolute Percent Error
Akaike Information Criterion
Schwarz Bayesian Information Criterion
R-Square
Adjusted R-Square
Random Walk R-Square
Amemiya's Adjusted R-Square
Amemiya's Prediction Criterion
```

 C Show subset C Show all
 OK Cancel Help

Controls and Fields

Show subset
when selected, lists only those model selection criterion statistics that are selected in the Statistics of Fit Selection window.

Show all
when selected, lists all available model selection criterion statistics.
OK
closes the window and sets the model selection criterion to the statistic you specified.
Cancel
closes the window without changing the model selection criterion.

Model Selection List Editor Window

Use the Model Selection List Editor window to edit the model selection list, including adding your own custom models, and to specify which models in the list are to be used in the automatic fitting process. Access it from the Options menu in the Develop Models, Automatic Model Fitting window, Produce Forecasts, and Manage Projects windows.

The window initially displays the current model list for your project. You can modify this set of models in several ways:

- Open one or more alternate model lists to replace or append to the current model list. These can be either model lists included with the software or model lists previously saved by you or other users.
- Turn the autofit option on or off for individual models. Those that are not flagged for autofit will be available by using the Models to Fit window but not by using automatic model fitting.
- Delete models from the list that are not needed for your project.
- Reorder the models in the list.
- Edit models in the list.
- Create a new empty list.
- Add new models to the list.

Having modified the current model list, you can save it for future use in several ways:

- Save it in a catalog so it can be opened later in the Model Selection List Editor.
- Save it as the user default to be used automatically when new projects are created.
- Select close to close the Model Selection List Editor and attach the modified model selection list to the current project.
- Select cancel to close the Model Selection List Editor without changing the current project's model selection list.

Since model selection lists are not bound to specific data sources, care must be taken when including data-specific features such as interventions and regressors. When you add an ARIMA, Factored ARIMA, or Custom model to the list, you can add regressors by selecting from the variables in the current data set. If there is no current data set, you will be prompted to specify a data set so you can select regressors from the series it contains.

If you use a model list that has models with a particular regressor name on a data set that does not contain a series of that name, model fitting will fail. However, you can make global changes to the regressor names in the model list by using Set regressor names. For example, you might use the list of dynamic regression models found in the sashelp.forcast catalog. It uses the regressor name "price." If your regessor series is named "x," you can specify "price" as the current regressor name and "x" as the "change to" name. The change will be applied to all models in the list that contain the specified regressor name.

Interventions cannot be defined for models defined from the Model Selection List Editor. However, you can define interventions by using the Intervention Specification Window and apply them to your models by turning on the Include Interventions option.

Auto Fit

The auto fit column of check boxes enables you to eliminate some of the models from being used in the automatic fitting process without having to delete them from the list. By default, all models are checked, meaning that they are all used for automatic fitting.

Model

This column displays the descriptions of all models in the model selection list. You can select one or more models by clicking them. Selected models are highlighted and become the object of the actions Edit, Move, and Delete.

Menu Bar

File

New
creates a new empty model selection list.
Open
opens a dialog for selecting one or more existing model selection lists to open. If you select multiple lists, they are all opened at once as a concatenated list. This helps you build large specialized model lists quickly by mixing and matching various existing lists such as the various ARIMA model lists included in SASHELP.FORCAST. By default,
the lists you open replace the current model list. Select the "append" radio button if you want to append them to the current model list.

Open System Default
opens the default model list supplied with the product.
Cancel
exits the window without applying any changes to the current project's model selection list.

Close
closes the window and applies any changes made to the project's model selection list.
Save
opens a dialog for saving the edited model selection list in a catalog of your choice.
Save as User Default
saves your edited model list as a default list for new projects. The location of this saved list is shown on the message line. When you create new projects, the system searches for this model list and uses it if it is found. If it is not found, the system uses the original default model list supplied with the product.

Edit

Reset
restores the list to its initial state when the window was invoked.
Add Model
enables you to add new models to the selection list. You can use the Smoothing Model Specification window, the ARIMA Model Specification window, the Factored ARIMA Model Specification window, or the Custom Model Specification window.

```
Edit Selected
```

opens the appropriate model specification window for changing the attributes of the highlighted model and adding the modified model to the selection list. The original model is not deleted.

Move Selected
enables you to reorder the models in the list. Select one or more models, then select Move Selected from the menu or toolbar. A note appears on the message line: "Select the row after which the selected models are to be moved." Then select any unhighlighted row in the table. The selected models will be moved after this row.

Delete
deletes any highlighted models from the list. This item is not available if no models are selected.

Set Regressor Names
opens a dialog for changing all occurrences of a given regressor name in the models of the current model selection list to a name that you specify.

```
Select All
```

selects all models in the list.
Clear Selections
deselects all models in the list.

Select All for Autofit

checks the autofit check boxes of all models in the list.
Clear Autofit Selections
deselects the autofit check boxes of all models in the list.

Mouse Button Actions

Clicking any model description in the table selects (highlights) that model. Clicking the same model again deselects it. Multiple selections are allowed.

Clicking the auto fit check box in any row toggles the associated model's eligibility for use in automatic model fitting.

Right-clicking the right mouse button opens a pop-up menu.

Model Viewer Window

This resizable window provides plots and tables of actual values, model predictions, forecasts, and related statistics. The various plots and tables available are referred to as views. The section "View Selection Icons" on page 2617 explains how to change the view.

You can access Model Viewer in a number of ways, including the View Model Graphically icon of the Develop Models and Model List windows, the Graph button of the Automatic Model Fitting Results window, and the Model item under the View menu in the Manage Forecasting Project window. In addition, you can go directly to a selected view in the Model Viewer window by selecting Model Predictions, Prediction Errors, Statistics of Fit, Prediction Error Autocorrelations, Prediction Error Tests, Parameter Estimates, Forecast Graph, or Forecast Table from the View menu or corresponding toolbar icon or pop-up menu item in the Develop Models, Model List, or Automatic Model Fitting Results windows.

The state of the Model Viewer window is controlled by the current model and the currently selected view. You can resize this window, and you can use other windows without closing the Model Viewer window. By default, the Model Viewer window is automatically updated to display the new model when you switch to working with another model (that is, when you highlight a different model). You can unlink the Model Viewer window from the current model selection by selecting the Link/Unlink icon from the window's horizontal toolbar. See "Link/Unlink" in the section "Toolbar Icons" on page 2616.

For more information, see the section "Model Viewer" on page 2427.

Toolbar Icons

The Model Viewer window contains a horizontal row of icons called the Toolbar. Corresponding menu items appear under various menus. The function of each icon is explained in the following list.
zoom in
In the Model Predictions, Prediction Errors, and Forecast Graph views, the Zoom In action changes the mouse cursor into cross hairs that you can use with the left mouse button to define a region of the graph to zoom in on. In the Prediction Error Autocorrelations and Prediction Error Tests views, Zoom In reduces the number of lags displayed.

Zoom out
reverses the previous Zoom In action.
Link/Unlink viewer
disconnects or connects the Model Viewer window to the model table (Develop Models window, Model List window, or Automatic Model Fitting Results window). When the viewer is linked, selecting another model in the model table causes the model viewer to be updated to show the selected model. When the Viewer is unlinked, selecting another model does not affect the viewer. This feature is useful for comparing two or more models graphically. You can display a model of interest in the Model Viewer, unlink it, then select another model and open another Model Viewer window for that model. Position the viewer windows side by side for convenient comparisons of models, or use the Next Viewer icon or F12 function key to switch between them.
saves the contents of the Model Viewer window. By default, an HTML page is created. This enables you to display graphs and tables by using the Results Viewer or publish them on the Web or your intranet. See also "Save Graph As" and "Save Data As" under "Menu Bar" below.

Print
prints the contents of the viewer window.
Close
closes the Model Viewer window and returns to the window from which it was invoked.

View Selection Icons

At the right hand side of the Model Viewer window is a vertical toolbar to select the view-that is, the kind of plot or table that the viewer displays. Corresponding menu items appear under View in the menu bar. The function of each icon is explained in the following list.

Model Predictions
displays a plot of actual series values and model predictions over time. Click individual points in the graph to get a display of the type (actual or predicted), ID value, and data value in the upper right corner of the window.

Prediction Errors
displays a plot of model prediction errors (residuals) over time. Click individual points in the graph to get a display of the prediction error value in the upper right corner of the window.

Prediction Error Autocorrelations
displays horizontal bar charts of the sample autocorrelation, partial autocorrelation, and inverse autocorrelation functions for the model prediction errors. Overlaid line plots represent confidence limits computed at plus and minus two standard errors. Click any of the bars to display its value.

Prediction Error Tests
displays horizontal bar charts that represent results of white noise and stationarity tests on the model prediction errors. The first bar chart shows the significance probability of the LjungBox chi-square statistic computed on autocorrelations up to the given lag. Longer bars favor rejection of the null hypothesis that the series is white noise. Click any of the bars to display an interpretation.
The second bar chart shows tests of stationarity of the model prediction errors, where longer bars favor the conclusion that the series is stationary. Each bar displays the significance probability of the augmented Dickey-Fuller unit root test to the given autoregressive lag. Long bars represent higher levels of significance against the null hypothesis that the series contains a unit root. For seasonal data, a third bar chart appears for seasonal root tests. Click on any of the bars to display an interpretation.

```
Parameter Estimates
```

displays a table showing model parameter estimates along with standard errors and t tests for the null hypothesis that the parameter is zero.

Statistics of Fit
displays a table of statistics of fit for the selected model. The set of statistics shown can be changed by using the Statistics of Fit item under Options in the menu bar.

```
Forecast Graph
```

displays a plot of actual and predicted values for the series data range, followed by a horizontal reference line and forecasted values with confidence limits. Click individual points in the
graph to get a display of the type, date/time, and value of the data point in the upper right corner of the window.

Forecast Table
displays a data table with columns containing the date/time, actual, predicted, error (residual), lower confidence limit, and upper confidence limit values, together with any predictor series.

Menu Bar

File

Save Graph
saves the plot displayed in viewer window as a SAS/GRAPH grseg catalog entry. When the current view is a table, this menu item is not available. See also "Save" in the section "Toolbar Icons" on page 2616. If a graphics catalog entry name has not already been specified, this action functions like "Save Graph As."

Save Graph As
saves the current graph as a SAS/GRAPH grseg catalog entry in a SAS catalog that you specify and/or as an Output Delivery System (ODS) object. By default, an HTML page is created, with the graph embedded as a gif image.

Save Data
saves the data displayed in the viewer window in a SAS data set, where applicable.
Save Data As
saves the data in a SAS data set that you specify and/or as an Output Delivery System (ODS) object. By default, an HTML page is created, with the data displayed as a table.

Import Data
is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

Export Data
is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print Graph
prints the contents of the viewer window if the current view is a graph. This is the same as the Print toolbar icon. If the current view is a table, this menu item is not available.

Print Data
prints the data displayed in the viewer window, where applicable.
Print Setup
opens the Print Setup window, which allows you to access your operating system print setup.

Print Preview
opens a preview window to show how your plots will appear when printed.

Close
closes the Model Viewer window and returns to the window from which it was invoked.

Edit

Edit Model
enables you to modify the specification of the current model and to fit the modified model, which is then displayed in the viewer.

```
Refit Model
```

refits the current model by using data within the current fit range. This action also causes the ranges to be reset if the data range has changed.

Reevaluate Model
reevaluates the current model by using data within the current evaluation range. This action also causes the ranges to be reset if the data range has changed.

View
See "View Selection Icons" on page 2617. It describes each of the items available under "View," except "Zoom Way Out."

Zoom Way Out
zooms the plot out as far as it will go, undoing all prior zoom in operations.

Tools

Link Viewer
See "Link/Unlink" in the section "Toolbar Icons" on page 2616.
Options

Time Ranges
opens the Time Ranges Specification window to enable you to change the period of fit, period of evaluation, or forecast horizon to be applied to subsequently fit models.

Statistics of Fit
opens the Statistics of Fit Selection window, which presents a list of statistics that the system can display. Use this action to customize the list of statistics shown in the statistics of fit table and available for selection in the Model Selection Criterion menu.

Forecast Options
opens the Forecast Options window, which enables you to control the widths of forecast confidence limits and control the kind of predicted values computed for models that include series transformations.

Residual Plot Options
Provides a choice of four methods of computing prediction errors for models which include a data transformation.

Prediction Errors
computes the difference between the transformed series actual values and model predictions.

Normalized Prediction Errors
computes prediction errors in normalized form.
Model Residuals
computes the difference between the untransformed series values and the untransformed model predictions.

Normalized Model Residuals
computes model residuals in normalized form.
Number of Lags
opens a window to enable you to specify the number of lags shown in the Prediction Error Autocorrelations and Prediction Error Tests views. You can also use the Zoom In and Zoom Out actions to control the number of lags displayed.

Correlation Probabilities
controls whether the bar charts in the Prediction Error Autocorrelations view represent significance probabilities or values of the correlation coefficient. A check mark or filled check box next to this item indicates that significance probabilities are displayed. In each case the bar graph horizontal axis label changes accordingly.

Include Interventions
controls whether intervention effects defined for the current series are automatically added as predictors to the models considered by the automatic selection process. A check mark or filled check box next to this item indicates that the option is turned on.

```
Print Audit Trail
```

prints to the SAS log information about the models fit by the system. A check mark or filled check box next to this item indicates that the audit option is turned on.

Show Source Statements
controls whether SAS statements submitted by the forecasting system are printed in the SAS log. When the Show Source Statements option is selected, the system sets the SAS system option SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option. Note that only some of the functions performed by the forecasting system are accomplished by submitting SAS statements. A check mark or filled check box next to this item indicates that the option is turned on.

Mouse Button Actions

You can examine the data values of individual points in the Model Predictions, Model Prediction Errors, and Forecast Graph views of the Model Viewer by clicking the point. The date/time and data values as well as the type (actual, predicted, and so forth) are displayed in a box that appears in the upper right corner of the Viewer window. Click the mouse elsewhere or select any action to dismiss the data box.

Similarly, you can display values in the Prediction Error Autocorrelations view by clicking any of the bars. Clicking bars in the Prediction Error Tests view displays a Recommendation for Current View window which explains the test represented by the bar.

When you select the Zoom In action in the Predicted Values, Model Prediction Errors, and Forecasted Values views, you can use the mouse to define a region of the graph to zoom. Position the
mouse cursor at one corner of the region, press the left mouse button, and move the mouse cursor to the opposite corner of the region while holding the left mouse button down. When you release the mouse button, the plot is redrawn to show an expanded view of the data within the region you selected.

Models to Fit Window

Use the Models to Fit window to fit models by choosing them from the current model selection list. Access it by using "Fit Models from List" under the Fit Model submenu of the Edit menu in the Develop Models window, or the pop-up menu that appears when you click an empty area of the model table in the Develop Models window. If you want to alter the list of models that appears here, use the Model Selection List editor window.

To select a model to be fit, use the left mouse button. To select more than one model to fit, drag with the mouse, or select the first model, then press the shift key while selecting the last model. For noncontiguous selections, press the control key while selecting with the mouse. To begin fitting the models, double-click the last selection or select the OK button.

If series diagnostics have been performed, the radio box is available. If the Subset by series diagnostics radio button is selected, only those models in the selection list that fit the diagnostic criteria will be shown for selection. If you want to choose models that do not fit the diagnostic criteria, select the Show all models button.

Controls and Fields

Show all models
when selected, lists all available models, regardless of the setting of the series diagnostics options.

Subset by series diagnostics
when selected, lists only the available models that are consistent with the series diagnostics options.

OK
closes the Models to Fit window and fits the selected models.
Cancel
closes the window without fitting any models. Any selections you made are lost.

Polynomial Specification Window

Use the Polynomial Specification window to add a polynomial to an ARIMA model. The set of lags defined here become a polynomial factor, denoted by a list of lags in parentheses, when you select "OK." If you accessed this window from the AR Polynomial Specification window, then it is added to the autoregressive part of the model. If you accessed it from the MA Polynomial Specification window, it is added to the moving-average part of the model.

Polynomial Specification Window $-\square \mid x$

Controls and Fields

Lag
specifies a lag value to add to the list. Type in a positive integer or select one by clicking the
spin box arrows.
Add
adds the value in the Lag spin box to the list of polynomial lags. Duplicate values are not allowed.

Remove
deletes a selected lag from the list of polynomial lags.
Polynomial Lags
is a list of unique integers that represent lags to be added to the model.
OK
closes the window and returns the specified polynomial to the AR or MA polynomial specification window.

Cancel
closes the window and discards any polynomial lags added to the list.

Produce Forecasts Window

Use the Produce Forecasts window to produce forecasts for the series in the current input data set for which you have fit forecasting models. Access it by using the Produce Forecasts button of the Time Series Forecasting window.

Controls and Fields

Input Data Set
is the name of the current input data set. To specify the input data set, you can type a one-level or two-level SAS data set name in this field or select the Browse button to the right of the field.

Input data set Browse button
opens the Data Set Selection window to enable you to select the input data set.
Time ID
is the name of the time ID variable for the input data set. To specify this variable, you can type the ID variable name in this field or use the Select button.
Time ID select button
opens the Time ID Variable Specification window.
Create button
opens a menu of choices of methods for creating a time ID variable for the input data set. Use this feature if the input data set does not already contain a valid time ID variable.

Interval
is the time interval between observations (data frequency) in the current input data set. If the interval is not automatically filled in by the system, you can type in an interval name here, or select one from the pop-up list.

Series
indicates the number and names of time series variables for which forecasts will be produced.
Series Select button
opens the Series to Process window to let you select the series for which you want to produce forecasts.

Forecast Output Data set
is the name of the output data set that will contain the forecasts. Type the name of the output data set in this field or click the Browse button.

Forecast Output Browse button
opens a dialog to let you locate an existing data set to which to save the forecasts.
Format
enables you to select one of three formats for the forecast data set:
Simple
specifies the simple format for the output data set. The data set contains the time ID variable and the forecast variables and contains one observation per time period. Observations for earlier time periods contain actual values copied from the input data set; later observations contain the forecasts.

Interleaved
specifies the interleaved format for the output data set. The data set contains the time ID variable, the variable TYPE, and the forecast variables. There are several observations per time period, with the meaning of each observation identified by the TYPE variable.

Concatenated
specifies the concatenated format for the output data set. The data set contains the variable SERIES, the time ID variable, and the variables ACTUAL, PREDICT, ERROR,

LOWER, and UPPER. There is one observation per time period per forecast series. The variable SERIES contains the name of the forecast series, and the data set is sorted by SERIES and DATE.

Horizon

is the number of periods or years to forecast beyond the end of the input data range. To specify the forecast horizon, you can type a value in this field or select one from the pop-up list.

```
Horizon periods
```

selects the units to apply to the horizon. By default, the horizon value represents number of periods. For example, if the interval is month, the horizon represents the number of months to forecast. Depending on the interval, you can also select weeks or years, so that the horizon is measured in those units.

Horizon date
is the ending date of the forecast horizon. You can type in a date that uses a form recognized by a SAS date informat, or you can increment or decrement the date shown by using the left and right arrows. The outer arrows change the date by a larger amount than the inner arrows. The date field and the horizon field reset each other, so you can use either one to specify the forecasting horizon.

Run button
produces forecasts for the selected series and stores the forecasts in the specified output SAS data set.

Output button
opens a Viewtable window to display the output data set. This button becomes available once the forecasts have been written to the data set.

Close button
closes the Produce Forecasts window and returns to the Time Series Forecasting window.

Menu Bar

File

Import Data

is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.

Export Data
is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print Setup
opens the Print Setup window, which allows you to access your operating system print setup.
closes the Produce Forecasts window and returns to the Time Series Forecasting window.

View

Input Data Set
opens a Viewtable window to browse the current input data set.
Output Data Set
opens a Viewtable window to browse the output data set. This is the same as the Output button.

Tools

Produce Forecasts
produces forecasts for the selected series and stores the forecasts in the specified output SAS data set. This is the same as the Run button.

Options

Default Time Ranges
opens the Default Time Ranges window to enable you to control how the system sets the time ranges when new series are selected.

Model Selection List
opens the Model Selection List editor window. Use this to edit the set of forecasting models considered by the automatic model selection process and displayed by the Models to Fit window.

Model Selection Criterion
opens the Model Selection Criterion window, which presents a list of goodness-of-fit statistics and enables you to select the fit statistic that is displayed in the table and used by the automatic model selection process to determine the best fitting model.

Statistics of Fit
opens the Statistics of Fit Selection window, which presents a list of statistics that the system can display. Use this action to customize the list of statistics shown in the Statistics of Fit table and available for selection in the Model Selection Criterion window.

Forecast Options
opens the Forecast Options window, which enables you to control the widths of forecast confidence limits and control the kind of predicted values computed for models that include series transformations.

Forecast Data Set
enables you to select one of three formats for the forecast data set. See Format, which is described previously in this section.

Alignment of Dates

Beginning
aligns dates that the system generates to identify forecast observations in output data sets to the beginning of the time intervals.

```
Middle
    aligns dates that the system generates to identify forecast observations in output data
    sets to the midpoints of the time intervals.
End
aligns dates that the system generates to identify forecast observations in output data sets to the end of the time intervals.
```

```
Automatic Fit
```

Automatic Fit
opens the Automatic Model Selection Options window, which enables you to control the number of models retained by the automatic model selection process and whether the models considered for automatic selection are subset according to the series diagnostics.

```
```

Set Toolbar Type

```
Set Toolbar Type
    Image Only
        displays the toolbar items as icons without text.
    Label Only
        displays the toolbar items as text without icon images.
    Both
        displays the toolbar items as both text and icon images.
Include Interventions
controls whether intervention effects defined for the current series are automatically added as predictors to the models considered by the automatic selection process. A check mark or filled check box next to this item indicates that the option is turned on.
```

```
Print Audit Trail
```

Print Audit Trail
prints to the SAS log information about the models fit by the system. A check mark or filled check box next to this item indicates that the audit option is turned on.
Show Source Statements
controls whether SAS statements submitted by the forecasting system are printed in the SAS log. When the Show Source Statements option is selected, the system sets the SAS system option SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option. Note that only some of the functions performed by the forecasting system are accomplished by submitting SAS statements. A check mark or filled check box next to this item indicates that the option is turned on.

```

\section*{Regressors Selection Window}

Use the Regressors Selection window to select one or more time series variables in the input data set to include as regressors in the forecasting model to predict the dependent series. Access it from the pop-up menu that appears when you select the Add button of the ARIMA Model Specification window or Custom Model Specification window.


\section*{Controls and Fields}

Dependent
is the name and variable label of the current series.
Regressors
is a table listing the names and labels of the variables in the input data set available for selection as regressors. The variables that you select are highlighted. Selecting a highlighted row again deselects that variable.

OK
closes the Regressors Selection window and adds the selected variables as regressors in the model.

Cancel
closes the window without adding any regressors. Any selections you made are lost.
Reset
resets all options to their initial values upon entry to the window.

\section*{Save Data As}

Use Save Data As from the Time Series Viewer Window or the Model Viewer Window to save data displayed in a table to a SAS data set or external file.

Use Save Forecast As from the Develop Models Window to save forecasts and related data including the series name, model, and interval. It supports append mode, enabling you to accumulate the forecasts of multiple series in a single data set.


To save your data in a SAS data set, provide a library name or assign one by using the Browse button, then provide a data set name or accept the default. Enter a descriptive label for the data set in the Label field. Click OK to save the data set. If you specify an existing data set, it will be overwritten, except in the case of Save Forecast As.

External file output takes advantage of the Output Delivery System (ODS) and is designed primarily for creating HTML tables for Web reporting. You can build a set of Web pages quickly and use the ODS Results window to view and organize them. To use this feature, check Save External File in the External File Output box. To set ODS options, click Results Preferences, then select the Results tab in the Preferences dialog.

If you have previously saved data of the current type, the system remembers your previous labels and titles. To reuse them, click the arrow button to the right of each of these window fields.

Use the Customize button if you need to specify the name of a custom macro that contains ODS statements. The default macro simply runs the PRINT procedure. A custom macro can be used to add PRINT procedure and/or ODS statements to customize the type and organization of output files produced.

\section*{Save Graph As}

Use Save Graph As from the Time Series Viewer Window or the Model Viewer Window to save any of the graphs in a catalog or external file.


To save your graph as a grseg catalog entry, enter a two level name for the catalog or select Browse to open an Open dialog. Use it to select an existing library or assign a new one and then select a catalog to contain the graph. Click the Open button to open the catalog and close the dialog. Then enter a graphics entry name (eight characters or less) and a label or accept the defaults and click the OK button to save the graph.

External file output takes advantage of the Output Delivery System (ODS) and is designed primarily for creating gif images and HTML for Web reporting. You can build a set of Web pages that contain graphs and use the Results window to view and organize them. To use this feature, check Save External File in the External File Output box. To set ODS options, click Results Preferences, then select the Results tab in the Preferences dialog.

If you have previously saved graphs of the current type, the system remembers your previous labels and titles. To reuse them, click the arrow button to the right of each of these window fields.

Use the Customize button if you need to specify the name of a custom macro that contains ODS statements. The default macro simply runs the GREPLAY procedure. Users familiar with ODS
might want to add statements to the macro to customize the type and organization of output files produced.

\section*{Seasonal ARIMA Model Options Window}

Use the Seasonal ARIMA Model Options window to specify the autoregressive, differencing, and moving-average orders for the seasonal part of a model defined by using the Custom Model Specification window. Access it by selecting "Seasonal ARIMA..." from the Seasonal Model combo box of that window.

\section*{Seasonal ARIMA Model Options}


\section*{Controls and Fields}

ARIMA Options
Use these combo boxes to specify the orders of the ARIMA model. You can either type in a value or click the combo box arrow to select from a pop-up list.

Autoregressive
defines the order of the seasonal autoregressive part of the model.
Differencing
defines the order of seasonal differencing.
Moving Average
defines the order of the seasonal moving-average term.
closes the Seasonal ARIMA Model Options window and returns to the Custom Model Specification window.

Cancel
closes the Seasonal ARIMA Model Options window and returns to the Custom Model Specification window, discarding any changes made.

Reset
resets all options to their initial values upon entry to the window.

\section*{Series Diagnostics Window}

Use the Series Diagnostics window to set options to limit the kinds of forecasting models considered for the series according to series characteristics. Access it by selecting "Diagnose Series" from the Tools menu in the Develop Models, Manage Project, and Time Series Viewer window menu bars. You can let the system diagnose the series characteristics automatically or you can specify series characteristics according to your judgment by using the radio buttons.

\section*{Series Diagnostics}

Series: HSTOTAL: Housing Starts, Total Private
Series Characteristics:
\begin{tabular}{|c|c|c|c|}
\hline Log Transform: & \(C\) Yes & CNo & C Maybe \\
\hline Trend: & CYes & CNo & \(C\) Maybe \\
\hline Seasonality: & CYes & CNo & \(\cdots\) Maybe \\
\hline
\end{tabular}

\section*{Automatic Series Diagnostics}


For each of the options Log Transform, Trend, and Seasonality, the value "Yes" means that only models appropriate for series with that characteristic should be considered. The value "No" means that only models appropriate for series without that characteristic should be considered. The value "Maybe" means that models should be considered without regard for that characteristic.

\section*{Controls and Fields}
```

Series

```
is the name and variable label of the current series.
```

Series Characteristics

```

Log Transform
specifies whether forecasting models with or without a logarithmic series transformation are appropriate for the series.

Trend
specifies whether forecasting models with or without a trend component are appropriate for the series.

Seasonality
specifies whether forecasting models with or without a seasonal component are appropriate for the series.

Automatic Series Diagnostics
performs the automatic series diagnostic process. The options Log Transform, Trend, and Seasonality are set according to the results of statistical tests.

OK
closes the Series Diagnostics window.
Cancel
closes the Series Diagnostics window without changing the series diagnostics options. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the Series Diagnostics window.
Clear
resets all options to their default values.

\section*{Series Selection Window}

Use this resizable window to select a time series variable by specifying a library, a SAS data set or view, and a variable. These selections can be made by typing, by selecting from lists, or by a combination of the two. In addition, you can control the time ID variable and time interval, and you can browse the data set or view plots of the series from this window.

Series Selection

\section*{-}


Time Series Variables



This window appears automatically when you select the View Series Graphically or Develop Models buttons in the Time Series Forecasting window and no series has been selected, and when you open the Time Series Viewer as a standalone tool. It is also invoked by using the Browse button in the Develop Models window.

The system requires that series names be unique for each frequency (interval) within the forecasting project. If you select a series from the current input data set that already exists in the project with the same interval but a different input data set name, the system warns you and gives you the option to cancel the selection, to refit all models associated with the series by using the data from the current input data set, to delete the models for the series, or to inherit the existing models.

\section*{Controls and Fields}

\section*{Library}
is a SAS libname assigned within the current SAS session. If you know the libname associated with the data set of interest, you can type it in this field and press Return. If it is a valid choice, it will appear in the libraries list and will be highlighted. The SAS Data Sets list will be populated with data sets associated with that libname.

Data Set
is the name of a SAS data set (data file or data view) that resides under the selected libname. If you know the name, you can type it in and press Return. If it is a valid choice, it will appear in the SAS Data Sets list and will be highlighted, and the Time Series Variables list will be populated with the numeric variables in the data set.

\section*{Variable}
is the name of a numeric variable contained in the selected data set. You can type the variable name in this field or you can select the variable with the mouse from the Time Series Variables list.

Time ID
is the name of the ID variable for the input data set. To specify the ID variable, you can type the ID variable name in this field or click the Select button.

Select button
opens the Time ID Variable Specification window to let you select an existing variable in the data set as the Time ID.

Create button
opens a menu of methods for creating a time ID variable for the input data set. Use this feature if the data set does not already contain a valid time ID variable.

Interval
is the time interval between observations (data frequency) in the selected data set. If the interval is not automatically filled in by the system, you can type in an interval name or select one from the pop-up list. For more information about intervals, see Chapter 4, "Date Intervals, Formats, and Functions," in this book.

This button is present when you have selected "Develop Models" from the Time Series Forecasting window. It closes the Series Selection window and makes the selected series the current series.

Close
If you have selected the View Series Graphically icon from the Time Series Forecasting window, this button returns you to that window. If you have selected a series, it remains selected as the current series.

If you are using the Time Series Viewer as a standalone application, this button closes the application.

Cancel
This button is present when you have selected "Develop Models" from the Time Series Forecasting window. It closes the Series Selection window without applying any selections made.

Reset
resets the fields to their initial values at entry to the window.
Table
opens a Viewtable window for browsing the selected data set. This can assist you in locating the variable containing data you are looking for.

Graph
opens the Time Series Viewer window to display the selected time series variable. You can switch to a different series in the Series Selection window without closing the Time Series Viewer window. Position the windows so they are both visible, or use the Next Viewer toolbar icon or F12 function key to switch between windows.

Refresh
updates all fields and lists on the window. If you assign a new libname without exiting the Series Selection window, use the refresh action to update the Libraries list so that it will include the newly assigned libname. Also use the Refresh action to update the variables list if the input data set is changed.

\section*{Selection Lists}

Libraries
displays a list of currently assigned libnames. You can select a libname by clicking it, which is equivalent to typing its name in the Library field. If you cannot locate the library or directory you are interested in, go to the SAS Explorer window, select "New" from the File menu, then select "Library" and "OK." This opens the New Library dialog window. You also assign a libname by submitting a libname statement from the Editor window. Select the Refresh button to make the new libname available in the libraries list.

SAS Data Sets
displays a list of the SAS data sets (data files or data views) located under the selected libname. You can select one of these by clicking it, which is equivalent to typing its name in the Data Set field.

Time Series Variables
displays a list of numeric variables contained within the selected data set. You can select one of these by clicking it, which is equivalent to typing its name in the Variable field. You can double-click a series to select it and exit the window.

\section*{Series to Process Window}

Use the Series to Process window to select series for model fitting or forecasting. Access it by using the Select button in the Automatic Model Fitting and Produce Forecasts windows. Hold down the shift key or drag with the left mouse button for multiple selections. Use the control key for noncontiguous multiple selections. Once you make selections and select OK, the number of selected series and their names are listed in the Series to Process field of the calling window (with ellipses if not all the names will fit).

When invoked from Automatic Model Fitting, the Series to Process window shows all the numeric variables in the input data set except the time ID variable. These are the series which are currently available for model fitting.

When invoked from Produce Forecasts, the Series to Process window shows all the series in the input data set for which models have been fit. These are the series which are currently available for forecasting.

\section*{Series to Process}

Available Series
\begin{tabular}{ll} 
AIRRPMD & Airline Revenue Passenger Miles Domestio \\
AIRRPMT & Mand \\
CHEMICAL & Airline Revenue Passenger Miles Total \\
COAL & Sales: Chemicals and Allied Products \\
DURABLES & Bituminous Coal Production \\
HSIFAM & Sales: Durable Goods Industries, Total \\
HSTOTAL & Housing Starts, One-familystructures \\
NONDUR & Housing Starts, Total Private \\
PETROL & Sales: Nondurable Goods Industries Total \\
TOBACCO & Sales: Petroleumand Coal Products \\
VEHICLES & Sales: Tobacco Products
\end{tabular}


\section*{Controls and Fields}

OK
closes the window and applies the series selection(s) which have been made. At least one series must be selected.

Cancel
closes the window, ignoring series selections which have been made, if any.
Clear
deselects all series in the selection list.
All
selects all series in the selection list.

\section*{Series Viewer Transformations Window}

Use the Series Viewer Transformations window to view plots of transformations of the current series in the Time Series Viewer window. It provides a larger set of transformations than those available from the viewer window's toolbar. It is invoked by using "Other Transformations" under the Tools menu of the Time Series Viewer window. The options that you specify in this window are applied to the series displayed in the Time Series Viewer window when you select "OK" or "Apply."

Use the Apply button if you want to make repeated transformations to a series without having to close and reopen the Series Viewer Transformations window each time.


\section*{Controls and Fields}

Series
is the variable name for the current time series.
Transformation
is the transformation applied to the time series displayed in the Time Series Viewer window. Select Log, Logistic, Square Root, Box-Cox, or none from the pop-up list.

Simple Differencing
is the order of differencing applied to the time series displayed in the Time Series Viewer window. Select a number from 0 to 5 from the pop-up list.

Seasonal Differencing
is the order of seasonal differencing applied to the time series displayed in the Time Series Viewer window. Select a number from 0 to 3 from the pop-up list.

Percent Change
is a check box that if selected displays the series in terms of percent change from the previous period.

Additive Decomposition
is a check box that produces a display of a selected series component derived by using additive decomposition.

Multiplicative Decomposition
is a check box that produces a display of a selected series component derived using multiplicative decomposition.

Component
selects a series component to display when either additive or multiplicative decomposition is
turned on. You can display the seasonally adjusted component, the trend-cycle component, the seasonal component, or the irregular component-that is, the residual that remains after removal of the other components. The heading in the viewer window shows which component is currently displayed.

OK
applies the transformation options you selected to the series displayed in the Time Series Viewer window and closes the Series Viewer Transformations window.

Cancel
closes the Series Viewer Transformations window without changing the series displayed by the Time Series Viewer window.

Apply
applies the transformation options you selected to the series displayed in the Time Series Viewer window without closing the Series Viewer Transformations window.

Reset
resets the transformation options to their initial values upon entry to the Series Viewer Transformations window.

Clear
resets the transformation options to their default values (no transformations).

\section*{Smoothing Model Specification Window}

Use the Smoothing Model Specification window to specify and fit exponential smoothing and Winters method models. Access it from the Develop Models window by using the Fit Model submenu of the Edit menu or from the pop-up menu when you click an empty area of the model table.

\section*{Smoothing Model Specification}

Series: HSTOTAL: Housing Starts, Total Private
Model: Winters Method -- Multiplicative

Smoothing Methods:
ГSimple Smoothing
ГDouble (Brown) Smoothing
ГSeasonal Smoothing
SLinear (Holt) Smoothing
DDamped-Trend Smoothing
D Winters Method - Additive
Winters Method - Multiplicative


Smoothing Weights:
Level: Optimize
Trend: Optimize

Season: Optimize
Bounds: Zero-One/Additive \(\boldsymbol{\nabla}\)

Cancel
Reset

\section*{Controls and Fields}

Series
is the name and variable label of the current series.
Model
is a descriptive label for the model that you specify. You can type a label in this field or allow the system to provide a label. If you leave the label blank, a label is generated automatically based on the options you specify.

Smoothing Methods

Simple Smoothing
specifies simple (single) exponential smoothing.
Double (Brown) Smoothing
specifies double exponential smoothing by using Brown's one parameter model (single exponential smoothing applied twice).

Seasonal Smoothing
specifies seasonal exponential smoothing. (This is like Winters method with the trend term omitted.)

Linear (Holt) Smoothing specifies exponential smoothing of both the series level and trend (Holt's two parameter model).

Damped-Trend Smoothing
specifies exponential smoothing of both the series level and trend with a trend damping weight.

Winters Method - Additive
specifies Winters method with additive seasonal factors.
Winters Method - Multiplicative
specifies Winters method with multiplicative seasonal factors.

Smoothing Weights
displays the values used for the smoothing weights. By default, the Smoothing Weights fields are set to "optimize," which means that the system will compute the weight values that best fit the data. You can also type smoothing weight values in these fields.

Level
is the smoothing weight used for the level of the series.
Trend
is the smoothing weight used for the trend of the series.
Damping
is the smoothing weight used by the damped-trend method to damp the forecasted trend towards zero as the forecast horizon increases.

Season
is the smoothing weight used for the seasonal factors in Winters method and seasonal exponential smoothing.

\section*{Transformation}
displays the series transformation specified for the model. When a transformation is specified, the model is fit to the transformed series, and forecasts are produced by applying the inverse transformation to the model predictions. Select Log, Logistic, Square Root, Box-Cox, or None from the pop-up list.

Bounds
displays the constraints imposed on the fitted smoothing weights. Select one of the following from the pop-up list:

Zero-One/Additive
sets the smoothing weight optimization region to the intersection of the region bounded by the intervals from zero \((0.001)\) to one \((0.999)\) and the additive invertible region. This is the default.

Zero-One Boundaries
sets the smoothing weight optimization region to the region bounded by the intervals from zero ( 0.001 ) to one ( 0.999 ).

Additive Invertible
sets the smoothing weight optimization region to the additive invertible region.
Unrestricted
sets the smoothing weight optimization region to be unbounded.
Custom
opens the Smoothing Weights window to enable you to customize the constraints for smoothing weights optimization.

OK
closes the Smoothing Model Specification window and fits the model you specified.
Cancel
closes the Smoothing Model Specification window without fitting the model. Any options you specified are lost.

Reset
resets all options to their initial values upon entry to the window. This might be useful when editing an existing model specification; otherwise, Reset has the same function as Clear.
```

Clear

```
resets all options to their default values.

\section*{Smoothing Weight Optimization Window}

Use the Smoothing Weight Optimization window to specify constraints for the automatic fitting of smoothing weights for exponential smoothing and Winters method models. Access it from the Smoothing Models Specification window when you select "Custom" in the "Bounds" combo box.

\section*{Smoothing Weight Optimization}

\section*{Simple ES Optimization Restrictions}

C No restrictions on weight optimization.
\(\subset\) Bounded region described below only. \(C\) Additive invertible region only.
\(C\) Additive invertible and bounded region.
```

Smoothing Weight Bounded Region:
Level: To: 0.001 0.999

```


\section*{Controls and Fields}
```

No restrictions

```
when selected, specifies unrestricted smoothing weights.
Bounded region
when selected, restricts the fitted smoothing weights to be within the bounds that you specify with the "Smoothing Weight Bounded Region" options.

Additive invertible region
when selected, restricts the fitted smoothing weights to be within the additive invertible region of the parameter space of the ARIMA model equivalent to the smoothing model. (See the section "Smoothing Models" on page 2669 for details.)

Additive invertible and bounded region
when selected, restricts the fitted smoothing weights to be both within the additive invertible region and within bounds that you specify.

Smoothing Weight Bounded Region
is a group of numeric entry fields that enable you to specify lower and upper limits on the fitted value of each smoothing weight. The fields that appear in this part of the window depend on the kind of smoothing model that you specified.

OK
closes the window and sets the options that you specified.
Cancel
closes the window without changing any options. Any values you specified are lost.
Reset
resets all options to their initial values upon entry to the window.
Clear
resets all options to their default values.

\section*{Statistics of Fit Selection Window}

Use the Statistics of Fit Selection window to specify which of the available goodness-of-fit statistics are reported for models you fit and are available for selection as the model selection criterion used by the automatic selection process. This window is available under the Options menu in the Develop Models, Automatic Model Fitting, Produce Forecasts, and Model List windows, and from the Statistics button of the Model Fit Comparison window and Automatic Model Fitting results windows.

Statistics of Fit Selection

\section*{Select Statistic}


\section*{Controls and Fields}

Select Statistics Table
list the available statistics. Select a row of the table to select or deselect the statistic shown in that row.

OK
closes the window and applies the selections made.
Cancel
closes the window without applying any selections.
```

Clear

```
deselects all statistics.
All
selects all statistics.

\section*{Time ID Creation - 1,2,3 Window}

Use the Time ID Creation - 1,2,3 window to add a time ID variable to an input data set with observation numbers as the ID values. The interval for the series will be 1 . Use this approach if the data frequency does not match any of the system's date or date-time intervals, or if other methods of assigning a time ID do not work. To access this window, select "Create from observation numbers" from the Create pop-up list in any window where you can select a Time ID variable. For more information, see Chapter 4, "Date Intervals, Formats, and Functions," in this book.

\section*{Time ID Variable Creation -- 1,2,3,...}

Data set name: WORK.NO_ID.DATA

New ID variable name: DATE
(NOTE: The system automatically recognizes the time ID variable if you specify the name DATE.)

OK Cancel Help

\section*{Controls and Fields}

Data set name
is the name of the input data set.
New ID variable name
is the name of the time ID variable to be created. You can type any valid SAS variable name in this field.

OK
closes the window and proceeds to the next step in the time ID creation process.
Cancel
closes the window without creating a Time ID variable. Any options you specified are lost.

\section*{Time ID Creation from Several Variables Window}

Use the Time ID Creation from Several Variables window to add a SAS date valued time ID variable to an input data set when the input data set already contains several dating variables, such as day, month, and year. To access this window, select "Create from existing variables" from the Create pop-up list in any window where you can select a Time ID variable. For more information, see Chapter 38, "Creating Time ID Variables."

Time ID Creation from Several Variables


\section*{Controls and Fields}

Variables
is a list of variables in the input data set. Select existing ID variables from this list.
Date Part
is a list of date parts that you can specify for the selected ID variable. For each ID variable that you select from the Variables list, select the Date Part value that describes what the values of the ID variable represent.
arrow button
moves the selected existing ID variable and date part specification to the "Existing Time IDs" list. Once you have done this, you can select another ID variable from the Variables list.

New variable
is the name of the time ID variable to be created. You can type any valid SAS variable name in this field.

New interval
is the time interval between observations in the input data set implied by the date part ID variables you have selected.

OK
closes the window and proceeds to the next step in the time ID creation process.
Cancel
closes the window without creating a time ID. Any options you specified are lost.
Reset
resets the options to their initial values upon entry to the window.

\section*{Time ID Creation from Starting Date Window}

Use the Time ID Creation from Starting Date window to add a SAS date valued time ID variable to an input data set. This is a convenient way to add a time ID of any interval as long as you know the starting date of the series. To access this window, select "Create from starting date and frequency" from the Create pop-up list in any window where you can select a Time ID variable. For more information, see Chapter 38, "Creating Time ID Variables."

\section*{Time ID Creation from Starting Date}

Data set name: WORK.NO_ID.DATA
```

Starting Date:
Interval: MONTH

```
```

New ID variable name: DATE

```
(NOTE: The system automatically recog-
nizes the time ID variable if you spe-
cify the name DATE.)


\section*{Controls and Fields}

Data set name
is the name of the input data set.
Starting Date
is the starting date for the time series in the data set. Enter a date value in this field, using a form recognizable by a SAS date informat, for example, 1998:1, feb1997, or 03mar1998.

Interval
is the time interval between observations in the data set. Select an interval from the pop-up list.

New ID variable name
is the name of the time ID variable to be created. You can type any valid SAS variable name in this field.

OK
closes the window and proceeds to the next step in the time ID creation process.
Cancel
closes the window without changing the input data set. Any options you specified are lost.

\section*{Time ID Creation Using Informat Window}

Use the Time ID Creation using Informat window to add a SAS date valued time ID variable to an input data set. Use this window if your data set contains a date variable that is stored as a character string. Using the appropriate SAS date informat, the date string is read in and used to create a date or date-time variable. To access this window, select "Create from existing variable/informat" from the Create pop-up list in any window where you can select a Time ID variable.

Time Id Creation using Informat
Existing Variable and Informat:


New ID variable name: DATE
NOTE: The system automatically recognizes the time ID variable if you specify the name DATE.
OK Cancel Reset Help

\section*{Controls and Fields}

Variable Name
is the name of an existing ID variable in the input data set. Click the Select button to select a variable.
```

Select button

```
opens a list of variables in the input data set for you to select from.

\section*{Informat}
is a SAS date or datetime informat for reading date or datetime value from the values of the specified existing ID variable. You can type in an informat or select one from the pop-up list.
```

First Obs

```
is the value of the variable you selected from the first observation in the data set, displayed here for convenience.
```

Date Value

```
is the SAS date or datetime value read from the first observation value that uses the informat that you specified.

New ID variable name
is the name of the time ID variable to be created. You can type any valid SAS variable name in this field.

OK
closes the window and proceeds to the next step in the time ID creation process.
Cancel
closes the window without changing the input data set. Any options you specified are lost.
Reset
resets the options to their initial values upon entry to the window.

\section*{Time ID Variable Specification Window}

Use the Time ID Variable Specification window to specify a variable in the input data set that contains the SAS date or datetime value of each observation. You do not need to use this window if your time ID variable is named date, time, or datetime, since these are picked up automatically. Invoke the window from the Select button to the right of the Time ID field in the Data Set Selection, Automatic Model Fitting, Produce Forecasts, Series Selection, and Time Series Forecasting windows.

Time ID Variable Specification


\section*{Controls and Fields}

Data Set
is the name of the current input data set.
is the name of the currently selected Time ID variable, if any.
Interval
is the time interval between observations (data frequency) in the input data set.
Select a Time ID Variable
is a selection list of variables in the input set. Select one variable to assign it as the Time ID variable.

OK
closes the window and retains the selection made, if it is a valid time ID.
Cancel
closes the window and ignores any selection made.
Reset
restores the time ID variable to the one assigned when the window was initially opened, if any.

\section*{Time Ranges Specification Window}

Use the Time Ranges Specification window to control the period of fit and evaluation and the forecasting horizon. Invoke this window from the Options menu in the Develop Models, Manage Forecasting Project, and Model Viewer windows or the Set Ranges button in the Develop Models window.


\section*{Controls and Fields}

Data Set
is the name of the current input data set.
Interval
is the time interval (data frequency) for the input data set.
Series
is the variable name and label of the current time series.
Data Range
gives the date of the first and last nonmissing data values available for the current series in the input data set.

Period of Fit
gives the starting and ending dates of the period of fit. This is the time range used for estimating model parameters. By default, it is the same as the data range. You can type dates in these fields, or you can use the arrow buttons to the left and right of the date fields to decrement or increment the date values shown. Date values must be entered in a form recognized by a SAS date informat. (See SAS Language Reference: Concepts for information about SAS date informats.) The inner arrows increment by periods, the outer arrows increment by larger amounts, depending on the data interval.

Period of Evaluation
gives the starting and ending dates of the period of evaluation. This is the time range used for evaluating models in terms of statistics of fit. By default, it is the same as the data range. You can type dates in these fields, or you can use the control arrows to the left and right of the date fields to decrement or increment the date values shown. Date values must be entered in a form recognized by a SAS date informat. (See SAS Language Reference: Concepts for information about SAS date informats.) The inner arrows increment by periods, the outer arrows increment by larger amounts, depending on the data interval.

\section*{Forecast Horizon}
is the forecasting horizon expressed as a number of forecast periods or number of years (or number of weeks for daily data). You can type a number or select one from the pop-up list. The ending date for the forecast period is automatically updated when you change the number of forecasts periods.

Forecast Horizon - Units
indicates whether the Forecast Horizon value represents periods or years (or weeks for daily data).

Forecast Horizon Date Value
is the date of the last forecast observation. You can type a date in this field, or you can use the arrow buttons to the left and right of the date field to decrement or increment the date values shown. Date values must be entered in a form recognized by a SAS date informat. (See SAS Language Reference: Concepts for information about SAS date informats.) The Forecast Horizon is automatically updated when you change the ending date for the forecast period.
```

Hold-out Sample

```
specifies that a number of observations or years (or weeks) of data at the end of the data range are used for the period of evaluation with the remainder of data used as the period of fit. You can type a number in this field or select one from the pop-up list. When the hold-out sample
value is changed, the Period of Fit and Period of Evaluation ranges are changed to reflect the hold-out sample specification.

Hold-out Sample - Units
indicates whether the hold-out sample field represents periods or years (or weeks for daily data).

OK
closes the window and stores the specified changes.
Cancel
closes the window without saving changes. Any options you specified are lost.
Reset
resets the options to their initial values upon entry to the window.
Clear
resets all options to their default values.

\section*{Time Series Forecasting Window}

The Time Series Forecasting window is the main application window that appears when you invoke the Time Series Forecasting System. It enables you to specify a project file and an input data set and provides access to the other windows described in this chapter.

\section*{Time Series Forecasting}


\section*{Controls and Fields}

Project
is the name of the SAS catalog entry in which forecasting models and other results will be stored and from which previously stored results are loaded into the forecasting system. You can specify the project by typing a SAS catalog entry name in this field or by selecting the Browse button to right of this field. If you specify the name of an existing catalog entry, the information in the project file is loaded. If you specify a one-level name, the catalog name is assumed to be fmsproj and the library is assumed to be sasuser. For example, samproj is equivalent to sasuser.fmsproj.samproj.

\section*{Project Browse button}
opens the Forecasting Project File Selection window to enable you to select and load the project from a list of previously stored projects.

Description
is a descriptive label for the forecasting project. The description you type in this field will be stored with the catalog entry shown in the Project field.

Data Set
is the name of the current input data set. To specify the input data set, you can type the data set name in this field or use the Browse button to the right of the field.

Data set Browse button
opens the Data Set Selection window to enable you to select the input data set.
Time ID
is the name of the ID variable for the input data set. To specify the ID variable, you can type the ID variable name in this field or use the Select button. If the time ID variable is named date, time, or datetime, it is automatically picked up by the system.

Select button
opens the Time ID Variable Specification window.
Create button
opens a menu of choices of methods for creating a time ID variable for the input data set. Use this feature if the input data set does not already contain a valid time ID variable.

Interval
is the time interval between observations (data frequency) in the current input data set. If the interval is not automatically filled in, you can type an interval name or select one from the pop-up list. For more information about intervals, see the section "Time Series Data Sets, ID Variables, and Time Intervals" on page 2395.

View Series Graphically icon
opens the Time Series Viewer window to display plots of series in the current input data set.
View Data as a Table
opens a Viewtable window for browsing the selected input data set.
Develop Models
opens the Develop Models window to enable you to fit forecasting models to individual time series and choose the best models to use to produce the final forecasts of each series.

Fit Models Automatically
opens the Automatic Model Fitting window for applying the automatic model selection process to all series or to selected series in an input data set.

Produce Forecast
opens the Produce Forecasts window for producing forecasts for the series in the current input data set for which you have fit forecasting models.

Manage Projects
opens the Manage Forecasting Project window for viewing or editing information stored in projects.

Exit
closes the Time Series Forecasting system.
Help
accesses the help system.

\section*{Time Series Simulation Window}

Use the Time Series Simulation window to create a data set of simulated series generated by ARIMA processes. Access this window from the Tools menu in the Develop Models and Manage Forecasting Project windows.

\section*{Time Series Simulation}

\section*{Output Data Set: WORK.SIM}


Series to Generate


\section*{Controls and Fields}
```

Output Data Set

```
is the name of the data set to be created. Type in a one-level or two-level SAS data set name.
Interval
is the time interval between observations (data frequency) in the simulated data set. Type in an interval name or select one from the pop-up list.

