THE POWER TO F MO,

Expression Language 2.7:
Reference Guide

_—

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2017. Expression Language 2.7: Reference Guide. Cary, NC:
SAS Institute Inc.

Expression Language 2.7: Reference Guide

Copyright © 2017, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
August 2017

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
2.7-Pl:engelref

For additional information, see the Legal Notices appendix.

Contents

What's New in Expression Language 2.7: Reference Guide v

PART 1 EXxpression Engine Language 1

Chapter 1 < Introduction e 3
Overview of the Expression Engine Language 3
Chapter 2 « Data Job Expressions Node 19
Data Job Expressions Nodet 19

PART2 Expression Engine Language Functions 21

Chapter 3 » Array FUNCtions e 23
Array FUNCHionSo 23
Dictionaryo 23
Chapter 4 » Data Quality Functions e 27
Data Quality Functions 27
Dictionaryo 27
Chapter 5 *« Database Functions 45
OVOTVIEW .« o ottt ettt e e e e e e e e e e 45
Overview of the Database Objects 45
Releasing Database Objectsottt 45
DICtionary oot 46
Chapter 6 » Date and Time Functions 49
OVOTVIEW .« o o v ettt et e e e e et e e e 49
DICtionary oot 49
Chapter 7 « Execution FUNctions e 53
L0 15 %)7 53
DICtionary oot 53
Chapter 8 « File Functions e 57
L0 15 % ()7 57
DICtionaryot 58
Chapter 9 » Incoming Data Functions 75
L0 15 %)7 75
DICtionaryot 75
Chapter 10 « Information/Conversion Functions 83
L0 15 %)7 83

DICtionaryot 83

iv Contents

Chapter 11 « Logging FUunctions e 95
OVEIVIEW . . o ottt e e e e e 95
DICHONAIY . . o .ottt e 95
Chapter 12 « Macro and Variable Functionscciiiu.. 99
OVEIVIEW . . o ottt e e e e e 99
DICHONAIY . . o oottt et 101
Chapter 13 « Mathematical Functions 105
OVEIVIEW . . o ottt e e e e 105
DICHONAIY . . ¢ .ottt e 105
Chapter 14 « Node Functions e 111
OVEIVIEW . . o ottt e e e e 111
DICHONAIY . . o oottt et 111
Chapter 15 » Regular Expression Functions 115
OVEIVIEW . . o ottt e e e 115
DICHONAIY . . o\ttt 115
Chapter 16 « Search Functions 129
OVEIVIEW . . o ottt e e e 129
DICHONAIY . . o\ttt e 129
Chapter 17 « String FUNCLIONS 131
OVEIVIEW . . o ottt e e e 131
DICHONAIY . . o\ttt e 132

PART3 Appendixes 153

Appendix 1 * Frequently Asked Questions 155
Appendix 2 « Reserved Words e 197
Appendix 3 ASCII Values e 199
ASCIT ValUes . . . oot e e e e e 199
ASCII Control Characterso vttt et e e ettt 200
Appendix 4 Encoding 203

Appendix 5« Legal Notices e 207

What's New in Expression
Language 2.7: Reference Guide

Overview

The Expression Engine Language (EEL) now includes two new functions to the
Information and Conversion category, GEODISTANCE_COSINE and
GEODISTANCE HAVERSINE.

New Information and Conversion Functions

GEODISTANCE_COSINE

Computes the distance between two geographical points. This function provides results
faster and provides an acceptable level of accuracy for most cases.

GEODISTANCE_HAVERSINE

Computes the distance between two geographical points. This formula provides greater
accuracy, particularly for shorter distances.

Vi What’s New in Expression Language 2.7: Reference Guide

Part 1

Expression Engine Language

Chapter 1
Introduction

Chapter 2
Data Job Expressions Node

Chapter 1
Introduction

Overview of the Expression Engine Language 3
About the Expression Engine Languagecovvnin... 3
Introduction to the EEL Operationsttt .. 4
Declaration of Symbols 5
Statementso 6
GOTO and LABELo 7
ASSIGNIMENL . . .ot ettt et e e e 7
AT Y S .« o v vt ettt e e 8
RetuIn . . . 8
TE/ELSE . . o 8
FOR . 9
WHILE . . . 10
BEGIN/END . ..o 10
CALL .o 10
EXPIeSSIONS .« . o\ttt e 10
(00755 110 10
Modulo Operator oottt 11
CompariSON OPEIator . . . v vttt ettt ettt et e e 12
String EXPressionso vttt e 12
Integer and Real EXpressionst 13
Date EXPressions . .. oo v vttt 13
Boolean EXPressionsvu vttt et e 13
Null Propagationsoii it ettt 14
COBTCION .« . et ettt ettt e e et e e e e e e e e e e 15
Functions 16
Global Functions e 17
O CtS .« v vttt e 17

Overview of the Expression Engine Language

About the Expression Engine Language

DataFlux Data Management Platform is a powerful suite of data cleansing and data
integration software applications. You can use the Data Job Expression node to run a
scripting language to process your data sets in ways that are not built into the DataFlux
Data Management Studio. The Expression Engine Language (EEL) provides many
statements, functions, and variables for manipulating data in DataFlux Data
Management Studio, SAS Event Stream Processing, and SAS Data Loader for Hadoop.

4 Chapter 1

Introduction

This reference guide guides you through solutions to address some common EEL tasks.
Most examples use the Expression node in the Data Job Editor. All of the examples in
this guide also apply to other nodes where EEL is used in DataFlux Data Management
Studio.

Introduction to the EEL Operations

Operations in the EEL are processed in symbols. Symbols are similar to variables; they
are either fields passed from the node above or are variables declared in the code. EEL
code consists of declarations, statements, and labels.

Declarations
Declarations establish the existence of variables in memory. Declared variables are
available only after their declaration, so it is better to make all declarations at the
beginning of a code segment. Place declarations in the code outside of programmatic
constructs, so declaring a variable in a FOR loop is not valid.

Statements
Statements are either assignments (for example: x=y) or keywords (for example:
goto) followed by parameters. Statements can be located anywhere in a code
segment.

Labels
Labels are named locations in a code segment and can be located anywhere in the
code segment. Reserved keywords cannot be used for label names. See Reserved
Words.

Pieces of Expression code do not need to be separated by anything, but it is best to use
white space and newline characters for readability. Code might include comments. A
comment is text within a code segment that is not executed. Comments can be either C
style (starts with /* and ends with */) or C++ style (starts with // and continues to the end
of a line).

Assume that there are two symbols (output fields from the previous step) named "x" and
"y." Here is an example of Expression code:

// Declaration of integer z
integer z

// Assignment statement
Z=X+Y

This example creates another symbol (field), "z" and sets the value of z to x + y, making
z ready for the next step.

A segment of Expression code can also be a straight expression. In the context of the
Expression main code area, if a straight expression value is false, then the row is not sent
to output. For example, assume the same fields from the previous example, "x" and "y."
Consider the following straight expression in the Expression code area:

xX<=y

EEL in the Expression code area executes on each record of your data set. Only records
where the value of x is less than or equal to y are output to the next node. If you have
more than one function in the main code area, the last function to execute determines the
overall expression value. For example, if the last function returns a true value, then the
entire expression returns true.

The following example includes several of the concepts discussed above:

// declarations
integer x; /*semicolon is safely ignored, and can use C-style comments*/

Overview of the Expression Engine Language 5
real y

// statements
x=10 y=12.4 /* more than one statement can be on a line */

Declaration of Symbols
Declarations have the following syntax:
["static"] ["private"|"public"] ["hidden" |"visible"] typel[(*size)] ["array"] identifier
where type is:
"integer"|"string"|"real"|"boolean" |"date"

and identifier is a non-keyword starting with an alphabetic character followed by
characters, digits, underscores, or any string delimited by back quotation marks ().
Refer to Reserved Words for a list of reserved keywords.

Note: Size is applicable to the string type only.

Note: The global symbol type is deprecated but is equivalent to static public.
Additional information about declaring symbols:

» The default symbol type is public.

» Private symbols are visible only within the code block in which they are declared.

+ Static symbols are public by default. You can also declare a static symbol as private.

» String symbols can be declared with a size. If you assign a value to a string symbol,
it is truncated to this size. If you do not specify a size, 255 is used by default.

Note: The maximum size is 5 MB. However, this applies only to fields within the
Expression node. If the symbol is available in the output, it is truncated to 32 KB
when the Expression node passes the value on to the next node. For example, if
you define a string of length 45 KB, you can work with it inside the expression
node. However, it is truncated to 32 KB on output. To override the maximum
size, set the EXPRESS MAX STRING LENGTH setting.

* The keyword, bytes, qualifies a string size in bytes. See the previous note for
additional details.

* Symbols can be declared anywhere in code except within programmatic constructs,
such as loops. It is good practice to declare symbols at the beginning of the code
block.

* In the Data Job Editor of Data Management Studio, all symbols declared in code are
available in the output unless they are declared private or hidden.

» Before code is executed, symbols are reset to null. If the symbols are declared static
or have been declared in the pre-processing step, they retain their value from the
previous execution.

» The static keyword can be used when declaring symbols. It specifies that the value of
the symbol value is not reset between calls to the expression (between rows read in
Data Job Editor). This replaces the global keyword. The pre-processing expression
defaults all symbols to static public whether they are declared static or not.

* Hidden and visible keywords can be used when declaring symbols. The default is
visible if none is specified. Hidden symbols are not output from the expression step
in data jobs. Note that this differs from public and private. Private variables are not

6 Chapter 1 < Introduction

output either, but they are not visible outside the expression block. Hidden variables
are visible outside the expression block but are not output.

Public or global symbols declared in one area are available to other areas as follows:
* Symbols declared in Pre-Processing are available to any block.

* Symbols declared in Expression are available to Expression and Post-Processing.
* Symbols declared in Post-Processing are available only to Post-Processing.

* Automatic symbols, which are symbols from the previous step, are available to
any of the three blocks.

* To declare a variable with spaces or other special characters in the name, write your
variable name between back quotation marks (*). For example:

string ‘my var"
“my var ="Hello"

Note: 1t is the grave accent character (*), also known as the back quote, that is used,
and not the apostrophe (') or quotation marks ("). The grave accent is found
above the tab key on standard keyboards.

Here are some sample declarations:

// a 30-character string available
// only to the code block
private string(30) name

// a 30-byte string
string (30 bytes) name

// a 255-character public string
string address

// a global real number
global real number

// a public date field. Use back
// quotes if symbols include spaces
date “birth date~

Statements
Statements have the following syntax:

statement:
"goto" label
identifier "=" expression

"return" expression
"for" identifier ["="] expression ["to"] expression ["step" expression] statement

"begin" statement [statement...] "end"

| "if" expression ["then"] statement ["else" statement]
| ["call"] function

"while" expression statement
label: identifier ":"

expression:
described later

Overview of the Expression Engine Language

function: identifier " (" parameter [,parameter...] ")"

Statements can be separated by a semicolon, a space, or newline character. To group
more than one statement together (for example, in a FOR loop), use begin/end.

GOTO and LABEL

Assignment

GOTO LABEL

LABEL: identifier ":"
A GOTO statement jumps code control to a LABEL statement. A label can occur
anywhere in the same code block. For example:

integer x
x=0
// label statement called start
start:
X=X+1
if x < 10 goto start

Assigns the value of an expression to a symbol as follows:
* Only read-write symbols can be assigned a value.
» In data jobs, all symbols are read-write.

* A symbol assigned an expression of a different type receives the converted (or
coerced) value of that expression. For example, if you assign a number to a string-
type symbol, the symbol contains a string representation of that number.

» If the expression cannot be converted into the type of symbol, the symbol's value is
null. For example, if you assign a non-date string to a date symbol, it will be set to
null.

integer num
string str
date dt
boolean b
real r

// assign 1 to num

num=1

// assign Jan 28 '03 to the date symbol
dt=#01/28/03#

// sets boolean to true

b=true

// also sets boolean to true

b="yes'

// sets real to 30.12 (converting from string)
r="30.12"

// sets string to the string representation of the date
str=dt

// sets num to the rounded value of r

num=r

8 Chapter 1

Arrays

Return

IF/ELSE

Introduction

In the EEL, you can create arrays of primitive types such as integers, strings, reals, dates,
and Booleans. It is not possible to create arrays of objects such as dbcursor,
dbconnection, regex, and file.

