
SAS® 9.4 LIBNAME Engine
for SAS® Federation Server:
User’s Guide, Second Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 LIBNAME Engine for SAS® Federation Server:
User’s Guide, Second Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 LIBNAME Engine for SAS® Federation Server: User’s Guide, Second Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P1:engfedsrv

Contents

What’s New in SAS Federation Server LIBNAME Engine in SAS 9.4 v

PART 1 Introduction 1

Chapter 1 • Introduction to SAS Federation Server LIBNAME Engine . 3
Understanding the LIBNAME Engine . 3
Using the LIBNAME Engine . 4
Intended Audience . 4

PART 2 Usage 5

Chapter 2 • Establishing a Connection to SAS Federation Server . 7
Components of the LIBNAME Statement . 7
Server Connection . 7
Data Source Connection . 9
Data Source Processing Options . 10

Chapter 3 • Security . 11
About Security on the LIBNAME Engine . 11
SAS File Passwords . 11
SAS Federation Server Security . 12

Chapter 4 • Data Type Support . 13
About SAS Federation Server Data Type Support . 13
Translation of SAS Federation Server Data Types . 13
Override Default Legacy SAS Data Type . 14

Chapter 5 • Null Values . 17
About Null Values . 17
Null Value Processing Modes . 17
Potential Result Set Differences . 18
Change Null Processing Modes . 18

Chapter 6 • SAS Names . 21
About SAS Names . 21
Support for Column Names with Special Characters . 21
Reserved Language Keywords . 22

Chapter 7 • SAS Functionality Available through the Engine . 23
Data Source Access and Processing . 23
LIBNAME Statement Processing Options . 24
Nonexistent Values . 24
Numeric Column Length . 24
SAS Data Set Options . 25
SAS Formats and Informats . 25

SAS Indexes . 25
SAS Names and Support for DBMS Names . 26
SAS Passwords . 26
SAS System Options . 26
SAS Procedures . 26

Chapter 8 • Examples of Using the Engine . 29
Connect to SAS Federation Server and Reference a DSN Definition 30
Control Data Source Processing with a LIBNAME Statement Option 30
Apply a SAS Data Set Option . 31
Control Data Source Processing with a SAS System Option and a

LIBNAME Statement Option . 32
Authenticate with an Authentication Domain . 33
Using the SCHEMA= Data Set Option to Reference a

Subsequent Data Source in a Federated DSN . 34
Using the SCHEMA= Data Source Processing Option . 35

PART 3 Reference 37

Chapter 9 • LIBNAME Statement for the FEDSVR Engine . 39
Dictionary . 39

Chapter 10 • Data Source Processing LIBNAME Statement Options for the
FEDSVR Engine . 45

Dictionary . 46

Chapter 11 • System Options for the FEDSVR Engine . 77
About SAS System Options for the FEDSVR Engine . 77
Dictionary . 77

Chapter 12 • Data Set Options for the FEDSVR Engine . 99
About the FEDSVR LIBNAME Engine Data Set Options . 100
Specifying Data Set Options . 100
How Data Set Options Interact with Other Types of Options 100
Dictionary . 101

PART 4 Appendix 157

Appendix 1 • ICU License . 159
ICU License - ICU 1.8.1 and later . 159
Third-Party Software Licenses . 160

Recommended Reading . 167
Glossary . 169
Index . 173

iv Contents

What’s New in SAS Federation
Server LIBNAME Engine in SAS
9.4

Overview

The DataFlux Federation Server has been renamed to SAS Federation Server, and the
SAS LIBNAME engine for the server has a new name. The LIBNAME engine now uses
DSNs to establish a data source connection. A new system option is supported with the
engine. A new LIBNAME option is also available.

New Product and Documentation Names

The product name of the DataFlux Federation Server has changed to SAS Federation
Server as part of the company’s recent integration of DataFlux products into the SAS
suite of data quality, data integration, data governance, and master data management
solutions.

As a result, SAS LIBNAME Engine for DataFlux Federation Server: User’s Guide has
been retitled as SAS LIBNAME Engine for SAS Federation Server: User’s Guide. Also,
DataFlux Federation Server: Administrator’s Guide has been retitled as SAS Federation
Server: Administrator’s Guide.

The name of the SAS LIBNAME engine for SAS Federation Server is now FEDSVR.

Data Source Connection

The LIBNAME engine no longer supports fully specified data source connection
arguments in the LIBNAME statement. In order to connect to a data source with the
LIBNAME engine, you must specify a DSN definition.

System Option

SQLUNDOPOLICY
Specifies how PROC SQL handles updated data if errors occur while you are
updating data. A DBMS that processes one statement per connection can
significantly improve processing performance by setting

v

SQLUNDOPOLICY=NONE. For more information, see “SQLUNDOPOLICY=
System Option” on page 96.

LIBNAME Option

Beginning with the fourth maintenance release of SAS 9.4, a new LIBNAME option is
supported with the engine.

APPLICATIONNAME=
Specifies the client application’s name for auditing purposes. For more information,
see “APPLICATIONNAME= LIBNAME Statement Option” on page 46.

vi What’s New in SAS Federation Server LIBNAME Engine in SAS 9.4

Part 1

Introduction

Chapter 1
Introduction to SAS Federation Server LIBNAME Engine 3

1

2

Chapter 1

Introduction to SAS Federation
Server LIBNAME Engine

Understanding the LIBNAME Engine . 3
Overview of the FEDSVR Engine . 3
Overview of SAS Federation Server . 3

Using the LIBNAME Engine . 4

Intended Audience . 4

Understanding the LIBNAME Engine

Overview of the FEDSVR Engine
SAS Federation Server LIBNAME engine provides a bridge from legacy SAS data
access services to the data access technology that is provided by SAS Federation Server.
From a Base SAS session, the LIBNAME engine enables a SAS application such as a
SAS procedure or a SAS DATA step to process data using SAS Federation Server data
access technology. For example, using the LIBNAME engine, you can process data
sources such as a SAS data set, and the third-party databases that are supported by SAS
Federation Server.

Overview of SAS Federation Server
SAS Federation Server is a data server that provides scalable, threaded, multi-user,
standards-based data access technology in order to process and seamlessly integrate data
from multiple data sources. The server acts as a hub that provides clients with data by
accessing, managing, and sharing SAS data as well as data from several third-party
databases.

SAS Federation Server provides access to several types of data. The SAS Federation
Server LIBNAME engine can be used to access any data source that is supported by
SAS Federation Server. For a list of supported data sources, see SAS Federation Server:
Administrator’s Guide.

Structured Query Language (SQL) is the data access language for the server. Clients
typically connect to SAS Federation Server and submit requests in the form of FedSQL
statements. The FedSQL language is the implementation of SQL used by SAS
Federation Server to access relational databases. FedSQL provides a subset of the ANSI
SQL standard SQL:1999 core-compliant syntax as well as extra extensions. For
applications, FedSQL provides a common SQL syntax across all data sources. The

3

LIBNAME engine for SAS Federation Server allows you to manipulate data on SAS
Federation Server with the SAS DATA step, the SAS SQL procedure, and other SAS
procedures.

For more information about SAS Federation Server and its data access services, see SAS
Federation Server: Administrator’s Guide.

Using the LIBNAME Engine
To use the LIBNAME engine, you must submit a LIBNAME statement that associates a
SAS libref with the data that will be processed by SAS Federation Server. The name of
the SAS Federation Server LIBNAME engine is FEDSVR. The remainder of the
LIBNAME statement specifies connection information in order to connect to SAS
Federation Server and to the data source. For more information, see Chapter 2,
“Establishing a Connection to SAS Federation Server,” on page 7. After a libref is
assigned, you use that libref in the SAS session wherever a libref is valid.

Intended Audience
This document is intended for applications programmers who have access to SAS
Federation Server and who know the following:

• the basics of their data sources

• how to use their operating environment

• basic SAS commands and statements

Database administrators might also want to read this document to understand how the
FEDSVR engine is implemented and administered.

4 Chapter 1 • Introduction to SAS Federation Server LIBNAME Engine

Part 2

Usage

Chapter 2
Establishing a Connection to SAS Federation Server 7

Chapter 3
Security . 11

Chapter 4
Data Type Support . 13

Chapter 5
Null Values . 17

Chapter 6
SAS Names . 21

Chapter 7
SAS Functionality Available through the Engine 23

Chapter 8
Examples of Using the Engine . 29

5

6

Chapter 2

Establishing a Connection to SAS
Federation Server

Components of the LIBNAME Statement . 7

Server Connection . 7
Server Connection LIBNAME Statement Options . 7
Authentication Requirements . 8
AUTHDOMAIN= Option . 8

Data Source Connection . 9
What Is a DSN? . 9
Federated DSNs . 9

Data Source Processing Options . 10

Components of the LIBNAME Statement
The LIBNAME statement for SAS Federation Server LIBNAME engine has the
following components:

• FEDSVR engine name

• server connection options

• data source connection options

• data source processing options

Server Connection

Server Connection LIBNAME Statement Options
To connect to a data source with SAS Federation Server, you must first connect to SAS
Federation Server. A server connection is established by specifying server connection
LIBNAME options in the LIBNAME statement.

SAS Federation Server can be running on the local computer or on a remote computer.
The SAS program connects as a client of SAS Federation Server. The data source
connection options identify the computer on which the server is running, the port
number that is used to access the server, and user authentication credentials.

7

Here is an example of the code that is necessary to connect to SAS Federation Server
and access a SAS data set.

libname lib1 fedsvr server="d1234.us.company.com"
 port=2171 user="myid" password=mypwd
 dsn="BaseDSN";

proc print data=lib3.table1;
run;

In the example, FEDSVR is the name of the LIBNAME engine and SERVER=, PORT=,
USER=, and PASSWORD= are server connection LIBNAME options.

SERVER="d1234.us.company.com"
identifies the computer on which SAS Federation Server is running.

PORT=2171
specifies the TCP port that SAS Federation Server is listening to for connections.
2171 is the default port number defined for SAS Federation Server at installation.

USER="myid"
specifies the user ID for logging on to the server. Alias: UID=.

PASSWORD=mypwd
specifies the password that corresponds to the user ID for the server. Alias: PWD=.

DSN= is a data source connection option. For more information, see “Data Source
Connection” on page 9.

Authentication Requirements
Authentication to SAS Federation Server is controlled by SAS Metadata Server. The
users and groups who can access SAS Federation Server are defined and maintained on
SAS Metadata Server by the SAS Federation Server administrator. To obtain a valid
login for SAS Federation Server, contact the SAS Federation Server administrator.

AUTHDOMAIN= Option
In a metadata-aware environment, the AUTHDOMAIN= LIBNAME option can be used
to supply user credentials instead of the USER= and PASSWORD= LIBNAME options.
A metadata-aware environment is a SAS session in which the METASERVER=,
METAPORT=, METAUSER=, METAPASS=, and METAREPOSITORY= system
options have been set and have successfully established a connection to a SAS Metadata
Server. Metadata server connection system options can be specified in a configuration
file or in the OPTIONS statement. The AUTHDOMAIN= LIBNAME option specifies
the name of an authentication domain metadata object that is defined in the SAS
Metadata Repository. Specifying an authentication domain is a convenient way to obtain
metadata-based user credentials rather than having to explicitly supply them during
server sign-on.

For more information about metadata authentication domains, see the SAS Intelligence
Platform: Security Administration Guide. For an example of how AUTHDOMAIN= is
used, see “Authenticate with an Authentication Domain” on page 33.

8 Chapter 2 • Establishing a Connection to SAS Federation Server

Data Source Connection
SAS Federation Server LIBNAME engine accesses data by referencing a data source
name (DSN) definition.

What Is a DSN?
A DSN is an object that encapsulates data source connection information, such as the
table driver name, physical location of the data, and any necessary authentication
information that is required to retrieve data. A DSN is created in SAS Federation Server
Manager by a SAS Federation Server administrator. To obtain the name of a DSN
definition, contact a SAS Federation Server administrator.

By requiring users to reference a DSN, the SAS Federation Server administrator can set
authorization enforcement on data access and make the DSN available only to
authorized users.

A DSN is referenced by specifying the DSN definition name in the DSN= LIBNAME
option.

DSN=dsn-definition
specifies the name of DSN definition that is defined on SAS Federation Server.
DSN= is a required argument.

Note: If the DSN definition name is not a valid SAS name, enclose the name in
quotation marks. If the name contains single quotation marks, enclose the name
in double quotation marks, or use two single quotation marks in the name and
enclose the name in single quotation marks.

Other data source connection LIBNAME options are:

DSNUSER=userid
enables you to access a DSN with a user ID that is different from the default ID.
Alias: DSNUID=.

DSNPASSWORD=password
specifies the password that is associated with the DSNUSER= user ID. Alias:
DSNPWD=.

Within the LIBNAME statement, the DSN= options are specified after the server
connection arguments and before data source processing options, as follows:

libname lib3 fedsvr server="d1234.us.company.com"
 port=2171 user="myid" pwd=mypwd
 dsn="oradsn" preserve_col_names="yes" dbgen_name="dbms";

Federated DSNs
SAS Federation Server supports DSN definitions that reference multiple data sources.
The data sources can be on the same or on different DBMS. A DSN definition that
references multiple data sources is referred to as a federated DSN.

The FEDSVR LIBNAME engine supports accessing one data source at a time. When
you use a DSN that specifies multiple data sources, the engine references the first data
source in the DSN by default. To access data from a subsequent data source in the DSN,
you must reference the data source by specifying the catalog or schema name with the

Data Source Connection 9

QUALIFIER= or SCHEMA= option. QUALIFIER= and SCHEMA= can be specified as
LIBNAME statement options, or as data set options. It is not necessary to specify both
options unless they are required to uniquely identify the data source. Use these options to
read and write data from each of the data sources in the DSN. For an example of how the
options are specified, see “Using the SCHEMA= Data Set Option to Reference a
Subsequent Data Source in a Federated DSN” on page 34.

Data Source Processing Options
A SAS LIBNAME statement supports options to define how SAS processes DBMS
objects. Some LIBNAME options enhance data access performance. Others determine
locking, naming, and other behaviors.

The LIBNAME statement options that you can submit depend on the data source. The
supported data source processing LIBNAME options are described in Chapter 10, “Data
Source Processing LIBNAME Statement Options for the FEDSVR Engine,” on page
45.

10 Chapter 2 • Establishing a Connection to SAS Federation Server

Chapter 3

Security

About Security on the LIBNAME Engine . 11

SAS File Passwords . 11

SAS Federation Server Security . 12

About Security on the LIBNAME Engine
When you use SAS Federation Server LIBNAME engine, you can connect only to data
sources and locations as defined through the server administration. A non-administrative
user must connect by using a DSN definition.

A DSN definition configures the authorization that is enforced for data access. The
available authorization process depends on the data source. Third-party databases
enforce data source security and can also be configured for SAS Federation Server
authorization. A DSN definition for SAS data sets cannot use both SAS passwords and
SAS Federation Server authorization.

SAS File Passwords
When you use SAS Federation Server LIBNAME engine, SAS passwords are supported
only for unsecured DSN definitions. An unsecured DSN definition is a DSN for which
SAS Federation Server authorization is not enabled. If you specify a SAS password to
create or read a SAS data set when SAS Federation Server authorization is enabled, the
server returns an error.

Base SAS software enables you to restrict access to SAS data sets by assigning SAS
passwords when you create the data sets. You can specify three levels of protection:
Read, Write, and Alter. Later, to read or update the data set, you specify the appropriate
password.

To assign or specify a password, submit the ALTER=, PW=, READ=, and WRITE=
password options as follows:

libname myfiles fedsvr server="d1234.us.company.com"
 port=2171 uid="myid" pwd="mypwd"
 dsn=basedsn;

11

data myfiles.newds (pw=luke);
 set sashelp.class;
run;

In the preceding example, the DATA step assigns the password Luke to the new SAS
data set.

For more information about SAS passwords, see SAS Language Reference: Concepts.

SAS Federation Server Security
SAS Federation Server supports encryption, data source authorization, and SAS
Federation Server authorization. SAS Federation Server authorization is a security
scheme in which SAS Federation Server defines and enforces permissions that particular
users have for particular resources beyond data source authorization. For more
information about the security services provided through SAS Federation Server, see
SAS Federation Server: Administrator’s Guide.

12 Chapter 3 • Security

Chapter 4

Data Type Support

About SAS Federation Server Data Type Support . 13

Translation of SAS Federation Server Data Types . 13

Override Default Legacy SAS Data Type . 14

About SAS Federation Server Data Type Support
The LIBNAME engine supports SAS Federation Server data types by translating their
definitions to and from predetermined legacy SAS data types, which are SAS numeric
and SAS character. For example, when you use the LIBNAME engine, the CONTENTS
procedure reports a SAS Federation Server DATE data type as a SAS numeric.

A SAS numeric is a DOUBLE data type, which stores a 64-bit double-precision,
floating-point number. A SAS character is a CHAR data type, which stores a fixed-
length character string from 1 to 32,767 bytes.

For more information about SAS Federation Server data types and the data types that are
available for data storage in each data source, see SAS FedSQL Language Reference.

Translation of SAS Federation Server Data Types
SAS Federation Server data types are translated to and from the following predetermined
legacy SAS data types:

Table 4.1 SAS Federation Server Data Type Translation

SAS Federation
Server Data Type

Legacy SAS Data
Type Description

BIGINT SAS numeric Applies the SAS format 20.

Because a SAS numeric type is a
DOUBLE, there is potential for loss of
precision. A DOUBLE is an
approximate numeric data type rather
than an exact numeric data type.

13

SAS Federation
Server Data Type

Legacy SAS Data
Type Description

CHAR(n) SAS character Applies the SAS format $n.

DATE SAS numeric Applies the SAS format DATE9.

Valid SAS date values are in the range
from 1582-01-01 to 9999-12-31. Dates
outside the SAS date range are not
supported and are treated as invalid
dates.

DOUBLE SAS numeric

FLOAT(p) SAS numeric

INTEGER SAS numeric Applies the SAS format 11.

NCHAR(n) SAS character Applies the SAS format $n.

NVARCHAR(n) SAS character Applies the SAS format $n.

REAL SAS numeric

SMALLINT SAS numeric Applies the SAS format 6.

TIME(p) SAS numeric Applies the SAS format TIME8.

The LIBNAME engine does not support
fractions of seconds for time values.

TIMESTAMP(p) SAS numeric Applies the SAS format
DATETIME19.2.

TINYINT SAS numeric Applies the SAS format 4.

VARBINARY(n) SAS character Applies the SAS format $n.

VARCHAR(n) SAS character Applies the SAS format $n.

Override Default Legacy SAS Data Type
To override the predetermined legacy SAS data type, use the DBSASTYPE= option in
order to specify the data type to which to convert. Note that some data types are not
supported.

For example, in the following code, DBSASTYPE= specifies a data type to use for the
column MYCOLUMN:

proc print data=mylib.mytable (dbsastype=(mycolumn=char(20)'));
run;

14 Chapter 4 • Data Type Support

If a conversion is not supported, an error occurs. For more information, see
“DBSASTYPE= Data Set Option” on page 119.

Override Default Legacy SAS Data Type 15

16 Chapter 4 • Data Type Support

Chapter 5

Null Values

About Null Values . 17

Null Value Processing Modes . 17

Potential Result Set Differences . 18

Change Null Processing Modes . 18

About Null Values
A null value indicates the absence of information. A null value means that a real value is
unknown or nonexistent. That is, no data is assigned to the column in that specific row.
A null value is not a zero or a blank.

A null value is represented by SAS Federation Server either as a SAS missing value or
an ANSI SQL null value:

SAS missing value
The SAS missing value indicators (. , ._, .A-.Z, and ' ') are known values that
indicate nonexistent data. A SAS missing value is interpreted as its internal floating-
point representation. By default, SAS prints a missing numeric value as a single
period (.) and a missing character value as a blank space. A SAS data set represents
null values with SAS missing values.

ANSI SQL null value
Table data with an ANSI null value has no real data value; it is metadata that
indicates an unknown value. Third-party relational databases represent null values
with ANSI SQL null values.

Null Value Processing Modes
The processing behavior of a null value depends on the mode, which is determined by
how you connect to SAS Federation Server.

• A client application that connects to SAS Federation Server with a client-side driver
processes data by default by using ANSI SQL null value behavior.

17

• When you use SAS Federation Server LIBNAME engine, null values are processed
by default with SAS missing value behavior.

In some ways a SAS missing value is analogous to an ANSI SQL null value. However,
the processing behavior can be different. Therefore, if an application is processing data
with SAS missing value behavior rather than ANSI SQL null behavior, then you need to
be aware of processing differences.

• You can sort a SAS missing value and evaluate it with standard comparison
operators.

• You cannot sort an ANSI SQL null value or evaluate it with standard comparison
operators, because there is no data on which to operate. For example, to test for a
null value, you cannot use arithmetic comparison operators such as = or <.

• SAS missing values in a SAS data set are translated to ANSI SQL null values when
the data is copied to a data source that processes in the ANSI SQL null mode (for
example, an Oracle database).

• Many relational databases, such as Oracle and DB2, implement ANSI SQL null
values. Therefore, the concept of ANSI SQL null values with the SAS Federation
Server languages is the same as with the Oracle SQL language.

Note: Because the SAS data set does not physically store null indicators, SAS
Federation Server languages emulate ANSI SQL null values for the data source.

Potential Result Set Differences
When the data contains null values, you might get different result sets depending on
whether the processing is done in SAS missing value mode or in ANSI SQL null value
mode. Although in many cases a difference in mode does not present a problem, it is
important to understand how these differences occur.

Processing SAS missing values is different from processing ANSI SQL null values and
has significant implications in these situations:

• when filtering data (for example, in a WHERE clause, a HAVING clause, or an outer
join ON clause). SAS mode interprets null values as SAS missing values, which are
known values, whereas ANSI mode interprets null values as unknown values.

• when submitting outer joins where internal processing might generate nulls for
intermediate result sets.

• when comparing a blank character, SAS mode interprets the blank character as a
missing value. In ANSI mode, a blank character is a blank character; it has no special
meaning.

Change Null Processing Modes
When using SAS Federation Server LIBNAME engine, the default processing mode for
null values is SAS missing value behavior. The following are instances of when you
might want to change the mode to ANSI SQL null value behavior:

• an application processes a third-party database and wants the same results as on the
DBMS, which processes data with ANSI SQL null value behavior.

18 Chapter 5 • Null Values

• an application processes data and wants the same results as a client application that
connects to SAS Federation Server with a client-side driver, which processes data
with ANSI SQL null value behavior

To change the null value processing behavior for the LIBNAME engine to have an ANSI
SQL null value inserted into a character column instead of a blank, use the
“NULLCHAR= Data Set Option” on page 134.

Change Null Processing Modes 19

20 Chapter 5 • Null Values

Chapter 6

SAS Names

About SAS Names . 21

Support for Column Names with Special Characters . 21

Reserved Language Keywords . 22

About SAS Names
A SAS name is a name that is assigned to items such as columns and tables. For most
SAS names, the first character must be a letter or an underscore. Subsequent characters
can be letters, numbers, or underscores. Blanks and special characters (except the
underscore) are not allowed. The maximum length of a SAS name depends on the
language element to which it is assigned. Many SAS names, such as column names, can
be 32 characters long. Other SAS names, such as librefs, have a maximum length of
eight characters. For more information about SAS names, see SAS Language Reference:
Concepts.

Because SAS Federation Server languages include naming restrictions, such as reserved
keywords, and some third-party databases allow case-sensitive names and names with
special characters, you must show special consideration when you use the names for
tables and columns. This section presents default naming behaviors and options that can
modify naming behavior.

Support for Column Names with Special
Characters

When the LIBNAME engine reads a column name that contains characters that are not
allowed in standard SAS names, the default behavior is to replace an unsupported
character with an underscore (_). For example, the database column name Amount
Budgeted$ becomes the SAS name Amount_Budgeted_.

Note: Nonstandard names include those with blank spaces or special characters (such as
@, #, %) that are not allowed in SAS names unless the VALIDVARNAME=ANY
option is set. When a SAS data set contains special characters in column names and
the data set is accessed without setting the VALIDVARNAME=ANY option, the

21

LIBNAME engine replaces the special characters with underscores, but no message
is issued.

When SAS encounters a DBMS name that exceeds 32 characters, SAS truncates the
name. After it has modified or truncated a DBMS column name, SAS appends a number
to the name, if necessary, to preserve uniqueness. For example, DBMS column names
MY$DEPT, My$Dept, and my$dept become SAS names MY_DEPT, MY_Dept0, and
my_dept1.

To change how SAS handles case-sensitive or nonstandard table and column names,
specify one or more of the following options:

PRESERVE_COL_NAMES=YES
is a LIBNAME statement and data set option. When set to YES, this option
preserves blank spaces, special characters, and mixed case in column names. See
“PRESERVE_COL_NAMES= LIBNAME Statement Option” on page 64 for more
information about this option.

PRESERVE_TAB_NAMES=YES
is a LIBNAME statement option. When set to YES, this option preserves blank
spaces, special characters, and mixed case in table names. See
“PRESERVE_TAB_NAMES= LIBNAME Statement Option” on page 65 for more
information about this option.

VALIDVARNAME=ANY
is a SAS global system option that can override the SAS naming conventions. See
“VALIDVARNAME= System Option” on page 97.

The availability of these options and their default settings are data source specific. See
the SAS/ACCESS documentation for your DBMS for information about how the
SAS/ACCESS engine for your DBMS processes names.

Reserved Language Keywords
To use SQL language reserved keywords as table or column names, you must identify
them in the program syntax. When using the LIBNAME engine, use the LIBNAME
statement options PRESERVE_TAB_NAMES=YES or
PRESERVE_COL_NAMES=YES in the LIBNAME statement.

SQL reserved keywords include, for example, ANALYZE, CREATE, MEMBER,
SELECT, and WHERE.

To use SELECT as a table name when using the LIBNAME engine, specify the
PRESERVE_TAB_NAMES=YES option.

libname mylib fedsvr server="d1234.us.company.com"
 port=2171 uid="myid" pwd="mypwd"
 dsn=oradsn preserve_tab_names=yes preserve_col_names=yes;

proc sql;
 create table mylib.select (row INT);
 insert into mylib.select values (100);
 select row from mylib.select;
quit;

22 Chapter 6 • SAS Names

Chapter 7

SAS Functionality Available
through the Engine

Data Source Access and Processing . 23

LIBNAME Statement Processing Options . 24

Nonexistent Values . 24

Numeric Column Length . 24

SAS Data Set Options . 25

SAS Formats and Informats . 25

SAS Indexes . 25

SAS Names and Support for DBMS Names . 26

SAS Passwords . 26

SAS System Options . 26

SAS Procedures . 26
COMPARE Procedure . 26
CONTENTS Procedure . 27
SORT Procedure . 27
SQL Procedure . 28

Data Source Access and Processing
SAS Federation Server LIBNAME engine supports the following processing:

• The engine supports input (read), output (create), and update (modify, add, and
delete) processing. You can submit most SAS language procedures, including the
SQL procedure, perform WHERE and BY-Group processing. You can also submit
the DATA step with SAS Federation Server data services to read, create, update, and
delete data.

• You can list a data source's tables with the DATASETS procedure, and you can list
the metadata attributes of a table with the CONTENTS procedure. However, the
engine does not support utility processing to modify metadata attributes such as
renaming or adding a column or changing a label. The MODIFY statement for
PROC DATASETS is not supported because it requires the file to be opened in utility
mode.

23

• The engine is a sequential engine with limited random access. If you request
processing that requires random access that is not supported, a message in the SAS
log notifies you that the processing is not valid for sequential access.

• The engine does not support threaded application processing. Therefore, SAS
procedures such as the SORT and SUMMARY procedures cannot perform threaded
processing.

• The engine does not support DATA step views and PROC SQL views.

• The engine cannot access a damaged file and therefore provides no means for
repairing a damaged file.

Some SAS functionality is restricted by the data source itself. For example, when you
use the engine to access a SAS data set, some SAS features such as audit trail, referential
integrity constraints, generation data sets, and Cross-Environment Data Access (CEDA)
are not supported. For data source functionality details, see the data source reference in
SAS Federation Server: Administrator’s Guide.

LIBNAME Statement Processing Options
The LIBNAME statement provides several statement options that control data source
processing. For example, you can process multiple rows by using the READBUFF=
statement option.

However, the statement options that you can submit depend on the data source. The
supported statement options are listed in Chapter 10, “Data Source Processing
LIBNAME Statement Options for the FEDSVR Engine,” on page 45.

Nonexistent Values
For nonexistent values, the engine reads, writes, and updates SAS missing values for the
data sources that implement SAS missing values, which is the SAS data set. For data
sources that do not implement SAS missing values, such as the third-party databases, a
nonexistent value is treated as follows:

• mapped to an ANSI SQL null value when writing to the file

• converted from an ANSI SQL null value to a SAS missing value when reading from
the file

Numeric Column Length
A column's length refers to the number of bytes that are used to store each of the
column's values in a file. For example, a column that is defined as a DOUBLE has a
storage size of 8 bytes.

In SAS, you can control the length with the LENGTH statement in the DATA step.
However, the LIBNAME engine does not support specifying a shorter numeric storage
size with the LENGTH statement. When you use the engine, you can read a legacy SAS
file with a shorter numeric storage size, but you cannot specify a shorter numeric storage
size or update the data.

24 Chapter 7 • SAS Functionality Available through the Engine

SAS Data Set Options
You can apply SAS data set options on a table when you access a data source. A data set
option applies only to the table on which it is specified, and it remains in effect for the
duration of the DATA step or SAS procedure. For example, you can process a segment
of data with SAS data set options such as FIRSTOBS= and OBS=.

However, the data set options that you can use depend on the data source. The supported
data set options are listed in Chapter 12, “Data Set Options for the FEDSVR Engine,” on
page 99.

SAS Formats and Informats
You can submit DATA steps and PROC steps to do the following:

• store and apply SAS formats and informats for a SAS data set.

Note: The engine does not support file replacement, which means that you cannot
overwrite an existing file to change a stored SAS format. However, you can
submit the FORMAT statement to display the data with a different format.

• apply SAS formats and informats for DB2, Greenplum, MySQL, ODBC databases,
Oracle, and Teradata. You cannot store SAS formats or informats for those data
sources.

When a table is created, the engine validates a specified SAS format or informat name.
Both formats and informats that are supplied by SAS as well as user-defined formats and
informats can be used.

SAS Indexes
The following SAS functionality for SAS indexes is not supported:

• You cannot create an index with a DATA step or a PROC step.

• The CONTENTS procedure does not display index information.

• You cannot specify an index to retrieve particular observations by using the KEY=
option in the SET and MODIFY statements. You also cannot specify a variable
whose value is the observation number to be read by using the POINT= option.
Finally, you cannot set a KEY= search to always begin at the top of the index for the
data file by using the UNIQUE= option in the SET and MODIFY statements.

• The MODIFY statement in the DATASETS procedure is not supported, which means
that for a SAS data set you cannot submit the INDEX CENTILES statement to
request that centiles be refreshed or change how often centiles are refreshed.

• For a SAS data set, the fast-append method to append to an indexed data set is not
supported.