Seed
is the seed for the random number generator used to produce the simulated time series.
N Observations
is the number of time periods to simulate.
Starting Date
is the starting date for the simulated observations. Type in a date in a form recognizable by a SAS data informat, for example, 1998:1, feb1997, or 03mar1998.

Ending Date
is the ending date for the simulated observations. Type in a date in a form recognizable by a SAS data informat.

Series to Generate
is the list of variable names and ARIMA processes to simulate.
Add Series
opens the ARIMA Process Specification window to enable you to add entries to the Series to Generate list.

Delete Series
deletes selected (highlighted) entries from the Series to Generate list.
OK
closes the Time Series Simulation window and performs the specified simulations and creates
the specified data set.
Cancel
closes the window without creating a simulated data set. Any options you specified are lost.

\section*{Time Series Viewer Window}

Use the Time Series Viewer window to explore time series data using plots, transformations, statistical tests, and tables. It is available as a standalone application and as part of the Time Series Forecasting System. To use it as a standalone application, select it from the Analysis submenu of the Solutions menu, or use the tsview command (see Chapter 42, "Command Reference," in this book). To use it within the Time Series Forecasting System, select the View Series Graphically icon in the Time Series Forecasting, Develop Models, or Model List window, or select "Series" from the View menu of the Develop Models, Manage Project, or Model List window.

The various plots and tables available are referred to as views. The section "View Selection Icons" on page 2617 explains how to change the view.


The state of the Time Series Viewer window is controlled by the current series, the current series transformation specification, and the currently selected view. You can resize this window, and you can use other windows without closing the Time Series Viewer window. You can explore a number of series conveniently by keeping the Series Selection window open. Each time you make a selection, the viewer window is updated to show the selected series. Keep both windows visible, or switch between them by using the Next Viewer toolbar icon or the F12 function key.

You can open multiple Time Series Viewer windows. This enables you to "freeze"a plot so you can come back to it later, or compare two plots side by side on your screen. To do this, unlink the viewer by using the Link/Unlink icon on the window's toolbar or the corresponding item in the Tools menu. While the viewer window remains unlinked, it is not updated when other selections are made in the Series Selection window. Instead, when you select a series and click the Graph button, a new Time Series Viewer window is invoked. You can continue this process to open as many viewer windows as you want. The Next Viewer icon and corresponding F12 function key are useful for navigating between windows when they are not simultaneously visible on your screen.

A wide range of series transformations is available. Basic transformations are available from the window's horizontal toolbar, and others are available by selecting "Other Transformations" from the Tools menu.

\section*{Horizontal Tool Bar}

The Time Series Viewer window contains a horizontal toolbar with the following icons:

Zoom in
changes the mouse cursor into cross hairs that you can use with the left mouse button to drag out a region of the time series plot to zoom in on. In the Autocorrelations view and the White Noise and Stationarity Tests view, Zoom In reduces the number of lags displayed.

Zoom out
reverses the previous Zoom In action and expands the time range of the plot to show more of the series. In the Autocorrelations view and the White Noise and Stationarity Tests view, Zoom Out increases the number of lags displayed.

Link/Unlink viewer
disconnects or connects the Time Series Viewer window to the window in which the series was selected. When the Viewer is linked, it always shows the current series. If you select another series, linked Viewers are updated. Unlinking a Viewer freezes its current state, and changing the current series has no effect on the Viewer's display. The View Series action creates a new Series Viewer window if there is no linked Viewer. By using the unlink feature, you can open several Time Series Viewer windows and display several different series simultaneously.

Log Transform
applies a log transform to the current view. This can be combined with other transformations; the current transformations are shown in the title.

Difference
applies a simple difference to the current view. This can be combined with other transformations; the current transformations are shown in the title.

Seasonal Difference
applies a seasonal difference to the current view. For example, if the data are monthly, the seasonal cycle is one year. Each value has subtracted from it the value from one year previous. This can be combined with other transformations; the current transformations are shown in the title.

Close
closes the Time Series Viewer window and returns to the window from which it was invoked.

\section*{Vertical Toolbar View Selection Icons}

At the right-hand side of the Time Series Viewer window is a vertical toolbar used to select the kind of plot or table that the Viewer displays.

Series
displays a plot of series values over time.
Autocorrelations
displays plots of the sample autocorrelations, partial autocorrelation, and inverse autocorrelation functions for the series, with lines overlaid at plus and minus two standard errors.
```

White Noise and Stationarity Tests

```
displays horizontal bar charts that represent results of white noise and stationarity tests. The first bar chart shows the significance probability of the Ljung-Box chi-square statistic computed on autocorrelations up to the given lag. Longer bars favor rejection of the null hypothesis that the series is white noise. Click any of the bars to display an interpretation.

The second bar chart shows tests of stationarity, where longer bars favor the conclusion that the series is stationary. Each bar displays the significance probability of the augmented Dickey-Fuller unit root test to the given autoregressive lag. Long bars represent higher levels of significance against the null hypothesis that the series contains a unit root. For seasonal data, a third bar chart appears for seasonal root tests. Click any of the bars to display an interpretation.

Data Table
displays a data table containing the values in the input data set.

\section*{Menu Bar}

File

\section*{Save Graph}
saves the current plot as a SAS/GRAPH grseg catalog entry in a default or most recently specified catalog. This item is unavailable in the Data Table view.

Save Graph as
saves the current graph as a SAS/GRAPH grseg catalog entry in a SAS catalog that you specify and/or as an Output Delivery System (ODS) object. By default, an HTML page is created, with the graph embedded as a gif image. This item is unavailable in the Data Table view.

Save Data
saves the data displayed in the viewer window to an output SAS data set. This item is unavailable in the Series view.
```

Save Data as

```
saves the data in a SAS data set that you specify and/or as an Output Delivery System (ODS) object. By default, an HTML page is created, with the data displayed as a table.

Import Data
is available if you license SAS/Access software. It opens an Import Wizard, which you can use to import your data from an external spreadsheet or data base to a SAS data set for use in the Time Series Forecasting System.
```

Export Data

```
is available if you license SAS/Access software. It opens an Export Wizard, which you can use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting System, to an external spreadsheet or data base.

Print Graph
prints the plot displayed in the viewer window. This item is unavailable in the Data Table view.

Print Data
prints the data displayed in the viewer window. This item is unavailable in the Series view.
opens the Print Setup window, which allows you to access your operating system print setup.

Print Preview
opens a preview window to show how your plots will look when printed.
Close
closes the Time Series Viewer window and returns to the window from which it was invoked.

View

Series
displays a plot of series values over time. This is the same as the Series icon in the vertical toolbar.

Autocorrelations
displays plots of the sample autocorrelation, partial autocorrelation, and inverse autocorrelation functions for the series. This is the same as the Autocorrelations icon in the vertical toolbar.
```

White Noise and Stationarity Tests

```
displays horizontal bar charts representing results of white noise and stationarity tests. This is the same as the White Noise and Stationarity Tests icon in the vertical toolbar.

Data Table
displays a data table containing the values in the input data set. This is the same as the Data Table icon in the vertical toolbar.

Zoom In
zooms the display. This is the same as the Zoom In icon in the window's horizontal toolbar.

Zoom Out
undoes the last zoom in action. This is the same as the Zoom Out icon in the window's horizontal toolbar.

Zoom Way Out
reverses all previous Zoom In actions and expands the time range of the plot to show all of the series, or shows the maximum number of lags in the Autocorrelations View or the White Noise and Stationarity Tests view.

Tools

Log Transform
applies a log transformation. This is the same as the Log Transform icon in the window's horizontal toolbar.

Difference
applies simple differencing. This is the same as the Difference icon in the window's horizontal toolbar.

Seasonal Difference
applies seasonal differencing. This is the same as the Seasonal Difference icon in the window's horizontal toolbar.

Other Transformations
opens the Series Viewer Transformations window to enable you to apply a wide range of transformations.

Diagnose Series
opens the Series Diagnostics window to determine the kinds of forecasting models appropriate for the current series.

Define Interventions
opens the Interventions for Series window to enable you to edit or add intervention effects for use in modeling the current series.

Link Viewer
connects or disconnects the Time Series Viewer window to the window from which series are selected. This is the same as the Link item in the window's horizontal toolbar.

Options

Number of Lags
opens a window to let you specify the number of lags shown in the Autocorrelations view and the White Noise and Stationarity Tests view. You can also use the Zoom In and Zoom Out actions to control the number of lags displayed.

Correlation Probabilities
controls whether the bar charts in the Autocorrelations view represent significance probabilities or values of the correlation coefficient. A check mark or filled check box next to this item indicates that significance probabilities are displayed. In each case the bar graph horizontal axis label changes accordingly.

\section*{Mouse Button Actions}

You can examine the data value and date of individual points in the Series view by clicking them. The date and value are displayed in a box that appears in the upper right corner of the Viewer window. Click the mouse elsewhere or select any action to dismiss the data box.

You can examine the values of the bars and confidence limits at different lags in the Autocorrelations view by clicking individual bars in the vertical bar charts.

You can display an interpretation of the tests in the White Noise and Stationarity Tests view by clicking the bars.

When you select the Zoom In action, you can use the mouse to define a region of the graph to take a closer look at. Position the mouse cursor at one corner of the region, press the left mouse button, and move the mouse cursor to the opposite corner of the region while holding the left mouse button down. When you release the mouse button, the plot is redrawn to show an expanded view of the data within the region you selected.

\section*{Chapter 44 \\ Forecasting Process Details}
Contents
Forecasting Process Summary ..... 2661
Parameter Estimation ..... 2662
Model Evaluation ..... 2662
Forecasting ..... 2664
Forecast Combination Models ..... 2666
External or User-Supplied Forecasts ..... 2666
Adjustments ..... 2667
Series Transformations ..... 2667
Smoothing Models ..... 2669
Smoothing Model Calculations ..... 2669
Missing Values ..... 2670
Predictions and Prediction Errors ..... 2670
Smoothing Weights ..... 2671
Equations for the Smoothing Models ..... 2672
ARIMA Models ..... 2680
Notation for ARIMA Models ..... 2680
Predictor Series ..... 2684
Time Trend Curves ..... 2684
Intervention Effects ..... 2685
Seasonal Dummy Inputs ..... 2687
Series Diagnostic Tests ..... 2687
Statistics of Fit ..... 2688
References ..... 2690

This chapter provides computational details on several aspects of the Time Series Forecasting System.

\section*{Forecasting Process Summary}

This section summarizes the forecasting process.

\section*{Parameter Estimation}

The parameter estimation process for ARIMA and smoothing models is described graphically in Figure 44.1.

Figure 44.1 Model Fitting Flow Diagram


The specification of smoothing and ARIMA models is described in Chapter 39, "Specifying Forecasting Models." Computational details for these kinds of models are provided in the following sections "Smoothing Models" on page 2669 and "ARIMA Models" on page 2680. The results of the parameter estimation process are displayed in the Parameter Estimates table of the Model Viewer windows along with the estimate of the model variance and the final smoothing state.

\section*{Model Evaluation}

The model evaluation process is described graphically in Figure 44.2.

Figure 44.2 Model Evaluation Flow Diagram


Model evaluation is based on the one-step-ahead prediction errors for observations within the period of evaluation. The one-step-ahead predictions are generated from the model specification and
parameter estimates. The predictions are inverse transformed (median or mean) and adjustments are removed. The prediction errors (the difference of the dependent series and the predictions) are used to compute the statistics of fit, which are described in the section "Series Diagnostic Tests" on page 2687. The results generated by the evaluation process are displayed in the Statistics of Fit table of the Model Viewer window.

\section*{Forecasting}

The forecasting generation process is described graphically in Figure 44.3.

Figure 44.3 Forecasting Flow Diagram


The forecasting process is similar to the model evaluation process described in the preceding section, except that \(k\)-step-ahead predictions are made from the end of the data through the specified forecast horizon, and prediction standard errors and confidence limits are calculated. The forecasts and confidence limits are displayed in the Forecast plot or table of the Model Viewer window.

\section*{Forecast Combination Models}

This section discusses the computation of predicted values and confidence limits for forecast combination models. See Chapter 39, "Specifying Forecasting Models," for information about how to specify forecast combination models and their combining weights.

Given the response time series \(\left\{y_{t}: 1 \leq t \leq n\right\}\) with previously generated forecasts for the \(m\) component models, a combined forecast is created from the component forecasts as follows:
\[
\begin{array}{ll}
\text { Predictions: } & \hat{y}_{t}=\sum_{i=1}^{m} w_{i} \hat{y}_{i, t} \\
\text { Prediction Errors: } & \hat{e}_{t}=y_{t}-\hat{y}_{t}
\end{array}
\]
where \(\hat{y}_{i, t}\) are the forecasts of the component models and \(w_{i}\) are the combining weights.
The estimate of the root mean square prediction error and forecast confidence limits for the combined forecast are computed by assuming independence of the prediction errors of the component forecasts, as follows:
\[
\begin{array}{ll}
\text { Standard Errors: } & \hat{\sigma}_{t}=\sqrt{\sum_{i=1}^{m} w_{i}^{2} \hat{\sigma}_{i, t}^{2}} \\
\text { Confidence Limits: } & \pm \hat{\sigma}_{t} Z_{\alpha / 2}
\end{array}
\]
where \(\hat{\sigma}_{i, t}\) are the estimated root mean square prediction errors for the component models, \(\alpha\) is the confidence limit width, \(1-\alpha\) is the confidence level, and \(\mathrm{Z}_{\alpha / 2}\) is the \(\frac{\alpha}{2}\) quantile of the standard normal distribution.

Since, in practice, there might be positive correlation between the prediction errors of the component forecasts, these confidence limits may be too narrow.

\section*{External or User-Supplied Forecasts}

This section discusses the computation of predicted values and confidence limits for external forecast models.

Given a response time series \(y_{t}\) and external forecast series \(\hat{y}_{t}\), the prediction errors are computed as \(\hat{e}_{t}=y_{t}-\hat{y}_{t}\) for those \(t\) for which both \(y_{t}\) and \(\hat{y}_{t}\) are nonmissing. The mean squared error (MSE) is computed from the prediction errors.

The variance of the \(k\)-step-ahead prediction errors is set to \(k\) times the MSE. From these variances, the standard errors and confidence limits are computed in the usual way. If the supplied predictions contain so many missing values within the time range of the response series that the MSE estimate cannot be computed, the confidence limits, standard errors, and statistics of fit are set to missing.

\section*{Adjustments}

Adjustment predictors are subtracted from the response time series prior to model parameter estimation, evaluation, and forecasting. After the predictions of the adjusted response time series are obtained from the forecasting model, the adjustments are added back to produce the forecasts.

If \(y_{t}\) is the response time series and \(X_{i, t}, 1 \leq i \leq m\) are \(m\) adjustment predictor series, then the adjusted response series \(w_{t}\) is
\[
w_{t}=y_{t}-\sum_{i=1}^{m} X_{i, t}
\]

Parameter estimation for the model is performed by using the adjusted response time series \(w_{t}\). The forecasts \(\hat{w}_{t}\) of \(w_{t}\) are adjusted to obtain the forecasts \(\hat{y}_{t}\) of \(y_{t}\).
\[
\hat{y}_{t}=\hat{w}_{t}+\sum_{i=1}^{m} X_{i, t}
\]

Missing values in an adjustment series are ignored in these computations.

\section*{Series Transformations}

For pure ARIMA models, transforming the response time series can aid in obtaining stationary noise series. For general ARIMA models with inputs, transforming the response time series or one or more of the input time series can provide a better model fit. Similarly, the fit of smoothing models can improve when the response series is transformed.

There are four transformations available, for strictly positive series only. Let \(y_{t}>0\) be the original time series, and let \(w_{t}\) be the transformed series. The transformations are defined as follows:

Log is the logarithmic transformation,
\[
w_{t}=\ln \left(y_{t}\right)
\]

Logistic is the logistic transformation,
\[
w_{t}=\ln \left(c y_{t} /\left(1-c y_{t}\right)\right)
\]
where the scaling factor \(c\) is
\[
c=\left(1-10^{-6}\right) 10^{-\operatorname{ceil}\left(\log _{10}\left(\max \left(y_{t}\right)\right)\right)}
\]
and \(\operatorname{ceil}(x)\) is the smallest integer greater than or equal to \(x\).
Square Root is the square root transformation,
\[
w_{t}=\sqrt{y_{t}}
\]

Box Cox is the Box-Cox transformation,
\[
w_{t}= \begin{cases}\frac{y_{t}^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \ln \left(y_{t}\right), & \lambda=0\end{cases}
\]

Parameter estimation is performed by using the transformed series. The transformed model predictions and confidence limits are then obtained from the transformed time series and these parameter estimates.

The transformed model predictions \(\hat{w}_{t}\) are used to obtain either the minimum mean absolute error (MMAE) or minimum mean squared error (MMSE) predictions \(\hat{y}_{t}\), depending on the setting of the forecast options. The model is then evaluated based on the residuals of the original time series and these predictions. The transformed model confidence limits are inverse-transformed to obtain the forecast confidence limits.

\section*{Predictions for Transformed Models}

Since the transformations described in the previous section are monotonic, applying the inversetransformation to the transformed model predictions results in the median of the conditional probability density function at each point in time. This is the minimum mean absolute error (MMAE) prediction.

If \(w_{t}=\mathrm{F}\left(y_{t}\right)\) is the transform with inverse-transform \(y_{t}=\mathrm{F}^{-1}\left(w_{t}\right)\), then
\[
\operatorname{median}\left(\hat{y}_{t}\right)=\mathrm{F}^{-1}\left(E\left[w_{t}\right]\right)=\mathrm{F}^{-1}\left(\hat{w}_{t}\right)
\]

The minimum mean squared error (MMSE) predictions are the mean of the conditional probability density function at each point in time. Assuming that the prediction errors are normally distributed with variance \(\sigma_{t}^{2}\), the MMSE predictions for each of the transformations are as follows:

Log is the conditional expectation of inverse-logarithmic transformation,
\[
\hat{y}_{t}=E\left[e^{w_{t}}\right]=\exp \left(\hat{w}_{t}+\sigma_{t}^{2} / 2\right)
\]

Logistic is the conditional expectation of inverse-logistic transformation,
\[
\hat{y}_{t}=E\left[\frac{1}{c\left(1+\exp \left(-w_{t}\right)\right)}\right]
\]
where the scaling factor \(c=\left(1-e^{-6}\right) 10^{-\operatorname{ceil}\left(\log _{10}\left(\max \left(y_{t}\right)\right)\right)}\).
Square Root is the conditional expectation of the inverse-square root transformation,
\[
\hat{y}_{t}=E\left[w_{t}^{2}\right]=\hat{w}_{t}^{2}+\sigma_{t}^{2}
\]

Box Cox is the conditional expectation of the inverse Box-Cox transformation,
\[
\hat{y}_{t}= \begin{cases}E\left[\left(\lambda w_{t}+1\right)^{1 / \lambda}\right], & \lambda \neq 0 \\ E\left[e^{w_{t}}\right]=\exp \left(\hat{w}_{t}+\frac{1}{2} \sigma_{t}^{2}\right), & \lambda=0\end{cases}
\]

The expectations of the inverse logistic and Box-Cox \((\lambda \neq 0)\) transformations do not generally have explicit solutions and are computed by using numerical integration.

\section*{Smoothing Models}

This section details the computations performed for the exponential smoothing and Winters method forecasting models.

\section*{Smoothing Model Calculations}

The descriptions and properties of various smoothing methods can be found in Gardner (1985), Chatfield (1978), and Bowerman and O'Connell (1979). The following section summarizes the smoothing model computations.
Given a time series \(\left\{Y_{t}: 1 \leq t \leq n\right\}\), the underlying model assumed by the smoothing models has the following (additive seasonal) form:
\[
Y_{t}=\mu_{t}+\beta_{t} t+s_{p}(t)+\epsilon_{t}
\]
where
\(\mu_{t} \quad\) represents the time-varying mean term.
\(\beta_{t} \quad\) represents the time-varying slope.
\(s_{p}(t) \quad\) represents the time-varying seasonal contribution for one of the \(p\) seasons.
\(\epsilon_{t} \quad\) are disturbances.
For smoothing models without trend terms, \(\beta_{t}=0\); and for smoothing models without seasonal terms, \(s_{p}(t)=0\). Each smoothing model is described in the following sections.

At each time \(t\), the smoothing models estimate the time-varying components described above with the smoothing state. After initialization, the smoothing state is updated for each observation using the smoothing equations. The smoothing state at the last nonmissing observation is used for predictions.

\section*{Smoothing State and Smoothing Equations}

Depending on the smoothing model, the smoothing state at time \(t\) consists of the following:
\(L_{t}\) is a smoothed level that estimates \(\mu_{t}\).
\(T_{t}\) is a smoothed trend that estimates \(\beta_{t}\).
\(S_{t-j}, j=0, \ldots, p-1\), are seasonal factors that estimate \(s_{p}(t)\).
The smoothing process starts with an initial estimate of the smoothing state, which is subsequently updated for each observation by using the smoothing equations.

The smoothing equations determine how the smoothing state changes as time progresses. Knowledge of the smoothing state at time \(t-1\) and that of the time series value at time \(t\) uniquely determine the smoothing state at time \(t\). The smoothing weights determine the contribution of the previous smoothing state to the current smoothing state. The smoothing equations for each smoothing model are listed in the following sections.

\section*{Smoothing State Initialization}

Given a time series \(\left\{Y_{t}: 1 \leq t \leq n\right\}\), the smoothing process first computes the smoothing state for time \(t=1\). However, this computation requires an initial estimate of the smoothing state at time \(t=0\), even though no data exists at or before time \(t=0\).

An appropriate choice for the initial smoothing state is made by backcasting from time \(t=n\) to \(t=1\) to obtain a prediction at \(t=0\). The initialization for the backcast is obtained by regression with constant and linear terms and seasonal dummies (additive or multiplicative) as appropriate for the smoothing model. For models with linear or seasonal terms, the estimates obtained by the regression are used for initial smoothed trend and seasonal factors; however, the initial smoothed level for backcasting is always set to the last observation, \(Y_{n}\).

The smoothing state at time \(t=0\) obtained from the backcast is used to initialize the smoothing process from time \(t=1\) to \(t=n\) (Chatfield and Yar 1988).

For models with seasonal terms, the smoothing state is normalized so that the seasonal factors \(S_{t-j}\) for \(j=0, \ldots, p-1\) sum to zero for models that assume additive seasonality and average to one for models (such as Winters method) that assume multiplicative seasonality.

\section*{Missing Values}

When a missing value is encountered at time \(t\), the smoothed values are updated using the errorcorrection form of the smoothing equations with the one-step-ahead prediction error, \(e_{t}\), set to zero. The missing value is estimated using the one-step-ahead prediction at time \(t-1\), that is \(\hat{Y}_{t-1}(1)\) (Aldrin 1989). The error-correction forms of each of the smoothing models are listed in the following sections.

\section*{Predictions and Prediction Errors}

Predictions are made based on the last known smoothing state. Predictions made at time \(t\) for \(k\) steps ahead are denoted \(\hat{Y}_{t}(k)\) and the associated prediction errors are denoted \(e_{t}(k)=Y_{t+k}-\hat{Y}_{t}(k)\). The prediction equation for each smoothing model is listed in the following sections.

The one-step-ahead predictions refer to predictions made at time \(t-1\) for one time unit into the future-that is, \(\hat{Y}_{t-1}(1)\). The one-step-ahead prediction errors are more simply denoted \(e_{t}=e_{t-1}(1)=Y_{t}-\hat{Y}_{t-1}(1)\). The one-step-ahead prediction errors are also the model residuals,
and the sum of squares of the one-step-ahead prediction errors is the objective function used in smoothing weight optimization.

The variance of the prediction errors are used to calculate the confidence limits (Sweet 1985, McKenzie 1986, Yar and Chatfield 1990, and Chatfield and Yar 1991). The equations for the variance of the prediction errors for each smoothing model are listed in the following sections.

Note: \(\operatorname{var}\left(\epsilon_{t}\right)\) is estimated by the mean square of the one-step-ahead prediction errors.

\section*{Smoothing Weights}

Depending on the smoothing model, the smoothing weights consist of the following:
\(\alpha \quad\) is a level smoothing weight.
\(\gamma \quad\) is a trend smoothing weight.
\(\delta \quad\) is a seasonal smoothing weight.
\(\phi \quad\) is a trend damping weight.
Larger smoothing weights (less damping) permit the more recent data to have a greater influence on the predictions. Smaller smoothing weights (more damping) give less weight to recent data.

\section*{Specifying the Smoothing Weights}

Typically the smoothing weights are chosen to be from zero to one. (This is intuitive because the weights associated with the past smoothing state and the value of current observation would normally sum to one.) However, each smoothing model (except Winters Method-Multiplicative Version) has an ARIMA equivalent. Weights chosen to be within the ARIMA additive-invertible region will guarantee stable predictions (Archibald 1990 and Gardner 1985). The ARIMA equivalent and the additive-invertible region for each smoothing model are listed in the following sections.

\section*{Optimizing the Smoothing Weights}

Smoothing weights are determined so as to minimize the sum of squared, one-step-ahead prediction errors. The optimization is initialized by choosing from a predetermined grid the initial smoothing weights that result in the smallest sum of squared, one-step-ahead prediction errors. The optimization process is highly dependent on this initialization. It is possible that the optimization process will fail due to the inability to obtain stable initial values for the smoothing weights (Greene 1993 and Judge et al. 1980), and it is possible for the optimization to result in a local minima.

The optimization process can result in weights to be chosen outside both the zero-to-one range and the ARIMA additive-invertible region. By restricting weight optimization to additive-invertible region, you can obtain a local minimum with stable predictions. Likewise, weight optimization can be restricted to the zero-to-one range or other ranges. It is also possible to fix certain weights to a specific value and optimize the remaining weights.

\section*{Standard Errors}

The standard errors associated with the smoothing weights are calculated from the Hessian matrix of the sum of squared, one-step-ahead prediction errors with respect to the smoothing weights used in the optimization process.

\section*{Weights Near Zero or One}

Sometimes the optimization process results in weights near zero or one.
For simple or double (Brown) exponential smoothing, a level weight near zero implies that simple differencing of the time series might be appropriate.

For linear (Holt) exponential smoothing, a level weight near zero implies that the smoothed trend is constant and that an ARIMA model with deterministic trend might be a more appropriate model.

For damped-trend linear exponential smoothing, a damping weight near one implies that linear (Holt) exponential smoothing might be a more appropriate model.

For Winters method and seasonal exponential smoothing, a seasonal weight near one implies that a nonseasonal model might be more appropriate and a seasonal weight near zero implies that deterministic seasonal factors might be present.

\section*{Equations for the Smoothing Models}

\section*{Simple Exponential Smoothing}

The model equation for simple exponential smoothing is
\[
Y_{t}=\mu_{t}+\epsilon_{t}
\]

The smoothing equation is
\[
L_{t}=\alpha Y_{t}+(1-\alpha) L_{t-1}
\]

The error-correction form of the smoothing equation is
\[
L_{t}=L_{t-1}+\alpha e_{t}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t}
\]

The ARIMA model equivalency to simple exponential smoothing is the \(\operatorname{ARIMA}(0,1,1)\) model
\[
\begin{aligned}
& (1-B) Y_{t}=(1-\theta B) \epsilon_{t} \\
& \theta=1-\alpha
\end{aligned}
\]

The moving-average form of the equation is
\[
Y_{t}=\epsilon_{t}+\sum_{j=1}^{\infty} \alpha \epsilon_{t-j}
\]

For simple exponential smoothing, the additive-invertible region is
\[
\{0<\alpha<2\}
\]

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[1+\sum_{j=1}^{k-1} \alpha^{2}\right]=\operatorname{var}\left(\epsilon_{t}\right)\left(1+(k-1) \alpha^{2}\right)
\]

\section*{Double (Brown) Exponential Smoothing}

The model equation for double exponential smoothing is
\[
Y_{t}=\mu_{t}+\beta_{t} t+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha Y_{t}+(1-\alpha) L_{t-1} \\
& T_{t}=\alpha\left(L_{t}-L_{t-1}\right)+(1-\alpha) T_{t-1}
\end{aligned}
\]

This method can be equivalently described in terms of two successive applications of simple exponential smoothing:
\[
\begin{aligned}
& S_{t}^{[1]}=\alpha Y_{t}+(1-\alpha) S_{t-1}^{[1]} \\
& S_{t}^{[2]}=\alpha S_{t}^{[1]}+(1-\alpha) S_{t-1}^{[2]}
\end{aligned}
\]
where \(S_{t}^{[1]}\) are the smoothed values of \(Y_{t}\), and \(S_{t}^{[2]}\) are the smoothed values of \(S_{t}^{[1]}\). The prediction equation then takes the form:
\[
\hat{Y}_{t}(k)=(2+\alpha k /(1-\alpha)) S_{t}^{[1]}-(1+\alpha k /(1-\alpha)) S_{t}^{[2]}
\]

The error-correction forms of the smoothing equations are
\[
\begin{aligned}
& L_{t}=L_{t-1}+T_{t-1}+\alpha e_{t} \\
& T_{t}=T_{t-1}+\alpha^{2} e_{t}
\end{aligned}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t}+((k-1)+1 / \alpha) T_{t}
\]

The ARIMA model equivalency to double exponential smoothing is the \(\operatorname{ARIMA}(0,2,2)\) model,
\[
\begin{aligned}
& (1-B)^{2} Y_{t}=(1-\theta B)^{2} \epsilon_{t} \\
& \theta=1-\alpha
\end{aligned}
\]

The moving-average form of the equation is
\[
Y_{t}=\epsilon_{t}+\sum_{j=1}^{\infty}\left(2 \alpha+(j-1) \alpha^{2}\right) \epsilon_{t-j}
\]

For double exponential smoothing, the additive-invertible region is
\[
\{0<\alpha<2\}
\]

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[1+\sum_{j=1}^{k-1}\left(2 \alpha+(j-1) \alpha^{2}\right)^{2}\right]
\]

\section*{Linear (Holt) Exponential Smoothing}

The model equation for linear exponential smoothing is
\[
Y_{t}=\mu_{t}+\beta_{t} t+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha Y_{t}+(1-\alpha)\left(L_{t-1}+T_{t-1}\right) \\
& T_{t}=\gamma\left(L_{t}-L_{t-1}\right)+(1-\gamma) T_{t-1}
\end{aligned}
\]

The error-correction form of the smoothing equations is
\[
\begin{aligned}
& L_{t}=L_{t-1}+T_{t-1}+\alpha e_{t} \\
& T_{t}=T_{t-1}+\alpha \gamma e_{t}
\end{aligned}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t}+k T_{t}
\]

The ARIMA model equivalency to linear exponential smoothing is the \(\operatorname{ARIMA}(0,2,2)\) model,
\[
\begin{aligned}
& (1-B)^{2} Y_{t}=\left(1-\theta_{1} B-\theta_{2} B^{2}\right) \epsilon_{t} \\
& \theta_{1}=2-\alpha-\alpha \gamma \\
& \theta_{2}=\alpha-1
\end{aligned}
\]

The moving-average form of the equation is
\[
Y_{t}=\epsilon_{t}+\sum_{j=1}^{\infty}(\alpha+j \alpha \gamma) \epsilon_{t-j}
\]

For linear exponential smoothing, the additive-invertible region is
\[
\begin{aligned}
& \{0<\alpha<2\} \\
& \{0<\gamma<4 / \alpha-2\}
\end{aligned}
\]

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[1+\sum_{j=1}^{k-1}(\alpha+j \alpha \gamma)^{2}\right]
\]

\section*{Damped-Trend Linear Exponential Smoothing}

The model equation for damped-trend linear exponential smoothing is
\[
Y_{t}=\mu_{t}+\beta_{t} t+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha Y_{t}+(1-\alpha)\left(L_{t-1}+\phi T_{t-1}\right) \\
& T_{t}=\gamma\left(L_{t}-L_{t-1}\right)+(1-\gamma) \phi T_{t-1}
\end{aligned}
\]

The error-correction form of the smoothing equations is
\[
L_{t}=L_{t-1}+\phi T_{t-1}+\alpha e_{t} T_{t}=\phi T_{t-1}+\alpha \gamma e_{t}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t}+\sum_{i=1}^{k} \phi^{i} T_{t}
\]

The ARIMA model equivalency to damped-trend linear exponential smoothing is the ARIMA( \(1,1,2\) ) model,
\[
\begin{aligned}
& (1-\phi B)(1-B) Y_{t}=\left(1-\theta_{1} B-\theta_{2} B^{2}\right) \epsilon_{t} \\
& \theta_{1}=1+\phi-\alpha-\alpha \gamma \phi \\
& \theta_{2}=(\alpha-1) \phi
\end{aligned}
\]

The moving-average form of the equation (assuming \(|\phi|<1\) ) is
\[
Y_{t}=\epsilon_{t}+\sum_{j=1}^{\infty}\left(\alpha+\alpha \gamma \phi\left(\phi^{j}-1\right) /(\phi-1)\right) \epsilon_{t-j}
\]

For damped-trend linear exponential smoothing, the additive-invertible region is
\[
\begin{aligned}
& \{0<\alpha<2\} \\
& \{0<\phi \gamma<4 / \alpha-2\}
\end{aligned}
\]

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[1+\sum_{j=1}^{k-1}\left(\alpha+\alpha \gamma \phi\left(\phi^{j}-1\right) /(\phi-1)\right)^{2}\right]
\]

\section*{Seasonal Exponential Smoothing}

The model equation for seasonal exponential smoothing is
\[
Y_{t}=\mu_{t}+s_{p}(t)+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha\left(Y_{t}-S_{t-p}\right)+(1-\alpha) L_{t-1} \\
& S_{t}=\delta\left(Y_{t}-L_{t}\right)+(1-\delta) S_{t-p}
\end{aligned}
\]

The error-correction form of the smoothing equations is
\[
\begin{aligned}
& L_{t}=L_{t-1}+\alpha e_{t} \\
& S_{t}=S_{t-p}+\delta(1-\alpha) e_{t}
\end{aligned}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t}+S_{t-p+k}
\]

The ARIMA model equivalency to seasonal exponential smoothing is the \(\operatorname{ARIMA}(0,1, \mathrm{p}+1)(0,1,0)_{p}\) model,
\[
\begin{aligned}
& (1-B)\left(1-B^{p}\right) Y_{t}=\left(1-\theta_{1} B-\theta_{2} B^{p}-\theta_{3} B^{p+1}\right) \epsilon_{t} \\
& \theta_{1}=1-\alpha \\
& \theta_{2}=1-\delta(1-\alpha) \\
& \theta_{3}=(1-\alpha)(\delta-1)
\end{aligned}
\]

The moving-average form of the equation is
\[
\begin{aligned}
& Y_{t}=\epsilon_{t}+\sum_{j=1}^{\infty} \psi_{j} \epsilon_{t-j} \\
& \psi_{j}= \begin{cases}\alpha & \text { for } j \bmod p \neq 0 \\
\alpha+\delta(1-\alpha) & \text { for } j \bmod p=0\end{cases}
\end{aligned}
\]

For seasonal exponential smoothing, the additive-invertible region is
\[
\{\max (-p \alpha, 0)<\delta(1-\alpha)<(2-\alpha)\}
\]

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[1+\sum_{j=1}^{k-1} \psi_{j}^{2}\right]
\]

\section*{Multiplicative Seasonal Smoothing}

In order to use the multiplicative version of seasonal smoothing, the time series and all predictions must be strictly positive.

The model equation for the multiplicative version of seasonal smoothing is
\[
Y_{t}=\mu_{t} s_{p}(t)+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha\left(Y_{t} / S_{t-p}\right)+(1-\alpha) L_{t-1} \\
& S_{t}=\delta\left(Y_{t} / L_{t}\right)+(1-\delta) S_{t-p}
\end{aligned}
\]

The error-correction form of the smoothing equations is
\[
\begin{aligned}
& L_{t}=L_{t-1}+\alpha e_{t} / S_{t-p} \\
& S_{t}=S_{t-p}+\delta(1-\alpha) e_{t} / L_{t}
\end{aligned}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t} S_{t-p+k}
\]

The multiplicative version of seasonal smoothing does not have an ARIMA equivalent; however, when the seasonal variation is small, the ARIMA additive-invertible region of the additive version of seasonal described in the preceding section can approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[\sum_{i=0}^{\infty} \sum_{j=0}^{p-1}\left(\psi_{j+i p} S_{t+k} / S_{t+k-j}\right)^{2}\right]
\]
where \(\psi_{j}\) are as described for the additive version of seasonal method, and \(\psi_{j}=0\) for \(j \geq k\).

\section*{Winters Method—Additive Version}

The model equation for the additive version of Winters method is
\[
Y_{t}=\mu_{t}+\beta_{t} t+s_{p}(t)+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha\left(Y_{t}-S_{t-p}\right)+(1-\alpha)\left(L_{t-1}+T_{t-1}\right) \\
& T_{t}=\gamma\left(L_{t}-L_{t-1}\right)+(1-\gamma) T_{t-1} \\
& S_{t}=\delta\left(Y_{t}-L_{t}\right)+(1-\delta) S_{t-p}
\end{aligned}
\]

The error-correction form of the smoothing equations is
\[
\begin{aligned}
& L_{t}=L_{t-1}+T_{t-1}+\alpha e_{t} \\
& T_{t}=T_{t-1}+\alpha \gamma e_{t} \\
& S_{t}=S_{t-p}+\delta(1-\alpha) e_{t}
\end{aligned}
\]
(Note: For missing values, \(e_{t}=0\).)
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=L_{t}+k T_{t}+S_{t-p+k}
\]

The ARIMA model equivalency to the additive version of Winters method is the ARIMA \((0,1, \mathrm{p}+1)(0,1,0)_{p}\) model,
\[
\begin{aligned}
& (1-B)\left(1-B^{p}\right) Y_{t}=\left[1-\sum_{i=1}^{p+1} \theta_{i} B^{i}\right] \epsilon_{t} \\
& \theta_{j}= \begin{cases}1-\alpha-\alpha \gamma & j=1 \\
-\alpha \gamma & 2 \leq j \leq p-1 \\
1-\alpha \gamma-\delta(1-\alpha) & j=p \\
(1-\alpha)(\delta-1) & j=p+1\end{cases}
\end{aligned}
\]

The moving-average form of the equation is
\[
\begin{aligned}
& Y_{t}=\epsilon_{t}+\sum_{j=1}^{\infty} \psi_{j} \epsilon_{t-j} \\
& \psi_{j}=\left\{\begin{array}{lll}
\alpha+j \alpha \gamma & \text { for } j & \bmod p \neq 0 \\
\alpha+j \alpha \gamma+\delta(1-\alpha), & \text { for } j & \bmod p=0
\end{array}\right.
\end{aligned}
\]

For the additive version of Winters method (see Archibald 1990), the additive-invertible region is
\[
\begin{aligned}
& \{\max (-p \alpha, 0)<\delta(1-\alpha)<(2-\alpha)\} \\
& \{0<\alpha \gamma<2-\alpha-\delta(1-\alpha)(1-\cos (\vartheta)\}
\end{aligned}
\]
where \(\vartheta\) is the smallest nonnegative solution to the equations listed in Archibald (1990).
The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[1+\sum_{j=1}^{k-1} \psi_{j}^{2}\right]
\]

\section*{Winters Method—Multiplicative Version}

In order to use the multiplicative version of Winters method, the time series and all predictions must be strictly positive.

The model equation for the multiplicative version of Winters method is
\[
Y_{t}=\left(\mu_{t}+\beta_{t} t\right) s_{p}(t)+\epsilon_{t}
\]

The smoothing equations are
\[
\begin{aligned}
& L_{t}=\alpha\left(Y_{t} / S_{t-p}\right)+(1-\alpha)\left(L_{t-1}+T_{t-1}\right) \\
& T_{t}=\gamma\left(L_{t}-L_{t-1}\right)+(1-\gamma) T_{t-1} \\
& S_{t}=\delta\left(Y_{t} / L_{t}\right)+(1-\delta) S_{t-p}
\end{aligned}
\]

The error-correction form of the smoothing equations is
\[
\begin{aligned}
& L_{t}=L_{t-1}+T_{t-1}+\alpha e_{t} / S_{t-p} \\
& T_{t}=T_{t-1}+\alpha \gamma e_{t} / S_{t-p} \\
& S_{t}=S_{t-p}+\delta(1-\alpha) e_{t} / L_{t}
\end{aligned}
\]

Note: For missing values, \(e_{t}=0\).
The \(k\)-step prediction equation is
\[
\hat{Y}_{t}(k)=\left(L_{t}+k T_{t}\right) S_{t-p+k}
\]

The multiplicative version of Winters method does not have an ARIMA equivalent; however, when the seasonal variation is small, the ARIMA additive-invertible region of the additive version of Winters method described in the preceding section can approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as
\[
\operatorname{var}\left(e_{t}(k)\right)=\operatorname{var}\left(\epsilon_{t}\right)\left[\sum_{i=0}^{\infty} \sum_{j=0}^{p-1}\left(\psi_{j+i p} S_{t+k} / S_{t+k-j}\right)^{2}\right]
\]
where \(\psi_{j}\) are as described for the additive version of Winters method and \(\psi_{j}=0\) for \(j \geq k\).

\section*{ARIMA Models}

Autoregressive integrated moving-average (ARIMA) models predict values of a dependent time series with a linear combination of its own past values, past errors (also called shocks or innovations), and current and past values of other time series (predictor time series).

The Time Series Forecasting System uses the ARIMA procedure of SAS/ETS software to fit and forecast ARIMA models. The maximum likelihood method is used for parameter estimation. Refer to Chapter 7, "The ARIMA Procedure," for details of ARIMA model estimation and forecasting.

This section summarizes the notation used for ARIMA models.

\section*{Notation for ARIMA Models}

A dependent time series that is modeled as a linear combination of its own past values and past values of an error series is known as a (pure) ARIMA model.

\section*{Nonseasonal ARIMA Model Notation}

The order of an ARIMA model is usually denoted by the notation \(\operatorname{ARIMA}(p, d, q)\), where
\(p \quad\) is the order of the autoregressive part.
\(d \quad\) is the order of the differencing (rarely should \(d>2\) be needed).
\(q \quad\) is the order of the moving-average process.

Given a dependent time series \(\left\{Y_{t}: 1 \leq t \leq n\right\}\), mathematically the ARIMA model is written as
\[
(1-B)^{d} Y_{t}=\mu+\frac{\theta(B)}{\phi(B)} a_{t}
\]
where
```

t indexes time.
\mu is the mean term.
B is the backshift operator; that is, }B\mp@subsup{X}{t}{}=\mp@subsup{X}{t-1}{}
\phi(B) is the autoregressive operator, represented as a polynomial in the back
shift operator: }\phi(B)=1-\mp@subsup{\phi}{1}{}B-···-\mp@subsup{\phi}{p}{}\mp@subsup{B}{}{p}
0(B) is the moving-average operator, represented as a polynomial in the back
shift operator: }0(B)=1-\mp@subsup{0}{1}{}B-···-\mp@subsup{0}{q}{}\mp@subsup{B}{}{q}\mathrm{ .
at
is the independent disturbance, also called the random error.

```

For example, the mathematical form of the \(\operatorname{ARIMA}(1,1,2)\) model is
\[
(1-B) Y_{t}=\mu+\frac{\left(1-\theta_{1} B-\theta_{2} B^{2}\right)}{\left(1-\phi_{1} B\right)} a_{t}
\]

\section*{Seasonal ARIMA Model Notation}

Seasonal ARIMA models are expressed in factored form by the notation \(\operatorname{ARIMA}(p, d, q)(P, D, Q)_{s}\), where
\(P \quad\) is the order of the seasonal autoregressive part.
\(D \quad\) is the order of the seasonal differencing (rarely should \(D>1\) be needed).
\(Q \quad\) is the order of the seasonal moving-average process.
\(s \quad\) is the length of the seasonal cycle.
Given a dependent time series \(\left\{Y_{t}: 1 \leq t \leq n\right\}\), mathematically the ARIMA seasonal model is written as
\[
(1-B)^{d}\left(1-B^{s}\right)^{D} Y_{t}=\mu+\frac{\theta(B) \theta_{s}\left(B^{s}\right)}{\phi(B) \phi_{s}\left(B^{s}\right)} a_{t}
\]
where
\[
\begin{array}{ll}
\phi_{s}\left(B^{s}\right) & \begin{array}{l}
\text { is the seasonal autoregressive operator, represented as a polynomial in } \\
\text { the back shift operator: } \\
\phi_{s}\left(B^{s}\right)=1-\phi_{s, 1} B^{s}-\ldots-\phi_{s, P} B^{s P} \\
\theta_{s}\left(B^{s}\right)
\end{array} \\
\text { is the seasonal moving-average operator, represented as a polynomial in } \\
\text { the back shift operator: } \theta_{s}\left(B^{s}\right)=1-\theta_{s, 1} B^{s}-\ldots-\theta_{s, Q} B^{s Q}
\end{array}
\]

For example, the mathematical form of the \(\operatorname{ARIMA}(1,0,1)(1,1,2)_{12}\) model is
\[
\left(1-B^{12}\right) Y_{t}=\mu+\frac{\left(1-\theta_{1} B\right)\left(1-\theta_{s, 1} B^{12}-\theta_{s, 2} B^{24}\right)}{\left(1-\phi_{1} B\right)\left(1-\phi_{s, 1} B^{12}\right)} a_{t}
\]

\section*{Abbreviated Notation for ARIMA Models}

If the differencing order, autoregressive order, or moving-average order is zero, the notation is further abbreviated as
\begin{tabular}{ll}
\(\operatorname{I}(d)(D)_{s}\) & integrated model or \(\operatorname{ARIMA}(0, d, O)(0, D, 0)\) \\
\(\operatorname{AR}(p)(P)_{s}\) & autoregressive model or \(\operatorname{ARIMA}(p, 0,0)(P, 0,0)\) \\
\(\operatorname{IAR}(p, d)(P, D)_{s}\) & integrated autoregressive model or \(\operatorname{ARIMA}(p, d, O)(P, D, O)_{s}\) \\
\(\operatorname{MA}(q)(Q)_{s}\) & moving average model or \(\operatorname{ARIMA}(0,0, q)(0,0, Q)_{s}\) \\
\(\operatorname{IMA}(d, q)(D, Q)_{s}\) & integrated moving average model or \(\operatorname{ARIMA}(0, d, q)(0, D, Q)_{s}\) \\
\(\operatorname{ARMA}(p, q)(P, Q)_{s}\) & autoregressive moving-average model or \(\operatorname{ARIMA}(p, 0, q)(P, 0, Q)_{s}\).
\end{tabular}

\section*{Notation for Transfer Functions}

A transfer function can be used to filter a predictor time series to form a dynamic regression model.
Let \(Y_{t}\) be the dependent series, let \(X_{t}\) be the predictor series, and let \(\Psi(B)\) be a linear filter or transfer function for the effect of \(X_{t}\) on \(Y_{t}\). The ARIMA model is then
\[
(1-B)^{d}\left(1-B^{s}\right)^{D} Y_{t}=\mu+\Psi(B)(1-B)^{d}\left(1-B^{s}\right)^{D} X_{t}+\frac{\theta(B) \theta_{s}\left(B^{s}\right)}{\phi(B) \phi_{s}\left(B^{s}\right)} a_{t}
\]

This model is called a dynamic regression of \(Y_{t}\) on \(X_{t}\).

\section*{Nonseasonal Transfer Function Notation}

Given the \(i\) th predictor time series \(\left\{X_{i, t}: 1 \leq t \leq n\right\}\), the transfer function is written as
\(\operatorname{Dif}\left(d_{i}\right) \operatorname{Lag}\left(k_{i}\right) \mathrm{N}\left(q_{i}\right) / \mathrm{D}\left(p_{i}\right)\)
where
\(d_{i} \quad\) is the simple order of the differencing for the \(i\) th predictor time series, \((1-B)^{d_{i}} X_{i, t}\) (rarely should \(d_{i}>2\) be needed).
\(k_{i} \quad\) is the pure time delay (lag) for the effect of the \(i\) th predictor time series, \(X_{i, t} B^{k_{i}}=X_{i, t-k_{i}}\).
\(p_{i} \quad\) is the simple order of the denominator for the \(i\) th predictor time series.
\(q_{i} \quad\) is the simple order of the numerator for the \(i\) th predictor time series.

The mathematical notation used to describe a transfer function is
\[
\Psi_{i}(B)=\frac{\omega_{i}(B)}{\delta_{i}(B)}(1-B)^{d_{i}} B^{k_{i}}
\]
where
\(B \quad\) is the backshift operator; that is, \(B X_{t}=X_{t-1}\).
\(\delta_{i}(B) \quad\) is the denominator polynomial of the transfer function for the \(i\) th predictor time series: \(\delta_{i}(B)=1-\delta_{i, 1} B-\ldots-\delta_{i, p_{i}} B^{p_{i}}\).
\(\omega_{i}(B) \quad\) is the numerator polynomial of the transfer function for the \(i\) th predictor time series: \(\omega_{i}(B)=1-\omega_{i, 1} B-\ldots-\omega_{i, q_{i}} B^{q_{i}}\).

The numerator factors for a transfer function for a predictor series are like the MA part of the ARMA model for the noise series. The denominator factors for a transfer function for a predictor series are like the AR part of the ARMA model for the noise series. Denominator factors introduce exponentially weighted, infinite distributed lags into the transfer function.

For example, the transfer function for the \(i\) th predictor time series with
\[
\begin{array}{ll}
k_{i}=3 & \text { time lag is } 3 \\
d_{i}=1 & \text { simple order of differencing is one } \\
p_{i}=1 & \\
q_{i}=2 & \text { simple order of the denominator is one } \\
\text { simple order of the numerator is two }
\end{array}
\]
would be written as \([\operatorname{Dif}(1) \operatorname{Lag}(3) \mathrm{N}(2) / \mathrm{D}(1)]\). The mathematical notation for the transfer function in this example is
\[
\Psi_{i}(B)=\frac{\left(1-\omega_{i, 1} B-\omega_{i, 2} B^{2}\right)}{\left(1-\delta_{i, 1} B\right)}(1-B) B^{3}
\]

\section*{Seasonal Transfer Function Notation}

The general transfer function notation for the \(i\) th predictor time series \(X_{i, t}\) with seasonal factors is \(\left[\operatorname{Dif}\left(d_{i}\right)\left(D_{i}\right)_{s} \operatorname{Lag}\left(k_{i}\right) \mathrm{N}\left(q_{i}\right)\left(Q_{i}\right)_{s} / \mathrm{D}\left(p_{i}\right)\left(P_{i}\right)_{s}\right]\) where
\(D_{i} \quad\) is the seasonal order of the differencing for the \(i\) th predictor time series (rarely should \(D_{i}>1\) be needed).
\(P_{i} \quad\) is the seasonal order of the denominator for the \(i\) th predictor time series (rarely should \(P_{i}>2\) be needed).
\(Q_{i} \quad\) is the seasonal order of the numerator for the \(i\) th predictor time series, (rarely should \(Q_{i}>2\) be needed).
\(S\) is the length of the seasonal cycle.

The mathematical notation used to describe a seasonal transfer function is
\[
\Psi_{i}(B)=\frac{\omega_{i}(B) \omega_{s, i}\left(B^{s}\right)}{\delta_{i}(B) \delta_{s, i}\left(B^{s}\right)}(1-B)^{d_{i}}\left(1-B^{s}\right)^{D_{i}} B^{k_{i}}
\]
where
\[
\begin{array}{ll}
\delta_{s, i}\left(B^{s}\right) & \text { is the denominator seasonal polynomial of the transfer function for the } \\
& \text { th predictor time series: } \\
\delta_{s, i}(B)=1-\delta_{s, i, 1} B-\ldots-\delta_{s, i, P_{i}} B^{s P_{i}} \\
\omega_{s, i}\left(B^{s}\right) \quad & \text { is the numerator seasonal polynomial of the transfer function for the } i \text { th } \\
\text { predictor time series: } \\
& \omega_{s, i}(B)=1-\omega_{s, i, 1} B-\ldots-\omega_{s, i, Q_{i}} B^{s Q_{i}}
\end{array}
\]

For example, the transfer function for the \(i\) th predictor time series \(X_{i, t}\) whose seasonal cycle \(s=12\) with
\[
\begin{array}{ll}
d_{i}=2 & \text { simple order of differencing is two } \\
D_{i}=1 & \text { seasonal order of differencing is one } \\
q_{i}=2 & \text { simple order of the numerator is two } \\
Q_{i}=1 & \text { seasonal order of the numerator is one }
\end{array}
\]
would be written as \(\left[\operatorname{Dif}(2)(1)_{s} \mathrm{~N}(2)(1)_{s}\right]\). The mathematical notation for the transfer function in this example is
\[
\Psi_{i}(B)=\left(1-\omega_{i, 1} B-\omega_{i, 2} B^{2}\right)\left(1-\omega_{s, i, 1} B^{12}\right)(1-B)^{2}\left(1-B^{12}\right)
\]

Note: In this case, \(\left[\operatorname{Dif}(2)(1)_{s} \mathrm{~N}(2)(1)_{s}\right]=\left[\operatorname{Dif}(2)(1)_{s} \operatorname{Lag}(0) \mathrm{N}(2)(1)_{s} / \mathrm{D}(0)(0)_{s}\right]\).