The syntax to create arrays of primitive types is as follows:
» string array string_list

* integer array integer list

» date array date_list

* Boolean array boolean_list

» real array real list

There are three supported functions on arrays: DIM, SET, and GET. For more
information about arrays, see Arrays.

"return" expression
The return statement exits the code block immediately, returning a value.
* In the data jobs, the return type is converted to Boolean.

» Ifafalse value is returned from the expression, the record is not included in the
output.

The following is an example of a return statement:

// only include rows where ID >= 200
if id < 200
return false

"IF" expression ["then"] statement ["ELSE" statement]

The IF/ELSE statement branches to one or more statements, depending on the
expression.

» Use this to execute code conditionally.
» Ifyou need to execute more than one statement in a branch, use begin/end.
* The THEN keyword is optional.

» Ifyou nest IF/ELSE statements, the ELSE statement corresponds to the closest if
statement. (See the previous example.) It is better to use begin/end statements if you
do this, as it makes the code more readable.

In the following example, you can change the value of age to see different outcomes:

string (20) person
integer x

integer y

integer age
Age=10

FOR

Overview of the Expression Engine Language 9

if Age < 20 then
person="child"

else
person="adult"
if Age==10
begin
x=50
y=20
end

// nested if/else
if Age <= 60
if Age < 40
call print("Under 40"
// this else corresponds to the inner if statement
else

call print("Age 40 to 60"
// this else corresponds to the outer if statement
else
call print ("Over 60")

The FOR loop executes one or more statements multiple times.

* FOR loops are based on a symbol, which is set to some value at the start of the loop,
and changes with each iteration of the loop.

* A FOR loop has a start value, an end value, and an optional step value.
» The start, end, and step value can be any expression.
» If the step value is not specified, it defaults to 1.

» Ifyou are starting at a high number and ending at a lower number, you must use a
negative step.

+ Ifyouneed to execute more than one statement in the loop, use begin/end.
For example:

integer i
for i1 = 1 to 10 step 2
call print('Value of i is ' & 1)

integer x
integer y
x=10 y=20

for i = xtoy
call print('Value of i is ' & 1)

for i = y to x step -1
begin
call print('Value of i is ' & i)
x=1 /*does not affect the loop since start/end/step
expressions are only evaluated before loop*/

10 Chapter 1

WHILE

BEGIN/END

CALL

Expressions

Operators

Introduction

end

"WHILE" expression statement

The WHILE loop enables you to execute the same code multiple times; a condition
remains true. For example:

integer i
1i=1000
// keep looping while the value of i is > 10
while i > 10
i=1/2

// you can use begin/end to enclose more than one statement
while i < 1000
begin
i=i*2
call print('Value if i is ' & 1)
end

"BEGIN" statement [statement...] "END"

The BEGIN/END statement groups multiple statements together. If you need to execute
multiple statements in a FOR or WHILE loop or in an IF/THEN/ELSE statement, you
must use begin/end. These can be nested as well.

"CALL" statement [statement...] "END"

This statement calls a function and discards the return value. By default, the return value
of the last function called in an expression is returned, unless there is an explicit
expression or "return” statement at the end. This enables you to prevent the function
return value from being used to determine the expression if it is the last function in the
expression.

* An expression can include operators in combination with numbers, strings, functions,
functions, which use other functions.

* An expression always has a resulting value.

* The resulting value can be one of the following: string, integer, real, date, and
Boolean.

* The resulting value can also be null (a special type of value).

This section covers different types of expressions.

The following table lists operators in order of precedence:

Overview of the Expression Engine Language 11

Operators Description

! or not Boolean

G) parentheses (can be nested to any depth)
* multiply

/ divide

% modulo

+ add

- subtract

& string concatenation

1= not equal ("!=" and "<>" are the same)

< not equal

== comparison operator (= is an assignment and should not be used for

comparisons)
> greater than
< less than
>= greater than or equal to
<= less than or equal to
and Boolean and
or Boolean or

Modulo Operator

The modulo operator is represented by the % symbol. The result of the expression a%d
("a modulo d")returns a value r, for example:

a=qgd+rand 0 <r < | d|, where | d | denotes the absolute value of d

If either a or d are not integers, they are rounded down to the nearest integer before the
modulo calculation is performed.

For positive values of a and 4, it can be the remainder on division of a by d. For
example:

12 Chapter 1 - |Introduction

a d a%d (r)
11 3 2
11 -3 2
-11 3 -2
9.4 3 0
9.6 3 0
10 3 1
9.4 32 0
9.6 32 0
10 32 1
-10.2 32 -2

Comparison Operator

Do not confuse the comparison operator (==) with the assignment operator (=). For
example:

// correct statements to compare the value of x and y
if x==y then statementl
else statement2

// Assigning a value
X=y

String Expressions

A string expression is a string of undeclared length. Strings can be concatenated using an
ampersand (&) or operated upon with built-in functions. For information about defining
the length of a string, see Declaration of Symbols. For example:

string str

// simple string
str="Hello"

// concatenate two strings
str="Hello" & " There"

Note: Setting a string variable to a string expression results in a truncated string if the
variable was declared with a shorter length than the expression.

When a string value is used in a Boolean expression, the value is evaluated and the
following values are considered true, (upper/lower/mixed): true, t; yes, y; or 1. The
following values are considered false (also upper/lower/mixed): false, no, n, or 0.

For more information about string expressions, see Strings.

Overview of the Expression Engine Language 13

Integer and Real Expressions

Date Expressions

Integer and real expressions result in an integer or real value, respectively. For example:

integer x
real r

// order of precedence starts with parentheses,
// then multiplication, then addition
x=1+(2+3) *4

// string is converted to value 10
x=5 + "10"
r=3.14

// x will now be 3

X=r

A date value is stored as a real value with the whole portion representing number of
days since January 1, 1900, and the fraction representing the fraction of a day.

If years are specified as two digits, then the years between 51 and 99 are assumed to
be in 1900. Other years are assumed to be in 2000.

A date constant is denoted with a number sign (#).

If a whole number is added to a date, the resulting date is advanced by the specified
number of days.

To make changes to the locale setting in Microsoft Windows, refer to the LOCALE()
function topic in this reference guide.

For example:

date date valuel

date data value2

date valuel = todate("01/02/03")
date value2 = #01-02-03#

Note: The actual results depend on your Windows system settings.

For more on date expressions, see Dates and Times.

Boolean Expressions

A Boolean expression can either be true or false.
Results of comparisons are always Boolean.

Using AND or OR in an expression also results in a Boolean value.

For example:

boolean a
boolean b
boolean c

a=true

14 Chapter 1 - |Introduction

b=false

// ¢ is true

c=a or b

// c is false

c=a and b

// ¢ is true

c=10<20

// c is false

c=10==20

// ¢ is true

c=10!=20

// ¢ is true

c="'yes'

// c is false

c="'no'

Null Propagations

If any part of a mathematical expression has a null value, the entire expression is usually

null.

The following table shows how nulls are propagated:

Expression
null == value
null & string
null & null
number + null
null + null
null AND null
null AND true
null AND false
null OR null
null OR true
null OR false
not null

if null

FOR loop

Result

null (applies to all comparison operators)

string

null

null (applies to all arithmetic operations)

null (applies to all arithmetic operations)

null

null

false

null

true

false

null

statement following if is not executed

run-time error if any of the terms are null

Coercion

Overview of the Expression Engine Language 15

Expression Result

while null statement following while is not executed

For example:

integer x
integer y
integer z
boolean b
string s
x=10
y=null
// z has a value of null
Z=X + Yy
// b is true
b=true or null
// b is null
b=false or null
// use isnull function to determine if null
if isnull (b)
call print ("B is null")
// s is "str"

s="str" & null

If a part of an expression is not the type expected in that context, it is converted into the
correct type.

* A type can be coerced into other types.
« Ifavalue cannot be coerced, it results in null.

To explicitly coerce one type to another type, use one of the following functions:
TOBOOLEAN, TODATE, TOINTEGER, TOREAL, or TOSTRING. These functions
are helpful when there is a need to force a comparison of different types. For example, to
compare a string variable called xyz with a number 123.456, the number is converted to
a string before the comparison is completed using the following example:

toreal (xyz) > 123.456

The following table shows the rules for coercion:

Coercion TOINTEGE TOBOOLEA
Type TOSTRING R TOREAL TODATE N

from String yes yes yes yes

from Integer yes yes yes yes

from Real yes yes yes yes

from Date yes yes yes no

from yes yes yes no

Boolean

16 Chapter 1 - Introduction
The following table shows special considerations for coercion:

Coercion Type Resulting Action

date to string A default date format is used:
YYYY/MM/DD hh:mm:ss. Use the
FORMATDATE function for a more flexible
conversion.

date to number The number represents days since 12/30/1899.
Hours, minutes, seconds, and milliseconds are
converted to a fraction, where 1 hour = 1/24
units, 1 minute = 1/(24*60) units, and so on.

string to date Most date formats are recognized and
intelligently converted. See the Date
Expressions section for more information.

string to Boolean The values yes, no, true, false, y, n, t, and f are
recognized.
integer to real to Boolean Any nonzero value is true. Zero is false.

Functions
» A function can be part of an expression.
» Ifyou need to call a function but do not want the return value, use CALL.
» Each function has a specific return type and parameter type.

» If the parameters provided to the function are not the correct type, they are
sometimes coerced.

» A function sometimes requires a parameter to be a specific type. If you pass a
parameter of the wrong type, it is not coerced and you get an error.

* Functions normally propagate null (there might be exceptions).

* Some functions might modify the value of their parameters if they are documented to
do so.

* Some functions might accept a variable number of parameters.
For example:

string str

integer x

str="Hello there"

// calls the upper function

if upper (str)=='HELLO THERE'
// calls the print function
call print("yes")

// x is set to 7 (position of word 'there')
xX=instr (str, "there", 1)

Global Functions

Objects

Overview of the Expression Engine Language 17

You can register global functions (or user-defined functions, known as UDFs) that can
be reused from any expression in the system. This includes data and process flow nodes,
business rules, and more. To do this, create one text file (or more) in the installation
under etc/udf. Each file might contain one or more function definitions. Each definition
is enclosed in a function/end function block. The return type for each function can be
integer, real, date, string, or Boolean. To get to function parameters, use the
PARAMETER() and PARAMETERCOUNT() functions as well as individual functions
for the types (PARAMETERBOOLEAN, PARAMETERDATE,
PARAMETERINTEGER, PARAMETERREAL, or PARAMETERSTRING).

The following functions are applicable when registering the global functions mentioned
earlier. Each global function accepts an integer as a parameter to indicate which
parameter is desired. Each function returns the type specified and converts the parameter
to that type, if it is not already the type specified.

+ PARAMETERBOOLEAN
+ PARAMETERDATE

+ PARAMETERINTEGER
+ PARAMETERREAL

» PARAMETERSTRING
For example:

function example udf return string 255
// this function is declared to return a string of
// up to 255 characters retrieve the number of
// parameters passed
print ("You passed " & parametercount () & " parameters"
integer x
for x = 1 to parametercount ()
begin
print ("Parameter " & x & " type is " &
parametertype (x) & " value is " & parameter(x))
if (parametertype (x) =="integer")
print ("Integer: " & parameterinteger(x))
else if parametertype (x)=="real"
print ("Real: " & parameterreal (x))
end
return "string val"
end function

The EEL supports a number of objects. Generally, an object is a type of code in which
not only the data type of a data structure is defined, but also the types of operations that
can be applied to the data structure. In particular, the EEL supports objects for the
following:

» Data Quality: Expressions and Functions
» Databases: Database connectivity (DBCONNECT object)
» Files: Text file reading and writing (FILE object)

18 Chapter 1 - Introduction

» Regular Expressions: Regular expression searches (REGEX object)

19

Chapter 2
Data Job Expressions Node

Data Job Expressions Node i 19

Data Job Expressions Node

The DataFlux Data Management Studio Expressions node is a utility that enables you to
create your own nodes using the Expression Engine Language (EEL) scripting language.

For information about the Data Job Expressions node, refer to the DataFlux Data
Management Studio online Help.

