Previous Page | Next Page

The MDC Procedure

Functional Summary

The statements and options used with the MDC procedure are summarized in the following table:

Table 17.2 MDC Functional Summary

Description

Statement

Option

Data Set Options

   

formats the data for use by PROC MDC

MDCDATA

 

specify the input data set

MDC

DATA=

write parameter estimates to an output data set

MDC

OUTEST=

include covariances in the OUTEST= data set

MDC

COVOUT

write linear predictors and predicted probabilities to an output data set

OUTPUT

OUT=

Declaring the Role of Variables

   

specify the ID variable

ID

 

specify BY-group processing variables

BY

 

Printing Control Options

   

request all printing options

MODEL

ALL

display correlation matrix of the estimates

MODEL

CORRB

display covariance matrix of the estimates

MODEL

COVB

display detailed information about optimization iterations

MODEL

ITPRINT

suppress all displayed output

MODEL

NOPRINT

Model Estimation Options

   

specify the choice variables

MODEL

CHOICE=()

specify the convergence criterion

MODEL

CONVERGE=

specify the type of covariance matrix

MODEL

COVEST=

specify the starting point of the Halton sequence

MODEL

HALTONSTART=

specify options specific to the HEV model

MODEL

HEV=()

set the initial values of parameters used by the iterative optimization algorithm

MODEL

INITIAL=()

specify the maximum number of iterations

MODEL

MAXITER=

specify the options specific to mixed logit

MODEL

MIXED=()

specify the number of choices for each person

MODEL

NCHOICE=

specify the number of simulations

MODEL

NSIMUL=

specify the optimization technique

MODEL

OPTMETHOD=

specify the type of random number generators

MODEL

RANDNUM=

specify that initial values are generated using random numbers

MODEL

RANDINIT

specify the rank dependent variable

MODEL

RANK

specify optimization restart options

MODEL

RESTART=()

specify a restriction on inclusive parameters

MODEL

SAMESCALE

specify a seed for pseudo-random number generation

MODEL

SEED=

specify a stated preference data restriction on inclusive parameters

MODEL

SPSCALE

specify the type of the model

MODEL

TYPE=

specify normalization restrictions on multinomial probit error variances

MODEL

UNITVARIANCE=()

Controlling the Optimization Process

   

specify upper and lower bounds for the parameter estimates

BOUNDS

 

specify linear restrictions on the parameter estimates

RESTRICT

 

specify nonlinear optimization options

NLOPTIONS

 

NESTED Logit Related Options

   

specify the tree structure

NEST

LEVEL()=

specify the type of utility function

UTILITY

U()=

Output Control Options

   

output predicted probabilities

OUTPUT

P=

output estimated linear predictor

OUTPUT

XBETA=

Previous Page | Next Page | Top of Page