\section*{Predictor Series}

This section discusses time trend curves, seasonal dummies, interventions, and adjustments.

\section*{Time Trend Curves}

When you specify a time trend curve as a predictor in a forecasting model, the system computes a predictor series that is a deterministic function of time. This variable is then included in the model as a regressor, and the trend curve is fit to the dependent series by linear regression, in addition to other predictor series.

Some kinds of nonlinear trend curves are fit by transforming the dependent series. For example, the exponential trend curve is actually a linear time trend fit to the logarithm of the series. For these trend curve specifications, the series transformation option is set automatically, and you cannot independently control both the time trend curve and transformation option.

The computed time trend variable is included in the output data set in a variable named in accordance with the trend curve type. Let \(t\) represent the observation count from the start of the period of fit for the model, and let \(X_{t}\) represent the value of the time trend variable at observation \(t\) within the period of fit. The names and definitions of these variables are as follows. (Note: These deterministic variables are reserved variable names.)

Linear trend variable name _LINEAR_, with \(X_{t}=t-c\)
Quadratic trend variable name _QUAD_, with \(X_{t}=(t-c)^{2}\). Note that a quadratic trend implies a linear trend as a special case and results in two regressors: _QUAD_ and _LINEAR_.
Cubic trend

Logistic trend
variable name _CUBE_, with \(X_{t}=(t-c)^{3}\). Note that a cubic trend implies a quadratic trend as a special case and results in three regressors: _CUBE_, _QUAD_, and _LINEAR_.
variable name _LOGIT_, with \(X_{t}=t\). The model is a linear time trend applied to the logistic transform of the dependent series. Thus, specifying a logistic trend is equivalent to specifying the logistic series transformation and a linear time trend. A logistic trend predictor can be used only in conjunction with the logistic transformation, which is set automatically when you specify logistic trend.

Logarithmic trend variable name _LOG_, with \(X_{t}=\ln (t)\)

Exponential trend

Hyperbolic trend
Power curve trend
variable name _EXP_, with \(X_{t}=t\). The model is a linear time trend applied to the logarithms of the dependent series. Thus, specifying an exponential trend is equivalent to specifying the log series transformation and a linear time trend. An exponential trend predictor can be used only in conjunction with the log transformation, which is set automatically when you specify exponential trend.
variable name _HYP_, with \(X_{t}=1 / t\)
variable name _POW_, with \(X_{t}=\ln (t)\). The model is a logarithmic time trend applied to the logarithms of the dependent series. Thus, specifying a power curve is equivalent to specifying the log series transformation and a logarithmic time trend. A power curve predictor can be used only in conjunction with the log transformation, which is set automatically when you specify a power curve trend.
\(\operatorname{EXP}(\mathrm{A}+\mathrm{B} / \mathrm{TIME})\) trend variable name _ERT_, with \(X_{t}=1 / t\). The model is a hyperbolic time trend applied to the logarithms of the dependent series. Thus, specifying this trend curve is equivalent to specifying the \(\log\) series transformation and a hyperbolic time trend. This trend curve can be used only in conjunction with the log transformation, which is set automatically when you specify this trend.

\section*{Intervention Effects}

Interventions are used for modeling events that occur at specific times. That is, they are known changes that affect the dependent series or outliers.

The \(i\) th intervention series is included in the output data set with variable name _INTV \(i_{-}\), which is a reserved variable name.

\section*{Point Interventions}

The point intervention is a one-time event. The \(i\) th intervention series \(X_{i, t}\) has a point intervention at time \(t_{\text {int }}\) when the series is nonzero only at time \(t_{\text {int }}\)-that is,
\[
X_{i, t}= \begin{cases}1, & t=t_{\text {int }} \\ 0, & \text { otherwise }\end{cases}
\]

\section*{Step Interventions}

Step interventions are continuing, and the input time series flags periods after the intervention. For a step intervention, before time \(t_{i n t}\), the \(i\) th intervention series \(X_{i, t}\) is zero and then steps to a constant level thereafter-that is,
\[
X_{i, t}= \begin{cases}1, & t \geq t_{\text {int }} \\ 0, & \text { otherwise }\end{cases}
\]

\section*{Ramp Interventions}

A ramp intervention is a continuing intervention that increases linearly after the intervention time. For a ramp intervention, before time \(t_{\text {int }}\), the \(i\) th intervention series \(X_{i, t}\) is zero and increases linearly thereafter-that is, proportional to time.
\[
X_{i, t}= \begin{cases}t-t_{\text {int }}, & t \geq t_{\text {int }} \\ 0, & \text { otherwise }\end{cases}
\]

\section*{Intervention Effect}

Given the \(i\) th intervention series \(X_{i, t}\), you can define how the intervention takes effect by filters (transfer functions) of the form
\[
\Psi_{i}(B)=\frac{1-\omega_{i, 1} B-\ldots-\omega_{i, q_{i}} B^{q_{i}}}{1-\delta_{i, 1} B-\ldots-\delta_{i, p_{i}} B^{p_{i}}}
\]
where \(B\) is the backshift operator \(B y_{t}=y_{t-1}\).
The denominator of the transfer function determines the decay pattern of the intervention effect, whereas the numerator terms determine the size of the intervention effect time window.

For example, the following intervention effects are associated with the respective transfer functions.
\begin{tabular}{ll} 
Immediately & \(\Psi_{i}(B)=1\) \\
Gradually & \(\Psi_{i}(B)=1 /\left(1-\delta_{i, 1} B\right)\) \\
1 lag window & \(\Psi_{i}(B)=1-\omega_{i, 1} B\) \\
3 lag window & \(\Psi_{i}(B)=1-\omega_{i, 1} B-\omega_{i, 2} B^{2}-\omega_{i, 3} B^{3}\)
\end{tabular}

\section*{Intervention Notation}

The notation used to describe intervention effects has the form type : \(t_{\text {int }}\left(q_{i}\right) /\left(p_{i}\right)\), where type is point, step, or ramp; \(t_{\text {int }}\) is the time of the intervention (for example, OCT87); \(q_{i}\) is the transfer function numerator order; and \(p_{i}\) is the transfer function denominator order. If \(q_{i}=0\), the part " \(\left(q_{i}\right)\) " is omitted; if \(p_{i}=0\), the part "/( \(\left.p_{i}\right)\) " is omitted.

In the Intervention Specification window, the Number of Lags option specifies the transfer function numerator order \(q_{i}\), and the Effect Decay Pattern option specifies the transfer function denominator order \(p_{i}\). In the Effect Decay Pattern options, values and resulting \(p_{i}\) are: None, \(p_{i}=0 ; \operatorname{Exp}, p_{i}=1\); Wave, \(p_{i}=2\).

For example, a step intervention with date 08MAR90 and effect pattern Exp is denoted "Step:08MAR90/(1)" and has a transfer function filter \(\Psi_{i}(B)=1 /\left(1-\delta_{1} B\right)\). A ramp intervention immediately applied on 08MAR90 is denoted "Ramp:08MAR90" and has a transfer function filter \(\Psi_{i}(B)=1\).

\section*{Seasonal Dummy Inputs}

For a seasonal cycle of length \(s\), the seasonal dummy regressors include
\[
\left\{X_{i, t}: 1 \leq i \leq(s-1), 1 \leq t \leq n\right\}
\]
for models that include an intercept term and
\[
\left\{X_{i, t}: 1 \leq i \leq s, 1 \leq t \leq n\right\}
\]
for models that exclude an intercept term. Each element of a seasonal dummy regressor is either zero or one, based on the following rule:
\[
X_{i, t}= \begin{cases}1, & \text { when } i=t \quad \bmod s \\ 0, & \text { otherwise }\end{cases}
\]

Note that if the model includes an intercept term, the number of seasonal dummy regressors is one less than \(s\) to ensure that the linear system is full rank.

The seasonal dummy variables are included in the output data set with variable names prefixed with "SDUMMYi" and sequentially numbered. They are reserved variable names.

\section*{Series Diagnostic Tests}

This section describes the diagnostic tests that are used to determine the kinds of forecasting models appropriate for a series.

The series diagnostics are a set of heuristics that provide recommendations on whether or not the forecasting model should contain a log transform, trend terms, and seasonal terms. These recommendations are used by the automatic model selection process to restrict the model search to a subset of the model selection list. (You can disable this behavior by using the Automatic Model Selection Options window.)

The tests that are used by the series diagnostics do not always produce the correct classification of the series. They are intended to accelerate the process of searching for a good forecasting model for the series, but you should not rely on them if finding the very best model is important to you.

If you have information about the appropriate kinds of forecasting models (perhaps from studying the plots and autocorrelations shown in the Series Viewer window), you can set the series diagnostic flags in the Series Diagnostics window. Select the YES, NO, or MAYBE values for the Log Transform, Trend, and Seasonality options in the Series Diagnostics window as you think appropriate.

The series diagnostics tests are intended as a heuristic tool only, and no statistical validity is claimed for them. These tests might be modified and enhanced in future releases of the Time Series Forecasting System. The testing strategy is as follows:
1. Log transform test. The log test fits a high-order autoregressive model to the series and to the log of the series and compares goodness-of-fit measures for the prediction errors of the two models. If this test finds that log transforming the series is suitable, the Log Transform option is set to YES, and the subsequent diagnostic tests are performed on the log transformed series.
2. Trend test. The resultant series is tested for presence of a trend by using an augmented Dickey-Fuller test and a random walk with drift test. If either test finds that the series appears to have a trend, the Trend option is set to YES, and the subsequent diagnostic tests are performed on the differenced series.
3. Seasonality test. The resultant series is tested for seasonality. A seasonal dummy model with \(\operatorname{AR}(1)\) errors is fit and the joint significance of the seasonal dummy estimates is tested. If the seasonal dummies are significant, the AIC statistic for this model is compared to the AIC for and \(\operatorname{AR}(1)\) model without seasonal dummies. If the AIC for the seasonal model is lower than that of the nonseasonal model, the Seasonal option is set to YES.

\section*{Statistics of Fit}

This section explains the goodness-of-fit statistics reported to measure how well different models fit the data. The statistics of fit for the various forecasting models can be viewed or stored in a data set by using the Model Viewer window.

Statistics of fit are computed by using the actual and forecasted values for observations in the period of evaluation. One-step forecasted values are used whenever possible, including the case when a hold-out sample contains no missing values. If a one-step forecast for an observation cannot be computed due to missing values for previous series observations, a multi-step forecast is computed, using the minimum number of steps as the previous nonmissing values in the data range permit.

The various statistics of fit reported are as follows. In these formulas, \(n\) is the number of nonmissing observations and \(k\) is the number of fitted parameters in the model.

\section*{Number of Nonmissing Observations.}

The number of nonmissing observations used to fit the model.

\section*{Number of Observations.}

The total number of observations used to fit the model, including both missing and nonmissing observations.

\section*{Number of Missing Actuals.}

The number of missing actual values.
Number of Missing Predicted Values.
The number of missing predicted values.
Number of Model Parameters.
The number of parameters fit to the data. For combined forecast, this is the number of forecast components.

Total Sum of Squares (Uncorrected).
The total sum of squares for the series, SST, uncorrected for the mean: \(\sum_{t=1}^{n} y_{t}^{2}\).
Total Sum of Squares (Corrected).
The total sum of squares for the series, SST , corrected for the mean: \(\sum_{t=1}^{n}\left(y_{t}-\bar{y}\right)^{2}\), where \(\bar{y}\) is the series mean.

Sum of Square Errors.
The sum of the squared prediction errors, \(\operatorname{SSE}\). \(\operatorname{SSE}=\sum_{t=1}^{n}\left(y_{t}-\hat{y}_{t}\right)^{2}\), where \(\hat{y}\) is the onestep predicted value.

\section*{Mean Squared Error.}

The mean squared prediction error, MSE, calculated from the one-step-ahead forecasts. \(M S E=\frac{1}{n} S S E\). This formula enables you to evaluate small hold-out samples.
Root Mean Squared Error.
The root mean square error (RMSE), \(\sqrt{M S E}\).
Mean Absolute Percent Error.
The mean absolute percent prediction error (MAPE), \(\frac{100}{n} \sum_{t=1}^{n}\left|\left(y_{t}-\hat{y}_{t}\right) / y_{t}\right|\).
The summation ignores observations where \(y_{t}=0\).
Mean Absolute Error.
The mean absolute prediction error, \(\frac{1}{n} \sum_{t=1}^{n}\left|y_{t}-\hat{y}_{t}\right|\).
\(R\)-Square.
The \(R^{2}\) statistic, \(R^{2}=1-S S E / S S T\). If the model fits the series badly, the model error sum of squares, SSE, can be larger than SST and the \(R^{2}\) statistic will be negative.
Adjusted \(R\)-Square.
The adjusted \(R^{2}\) statistic, \(1-\left(\frac{n-1}{n-k}\right)\left(1-R^{2}\right)\).
Amemiya's Adjusted \(R\)-Square.
Amemiya's adjusted \(R^{2}, 1-\left(\frac{n+k}{n-k}\right)\left(1-R^{2}\right)\).
Random Walk \(R\)-Square.
The random walk \(R^{2}\) statistic (Harvey's \(R^{2}\) statistic by using the random walk model for comparison), \(1-\left(\frac{n-1}{n}\right) S S E / R W S S E\), where \(R W S S E=\sum_{t=2}^{n}\left(y_{t}-y_{t-1}-\mu\right)^{2}\), and \(\mu=\frac{1}{n-1} \sum_{t=2}^{n}\left(y_{t}-y_{t-1}\right)\).
Akaike's Information Criterion.
Akaike's information criterion (AIC), \(n \ln (M S E)+2 k\).
Schwarz Bayesian Information Criterion.
Schwarz Bayesian information criterion (SBC or BIC),
\(n \ln (M S E)+k \ln (n)\).
Amemiya's Prediction Criterion.
Amemiya's prediction criterion, \(\frac{1}{n} \operatorname{SST}\left(\frac{n+k}{n-k}\right)\left(1-R^{2}\right)=\left(\frac{n+k}{n-k}\right) \frac{1}{n} \operatorname{SSE}\).
Maximum Error.
The largest prediction error.

\section*{Minimum Error.}

The smallest prediction error.

\section*{Maximum Percent Error.}

The largest percent prediction error, \(100 \max \left(\left(y_{t}-\hat{y}_{t}\right) / y_{t}\right)\). The summation ignores observations where \(y_{t}=0\).

\section*{Minimum Percent Error.}

The smallest percent prediction error, \(100 \min \left(\left(y_{t}-\hat{y}_{t}\right) / y_{t}\right)\). The summation ignores observations where \(y_{t}=0\).
Mean Error.
The mean prediction error, \(\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\hat{y}_{t}\right)\).
Mean Percent Error.
The mean percent prediction error, \(\frac{100}{n} \sum_{t=1}^{n} \frac{\left(y_{t}-\hat{y}_{t}\right)}{y_{t}}\). The summation ignores observations where \(y_{t}=0\).

\section*{References}

Akaike, H. (1974), "A New Look at the Statistical Model Identification," IEEE Transaction on Automatic Control, AC-19, 716-723.

Aldrin, M. and Damsleth, E. (1989), "Forecasting Nonseasonal Time Series with Missing Observations," Journal of Forecasting, 8, 97-116.

Anderson, T.W. (1971), The Statistical Analysis of Time Series, New York: John Wiley \& Sons.
Ansley, C. (1979), "An Algorithm for the Exact Likelihood of a Mixed Autoregressive MovingAverage Process," Biometrika, 66, 59.

Ansley, C. and Newbold, P. (1980), "Finite Sample Properties of Estimators for Autoregressive Moving-Average Models," Journal of Econometrics, 13, 159.

Archibald, B.C. (1990), "Parameter Space of the Holt-Winters Model," International Journal of Forecasting, 6, 199-209.

Bartolomei, S.M. and Sweet, A.L. (1989), "A Note on the Comparison of Exponential Smoothing Methods for Forecasting Seasonal Series," International Journal of Forecasting, 5, 111-116.

Bhansali, R.J. (1980), "Autoregressive and Window Estimates of the Inverse Correlation Function," Biometrika, 67, 551-566.

Bowerman, B.L. and O'Connell, R.T. (1979), Time Series and Forecasting: An Applied Approach, North Scituate, Massachusetts: Duxbury Press.

Box, G.E.P. and Cox D.R. (1964), "An Analysis of Transformations," Journal of Royal Statistical Society B, No. 26, 211-243.

Box, G.E.P. and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control, Revised Edition, San Francisco: Holden-Day.

Box, G.E.P. and Tiao, G.C. (1975), "Intervention Analysis with Applications to Economic and Environmental Problems," JASA, 70, 70-79.

Brocklebank, J.C. and Dickey, D.A. (1986), SAS System for Forecasting Time Series, 1986 Edition,

Cary, North Carolina: SAS Institute Inc.
Brown, R.G. (1962), Smoothing, Forecasting, and Prediction of Discrete Time Series, New York: Prentice-Hall.

Brown, R.G. and Meyer, R.F. (1961), "The Fundamental Theorem of Exponential Smoothing," Operations Research, 9, 673-685.

Chatfield, C. (1978), "The Holt-Winters Forecasting Procedure," Applied Statistics, 27, 264-279.
Chatfield, C., and Prothero, D.L. (1973), "Box-Jenkins Seasonal Forecasting: Problems in a Case Study," Journal of the Royal Statistical Society, Series A, 136, 295-315.

Chatfield, C. and Yar, M. (1988), "Holt-Winters Forecasting: Some Practical Issues," The Statistician, 37, 129-140.

Chatfield, C. and Yar, M. (1991), "Prediction Intervals for Multiplicative Holt-Winters," International Journal of Forecasting, 7, 31-37.

Cogger, K.O. (1974), "The Optimality of General-Order Exponential Smoothing," Operations Research, 22, 858.

Cox, D. R. (1961), "Prediction by Exponentially Weighted Moving Averages and Related Methods," Journal of the Royal Statistical Society, Series B, 23, 414-422.

Davidson, J. (1981), "Problems with the Estimation of Moving-Average Models," Journal of Econometrics, 16, 295.

Dickey, D. A., and Fuller, W.A. (1979), "Distribution of the Estimators for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association, 74(366), 427-431.

Dickey, D. A., Hasza, D. P., and Fuller, W.A. (1984), "Testing for Unit Roots in Seasonal Time Series," Journal of the American Statistical Association, 79(386), 355-367.

Fair, R.C. (1986), "Evaluating the Predictive Accuracy of Models," in Handbook of Econometrics, Vol. 3., Griliches, Z. and Intriligator, M.D., eds., New York: North Holland.

Fildes, R. (1979), "Quantitative Forecasting—the State of the Art: Extrapolative Models," Journal of Operational Research Society, 30, 691-710.

Fuller, W.A. (1976), Introduction to Statistical Time Series, New York: John Wiley \& Sons.
Gardner, E.S., Jr. (1984), "The Strange Case of the Lagging Forecasts," Interfaces, 14, 47-50.
Gardner, E.S., Jr. (1985), "Exponential Smoothing: the State of the Art," Journal of Forecasting, 4, 1-38.

Granger, C.W.J. and Newbold, P. (1977), Forecasting Economic Time Series, New York: Academic Press, Inc.

Greene, W.H. (1993), Econometric Analysis, Second Edition, New York: Macmillan Publishing Company.

Hamilton, J. D. (1994), Time Series Analysis, Princeton: Princeton University Press.
Harvey, A.C. (1981), Time Series Models, New York: John Wiley \& Sons.
Harvey, A.C. (1984), "A Unified View of Statistical Forecasting Procedures," Journal of Forecasting, 3, 245-275.

Hopewood, W.S., McKeown, J.C., and Newbold, P. (1984), "Time Series Forecasting Models Involving Power Transformations," Journal of Forecasting, Vol 3, No. 1, 57-61.

Jones, Richard H. (1980), "Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations," Technometrics, 22, 389-396.

Judge, G.G., Griffiths, W.E., Hill, R.C., and Lee, T.C. (1980), The Theory and Practice of Econometrics, New York: John Wiley \& Sons.

Ledolter, J. and Abraham, B. (1984), "Some Comments on the Initialization of Exponential Smoothing," Journal of Forecasting, 3, 79-84.

Ljung, G.M. and Box, G.E.P. (1978), "On a Measure of Lack of Fit in Time Series Models," Biometrika, 65, 297-303.

Makridakis, S., Wheelwright, S.C., and McGee, V.E. (1983), Forecasting: Methods and Applications, Second Edition, New York: John Wiley \& Sons.

McKenzie, Ed (1984), "General Exponential Smoothing and the Equivalent ARMA Process," Journal of Forecasting, 3, 333-344.

McKenzie, Ed (1986), "Error Analysis for Winters' Additive Seasonal Forecasting System," International Journal of Forecasting, 2, 373-382.

Montgomery, D.C. and Johnson, L.A. (1976), Forecasting and Time Series Analysis, New York: McGraw-Hill.

Morf, M., Sidhu, G.S., and Kailath, T. (1974), "Some New Algorithms for Recursive Estimation on Constant Linear Discrete Time Systems," I.E.E.E. Transactions on Automatic Control, AC-19, 315-323.

Nelson, C.R. (1973), Applied Time Series for Managerial Forecasting, San Francisco: Holden-Day.
Newbold, P. (1981), "Some Recent Developments in Time Series Analysis," International Statistical Review, 49, 53-66.

Newton, H. Joseph and Pagano, Marcello (1983), "The Finite Memory Prediction of Covariance Stationary Time Series," SIAM Journal of Scientific and Statistical Computing, 4, 330-339.

Pankratz, Alan (1983), Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, New York: John Wiley \& Sons.

Pankratz, Alan (1991), Forecasting with Dynamic Regression Models, New York: John Wiley \& Sons.

Pankratz, A. and Dudley, U. (1987), "Forecast of Power-Transformed Series," Journal of Forecasting, Vol 6, No. 4, 239-248.

Pearlman, J.G. (1980), "An Algorithm for the Exact Likelihood of a High-Order Autoregressive Moving-Average Process," Biometrika, 67, 232-233.

Priestly, M.B. (1981), Spectral Analysis and Time Series, Volume 1: Univariate Series, New York: Academic Press, Inc.

Roberts, S.A. (1982), "A General Class of Holt-Winters Type Forecasting Models," Management Science, 28, 808-820.

Schwarz, G. (1978), "Estimating the Dimension of a Model," Annals of Statistics, 6, 461-464.
Sweet, A.L. (1985), "Computing the Variance of the Forecast Error for the Holt-Winters Seasonal Models," Journal of Forecasting, 4, 235-243.

Winters, P.R. (1960), "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, 6, 324-342.

Yar, M. and Chatfield, C. (1990), "Prediction Intervals for the Holt-Winters Forecasting Procedure," International Journal of Forecasting, 6, 127-137.

Woodfield, T.J. (1987), "Time Series Intervention Analysis Using SAS Software," Proceedings of the Twelfth Annual SAS Users Group International Conference, 331-339. Cary, NC: SAS Institute Inc.

\section*{Part V}

\section*{Investment Analysis}

\section*{Chapter 45 \\ Overview}

\section*{Contents}

About Investment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2697
Starting Investment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2698
Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2699
Using Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2699
Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700

\section*{About Investment Analysis}

The Investment Analysis system is an interactive environment for the time-value of money of a variety of investments:
- loans
- savings
- depreciations
- bonds
- generic cashflows

Various analyses are provided to help analyze the value of investment alternatives: time value, periodic equivalent, internal rate of return, benefit-cost ratio, and breakeven analysis.

These analyses can help answer a number of questions you may have about your investments:
- Which option is more profitable or less costly?
- Is it better to buy or rent?
- Are the extra fees for refinancing at a lower interest rate justified?
- What is the balance of this account after saving this amount periodically for so many years?
- How much is legally tax-deductible?
- Is this a reasonable price?

Investment Analysis can be beneficial to users in many industries for a variety of decisions:
- manufacturing: cost justification of automation or any capital investment, replacement analysis of major equipment, or economic comparison of alternative designs
- government: setting funds for services
- finance: investment analysis and portfolio management for fixed-income securities

\section*{Starting Investment Analysis}

There are two ways to invoke Investment Analysis from the main SAS window. One way is to select Solutions \(\rightarrow\) Analysis \(\rightarrow\) Investment Analysis from the main SAS menu, as displayed in Figure 45.1.

Figure 45.1 Initializing Investment Analysis with the Menu Bar
\begin{tabular}{|l|l|}
\hline Solutions & \\
\hline Analysis & 3D Visual Analysis \\
Development and Programming & Analyst \\
Reporting & Design of Experiments \\
Accessories & Enterprise Miner \\
ASSISI & Geographic Information System \\
Desktop & Guided Data Analysis \\
EIS / OLAP Application Builder & Interactive Data Analysis \\
\hline & Investment Analysis \\
& Market Research \\
& Eroject Management \\
& Quality Improvement \\
& Queueing Simulation \\
& Time Series Forecasting System \\
& Iime Series Viewer \\
\hline
\end{tabular}

The other way is to type INVEST into the toolbar's command prompt, as displayed in Figure 45.2.
Figure 45.2 Initializing Investment Analysis with the Toolbar


\section*{Getting Help}

You can get help in Investment Analysis in three ways. One way is to use the Help Menu, as displayed in Figure 45.3. This is the right-most menu item on the menu bar.

Figure 45.3 The Help Menu


Help buttons, as in Figure 45.4, provide another way to access help. Most dialog boxes provide help buttons in their lower-right corners.

Figure 45.4 A Help Button
Help

Also, the toolbar has a button (see Figure 45.5) that invokes the help system. This is the right-most icon on the toolbar.

Figure 45.5 The Help Icon


Each of these methods invokes a browser that gives specific help for the active window.

\section*{Using Help}

The chapters pertaining to Investment Analysis in this document typically have a section that introduces you to a menu and summarizes the options available through the menu. Such chapters then have sections titled Task and Dialog Box Guides. The Task section provides a description of how to perform many useful tasks. The Dialog Box Guide lists all dialog boxes pertinent to those tasks and gives a brief description of each element of each dialog box.

\section*{Software Requirements}

Investment Analysis uses the following SAS software:
- Base SAS
- SAS/ETS
- SAS/GRAPH (optional, to view bond pricing and breakeven graphs)

\section*{Chapter 46 \\ Portfolios}

\section*{Contents}
The File Menu ..... 2701
Tasks ..... 2702
Creating a New Portfolio ..... 2702
Saving a Portfolio ..... 2703
Opening an Existing Portfolio ..... 2703
Saving a Portfolio to a Different Name ..... 2704
Selecting Investments within a Portfolio ..... 2705
Dialog and Utility Guide ..... 2706
Investment Analysis ..... 2706
Menu Bar Options ..... 2707
Right-Clicking within the Portfolio Area ..... 2707

\section*{The File Menu}

Investment Analysis stores portfolios as catalog entries. Portfolios contain a collection of investments, providing a structure to collect investments with a common purpose or goal (like a retirement or building fund portfolio). It may be advantageous also to collect investments into a common portfolio if they are competing investments you want to perform a comparative analysis upon. Within this structure you can perform computations and analyses on a collection of investments in a portfolio, just as you would perform them on a single investment.

Investment Analysis provides many tools to aid in your manipulation of portfolios through the File menu, shown in Figure 46.1.

Figure 46.1 File Menu
Ele


The File menu offers the following items:
New Portfolio creates an empty portfolio with a new name.
Open Portfolio opens the standard SAS Open dialog box where you select a portfolio to open.
Save Portfolio saves the current portfolio to its current name.
Save Portfolio As opens the standard SAS Save As dialog box where you supply a new portfolio name for the current portfolio.

Close closes Investment Analysis.
Exit closes SAS (Windows only).

\section*{Tasks}

\section*{Creating a New Portfolio}

From the Investment Analysis dialog box, select File \(\rightarrow\) New Portfolio.

Figure 46.2 Creating a New Portfolio


The Portfolio Name is WORK.INVEST.INVEST1 as displayed in Figure 46.2, unless you have saved a portfolio to that name in the past. In that case, some other unused portfolio name is given to the new portfolio.

\section*{Saving a Portfolio}

From the Investment Analysis dialog box, select File \(\rightarrow\) Save Portfolio. The portfolio is saved to a catalog-entry with the name in the Portfolio Name box.

\section*{Opening an Existing Portfolio}

From the Investment Analysis dialog box, select File \(\rightarrow\) Open Portfolio. This opens the standard SAS Open dialog box. You enter the name of a SAS portfolio to open in the Entry Name box. For example, enter SASHELP.INVSAMP.NVST as displayed in Figure 46.3.

Figure 46.3 Opening an Existing Portfolio


Click Open to load the portfolio. The portfolio should look like Figure 46.4.
Figure 46.4 The Opened Portfolio
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Investment Analysis} & - \\
\hline Portfolio Name: & samp.Nvst & & \\
\hline Portfolio Description & \multicolumn{3}{|c|}{Default portfolio} \\
\hline \multicolumn{4}{|l|}{Portfolio} \\
\hline Name & Label & Type & \(\pm\) \\
\hline nvst1 & Investment Example 1 & OTHER & \\
\hline nvst2 & Investment Example 2 & OTHER & \\
\hline nvst3 & Investment Example 3 & OTHER & \\
\hline nvst4 & Investment Example 4 & OTHER & \\
\hline nvst5 & Investment Example 5 & OTHER & - \\
\hline \multicolumn{2}{|l|}{1} & & - \\
\hline
\end{tabular}

\section*{Saving a Portfolio to a Different Name}

From the Investment Analysis dialog box, select File \(\rightarrow\) Save Portfolio As.
This opens the standard SAS Save As dialog box. You can enter the name of a SAS portfolio into the Entry Name box. For example, enter SASUSER.MY_PORTS.PORT1, as in Figure 46.5.

Figure 46.5 Saving a Portfolio to a Different Name


Click Save to save the portfolio.

\section*{Selecting Investments within a Portfolio}

To select a single investment in an opened portfolio, click the investment in the Portfolio area within the Investment Analysis dialog box.

To select a list of adjacent investments, do the following: click the first investment, hold down SHIFT, and click the final investment. After the list of investments is selected, you can release the SHIFT key. The selected investments will appear highlighted as in Figure 46.6.

Figure 46.6 Selecting Investments within a Portfolio


\section*{Dialog and Utility Guide}

\section*{Investment Analysis}

Figure 46.7 Investment Analysis Dialog Box


Investment Portfolio Name holds the name of the portfolio. The name is of the form library.catalog_entry.portfolio. The default portfolio name is work.invest.invest1, as in Figure 46.7.

Portfolio Description provides a more descriptive explanation of the portfolio's contents. You can edit this description any time this dialog box is active.

The Portfolio area contains the list of investments comprising the particular portfolio. Each investment in the Portfolio area displays the following attributes:

Name is the name of the investment. It must be a valid SAS name. It is used to distinguish investments when performing analyses and computations.

Label is a place where you can provide a more descriptive explanation of the investment.
Type is the type of investment, which is fixed when you create the investment. It is one of the following: LOAN, SAVINGS, DEPRECIATION, BOND, or OTHER.

Additional tools to aid in the management of your portfolio are available by selecting from the menu bar or by right-clicking within the Portfolio area.

\section*{Menu Bar Options}

Figure 46.8 The Menu Bar
\begin{tabular}{|c|c|}
\hline 7. SAS & - \(\square^{\text {a }}\) \\
\hline & \\
\hline
\end{tabular}

The menu bar (shown in Figure 46.8) provides many tools to aid in the management of portfolios and the investments that comprise them. The following menu items provide functionality particular to Investment Analysis:

File opens and saves portfolios.
Investment creates new investments within the portfolio.
Compute performs constant dollar, after tax, and currency conversion computations on generic cashflows.

Analyze analyzes investments to aid in decision-making.
Tools sets default values of inflation and income tax rates.

\section*{Right-Clicking within the Portfolio Area}

Figure 46.9 Right-Clicking
```

Edit
Duplicate
Delete

```

After selecting an investment, right-clicking in the Portfolio area pops up a menu (see Figure 46.9) that offers the following options:

Edit opens the selected investment within the portfolio.
Duplicate creates a duplicate of the selected investment within the portfolio.
Delete removes the selected investment from the portfolio.
If you wish to perform one of these actions on a collection of investments, you must select a collection of investments (as described in the section "Selecting Investments within a Portfolio" on page 2705) before right-clicking.

\section*{Chapter 47}

\section*{Investments}

\section*{Contents}

The Investment Menu

2709

Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2711
Loan Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2711
Specifying Savings Terms to Create an Account Summary . . . . . . . . . . 2718
Depreciation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2719
Bond Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2722
Generic Cashflow Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2726
Dialog Box Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
Loan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
Loan Initialization Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 2735
Loan Prepayments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2736
Balloon Payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2737
Rate Adjustment Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2737
Rounding Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2739
Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2739
Depreciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2741
Depreciation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2743
Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2743
Bond Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2745
Bond Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2746
Generic Cashflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2747
Right-Clicking within Generic Cashflow’s Cashflow Specification Area . . . 2748
Flow Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2749
Forecast Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2751

\section*{The Investment Menu}

Because there are many types of investments, a tool that manages and analyzes collections of investments must be robust and flexible. Providing specifications for four specific investment types and one generic type, Investment Analysis can model almost any real-world investment.

Figure 47.1 Investment Menu


The Investment menu, shown in Figure 47.1, offers the following items:
New \(\rightarrow\) Loan opens the Loan dialog box. Loans are useful for acquiring capital to pursue various interests. Available terms include rate adjustments for variable rate loans, initialization costs, prepayments, and balloon payments.

New \(\rightarrow\) Savings opens the Savings dialog box. Savings are necessary when planning for the future, whether for business or personal purposes. Account summary calculations available per deposit include starting balance, deposits, interest earned, and ending balance.

New \(\rightarrow\) Depreciation opens the Depreciation dialog box. Depreciations are relevant in tax calculation. The available depreciation methods are Straight Line, Sum-of-years Digits, Depreciation Table, and Declining Balance. Depreciation Tables are necessary when depreciation calculations must conform to set yearly percentages. Declining Balance with conversion to Straight Line is also provided.

New \(\rightarrow\) Bond opens the Bond dialog box. Bonds have widely varying terms depending on the issuer. Because bond issuers frequently auction their bonds, the ability to price a bond between the issue date and maturity date is desirable. Fixed-coupon bonds may be analyzed for the following: price versus yield-to-maturity, duration, and convexity. These are available at different times in the bond's life.

New \(\rightarrow\) Generic Cashflow opens the Generic Cashflow dialog box. Generic cashflows are the most flexible investments. Only a sequence of date-amount pairs is necessary for specification. You can enter date-amount pairs and load values from SAS data sets to specify any type of investment. You can generate uniform, arithmetic, and geometric cashflows with ease. SAS's forecasting ability is available to forecast future cashflows as well. The new graphical display aids in visualization of the cashflow and enables the user to change the frequency of the cashflow view to aggregate and disaggregate the view.

Edit opens the specification dialog box for an investment selected within the portfolio.
Duplicate creates a duplicate of an investment selected within the portfolio.
Delete removes an investment selected from the portfolio.
If you want to edit, duplicate, or delete a collection of investments, you must select a collection of investments as described in the section "Selecting Investments within a Portfolio" on page 2705 before performing the menu-option.

\section*{Tasks}

\section*{Loan Tasks}

Suppose you want to buy a home that costs \(\$ 100,000\). You can make a down payment of \(\$ 20,000\). Hence, you need a loan of \(\$ 80,000\). You are able to acquire a 30 -year loan at \(7 \%\) interest starting January 1, 2000. Let's use Investment Analysis to specify and analyze this loan.

In the Investment Analysis dialog box, select Investment \(\rightarrow\) New \(\rightarrow\) Loan from the menu bar to open the Loan dialog box.

\section*{Specifying Loan Terms to Create an Amortization Schedule}

You must specify the loan before generating the amortization table. To specify the loan, follow these steps:
1. Enter MORTGAGE for the Name.
2. Enter 80000 for the Loan Amount.
3. Enter 7 for the Initial Rate.
4. Enter 360 for the Number of Payments.
5. Enter 01JAN2000 for the Start Date.

After you have specified the loan, click Create Amortization Schedule to generate the amortization schedule displayed in Figure 47.2.

Figure 47.2 Creating an Amortization Schedule


\section*{Storing Other Loan Terms}

Let's include information concerning the purchase price and downpayment. These terms are not necessary to specify the loan, but it may be advantageous to store such information with the loan.

Consider the loan described in the section "Loan Tasks" on page 2711. In the Loan dialog box (Figure 47.2) click Initialization to open the Loan Initialization Options dialog box, where you can specify the down payment, initialization costs, and discount points. To specify the down payment, enter 100000 for the Purchase Price, as shown in Figure 47.3.

Figure 47.3 Including the Purchase Price


Click OK to return to the Loan dialog box.

\section*{Adding Prepayments}

Now let's observe the effect of prepayments on the loan. Consider the loan described in the section "Loan Tasks" on page 2711. You must pay a minimum of \(\$ 532.24\) each month to keep up with payments. However, let's say you dislike entering this amount in your checkbook. You would rather pay \(\$ 550.00\) to keep the arithmetic simpler. This would constitute a uniform prepayment of \(\$ 17.76\) each month.

In the Loan dialog box, click Prepayments, which opens the Loan Prepayments dialog box shown in Figure 47.4.

Figure 47.4 Specifying the Loan Prepayments


You can specify an arbitrary sequence of prepayments in the Prepayments area. If you want a uniform prepayment, clear the Prepayments area and enter the uniform payment amount in the Uniform Prepayment text box. That amount will be added to each payment until the loan is paid off.

To specify this uniform prepayment, follow these steps:
1. Enter 17.76 for the Uniform Prepayment.
2. Click \(\mathbf{O K}\) to return to the Loan dialog box.
3. Click Create Amortization Schedule, and the amortization schedule is updated, as displayed in Figure 47.5.

Figure 47.5 The Amortization Schedule with Loan Prepayments


The last payment is on January 2030 without prepayments and February 2027 with prepayment; you would pay the loan off almost three years earlier with the \(\$ 17.76\) prepayments.

To continue this example you must remove the prepayments from the loan specification, following these steps:
1. Reopen the Loan Prepayments dialog box from the Loan dialog box by clicking Prepayments.

\section*{2. Enter 0 for Uniform Prepayment.}
3. Click \(\mathbf{O K}\) to return to the Loan dialog box.

\section*{Adding Balloon Payments}

Consider the loan described in the section "Loan Tasks" on page 2711. Suppose you cannot afford the payments of \(\$ 532.24\) each month. To lessen your monthly payment, you could pay balloon payments of \(\$ 6,000\) at the end of 2007 and 2023. You wonder how this would affect your monthly payment. (Note that Investment Analysis does not allow both balloon payments and rate adjustments to be specified for a loan.)

In the Loan dialog box, click Balloon Payments, which opens the Balloon Payments dialog box shown in Figure 47.6.

Figure 47.6 Defining Loan Balloon Payments


You can specify an arbitrary sequence of balloon payments by adding date-amount pairs to the Balloon Payments area.

To specify these balloon payments, follow these steps:
1. Right-click within the Balloon Payment area (which pops up a menu) and release on New.
2. Set the pair's Date to 01JAN2007.
3. Set Amount to 6000.
4. Right-click within the Balloon Payment area (which pops up a menu) and release on New.
5. Set the new pair's Date to 01JAN2023.
6. Set its Amount to 6000.

Click OK to return to the Loan dialog box. Click Create Amortization Schedule, and the amortization schedule is updated. Your monthly payment is now \(\$ 500.30\), a difference of approximately \(\$ 32\) each month.

To continue this example you must remove the balloon payments from the loan specification, following these steps:
1. Reopen the Balloon Payments dialog box.
2. Right-click within the Balloon Payment area (which pops up a menu) and release on Clear.
3. Click OK to return to the Loan dialog box.

\section*{Handling Rate Adjustments}

Consider the loan described in the section "Loan Tasks" on page 2711. Another option for lowering your payments is to get a variable rate loan. You can acquire a three-year adjustable rate mortgage (ARM) at \(6 \%\) with a periodic cap of \(1 \%\) with a maximum of \(9 \%\). (Note that Investment Analysis does not allow both rate adjustments and balloon payments to be specified for a loan.)

In the Loan dialog box, click Rate Adjustments to open the Rate Adjustment Terms dialog box shown in Figure 47.7.

Figure 47.7 Setting the Rate Adjustments


To specify these loan adjustment terms, follow these steps:
1. Enter 3 for the Life Cap. The Life Cap is the maximum deviation from the Initial Rate.
2. Enter 1 for the Periodic Cap.
3. Enter 36 for the Adjustment Frequency.
4. Confirm that Worst Case is selected from the Rate Adjustment Assumption options.
5. Click OK to return to the Loan dialog box.
6. Enter 6 for the Initial Rate.
7. Click Create Amortization Schedule, and the amortization schedule is updated.

Your monthly payment drops to \(\$ 479.64\) each month. However, if the worst-case scenario plays out, the payments will increase to \(\$ 636.84\) in nine years. Figure 47.8 displays amortization table information for the final few months under this scenario.

Figure 47.8 The Amortization Schedule with Rate Adjustments


Click OK to return to the Investment Analysis dialog box.

\section*{Specifying Savings Terms to Create an Account Summary}

Suppose you put \(\$ 500\) each month into an account that earns \(6 \%\) interest for 20 years. What is the balance of the account after those 20 years?

In the Investment Analysis dialog box, select Investment \(\rightarrow\) New \(\rightarrow\) Savings from the menu bar to open the Savings dialog box.

To specify the savings, follow these steps:
1. Enter RETIREMENT for the Name.
2. Enter 500 for the Periodic Deposit.
3. Enter 240 for the Number of Deposits.
4. Enter 6 for the Initial Rate.

You must specify the savings before generating the account summary. After you have specified the savings, click Create Account Summary to compute the ending date and balance and to generate the account summary displayed in Figure 47.9.

Figure 47.9 Creating an Account Summary


Click OK to return to the Investment Analysis dialog box.

\section*{Depreciation Tasks}

Commercial assets are considered to lose value as time passes. For tax purposes, you want to quantify this loss. This investment structure helps calculate appropriate values.

Suppose you spend \(\$ 50,000\) for a commercial fishing boat that is considered to have a ten-year useful life. How would you depreciate it?

In the Investment Analysis dialog box, select Investment \(\rightarrow\) New \(\rightarrow\) Depreciation from the menu bar to open the Depreciation dialog box.

\section*{Specifying Depreciation Terms to Create a Depreciation Table}

To specify the depreciation, follow these steps:
1. Enter FISHING_BOAT for the Name.
2. Enter 50000 for the Cost.
3. Enter 2000 for the Year of Purchase.
4. Enter 10 for the Useful Life.
5. Enter 0 for the Salvage Value.

You must specify the depreciation before generating the depreciation schedule. After you have specified the depreciation, click Create Depreciation Schedule to generate a depreciation schedule like the one displayed in Figure 47.10.

Figure 47.10 Creating a Depreciation Schedule


The default depreciation method is Declining Balance (with Conversion to Straight Line). Try the following methods to see how they each affect the schedule:
- Straight Line
- Sum-of-years Digits
- Declining Balance (without conversion to Straight Line)

It might be useful to compare the value of the boat at 5 years for each method.
A description of these methods is available in the section "Depreciation Methods" on page 2785.

\section*{Using the Depreciation Table}

Sometimes you want to force the depreciation rates to be certain percentages each year. This option is particularly useful for calculating modified accelerated cost recovery system (MACRS) depreciations. The United States' Tax Reform Act of 1986 set depreciation rates for an asset based on an assumed lifetime for that asset. Since these lists of rates are important to many people, Investment Analysis provides SAS data sets for situations with yearly rates (using the "half-year convention"). Find them at SASHELP.MACRS* where * refers to the class of the property. For example, use SASHELP.MACRS15 for a fifteen-year property. (When using the MACRS with the Tax Reform Act tables, you must set the Salvage Value to zero.)

Suppose you want to compute the depreciation schedule for the commercial fishing boat described in the section "Depreciation Tasks" on page 2719. The boat is a ten-year property according to the Tax Reform Act of 1986.

To employ the MACRS depreciation from the Depreciation dialog box, follow these steps:
1. Select the Depreciation Table option within the Depreciation Method area and click OK. This opens the Depreciation Table dialog box.
2. Right-click within the Depreciation area (which pops up a menu) and select Load.
3. Enter SASHELP.MACRS10 for the Dataset Name. The dialog box should look like Figure 47.11.

Figure 47.11 MACRS Percentages for a Ten-Year Property


Click OK to return to the Depreciation dialog box. Click Create Depreciation Schedule and the depreciation schedule fills (see Figure 47.12).

Note there are eleven entries in this depreciation schedule. This is because of the half-year convention that enables you to deduct one half of a year the first year which leaves a half year to deduct after the useful life is over.

Figure 47.12 Depreciation Table with MACRS10


Click OK to return to the Investment Analysis dialog box.

\section*{Bond Tasks}

Suppose someone offers to sell you a 20 -year utility bond that was issued six years ago. It has a \(\$ 1,000\) face value and pays semi-year coupons at \(2 \%\). You can purchase it for \(\$ 780\). Would you be satisfied with this bond if you expect an \(8 \%\) minimum attractive rate of return (MARR)?

In the Investment Analysis dialog box, select Investment \(\rightarrow\) New \(\rightarrow\) Bond from the menu bar to open the Bond dialog box.

\section*{Specifying Bond Terms}

To specify the bond, follow these steps:
1. Enter UTILITY_BOND for the Name.
2. Enter 1000 for the Face Value.
3. Enter 2 for the Coupon Rate. The Coupon Payment updates to 20.
4. Select SEMIYEAR for Coupon Interval.
5. Enter 28 for the Number of Coupons. Because 14 years remain before the bond matures, the bond still has 28 semiyear coupons to pay. The Maturity Date updates.

\section*{Computing the Price from Yield}

Enter 8 for Yield within the Valuation area. You see the bond's value would be \(\$ 666.72\) as in Figure 47.13.

Figure 47.13 Bond Value


\section*{Computing the Yield from Price}

Now enter 780 for Value within the Valuation area. You see the yield is only \(6.5 \%\), as in Figure 47.14. This is not acceptable if you desire an \(8 \%\) MARR.

Figure 47.14 Bond Yield
```

Bond
-

```
Name: \(\quad\) UTILITY_BOND
\(\left[\begin{array}{llll|}\text { Bond Specification } & & & \\ \text { Face Value: } & \sqrt{1000} & \text { Coupon Interval: } & \boxed{\text { SEMIYEAR }} \\ \text { Coupon Payment: } & \sqrt{20} & \text { Number of Coupons: } & \boxed{28} \\ \text { Coupon Rate: } & \sqrt{2.00} & \text { Maturity Date: } & \boxed{01 J A N 2014} \\ \hline\end{array}\right.\)


\section*{Performing Bond Analysis}

To perform bond-pricing analysis, follow these steps:
1. Click Analyze to open the Bond Analysis dialog box.
2. Enter 8.0 as the Yield to Maturity.
3. Enter 4.0 as the \(+/-\).
4. Enter 0.5 as the Increment by.
5. Enter 780 as the Reference Price.
6. Click Create Bond Valuation Summary.

The Bond Valuation Summary area fills and shows you the different values for various yields as in Figure 47.15.

Figure 47.15 Bond Price Analysis


\section*{Creating a Price versus Yield-to-Maturity Graph}

Click Graphics to open the Bond Price dialog box. This contains the price versus yield-to-maturity graph shown in Figure 47.16.

Figure 47.16 Bond Price Graph


Click Return to return to the Bond Analysis dialog box. In the Bond Analysis dialog box, click OK to return to the Bond dialog box. In the Bond dialog box, click OK to return to the Investment Analysis dialog box.

\section*{Generic Cashflow Tasks}

To specify a generic cashflow, you merely define any sequence of date-amount pairs. The flexibility of generic cashflows enables the user to represent economic alternatives or investments that do not fit into loan, savings, depreciation, or bond specifications.

In the Investment Analysis dialog box, select Investment \(\rightarrow\) New \(\rightarrow\) Generic Cashflow from the menu bar to open the Generic Cashflow dialog box. Enter RETAIL for the Name as in Figure 47.17.

Figure 47.17 Introducing the Generic Cashflow


\section*{Right-Clicking within the Cashflow Specification Area}

Right-clicking within Generic Cashflow's Cashflow Specification area reveals the pop-up menu displayed in Figure 47.18. The menu provides many useful tools to assist you in creating these date-amount pairs.

Figure 47.18 Right-Clicking within the Cashflow Specification Area


The following sections describe how to use most of these right-click options. The Specify and Forecast menu items are described in the sections "Including a Generated Cashflow" on page 2729 and "Including a Forecasted Cashflow" on page 2731.

\section*{Adding a New Date-Amount Pair}

To add a new date-amount pair manually, follow these steps:
1. Right-click in the Cashflow Specification area as shown in Figure 47.18, and release on Add.
2. Enter 01JAN01 for the date.
3. Enter 100 for the amount.

\section*{Copying a Date-Amount Pair}

To copy a selected date-amount pair, follow these steps:
1. Select the pair you just created.
2. Right-click in the Cashflow Specification area as shown in Figure 47.18, but this time release on Copy.

\section*{Sorting All of the Date-Amount Pairs}

Change the second date to 01JANOO. Now the dates are unsorted. Right-click in the Cashflow Specification area as shown in Figure 47.18, and release on Sort.

\section*{Deleting a Date-Amount Pair}

To delete a selected date-amount pair, follow these steps:
1. Select a date-amount pair.
2. Right-click in the Cashflow Specification area as shown in Figure 47.18, and release on Delete.

\section*{Clearing All of the Date-Amount Pairs}

To clear all date-amount pairs, right-click in the Cashflow Specification area as shown in Figure 47.18, and release on Clear.

\section*{Loading Date-Amount Pairs from a Data Set}

To load date-amount pairs from a SAS data set into the Cashflow Specification area, follow these steps:
1. Right-click in the Cashflow Specification area, and release on Load. This opens the Load Dataset dialog box.
2. Enter SASHELP.RETAIL for Dataset Name.

\section*{3. Click OK to return to the Generic Cashflow dialog box.}

If there is a Date variable in the SAS data set, Investment Analysis loads it into the list. If there is no date-time-formatted variable, it loads the first available date or date-time-formatted variable. Investment Analysis then searches the SAS data set for an Amount variable to use. If none exists, it takes the first numeric variable that is not used by the Date variable.

\section*{Saving Date-Amount Pairs to a Data Set}

To save date-amount pairs from the Cashflow Specification area to a SAS data set, follow these steps:
1. Right-click in the Cashflow Specification area and release on Save. This opens the Save Dataset dialog box.
2. Enter the name of the SAS data set for Dataset Name.
3. Click OK to return to the Generic Cashflow dialog box.

\section*{Including a Generated Cashflow}

To generate date-amount pairs for the Cashflow Specification area, follow these steps:
1. Right-click in the Cashflow Specification area and release on Specify. This opens the Flow Specification dialog box.
2. Select YEAR for the Time Interval.
3. Enter today's date for the Starting Date.
4. Enter 10 for the Number of Periods. The Ending Date updates.
5. Enter 100 for the level. You can visualize the specification in the Cashflow Chart area (see Figure 47.19).
6. Click Add to add the specified cashflow to the list in the Generic Cashflow dialog box. Clicking Add also returns you to the Generic Cashflow dialog box.

Figure 47.19 Uniform Cashflow Specification


Clicking Subtract subtracts the current cashflow from the Generic Cashflow dialog box, and it returns you to the Generic Cashflow dialog box.