20 Chapter2 -+ Data Job Expressions Node

Part 2

21

Expression Engine Language
Functions

Chapter 3

Array Functions 23
Chapter 4

Data Quality Functions 27
Chapter 5

Database Functions 45
Chapter 6

Date and Time Functions 49
Chapter 7

Execution Functions, 53
Chapter 8

File Functions 57
Chapter 9

Incoming Data Functions 75
Chapter 10

Information/Conversion Functions 83
Chapter 11

Logging Functions 95
Chapter 12

Macro and Variable Functions 99
Chapter 13

Mathematical Functions .. 105
Chapter 14

Node Functions 111

22

Chapter 15

Regular Expression Functions

Chapter 16

Search Functions

Chapter 17
String Functions

23

Chapter 3
Array Functions

Array Functions e 23
Dictionary 23
DIM FUNCtionottt e e e e e e 23
GET FUNCHionot e e e et e et et e 24
SET FUnctionii i e et et et e 25

Array Functions

In the Expression Engine Language (EEL), it is possible to create arrays of simple types
such as string, integer, date, Boolean, and real. Currently there are three functions that
apply to array types: DIM, GET, and SET.

Dictionary

DIM Function

Creates, resizes, or determines the size of an array. If a parameter is specified, the array is resized or
created. The new size is returned.

Category: Array

Returned data Integer
type:

Syntax

arrayName DIM<(newsize)>

Required Argument

arrayName
is the name of the array that you declared earlier in the process.

24 Chapter3 -

Array Functions

Optional Argument

newsize
is the optional numeric size (dimension) of the array. This can be specified as a
numeric constant, field name, or expression.

Details

The DIM function is used to size and resize the array. It creates, resizes, or determines
the size of the array. If a parameter is specified, the array is created or resized. The
supported array types include:

* String

* Integer

* Date

* Boolean
* Real
Example

// declare the string array

string array string list

// Set the dimension of the String List array to a size of 5
rc = string list.dim(5) // outputs 5

// <omitted code to perform some actions on the arrays>

// Re-size the array size to 10

rc = string list.dim(10) // outputs 10

// Query the current size

re = string list.dim() // outputs 10

GET Function

Retrieves the value of the specified item within an array. The returned value is the value of the array.

Category:

Returned data

type:

Array

Integer

Syntax

array name. GET(<n>)

Required Argument

array name
is the name of the array that you declared earlier in the process.

Optional Argument

n
is the index of the array element for which the content is retrieved. This can be
specified as a numeric constant, field name, or expression.

SET Function 25

Details

The GET function returns the value of a particular element in the array.

Examples

Example 1
// Declare the string array "string list" and Integer "i"
string array string list

integer 1

// Set the dimension of string list array to 5 and initialize the counter (i) to 1
string list.dim(5)
i=1

// Set and print each entry in the array, incrementing the counter by 1
while (i<=5)
begin
string list.set (i, "Hello")
print (string list.get(i))
i=i+1
end

Example 2
string array string list

integer 1

// set the dimension
string list.dim(5)
i=1

// set and print each entry in the array
while (i<=5)
begin
string list.set(i,"Hello")
print (string list.get(i))
i=i+1
end

// resize the array to 10

string list.dim(10)

while (i<=10)

begin
string list.set (i, "Goodbye")
print (string list.get(i))
i=i+1

end

SET Function

Sets values for items within an array. The returned value is the old value of the specified element in the
array.

26 Chapter 3 + Array Functions

Category: Array

Returned data Integer
type:

Syntax

array name .SET(<n,"string'™>)

Required Argument

array name
is the name of the array that you declared earlier in the process.

Optional Arguments

n
is the number of the dimension that you are setting the value for; this can be
specified as a numeric constant, field name, or expression.

"string"’
is the value that you want to place into the array element; this can be specified as a
string constant, field name, or expression.

Details

The SET function sets the value of an entry in the array.

Examples

Example 1
// Declare the string array "string list"
// Set the dimension of string list array to 5
string array string list
string list.dim(5)

// Set the first string element in the array to "Hello"
string list.set(1,"Hello")

Example 2
string array string list
string list.dim(5)
// sets the first string element in the array to hello
string list.set(1,"hello")

27

Chapter 4
Data Quality Functions

Data Quality Functions 27
Dictionary 27
DQ.CASE Function e 27
DQ.EXTRACT Function 29
DQ.GENDER Function e 30
DQ.GETLASTERROR Functionoiiriininnnann.. 31
DQ.DENTIFY Function e 32
DQ INITIALIZE Functionottt e 33
DQ.LOADQKB Function i 33
DQ.MATCHCODE Function e 34
DQ.MATCHSCORE Function i 35
DQ.PARSE Function e 36
DQ.PATTERN Function i e 37
DQ.STANDARDIZE Functionoutuin it eieeann 38
DQ.TOKEN Function e e 39
DQ.TOKENVALUE Function i, 40
DQ.VALUE Function e e 42

Data Quality Functions

Expression Engine Language (EEL) supports the data quality object. You can use data
quality to perform the listed functions (object methods) from within the EEL node. Some
of the advantages of using data quality functions within the EEL include dynamically
changing match definitions, reading match definitions from another column, or setting
different definitions.

Dictionary

DQ.CASE Function

Applies casing rules (upper, lower, or proper) to a string. The function also applies context-specific casing
logic using a case definition in the SAS Quality Knowledge Base (QKB).

Category: Data Quality

28 Chapter4 -

Returned data
type:
Note:

Data Quality Functions

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.CASE(case_def, casing_type, input, result)

Required Arguments

casing_type
integer numeric constant that specifies the type of casing that is applied, [1 =
uppercase, 2 = lowercase, 3 = proper case].

input
a string representing the input value or input field name.

result
a string representing the output field name.

Optional Argument

case_def
a string representing the name of a case definition in the QKB. Pass an empty string
to use the default casing algorithm.

Details

The DQ.CASE function applies casing rules to an input string and outputs the result to a
field.

The function is a member of the data quality class. A data quality object can be declared
as a variable and must then be initialized using a call to the function DQ_ INITIALIZE.

You can specify one of three casing types: uppercase, lowercase, or propercase. When
uppercase or lowercase is specified, the function applies Unicode uppercase or
lowercase mappings to the characters in the input string. When propercasing is specified,
the function applies uppercase mappings to the first letter in each word and lowercase
mappings to the remaining letters.

The caller can invoke the use of a case definition. A case definition is an object in the
QKB that contains context-specific casing logic. For example, a case definition
implemented for the purpose of propercasing name data can be used to convert the string
"Mcdonald" to "McDonald". Refer to the QKB documentation for information about
what case definitions are available in your QKB. If you do not want to use a case
definition, you can omit the case definition name by entering a blank string for the case
definition parameter. In this case, generic Unicode case mappings are applied to the
input string as described earlier.

Note: If you want to use a case definition, you must call DQ.LOADQKB before calling
DQ.CASE. The function DQ.LOADQKB loads the contents of a QKB into memory
and links that QKB with the data quality object. This enables DQ.CASE to access
the case definition that you specify.

Example

data quality dg

DQ.EXTRACT Function 29

string output

dg = dg_initialize()

dg.case("", 1, "ronald mcdonald", output)
// outputs "RONALD MCDONALD"

dg.case("", 3, "ronald mcdonald", output)
// outputs "Ronald Mcdonald"

dg.loadgkb ("ENUSA")
dg.case("Proper (Name)", 3, "ronald mcdonald", output)
// outputs "Ronald McDonald"

DQ.EXTRACT Function

Extracts attributes from a string.
Category: Data Quality

Returned data Character
type:

Note: The returned value is a value, token, or token value from the extract function.

Syntax
DQ.EXTRACTdefinition, string

Required Arguments

definition
a string representing the name of the extraction definition in the QKB.

string
a string that represents the attribute that needs to be extracted.

Details

The DQ.EXTRACT function extracts attributes from a string into tokens. The first
parameter is the name of the QKB extraction definition. The second is the string where
the attributes are extracted. This function returns a number of tokens that were created. It
returns 0 if it fails.

Example

data quality dg
string output
integer o
integer i

/* Initialize DQ */
dg = dg_initialize()
dqg.loadgkb ("EN")

/* Extract using the "Product Attributes" Extraction definition (using QKB PD 2012A) */
o = dg.extract ("Product Attributes", "DOOR RANCHERO WOOD 16X8 WHT")

30 Chapter4 -

Data Quality Functions

/* print all of the tokens we got */
print (o & " tokens filled")
for i =1 too
begin
dg.token (i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)
end
/* to get a token's value by its name... */
dg.tokenvalue ("Colors", output)
print ("Colors = " & output)

DQ.GENDER Function

Determines the gender of an individual's name using a gender analysis definition in the QKB.

Category:

Returned data
type:
Note:

Data Quality

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.GENDER(gender_def, input, resulf)

Required Arguments

gender_def
a string representing the name of a gender analysis definition in the QKB.

input
a string representing the input value or input field name.

result
a string representing the output field name.

Details

The DQ.GENDER function analyzes a string representing an individual's name and
determines the gender of the name.

The function is a member of the data quality class. A data quality object can be declared
as a variable and must then be initialized using a call to the function DQ_INITIALIZE.
The member function DQ.LOADQKB must then be called to load the contents of a QKB
into memory and link that QKB with the data quality object. The data quality object then
retains information about the QKB locale setting and the QKB locale setting.

When calling DQ.GENDER, you must specify the name of a gender analysis definition.
A gender analysis definition is an object in the QKB that contains reference data and
logic used to determine the gender of the input name string. See your QKB
documentation for information about which gender analysis definitions are available in
your QKB.

DQ.GETLASTERROR Function

Example

data quality dg
string output

dg = dg initialize()

dg.loadgkb ("ENUSA")

dg.gender ("Name", "John Smith", output)
// outputs "M"

dg.gender ("Name", "Jane Smith", output)
// outputs "F"

dg.gender ("Name", "J. Smith", output)
// outputs "U" (unknown)

31

DQ.GETLASTERROR Function

Returns a string describing the most recent error encountered by a data quality object.

Category:

Returned data
type:
Note:

Data Quality

Character

The returned value is a string containing an error message.

Syntax
DQ.GETLASTERROR(<>)

Details

The DQ.GETLASTERROR function is a member of the data quality class. It returns an
error message describing the most recent error encountered by a data quality object. The
error might have occurred during invocation of any other data quality member function.

A best practice for programmers is to check the result code for each data quality call. If a
result code indicates failure, use DQ.GETLASTERROR to retrieve the associated error

message.

Example

data quality dg

integer rc

string errmsg
dg = dg_initialize()

rc = dg.loadgkb ("XXXXX")

// an invalid locale name -- this will cause an error

if (rc == 0) then
errmsg = dg.getlasterror()
// returns an error message

32 Chapter4 -

Data Quality Functions

DQ.IDENTIFY Function
Identifies the context of a string using an identification analysis definition in the QKB.
Category: Data Quality
Returned data Integer
type:
Note: The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.IDENTIFY (ident_def, input, result)

Required Arguments

ident_def
a string representing the name of an identification analysis definition in the QKB.

input
a string representing the input value or input field name.

result
a string representing the output field name.

Details

The DQ.IDENTIFY function analyzes a string and determines the context of the string.
The context refers to a logical type of data, such as name, address, or phone.

The function is a member of the data quality class. A data quality object can be declared
as a variable and must then be initialized using a call to the function DQ.INITIALIZE.
The member function DQ.LOADQKB must then be called to load the contents of a QKB
into memory and link that QKB with the data quality object. The data quality object then
retains information about the QKB locale setting and the QKB locale setting.

When calling DQ.IDENTIFY, you must specify the name of an identification analysis
definition. An identification analysis definition is an object in the QKB that contains
reference data and logic used to identify the context of the input string. Refer to your
QKB documentation for information about which identification analysis definitions are
available in your QKB.

Note: For each identification analysis definition, there is a small set of possible contexts
that might be output. Refer to the description of an identification analysis definition
in the QKB documentation to see which contexts that definition is able to identify.

Example

data quality dg

string output

dg = dg_initialize()

dg.loadgkb ("ENUSA")

dg.identify("Individual/Organization", "John Smith", output)
// outputs "INDIVIDUAL"

DQ.LOADQKB Function 33

dg.identify("Individual/Organization", "DataFlux Corp", output)
// outputs "ORGANIZATION"

DQ_INITIALIZE Function

Instantiates and initializes a data quality object.