SAS Indexes 25

SAS Names and Support for DBMS Names
When the engine reads DBMS column names that contain characters that are not
standard in SAS names, the default behavior is to replace an unsupported character with
an underscore (_). For example, the DBMS column name Amount Budgeted$ becomes
the SAS name Amount_Budgeted_.

Note: Nonstandard names include those with blank spaces or special characters (such as
@, #, %) that are not allowed in SAS names.

When the engine encounters a DBMS name that exceeds 32 characters, it truncates the
name. After it has modified or truncated a DBMS column name, SAS appends a number
to the variable name, if necessary, to preserve uniqueness. For example, DBMS column
names MY$DEPT, My$Dept, and my$dept become SAS names MY_DEPT,
MY_Dept0, and my_dept1.

SAS Passwords
When using an unsecured DSN, you can assign and specify SAS passwords by
submitting the ALTER=, PW=, READ=, and WRITE= data set options.

You cannot submit the DATASETS procedure to manipulate SAS passwords on a SAS
data set.

SAS System Options
SAS system options are instructions that affect your SAS session. They control how
operations such as SAS System initialization, hardware and software interfacing, and the
input, processing, and output of jobs and files, are performed. The availability and
behavior of these options are data source specific. The supported system options are
listed in Chapter 11, “System Options for the FEDSVR Engine,” on page 77.

SAS Procedures

COMPARE Procedure
You can submit the COMPARE procedure to compare the contents of two tables,
selected columns in different tables, or columns within the same table.

If you compare the contents of columns from different data sources, PROC COMPARE
might report numeric precision differences because of a data source's implementation of
a data type.

26 Chapter 7 • SAS Functionality Available through the Engine

To compare columns from different data sources, you can specify an equality criterion to
control how values are compared. Two options for the PROC COMPARE statement
determine the equality criterion for comparing values:

CRITERION=
specifies the criterion for judging the equality of numeric values.

METHOD=
specifies the method for judging the equality of numeric values.

For more information about these options, see the COMPARE procedure in Base SAS
Procedures Guide.

CONTENTS Procedure
You can submit the CONTENTS procedure (or the CONTENTS statement in the
DATASETS procedure) to list the attributes of a table (such as the date on which the
table was created, the date on which data was last modified, and so on) or the contents of
a directory.

However, there are some limitations for the CONTENTS procedure:

• Index information is not displayed.

• The number of observations (rows) is not displayed for tables that have row-level
permission.

• The results of a PROC CONTENTS depend on the data source. For example, some
of the attributes that list for a SAS data set do not list for a third-party database table.

SORT Procedure
When you use the SORT procedure, you will observe behavior differences:

• The engine does not support file replacement. That is, you cannot overwrite an
existing table that has the same name. For example, you must specify the OUT=
option for the SORT procedure:

libname myfiles fedsvr server="d1234.us.company.com"
 port=2171 user="myid" pwd="mypwd"
 dsn=basedsn;

proc sort data=myfiles.table1 out=myfiles.table1_sorted;
 by column1;
run;

• There might be behavior differences based on the accessed data source. For example,
you can sort the rows of a SAS data set and store the output to another SAS data set.
However, for a third-party DBMS, sorting data often has no effect on how it is
stored. When you access third-party DBMS tables, they are stored in the format of
the database, which differs from the format of SAS files, such as a SAS data set.

Because you cannot depend on your data to be sorted in the database, you must sort
the data at the time of query. Furthermore, when you sort DBMS data, the results
might vary depending on whether the DBMS places data with null values (which are
translated to SAS missing values) at the beginning or the end of the result set.

When the output table is written, the sorted data is written to the output table in the
sorted order. However, when an application subsequently reads the output table from
the DBMS, the DBMS sends the data back in an order that is unrelated to the sort.

SAS Procedures 27

A solution might be to specify a SAS file such as a SAS data set as the output table
in the OUT= option as shown in the following code:

libname oradata fedsvr server="d1234.us.company.com"
 port=2171 user="myid" pwd="mypwd" dsn=oradsn;

proc sort data=oradata.table1 out=work.table1_sorted;
 by column1 column2;
run;

proc print data=work.table1_sorted;
run;

SQL Procedure
The engine supports the SQL procedure so that you can retrieve and manipulate data,
create tables, and add or modify data.

You can also use the PROC SQL pass-through facility to connect to a data source, and
submit SAS FedSQL statements. However, you cannot use PROC SQL to send DBMS-
specific SQL statements directly to a DBMS for execution.

28 Chapter 7 • SAS Functionality Available through the Engine

Chapter 8

Examples of Using the Engine

Connect to SAS Federation Server and Reference a DSN Definition 30
Details . 30
Program . 30
Program Description . 30

Control Data Source Processing with a LIBNAME Statement Option 30
Details . 30
Program . 31
Program Description . 31

Apply a SAS Data Set Option . 31
Details . 31
Program . 31
Program Description . 32

Control Data Source Processing with a SAS System Option
and a LIBNAME Statement Option . 32

Details . 32
Program . 32
Program Description . 32

Authenticate with an Authentication Domain . 33
Details . 33
Program . 33
Program Description . 33

Using the SCHEMA= Data Set Option to Reference a
Subsequent Data Source in a Federated DSN . 34

Details . 34
Program . 34
Program Description . 34

Using the SCHEMA= Data Source Processing Option . 35
Details . 35
Program . 35
Program Description . 36

29

Connect to SAS Federation Server and Reference
a DSN Definition

Details
This example accesses a SAS data set by specifying server connection arguments to
connect to SAS Federation Server and by referencing a DSN definition with the DSN=
data source connection argument. The DSN provides the information to access the data
source.

Program

libname mylib fedsvr 1

 server="d1234.us.company.com" port=2171 user="myid" pwd=mypwd 2

 dsn=BaseDSN; 3

proc print data=mylib.MyTable; 4

run;

Program Description
1. The LIBNAME statement assigns the libref MyLib and specifies the FEDSVR

engine.

2. The LIBNAME statement server connection arguments specify how to connect to
SAS Federation Server. The arguments identify the computer on which the server is
running, the port number that is used to access the server, and user authentication
information.

3. The DSN= connection argument references a DSN definition, which is defined on
SAS Federation Server and provides the information to access the data source. The
DSN definition, BaseDSN, encapsulates the SAS data set connection information,
such as the BASE table driver name and the physical location of the data.

4. The PRINT procedure specifies the name of the SAS data set that is accessed by the
DSN and prints the SAS data set.

Control Data Source Processing with a LIBNAME
Statement Option

Details
The FEDSVR engine supports several LIBNAME statement options that control data
source processing. The options that you can submit depend on the data source. This
example shows how to preserve an Oracle table name that is not a valid SAS name.

30 Chapter 8 • Examples of Using the Engine

Program

libname oralib fedsvr 1

 server="d1234.us.company.com" port=2171 user="myid" pwd=mypwd 2

dsn="OracleDSN" 3 preserve_tab_names="yes" 4 ;

proc sql dquote=ansi; 5

 select * from oralib."My Table";

Program Description
1. The LIBNAME statement assigns the libref OraLib and specifies the FEDSVR

engine.

2. The LIBNAME statement server connection arguments specify how to connect to
SAS Federation Server.

3. The data source connection arguments reference a DSN definition, which provides
the information to access an Oracle database.

4. The PRESERVE_TAB_NAMES=YES option controls table names by preserving
blank spaces, special characters, reserved words, and mixed case. The default
behavior is that SAS normalizes the DBMS table name according to SAS naming
conventions.

5. The SQL procedure reads the table name from the data source as My Table.

Apply a SAS Data Set Option

Details
When you access a data source by using the FEDSVR engine, you can specify SAS data
set options in a DATA step or SAS procedure. SAS data set options apply only to the
table on which they are specified. The SAS data set options that you can use depend on
the data source. Only a subset of the data set options that are provided by SAS are
supported for the FEDSVR engine.

This example shows how to apply the DBCOMMIT= data set option. The
DBCOMMIT= data set option causes an automatic commit (a permanent writing of data
to the DBMS) after a specified number of rows have been processed.

Program

libname db2 fedsvr 1

 server="d1234.us.company.com" port=2171 user="myid" pwd=mypwd 2

 dsn=DB2DSN; 3

data db2.dept (dbcommit=10); 4

 ...
run;

Apply a SAS Data Set Option 31

Program Description
1. The LIBNAME statement assigns the libref DB2 and specifies the FEDSVR engine.

2. The LIBNAME statement server connection arguments specify how to connect to
SAS Federation Server.

3. The data source connection arguments reference a DSN definition, which provides
the information to access a DB2 database.

4. The DBCOMMIT= data set option in the DATA statement causes a commit to be
issued after every 10 rows are processed.

Control Data Source Processing with a SAS
System Option and a LIBNAME Statement Option

Details
SAS system options are instructions that affect your SAS session. They control how
operations are performed. The availability and behavior of system options depend on the
data source. Only a subset of the system options that are provided by SAS are supported
for the FEDSVR engine. In addition, the FEDSVR engine supports several LIBNAME
statement options that control data source processing. Like SAS system options, the
LIBNAME statement options that you can submit depend on the data source.

This example shows how to control the rules for valid SAS column names by using a
SAS system option along with a LIBNAME statement option.

Program

options validvarname=any; 1

libname mylib fedsvr 2

 server="d1234.us.company.com" port=2171 user="myid" pwd="mypwd" 3

 dsn=BaseDSN 4

 preserve_col_names=yes 5 ;

proc sql dquote=ansi;
 create table mylib.mytable ("my$column" int);

Program Description
1. The OPTIONS statement includes the VALIDVARNAME=ANY system option,

which specifies that SAS column names can be up to 32 characters in length, can
begin with or contain any characters, including blanks, and can contain mixed-case
letters.

2. The LIBNAME statement assigns the libref MyLib and specifies the FEDSVR
engine.

32 Chapter 8 • Examples of Using the Engine

3. The LIBNAME statement server connection arguments specify how to connect to
SAS Federation Server.

4. The data source connection arguments reference a DSN definition, which provides
the information to access a SAS data set.

5. The PRESERVE_COL_NAMES=YES option controls the column names by
preserving blank spaces, special characters, and mixed case when a table is created.
Because the VALIDVARNAME=ANY system option is specified, the
PRESERVE_COL_NAMES=YES LIBNAME statement option is required.

6. The SQL procedure creates a table with a column named my$column.

Authenticate with an Authentication Domain

Details
The following is an example of how the AUTHDOMAIN= server connection option is
used in the FEDSVR LIBNAME statement. The AUTHDOMAIN= server connection
option enables a program to use metadata server connection system options to resolve
the calling identity instead of specifying USER= and PASSWORD= values in the
LIBNAME statement.

Program
options metaserver="d5678.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository=foundation; 1

libname lib1 fedsvr server="d1234.us.company.com" port="2171"
authdomain="fedauth1" 2 dsn=BASEDSN1;

proc datasets lib=lib1; run;
quit;

Program Description
1. The OPTIONS statement specifies SAS Metadata Server connection system options.

The system options assign the session context to the user who is identified in
METAUSER= and METAPASS= and establish a connection to SAS Metadata Server
on this user’s behalf. For more information about metadata server connection system
options, see SAS Language Interfaces to Metadata. These system options can be
specified in a configuration file, as well as in the OPTIONS statement.

2. The AUTHDOMAIN= server connection argument specifies the name of an
authentication domain that is defined on SAS Metadata Server.

If the specified authentication domain, FEDAUTH1, is a valid authentication domain
for the user identified in METAUSER= and METAPASS=, and the user authenticates
to the SAS Metadata Server, then SAS permits the SAS Federation Server
connection.

Authenticate with an Authentication Domain 33

For more information about authentication domains, see SAS Intelligence Platform:
Security Administration Guide.

Using the SCHEMA= Data Set Option to
Reference a Subsequent Data Source in a
Federated DSN

Details
SAS Federation Server supports DSN definitions that reference multiple data sources.
The data sources can be on the same DBMS or from different DBMS. A DSN definition
that references multiple data sources is referred to as a “federated DSN”.

The FEDSVR LIBNAME engine supports accessing one data source at a time. This
example shows how to use the SCHEMA= data set option to access data with a DSN
that references two Base SAS schemas.

Note: You must obtain appropriate schema names from the SAS Federation Server
administrator in order to perform this procedure.

Program
libname f fedsvr server="d1234.us.company.com" port=2171
user="myid" password="mypwd" dsn=feddsn; 1

proc datasets lib=f; run; quit; 2

proc print data=f.ids; run; 3

proc print data=f.class2(SCHEMA=schema2); run; 4

Program Description
1. The LIBNAME statement assigns libref F to a DSN definition named FEDDSN,

which defines access to two Base SAS schemas: SCHEMA1 and SCHEMA2. The
default behavior of the engine is to reference the first data source that is defined in
the DSN, which is SCHEMA1. The SCHEMA= data source processing option could
be specified in the LIBNAME statement to reference SCHEMA2 instead.

2. PROC DATASETS lists the tables that are available in SCHEMA1.

34 Chapter 8 • Examples of Using the Engine

Figure 8.1 PROC DATASETS Listing of SCHEMA1

3. The first PROC PRINT request specifies to print table F.Ids from SCHEMA1. The
schema that is indicated in the LIBNAME statement is the active schema, unless the
SCHEMA= data set option is used.

4. SCHEMA2 has a table in it named Class2. The second PROC PRINT specifies to
print table F.Class2. The SCHEMA= data set option is used to change the focus of
the FEDSVR engine from SCHEMA1 to SCHEMA2.

Using the SCHEMA= Data Source Processing
Option

Details
This example shows how to use the SCHEMA= data source processing option to
reference the second schema in a DSN that references two Base SAS schemas.

Program
libname g fedsvr server='1234.us.company.com' port=2171
user="myid" pwd="mypwd" DSN=FEDDSN schema=schema2; 1

proc datasets lib=g; run; quit; 2

proc print data=g.class2;run; 3

proc print data=g.ids(schema=schema2); run; 4

Using the SCHEMA= Data Source Processing Option 35

Program Description
1. The LIBNAME statement assigns libref G to the DSN definition named FEDDSN,

which defines access to two Base SAS schemas: SCHEMA1 and SCHEMA2. The
SCHEMA= data source processing option is specified in the LIBNAME statement to
reference SCHEMA2.

2. PROC DATASETS lists the tables that are available in SCHEMA2.

Figure 8.2 PROC DATASETS Listing of SCHEMA2

3. The first PROC PRINT request specifies to print table G.Class2 from SCHEMA2.
The schema indicated in the LIBNAME statement is the active schema.

4. The second PROC PRINT request specifies to print table G.Ids from SCHEMA1.
The SCHEMA= data set option is used to change the focus of the FEDSVR engine
from SCHEMA2 to SCHEMA1.

36 Chapter 8 • Examples of Using the Engine

Part 3

Reference

Chapter 9
LIBNAME Statement for the FEDSVR Engine . 39

Chapter 10
Data Source Processing LIBNAME Statement
Options for the FEDSVR Engine . 45

Chapter 11
System Options for the FEDSVR Engine . 77

Chapter 12
Data Set Options for the FEDSVR Engine . 99

37

38

Chapter 9

LIBNAME Statement for the
FEDSVR Engine

Dictionary . 39
LIBNAME Statement Syntax . 39

Dictionary

LIBNAME Statement Syntax
Associates a SAS libref with data to be processed by SAS Federation Server.

Valid in: Anywhere

Restriction: The FEDSVR LIBNAME engine requires SAS Federation Server 3.2 or later.

Interactions: The FEDSVR LIBNAME engine supports accessing only one data source at a time.
For more information, see “Federated DSNs” on page 9.
The engine processes nonexistent values as SAS missing values rather than ANSI
SQL null values. For behavior differences, see Chapter 5, “Null Values,” on page 17.

Syntax
LIBNAME libref FEDSVR

server-connection-options
data-source-connection-options
<data-source-processing-options> ;

Arguments
The LIBNAME statement takes the following arguments:

libref
a valid SAS name that serves as an alias (shortcut) to the aggregate storage location
of the data source or data sources. The data sources can be SAS data sets or third-
party relational databases. A libref cannot exceed eight characters.

FEDSVR
the engine name that connects to SAS Federation Server data access services that
provide scalable, threaded, high-performance, and standards-based data access

39

technology. The engine establishes a remote connection, such that the current SAS
session is a client to SAS Federation Server.

Requirement The engine name is required.

server-connection-options
provide connection information to SAS Federation Server. For a list of server
connection options, see “Server Connection Options” on page 40.

data-source-connection-options
provide connection information for accessing the data source or data sources. For the
data source connection options, see “Data Source Connection Options” on page 42.

Requirement You must specify data source connection information.

data-source-processing-options
define how data sources are processed. For a list of available options, see Chapter 10,
“Data Source Processing LIBNAME Statement Options for the FEDSVR Engine,”
on page 45.

CLEAR
disassociates one or more currently assigned librefs. Specify libref to disassociate a
single libref. Specify _ALL_ CLEAR to disassociate all currently assigned librefs.

LIST
writes the attributes of one or more libraries to the SAS log. Specify libref to list the
attributes of a single library. Specify _ALL_ LIST to list the attributes of all libraries
that have librefs in your current SAS session.

Server Connection Options
The server connection options specify how to connect to SAS Federation Server.

AUTHDOMAIN=authentication-domain
specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the specified
domain. Specifying an authentication domain is a convenient way to obtain the
metadata-based user credentials rather than having to explicitly supply them during
server sign-on. An example is AUTHDOMAIN=FedServerAuth.

A SAS metadata administrator creates authentication domain definitions while
creating a user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects that
provide access to SAS Federation Server. The domain name is resolved by the
engine calling the metadata server and returning the authentication credentials.

Requirements The authentication domain and the associated login definition must
be stored in a SAS Metadata Repository, and SAS Metadata Server
must be running to resolve the metadata object specification.

Enclose domain names that are not valid SAS names in double or
single quotation marks.

Interaction If you specify AUTHDOMAIN=, do not specify USER= and
PASSWORD=.

See For more information about creating and using authentication
domains, see SAS Intelligence Platform: Security Administration
Guide.

40 Chapter 9 • LIBNAME Statement for the FEDSVR Engine

PASSWORD=password
specifies the password that corresponds to the user ID for SAS Federation Server.
The maximum length is 512 characters.

Alias PWD=

Interaction If the password is not specified and you are running SAS interactively,
SAS displays a dialog box to acquire the password for the session.

Tip To specify an encoded password, use the PWENCODE procedure to
disguise the text string, and then enter the encoded password for
PASSWORD=. See the PWENCODE procedure in Base SAS
Procedures Guide.

PORT=number
specifies the TCP port that SAS Federation Server is listening to for connections.
The default port number used in SAS Federation Server installations is 2171. The
connection uses the SAS Bridge protocol. An example is port=2171.

Range 0 - 65535

SERVER='hostname | IPaddress'
specifies either the host name or IP (Internet Protocol) address of the computer that
hosts SAS Federation Server. Here is an example:
server="d1234.us.company.com" or server="123.45.67.890". The
maximum length is 256 characters.

Requirements You must specify the computer that hosts SAS Federation Server,
and you must enclose the host name or IP address in single or
double quotation marks.

SAS Federation Server must be running.

You must also specify DSN=.

Interactions Specifying SERVER= invokes the FEDSVR driver. The driver acts
as a conduit between a client, which is the current SAS session, and
a data source that is associated with SAS Federation Server.

The FEDSVR driver is platform independent, which means that it
can communicate from a SAS session on any platform with SAS
Federation Server on any platform.

USER=ID
specifies the user ID for logging on to SAS Federation Server. The maximum length
is 256 characters.

Alias UID=

Requirement The user ID must be capable of authenticating to SAS Metadata
Server. Users are registered on SAS Metadata Server by a SAS
Federation Server administrator.

Interaction If the user ID is not specified and you are running SAS interactively,
SAS displays a dialog box to acquire the user ID for the session.

LIBNAME Statement Syntax 41

Data Source Connection Options
The data source connection options provide the connection information to access the
data source. To access the data, you reference a DSN, which is the name of an object that
encapsulates the information that is needed to connect to the data source. The DSN
contains the table driver name, the physical location of the data, as well as any necessary
authentication information that is required to retrieve data.

The data source connection arguments to reference a DSN are as follows:

DSN=dsn-definition
references a DSN, which encapsulates all of the information that is necessary to
connect to a particular data source, configures the authorization that is enforced for
data access, and identifies the SQL dialect that the application submits to the data
source.

Requirements A SAS Federation Server administrator must have created the DSN
definition.

If the DSN definition name is not a valid SAS name, enclose the
DSN definition name in quotation marks. If the name contains
single quotation marks, use double quotation marks around the
name. Otherwise, use two single quotation marks in the name and
enclose the name in single quotation marks.

If a user ID and password are defined for the DSN definition, you
must specify DSNUSER= and DSNPASSWORD= with the DSN=
definition name. SAS data sets do not support a user ID or password
for a DSN definition.

To resolve the DSN, the user ID specified in DSNUSER= must have
Connect privilege to the DSN definition, the data service that it
references, or to SAS Federation Server. For more information, see
SAS Federation Server: Administrator’s Guide.

DSNPASSWORD="password"
specifies the password that corresponds to the user ID for the DSN. The maximum
length is data source dependent.

Alias DSNPWD=

Requirements The password must be enclosed in double quotation marks.

To specify DSNPASSWORD=, you must specify DSN= and
DSNUSER=.

Tip You can use an encoded password in place of a plain-text password.
For a method to encode your password, see the PWENCODE
procedure in Base SAS Procedures Guide.

DSNUSER="ID"
enables you to access a DSN with a user ID that is different from the default ID.

Alias DSNUID=

Default If DSNUSER= is not specified, the current user is assumed.

Requirements To specify DSNUSER=, you must specify DSN= and
DSNPASSWORD=.

42 Chapter 9 • LIBNAME Statement for the FEDSVR Engine

The user ID must be enclosed in double quotation marks.

Data Source Processing Options
The LIBNAME statement data source processing options control how a data source is
processed. For a list of the statement options, see Chapter 10, “Data Source Processing
LIBNAME Statement Options for the FEDSVR Engine,” on page 45.

LIBNAME Statement Syntax 43

44 Chapter 9 • LIBNAME Statement for the FEDSVR Engine

Chapter 10

Data Source Processing
LIBNAME Statement Options for
the FEDSVR Engine

Dictionary . 46
ACCESS= LIBNAME Statement Option . 46
APPLICATIONNAME= LIBNAME Statement Option . 46
AUTOCOMMIT= LIBNAME Statement Option . 47
COMPRESS= LIBNAME Statement Option . 47
CONNECTION= LIBNAME Statement Option . 48
DBCOMMIT= LIBNAME Statement Option . 49
DBGEN_NAME= LIBNAME Statement Option . 50
DBINDEX= LIBNAME Statement Option . 51
DBLIBINIT= LIBNAME Statement Option . 51
DBLIBTERM= LIBNAME Statement Option . 52
DBNULLKEYS= LIBNAME Statement Option . 53
DBPROMPT= LIBNAME Statement Option . 54
DBSASLABEL= LIBNAME Statement Option . 55
DEFER= LIBNAME Statement Option . 56
DIRECT_EXE= LIBNAME Statement Option . 57
DIRECT_SQL= LIBNAME Statement Option . 58
IGNORE_READ_ONLY_COLUMNS= LIBNAME Statement Option 59
INSERT_SQL= LIBNAME Statement Option . 61
INSERTBUFF= LIBNAME Statement Option . 61
MULTI_DATASRC_OPT= LIBNAME Statement Option 62
PRESERVE_COL_NAMES= LIBNAME Statement Option 64
PRESERVE_TAB_NAMES= LIBNAME Statement Option 65
QUALIFIER= LIBNAME Statement Option . 67
READBUFF= LIBNAME Statement Option . 68
READ_ISOLATION_LEVEL= LIBNAME Statement Option 68
READ_LOCK_TYPE= LIBNAME Statement Option . 69
REREAD_EXPOSURE= LIBNAME Statement Option . 70
SCHEMA= LIBNAME Statement Option . 71
SPOOL= LIBNAME Statement Option . 72
SQL_FUNCTIONS= LIBNAME Statement Option . 73
STRINGDATES= LIBNAME Statement Option . 74
UPDATE_ISOLATION_LEVEL= LIBNAME Statement Option 74
UPDATE_LOCK_TYPE= LIBNAME Statement Option . 75
UTILCONN_TRANSIENT= LIBNAME Statement Option 76

45

Dictionary

ACCESS= LIBNAME Statement Option
Determines the access level with which a libref connection is opened.

Valid in: LIBNAME statement

Default: none

Supports: All

Syntax
ACCESS= READONLY

Syntax Description
READONLY

specifies that tables can be read but not updated.

Details
Using this option prevents writing to the data source. If this option is omitted, tables can
be read and updated if you have the necessary data privileges.

APPLICATIONNAME= LIBNAME Statement Option
Specifies the client application’s name for auditing purposes.

Valid in: LIBNAME statement

Restriction: SERVER= must also be specified in the LIBNAME statement.

Supports: All

Syntax
APPLICATIONNAME=name

Syntax Description
name

the name of the client application or server. If the name contains a space, enclose the
name in quotation marks.

Details
The APPLICATIONNAME= option enables clients to identify themselves. This can be
valuable for auditing purposes. For more information, see SAS Federation Server:
Administrator’s Guide.

46 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

AUTOCOMMIT= LIBNAME Statement Option
Indicates whether updates are committed immediately after they are submitted.

Valid in: LIBNAME statement

Supports: DB2 under UNIX and PC, Greenplum, ODBC, MySQL

Syntax
AUTOCOMMIT= YES | NO

Syntax Description
YES

specifies that all updates, deletes, and inserts are committed (that is, saved to a table)
immediately after they are submitted, and no rollback is possible.

NO
specifies that the commit operation is automatically performed when processing
reaches the DBCOMMIT= value, or the default number of rows if DBCOMMIT is
not set.

Details
The default is NO if the data source supports transactions and the connection is used for
updating data.

For MySQL, the default is YES.

COMPRESS= LIBNAME Statement Option
Specifies the compression of rows in output tables.

Valid in: LIBNAME statement

Default: No

Supports: SAS data set

Syntax
COMPRESS= NO | YES | CHAR | BINARY

Syntax Description
NO

specifies that the rows in a newly created table are uncompressed (fixed-length
records).

YES | CHAR
specifies that the rows in a newly created table are compressed (variable-length
records) using RLE (Run Length Encoding). RLE compresses rows by reducing

COMPRESS= LIBNAME Statement Option 47

repeated consecutive characters (including blanks) to two-byte or three-byte
representations.

Tip Use this compression algorithm for character data.

BINARY
specifies that the rows in a newly created table are compressed (variable-length
records) using RDC (Ross Data Compression). RDC combines run-length encoding
and sliding-window compression to compress the file.

Interaction For the COPY procedure, the default value CLONE uses the
compression attribute from the input data set for the output data set.
That attribute is used instead of the value that is specified in the
COMPRESS= option. This interaction does not apply when you use
SAS/SHARE or SAS/CONNECT.

Tip This method is highly effective for compressing medium to large
(several hundred bytes or larger) blocks of binary data (numeric
columns). Because the compression function operates on a single
record at a time, the record length must be several hundred bytes or
larger for effective compression.

CONNECTION= LIBNAME Statement Option
Specifies whether operations on a single libref can share a connection to the DBMS.

Valid in: LIBNAME statement

Default: SHAREDREAD

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
CONNECTION= SHARED | SHAREDREAD | UNIQUE

Syntax Description
SHARED

specifies that all operations that access DBMS tables in a single libref share a single
connection.

Use this option with caution. When a single SHARED connection is used for
multiple table opens, a commit or rollback that is performed on one table being
updated also applies to all other tables that are opened for update. Even if a table is
opened for a Read operation, its Read cursor might be resynchronized as a result of
this commit or rollback. If the cursor is resynchronized, there is no guarantee that the
new table will match the original table that was being read.

Use SHARED to eliminate the deadlock that can occur when you create and load a
DBMS table from an existing table that resides in the same database or tablespace.
This happens only in certain output processing situations and is the only
recommended use for CONNECTION=SHARED.

48 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

SHAREDREAD
specifies that all Read operations that access DBMS tables in a single libref share a
single connection. A separate connection is established for every table that is opened
for update or output operations.

Where available, this is the default because it offers the best performance and it
guarantees data integrity.

UNIQUE
specifies that a separate connection is established every time a DBMS table is
accessed by your SAS application.

Use UNIQUE if you want each use of a table to have its own connection.

Details
Typically, each DBMS connection has one transaction, or work unit, that is active in the
connection. This transaction is affected by commits or rollbacks that are performed
within the connection while executing the SAS application. The CONNECTION= option
enables you to control the number of connections, and therefore transactions, that are
executed and supported for each LIBNAME statement.

For ODBC databases, if the data source supports only one active open cursor per
connection, the default value is CONNECTION=UNIQUE. Otherwise, the default value
is CONNECTION=SHAREDREAD.

DBCOMMIT= LIBNAME Statement Option
Causes an automatic Commit (a permanent writing of data to the DBMS) after a specified number of rows
have been processed.

Valid in: LIBNAME statement

Default: 1000 when inserting rows into a DBMS table; 0 when updating a DBMS table

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
DBCOMMIT= n

Syntax Description
n

is an integer greater than or equal to 0.

Details
DBCOMMIT= affects update, delete, and insert processing. The number of rows that are
processed includes rows that are not processed successfully. If you set DBCOMMIT=0,
a commit is issued only once (after the procedure or DATA step completes).

If the DBCOMMIT= option is explicitly set, the engine fails any update that has a
WHERE clause.

SAS data sets cannot be rolled back. Therefore, for SAS data sets, this option has no
effect. However, if explicitly set, the engine still fails any update that has a WHERE
clause even though the value that is specified has no effect.

DBCOMMIT= LIBNAME Statement Option 49

See Also
To apply this option to an individual table, use the DBCOMMIT= data set option.

DBGEN_NAME= LIBNAME Statement Option
Specifies how SAS automatically renames columns that contain characters that SAS does not allow, such
as $, to valid SAS column names.

Valid in: LIBNAME statement

Default: DBMS

Supports: All

Syntax
DBGEN_NAME= DBMS | SAS

Syntax Description
DBMS

specifies that the columns are renamed to valid SAS column names. Disallowed
characters are converted to underscores. If a column is converted to a name that
already exists, a sequence number is appended to the end of the new name.

SAS
specifies that DBMS columns are renamed to the format _COLn, where n is the
column number (starting with zero). The LIBNAME option
PRESERVE_COL_NAMES=YES and the global option VALIDVARNAME=ANY
must also be specified.

Details
SAS retains column names when it reads data from tables, unless a column name
contains characters that SAS does not allow. When the engine reads column names that
contain characters that are not allowed in SAS names, the default behavior is to replace
an unsupported character with an underscore.

For example, if you specify DBGEN_NAME=SAS, a DBMS column named Dept$Amt
is renamed to _COLn. If you specify DBGEN_NAME=DBMS, the Dept$Amt column
is renamed to Dept_Amt.