You can generate arithmetic and geometric specifications by clicking them within the Series Flow Type area. However, you must enter a value for the Gradient. In both cases the Level value is the value of the list at the Starting Date. With an arithmetic flow type, entries increment by the value Gradient for each Time Interval. With a geometric flow type, entries increase by the factor Gradient for each Time Interval. Figure 47.20 displays an arithmetic cashflow with a Level of 100 and a Gradient of 12 .

Figure 47.20 Arithmetic Cashflow Specification


\section*{Including a Forecasted Cashflow}

To generate date-amount pairs for the Cashflow Specification area, follow these steps:
1. Right-click in the Cashflow Specification area and release on Forecast to open the Forecast Specification dialog box.
2. Enter sashelp.retail as the Data Set.
3. Select SALES for the Analysis Variable.
4. Click Compute Forecast to generate the forecast. You can visualize the forecast in the Cashflow Chart area (see Figure 47.21).
5. Click Add to add the forecast to the list in the Generic Cashflow dialog box. Clicking Add also returns you to the Generic Cashflow dialog box.

Figure 47.21 Cashflow Forecast


Clicking Subtract subtracts the current forecast from the Generic Cashflow dialog box, and it returns you to the Generic Cashflow dialog box.

To review the values from the SAS data set you forecast, click View Table or View Graph.
You can adjust the following values for the SAS data set you forecast: Time ID Variable, Time Interval, and Analysis Variable.

You can adjust the following values for the forecast: the Horizon, the Confidence, and choice of predicted value, lower confidence limit, and upper confidence limit.

\section*{Using the Cashflow Chart}

Three dialog boxes contain the Cashflow Chart to aide in your visualization of cashflows: Generic Cashflow, Flow Specification, and Forecast Specification. Within this chart, you possess the following tools:

You can click on a bar in the plot and view its Cashflow Date and Cashflow Amount.
You can change the aggregation period of the view with the box in the lower-left corner of the Cashflow Chart. You can take the quarterly sales figures from the previous example, select YEAR as the value for this box, and view the annual sales figures. You can change the number in the
box to the right of the horizontal scroll bar to alter the number of entries you want to view. The number in that box must be no greater than the number of entries in the cashflow list. Lessening this number has the effect of zooming in upon a portion of the cashflow. When the number is less than the number of entries in the cashflow list, you can use the scroll bar at the bottom of the chart to scroll through the chart.

\section*{Dialog Box Guide}

\section*{Loan}

Selecting Investment \(\rightarrow\) New \(\rightarrow\) Loan from the Investment Analysis dialog box's menu bar opens the Loan dialog box displayed in Figure 47.22.

Figure 47.22 Loan Dialog Box


The following items are displayed:
Name holds the name you assign to the loan. You can set the name here or within the Portfolio area of the Investment Analysis dialog box. This must be a valid SAS name.

The Loan Specification area gives access to the values that define the loan.
Loan Amount holds the borrowed amount.
Periodic Payment holds the value of the periodic payments.

Number of Payments holds the number of payments in loan terms.
Payment Interval holds the frequency of the Periodic Payment.
Compounding Interval holds the compounding frequency.
Initial Rate holds the interest rate (a nominal percentage between 0 and 120) you pay on the loan.
Start Date holds the SAS date when the loan is initialized. The first payment is due one Payment Interval after this time.
Initialization opens the Loan Initialization Options dialog box where you can define initialization costs and down-payments relevant to the loan.
Prepayments opens the Loan Prepayments dialog box where you can specify the SAS dates and amounts of any prepayments.
Balloon Payments opens the Balloon Payments dialog box where you can specify the SAS dates and amounts of any balloon payments.
Rate Adjustments opens the Rate Adjustment Terms dialog box where you can specify terms for a variable-rate loan.
Rounding Off opens the Rounding Off dialog box where you can select the number of decimal places for calculations.

Create Amortization Schedule becomes available when you adequately define the loan within the Loan Specification area. Clicking it generates the amortization schedule.

Amortization Schedule fills when you click Create Amortization Schedule. The schedule contains a row for the loan's start-date and each payment-date with information about the following:

Date is a SAS date, either the loan's start-date or a payment-date.
Beginning Principal Amount is the balance at that date.
Periodic Payment Amount is the expected payment at that date.
Interest Payment is zero for the loan's start-date; otherwise it holds the interest since the previous date.
Principal Repayment is the amount of the payment that went toward the principal.
Ending Principal is the balance at the end of the payment interval.
Print becomes available when you generate the amortization schedule. Clicking it sends the contents of the amortization schedule to the SAS session print device.

Save Data As becomes available when you generate the amortization schedule. Clicking it opens the Save Output Dataset dialog box where you can save the amortization table (or portions thereof) as a SAS Dataset.

OK returns you to the Investment Analysis dialog box. If this is a new loan specification, clicking OK appends the current loan specification to the portfolio. If this is an existing loan specification, clicking \(\mathbf{O K}\) returns the altered loan specification to the portfolio.

Cancel returns you to the Investment Analysis dialog box. If this is a new loan specification, clicking Cancel discards the current loan specification. If this is an existing loan specification, clicking Cancel discards the current changes.

\section*{Loan Initialization Options}

Clicking Initialization in the Loan dialog box opens the Loan Initialization Options dialog box displayed in Figure 47.23.

Figure 47.23 Loan Initialization Options Dialog Box


The following items are displayed:
The Price, Loan Amount and Downpayment area contains the following information:
Purchase Price holds the actual price of the asset. This value equals the loan amount plus the downpayment.

Loan Amount holds the loan amount.
\% of Price (to the right of Loan Amount) updates when you enter the Purchase Price and either the Loan Amount or Downpayment. This holds the percentage of the Purchase Price that comprises the Loan Amount. Setting the percentage manually causes the Loan Amount and Downpayment to update.
Downpayment holds any downpayment paid for the asset.
\% of Price (to the right of Downpayment) updates when you enter the Purchase Price and either the Loan Amount or Downpayment. This holds the percentage of the Purchase Price that comprises the Downpayment. Setting the percentage manually causes the Loan Amount and Downpayment to update.

\section*{Initialization Costs and Discount Points area}

Loan Amount holds a copy of the Loan Amount above.
Initialization Costs holds the value of any initialization costs.
\% of Amount (to the right of Initialization Costs) updates when you enter the Purchase Price and either the Initialization Costs or Discount Points. This holds the percentage of the Loan Amount that comprises the Initialization Costs. Setting the percentage manually causes the Initialization Costs to update.
Discount Points holds the value of any discount points.
\% of Amount (to the right of Discount Points) updates when you enter the Purchase Price and either the Initialization Costs or Discount Points. This holds the percentage of the Loan Amount that comprises the Discount Points. Setting the percentage manually causes the Discount Points to update.

OK returns you to the Loan dialog box, saving the information that is entered.
Cancel returns you to the Loan dialog box, discarding any changes made since you opened the dialog box.

\section*{Loan Prepayments}

Clicking Prepayments in the Loan dialog box opens the Loan Prepayments dialog box displayed in Figure 47.24.

Figure 47.24 Loan Prepayments Dialog Box


The following items are displayed:
Uniform Prepayment holds the value of a regular prepayment concurrent to the usual periodic payment.

Prepayments holds a list of date-amount pairs to accommodate any prepayments. Right-clicking within the Prepayments area reveals many helpful tools for managing date-amount pairs.

OK returns you to the Loan dialog box, storing the information entered on the prepayments.
Cancel returns you to the Loan dialog box, discarding any prepayments entered since you opened the dialog box.

\section*{Balloon Payments}

Clicking Balloon Payments in the Loan dialog box opens the Balloon Payments dialog box displayed in Figure 47.25.

Figure 47.25 Balloon Payments Dialog Box


The following items are displayed:
Balloon Payments holds a list of date-amount pairs to accommodate any balloon payments. Rightclicking within the Balloon Payments area reveals many helpful tools for managing date-amount pairs.

OK returns you to the Loan dialog box, storing the information entered on the balloon payments.
Cancel returns you to the Loan dialog box, discarding any balloon payments entered since you opened the dialog box.

\section*{Rate Adjustment Terms}

Clicking Rate Adjustments in the Loan dialog box opens the Rate Adjustment Terms dialog box displayed in Figure 47.26.

Figure 47.26 Rate Adjustment Terms Dialog Box


The following items are displayed:

\section*{The Rate Adjustment Terms area}

Life Cap holds the maximum deviation from the Initial Rate allowed over the life of the loan.

Periodic Cap holds the maximum adjustment allowed per adjustment.
Adjustment Frequency holds how often (in months) the lender can adjust the interest rate.
The Rate Adjustment Assumption determines the scenario the adjustments will take.
Worst Case uses information from the Rate Adjustment Terms area to forecast a worstcase scenario.

Best Case uses information from the Rate Adjustment Terms area to forecast a best-case scenario.

Fixed Case specifies a fixed-rate loan.
Estimated Case uses information from the Rate Adjustment Terms and Estimated Rate area to forecast a best-case scenario.

Estimated Rates holds a list of date-rate pairs, where each date is a SAS date and the rate is a nominal percentage between 0 and 120. The Estimated Case assumption uses these rates for its calculations. Right-clicking within the Estimated Rates area reveals many helpful tools for managing date-rate pairs.

OK returns you to the Loan dialog box, taking rate adjustment information into account.

Cancel returns you to the Loan dialog box, discarding any rate adjustment information provided since opening the dialog box.

\section*{Rounding Off}

Clicking Rounding Off in the Loan dialog box opens the Rounding Off dialog box displayed in Figure 47.27.

Figure 47.27 Rounding Off Dialog Box


The following items are displayed:
Decimal Places fixes the number of decimal places your results will display.
OK returns you to the Loan dialog box. Numeric values will then be represented with the number of decimals specified in Decimal Places.

Cancel returns you to the Loan dialog box. Numeric values will be represented with the number of decimals specified prior to opening this dialog box.

\section*{Savings}

Selecting Investment \(\rightarrow\) New \(\rightarrow\) Savings from the Investment Analysis dialog box's menu bar opens the Savings dialog box displayed in Figure 47.28.

Figure 47.28 Savings Dialog Box


The following items are displayed:
Name holds the name you assign to the savings. You can set the name here or within the Portfolio area of the Investment Analysis dialog box. This must be a valid SAS name.

The Savings Specification area
Periodic Deposit holds the value of your regular deposits.
Number of Deposits holds the number of deposits into the account.
Initial Rate holds the interest rate (a nominal percentage between 0 and 120) the savings account earns.

Start Date holds the SAS date when deposits begin.
Deposit Interval holds the frequency of your Periodic Deposit.
Compounding Interval holds how often the interest compounds.
Create Account Summary becomes available when you adequately define the savings within the Savings Specification area. Clicking it generates the account summary.

Account Summary fills when you click Create Account Summary. The schedule contains a row for each deposit-date with information about the following:

Date is the SAS date of a deposit.
Starting Balance is the balance at that date.
Deposits is the deposit at that date.
Interest Earned is the interest earned since the previous date.

Ending Balance is the balance after the payment.
Print becomes available when you generate an account summary. Clicking it sends the contents of the account summary to the SAS session print device.

Save Data As becomes available when you generate an account summary. Clicking it opens the Save Output Dataset dialog box where you can save the account summary (or portions thereof) as a SAS Dataset.

OK returns you to the Investment Analysis dialog box. If this is a new savings, clicking \(\mathbf{O K}\) appends the current savings specification to the portfolio. If this is an existing savings specification, clicking OK returns the altered savings to the portfolio.

Cancel returns you to the Investment Analysis dialog box. If this is a new savings, clicking Cancel discards the current savings specification. If this is an existing savings, clicking Cancel discards the current changes.

\section*{Depreciation}

Selecting Investment \(\rightarrow\) New \(\rightarrow\) Depreciation from the Investment Analysis dialog box's menu bar opens the Depreciation dialog box displayed in Figure 47.29.

Figure 47.29 Depreciation Dialog Box


The following items are displayed:
Name holds the name you assign to the depreciation. You can set the name here or within the Portfolio area of the Investment Analysis dialog box. This must be a valid SAS name.

\section*{Depreciable Asset Specification}

Cost holds the asset's original cost.
Year of Purchase holds the asset's year of purchase.
Useful Life holds the asset's useful life (in years).
Salvage Value holds the asset's value at the end of its Useful Life.
The Depreciation Method area holds the depreciation methods available:
- Straight Line
- Sum-of-years Digits
- Depreciation Table
- Declining Balance
- DB Factor: choice of \(2,1.5\), or 1
- Conversion to SL: choice of Yes or No

Create Depreciation Schedule becomes available when you adequately define the depreciation within the Depreciation Asset Specification area. Clicking the Create Depreciation Schedule button then fills the Depreciation Schedule area.

Depreciation Schedule fills when you click Create Depreciation Schedule. The schedule contains a row for each year. Each row holds:

Year is a year.
Start Book Value is the starting book value for that year.
Depreciation is the depreciation value for that year.
End Book Value is the ending book value for that year.
Print becomes available when you generate the depreciation schedule. Clicking it sends the contents of the depreciation schedule to the SAS session print device.

Save Data As becomes available when you generate the depreciation schedule. Clicking it opens the Save Output Dataset dialog box where you can save the depreciation table (or portions thereof) as a SAS Dataset.

OK returns you to the Investment Analysis dialog box. If this is a new depreciation specification, clicking \(\mathbf{O K}\) appends the current depreciation specification to the portfolio. If this is an existing depreciation specification, clicking \(\mathbf{O K}\) returns the altered depreciation specification to the portfolio.

Cancel returns you to the Investment Analysis dialog box. If this is a new depreciation specification, clicking Cancel discards the current depreciation specification. If this is an existing depreciation specification, clicking Cancel discards the current changes.

\section*{Depreciation Table}

Clicking Depreciation Table from Depreciation Method area of the Depreciation dialog box opens the Depreciation Table dialog box displayed in Figure 47.30.

Figure 47.30 Depreciation Table Dialog Box


The following items are displayed:
The Depreciation area holds a list of year-rate pairs where the rate is an annual depreciation rate (a percentage between 0\% and 100\%). Right-clicking within the Depreciation area reveals many helpful tools for managing year-rate pairs.

OK returns you to the Depreciation dialog box with the current list of depreciation rates from the Depreciation area.

Cancel returns you to the Depreciation dialog box, discarding any editions to the Depreciation area since you opened the dialog box.

\section*{Bond}

Selecting Investment \(\rightarrow\) New \(\rightarrow\) Bond from the Investment Analysis dialog box's menu bar opens the Bond dialog box displayed in Figure 47.31.

Figure 47.31 Bond


The following items are displayed:
Name holds the name you assign to the bond. You can set the name here or within the Portfolio area of the Investment Analysis dialog box. This must be a valid SAS name.

\section*{Bond Specification}

Face Value holds the bond's value at maturity.
Coupon Payment holds the amount of money you receive periodically as the bond matures.
Coupon Rate holds the rate (a nominal percentage between \(0 \%\) and 120\%) of the Face Value that defines the Coupon Payment.

Coupon Interval holds how often the bond pays its coupons.
Number of Coupons holds the number of coupons before maturity.
Maturity Date holds the SAS date when you can redeem the bond for its Face Value.
The Valuation area becomes available when you adequately define the bond within the Bond Specification area. Entering either the Value or the Yield causes the calculation of the other. If you respecify the bond after performing a calculation here, you must reenter the Value or Yield value to update the calculation.

Value holds the bond's value if expecting the specified Yield.
Yield holds the bond's yield if the bond is valued at the amount of Value.
You must specify the bond before analyzing it. After you have specified the bond, clicking Analyze opens the Bond Analysis dialog box where you can compare various values and yields.

OK returns you to the Investment Analysis dialog box. If this is a new bond specification, clicking OK appends the current bond specification to the portfolio. If this is an existing bond specification, clicking \(\mathbf{O K}\) returns the altered bond specification to the portfolio.

Cancel returns you to the Investment Analysis dialog box. If this is a new bond specification, clicking Cancel discards the current bond specification. If this is an existing bond specification, clicking Cancel discards the current changes.

\section*{Bond Analysis}

Clicking Analyze from the Bond dialog box opens the Bond Analysis dialog box displayed in Figure 47.32.

Figure 47.32 Bond Analysis


The following items are displayed:

\section*{Analysis Specifications}

Yield-to-maturity holds the percentage yield upon which to center the analysis.
+/- holds the maximum deviation percentage to consider from the Yield-to-maturity.
Increment by holds the percentage increment by which the analysis is calculated.
Reference Price holds the reference price.
Analysis Dates holds a list of SAS dates for which you perform the bond analysis.

You must specify the analysis before valuing the bond for the various yields. After you adequately specify the analysis, click Create Bond Valuation Summary to generate the bond valuation summary.

Bond Valuation Summary fills when you click Create Bond Valuation Summary. The schedule contains a row for each rate with information concerning the following:

Date is the SAS date when the Value gives the particular Yield.
Yield is the percent yield that corresponds to the Value at the given Date.
Value is the value of the bond at Date for the given Yield.
Percent Change is the percent change if the Reference Price is specified.
Duration is the duration.
Convexity is the convexity.
Graphics opens the Bond Price graph that represents the price versus yield-to-maturity.
Print becomes available when you generate the Bond Valuation Summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As becomes available when you fill the Bond Valuation Summary area. Clicking it opens the Save Output Dataset dialog box where you can save the valuation summary (or portions thereof) as a SAS Dataset.

Return takes you back to the Bond dialog box.

\section*{Bond Price}

Clicking Graphics from the Bond dialog box opens the Bond Price dialog box displayed in Figure 47.33.

Figure 47.33 Bond Price Graph


It possesses the following item:
Return takes you back to the Bond Analysis dialog box.

\section*{Generic Cashflow}

Selecting Investment \(\rightarrow\) New \(\rightarrow\) Generic Cashflow from the Investment Analysis dialog box's menu bar opens the Generic Cashflow dialog box displayed in Figure 47.34.

Figure 47.34 Generic Cashflow


The following items are displayed:
Name holds the name you assign to the generic cashflow. You can set the name here or within the Portfolio area of the Investment Analysis dialog box. This must be a valid SAS name.

Cashflow Specification holds date-amount pairs that correspond to deposits and withdrawals (or benefits and costs) for the cashflow. Each date is a SAS date. Right-clicking within the Cashflow Specification area reveals many helpful tools for managing date-amount pairs.

The Cashflow Chart fills with a graph representing the cashflow when the Cashflow Specification area is nonempty. The box to the right of the scroll bar controls the number of entries with which to fill the graph. If the number in this box is less than the total number of entries, you can use the scroll bar to view different segments of the cashflow. The left box below the scroll bar holds the frequency for drilling purposes.

OK returns you to the Investment Analysis dialog box. If this is a new generic cashflow specification, clicking OK appends the current cashflow specification to the portfolio. If this is an existing cashflow specification, clicking OK returns the altered cashflow specification to the portfolio.

Cancel returns you to the Investment Analysis dialog box. If this is a new cashflow specification, clicking Cancel discards the current cashflow specification. If this is an existing cashflow specification, clicking Cancel discards the current changes.

\section*{Right-Clicking within Generic Cashflow’s Cashflow Specification Area}

Right-click within the Cashflow Specification area of the Generic Cashflow dialog box pops up the menu displayed in Figure 47.35.

Figure 47.35 Right-Clicking


Add creates a blank pair.
Delete removes the currently highlighted pair.
Copy duplicates the currently selected pair.
Sort arranges the entered pairs in chronological order.
Clear empties the area of all pairs.

Save opens the Save Dataset dialog box where you can save the entered pairs as a SAS Dataset for later use.

Load opens the Load Dataset dialog box where you select a SAS Dataset to populate the area.

Specify opens the Flow Specification dialog box where you can generate date-rate pairs to include in your cashflow.

Forecast opens the Forecast Specification dialog box where you can generate the forecast of a SAS data set to include in your cashflow.

If you want to perform one of these actions on a collection of pairs, you must select a collection of pairs before right-clicking. To select an adjacent list of pairs, do the following: click the first pair, hold down the SHIFT key, and click the final pair. After the list of pairs is selected, you can release the SHIFT key.

\section*{Flow Specification}

Figure 47.36 Flow Specification


The following items are displayed:

\section*{Flow Time Specification}

Time Interval holds the uniform frequency of the entries.
You can set the Starting Date when you set the Time Interval. It holds the SAS date the entries will start.

You can set the Ending Date when you set the Time Interval. It holds the SAS date the entries will end.

Number of Periods holds the number of entries.

\section*{Flow Value Specification}

Series Flow Type describes the movement the entries can assume:
- Uniform assumes all entries are equal.
- Arithmetic assumes the entries begin at Level and increase by the value of Gradient per entry.
- Geometric assumes the entries begin at Level and increase by a factor of Gradient per entry.

Level holds the starting amount for all flow types.
You can set the Gradient when you select either Arithmetic or Geometric series flow type. It holds the arithmetic and geometric gradients, respectively, for the Arithmetic and Geometric flow types.

When the cashflow entries are adequately defined, the Cashflow Chart fills with a graph displaying the dates and values of the entries. The box to the right of the scroll bar controls the number of entries with which to fill the graph. If the number in this box is less than the total number of entries, you can use the scroll bar to view different segments of the cashflow. The left box below the scroll bar holds the frequency.

Subtract becomes available when the collection of entries is adequately specified. Clicking Subtract then returns you to the Generic Cashflow dialog box and subtracts the entries from the current cashflow.

Add becomes available when the collection of entries is adequately specified. Clicking Add then returns you to the Generic Cashflow dialog box and adds the entries to the current cashflow.

Cancel returns you to Generic Cashflow dialog box without changing the cashflow.

\section*{Forecast Specification}

Figure 47.37 Forecast Specification


The following items are displayed:

\section*{Historical Data Specification}

Data Set holds the name of the SAS data set to forecast.
Browse opens the standard SAS Open dialog box to help select a SAS data set to forecast.
Time ID Variable holds the time ID variable to forecast over.
Time Interval fixes the time interval for the Time ID Variable.
Analysis Variable holds the data variable upon which to forecast.
View Table opens a table that displays the contents of the specified SAS data set.
View Graph opens the Time Series Viewer that graphically displays the contents of the specified SAS data set.

\section*{Forecast Specification}

Horizon holds the number of periods into the future you want to forecast.
Confidence holds the confidence limit for applicable forecasts.
Compute Forecast fills the Cashflow Chart with the forecast.
The box below Forecast Specification holds the type of forecast you want to generate:
- Predicted Value
- Lower Confidence Limit
- Upper Confidence Limit

The Cashflow Chart fills when you click Compute Forecast. The box to the right of the scroll bar controls the number of entries with which to fill the graph. If the number in this box is less than the total number of entries, you can use the scroll bar to view different segments of the cashflow. The left box below the scroll bar holds the frequency.

Subtract becomes available when the collection of entries is adequately specified. Clicking Subtract then returns you to the Generic Cashflow dialog box subtracting the forecast from the current cashflow.

Add becomes available when the collection of entries is adequately specified. Clicking Add then returns you to the Generic Cashflow adding the forecast to the current cashflow.

Cancel returns to Generic Cashflow dialog box without changing the cashflow.

\section*{Chapter 48}

\section*{Computations}

\section*{Contents}
The Compute Menu ..... 2753
Tasks ..... 2754
Taxing a Cashflow ..... 2754
Converting Currency ..... 2756
Deflating Cashflows ..... 2758
Dialog Box Guide ..... 2760
After Tax Cashflow Calculation ..... 2760
Currency Conversion ..... 2761
Constant Dollar Calculation ..... 2763

\section*{The Compute Menu}

Figure 48.1 shows the Compute menu.
Figure 48.1 The Compute Menu

\section*{Compute}
\[
\begin{aligned}
& \text { After Tax Cashflow... } \\
& \text { Currency Conversion... }
\end{aligned}
\]
Constant Dollars..

The Compute menu offers the following options that apply to generic cashflows.
After Tax Cashflow opens the After Tax Cashflow Calculation dialog box. Computing an after tax cashflow is useful when taxes affect investment alternatives differently. Comparing after tax cashflows provides a more accurate determination of the cashflows' profitabilities. You can set default values for income tax rates by selecting Tools \(\rightarrow\) Define Rate \(\rightarrow\) Income Tax Rate from the Investment Analysis dialog box. This opens the Income Tax Specification dialog box where you can enter the tax rates.

Currency Conversion opens the Currency Conversion dialog box. Currency conversion is necessary when investments are in different currencies. For data concerning currency conversion rates, see http://dsbb.imf.org/, the International Monetary Fund's Dissemination Standards Bulletin Board.

Constant Dollars opens the Constant Dollar Calculation dialog box. A constant dollar (inflation adjusted monetary value) calculation takes cashflow and inflation information and discounts the cashflow to a level where the buying power of the monetary unit is constant over time. Groups quantify inflation (in the form of price indices and inflation rates) for countries and industries by averaging the growth of prices for various products and sectors of the economy. For data concerning price indices, see the United States Department of Labor at http://www.dol.gov/ and the International Monetary Fund's Dissemination Standards Bulletin Board at http://dsbb.imf. \(\circ \mathrm{rg} /\). You can set default values for inflation rates by clicking Tools \(\rightarrow\) Define Rate \(\rightarrow\) Inflation from the Investment Analysis dialog box. This opens the Inflation Specification dialog box where you can enter the inflation rates.

\section*{Tasks}

The next few sections show how to perform computations for the following situation. Suppose you buy a \(\$ 10,000\) certificate of deposit that pays \(12 \%\) interest a year for five years. Your earnings are taxed at a rate of \(30 \%\) federally and \(7 \%\) locally. Also, you want to transfer all the money to an account in England. British pounds convert to American dollars at an exchange rate of \(\$ 1.00\) to \(£ 0.60\). The inflation rate in England is \(3 \%\). The instructions in this example assume familiarity with the following:
- The right-clicking options of the Cashflow Specification area in the Generic Cashflow dialog box (described in the section "Right-Clicking within Generic Cashflow's Cashflow Specification Area" on page 2748.)
- The Save Data As button located in many dialog boxes (described in the section "Saving Output to SAS Data Sets" on page 2781.)

\section*{Taxing a Cashflow}

Consider the example described in the section "The Compute Menu" on page 2753. To create the earnings, follow these steps:
1. Select Investment \(\rightarrow\) New \(\rightarrow\) Generic Cashflow to create a generic cashflow.
2. Enter CD_INTEREST for the Name.
3. Enter 1200 for each of the five years starting one year from today as displayed in Figure 48.2.
4. Click OK to return to the Investment Analysis dialog box.

Figure 48.2 Computing the Interest on the CD


To compute the tax on the earnings, follow these steps:
1. Select CD_INTEREST from the Portfolio area.
2. Select Compute \(\rightarrow\) After Tax Cashflow from the pull-down menu.
3. Enter 30 for Federal Tax.
4. Enter 7 for Local Tax. Note that Combined Tax updates.
5. Click Create After Tax Cashflow. The After Tax Cashflow area fills, as displayed in Figure 48.3.

Figure 48.3 Computing the Interest After Taxes


Save the taxed earnings to a SAS data set named WORK.CD_AFTERTAX. Click Return to return to the Investment Analysis dialog box.

\section*{Converting Currency}

Consider the example described in the section "The Compute Menu" on page 2753. To create the cashflow to convert, follow these steps:
1. Select Investment \(\rightarrow\) New \(\rightarrow\) Generic Cashflow to open a new generic cashflow.
2. Enter CD_DOLLARS for the Name.
3. Load WORK.CD_AFTERTAX into its Cashflow Specification.
4. Add \(-10,000\) for today and \(+10,000\) for five years from today to the cashflow as displayed in Figure 48.4.
5. Sort the transactions by date to aid your reading.
6. Click \(\mathbf{O K}\) to return to the Investment Analysis dialog box.

Figure 48.4 The CD in Dollars


To convert from British pounds to American dollars, follow these steps:
1. Select CD_DOLLARS from the portfolio.
2. Select Compute \(\rightarrow\) Currency Conversion from the pull-down menu. This opens the Currency Conversion dialog box.
3. Select USD for the From Currency.
4. Select GBP for the To Currency.
5. Enter 0.60 for the Exchange Rate.
6. Click Apply Currency Conversion to fill the Currency Conversion area as displayed in Figure 48.5.

Figure 48.5 Converting the CD to Pounds


Save the converted values to a SAS data set named WORK.CD_POUNDS. Click Return to return to the Investment Analysis dialog box.

\section*{Deflating Cashflows}

Consider the example described in the section "The Compute Menu" on page 2753. To create the cashflow to deflate, follow these steps:
1. Select Investment \(\rightarrow\) New \(\rightarrow\) Generic Cashflow to open a new generic cashflow.
2. Enter CD_DEFLATED for Name.
3. Load WORK.CD_POUNDS into its Cashflow Specification (see Figure 48.6).
4. Click \(\mathbf{O K}\) to return to the Investment Analysis dialog box.

Figure 48.6 The CD before Deflation


To deflate the values, follow these steps:
1. Select CD_DEFLATED from the portfolio.
2. Select Compute \(\rightarrow\) Constant Dollars from the menu. This opens the Constant Dollar Calculation dialog box.
3. Clear the Variable Inflation List area.
4. Enter 3 for the Constant Inflation Rate.
5. Click Create Constant Dollar Equivalent to generate a constant dollar equivalent summary (see Figure 48.7).

Figure 48.7 CD Values after Deflation


You can save the deflated cashflow to a SAS data set for use in an internal rate of return analysis or breakeven analysis.

Click Return to return to the Investment Analysis dialog box.

\section*{Dialog Box Guide}

\section*{After Tax Cashflow Calculation}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform an after tax calculation, select Compute \(\rightarrow\) After Tax from the Investment Analysis dialog box's menu bar. This opens the After Tax Cashflow Calculation dialog box displayed in Figure 48.8.

Figure 48.8 After Tax Cashflow Calculation Dialog Box


The following items are displayed:
Name holds the name of the investment for which you are computing the after-tax cashflow.
Federal Tax holds the federal tax rate (a percentage between \(0 \%\) and \(100 \%\) ).
Local Tax holds the local tax rate (a percentage between 0\% and 100\%).
Combined Tax holds the effective tax rate from federal and local income taxes.
Create After Tax Cashflow becomes available when Combined Tax is not empty. Clicking Create After Tax Cashflow then fills the After Tax Cashflow area.

After Tax Cashflow fills when you click Create After Tax Cashflow. It holds a list of date-amount pairs where the amount is the amount retained after taxes for that date.

Print becomes available when you fill the after-tax cashflow. Clicking it sends the contents of the after tax cashflow to the SAS session print device.

Save Data As becomes available when you fill the after tax cashflow. Clicking it opens the Save Output Dataset dialog box where you can save the resulting cashflow (or portions thereof) as a SAS Dataset.

Return returns you to the Investment Analysis dialog box.

\section*{Currency Conversion}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform a currency conversion, select Compute \(\rightarrow\) Currency Conversion from the Investment Analysis dialog box's menu bar. This opens the Currency Conversion dialog box displayed in Figure 48.9.

Figure 48.9 Currency Conversion Dialog Box


The following items are displayed:
Name holds the name of the investment to which you are applying the currency conversion.
From Currency holds the name of the currency the cashflow currently represents.
To Currency holds the name of the currency to which you wish to convert.
Exchange Rate holds the rate of exchange between the From Currency and the To Currency.
Apply Currency Conversion becomes available when you fill Exchange Rate. Clicking Apply Currency Conversion fills the Currency Conversion area.

Currency Conversion fills when you click Apply Currency Conversion. The schedule contains a row for each cashflow item with the following information:
- Date is a SAS date within the cashflow.
- The From Currency value is the amount in the original currency at that date.
- The To Currency value is the amount in the new currency at that date.

Print becomes available when you fill the Currency Conversion area. Clicking it sends the contents of the conversion table to the SAS session print device.

Save Data As becomes available when you fill the Currency Conversion area. Clicking it opens the Save Output Dataset dialog box where you can save the conversion table (or portions thereof) as a SAS Dataset.

Return returns you to the Investment Analysis dialog box.

\section*{Constant Dollar Calculation}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform a constant dollar calculation, select Compute \(\rightarrow\) Constant Dollars from the Investment Analysis dialog box's menu bar. This opens the Constant Dollar Calculation dialog box displayed in Figure 48.10.

Figure 48.10 Constant Dollar Calculation Dialog Box


The following items are displayed:
Name holds the name of the investment for which you are computing the constant dollars value.
Constant Inflation Rate holds the constant inflation rate (a percentage between 0\% and 120\%). This value is used if the Variable Inflation List area is empty.

Variable Inflation List holds date-rate pairs that describe how inflation varies over time. Each date is a SAS date, and the rate is a percentage between \(0 \%\) and \(120 \%\). Each date refers to when that inflation rate begins. Right-clicking within the Variable Inflation area reveals many helpful tools for managing date-rate pairs. If you assume a fixed inflation rate, just insert that rate in Constant Rate.

Dates holds the SAS date(s) at which you wish to compute the constant dollar equivalent. Rightclicking within the Dates area reveals many helpful tools for managing date lists.

Create Constant Dollar Equivalent becomes available when you enter inflation rate information. Clicking it fills the constant dollar equivalent summary with the computed constant dollar values.

Constant Dollar Equivalent Summary fills with a summary when you click Create Constant Dollar Equivalent. The first column lists the dates of the generic cashflow. The second column contains the constant dollar equivalent of the original generic cashflow item of that date.

Print becomes available when you fill the constant dollar equivalent summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As becomes available when you fill the constant dollar equivalent summary. Clicking it opens the Save Output Dataset dialog box where you can save the summary (or portions thereof) as a SAS Dataset.

Return returns you to the Investment Analysis dialog box.

\section*{Chapter 49}

\section*{Analyses}

\section*{Contents}
The Analyze Menu ..... 2765
Tasks ..... 2766
Performing Time Value Analysis ..... 2766
Computing an Internal Rate of Return ..... 2768
Performing a Benefit-Cost Ratio Analysis ..... 2769
Computing a Uniform Periodic Equivalent ..... 2770
Performing a Breakeven Analysis ..... 2771
Dialog Box Guide ..... 2773
Time Value Analysis ..... 2773
Uniform Periodic Equivalent ..... 2774
Internal Rate of Return ..... 2775
Benefit-Cost Ratio Analysis ..... 2776
Breakeven Analysis ..... 2777
Breakeven Graph ..... 2778

\section*{The Analyze Menu}

Figure 49.1 shows the Analyze menu.
Figure 49.1 Analyze Menu
\begin{tabular}{l} 
Analyze \\
Iime Value... \\
Periodic Equivalent... \\
Internal Rate of Return... \\
Benefit-Cost Ratio... \\
Breakeyen Analysis... \\
\hline
\end{tabular}

The Analyze menu offers the following options for use on applicable investments.
Time Value opens the Time Value Analysis dialog box. Time value analysis involves moving money through time across a defined minimum attractive rate of return (MARR) so that you can
compare value at a consistent date. The MARR can be constant or variable over time.
Periodic Equivalent opens the Uniform Periodic Equivalent dialog box. Uniform periodic equivalent analysis determines the payment needed to convert a cashflow to uniform amounts over time, given a periodicity, a number of periods, and a MARR. This option helps when making comparisons where one alternative is uniform (such as renting) and another is not (such as buying).

Internal Rate of Return opens the Internal Rate of Return dialog box. The internal rate of return of a cashflow is the interest rate that makes the time value equal to 0 . This calculation assumes uniform periodicity of the cashflow. It is particularly applicable where the choice of MARR would be difficult.

Benefit-Cost Ratio opens the Benefit-Cost Ratio Analysis dialog box. The benefit-cost ratio divides the time value of the benefits by the time value of the costs. For example, governments often use this analysis when deciding whether to commit to a public works project.

Breakeven Analysis opens the Breakeven Analysis dialog box. Breakeven analysis computes time values at various MARRs to compare, which can be advantageous when it is difficult to determine a MARR. This analysis can help you determine how the cashflow's profitability varies with your choice of MARR. A graph displaying the relationships between time value and MARR is also available.

\section*{Tasks}

\section*{Performing Time Value Analysis}

Suppose a rock quarry needs equipment to use the next five years. It has two alternatives:
- a box loader and conveyer system that has a one-time cost of \(\$ 264,000\)
- a two-shovel loader, which costs \(\$ 84,000\) but has a yearly operating cost of \(\$ 36,000\). This loader has a service life of three years, which necessitates the purchase of a new loader for the final two years of the rock quarry project. Assume the second loader also costs \(\$ 84,000\) and its salvage value after its two-year service is \(\$ 10,000\). A SAS data set that describes this is available at SASHELP.ROCKPIT

You expect a \(13 \%\) MARR. Which is the better alternative?
To create the cashflows, follow these steps:
1. Create a cashflow with the single amount \(-264,000\). Date the amount 01JAN1998 to be consistent with the SAS data set you load.
2. Load SASHELP.ROCKPIT into a second cashflow, as displayed in Figure 49.2.

Figure 49.2 The contents of SASHELP.ROCKPIT


To compute the time values of these investments, follow these steps:
1. Select both cashflows.
2. Select Analyze \(\rightarrow\) Time Value. This opens the Time Value Analysis dialog box.
3. Enter the date 01JAN1998 into the Dates area.
4. Enter 13 for the Constant MARR.
5. Click Create Time Value Summary.

Figure 49.3 Performing the Time Value Analysis


As shown in Figure 49.3, option 1 has a time value of \(-\$ 264,000.00\) naturally on 01JAN1998. However, option 2 has a time value of \(-\$ 263,408.94\), which is slightly less expensive.

\section*{Computing an Internal Rate of Return}

You are choosing between five investments. A portfolio containing these investments is available at SASHELP.INVSAMP.NVST. Which investments are acceptable if you expect a MARR of \(9 \%\) ?

Open the portfolio SASHELP.INVSAMP.NVST and compare the investments. Note that Internal Rate of Return computations assume regular periodicity of the cashflow. To compute the internal rates of return, follow these steps:
1. Select all five investments.
2. Select Analyze \(\rightarrow\) Internal Rate of Return.

Figure 49.4 Computing an Internal Rate of Return


The results displayed in Figure 49.4 indicate that the internal rates of return for investments 2, 4, and 5 are greater than \(9 \%\). Hence, each of these is acceptable.

\section*{Performing a Benefit-Cost Ratio Analysis}

Suppose a municipality has excess funds to invest. It is choosing between the same investments described in the previous example. Government agencies often compute benefit-cost ratios to decide which investment to pursue. Which is best in this case?

Open the portfolio SASHELP.INVSAMP.NVST and compare the investments.
To compute the benefit-cost ratios, follow these steps:
1. Select all five investments.
2. Select Analyze \(\rightarrow\) Benefit-Cost Ratio.
3. Enter 01JAN1996 for the Date.
4. Enter 9 for Constant MARR.
5. Click Create Benefit-Cost Ratio Summary to fill the Benefit-Cost Ratio Summary area.

The results displayed in Figure 49.5 indicate that investments 2, 4, and 5 have ratios greater than 1 . Therefore, each is profitable with a MARR of \(9 \%\).

Figure 49.5 Performing a Benefit-Cost Ratio Analysis


\section*{Computing a Uniform Periodic Equivalent}

Suppose you need a warehouse for ten years. You have two options:
- pay rent for ten years at \(\$ 23,000\) per year
- build a two-stage facility that you will maintain and which you intend to sell at the end of those ten years

Data sets describing these scenarios are available in the portfolio SASHELP.INVSAMP.BUYRENT. Which option is more financially sound if you desire a \(12 \%\) MARR?

Open the portfolio SASHELP.INVSAMP.BUYRENT and compare the options.
To perform the periodic equivalent, follow these steps:
1. Load the portfolio SASHELP.INVSAMP.BUYRENT.
2. Select both cashflows.
3. Select Analyze \(\rightarrow\) Periodic Equivalent.

This opens the Uniform Periodic Equivalent dialog box.
4. Enter 01JAN1996 for the Start Date.
5. Enter 10 for the Number of Periods.
6. Select YEAR for the Interval.
7. Enter 12 for the Constant MARR.
8. Click Create Time Value Summary.

Figure 49.6 Computing a Uniform Periodic Equivalent


Figure 49.6 indicates that renting costs about \(\$ 1,300\) less each year. Hence, renting is more financially sound. Notice the periodic equivalent for renting is not \(\$ 23,000\). This is because the \(\$ 23,000\) per year does not account for the MARR.

\section*{Performing a Breakeven Analysis}

In the previous example you computed the uniform periodic equivalent for a rent-buy scenario. Now let's perform a breakeven analysis to see how the MARR affects the time values.

To perform the breakeven analysis, follow these steps:
1. Select both options.
2. Select Analyze \(\rightarrow\) Breakeven Analysis.
3. Enter 01JAN1996 for the Date.
4. Enter 12.0 for Value.
5. Enter 4.0 for ( \(+/-\) ).
6. Enter 0.5 for Increment by.
7. Click Create Breakeven Analysis Summary to fill the Breakeven Analysis Summary area as displayed in Figure 49.7.

Figure 49.7 Performing a Breakeven Analysis


Click Graphics to view a plot displaying the relationship between time value and MARR.
Figure 49.8 Viewing a Breakeven Graph
EV. Breakeven Graph

As shown in Figure 49.8, renting is better if you want a MARR of \(12 \%\). However, if your MARR should drop to \(10.5 \%\), buying would be better.

With a single investment, knowing where the graph has a time value of 0 tells the MARR when a venture switches from being profitable to being a loss. With multiple investments, knowing where the graphs for the various investments cross each other tells at what MARR a particular investment becomes more profitable than another.

\section*{Dialog Box Guide}

\section*{Time Value Analysis}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform an time value analysis, select Analyze \(\rightarrow\) Time Value from the Investment Analysis dialog box's menu bar. This opens the Time Value Analysis dialog box displayed in Figure 49.9.

Figure 49.9 Time Value Analysis Dialog Box


The following items are displayed:

\section*{Analysis Specifications}

Dates holds the list of dates as of which to perform the time value analysis. Right-clicking within the Dates area reveals many helpful tools for managing date lists.

Constant MARR holds the desired MARR for the time value analysis. This value is used if the MARR List area is empty.

MARR List holds date-rate pairs that express your desired MARR as it changes over time. Each date refers to when that expected MARR begins. Right-clicking within the MARR List area reveals many helpful tools for managing date-rate pairs.

Create Time Value Summary becomes available when you adequately specify the analysis within the Analysis Specifications area. Clicking Create Time Value Summary then fills the Time Value Summary area.

Time Value Summary fills when you click Create Time Value Summary. The table contains a row for each date in the Dates area. The remainder of each row holds the time values at that date, one value for each investment selected.

Print becomes available when you fill the time value summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As becomes available when you fill the time value summary. Clicking it opens the Save Output Dataset dialog box where you can save the summary (or portions thereof) as a SAS Dataset.

Return takes you back to the Investment Analysis dialog box.

\section*{Uniform Periodic Equivalent}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform a uniform periodic equivalent, select Analyze \(\rightarrow\) Periodic Equivalent from the Investment Analysis dialog box's menu bar. This opens the Uniform Periodic Equivalent dialog box displayed in Figure 49.10.

Figure 49.10 Uniform Periodic Equivalent Dialog Box


The following items are displayed:

\section*{Analysis Specifications}

Start Date holds the date the uniform periodic equivalents begin.
Number of Periods holds the number of uniform periodic equivalents.
Interval holds how often the uniform periodic equivalents occur.
Constant MARR holds the Minimum Attractive Rate of Return.
Create Periodic Equivalent Summary becomes available when you adequately fill the Analysis Specification area. Clicking Create Periodic Equivalent Summary then fills the periodic equivalent summary.

Periodic Equivalent Summary fills with two columns when you click Create Periodic Equivalent Summary. The first column lists the investments selected. The second column lists the computed periodic equivalent amount.

Print becomes available when you fill the periodic equivalent summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As becomes available when you generate the periodic equivalent summary. Clicking it opens the Save Output Dataset dialog box where you can save the summary (or portions thereof) as a SAS Dataset.

Return takes you back to the Investment Analysis dialog box.

\section*{Internal Rate of Return}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform an internal rate of return calculation, select Analyze \(\rightarrow\) Internal Rate of Return from the Investment Analysis dialog box's menu bar. This opens the Internal Rate of Return dialog box displayed in Figure 49.11.

Figure 49.11 Internal Rate of Return Dialog Box


The following items are displayed:

IRR Summary contains a row for each deposit. Each row holds:
Name holds the name of the investment.
IRR holds the internal rate of return for that investment.
interval holds the interest rate interval for that IRR.

Print becomes available when you fill the IRR summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As opens the Save Output Dataset dialog box where you can save the IRR summary (or portions thereof) as a SAS data set.

Return takes you back to the Investment Analysis dialog box.

\section*{Benefit-Cost Ratio Analysis}

Having selected a generic cashflow from the Investment Analysis dialog box, to compute a benefitcost ratio, select Analyze \(\rightarrow\) Benefit-Cost Ratio from the Investment Analysis dialog box's menu bar. This opens the Benefit-Cost Ratio Analysis dialog box displayed in Figure 49.12.

Figure 49.12 Benefit-Cost Ratio Analysis Dialog Box


The following items are displayed:

\section*{Analysis Specifications}

Dates holds the dates as of which to compute the Benefit-Cost ratios.

Constant MARR holds the desired MARR. This value is used if the MARR List area is empty.

MARR List holds date-rate pairs that express your desired MARR as it changes over time. Each date refers to when that expected MARR begins. Right-clicking within the MARR List area reveals many helpful tools for managing date-rate pairs.

Create Benefit-Cost Ratio Summary becomes available when you adequately specify the analysis. Clicking Create Benefit-Cost Ratio Summary fills the benefit-cost ratio summary.

Benefit-Cost Ratio Summary fills when you click Exchange the Rates. The area contains a row for each date in the Dates area. The remainder of each row holds the benefit-cost ratios at that date, one value for each investment selected.

Print becomes available when you fill the benefit-cost ratio summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As becomes available when you generate the benefit-cost ratio summary. Clicking it opens the Save Output Dataset dialog box where you can save the summary (or portions thereof) as a SAS Dataset.

Return takes you back to the Investment Analysis dialog box.

\section*{Breakeven Analysis}

Having selected a generic cashflow from the Investment Analysis dialog box, to perform a breakeven analysis, select Analyze \(\rightarrow\) Breakeven Analysis from the Investment Analysis dialog box's menu bar. This opens the Breakeven Analysis dialog box displayed in Figure 49.13.

Figure 49.13 Breakeven Analysis Dialog Box


The following items are displayed:

\section*{Analysis Specification}

Analysis holds the analysis type. Only Time Value is currently available.
Date holds the date for which you perform this analysis.
Variable holds the variable upon which the breakeven analysis will vary. Only MARR is currently available.
Value holds the desired rate upon which to center the analysis.
\(+/-\) holds the maximum deviation from the Value to consider.
Increment by holds the increment by which the analysis is calculated.
Create Breakeven Analysis Summary becomes available when you adequately specify the analysis. Clicking Create Breakeven Analysis Summary then fills the Breakeven Analysis Summary area.

Breakeven Analysis Summary fills when you click Create Breakeven Analysis Summary. The schedule contains a row for each MARR and date.

Graphics becomes available when you fill the Breakeven Analysis Summary area. Clicking it opens the Breakeven Graph graph representing the time value versus MARR.

Print becomes available when you fill the breakeven analysis summary. Clicking it sends the contents of the summary to the SAS session print device.

Save Data As becomes available when you generate the breakeven analysis summary. Clicking it opens the Save Output Dataset dialog box where you can save the summary (or portions thereof) as a SAS Dataset.

Return takes you back to the Investment Analysis dialog box.

\section*{Breakeven Graph}

Suppose you perform a breakeven analysis in the Breakeven Analysis dialog box. Once you create the breakeven analysis summary, you can click the Graphics button to open the Breakeven Graph dialog box displayed in Figure 49.14.

Figure 49.14 Breakeven Graph Dialog Box


The following item is displayed:
Return takes you back to the Breakeven Analysis dialog box.

\section*{Chapter 50 Details}

\section*{Contents}
Investments and Data Sets ..... 2781
Saving Output to SAS Data Sets ..... 2781
Loading a SAS Data Set into a List ..... 2783
Saving Data from a List to a SAS Data Set ..... 2783
Right Mouse Button Options ..... 2784
Depreciation Methods ..... 2785
Straight Line (SL) ..... 2785
Sum-of-Years Digits ..... 2785
Declining Balance (DB) ..... 2787
Rate Information ..... 2788
The Tools Menu ..... 2788
Dialog Box Guide ..... 2789
Minimum Attractive Rate of Return (MARR) ..... 2789
Income Tax Specification ..... 2790
Inflation Specification ..... 2791
Reference ..... 2792

\section*{Investments and Data Sets}

Investment Analysis provides tools to assist you in moving data between SAS data sets and lists you can use within Investment Analysis.

\section*{Saving Output to SAS Data Sets}

Many investment specifications have a button that reads Save Data As. Clicking that button opens the Save Output Dataset dialog box (see Figure 50.1). This dialog box enables you to save all or part of the area generated by the specification.

Figure 50.1 Saving to a Dataset


The following items are displayed:
Dataset Name holds the SAS data set name to which you want to save.
Browse opens the standard SAS Open dialog box, which enables you to select an existing SAS data set to overwrite.

Dataset Label holds the SAS data set's label.
Dataset Variables organizes variables. The variables listed in the Selected area will be included in the SAS data set.
- You can select variables one at a time, by clicking the single right-arrow after each selection to move it to the Selected area.
- If the desired SAS data set has many variables you want to save, it may be simpler to follow these steps:
1. Click the double right-arrow to select all available variables.
2. Remove any unwanted variable by selecting it from the Selected area and clicking the single left-arrow.
- The double left-arrow removes all selected variables from the proposed SAS data set.
- The up and down arrows below the Available and Selected boxes enable you to scroll up and down the list of variables in their respective boxes.

Save Dataset attempts to save the SAS data set. If the SAS data set name exists, you are asked if you want to replace the existing SAS data set, append to the existing SAS data set, or cancel the current save attempt. You then return to this dialog box ready to create another SAS data set to save.

Return takes you back to the specification dialog box.

\section*{Loading a SAS Data Set into a List}

Right-click in the area that you want to load the list and release on Load. This opens the Load Dataset dialog box (see Figure 50.2).

Figure 50.2 Load Dataset Dialog Box


The following items are displayed:
Dataset Name holds the name of the SAS data set that you want to load.
Browse opens the standard SAS Open dialog box, which aids in finding a SAS data set to load. If there is a Date variable in the SAS data set, Investment Analysis loads it into the list. If there is no Date variable, it loads the first available time-formatted variable. If an amount or rate variable is needed, Investment Analysis searches the SAS data set for a Amount or Rate variable to use. Otherwise it takes the first numeric variable that is not used by the Date variable.

Dataset Label holds a SAS data set label.
OK attempts to load the SAS data set specified in Dataset Name. If the specified SAS data set exists, clicking OK returns you to the calling dialog box with the selected SAS data set filling the list. If the specified SAS data set does not exist and you click \(\mathbf{O K}\), you receive an error message and no SAS data set is loaded.

Cancel returns you to the calling dialog box without loading a SAS data set.

\section*{Saving Data from a List to a SAS Data Set}

Right-click in the area you want to hold the list, and release on Save. This opens the Save Dataset dialog box.

Figure 50.3 Save Dataset Dialog Box


The following items are displayed:
Dataset Name holds the SAS data set name to which you want to save.
Browse opens the standard SAS Save As dialog box, which enables you to find an existing SAS data set to overwrite.

Dataset Label holds a user-defined description to be saved as the label of the SAS data set.
OK saves the current data to the SAS data set specified in Dataset Name. If the specified SAS data set does not already exist, clicking OK saves the SAS data set and returns you to the calling dialog box. If the specified SAS data set does already exist, clicking OK warns you and enables you to replace the old SAS data set with the new SAS data set or cancel the save attempt.

Cancel aborts the save process. Clicking Cancel returns you to the calling dialog box without attempting to save.

\section*{Right Mouse Button Options}

A pop-up menu often appears when you right-click within table editors. The menus offer tools to aid in the management of the table's entries. Most table editors provide the following options.

Figure 50.4 Right-Clicking Options
```

Add
Delete
Copy
Sort
Clear
Save..
Load...