Category:

Returned data
type:
Note:

Data Quality

Character

The returned value is an initialized instance of a data quality object.

Syntax
DQ_INITIALIZE(<>)

Details

The DQ_INITIALIZE instantiates and initializes a data quality object. The object can
then be used to invoke data quality class functions.

Example

data quality dg
dg = dg_initialize()

DQ.LOADQKB Function

Loads definitions from a QKB into memory and links those definitions with the data quality object.

Category:

Returned data
type:
Note:

Data Quality

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.LOADQKB(locale)

Required Argument
locale

a five-character locale code name representing a locale supported by the QKB.
Details

The function DQ.LOADQKB is a member of the data quality class. A data quality object
can be declared as a variable and must then be initialized through a call to the function
DQ_INITIALIZE. The function DQ.LOADQKB can be called after the initialization.

34 Chapter 4

Data Quality Functions

The DQ.LOADQKB function loads definitions from a QKB into memory and links
those definitions with the data quality object. A definition is a callable object that uses
context-sensitive logic and reference data to perform analysis and transformation of
strings. Definitions are used as parameters in other dq functions.

When calling DQ.LOADQKB, you must specify a locale code. This locale code is a

five-character string representing the ISO codes for the locale's language and country.
Refer to your QKB documentation for a list of codes for locales that are supported in
your QKB.

Note: Only one locale code can be specified in each call to DQ.LOADQKB. Only
definitions associated with that locale are loaded into memory. This means that
support for only one locale at a time can be loaded for use by a data quality object. In
order to use QKB definitions for more than one locale, you must either use multiple
instances of the data quality class or call DQ.LOADQKB multiple times for the same

instance, specifying a different locale with each call.

Example

data quality dg en
// we instantiate two dgq objects

data quality dqg fr
string output_en
string output_fr

dg_en = dg_initialize()

dg _fr = dg_initialize()

dg_en.loadgkb ("ENUSA"
// loads QKB support for locale English, US

dg_fr.loadqkb ("FRFRA")
// loads QKB support for locale French, France

dg _en.gender ("Name", "Jean LaFleur", output en)
// output is 'U'

dg fr.gender ("Name", "Jean LaFleur", output fr)
// output is 'M'

DQ.MATCHCODE Function

Generates a match code for a string using a match definition in the QKB.

Category:

Returned data
type:
Note:

Data Quality

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.MATCHCODE((match_def, sensitivity, input, result)

DQ.MATCHSCORE Function 35

Required Arguments

match_def
a string representing the name of a match definition in the QKB.

sensitivity
integer numeric constant that specifies the sensitivity level to be used when
generating the match code [possible values are 50-95].

input
a string representing the input value or input field name.

result
a string representing the output field name.

Details

The DQ.MATCHCODE function generates a match code for an input string and outputs
the match code to a field. The match code is a fuzzy representation of the input string. It
can be used to do a fuzzy comparison of the input string to another string.

The function is a member of the data quality class. A data quality object can be declared
as a variable and must then be initialized through a call to the function
DQ_INITIALIZE. The member function DQ.LOADQKB must then be called to load the
contents of a QKB into memory and link that QKB with the data quality object. The data
quality object then retains information about the QKB locale setting and the QKB locale
setting.

When calling DQ.MATCHCODE, you must specify the name of a match definition. A
match definition is an object in the QKB that contains context-specific reference data
and logic used to generate a match code for the input string. Refer to your QKB

documentation for information about which match definitions are available in your
QKB.

You must also specify a level of sensitivity. The sensitivity indicates the level of
fuzziness that is used when generating the match code. A higher sensitivity means that
the match code is less fuzzy (yielding fewer false positives and more false negatives in
comparisons). A lower sensitivity means that the match code is more fuzzy (yielding
fewer false negatives and more false positives in comparisons). The valid range for the
sensitivity parameter is 50-95.

Example

data quality dg

string output
dg = dg initialize()

dqg.loadgkb ("ENUSA")

dg.matchcode ("Name", 85, "John Smith", output)
// Outputs match code "4B~2$3$$$$SC@PSSSSSS

dg.matchcode ("Name", 85, "Johnny Smith", output)
// Outputs match code "4B~2$3$$$$SC@PSSSSSS

DQ.MATCHSCORE Function

Processes two input strings along with the name of the match definition and outputs the sensitivity for the
match strings.

36 Chapter4 -

Category:

Data Quality Functions

Data Quality

Syntax
DQ.MATCHSCOREC(definition_name, inputl, input2, use_wildcards)

Required Arguments

definition_name
the name of the match definition to use.

inputl
the first input string to check.

input2
the second input string to check.

returns
the sensitivity value.

use_wildcards
true if wildcards in generated match codes should be considered for the purpose of
scoring.

Details

The DQ.MATCHSCORE function determines the highest sensitivity value where two
input strings generate the same match code.

Example

data quality dq;
dg = dg_initialize();
dqg.loadgkb ("ENUSA") ;

integer x;
x = dg.matchscore ("Name", "John Jones", "John J. Jones", false);

DQ.PARSE Function

Parses a string.

Category:

Data Quality

Syntax
DQ.PARSE(definition, string)

Required Arguments

definition
a string representing the parsed data.

returns
the number of tokens.

DQ.PATTERN Function 37

string
the input string to be parsed into tokens.

Details

The DQ.PARSE function parses the input string into tokens. The first parameter is the
name of the QKB parse definition. The second parameter is the string from which the
tokens are parsed. This returns the number of tokens created. It returns 0 if it fails.

Example

/* Parse (using QKB CI 2013A) */
o = dg.parse("Name", "Mr. John Q Public Sr")

/* print all of the tokens available */
print (o & " tokens filled")
for i =1 too
begin
dg.token (i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)

end

/* Get a token value by the name. */
dg.tokenvalue ("Given Name", output)
print ("Given Name= " & output)

DQ.PATTERN Function

Generates a pattern for a string using a pattern analysis definition in the QKB.

Category:

Returned data
type:
Note:

Data Quality

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.PATTERN(pattern_def, input, result)

Required Arguments

pattern_def

a string representing the name of a match definition in the QKB.
input

a string representing the input value or input field name.

result
a string representing the output field name.

38 Chapter4 -

Data Quality Functions

Details

The DQ.PATTERN function generates a pattern for the input string and outputs the
pattern to a field. The pattern is a simple representation of the characters in the input
string. Such patterns can be used to perform pattern frequency analysis for a set of text
strings.

The function is a member of the data quality class. A data quality object can be declared
as a variable and must then be initialized through a call to the function
DQ_INITIALIZE. The member function DQ.LOADQKB must then be called to load the
contents of a QKB into memory and link that QKB with the data quality object. The data
quality object then retains information about the QKB locale setting and the QKB locale
setting.

When calling DQ.PATTERN, you must specify the name of a pattern analysis definition.
A pattern analysis definition is an object in the QKB that contains logic used to generate
a pattern for the input string. Refer to your QKB documentation for information about
which pattern analysis definitions are available in your QKB.

Example

data quality dg

string output
dg = dg initialize()

dg.loadgkb ("ENUSA")
dg.pattern("Character", "abcl23", output)
// Outputs "aaa999"

DQ.STANDARDIZE Function

Generates a standard for a string using a standardization definition in the QKB.

Category:

Returned data
type:
Note:

Data Quality

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DQ.STANDARDIZE(stand_def, input, resulf)

Required Arguments

stand_def
a string representing the name of a standardization definition in the QKB.

input
a string representing the input value or input field name.

result
a string representing the output field name.

DQ.TOKEN Function 39

Details

The DQ.STANDARDIZE function generates a normalized standard for an input string
and outputs the standard to a field.

The function is a member of the data quality class. A data quality object can be declared
as a variable and must then be initialized through a call to the function
DQ_INITIALIZE. The member function DQ.LOADQKB must then be called to load the
contents of a QKB into memory and link that QKB with the data quality object. The data
quality object then retains information about the QKB locale setting and the QKB locale
setting.

When calling DQ.STANDARDIZE, you must specify the name of a standardization
definition. A standardization definition is an object in the QKB that contains context-
specific reference data and logic used to generate a standard for the input string. Refer to
your QKB documentation for information about which standardization definitions are
available in your QKB.

Example

data quality dg
string output
dg = dg_initialize()
dg.loadgkb ("ENUSA")
dg.standardize ("Name", "mcdonald, mister ronald", output)
// Outputs "Mr Ronald McDonald"

DQ.TOKEN Function

Obtains a token name for the index from a parse or extract function.

Category:

Returned data
type:
Note:

Data Quality

Character

This function returns true on success and false if the index is out of range. The token
name is returned in the second parameter from the parse or extract function.

Syntax
DQ.TOKEN(integer, string)

Required Arguments

integer
the index of the token for which the name is desired.

string
the output string that receives the token name.
Details

The DQ.TOKEN function is used to retrieve an extraction or parse token name for the
index. This function follows a parse or extract function.

40 Chapter4 < Data Quality Functions

Examples

Example 1
data quality dg
string output
integer o
integer 1

/* Initialize DQ */
dg = dg initialize()
dg.loadgkb ("EN")

/* Extract using the "Product Attributes" Extraction definition (using QKB PD 2012A) */
o = dg.extract ("Product Attributes", "DOOR RANCHERO WOOD 16X8 WHT")

/* print all of the tokens we got */
print (o & " tokens filled")
for i =1 too

begin
dg.token(i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)
end
/* to get a token's value by its name... */

dg.tokenvalue ("Colors", output)
print ("Colors = " & output)

Example 2
/* Parse (using QKB CI 2013A) */
o = dg.parse("Name", "Mr. John Q Public Sr")

/* print all of the tokens available */
print (o & " tokens filled")
for i =1 too
begin
dg.token(i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)
end

/* Get a token value by the name. */
dg.tokenvalue ("Given Name", output)
print ("Given Name= " & output)

DQ.TOKENVALUE Function

Obtains an attribute from the last parse or extract function.
Category: Data Quality

Returned data Character
type:

DQ.TOKENVALUE Function 41

Note: The returned value is a token value from the parse or extract function. Returns true if
the token value is found or false if not.

Syntax
DQ.TOKENVALUE(<foken string, output string>)

Required Arguments

token string
returns true if the token is found and false if the token is not found.

output string
a string that represents the value for that token.

Details

The DQ.TOKENVALUE function is used to retrieve an extraction or parse result value.
The first parameter is the token name. It returns the attribute stored in that token in the
second parameter. It returns true on success and false on failure (for example, if the
token was not found). This function follows a parse or extract function.

Examples

Example 1
data quality dg
string output
integer o
integer i

/* Initialize DQ */
dg = dg_initialize()
dqg.loadgkb ("EN")

/* Extract using the "Product Attributes" Extraction definition (using QKB PD 2012A) */
o = dg.extract ("Product Attributes", "DOOR RANCHERO WOOD 16X8 WHT")

/* print all of the tokens we got */
print (o & " tokens filled")
for i =1 too
begin
dg.token(i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)
end
/* to get a token's value by its name... */
dg.tokenvalue ("Colors", output)
print ("Colors = " & output)

Example 2
/* Parse (using QKB CI 2013A) */
o = dg.parse("Name", "Mr. John Q Public Sr")

42 Chapter4 -

Data Quality Functions

/* print all of the tokens available */
print (o & " tokens filled")
for i =1 too
begin
dg.token (i, output)

print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)

end

/* Get a token value by the name. */
dqg.tokenvalue ("Given Name", output)
print ("Given Name= " & output)

DQ.VALUE Function

Retrieves the value from the last parse or extract function.

Category:

Returned data
type:
Note:

Data Quality

Integer

The returned value is true if the index is valid.

Syntax
DQ.VALUE(integer, string)

Required Arguments

integer
represents an index of the token.

string
a string that represents the output value.

Details

The DQ.VALUE function is used to retrieve an extraction or parse result. The first
parameter is the index of a token. The second parameter receives the attribute that is
stored in the token. The function returns true if it is able to get the token value. It returns
false if it fails. This function follows a parse or extract function.