Note: SAS does not allow names that include blank spaces or special characters such as
@,#,%, $ unless the VALIDVARNAME option is set to ANY.

When the engine encounters a DBMS name that exceeds 32 characters, it truncates the
name.

This option is intended primarily for National Language Support, notably for the
conversion of kanji to English characters. English characters that are converted from
kanji are often those that are not allowed in SAS.

See Also
To apply this option to an individual table, use the DBGEN_NAME= data set option.

50 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

DBINDEX= LIBNAME Statement Option
Improves performance when processing a join that involves a large DBMS table and a small SAS data set.

Valid in: LIBNAME statement

Default: DBMS-specific

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
DBINDEX= YES | NO

Syntax Description
YES

specifies that SAS uses columns in the WHERE clause that have defined DBMS
indexes.

NO
specifies that SAS does not use indexes that are defined on DBMS columns.

Details
When you are processing a join that involves a large DBMS table and a relatively small
SAS data set, you might be able to use DBINDEX= to improve performance.

Note: Improper use of this option can degrade performance.

See Also
To apply this option to an individual table, use the DBINDEX= data set option.

DBLIBINIT= LIBNAME Statement Option
Specifies a valid data source command to be executed once within the scope of the LIBNAME statement
or libref that established the first connection to the data source.

Valid in: LIBNAME statement

Default: none

Supports: All

Syntax
DBLIBINIT=<'> command<'>

Syntax Description
command

is any SQL or SAS FedSQL language statement, DBMS script, stored procedure, or
native DBMS command that is supported by the driver. The command must not
return a result set.

DBLIBINIT= LIBNAME Statement Option 51

Details
The initialization command that you select can be a script, stored procedure, or any SAS
FedSQL language or DBMS SQL statement that might provide additional control over
the interaction between the LIBNAME engine and the data source.

The command executes immediately after the first connection is successfully
established. If the command fails, a disconnect occurs and the libref is not assigned. You
must specify the command as a single, quoted string, unless it is an environment
variable.

DBLIBINIT= fails if either CONNECTION=UNIQUE or DEFER=YES, or if both of
these LIBNAME statement options are specified.

Example: Specifying an Initialization Command for All
Operations in a Libref

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn connection=shared dblibinit='Test';

See Also
“DBLIBTERM= LIBNAME Statement Option” on page 52

DBLIBTERM= LIBNAME Statement Option
Specifies a valid data source command to be executed once, before the data source that is associated with
the last connection made by the LIBNAME statement or libref disconnects.

Valid in: LIBNAME statement

Default: none

Supports: All

Syntax
DBLIBTERM=<'> command<'>

Syntax Description
command

is any SQL or SAS FedSQL language statement, DBMS script, stored procedure, or
native DBMS command that is supported by the driver. The command must not
return a result set.

Details
The termination command that you select can be a script, stored procedure, or any SAS
FedSQL language or DBMS SQL statement that might provide additional control over
the interaction between the engine and the data source. The command executes
immediately before SAS terminates the last connection to the data source. If the
command fails, a warning message is issued but the library deassignment and disconnect
still occurs. You must specify the command as a single, quoted string.

52 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

DBLIBTERM= fails if CONNECTION=UNIQUE or DEFER=YES is specified.

Example: Inserting a Row After a Library Is Cleared
In this example, Row 2 is added after the library has been cleared.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn1;

data mydblib.mytab;
 x=1; y='one';
run;

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn1
 dblibterm="insert into mytab values (2, 'two')";

libname mydblib clear;
libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn1;

proc sql;
 select * from mydblib.mytab;
quit;

DBNULLKEYS= LIBNAME Statement Option
Controls the format of the WHERE clause when you use the DBKEY= data set option.

Valid in: LIBNAME statement

Default: DBMS-specific

Supports: All

Syntax
DBNULLKEYS= YES | NO

Details
If there might be NULL values in the transaction table or the master table for the
columns that you specify in the DBKEY= option, use DBNULLKEYS=YES. This is the
default for most datasources. When you specify DBNULLKEYS=YES and specify a
column that is not defined as NOT NULL in the DBKEY= data set option, SAS
generates a WHERE clause that can find NULL values. For example, if you specify
DBKEY=COLUMN, and COLUMN is not defined as NOT NULL, SAS generates a
WHERE clause with the following syntax:

where ((column = ?) or ((column is null) and (? is null)))

This syntax enables SAS to prepare the statement once and use it for any value (NULL
or NOT NULL) in the column. Note that this syntax has the potential to be much less

DBNULLKEYS= LIBNAME Statement Option 53

efficient than the shorter form of the WHERE clause (presented below). When you
specify DBNULLKEYS=NO or specify a column that is defined as NOT NULL in the
DBKEY= option, SAS generates a simple WHERE clause.

If you know that there are no NULL values in the transaction table or the master table
for the columns that you specify in the DBKEY= option, you can use
DBNULLKEYS=NO. If you specify DBNULLKEYS=NO and specify
DBKEY=COLUMN, SAS generates a shorter form of the WHERE clause (regardless of
whether the column specified in DBKEY= is defined as NOT NULL):

where (column = ?)

See Also
To apply this option to an individual table, use the DBNULLKEYS= data set option.

DBPROMPT= LIBNAME Statement Option
Specifies whether a window prompts the user to enter connection information before connecting to the data
source in interactive mode.

Valid in: LIBNAME statement

Default: NO

Supports: All

Syntax
DBPROMPT= YES | NO

Syntax Description
YES

specifies that a window interactively prompts you for the data source connection
options the first time the libref is used.

NO
specifies that you are not prompted for the data source connection options. You must
specify either a DSN definition or a fully specified connection string using
CONNECT_STRING=. NO is the default.

Details
If you specify DBPROMPT=YES, it is not necessary to provide connection options with
the LIBNAME statement. If you specify connection options with the LIBNAME
statement and you specify DBPROMPT=YES, the connection option values are
displayed in the window (except for the password value, which appears as a series of
asterisks). All of these values can be overridden interactively.

The DBPROMPT= option interacts with the DEFER= option to determine when the
prompt window appears. If DEFER=NO, the DBPROMPT window appears when the
LIBNAME statement is executed. If DEFER=YES, the DBPROMPT window appears
the first time a table is opened. The DEFER= option normally defaults to NO but
defaults to YES if DBPROMPT=YES. You can override this default by explicitly setting
DEFER=NO.

54 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

The DBPROMPT window usually opens only once for each time that the LIBNAME
statement is specified. It might open multiple times if DEFER=YES and the connection
fails when the engine tries to open a table. In these cases, the DBPROMPT window
appears until a successful connection occurs or you click Cancel.

The maximum password length for most of the data sources is 32 characters.

Examples

Example 1: Specifying a Prompt for Connection Information
In the following example, values provided in the LIBNAME statement are pulled into
the DBPROMPT window. The values user1 and basedsn appear in the DBPROMPT
window and can be edited and confirmed by the user. The password value appears in the
DBPROMPT window as a series of asterisks; it can also be edited by the user.

libname seclib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn dbprompt=yes defer=no;

Example 2: Deferring a Prompt for Connection Information
In the following example, the DBPROMPT window does not open when the LIBNAME
statement is submitted because DEFER=YES. The DBPROMPT window appears when
the PRINT procedure is processed. The values user1 and basedsn appear in the
DBPROMPT window and can be edited and confirmed by the user. The password value
appears in the DBPROMPT window as a series of asterisks; it can also be edited by the
user. Upon confirmation, the connection is made, and the table is opened.

libname seclib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn dbprompt=yes defer=yes;

proc print data=lib1.staff; run;

DBSASLABEL= LIBNAME Statement Option
Specifies how the table driver returns column labels.

Valid in: LIBNAME statement

Default: COMPAT

Supports: All

Syntax
DBSASLABEL= COMPAT | NONE

Syntax Description
COMPAT

specifies to return the column label to the application. For data sources that support
storing column labels on the table (for example, SAS data sets), the engine returns
the label to the application. If there is no label stored, no label is returned. For data

DBSASLABEL= LIBNAME Statement Option 55

sources that do not store column labels on the table, the engine returns the column
name as the label.

NONE
specifies that column labels are not returned even if one exists. The engine returns
blanks for the column labels.

Example: Returning Blank Labels for Aliases in Headings
The following example demonstrates how DBSASLABEL= is used as a LIBNAME
option to return blank column labels so that PROC SQL can use the column aliases as
the column headings.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn dbsaslabel=none;

proc sql;
 select deptno as Department ID, loc as Location
 from mydblib.dept;

Without the DBSASLABEL= option set to NONE, the aliases would be ignored, and
DeptNo and Loc would be used as column headings in the result set.

See Also
To apply this option to an individual table, use the DBSASLABEL= data set option.

DEFER= LIBNAME Statement Option
Specifies when the connection to the data source occurs.

Valid in: LIBNAME statement

Default: NO

Supports: All

Syntax
DEFER= NO | YES

Syntax Description
NO

specifies that the connection to the data source occurs when the libref is assigned by
the LIBNAME statement.

YES
specifies that the connection to the data source occurs when a data source table is
opened.

Details
The default value NO is overridden if DBPROMPT=YES.

56 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

DIRECT_EXE= LIBNAME Statement Option
Lets you pass a SAS SQL procedure DELETE statement directly to a data source to process, which can
improve performance.

Valid in: LIBNAME statement

Default: none

Supports: All

Syntax
DIRECT_EXE= DELETE

Syntax Description
DELETE

specifies that a PROC SQL DELETE statement is passed directly to the data source
for processing.

Details
If DIRECT_EXE=DELETE is not specified, the PROC SQL DELETE statement is
processed by SAS, which reads the table and deletes one row at a time. Specifying
DIRECT_EXE=DELETE can improve performance because the PROC SQL DELETE
statement is passed directly to the data source, which then deletes all the rows in the
table.

Example: Emptying a Table from a Database
The following example demonstrates the use of DIRECT_EXE= to empty a table.

libname x fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn direct_exe=delete;
data x.db_dft; /*create the SAS data set of 5 rows */
 do col1=1 to 5;
 output;
 end;
run;
options sastrace=",,,d" sastraceloc=saslog nostsuffix;
proc sql;
 delete * from x.db_dft; /*this delete statement
 is passed directly to the data source*/
quit;

When you specify trace on, you should see something similar to the following:

Output 10.1 SAS Log Output

SASTSE_2: Executed: on connection 1
delete from db_dft

DIRECT_EXE= LIBNAME Statement Option 57

DIRECT_SQL= LIBNAME Statement Option
Lets you specify whether generated SQL is passed to the data source for processing.

Valid in: LIBNAME statement

Default: YES

Supports: All

Syntax
DIRECT_SQL= YES | NO | NONE | NOGENSQL | NOWHERE | NOFUNCTIONS
| NOMULTOUTJOINS

Syntax Description
YES

specifies that generated SQL from PROC SQL is passed directly to the data source
for processing.

NO
specifies that generated SQL from PROC SQL is not passed to the data source for
processing. This is the same as specifying the value NOGENSQL.

NONE
specifies that generated SQL is not passed to the data source for processing. This
includes SQL that is generated from PROC SQL, as well as SAS functions that can
be converted into DBMS functions, joins, and WHERE clauses.

NOGENSQL
prevents PROC SQL from generating SQL to be passed to the DBMS for processing.

NOWHERE
prevents WHERE clauses from being passed to the data source for processing. This
includes SAS WHERE clauses and PROC SQL generated or PROC SQL specified
WHERE clauses.

NOFUNCTIONS
prevents SQL statements from being passed to the data source for processing when
they contain functions.

NOMULTOUTJOINS
specifies that PROC SQL does not attempt to pass any multiple outer joins to the
data source for processing. Other join statements might be passed down, however,
including portions of a multiple outer join.

Details
By default, processing is passed to the data source when possible, because the data
source might be able to process the functionality more efficiently than SAS does. In
some instances, however, you might not want the data source to process the SQL. For
example, the presence of null values in DBMS data might cause different results
depending on whether the processing takes place in SAS or in the DBMS. If you do not
want the data source to handle the SQL, use DIRECT_SQL= to force SAS to handle
some or all of the SQL processing.

58 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

If you specify DIRECT_SQL=NOGENSQL, PROC SQL does not generate data source
SQL. This means that SAS functions, joins, and DISTINCT processing that occur within
PROC SQL are not passed to the DBMS for processing. (SAS functions outside PROC
SQL can still be passed to the DBMS.) However, if PROC SQL contains a WHERE
clause, the WHERE clause is passed to the data source, if possible. Unless you specify
DIRECT_SQL=NOWHERE, SAS attempts to pass all WHERE clauses to the data
source.

If you specify more than one value for this option, separate the values with spaces and
enclose the list of values in parentheses. For example, you could specify
DIRECT_SQL=(NOFUNCTIONS, NOWHERE).

Examples

Example 1: Preventing a DBMS from Processing a Join
The following example prevents a join between two tables from being processed by the
DBMS, by setting DIRECT_SQL=NOGENSQL. Instead, SAS processes the join.

proc sql;
 create view work.v as
 select tab1.deptno, dname from
 mydblib.table1 tab1,
 mydblib.table2 tab2
 where tab1.deptno=tab2.deptno
 using libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn direct_sql=nogensql;

Example 2: Preventing a DBMS from Processing a SAS Function
The following example prevents a SAS function from being processed by the DBMS.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn direct_sql=nofunctions;
proc print data=mydblib.tab1;
 where lastname=soundex ('Paul');
run;

IGNORE_READ_ONLY_COLUMNS= LIBNAME Statement Option
Specifies whether to ignore or include columns whose data types are read-only when generating an SQL
statement for inserts or updates.

Valid in: LIBNAME statement

Default: NO

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
IGNORE_READ_ONLY_COLUMNS= YES | NO

IGNORE_READ_ONLY_COLUMNS= LIBNAME Statement Option 59

Syntax Description
YES

specifies to ignore columns whose data types are Read-Only when generating
INSERT and UPDATE statements.

NO
specifies to include columns whose data types are Read-Only when generating
INSERT and UPDATE statements

Details
Several databases include data types that can be Read-Only, such as the DB2
TIMESTAMP data type. Also, some databases have properties that allow certain data
types to be Read-Only, such as the Microsoft SQL Server identity property.

When the IGNORE_READ_ONLY_COLUMNS= option is set to NO (the default), and
a table contains a column that is Read-Only, an error is returned indicating that the data
could not be modified for that column. For data sources that do not have Read-Only
columns, such as SAS data sets, the option has no effect.

Comparisons
For the following example, a database that contains the table Products is created with
two columns: Id and Product_Name. The Id column is defined by a Read-Only data type
and Product_Name is a character column.

create table products (id int identity primary key, product_name varchar(40))

If you have a SAS data set that contains the name of your products, you can insert the
data from the SAS data set into the Products table:

data work.products;
 id=1;
 product_name='screwdriver';
 output;
 id=2;
 product_name='hammer';
 output;
 id=3;
 product_name='saw';
 output;
 id=4;
 product_name='shovel';
 output;
run;

With IGNORE_READ_ONLY_COLUMNS=NO (the default), an error is returned by
the DBMS because, in this example, the Id column cannot be updated. However, if you
set the option to YES and execute a PROC APPEND, the append succeeds, and the SQL
statement that is generated does not contain the Id column.

libname x fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=db2dsn ignore_read_only_columns=yes;
options sastrace=',,,d' sastraceloc=saslog nostsuffix;
proc append base=x.products data=work.products;
run;

60 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

See Also
To apply this option to an individual table, use the IGNORE_
READ_ONLY_COLUMNS= data set option.

INSERT_SQL= LIBNAME Statement Option
Specifies the method that is used to insert rows into a data source.

Valid in: LIBNAME statement

Default: NO for SAS data set; for all other data sources, the default is YES.

Supports: All

Syntax
INSERT_SQL= YES | NO

Syntax Description
YES

specifies to use the data source's SQL insert method to insert new rows into a table.

NO
specifies to use an alternate (DBMS-specific) method to insert new rows into a table.

Details
SAS data sets generally have improved insert performance when INSERT_SQL=NO,
which is the default for SAS data sets. Other data sources might have inferior insert
performance (or might fail) unless INSERT_SQL=YES. You should experiment to
determine the optimal setting for your situation.

See Also
To apply this option to an individual table, use the INSERT_SQL= data set option.

INSERTBUFF= LIBNAME Statement Option
Specifies the number of rows in a single insert operation.

Valid in: LIBNAME statement

Default: Data source-specific

Supports: All

Syntax
INSERTBUFF= positive-integer

INSERTBUFF= LIBNAME Statement Option 61

Syntax Description
positive-integer

specifies the number of rows to insert. SAS allows the maximum that is allowed by
the data source.

Details
All data sources default to INSERT_SQL=YES except for SAS data sets. When
INSERT_SQL=YES, INSERTBUFF= defaults to 1 and single row inserts are used. The
optimal value for this option varies with factors such as network type and available
memory. You might need to experiment with different values to determine the best value
for your site.

The SAS application messages that indicate the success or failure of an insert operation
represent information for only a single insert, even when multiple inserts are performed.
Therefore, when you assign a value that is greater than INSERTBUFF=1, these
messages might be incorrect.

If you specify the DBCOMMIT= option with a value that is less than the value of
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=. If neither
DBCOMMIT= nor INSERTBUFF= is specified, INSERTBUFF= defaults to a block size
of 32K. SAS determines the number of rows by dividing 32K by the size of each row.

Note: When you insert by using the VIEWTABLE window or the FSVIEW or FSEDIT
procedure, use INSERTBUFF=1 to prevent the DBMS driver from trying to insert
multiple rows. These features do not support inserting more than one row at a time.

Additional driver-specific restrictions might apply.

See Also
To apply this option to an individual table, use the INSERTBUFF= data set option.

MULTI_DATASRC_OPT= LIBNAME Statement Option
Used in place of DBKEY to improve performance when processing a join between two data sources.

Valid in: LIBNAME statement

Default: NONE

Supports: DB2 for UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
MULTI_DATASRC_OPT= NONE | IN_CLAUSE

Syntax Description
NONE

turns off the functionality of the option.

IN_CLAUSE
specifies that an IN clause containing the values read from a smaller table will be
used to retrieve the matching values in a larger table based on a key column
designated in an equi-join.

62 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

Details
When SAS is processing a join between a SAS data set and a DBMS table, ensure that
the SAS data set is smaller than the DBMS table for optimal performance. However, in
the event that the SAS data set is larger than that the DBMS table, the SAS data set will
still be used in the IN clause.

When SAS is processing a join between two DBMS tables, SELECT COUNT (*) is
issued to determine which table is smaller and if it qualifies for an IN clause.

Currently, the IN clause has a limit of 4,500 unique values.

Setting the DBKEY=data set option overrides MULTI_DATASRC_OPT=.

DIRECT_SQL= can affect this option as well. If DIRECT_SQL=NONE or NOWHERE,
the IN clause cannot be built and passed to the DBMS, regardless of the value of
MULTI_DATASRC_OPT=. These settings for DIRECT_SQL= prevent a WHERE
clause from being passed.

Oracle Details: Oracle can process an IN clause of only 1,000 values. Therefore, it
divides larger IN clauses into multiple, smaller IN clauses. The results are combined into
a single result set. For example, if an IN clause contained 4,000 values, Oracle produces
4 IN clauses that each contain 1,000 values. A single result will be produced, as if all
4,000 values were processed as a whole.

Examples

Example 1: Building and Passing an IN Clause for a Join
The following example builds and passes an IN clause from the SAS table to the DBMS
table, retrieving only the necessary data to process the join:

proc sql;
 create view work.v as
 select tab2.deptno, tab2.dname from
 work.sastable tab1, dblib.table2 tab2
 where tab1.deptno = tab2.deptno
 using libname dblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn multi_datasrc_opt=in_clause;
quit;

Example 2: Preventing Build and Pass of an IN Clause for a Join
The following example prevents the building and passing of the IN clause to the DBMS,
requiring all rows from the DBMS table to be brought into SAS for processing the join:

libname dblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn multi_datasrc_opt=none;
proc sql;
 select tab2.deptno, tab2.dname from
 work.table1 tab1,
 dblib.table2 tab2
 where tab1.deptno=tab2.deptno;
quit;

MULTI_DATASRC_OPT= LIBNAME Statement Option 63

PRESERVE_COL_NAMES= LIBNAME Statement Option
Preserves spaces, special characters, use of reserved words, and case sensitivity in column names when
you create tables.

Valid in: LIBNAME statement (when you create tables)

Default: NO

Supports: All

Syntax
PRESERVE_COL_NAMES= NO | YES

Syntax Description
NO

specifies that column names that are used in table creation are derived from SAS
column names by using the SAS column name normalization rules. (For more
information see “VALIDVARNAME= System Option” on page 97.) However, the
data source applies its specific normalization rules to the SAS column names when
creating the column names.

The use of name literals to create column names that use database keywords or
special symbols other than the underscore character might be invalid when DBMS
normalization rules are applied. To include nonstandard SAS symbols or database
keywords, specify PRESERVE_COL_NAMES=YES.

If you name a column with an SQL or FedSQL reserved word, an error message is
issued.

YES
specifies that column names that are used in table creation are passed to the data
source with any special characters, reserved words, and the exact, case-sensitive
spelling of the name preserved.

For Teradata, YES is the only supported value for this option.

Details
This option applies only when you create a new table. When you create a table, you
assign the column names by using one of the following methods:

• To control the case of the column names, specify columns using the desired case and
set PRESERVE_COL_NAMES=YES. If you use special symbols or blanks, you
must set VALIDVARNAME= to ANY and use name literals.

• To enable the DBMS to normalize the column names according to its naming
conventions, specify columns using any case and set
PRESERVE_COLUMN_NAMES= NO.

Note: When you read from, insert rows into, or modify data in an existing DBMS table,
SAS identifies the database column names by their spelling. Therefore, when the
database column exists, the case of the column name does not matter.

64 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

Specify the alias PRESERVE_NAMES= if you plan to specify both the
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options in your
LIBNAME statement. Using this alias saves you some time when programming.

To use column names in your SAS program that are not valid SAS names, you must use
one of the following techniques:

• Use the DQUOTE= option in PROC SQL and then reference your columns using
double quotation marks. For example:

proc sql dquote=ansi;
 select "Total$Cost" from mydblib.mytable;

• Specify the global system option VALIDVARNAME=ANY and use name literals in
the SAS language. For example:

proc print data=mydblib.mytable;
 format 'Total$Cost'n 22.2;

If you are creating a table in PROC SQL, you must also include the
PRESERVE_COL_NAMES=YES option in your LIBNAME statement. For example:

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuid=orauser dsnpwd=orapwd
 preserve_col_names=yes;
proc sql dquote=ansi;
 create table mydblib.mytable ("my$column" int);

For more information about using a SAS Federation Server reserved word as a column
name, see “Reserved Language Keywords” on page 22.

PRESERVE_COL_NAMES= does not apply to the pass-through facility.

See Also
To apply this option to an individual table, use the PRESERVE_COL_NAMES= data set
option.

PRESERVE_TAB_NAMES= LIBNAME Statement Option
Preserves spaces, special characters, reserved words, and case sensitivity in DBMS table names.

Valid in: LIBNAME statement

Default: NO

Supports: All

Syntax
PRESERVE_TAB_NAMES= NO | YES

Syntax Description
NO

specifies that when you create tables or refer to an existing table, the table names are
derived from SAS member names by using SAS member name normalization.
However, most databases apply DBMS-specific normalization rules to the SAS

PRESERVE_TAB_NAMES= LIBNAME Statement Option 65

member names. Therefore, the table names are created or referenced in the database
following the DBMS-specific normalization rules.

If you use an SQL or SAS FedSQL language reserved word as a table name, an error
is issued.

When you use SAS to read a list of table names (for example, in the SAS Explorer
window), the tables whose names do not conform to the SAS member name
normalization rules do not appear in the output. In SAS line mode, the number of
tables that are not displayed from PROC DATASETS because of this restriction
appears in a note. Here is an example:

Due to the PRESERVE_TAB_NAMES=NO LIBNAME option setting, 12
table(s) have not been displayed.

You will not get this warning when using SAS Explorer.

SAS Explorer displays DBMS table names in uppercase form when
PRESERVE_TAB_NAMES=NO. This is now how the tables are represented in the
DBMS.

YES
specifies that table names are read from and passed to the data source with any
special characters, reserved words, and the exact, case-sensitive spelling of the name
preserved. For Teradata, YES is the only supported value for this option. For SAS
data sets, you need this option only if you are using an SQL reserved word as a table
name. In all other cases, a valid SAS name must be used.

Details
To use table names in your SAS program that are not valid SAS names, use one of the
following techniques:

• Use the PROC SQL option DQUOTE= and place double quotation marks around the
table name. The libref must specify PRESERVE_TAB_NAMES=YES. For example:

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1 dsn=oradsn;
proc sql dquote=ansi;
 select * from mydblib."my table";

• Use name literals in the SAS language. The libref must specify
PRESERVE_TAB_NAMES=YES. For example:

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn preserve_tab_names=yes;
proc print data=mydblib.'my table'n;
run;

• To use a SAS Federation Server reserved word with SAS FEDSQL language or
PROC SQL, see “Reserved Language Keywords” on page 22.

Specify the alias PRESERVE_NAMES= to save time if you are specifying both
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= in your LIBNAME
statement.

Oracle Details: Unless you specify PRESERVE_TAB_NAMES=YES, the table name
that you enter for SCHEMA= or for the DBINDEX= data set option is converted to
uppercase.

66 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

Example: Results of PRESERVE_TAB_NAMES=YES
versus PRESERVE_TAB_NAMES=NO
If you use PROC DATASETS to read the table names in an Oracle database that contains
three tables, My_Table, MY_TABLE, and MY TABLE. The results differ depending on
the setting of PRESERVE_TAB_NAMES.

If the libref specifies PRESERVE_TAB_NAMES=NO, then the PROC DATASETS
output is one table name, MY_TABLE. This is the only table name that is in Oracle
normalized form (uppercase letters and a valid symbol, the underscore). My_Table is not
displayed because it is not in Oracle normalized form. MY TABLE is not displayed
because it is not in SAS member normalized form (the embedded space is a nonstandard
SAS character).

If the libref specifies PRESERVE_TAB_NAMES=YES, then the PROC DATASETS
output includes all three table names, My_Table, MY_TABLE, and MY TABLE.

See Also
“PRESERVE_COL_NAMES= LIBNAME Statement Option” on page 64

QUALIFIER= LIBNAME Statement Option
Identifies database objects, such as tables, by using a qualifier.

Valid in: LIBNAME statement

Alias: CATALOG=

Default: none

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
QUALIFIER= qualifier-name

Details
If this option is omitted, the default qualifier name, if any, is used for the data source.
QUALIFIER= can be used for any data source that allows three-part identifier names:
qualifier.schema.object.

MySQL Details: The MySQL driver does not support three-part identifier names, so a
two-part name is used (such as qualifier.object).

Example: Specifying Use of a Three-Part Name
In the following LIBNAME statement, the QUALIFIER= option causes any reference in
SAS to MyDBLib.Employee to be interpreted by a DB2 database as
MyDept.Scott.Employee.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=db2dsn qualifier=mydept schema=scott;

QUALIFIER= LIBNAME Statement Option 67

See Also
To apply this option to an individual table, use the QUALIFIER= data set option.

READBUFF= LIBNAME Statement Option
Specifies the number of rows of data to read into the buffer.

Valid in: LIBNAME statement

Default: DBMS-specific

Supports: All

Syntax
READBUFF= integer

Syntax Description
integer

is the positive number of rows to hold in memory. SAS allows the maximum number
that is allowed by the database.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
then the rows that are returned to the SAS application might be out of date. For example,
if someone else modifies the rows, you do not see the changes.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows are retrieved in one fetch operation. If READBUFF= is
not set, certain operations such as SQL SELECT statements cause the number of rows to
be set to the client's default value, which for the engine is one row at a time. Setting
READBUFF=128 can significantly boost the application's performance.

If you do not specify a value with this option, the engine calculates the buffer size based
on the row length of your data (with a minimum of 10) and retrieves the number of rows
in each fetch operation.

See Also
To apply this option to an individual table, use the READBUFF= data set option.

READ_ISOLATION_LEVEL= LIBNAME Statement Option
Defines the degree of isolation of the current application process from other concurrently running
application processes.

Valid in: LIBNAME statement

Default: DBMS-specific

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

68 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

Syntax
READ_ISOLATION_LEVEL= DBMS-specific value

Syntax Description
See the reference documentation for your DBMS for additional details.

Details
The degree of isolation defines the following degrees:

• the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

• the degree to which update activity of other concurrently executing application
processes can affect the current application.

The ODBC and DB2 drivers ignore this option if READ_LOCK_TYPE= is not set to
ROW.

See Also
To apply this option to an individual table, use the READ_ISOLATION_LEVEL= data
set option.

READ_LOCK_TYPE= LIBNAME Statement Option
Specifies how data in a DBMS table is locked during a Read transaction.

Valid in: LIBNAME statement

Default: data source-specific

Supports: DB2 under UNIX and PC, ODBC, Oracle

Syntax
READ_LOCK_TYPE= ROW | NOLOCK

Syntax Description
ROW

locks a row if any of its columns are accessed. If you are accessing a DB2 or ODBC
database, READ_LOCK_TYPE=ROW indicates that locking is based on the
READ_ISOLATION_LEVEL= option. (This value is valid for connecting to DB2,
ODBC, or Oracle databases.)

NOLOCK
does not lock the DBMS table, pages, or rows during a Read transaction. (This value
is valid for connecting to the Microsoft SQL Server via the ODBC table driver.)

Details
If you omit READ_LOCK_TYPE=, the default is the data source's default action. You
can set a lock for one data source table by using the data set option or for a group of
DBMS tables by using the LIBNAME option.

READ_LOCK_TYPE= LIBNAME Statement Option 69

Example: Specify a Row-Level Lock for Read and Update
In the following example, the LIBNAME options specify that row-level locking is used
when data is read or updated:

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1 dsn=oradsn
 read_lock_type=row update_lock_type=row;

See Also
To apply this option to an individual table, use the READ_LOCK_TYPE= data set
option.

REREAD_EXPOSURE= LIBNAME Statement Option
Specifies whether the interface behaves like a random access engine for the scope of the LIBNAME
statement.

Valid in: LIBNAME statement

Default: NO

Supports: All

Syntax
REREAD_EXPOSURE= NO | YES

Syntax Description
NO

specifies that the engine behaves as a sequential engine with limited random access.
This means that your data is protected by the normal data protection that SAS
provides.

YES
specifies that the engine behaves like a random access engine when rereading a row
so that you cannot guarantee that the same row is returned. For example, if you read
row 5 and someone else deletes it, then the next time you read row 5, you will read a
different row. You have the potential for data integrity exposures within the scope of
your SAS session.

Details
CAUTION:

Using REREAD_EXPOSURE= could cause data integrity exposures.

Oracle Details: To avoid data integrity problems, it is advisable to set
UPDATE_LOCK_TYPE=TABLE if you set REREAD_EXPOSURE=YES.

ODBC Details: To avoid data integrity problems, it is advisable to set
UPDATE_ISOLATION_LEVEL=S (serializable) if you set
REREAD_EXPOSURE=YES.