```

Add creates a blank row.
Delete removes any currently selected row.

Copy duplicates the currently selected row.
Sort arranges the rows in chronological order according to the date variable.
Clear empties the table of all rows.
Save opens the Save Dataset dialog box where you can save the all rows to a SAS Dataset for later use.

Load opens the Load Dataset dialog box where you select a SAS Dataset to fill the rows.
If you want to perform one of these actions on a collection of rows, you must select a collection of rows before right-clicking. To select an adjacent list of rows, do the following: click the first pair, hold down SHIFT, and click the final pair. After the list of rows is selected, you may release the SHIFT key.

\section*{Depreciation Methods}

Suppose an asset's price is \(\$ 20,000\) and it has a salvage value of \(\$ 5,000\) in five years. The following sections describe various methods to quantify the depreciation.

\section*{Straight Line (SL)}

This method assumes a constant depreciation value per year.
Assuming that the price of a depreciating asset is \(P\) and its salvage value after \(N\) years is \(S\), the annual depreciation is:
\[
\frac{P-S}{N}
\]

For our example, the annual depreciation would be
\[
\frac{\$ 20,000-\$ 5,000}{5}=\$ 3,000
\]

\section*{Sum-of-Years Digits}

An asset often loses more of its value early in its lifetime. A method that exhibits this dynamic is desirable.

Assume an asset depreciates from price \(P\) to salvage value \(S\) in \(N\) years. First compute the sum-of-years as \(T=1+2+\cdots+N\). The depreciation for the years after the asset's purchase is:

Table 50.1 Sum-of-Years General Example
\begin{tabular}{cc}
\hline Year Number & Annual Depreciation \\
\hline first & \(\frac{N}{T}(P-S)\) \\
second & \(\frac{N-1}{T}(P-S)\) \\
third & \(\frac{N-2}{T}(P-S)\) \\
\(\vdots\) & \(\vdots\) \\
final & \(\frac{1}{T}(P-S)\) \\
\hline
\end{tabular}

For the \(i\) th year of the asset's use, the annual depreciation is:
\[
\frac{N+1-i}{T}(P-S)
\]

For our example, \(N=5\) and the sum of years is \(T=1+2+3+4+5=15\). The depreciation during the first year is
\[
(\$ 20,000-\$ 5,000) \frac{5}{15}=\$ 5,000
\]

Table 50.2 describes how Declining Balance would depreciate the asset.

Table 50.2 Sum-of-Years Example
\begin{tabular}{ccr}
\hline Year & Depreciation & Year-End Value \\
\hline 1 & \((\$ 20,000-\$ 5,000) \frac{5}{15}=\$ 5,000\) & \(\$ 15,000.00\) \\
2 & \((\$ 20,000-\$ 5,000) \frac{4}{15}=\$ 4,000\) & \(\$ 11,000.00\) \\
3 & \((\$ 20,000-\$ 5,000) \frac{3}{15}=\$ 3,000\) & \(\$ 8,000.00\) \\
4 & \((\$ 20,000-\$ 5,000) \frac{2}{15}=\$ 2,000\) & \(\$ 6,000.00\) \\
5 & \((\$ 20,000-\$ 5,000) \frac{1}{15}=\$ 1,000\) & \(\$ 5,000.00\) \\
\hline
\end{tabular}

As expected, the value after \(N\) years is \(S\).
\[
\begin{aligned}
S & =P-(5 \text { years' depreciation }) \\
& =P-\left(\frac{5}{10}(P-S)+\frac{4}{10}(P-S)+\frac{3}{10}(P-S)+\frac{2}{10}(P-S)+\frac{1}{10}(P-S)\right) \\
& =P-(P-S)
\end{aligned}
\]

\section*{Declining Balance (DB)}

Recall that the straight line method assumes a constant depreciation value. Conversely, the declining balance method assumes a constant depreciation rate per year. And like the sum-of-years method, more depreciation tends to occur earlier in the asset's life.

Assume the price of a depreciating asset is \(P\) and its salvage value after \(N\) years is \(S\). You could assume the asset depreciates by a factor of \(\frac{1}{N}\) (or a rate of \(\frac{100}{N} \%\) ). This method is known as single declining balance. The annual depreciation is:
\[
\frac{1}{N} \text { (previous year's value) }
\]

So for our example, the depreciation during the first year is \(\frac{\$ 20,000}{5}=\$ 4,000\). Table 50.3 describes how declining balance would depreciate the asset.

Table 50.3 Declining Balance Example
\begin{tabular}{ccr}
\hline Year & Depreciation & Year-End Value \\
\hline 1 & \(\frac{\$ 20,000.00}{5}=\$ 4,000.00\) & \(\$ 16,000.00\) \\
2 & \(\frac{\$ 16,000.00}{5}=\$ 3,200.00\) & \(\$ 12,800.00\) \\
3 & \(\frac{\$ 12,800.00}{5}=\$ 2,560.00\) & \(\$ 10,240.00\) \\
4 & \(\frac{\$ 10,240.00}{5}=\$ 2,048.00\) & \(\$ 8,192.00\) \\
5 & \(\frac{\$ 12,800.00}{5}=\$ 1,638.40\) & \(\$ 6,553.60\) \\
\hline
\end{tabular}

\section*{DB Factor}

You could also accelerate the depreciation by increasing the factor (and hence the rate) at which depreciation occurs. Other commonly accepted depreciation rates are \(\frac{200}{N} \%\) (called double declining balance as the depreciation factor becomes \(\frac{2}{N}\) ) and \(\frac{150}{N} \%\). Investment Analysis enables you to choose between these three types for declining balance: 2 (with \(\frac{200}{N} \%\) depreciation), 1.5 (with \(\frac{150}{N} \%\) ), and 1 (with \(\frac{100}{N} \%\) ).

\section*{Declining Balance and the Salvage Value}

The declining balance method assumes that depreciation is faster earlier in an asset's life; this is what you wanted. But notice the final value is greater than the salvage value. Even if the salvage value were greater than \(\$ 6,553.60\), the final year-end value would not change. The salvage value never enters the calculation, so there is no way for the salvage value to force the depreciation to assume its value. Newnan and Lavelle (1998) describe two ways to adapt the declining balance method to assume the salvage value at the final time. One way is as follows:

Suppose you call the depreciated value after \(i\) years \(V(i)\). This sets \(V(0)=P\) and \(V(N)=S\).
- If \(V(N)>S\) according to the usual calculation for \(V(N)\), redefine \(V(N)\) to equal \(S\).
- If \(V(i)<S\) according to the usual calculation for \(V(i)\) for some \(i\) (and hence for all subsequent \(V(i)\) values), you can redefine all such \(V(i)\) to equal \(S\).

This alteration to declining balance forces the depreciated value of the asset after \(N\) years to be \(S\) and keeps \(V(i)\) no less than \(S\).

\section*{Conversion to SL}

The second (and preferred) way to force declining balance to assume the salvage value is by conversion to straight line. If \(V(N)>S\), the first way redefines \(V(N)\) to equal \(S\); you can think of this as converting to the straight line method for the last timestep.

If the \(V(N)\) value supplied by DB is appreciably larger than \(S\), then the depreciation in the final year would be unrealistically large. An alternate way is to compute the DB and SL step at each timestep and take whichever step gives a larger depreciation (unless DB drops below the salvage value).

After SL assumes a larger depreciation, it continues to be larger over the life of the asset. SL forces the value at the final time to equal the salvage value. As an algorithm, this looks like the following statements:
```

V(0) = P;
for i=1 to N
if DB step > SL step from (i,V(i))
take a DB step to make V(i);
else
break;
for j = i to N
take a SL step to make V(j);

```

The MACRS, which is discussed in the section that describes the Depreciation Table window, is actually a variation on the declining balance method with conversion to the straight line method.

\section*{Rate Information}

\section*{The Tools Menu}

Figure 50.5 shows the Tools menu.

Figure 50.5 The Tools Menu


The Tools \(\rightarrow\) Define Rates menu offers the following options.
MARR opens the Minumum Attractive Rate of Return (MARR) dialog box.
Income Tax Rate opens the Income Tax Specification dialog box.
Inflation opens the Inflation Specification dialog box.

\section*{Dialog Box Guide}

\section*{Minimum Attractive Rate of Return (MARR)}

Selecting Tools \(\rightarrow\) Define Rates \(\rightarrow\) MARR from the Investment Analysis dialog box menu bar opens the MARR dialog box that is displayed in Figure 50.6.

Figure 50.6 MARR Dialog Box


Name holds the name that you assign to the MARR specification. This must be a valid SAS name.
Constant MARR holds the numeric value that you choose to be the constant MARR. This value is used if the MARR List table editor is empty.

MARR List holds date-MARR pairs where the date refers to when the particular MARR value begins. Each date is a SAS date.

OK returns you to the Investment Analysis dialog box. Clicking it causes the preceding MARR specification to be assumed when you do not specify MARR rates in a dialog box that needs MARR rates.

Cancel returns you to the Investment Analysis dialog box, discarding any work that was done in the MARR dialog box.

\section*{Income Tax Specification}

Selecting Tools \(\rightarrow\) Define Rates \(\rightarrow\) Income Tax Rate from the Investment Analysis dialog box menu bar opens the Income Tax Specification dialog box displayed in Figure 50.7.

Figure 50.7 Income Tax Specification Dialog Box


Name holds the name you assign to the Income Tax specification. This must be a valid SAS name.
Federal Tax holds the numeric value that you want to be the constant Federal Tax.
Local Tax holds the numeric value that you want to be the constant Local Tax.
Taxrate List holds date-Income Tax triples where the date refers to when the particular Income Tax value begins. Each date is a SAS date, and the value is a percentage between \(0 \%\) and \(100 \%\).

OK returns you to the Investment Analysis dialog box. Clicking it causes the preceding income tax specification to be the default income tax rates when using the After Tax Cashflow Calculation dialog box.

Cancel returns you to the Investment Analysis dialog box, discarding any changes that were made since this dialog box was opened.

\section*{Inflation Specification}

Selecting Tools \(\rightarrow\) Define Rates \(\rightarrow\) Inflation from the Investment Analysis dialog box menu bar opens the Inflation Specification dialog box displayed in Figure 50.8.

Figure 50.8 Inflation Specification Dialog Box


Name holds the name that you assign to the Inflation specification. This must be a valid SAS name.
Constant Rate holds the numeric value that you want to be the constant inflation rate. This value is used if the Inflation Rate List table editor is empty.

Inflation Rate List holds date-rate pairs where the date refers to when the particular inflation rate begins. Each date is a SAS date and the rate is a percentage between \(0 \%\) and \(120 \%\).

OK returns you to the Investment Analysis dialog box. Clicking it causes the preceding inflation specification to be assumed when you use the Constant Dollar Calculation dialog box and do not specify inflation rates.

Cancel returns you to the Investment Analysis dialog box, discarding any changes that were made since this dialog box was opened.

\section*{Reference}

Newnan, Donald G. and Lavelle, Jerome P. (1998), Engineering Economic Analysis, Austin, Texas: Engineering Press.

\section*{Subject Index}
@ CRSPDB Date Informats
SASECRSP engine, 2209
@CRSPDR Date Informats
SASECRSP engine, 2209
@CRSPDT Date Informats
SASECRSP engine, 2209
2SLS estimation method, see two-stage least squares
3SLS estimation method, see three-stage least squares
add factors, see adjustments
additive model
ARIMA model, 212
additive Winters method
seasonal forecasting, 803
additive-invertible region
smoothing weights, 2671
ADDWINTERS method
FORECAST procedure, 803
adjacency graph
MODEL procedure, 1178
adjust operators, 754
adjustable rate mortgage, see LOAN procedure
LOAN procedure, 828
adjusted R squared
MODEL procedure, 1027
adjusted R-square
statistics of fit, 1819, 2689
adjustments, 2554, 2667
add factors, 2522
forecasting models, 2522
specifying, 2522
After Tax Cashflow Calculation, 2754
AGGREGATE method
EXPAND procedure, 740
aggregation of
time series data, 721, 724
aggregation of time series
EXPAND procedure, 721, 724
AIC, see Akaike information criterion, see Akaike's information criterion
Akaike Information Criterion
VARMAX procedure, 1957
Akaike information criterion
AIC, 251
ARIMA procedure, 251
AUTOREG procedure, 370
used to select state space models, 1591
Akaike information criterion corrected
AUTOREG procedure, 370
Akaike's information criterion
AIC, 2689
statistics of fit, 2689
alignment of
dates, 2582
time intervals, 132
alignment of dates, 142, 2582
Almon lag polynomials, see polynomial
distributed lags
MODEL procedure, 1102
alternatives to
DIF function, 108
LAG function, 108
Amemiya's prediction criterion
statistics of fit, 2689
Amemiya's R-square
statistics of fit, 1820, 2689
AMO, 59
amortization schedule
LOAN procedure, 856
analyzing models
MODEL procedure, 1174
and goal seeking
ordinary differential equations (ODEs), 1074
and state space models
stationarity, 1571
and tests for autocorrelation
lagged dependent variables, 326
and the OUTPUT statement
output data sets, 83
Annuity, see Uniform Periodic Equivalent
AR initial conditions
conditional least squares, 1091
Hildreth-Lu, 1091
maximum likelihood, 1091
unconditional least squares, 1091
Yule-Walker, 1091
ARCH model
AUTOREG procedure, 314
autoregressive conditional
heteroscedasticity, 314
ARIMA model
additive model, 212
ARIMA procedure, 190
autoregressive integrated moving-average model, 190, 2680
Box-Jenkins model, 190
factored model, 212
multiplicative model, 212
notation for, 207
seasonal model, 212
simulating, 2560, 2653
subset model, 212
ARIMA model specification, 2557, 2589
ARIMA models
forecasting models, 2465
specifying, 2465
ARIMA procedure
Akaike information criterion, 251
ARIMA model, 190
ARIMAX model, 190, 213
ARMA model, 190
autocorrelations, 193
autoregressive parameters, 256
BY groups, 227
conditional forecasts, 257
confidence limits, 257
correlation plots, 193
cross-correlation function, 240
data requirements, 221
differencing, 210, 247, 254
factored model, 212
finite memory forecasts, 258
forecasting, 257, 259
Gauss-Marquardt method, 250
ID variables, 259
infinite memory forecasts, 257
input series, 213
interaction effects, 217
intervention model, 213, 216, 219, 298
inverse autocorrelation function, 239
invertibility, 255
Iterative Outlier Detection, 307
log transformations, 258
Marquardt method, 250
Model Identification, 300
moving-average parameters, 256
naming model parameters, 256
ODS graph names, 276
ODS Graphics, 224
Outlier Detection, 305
output data sets, 262-264, 267, 268
output table names, 272
predicted values, 257
prewhitening, 246, 247
printed output, 269
rational transfer functions, 219
regression model with ARMA errors, 213, 214
residuals, 257
Schwarz Bayesian criterion, 251
seasonal model, 212
stationarity, 194
subset model, 212
syntax, 221
time intervals, 259
transfer function model, 213, 218, 251
unconditional forecasts, 258
ARIMA process specification, 2560
ARIMAX model
ARIMA procedure, 190, 213
ARIMAX models and
design matrix, 217
ARMA model
ARIMA procedure, 190
autoregressive moving-average model, 190
MODEL procedure, 1088
notation for, 207
as time ID
observation numbers, 2443
asymptotic distribution of impulse response functions
VARMAX procedure, 1943, 1951
asymptotic distribution of the parameter estimation
VARMAX procedure, 1951
at annual rates
percent change calculations, 110
attributes
DATASOURCE procedure, 520
attributes of variables
DATASOURCE procedure, 545
audit trail, 2582
augmented Dickey-Fuller tests, 231, 246
autocorrelation, 1058
autocorrelation tests, 1058
Durbin-Watson test, 343
Godfrey Lagrange test, 1058
Godfrey's test, 344
autocorrelations
ARIMA procedure, 193
multivariate, 1573
plotting, 193
prediction errors, 2430
series, 2495
automatic forecasting
FORECAST procedure, 774
STATESPACE procedure, 1568
automatic generation
forecasting models, 2396
automatic inclusion of
interventions, 2582
automatic model selection
criterion, 2610
options, 2568
automatic selection
forecasting models, 2459
AUTOREG procedure
Akaike information criterion, 370
Akaike information criterion corrected, 370
ARCH model, 314
autoregressive error correction, 316
BY groups, 340
Cholesky root, 359
Cochrane-Orcutt method, 361
conditional variance, 383
confidence limits, 355
dual quasi-Newton method, 367
Durbin h test, 326
Durbin \(t\) test, 326
Durbin-Watson test, 324
EGARCH model, 335
EGLS method, 361
estimation methods, 357
factored model, 329
GARCH model, 314
GARCH-M model, 335
Gauss-Marquardt method, 360
generalized Durbin-Watson tests, 324
heteroscedasticity, 329
Hildreth-Lu method, 362
IGARCH model, 335
Kalman filter, 360
lagged dependent variables, 326
maximum likelihood method, 362
nonlinear least-squares, 362
ODS graph names, 388
output data sets, 384
output table names, 386
Prais-Winsten estimates, 361
predicted values, 355 , 381, 382
printed output, 385
quasi-Newton method, 342
random walk model, 397
residuals, 356
Schwarz Bayesian criterion, 370
serial correlation correction, 316
stepwise autoregression, 327
structural predictions, 381
subset model, 329
Toeplitz matrix, 358
trust region method, 342
two-step full transform method, 361
Yule-Walker equations, 358
Yule-Walker estimates, 357
autoregressive conditional heteroscedasticity, see ARCH model
autoregressive error correction
AUTOREG procedure, 316
autoregressive integrated moving-average model, see ARIMA model, see ARIMA model
autoregressive models
FORECAST procedure, 797
MODEL procedure, 1088
autoregressive moving-average model, see ARMA model
autoregressive parameters ARIMA procedure, 256
auxiliary data sets
DATASOURCE procedure, 520
auxiliary equations, 1074
MODEL procedure, 1074
balance of payment statistics data files, see DATASOURCE procedure
balloon payment mortgage, see LOAN procedure
LOAN procedure, 828
bandwidth functions, 1013
Base SAS software, 48
Basmann test
SYSLIN procedure, 1639, 1654
batch mode, see unattended mode
Bayesian vector autoregressive models
VARMAX procedure, 1904, 1947
BEA data files, see DATASOURCE procedure
BEA national income and product accounts PC Format DATASOURCE procedure, 590
BEA S-pages, see DATASOURCE procedure
Benefit-Cost Ratio Analysis, 2769
between
between estimators, 1291
Between Estimators
PANEL procedure, 1291
between estimators, 1291 between, 1291
between levels and rates interpolation, 125
between stocks and flows interpolation, 125
BIC, see Schwarz Bayesian information criterion
block structure
MODEL procedure, 1178
BLS consumer price index surveys DATASOURCE procedure, 591
BLS data files, see DATASOURCE procedure
BLS national employment, hours, and earnings survey
DATASOURCE procedure, 592

BLS producer price index survey
DATASOURCE procedure, 591
BLS state and area employment, hours, and earnings survey
DATASOURCE procedure, 593
Bond, 2722
BOPS data file
DATASOURCE procedure, 609
boundaries
smoothing weights, 2671
bounds on parameter estimates, 644, 975, 1386
BOUNDS statement, 644, 975, 1386
Box Cox
transformations, 2667
Box Cox transformation, see transformations
Box-Cox transformation
BOXCOXAR macro, 150
Box-Jenkins model, see ARIMA model
BOXCOXAR macro
Box-Cox transformation, 150
output data sets, 151
SAS macros, 150
break even analysis
LOAN procedure, 852
Breakeven Analysis, 2771
Breusch-Pagan test, 1050
heteroscedasticity tests, 1050
Brown smoothing model, see double exponential smoothing
Bureau of Economic Analysis data files, see
DATASOURCE procedure
Bureau of Labor Statistics data files, see DATASOURCE procedure
buydown rate loans, see LOAN procedure
LOAN procedure, 828
BY groups
ARIMA procedure, 227
AUTOREG procedure, 340
COUNTREG procedure, 491
cross-sectional dimensions and, 79
ESM procedure, 689
EXPAND procedure, 731
FORECAST procedure, 795
MDC procedure, 891
PANEL procedure, 1271
PDLREG procedure, 1355
SIMILARITY procedure, 1450
SIMLIN procedure, 1516
SPECTRA procedure, 1546
STATESPACE procedure, 1586
SYSLIN procedure, 1637
TIMESERIES procedure, 1688
TSCSREG procedure, 1735
UCM procedure, 1760

X11 procedure, 2046
X12 procedure, 2111
BY groups and
time series cross-sectional form, 79
calculation of
leads, 112
calculations
smoothing models, 2669
calendar calculations
functions for, 95,143
interval functions and, 104
time intervals and, 104
calendar calculations and
INTCK function, 104
INTNX function, 104
time intervals, 104
calendar functions and
date values, 96
calendar variables, 95
computing dates from, 96
computing from dates, 96
computing from datetime values, 98
canonical correlation analysis
for selection of state space models, 1570 , 1593
STATESPACE procedure, 1570, 1593
Cashflow, see Generic Cashflow
CATALOG procedure, 49
SAS catalogs, 49
Cauchy distribution estimation
example, 1219
examples, 1219
CDT (COMPUTAB data table)
COMPUTAB procedure, 454
ceiling of
time intervals, 102
Censored Regression Models
QLIM procedure, 1399
Census X-11 method, see X11 procedure
Census X-11 methodology
X11 procedure, 2059
Census X-12 method, see X12 procedure
Center for Research in Security Prices data files, see DATASOURCE procedure
centered moving time window operators, 745, 746
change vector, 1027
changes in trend
forecasting models, 2530
changing by interpolation
frequency, 125, 721, 733
periodicity, 125, 721
sampling frequency, 125
changing periodicity
EXPAND procedure, 125
time series data, 125, 721
character functions, 50
character variables
MODEL procedure, 1155
CHART procedure, 49
histograms, 49
checking data periodicity
INTNX function, 103
time intervals, 103
Chirp-Z algorithm
SPECTRA procedure, 1549
choice of
instrumental variables, 1084
Cholesky root
AUTOREG procedure, 359
Chow test, 343, 344, 375
Chow test for structural change, 343
Chow tests, 1081
MODEL procedure, 1081
CITIBASE format
DATASOURCE procedure, 523
CITIBASE old format
DATASOURCE procedure, 594
CITIBASE PC format
DATASOURCE procedure, 595
classical decomposition operators, 749
Cochrane-Orcutt method
AUTOREG procedure, 361
coherency
cross-spectral analysis, 1553
coherency of cross-spectrum
SPECTRA procedure, 1553
cointegration
VARMAX procedure, 1959
cointegration test, 345, 377
cointegration testing
VARMAX procedure, 1902, 1963
collinearity diagnostics
MODEL procedure, 1032, 1041
column blocks
COMPUTAB procedure, 455
column selection
COMPUTAB procedure, 452,453
COLxxxxx: label
COMPUTAB procedure, 446
combination models forecasting models, 2482 specifying, 2482
combined seasonality test, 2076, 2136
combined with cross-sectional dimension interleaved time series, 82
combined with interleaved time series cross-sectional dimensions, 82
combining forecasts, 2591, 2666
combining time series data sets, 119
Command Reference, 2545
common trends
VARMAX procedure, 1959
common trends testing
VARMAX procedure, 1903, 1961
COMPARE procedure, 49
comparing SAS data sets, 49
comparing
forecasting models, 2505, 2605
comparing forecasting models, 2505, 2605
comparing loans
LOAN procedure, \(835,852,856\)
comparing SAS data sets, see COMPARE procedure
compiler listing
MODEL procedure, 1171
COMPUSTAT data files, see DATASOURCE procedure
DATASOURCE procedure, 595
COMPUSTAT IBM 360/370 general format 48 quarter files
DATASOURCE procedure, 597
COMPUSTAT IBM 360/370 general format annual files
DATASOURCE procedure, 596
COMPUSTAT universal character format 48 quarter files
DATASOURCE procedure, 599
COMPUSTAT universal character format annual files
DATASOURCE procedure, 598
COMPUTAB procedure
CDT (COMPUTAB data table), 454
column blocks, 455
column selection, 452, 453
COLxxxxx: label, 446
consolidation tables, 446
controlling row and column block execution, 453
input block, 455
missing values, 457
order of calculations, 451
output data sets, 457
program flow, 448
programming statements, 445
reserved words, 456
row blocks, 456
ROWxxxxx: label, 446
table cells, direct access to, 456
computational details

VARMAX procedure, 2001
computing calendar variables from datetime values, 98
computing ceiling of intervals
INTNX function, 102
computing dates from calendar variables, 96
computing datetime values from date values, 97
computing ending date of intervals
INTNX function, 101
computing from calendar variables datetime values, 97
computing from dates calendar variables, 96
computing from datetime values
calendar variables, 98
date values, 97
time variables, 98
computing from time variables datetime values, 97
computing lags RETAIN statement, 108
computing midpoint date of intervals
INTNX function, 101
computing time variables from datetime values, 98
computing widths of intervals
INTNX function, 101
concatenated
data set, 2410
concentrated likelihood Hessian, 1021
conditional forecasts
ARIMA procedure, 257
conditional least squares
AR initial conditions, 1091
MA Initial Conditions, 1092
conditional logit model
MDC procedure, 870, 871, 904
conditional t distribution
GARCH model, 367
conditional variance
AUTOREG procedure, 383
predicted values, 383
predicting, 383
confidence limits, 2436
ARIMA procedure, 257
AUTOREG procedure, 355
FORECAST procedure, 807
forecasts, 2436
PDLREG procedure, 1359
STATESPACE procedure, 1601
VARMAX procedure, 1988
consolidation tables

COMPUTAB procedure, 446
Constant Dollar Calculation, 2758
constrained estimation
heteroscedasticity models, 351
Consumer Price Index Surveys, see
DATASOURCE procedure
contemporaneous correlation of errors across equations, 1649
contents of SAS data sets, 49
CONTENTS procedure, 49 SASECRSP engine, 2194 SASEFAME engine, 2291
continuous compounding LOAN procedure, 850
contrasted with flow variables stocks, 724
contrasted with flows or rates levels, 724
contrasted with missing values omitted observations, 78
contrasted with omitted observations missing observations, 78 missing values, 78
contrasted with stock variables flows, 724
contrasted with stocks or levels rates, 724
control charts, 56
control key for multiple selections, 2398
control variables
MODEL procedure, 1153
controlling row and column block execution COMPUTAB procedure, 453
controlling starting values MODEL procedure, 1034
convergence criteria
MODEL procedure, 1028
convergence problems VARMAX procedure, 2001
conversion methods EXPAND procedure, 739
convert option SASEFAME engine, 2291
Converting Dates Using the CRSP Date Functions
SASECRSP engine, 2208
converting frequency of time series data, 721
COPY procedure, 49
copying
SAS data sets, 49
CORR procedure, 49
corrected sum of squares
statistics of fit, 2689
correlation plots
ARIMA procedure, 193
cospectrum estimate
cross-spectral analysis, 1553
SPECTRA procedure, 1553
counting
time intervals, 99, 102
counting time intervals
INTCK function, 102
COUNTREG procedure
bounds on parameter estimates, 490
BY groups, 491
output table names, 508
restrictions on parameter estimates, 493
syntax, 487
covariance estimates
GARCH model, 343
Covariance of GMM estimators, 1015
covariance of the parameter estimates, 1008
covariance stationarity
VARMAX procedure, 1983
covariates heteroscedasticity models, 350, 1390
CPORT procedure, 49
CPU requirements VARMAX procedure, 2002
creating time ID variable, 2439
creating a FAME view, see SASEFAME engine creating a Haver view, see SASEHAVR engine
creating from Model Viewer HTML, 2618
creating from Time Series Viewer HTML, 2657
criterion automatic model selection, 2610
cross sectional dimensions represented by different series, 79
cross sections DATASOURCE procedure, 527, 529, 532, 543
cross-correlation function ARIMA procedure, 240
cross-equation covariance matrix MODEL procedure, 1026 seemingly unrelated regression, 1011
cross-periodogram
cross-spectral analysis, 1542, 1553
SPECTRA procedure, 1553
cross-reference
MODEL procedure, 1170
cross-sectional dimensions, 79
combined with interleaved time series, 82
ID variables for, 79
represented with BY groups, 79
transposing time series, 121
cross-sectional dimensions and
BY groups, 79
cross-spectral analysis
coherency, 1553
cospectrum estimate, 1553
cross-periodogram, 1542, 1553
cross-spectrum, 1553
quadrature spectrum, 1553
SPECTRA procedure, 1542, 1553
cross-spectrum
cross-spectral analysis, 1553
SPECTRA procedure, 1553
crossproducts estimator of the covariance matrix, 1021
crossproducts matrix, 1043
crosstabulations, see FREQ procedure
CRSP and SAS Dates
SASECRSP engine, 2208
CRSP annual data
DATASOURCE procedure, 605
CRSP calendar/indices files
DATASOURCE procedure, 601
CRSP daily binary files
DATASOURCE procedure, 600
CRSP daily character files
DATASOURCE procedure, 600
CRSP daily IBM binary files
DATASOURCE procedure, 600
CRSP daily security files
DATASOURCE procedure, 602
CRSP data files, see DATASOURCE procedure
CRSP Date Formats
SASECRSP engine, 2208
CRSP Date Functions
SASECRSP engine, 2208
CRSP Date Informats
SASECRSP engine, 2209
CRSP Integer Date Format
SASECRSP engine, 2208
CRSP monthly binary files
DATASOURCE procedure, 600
CRSP monthly character files
DATASOURCE procedure, 600
CRSP monthly IBM binary files DATASOURCE procedure, 600
CRSP monthly security files
DATASOURCE procedure, 603
CRSP stock files
DATASOURCE procedure, 600
CRSPAccess Database

DATASOURCE procedure, 600
CRSPDB_SASCAL environment variable
SASECRSP engine, 2194
CRSPDCI Date Functions
SASECRSP engine, 2210
CRSPDCS Date Functions
SASECRSP engine, 2210
CRSPDI2S Date Function
SASECRSP engine, 2210
CRSPDIC Date Functions
SASECRSP engine, 2210
CRSPDS2I Date Function
SASECRSP engine, 2210
CRSPDSC Date Functions
SASECRSP engine, 2210
CRSPDT Date Formats
SASECRSP engine, 2208
cubic
trend curves, 2684
cubic trend, 2684
cumulative statistics operators, 747
Currency Conversion, 2756
custom model specification, 2569
custom models
forecasting models, 2472
specifying, 2472
CUSUM statistics, 355, 368
Da Silva method
PANEL procedure, 1302
damped-trend exponential smoothing, 2675
smoothing models, 2675
data frequency, see time intervals
data periodicity
FORECAST procedure, 796
data requirements
ARIMA procedure, 221
FORECAST procedure, 806
X11 procedure, 2064
data set, 2405
concatenated, 2410
forecast data set, 2406
forms of, 2406
interleaved, 2408
simple, 2407
data set selection, 2391, 2573
DATA step, 49
SAS data sets, 49
DATASETS procedure, 49
DATASOURCE procedure
attributes, 520
attributes of variables, 545
auxiliary data sets, 520
balance of payment statistics data files, 520

BEA data files, 520
BEA national income and product accounts PC Format, 590
BEA S-pages, 520
BLS consumer price index surveys, 591
BLS data files, 520
BLS national employment, hours, and earnings survey, 592
BLS producer price index survey, 591
BLS state and area employment, hours, and earnings survey, 593
BOPS data file, 609
Bureau of Economic Analysis data files, 520
Bureau of Labor Statistics data files, 520
Center for Research in Security Prices data files, 520
CITIBASE format, 523
CITIBASE old format, 594
CITIBASE PC format, 595
COMPUSTAT data files, 520, 595
COMPUSTAT IBM 360/370 general format 48 quarter files, 597
COMPUSTAT IBM 360/370 general format annual files, 596
COMPUSTAT universal character format 48 quarter files, 599
COMPUSTAT universal character format annual files, 598
Consumer Price Index Surveys, 520
cross sections, 527, 529, 532, 543
CRSP annual data, 605
CRSP calendar/indices files, 601
CRSP daily binary files, 600
CRSP daily character files, 600
CRSP daily IBM binary files, 600
CRSP daily security files, 602
CRSP data files, 520
CRSP monthly binary files, 600
CRSP monthly character files, 600
CRSP monthly IBM binary files, 600
CRSP monthly security files, 603
CRSP stock files, 600
CRSPAccess Database, 600
direction of trade statistics data files, 520
DOTS data file, 609
DRI Data Delivery Service data files, 520
DRI data files, 520, 593
DRI/McGraw-Hill data files, 520, 593
DRIBASIC data files, 594
DRIBASIC economics format, 523
DRIDDS data files, 594
employment, hours, and earnings survey, 520
event variables, 542, 543, 549

FAME data files, 520
FAME Information Services Databases, 520, 605
formatting variables, 545
frequency of data, 524
frequency of input data, 539
generic variables, 550
GFS data files, 610
Global Insight data files, 520, 593, 594
Global Insight DRI data files, 593
government finance statistics data files, 520
Haver Analytics data files, 607
ID variable, 549
IMF balance of payment statistics, 609
IMF data files, 520
IMF direction of trade statistics, 609
IMF Economic Information System data files, 608
IMF government finance statistics, 610
IMF International Financial Statistics, 527
IMF international financial statistics, 608
indexing the OUT= data set, 538, 581
input file, 538, 539
international financial statistics data files, 520
International Monetary Fund data files, 520, 608
labeling variables, 546
lengths of variables, 534, 546
main economic indicators (OECD) data files, 520
national accounts data files (OECD), 520
national income and product accounts, 520, 590
NIPA Tables, 590
obtaining descriptive information, 525, 529-531, 550-553
OECD ANA data files, 610
OECD annual national accounts, 610
OECD data files, 520
OECD main economic indicators, 612
OECD MEI data files, 612
OECD QNA data files, 611
OECD quarterly national accounts, 611
Organization for Economic Cooperation and
Development data files, 520, 610
OUTALL= data set, 530
OUTBY= data set, 529
OUTCONT= data set, 525, 531
output data sets, 523, 548, 550-553
Producer Price Index Survey, 520
reading data files, 523
renaming variables, 532, 547
SAS YEARCUTOFF= option, 544
state and area employment, hours, and earnings survey, 520
stock data files, 520
subsetting data files, 523, 536
time range, 544
time range of data, 526
time series variables, 524, 549
type of input data file, 538
U.S. Bureau of Economic Analysis data files, 590
U.S. Bureau of Labor Statistics data files, 591
variable list, 547
DATE
ID variables, 72
date values, 2389
calendar functions and, 96
computing datetime values from, 97
computing from datetime values, 97
difference between dates, 101
formats, 70, 138
formats for, 70
functions, 143
incrementing by intervals, 99
informats, 69, 136
informats for, 69
INTNX function and, 99
normalizing to intervals, 101
SAS representation for, 68
syntax for, 68
time intervals, 129
time intervals and, 100
DATE variable, 72
dates
alignment of, 2582
DATETIME
ID variables, 72
datetime values
computing calendar variables from, 98
computing from calendar variables, 97
computing from time variables, 97
computing time variables from, 98
formats, 70, 142
formats for, 70
functions, 143
informats, 69, 136
informats for, 69
SAS representation for, 69
syntax for, 69
time intervals, 129
DATETIME variable, 72
dating variables, 2446
decomposition of prediction error covariance
VARMAX procedure, 1897, 1933
default time ranges, 2575
defined
INTCK function, 99
interleaved time series, 80
INTNX function, 98
omitted observations, 78
time values, 69
definition
S matrix, 1008
time series, 2380
degrees of freedom correction, 1026
denominator factors
transfer function model, 218
dependency list
MODEL procedure, 1174
Depreciation, 2719
derivatives
MODEL procedure, 1157
DERT. variable, 1068
descriptive statistics, see UNIVARIATE procedure
design matrix
ARIMAX models and, 217
details
generalized method of moments, 1011
developing
forecasting models, 2417, 2576
developing forecasting models, 2417, 2576
DFPVALUE macro
Dickey-Fuller test, 153
SAS macros, 153
DFTEST macro
Dickey-Fuller test, 154
output data sets, 155
SAS macros, 154
seasonality, testing for, 154
stationarity, testing for, 154
diagnostic tests, 2453, 2687
time series, 2453
diagnostics and debugging
MODEL procedure, 1168
Dickey-Fuller test, 2688
DFPVALUE macro, 153
DFTEST macro, 154
PROBDF Function, 158
significance probabilities, 158
significance probabilities for, 153
unit root, 158
VARMAX procedure, 1901
Dickey-Fuller tests, 231
DIF function
alternatives to, 108
explained, 106
higher order differences, 109, 110
introduced, 105
MODEL procedure version, 109
multiperiod lags and, 109
percent change calculations and, 110-112
pitfalls of, 107
second difference, 109
DIF function and
differencing, 105-107
difference between dates
date values, 101
differences with X11ARIMA/88
X11 procedure, 2058
Differencing, 2584
differencing
ARIMA procedure, 210, 247, 254
DIF function and, 105-107
higher order, 109, 110
MODEL procedure and, 109
multiperiod differences, 109
percent change calculations and, 110-112
RETAIN statement and, 108
second difference, 109
STATESPACE procedure, 1587
testing order of, 154
time series data, 105-112
VARMAX procedure, 1894
different forms of
output data sets, 82
differential algebraic equations
ordinary differential equations (ODEs), 1148
differential equations
See ordinary differential equations, 1070
direction of trade statistics data files, see
DATASOURCE procedure
discussed
EXPAND procedure, 124
distributed lag regression models
PDLREG procedure, 1349
distribution
of time series, 724
distribution of
time series data, 724
distribution of time series
EXPAND procedure, 724
DOT as a GLUE character
SASEFAME engine, 2294
DOTS data file
DATASOURCE procedure, 609
double exponential smoothing, see exponential smoothing, 2673
Brown smoothing model, 2673
smoothing models, 2673

DRI Data Delivery Service data files, see DATASOURCE procedure
DRI data files, see DATASOURCE procedure
DATASOURCE procedure, 593
DRI data files in FAME.db, see SASEFAME engine
DRI/McGraw-Hill data files, see DATASOURCE procedure
DATASOURCE procedure, 593
DRI/McGraw-Hill data files in FAME.db, see SASEFAME engine
DRIBASIC data files DATASOURCE procedure, 594
DRIBASIC economics format DATASOURCE procedure, 523
DRIDDS data files
DATASOURCE procedure, 594
DROP in the DATA step
SASEFAME engine, 2304
dual quasi-Newton method AUTOREG procedure, 367
Durbin h test
AUTOREG procedure, 326
Durbin t test
AUTOREG procedure, 326
Durbin-Watson MODEL procedure, 1025
Durbin-Watson test autocorrelation tests, 343
AUTOREG procedure, 324
for first-order autocorrelation, 324
for higher-order autocorrelation, 324
p-values for, 324
Durbin-Watson tests, 343
linearized form, 349
dynamic models SIMLIN procedure, 1512, 1513, 1519, 1534
dynamic multipliers SIMLIN procedure, 1519, 1520
dynamic regression, 190, 213, 2585, 2586 specifying, 2523
dynamic regressors forecasting models, 2523
dynamic simulation, 1068 MODEL procedure, 1068, 1117 SIMLIN procedure, 1513
dynamic simultaneous equation models VARMAX procedure, 1916
econometrics features in SAS/ETS software, 23
editing selection list forecasting models, 2478
EGARCH model

AUTOREG procedure, 335
EGLS method
AUTOREG procedure, 361
embedded in time series
missing values, 78
embedded missing values, 78
embedded missing values in time series data, 78
Empirical Distribution Estimation
MODEL procedure, 1023
employment, hours, and earnings survey, see
DATASOURCE procedure
ending dates of
time intervals, 101
endogenous variables
SYSLIN procedure, 1616
endpoint restrictions for
polynomial distributed lags, 1350, 1356
Enterprise Guide, 58
Enterprise Miner-Time Series nodes, 59
ENTROPY procedure
input data sets, 663
missing values, 662
ODS graph names, 666
output data sets, 664
output table names, 665
Environment variable, CRSPDB_SASCAL
SASECRSP engine, 2194
EQ. variables, 1059, 1155
equality restriction
linear models, 648
nonlinear models, 999, 1076
equation translations
MODEL procedure, 1155
equation variables
MODEL procedure, 1152
Error model options, 2587
error sum of squares
statistics of fit, 2689
ERROR. variables, 1155
errors across equations
contemporaneous correlation of, 1649
ESACF (Extended Sample Autocorrelation
Function method), 241
ESM procedure
BY groups, 689
ODS graph names, 705
EST= data set
SIMLIN procedure, 1521
ESTIMATE statement, 981
estimation convergence problems
MODEL procedure, 1038
estimation methods
AUTOREG procedure, 357

MODEL procedure, 1007
estimation of ordinary differential equations, 1070
MODEL procedure, 1070
evaluation range, 2649
event variables
DATASOURCE procedure, 542, 543, 549
example
Cauchy distribution estimation, 1219
generalized method of moments, 1054, 1105, 1108, 1109, 1111
Goldfeld Quandt Switching Regression Model, 1221
Mixture of Distributions, 1225
Multivariate Mixture of Distributions, 1225
ordinary differential equations (ODEs), 1215
The D-method, 1221
example of Bayesian VAR modeling VARMAX procedure, 1866
example of Bayesian VECM modeling
VARMAX procedure, 1873
example of causality testing
VARMAX procedure, 1881
example of cointegration testing
VARMAX procedure, 1869
example of multivariate GARCH modeling
VARMAX procedure, 1983
example of restricted parameter estimation and testing
VARMAX procedure, 1878
example of VAR modeling
VARMAX procedure, 1859
example of VARMA modeling
VARMAX procedure, 1952
example of vector autoregressive modeling with exogenous variables
VARMAX procedure, 1874
example of vector error correction modeling
VARMAX procedure, 1868
example, COUNTREG, 509
examples
Cauchy distribution estimation, 1219
Monte Carlo simulation, 1218
Simulating from a Mixture of Distributions, 1225
Switching Regression example, 1221
systems of differential equations, 1215
examples of
time intervals, 135
exogenous variables
SYSLIN procedure, 1616
EXPAND procedure
AGGREGATE method, 740
aggregation of time series, 721, 724
BY groups, 731
changing periodicity, 125
conversion methods, 739
discussed, 124
distribution of time series, 724
extrapolation, 736
frequency, 721
ID variables, 733, 735
interpolation methods, 739
interpolation of missing values, 124
JOIN method, 740
ODS graph names, 758
output data sets, 756
range of output observations, 736
SPLINE method, 739
STEP method, 740
time intervals, 735
transformation of time series, 726, 742
transformation operations, 742
EXPAND procedure and
interpolation, 124
time intervals, 124
experimental design, 56
explained
DIF function, 106
LAG function, 106
explosive differential equations, 1147
ordinary differential equations (ODEs), 1147
exponential
trend curves, 2685
exponential smoothing, see smoothing models
double exponential smoothing, 798
FORECAST procedure, 774, 798
single exponential smoothing, 798
triple exponential smoothing, 798
exponential trend, 2685
Extended Sample Autocorrelation Function
(ESACF) method, 241
external
forecasts, 2666
external forecasts, 2666
external sources
forecasting models, 2485, 2588
extrapolation
EXPAND procedure, 736
Factored ARIMA, 2555, 2584, 2622
Factored ARIMA model specification, 2589
Factored ARIMA models
forecasting models, 2468
specifying, 2468
factored model

ARIMA model, 212
ARIMA procedure, 212
AUTOREG procedure, 329
FAME data files, see DATASOURCE procedure, see SASEFAME engine
FAME glue symbol named DOT
SASEFAME engine, 2299
FAME Information Services Databases, see DATASOURCE procedure, see SASEFAME engine
DATASOURCE procedure, 605
fast Fourier transform
SPECTRA procedure, 1549
fatal error when reading from a FAME data base SASEFAME engine, 2290
FCMP procedure, 49
SAS functions, 49
features in SAS/ETS software
econometrics, 23
FIML estimation method, see full information maximum likelihood
Financial Functions
PROBDF Function, 158
financial functions, 51
finishing the FAME CHLI
SASEFAME engine, 2290
finite Fourier transform
SPECTRA procedure, 1542
finite memory forecasts
ARIMA procedure, 258
first-stage R squares, 1087
fitting
forecasting models, 2420
fitting forecasting models, 2420
fixed effects model
one-way, 1283
two-way, 1285
fixed rate mortgage, see LOAN procedure
LOAN procedure, 828
flows
contrasted with stock variables, 724
for first-order autocorrelation
Durbin-Watson test, 324
for higher-order autocorrelation
Durbin-Watson test, 324
for interleaved time series
ID variables, 80
for multiple selections
control key, 2398
for nonlinear models
instrumental variables, 1084
for selection of state space models
canonical correlation analysis, 1570, 1593
for time series data

ID variables, 67
forecast combination, 2591, 2666
FORECAST command, 2546
forecast data set, see output data set
forecast horizon, 2575, 2649
forecast options, 2595
FORECAST procedure
ADDWINTERS method, 803
automatic forecasting, 774
autoregressive models, 797
BY groups, 795
confidence limits, 807
data periodicity, 796
data requirements, 806
exponential smoothing, 774, 798
forecasting, 774
Holt two-parameter exponential smoothing, 774, 803
ID variables, 795
missing values, 795
output data sets, 806,808
predicted values, 807
residuals, 807
seasonal forecasting, 799, 803
seasonality, 805
smoothing weights, 803
STEPAR method, 797
stepwise autoregression, 774, 797
time intervals, 796
time series methods, 786
time trend models, 784
Winters method, 774, 799
FORECAST procedure and
interleaved time series, 80, 81
Forecast Studio, 51
forecasting, 2664
ARIMA procedure, 257, 259
FORECAST procedure, 774
MODEL procedure, 1120
STATESPACE procedure, 1568, 1597
VARMAX procedure, 1930
Forecasting menusystem, 45
forecasting models
adjustments, 2522
ARIMA models, 2465
automatic generation, 2396
automatic selection, 2459
changes in trend, 2530
combination models, 2482
comparing, 2505, 2605
custom models, 2472
developing, 2417, 2576
dynamic regressors, 2523
editing selection list, 2478
external sources, 2485, 2588
Factored ARIMA models, 2468
fitting, 2420
interventions, 2527
level shifts, 2532
linear trend, 2513
predictor variables, 2511
reference, 2508
regressors, 2518
seasonal dummy variables, 2539
selecting from a list, 2457
smoothing models, 2462, 2669
sorting, 2504, 2581
specifying, 2453
transfer functions, 2682
trend curves, 2515
forecasting of Bayesian vector autoregressive models
VARMAX procedure, 1948
forecasting process, 2389
forecasting project, 2410
managing, 2599
Project Management window, 2411
saving and restoring, 2412
sharing, 2416
forecasts, 2437
confidence limits, 2436
external, 2666
plotting, 2436
producing, 2404, 2623
form of
state space models, 1568
formats
date values, 70, 138
datetime values, 70, 142
recommended for time series ID, 71
time values, 142
formats for
date values, 70
datetime values, 70
formatting variables
DATASOURCE procedure, 545
forms of
data set, 2406
Fourier coefficients
SPECTRA procedure, 1553
Fourier transform
SPECTRA procedure, 1542
fractional operators, 751
FREQ procedure, 49
crosstabulations, 49
frequency
changing by interpolation, 125, 721, 733
EXPAND procedure, 721
of time series observations, 84,125
SPECTRA procedure, 1552
time intervals and, 84, 125
frequency of data, see time intervals
DATASOURCE procedure, 524
frequency of input data
DATASOURCE procedure, 539
frequency option
SASEHAVR engine, 2340
from interleaved form
transposing time series, 119
from standard form
transposing time series, 122
full information maximum likelihood
FIML estimation method, 1614
MODEL procedure, 1019
SYSLIN procedure, 1624, 1649
Fuller Battese
variance components, 1292
Fuller's modification to LIML
SYSLIN procedure, 1654
functions, 50
date values, 143
datetime values, 143
lag functions, 1160
mathematical functions, 1159
random-number functions, 1159
time intervals, 143
time values, 143
functions across time
MODEL procedure, 1160
functions for
calendar calculations, 95, 143
time intervals, 98, 143
functions of parameters
nonlinear models, 981
G4 inverse, 985
GARCH in mean model, see GARCH-M model
GARCH model
AUTOREG procedure, 314
conditional t distribution, 367
covariance estimates, 343
generalized autoregressive conditional heteroscedasticity, 314
heteroscedasticity models, 350
initial values, 348
starting values, 342
t distribution, 367
GARCH-M model, 366
AUTOREG procedure, 335
GARCH in mean model, 366
Gauss-Marquardt method
ARIMA procedure, 250

AUTOREG procedure, 360
Gauss-Newton method, 1027
Gaussian distribution
MODEL procedure, 980
General Form Equations
Jacobi method, 1142
Seidel method, 1142
generalized autoregressive conditional heteroscedasticity, see GARCH model
generalized Durbin-Watson tests
AUTOREG procedure, 324
generalized least squares
PANEL procedure, 1300
generalized least squares estimator of the covariance matrix, 1021
generalized least-squares
Yule-Walker method as, 361
Generalized Method of Moments
V matrix, 1012, 1017
generalized method of moments
details, 1011
example, 1054, 1105, 1108, 1109, 1111
generating models, 2561
Generic Cashflow, 2726
generic variables
DATASOURCE procedure, 550
GFS data files
DATASOURCE procedure, 610
giving dates to
time series data, 67
Global Insight data files
DATASOURCE procedure, 593, 594
Global Insight DRI data files, see DATASOURCE procedure
DATASOURCE procedure, 593
global statements, 50
GLUE symbol
SASEFAME engine, 2294
GMM
simulated method of moments, 1016
SMM, 1016
GMM in Panel: Arellano and Bond's Estimator
Panel GMM, 1304
goal seeking
MODEL procedure, 1138
goal seeking problems, 1074
Godfrey Lagrange test
autocorrelation tests, 1058
Godfrey's test, 344
autocorrelation tests, 344
Goldfeld Quandt Switching Regression Model example, 1221
goodness of fit, see statistics of fit
goodness-of-fit statistics, see statistics of fit, 2643, see statistics of fit
government finance statistics data files, see DATASOURCE procedure
gradient of the objective function, 1042, 1043
Granger causality test
VARMAX procedure, 1944
graphics
SAS/GRAPH software, 52
graphs, see Model Viewer, see Time Series Viewer
grid search
MODEL procedure, 1036
Hausman specification test, 1079
MODEL procedure, 1079
Haver Analytics data files
DATASOURCE procedure, 607
Haver data files, see SASEHAVR engine
Haver Information Services Databases, see SASEHAVR engine
HCCME 2SLS, 1057
HCCME 3SLS, 1057
HCCME =
hccme=0, 1313
PANEL procedure, 1313
HCCME OLS, 1055
HCCME SUR, 1057
hccme=0
\[
\mathrm{HCCME}=, 1313
\]
help system, 23
Henze-Zirkler test, 1048
normality tests, 1048
heteroscedastic errors, 1011
heteroscedastic extreme value model
MDC procedure, 881, 906
heteroscedasticity, 947, 1050
AUTOREG procedure, 329
Lagrange multiplier test, 351
testing for, 329
Heteroscedasticity Corrected Covariance
Matrices, 1313
heteroscedasticity models, see GARCH model constrained estimation, 351
covariates, 350, 1390
link function, 350
heteroscedasticity tests
Breusch-Pagan test, 1050
Lagrange multiplier test, 351
White's test, 1050
Heteroscedasticity-Consistent Covariance Matrix
Estimation, 1055
higher order differencing, 109, 110
higher order differences
DIF function, 109, 110
higher order sums
summation, 114
Hildreth-Lu
AR initial conditions, 1091
Hildreth-Lu method
AUTOREG procedure, 362
histograms, see CHART procedure
hold-out sample, 2575
hold-out samples, 2508
Holt smoothing model, see linear exponential smoothing
Holt two-parameter exponential smoothing FORECAST procedure, 774, 803
Holt-Winters Method, see Winters Method
Holt-Winters method, see Winters method
homoscedastic errors, 1050
HTML
creating from Model Viewer, 2618
creating from Time Series Viewer, 2657
hyperbolic
trend curves, 2685
hyperbolic trend, 2685
ID groups
MDC procedure, 891
ID values for time intervals, 100
ID variable, see time ID variable DATASOURCE procedure, 549
ID variable for
time series data, 67
ID variables, 2395
ARIMA procedure, 259
DATE, 72
DATETIME, 72
EXPAND procedure, 733, 735
for interleaved time series, 80
for time series data, 67
FORECAST procedure, 795
PANEL procedure, 1273
SIMLIN procedure, 1517
sorting by, 72
STATESPACE procedure, 1586
TSCSREG procedure, 1735
X11 procedure, 2046, 2048
X12 procedure, 2111
ID variables for
cross-sectional dimensions, 79
interleaved time series, 80
time series cross-sectional form, 79
IGARCH model
AUTOREG procedure, 335