Examples

Example 1
data quality dg
string output
integer o
integer 1

/* Initialize DQ */
dg = dg_initialize()

DQ.VALUE Function 43

dg.loadgkb ("EN")

/* Extract using the "Product Attributes" Extraction definition (using QKB PD 2012A) */
o = dg.extract ("Product Attributes", "DOOR RANCHERO WOOD 16X8 WHT")

/* print all of the tokens we got */

print (o & " tokens filled")

for i =1 too

begin
dg.token (i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)

print ("value #" & 1 & " = " & output)
end
/* to get a token's value by its name... */
dg.tokenvalue ("Colors", output)
print ("Colors = " & output)
Example 2

/* Parse (using QKB CI 2013R) */
o = dg.parse("Name", "Mr. John Q Public Sr")

/* print all of the tokens available */
print (o & " tokens filled")
for i =1 too

begin
dg.token (i, output)
print ("token #" & 1 & " = " & output)
dg.value (i, output)
print ("value #" & 1 & " = " & output)

end

/* Get a token value by the name. */
dg.tokenvalue ("Given Name", output)
print ("Given Name= " & output)

44 Chapter4 -« Data Quality Functions

Chapter 5

45

Database Functions

OVeIVIEW . . . 45
Overview of the Database Objects 45
Releasing Database Objects 45
Dictionary 46
DBCONNECT FUunctionottt e e 46
DBDATASOURCES Functionttt 46

Overview

To work with databases, use the DBCONNECT object in Expression Engine Language
(EEL). You can connect to data sources using built-in functions that are associated with
the DBCONNECT object. You can also return a list of data sources, and evaluate data
input from parent nodes.

Overview of the Database Objects

The database objects enable you to use the EEL to connect directly to a relational
database system and execute commands on that system as part of your expression code.
There are three objects associated with this functionality:

DBCONNECTION
a connection to the database

DBSTATEMENT
a prepared statement

DBCURSOR
a cursor for reading a result set

Releasing Database Objects

When objects are set to null, they are released. Depending on whether objects are
defined as static or nonstatic, see Declaration of Symbols for additional details. When

46 Chapter 5 - Database Functions

symbols are not automatically reset to null, you need to use the release() methods to
explicitly release database objects.

Dictionary

DBCONNECT Function

Uses the EEL to connect directly to a relational database system and execute commands on that system
as part of your expression code. DBCONNECT is a global function.

Category: Database

Syntax
DBCONNECT (<"connect_string">)

Required Arguments

returns
a DBCONNECTION object

"connect_string'"
a string containing the name and path to connect to the database.

Optional Argument

share id
allows you to share connections between database and expression nodes. If the same
share id is specified then it will cause any connection with that share id to use the
same database connection.

DBDATASOURCES Function
Returns a list of data sources as a dbcursor. DBDATASOURCES is a global function.
Category: Database

Syntax
DBDATASOURCES(< >)

Without Arguments

Returns a list of data sources as a dbcursor. The data source includes:

NAME
a string containing the name of the data source.

DESCRIPTION
a string containing the driver (shown in the ODBC Administrator and DataFlux
Connection Administrator).

DBDATASOURCES Function

Type
an integer containing the subsystem type of the connection [1 = ODBC; 2 =
DataFlux TKTS].

HAS CREDENTIALS
a Boolean representing if save connection exists.

USER_DESCRIPTION
a string containing the user-defined description of the data source (defined in the
ODBC Administrator and DataFlux Connection Administrator).

Example

// list all data sources
dbconnection db_conn
db_conn=dbconnect ("dsn=dsn name")
dbcursor db_conn.db curs

db curs = dbdatasources ()

ncols = db_curs.columns ()

while db curs.next ()
begin
for i col=0 to ncols-1
begin
colname = db_curs.columnname (i_col)
coltype = db curs.columntype (i col)
collength = db_curs.columnlength(i_col)
colvalue = db_curs.valuestring(i_col)
pushrow ()
end
end

db_curs.release()
db_conn.release ()

47

48 Chapter 5 - Database Functions

49

Chapter 6
Date and Time Functions

OVeIVIEW 49
Dictionary 49
FORMATDATE Functiont 49
TODAY FUunCtionttt e e 51
TODAYGMT Functiont e 52

Overview
Dates, along with integers, reals, Booleans, and strings, are considered basic data types
in the EEL. Similar to other basic data types, EEL provides functions to perform
operations on dates.

Dictionary

FORMATDATE Function
Returns a date formatted as a string.
Category: Date and Time

Returned data String
type:

Note: The returned value is a string with the date formatted as a string.

Syntax
FORMATDATE(<datevar,format>)

Required Arguments

<datevar>
a date that needs to be formatted; this can be specified as field name.

50 Chapter 6 < Date and Time Functions

<format>
a string that represents the format that needs to be applied; this can be specified as
fixed string, field name, or expression.

Details

The format parameter can include any string, but the following strings are replaced with
the specified values:

* YYYY: four-digit year

* YY: two-digit year

*+ MMMM: full month in proper case

*+ MMM: abbreviated three-letter month
* MM: two-digit month

+ DD: two-digit day

* hh: hour

* mm: minute

» ss:second

* ms: millisecond

Note: The format parameters are case sensitive.

The FORMATDATE function dates should be in the format specified by ISO 8601
(YYYY-MM-DD hh:mm:ss:ms) to avoid ambiguity. Remember that date constants must
start with and end with the # sign (for example, #12-February-2010#).

Examples

Example 1

// Declare a date variable and initialize
// it to a value

date dateval

dateval = #2010-02-12#

// Declare the formatted date variable
string fmtdate

fmtdate = formatdate (dteval, "MM/DD/YY")

Results: 02/12/10

Example 2
// Declare a date variable and initialize
// it to a value
date dateval
dateval = #2010-02-12#
// Declare the formatted date variable
string fmtdate
fmtdate = formatdate(dateval, "DD MMM YYYY")
Results: 12 Feb 2010

Example 3
// Declare a date variable and initialize
// it to a value

Figure 6.1 Results

TODAY Function 51

date dateval

dateval = #2010-02-12#

// Declare the formatted date variable

string fmtdate

fmtdate = formatdate (dateval, "MMMM DD, YYYY")
Results: February 12, 2010

Example 4
day string=formatdate('date',"DD");
month string=formatdate('date',"MM");
year string=formatdate('date', "YYYY");

int_number='date';
date string=formatdate (int number, "MMM DD, YYYY");

df date='date';

Information Preview |Log |

dste | detebest | cateddvmyy | datetme | catebmebest | obs | day.s.. | month., | yesrstiog | intrumber | datesting | dfdate | 0000 [| i]
2771172008 00:00:00 17863 27/1172008 00:00:00 27/11/2008 1543400755.338 1 27 " 2008 39779 Nov 27, 2008 27/11/2008 00:00:00
28/11/2008 00:00:00 17864 28/11/2008 00:00:00 28/11/2008 1643487165338 2 28 n 2008 ag7e0 Nov 28, 2008 28/11/2008 00:00:00
29/11/2008 00-00:00 17885 29/11/2008 00-00:00 20/11/2008 1543573556.338 3 2 1 2008 20781 Nov 28, 2008 20/11/2008 00-00-00
30/11/2008 00.00:00 17BE6 30/11/2008 00:00:00 30/11/2008 1543850055338 4 30 " 2008 30782 Nov 30, 2008 20/11/2008 00.00:00
01/12/2008 00:0G0:00 17867 01/12/2008 00:00:00 0112/2008 1543746356.338 5 (131 12 2008 30783 Dec 01, 2008 01/12/2008 00:00:00
02/12/2008 00:00-00 17868 02/12/2008 00:00:00 0211212008 1643832756338 6 02 12 2008 39784 Dec 02, 2008 (02/12/2008 00:00:00
03/12/2008 00:00-00 17869 03r12/2008 00:00-00 03/12/2008 1543919156338 7 03 12 2008 20785 Dec 03, 2008 03/12/2008 00:00-00
04/12/2008 00:00:00 17870 04/12/2008 00:00:00 D4/12/2008 1544005555.338 8 04 12 2008 30786 Dec 04, 2008 04/12/2008 00:D0.00
06/12/2008 00:00:00 17871 06/12/2008 00:00:00 05/12/2008 1544091956.338 & 05 12 2008 38787 Dac 06, 2008 06/12/2008 00:00:00
i ﬁmmummnmn 05/12/2008 00-00:00 061212008 1644178355.938 10 06 12 2008 30788 Dec 06, 2008 05/12/2008 00-00-00 #
"HE] *
|
Ready Salected: 1 node [Inum [

TODAY Function

Returns the current data and time. This function is based on the local time zone.

Category:

Returned data
type:
Note:

Date and Time

Character

The returned value is a date that represents the current date and time value.

Syntax
TODAY(< >)

Details

The TODAY function returns the current date and time value. For example, at 4:00 p.m.
on February 12, 2010, the function would return the value "02/12/10 4:00:00 PM".
Although it is represented as a character string, the actual value is a date value. For more
information, see Date Expressions.

Before using this function, you must first declare a date variable to contain the date/time
value.

52 Chapter 6 + Date and Time Functions

Example

// declare the date variable to contain the date and time

date currentdate

// Use the TODAY function to populate the date variable with the current date and time
currentdate = TODAY ()

TODAYGMT Function
Returns the current date and time. This function is based on Greenwich Mean Time (GMT).
Category: Date and Time

Returned data Character
type:
Note: The returned value is a date and time combination that represents the current GMT
date and time value.

Syntax
TODAYGMT(< >)

Details

The TODAYGMT function returns the current GMT date and time value. For example,
at 4:00 p.m. on February 12, 2010, the function would return the value "02/12/10
4:00:00 PM". Although it is represented as a character string, the actual value is a date
value.

Before using this function, you must first declare a date variable to contain the date/time
value.

Example

// declare the date variable to contain the date and time

date currentdate

// Use the today function to populate the date variable with the current date and time
currentdate = todaygmt ()

Chapter 7
Execution Functions

OVeIVIEW

Dictionary
PUSHROW Function e e e
SETOUTPUTSLOT Function ot
SLEEP Function e e

Overview
The following execution functions are available for the EEL:
+ PUSHROW
+ SETOUTPUTSLOT
» SLEEP
Dictionary

PUSHROW Function

Pushes the current values of all symbols (this includes both field values for the current row and defined
symbols in the code) to a stack.

Category: Execution

Returned data Integer
type:
Note: The returned value is a Boolean value where 1= success and 0 = error.

Syntax
PUSHROW (<Boolean >)

54 Chapter 7 + Execution Functions

Optional Argument

reprocess
if true, then it causes the row to be processed again through the expression. If not
specified, the row is not processed. again

Details

The PUSHROW function pushes the current values of all symbols (this includes both
field values for the current row and defined symbols in the code) to a stack. When the
next row is requested, it is given from the top of the stack instead of being read from the
step above. When a row is given from the stack, it is not to be processed through the
expression again unless the reprocess parameter is specified. When the stack is empty,
the rows are read from above as usual. This function always returns true.

Example

string name
integer age
date Birthday

name="Mary"
age=28
Birthday=#21/03/1979%%

pushrow ()

name="Joe"

age=30
Birthday=#21/03/1977#
pushrow ()

SETOUTPUTSLOT Function

Sets the output slot to slot. This becomes the output slot when the expression exits.
Category: Execution

Returned data Integer
type:

Syntax
SETOUTPUTSLOT (integer)

Required Arguments

integer
the slot number for the node that should execute next.

returns
Boolean [true = success; false = error]

slot
an integer representing the active output slot when the expression node exits.

SLEEP Function 55

Details
Note: The SETOUTPUTSLOT function is applicable in a process job.

The SETOUTPUTSLOT function tells the node (the expression node in which it is
running) to exit on the specified slot. In a process job, if you follow a node by two other
nodes, you specify a slot for each for example, 0 and 1. If you run
SETOUTPUTSLOT(1), it tells the process job to continue with the node that is linked at
slot 1. It SETOUTPUTSLOT is not called, it exits on 0 by default.

Example
The following statements illustrate the SETOUTPUTSLOT function.

if tointeger(counter)<= 5 then SETOUTPUTSLOT (0)
else SETOUTPUTSLOT (1)

SLEEP Function

Pauses execution for the specified number of milliseconds. It allows the job to be interrupted or canceled

without problems.
Category:

Returned data
type:
Note:

Execution

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
SLEEP(duration)

Required Argument

<duration>
an integer representing the number of milliseconds to pause

Details

The SLEEP function causes the job to pause for the specified number of milliseconds.