70 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

SCHEMA= LIBNAME Statement Option
Enables you to read database objects, such as tables, in the specified DBMS schema.

Valid in: LIBNAME statement

Default: data source-specific

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
SCHEMA= schema-name

Details
If this option is omitted, you connect to the default schema for your data source.

The values for SCHEMA= can be case-sensitive, depending on the data source, so use
care when you specify this option. You should set PRESERVE_TAB_NAMES=YES
when the value for SCHEMA= contains mixed case characters.

Oracle Details: Specify a schema name to be used when referring to database objects.
SAS can access another user's database objects by using a specified schema name. If
PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value to uppercase
because all values in the Oracle data dictionary are uppercase unless quoted.

Teradata Details: If you omit this option, a libref points to your default Teradata
database, which often has the same name as your user name. You can use this option to
point to a different database. This option enables you to view or modify a different user's
DBMS tables or views if you have the required Teradata privileges. (For example, to
read another user's tables, you must have the Teradata privilege SELECT for that user's
tables.) The Teradata alias for SCHEMA= is DATABASE=. For more information about
changing the default database, see the DATABASE statement in your Teradata
documentation.

Examples

Example 1: Use SCHEMA to Access a Table in Your Schema
In the following example, SCHEMA= causes any reference in SAS to MyDB.Employee
to be interpreted by DB2 as Scott.Employee.

libname mydb fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=db2dsn schema=SCOTT;

Example 2: Use SCHEMA to Access Another User’s Schema
To access an Oracle object in another schema, use the SCHEMA= option as in the
following example. The schema name is typically a person's user name or ID.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn schema=john;

SCHEMA= LIBNAME Statement Option 71

Example 3: Use SCHEMA to Access a DBMS Schema
In the following example, the Oracle table Schedule resides in the AIRPORTS schema.
To access this table using the PRINT procedure with the libref Cargo, you specify the
DBMS schema in the SCHEMA= option. Then you specify Cargo.Schedule in the
procedure's DATA statement.

libname cargo fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn schema=airports;
proc print data=cargo.schedule;
run;

Example 4: Use SCHEMA to Access a Teradata Database
In the following Teradata example, the user Id TESTUSER prints the Emp table, which
is located in the OTHERUSER database.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=teradsn schema=otheruser;
proc print data=mydblib.emp;
run;

See Also
To apply this option to an individual table, use the SCHEMA= data set option.

SPOOL= LIBNAME Statement Option
Specifies whether SAS creates a utility spool file during Read transactions that read data more than once.

Valid in: LIBNAME statement

Default: YES

Supports: All

Syntax
SPOOL= YES | NO | DBMS

Syntax Description
YES

specifies that SAS creates a utility spool file into which it writes the rows that are
read the first time. For subsequent passes through the data, the rows are read from
the utility spool file rather than being reread from the data source table. This
guarantees that the rowset is the same for every pass through the data.

NO
specifies that the required rows for all passes of the data are read from the data
source table. No spool file is written. There is no guarantee that the rowset is the
same for each pass through the data.

DBMS
is valid for Oracle only. The required rows for all passes of the data are read from the
DBMS table but additional enforcements are made on the DBMS server side to
ensure that the rowset is the same for every pass through the data. This setting causes

72 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

the Oracle driver to satisfy the two-pass requirement by starting a Read-only
transaction. SPOOL=YES and SPOOL=DBMS have comparable performance
results for Oracle. However, SPOOL=DBMS does not use any disk space. When
SPOOL is set to DBMS, the CONNECTION option must be set to UNIQUE. If not,
an error occurs.

Details
In some cases, SAS processes data in more than one pass through the same set of rows.
Spooling is the process of writing rows that have been retrieved during the first pass of a
data read to a spool file. In the second pass, rows can be reread without performing I/O
to the DBMS a second time. When data must be read more than once, spooling improves
performance. Spooling also guarantees that the data remains the same between passes, as
most data sources do not support member-level locking.

Teradata Details: SPOOL=NO requires SAS to issue identical SELECT statements to
Teradata twice. In addition, because the Teradata table can be modified between passes,
SPOOL=NO can cause data integrity problems. Use SPOOL=NO with discretion.

MySQL Details: Do not use SPOOL=NO with the MySQL driver.

SQL_FUNCTIONS= LIBNAME Statement Option
Specifies that the functions that match those supported by SAS should be passed to the data source.

Valid in: LIBNAME statement

Default: NONE

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
SQL_FUNCTIONS= ALL

Syntax Description
ALL

specifies that functions that match those that are supported by SAS should be passed
to the data source.

Details
DB2 under UNIX and PC, ODBC Details: When SQL_FUNCTIONS= is set to ALL,
only the functions that are supported by the database table drivers are passed. Only a
fraction of the functions might be available.

DATE TODAY QTR COMPRESS SUBSTR
DATEPART DAY SECOND INDEX TRANWRD
DATETIME HOUR WEEKDAY LENGTH TRIMN
TIME MINUTE YEAR REPEAT MOD
TIMEPART MONTH BYTE SOUNDEX

Use of this option can cause unexpected results, especially if it is used for NULL
processing and date/time/timestamp handling. For example, the following SAS code that
was executed without SQL_FUNCTIONS= enabled returns the SAS date 15308:

SQL_FUNCTIONS= LIBNAME Statement Option 73

proc sql;
 select distinct DATE () from x.test;
quit;

However, the same code that is executed with SQL_FUNCTIONS=ALL returns
2001-1-29, which is an ODBC date format. Care should be exercised when using this
option.

STRINGDATES= LIBNAME Statement Option
Specifies whether to read date and time values from the data source as character strings or as numeric
date values.

Valid in: LIBNAME statement

Default: NO

Supports: All

Syntax
STRINGDATES= YES | NO

Syntax Description
YES

specifies that SAS reads date and time values as character strings.

NO
specifies that SAS reads date and time values as numeric date values.

Details
NO is also used for Version 6 compatibility. This is the default.

UPDATE_ISOLATION_LEVEL= LIBNAME Statement Option
Specifies the degree of isolation of the current application process from other concurrently running
application processes.

Valid in: LIBNAME statement

Default: data source specific

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

Syntax
UPDATE_ISOLATION_LEVEL= data source-specific-value

Syntax Description
The values for this option are DBMS specific.

74 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

Details
The degree of isolation defines the following degrees:

• the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

• the degree to which update activity of other concurrently executing application
processes can affect the current application.

For ODBC and DB2 under UNIX and PC hosts, this option is ignored if
UPDATE_LOCK_TYPE= is not set to ROW.

See Also
To apply this option to an individual table, use the UPDATE_ISOLATION_LEVEL=
data set option.

UPDATE_LOCK_TYPE= LIBNAME Statement Option
Specifies how data is locked during an update transaction.

Valid in: LIBNAME statement

Default: data source-specific

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

Syntax
UPDATE_LOCK_TYPE= ROW | TABLE | NOLOCK

Syntax Description
ROW

locks a row if any of its columns are to be updated. (This value is valid for all the
data sources that are listed for this option.)

TABLE
locks the entire table. (This value is valid for the SQL Server by using the ODBC
table driver.)

NOLOCK
does not lock the table, page, or any rows when reading them for update. (This value
is valid for the Oracle data source.)

Details
You can set a lock for one data source table by using the data set option if available, or
for a group of tables by using the LIBNAME option.

For more information, see the reference documentation for your DBMS.

See Also
To apply this option to an individual table, use the UPDATE_LOCK_TYPE= data set
option.

UPDATE_LOCK_TYPE= LIBNAME Statement Option 75

UTILCONN_TRANSIENT= LIBNAME Statement Option
Enables utility connections to be maintained or dropped, as needed.

Valid in: LIBNAME statement

Default: NO

Supports: All

Syntax
UTILCONN_TRANSIENT= NO | YES

Syntax Description
NO

specifies that a utility connection is maintained for the lifetime of the libref.

YES
specifies that a utility connection is automatically dropped as soon as it is no longer
in use.

Details
Data sources can lock system resources as a result of operations such as DELETE or
RENAME, or as a result of queries on system tables or table indices. Use a utility
connection in these circumstances. The utility connection prevents the COMMIT
statements that are issued to unlock system resources from being submitted on the same
connection that is being used for table processing. Eliminating COMMIT statements
from the table processing connection alleviates the problems that they can cause, such as
invalidating cursors and committing pending updates on the tables being processed.

Since a utility connection exists for each LIBNAME statement, the number of
connections to a data source can become large as multiple librefs are assigned across
multiple SAS sessions. Setting UTILCONN_TRANSIENT= to YES keeps these
connections from continuing to exist when they are not being used. Therefore,the
number of current connections to the data source is reduced.

UTILCONN_TRANSIENT= is ignored by data sources that do not support utility
connections.

76 Chapter 10 • Data Source Processing LIBNAME Statement Options for the FEDSVR Engine

Chapter 11

System Options for the FEDSVR
Engine

About SAS System Options for the FEDSVR Engine . 77

Dictionary . 77
BUFNO= System Option . 77
BUFSIZE= System Option . 78
COMPRESS= System Option . 80
FIRSTOBS= System Option . 81
OBS= System Option . 83
SASTRACE= System Option . 88
SASTRACELOC= System Option . 95
SQLUNDOPOLICY= System Option . 96
VALIDVARNAME= System Option . 97

About SAS System Options for the FEDSVR
Engine

System options are instructions that affect your SAS session. They control the way that
operations are performed such as SAS System initialization, hardware and software
interfacing, and the input, processing, and output of jobs and files.

Only a subset of SAS system options affect the operations of the FEDSVR engine. In
addition, the availability and behavior of these options are data source specific.

Dictionary

BUFNO= System Option
Specifies the number of buffers to be allocated for processing SAS data sets.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

77

Supports: SAS data set

Syntax
BUFNO=n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description
n | nK | nM | nG | nT

specifies the number of buffers to be allocated in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776
(terabytes). For example, a value of 8 specifies 8 bytes, and a value of 3m specifies
3,145,728 bytes.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx
specifies 45 buffers.

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment. This is the default.

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer, which is 231-1, or
approximately 2 billion.

Note: The recommended maximum for this option is 10.

Details
The number of buffers is not a permanent attribute of the data set; it is valid only for the
current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.

Using BUFNO= can improve execution time by limiting the number of input/output
operations that are required for a particular SAS data set. The improvement in execution
time, however, comes at the expense of increased memory consumption.

Operating Environment Information
The syntax that is shown here applies to the OPTIONS statement. On the command
line or in a configuration file, the syntax is specific to your operating environment.
For details, see the SAS documentation for your operating environment.

Comparisons
You can override the BUFNO= system option by using the BUFNO= data set option.

BUFSIZE= System Option
Specifies the permanent buffer page size for output SAS data sets.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

78 Chapter 11 • System Options for the FEDSVR Engine

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Supports: SAS data set

Syntax
BUFSIZE=n | nK | nM | nG | nT | hexX | MAX

Syntax Description
n | nK | nM | nG | nT

specifies the page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For
example, a value of 8 specifies 8 bytes, and a value of 3m specifies 3,145,728 bytes.

The default is 0, which causes SAS to use the minimum optimal page size for the
operating environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by an X. For example, the value 2dx sets the page
size to 45 bytes.

MAX
sets the page size to the maximum possible number in your operating environment,
up to the largest four-byte, signed integer, which is 231-1, or approximately 2 billion
bytes.

Details
The page size is the amount of data that can be transferred from a single input/output
operation to one buffer. The page size is a permanent attribute of the data set and is used
when the data set is processed.

A larger page size can improve execution time by reducing the number of times SAS has
to read from or write to the storage medium. However, the improvement in execution
time comes at the expense of increased memory consumption.

To change the page size, use a DATA step to copy the data set and either specify a new
page or use the SAS default.

Note: If you use the COPY procedure to copy a data set to another library that is
allocated with a different engine, the specified page size of the data set is not
retained.

Operating Environment Information
The default value for BUFSIZE= is determined by your operating environment and
is set to optimize sequential access. To improve performance for direct (random)
access, you should change the value for BUFSIZE=. For the default setting and
possible settings for direct access, see the BUFSIZE= system option in the SAS
documentation for your operating environment.

Operating Environment Information
The syntax that is shown here applies to the OPTIONS statement. On the command
line or in a configuration file, the syntax is specific to your operating environment.
For details, see the SAS documentation for your operating environment.

BUFSIZE= System Option 79

Comparisons
The BUFSIZE= system option can be overridden by the BUFSIZE= data set option,
unless the data set option specifies 0. Then, the system option overrides the data set
option. The BUFSIZE= system option must be set to 0 to reset the page size to the
default value for the operating environment.

COMPRESS= System Option
Specifies the compression of rows in output tables.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Supports: SAS data set

Syntax
COMPRESS= NO | YES | CHAR | BINARY

Syntax Description
NO

specifies that the rows in a newly created table be uncompressed (fixed-length
records).

YES|CHAR
specifies that the rows in a newly created table be compressed (variable-length
records) using RLE (Run Length Encoding). RLE compresses rows by reducing
repeated consecutive characters (including blanks) to two-byte or three-byte
representations.

Tip Use this compression algorithm for character data.

BINARY
specifies that the rows in a newly created table be compressed (variable-length
records) using RDC (Ross Data Compression). RDC combines run-length encoding
and sliding-window compression to compress the file.

Tip This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (numeric columns). Because the
compression function operates on a single record at a time, the record length
needs to be several hundred bytes or larger for effective compression.

Details
Compressing a file is a process that reduces the number of bytes that are required to
represent each observation. Advantages of compressing a file include reduced storage
requirements for the file and fewer I/O operations that are necessary to read or write to
the data during processing. However, more CPU resources are required to read a

80 Chapter 11 • System Options for the FEDSVR Engine

compressed file (because of the overhead of uncompressing each observation), and there
are situations when the resulting file size might increase rather than decrease.

Use the COMPRESS= system option to compress all output data sets that are created
during a SAS session.

After a file is compressed, the setting is a permanent attribute of the file, which means
that to change the setting, you must re-create the file. That is, to uncompress a file,
specify COMPRESS=NO for a DATA step that copies the compressed file.

Note: For the COPY procedure, the default value CLONE uses the compression
attribute from the input data set for the output data set. If the engine for the input
data set does not support the compression attribute, then PROC COPY uses the
current value of the COMPRESS= system option. For more information about
CLONE and NOCLONE, see the COPY statement options, DATASETS procedure,
in Base SAS Procedures Guide.

Comparisons
The COMPRESS= system option can be overridden by the COMPRESS= connection
string option, the COMPRESS= LIBNAME statement option, and the COMPRESS=
data set option.

When you create a compressed file, you can also specify REUSE=YES (as a data set
option or system option) in order to track and reuse space. With REUSE=YES, new
observations are inserted in space freed when other observations are updated or deleted.
When the default REUSE=NO is in effect, new observations are appended to the
existing file.

FIRSTOBS= System Option
Specifies the row number or external file record that SAS processes first.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Supports: All

Syntax
FIRSTOBS=n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description
n | nK | nM | nG | nT

specifies the number of the first row or external file record to process in multiples of
1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or
1,099,511,627,776 (terabytes). For example, a value of 8 specifies 8 bytes, and a
value of 3m specifies 3,145,728 bytes.

FIRSTOBS= System Option 81

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=titlepage

hexX
specifies the number of the first row or the external file record to process as a
hexadecimal value. You must specify the value beginning with a number (0–9),
followed by an X. For example, the value 2dx specifies the 45th row.

MIN
sets the number of the first row or external file record to process to 1. This is the
default.

MAX
sets the number of the first row to process to the maximum number of rows in the
data sets or records in the external file, up to the largest eight-byte, signed integer,
which is 263-1, or approximately 9.2 quintillion rows.

Details
The FIRSTOBS= system option is valid for all steps for the duration of your current
SAS session or until you change the setting. To affect any single SAS data set, use the
FIRSTOBS= data set option.

You can apply FIRSTOBS= processing to WHERE processing. For details about
processing a segment of data that is conditionally selected, see SAS Language Reference:
Concepts.

Operating Environment Information
The syntax that is shown here applies to the OPTIONS statement. On the command
line or in a configuration file, the syntax is specific to your operating environment.
For details, see the documentation for your operating environment.

Comparisons
• You can override the FIRSTOBS= system option by using the FIRSTOBS= data set

option and by using the FIRSTOBS= option as a part of the INFILE statement.

• The FIRSTOBS= system option specifies a starting point for processing. The OBS=
system option specifies an ending point.

Example: Specifying FIRSTOBS
If you specify FIRSTOBS=50, SAS processes the 50th row of the data set first.

This option applies to every input data set that is used in a program or a SAS process. In
this example, SAS begins reading at the eleventh row in the data sets OLD, A, and B:

options firstobs=11;
libname myfiles fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn;
data myfiles.a;
 set myfiles.old; /* 100 rows */
run;
data myfiles.b;
 set myfiles.a;
run;
data myfiles.c;
 set myfiles.b;
run;

82 Chapter 11 • System Options for the FEDSVR Engine

Data set OLD has 100 rows, data set A has 90, B has 80, and C has 70. To avoid
decreasing the number of rows in successive data sets, use the FIRSTOBS= data set
option in the SET statement. You can also reset FIRSTOBS=1 between a DATA step and
a PROC step.

See Also

System Options:

• “OBS= System Option” on page 83

OBS= System Option
Specifies the last record to process.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Supports: All

Syntax
OBS= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description
n | nK | nM | nG | nT

specifies a number to indicate when to stop processing. The value of n is an integer.
Using one of the letter notations results in multiplying the integer by a specific value.
That is, specifying K (kilobytes) multiplies the integer by 1,024; M (megabytes)
multiplies by 1,048,576; G (gigabytes) multiplies by 1,073,741,824; or T (terabytes)
multiplies by 1,099,511,627,776. For example, a value of 20 specifies 20 rows or
records. A value of 3m specifies 3,145,728 rows or records.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the hexadecimal value F8 must be specified as 0F8x to specify the decimal
equivalent of 248. The value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to 0 to indicate when to stop processing.

Interaction When OBS=0 and the NOREPLACE option is in effect, SAS can still
take certain actions because it actually executes each DATA and PROC
step in the program, using no rows. For example, SAS executes
procedures, such as CONTENTS and DATASETS, that process
libraries or SAS data sets. External files are also opened and closed.
Therefore, even if you specify OBS=0, when your program writes to an
external file with a PUT statement, an end-of-file mark is written, and
any existing data in the file is deleted.

OBS= System Option 83

MAX
sets the number to indicate when to stop processing to the maximum number of rows
or records, up to the largest eight-byte, signed integer, which is 263-1, or
approximately 9.2 quintillion. This is the default.

Details
OBS= tells SAS when to stop processing rows or records. To determine when to stop
processing, SAS uses the value for OBS= in a formula that includes the value for OBS=
and the value for FIRSTOBS=. Here is the formula:

(obs - firstobs) + 1 = results

For example, if OBS=10 and FIRSTOBS=1 (which is the default for FIRSTOBS=), the
result is 10 rows or records; that is, (10 - 1) + 1 = 10. If OBS=10 and FIRSTOBS=2, the
result is nine rows or records; that is, (10 - 2) + 1 = 9.

OBS= is valid for all steps during your current SAS session or until you change the
setting. You can also use OBS= to control analysis of SAS data sets in PROC steps.

In WHERE processing, SAS first subsets the data, and then applies OBS= to the subset.
The FEDSVR engine does not have the concept of observation numbering from the
original data set. It sends back the number of rows requested, numbered chronologically,
regardless of where they occur in the data set.

If SAS is processing a raw data file, OBS= specifies the last line of data to read. SAS
counts a line of input data as one row, even if the raw data for several SAS data set rows
is on a single line.

Operating Environment Information
The syntax that is shown here applies to the OPTIONS statement. On the command
line or in a configuration file, the syntax is specific to your operating environment.
For details, see the SAS documentation for your operating environment.

Comparisons
• An OBS= specification from either a data set option or an INFILE statement option

takes precedence over the OBS= system option.

• The OBS= system option specifies an ending point for processing, and the
FIRSTOBS= system option specifies a starting point. The two options are often used
together to define a range of rows to be processed.

Examples

Example 1: Using OBS= to Specify When to Stop Processing Rows
This example illustrates the result of using OBS= to tell SAS when to stop processing
rows. This example creates a SAS data set that contains 15 rows, executes the OPTIONS
statement by specifying FIRSTOBS=2 and OBS=12, and then executes the PRINT
procedure. The result is 11 rows, that is, (12 - 2) + 1 = 11. The result of OBS= in this
situation appears to be the row number that SAS processes last, because the output starts
with row 2, and ends with row 12. However, the result is only a coincidence.

libname myfiles fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn;

data myfiles.Ages;

84 Chapter 11 • System Options for the FEDSVR Engine

 input Name $ Age;
 datalines;
Miguel 53
Brad 27
Willie 69
Marc 50
Sylvia 40
Gary 40
Becky 51
Alma 39
Tom 62
Kris 66
Paul 60
Randy 43
Barbara 52
Virginia 72
Arun 25
;
options firstobs=2 obs=12;
proc print data=myfiles.Ages;
run;

Output 11.1 PROC PRINT Output By Using OBS=

Example 2: Using OBS= with WHERE Processing
This example illustrates the result of using OBS= along with WHERE processing. The
example uses the data set that was created in Example 1 and assumes that the SAS
session has been reset to the defaults FIRSTOBS=1 and OBS=MAX. This example
returns the first 10 rows that meet the WHERE criteria.

libname myfiles fedsvr server="d1234.us.company.com"

OBS= System Option 85

 port=2171 user=user1 pwd=pass1
 dsn=basedsn;

proc print data=myfiles.Ages;
 where Age LT 60;
run;

Output 11.2 PROC PRINT Using a WHERE Statement and OBS=

Executing the OPTIONS statement with OBS=5 and the PRINT procedure with the
WHERE statement results in 10 rows, that is, (5 - 1) + 1 = 10. Note that with WHERE
processing, SAS first subsets the data, and then applies OBS= to the subset.

options obs=5;

proc print data=myfiles.Ages;
 where Age LT 60;
run;

86 Chapter 11 • System Options for the FEDSVR Engine

Output 11.3 PROC PRINT Output Using a WHERE Statement and OBS=

The result of OBS= appears to be how many rows to process, because the output consists
of 5 rows, ending with the row number 5. However, the result is only a coincidence. If
you apply FIRSTOBS=2 and OBS=5 to the subset, the result is four rows, that is, (5 - 2)
+ 1 = 4. OBS= in this situation is neither the row number to end with nor how many
rows to process; the value is used in the formula to determine when to stop processing.

options firstobs=2 obs=5;

proc print data=myfiles.Ages;
 where Age LT 60;
run;

Output 11.4 PROC PRINT Using WHERE Statement, OBS=, and FIRSTOBS=

Example 3: Using OBS= When Rows Are Deleted
This example illustrates the result of using OBS= for a data set that has deleted rows.
The example uses the data set that was created in Example 1, with row 4 deleted. The
example also assumes a new SAS session with the defaults FIRSTOBS=1 and
OBS=MAX.

options firstobs=1 obs=max;

proc sql noerrorstop; delete from myfiles.Ages
 where Name="Sylvia";

OBS= System Option 87

quit;

proc print data=myfiles.Ages; run;

The name “Sylvia” that was previously in row 4 is gone. The FEDSVR engine does not
have the concept of observation numbering from the original data set. It sends back the
number of rows requested, numbered chronologically, regardless of where they occur in
the data set. There are no gaps in numbering for deleted rows.

Output 11.5 PROC PRINT Showing Row 4 Deleted

See Also

System Options:

• “FIRSTOBS= System Option” on page 81

SASTRACE= System Option
Generates trace information about a data source.

Valid in: OPTIONS statement, configuration file, SAS invocation

Default: NONE

88 Chapter 11 • System Options for the FEDSVR Engine

Supports: All

Syntax
SASTRACE= ',,,d' | | ' ,,d,' | ' d,' | ' ,,,s'| | ' ,,,sa'

Syntax Description
',,,d'

specifies that all SQL statements that were sent to the data source are sent to the log.
These statements include the following:

SELECT DELETE
CREATE SYSTEM CATALOG
DROP COMMIT
INSERT ROLLBACK
UPDATE

For those data sources that do not generate SQL statements, the API calls, including
all parameters, are sent to the log.

',,d,'
specifies that all routine calls are sent to the log. When this option is selected, all
function enters and exits, as well as pertinent parameters and return codes, are traced.
The information, however, varies for each data source.

This option is most useful if you are having a problem and need to send a SAS log to
SAS Technical Support for troubleshooting.

'd,'
specifies that all data source calls, such as API and Client calls, connection
information, column bindings, column error information, and row processing are sent
to the log. However, this information varies for each data source.

This option is most useful if you are having a problem and need to send a SAS log to
SAS Technical Support for troubleshooting.

',,,s'
specifies that a summary of timing information for calls made to the data source is
sent to the log.

',,,sa'
specifies that timing information for each call made to the data source, along with a
summary, is sent to the log.

Details
SASTRACE= is a powerful tool to use when you want to see the commands that are sent
to your data source. SASTRACE= output is data source specific. However, most data
sources show you statements like SELECT or COMMIT as the data source processes
them for the SAS application. To manage SASTRACE= output, consider the following:

• When using SASTRACE= on PC platforms, you must also specify the
SASTRACELOC= system option.

• To turn SAS tracing off, you can specify the following option:

options sastrace=off;

• Log output is much easier to read if you specify NOSTSUFFIX.

SASTRACE= System Option 89

Note: NOSTSUFFIX is not supported on z/OS.

The following code is entered without specifying the option, and the resulting log is
longer and harder to decipher.

options sastrace=',,,d' sastraceloc=saslog;

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;

proc print data=mydblib.snow_birthdays;
run;

The resulting log is as follows:

 17 1544121286 du_prep 825 PRINT
SASTSE_5: Prepared: on connection 0 18 1544121286 du_prep 825 PRINT
SELECT * FROM SNOW_BIRTHDAYS 19 1544121286 du_prep 825 PRINT
 20 1544121286 du_prep 825 PRINT
 21 1544121286 du_exec 1795 PRINT
SASTSE_6: Executed: on connection 0 22 1544121286 du_exec 1795 PRINT
Prepared statement SASTSE_5 23 1544121286 du_exec 1795 PRINT
 24 1544121286 du_exec 1795 PRINT

However, by using NOSTSUFFIX, the log file becomes much easier to read:

options sastrace=',,,d' sastraceloc=saslog nostsuffix;

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;

proc print data=mydblib.snow_birthdays;
run;

The resulting log is as follows:

SASTSE_1: Prepared: on connection 0
SELECT * FROM SNOW_BIRTHDAYS

8 proc print data=mydblib.snow_birthdays; run;

SASTSE_2: Executed: on connection 0
Prepared statement SASTSE_1

Examples

Example 1: Using SQL Trace ',,,d'
The examples in this section are based on the following table, and are shown using
NOSTSUFFIX and SASTRACELOC=SASLOG.

data work.winter_birthdays;
 input empid birthdat date9. lastname $18.;
 format birthdat date9.;

90 Chapter 11 • System Options for the FEDSVR Engine

datalines;
678999 28DEC1966 PAVEO JULIANA 3451
456788 12JAN1977 SHIPTON TIFFANY 3468
890123 20FEB1973 THORSTAD EDVARD 3329
;
run;

options sastrace=',,,d' sastraceloc=saslog nostsuffix;
libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;
data mydblib.snow_birthdays;
 set work.winter_birthdays;
run;
libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
system option.

Log 11.1 SAS Log Output from the SASTRACE=',,,d' System Option

10 options sastrace=',,,d' sastraceloc=saslog nostsuffix;
SASTSE: AUTOCOMMIT is NO for connection 0
11 options sastrace=',,,d' sastraceloc=saslog nostsuffix;
12 libname mydblib fedsvr
12 !
connect_string=XX
XXXXX
12 ! XXXXXXXXXXXXXXXXXXX;
NOTE: Libref MYDBLIB was successfully assigned as follows:
 Engine: FEDSVR
 Physical Name:
13
14 proc delete data=mydblib.snow_birthdays;run;
SASTSE: AUTOCOMMIT is NO for connection 1
SASTSE: AUTOCOMMIT turned ON for connection id 1
SASTSE_1: Executed: on connection 1
DROP TABLE SNOW_BIRTHDAYS
SASTSE: 0 row(s) affected by INSERT/UPDATE/DELETE or other statement.
NOTE: Deleting MYDBLIB.SNOW_BIRTHDAYS (memtype=DATA).
NOTE: PROCEDURE DELETE used (Total process time):
 real time 0.28 seconds
 cpu time 0.04 seconds
15
16 data mydblib.snow_birthdays;
17 set work.winter_birthdays;
18 run;
SASTSE_2: Prepared: on connection 1
SELECT * FROM SNOW_BIRTHDAYS WHERE 0=1
SASTSE: AUTOCOMMIT is NO for connection 2
SASTSE_3: Executed: on connection 2
CREATE TABLE SNOW_BIRTHDAYS (empid DOUBLE,birthdat DATE,lastname VARCHAR(18))
SASTSE: 0 row(s) affected by INSERT/UPDATE/DELETE or other statement.
SASTSE: COMMIT performed on connection 2.
SASTSE_4: Prepared: on connection 2
INSERT INTO SNOW_BIRTHDAYS (empid,birthdat,lastname) VALUES (? , ? , ?)

SASTRACE= System Option 91

SASTSE_5: Executed: on connection 2
Prepared statement SASTSE_4
SASTSE_6: Executed: on connection 2
2 The SAS System 11:39 Friday,
December 5, 2008
Prepared statement SASTSE_4
SASTSE_7: Executed: on connection 2
Prepared statement SASTSE_4
NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.
SASTSE: COMMIT performed on connection 2.
NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.
SASTSE: COMMIT performed on connection 2.
SASTSE: COMMIT performed on connection 2.
NOTE: DATA statement used (Total process time):
 real time 0.29 seconds
 cpu time 0.01 seconds
19
SASTSE: AUTOCOMMIT turned ON for connection id 0
SASTSE_8: Prepared: on connection 0
SELECT * FROM SNOW_BIRTHDAYS
20 proc print data=mydblib.snow_birthdays;run;
SASTSE_9: Executed: on connection 0
Prepared statement SASTSE_8
NOTE: There were 3 observations read from the data set MYDBLIB.SNOW_BIRTHDAYS.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 3.04 seconds
 cpu time 0.34 seconds
21
22
23 libname mydblib clear;
NOTE: Libref MYDBLIB has been deassigned.

Example 2: Using Log Trace ',,d,'
options sastrace=',,d,' sastraceloc=saslog nostsuffix;
libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;
data mydblib.snow_birthdays;
 set work.winter_birthdays;
run;
libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
system option.