IMF balance of payment statistics DATASOURCE procedure, 609
IMF data files, see DATASOURCE procedure
IMF direction of trade statistics DATASOURCE procedure, 609
IMF Economic Information System data files DATASOURCE procedure, 608
IMF government finance statistics DATASOURCE procedure, 610
IMF International Financial Statistics DATASOURCE procedure, 527
IMF international financial statistics DATASOURCE procedure, 608
IML, see SAS/IML software
impact multipliers
SIMLIN procedure, 1519, 1524
impulse function intervention model and, 216
impulse response function VARMAX procedure, 1898, 1919
impulse response matrix of a state space model, 1600
in SAS data sets time series, 2380
in standard form output data sets, 83
incrementing by intervals date values, 99
incrementing dates INTNX function, 99
incrementing dates by time intervals, 98, 99
independent variables, see predictor variables
indexing OUT= data set, 549
indexing the OUT= data set DATASOURCE procedure, 538, 581
inequality restriction linear models, 648
nonlinear models, 975, 999, 1076
infinite memory forecasts ARIMA procedure, 257
infinite order AR representation VARMAX procedure, 1898
infinite order MA representation VARMAX procedure, 1898, 1919
informats date values, 69, 136
datetime values, 69, 136
time values, 136
informats for
date values, 69
datetime values, 69
initial values, 348, 896

GARCH model, 348
initializations
smoothing models, 2670
initializing lags
MODEL procedure, 1163
SIMLIN procedure, 1522
innovation vector
of a state space model, 1569
input block
COMPUTAB procedure, 455
input data set, 2391, 2573
input data sets
ENTROPY procedure, 663
MODEL procedure, 1104
input file
DATASOURCE procedure, 538, 539
input matrix
of a state space model, 1569
input series
ARIMA procedure, 213
INPUT variables
X12 procedure, 2113
inputs, see predictor variables
installment loans, see LOAN procedure
instrumental regression, 1010
instrumental variables, 1010
choice of, 1084
for nonlinear models, 1084
number to use, 1085
SYSLIN procedure, 1616
instruments, 1008
INTCK function
calendar calculations and, 104
counting time intervals, 102
defined, 99
INTCK function and
time intervals, 99, 102
interaction effects
ARIMA procedure, 217
interest rates
LOAN procedure, 851
interim multipliers
SIMLIN procedure, 1515, 1520, 1523, 1524
interleaved
data set, 2408
interleaved form
output data sets, 82
interleaved form of
time series data set, 80
interleaved time series
and _TYPE_ variable, 80, 81
combined with cross-sectional dimension, 82
defined, 80

FORECAST procedure and, 80, 81
ID variables for, 80
plots of, 90
Internal Rate of Return, 2768
internal rate of return
LOAN procedure, 852
internal variables
MODEL procedure, 1153
international financial statistics data files, see
DATASOURCE procedure
International Monetary Fund data files, see
DATASOURCE procedure
DATASOURCE procedure, 608
interpolation
between levels and rates, 125
between stocks and flows, 125
EXPAND procedure and, 124
of missing values, 124, 723
time series data, 125
to higher frequency, 125
to lower frequency, 125
interpolation methods
EXPAND procedure, 739
interpolation of
missing values, 124
time series data, 124, 125, 723
interpolation of missing values
EXPAND procedure, 124
interpolation of time series
step function, 740
interrupted time series analysis, see intervention model
interrupted time series model, see intervention model
interval functions, see time intervals, functions
interval functions and
calendar calculations, 104
INTERVAL = option and
time intervals, 84
intervals, see time intervals, 2395
intervention analysis, see intervention model
intervention model
ARIMA procedure, 213, 216, 219, 298
interrupted time series analysis, 216
interrupted time series model, 213
intervention analysis, 216
intervention model and
impulse function, 216
step function, 217
intervention notation, 2686
intervention specification, 2595, 2597
interventions, 2685
automatic inclusion of, 2582
forecasting models, 2527
point, 2685
predictor variables, 2685
ramp, 2686
specifying, 2527
step, 2685
INTNX function
calendar calculations and, 104
checking data periodicity, 103
computing ceiling of intervals, 102
computing ending date of intervals, 101
computing midpoint date of intervals, 101
computing widths of intervals, 101
defined, 98
incrementing dates, 99
normalizing dates in intervals, 101
INTNX function and
date values, 99
time intervals, 98
introduced
DIF function, 105
LAG function, 105
percent change calculations, 110
time variables, 95
inverse autocorrelation function
ARIMA procedure, 239
invertibility
ARIMA procedure, 255
VARMAX procedure, 1949
Investment Analysis System, 46
Investment Portfolio, 2706
invoking the system, 2384
IRoR, 2768
irregular component
X11 procedure, 2034, 2040
iterated generalized method of moments, 1015
iterated seemingly unrelated regression
SYSLIN procedure, 1649
iterated three-stage least squares
SYSLIN procedure, 1649
Iterative Outlier Detection
ARIMA procedure, 307
Jacobi method
MODEL procedure, 1141
Jacobi method with General Form Equations
MODEL procedure, 1142
Jacobian, 1009, 1027
Jarque-Bera test, 344
normality tests, 344
JMP, 57
JOIN method
EXPAND procedure, 740
joint generalized least squares, see seemingly unrelated regression
jointly dependent variables SYSLIN procedure, 1616

K-class estimation
SYSLIN procedure, 1648
Kalman filter
AUTOREG procedure, 360
STATESPACE procedure, 1570
used for state space modeling, 1570
KEEP in the DATA step
SASEFAME engine, 2304
kernels, 1013, 1549
SPECTRA procedure, 1549
Kolmogorov-Smirnov test, 1048
normality tests, 1048
KPSS (Kwiatkowski, Phillips, Schmidt, Shin)
test, 346
KPSS test, 346, 378
unit roots, 378
Kruskal-Wallis test, 2076
labeling variables
DATASOURCE procedure, 546
LAG function
alternatives to, 108
explained, 106
introduced, 105
MODEL procedure version, 109
multiperiod lags and, 109
percent change calculations and, 110-112
pitfalls of, 107
LAG function and
Lags, 106
lags, 105, 107
lag functions
functions, 1160
MODEL procedure, 1160
lag lengths
MODEL procedure, 1162
lag logic
MODEL procedure, 1161
lagged dependent variables and tests for autocorrelation, 326
AUTOREG procedure, 326
lagged endogenous variables
SYSLIN procedure, 1616
lagging
time series data, 105-112
Lagrange multiplier test
heteroscedasticity, 351
heteroscedasticity tests, 351
linear hypotheses, 650
nonlinear hypotheses, 1006, 1078, 1410
Lags

LAG function and, 106
lags
LAG function and, 105, 107
MODEL procedure and, 109
multiperiod lagging, 109
percent change calculations and, 110-112
RETAIN statement and, 108
SIMLIN procedure, 1522
lambda, 1028
language differences
MODEL procedure, 1164
large problems
MODEL procedure, 1045
leads
calculation of, 112
multiperiod, 112
time series data, 112
left-hand side expressions
nonlinear models, 1152
lengths of variables
DATASOURCE procedure, 534, 546
level shifts
forecasting models, 2532
specifying, 2532
levels
contrasted with flows or rates, 724
LIBNAME libref SASEHAVR 'physical name' on UNIX
SASEFAME engine, 2299
LIBNAME libref SASEHAVR 'physical name' on Windows
SASEFAME engine, 2299
LIBNAME interface engine for FAME database, see SASEFAME engine
LIBNAME interface engine for Haver database, see SASEHAVR engine
LIBNAME statement
SASECRSP engine, 2190
SASEFAME engine, 2290
SASEHAVR engine, 2340
likelihood confidence intervals, 1082
MODEL procedure, 1082
likelihood ratio test
linear hypotheses, 650
nonlinear hypotheses, 1006, 1078
limitations on
ordinary differential equations (ODEs), 1147
limitations on ordinary differential equations
MODEL procedure, 1147
Limited Dependent Variable Models
QLIM procedure, 1399
limited information maximum likelihood
LIML estimation method, 1614

SYSLIN procedure, 1648
LIML estimation method, see limited information maximum likelihood
linear
trend curves, 2684
linear dependencies
MODEL procedure, 1041
linear exponential smoothing, 2674
Holt smoothing model, 2674
smoothing models, 2674
linear hypotheses
Lagrange multiplier test, 650
likelihood ratio test, 650
Wald test, 650
linear hypothesis testing, 1312
PANEL procedure, 1312
linear models
equality restriction, 648
inequality restriction, 648
restricted estimation, 648
linear structural equations
SIMLIN procedure, 1519
linear trend, 2513, 2684
forecasting models, 2513
linearized form
Durbin-Watson tests, 349
link function
heteroscedasticity models, 350
Loan, 2711
LOAN procedure
adjustable rate mortgage, 827, 828
amortization schedule, 856
balloon payment mortgage, 827,828
break even analysis, 852
buydown rate loans, 827,828
comparing loans, \(835,852,856\)
continuous compounding, 850
fixed rate mortgage, 827,828
installment loans, 827
interest rates, 851
internal rate of return, 852
loan repayment schedule, 856
loan summary table, 856
loans analysis, 827
minimum attractive rate of return, 852
mortgage loans, 827
output data sets, 853,854
output table names, 856
present worth of cost, 852
rate adjustment cases, 846
taxes, 852
true interest rate, 852
types of loans, 828
loan repayment schedule

LOAN procedure, 856
loan summary table
LOAN procedure, 856
loans analysis, see LOAN procedure
\(\log\)
transformations, 2667
log likelihood value, 344
log test, 2688
log transformation, see transformations
log transformations
ARIMA procedure, 258
LOGTEST macro, 156
logarithmic
trend curves, 2685
logarithmic trend, 2685
logistic
transformations, 2667
trend curves, 2684
logistic trend, 2684
logit
QLIM Procedure, 1376
LOGTEST macro
log transformations, 156
output data sets, 157
SAS macros, 156
long-run relations testing
VARMAX procedure, 1972
\%MA and \%AR macros combined, 1099
MA Initial Conditions
conditional least squares, 1092
maximum likelihood, 1092
unconditional least squares, 1092
macros, see SAS macros
MAE
AUTOREG procedure, 368
main economic indicators (OECD) data files, see DATASOURCE procedure
main economic indicators (OECD) data files in FAME.db, see SASEFAME engine
managing
forecasting project, 2599
managing forecasting projects, 2599
MAPE
AUTOREG procedure, 368
Mardia's test, 1048
normality tests, 1048
Marquardt method
ARIMA procedure, 250
Marquardt-Levenberg method, 1028
MARR, see minimum attractive rate of return, 2789
mathematical functions, 51
functions, 1159
matrix language
SAS/IML software, 54
maximizing likelihood functions, 56
maximum likelihood
AR initial conditions, 1091
MA Initial Conditions, 1092
maximum likelihood method AUTOREG procedure, 362
MDC procedure
binary data modeling example, 918
binary logit example, 918, 921
binary probit example, 918
bounds on parameter estimates, 890
BY groups, 891
conditional logit example, 921
conditional logit model, 870, 871, 904
goodness-of-fit measures, 915
Hausman's specification and likelihood ratio tests for nested logit, 918
heteroscedastic extreme value model, 881, 906
ID groups, 891
introductory examples, 871
mixed logit model, 886, 907
multinomial discrete choice, 903
multinomial probit example, 924
multinomial probit model, 880, 909
nested logit example, 931
nested logit model, 876, 910
output table names, 917
restrictions on parameter estimates, 901
syntax, 887
mean absolute error
statistics of fit, 2689
mean absolute percent error
statistics of fit, 1819, 2689
mean percent error
statistics of fit, 2690
mean prediction error
statistics of fit, 2690
mean square error statistics of fit, 1819
mean squared error statistics of fit, 2689
MEANS procedure, 49
measurement equation
observation equation, 1569
of a state space model, 1569
MELO estimation method, see minimum expected loss estimator
memory requirements
MODEL procedure, 1046
VARMAX procedure, 2002
menu interfaces
to SAS/ETS software, 45, 46
merging series
time series data, 119
merging time series data sets, 119
Michaelis-Menten Equations, 1074
midpoint dates of
time intervals, 101
MINIC (Minimum Information Criterion)
method, 243
minimization methods
MODEL procedure, 1027
minimization summary
MODEL procedure, 1030
minimum attractive rate of return
LOAN procedure, 852
MARR, 852
minimum expected loss estimator
MELO estimation method, 1648
SYSLIN procedure, 1648
minimum information criteria method
VARMAX procedure, 1940
Minimum Information Criterion (MINIC) method, 243
missing observations
contrasted with omitted observations, 78
missing values, 748, 1106
COMPUTAB procedure, 457
contrasted with omitted observations, 78
embedded in time series, 78
ENTROPY procedure, 662
FORECAST procedure, 795
interpolation of, 124
MODEL procedure, 1025, 1143
smoothing models, 2670
time series data, 723
time series data and, 77
VARMAX procedure, 1912
missing values and
time series data, 77, 78
MISSONLY operator, 748
mixed logit model
MDC procedure, 886, 907
Mixture of Distributions
example, 1225
MMAE, 2668
MMSE, 2668
model evaluation, 2662
Model Identification
ARIMA procedure, 300
model list, 2425, 2606
MODEL procedure
adjacency graph, 1178
adjusted R squared, 1027
Almon lag polynomials, 1102
analyzing models, 1174
ARMA model, 1088
autoregressive models, 1088
auxiliary equations, 1074
block structure, 1178
character variables, 1155
Chow tests, 1081
collinearity diagnostics, 1032, 1041
compiler listing, 1171
control variables, 1153
controlling starting values, 1034
convergence criteria, 1028
cross-equation covariance matrix, 1026
cross-reference, 1170
dependency list, 1174
derivatives, 1157
diagnostics and debugging, 1168
Durbin-Watson, 1025
dynamic simulation, 1068, 1117
Empirical Distribution Estimation, 1023
equation translations, 1155
equation variables, 1152
estimation convergence problems, 1038
estimation methods, 1007
estimation of ordinary differential equations, 1070
forecasting, 1120
full information maximum likelihood, 1019
functions across time, 1160
Gaussian distribution, 980
goal seeking, 1138
grid search, 1036
Hausman specification test, 1079
initializing lags, 1163
input data sets, 1104
internal variables, 1153
Jacobi method, 1141
Jacobi method with General Form
Equations, 1142
lag functions, 1160
lag lengths, 1162
lag logic, 1161
language differences, 1164
large problems, 1045
likelihood confidence intervals, 1082
limitations on ordinary differential equations, 1147
linear dependencies, 1041
memory requirements, 1046
minimization methods, 1027
minimization summary, 1030
missing values, 1025,1143
model variables, 1152
Monte Carlo simulation, 1218

Moore-Penrose generalized inverse, 985
moving average models, 1088
Multivariate t-Distribution Estimation, 1022
n-period-ahead forecasting, 1117
nested iterations, 1027
Newton's Method, 1141
nonadditive errors, 1059
normal distribution, 980
ODS graph names, 1116
ordinary differential equations and goal seeking, 1074
output data sets, 1110
output table names, 1113
parameters, 1152
polynomial distributed lag models, 1102
program listing, 1169
program variables, 1155
properties of the estimates, 1025
quasi-random number generators, 1130
R squared, 1027, 1034
random-number generating functions, 1159
restrictions on parameters, 1098
S matrix, 1026
S-iterated methods, 1027
Seidel method, 1142
Seidel method with General Form
Equations, 1142
SIMNLIN procedure, 945
simulated nonlinear least squares, 1019
simulation, 1120
solution mode output, 1132
solution modes, 1117, 1140
SOLVE Data Sets, 1148
starting values, 1031, 1038
static simulation, 1068
static simulations, 1117
stochastic simulation, 1120
storing programs, 1167
summary statistics, 1135
SYSNLIN procedure, 945
systems of ordinary differential equations, 1215
tests on parameters, 1078
time variable, 1074
troubleshooting estimation convergence problems, 1030
troubleshooting simulation problems, 1143
using models to forecast, 1120
using solution modes, 1117
variables in model program, 1151
_WEIGHT_ variable, 1052
MODEL procedure and
differencing, 109
lags, 109

MODEL procedure version
DIF function, 109
LAG function, 109
model selection, 2621
model selection criterion, 2502, 2610
model selection for X-11-ARIMA method
X11 procedure, 2068
model selection list, 2611
model variables
MODEL procedure, 1152
Model Viewer, 2427, 2615
graphs, 2419
plots, 2419
saving graphs and tables, 2628, 2630
Monte Carlo simulation, 1120, 1218
examples, 1218
MODEL procedure, 1218
Moore-Penrose generalized inverse, 985
mortgage loans, see LOAN procedure
moving average function, 1160
moving average models, 1089
MODEL procedure, 1088
moving averages
percent change calculations, 111, 112
moving between computer systems
SAS data sets, 49
moving product operators, 752
moving rank operator, 751
moving seasonality test, 2076
moving \(t\)-value operators, 755
moving time window operators, 745
moving-average parameters
ARIMA procedure, 256
multinomial discrete choice independence from irrelevant alternatives, 905
MDC procedure, 903
multinomial probit model MDC procedure, 880, 909
multiperiod
leads, 112
multiperiod differences differencing, 109
multiperiod lagging lags, 109
multiperiod lags and
DIF function, 109
LAG function, 109
summation, 114
multiple selections, 2398
multiplicative model
ARIMA model, 212
multiplicative seasonal smoothing, 2677
smoothing models, 2677
multipliers
SIMLIN procedure, 1515, 1516, 1519, 1520, 1523, 1524
multipliers for higher order lags
SIMLIN procedure, 1520, 1534
multivariate
autocorrelations, 1573
normality tests, 1048
partial autocorrelations, 1592
multivariate forecasting
STATESPACE procedure, 1568
multivariate GARCH Modeling VARMAX procedure, 1907
Multivariate Mixture of Distributions example, 1225
multivariate model diagnostic checks VARMAX procedure, 1957
Multivariate t-Distribution Estimation MODEL procedure, 1022
multivariate time series
STATESPACE procedure, 1568
n-period-ahead forecasting MODEL procedure, 1117
naming
time intervals, 84, 130
naming model parameters ARIMA procedure, 256
national accounts data files (OECD), see DATASOURCE procedure
national accounts data files (OECD) in FAME.db, see SASEFAME engine
national income and product accounts, see DATASOURCE procedure
DATASOURCE procedure, 590
negative \(\log\) likelihood function, 1020
negative log-likelihood function, 1022
Nerlove
variance components, 1294
nested iterations
MODEL procedure, 1027
nested logit model MDC procedure, 876, 910
Newton's Method MODEL procedure, 1141
Newton-Raphson optimization methods, 490, 896
Newton-Raphson method, 490, 896
NIPA Tables
DATASOURCE procedure, 590
NLO Overview
NLO system, 165
NLO system
NLO Overview, 165

Options, 165
output table names, 183
remote monitoring, 181
NOMISS operator, 748
nonadditive errors
MODEL procedure, 1059
nonlinear hypotheses
Lagrange multiplier test, 1006, 1078, 1410
likelihood ratio test, 1006, 1078
Wald test, 1006, 1078, 1410
nonlinear least-squares AUTOREG procedure, 362
nonlinear models
equality restriction, 999, 1076
functions of parameters, 981
inequality restriction, 975, 999, 1076
left-hand side expressions, 1152
restricted estimation, 975, 999, 1076
test of hypotheses, 1005
nonmissing observations
statistics of fit, 2688
nonseasonal ARIMA model notation, 2680
nonseasonal transfer function notation, 2682
nonstationarity, see stationarity
normal distribution
MODEL procedure, 980
normality tests, 1048
Henze-Zirkler test, 1048
Jarque-Bera test, 344
Kolmogorov-Smirnov test, 1048
Mardia's test, 1048
multivariate, 1048
Shapiro-Wilk test, 1048
normalizing dates in intervals
INTNX function, 101
normalizing to intervals date values, 101
notation
nonseasonal ARIMA model, 2680
nonseasonal transfer function, 2682
seasonal ARIMA model, 2681
seasonal transfer function, 2683
notation for
ARIMA model, 207
ARMA model, 207
number of observations
statistics of fit, 2688
number to use
instrumental variables, 1085
numerator factors
transfer function model, 218

OBJECT convergence measure, 1028
objective function, 1008
observation equation, see measurement equation
observation numbers, 2644
as time ID, 2443
time ID variable, 2443
obtaining descriptive information
DATASOURCE procedure, 525, 529-531, 550-553
ODS graph names
ARIMA procedure, 276
AUTOREG procedure, 388
ENTROPY procedure, 666
ESM procedure, 705
EXPAND procedure, 758
MODEL procedure, 1116
SIMILARITY procedure, 1483
SYSLIN procedure, 1660
TIMESERIES procedure, 1714
UCM procedure, 1813
VARMAX procedure, 2000
ODS Graphics
ARIMA procedure, 224
UCM procedure, 1754
OECD ANA data files
DATASOURCE procedure, 610
OECD annual national accounts
DATASOURCE procedure, 610
OECD data files, see DATASOURCE procedure
OECD data files in FAME.db, see SASEFAME engine
OECD main economic indicators
DATASOURCE procedure, 612
OECD MEI data files
DATASOURCE procedure, 612
OECD QNA data files
DATASOURCE procedure, 611
OECD quarterly national accounts
DATASOURCE procedure, 611
of a state space model
impulse response matrix, 1600
innovation vector, 1569
input matrix, 1569
measurement equation, 1569
state transition equation, 1569
state vector, 1568
transition equation, 1569
transition matrix, 1569
of a time series
unit root, 154
of interleaved time series
overlay plots, 90
of missing values
interpolation, 124, 723
of time series
distribution, 724
overlay plots, 88
sampling frequency, \(71,84,125\)
simulation, 2560, 2653
stationarity, 210
summation, 113
time ranges, 77
of time series data set
standard form, 76
time series cross-sectional form, 79
of time series observations
frequency, 84,125
periodicity, 71, 84, 125
omitted observations
contrasted with missing values, 78
defined, 78
replacing with missing values, 104
omitted observations in
time series data, 78
one-way
fixed effects model, 1283
random effects model, 1291
one-way fixed effects model
PANEL procedure, 1283
one-way fixed-effects model, 1283
one-way random effects model
PANEL procedure, 1291
one-way random-effects model, 1291
operations research
SAS/OR software, 55
optimization methods
Newton-Raphson, 490, 896
quasi-Newton, 350, 490, 896
trust region, 350, 490, 896
optimizations
smoothing weights, 2671
Options
NLO system, 165
options
automatic model selection, 2568
order of calculations
COMPUTAB procedure, 451
order statistics, see RANK procedure
Ordinal Discrete Choice Modeling
QLIM procedure, 1396
ordinary differential equations (ODEs)
and goal seeking, 1074
differential algebraic equations, 1148
example, 1215
explosive differential equations, 1147
limitations on, 1147
systems of, 1215
ordinary differential equations and goal seeking

MODEL procedure, 1074
Organization for Economic Cooperation and Development data files, see DATASOURCE procedure
DATASOURCE procedure, 610
Organization for Economic Cooperation and Development data files in FAME.db, see SASEFAME engine
orthogonal polynomials
PDLREG procedure, 1350
OUT= data set
indexing, 549
OUTALL= data set
DATASOURCE procedure, 530
OUTBY= data set
DATASOURCE procedure, 529
OUTCONT= data set
DATASOURCE procedure, 525, 531
Outlier Detection
ARIMA procedure, 305
Output Data Sets
VARMAX procedure, 1987
output data sets
and the OUTPUT statement, 83
ARIMA procedure, 262-264, 267, 268
AUTOREG procedure, 384
BOXCOXAR macro, 151
COMPUTAB procedure, 457
DATASOURCE procedure, 523, 548, 550-553
DFTEST macro, 155
different forms of, 82
ENTROPY procedure, 664
EXPAND procedure, 756
FORECAST procedure, 806, 808
in standard form, 83
interleaved form, 82
LOAN procedure, 853, 854
LOGTEST macro, 157
MODEL procedure, 1110
PANEL procedure, 1320-1322
PDLREG procedure, 1363
produced by SAS/ETS procedures, 82
SIMLIN procedure, 1522, 1523
SPECTRA procedure, 1552
STATESPACE procedure, 1601, 1602
SYSLIN procedure, 1655, 1656
X11 procedure, 2071, 2072
Output Delivery System (ODS), 2618, 2657
OUTPUT statement
SAS/ETS procedures using, 83
output table names
ARIMA procedure, 272
AUTOREG procedure, 386

COUNTREG procedure, 508
ENTROPY procedure, 665
LOAN procedure, 856
MDC procedure, 917
MODEL procedure, 1113
NLO system, 183
PANEL procedure, 1323
PDLREG procedure, 1364
QLIM procedure, 1415
SIMLIN procedure, 1525
SPECTRA procedure, 1554
STATESPACE procedure, 1605
SYSLIN procedure, 1659
TSCSREG procedure, 1738
X11 procedure, 2085
over identification restrictions
SYSLIN procedure, 1654
overlay plot of
time series data, 88
overlay plots
of interleaved time series, 90
of time series, 88
_TYPE_ variable and, 90
p -values for
Durbin-Watson test, 324
panel data
TSCSREG procedure, 1727
Panel GMM, 1304
GMM in Panel: Arellano and Bond's
Estimator, 1304
PANEL procedure
Between Estimators, 1291
BY groups, 1271
Da Silva method, 1302
generalized least squares, 1300
HCCME =, 1313
ID variables, 1273
linear hypothesis testing, 1312
one-way fixed effects model, 1283
one-way random effects model, 1291
output data sets, 1320-1322
output table names, 1323
Parks method, 1300
Pooled Estimator, 1291
predicted values, 1279
printed output, 1323
R-square measure, 1316
residuals, 1280
specification tests, 1317
two-way fixed effects model, 1285
two-way random effects model, 1294
Zellner's two-stage method, 1301
parameter change vector, 1042
parameter estimates, 2433
parameter estimation, 2662
parameters
MODEL procedure, 1152
UCM procedure, 1757-1768, 1770-1780
Pareto charts, 56
Parks method
PANEL procedure, 1300
partial autocorrelations
multivariate, 1592
partial autoregression coefficient
VARMAX procedure, 1899, 1936
partial canonical correlation VARMAX procedure, 1899, 1939
partial correlation
VARMAX procedure, 1938
PDL, see polynomial distributed lags
PDLREG procedure
BY groups, 1355
confidence limits, 1359
distributed lag regression models, 1349
orthogonal polynomials, 1350
output data sets, 1363
output table names, 1364
polynomial distributed lags, 1350
predicted values, 1359
residuals, 1359
restricted estimation, 1360
percent change calculations
at annual rates, 110
introduced, 110
moving averages, 111, 112
period-to-period, 110
time series data, 110-112
year-over-year, 110
yearly averages, 111
percent change calculations and
DIF function, 110-112
differencing, 110-112
LAG function, 110-112
lags, 110-112
percent operators, 755
period of evaluation, 2506
period of fit, 2506, 2575, 2649
period-to-period
percent change calculations, 110
Periodic Equivalent, see Uniform Periodic Equivalent
periodicity
changing by interpolation, 125, 721
of time series observations, \(71,84,125\)
periodicity of
time series data, 84,125
periodicity of time series
time intervals, 84, 125
periodogram
SPECTRA procedure, 1542, 1553
Phillips-Ouliaris test, 345, 377
Phillips-Perron test, 345, 376
unit roots, \(345,346,376\)
Phillips-Perron tests, 231
Physical Names on Supported hosts
SASEFAME engine, 2299
Physical path name syntax for variety of environments
SASEFAME engine, 2299
pitfalls of
DIF function, 107
LAG function, 107
plot axis and
time intervals, 88
plot axis for time series
SGPLOT procedure, 88
PLOT procedure, 49
plotting time series, 92
time series data, 92
plot reference lines and
time intervals, 88
plots, see Model Viewer, see Time Series Viewer
plots of
interleaved time series, 90
plotting
autocorrelations, 193
forecasts, 2436
prediction errors, 2429
residual, 91
time series data, 86
plotting time series
PLOT procedure, 92
SGPLOT procedure, 87
Time Series Viewer procedure, 86
point
interventions, 2685
point interventions, 2685
point-in-time values, 721, 724
polynomial distributed lag models
MODEL procedure, 1102
polynomial distributed lags
Almon lag polynomials, 1349
endpoint restrictions for, 1350, 1356
PDL, 1349
PDLREG procedure, 1350
Polynomial specification, 2555, 2584, 2622
pooled
pooled estimator, 1291
Pooled Estimator
PANEL procedure, 1291
pooled estimator, 1291
pooled, 1291
Portfolio, see Investment Portfolio
power curve
trend curves, 2685
power curve trend, 2685
PPC convergence measure, 1028
Prais-Winsten estimates
AUTOREG procedure, 361
PRED. variables, 1155
predetermined variables
SYSLIN procedure, 1616
predicted values
ARIMA procedure, 257
AUTOREG procedure, 355, 381, 382
conditional variance, 383
FORECAST procedure, 807
PANEL procedure, 1279
PDLREG procedure, 1359
SIMLIN procedure, 1513, 1518
STATESPACE procedure, 1597, 1601
structural, 356, 381, 1359
SYSLIN procedure, 1640
transformed models, 1061
predicting
conditional variance, 383
prediction error covariance
VARMAX procedure, 1897, 1930, 1932
prediction errors
autocorrelations, 2430
plotting, 2429
residuals, 2498
stationarity, 2431
predictions
smoothing models, 2670
predictive Chow test, 344, 376
predictive Chow tests, 1081
predictor variables
forecasting models, 2511
independent variables, 2511
inputs, 2511
interventions, 2685
seasonal dummies, 2687
specifying, 2511
trend curves, 2684
Present Value Analysis, see Time Value Analysis
present worth of cost
LOAN procedure, 852
prewhitening
ARIMA procedure, 246, 247
principal component, 1041
PRINT procedure, 49
printing SAS data sets, 49
printed output
ARIMA procedure, 269

AUTOREG procedure, 385
PANEL procedure, 1323
SIMLIN procedure, 1523
STATESPACE procedure, 1603
SYSLIN procedure, 1657
X11 procedure, 2074
printing
SAS data sets, 49
printing SAS data sets, see PRINT procedure
probability functions, 51
PROBDF Function
Dickey-Fuller test, 158
Financial Functions, 158
significance probabilities, 158
significance probabilities for Dickey-Fuller tests, 158
PROBDF function
defined, 158
probit
QLIM Procedure, 1376
produced by SAS/ETS procedures
output data sets, 82
Producer Price Index Survey, see DATASOURCE procedure
producing
forecasts, 2404, 2623
producing forecasts, 2623
program flow
COMPUTAB procedure, 448
program listing
MODEL procedure, 1169
program variables
MODEL procedure, 1155
programming statements
COMPUTAB procedure, 445
Project Management window
forecasting project, 2411
properties of the estimates
MODEL procedure, 1025
properties of time series, 2453
PROTO procedure, 49
printing SAS data sets, 49
QLIM Procedure, 1376
logit, 1376
probit, 1376
selection, 1376
tobit, 1376
QLIM procedure
Bivariate Limited Dependent Variable
Modeling, 1406
Box-Cox Modeling, 1406
BY groups, 1387
Censored Regression Models, 1399

Frontier, 1403
Heteroscedasticity, 1405
Limited Dependent Variable Models, 1399
Multivariate Limited Dependent Models, 1409
Ordinal Discrete Choice Modeling, 1396
Output, 1411
output table names, 1415
Selection Models, 1408
syntax, 1382
Tests on Parameters, 1410
Truncated Regression Models, 1402
Types of Tobit Model, 1400
quadratic
trend curves, 2684
quadratic trend, 2684
quadrature spectrum
cross-spectral analysis, 1553
SPECTRA procedure, 1553
quasi-Newton
optimization methods, \(350,490,896\)
quasi-Newton method, 350, 490, 896
AUTOREG procedure, 342
quasi-random number generators
MODEL procedure, 1130
R convergence measure, 1028
R square statistic statistics of fit, 1819
R squared
MODEL procedure, 1027, 1034
R-square measure
PANEL procedure, 1316
R-square statistic
statistics of fit, 2689
SYSLIN procedure, 1651
R-squared measure, 1316
ramp
interventions, 2686
ramp function, see ramp interventions
ramp interventions, 2686
ramp function, 2685
Ramsey's test, see RESET test
random effects model
one-way, 1291
two-way, 1294
random number functions, 51
random walk model
AUTOREG procedure, 397
random walk R-square
statistics of fit, 1820, 2689
random-number functions
functions, 1159
random-number generating functions

MODEL procedure, 1159
random-walk with drift tests, 231
range of output observations
EXPAND procedure, 736
RANGE= option in the LIBNAME statement
SASEFAME engine, 2307
RANK procedure, 49
order statistics, 49
rate adjustment cases
LOAN procedure, 846
rates
contrasted with stocks or levels, 724
ratio operators, 755
rational transfer functions
ARIMA procedure, 219
reading time series data, 66, 127
reading data files DATASOURCE procedure, 523
reading from a FAME data base SASEFAME engine, 2290
reading from a HAVER DLX database
SASEHAVR engine, 2340
reading from CRSP data files SASECRSP engine, 2194
reading, with DATA step time series data, 125, 126
recommended for time series ID formats, 71
recursive residuals, 356,368
reduced form coefficients
SIMLIN procedure, 1519, 1524, 1528
SYSLIN procedure, 1653
reference
forecasting models, 2508
SGPLOT procedure, 88
regression model with ARMA errors
ARIMA procedure, 213, 214
regressor selection, 2627
regressors
forecasting models, 2518
specifying, 2518
relation to ARMA models
state space models, 1599
Remote FAME Access, Using FAME CHLI
SASEFAME engine, 2292
remote monitoring
NLO system, 181
RENAME in the DATA step
SASEFAME engine, 2304
renaming
SAS data sets, 49
renaming variables
DATASOURCE procedure, 532, 547
replacing with missing values
omitted observations, 104
represented by different series cross sectional dimensions, 79
represented with BY groups cross-sectional dimensions, 79
reserved words
COMPUTAB procedure, 456
RESET test, 344
Ramsey's test, 344
RESID. variables, 1054, 1059, 1155
residual
plotting, 91
residual analysis, 2498
residuals, see prediction errors
ARIMA procedure, 257
AUTOREG procedure, 356
FORECAST procedure, 807
PANEL procedure, 1280
PDLREG procedure, 1359
SIMLIN procedure, 1518
STATESPACE procedure, 1601
structural, 356, 1359
SYSLIN procedure, 1640
restarting the SASEFAME engine SASEFAME engine, 2290
RESTRICT statement, 352, 648, 999
restricted estimates
STATESPACE procedure, 1587
restricted estimation, 352
linear models, 648
nonlinear models, \(975,999,1076\)
PDLREG procedure, 1360
SYSLIN procedure, 1641, 1642
restricted vector autoregression, 1098
restrictions on parameters
MODEL procedure, 1098
RETAIN statement
computing lags, 108
RETAIN statement and
differencing, 108
lags, 108
root mean square error statistics of fit, 1819, 2689
row blocks
COMPUTAB procedure, 456
ROWxxxxx: label
COMPUTAB procedure, 446
RPC convergence measure, 1028
S convergence measure, 1028
S matrix
definition, 1008
MODEL procedure, 1026

S matrix used in estimation, 1026
S-iterated methods
MODEL procedure, 1027
sample cross covariances
VARMAX procedure, 1897, 1935
sample cross-correlations
VARMAX procedure, 1896, 1935
sample data sets, 2380, 2393
sampling frequency
changing by interpolation, 125
of time series, 71, 84, 125
time intervals and, 84
sampling frequency of
time series data, 84,125
sampling frequency of time series
time intervals, 84, 125
SAS and CRSP Dates
SASECRSP engine, 2208
SAS catalogs, see CATALOG procedure
SAS data sets
contents of, 49
copying, 49
DATA step, 49
moving between computer systems, 49
printing, 49
renaming, 49
sorting, 49
structured query language, 50
summarizing, 49, 50
transposing, 50
SAS data sets and
time series data, 65
SAS DATA step
SASECRSP engine, 2194
SASEFAME engine, 2291
SASEHAVR engine, 2341
SAS Date Format
SASECRSP engine, 2208
SAS language features for
time series data, 64
SAS macros
BOXCOXAR macro, 150
DFPVALUE macro, 153
DFTEST macro, 154
LOGTEST macro, 156
macros, 149
SAS options statement, using
VALIDVARNAME=ANY
SASEFAME engine, 2299, 2304
SAS output data set
SASECRSP engine, 2206
SASEFAME engine, 2297
SASEHAVR engine, 2346
SAS representation for
date values, 68
datetime values, 69
SAS Risk Products, 60
SAS source statements, 2582
SAS YEARCUTOFF= option
DATASOURCE procedure, 544
SAS/ETS procedures using
OUTPUT statement, 83
SAS/GRAPH software, 52
graphics, 52
SAS/HPF, 51
SAS/IML software, 54
IML, 54
matrix language, 54
SAS/OR software, 55
operations research, 55
SAS/QC software, 56
statistical quality control, 56
SAS/STAT software, 53
SASECRSP engine
@CRSPDB Date Informats, 2209
@CRSPDR Date Informats, 2209
@CRSPDT Date Informats, 2209
CONTENTS procedure, 2194
Converting Dates Using the CRSP Date Functions, 2208
CRSP and SAS Dates, 2208
CRSP Date Formats, 2208
CRSP Date Functions, 2208
CRSP Date Informats, 2209
CRSP Integer Date Format, 2208
CRSPDB_SASCAL environment variable, 2194
CRSPDCI Date Functions, 2210
CRSPDCS Date Functions, 2210
CRSPDI2S Date Function, 2210
CRSPDIC Date Functions, 2210
CRSPDS2I Date Function, 2210
CRSPDSC Date Functions, 2210
CRSPDT Date Formats, 2208
Environment variable, CRSPDB_SASCAL, 2194
LIBNAME statement, 2190
reading from CRSP data files, 2194
SAS and CRSP Dates, 2208
SAS DATA step, 2194
SAS Date Format, 2208
SAS output data set, 2206
SETID option, 2194
SQL procedure, creating a view, 2194
SASEFAME engine
CONTENTS procedure, 2291
convert option, 2291
creating a FAME view, 2289

DOT as a GLUE character, 2294
DRI data files in FAME.db , 2289
DRI/McGraw-Hill data files in FAME.db, 2289
DROP in the DATA step, 2304
FAME data files, 2289
FAME glue symbol named DOT, 2299
FAME Information Services Databases, 2289
fatal error when reading from a FAME data base, 2290
finishing the FAME CHLI, 2290
GLUE symbol, 2294
KEEP in the DATA step, 2304
LIBNAME libref SASEHAVR 'physical name' on UNIX, 2299
LIBNAME libref SASEHAVR 'physical name' on Windows, 2299
LIBNAME interface engine for FAME databases, 2289
LIBNAME statement, 2290
main economic indicators (OECD) data files in FAME.db, 2289
national accounts data files (OECD) in FAME.db, 2289
OECD data files in FAME.db, 2289
Organization for Economic Cooperation and Development data files in FAME.db, 2289
Physical Names on Supported hosts, 2299
Physical path name syntax for variety of environments, 2299
RANGE \(=\) option in the LIBNAME statement, 2307
reading from a FAME data base, 2290
Remote FAME Access, Using FAME CHLI, 2292
RENAME in the DATA step, 2304
restarting the SASEFAME engine, 2290
SAS DATA step, 2291
SAS options statement, using VALIDVARNAME=ANY, 2299, 2304
SAS output data set, 2297
Special characters in SAS Variable names, the glue symbol DOT, 2299
SQL procedure, using clause, 2291
SQL procedure, creating a view, 2291
Supported hosts, 2290
Using CROSSLIST= option to create a view, 2292
Using INSET= option with the CROSSLIST \(=\) option to create a view, 7, 2292

Using RANGE \(=\) option to create a view, 2292
Using WHERE clause with INSET= option to create a view, 2292
Using WILDCARD \(=\) option to create a view, 2292
VALIDVARNAME=ANY, SAS option statement, 2299, 2304
viewing a FAME database, 2289
WHERE in the DATA step, 2307
SASEHAVR engine
creating a Haver view, 2339
frequency option, 2340
Haver data files, 2339
Haver Information Services Databases, 2339
LIBNAME interface engine for Haver databases, 2339
LIBNAME statement, 2340
reading from a HAVER DLX database, 2340
SAS DATA step, 2341
SAS output data set, 2346
viewing a Haver database, 2339
SASHELP library, 2393
saving and restoring
forecasting project, 2412
Savings, 2718
SBC, see Schwarz Bayesian criterion, see Schwarz Bayesian information criterion
scale operators, 754
SCAN (Smallest Canonical) correlation method, 244
Schwarz Bayesian criterion
ARIMA procedure, 251
AUTOREG procedure, 370
SBC, 251
Schwarz Bayesian information criterion
BIC, 2689
SBC, 2689
statistics of fit, 2689
seasonal adjustment
time series data, 2034, 2103
X11 procedure, 2034, 2040
X12 procedure, 2103
seasonal ARIMA model notation, 2681
Seasonal ARIMA model options, 2631
seasonal component
X11 procedure, 2034
X12 procedure, 2103
seasonal dummies, 2687
predictor variables, 2687
seasonal dummy variables
forecasting models, 2539
specifying, 2539
seasonal exponential smoothing, 2676
smoothing models, 2676
seasonal forecasting
additive Winters method, 803
FORECAST procedure, 799, 803
WINTERS method, 799
seasonal model
ARIMA model, 212
ARIMA procedure, 212
seasonal transfer function notation, 2683
seasonal unit root test, 246
seasonality
FORECAST procedure, 805
testing for, 154
seasonality test, 2688
seasonality tests, 2076
seasonality, testing for
DFTEST macro, 154
second difference
DIF function, 109
differencing, 109
See ordinary differential equations differential equations, 1070
seemingly unrelated regression, 1010
cross-equation covariance matrix, 1011
joint generalized least squares, 1614
SUR estimation method, 1614
SYSLIN procedure, 1622, 1649
Zellner estimation, 1614
Seidel method
MODEL procedure, 1142
Seidel method with General Form Equations
MODEL procedure, 1142
selecting from a list
forecasting models, 2457
selection
QLIM Procedure, 1376
selection criterion, 2610
sequence operators, 752
serial correlation correction
AUTOREG procedure, 316
series
autocorrelations, 2495
series adjustments, 2667
series diagnostics, 2453, 2632, 2687
series selection, 2633
series transformations, 2496
set operators, 753
SETID option
SASECRSP engine, 2194
SETMISS operator, 749
SGMM simulated generalized method of moments, 1016

SGPLOT procedure
plot axis for time series, 88
plotting time series, 87
reference, 88
time series data, 87
Shapiro-Wilk test, 1048
normality tests, 1048
sharing
forecasting project, 2416
Shewhart control charts, 56
shifted
time intervals, 131
shifted intervals, see time intervals, shifted
significance probabilities
Dickey-Fuller test, 158
PROBDF Function, 158
unit root, 158
significance probabilities for Dickey-Fuller test, 153
significance probabilities for Dickey-Fuller tests
PROBDF Function, 158
SIMILARITY procedure
BY groups, 1450
ODS graph names, 1483
SIMLIN procedure
BY groups, 1516
dynamic models, 1512, 1513, 1519, 1534
dynamic multipliers, 1519, 1520
dynamic simulation, 1513
EST = data set, 1521
ID variables, 1517
impact multipliers, 1519, 1524
initializing lags, 1522
interim multipliers, \(1515,1520,1523,1524\)
lags, 1522
linear structural equations, 1519
multipliers, \(1515,1516,1519,1520,1523\), 1524
multipliers for higher order lags, 1520, 1534
output data sets, 1522, 1523
output table names, 1525
predicted values, 1513, 1518
printed output, 1523
reduced form coefficients, \(1519,1524,1528\)
residuals, 1518
simulation, 1513
statistics of fit, 1524
structural equations, 1519
structural form, 1519
total multipliers, 1516, 1520, 1523, 1524
TYPE=EST data set, 1519
SIMNLIN procedure, see MODEL procedure
simple
data set, 2407
simple exponential smoothing, 2672
smoothing models, 2672
simulated method of moments GMM, 1016
simulated nonlinear least squares MODEL procedure, 1019
simulating ARIMA model, 2560, 2653
Simulating from a Mixture of Distributions examples, 1225
simulation MODEL procedure, 1120
of time series, 2560, 2653
SIMLIN procedure, 1513
time series, 2560, 2653
simultaneous equation bias, 1009
SYSLIN procedure, 1615
single equation estimators
SYSLIN procedure, 1648
single exponential smoothing, see exponential smoothing
sliding spans analysis, 2060
Smallest Canonical (SCAN) correlation method, 244
SMM, 1016
GMM, 1016
SMM simulated method of moments, 1016
smoothing equations, 2669
smoothing models, 2669
smoothing model specification, 2639, 2641
smoothing models
calculations, 2669
damped-trend exponential smoothing, 2675
double exponential smoothing, 2673
exponential smoothing, 2669
forecasting models, 2462, 2669
initializations, 2670
linear exponential smoothing, 2674
missing values, 2670
multiplicative seasonal smoothing, 2677
predictions, 2670
seasonal exponential smoothing, 2676
simple exponential smoothing, 2672
smoothing equations, 2669
smoothing state, 2669
smoothing weights, 2671
specifying, 2462
standard errors, 2672
underlying model, 2669
Winters Method, 2678, 2679
smoothing state, 2669
smoothing models, 2669
smoothing weights, 2641, 2671
additive-invertible region, 2671
boundaries, 2671
FORECAST procedure, 803
optimizations, 2671
smoothing models, 2671
specifications, 2671
weights, 2671
solution mode output
MODEL procedure, 1132
solution modes
MODEL procedure, 1117, 1140
SOLVE Data Sets
MODEL procedure, 1148
SORT procedure, 49
sorting, 49
sorting, see SORT procedure
forecasting models, 2504, 2581
SAS data sets, 49
time series data, 72
sorting by
ID variables, 72
Special characters in SAS Variable names, the glue symbol DOT
SASEFAME engine, 2299
specification tests
PANEL procedure, 1317
specifications
smoothing weights, 2671
specifying
adjustments, 2522
ARIMA models, 2465
combination models, 2482
custom models, 2472
dynamic regression, 2523
Factored ARIMA models, 2468
forecasting models, 2453
interventions, 2527
level shifts, 2532
predictor variables, 2511
regressors, 2518
seasonal dummy variables, 2539
smoothing models, 2462
state space models, 1578
time ID variable, 2648
trend changes, 2530
trend curves, 2515
SPECTRA procedure
BY groups, 1546
Chirp-Z algorithm, 1549
coherency of cross-spectrum, 1553
cospectrum estimate, 1553
cross-periodogram, 1553
cross-spectral analysis, 1542, 1553
cross-spectrum, 1553
fast Fourier transform, 1549
finite Fourier transform, 1542
Fourier coefficients, 1553
Fourier transform, 1542
frequency, 1552
kernels, 1549
output data sets, 1552
output table names, 1554
periodogram, 1542, 1553
quadrature spectrum, 1553
spectral analysis, 1542
spectral density estimate, 1542, 1553
spectral window, 1547
white noise test, 1551, 1554
spectral analysis
SPECTRA procedure, 1542
spectral density estimate
SPECTRA procedure, 1542, 1553
spectral window
SPECTRA procedure, 1547
SPLINE method
EXPAND procedure, 739
splitting series
time series data, 118
splitting time series data sets, 118
SQL procedure, 50
structured query language, 50
SQL procedure, creating a view
SASECRSP engine, 2194
SQL procedure, using clause
SASEFAME engine, 2291
SQL procedure, creating a view
SASEFAME engine, 2291
square root
transformations, 2667
square root transformation, see transformations
stable seasonality test, 2076
standard errors
smoothing models, 2672
standard form
of time series data set, 76
standard form of
time series data, 76
STANDARD procedure, 50
standardized values, 50
standardized values, see STANDARD procedure
starting dates of
time intervals, 100, 101
starting values
GARCH model, 342
MODEL procedure, 1031, 1038
Stat Studio software, 54
state and area employment, hours, and earnings survey, see DATASOURCE procedure
state space model

UCM procedure, 1787
state space models
form of, 1568
relation to ARMA models, 1599
specifying, 1578
state vector of, 1568
STATESPACE procedure, 1568
state transition equation
of a state space model, 1569
state vector
of a state space model, 1568
state vector of
state space models, 1568
state-space representation
VARMAX procedure, 1913
STATESPACE procedure
automatic forecasting, 1568
BY groups, 1586
canonical correlation analysis, 1570, 1593
confidence limits, 1601
differencing, 1587
forecasting, 1568, 1597
ID variables, 1586
Kalman filter, 1570
multivariate forecasting, 1568
multivariate time series, 1568
output data sets, 1601, 1602
output table names, 1605
predicted values, 1597, 1601
printed output, 1603
residuals, 1601
restricted estimates, 1587
state space models, 1568
time intervals, 1585
Yule-Walker equations, 1590
static simulation, 1068
MODEL procedure, 1068
static simulations
MODEL procedure, 1117
stationarity
and state space models, 1571
ARIMA procedure, 194
nonstationarity, 194
of time series, 210
prediction errors, 2431
testing for, 154
VARMAX procedure, 1941, 1949
stationarity tests, 231, 246, 345
stationarity, testing for
DFTEST macro, 154
statistical quality control
SAS/QC software, 56
statistics of fit, 1819, 2425, 2434, 2643, 2688
adjusted R-square, 1819, 2689

Akaike's information criterion, 2689
Amemiya's prediction criterion, 2689
Amemiya's R-square, 1820, 2689
corrected sum of squares, 2689
error sum of squares, 2689
goodness of fit, 2434
goodness-of-fit statistics, 1819, 2688
mean absolute error, 2689
mean absolute percent error, 1819, 2689
mean percent error, 2690
mean prediction error, 2690
mean square error, 1819
mean squared error, 2689
nonmissing observations, 2688
number of observations, 2688
R square statistic, 1819
R-square statistic, 2689
random walk R-square, 1820, 2689
root mean square error, 1819, 2689
Schwarz Bayesian information criterion, 2689
SIMLIN procedure, 1524
uncorrected sum of squares, 2689
step
interventions, 2685
step function, see step interventions
interpolation of time series, 740
intervention model and, 217
step interventions, 2685
step function, 2685
STEP method
EXPAND procedure, 740
STEPAR method
FORECAST procedure, 797
stepwise autoregression
AUTOREG procedure, 327
FORECAST procedure, 774, 797
stochastic simulation
MODEL procedure, 1120
stock data files, see DATASOURCE procedure
stocks
contrasted with flow variables, 724
stored in SAS data sets
time series data, 75
storing programs
MODEL procedure, 1167
structural
predicted values, 356, 381, 1359
residuals, 356, 1359
structural change
Chow test for, 343
structural equations
SIMLIN procedure, 1519
structural form