Example
sleep(000)

Results: The job sleeps for 5 seconds

56 Chapter7 < Execution Functions

Chapter 8

57

File Functions

OVeIVIeW . . . e 57
Overview of the File Object e 57
Executing Programs and File Commands 58
Running a Batch File By Using Execute Function 58

Dictionary 58
CLOSE FUNCHIONottt e e e e e e e e 58
COPYFILE Function e 59
DELETEFILE Function i 60
EXECUTE Function e e 60
FILEDATE Function e 61
FILEEXISTS Function e e 62
MKDIR FUnction e e 63
MOVEFILE Function e e 64
OPEN FUuncCtion e e e 65
POSITION Function i e e e e 65
READBYTES Function 66
READLINE Function e 67
RMDIR Function e 68
SEEKBEGIN Function e e 69
SEEKCURRENT Functioni i, 69
SEEKEND Function e e e
WRITEBYTES Function i,
WRITELINE Function i e

Overview

Use the external file object to work with files in the Expression Engine Language (EEL).
Read and Write operations are supported in the file object and there are additional
functions for manipulating and working with files.

Overview of the File Object

The file object can be used to open, read, and write files. A file is opened using the file
object. For example:

File f

f.open("c:\filename.txt", "r")

58 Chapter 8 -+ File Functions

In this example, the OPEN() function opens filename.txt. The mode for opening the file
is read. Other modes are "a" (append to end of file) and "w" (write). A combination of
these switches can be used.

Executing Programs and File Commands
To execute programs, use the EXECUTE() function:
execute (string)

For example, the following code changes the default permissions of a text file created by
the Data Job Editor.

To execute the command in Microsoft Windows, enter:
execute ("/bin/chmod", "777", "file.txt")
Or, to execute from the UNIX shell, enter:

execute ("/bin/sh", "-c¢", "chmod 777 file.txt")

Running a Batch File By Using Execute Function
To invoke the MS-DOS command prompt, call the cmd.exe file. For example:

//Expression
execute ("cmd.exe", "/gq" ,"/c", C:\BatchJobs.bat");

The following parameters can be declared:
* /q— turns echo off

» /¢ — Executes the specified command for the MS-DOS prompt and then closes the
prompt

Note: The expression engine handles the backslash character differently; it does not
need to be escaped.

For example: "C:\\Program Files\\DataFlux" should now be entered as "C:\Program Files
\DataFlux"

Dictionary

CLOSE Function
Closes an open file.
Category: External File

Returned data Integer
type:

Note: The returned value is a Boolean value where 1= success and 0 = error.

Syntax
fileobject. CLOSE

COPYFILE Function 59

Details

The CLOSE method closes the file that is currently open file (which was opened by
using a fileobject.OPEN call) is closed.

Example

file myfile
if (myfile.open("data.txt")) then ...
rc = myfile.close()

COPYFILE Function

Copies a file.
Category:

Returned data
type:
Note:

External File

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
COPYFILE(<source_file, target file>)

Required Arguments

source_file
a string representing the name of the file to be copied; this can be specified as a fixed
string, field name, or expression.

target_file
a string representing the name of the file to be written; this can be specified as a
fixed string, field name, or expression.

Details

The COPYFILE function copies a file. If the target file exists, the COPYFILE function
overwrites the target file.

Example

string source_ file
string target_file
boolean rc_ok

source file="C:\mydata.txt"
target file="C:\mydata copy.txt"

rc_ok = copyfile(source file, target file)

60 Chapter 8 -+ File Functions

DELETEFILE Function

Deletes the specified file.
Category: External File

Returned data Integer
type:

Note: The returned value is a Boolean value where 1= success and 0 = error.

Syntax
DELETEFILE(<filename>)

Required Argument

filename
a string representing the name of the file to be deleted; this can be specified as a
fixed string, field name, or expression.

Details

The DELETEFILE function deletes a file from disk. If the file did not exist, then the
return code will be set to false.

Example

string filename
boolean rc_ok

filename="C:\mydata copy.txt"

rc_ok = deletefile(filename)

EXECUTE Function

Runs the specified program.
Category: External File

Returned data Integer
type:

Note: The returned value represents the existing status of the program. If an error occurs,
such as the program not found, then -1 is returned.

Syntax
EXECUTE(<filename<option1, option2,..., <option N>>

FILEDATE Function 61

Required Argument

filename
a string representing the file (or command) to be executed; this can be specified as a
fixed string, field name, or expression.

Optional Argument

optionl...N
[optional] a string representing options that are passed to the file (command) that is
going to be executed; this can be specified as a fixed string, field name, or
expression.

Details
The execute function invokes a file (or operating system command).

Note: Use single quotation marks for any parameter with embedded spaces. For
example:

execute('cmd.exe','/C',
'"C:\Program Files (x86)\DataFlux\DMStudio\studio24\bin\dmpexec.cmd""',

'-j', '"C:\Repository24\batch jobs\my data job.ddf"'
'-1v', '"C:\temp\log my data job.log"')
Example

integer rc

// Windows example

rc = execute("cmd.exe", "/Q", "/C", "C:\mybatchjob.bat")

// /Q turns echo off

// /C executes the command specified by filename and then closes the prompt

// Unix example
rc = execute("/bin/sh", "-c", "chmod 777 file.txt")

FILEDATE Function

Checks the creation or modification date of a file.

Category:

Returned data
type:

Note:

External File

Character

The returned value is a date.

Syntax
FILEDATE(<filename,>< datetype>)

62 Chapter 8 -+ File Functions

Required Argument

filename
a string representing the name of the file for which the creation or modification date
needs to be retrieved; this can be specified as a fixed string, field name, or
expression.

Optional Argument

datetype
a Boolean that specifies whether the creation date or the modification date needs to
be returned; this can be specified as a fixed string, field name, or expression [true =
modification date, false = creation date].

Details

The FILEDATE function returns either the creation date or the most recent modification
date of a file. If the file does not exist a (null) value is returned. If the argument
DATETYPE is omitted, the function behaves like the value would have been specified as
false.

Example

string filename
date creation date
date modification date

filename="C:\mydata.txt"

modification date = filedate(filename, true)
creation date = filedate(filename, false)

FILEEXISTS Function

Checks whether a specified file exists.
Category: External File

Returned data Character
type:

Note: The returned value is true if the file exists.

Syntax
FILEEXISTS(<filename>)

Required Argument

filename
the name of the file that you are checking to find out if it exists.

Example

string filename

MKDIR Function 63
boolean rc_ok
filename="C:\doesexist.txt"

rc ok = fileexists(filename) // outputs "true" if file exists

MKDIR Function

Creates a directory.
Category:

Returned data
type:

String

Boolean

Syntax

MKDIR(string<, create-intermediary-directories>)

Required Argument

string
specifies the text string that contains the directory to create.

Optional Argument

create-intermediary-directories
specifies whether to create intermediary directories if they do not exist, using these
values:

TRUE specifies to create the intermediary directories.

FALSE specifies not to create intermediary directories.

Examples

Example 1
// Declare a string variable to contain the path to the directory to be created
string dir
dir="C:\DataQuality\my data"

// Declare a Boolean variable for the MKDIR function call

boolean d

// Use the MKDIR function to create the C:\DataQuality\my data directory
d mkdir(dir)

Example 2
// Declare a string variable to contain the path to the directory to be created
string dir
dir="C:\DataQuality\my data"

// Declare Boolean variables for the MKDIR function call and the optional condition

64 Chapter8 -

File Functions

boolean b
boolean d

// Set the condition "true" to create an intermediary directory if it does not exist
b=true

// Use the MKDIR function to create the new directory, including the intermediary
// directory DatQuality, if it does not exist.
d mkdir (dir,b)

MOVEFILE Function

Moves or renames a specified file.

Category:

Returned data
type:
Note:

External File

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
MOVEFILE(<old_file, new_file name>)

Required Arguments

old_file_name
a string representing the name of the file to be moved; this can be specified as a fixed
string, field name, or expression.

new_file_name
a string representing the name (including location) where the file is moved; this can
be specified as a fixed string, field name, or expression.

Details

The MOVEFILE function moves a file. The directory structure must already be in place
for the function to move the file to its new location. If the target file already exists, the
file is not moved and false is returned.

Example

string old file name
string new file name
boolean rc_ok

old file name = "C:\mydata copy.txt"

new file name = "C:\TEMP\mydata copy.txt"

rc_ok = movefile(old file name, new file name)

POSITION Function 65

OPEN Function

Opens a specified file.
Category: External File

Returned data Integer
type:

Note: The returned value is a Boolean value where 1= success and 0 = error.

Syntax
fileobject. OPEN(<filename, openmode>)

Required Arguments

filename
a string representing the name of the file to be opened. If the file does not exist, it is
created. This parameter can be specified as a fixed string, field name, or expression.

openmode
[optional] a string representing the OPENMODE to be used. This can be specified as
a fixed string, field name, or expression [a = append, r = read, w = write, rw = read
and write].

Details

The open method opens the file that is provided in the filename parameter. If the file

does not exist and an OPENMODE is specified containing either an "a" or "w", then the
file is created. If the OPENMODE is not specified, a value of false is returned.

When WRITEBYTES and WRITELINE methods write at the end of the file, unless
SEEKBEGIN, SEEKCURRENT, or SEEKEND methods are used to adjust the position
in the file, the information is written at the current position in the file.

If an OPENMODE of "w" is used, the WRITEBYTES and WRITELINE methods write
at the current position in the file and potentially overwrite existing information in the
file.

Example

file myfile
if (myfile.open("data.txt")) then ...

POSITION Function

Returns the current position of the cursor in a file, which is the number of bytes from the beginning of the
file.

Category: External File

Returned data Integer
type:

66 Chapter8 -

Note:

File Functions

The returned value is an integer representing the current position (offset) from the
beginning of the file.

Syntax
<fileobject>.POSITION(< >)

Details

The position method returns the current position of the cursor in a file. Combined with
the SEEKEND() method, it can be used to determine the size of a file.

Example

file £
integer byte size

f.open("C:\filename.txt", "r")
f.seekend(0) // position cursor at end of file

// or if you want to test return codes for the method calls
// boolean rc_ok

// rc_ok = f.open("C:\filename.txt", "r")

// rc_ok = f.seekend(0) // position cursor at end of file

// The integer variable byte size will have
// the size of the file in bytes

byte size = f.position()

f.close()

READBYTES Function

Reads a certain number of bytes from a file.

Category:
Returned data
type:

Note:

External File

Integer

The returned value is the number of bytes actually read, or 0 on failure.

Syntax
<fileobject>.READBYTES(<number of bytes, buffer>)

Required Arguments

number_of bytes
an integer specifying the number of bytes that need to be read from the file. This
parameter can be specified as a number, field name, or expression.

READLINE Function 67

buffer
a string that contains the bytes that are read. This parameter can be specified as a
fixed string, field name, or expression.

Details

The READBYTES method reads the specified number of bytes from a file starting at the
current position of the file pointer. The file pointer will be positioned after the last byte
read. If the buffer is too small, only the first bytes from the file are put into the buffer.

This method is normally used to read binary files. The various format functions can be
used to convert the binary information that was read.

Note that this method also reads EOL characters. When reading a windows text file like
this:

C:\filename.txt

abc

def

A READBYTES(7, buffer) statement causes the field buffer to contain the following
value "abc\n de". The value consists of all the information from the first line (3 bytes),
followed by a CR character and an LF character (2 bytes on Windows, 1 byte on UNIX)
that is represented by "\n". They are followed by the first 2 bytes from the second line.
To read text files, use the READLINE() method.

Example

string input
file £

f.open("C:\filename.txt", "r")
f.readbytes (7, input)

// or if you want to test return codes for the method calls
// boolean rc_ok

// rc_ ok = f.open("C:\filename.txt", "r")

// rc_ok = f.readbytes(7, input)

READLINE Function

Reads the next line from an open file.
Category: External File

Returned data Character
type:

Note: The returned value is a string containing the line that was read from the file.