92 Chapter 11 • System Options for the FEDSVR Engine

Log 11.2 SAS Log Output from the SASTRACE=',,d,' System Option

11 options sastrace=',,d,' sastraceloc=saslog nostsuffix;
12
ACCESS ENGINE: Entering dbiconi.
ACCESS ENGINE: Exiting dbiconi. rc=0x00000000
ACCESS ENGINE: Entering DBICON
ACCESS ENGINE: CONNECTION= SHAREDREAD
SASTSE: Successful connection made, connection id 0
ACCESS ENGINE: Successful physical conn id 0
ACCESS ENGINE: Number of connections is 1
ACCESS ENGINE: Exiting DBICON with rc=0X00000000
13 options sastrace=',,d,' sastraceloc=saslog nostsuffix;
14
15 libname mydblib fedsvr
15 !
connect_string=XX
XXXXX
15 ! XXXXXXXXXXXXXXXXXXX;
NOTE: Libref MYDBLIB was successfully assigned as follows:
 Engine: FEDSVR
 Physical Name:
16
17 data mydblib.snow_birthdays;
18 set work.winter_birthdays;
19 run;
NOTE: Libref MYDBLIB has been deassigned.
ACCESS ENGINE: Entering yoeopen
ACCESS ENGINE: Entering DBIEXST with table name being SNOW_BIRTHDAYS
ACCESS ENGINE: Using a utility connection for verifying table existence
ACCESS ENGINE: Entering DBICON
ACCESS ENGINE: CONNECTION= SHAREDREAD
SASTSE: Successful connection made, connection id 1
ACCESS ENGINE: Successful physical conn id 1
ACCESS ENGINE: Number of connections is 2
ACCESS ENGINE: Exiting DBICON with rc=0X00000000
ACCESS ENGINE: Entering dbiopen
SASTSE: Enter duopen, table is SNOW_BIRTHDAYS, openmode is INPUT, statement 0,
connection 1
SASTSE: Using FETCH for file SNOW_BIRTHDAYS on connection 1
SASTSE: Enter setconloc, table is SNOW_BIRTHDAYS, statement 0, connection 1
SASTSE: Exit duopen, rc = 0x00000000
ACCESS ENGINE: Successful dbiopen, open id 0, connect id 1
ACCESS ENGINE: Exit dbiopen with rc=0X00000000
SASTSE: Enter duexist, table is SNOW_BIRTHDAYS, statement 0, connection 1
SASTSE: Exit duexist, table DOES NOT exist
ACCESS ENGINE: Entering dbiclose
SASTSE: Enter duclose, table is SNOW_BIRTHDAYS, statement 0, connection 1
SASTSE: Exit duclose, rc = 0x00000000
ACCESS ENGINE: DBICLOSE open_id 0, connect_id 1
ACCESS ENGINE: Exiting dbiclos with rc=0X00000000
ACCESS ENGINE: Exit DBIEXST rc=0X00403809
ACCESS ENGINE: Open Mode is XO_OUTPUT
ACCESS ENGINE: Access Mode is XO_SEQ
ACCESS ENGINE: Shr flag is XHSHRMEM

SASTRACE= System Option 93

ACCESS ENGINE: Entering DBICON
ACCESS ENGINE: CONNECTION= SHAREDREAD
SASTSE: Successful connection made, connection id 2
ACCESS ENGINE: Successful physical conn id 2
ACCESS ENGINE: Number of connections is 3
ACCESS ENGINE: Exiting DBICON with rc=0X00000000
ACCESS ENGINE: Entering dbiopen
SASTSE: Enter duopen, table is SNOW_BIRTHDAYS, openmode is OUTPUT, statement
-99, connection 2
SASTSE: Using FETCH for file SNOW_BIRTHDAYS on connection 2
SASTSE: Enter setconloc, table is SNOW_BIRTHDAYS, statement -99, connection 2
SASTSE: Exit duopen, rc = 0x00000000
ACCESS ENGINE: Successful dbiopen, open id 0, connect id 2
ACCESS ENGINE: Exit dbiopen with rc=0X00000000
ACCESS ENGINE: Exit yoeopen with SUCCESS.
ACCESS ENGINE: Begin yoeinfo
ACCESS ENGINE: Exit yoeinfo with SUCCESS.
SASTSE: Enter duoload, table is SNOW_BIRTHDAYS, statement 0, connection 2
ACCESS ENGINE: Entering dbrload with SQL Statement set to
 CREATE TABLE SNOW_BIRTHDAYS (empid DOUBLE,birthdat DATE,lastname
VARCHAR(18))
SASTSE: Enter duexec, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit duexec, rc = 0x00000000
SASTSE: Enter duforc, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit duforc, rc = 0x00000000
SASTSE: Exit duoload, rc = 0x00000000
SASTSE: Enter duins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Enter prepins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit prepins, rc = 0x00000000
SASTSE: Enter doins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit doins, rc = 0x00000000
SASTSE: Exit duins, rc = SUCCESS
SASTSE: Enter duins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Enter doins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit doins, rc = 0x00000000
SASTSE: Exit duins, rc = SUCCESS
SASTSE: Enter duins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Enter doins, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit doins, rc = 0x00000000
SASTSE: Exit duins, rc = SUCCESS
NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.
SASTSE: Enter duforc, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit duforc, rc = 0x00000000
NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.
ACCESS ENGINE: Enter yoeclos
ACCESS ENGINE: Entering dbiclose
SASTSE: Enter duclose, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Enter duforc, table is SNOW_BIRTHDAYS, statement 0, connection 2
SASTSE: Exit duforc, rc = 0x00000000
SASTSE: Exit duclose, rc = 0x00000000
ACCESS ENGINE: DBICLOSE open_id 0, connect_id 2
ACCESS ENGINE: Exiting dbiclos with rc=0X00000000
ACCESS ENGINE: Entering DBIDCON
SASTSE: Successful disconnection, connection id 2
SASTSE: Successful CLI free environment from connection 1
ACCESS ENGINE: Physical disconnect on id = 1
ACCESS ENGINE: Exiting DBIDCON with rc=0X00000000, rc2=0X00000000
20
21 libname mydblib clear;

Example 3: Using Time Trace ',,,s'
options sastrace=',,,s' sastraceloc=saslog nostsuffix;
libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;

94 Chapter 11 • System Options for the FEDSVR Engine

data mydblib.snow_birthdays;
 set work.winter_birthdays;
run;
libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
system option.

Log 11.3 SAS Log Output from the SASTRACE= ',,,s' System Option

11 options sastrace=',,,s' sastraceloc=saslog nostsuffix;
12
13 libname mydblib fedsvr
connect_string=XX
XXXXX;
NOTE: Libref MYDBLIB was successfully assigned as follows:
 Engine: FEDSVR
 Physical Name:
14
15 data mydblib.snow_birthdays;
16 set work.winter_birthdays;
17 run;
Summary Statistics for FEDSVR are:
Total SQL prepare seconds were: 0.009349
Total seconds used by the FEDSVR ACCESS engine were 0.010446
NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.
NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.
Summary Statistics for FEDSVR are:
Total SQL execution seconds were: 0.092450
Total SQL prepare seconds were: 0.026569
Total seconds used by the FEDSVR ACCESS engine were 0.127992
NOTE: DATA statement used (Total process time):
 real time 0.46 seconds
 cpu time 0.06 seconds
18
19 libname mydblib clear;
NOTE: Libref MYDBLIB has been deassigned.

SASTRACELOC= System Option
Writes trace information to a specified location.

Valid in: OPTIONS statement, configuration file, SAS invocation

Default: stdout

Supports: All

Syntax
SASTRACELOC= stdout | SASLOG | FILE 'path-and-filename'

Syntax Description
stdout

specifies to write the trace information to the default output location for your
operating environment. This is the default setting.

SASTRACELOC= System Option 95

SASLOG
specifies to write the trace information to the SAS log.

FILE 'path-and-filename'
specifies to write the trace information to an external file. You must enclose the
external file specification in quotation marks.

Details
SASTRACELOC= enables you to specify where to put the trace messages that are
generated by SASTRACE=. By default, the output goes to the default output location for
your operating environment. You can send the output to a SAS log by specifying
SASTRACELOC=SASLOG.

Note: This option and its values might differ for each host.

Example: Specifying the SASTRACELOC= System Option
The following example on a PC platform writes the trace information to the
TRACE.LOG file in the work directory on the C drive.

options sastrace=',,,d' sastraceloc=file 'c:\work\trace.log';

SQLUNDOPOLICY= System Option
Specifies how PROC SQL handles updated data if errors occur while you are updating data. You can use
UNDO_POLICY= to control whether your changes become permanent.

Valid in: configuration file, SAS invocation, OPTIONS statement

Categories: Files: SAS Files
System Administration: SQL

PROC OPTIONS
GROUP=

SASFILES
SQL

Default: REQUIRED

Supports: SQL Server

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
SQLUNDOPOLICY=NONE | OPTIONAL | REQUIRED

Syntax Description
NONE

keeps any updates or inserts.

OPTIONAL
reverses any updates or inserts that it can reverse reliably.

REQUIRED
reverses all inserts or updates that have been done to the point of the error. This is the
default.

96 Chapter 11 • System Options for the FEDSVR Engine

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=titlepage

CAUTION:
Some UNDO operations cannot be done reliably. When a change cannot be
reversed, PROC SQL issues an error message and does not execute the
statement.

Details
Regardless of the SAS session’s AUTOCOMMIT= setting, SAS Federation Server sets
AUTOCOMMIT=YES only when it is connecting to a data source that processes one
statement per connection. For data sources that do not support transactions, the FEDSVR
engine sets the SQL_UNDO policy to false to prevent rollbacks. The combined setting
of these internal options causes PROC SQL to read tables one row at a time. When you
are updating a database that processes one statement per connection, you can
significantly improve processing performance by setting SQLUNDOPOLICY=NONE.
However, ensure that NONE is an appropriate setting for your application.

SQL Server is a one-data source that would benefit by setting
SQLUNDOPOLICY=NONE.

The value that is specified in the SQLUNDOPOLICY= system option is in effect for all
SQL procedure statements, unless the PROC SQL UNDO_POLICY= option is set. The
value of the UNDO_POLICY= option takes precedence over the SQLUNDOPOLICY=
system option. The RESET statement can also be used to set or reset the
UNDO_POLICY= option. However, changing the value of the UNDO_POLICY=
option does not change the value of the SQLUNDOPOLICY= system option. After the
procedure is complete, it reverts to the value of the SQLUNDOPOLICY= system option.

VALIDVARNAME= System Option
Specifies the rules for valid SAS column names that can be created and processed during a SAS session.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: V7

Requirement: You must also specify PRESERVE_COL_NAMES=YES LIBNAME statement data
source processing option.

Supports: All

Syntax
VALIDVARNAME=V7 | UPCASE | ANY

Syntax Description
V7

specifies that column names must follow these rules:

• can be up to 32 characters in length.

VALIDVARNAME= System Option 97

• must begin with a letter of the Latin alphabet (A - Z, a - z) or the underscore
character. Subsequent characters can be letters of the Latin alphabet, numerals, or
underscores.

• cannot contain blanks.

• cannot contain special characters except for the underscore.

• can contain mixed-case letters. SAS stores and writes the column name in the
same case that is used in the first reference to the column. However, when SAS
processes a column name, SAS internally converts it to uppercase. You cannot,
therefore, use the same column name with a different combination of uppercase
and lowercase letters to represent different columns. For example, cat, Cat, and
CAT all represent the same column.

• cannot be assigned the names of special SAS automatic columns (such as _N_
and _ERROR_) or column list names (such as _NUMERIC_, _CHARACTER_,
and _ALL_).

UPCASE
specifies that the column name follows the same rules as V7, except that the column
name is uppercase, as in earlier versions of SAS.

ANY
specifies that SAS column names must follow these rules:

• can be up to 32 characters in length.

• can begin with or contain any characters, including blanks.

Note: If you use any characters other than the ones that are valid when the
VALIDVARNAME system option is set to V7 (letters of the Latin alphabet,
numerals, or underscores), then you must express the column name as a name
literal and you must set VALIDVARNAME=ANY. See “SAS Name Literals”
and “Avoiding Errors When Using Name Literals” in SAS Language
Reference: Concepts.

• can contain mixed-case letters. SAS stores and writes the column name in the
same case that is used in the first reference to the column. However, when SAS
processes a column name, SAS internally converts it to uppercase. You cannot,
therefore, use the same column name with a different combination of uppercase
and lowercase letters to represent different columns. For example, cat, Cat, and
CAT all represent the same column.

Note: For more information about SAS naming, see SAS Language Reference:
Concepts.

98 Chapter 11 • System Options for the FEDSVR Engine

Chapter 12

Data Set Options for the FEDSVR
Engine

About the FEDSVR LIBNAME Engine Data Set Options 100

Specifying Data Set Options . 100

How Data Set Options Interact with Other Types of Options 100

Dictionary . 101
ALTER= Data Set Option . 101
BL_LOAD_REPLACE= Data Set Option . 101
BL_LOG= Data Set Option . 102
BL_OPTIONS= Data Set Option . 102
BUFNO= Data Set Option . 103
BUFSIZE= Data Set Option . 104
BULKLOAD= Data Set Option . 105
BULKOPTS= Data Set Option . 106
COMPRESS= Data Set Option . 107
DBCOMMIT= Data Set Option . 108
DBCONDITION= Data Set Option . 109
DBCREATE_TABLE_OPTS= Data Set Option . 110
DBFORCE= Data Set Option . 110
DBGEN_NAME= Data Set Option . 111
DBINDEX= Data Set Option . 112
DBKEY= Data Set Option . 113
DBLABEL= Data Set Option . 115
DBMASTER= Data Set Option . 115
DBNULL= Data Set Option . 116
DBNULLKEYS= Data Set Option . 117
DBSASLABEL= Data Set Option . 118
DBSASTYPE= Data Set Option . 119
DBTYPE= Data Set Option . 120
DROP= Data Set Option . 121
ENCRYPT= Data Set Option . 124
FIRSTOBS= Data Set Option . 125
IDXNAME= Data Set Option . 127
IDXWHERE= Data Set Option . 128
IGNORE_READ_ONLY_COLUMNS= Data Set Option 129
INSERTBUFF= Data Set Option . 130
INSERT_SQL= Data Set Option . 131
KEEP= Data Set Option . 132
LABEL= Data Set Option . 133
NULLCHAR= Data Set Option . 134
NULLCHARVAL= Data Set Option . 134
OBS= Data Set Option . 135

99

PRESERVE_COL_NAMES= Data Set Option . 140
PW= Data Set Option . 142
QUALIFIER= Data Set Option . 142
READ= Data Set Option . 143
READ_ISOLATION_LEVEL= Data Set Option . 143
READ_LOCK_TYPE= Data Set Option . 144
READBUFF= Data Set Option . 144
RENAME= Data Set Option . 145
REUSE= Data Set Option . 147
SASDATEFMT= Data Set Option . 148
SCHEMA= Data Set Option . 149
TYPE= Data Set Option . 151
UPDATE_ISOLATION_LEVEL= Data Set Option . 151
UPDATE_LOCK_TYPE= Data Set Option . 152
WHERE= Data Set Option . 153
WRITE= Data Set Option . 154

About the FEDSVR LIBNAME Engine Data Set
Options

Data set options specify actions that apply only to the table on which they are specified
and remain in effect for the duration of the DATA step or SAS procedure. For example,
data set options let you perform such operations as renaming columns, specifying the
last row to process, and assigning a password for a table. For more information about
data set options, see SAS Language Reference: Concepts. Only a subset of the data set
options provided by SAS are supported for the FEDSVR LIBNAME engine. The
availability and behavior of the data set options are data source specific.

Specifying Data Set Options
Specify a data set option in parentheses after a table name. To specify several data set
options, separate them with spaces.

(option-1=value <...option-n=value>)

These examples show data set options in SAS statements:

data salary (encrypt=yes read=green);

proc print data=salary (read=green);

How Data Set Options Interact with Other Types
of Options

Many types of options share the same name and have the same function. For example,
you can request to compress a SAS data set by specifying COMPRESS= as a connection
string option and as a LIBNAME statement option.

100 Chapter 12 • Data Set Options for the FEDSVR Engine

When more than one type of option with the same function is specified, the software
follows this order of precedence:

1. data set option

2. LIBNAME statement option

3. data source connection string option

4. system option

That is, a data set option overrides a LIBNAME statement option, which overrides a data
source connection string option.

Dictionary

ALTER= Data Set Option
Assigns an ALTER password to a SAS data set that prevents users from replacing or deleting the file, and
enables access to a Read- and Write-protected file.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

Syntax
ALTER=alter-password

Syntax Description
alter-password

must be a valid SAS name.

Details
The ALTER= option is supported only for unsecured DSNs. If you try to assign a
password to a SAS data set that is protected by SAS Federation Server authorization,
SAS Federation Server returns an error.

BL_LOAD_REPLACE= Data Set Option
Specifies whether DB2 appends or replaces rows during bulk loading.

Valid in: DATA and PROC steps

Default: NO

Supports: DB2 under UNIX and PC

BL_LOAD_REPLACE= Data Set Option 101

Syntax
BL_LOAD_REPLACE= NO | YES

Syntax Description
NO

appends new rows of data to the DB2 table.

YES
replaces the existing data in the table.

Details
This option must be specified using the BULKOPTS= container option. The
BULKLOAD= data set option must be set to YES.

bulkload=yes; bulkopts=(bl_load_replace=yes);

BL_LOG= Data Set Option
Identifies a log file that will contain information such as statistics and error information for a bulk load.

Valid in: DATA and PROC steps

Supports: DB2 under UNIX and PC

Syntax
BL_LOG= path-and-log-filename

Syntax Description
path-and-log-filename

is a file to which information about the loading process is written.

Details
When the DB2 bulk-load facility is invoked, it creates a log file. The BL_ prefix
distinguishes this log file from the one that was created by the SAS log. If BL_LOG= is
specified with the same path and filename as an existing log, the new log replaces the
existing log. If this option is not specified, the log that is created during the load
operation is deleted immediately.

This option must be specified with the BULKOPTS= container option. The
BULKLOAD= data set option must be set to YES.

bulkload=yes; bulkopts=(bl_log='c:\temp\bulkload.log');

BL_OPTIONS= Data Set Option
Passes options to the DB2 bulk-load facility, affecting how it loads and processes data.

Valid in: DATA and PROC steps

Supports: DB2 under UNIX and PC

102 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax
BL_OPTIONS= 'option<, option ...>'

Syntax Description
option

specifies an option from the available DB2 options.

Details
BL_OPTIONS= enables you to pass options to the DB2 bulk-load facility when it is
invoked, and it affects how data is loaded and processed. You must separate multiple
options with commas and enclose the entire string of options in single quotation marks.

This option passes DB2 file type modifiers to DB2 LOAD or IMPORT commands to
affect how data is loaded and processed. Not all DB2 file type modifiers are appropriate
for all situations. You can specify one or more DB2 file type modifiers with .IXF files.
For a list of file type modifiers, see the description of the LOAD and IMPORT utilities
in the IBM DB2 Universal Database Data Movement Utilities Guide and Reference.

This option must be specified using the BULKOPTS= container option. The
BULKLOAD= data set option must be set to YES.

bulkload=yes; bulkopts=(bl_options 'errors 999, load=2000');

BUFNO= Data Set Option
Specifies the number of buffers to be allocated for processing a SAS data set.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

Syntax
BUFNO=n | nK | hexX | MIN | MAX

Syntax Description
n | nK

specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes). For
example, a value of 8 specifies 8 buffers, and a value of 1k specifies 1024 buffers.

hex
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0-9), followed by an X. For example, the value 2dx sets
the number of buffers to 45 buffers.

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment. This is the default.

BUFNO= Data Set Option 103

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer, which is 231-1, or
approximately 2 billion.

Details
The buffer number is not a permanent attribute of the data set; it is valid only for the
current SAS session or job.

BUFNO= applies to a SAS data set that is opened for input, output, or update.

A larger number of buffers can speed up execution time by limiting the number of input
and output (I/O) operations that are required for a particular SAS data set. However, the
improvement in execution time causes increased memory consumption.

To reduce I/O operations on a small data set as well as to speed execution time, allocate
one buffer for each page of data to be processed. This technique is most effective if you
read the same rows several times during processing.

Comparisons
If the BUFNO= data set option is not specified, the value of the BUFNO= system option
is used. If both are specified in the same SAS session, the value specified for the
BUFNO= data set option overrides the value specified for the BUFNO= system option.

BUFSIZE= Data Set Option
Specifies the size of a permanent buffer page for an output SAS data set.

Valid in: DATA and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Supports: SAS data set

Syntax
BUFSIZE=n | nK | nM | nG | hexX | MAX

Syntax Description
n | nK | nM | nG

specifies the page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). For example, a value of 8 specifies a
page size of 8 bytes, and a value of 4k specifies a page size of 4096 bytes.

Note: If neither the BUFSIZE= system option nor the data set option is set, the
default value is 0. This causes SAS to use the minimum optimal page size for the
operating environment. The BUFSIZE= system option is used in either of the
following scenarios:

• if the BUFSIZE= data set option is not set

• if the BUFSIZE= data set option is set to 0

104 Chapter 12 • Data Set Options for the FEDSVR Engine

The system option BUFSIZE=0 should be set to reset the page size to the default
value for the operating environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0-9), followed by an X. For example, the value 2dx sets the page
size to 45 bytes.

MAX
sets the page size to the maximum possible number in your operating environment,
up to the largest four-byte, signed integer, which is 231-1, or approximately 2 billion
bytes.

Details
The page size is the amount of data that can be transferred for a single I/O operation to
one buffer. The page size is a permanent attribute of the data set and is used when the
data set is processed.

A larger page size can speed up execution time by reducing the number of times SAS
has to read from or write to the storage medium. However, the improvement in execution
time causes increased memory consumption.

To change the page size, use a DATA step to copy the data set and either specify a new
page or use the SAS default. To reset the page size to the default value in your operating
environment, set the BUFSIZE= system option to 0 and set the data set option to 0 or
leave it blank.

Note: If you use the COPY procedure to copy a data set to another library that is
allocated with a different engine, the specified page size of the data set is not
retained.

Operating Environment Information
The default value for BUFSIZE= is determined by your operating environment and
is set to optimize sequential access. To improve performance for direct (random)
access, you should change the value for BUFSIZE=. For the default setting and
possible settings for direct access, see the BUFSIZE= data set option in the SAS
documentation for your operating environment.

Comparisons
If the BUFSIZE= data set option is not specified, then the value of the BUFSIZE=
system option is used. If both are specified in the same SAS session, the BUFSIZE= data
set option overrides the value specified for the BUFSIZE= system option, unless the
BUFSIZE= data set option is set to 0. The BUFSIZE= system option must be set to 0 to
reset the page size to the default value for the operating environment.

BULKLOAD= Data Set Option
Loads rows of data as one unit.

Valid in: DATA and PROC steps

Default: NO

Supports: DB2 under UNIX and PC, Oracle

BULKLOAD= Data Set Option 105

Syntax
BULKLOAD=YES | NO

Syntax Description
YES

calls a DBMS-specific bulk-load facility in order to insert or append rows to a
DBMS table.

NO
uses the driver to insert or append data to a DBMS table.

Details
Using BULKLOAD=YES is the fastest way to insert rows into a DBMS table.

When BULKLOAD=YES, the first error to be encountered causes the remaining rows
(including the erroneous row) in the buffer to be rejected. No other errors within the
same buffer will be detected. In addition, all rows before the error are committed, even if
DBCOMMIT= is set to be larger than the number of the erroneous row.

For more information, see bulk loading information in SAS FedSQL Language
Reference.

See Also
To assign this option to a group of tables or views, use the BULKLOAD= LIBNAME
option.

BULKOPTS= Data Set Option
Container option for BL_LOAD_REPLACE=, BL_LOG=, and BL_OPTIONS= data set options.

Valid in: DATA and PROC steps

Category: Bulk Loading

Requirement: Must follow BULKLOAD=YES

Supports: DB2 under UNIX and PC

Syntax
BULKOPTS=(option1=value <option2=value ... >)

Syntax Description
BL_LOAD_REPLACE=NO|YES

specifies whether the CLI LOAD interface replaces the existing data in the data set.
For more information, see “BL_LOAD_REPLACE= Data Set Option” on page 101.

BL_LOG=pathname
specifies a file to which information about the loading process is written. For more
information, see “BL_LOG= Data Set Option” on page 102.

BL_OPTION=option
specifies a valid DB2 option. For more information, see “BL_OPTIONS= Data Set
Option” on page 102.

106 Chapter 12 • Data Set Options for the FEDSVR Engine

Details
The BULKOPTS= option is a container option that is required to specify
BL_LOAD_REPLACE=, BL_LOG=, and BL_OPTION= data set options. To specify
the BULKOPTS= option, you must first specify BULKLOAD=YES. For more
information, see “BULKLOAD= Data Set Option” on page 105.

Example: Specifying BULKOPTS=
The following example uses BULKLOAD=YES and BULKOPTS= options:

BULKLOAD=YES;
 BULKOPTS=(BL_LOG='c:\temp\bulkload.log" BL_LOAD_REPLACE=yes
 BL_OPTIONS='ERRORS=999, LOAD=2000');

COMPRESS= Data Set Option
Specifies the compression of rows in an output table.

Valid in: DATA and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Supports: SAS data set

Syntax
COMPRESS= NO | YES | CHAR | BINARY

Syntax Description
NO

specifies that the rows in a newly created data set are uncompressed (fixed-length
records).

YES | CHAR
specifies that the rows in a newly created data set are compressed (variable-length
records) by SAS using RLE (Run Length Encoding). RLE compresses rows by
reducing repeated consecutive characters (including blanks) to two-byte or three-byte
representations.

Alias ON

Tip Use this compression algorithm for character data.

BINARY
specifies that the rows in a newly created data set are compressed (variable-length
records) by SAS using RDC (Ross Data Compression). RDC combines run-length
encoding and sliding-window compression to compress the file.

Tip This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (numeric columns). Because the
compression function operates on a single record at a time, the record length
must be several hundred bytes or larger for effective compression.

COMPRESS= Data Set Option 107

Details
Compressing a file is a process that reduces the number of bytes that are required to
represent each row. Advantages of compressing a file include reduced storage
requirements for the file and fewer I/O operations necessary to read or write to the data
during processing. However, more CPU resources are required to read a compressed file
(because of the overhead of uncompressing each row). There are also situations where
the resulting file size might increase rather than decrease.

Use the COMPRESS= data set option to compress an individual file. Specify the option
for output data sets only, that is, data sets named in the DATA statement of a DATA step
or in the OUT= option of a SAS procedure.

After a file is compressed, the setting is a permanent attribute of the file, which means
that to change the setting, you must re-create the file. That is, to uncompress a file,
specify COMPRESS=NO for a DATA step that copies the compressed file.

Comparisons
The COMPRESS= data set option overrides the COMPRESS= option in the LIBNAME
statement, the COMPRESS= connection string option, and the COMPRESS= system
option.

When you create a compressed SAS data set, you can also specify REUSE=YES (as a
data set option or connection option) in order to track and reuse space. With
REUSE=YES, new rows are inserted in space freed when other rows are updated or
deleted. When the default REUSE=NO is in effect, new rows are appended to the
existing file.

DBCOMMIT= Data Set Option
Causes an automatic Commit (a permanent writing of data to the DBMS) after a specified number of rows
have been processed.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
DBCOMMIT=n

Syntax Description
n

is an integer greater than or equal to 0.

Details
DBCOMMIT= affects update, delete, and insert processing. The number of rows
processed includes rows that are not processed successfully. When DBCOMMIT=0, a
commit is issued only once (after the procedure or DATA step completes).

If the DBCOMMIT= option is explicitly set, any update that has a WHERE clause fails.

108 Chapter 12 • Data Set Options for the FEDSVR Engine

SAS data sets cannot be rolled back, so for these data sources, this option has no effect.
However, if explicitly set, the LIBNAME engine still fails any update that has a
WHERE clause even though the value specified on this option has no effect.

Teradata Details: The Teradata driver alias for this option is CHECKPOINT. See the
Fastload capability description in the data source reference documentation for Teradata
for the default behavior of this option.

Example: Specifying the Number of Rows to Process
In the following example, a commit is issued after every 10 rows are processed:

data oracle.dept (dbcommit=10);
 set myoralib.staff;
run;

DBCONDITION= Data Set Option
Specifies criteria for subsetting and ordering DBMS data.

Valid in: DATA and PROC steps

Supports: All

Syntax
DBCONDITION="DBMS-SQL-query-clause"

Syntax Description
DBMS-SQL-query-clause

is a DBMS-specific SQL query clause, such as WHERE, GROUP BY, HAVING, or
ORDER BY.

Details
This option enables you to specify selection criteria in the form of DBMS-specific SQL
query clauses, which are passed directly to the DBMS for processing. When selection
criteria are passed directly to the DBMS for processing, performance is often enhanced.
The DBMS checks the criteria for syntax errors when it receives the SQL query.

The DBKEY= and DBINDEX= options are ignored when you use DBCONDITION=.
DBCONDITION= is ignored if it specifies ORDER BY and you also use a BY
statement.

Example: Returning Only Condition-Specific Rows
In the following example, the function that is passed to the DBMS with the
DBCONDITION= option causes the DBMS to return to SAS only the rows that satisfy
the condition.

proc sql;
 create view smithnames as
 select lastname from myoralib.employees
 (dbcondition="where soundex(lastname) = soundex('SMYTHE')")

DBCONDITION= Data Set Option 109

 using libname myoralib oracle user=testuser pw=testpass path=dbmssrv;
select lastname from smithnames;

DBCREATE_TABLE_OPTS= Data Set Option
Specifies syntax to be added to the CREATE TABLE statement.

Valid in: DATA and PROC steps

Supports: MySQL

Syntax
DBCREATE_TABLE_OPTS=< 'SQL-clauses'>

Syntax Description
MySQL-specific-SQL-clauses

are one or more clauses that can be appended to the end of an SQL CREATE TABLE
statement.

Details
This option enables you to add clauses to the end of the SQL CREATE TABLE
statement. The engine passes the SQL CREATE TABLE statement and its clauses to
MySQL, which executes the statement and creates the table. This option applies only
when you are creating a table by specifying a libref that is associated with data.

DBFORCE= Data Set Option
Specifies whether to force the truncation of data during insert processing.

Valid in: DATA and PROC steps

Default: NO

Supports: All

Syntax
DBFORCE= YES | NO

Syntax Description
YES

specifies that the rows which contain data values that exceed the length of the DBMS
column are inserted, and the data values are truncated to fit the DBMS column
length.

NO
specifies that the rows which contain data values thatexceed the DBMS column
length are not inserted.

110 Chapter 12 • Data Set Options for the FEDSVR Engine

Details
This option determines how the driver handles rows that contain data values that exceed
the length of the DBMS column.

The SAS data set option FORCE= overrides this option when it is used with PROC
APPEND or the PROC SQL UPDATE statement. The PROC SQL UPDATE statement
does not provide a warning before truncating the data.