SIMLIN procedure, 1519
structural predictions
AUTOREG procedure, 381
structured query language, see SQL procedure
SAS data sets, 50
subset model
ARIMA model, 212
ARIMA procedure, 212
AUTOREG procedure, 329
subsetting data, see WHERE statement
subsetting data files
DATASOURCE procedure, 523, 536
summarizing
SAS data sets, 49, 50
summary of
time intervals, 132
summary statistics
MODEL procedure, 1135
summation
higher order sums, 114
multiperiod lags and, 114
of time series, 113
summation of
time series data, 113, 114
Supported hosts
SASEFAME engine, 2290
SUR estimation method, see seemingly unrelated regression
Switching Regression example
examples, 1221
syntax for
date values, 68
datetime values, 69
time intervals, 84
time values, 69
SYSLIN procedure
Basmann test, 1639, 1654
BY groups, 1637
endogenous variables, 1616
exogenous variables, 1616
full information maximum likelihood, 1624, 1649
Fuller's modification to LIML, 1654
instrumental variables, 1616
iterated seemingly unrelated regression, 1649
iterated three-stage least squares, 1649
jointly dependent variables, 1616
K-class estimation, 1648
lagged endogenous variables, 1616
limited information maximum likelihood, 1648
minimum expected loss estimator, 1648
ODS graph names, 1660
output data sets, 1655, 1656
output table names, 1659
over identification restrictions, 1654
predetermined variables, 1616
predicted values, 1640
printed output, 1657
R-square statistic, 1651
reduced form coefficients, 1653
residuals, 1640
restricted estimation, 1641, 1642
seemingly unrelated regression, 1622, 1649
simultaneous equation bias, 1615
single equation estimators, 1648
system weighted MSE, 1651
system weighted R-square, 1651, 1657
tests of hypothesis, 1643, 1644
three-stage least squares, 1622, 1649
two-stage least squares, 1619, 1648
SYSNLIN procedure, see MODEL procedure
system weighted MSE
SYSLIN procedure, 1651
system weighted R-square
SYSLIN procedure, 1651, 1657
systems of
ordinary differential equations (ODEs), 1215
systems of differential equations examples, 1215
systems of ordinary differential equations
MODEL procedure, 1215
t distribution
GARCH model, 367
table cells, direct access to
COMPUTAB procedure, 456
table names
UCM procedure, 1810
TABULATE procedure, 50
tabulating data, 50
tabulating data, see TABULATE procedure taxes

LOAN procedure, 852
tentative order selection
VARMAX procedure, 1935
test of hypotheses
nonlinear models, 1005
TEST statement, 353
testing for
heteroscedasticity, 329
seasonality, 154
stationarity, 154
unit root, 154
testing order of
differencing, 154
testing over-identifying restrictions, 1015
tests of hypothesis
SYSLIN procedure, 1643, 1644
tests of parameters, 353, 649, 1005
tests on parameters
MODEL procedure, 1078
The D-method
example, 1221
three-stage least squares, 1011
3SLS estimation method, 1614
SYSLIN procedure, 1622, 1649
time functions, 95
time ID creation, 2644, 2646, 2647
time ID variable, 2389
creating, 2439
ID variable, 2389
observation numbers, 2443
specifying, 2648
time intervals, 2395
alignment of, 132
ARIMA procedure, 259
calendar calculations and, 104
ceiling of, 102
checking data periodicity, 103
counting, 99, 102
data frequency, 2384
date values, 129
datetime values, 129
ending dates of, 101
examples of, 135
EXPAND procedure, 735
EXPAND procedure and, 124
FORECAST procedure, 796
frequency of data, 2384
functions, 143
functions for, 98,143
ID values for, 100
incrementing dates by, 98, 99
INTCK function and, 99, 102
INTERVAL= option and, 84
intervals, 84
INTNX function and, 98
midpoint dates of, 101
naming, 84, 130
periodicity of time series, 84,125
plot axis and, 88
plot reference lines and, 88
sampling frequency of time series, 84,125
shifted, 131
starting dates of, 100, 101
STATESPACE procedure, 1585
summary of, 132
syntax for, 84
UCM procedure, 1767
use with SAS/ETS procedures, 85
VARMAX procedure, 1892
widths of, 101, 735
time intervals and
calendar calculations, 104
date values, 100
frequency, 84,125
sampling frequency, 84
time intervals, functions
interval functions, 98
time intervals, shifted
shifted intervals, 131
time range
DATASOURCE procedure, 544
time range of data
DATASOURCE procedure, 526
time ranges, 2506, 2575, 2649
of time series, 77
time ranges of time series data, 77
time series
definition, 2380
diagnostic tests, 2453
in SAS data sets, 2380
simulation, 2560, 2653
time series cross sectional form
TSCSREG procedure and, 80
time series cross-sectional form
BY groups and, 79
ID variables for, 79
of time series data set, 79
TSCSREG procedure and, 1727
time series cross-sectional form of
time series data set, 79
time series data
aggregation of, 721, 724
changing periodicity, 125, 721
converting frequency of, 721
differencing, 105-112
distribution of, 724
embedded missing values in, 78
giving dates to, 67
ID variable for, 67
interpolation, 125
interpolation of, 124, 125, 723
lagging, 105-112
leads, 112
merging series, 119
missing values, 723
missing values and, 77, 78
omitted observations in, 78
overlay plot of, 88
percent change calculations, 110-112
periodicity of, 84,125

PLOT procedure, 92
plotting, 86
reading, 66, 127
reading, with DATA step, 125,126
sampling frequency of, 84,125
SAS data sets and, 65
SAS language features for, 64
seasonal adjustment, 2034, 2103
SGPLOT procedure, 87
sorting, 72
splitting series, 118
standard form of, 76
stored in SAS data sets, 75
summation of, 113, 114
time ranges of, 77
Time Series Viewer, 86
transformation of, 726, 742
transposing, 119, 121
time series data and
missing values, 77
time series data set
interleaved form of, 80
time series cross-sectional form of, 79
time series forecasting, 2651
Time Series Forecasting System
invoking, 2546
invoking from SAS/AF and SAS/EIS applications, 2546
running in unattended mode, 2546
time series methods
FORECAST procedure, 786
time series variables
DATASOURCE procedure, 524, 549
Time Series Viewer, 2419, 2491, 2654
graphs, 2419
invoking, 2545
plots, 2419
saving graphs and tables, 2628, 2630
time series data, 86
Time Series Viewer procedure
plotting time series, 86
time trend models
FORECAST procedure, 784
Time Value Analysis, 2766
time values
defined, 69
formats, 142
functions, 143
informats, 136
syntax for, 69
time variable, 1074
MODEL procedure, 1074
time variables
computing from datetime values, 98
introduced, 95
TIMEPLOT procedure, 50, 93
TIMESERIES procedure
BY groups, 1688
ODS graph names, 1714
to higher frequency
interpolation, 125
to lower frequency
interpolation, 125
to SAS/ETS software
menu interfaces, 45, 46
to standard form
transposing time series, 119, 121
tobit
QLIM Procedure, 1376
Toeplitz matrix
AUTOREG procedure, 358
total multipliers
SIMLIN procedure, 1516, 1520, 1523, 1524
trading-day component
X11 procedure, 2034, 2040
transfer function model
ARIMA procedure, 213, 218, 251
denominator factors, 218
numerator factors, 218
transfer functions, 2682
forecasting models, 2682
transformation of
time series data, 726, 742
transformation of time series
EXPAND procedure, 726, 742
transformations, 2637
Box Cox, 2667
Box Cox transformation, 2667
log, 2667
log transformation, 2667
logistic, 2667
square root, 2667
square root transformation, 2667
transformed models
predicted values, 1061
transition equation
of a state space model, 1569
transition matrix
of a state space model, 1569
TRANSPOSE procedure, 50, 119, 121, 122, 126
transposing SAS data sets, 50
TRANSPOSE procedure and
transposing time series, 119
transposing
SAS data sets, 50
time series data, 119, 121
transposing SAS data sets, see TRANSPOSE procedure
transposing time series
cross-sectional dimensions, 121
from interleaved form, 119
from standard form, 122
to standard form, 119, 121
TRANSPOSE procedure and, 119
trend changes
specifying, 2530
trend curves, 2684
cubic, 2684
exponential, 2685
forecasting models, 2515
hyperbolic, 2685
linear, 2684
logarithmic, 2685
logistic, 2684
power curve, 2685
predictor variables, 2684
quadratic, 2684
specifying, 2515
trend cycle component
X11 procedure, 2034, 2040
trend test, 2688
TRIM operator, 748
TRIMLEFT operator, 748
TRIMRIGHT operator, 748
triple exponential smoothing, see exponential smoothing
troubleshooting estimation convergence problems
MODEL procedure, 1030
troubleshooting simulation problems MODEL procedure, 1143
true interest rate
LOAN procedure, 852
Truncated Regression Models
QLIM procedure, 1402
trust region
optimization methods, \(350,490,896\)
trust region method, 350, 490, 896
AUTOREG procedure, 342
TSCSREG procedure
BY groups, 1735
estimation techniques, 1730
ID variables, 1735
output table names, 1738
panel data, 1727
TSCSREG procedure and
time series cross sectional form, 80
time series cross-sectional form, 1727
TSVIEW command, 2545
two-stage least squares, 1009
2SLS estimation method, 1614
SYSLIN procedure, 1619, 1648
two-step full transform method

AUTOREG procedure, 361
two-way
fixed effects model, 1285
random effects model, 1294
two-way fixed effects model
PANEL procedure, 1285
two-way fixed-effects model, 1285
two-way random effects model
PANEL procedure, 1294
two-way random-effects model, 1294
type of input data file
DATASOURCE procedure, 538
_TYPE_ variable
and interleaved time series, 80,81
overlay plots, 90
TYPE=EST data set
SIMLIN procedure, 1519
types of loans
LOAN procedure, 828
Types of Tobit Model
QLIM procedure, 1400
U.S. Bureau of Economic Analysis data files

DATASOURCE procedure, 590
U.S. Bureau of Labor Statistics data files

DATASOURCE procedure, 591
UCM procedure
BY groups, 1760
ODS graph names, 1813
ODS Graphics, 1754
ODS table names, 1810
parameters, 1757-1768, 1770-1780
state space model, 1787
Statistical Graphics, 1800
syntax, 1750
table names, 1810
time intervals, 1767
unattended mode, 2546
unconditional forecasts
ARIMA procedure, 258
unconditional least squares
AR initial conditions, 1091
MA Initial Conditions, 1092
uncorrected sum of squares
statistics of fit, 2689
underlying model
smoothing models, 2669
Uniform Periodic Equivalent, 2770
unit root
Dickey-Fuller test, 158
of a time series, 154
significance probabilities, 158
testing for, 154
unit roots

KPSS test, 378
Phillips-Perron test, 345, 346, 376
univariate autoregression, 1093
univariate model diagnostic checks
VARMAX procedure, 1958
univariate moving average models, 1099
UNIVARIATE procedure, 50, 1219
descriptive statistics, 50
unlinking viewer windows, 2495
unrestricted vector autoregression, 1095
use with SAS/ETS procedures time intervals, 85
used for state space modeling Kalman filter, 1570
used to select state space models
Akaike information criterion, 1591
vector autoregressive models, 1590
Yule-Walker estimates, 1590
Using CROSSLIST= option to create a view SASEFAME engine, 2292
Using INSET= option with the CROSSLIST= option to create a view
SASEFAME engine, 7, 2292
using models to forecast
MODEL procedure, 1120
Using RANGE= option to create a view SASEFAME engine, 2292
using solution modes
MODEL procedure, 1117
Using WHERE clause with INSET= option to create a view
SASEFAME engine, 2292
Using WILDCARD \(=\) option to create a view SASEFAME engine, 2292

V matrix
Generalized Method of Moments, 1012, 1017
VALIDVARNAME=ANY, SAS option statement SASEFAME engine, 2299, 2304
variable list
DATASOURCE procedure, 547
variables in model program MODEL procedure, 1151
variance components
Fuller Battese, 1292
Nerlove, 1294
Wallace Hussain, 1293
Wansbeek Kapteyn's, 1292
VARMAX procedure
Akaike Information Criterion, 1957
asymptotic distribution of impulse response functions, 1943, 1951
asymptotic distribution of the parameter estimation, 1951
Bayesian vector autoregressive models, 1904, 1947
cointegration, 1959
cointegration testing, 1902, 1963
common trends, 1959
common trends testing, 1903, 1961
computational details, 2001
confidence limits, 1988
convergence problems, 2001
covariance stationarity, 1983
CPU requirements, 2002
decomposition of prediction error covariance, 1897, 1933
Dickey-Fuller test, 1901
differencing, 1894
dynamic simultaneous equation models, 1916
example of Bayesian VAR modeling, 1866
example of Bayesian VECM modeling, 1873
example of causality testing, 1881
example of cointegration testing, 1869
example of multivariate GARCH modeling, 1983
example of restricted parameter estimation and testing, 1878
example of VAR modeling, 1859
example of VARMA modeling, 1952
example of vector autoregressive modeling with exogenous variables, 1874
example of vector error correction modeling, 1868
forecasting, 1930
forecasting of Bayesian vector autoregressive models, 1948
Granger causality test, 1944
impulse response function, 1898, 1919
infinite order AR representation, 1898
infinite order MA representation, 1898, 1919
invertibility, 1949
long-run relations testing, 1972
memory requirements, 2002
minimum information criteria method, 1940
missing values, 1912
multivariate GARCH Modeling, 1907
multivariate model diagnostic checks, 1957
ODS graph names, 2000
Output Data Sets, 1987
partial autoregression coefficient, 1899, 1936
partial canonical correlation, 1899, 1939
partial correlation, 1938
prediction error covariance, 1897, 1930, 1932
sample cross covariances, 1897, 1935
sample cross-correlations, 1896, 1935
state-space representation, 1913
stationarity, 1941, 1949
tentative order selection, 1935
time intervals, 1892
univariate model diagnostic checks, 1958
vector autoregressive models, 1941
vector autoregressive models with exogenous variables, 1944
vector autoregressive moving-average models, 1912, 1949
vector error correction models, 1906, 1962
weak exogeneity testing, 1974
Yule-Walker estimates, 1899
vector autoregressive models, 1098
used to select state space models, 1590
VARMAX procedure, 1941
vector autoregressive models with exogenous variables
VARMAX procedure, 1944
vector autoregressive moving-average models
VARMAX procedure, 1912, 1949
vector error correction models
VARMAX procedure, 1906, 1962
vector moving average models, 1101
viewing a FAME database, see SASEFAME engine
viewing a Haver database, see SASEHAVR engine
viewing time series, 2419
Wald test
linear hypotheses, 650
nonlinear hypotheses, 1006, 1078, 1410
Wallace Hussain
variance components, 1293
Wansbeek Kapteyn's
variance components, 1292
weak exogeneity testing
VARMAX procedure, 1974
_WEIGHT_ variable
MODEL procedure, 1052
weights, see smoothing weights
WHERE in the DATA step
SASEFAME engine, 2307
WHERE statement
subsetting data, 50
white noise test
SPECTRA procedure, 1551,1554
white noise test of the residuals, 233
white noise test of the series, 232

White's test, 1050
heteroscedasticity tests, 1050
widths of
time intervals, 101, 735
WINTERS method seasonal forecasting, 799
Winters Method, 2678, 2679
Holt-Winters Method, 2678
smoothing models, 2678,2679
Winters method
FORECAST procedure, 774, 799
Holt-Winters method, 803
X-11 ARIMA methodology
X11 procedure, 2058
X-11 seasonal adjustment method, see X11 procedure
X-11-ARIMA seasonal adjustment method, see X11 procedure
X-12 seasonal adjustment method, see X12 procedure
X-12-ARIMA seasonal adjustment method, see X 12 procedure
X 11 procedure
BY groups, 2046
Census X-11 method, 2034
Census X-11 methodology, 2059
data requirements, 2064
differences with X11ARIMA/88, 2058
ID variables, 2046, 2048
irregular component, 2034, 2040
model selection for X-11-ARIMA method, 2068
output data sets, 2071, 2072
output table names, 2085
printed output, 2074
seasonal adjustment, 2034, 2040
seasonal component, 2034
trading-day component, 2034, 2040
trend cycle component, 2034, 2040
X-11 ARIMA methodology, 2058
X-11 seasonal adjustment method, 2034
X-11-ARIMA seasonal adjustment method, 2034
X12 procedure
BY groups, 2111
Census X-12 method, 2102
ID variables, 2111
INPUT variables, 2113
seasonal adjustment, 2103
seasonal component, 2103
X-12 seasonal adjustment method, 2102
X-12-ARIMA seasonal adjustment method, 2102
year-over-year
percent change calculations, 110
yearly averages
percent change calculations, 111
Yule-Walker
AR initial conditions, 1091
Yule-Walker equations
AUTOREG procedure, 358
STATESPACE procedure, 1590
Yule-Walker estimates
AUTOREG procedure, 357
used to select state space models, 1590
VARMAX procedure, 1899
Yule-Walker method as
generalized least-squares, 361
Zellner estimation, see seemingly unrelated regression
Zellner's two-stage method
PANEL procedure, 1301
zooming graphs, 2493

\section*{Syntax Index}

2SLS option
FIT statement (MODEL), 986, 1009
PROC SYSLIN statement, 1635
3SLS option
FIT statement (MODEL), 986, 1011, 1111
PROC SYSLIN statement, 1635
A option
PROC SPECTRA statement, 1545
A \(=\) option
FIXED statement (LOAN), 841
ABORT, 1166
ABS function, 1159
ACCEPTDEFAULT option
AUTOMDL statement (X12), 2120
ACCUMULATE \(=\) option
FORECAST statement (ESM), 689
ID statement (ESM), 692
ID statement (SIMILARITY), 1451
ID statement (TIMESERIES), 1694
INPUT statement (SIMILARITY), 1454
TARGET statement (SIMILARITY), 1456
VAR statement (TIMESERIES), 1698
ADDITIVE option
MONTHLY statement (X11), 2047
QUARTERLY statement (X11), 2052
ADDMAXIT= option
MODEL statement (MDC), 894
ADDRANDOM option
MODEL statement (MDC), 894
ADDVALUE option
MODEL statement (MDC), 895
ADF \(=\) option
ARM statement (LOAN), 846
ADJMEAN option
PROC SPECTRA statement, 1545
ADJSMMV option
FIT statement (MODEL), 985
ADJUST statement
X12 procedure, 2114
ADJUSTFREQ= option
ARM statement (LOAN), 846
ALIGN= option
FORECAST statement (ARIMA), 143, 237
ID statement (ENG), 143
ID statement (ESM), 143, 693
ID statement (HPF), 143
ID statement (HPFDIAGNOSE), 143

ID statement (HPFEVENTS), 143
ID statement (SIMILARITY), 143, 1452
ID statement (TIMESERIES), 143, 1694
ID statement (UCM), 143, 1767
ID statement (VARMAX), 143, 1892
PROC DATASOURCE statement, 143, 538
PROC EXPAND statement, 143, 729, 734
PROC FORECAST statement, 143, 790
ALL option
COMPARE statement (LOAN), 848
MODEL statement (AUTOREG), 342
MODEL statement (MDC), 896
MODEL statement (PDLREG), 1356
MODEL statement (SYSLIN), 1639
PROC SYSLIN statement, 1636
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
TEST statement (PANEL), 1281
TEST statement (QLIM), 1395
ALPHA = option
FORECAST statement (ARIMA), 237
FORECAST statement (ESM), 689
FORECAST statement (UCM), 1766
IDENTIFY statement (ARIMA), 228
MODEL statement (SYSLIN), 1639
OUTLIER statement (ARIMA), 236
OUTPUT statement (VARMAX), 1909
PROC FORECAST statement, 790
PROC SYSLIN statement, 1635
ALPHA=option
OUTLIER statement (UCM), 1773
ALPHACLI= option
OUTPUT statement (AUTOREG), 354
OUTPUT statement (PDLREG), 1358
ALPHACLM= option
OUTPUT statement (AUTOREG), 354
OUTPUT statement (PDLREG), 1358
ALPHACSM= option
OUTPUT statement (AUTOREG), 354
ALTPARM option
ESTIMATE statement (ARIMA), 232, 253
ALTW option
PROC SPECTRA statement, 1545
AMOUNT= option
FIXED statement (LOAN), 841
AMOUNTPCT= option
FIXED statement (LOAN), 842
AOCV = option

OUTLIER statement (X12), 2123
APCT= option
FIXED statement (LOAN), 842
\%AR macro, 1097, 1098
AR option
IRREGULAR statement (UCM), 1770
AR \(=\) option
BOXCOXAR macro, 151
DFTEST macro, 155
ESTIMATE statement (ARIMA), 234
LOGTEST macro, 156
PROC FORECAST statement, 790
ARCHTEST option
MODEL statement (AUTOREG), 342
ARCOS function, 1159
ARIMA procedure, 221
syntax, 221
ARIMA procedure, PROC ARIMA statement
PLOT option, 224
ARIMA statement
X11 procedure, 2043
X12 procedure, 2115
ARM statement
LOAN procedure, 845
ARMACV= option
AUTOMDL statement (X12), 2120
ARMAX= option
PROC STATESPACE statement, 1583
ARSIN function, 1159
ARTEST= option
MODEL statement (PANEL), 1276
ASCII option
PROC DATASOURCE statement, 538
ASTART= option
PROC FORECAST statement, 790
AT= option
COMPARE statement (LOAN), 849
ATAN function, 1159
ATOL= option
MODEL statement (PANEL), 1276
ATTRIBUTE statement
DATASOURCE procedure, 545
AUTOMDL statement
X12 procedure, 2118
AUTOREG procedure, 335
syntax, 335
AUTOREG statement
UCM procedure, 1757
B option
ARM statement (LOAN), 847
BACK= option
ESTIMATE statement (UCM), 1763
FORECAST statement (ARIMA), 238

FORECAST statement (UCM), 1766
OUTPUT statement (VARMAX), 1909
PROC ESM statement, 686
PROC STATESPACE statement, 1585
BACKCAST= option
ARIMA statement (X11), 2043
BACKLIM= option
ESTIMATE statement (ARIMA), 235
BACKSTEP option
MODEL statement (AUTOREG), 348
BALANCED option
AUTOMODL statement (X12), 2120
BALLOON statement
LOAN procedure, 845
BALLOONPAYMENT= option
BALLOON statement (LOAN), 845
BANDOPT= option
MODEL statement (PANEL), 1276
BASE \(=\) option
PROC PANEL statement, 1272
BCX option
MODEL statement (QLIM), 1392
BESTCASE option
ARM statement (LOAN), 847
BI option
COMPARE statement (LOAN), 849
BLOCK option
PROC MODEL statement, 972, 1178
BLOCKSEASON statement
UCM procedure, 1758
BLOCKSIZE= option
BLOCKSEASON statement (UCM), 1759
BLUS \(=\) option
OUTPUT statement (AUTOREG), 354
BOUNDS statement
COUNTREG procedure, 490
ENTROPY procedure, 644
MDC procedure, 890
MODEL procedure, 975
QLIM procedure, 1386
BOXCOXAR
macro, 151
macro variable, 152
BP option
COMPARE statement (LOAN), 849
MODEL statement (PANEL), 1276
BREAKINTEREST option
COMPARE statement (LOAN), 849
BREAKPAYMENT option
COMPARE statement (LOAN), 849
BREUSCH= option
FIT statement (MODEL), 989
BSTART= option
PROC FORECAST statement, 790

BTOL= option
MODEL statement (PANEL), 1276
BTWNG option
MODEL statement (PANEL), 1276, 1277
BUYDOWN statement
LOAN procedure, 848
BUYDOWNRATES= option
BUYDOWN statement (LOAN), 848
BY statement
ARIMA procedure, 227
AUTOREG procedure, 340
COMPUTAB procedure, 446
COUNTREG procedure, 491
ENTROPY procedure, 646
ESM procedure, 689
EXPAND procedure, 731
FORECAST procedure, 795
MDC procedure, 891
MODEL procedure, 976
PANEL procedure, 1271
PDLREG procedure, 1355
QLIM procedure, 1387
SIMILARITY procedure, 1450
SIMLIN procedure, 1516
SPECTRA procedure, 1546
STATESPACE procedure, 1586
SYSLIN procedure, 1637
TIMESERIES procedure, 1688
TSCSREG procedure, 1735
UCM procedure, 1760
VARMAX procedure, 1888
X11 procedure, 2046
X12 procedure, 2111
CANCORR option
PROC STATESPACE statement, 1583
CAPS \(=\) option
ARM statement (LOAN), 846
CAUCHY option
ERRORMODEL statement (MODEL), 980
CAUSAL statement
VARMAX procedure, 1889
CDEC= option
PROC COMPUTAB statement, 439
CDF= option
ERRORMODEL statement (MODEL), 981
CELL statement
COMPUTAB procedure, 443
CENSORED option
ENDOGENOUS statement (QLIM), 1388
MODEL statement (ENTROPY), 647
CENTER option
ARIMA statement (X11), 2045
IDENTIFY statement (ARIMA), 228

MODEL statement (AUTOREG), 340
MODEL statement (VARMAX), 1893
PROC SPECTRA statement, 1545
CEV \(=\) option
OUTPUT statement (AUTOREG), 354
CHAR option
COLUMNS statement (COMPUTAB), 440
ROWS statement (COMPUTAB), 442
CHARTS \(=\) option
MONTHLY statement (X11), 2048
QUARTERLY statement (X11), 2053
CHECKBREAK option
LEVEL statement (UCM), 1772
CHICR= option
ARIMA statement (X11), 2044
CHISQUARED option
ERRORMODEL statement (MODEL), 980
CHOICE= option
MODEL statement (MDC), 892
CHOW = option
FIT statement (MODEL), 990, 1081
MODEL statement (AUTOREG), 343
CLAG option
LAG statement (PANEL), 1275
CLAG statement
LAG statement (PANEL), 1275
CLASS statement
PANEL procedure, 1272
CLEAR option
IDENTIFY statement (ARIMA), 228
CLIMIT \(=\) option
FORECAST command (TSFS), 2548
CMPMODEL options, 972
COEF option
MODEL statement (AUTOREG), 343
PROC SPECTRA statement, 1546
COEF= option
HETERO statement (AUTOREG), 351
COINTEG statement
VARMAX procedure, 1890, 1973
COINTTEST = option
MODEL statement (VARMAX), 1902
COINTTEST=(JOHANSEN) option
MODEL statement (VARMAX), 1902
COINTTEST=(JOHANSEN=(IORDER=)) option
MODEL statement (VARMAX), 1902, 1980
COINTTEST=(JOHANSEN=(NORMALIZE=)) option
MODEL statement (VARMAX), 1903, 1966
COINTTEST=(JOHANSEN=(TYPE=)) option
MODEL statement (VARMAX), 1903
COINTTEST=(SIGLEVEL=) option
MODEL statement (VARMAX), 1903

COINTTEST=(SW) option
MODEL statement (VARMAX), 1903, 1961
COINTTEST=(SW=(LAG=)) option
MODEL statement (VARMAX), 1903
COINTTEST=(SW=(TYPE=)) option MODEL statement (VARMAX), 1904
COLLIN option
ENTROPY procedure, 641
FIT statement (MODEL), 990
'column headings' option
COLUMNS statement (COMPUTAB), 440
COLUMNS statement
COMPUTAB procedure, 440
COMPARE statement
LOAN procedure, 848
COMPOUND \(=\) option FIXED statement (LOAN), 842
COMPRESS = option
TARGET statement (SIMILARITY), 1457
COMPUTAB procedure, 436
syntax, 436
CONDITIONAL
OUTPUT statement (QLIM), 1393
CONST= option
BOXCOXAR macro, 151
LOGTEST macro, 157
CONSTANT= option
OUTPUT statement (AUTOREG), 355
OUTPUT statement (PDLREG), 1359
CONTROL, 1206
CONTROL statement
MODEL procedure, 979, 1151
CONVERGE= option
ARIMA statement (X11), 2044
ENTROPY procedure, 643
ESTIMATE statement (ARIMA), 235
FIT statement (MODEL), 992, 1028, 1036, 1038
MODEL statement (AUTOREG), 348
MODEL statement (MDC), 892
MODEL statement (PDLREG), 1357
PROC SYSLIN statement, 1635
SOLVE statement (MODEL), 1004
CONVERT statement
EXPAND procedure, 732
CONVERT= option
LIBNAME statement (SASEFAME), 2293
COPULA= option
SOLVE statement (MODEL), 1003
CORR option
FIT statement (MODEL), 990
MODEL statement (PANEL), 1277
MODEL statement (TSCSREG), 1736
CORR statement

TIMESERIES procedure, 1689
CORRB option
ESTIMATE statement (MODEL), 982
FIT statement (MODEL), 990
MODEL statement, 492
MODEL statement (AUTOREG), 343
MODEL statement (MDC), 896
MODEL statement (PANEL), 1277
MODEL statement (PDLREG), 1356
MODEL statement (SYSLIN), 1639
MODEL statement (TSCSREG), 1736
QLIM procedure, 1385
CORROUT option
PROC PANEL statement, 1270
PROC QLIM statement, 1385
PROC TSCSREG statement, 1734
CORRS option
FIT statement (MODEL), 990
COS function, 1159
COSH function, 1159
COST option
ENDOGENOUS statement (QLIM), 1389
COUNTREG procedure, 487
syntax, 487
COV option
FIT statement (MODEL), 990
COV3OUT option
PROC SYSLIN statement, 1635
COVB option
ESTIMATE statement (MODEL), 982
FIT statement (MODEL), 990
MODEL statement, 492
MODEL statement (AUTOREG), 343
MODEL statement (MDC), 896
MODEL statement (PANEL), 1277
MODEL statement (PDLREG), 1356
MODEL statement (SYSLIN), 1639
MODEL statement (TSCSREG), 1736
PROC STATESPACE statement, 1584
QLIM procedure, 1385
COVBEST= option
ENTROPY procedure, 641
FIT statement (MODEL), 985, 1021
COVEST = option
MODEL statement (AUTOREG), 343
MODEL statement (MDC), 895
PROC COUNTREG statement, 490
QLIM procedure, 1385
COVOUT option
ENTROPY procedure, 642
FIT statement (MODEL), 988
PROC AUTOREG statement, 339
PROC COUNTREG statement, 489
PROC MDC statement, 890

PROC PANEL statement, 1270
PROC QLIM statement, 1385
PROC SYSLIN statement, 1635
PROC TSCSREG statement, 1734
COVS option
FIT statement (MODEL), 990, 1026
CPEV \(=\) option
OUTPUT statement (AUTOREG), 354
CROSS option
PROC SPECTRA statement, 1546
CROSSCORR statement
TIMESERIES procedure, 1690
CROSSCORR= option
IDENTIFY statement (ARIMA), 228
CROSSLIST= option
LIBNAME statement (SASEFAME), 2295
CROSSPLOTS \(=\) option
PROC TIMESERIES statement, 1686
CROSSVAR statement
TIMESERIES procedure, 1698
CRSPLINKPATH = option
LIBNAME statement (SASECRSP), 2201
CSPACE= option
PROC COMPUTAB statement, 439
CSTART= option
PROC FORECAST statement, 791
CUSIP= option
LIBNAME statement (SASECRSP), 2199
CUSUM= option
OUTPUT statement (AUTOREG), 355
CUSUMLB = option
OUTPUT statement (AUTOREG), 355
CUSUMSQ= option
OUTPUT statement (AUTOREG), 355
CUSUMSQLB= option
OUTPUT statement (AUTOREG), 355
CUSUMSQUB= option
OUTPUT statement (AUTOREG), 355
CUSUMUB= option
OUTPUT statement (AUTOREG), 355
CUTOFF= option
SSPAN statement (X11), 2055
CV \(=\) option
OUTLIER statement (X12), 2122
CWIDTH \(=\) option
PROC COMPUTAB statement, 439
CYCLE statement
UCM procedure, 1760
DASILVA option
MODEL statement (PANEL), 1277
MODEL statement (TSCSREG), 1737
DATA Step
IF Statement, 73

WHERE Statement, 73
DATA step
DROP statement, 74
KEEP statement, 74
DATA \(=\) option
ENTROPY procedure, 641
FIT statement (MODEL), 987, 1104
FORECAST command (TSFS), 2546, 2547
IDENTIFY statement (ARIMA), 229
PROC ARIMA statement, 224
PROC AUTOREG statement, 339
PROC COMPUTAB statement, 438
PROC COUNTREG statement, 489
PROC ESM statement, 686
PROC EXPAND statement, 729
PROC FORECAST statement, 791
PROC MDC statement, 889
PROC MODEL statement, 970
PROC PANEL statement, 1270
PROC PDLREG statement, 1355
PROC QLIM statement, 1384
PROC SIMILARITY statement, 1448
PROC SIMLIN statement, 1515, 1522
PROC SPECTRA statement, 1546
PROC STATESPACE statement, 1582
PROC SYSLIN statement, 1635
PROC TIMESERIES statement, 1686
PROC TSCSREG statement, 1734
PROC UCM statement, 1754
PROC VARMAX statement, 1886
PROC X11 statement, 2042
PROC X12 statement, 2109
SOLVE statement (MODEL), 1000, 1151
TSVIEW command (TSFS), 2546, 2547
DATASOURCE procedure, 536
syntax, 536
DATE
function, 144
DATE \(=\) option
MONTHLY statement (X11), 2048
PROC X12 statement, 2109
QUARTERLY statement (X11), 2053
DATEJUL
function, 96
DATEJUL function, 144
DATEPART function, 97, 144
DATETIME
function, 144
DAY
function, 96, 144
DBNAME \(=\) option
PROC DATASOURCE statement, 538
DBTYPE= option
PROC DATASOURCE statement, 538

DECOMP statement
TIMESERIES procedure, 1691
DEGREE= option
SPLINEREG statement (UCM), 1778
SPLINESEASON statement (UCM), 1779
DELTA= option
ESTIMATE statement (ARIMA), 235
DEPLAG statement
UCM procedure, 1762
DETAILS option
FIT statement (MODEL), 1046
PROC MODEL statement, 973
DETTOL= option
PROC STATESPACE statement, 1584
DFPVALUE
macro, 153
macro variable, 154, 155
DFTEST
macro, 154
DFTEST option
MODEL statement (VARMAX), 1901, 2002
DFTEST=(DLAG=) option
MODEL statement (VARMAX), 1901
DHMS
function, 97
DHMS function, 144
DIAG= option
FORECAST command (TSFS), 2549
DIF
function, 105
DIF function
MODEL procedure, 109
DIF \(=\) option
BOXCOXAR macro, 151
DFTEST macro, 155
INPUT statement (SIMILARITY), 1454
LOGTEST macro, 157
MODEL statement (VARMAX), 1893
TARGET statement (SIMILARITY), 1458
VAR statement (TIMESERIES), 1698
DIFF= option
IDENTIFY statement (X12), 2117
DIFFORDER= option
AUTOMDL statement (X12), 2119
DIFX= option
MODEL statement (VARMAX), 1894
DIFY= option
MODEL statement (VARMAX), 1894, 2013
DIMMAX = option
PROC STATESPACE statement, 1584
DISCRETE option
ENDOGENOUS statement (QLIM), 1388
DIST= option
COUNTREG statement (COUNTREG), 492

MODEL statement (AUTOREG), 341
MODEL statement (COUNTREG), 492
DISTRIBUTION= option
ENDOGENOUS statement (QLIM), 1388
DLAG= option
DFPVALUE macro, 153
DFTEST macro, 155
DO, 1164
DOL option
ROWS statement (COMPUTAB), 442
DOWNPAYMENT \(=\) option
FIXED statement (LOAN), 842
DOWNPAYPCT= option
FIXED statement (LOAN), 842
DP \(=\) option
FIXED statement (LOAN), 842
DPCT= option
FIXED statement (LOAN), 842
DROP statement
DATASOURCE procedure, 541
DROP= option
FIT statement (MODEL), 984
LIBNAME statement (SASEHAVR), 2344
DROPEVENT statement
DATASOURCE procedure, 543
DROPGROUP= option
LIBNAME statement (SASEHAVR), 2344
DROPH= option
SEASON statement (UCM), 1775
DROPSOURCE \(=\) option
LIBNAME statement (SASEHAVR), 2344
DUAL option
ENTROPY procedure, 643
DUL option
ROWS statement (COMPUTAB), 442
DW option
FIT statement (MODEL), 990
MODEL statement (SYSLIN), 1639
DW \(=\) option
MODEL statement (AUTOREG), 343
MODEL statement (PDLREG), 1357
DWPROB option
FIT statement (MODEL), 990
MODEL statement (AUTOREG), 343
MODEL statement (PDLREG), 1357
DYNAMIC option
FIT statement (MODEL), 985, 1070, 1072
SOLVE statement (MODEL), 1002, 1068, 1117

\section*{EBCDIC option}

PROC DATASOURCE statement, 538
ECM \(=\) option
MODEL statement (VARMAX), 1906

ECM=(ECTREND) option
MODEL statement (VARMAX), 1906, 1970
ECM=(NORMALIZE=) option
MODEL statement (VARMAX), 1871, 1906
ECM=(RANK=) option
MODEL statement (VARMAX), 1871, 1906
Empirical Distribution Estimation
ERRORMODEL statement (MODEL), 1023
EMPIRICAL= option
ERRORMODEL statement (MODEL), 981
END= option
ID statement (ESM), 693
ID statement (SIMILARITY), 1452
ID statement (TIMESERIES), 1695
LIBNAME statement (SASEHAVR), 2344
MONTHLY statement (X11), 2048
QUARTERLY statement (X11), 2053
ENDOGENOUS statement
MODEL procedure, 979,1151
SIMLIN procedure, 1516
SYSLIN procedure, 1637
ENTROPY procedure, 638
syntax, 638
ENTRY= option
FORECAST command (TSFS), 2548
EPSILON = option
FIT statement (MODEL), 992
ERRORMODEL statement
MODEL procedure, 980
ERRSTD
OUTPUT statement (QLIM), 1393
ESACF option
IDENTIFY statement (ARIMA), 229
ESM, 681
ESM procedure, 684
syntax, 684
EST= option
PROC SIMLIN statement, 1515, 1521
ESTDATA= option
FIT statement (MODEL), 988, 1105
SOLVE statement (MODEL), 1000, 1121, 1149
ESTIMATE statement
ARIMA procedure, 232
MODEL procedure, 981
UCM procedure, 1763
X12 procedure, 2115
ESTIMATEDCASE= option
ARM statement (LOAN), 847
ESTPRINT option
PROC SIMLIN statement, 1515
ESUPPORTS = option
MODEL statement (ENTROPY), 647
EVENT statement

X12 procedure, 2112
EXCLUDE= option
FIT statement (MODEL), 1086
INSTRUMENTS statement (MODEL), 995
MONTHLY statement (X11), 2048
EXOGENEITY option
COINTEG statement (VARMAX), 1890, 1976
EXOGENOUS statement
MODEL procedure, 983, 1151
SIMLIN procedure, 1517
EXP function, 1159
EXPAND procedure, 727
CONVERT statement, 742
syntax, 727
EXPAND= option
TARGET statement (SIMILARITY), 1458
EXPECTED
OUTPUT statement (QLIM), 1393
EXTRADIFFUSE= option
ESTIMATE statement (UCM), 1763
FORECAST statement (UCM), 1766
EXTRAPOLATE option
PROC EXPAND statement, 730
F option
ERRORMODEL statement (MODEL), 980
FACTOR= option
PROC EXPAND statement, 729, 733, 734
FAMEOUT= option
LIBNAME statement (SASEFAME), 2297
FAMEPRINT option
PROC DATASOURCE statement, 538
FCMPOPT statement
SIMILARITY procedure, 1451
FILETYPE= option
PROC DATASOURCE statement, 538
FIML option
FIT statement (MODEL), 985, 1019, 1105, 1211
PROC SYSLIN statement, 1635
FINAL= option
X11 statement (X12), 2135
FIRST option
PROC SYSLIN statement, 1636
FIT statement
MODEL procedure, 984
FIT statement, MODEL procedure
GINV= option, 985
FIXED statement
LOAN procedure, 841
FIXEDCASE option
ARM statement (LOAN), 847
FIXONE option

MODEL statement (PANEL), 1277
MODEL statement (TSCSREG), 1736
FIXONETIME option
MODEL statement (PANEL), 1277
FIXTWO option
MODEL statement (PANEL), 1277
MODEL statement (TSCSREG), 1737
FLATDATA statement
PANEL procedure, 1272
FLOW option
PROC MODEL statement, 973
FORCE \(=\) FREQ option
LIBNAME statement (SASEHAVR), 2344
FORCE= option
X11 statement (X12), 2135
FORECAST
macro, 2547
FORECAST option
SOLVE statement (MODEL), 1002, 1117, 1120
FORECAST procedure, 788
syntax, 788
FORECAST statement
ARIMA procedure, 237
ESM procedure, 689
UCM procedure, 1765
X12 procedure, 2116
FORECAST= option
ARIMA statement (X11), 2044
FORM statement
STATESPACE procedure, 1586
FORM= option
GARCH statement, 1907
FORMAT statement
DATASOURCE procedure, 545
FORMAT= option
ATTRIBUTE statement (DATASOURCE), 545
COLUMNS statement (COMPUTAB), 441
ID statement (ESM), 693
ID statement (SIMILARITY), 1453
ID statement (TIMESERIES), 1695
ROWS statement (COMPUTAB), 443
FREQ= option
LIBNAME statement (SASEHAVR), 2344
FREQUENCY= option
PROC DATASOURCE statement, 539
FROM= option
PROC EXPAND statement, 729, 733, 734
FRONTIER option
ENDOGENOUS statement (QLIM), 1389
FSRSQ option
FIT statement (MODEL), 991, 1010, 1087
FULLER option

MODEL statement (PANEL), 1277
MODEL statement (TSCSREG), 1737
FULLWEIGHT= option
MONTHLY statement (X11), 2049
QUARTERLY statement (X11), 2053
FUNCTION= option
TRANSFORM statement (X12), 2131
FUZZ= option
PROC COMPUTAB statement, 438
GARCH statement
VARMAX procedure, 1907
GARCH= option
MODEL statement (AUTOREG), 341
GCE option
ENTROPY procedure, 641
GCENM option
ENTROPY procedure, 641
GCONV= option
ENTROPY procedure, 643
GENERAL= option
ERRORMODEL statement (MODEL), 980
GENGMMV option
FIT statement (MODEL), 985
GETDER function, 1158
GINV option
MODEL statement (AUTOREG), 343
GINV= option
FIT statement (MODEL), 985
MODEL statement (PANEL), 1277
GME option
ENTROPY procedure, 641
GMED option
ENTROPY procedure, 641
GMENM option
ENTROPY procedure, 641
GMM option
FIT statement (MODEL), 985, 1011, 1054, 1105, 1108, 1109, 1111
MODEL statement (PANEL), 1277
GODFREY option
FIT statement (MODEL), 991
MODEL statement (AUTOREG), 344
GRAPH option
PROC MODEL statement, 972, 1178
GRID option
ESTIMATE statement (ARIMA), 235
GRIDVAL= option
ESTIMATE statement (ARIMA), 235
GROUP1 option
CAUSAL statement (VARMAX), 1889
GROUP2 option
CAUSAL statement (VARMAX), 1889
GROUP= option

LIBNAME statement (SASEHAVR), 2344
GVKEY= option
LIBNAME statement (SASECRSP), 2198
\(\mathrm{H}=\) option
COINTEG statement (VARMAX), 1890, 1973
HALTONSTART= option
MODEL statement (MDC), 892
HAUSMAN option
FIT statement (MODEL), 991, 1080
HCCME \(=\) option
FIT statement (MODEL), 986
MODEL statement (PANEL), 1277
HCUSIP= option
LIBNAME statement (SASECRSP), 2199
HESSIAN = option
FIT statement (MODEL), 992, 1021
HETERO statement
AUTOREG procedure, 350
HEV option
MODEL statement (MDC), 892
HMS
function, 97
HMS function, 144
HOLIDAY function, 144
HORIZON= option
FORECAST command (TSFS), 2548
HOUR
function, 144
HRINITIAL option
AUTOMDL statement (X12), 2120
HT= option
OUTPUT statement (AUTOREG), 354
I option
FIT statement (MODEL), 991, 1043
MODEL statement (PDLREG), 1357
MODEL statement (SYSLIN), 1639
ID statement
ENTROPY procedure, 646
ESM procedure, 691
EXPAND procedure, 733
FORECAST procedure, 795
MDC procedure, 891
MODEL procedure, 993
PANEL procedure, 1273
SIMILARITY procedure, 1451
SIMLIN procedure, 1517
STATESPACE procedure, 1586
TIMESERIES procedure, 1693
TSCSREG procedure, 1735
UCM procedure, 1767
VARMAX procedure, 1892

X11 procedure, 2046
X12 procedure, 2111
ID \(=\) option
FORECAST command (TSFS), 2546, 2547
FORECAST statement (ARIMA), 238
OUTLIER statement (ARIMA), 237
TSVIEW command (TSFS), 2546, 2547
IDENTIFY statement
ARIMA procedure, 228, 236
X12 procedure, 2117
IDENTITY statement
SYSLIN procedure, 1638
IF, 1164
INCLUDE, 1168
INCLUDE statement
MODEL procedure, 993
INDEX option
PROC DATASOURCE statement, 538
INDID \(=\) option
PROC PANEL statement, 1272
INDNO= option
LIBNAME statement (SASECRSP), 2200
INEVENT= option
PROC X12 statement, 2111
INFILE= option
PROC DATASOURCE statement, 538
INIT statement
COMPUTAB procedure, 444
COUNTREG procedure, 491
QLIM procedure, 1391
INIT \(=\) option
FIXED statement (LOAN), 843
INITIAL statement
STATESPACE procedure, 1587
INITIAL= option
FIT statement (MODEL), 984, 1072
FIXED statement (LOAN), 843
MODEL statement (AUTOREG), 348
MODEL statement (MDC), 896
INITIALPCT= option
FIXED statement (LOAN), 843
INITMISS option
PROC COMPUTAB statement, 438
INITPCT= option
FIXED statement (LOAN), 843
INITVAL= option
ESTIMATE statement (ARIMA), 234
INPUT statement
SIMILARITY procedure, 1454
X12 procedure, 2113
INPUT= option
ESTIMATE statement (ARIMA), 232, 253
INSET= option
LIBNAME statement (SASECRSP), 2202

LIBNAME statement (SASEFAME), 2294
INSTRUMENTS statement
MODEL procedure, 994, 1084
SYSLIN procedure, 1638
INTCINDEX function, 145
INTCK
function, 99
INTCK function, 145
INTCYCLE function, 145
INTEGRATE= option
MODEL statement (MDC), 892
INTERIM= option
PROC SIMLIN statement, 1515
INTERVAL= option
FORECAST command (TSFS), 2546, 2548
FORECAST statement (ARIMA), 238, 259
ID statement (ESM), 693
ID statement (SIMILARITY), 1453
ID statement (TIMESERIES), 1695
ID statement (UCM), 1767
ID statement (VARMAX), 1892
PROC DATASOURCE statement, 539
PROC FORECAST statement, 791
PROC STATESPACE statement, 1585
PROC X12 statement, 2110
TSVIEW command (TSFS), 2546, 2548
INTERVAL=option
FIXED statement (LOAN), 843
INTFIT function, 145
INTFMT function, 145
INTGET function, 145
INTGPRINT option
SOLVE statement (MODEL), 1004
INTINDEX function, 146
INTNX
function, 98
INTNX function, 146
INTONLY option
INSTRUMENTS statement (MODEL), 995
INTORDER= option
MODEL statement (MDC), 892
INTPER= option
PROC FORECAST statement, 791
PROC STATESPACE statement, 1585
INTSEAS function, 146
INTSHIFT function, 147
INTTEST function, 147
IRREGULAR statement
UCM procedure, 1768
IT2SLS option
FIT statement (MODEL), 986
IT3SLS option
FIT statement (MODEL), 986
PROC SYSLIN statement, 1636

ITALL option
FIT statement (MODEL), 991, 1044
ITDETAILS option
FIT statement (MODEL), 991, 1042
ITGMM option
FIT statement (MODEL), 986, 1015
MODEL statement (PANEL), 1277
ITOLS option
FIT statement (MODEL), 986
ITPRINT option
ENTROPY procedure, 642
ESTIMATE statement (X12), 2116
FIT statement (MODEL), 992, 1036, 1042
MODEL statement, 492
MODEL statement (AUTOREG), 344
MODEL statement (MDC), 896
MODEL statement (PANEL), 1278
MODEL statement (PDLREG), 1357
PROC STATESPACE statement, 1584
PROC SYSLIN statement, 1637
QLIM procedure, 1385
SOLVE statement (MODEL), 1005, 1145
ITSUR option
FIT statement (MODEL), 986, 1011
PROC SYSLIN statement, 1636
\(\mathrm{J}=\) option
COINTEG statement (VARMAX), 1891
JACOBI option
SOLVE statement (MODEL), 1003
JULDATE function, 96, 147
K option
PROC SPECTRA statement, 1546
\(\mathrm{K}=\) option
MODEL statement (SYSLIN), 1639
PROC SYSLIN statement, 1636
KEEP = option
PROC PANEL statement, 1272
KEEP statement
DATASOURCE procedure, 541
KEEP= option
FORECAST command (TSFS), 2549
LIBNAME statement (SASEHAVR), 2344
KEEPEVENT statement
DATASOURCE procedure, 542
KEEPH= option
SEASON statement (UCM), 1776
KERNEL option
FIT statement (MODEL), 1108
KERNEL= option
FIT statement (MODEL), 986, 1013
KLAG= option
PROC STATESPACE statement, 1584

KNOTS= option
SPLINEREG statement (UCM), 1778
SPLINESEASON statement (UCM), 1779
L= option
FIXED statement (LOAN), 841
_LABEL_option
COLUMNS statement (COMPUTAB), 440
ROWS statement (COMPUTAB), 442
LABEL statement
DATASOURCE procedure, 546
MODEL procedure, 995
LABEL= option
ATTRIBUTE statement (DATASOURCE), 545
FIXED statement (LOAN), 843
LAG
function, 105
LAG function
MODEL procedure, 109
LAG statement
PANEL procedure, 1274
LAGDEP option
MODEL statement (AUTOREG), 344
MODEL statement (PDLREG), 1357
LAGDEP= option
MODEL statement (AUTOREG), 344
MODEL statement (PDLREG), 1357
LAGDV option
MODEL statement (AUTOREG), 344
MODEL statement (PDLREG), 1357
LAGDV= option
MODEL statement (AUTOREG), 344
MODEL statement (PDLREG), 1357
LAGGED statement
SIMLIN procedure, 1517
LAGMAX = option
MODEL statement (VARMAX), 1896
PROC STATESPACE statement, 1582
LAGRANGE option
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
LAGS= option
CORR statement (TIMESERIES), 1690
CROSSCORR statement (TIMESERIES), 1691
DEPLAG statement (UCM), 1762
LAMBDA= option
DECOMP statement (TIMESERIES), 1692
LAMBDAHI = option
BOXCOXAR macro, 151
LAMBDALO = option
BOXCOXAR macro, 151
LCL= option

OUTPUT statement (AUTOREG), 355
OUTPUT statement (PDLREG), 1359
LCLM= option
OUTPUT statement (AUTOREG), 355
OUTPUT statement (PDLREG), 1359
LDW option
MODEL statement (AUTOREG), 349
LEAD = option
FORECAST statement (ARIMA), 238
FORECAST statement (UCM), 1766
FORECAST statement (X12), 2117
OUTPUT statement (VARMAX), 1909
PROC ESM statement, 686
PROC FORECAST statement, 791
PROC STATESPACE statement, 1585
LENGTH option
MONTHLY statement (X11), 2049
LENGTH statement
DATASOURCE procedure, 546
LENGTH= option
ATTRIBUTE statement (DATASOURCE), 545
SEASON statement (UCM), 1776
SPLINESEASON statement (UCM), 1780
LEVEL statement
UCM procedure, 1771
LIBNAME libref SASECRSP statement, 2195
LIFE= option
FIXED statement (LOAN), 841
LIKE option
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
LIMIT1 = option
MODEL statement (QLIM), 1392
LIML option
PROC SYSLIN statement, 1636
LINK= option
HETERO statement (AUTOREG), 351
LIST option
FIT statement (MODEL), 1197
PROC MODEL statement, 972, 1169
LISTALL option
PROC MODEL statement, 972
LISTCODE option
PROC MODEL statement, 972, 1171
LISTDEP option
PROC MODEL statement, 972, 1174
LISTDER option
PROC MODEL statement, 973
LJC option
COLUMNS statement (COMPUTAB), 441
ROWS statement (COMPUTAB), 443
LJUNGBOXLIMIT \(=\) option
AUTOMDL statement (X12), 2120