68 Chapter 8 -+ File Functions

Syntax
fileobject. READLINE(< >)

Details

The READLINE method reads the next line of data from an open file. A maximum of
1024 bytes are read. The text is returned. Null is returned if there was a condition such as
end of file.

Example

file £
string input

f.open("C:\filename.txt", "r")
input=f.readline()
f.close()

RMDIR Function
Deletes a directory if it is empty.
Category: String

Returned data Boolean
type:

Syntax
RMDIR(directory)

Required Argument

directory
specifies the directory to remove if it is empty.

Example

// Declare a string variable to contain the path to the directory to be created
string dir
dir="C:\DataQuality\my data"

// Declare a Boolean variable for the MKDIR function call
boolean d

// Use the MKDIR function to create the C:\DataQuality\my data directory
d rmdir (dir)

SEEKCURRENT Function 69

SEEKBEGIN Function

Sets the file pointer to a position starting at the beginning of the file. Returns true on success, false
otherwise. The parameter specifies the position.

Category:

Returned data
type:
Note:

External File

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
fileobject. SEEKBEGIN(<position>)

Required Argument

position
an integer specifying the number of bytes that need to be moved forward from the
beginning of the file. Specifying a 0 means the start of the file. This parameter can be
specified as a number, field name, or expression.

Details

The SEEKBEGIN method moves the file pointer to the specified location in the file,
where 0 indicates the start of the file. It returns true on success. Otherwise, false is
returned. Specifying 0 means that reading starts after the first position in the file.

Example

file £
string input

f.open("C:\filename.txt", "r")

input = f.readline()

// return the pointer to the beginning of the file
// and read the first line again

f.seekbegin(0)

f.readline()

f.close()

SEEKCURRENT Function

Sets the file pointer to a position in the file relative to the current position in the file.

Category:

Returned data
type:

External File

Integer

70 Chapter8 -

Note:

File Functions

The returned value is a Boolean value where 1= success and 0 = error.
Syntax
fileobject. SEEKCURRENT (<position>)

Required Argument

position

an integer specifying the number of bytes that need to be moved from the current
position in the file. Positive values specify the number of bytes to move forward,
negative values specify the number of bytes to move backward. This parameter can
be specified as a number, field name, or expression.

Details

The SEEKCURRENT method moves the file pointer from the current position in the
file. This method is useful when reading binary files that contain offsets to indicate
where related information can be found in the file.

Example

file £
string input

f.open("C:\filename.txt", "r")

input = f.readline()

// The file contains 3 bytes per record followed by a CR and LF character
// So move the pointer 3+2=5 positions back to read the beginning of

// the first line and read it again.

f.seekcurrent (-5)

f.readline()

f.close()

SEEKEND Function

Sets the file pointer to a position in the file counted from the end of the file.

Category:

Returned data
type:
Note:

External File

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
fileobject. SEEKEND(<position>)

WRITEBYTES Function 71

Required Argument

position
an integer specifying the number of bytes that need to be back from the end of the
file. Specifying a 0 means the end of the file. This parameter can be specified as a
number, field name, or expression.

Details

The SEEKEND method moves the file pointer backward the number of bytes that were
specified, where 0 indicates the end of the file. It returns true on success otherwise false
is returned.

Example

file £
f.open("C:\filename.txt", "rw")

// write information to the end of the file
f.seekend (0)

f.writeline("This is the end ")

f.close()

WRITEBYTES Function

Writes a certain number of bytes to a file.

Category:

Returned data
type:
Note:

External File

Integer

The returned value is an integer representing the number of bytes written.

Syntax
fileobject. WRITEBYTES(<number of bytes, buffer>)

Required Arguments

number_of bytes
an integer specifying the number of bytes that is written to the file. This parameter
can be specified as a number, field name, or expression.

buffer
a string that contains the bytes that need to be written. This parameter can be
specified as a fixed string, field name, or expression.

Details

The WRITEBYTES method writes the specified number of bytes to a file starting at the
current position in the file. This method overwrites data that exists at the current position
in the file. If the current position in the file plus the number of bytes to be written is
larger than the current file size, then the file size is increased.

72 Chapter8 -

File Functions

If buffer is larger than number of bytes specified, then only the first number of bytes
from buffer is written. The file needs to be opened in Write or Append mode for this
method to work. The method returns the actual number of bytes written.

This method is normally used to write binary files. To write text files, the WRITELINE()
method can be used.

Example
string input
file £
string = "this is longer than it needs to be"
f.open("C:\filename.txt", "rw")

// This will write to the beginning of the file

// Only the first 10 bytes from the string will be written

// If the file was smaller than 10 bytes it will be automatically
// appended

f.writebytes (10, input)

f.close()

WRITELINE Function

Writes a line to a file.

Category:
Returned data
type:

Note:

External File

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
fileobject. WRITELINE(<string>)

Required Argument

string
a string specifying the information that needs to be written to the file. This parameter
can be specified as a fixed string, field name, or expression.

Details

The WRITELINE() method writes the string at the current position in the file. This
method overwrites data that exists at the current position in the file. If the current
position in the file plus the length of the string is larger than the current file size, then the
file size is increased.

The file needs to be opened in Write or Append mode for this method to work.

Example

file £

WRITELINE Function 73

f.open("C:\filename.txt", "a")
f.writeline ("This text will be appended to the file")

f.seekbegin(0)
f.writeline ("Using seekbegin(0) and Append will

still cause the info to be written at the start of the file")

f.close()

74 Chapter 8 -+ File Functions

Chapter 9

Incoming Data Functions

75

OVeIVIEW

Dictionary
FIELDCOUNT Function
FIELDNAME Function e
FIELDTYPE Function i
FIELDVALUE Function e i
READROW Function e
ROWESTIMATE Function i
SETEOF Function e
SETFIELDVALUE FUunctionouutin it

Overview

The EEL provides built-in functions that enable you to evaluate data coming in from a
parent node, as well as set the value of a field, and determine the type of field and the
maximum length.

The FIELDCOUNT, FIELDNAME, and FIELDVALUE functions enable you to
dynamically access values from the parent node without knowing the names of the
incoming fields.

Dictionary

FIELDCOUNT Function

Accesses values dynamically from the parent node without knowing the names of the incoming fields.
Returns the number of incoming fields.

Category:
Returned data
type:

Note:

Data Input

Integer

The returned value is an integer, representing the number of incoming fields from the

parent node.

76 Chapter9 -+ Incoming Data Functions

Syntax
FIELDCOUNT(< >)

Details

Provides a way of dynamically accessing values from the parent node without knowing
the names of the incoming fields. The function returns the number of incoming fields.

Example

// Declare a hidden integer for the for loop, initializing it to 0
hidden integer i
i=0

// Increment through the data once for each column of data in the input data
for i = 1 to fieldcount ()

FIELDNAME Function

Returns the name of a specific field output from the parent node.
Category: Data Input

Returned data Character
type:

Syntax
FIELDNAME (index)

Required Argument

index
is the index into the incoming fields

Examples

Example 1
// Declare a string variable to contain the field name
String Field3

// Use the Fieldname function to get the third field in the incoming data
Field3 = Fieldname(3)

Example 2
// Declare a hidden integer for the for loop, initializing it to 0
hidden integer i
i=20
// Declare a string variable to contain the column names
string column_name

FIELDTYPE Function T7

// Create a table with a row for each column in the input data source
for i = 1 to fieldcount ()
begin
column name = fieldname (i)
pushrow ()
end

FIELDTYPE Function

Returns the field type of a field output from the parent node. If the second parameter is supplied, it is set to
the length in chars if the field type is string.

Category:

Returned data
type:

Data Input

Character

Syntax
FIELDTYPE(<(index, length>)

Required Argument

<index>
specifies the index into the incoming fields from the parent node. The second
parameter is optional and set to the maximum string length in characters if the field
type is a string.

Optional Argument

<length>
specifies an integer that contains the length of the field if the field is of type string.

Details

The FIELDTYPE function determines the type and, the maximum length in characters
(for string fields) based on its index in the list of fields coming from the parent node. It
returns a string representation of the field type (for example, integer or date).

Example

// Declare a hidden integer for the for loop, initializing it to 0
hidden integer i
1i=0

// Increment through the data a number of times equal to the number
// of fields in the data
for i = 1 to fieldcount ()

//Check the type of each field in the data and take some action
if fieldtype(i) == 'Date' then

78 Chapter9 <+ Incoming Data Functions

FIELDVALUE Function

Returns the value of a specified field as a string.

Category: Data Input

Syntax
stringFIELDVALUE(<integer>)

Required Argument

<integer>
specifies the index into the incoming fields.

Examples

Example 1
// Declare a string variable to contain the third field value
String Value Field3

// Use the fieldvalue function to get the
// value in the third field of the

// incoming data

Value Field=fieldvalue(3)

Example 2
// Declare a hidden integer for the for loop, initializing it to 0
hidden integer i
i=0

// Checks each field to see if the field is a name field and the value is numeric
for i = 1 to fieldcount()
begin
if instr(lower (fieldname(i)), 'name') then
if isnumber (fieldvalue(i)) then
return true
end

READROW Function

Reads the next row of data from the step above and fills the variables that represent the incoming step's
data with the new values. It returns false if there are no more rows to read.

Category: Data Input

Returned data Integer
type:

Note:

ROWESTIMATE Function 79

The returned value is a Boolean value representing whether there are values in the
incoming step's data, true = there are still rows in parent node; false = no more rows
to read.

Syntax
READROW(< >)

Details
The READROW function is a Data Job-only function.

Note: The READROW function has no effect when called from a pre- or post-
expression. When called from a pre-group or post-group expression, it can cause
undesirable results.

Example

Assume that this step is below a step with a name field and the step outputs four rows,
"John", "Paul", "George", and "Igor":

// Declare a string to contain the "old" or "previous" value
string oldname

// Set the value of OLDNAME to whatever is in NAME
oldname=name
// Name has the value "John', oldname also contains "John"

// Use the READROW function to read in the next record
readrow ()
// OLDNAME is still "John", but NAME is now "Paul"

ROWESTIMATE Function

Sets the estimated total number of rows to be reported by this step.

Category:
Returned data
type:

Note:

Data Input

Integer

The returned value is a Boolean value where 1= success and 0 = error.

Syntax
ROWESTIMATE((<integer>)

Optional Argument

<integer>
specifies an integer that contains an estimate for the total numbers of rows that are
output from the step.

80 Chapter9 <+ Incoming Data Functions

Details

The ROWESTIMATE function is used by data jobs to estimate the number of records
that will be output from the step.

Example

// Declare a hidden integer for the number of output rows
hidden integer nrows

// Set the number of rows for the function
nrows=100

// This function estimates and sets the # of records that this step will report
rowestimate (nrows)

SETEOF Function

Sets status to end of file (EOF), preventing further rows from being read in the step. If the parameter is
true, the pushed rows are still returned.

Category: Data Input

Returned data Integer
type:

Note: The returned value is a Boolean value where 1= success and 0 = error.

Syntax
SETEOF (<return_pushrow>)

Optional Argument

return_pushrow
Boolean value; to specify whether pushed rows are still returned

Details

When SETEOF() is called, the node does not read any more rows from the parent node.
If generate rows when no parent is specified is checked, the node stops generating rows.
Furthermore, if any rows have been pushed using PUSHROW(), they are discarded, and
further calls to PUSHROW() have no effect. The exception to this is if SETEOF(true) is
called. In this case, any pushed rows (whether pushed before or after the call to
SETEOF() are still returned to the node below. Notably, if further PUSHROW() calls
occur after SETEOF(true) is called, these rows are returned as well. Also note that after
SETEOF() is called, the post-group expression and the post expression are still executed.

Example

seteof ()

SETFIELDVALUE Function 81

SETFIELDVALUE Function

Sets the value of a field based on its index in the list of fields coming from the parent node. This is useful
for enumerating through the fields and setting values.

Category: Data Input

Syntax
SETFIELDVALUE (<integer,any>)

Required Arguments

integer
index into the incoming fields.

any
value that you want to set the field to.

Details

The SETFIELDVALUE function sets the value of a field based on its index in the list of
fields coming from the parent node. This is useful for enumerating through the fields and
setting values.