Example: Truncating Data during Insert Processing
In the following example, two librefs are associated with Oracle databases. The default
databases and schemas are used and therefore are not specified. In the DATA step,
MyDBLib.Dept is created from the Oracle data that is referenced by MyOraLib.Staff.
The LastName column is a character column of length 20 in MyOraLib.Staff. During the
creation of MyDBLib.Dept, the LastName column is stored as a column of type
character and length 10 by using DBFORCE=YES.

libname myoralib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn1 dsnuser=orauser dsnpwd=orapwd;
libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn2 dsnuser=orauser dsnpwd=orapwd;
data mydblib.dept (dbtype=(lastname='char(10)') dbforce=yes);
 set myoralib.staff;
run;

DBGEN_NAME= Data Set Option
Specifies how SAS renames columns automatically when they contain characters that SAS does not allow.

Valid in: DATA and PROC steps

Default: DBMS

Supports: All

Syntax
DBGEN_NAME= DBMS | SAS

Syntax Description
DBMS

specifies that disallowed characters are converted to underscores.

SAS
specifies that DBMS columns that contain disallowed characters are converted into
valid SAS column names, using the format _COLn, where n is the column number
(starting with zero). If a name is converted to a name that already exists, a sequence
number is appended to the end of the new name.

DBGEN_NAME= Data Set Option 111

Details
SAS retains column names when reading data from DBMS tables, unless a column name
contains characters that SAS does not allow, such as $ or @. SAS allows alphanumeric
characters and the underscore (_).

This option is intended primarily for National Language Support, notably the conversion
of kanji to English characters because the English characters that are converted from
kanji are often those that are not allowed in SAS.

Example:
If you specify DBGEN_NAME=SAS, a DBMS column named Dept$Amt is renamed to
_COLn where n is the column number.

If you specify DBGEN_NAME=DBMS,a DBMS column named Dept$Amt is renamed
to Dept_Amt.

DBINDEX= Data Set Option
Detects and verifies that indexes exist on a DBMS table. If they do exist and are of the correct type, a join
query that is passed to the DBMS might improve performance.

Valid in: DATA and PROC steps

Default: DBMS specific

Supports: All

Syntax
DBINDEX= YES | NO | <'>index-name<'>

Syntax Description
YES

triggers the interface to search for all indexes on a table and return them to SAS for
evaluation. If a usable index is found, then the join WHERE clause is passed to the
DBMS for processing. A usable index is expected to have at least the same attributes
as the join column.

NO
no automated index search is performed.

index-name
verifies the index name that is specified for the index columns on the DBMS table.
This requires the same type of call as when DBINDEX=YES is used.

Details
When processing a join that involves a large DBMS table and a relatively small SAS
data set, you might be able to use DBINDEX= to improve performance.

Note: Improper use of this option can degrade performance.

Queries must be issued to the necessary DBMS control or system tables to extract index
information about a specific table or validate the index that you specified.

112 Chapter 12 • Data Set Options for the FEDSVR Engine

Examples

Example 1: Using DBINDEX= in a LIBNAME Statement
The following SAS data set is used in these examples:

data s1;
 a=1; y='aaaaa'; output;
 a=2; y='bbbbb'; output;
 a=5; y='ccccc'; output;
run;

The following example demonstrates the use of DBINDEX= in the LIBNAME
statement:

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd
 dbindex=yes;
proc sql;
 select * from s1 aa, x.dbtab bb where aa.a=bb.a;
 select * from s1 aa, mydblib.dbtab bb where aa.a=bb.a;

The DBINDEX= values for table Dbtab are retrieved from the DBMS and compared
with the join values. In this case, a match was found. Therefore, the join is passed down
to the DBMS using the index. If the index a was not found, the join would take place in
SAS.

Example 2: Using DBINDEX= in a SAS DATA Step
The following example demonstrates the use of DBINDEX= in the SAS DATA step:

data a;
 set s1;
 set x.dbtab(dbindex=yes) key=a;
 set mydblib.dbtab(dbindex=yes) key=a;
run;

The key is validated against the list from the DBMS. If a is an index, then a pass down
occurs. Otherwise, the join takes place in SAS.

Example 3: Using DBINDEX= in PROC SQL
The following example demonstrates the use of DBINDEX= in PROC SQL:

proc sql;
 select * from s1 aa, x.dbtab(dbindex=yes) bb where aa.a=bb.a;
 select * from s1 aa, mylib.dbtab(dbindex=yes) bb where aa.a=bb.a;
 /*or*/
 select * from s1 aa, x.dbtab(dbindex=a) bb where aa.a=bb.a;
 select * from s1 aa, mylib.dbtab(dbindex=a) bb where aa.a=bb.a;

DBKEY= Data Set Option
Specifies a key column to optimize DBMS retrieval. Can improve performance when you are processing a
join that involves a large DBMS table and a small SAS data set or DBMS table.

Valid in: DATA and PROC steps

Supports: All

DBKEY= Data Set Option 113

Syntax
DBKEY=(<'>column1<'> <<'> column2<'> ... >)

Syntax Description
column

used by SAS to build an internal WHERE clause to search for matches in the DBMS
table based on the key column. For example:

select * from sas.a, dbms.b(dbkey=x) where a.x=b.x;

In this example, DBKEY= specifies column x, which matches the key column
designated in the WHERE clause. However, if the DBKEY= column does not match
the key column in the WHERE clause, then DBKEY= is not used.

Details
When processing a join that involves a large DBMS table and a relatively small SAS
data set, you might be able to use DBKEY= to improve performance.

When you specify DBKEY=, it is strongly recommended that an index exists for the key
column in the underlying DBMS table.

Note: Improper use of this option can decrease performance.

Examples

Example 1: Using DBKEY= with MODIFY=
The following example uses DBKEY= with the MODIFY statement in a DATA step:

libname invty fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=db2dsn dsnuser=db2user dsnpwd=db2pwd;
data invty.stock;
 set addinv;
 modify invty.stock(dbkey=partno) key=dbkey;
 INSTOCK=instock+nwstock;
 RECDATE=today();
 if _iorc_=0 then replace;
run;

Example 2: Using More Than One DBKEY= Value
To use more than one value for DBKEY=, you must include the second value as a join in
the WHERE clause. In the following example, the PROC SQL brings the entire DBMS
table into SAS and then proceeds with processing:

options sastrace=',,,d' sastraceloc=saslog nostsuffix;
proc sql;
create table work.barbkey as
select keyvalues.empid, employees.hiredate, employees.jobcode
 from mydblib.employees(dbkey=(empid jobcode))
 inner join work.keyvalues on employees.empid = keyvalues.empid;
 quit;

114 Chapter 12 • Data Set Options for the FEDSVR Engine

DBLABEL= Data Set Option
Specifies whether to use SAS column labels or SAS column names as the DBMS column names during
output processing.

Valid in: DATA and PROC steps

Default: NO

Supports: All

Syntax
DBLABEL= YES | NO

Syntax Description
YES

specifies that SAS column labels are used as DBMS column names during output
processing.

NO
specifies that SAS column names are used as DBMS column names.

Details
This option is valid only for creating DBMS tables.

Example: Specifying a Variable Label
In the following example, a SAS data set, New, is created with one column C1. This
column is assigned a label of DeptNum. In the second DATA step, the
MyDBLib.MyDept table is created by using DeptNum as the DBMS column name.
Setting DBLABEL=YES enables the label to be used as the column name.

data new;
 label c1='deptnum';
 c1=001;
run;
data mydblib.mydept(dblabel=yes);
 set new;
run;
proc print data=mydblib.mydept;
run;

DBMASTER= Data Set Option
Designates which table is the larger table when you are processing a join that involves tables from two
different types of databases.

Valid in: DATA and PROC steps

Supports: All

DBMASTER= Data Set Option 115

Syntax
DBMASTER=YES

Syntax Description
YES

designates which of two tables references in a join operation is the larger table.

Example: Joining Two Tables
In the following example, a table from an Oracle database and a table from a DB2
database are joined. DBMASTER= is set to YES to indicate that the Oracle table is the
larger table. The DB2 table is the smaller table.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;
libname mydblib2 fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=db2dsn dsnuser=db2user dsnpwd=db2pwd;
proc sql;
 select * from mydblib.bigtab(dbmaster=yes), mydblib2.smalltab
bigtab.x=smalltab.x;

DBNULL= Data Set Option
When a table is created, this option indicates whether a null is a valid value for the specified columns.

Valid in: DATA and PROC steps

Default: data source-specific

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
DBNULL=<_ALL_=YES | NO>
| (<column-name-1=YES | NO > <<column-name-2=YES | NO> ...>)

Syntax Description
ALL

specifies that the YES or NO applies to all columns in the table. (This is valid for
Oracle and Teradata only.)

column-name
specifies that the YES or NO applies to the name a column or columns only.

YES
specifies that a null is not valid for the specified columns in the table.

NO
specifies that a null is not valid for the specified columns in the table.

116 Chapter 12 • Data Set Options for the FEDSVR Engine

Details
This option is valid only when you are creating tables. If you specify more than one
column name, the names must be separated with spaces.

The DBNULL= option processes values from left to right. Therefore, if you specify a
column name twice, or if you use the _ALL_ value, the last value overrides the first
value that is specified for the column.

Examples

Example 1: Preventing Specific Columns from Accepting Null
Values
In the following example, by using the DBNULL= option, the EmpId and JobCode
columns in the new MyDBLib.MyDept2 table are prevented from accepting null values.
If the Employees table contains NULL values in the EmpId or JobCode columns, the
DATA step fails.

data mydblib.mydept2(dbnull=(empid=no jobcode=no));
 set mydblib.employees;
run;

Example 2: Preventing All Columns from Accepting Null Values
In the following example, all columns in the new MyDBLib.MyDept3 table except for
the JobCode column are prevented from accepting null values. If the Employees table
contains null values in any column other than the JobCode column, the DATA step fails.

data mydblib.mydept3(dbnull=(_ALL_=no jobcode=YES));
 set mydblib.employees;
run;

DBNULLKEYS= Data Set Option
Controls the format of the WHERE clause with regard to null values when you use the DBKEY= data set
option.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
DBNULLKEYS=YES | NO

Details
If there might be null values in the transaction table or the master table for the columns
that you specify in the DBKEY= option, then use DBNULLKEYS=YES. When you
specify DBNULLKEYS=YES and specify a column that is not defined as NOT NULL
in the DBKEY= data set option, SAS generates a WHERE clause that can find null
values. For example, if you specify DBKEY=COLUMN and COLUMN is not defined
as NOT NULL, SAS generates a WHERE clause with the following syntax:

DBNULLKEYS= Data Set Option 117

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

This syntax enables SAS to prepare the statement once and use it for any value (NULL
or NOT NULL) in the column. Note that this syntax has the potential to be much less
efficient than the shorter form of the WHERE clause (presented below). When you
specify DBNULLKEYS=NO or specify a column that is defined as NOT NULL in the
DBKEY= option, SAS generates a simple WHERE clause.

If you know that there are no null values in the transaction table or the master table for
the columns that you specify in the DBKEY= option, you can use DBNULLKEYS=NO.
If you specify DBNULLKEYS=NO and specify DBKEY=COLUMN, SAS generates a
shorter form of the WHERE clause (regardless of whether the column specified in
DBKEY= is defined as NOT NULL):

WHERE (COLUMN = ?)

DBSASLABEL= Data Set Option
Specifies how the table driver returns column labels.

Valid in: DATA and PROC steps

Default: COMPAT

Supports: All

Syntax
DBSASLABEL= COMPAT | NONE

Syntax Description
COMPAT

specifies to return the column label to the application. For data sources that support
storing column labels on the table (for example, SAS data sets), the engine returns
the label to the application. If there is no label stored, no label is returned. For data
sources that do not store column labels on the table, the engine returns the column
name as the label.

NONE
specifies that a column label is not returned even if one exists. The engine returns
blanks for the column labels.

Example: Returning Blank Labels for Aliases in Headings
The following example demonstrates how DBSASLABEL= is used as a data set option
to return blank column labels so that PROC SQL can use the column aliases as the
column headings.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn dbsaslabel=none;
proc sql;
 select deptno as Department ID, loc as Location
 from mydblib.dept (dbsaslabel=none);

118 Chapter 12 • Data Set Options for the FEDSVR Engine

Without the DBSASLABEL= option set to NONE, the aliases would be ignored and
DEPTNO and LOC would be used as column headings in the result set.

See Also
To assign this option to a group of tables or views, use the DBSASLABEL= LIBNAME
option.

DBSASTYPE= Data Set Option
Specifies data types to override the default SAS data types during input processing.

Valid in: DATA and PROC steps

Default: DBMS-specific

Supports: All

Syntax
DBSASTYPE= (column-name-1=<'> SAS-data-type<'> <…column-name-n=<'> SAS-
data-type<'> >)

Syntax Description
column-name

specifies a DBMS column name.

SAS-data-type
specifies a SAS data type. SAS data types include the following: CHAR(n),
NUMERIC, DATETIME, DATE, TIME. See the documentation for your database
for details.

Details
By default, the LIBNAME engine converts each DBMS data type to a SAS data type
during input processing. When you need a different data type, you can use this option to
override the default and assign a SAS data type to each specified DBMS column. Some
conversions might not be supported. If a conversion is not supported, SAS prints an error
to the log.

Examples

Example 1: Overriding the Default Data Type
In the following example, DBSASTYPE= specifies a data type to use for the column
MyColumn when SAS is printing ODBC data. If the data in this DBMS column is stored
in a format that SAS does not support, such as SQL_DOUBLE(20), using this data set
option enables SAS to print the values.

proc print data=mylib.mytable
 (dbsastype=(mycolumn='CHAR(20)'));
run;

DBSASTYPE= Data Set Option 119

Example 2: Converting Column Length
In the following example, the data that is stored in the DBMS FiberSize column has a
data type that provides more precision than what SAS could accurately support, such as
DECIMAL(20). If you used only PROC PRINT on the DBMS table, the data might be
rounded or displayed as a missing value. Instead, you could use DBSASTYPE= to
convert the column to a character field of the length 21. Because the DBMS performs
the conversion before the data is brought into SAS, there is no loss of precision.

proc print data=mylib.specprod
 (dbsastype=(fibersize='CHAR(21)'));
run;

Example 3: Appending Tables to Match Data Types
The following example uses DBSASTYPE= to append one table to another when the
data types are not comparable. If the SAS data set has a column EmpId defined as
CHAR(20) and the DBMS table has an EmpId column defined as DECIMAL (20), you
can use DBSASTYPE= to make them match:

proc append base=dblib.hrdata (dbsastype=(empid='CHAR(20)'))
 data=saslib.personnel;
run;

DBSASTYPE= specifies to SAS that the EmpId is defined as a character field of length
20. When a row is inserted from the SAS data set into a DBMS table, the DBMS
performs a conversion of the character field to the DBMS data type DECIMAL(20).

DBTYPE= Data Set Option
Specifies a data type to use instead of the default DBMS data type when SAS creates a DBMS table.

Valid in: DATA and PROC steps

Default: DBMS-specific

Supports: All

Syntax
DBTYPE=(column-name-1=<'> DBMS-type<'>
<…column-name-n=<'> DBMS-type<'> >)

Syntax Description
column-name

specifies a DBMS column name.

DBMS-type
specifies a DBMS data type. See the documentation for your data source for the
default data types for your DBMS.

Details
By default, the interface for your DBMS converts each SAS data type to a predetermined
DBMS data type when writing data to your DBMS. When you need a different data type,
use DBTYPE= to override the default data type.

120 Chapter 12 • Data Set Options for the FEDSVR Engine

Teradata Details: In Teradata, you can use DBTYPE= to specify data attributes for a
column. See your Teradata CREATE TABLE documentation for information about the
data type attributes that you can specify. If you specify DBNULL=NO for a column, do
not also use DBTYPE= to specify NOT NULL for that column. If you do, 'NOT NULL'
is inserted twice in the column definition. This causes Teradata to generate an error
message.

Examples

Example 1: Specifying Data Types for Columns
In the following example, DBTYPE= specifies the data types that are used when you
create columns in the DBMS table.

data mydblib.newdept(dbtype=(deptno='number(10,2)' city='char(25)'));
 set mydblib.dept;
run;

Example 2: Specifying Data Types for Columns in a New Table
The following example creates a new Teradata table, NewDept, specifying the Teradata
data types for the DeptNo and City columns.

data mydblib.newdept(dbtype=(deptno='byteint' city='char(25)'));
 set dept;
run;

Example 3: Specifying a Data Type for a Column in a New Table
The following example creates a new Teradata table, NewEmployees, and specifies a
data type and attributes for the EmpNo column. The example encloses the Teradata type
and attribute information in double quotation marks. Single quotation marks conflict
with those that are required by the Teradata FORMAT attribute. If you use single
quotation marks, SAS returns syntax error messages.

data mydblib.newemployees(dbtype= (empno="SMALLINT FORMAT '9(5)'
 CHECK (empno >= 100 AND empno <= 2000)"));
 set mydblib.employees;
run;

DROP= Data Set Option
For an input data set, excludes the specified columns from processing; for an output data set, excludes the
specified columns from being written to the data set.

Valid in: DATA and PROC steps

Category: Variable Control

Supports: All

Syntax
DROP=column(s)

DROP= Data Set Option 121

Syntax Description
column(s)

lists one or more column names. You can list the columns in any form that SAS
allows.

Details
If the option is associated with an input data set, the columns are not available for
processing. If the DROP= data set option is associated with an output data set, SAS does
not write the columns to the output data set, but they are available for processing.

Comparisons
• The DROP= data set option differs from the DROP statement in these ways:

• In DATA steps, the DROP= data set option can apply to both input and output
data sets. The DROP statement applies only to output data sets.

• In DATA steps, when you create multiple output data sets, use the DROP= data
set option to write different columns to different data sets. The DROP statement
applies to all output data sets.

• In PROC steps, you can use only the DROP= data set option, not the DROP
statement.

• The KEEP= data set option specifies a list of columns to be included in processing or
to be written to the output data set.

Examples

Example 1: Excluding Columns from Input
In this example, the columns Salary and Gender are not included in processing and they
are not written to either output data set:

data payroll;
 input idnum $3. +3 gender $1. +4 jobcode $3. +9 salary 5.
 +2 birth date7. +2 hired date7.;
 informat birth date7. hired date7.;
 format birth date7. hired date7.;
 datalines;
919 M TA2 34376 12SEP60 04JUN87
653 F ME2 35108 15OCT64 09AUG90
400 M ME1 29769 05NOV67 16OCT90
350 F FA3 32886 31AUG65 29JUL90
401 M TA3 38822 13DEC50 17NOV85
499 M ME3 43025 26APR54 07JUN80
101 M SCP 18723 06JUN62 01OCT90
333 M PT2 88606 30MAR61 10FEB81
402 M TA2 32615 17JAN63 02DEC90
479 F TA3 38785 22DEC68 05OCT89
403 M ME1 28072 28JAN69 21DEC91
739 M PT1 66517 25DEC64 27JAN91
658 M SCP 17943 08APR67 29FEB92
428 F PT1 68767 04APR60 16NOV91
782 M ME2 35345 04DEC70 22FEB92
244 M ME2 36925 31AUG63 17JAN88

122 Chapter 12 • Data Set Options for the FEDSVR Engine

383 M BCK 25823 25JAN68 20OCT92
574 M FA2 28572 27APR60 20DEC92
789 M SCP 18326 25JAN57 11APR78
404 M PT2 91376 24FEB53 01JAN80
437 F FA3 33104 20SEP60 31AUG84
639 F TA3 40260 26JUN57 28JAN84
269 M NA1 41690 03MAY72 28NOV92
065 M ME2 35090 26JAN44 07JAN87
876 M TA3 39675 20MAY58 27APR85
037 F TA1 28558 10APR64 13SEP92
129 F ME2 34929 08DEC61 17AUG91
988 M FA3 32217 30NOV59 18SEP84
405 M SCP 18056 05MAR66 26JAN92
430 F TA2 32925 28FEB62 27APR87
983 F FA3 33419 28FEB62 27APR87
134 F TA2 33462 05MAR69 21DEC88
118 M PT3 111379 16JAN44 18DEC80
438 F TA3 39223 15MAR65 18NOV87
125 F FA2 28888 08NOV68 11DEC87
475 F FA2 27787 15DEC61 13JUL90
117 M TA3 39771 05JUN63 13AUG92
935 F NA2 51081 28MAR54 16OCT81
124 F FA1 23177 10JUL58 01OCT90
422 F FA1 22454 04JUN64 06APR91
616 F TA2 34137 01MAR70 04JUN93
406 M ME2 35185 08MAR61 17FEB87
120 M ME1 28619 11SEP72 07OCT93
094 M FA1 22268 02APR70 17APR91
389 M BCK 25028 15JUL59 18AUG90
905 M PT1 65111 16APR72 29MAY92
407 M PT1 68096 23MAR69 18MAR90
114 F TA2 32928 18SEP69 27JUN87
410 M PT2 84685 03MAY67 07NOV86
439 F PT1 70736 06MAR64 10SEP90
409 M ME3 41551 19APR50 22OCT81
408 M TA2 34138 29MAR60 14OCT87
121 M ME1 29112 26SEP71 07DEC91
991 F TA1 27645 07MAY72 12DEC92
102 M TA2 34542 01OCT59 15APR91
356 M ME2 36869 26SEP57 22FEB83
545 M PT1 66130 12AUG59 29MAY90
292 F ME2 36691 28OCT64 02JUL89
440 F ME2 35757 27SEP62 09APR91
368 M FA2 27808 11JUN61 03NOV84
369 M TA2 33705 28DEC61 13MAR87
411 M FA2 27265 27MAY61 01DEC89
113 F FA1 22367 15JAN68 17OCT91
704 M BCK 25465 30AUG66 28JUN87
900 M ME2 35105 25MAY62 27OCT87
126 F TA3 40899 28MAY63 21NOV80
677 M BCK 26007 05NOV63 27MAR89
441 F FA2 27158 19NOV69 23MAR91
421 M TA2 33155 08JAN59 28FEB90
119 M TA1 26924 20JUN62 06SEP88
834 M BCK 26896 08FEB72 02JUL92
777 M PT3 109630 23SEP51 21JUN81

DROP= Data Set Option 123

663 M BCK 26452 11JAN67 11AUG91
106 M PT2 89632 06NOV57 16AUG84
103 F FA1 23738 16FEB68 23JUL92
477 M FA2 28566 21MAR64 07MAR88
476 F TA2 34803 30MAY66 17MAR87
379 M ME3 42264 08AUG61 10JUN84
104 M SCP 17946 25APR63 10JUN91
009 M TA1 28880 02MAR59 26MAR92
412 M ME1 27799 18JUN56 05DEC91
115 F FA3 32699 22AUG60 29FEB80
128 F TA2 32777 23MAY65 20OCT90
442 F PT2 84536 05SEP66 12APR88
417 M NA2 52270 27JUN64 07MAR89
478 M PT2 84203 09AUG59 24OCT90
673 M BCK 25477 27FEB70 15JUL91
839 F NA1 43433 29NOV70 03JUL93
;

data myfiles.plan1 myfiles.plan2;
 set myfiles.payroll (drop=salary gender);
 if hired <'01jan98'd then output myfiles.plan1;
 else output myfiles.plan2;
run;

proc print data=myfiles.plan1(obs=2);
 title 'plan1';
proc print data=myfiles.plan2(obs=2);
 title 'plan2';
run;

You cannot use Salary or Gender in any logic in the DATA step because DROP=
prevents the SET statement from reading them from Payroll.

Example 2: Processing Columns without Writing Them to a Data Set
In this example, Salary and Gender are not written to Plan2, but they are written to
Plan1:

data myfiles.plan1 myfiles.plan2 (drop=salary gender);
 set myfiles.payroll;
 if hired <'01jan98'd then output myfiles.plan1;
 else output myfiles.plan2;
run;

ENCRYPT= Data Set Option
Specifies whether to encrypt an output table.

Valid in: DATA and PROC steps

Category: Data Set Control

Restriction: Use with output tables only.

Supports: SAS data set

124 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax
ENCRYPT=YES | NO

Syntax Description
YES

encrypts the file. The encryption method uses passwords. At a minimum, you must
specify the READ= or the PW= data set option at the same time that you specify
ENCRYPT=YES. Because the encryption method uses passwords, you cannot
change any password on an encrypted data set without re-creating the data set.

Note: Record all passwords. If you forget the password, you cannot reset it without
assistance from SAS. The process is time-consuming and resource-intensive.

NO
does not encrypt the file.

Details
• Encryption requires approximately the same amount of CPU resources as

compression.

• When a SAS data set is encrypted, all associated indexes are also encrypted.

• You cannot use PROC CPORT on encrypted files.

Example: Using the ENCRYPT=YES Option
This example creates an encrypted SAS data set:

data myfiles.salary (encrypt=yes);
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

FIRSTOBS= Data Set Option
Specifies the first row in a data source that SAS processes.

Valid in: DATA and PROC steps

Category: Observation Control

Restriction: Valid for input (Read) processing only.

Supports: All

Syntax
FIRSTOBS= n | nK | nM | nG | hexX | MIN | MAX

FIRSTOBS= Data Set Option 125

Syntax Description
n | nK | nM | nG

specifies the number of the first row to process in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). For example, a
value of 8 specifies the 8th row, and a value of 3k specifies 3,072.

hexX
specifies the number of the first row to process as a hexadecimal value. You must
specify the value beginning with a number (0-9), followed by an X. For example, the
value 2dx sets the 45th row as the first row to process.

MIN
sets the number of the first row to process to 1. This is the default.

MAX
sets the number of the first row to process to the maximum number of rows in the
data set, up to the largest eight-byte, signed integer, which is 263-1, or approximately
9.2 quintillion rows.

Details
The FIRSTOBS= data set option affects a single, existing file. Use the FIRSTOBS=
system option to affect all steps for the duration of your current SAS session.

FIRSTOBS= is valid for input (Read) processing only. Specifying FIRSTOBS= is not
valid for output or update processing.

You can apply FIRSTOBS= processing to WHERE processing.

Comparisons
• The FIRSTOBS= data set option overrides the FIRSTOBS= system option for the

individual data set.

• The FIRSTOBS= data set option specifies a starting point for processing. The OBS=
data set option specifies an ending point.

• When external files are read, the FIRSTOBS= option in the INFILE statement
specifies which record to read first.

Examples

Example 1: Using FIRSTOBS= in PROC PRINT
This PROC step prints the data set Study beginning with row 20:

data myfiles.study;
 input char $ @@;
 datalines;
aa bb cc dd ee ff gg
hh ii jj kk ll mm nn
oo pp qq rr ss tt uu
vv ww xx yy zz
;

proc print data=myfiles.study (firstobs=20);
run;

126 Chapter 12 • Data Set Options for the FEDSVR Engine

Example 2: Using FIRSTOBS= in the SET Statement
This SET statement uses both FIRSTOBS= and OBS= to read only rows 5 through 10
from the data set Study. Data set New contains six rows.

data new;
 set study(firstobs=5 obs=10);
run;

proc print data=new;
 run;

IDXNAME= Data Set Option
Directs SAS to use a specific index to match the conditions of a WHERE expression.

Valid in: DATA and PROC steps

Category: User Control of SAS Index Usage

Restrictions: Use with input data sets only.
Mutually exclusive with IDXWHERE= data set option.

Supports: SAS data set

Syntax
IDXNAME=index-name

Syntax Description
index-name

specifies the name (up to 32 characters) of a simple or composite index for the SAS
data set. SAS does not attempt to determine whether the specified index is the best
one or if a sequential search might be more resource efficient.

Interaction The specification is not a permanent attribute of the data set and is valid
only for the current use of the data set.

Details
By default, to satisfy the conditions of a WHERE expression for an indexed SAS data
set, SAS identifies zero or more candidate indexes that could be used to optimize the
WHERE expression. From the list of candidate indexes, SAS selects the one that it
determines will provide the best performance, or rejects all of the indexes if a sequential
pass of the data is expected to be more efficient.

Because the index that SAS selects might not always provide the best optimization, you
can direct SAS to use one of the candidate indexes by specifying the IDXNAME= data
set option. If you specify an index that SAS does not identify as a candidate index, then
IDXNAME= does not process the request. That is, IDXNAME= does not allow you to
specify an index that would produce incorrect results.

Comparisons
IDXWHERE= enables you to override the SAS decision about whether to use an index.

IDXNAME= Data Set Option 127

Example: Specifying an Index for a WHERE Expression
This example uses the IDXNAME= data set option in order to direct SAS to use a
specific index to optimize the WHERE expression. SAS then disregards the possibility
that a sequential search of the data set might be more resource efficient and does not
attempt to determine whether the specified index is the best one. (Note that the EmpNum
index was not created with the NOMISS option.)

data mydata.empnew;
 set mydata.employee (idxname=empnum);
 where empnum < 2000;
run;

IDXWHERE= Data Set Option
Specifies whether SAS uses an index search or a sequential search to match the conditions of a WHERE
expression.

Valid in: DATA and PROC steps

Category: User Control of SAS Index Usage

Restrictions: Use with input data sets only.
Mutually exclusive with IDXNAME= data set option.

Supports: SAS data set

Syntax
IDXWHERE=YES | NO

Syntax Description
YES

tells SAS to choose the best index to optimize a WHERE expression, and to
disregard the possibility that a sequential search of the data set might be more
resource-efficient.

NO
tells SAS to ignore all indexes and satisfy the conditions of a WHERE expression
with a sequential search of the data set.

Details
By default, to satisfy the conditions of a WHERE expression for an indexed SAS data
set, SAS decides whether to use an index or to read the data set sequentially. The
software estimates the relative efficiency and chooses the method that is more efficient.

You might need to override the software's decision by specifying the IDXWHERE= data
set option, because the decision is based on general rules that occasionally cannot
produce the best results. That is, by specifying the IDXWHERE= data set option, you
are able to determine the processing method.

Note: The specification is not a permanent attribute of the data set and is valid only for
the current use of the data set.

128 Chapter 12 • Data Set Options for the FEDSVR Engine

Comparisons
IDXNAME= enables you to direct SAS to use a specific index.

Examples

Example 1: Specifying Index Usage
This example uses the IDXWHERE= data set option to tell SAS to decide which index is
the best to optimize the WHERE expression. SAS then disregards the possibility that a
sequential search of the data set might be more resource-efficient:

data mydata.empnew;
 set mydata.employee (idxwhere=yes);
 where empnum < 2000;

Example 2: Specifying No Index Usage
This example uses the IDXWHERE= data set option to tell SAS to ignore indexes and to
satisfy the conditions of the WHERE expression with a sequential search of the data set:

data mydata.empnew;
 set mydata.employee (idxwhere=no);
 where empnum < 2000;

IGNORE_READ_ONLY_COLUMNS= Data Set Option
Specifies whether to ignore or include columns whose data types are read-only when generating an SQL
statement for inserts or updates.

Valid in: DATA and PROC steps

Default: NO

Supports: All

Syntax
IGNORE_READ_ONLY_COLUMNS=YES | NO

Syntax Description
YES

specifies to ignore columns whose data types are Read-only when generating
INSERT and UPDATE statements

NO
specifies to include columns whose data types are Read-only when generating
INSERT and UPDATE statements

Details
Several databases include data types that can be Read-only, such as the DB2
TIMESTAMP data type. Also, some databases have properties that allow certain data
types to be Read-only, such as the Microsoft SQL Server identity property.