LM option
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
TEST statement (PANEL), 1281
TEST statement (QLIM), 1395
LOAN procedure, 838
syntax, 838
LOG function, 1159
LOG10 function, 1159
LOG2 function, 1159
LOGLIKL option
MODEL statement (AUTOREG), 344
LOGNORMALPARM = option
MODEL statement (MDC), 893
LOGTEST
macro, 156
macro variable, 157
LOWERBOUND= option
ENDOGENOUS statement (QLIM), 1388, 1389
LR option
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
TEST statement (PANEL), 1281
TEST statement (QLIM), 1395
LRECL= option
PROC DATASOURCE statement, 539
LSCV \(=\) option
OUTLIER statement (X12), 2123
LTEBOUND = option
FIT statement (MODEL), 992, 1147
MODEL statement (MODEL), 1147
SOLVE statement (MODEL), 1147
M= option
MODEL statement (PANEL), 1278
MODEL statement (TSCSREG), 1737
\%MA macro, 1100, 1101
MA= option
ESTIMATE statement (ARIMA), 234
MACURVES statement
X11 procedure, 2046
MAPECR= option
ARIMA statement (X11), 2044
MARGINAL
OUTPUT statement (QLIM), 1393
MARGINALS option
MODEL statement (ENTROPY), 647
MARKOV option
ENTROPY procedure, 641
MARR \(=\) option
COMPARE statement (LOAN), 849
MAXAD= option
ARM statement (LOAN), 846

MAXADJUST= option
ARM statement (LOAN), 846
MAXBAND= option
MODEL statement (PANEL), 1278
MAXDIFF \(=\) option
AUTOMDL statement (X12), 2119
MAXERROR= option
PROC ESM statement, 686
PROC TIMESERIES statement, 1686
MAXERRORS = option
PROC FORECAST statement, 791
PROC MODEL statement, 973
MAXIT=
PROC SYSLIN statement, 1636
MAXIT= option
ESTIMATE statement (ARIMA), 235
PROC STATESPACE statement, 1584
MAXITER \(=\) option
ARIMA statement (X11), 2044
ENTROPY procedure, 643
ESTIMATE statement (ARIMA), 235
ESTIMATE statement (X12), 2116
FIT statement (MODEL), 992
MODEL statement (AUTOREG), 349
MODEL statement (MDC), 896
MODEL statement (PANEL), 1278
MODEL statement (PDLREG), 1357
PROC SYSLIN statement, 1636
SOLVE statement (MODEL), 1004
MAXNUM= option
OUTLIER statement (ARIMA), 237
OUTLIER statement (UCM), 1773
MAXORDER= option
AUTOMDL statement (X12), 2119
MAXPCT= option
OUTLIER statement (ARIMA), 237
OUTLIER statement (UCM), 1773
MAXR= option
ARM statement (LOAN), 846
MAXRATE \(=\) option
ARM statement (LOAN), 846
MAXSUBITER= option
ENTROPY procedure, 643
FIT statement (MODEL), 992, 1028
SOLVE statement (MODEL), 1004
MDC procedure, 887
syntax, 887
MDC procedure, MODEL statement
ADDMAXIT \(=\) option, 894
ADDRANDOM option, 894
ADDVALUE option, 895
ALL option, 896
CHOICE \(=\) option, 892
CONVERGE \(=\) option, 892

CORRB option, 896
COVB option, 896
COVEST= option, 895
HALTONSTART= option, 892
HEV= option, 892
INITIAL= option, 896
ITPRINT option, 896
LOGNORMALPARM= option, 893
MAXITER = option, 896
MIXED= option, 893
NCHOICE option, 893
NOPRINT option, 896
NORMALEC= option, 893
NORMALPARM= option, 893
NSIMUL option, 893
OPTMETHOD= option, 896
RANDINIT option, 894
RANDNUM = option, 893
RANK option, 894
RESTART= option, 894
SAMESCALE option, 895
SEED= option, 895
SPSCALE option, 895
TYPE= option, 895
UNIFORMEC= option, 893
UNIFORMPARM= option, 893
UNITVARIANCE \(=\) option, 895
MDC procedure, OUTPUT statement
OUT= option, 901
\(\mathrm{P}=\) option, 901
XBETA \(=\) option, 901
MDC procedure, PROC MDC statement
COVOUT option, 890
DATA= option, 889
OUTEST = option, 890
MDCDATA statement, 890
MDLINFOIN \(=\) option
PROC X12 statement, 2111
MDLINFOOUT= option
PROC X12 statement, 2111
MDY
function, 96
MDY function, 147
MEAN \(=\) option
MODEL statement (AUTOREG), 342
MEASURE= option
TARGET statement (SIMILARITY), 1459
MEDIAN option
FORECAST statement (ESM), 690
MELO option
PROC SYSLIN statement, 1636
MEMORYUSE option
PROC MODEL statement, 974
METHOD = option

ARIMA statement (X11), 2044
CONVERT statement (EXPAND), 732, 739
ENTROPY procedure, 644
ESTIMATE statement (ARIMA), 232
FIT statement (MODEL), 992, 1027
MODEL statement (AUTOREG), 349
MODEL statement (PDLREG), 1357
MODEL statement (VARMAX), 1894
PROC COUNTREG statement, 490
PROC EXPAND statement, 730, 739
PROC FORECAST statement, 791
QLIM procedure, 1386
MILLS
OUTPUT statement (QLIM), 1393
MINIC option
IDENTIFY statement (ARIMA), 229
PROC STATESPACE statement, 1583
MINIC= option
MODEL statement (VARMAX), 1900
MINIC=( \(\mathrm{P}=\) ) option
MODEL statement (VARMAX), 1901, 1940
MINIC=(PERROR=) option
MODEL statement (VARMAX), 1901
MINIC=(Q=) option
MODEL statement (VARMAX), 1901, 1940
MINIC=(TYPE=) option
MODEL statement (VARMAX), 1901
MINR= option
ARM statement (LOAN), 846
MINRATE= option
ARM statement (LOAN), 846
MINTIMESTEP= option
FIT statement (MODEL), 993, 1147
MODEL statement (MODEL), 1147
SOLVE statement (MODEL), 1147

\section*{MINUTE}
function, 147
MISSING=option
FIT statement (MODEL), 988
MIXED option
MODEL statement (MDC), 893
MODE = option
DECOMP statement (TIMESERIES), 1692
X11 statement (X12), 2133
MODEL procedure, 962
syntax, 962
MODEL statement
AUTOREG procedure, 340
COUNTREG procedure, 491
ENTROPY procedure, 646
MDC procedure, 892
PANEL procedure, 1275, 1276
PDLREG procedure, 1356
QLIM procedure, 1391

SYSLIN procedure, 1638
TSCSREG procedure, 1736
UCM procedure, 1772
VARMAX procedure, 1892
MODEL= option
ARIMA statement (X11), 2044
ARIMA statement (X12), 2115
FORECAST statement (ESM), 690
PROC MODEL statement, 971, 1167
MOMENT statement
MODEL procedure, 996
MONTH
function, 96, 147
MONTHLY statement
X11 procedure, 2047
MTITLE= option
COLUMNS statement (COMPUTAB), 440
MU= option
ESTIMATE statement (ARIMA), 235
+n option
COLUMNS statement (COMPUTAB), 441
ROWS statement (COMPUTAB), 442
N2SLS option
FIT statement (MODEL), 986
N3SLS option
FIT statement (MODEL), 986
NAHEAD= option
SOLVE statement (MODEL), 1002, 1117,
1118
_NAME_option
COLUMNS statement (COMPUTAB), 441
ROWS statement (COMPUTAB), 442
NBACKCAST= option
FORECAST statement (ESM), 690
NBLOCKS = option
BLOCKSEASON statement (UCM), 1759
NCHOICE option
MODEL statement (MDC), 893
NDEC= option
MONTHLY statement (X11), 2049
PROC MODEL statement, 973
QUARTERLY statement (X11), 2054
SSPAN statement (X11), 2055
NDRAW option
FIT statement (MODEL), 986
NDRAW= option QLIM procedure, 1386
NEST statement
MDC procedure, 897
NESTIT option
FIT statement (MODEL), 993, 1027
NEWTON option
SOLVE statement (MODEL), 1003

NKNOTS \(=\) option
SPLINEREG statement (UCM), 1778
NLAG= option
CORR statement (TIMESERIES), 1690
CROSSCORR statement (TIMESERIES), 1691
IDENTIFY statement (ARIMA), 229
MODEL statement (AUTOREG), 341
MODEL statement (PDLREG), 1358
NLAGS = option
PROC FORECAST statement, 790
NLAMBDA= option
BOXCOXAR macro, 151
NLOPTIONS statement
MDC procedure, 900
QLIM procedure, 1392
UCM procedure, 1772
VARMAX procedure, 1908, 1953
NO2SLS option
FIT statement (MODEL), 987
NO3SLS option
FIT statement (MODEL), 987
NOCENTER option
PROC STATESPACE statement, 1583
NOCOMPRINT option
COMPARE statement (LOAN), 850
NOCONST option
HETERO statement (AUTOREG), 352
NOCONSTANT option
ESTIMATE statement (ARIMA), 233
NOCURRENTX option
MODEL statement (VARMAX), 1894
NODF option
ESTIMATE statement (ARIMA), 233
NODIFFS option
MODEL statement (PANEL), 1278
NOEST option
AUTOREG statement (UCM), 1757
BLOCKSEASON statement (UCM), 1759
CYCLE statement (UCM), 1761
DEPLAG statement (UCM), 1762
ESTIMATE statement (ARIMA), 235
IRREGULAR statement (UCM), 1768, 1770
LEVEL statement (UCM), 1772
PROC STATESPACE statement, 1584
RANDOMREG statement (UCM), 1774
SEASON statement (UCM), 1776
SLOPE statement (UCM), 1777
SPLINEREG statement (UCM), 1779
SPLINESEASON statement (UCM), 1780
NOESTIM option
MODEL statement (PANEL), 1278
NOGENGMMV option

FIT statement (MODEL), 987
NOINCLUDE option
PROC SYSLIN statement, 1636
NOINT option
ARIMA statement (X11), 2045
AUTOMODL statement (X12), 2119
ESTIMATE statement (ARIMA), 233
INSTRUMENTS statement (MODEL), 995
MODEL statement (AUTOREG), 340, 342
MODEL statement (COUNTREG), 492
MODEL statement (ENTROPY), 647
MODEL statement (PANEL), 1278
MODEL statement (PDLREG), 1358
MODEL statement (QLIM), 1392
MODEL statement (SYSLIN), 1639
MODEL statement (TSCSREG), 1737
MODEL statement (VARMAX), 1895
NOINTERCEPT option
INSTRUMENTS statement (MODEL), 995
NOLEVELS option
MODEL statement (PANEL), 1278
NOLS option
ESTIMATE statement (ARIMA), 236
NOMEAN option
MODEL statement (TSCSREG), 1737
NOMISS option
IDENTIFY statement (ARIMA), 230
MODEL statement (AUTOREG), 350
NOOLS option
FIT statement (MODEL), 987
NOOUTALL option
FORECAST statement (ARIMA), 238
PROC ESM statement, 686
NOP option
FIXED statement (LOAN), 844
NOPRINT option
ARIMA statement (X11), 2045
COLUMNS statement (COMPUTAB), 441
ESTIMATE statement (ARIMA), 233
FIXED statement (LOAN), 844
FORECAST statement (ARIMA), 238
IDENTIFY statement (ARIMA), 230
MODEL statement (AUTOREG), 344
MODEL statement (MDC), 896
MODEL statement (PANEL), 1278
MODEL statement (PDLREG), 1358
MODEL statement (SYSLIN), 1639
MODEL statement (TSCSREG), 1737
MODEL statement (VARMAX), 1896
OUTPUT statement (VARMAX), 1909
PROC COMPUTAB statement, 439
PROC COUNTREG statement, 490
PROC ENTROPY statement, 642
PROC MODEL statement, 973

PROC QLIM statement, 1385
PROC SIMLIN statement, 1515
PROC STATESPACE statement, 1582
PROC SYSLIN statement, 1637
PROC UCM statement, 1754
PROC VARMAX statement (VARMAX), 1988
PROC X11 statement, 2043
ROWS statement (COMPUTAB), 443
SSPAN statement (X11), 2055
NOPROFILE
ESTIMATE statement (UCM), 1763
NORED option
PROC SIMLIN statement, 1515
NORMAL option
ERRORMODEL statement (MODEL), 980
FIT statement (MODEL), 991
MODEL statement (AUTOREG), 344
NORMALEC \(=\) option
MODEL statement (MDC), 893
NORMALIZE= option
COINTEG statement (VARMAX), 1891, 2002
INPUT statement (SIMILARITY), 1454
TARGET statement (SIMILARITY), 1460
NORMALPARM= option
MODEL statement (MDC), 893
NORTR option
PROC COMPUTAB statement, 439
NOSTABLE option
ESTIMATE statement (ARIMA), 236
NOSTORE option
PROC MODEL statement, 971
NOSUM
TABLES statement (X12), 2130
NOSUMMARYPRINT option
FIXED statement (LOAN), 844
NOSUMPR option
FIXED statement (LOAN), 844
NOTFSTABLE option
ESTIMATE statement (ARIMA), 236
NOTRANS option
PROC COMPUTAB statement, 439
NOTRANSPOSE option
PROC COMPUTAB statement, 438
NOTSORTED option
ID statement (ESM), 693
ID statement (SIMILARITY), 1453
ID statement (TIMESERIES), 1695
NOZERO option
COLUMNS statement (COMPUTAB), 441
ROWS statement (COMPUTAB), 443
NPARMS = option
CORR statement (TIMESERIES), 1690

NPERIODS \(=\) option
DECOMP statement (TIMESERIES), 1693
TREND statement (TIMESERIES), 1697
NPREOBS option
FIT statement (MODEL), 987
NSEASON = option
MODEL statement (VARMAX), 1895
NSIMUL option
MODEL statement (MDC), 893
NSSTART = MAX option
PROC FORECAST statement, 792
NSSTART= option
PROC FORECAST statement, 792
NSTART \(=\) MAX option
PROC FORECAST statement, 792
NSTART= option
PROC FORECAST statement, 792
NVDRAW option
FIT statement (MODEL), 987
NWKDOM
function, 147
OBSERVED = option
CONVERT statement (EXPAND), 732, 737
PROC EXPAND statement, 730
OFFSET= option
BLOCKSEASON statement (UCM), 1759
MODEL statement (COUNTREG), 492
SPLINESEASON statement (UCM), 1780
OL option
ROWS statement (COMPUTAB), 443
OLS option
FIT statement (MODEL), 987, 1180
PROC SYSLIN statement, 1636
ONEPASS option
SOLVE statement (MODEL), 1003
OPTIONS option
PROC COMPUTAB statement, 439
OPTMETHOD = option
MODEL statement (AUTOREG), 350
MODEL statement (MDC), 896
ORDER= option
ENDOGENOUS statement (QLIM), 1388
PROC SIMILARITY statement, 1448
OTHERWISE, 1166
OUT = option
FlatData statement (PANEL), 1273
OUT1STEP option
PROC FORECAST statement, 793
OUT= option
BOXCOXAR macro, 151
DFTEST macro, 155
ENTROPY procedure, 641
FIT statement (MODEL), 988, 1110, 1182

FIXED statement (LOAN), 844, 853
FORECAST command (TSFS), 2549
FORECAST statement (ARIMA), 238, 262
LOGTEST macro, 157
OUTPUT statement (AUTOREG), 354
OUTPUT statement (COUNTREG), 493
OUTPUT statement (MDC), 901
OUTPUT statement (PANEL), 1279
OUTPUT statement (PDLREG), 1358
OUTPUT statement (QLIM), 1393
OUTPUT statement (SIMLIN), 1518
OUTPUT statement (SYSLIN), 1655
OUTPUT statement (VARMAX), 1909, 1987
OUTPUT statement (X11), 2051, 2071
OUTPUT statement (X12), 2121
PROC ARIMA statement, 227
PROC COMPUTAB statement, 439
PROC DATASOURCE statement, 539, 548
PROC ESM statement, 686
PROC EXPAND statement, 729, 756
PROC FORECAST statement, 792, 806
PROC SIMILARITY statement, 1448
PROC SIMLIN statement, 1523
PROC SPECTRA statement, 1546, 1552
PROC STATESPACE statement, 1585, 1601
PROC SYSLIN statement, 1635
PROC TIMESERIES statement, 1686
SOLVE statement (MODEL), 1001, 1121, 1150
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
OUTACTUAL option
FIT statement (MODEL), 988
PROC FORECAST statement, 792
SOLVE statement (MODEL), 1001
OUTALL option
FIT statement (MODEL), 988
PROC FORECAST statement, 793
SOLVE statement (MODEL), 1001
OUTALL= option
PROC DATASOURCE statement, 540, 552
OUTAR= option
PROC STATESPACE statement, 1583, 1601
OUTBY= option
PROC DATASOURCE statement, 540, 551
OUTCOMP= option
COMPARE statement (LOAN), 850, 854
OUTCONT = option
PROC DATASOURCE statement, 540, 550
OUTCORR option
ESTIMATE statement (ARIMA), 234
PROC PANEL statement, 1270
PROC TSCSREG statement, 1734

OUTCORR= option
PROC TIMESERIES statement, 1686
OUTCOV option
ENTROPY procedure, 642
ESTIMATE statement (ARIMA), 234
ESTIMATE statement (MODEL), 982
FIT statement (MODEL), 988
PROC PANEL statement, 1270
PROC SYSLIN statement, 1635
PROC TSCSREG statement, 1734
PROC VARMAX statement, 1886, 1989
OUTCOV3 option
PROC SYSLIN statement, 1635
OUTCOV= option
IDENTIFY statement (ARIMA), 230, 263
OUTCROSSCORR= option
PROC TIMESERIES statement, 1686
OUTDECOMP= option
PROC TIMESERIES statement, 1686
OUTERRORS option
SOLVE statement (MODEL), 1001
OUTEST= option
ENTROPY procedure, 642
ENTROPY statement, 664
ESTIMATE statement (ARIMA), 234, 264
ESTIMATE statement (MODEL), 982
ESTIMATE statement (UCM), 1764
FIT statement (MODEL), 988, 1112
PROC AUTOREG statement, 339
PROC COUNTREG statement, 489
PROC ESM statement, 687
PROC EXPAND statement, 729, 756
PROC FORECAST statement, 793, 808
PROC MDC statement, 890
PROC PANEL statement, 1270, 1321
PROC QLIM statement, 1385
PROC SIMLIN statement, 1515, 1522
PROC SYSLIN statement, 1635, 1655
PROC TSCSREG statement, 1734
PROC VARMAX statement, 1886, 1989
OUTESTALL option
PROC FORECAST statement, 793
OUTESTTHEIL option
PROC FORECAST statement, 793
OUTEVENT= option
PROC DATASOURCE statement, 540, 553
OUTEXTRAP option
PROC X11 statement, 2042
OUTFITSTATS option
PROC FORECAST statement, 793
OUTFOR= option
FORECAST statement (UCM), 1766
PROC ESM statement, 687
OUTFORECAST option

X11 statement (X12), 2134
OUTFULL option
PROC FORECAST statement, 793
OUTHT= option
GARCH statement, 1907
PROC VARMAX statement, 1991
OUTL= option
ENTROPY procedure, 642
ENTROPY statement, 665
OUTLAGS option
FIT statement (MODEL), 988
SOLVE statement (MODEL), 1001
OUTLIER statement
UCM procedure, 1773
X12 procedure, 2122
OUTLIMIT option
PROC FORECAST statement, 793
OUTMEASURE \(=\) option
PROC SIMILARITY statement, 1448
OUTMODEL= option
ESTIMATE statement (ARIMA), 234, 267
PROC MODEL statement, 971, 1167
PROC STATESPACE statement, 1584, 1602
OUTP= option
ENTROPY procedure, 642
ENTROPY statement, 664
OUTPARMS = option
FIT statement (MODEL), 1112
PROC MODEL statement, 970, 1107
OUTPATH= option
PROC SIMILARITY statement, 1448
OUTPREDICT option
FIT statement (MODEL), 988
SOLVE statement (MODEL), 1001
OUTPROCINFO= option
PROC ESM statement, 687
OUTPUT
OUT=, 384
OUTPUT statement
AUTOREG procedure, 354
COUNTREG procedure, 493
PANEL procedure, 1279
PDLREG procedure, 1358
PROC PANEL statement, 1320
QLIM procedure, 1392
SIMLIN procedure, 1517
SYSLIN procedure, 1640
VARMAX procedure, 1908
X11 procedure, 2051
X12 procedure, 2121
OUTRESID option
FIT statement (MODEL), 988, 1182
PROC FORECAST statement, 793
SOLVE statement (MODEL), 1001

OUTS= option
ENTROPY procedure, 642
FIT statement (MODEL), 989, 1026, 1112
OUTSEASON= option
PROC TIMESERIES statement, 1686
OUTSELECT= option
PROC DATASOURCE statement, 540
OUTSEQUENCE= option
PROC SIMILARITY statement, 1448
OUTSN= option
FIT statement (MODEL), 989
OUTSPAN= option
PROC X11 statement, 2043, 2071
VAR statement (X11), 2071
OUTSSCP= option
PROC SYSLIN statement, 1635, 1656
OUTSTAT= option
DFTEST macro, 155
ESTIMATE statement (ARIMA), 234, 268
PROC ESM statement, 687
PROC VARMAX statement, 1886, 1992
OUTSTB \(=\) option
PROC X11 statement, 2043, 2071
OUTSTD option
PROC FORECAST statement, 793
OUTSUM= option
FIXED statement (LOAN), 844
PROC ESM statement, 687
PROC LOAN statement, 841,854
PROC SIMILARITY statement, 1448
PROC TIMESERIES statement, 1687
OUTSUSED= option
ENTROPY procedure, 642
FIT statement (MODEL), 989, 1026, 1113
OUTTDR= option
PROC X11 statement, 2043, 2072
OUTTRANS = option
PROC PANEL statement, 1322
OUTTRANS=option
PROC PANEL statement, 1270
OUTTREND = option
PROC TIMESERIES statement, 1687
OUTUNWGTRESID option
FIT statement (MODEL), 989
OUTV= option
FIT statement (MODEL), 989, 1109, 1113
OUTVARS statement
MODEL procedure, 997
OVDIFCR= option
ARIMA statement (X11), 2045
OVERID option
MODEL statement (SYSLIN), 1639
OVERPRINT option
ROWS statement (COMPUTAB), 443

P option
IRREGULAR statement (UCM), 1770
PROC SPECTRA statement, 1546
\(\mathrm{P}=\) option
ESTIMATE statement (ARIMA), 233
FIXED statement (LOAN), 842
GARCH statement, 1907
IDENTIFY statement (ARIMA), 230
MODEL statement (AUTOREG), 341
MODEL statement (VARMAX), 1900
OUTPUT statement (AUTOREG), 355
OUTPUT statement (MDC), 901
OUTPUT statement (PANEL), 1279
OUTPUT statement (PDLREG), 1359
OUTPUT statement (SIMLIN), 1518
_PAGE_option
COLUMNS statement (COMPUTAB), 441
ROWS statement (COMPUTAB), 443
PANEL procedure, 1268
syntax, 1268
PARAMETERS statement
MODEL procedure, 997, 1151
PARKS option
MODEL statement (PANEL), 1278
MODEL statement (TSCSREG), 1737
PARMS = option
FIT statement (MODEL), 984
PARMSDATA= option
PROC MODEL statement, 970, 1107
SOLVE statement (MODEL), 1001
PARMTOL= option
PROC STATESPACE statement, 1585
PARTIAL option
MODEL statement (AUTOREG), 344
MODEL statement (PDLREG), 1358
PASTMIN= option
PROC STATESPACE statement, 1584
PATH= option
TARGET statement (SIMILARITY), 1460
PAYMENT= option
FIXED statement (LOAN), 842
PCHOW= option
FIT statement (MODEL), 991, 1081
MODEL statement (AUTOREG), 344
PDATA= option
ENTROPY procedure, 641
ENTROPY statement, 663
\%PDL macro, 1103
PDLREG procedure, 1354
syntax, 1354
PDWEIGHTS statement
X11 procedure, 2052
PERIOD= option
CYCLE statement (UCM), 1761

PERMCO = option
LIBNAME statement (SASECRSP), 2199
PERMNO= option
LIBNAME statement (SASECRSP), 2196
PERROR= option
IDENTIFY statement (ARIMA), 230
PH option
PROC SPECTRA statement, 1546
PHI option
MODEL statement (PANEL), 1278
MODEL statement (TSCSREG), 1737
PHI= option
DEPLAG statement (UCM), 1762
PLOT
HAXIS=, 88
PLOT option
AUTOREG statement (UCM), 1758
BLOCKSEASON statement (UCM), 1759
CYCLE statement (UCM), 1761
ESTIMATE statement (ARIMA), 233
ESTIMATE statement (UCM), 1764
FORECAST statement (UCM), 1766
IRREGULAR statement (UCM), 1768
MODEL statement (SYSLIN), 1639
PROC ARIMA statement, 224
PROC UCM statement, 1754
RANDOMREG statement (UCM), 1774
SEASON statement (UCM), 1776
SLOPE statement (UCM), 1777
SPLINEREG statement (UCM), 1779
SPLINESEASON statement (UCM), 1780
PLOT= option
PROC ESM statement, 687
PLOTS option
PROC ARIMA statement, 224
PROC AUTOREG statement, 339
PROC ENTROPY statement, 642
PROC MODEL statement, 970
PROC PANEL statement, 1271
PROC UCM statement, 1754
PLOTS = option
PROC EXPAND statement, 730
PROC SIMILARITY statement, 1449
PROC TIMESERIES statement, 1687
PM= option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359
PMFACTOR= option
MONTHLY statement (X11), 2049
PNT= option
FIXED statement (LOAN), 843
PNTPCT= option
FIXED statement (LOAN), 843
POINTPCT= option

FIXED statement (LOAN), 843
POINTS \(=\) option
FIXED statement (LOAN), 843
POISSON option
ERRORMODEL statement (MODEL), 980
POOLED option
MODEL statement (PANEL), 1278
POWER= option
TRANSFORM statement (X12), 2130
PRC= option
FIXED statement (LOAN), 844
pred
OUTPUT statement (COUNTREG), 493
PREDEFINED \(=\) option
ADJUST statement (X12), 2114
PREDEFINED statement (X12), 2125
PREDICTED
OUTPUT statement (QLIM), 1393
PREDICTED \(=\) option
OUTPUT statement (AUTOREG), 355
OUTPUT statement (PANEL), 1279
OUTPUT statement (PDLREG), 1359
OUTPUT statement (SIMLIN), 1518
OUTPUT statement (SYSLIN), 1640
PREDICTEDM = option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359
PREPAYMENTS \(=\) option
FIXED statement (LOAN), 843
PRICE= option
FIXED statement (LOAN), 844
PRIMAL option
ENTROPY procedure, 643
PRINT option
AUTOREG statement (UCM), 1758
BLOCKSEASON statement (UCM), 1760
CYCLE statement (UCM), 1761
ESTIMATE statement (UCM), 1765
FORECAST statement (UCM), 1767
IRREGULAR statement (UCM), 1768
LEVEL statement (UCM), 1772
OUTLIER statement (UCM), 1773
PROC STATESPACE statement, 1585
RANDOMREG statement (UCM), 1774
SEASON statement (UCM), 1776
SLOPE statement (UCM), 1777
SPLINESEASON statement (UCM), 1780
SSPAN statement (X11), 2056
STEST statement (SYSLIN), 1644
TEST statement (SYSLIN), 1646
PRINT= option
AUTOMDL statement (X12), 2119
BOXCOXAR macro, 152
LOGTEST macro, 157

MODEL statement (VARMAX), 1896
PROC SIMILARITY statement, 1449
PROC TIMESERIES statement, 1688
PRINT=(CORRB) option
MODEL statement (VARMAX), 1896
PRINT=(CORRX) option
MODEL statement (VARMAX), 1896
PRINT=(CORRY) option
MODEL statement (VARMAX), 1897, 1936
PRINT=(COVB) option
MODEL statement (VARMAX), 1897
PRINT=(COVPE) option
MODEL statement (VARMAX), 1897, 1931
PRINT=(COVX) option
MODEL statement (VARMAX), 1897
PRINT=(COVY) option
MODEL statement (VARMAX), 1897
PRINT=(DECOMPOSE) option
MODEL statement (VARMAX), 1897, 1933
PRINT=(DIAGNOSE) option
MODEL statement (VARMAX), 1897
PRINT=(DYNAMIC) option
MODEL statement (VARMAX), 1897, 1917
PRINT=(ESTIMATES) option
MODEL statement (VARMAX), 1897
PRINT=(IARR) option
MODEL statement (VARMAX), 1871, 1898
PRINT=(IMPULSE) option
MODEL statement (VARMAX), 1924
PRINT=(IMPULSE=) option
MODEL statement (VARMAX), 1898
PRINT=(IMPULSX) option
MODEL statement (VARMAX), 1920
PRINT=(IMPULSX=) option
MODEL statement (VARMAX), 1898
PRINT=(PARCOEF) option
MODEL statement (VARMAX), 1899, 1937
PRINT=(PCANCORR) option
MODEL statement (VARMAX), 1899, 1939
PRINT=(PCORR) option
MODEL statement (VARMAX), 1899, 1938
PRINT=(ROOTS) option
MODEL statement (VARMAX), 1899, 1942
PRINT=(YW) option
MODEL statement (VARMAX), 1899
PRINT=option
PROC ESM statement, 688
PRINTALL option
ARIMA statement (X11), 2045
ESTIMATE statement (ARIMA), 236
FIT statement (MODEL), 991
FORECAST statement (ARIMA), 239
MODEL statement, 492
MODEL statement (VARMAX), 1896

PROC MODEL statement, 974
PROC QLIM statement, 1385
PROC UCM statement, 1757
SOLVE statement (MODEL), 1005
SSPAN statement (X11), 2056
PRINTDETAILS option
PROC ESM statement, 688
PROC SIMILARITY statement, 1450
PROC TIMESERIES statement, 1688
PRINTERR option
ESTIMATE statement (X12), 2116
PRINTFORM= option
MODEL statement (VARMAX), 1896, 1920
PRINTFP option
ARIMA statement (X11), 2045
PRINTOUT= option
MONTHLY statement (X11), 2049
PROC STATESPACE statement, 1583
QUARTERLY statement (X11), 2054
PRINTREG option
IDENTIFY statement (X12), 2118
PRIOR option
MODEL statement (VARMAX), 1904
PRIOR=(IVAR) option
MODEL statement (VARMAX), 1904
PRIOR=(LAMBDA=) option
MODEL statement (VARMAX), 1904
PRIOR=(MEAN=) option
MODEL statement (VARMAX), 1904
PRIOR=(NREP=) option
MODEL statement (VARMAX), 1905
PRIOR=(THETA=) option
MODEL statement (VARMAX), 1905
PRIORS statement
ENTROPY procedure, 648
PRL= option
FIT statement (MODEL), 984, 1083
PROB
OUTPUT statement (COUNTREG), 493
OUTPUT statement (QLIM), 1393
PROBALL
OUTPUT statement (QLIM), 1393
PROBDF
function, 158
macro, 158
PROBZERO
OUTPUT statement (COUNTREG), 493
PROC ARIMA statement, 224
PROC AUTOREG
OUTEST=, 384
PROC AUTOREG statement, 339
PROC COMPUTAB
NOTRANS, 447
OUT=, 457

PROC COMPUTAB statement, 438
PROC DATASOURCE statement, 537
PROC ENTROPY statement, 640
PROC ESM statement, 686
PROC EXPAND statement, 728
PROC FORECAST statement, 790
PROC LOAN statement, 840
PROC MDC statement, 889
PROC MODEL statement, 970
PROC PANEL statement, 1270
PROC PDLREG statement, 1355
PROC SIMILARITY statement, 1447
PROC SIMLIN statement, 1515
PROC SPECTRA statement, 1545
PROC STATESPACE statement, 1582
PROC SYSLIN statement, 1634
PROC TIMESERIES statement, 1686
PROC TSCSREG statement, 1734
PROC UCM statement, 1753, see UCM procedure
PROC VARMAX statement, 1885
PROC X11 statement, 2042
PROC X12 statement, 2109
PRODUCTION option
ENDOGENOUS statement (QLIM), 1389
PROFILE
ESTIMATE statement (UCM), 1765
PROJECT= option
FORECAST command (TSFS), 2547
PSEUDO= option
SOLVE statement (MODEL), 1003
PURE option
ENTROPY procedure, 641
PURGE option
RESET statement (MODEL), 999
PUT, 1165
PWC option
COMPARE statement (LOAN), 849
PWOFCOST option
COMPARE statement (LOAN), 849
Q option
IRREGULAR statement (UCM), 1770
Q= option
ESTIMATE statement (ARIMA), 233
GARCH statement, 1907
IDENTIFY statement (ARIMA), 230
MODEL statement (AUTOREG), 341
MODEL statement (VARMAX), 1900, 1953
QLIM procedure, 1382 syntax, 1382
QLIM procedure, CLASS statement, 1387
QLIM procedure, TEST statement, 1394
QLIM procedure, WEIGHT statement, 1395

\section*{QTR}
function, 147
QUARTERLY statement
X11 procedure, 2052
QUASI= option
SOLVE statement (MODEL), 1003
QUIET= option
FCMPOPT statement (SIMILARITY), 1451
\(\mathrm{R}=\) option
FIXED statement (LOAN), 842
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PANEL), 1280
OUTPUT statement (PDLREG), 1359
OUTPUT statement (SIMLIN), 1518
RANDINIT option
MODEL statement (MDC), 894
RANDNUM = option
MODEL statement (MDC), 893
RANDOM= option
SOLVE statement (MODEL), 1003, 1121, 1136
RANDOMREG
UCM procedure, 1773
RANGE, 1153
RANGE option
MODEL statement (ENTROPY), 648
RANGE statement
DATASOURCE procedure, 544
MODEL procedure, 998
RANGE= option
LIBNAME statement (SASECRSP), 2201
LIBNAME statement (SASEFAME), 2294
RANK option
MODEL statement (MDC), 894
RANK= option
COINTEG statement (VARMAX), 1892, 1973
RANONE option
MODEL statement (PANEL), 1279
MODEL statement (TSCSREG), 1737
RANTWO option
MODEL statement (PANEL), 1279
MODEL statement (TSCSREG), 1737
RAO option
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
RATE \(=\) option
FIXED statement (LOAN), 842
RECFM \(=\) option
PROC DATASOURCE statement, 539
RECPEV \(=\) option
OUTPUT statement (AUTOREG), 356
RECRES \(=\) option

OUTPUT statement (AUTOREG), 356
REDUCECV = option
AUTOMDL statement (X12), 2120
REDUCED option
PROC SYSLIN statement, 1637
REEVAL option
FORECAST command (TSFS), 2549
REFIT option
FORECAST command (TSFS), 2549
REGRESSION statement
X12 procedure, 2124
Remote FAME data access
physical name using \#port number, 2293
RENAME statement
DATASOURCE procedure, 547
REPLACEBACK option
FORECAST statement (ESM), 690
REPLACEMISSING option
FORECAST statement (ESM), 690
RESET option
MODEL statement (AUTOREG), 344
RESET statement
MODEL procedure, 999
RESIDDATA= option
SOLVE statement (MODEL), 1001
RESIDEST option
PROC STATESPACE statement, 1585
RESIDUAL
OUTPUT statement (QLIM), 1393
RESIDUAL = option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PANEL), 1280
OUTPUT statement (PDLREG), 1359
OUTPUT statement (SIMLIN), 1518
OUTPUT statement (SYSLIN), 1640
RESIDUALM = option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359
RESTART option
MODEL statement (MDC), 894
RESTRICT statement
AUTOREG procedure, 352
COUNTREG procedure, 493
ENTROPY procedure, 648
MDC procedure, 901
MODEL procedure, 999
PDLREG procedure, 1360
QLIM procedure, 1393
STATESPACE procedure, 1587
SYSLIN procedure, 1641
VARMAX procedure, 1909
RETAIN statement
MODEL procedure, 1167
RHO option

MODEL statement (PANEL), 1279
MODEL statement (TSCSREG), 1737
RHO = option
AUTOREG statement (UCM), 1758
CYCLE statement (UCM), 1761
RKNOTS option
SPLINESEASON statement (UCM), 1780
RM= option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359
ROBUST option
MODEL statement (PANEL), 1279
ROUND= NONE option
FIXED statement (LOAN), 844
ROUND= option
FIXED statement (LOAN), 844
'row titles' option
ROWS statement (COMPUTAB), 442
ROWS statement
COMPUTAB procedure, 441
RTS \(=\) option
PROC COMPUTAB statement, 439
S option
IRREGULAR statement (UCM), 1770
PROC SPECTRA statement, 1546
SAMESCALE option
MODEL statement (MDC), 895
SAR option
IRREGULAR statement (UCM), 1770
SATISFY= option
SOLVE statement (MODEL), 1000
SCALE= option
INPUT statement (SIMILARITY), 1455
SCAN option
IDENTIFY statement (ARIMA), 230
SCENTER option
MODEL statement (VARMAX), 1895
SCHEDULE option
FIXED statement (LOAN), 845
SCHEDULE= option
FIXED statement (LOAN), 845
SCHEDULE= YEARLY option
FIXED statement (LOAN), 845
SDATA= option
ENTROPY procedure, 642, 663
FIT statement (MODEL), 989, 1107, 1187
SOLVE statement (MODEL), 1001, 1121, 1148
SDIAG option
PROC SYSLIN statement, 1636
SDIF \(=\) option
INPUT statement (SIMILARITY), 1455
TARGET statement (SIMILARITY), 1460

VAR statement (TIMESERIES), 1698
SDIFF= option
IDENTIFY statement (X12), 2117
SEASON statement
TIMESERIES procedure, 1696
UCM procedure, 1774
SEASONALITY= option
PROC ESM statement, 688
PROC SIMILARITY statement, 1450
PROC TIMESERIES statement, 1688
SEASONALMA= option
X11 statement (X12), 2134
SEASONS = option
PROC FORECAST statement, 793
PROC X12 statement, 2110
SECOND
function, 147
SEED= option
MODEL statement (MDC), 895
QLIM procedure, 1386
SOLVE statement (MODEL), 1004, 1121
SEIDEL option
SOLVE statement (MODEL), 1003
SELECT, 1166
SELECT option
ENDOGENOUS statement (QLIM), 1390
SETID= option
LIBNAME statement (SASECRSP), 2195
SETMISSING= option
FORECAST statement (ESM), 690
ID statement (ESM), 693
ID statement (SIMILARITY), 1453
ID statement (TIMESERIES), 1695
INPUT statement (SIMILARITY), 1455
TARGET statement (SIMILARITY), 1461
VAR statement (TIMESERIES), 1699
SICCD= option
LIBNAME statement (SASECRSP), 2200
SIGCORR= option
PROC STATESPACE statement, 1584
SIGMA= option
OUTLIER statement (ARIMA), 236
SIGSQ= option
FORECAST statement (ARIMA), 239
SIMILARITY procedure, 1446
syntax, 1446
SIMLIN procedure, 1514
syntax, 1514
SIMPLE option
PROC SYSLIN statement, 1637
SIMULATE option
SOLVE statement (MODEL), 1002
SIN function, 1159
SINGLE option

SOLVE statement (MODEL), 1003, 1141
SINGULAR= option
ESTIMATE statement (ARIMA), 236
FIT statement (MODEL), 993
MODEL statement (TSCSREG), 1737
PROC FORECAST statement, 794
PROC STATESPACE statement, 1585
PROC SYSLIN statement, 1636
SINGULAR=option
MODEL statement (PANEL), 1279
SINH function, 1159
SINTPER= option
PROC FORECAST statement, 794
SKIP option
ROWS statement (COMPUTAB), 443
SKIPFIRST = option
ESTIMATE statement (UCM), 1765
FORECAST statement (UCM), 1767
SKIPLAST= option
ESTIMATE statement (UCM), 1763
SLAG option
LAG statement (PANEL), 1275
SLAG statement
LAG statement (PANEL), 1275
SLENTRY= option
PROC FORECAST statement, 794
SLIDE= option
TARGET statement (SIMILARITY), 1461
SLOPE statement
UCM procedure, 1777
SLSTAY = option
MODEL statement (AUTOREG), 348
PROC FORECAST statement, 794
SMA option
IRREGULAR statement (UCM), 1771
SOLVE statement
MODEL procedure, 1000
SOLVEPRINT option
SOLVE statement (MODEL), 1005
SORTNAMES option
PROC ESM statement, 688
PROC SIMILARITY statement, 1450
PROC TIMESERIES statement, 1688
SOURCE = option
LIBNAME statement (SASEHAVR), 2344
SP option
IRREGULAR statement (UCM), 1771
SPAN= option
OUTLIER statement (X12), 2122
PROC X12 statement, 2110
SPECTRA procedure, 1544
syntax, 1544
SPLINEREG
UCM procedure, 1778

SPLINESEASON
UCM procedure, 1779
SPSCALE option
MODEL statement (MDC), 895
SQ option
IRREGULAR statement (UCM), 1771
SQRT function, 1159
SRESTRICT statement
SYSLIN procedure, 1642
SSPAN statement
X11 procedure, 2055
START= option
FIT statement (MODEL), 984, 1034, 1180
FIXED statement (LOAN), 844
ID statement (ESM), 694
ID statement (SIMILARITY), 1453
ID statement (TIMESERIES), 1696
LIBNAME statement (SASEHAVR), 2344
MODEL statement (AUTOREG), 348
MONTHLY statement (X11), 2050
PROC FORECAST statement, 794
PROC SIMLIN statement, 1516
PROC X12 statement, 2110
QUARTERLY statement (X11), 2054
SOLVE statement (MODEL), 1002
STARTITER option
FIT statement (MODEL), 1035
STARTITER \(=\) option
FIT statement (MODEL), 993
STARTSUM= option
PROC ESM statement, 688
STARTUP= option
MODEL statement (AUTOREG), 342
STAT= option
FORECAST command (TSFS), 2548
STATESPACE procedure, 1580
syntax, 1580
STATIC option
FIT statement (MODEL), 1070
SOLVE statement (MODEL), 1002, 1068, 1117
STATIONARITY= option
IDENTIFY statement (ARIMA), 231
MODEL statement (AUTOREG), 345
STATS option
SOLVE statement (MODEL), 1005, 1135
STB option
MODEL statement (PDLREG), 1358
MODEL statement (SYSLIN), 1639
STD= option
HETERO statement (AUTOREG), 351
STEST statement
SYSLIN procedure, 1643
SUMBY statement

COMPUTAB procedure, 446
SUMMARY option
MONTHLY statement (X11), 2050
QUARTERLY statement (X11), 2054
SUMONLY option
PROC COMPUTAB statement, 439
SUR option
ENTROPY procedure, 641
FIT statement (MODEL), 987, 1010, 1183
PROC SYSLIN statement, 1636
SYSLIN procedure, 1632
syntax, 1632
T option
ERRORMODEL statement (MODEL), 981, 1022
TABLES statement
X11 procedure, 2056
X12 procedure, 2129
TABLES table names
TABLES statement (X12), 2130
TAN function, 1159
TANH function, 1159
TARGET statement
SIMILARITY procedure, 1456
TAX= option
COMPARE statement (LOAN), 849
TAXRATE \(=\) option
COMPARE statement (LOAN), 849
TCCV= option
OUTLIER statement (X12), 2124
TDCOMPUTE= option
MONTHLY statement (X11), 2050
TDCUTOFF= option
SSPAN statement (X11), 2055
TDREGR= option
MONTHLY statement (X11), 2050
TECH= option
ENTROPY procedure, 644
TECHNIQUE= option
ENTROPY procedure, 644
TEST statement
AUTOREG procedure, 353
ENTROPY procedure, 649
MODEL procedure, 1005
SYSLIN procedure, 1644
VARMAX procedure, 1880, 1911
TEST \(=\) option
HETERO statement (AUTOREG), 351
THEIL option
SOLVE statement (MODEL), 1005, 1135
TI option
COMPARE statement (LOAN), 849
TICKER= option

LIBNAME statement (SASECRSP), 2200
TIME
function, 148
TIME option
MODEL statement (PANEL), 1279
TIME= option
FIT statement (MODEL), 989, 1074
SOLVE statement (MODEL), 1074
TIMEPART function, 97, 148
TIMESERIES procedure, 1683
syntax, 1683
TIN=, 733
_TITLES_option
COLUMNS statement (COMPUTAB), 441
TO= option
PROC EXPAND statement, 729, 733, 734
TODAY function, 148
TOL= option
ESTIMATE statement (X12), 2116
TOTAL option
PROC SIMLIN statement, 1516
TOUT=, 733
TR option
MODEL statement (AUTOREG), 342
TRACE option
PROC MODEL statement, 974
TRACE= option
FCMPOPT statement (SIMILARITY), 1451
TRANSFORM statement
X12 procedure, 2130
TRANSFORM=, 733
TRANSFORM= option
ARIMA statement (X11), 2046
FORECAST statement (ESM), 691
INPUT statement (SIMILARITY), 1455
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359
TARGET statement (SIMILARITY), 1461
VAR statement (TIMESERIES), 1699
TRANSFORMIN= option
CONVERT statement (EXPAND), 733, 742
TRANSFORMOUT= option
CONVERT statement (EXPAND), 733, 742
TRANSIN=, 733
TRANSOUT=, 733
TRANSPOSE procedure, 119
TRANSPOSE= option
CORR statement (TIMESERIES), 1690
CROSSCORR statement (TIMESERIES), 1691
DECOMP statement (TIMESERIES), 1693
SEASON statement (TIMESERIES), 1696
TREND statement (TIMESERIES), 1698
TREND statement

TIMESERIES procedure, 1697
TREND = option
DFPVALUE macro, 153
DFTEST macro, 155
MODEL statement (VARMAX), 1895
PROC FORECAST statement, 794
TREND=LINEAR option
MODEL statement (VARMAX), 1970
TRENDADJ option
MONTHLY statement (X11), 2050
QUARTERLY statement (X11), 2054
TRENDMA= option
MONTHLY statement (X11), 2050
X11 statement (X12), 2135
TRIMMISS \(=\) option
INPUT statement (SIMILARITY), 1456
TRIMMISSING= option
INPUT statement (SIMILARITY), 1461
TRUEINTEREST option
COMPARE statement (LOAN), 849
TRUNCATED option
ENDOGENOUS statement (QLIM), 1389
TSCSREG procedure, 1733
syntax, 1733
TSFS, 2379
TSFS procedure, 2379
TSNAME = option
PROC PANEL statement, 1273
TSVIEW
macro, 2546
TWOSTEP option
MODEL statement (PANEL), 1279
TYPE= option
FIT statement (MODEL), 989
MODEL statement (AUTOREG), 341
MODEL statement (MDC), 895
OUTLIER statement (ARIMA), 236
OUTLIER statement (X12), 2122
PROC DATASOURCE statement, 539
PROC SIMLIN statement, 1516
SOLVE statement (MODEL), 1002
TEST statement (AUTOREG), 353
TYPE=option
BLOCKSEASON statement (UCM), 1760
SEASON statement (UCM), 1776
U option
ERRORMODEL statement (MODEL), 981
UCL= option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359
UCLM = option
OUTPUT statement (AUTOREG), 356
OUTPUT statement (PDLREG), 1359

UCM procedure, 1750
syntax, 1750
UCM procedure, PROC UCM statement
PLOT option, 1754
UL option
ROWS statement (COMPUTAB), 443
UNIFORMEC= option
MODEL statement (MDC), 893
UNIFORMPARM = option
MODEL statement (MDC), 893
UNITSCALE= option
MODEL statement (MDC), 892
UNITVARIANCE= option
MODEL statement (MDC), 895
UNREST option
MODEL statement (SYSLIN), 1640
UPPERBOUND= option
ENDOGENOUS statement (QLIM), 1389
URSQ option
MODEL statement (AUTOREG), 348
USE= option
FORECAST statement (ESM), 691
USERDEFINED statement
X12 procedure, 2131
USSCP option
PROC SYSLIN statement, 1637
USSCP2 option
PROC SYSLIN statement, 1637
UTILITY statement
MDC procedure, 902
VAR option
MODEL statement (PANEL), 1277
MODEL statement (TSCSREG), 1736
VAR statement
FORECAST procedure, 795
MODEL procedure, 1007, 1151
SPECTRA procedure, 1547
STATESPACE procedure, 1587
SYSLIN procedure, 1646
TIMESERIES procedure, 1698
X11 procedure, 2056
X12 procedure, 2132
VAR \(=\) option
FORECAST command (TSFS), 2546, 2547
IDENTIFY statement (ARIMA), 231
TSVIEW command (TSFS), 2546, 2547
VARDEF \(=\) option
FIT statement (MODEL), 987, 1013, 1026
MODEL statement (VARMAX), 1895
Proc ENTROPY, 641
PROC SYSLIN statement, 1637
VARIANCE= option
AUTOREG statement (UCM), 1758

CYCLE statement (UCM), 1761
IRREGULAR statement (UCM), 1768
LEVEL statement (UCM), 1772
RANDOMREG statement (UCM), 1774
SLOPE statement (UCM), 1778
SPLINEREG statement (UCM), 1779
SPLINESEASON statement (UCM), 1780
VARIANCE=option
BLOCKSEASON statement (UCM), 1760
SEASON statement (UCM), 1777
VARLIST statement, 890
VARMAX procedure, 1882
syntax, 1882
VCOMP= option
MODEL statement (PANEL), 1279
VDATA= option
FIT statement (MODEL), 989, 1108
W option
ARM statement (LOAN), 847
WALD option
TEST statement (ENTROPY), 650
TEST statement (MODEL), 1006
TEST statement (PANEL), 1281
TEST statement (QLIM), 1395
WEEK function, 148
WEEKDAY
function, 96
WEEKDAY function, 148
WEIGHT statement, 1052
ENTROPY procedure, 650
MODEL procedure, 1007
SYSLIN procedure, 1646
WEIGHT = option
PROC FORECAST statement, 794
WEIGHTS statement
SPECTRA procedure, 1547
WHEN, 1166
WHERE statement
DATASOURCE procedure, 543
WHITE option
FIT statement (MODEL), 991
WHITENOISE \(=\) option
ESTIMATE statement (ARIMA), 233
IDENTIFY statement (ARIMA), 232
WHITETEST option
PROC SPECTRA statement, 1546
WILDCARD = option
LIBNAME statement (SASEFAME), 2294
WISHART \(=\) option
SOLVE statement (MODEL), 1004
WORSTCASE option
ARM statement (LOAN), 847
X11 procedure, 2040
syntax, 2040
X11 statement
X12 procedure, 2132
X 12 procedure, 2106
syntax, 2106
XBETA
OUTPUT statement (COUNTREG), 493
OUTPUT statement (QLIM), 1393
XBETA \(=\) option
OUTPUT statement (MDC), 901
XLAG option
LAG statement (PANEL), 1275
XLAG statement
LAG statement (PANEL), 1275
XLAG= option
MODEL statement (VARMAX), 1900
XPX option
FIT statement (MODEL), 992, 1043
MODEL statement (PDLREG), 1358
MODEL statement (SYSLIN), 1640
XREF option
PROC MODEL statement, 973, 1170
YEAR
function, 96, 148
YRAHEADOUT option
PROC X11 statement, 2043
YYQ
function, 96, 148
ZERO= option
COLUMNS statement (COMPUTAB), 441
ROWS statement (COMPUTAB), 443
ZEROMISS option
PROC FORECAST statement, 794
ZEROMISS = option
FORECAST statement (ESM), 691
INPUT statement (SIMILARITY), 1456
TARGET statement (SIMILARITY), 1462
ZEROMISSING= option
ID statement (PROC ESM), 694
ID statement (SIMILARITY), 1454
ZEROMODEL statement
COUNTREG procedure, 494
ZEROWEIGHT= option
MONTHLY statement (X11), 2051
QUARTERLY statement (X11), 2055
ZGAMMA
OUTPUT statement (COUNTREG), 493
ZLAG option
LAG statement (PANEL), 1275
ZLAG statement
LAG statement (PANEL), 1275

\section*{Your Turn}

We welcome your feedback.
- If you have comments about this book, please send them to yourturnesas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

\section*{SAS Publishing Delivers!}

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

\section*{SAS \({ }^{\circledR}\) Press}

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

\author{
support.sas.com/saspress
}

\section*{SAS \({ }^{\circledR}\) Documentation}

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:
- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF - free on the Web.
- Hard-copy books.

\title{
support.sas.com/publishing
}

\section*{SAS \({ }^{\circledR}\) Publishing News}

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.
```