IGNORE_READ_ONLY_COLUMNS= Data Set Option 129

When the IGNORE_READ_ONLY_COLUMNS= option is set to NO (the default), and
a table contains a column that is Read-only, an error is returned indicating that the data
could not be modified for that column.

Example: Inserting Data into a Table
For the following example, a database that contains the table Products is created with
two columns: Id and Product_Name. The Id column is defined by a Read-only data type
and Product_Name is a character column.

create table x.products (id int identity primary key, product_name varchar(40))

If you have a SAS data set that contains the name of your products, you can insert the
data from the SAS data set into the Products table:

data x.products;
 id=1;
 product_name='screwdriver';
 output;
 id=2;
 product_name='hammer';
 output;
 id=3;
 product_name='saw';
 output;
 id=4;
 product_name='shovel';
 output;
run;

With IGNORE_READ_ONLY_COLUMNS=NO (the default), an error is returned by
the database because in this example, the ID column cannot be updated. However, if you
set the option to YES and execute a PROC APPEND, the append succeeds, and the SQL
statement that is generated does not contain the ID column.

libname x fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=db2dsn dsnuser=db2user dsnpwd=db2pwd
 ignore_read_only_columns=yes;
options sastrace=',,,d' sastraceloc=saslog nostsuffix;
proc append base=x.productsdata=work.products;
run;

INSERTBUFF= Data Set Option
Specifies the number of rows in a single Insert operation.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: All

Syntax
INSERTBUFF=positive-integer

130 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax Description
positive-integer

specifies the number of rows to insert.

Details
All data sources default to INSERT_SQL=YES except for SAS data sets. When
INSERT_SQL=YES, INSERTBUFF= defaults to 1 and single row inserts are used. The
optimal value for this option varies with factors such as network type and available
memory. You might need to experiment with the different values to determine the best
value for your site.

The SAS application messages that indicate the success or failure of an Insert operation
only represent information for a single insert, even when multiple inserts are performed.
Therefore, when you assign a value that is greater than INSERTBUFF=1, these
messages might be incorrect.

If you specify the DBCOMMIT= option with a value that is less than the value of the
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=. If neither
DBCOMMIT nor INSERTBUFF is specified, INSERTBUFF defaults to a block size of
32K. SAS determines the number of rows by dividing 32K by the size of each row.

Note: When you insert by using the VIEWTABLE window or the FSVIEW or FSEDIT
procedure, use INSERTBUFF=1 to prevent the driver from trying to insert multiple
rows. These features do not support inserting more than one row at a time.

Note: Additional driver-specific restrictions might apply.

DB2 under UNIX and PC Hosts Details: You must specify INSERT_SQL=YES in order
to use this option. If one row in the insert buffer fails, all rows in the insert buffer fail.

Microsoft SQL Server, Greenplum Details: You must specify INSERT_SQL=YES in
order to use this option.

INSERT_SQL= Data Set Option
Determines the method that is used to insert rows into a data source.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: All

Syntax
INSERT_SQL=YES | NO

Syntax Description
YES

specifies to use the data source's SQL insert method to insert new rows into a table.

NO
specifies to use an alternate (DBMS-specific) method to add new rows to a table.

INSERT_SQL= Data Set Option 131

Details
SAS data sets generally have improved insert performance when INSERT_SQL=NO,
which is the default for that SAS data sets. Other data sources might have inferior insert
performance (or might fail) unless INSERT_SQL=YES. You should experiment to
determine the optimal setting for your situation.

KEEP= Data Set Option
For an input data set, specifies the columns to process; for an output data set, specifies the columns to
write to the data set.

Valid in: DATA and PROC steps

Category: Variable Control

Supports: All

Syntax
KEEP=column(s)

Syntax Description
column(s)

lists one or more column names. You can list the columns in any form that SAS
allows.

Details
When the KEEP= data set option is associated with an input data set, only those columns
that are listed after the KEEP= data set option are available for processing. When the
KEEP= data set option is associated with an output data set, only the columns that are
listed after the option are written to the output data set. However, all columns are
available for processing.

Comparisons
• The KEEP= data set option differs from the KEEP statement in the following ways:

• In DATA steps, the KEEP= data set option can apply to both input and output
data sets. The KEEP statement applies only to output data sets.

• In DATA steps, when you create multiple output data sets, use the KEEP= data
set option to write different columns to different data sets. The KEEP statement
applies to all output data sets.

• In PROC steps, you can use only the KEEP= data set option, not the KEEP
statement.

• The DROP= data set option specifies columns to omit during processing or to omit
from the output data set.

Example: Limiting Columns in the SET Statement
In this example, only columns IdNum and Salary are read from Payroll, and they are the
only columns in Payroll that are available for processing:

132 Chapter 12 • Data Set Options for the FEDSVR Engine

data myfiles.bonus;
 set myfiles.payroll (keep=idnum salary);
 bonus=salary*1.1;
run;

proc print data=myfiles.bonus(obs=2);
 title 'bonus data set';
run;

LABEL= Data Set Option
Specifies a label for a SAS data set.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

Syntax
LABEL='label'

Syntax Description
'label'

specifies a text string of up to 256 characters. If the label text contains single
quotation marks, use double quotation marks around the label. As an alternative, use
two single quotation marks in the label text and enclose the string in single quotation
marks. To remove a label from a data set, assign a label that is equal to a blank that is
enclosed in quotation marks.

Details
You can use the LABEL= option on both input and output data sets. When you use
LABEL= on input data sets, it assigns a label for the file for the duration of that DATA
or PROC step. When it is specified for an output data set, the label becomes a permanent
part of that file and can be printed using the CONTENTS or DATASETS procedure, and
modified using PROC DATASETS.

Comparisons
• The LABEL= data set option enables you to specify labels only for data sets. You

can specify labels for the columns in a data set using the LABEL statement.

• The LABEL= option in the ATTRIB statement also enables you to assign labels to
columns.

Example: Assigning Labels to Data Sets
These examples assign labels to data sets:

data myfiles.w2 (label='1976 W2 Info, Hourly');

data myfiles.new (label='Peter''s List');

data myfiles.new (label="Hillside's Daily Account");

LABEL= Data Set Option 133

data myfiles.sales (label='Sales For May(NE)');

NULLCHAR= Data Set Option
Indicates how missing character values are handled during insert, update, DBINDEX=, and DBKEY=
processing.

Valid in: DATA and PROC steps

Default: SAS

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
NULLCHAR= SAS | YES | NO

Syntax Description
SAS

indicates that missing character values are treated as null values if the DBMS allows
null values. Otherwise, they are treated as the NULLCHARVAL= value.

YES
indicates that missing character values are treated as null values if the DBMS allows
null values. Otherwise, an error is returned.

NO
indicates that missing character values are treated as the NULLCHARVAL= value
(regardless of whether the DBMS allows null values for the column).

Details
This option affects insert and update processing and also applies when you use the
DBINDEX= and DBKEY= options.

This option works in conjunction with the NULLCHARVAL= data set option, which
determines what is inserted when null values are not allowed.

All missing numeric values (represented in SAS as '.') are treated by the DBMS as null
values.

NULLCHARVAL= Data Set Option
Defines the character string that replaces missing character values during insert, update, DBINDEX=, and
DBKEY= processing.

Valid in: DATA and PROC steps

Default: blank

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
NULLCHARVAL='character-string'

134 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax Description
'character-string'

specifies a set of characters that are inserted in the place of a null value when null
values are not allowed.

Details
This option affects insert and update processing and also applies when you use the
DBINDEX= and DBKEY= options.

This option works with the NULLCHAR= option, which determines whether a missing
character value is treated as a null value.

If NULLCHARVAL= is longer than the maximum column width, one of the following
occurs:

• The string is truncated if DBFORCE=YES.

• The operation fails if DBFORCE=NO.

OBS= Data Set Option
Specifies the last row in a data source that SAS processes.

Valid in: DATA and PROC steps

Category: Observation Control

Default: MAX

Restriction: Use with input files only.

Supports: All

Syntax
OBS= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description
n | nK | nM | nG | nT

specifies a number to indicate when to stop processing rows. In this case, n must be
an integer. Using one of the letter notations results in multiplying the integer by a
specific value. That is, specifying K (kilobytes) multiplies the integer by 1,024, M
(megabytes) multiplies by 1,048,576, G (gigabytes) multiplies by 1,073,741,824, or
T (terabytes) multiplies by 1,099,511,627,776. For example, a value of 20 specifies
20 rows, whereas a value of 3m specifies 3,145,728 rows.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the hexadecimal value F8 must be specified as 0F8x in order to specify the
decimal equivalent of 248. The value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to indicate when to stop processing to 0. Use OBS=0 in order to
create an empty data set that has the structure, but not the rows, of another data set.

OBS= Data Set Option 135

Interaction If OBS=0 and the NOREPLACE options are in effect, then SAS can
still take certain actions because it actually executes each DATA and
PROC step in the program, using no rows. For example, SAS executes
procedures, such as CONTENTS and DATASETS, that process
libraries or SAS data sets.

MAX
sets the number to indicate when to stop processing to the maximum number of rows
in the data set, up to the largest 8-byte, signed integer. That value is 263-1, or
approximately 9.2 quintillion. This is the default.

Details
OBS= tells SAS when to stop processing rows. To determine when to stop processing,
SAS uses the value for OBS= in a formula that includes the value for OBS= and the
value for FIRSTOBS=. Here is the formula:

(obs - firstobs) + 1 = results

For example, if OBS=10 and FIRSTOBS=1 (which is the default for FIRSTOBS=), the
result is ten rows. That is, (10 - 1) + 1 = 10. If OBS=10 and FIRSTOBS=2, the result is
nine rows. That is, (10 - 2) + 1 = 9. OBS= is valid only when an existing data set is read.

In WHERE processing, SAS first subsets the data, and then applies OBS= to the subset.
The FEDSVR engine does not have the concept of observation numbering from the
original data set. It sends back the number of rows requested, numbered chronologically,
regardless of where they occur in the data set.

Comparisons
• The OBS= data set option overrides the OBS= system option for the individual data

set.

• Although the OBS= data set option specifies an ending point for processing, the
FIRSTOBS= data set option specifies a starting point. The two options are often used
together to define a range of rows to be processed.

• The OBS= data set option enables you to select rows from data sets. You can select
rows to be read from external data files by using the OBS= option in the INFILE
statement.

Examples

Example 1: Using OBS= to Specify When to Stop Processing Rows
This example illustrates the result of using OBS= to tell SAS when to stop processing
rows. This example creates a SAS data set that contains 15 rows, and then executes the
PRINT procedure with FIRSTOBS=2 and OBS=12. The result is 11 rows. That is, (12 -
2) + 1 = 11. The result of OBS= in this situation appears to be the row number that SAS
processes last, because the output starts with row 2, and ends with row 12. However, this
is only a coincidence.

libname myfiles fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=basedsn;

data myfiles.Ages;
 input Name $ Age;

136 Chapter 12 • Data Set Options for the FEDSVR Engine

 datalines;
Miguel 53
Brad 27
Willie 69
Marc 50
Sylvia 40
Arun 25
Gary 40
Becky 51
Alma 39
Tom 62
Kris 66
Paul 60
Randy 43
Barbara 52
Virginia 72
;
proc print data=myfiles.Ages (firstobs=2 obs=12);
run;

Output 12.1 PROC PRINT Output By Using OBS=

Example 2: Using OBS= with WHERE Processing
This example illustrates the result of using OBS= along with WHERE processing. The
example uses the data set that was created in Example 1, which contains 15 rows, and
assumes that the SAS session has been reset to the defaults FIRSTOBS=1 and
OBS=MAX. This example returns the first 10 rows that meet the WHERE criteria.

libname myfiles fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1

OBS= Data Set Option 137

 dsn=basedsn;

proc print data=myfiles.Ages (firstobs=1 obs=max);
 where Age LT 60;
run;

Output 12.2 PROC PRINT Output Using a WHERE Statement and Default OBS= and
FIRSTOBS=

Executing the PRINT procedure with the WHERE statement and OBS=5 results in 10
rows, that is, (5 - 1) + 1 = 4. Note that with WHERE processing, SAS first subsets the
data, and then applies OBS= to the subset.

proc print data=myfiles.Ages (obs=5);
 where Age LT 60;
run;

138 Chapter 12 • Data Set Options for the FEDSVR Engine

Output 12.3 PROC PRINT Output Using a WHERE Statement and OBS=

The result of OBS= appears to be how many rows to process, because the output consists
of 5 rows, ending with the row number 5. However, the result is only a coincidence. If
you apply FIRSTOBS=2 and OBS=5 to the subset, then the result is nine rows, that is, (5
- 2) + 1 = 4. OBS= in this situation is neither the row number to end with nor how many
rows to process; the value is used in the formula to determine when to stop processing.

proc print data=myfiles.Ages (firstobs=2 obs=5);
 where Age LT 60;
run;

Output 12.4 PROC PRINT Output Using WHERE Statement, OBS=, and FIRSTOBS=

Example 3: Using OBS= When Rows Are Deleted
This example illustrates the result of using OBS= for a data set that has deleted rows.
The example uses the data set that was created in Example 1, and deletes row 4.
FIRSTOBS=1 and OBS=MAX are set in the PROC PRINT request to print all rows in
the data set.

proc sql noerrorstop; delete from myfiles.Ages
 where Name="Sylvia";
quit;

proc print data=myfiles.Ages (firstobs=1 obs=max);
run;

OBS= Data Set Option 139

The name “Sylvia” that was previously in row 4 is removed. The FEDSVR engine does
not have the concept of observation numbering from the original data set. It sends back
the number of rows requested, numbered chronologically, regardless of where they occur
in the data set. There are no gaps in numbering for deleted rows.

Output 12.5 PROC PRINT Output Showing Row 4 Deleted

PRESERVE_COL_NAMES= Data Set Option
Preserves spaces, special characters, and case sensitivity in column names when you create tables.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: All

Syntax
PRESERVE_COL_NAMES=NO | YES

140 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax Description
NO

specifies that column names that are used in table creation are derived from SAS
column names by using the SAS column name normalization rules. (For more
information, see “VALIDVARNAME= System Option” on page 97.) However, the
data source applies its specific normalization rules to the SAS column names when it
creates the column names.

The use of name literals to create column names that use database keywords or
special symbols other than the underscore character might be invalid when DBMS
normalization rules are applied. To include nonstandard SAS symbols or database
keywords, specify PRESERVE_COL_NAMES=YES.

YES
specifies that column names that are used in table creation are passed to the data
source with special characters and the exact, case-sensitive spelling of the name
preserved.

Teradata Details: YES is the only supported value for this option.

Details
This option applies only when you create a new table. When you create a table, you
assign the column names by using one of the following methods:

• To control the case of the column names, specify columns with the desired case and
set PRESERVE_COL_NAMES=YES. If you use special symbols or blanks, you
must set VALIDVARNAME=ANY and use name literals.

• To enable the DBMS to normalize the column names according to its naming
conventions, specify columns with any case and set
PRESERVE_COL_NAMES=NO.

Note: When you read from, insert rows into, or modify data in an existing DBMS table,
SAS identifies the database column names by their spelling. Therefore, when the
database column exists, the case of the column does not matter.

For more information, see the naming conventions topic for your DBMS in
SAS/ACCESS for Relational Databases: Reference.

Specify the alias PRESERVE_NAMES= if you plan to specify both the
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options in your
LIBNAME statement. Using this alias saves you some time when programming.

To use column names in your SAS program that are not valid SAS names, you must use
one of the following techniques:

• Use the DQUOTE= option in PROC SQL and then reference your columns using
double quotation marks. Here is an example:

proc sql dquote=ansi;
 select "Total$Cost" from mydblib.mytable;

• Specify the global system option VALIDVARNAME=ANY and use name literals in
the SAS language. Here is an example:

proc print data=mydblib.mytable;
 format 'Total$Cost'n 22.2;

Note that if you are creating a table in PROC SQL, you must also include the
PRESERVE_COL_NAMES=YES option. Here is an example:

libname mydblib fedsvr server="d1234.us.company.com"

PRESERVE_COL_NAMES= Data Set Option 141

 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;
proc sql dquote=ansi;
 create table mydblib.mytable (preserve_col_names=yes) ("my$column" int);

PRESERVE_COL_NAMES= does not apply to the pass-through facility.

PW= Data Set Option
Assigns a READ, WRITE, and ALTER password to a SAS data set and enables access to a password-
protected file.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

Syntax
PW=password

Syntax Description
password

must be a valid SAS name.

Details
The PW= option is supported only for unsecured DSNs. If you try to assign a password
to a SAS data set that is protected by SAS Federation Server authorization, SAS
Federation Server returns an error.

QUALIFIER= Data Set Option
Identifies database objects, such as tables, by using a qualifier.

Valid in: DATA and PROC steps

Alias: CATALOG=

Default: LIBNAME statement setting

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

Syntax
QUALIFIER=qualifier-name

Details
If this option is omitted, the default qualifier name, if any, is used for the data source.
QUALIFIER= can be used for any data source that allows three-part identifier names:
qualifier.schema.object.

142 Chapter 12 • Data Set Options for the FEDSVR Engine

READ= Data Set Option
Assigns a READ password to a SAS data set that prevents users from reading the file, unless they enter
the password.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

Syntax
READ=read-password

Syntax Description
read-password

must be a valid SAS name.

Details
The READ= option is supported only for unsecured DSNs. If you try to assign a
password to a SAS data set that is protected by SAS Federation Server authorization,
SAS Federation Server returns an error.

READ_ISOLATION_LEVEL= Data Set Option
Specifies which level of Read isolation locking to use when you are reading data.

Valid in: DATA and PROC steps

Default: DBMS-specific

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

Syntax
READ_ISOLATION_LEVEL=DBMS-specific-value

Syntax Description
dbms-specific-value

See the documentation for your data source for the values for your DBMS.

Details
The ODBC and DB2 drivers ignore this option if READ_LOCK_TYPE= is not set to
ROW.

The degree of isolation defines the following degrees:

• the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

READ_ISOLATION_LEVEL= Data Set Option 143

• the degree to which update activity of other concurrently executing application
processes can affect the current application.

For more information, see the locking topic in the appropriate data source reference in
SAS Federation Server: Administrator’s Guide.

READ_LOCK_TYPE= Data Set Option
Specifies how data in a DBMS table is locked during a Read transaction.

Valid in: DATA and PROC steps

Default: DBMS-specific

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

Syntax
READ_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK | VIEW

Syntax Description
TABLE

locks the entire DBMS table. If you specify READ_LOCK_TYPE=TABLE, you
must also specify the LIBNAME statement option CONNECTION=UNIQUE, or
you will receive an error message. Setting CONNECTION=UNIQUE ensures that
your table lock is not lost (for example, because of another table closing and
committing rows in the same connection). This value is valid in DB2 under UNIX
and PC hosts, ODBC, Oracle, and Teradata interfaces.

NOLOCK
does not lock the DBMS table, pages, or any rows during a Read transaction. (This
value is valid in the Oracle interface and in the ODBC interfaces when you use the
Microsoft SQL Server driver.)

VIEW
locks the entire DBMS view. (This value is valid in the Teradata interface.)

Details
If you omit READ_LOCK_TYPE=, you get either the default action for the DBMS that
you are using, or a lock for the DBMS that was set with the LIBNAME statement.

For more information, see the locking topic in the appropriate data source reference in
SAS Federation Server: Administrator’s Guide.

READBUFF= Data Set Option
Specifies the number of rows of data to read into the buffer.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: All

144 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax
READBUFF=integer

Syntax Description
integer

is the positive number of rows to hold in memory. SAS allows the maximum number
that is allowed by the database.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data Reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
then the rows that are returned to the SAS application might be out of date. For example,
if someone else modifies the rows, you do not see the changes.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows are retrieved in one Fetch operation. If READBUFF= is
not set, certain operations such as SQL SELECT statements cause the number of rows to
be set to the client's default value, which for the LIBNAME engine is one row at a time.
Setting READBUFF=128 can significantly boost the application's performance.

If you do not specify a value with this option, the engine calculates the buffer size based
on the row length of your data (with a minimum of 10) and retrieves the number of rows
in each Fetch operation.

RENAME= Data Set Option
Changes the name of a column.

Valid in: DATA and PROC steps

Category: Variable Control

Supports: All

Syntax
RENAME=(old-name-1=new-name-1< ...old-name-n=new-name-n>)

Syntax Description
old-name

the column that you want to rename.

new-name
the new name of the column. It must be a valid SAS name.

Details
If you use the RENAME= data set option when you create a data set, the new column
name is included in the output data set. If you use RENAME= on an input data set, the
new name is used in DATA step programming statements.

RENAME= Data Set Option 145

If you use RENAME= on an input data set that is used in a SAS procedure, SAS changes
the name of the column in that procedure. If you use RENAME= along with WHERE
processing such as a WHERE statement or WHERE= data set option, the new name is
applied before the data is processed. You must use the new name in the WHERE
expression.

If you use RENAME= in the same DATA step with either the DROP= or the KEEP=
data set option, the DROP= or KEEP= data set option is applied before RENAME=. You
must use the old name in the DROP= and KEEP= data set options. You cannot drop and
rename the same column in the same statement.

Note: The RENAME= data set option has an effect only on data sets opened in output
mode.

Comparisons
• The RENAME= data set option differs from the RENAME statement in the

following ways:

• The RENAME= data set option can be used in PROC steps and the RENAME
statement cannot.

• The RENAME statement applies to all output data sets. If you want to rename
different columns in different data sets, you must use the RENAME= data set
option.

• To rename columns before processing begins, you must use a RENAME= data
set option on the input data set or data sets.

• Use the RENAME statement or the RENAME= data set option when program logic
requires that you rename columns such as two input data sets that have columns with
the same name.

Examples

Example 1: Renaming a Column at Time of Output
This example uses RENAME= in the DATA statement to show that the column is
renamed at the time it is written to the output data set. The column keeps its original
name, X, during the DATA step processing:

data myfiles.one;
 input x y z;
 datalines;
24 595 439
243 343 034
;

data myfiles.two(rename=(x=keys));
 set one;
 z=x+y;
run;

Example 2: Renaming a Column at Time of Input
This example renames column X to a column named Keys in the SET statement, which
is a rename before DATA step processing. Keys, not X, is the name to use for the column
for DATA step processing.

data myfiles.three;

146 Chapter 12 • Data Set Options for the FEDSVR Engine

 set one(rename=(x=keys));
 z=keys+y;
run;

Example 3: Renaming a Column for a SAS Procedure with WHERE
Processing
This example renames column Score1 to a column named Score2 for the PRINT
procedure. Because the new name is applied before the data is processed, the new name
must be specified in the WHERE statement.

proc print data=test (rename=(score1=score2));
 where score2 gt 75;
run;

REUSE= Data Set Option
Specifies whether new rows can be written to freed space in a compressed SAS data set.

Valid in: DATA and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Supports: SAS data set

Syntax
REUSE=NO | YES

Syntax Description
NO

does not track and reuse space in a compressed SAS data set. New rows are
appended to the existing data set. Specifying NO results in less efficient data storage
if you delete or update many rows in the data set.

YES
tracks and reuses space in a compressed SAS data set. New rows are inserted in the
space that is freed when other rows are updated or deleted.

If you plan to use procedures that add rows to the end of a compressed SAS data set
(for example, the APPEND and FSEDIT procedures), use REUSE=NO.
REUSE=YES causes new rows to be added wherever there is space in the file, not
necessarily at the end of the file.

Details
By default, new rows are appended to an existing compressed SAS data set. If you want
to track and reuse free space by deleting or updating other rows, use the REUSE= data
set option when you create a compressed SAS data set.

REUSE= has meaning only when you are creating a new data set with the
COMPRESS=YES data set option or system option. Using REUSE= when you are
accessing an existing SAS data set has no effect.

REUSE= Data Set Option 147

Comparisons
The REUSE= data set option overrides the REUSE= system option.

SASDATEFMT= Data Set Option
Changes the SAS date format of a DBMS column.

Valid in: DATA and PROC steps

Default: DBMS-specific

Supports: All

Syntax
SASDATEFMT=(DBMS-date-col-1='SAS-date-format'
<… DBMS-date-col-n='SAS-date-format'>)

Syntax Description
DBMS-date-col

specifies the name of a date column in a DBMS table.

SAS-date-format
specifies a SAS date format that has an equivalent (like-named) informat. For
example, DATETIME21.2 is both a SAS format and a SAS informat, so it is a valid
value for the SAS-date-format argument.

Details
If the date format of a SAS column does not match the date format of the corresponding
DBMS column, you must convert the SAS date values to the appropriate DBMS date
values. The SASDATEFMT= option enables you to convert date values from the default
SAS date format to another SAS date format that you specify.

Use the SASDATEFMT= option to prevent date type mismatches in the following
circumstances:

• during input operations to convert DBMS date values to the correct SAS DATE,
TIME, or DATETIME values

• during output operations to convert SAS DATE, TIME, or DATETIME values to the
correct DBMS date values.

The column names that are specified in this option must be DATE, DATETIME, or
TIME columns; columns of any other type are ignored.

The format specified must be a valid date format; output with any other format is
unpredictable.

If the SAS date format and the DBMS date format match, this option is not needed.

The default SAS date format is DBMS-specific and is determined by the data type of the
DBMS column. See the documentation for your data source.

Note: For non-English date types, SAS automatically converts the data to the SAS type
of NUMBER. The SASDATEFMT= option does not currently handle these date
types. However, you can use a PROC SQL view to convert the DBMS data to a SAS
date format as you retrieve the data, or use a format statement in other contexts.

148 Chapter 12 • Data Set Options for the FEDSVR Engine

Oracle details: It is recommended that the DBSASTYPE= data set option be used
instead of SASDATEFMT=.

Examples

Example 1: Changing the Date Format in Oracle
In the following example, the APPEND procedure adds SAS data from the
SASLib.Delay data set to the Oracle table that is accessed by MyDBLib.Internat. Using
SASDATEFMT=, the default SAS format for the Oracle column Dates is changed to the
DATE9. format. Data output from SASLib.Delay into the Dates column in
MyDBLib.Internat now converts from the DATE9. format to the Oracle format assigned
to that type.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;
libname saslib 'your-SAS-library';
proc append base=mydblib.internat (sasdatefmt=(dates='date9.'))
 force data=saslib.delay;
run;

Example 2: Changing a SAS Date Format to a Teradata Format
In the following example, SASDATEFMT= converts DATE1, a SAS DATETIME value,
to a Teradata date column named Date1.

libname x fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=teradsn dsnuser=terauser dsnpwd=terapwd;
proc sql noerrorstop;
 create table x.dateinfo (date1 date);
 insert into x.dateinfo
 (sasdatefmt=(date1='datetime21.'))
 values ('31dec2000:01:02:30'dt);

Example 3: Changing a Teradata Date Format to a SAS Format
In the following example, SASDATEFMT= converts Date1 (a Teradata date column) to
a SAS DATETIME type named DATE1.

libname x fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=teradsn dsnuser=terauser dsnpwd=terapwd;
data sas_local;
 format date1 datetime21.;
 set x.dateinfo (sasdatefmt=(date1='datetime21.'));
run;

SCHEMA= Data Set Option
Enables you to read database objects, such as tables, in the specified DBMS schema.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

SCHEMA= Data Set Option 149

Supports: DB2 under UNIX and PC, Greenplum, MySQL, ODBC, Oracle, Teradata

Syntax
SCHEMA=schema-name

Syntax Description
schema-name

is the name that is assigned to a logical classification of objects in a relational
database.

Details
For this option to work, you must have appropriate privileges to the schema that is
specified.

The values for SCHEMA= are usually case-sensitive, so be careful when you specify
this option.

Oracle Details: If PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value
to uppercase because all values in the Oracle data dictionary are converted to uppercase
unless quoted.

Teradata Details: If you omit this option, a libref points to your default Teradata
database, which often has the same name as your user name. You can use this option to
point to a different database. This option enables you to view or modify a different user's
DBMS tables if you have the required Teradata privileges. (For example, to read another
user's tables, you must have the Teradata privilege SELECT for that user's tables.) The
Teradata interface alias for SCHEMA= is DATABASE=. For more information about
changing the default database, see the DATABASE statement in your Teradata
documentation.

Examples

Example 1: Specifying a Schema for a SAS Data Set
In the following example, SCHEMA= causes MyDB.Temp_Emps to be interpreted by
DB2 as Scott.Temp_Emps.

proc print data=mydb.temp_emps (schema=SCOTT);
run;

Example 2: Specifying a Schema for an Oracle Table
In the following example, SAS sends any reference to Employees as Scott.Employees.

libname mydblib fedsvr server="d1234.us.company.com"
 port=2171 user=user1 pwd=pass1
 dsn=oradsn dsnuser=orauser dsnpwd=orapwd;
proc print data=mydblib.employees (schema=scott);
run;

Example 3: Specifying a Schema for a Database
In the following example, user TESTUSER prints the contents of the Employees table,
which is located in the Donna database.

libname mydblib fedsvr server="d1234.us.company.com"

150 Chapter 12 • Data Set Options for the FEDSVR Engine

 port=2171 user=user1 pwd=pass1
 dsn=teradsn dsnuser=terauser dsnpwd=terapwd;
proc print data=mydblib.employees (schema=donna);
run;

TYPE= Data Set Option
Specifies the data set type for a specially structured data set.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

Syntax
TYPE=data-set-type

Syntax Description
data-set-type

specifies the special type of the data set.

Details
Use the TYPE= data set option in a DATA step to create a special data set in the proper
format. In a procedure statement, use the option to identify the special type of the data
set.

You can use the CONTENTS procedure to determine the type of a data set.

Most data sets do not have a specified type. However, there are several specially
structured SAS data sets that are used by some SAS/STAT procedures. These data sets
contain special columns and rows, and they are usually created by SAS statistical
procedures. Because most of the special data sets are used with SAS/STAT software,
they are described in SAS/STAT User’s Guide.

Other values are available in other SAS software products and are described in the
appropriate documentation.

Note: If you use a DATA step with a SET statement to modify a special SAS data set,
you must specify the TYPE= option in the DATA statement. The data-set-type is not
automatically copied to the data set that is created.

UPDATE_ISOLATION_LEVEL= Data Set Option
Specifies the degree of isolation of the current application process from other concurrently running
application processes.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

UPDATE_ISOLATION_LEVEL= Data Set Option 151

Syntax
UPDATE_ISOLATION_LEVEL=DBMS-specific-value

Syntax Description
dbms-specific-value

See the documentation for your data source for the values for your DBMS.

Details
The degree of isolation identifies the following degrees:

• the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

• the degree to which update activity of other concurrently executing application
processes can affect the current application.

For more information, see the locking topic in the appropriate data source reference in
SAS Federation Server: Administrator’s Guide.

UPDATE_LOCK_TYPE= Data Set Option
Specifies how data is locked during an update transaction.

Valid in: DATA and PROC steps

Default: LIBNAME statement setting

Supports: DB2 under UNIX and PC, MySQL, ODBC, Oracle, Teradata

Syntax
UPDATE_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK | VIEW

Syntax Description
TABLE

locks the entire table. (This value is valid in DB2 under UNIX and PC hosts, ODBC,
Oracle, and Teradata data sources.)

NOLOCK
does not lock the table, page, or any rows when reading them for update. (This value
is valid in the ODBC, and Oracle data sources.)

VIEW
locks the entire DBMS view. (This is valid in the Teradata interface.)

Details
If you omit UPDATE_LOCK_TYPE=, you get either the default action for the DBMS
that you are using, or a lock for the DBMS that was set with the LIBNAME statement.
You can set a lock for one DBMS table by using the data set option or for a group of
DBMS tables by using the LIBNAME statement option.

For more information, see the locking topic in the appropriate data source reference in
SAS Federation Server: Administrator’s Guide.

152 Chapter 12 • Data Set Options for the FEDSVR Engine

WHERE= Data Set Option
Specifies specific conditions to use to select rows from a data set.

Valid in: DATA and PROC steps

Category: Observation Control

Restriction: Cannot be used with the POINT= option in the SET and MODIFY statements.

Supports: All

Syntax
WHERE=(where-expression-1 <logical-operator <where-expression-n>>)

Syntax Description
where-expression

is an arithmetic or logical expression that consists of a sequence of operators,
operands, and SAS functions. An operand is a column, a SAS function, or a constant.
An operator is a symbol that requests a comparison, logical operation, or arithmetic
calculation. The expression must be enclosed in parentheses.

logical-operator
can be AND, AND NOT, OR, or OR NOT.

Details
• Use the WHERE= data set option with an input data set to select rows that meet the

condition specified in the WHERE expression before SAS brings them into the
DATA or PROC step for processing. Selecting rows that meet the conditions of the
WHERE expression is the first operation SAS performs in each iteration of the
DATA step.

You can also select rows that are written to an output data set. In general, selecting
rows at the point of input is more efficient than selecting them at the point of output.
However, there are some cases when selecting rows at the point of input is not
practical or not possible.

• You can apply OBS= and FIRSTOBS= processing to WHERE processing.

• You cannot use the WHERE= data set option with the POINT= option in the SET
and MODIFY statements.

• If you use both the WHERE= data set option and the WHERE statement in the same
DATA step, SAS ignores the WHERE statement for data sets with the WHERE= data
set option. However, you can use the WHERE= data set option with the WHERE
command in SAS/FSP software.

Note: Using indexed SAS data sets can improve performance significantly when you are
using WHERE expressions to access a subset of the rows in a SAS data set.

Comparisons
• The WHERE statement applies to all input data sets, whereas the WHERE= data set

option selects rows only from the data set for which it is specified.

WHERE= Data Set Option 153

• Do not confuse the purpose of the WHERE= data set option. The DROP= and
KEEP= data set options select columns for processing. The WHERE= data set option
selects rows.

Examples

Example 1: Selecting Rows from an Input Data Set
This example uses the WHERE= data set option to subset the Sales data set as it is read
into another data set:

data sales;
 input product $ sales store $;
 datalines;
gizmo 234 parkview
gizmo 303 central
gizmo 124 mountain
gizmo 524 lakeside
whizmo 234 mountain
whizmo 273 lakeside
whizmo 234 parkview
whizmo 233 central
spintop 23 parkview
spintop 83 central
spintop 22 mountain
spintop 44 lakeside
;

data myfiles.whizmo;
 set myfiles.sales (where=(product='whizmo'));
run;

proc print data=myfiles.whizmo;
 title 'whizmo data set';
run;

Example 2: Selecting Rows from an Output Data Set
This example uses the WHERE= data set option to subset the SALES output data set:

data myfiles.whizmo (where=(product='whizmo'));
 set myfiles.sales;
run;

proc print data=myfiles.whizmo;
 title 'whizmo data set';
run;

WRITE= Data Set Option
Assigns a WRITE password to a SAS data set that prevents users from writing to a file, unless they enter
the password.

Valid in: DATA and PROC steps

Category: Data Set Control

Supports: SAS data set

154 Chapter 12 • Data Set Options for the FEDSVR Engine

Syntax
WRITE=write-password

Syntax Description
write-password

must be a valid SAS name.

Details
The WRITE= option is supported only for unsecured DSNs. If you try to assign a
password to a SAS data set that is protected by SAS Federation Server authorization,
SAS Federation Server returns an error.

WRITE= Data Set Option 155

156 Chapter 12 • Data Set Options for the FEDSVR Engine

Part 4

Appendix

Appendix 1
ICU License . 159

157

158

Appendix 1

ICU License

ICU License - ICU 1.8.1 and later . 159

Third-Party Software Licenses . 160
1. Unicode Data Files and Software . 160
2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt) 161
Lao Word Break Dictionary Data (laodict.txt) . 164
3. Time Zone Database . 165

ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

159

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

Third-Party Software Licenses
This section contains third-party software notices and/or additional terms for licensed
third-party software components included within ICU libraries.

1. Unicode Data Files and Software

EXHIBIT 1

UNICODE, INC. LICENSE AGREEMENT - DATA FILES AND SOFTWARE

Unicode Data Files include all data files under the directories http://www.unicode.org/
Public/, http://www.unicode.org/reports/, and http://www.unicode.org/cldr/data/.
Unicode Data Files do not include PDF online code charts under the directory http://
www.unicode.org/Public/. Software includes any source code published in the Unicode
Standard or under the directories http://www.unicode.org/Public/, http://
www.unicode.org/reports/, and http://www.unicode.org/cldr/data/.

NOTICE TO USER: Carefully read the following legal agreement. BY
DOWNLOADING, INSTALLING, COPYING OR OTHERWISE USING UNICODE
INC.'S DATA FILES ("DATA FILES"), AND/OR SOFTWARE ("SOFTWARE"), YOU
UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY, ALL OF THE
TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE,
DO NOT DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES
OR SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2014 Unicode, Inc. All rights reserved. Distributed under the Terms
of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the
Unicode data files and any associated documentation (the "Data Files") or Unicode
software and any associated documentation (the "Software") to deal in the Data Files or
Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Data Files or Software, and to permit
persons to whom the Data Files or Software are furnished to do so, provided that (a) the
above copyright notice(s) and this permission notice appear with all copies of the Data
Files or Software, (b) both the above copyright notice(s) and this permission notice
appear in associated documentation, and (c) there is clear notice in each modified Data
File or in the Software as well as in the documentation associated with the Data File(s)
or Software that the data or software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN
THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR

160 Appendix 1 • ICU License

http://www.unicode.org/Public/
http://www.unicode.org/Public/
http://www.unicode.org/reports/
http://www.unicode.org/cldr/data/
http://www.unicode.org/Public/
http://www.unicode.org/Public/
http://www.unicode.org/Public/
http://www.unicode.org/reports/
http://www.unicode.org/reports/
http://www.unicode.org/cldr/data/
http://www.unicode.org/copyright.html

CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in these Data Files or
Software without prior written authorization of the copyright holder.

Unicode and the Unicode logo are trademarks of Unicode, Inc. in the United States and
other countries. All third party trademarks referenced herein are the property of their
respective owners.

2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)
 # The Google Chrome software developed by Google is licensed under
 # the BSD license. Other software included in this distribution is provided
 # under other licenses, as set forth below.
 #
 # The BSD License
 # http://opensource.org/licenses/bsd-license.php
 # Copyright (C) 2006-2008, Google Inc.
 #
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice, this
 # list of conditions and the following disclaimer.
 # Redistributions in binary form must reproduce the above copyright notice,
 # this list of conditions and the following disclaimer in the documentation
 # and/or other materials provided with the distribution.
 # Neither the name of Google Inc. nor the names of its contributors may be
 # used to endorse or promote products derived from this software without
 # specific prior written permission.
 #
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 # THE POSSIBILITY OF SUCH DAMAGE.
 #
 #
 # The word list in cjdict.txt are generated by combining three word lists
 # listed below with further processing for compound word breaking. The
 # frequency is generated with an iterative training against Google

Third-Party Software Licenses 161

 # web corpora.
 #
 # * Libtabe (Chinese)
 # - https://sourceforge.net/project/?group_id=1519
 # - Its license terms and conditions are shown below.
 #
 # * IPADIC (Japanese)
 # - http://chasen.aist-nara.ac.jp/chasen/distribution.html
 # - Its license terms and conditions are shown below.
 #
 # ---------COPYING.libtabe ---- BEGIN--------------------
 #
 # /*
 # * Copyrighy (c) 1999 TaBE Project.
 # * Copyright (c) 1999 Pai-Hsiang Hsiao.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the TaBE Project nor the names of its
 # * contributors may be used to endorse or promote products derived
 # * from this software without specific prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # /*
 # * Copyright (c) 1999 Computer Systems and Communication Lab,
 # * Institute of Information Science, Academia Sinica.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.

162 Appendix 1 • ICU License

 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the Computer Systems and Communication Lab
 # * nor the names of its contributors may be used to endorse or
 # * promote products derived from this software without specific
 # * prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # Copyright 1996 Chih-Hao Tsai @ Beckman Institute, University of Illinois
 # c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4
 #
 # ---------------COPYING.libtabe-----END------------------------------------
 #
 #
 # ---------------COPYING.ipadic-----BEGIN------------------------------------
 #
 # Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
 # and Technology. All Rights Reserved.
 #
 # Use, reproduction, and distribution of this software is permitted.
 # Any copy of this software, whether in its original form or modified,
 # must include both the above copyright notice and the following
 # paragraphs.
 #
 # Nara Institute of Science and Technology (NAIST),
 # the copyright holders, disclaims all warranties with regard to this
 # software, including all implied warranties of merchantability and
 # fitness, in no event shall NAIST be liable for
 # any special, indirect or consequential damages or any damages
 # whatsoever resulting from loss of use, data or profits, whether in an
 # action of contract, negligence or other tortuous action, arising out
 # of or in connection with the use or performance of this software.
 #
 # A large portion of the dictionary entries
 # originate from ICOT Free Software. The following conditions for ICOT
 # Free Software applies to the current dictionary as well.
 #
 # Each User may also freely distribute the Program, whether in its
 # original form or modified, to any third party or parties, PROVIDED
 # that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear
 # on, or be attached to, the Program, which is distributed substantially

Third-Party Software Licenses 163

 # in the same form as set out herein and that such intended
 # distribution, if actually made, will neither violate or otherwise
 # contravene any of the laws and regulations of the countries having
 # jurisdiction over the User or the intended distribution itself.
 #
 # NO WARRANTY
 #
 # The program was produced on an experimental basis in the course of the
 # research and development conducted during the project and is provided
 # to users as so produced on an experimental basis. Accordingly, the
 # program is provided without any warranty whatsoever, whether express,
 # implied, statutory or otherwise. The term "warranty" used herein
 # includes, but is not limited to, any warranty of the quality,
 # performance, merchantability and fitness for a particular purpose of
 # the program and the nonexistence of any infringement or violation of
 # any right of any third party.
 #
 # Each user of the program will agree and understand, and be deemed to
 # have agreed and understood, that there is no warranty whatsoever for
 # the program and, accordingly, the entire risk arising from or
 # otherwise connected with the program is assumed by the user.
 #
 # Therefore, neither ICOT, the copyright holder, or any other
 # organization that participated in or was otherwise related to the
 # development of the program and their respective officials, directors,
 # officers and other employees shall be held liable for any and all
 # damages, including, without limitation, general, special, incidental
 # and consequential damages, arising out of or otherwise in connection
 # with the use or inability to use the program or any product, material
 # or result produced or otherwise obtained by using the program,
 # regardless of whether they have been advised of, or otherwise had
 # knowledge of, the possibility of such damages at any time during the
 # project or thereafter. Each user will be deemed to have agreed to the
 # foregoing by his or her commencement of use of the program. The term
 # "use" as used herein includes, but is not limited to, the use,
 # modification, copying and distribution of the program and the
 # production of secondary products from the program.
 #
 # In the case where the program, whether in its original form or
 # modified, was distributed or delivered to or received by a user from
 # any person, organization or entity other than ICOT, unless it makes or
 # grants independently of ICOT any specific warranty to the user in
 # writing, such person, organization or entity, will also be exempted
 # from and not be held liable to the user for any such damages as noted
 # above as far as the program is concerned.
 #
 # ---------------COPYING.ipadic-----END------------------------------------

Lao Word Break Dictionary Data (laodict.txt)
 # Copyright (c) 2013 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # Project: http://code.google.com/p/lao-dictionary/
 # Dictionary: http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt

164 Appendix 1 • ICU License

 # License: http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt
 # (copied below)
 #
 # This file is derived from the above dictionary, with slight modifications.
 # --
 # Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without modification,
 # are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice, this
 # list of conditions and the following disclaimer. Redistributions in binary
 # form must reproduce the above copyright notice, this list of conditions and
 # the following disclaimer in the documentation and/or other materials
 # provided with the distribution.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 # --

3. Time Zone Database
ICU uses the public domain data and code derived from Time Zone Database for its time
zone support. The ownership of the TZ database is explained in BCP 175: Procedure for
Maintaining the Time Zone Database section 7.

7. Database Ownership

 The TZ database itself is not an IETF Contribution or an IETF
 document. Rather it is a pre-existing and regularly updated work
 that is in the public domain, and is intended to remain in the public
 domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do not apply
 to the TZ Database or contributions that individuals make to it.
 Should any claims be made and substantiated against the TZ Database,
 the organization that is providing the IANA Considerations defined in
 this RFC, under the memorandum of understanding with the IETF,
 currently ICANN, may act in accordance with all competent court
 orders. No ownership claims will be made by ICANN or the IETF Trust
 on the database or the code. Any person making a contribution to the
 database or code waives all rights to future claims in that
 contribution or in the TZ Database.

Third-Party Software Licenses 165

http://www.iana.org/time-zones
http://tools.ietf.org/html/rfc6557
http://tools.ietf.org/html/rfc6557

166 Appendix 1 • ICU License

Recommended Reading

• Base SAS Procedures Guide

• SAS Federation Server: Administrator’s Guide

• SAS Language Reference: Concepts

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

167

http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

168 Recommended Reading

Glossary

American National Standards Institute (ANSI)
the organization that coordinates the development of voluntary consensus standards
for products, services, processes, systems, and personnel in the United States. ANSI
works with the International Organization for Standardization to establish global
standards.

ANSI
See American National Standards Institute.

authentication
See client authentication.

Base SAS
the core product that is part of SAS Foundation and is installed with every
deployment of SAS software. Base SAS provides an information delivery system for
accessing, managing, analyzing, and presenting data.

catalog
See SQL catalog.

client authentication (authentication)
the process of verifying the identity of a person or process for security purposes.
Authentication is commonly used in providing access to software, and to data that
contains sensitive information.

column (variable)
a vertical component of a table. Each column has a unique name, contains data of a
specific type, and has particular attributes. A column is analogous to a variable in
SAS terminology.

data set
See SAS data set.

data source (source)
a table, view, or file from which information is extracted. Sources can be in any
format that SAS can access, on any supported hardware platform. The metadata for a
source is typically an input to a job.

169

data source name (DSN)
a persistent identifier that is associated with a data source definition. The data source
definition specifies how to locate and access a data source, including any
authentication (such as a user name and password) that a user must provide.

data type (type)
an attribute of every column in a table or database, indicating the type of data in the
column and how much physical storage it occupies.

data view
See SAS data view.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes.

database management system (DBMS)
a software application that enables you to create and manipulate data that is stored in
the form of databases.

DBMS
See database management system.

driver
a special-purpose software program that enables two disparate software programs,
such as an application and an API, to interact.

DSN
See data source name.

federated DSN (grouping data source name, grouping DSN)
a data source name that references multiple data sources. The data sources can be on
the same DBMS, or on a different one.

grouping data source name
See federated DSN.

grouping DSN
See federated DSN.

library reference
See libref.

libref (library reference)
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library. See also SAS library.

metadata server
a server that provides metadata management services to one or more client
applications.

missing value
a type of value for a variable that contains no data for a particular row or column. By
default, SAS writes a missing numeric value as a single period and a missing
character value as a blank space. See also null value.

170 Glossary

null value
a special value that indicates the absence of information. Null values are analogous
to SAS missing values. See also missing value.

observation
a row in a SAS data set. All of the data values in an observation are associated with a
single entity such as a customer or a state. Each observation contains either one data
value or a missing-value indicator for each variable.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as the name of the engine that was
used to create the data. See also SAS data set, SAS data view.

SAS data set (data set)
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views.

SAS data view (data view)
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats.

SAS file
a specially structured file that is created, organized, and maintained by SAS. A SAS
file can be a SAS data set, a catalog, a stored program, an access descriptor, a utility
file, a multidimensional database file, a financial database file, a data mining
database file, or an item store file.

SAS library
one or more files that are defined, recognized, and accessible by SAS, and that are
referenced and stored as a unit. Each file is a member of the library.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one
or more SAS Metadata Repositories.

SAS variable (variable)
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations (rows).

schema
See SQL schema.

server
software that provides either resources or services to requesting clients, possibly over
a network.

Glossary 171

source
See data source.

SQL
See Structured Query Language.

SQL catalog (catalog)
an implementation of the ANSI SQL:1999 standard for a named collection of
logically related schemas. The catalog is the first-level (top) grouping mechanism in
a data organization hierarchy that qualifies schemas.

SQL schema (schema)
an implementation of the ANSI SQL:1999 standard for a data container object that
groups logically related objects such as tables and views and other objects that are
supported by a data source such as stored procedures. The schema provides a unique
namespace that is used along with a catalog to qualify names.

Structured Query Language (SQL)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate objects in a database management
system. SAS implements SQL through the SQL procedure.

table driver
software that interacts with a data source in order to read from and write to
proprietary file formats.

type
See data type.

variable
See SAS variable.

variable
See column.

172 Glossary

Index

A
ACCESS= LIBNAME statement option

46
ALTER= data set option 101

syntax 101
ANSI SQL null values 17
APPLICATIONNAME= LIBNAME

statement option 46
AUTHDOMAIN= option

description 8
example 33

AUTOCOMMIT= LIBNAME statement
option 47

B
BL_LOAD_REPLACE= data set option

101
BL_LOG= data set option 102
BL_OPTIONS= data set option 102
BUFNO= data set option 103

syntax 103
BUFNO= system option 77
BUFSIZE= data set option 104

index 104
BUFSIZE= system option 78
BULKLOAD= data set option 105
BULKOPS= data set option 106

C
column names with special characters 21
COMPARE procedure 26
COMPRESS= data set option 107

index 107
COMPRESS= LIBNAME statement

option 47
COMPRESS= system option 80
CONNECTION= LIBNAME statement

option 48
CONTENTS procedure 27

D
data set options 25, 100
data source access and processing 23
data source connections 9
data types

overriding 14
supported 13
translation 13

DBCOMMIT= data set option 108
DBCOMMIT= LIBNAME statement

option 49
DBCONDITION= data set option 109

syntax 109
DBCREATE_TABLE_OPTS= data set

option 110
syntax 110

DBFORCE= data set option 110
syntax 110

DBGEN_NAME= data set option 111
syntax 111

DBGEN_NAME= LIBNAME statement
option 50

DBINDEX= data set option 112
DBINDEX= LIBNAME statement option

51
DBKEY= data set option 113

syntax 114
DBLABEL= data set option 115

syntax 115
DBLIBINIT= LIBNAME statement

option 51
DBLIBTERM= LIBNAME statement

option 52
DBMASTER= data set option 115
DBNULL= data set option 116
DBNULLKEYS= data set option 117
DBNULLKEYS= LIBNAME statement

option 53
DBPROMPT= LIBNAME statement

option 54
DBSASLABEL= data set option 118

syntax 118
DBSASLABEL= LIBNAME statement

option 55

173

DBSASTYPE= data set option 119
index 119

DBTYPE= data set option 120
syntax 120

DEFER= LIBNAME statement option 56
DIRECT_EXE= LIBNAME statement

option 57
DIRECT_SQL= LIBNAME statement

option 58
DROP= data set option 121

syntax 121
DSNs 9

E
ENCRYPT= data set option 124

syntax 125

F
federated DSNs 9
file password security 11
FIRSTOBS= data set option 125

syntax 125
FIRSTOBS= system option 81
formats 25

G
grouping DSNs

see federated DSNs 9

I
IDXNAME= data set option 127

syntax 127
IDXWHERE= data set option 128

syntax 128
IGNORE_READ_ONLY_COLUMNS=

data set option 129
syntax 129

IGNORE_READ_ONLY_COLUMNS=
LIBNAME statement option 59

IGNORE_SQL= LIBNAME statement
option 61

indexes 25
informats 25
INSERT_SQL= data set option 131

syntax 131
INSERTBUFF= data set option 130

syntax 130
INSERTBUFF= LIBNAME statement

option 61
interfaces 3

K
KEEP= data set option 132

syntax 132
keywords, reserved 22

L
LABEL= data set option 133

syntax 133
language interfaces 3
language keywords, reserved 22
LIBNAME engine 3
LIBNAME engine data set options 100
LIBNAME engine functionality

COMPARE procedure 26
CONTENTS procedure 27
data set options 25
data source access and processing 23
formats and informats 25
indexes 25
names 26
nonexistent values 24
numeric column lengths 24
passwords 26
SORT procedure 27
SQL procedure 28
system options 26

LIBNAME statement processing options
24

LIBNAME statement syntax 39

M
missing values 17
MULTI_DATASRC_OPT= LIBNAME

statement option 62

N
names 21, 26
nonexistent values 24
null values 17

changing processing modes 18
potential result set differences 18
processing modes 17

NULLCHAR= data set option 134
NULLCHARVAL= data set option 135
NULLVARCHAR= data set option 134
numeric column lengths 24

O
OBS= data set option 135

syntax 135
OBS= system option 83
overriding default data types 14

174 Index

P
passwords 26
PRESERVE_COL_NAMES= data set

option 140
syntax 140

PRESERVE_COL_NAMES= LIBNAME
statement option 64

PRESERVE_TAB_NAMES= LIBNAME
statement option 65

PW= data set option 142
syntax 142

Q
QUALIFIER= data set option 142
QUALIFIER= LIBNAME statement

option 67

R
READ_ISOLATION_LEVEL= data set

option 143
syntax 143

READ_ISOLATION_LEVEL=
LIBNAME statement option 68

READ_LOCK_TYPE= data set option
144

READ_LOCK_TYPE= LIBNAME
statement option 69

READ= data set option 143
syntax 143

READBUFF= data set option 144
syntax 145

READBUFF= LIBNAME statement
option 68

RENAME= data set option 145
syntax 145

REREAD_EXPOSURE= LIBNAME
statement option 70

reserved language keywords 22
REUSE= data set option 147

syntax 147

S
SAS Federation Server

authentication requirements 8
connection options 7

SAS Federation Server security 12
SAS language interfaces 3
SAS names 21

SASDATEFMT= data set option 148
syntax 148

SASTRACE= system option 88
SASTRACELOC= system option 95
SCHEMA= data set option 149
SCHEMA= LIBNAME statement option

71
security

SAS Federation Server 12
SAS file passwords 11

server connection options 7
SORT procedure 27
special characters in column names 21
SPOOL= LIBNAME statement option 72
SQL procedure 28
SQL_FUNCTIONS= LIBNAME

statement option 73
SQLUNDOPOLICY= system option 96
STRINGDATES= LIBNAME statement

option 74
system options 26, 77

T
TYPE= data set option 151

syntax 151

U
UPDATE_ISOLATION_LEVEL= data set

option 151
UPDATE_ISOLATION_LEVEL=

LIBNAME statement option 74
UPDATE_LOCK_TYPE= data set option

152
UPDATE_LOCK_TYPE= LIBNAME

statement option 75
UTILCONN_TRANSIENT= LIBNAME

statement option 76

V
VALIDVARNAME= system option 97

W
WHERE= data set option 153

syntax 153
WRITE= data set option 154

syntax 155

Index 175

176 Index

	Contents
	What’s New in SAS Federation Server LIBNAME Engine in
SAS 9.4
	Overview
	New Product and Documentation Names
	Data Source Connection
	System Option
	LIBNAME Option

	Introduction
	Introduction to SAS Federation Server LIBNAME Engine
	Understanding the LIBNAME Engine
	Overview of the FEDSVR Engine
	Overview of SAS Federation Server

	Using the LIBNAME Engine
	Intended Audience

	Usage
	Establishing a Connection to SAS Federation Server
	Components of the LIBNAME Statement
	Server Connection
	Server Connection LIBNAME Statement Options
	Authentication Requirements
	AUTHDOMAIN= Option

	Data Source Connection
	What Is a DSN?
	Federated DSNs

	Data Source Processing Options

	Security
	About Security on the LIBNAME Engine
	SAS File Passwords
	SAS Federation Server Security

	Data Type Support
	About SAS Federation Server Data Type Support
	Translation of SAS Federation Server Data Types
	Override Default Legacy SAS Data Type

	Null Values
	About Null Values
	Null Value Processing Modes
	Potential Result Set Differences
	Change Null Processing Modes

	SAS Names
	About SAS Names
	Support for Column Names with Special Characters
	Reserved Language Keywords

	SAS Functionality Available through the Engine
	Data Source Access and Processing
	LIBNAME Statement Processing Options
	Nonexistent Values
	Numeric Column Length
	SAS Data Set Options
	SAS Formats and Informats
	SAS Indexes
	SAS Names and Support for DBMS Names
	SAS Passwords
	SAS System Options
	SAS Procedures
	COMPARE Procedure
	CONTENTS Procedure
	SORT Procedure
	SQL Procedure

	Examples of Using the Engine
	Connect to SAS Federation Server and Reference a DSN Definition
	Details
	Program
	Program Description

	Control Data Source Processing with a LIBNAME Statement Option
	Details
	Program
	Program Description

	Apply a SAS Data Set Option
	Details
	Program
	Program Description

	Control Data Source Processing with a SAS System Option and
a LIBNAME Statement Option
	Details
	Program
	Program Description

	Authenticate with an Authentication Domain
	Details
	Program
	Program Description

	Using the SCHEMA= Data Set Option to Reference a Subsequent
Data Source in a Federated DSN
	Details
	Program
	Program Description

	Using the SCHEMA= Data Source Processing Option
	Details
	Program
	Program Description

	Reference
	LIBNAME Statement for the FEDSVR Engine
	Dictionary
	LIBNAME Statement Syntax

	Data Source Processing LIBNAME Statement Options for the FEDSVR
Engine
	Dictionary
	ACCESS= LIBNAME Statement Option
	APPLICATIONNAME= LIBNAME Statement Option
	AUTOCOMMIT= LIBNAME Statement Option
	COMPRESS= LIBNAME Statement Option
	CONNECTION= LIBNAME Statement Option
	DBCOMMIT= LIBNAME Statement Option
	DBGEN_NAME= LIBNAME Statement Option
	DBINDEX= LIBNAME Statement Option
	DBLIBINIT= LIBNAME Statement Option
	DBLIBTERM= LIBNAME Statement Option
	DBNULLKEYS= LIBNAME Statement Option
	DBPROMPT= LIBNAME Statement Option
	DBSASLABEL= LIBNAME Statement Option
	DEFER= LIBNAME Statement Option
	DIRECT_EXE= LIBNAME Statement Option
	DIRECT_SQL= LIBNAME Statement Option
	IGNORE_READ_ONLY_COLUMNS= LIBNAME Statement Option
	INSERT_SQL= LIBNAME Statement Option
	INSERTBUFF= LIBNAME Statement Option
	MULTI_DATASRC_OPT= LIBNAME Statement Option
	PRESERVE_COL_NAMES= LIBNAME Statement Option
	PRESERVE_TAB_NAMES= LIBNAME Statement Option
	QUALIFIER= LIBNAME Statement Option
	READBUFF= LIBNAME Statement Option
	READ_ISOLATION_LEVEL= LIBNAME Statement Option
	READ_LOCK_TYPE= LIBNAME Statement Option
	REREAD_EXPOSURE= LIBNAME Statement Option
	SCHEMA= LIBNAME Statement Option
	SPOOL= LIBNAME Statement Option
	SQL_FUNCTIONS= LIBNAME Statement Option
	STRINGDATES= LIBNAME Statement Option
	UPDATE_ISOLATION_LEVEL= LIBNAME Statement Option
	UPDATE_LOCK_TYPE= LIBNAME Statement Option
	UTILCONN_TRANSIENT= LIBNAME Statement Option

	System Options for the FEDSVR Engine
	About SAS System Options for the FEDSVR Engine
	Dictionary
	BUFNO= System Option
	BUFSIZE= System Option
	COMPRESS= System Option
	FIRSTOBS= System Option
	OBS= System Option
	SASTRACE= System Option
	SASTRACELOC= System Option
	SQLUNDOPOLICY= System Option
	VALIDVARNAME= System Option

	Data Set Options for the FEDSVR Engine
	About the FEDSVR LIBNAME Engine Data Set Options
	Specifying Data Set Options
	How Data Set Options Interact with Other Types of Options
	Dictionary
	ALTER= Data Set Option
	BL_LOAD_REPLACE= Data Set Option
	BL_LOG= Data Set Option
	BL_OPTIONS= Data Set Option
	BUFNO= Data Set Option
	BUFSIZE= Data Set Option
	BULKLOAD= Data Set Option
	BULKOPTS= Data Set Option
	COMPRESS= Data Set Option
	DBCOMMIT= Data Set Option
	DBCONDITION= Data Set Option
	DBCREATE_TABLE_OPTS= Data Set Option
	DBFORCE= Data Set Option
	DBGEN_NAME= Data Set Option
	DBINDEX= Data Set Option
	DBKEY= Data Set Option
	DBLABEL= Data Set Option
	DBMASTER= Data Set Option
	DBNULL= Data Set Option
	DBNULLKEYS= Data Set Option
	DBSASLABEL= Data Set Option
	DBSASTYPE= Data Set Option
	DBTYPE= Data Set Option
	DROP= Data Set Option
	ENCRYPT= Data Set Option
	FIRSTOBS= Data Set Option
	IDXNAME= Data Set Option
	IDXWHERE= Data Set Option
	IGNORE_READ_ONLY_COLUMNS= Data Set Option
	INSERTBUFF= Data Set Option
	INSERT_SQL= Data Set Option
	KEEP= Data Set Option
	LABEL= Data Set Option
	NULLCHAR= Data Set Option
	NULLCHARVAL= Data Set Option
	OBS= Data Set Option
	PRESERVE_COL_NAMES= Data Set Option
	PW= Data Set Option
	QUALIFIER= Data Set Option
	READ= Data Set Option
	READ_ISOLATION_LEVEL= Data Set Option
	READ_LOCK_TYPE= Data Set Option
	READBUFF= Data Set Option
	RENAME= Data Set Option
	REUSE= Data Set Option
	SASDATEFMT= Data Set Option
	SCHEMA= Data Set Option
	TYPE= Data Set Option
	UPDATE_ISOLATION_LEVEL= Data Set Option
	UPDATE_LOCK_TYPE= Data Set Option
	WHERE= Data Set Option
	WRITE= Data Set Option

	Appendix
	ICU License
	ICU License - ICU 1.8.1 and later
	Third-Party Software Licenses
	1. Unicode Data Files and Software
	2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)
	Lao Word Break Dictionary Data (laodict.txt)
	3. Time Zone Database

	Recommended Reading
	Glossary
	Index