Example

// Declare a hidden integer for the for loop, initializing it to 0, and a hidden date fi
hidden integer i

i=0

hidden date Date Field

// Checks each field to see if it is a date field
for i = 1 to FieldCount ()
if FieldType(i) == 'Date' then

begin
Date Field= FieldValue(i)

// If the date is in the future, then use SETFIELDVALUE to set the value to null
if Date Field > today()
SetFieldvalue (i,null)

end

82 Chapter9 <+ Incoming Data Functions

Chapter 10

83

Information/Conversion Functions

OVeIVIeW . . . e 83
Dictionary 83
DETERMINE TYPEFunction...........o, 83
GEODISTANCE COSINE Functioncoouuiiniiniin.., 84
GEODISTANCE_HAVERSINE Function 85
ISALPHA Function et e e e 85
ISBLANK Function e e 87
ISNULL Function e e e e 88
ISNUMBER Function e e 89
IS PREVIEW _MODE Functiont 90
LOCALE Function e e e e 90
TOBOOLEAN e 91
TYPEOF Function e 91

Overview

The following information and conversion functions are available for the Expression
Engine Language (EEL).

Dictionary

DETERMINE_TYPE Function

Returns the type of data that the input string represents.

Category:

Returned data
type:

Date
String

Syntax
DETERMINE_TYPE

84 Chapter 10 - Information/Conversion Functions

Required Arguments

string
is the string of data.

returns
the data type the input string represents.

Details

This function analyzes a string to determine whether it is one of the following options:
string, integer, Boolean, date, or real.

Examples

Example 1
1000
Results: integer

Example 2
1000.5
Results: real

GEODISTANCE_COSINE Function

Computes the distance between two geographical points. This function provides results faster and provides
an acceptable level of accuracy for most cases.

Category: Information and Conversion

Syntax
GEODISTANCE_COSINE(<latl, lonl, lat2, lon2>)

Required Arguments

latl
latitude for first location, in decimal degrees. South latitudes are negative.

lonl
longitude for first location, in decimal degrees. East longitudes are positive.

lat2
latitude for second location, in decimal degrees. South latitudes are negative.

lon2
longitude for second location, in decimal degrees. East longitudes are positive.
Details

The GEODISTANCE COSINE function is used to compute the distance between two
geographical points.

ISALPHA Function 85

Note: Each point is represented using latitude and longitude in decimal degrees. South
latitudes are negative and east longitudes are positive. The function returns -1 when
there is an error.

Example

geodistance cosine(21.349017, -45.566906, -35.203839, 19.996602)

GEODISTANCE_HAVERSINE Function

Computes the distance between two geographical points. This formula provides greater accuracy,
particularly for shorter distances.

Category: Information and Conversion

Note: This function provides better accuracy than the GEODISTANCE_COSINE function,
but is slower.

Syntax
GEODISTANCE_HAVERSINE(<latl, lonl, lat2, lon2>)

Required Arguments

latl
latitude for first location, in decimal degrees. South latitudes are negative.

lonl
longitude for first location, in decimal degrees. East longitudes are positive.

lat2
latitude for second location, in decimal degrees. South latitudes are negative.

lon2
longitude for second location, in decimal degrees. East longitudes are positive.

Details

The GEODISTANCE HAVERSINE function is used to compute the distance between
two geographical points.

Note: Each point is represented using latitude and longitude in decimal degrees. South
latitudes are negative and east longitudes are positive. The function returns -1 when
there is an error.

Example

geodistance haversine(21.349017, -45.566906, -35.203839, 19.996602)

ISALPHA Function

Returns a true value if the expression is a string made up entirely of alphabetic characters.

Category: Information and Conversion

86 Chapter 10 -

Returned data
type:
Note:

Information/Conversion Functions

Integer

The returned value is a Boolean value, true if the "in_string" contains only alpha
characters. Otherwise, the value is false.

Syntax
ISALPHA(<in_string>)

Required Argument

in string
a string of characters that is searched for any alphabetic characters.

Details

The ISALPHA function returns true if "in_string" is determined to be a string containing
only alpha characters.

Examples

Example 1
// Expression
string letters
letters="1mnop"
string mixed
mixed="1la2b3c"

string alphatype
alphatype=isalpha(letters) // returns true
string mixedtype
mixedtype=isalpha (mixed) // returns false

Example 2
string all Alpha
all Alpha="abcdefghijklmnoprstuvyz"

string non_ Alpha
non_Alpha="%&)#@*0123456789"

string error messagel
string error message2

if (NOT isalpha(all Alpha))

error _messagel ="all Alpha string contains alpha numeric characters"
else

error _messagel ="all Alpha string contains alpha numeric characters"

if (isalpha (non_Alpha))
error _message2= "non_ Alpha string contains alpha numeric characters"
else
error_message2= "non_ Alpha string does not contain alpha numeric characters"

ISBLANK Function

Example 3
string all Alpha
string error message
all Alpha="abcdefghijklmnopgrstuvwxyz"
if (isalpha(all Alpha))
begin
error_message= "alpha strings were identified as alpha"
end

87

ISBLANK Function

Checks if an argument contains a blank, empty value. When the argument value is blank, the function
returns true. Otherwise, it returns false.

Category:
Returned data
type:

Note:

Information and Conversion

Integer

The returned value is a Boolean value.

Syntax
<boolean>ISBLANK(<argvalue>)

Required Argument

argvalue
is a string.

Details
The ISBLANK function takes the following argument types: string.

Example

string x

string y

date z

string error messagel
string error message2

x="Hello"

if (isblank(x))
error messagel = "x is blank"
else

error messagel= "x is not blank"

if (isblank(y))
error message2 =" String y value is blank"
else

error message2 =" String y value is not blank"

88 Chapter 10 - Information/Conversion Functions

ISNULL Function

Checks if an argument value contains a null value. When the argument value is null, the function returns
true. Otherwise, it returns false.

Category: Information and Conversion

Returned data Integer
type:

Note: The returned value is a Boolean value.

Syntax
<boolean>ISNULL(<argvalue>)

Required Argument

argvalue
string, date, integer, real, Boolean.

Details

The ISNULL function takes the following argument types: string, date integer, real,
Boolean.

Examples

Example 1
// Expression
if State <> "NC" OR isnull(State)
return true
else
return false

Example 2
integer x
string y
string error messagel
string error message2

y="Hello"

if (isnull (x))

error messagel = "Integer x is null"
else

error messagel= "Integer x is not null"

if (isnull(y))
error message2 =" String y value is null"
else

error message2 =" String y value is not null"

ISNUMBER Function

89

ISNUMBER Function

Checks if an argument value contains a numerical value. When the argument value is a number, the
function returns true. Otherwise, it returns false.

Category:

Returned data
type:
Note:

Information and Conversion

Integer

The returned value is a Boolean value.

Syntax
argvaluebooleanISNUMBER()

Required Argument

argvalue
string

Details

The ISNUMBER function takes the following argument types: string.

Example

string x
string y
string z
string error messagel
string error message2
string error message3

X :|l5||
y="Hello"
z="01/01/10"

if (isnumber (x))
error messagel

else

"String x is a number"

error messagel= "String x is not a number"

if (isnumber(y))

error message2 =" String y
else
error message2 =" String y

if (isnumber(z))
error message3 = "String z

else
error_message3

"String z

value

value

value

value

is

is

is

is

a number"

not a number"

a number"

not a number"

90 Chapter 10 < Information/Conversion Functions

IS_PREVIEW_MODE Function

Returns TRUE if the job is executed in preview mode. Otherwise, it returns FALSE.
Category: Repository

Returned data Boolean
type:

Syntax
IS_PREVIEW_MODE()

Without Arguments

There are no arguments for this function.

LOCALE Function

Sets the locale.
Category: Information and Conversion

Returned data String
type:
Notes: The returned value is a string of the current locale setting.

This function affects certain operations such as converting and date operations. This
function returns the previous locale. If no parameter is passed, the current locale is
returned. The locale setting is a global setting.

Syntax
<string>LOCALE(< >)
<string>LOCALE(<“locale_string”>)

Details

If a parameter is specified, it is set. Otherwise, it is retrieved. If setting, the old locale is
retrieved.

The following values can be set in the LOCALE() function:
* You can use a two-character abbreviation for the US and UK locales

» A three-character abbreviation can be used for some countries, like GER, FRA, or
DEU

Here are some examples:

my locale = locale("DEU")
my locale = locale("German")

my locale = locale("German Germany")

(
(
(
(

my locale = locale("German Germany.1252")

TYPEOF Function 91

The LOCALE() function returns the current setting using Country Language.codepage
notations.

Note: If you use ("#iso8601"), the date is set in the ISO8601 format.

Example

string currentSetting
string newSetting

currentSetting = locale() ;

newSetting = locale ("FRA");

TOBOOLEAN

Converts the argument to a Boolean value.

Category:
Returned data
type:

Note:

Information and Conversion

Integer

The returned value is a Boolean value that is returned if the argument value can be
converted to a Boolean value

Syntax
booleanTOBOOLEAN(value<>)

Required Argument

value
is passed in as one of the following: real, integer, string, or date.

Example

boolean convertedvValue

integer result

result = 1

convertedValue = toboolean (result)

Print (convertedvValue)

TYPEOF Function

Identifies the data type of the passed in value.

Category:

Returned data
type:
Note:

Information and Conversion

Character

The returned value is one of the following strings: Boolean variable return Boolean,
integer variable return integer, real variable return real, string variable return string.

92 Chapter 10 < Information/Conversion Functions

Syntax
<string> TYPEOF(in_value)

Optional Argument

in value
variable that is evaluated.

Examples

Example 1
// Expression
string hello
hello="hello"

boolean error
error=false

// variable that will contain the type
string type
type=typeof (hello)

// type should be string
if (type<>"string") then
error=true

Example 2
string content
content = "Today is sunny"

hidden integer one
one =1

hidden real pi
pi=3.1415962

hidden boolean test
test=false

hidden string type
type= typeof (content) ;

if (type == "string")
begin
error message="The data type for variable 'Content' is string"
end

type=typeof (one)
if (type == "integer")
begin
error message="The data type for variable 'one' is integer"
end

TYPEOF Function 93

type= typeof (pi);

if (type == "real")
begin
error message="The data type for variable 'real' was real"
end

type= typeof (test);

if (type == "boolean")
begin
error message="The data type for variable 'test' was boolean"
end

94 Chapter 10 < Information/Conversion Functions

Chapter 11

Logging Functions

OVeIVIEW . . .

Dictionary
LOGMESSAGE Function i i
PRINT Function e e e
RAISEERROR Function i
SENDNODESTATUS Functionot

Overview

The following logging functions are available for the Expression Engine Language
(EEL).

+ LOGMESSAGE

* PRINT

* RAISEERROR

* SENDNODESTATUS

Dictionary

LOGMESSAGE Function

Prints a message to the log.

Category:
Returned data
type:

Note:

Logging

Integer

The returned value is a Boolean value, always true for the LOGMESSAGE function.

Syntax
LOGMESSAGE(string message)

96 Chapter 11 + Logging Functions

Required Argument

message
a string representing the text of the message to be written to the log

Details
The LOGMESSAGE function is used to send a message to the log file.

Example

logmessage ("This message will go to the log file")

PRINT Function

Prints the string to the step log.
Category: Logging

Returned data Integer
type:

Notes: The returned value is a Boolean value, which is always true.
If the second parameter is true, no linefeeds will be appended after the text.

Syntax
PRINT(string, no linefeed)

Required Argument

string
is the text to be printed; this can be specified as a text constant or a field name.

Optional Argument

no linefeed
the second Boolean determines whether linefeeds will be printed to the log after the
text.

Details

The PRINT function writes text to the node summary.

Example

// Declare a string variable to contain the input value
string input

// Set the string variable to a value

// Use the PRINT function to write a note to the log
input='hello'

print ('The value of input is ' & input)

SENDNODESTATUS Function 97

RAISEERROR Function

Prints a message to the run log.

Category:

Returned data
type:
Note:

Logging

Integer

There is no return value for this function since an error occurs when this is called and
the expression stops processing.

Syntax
<boolean>RAISEERROR(string usererror)

Required Argument

usererror
is a string that is printed to the jobs output.

Details

The RAISEERROR function raises a user-defined error. Users can define a condition
and then use RAISEERROR to stop the job and return an error message when the
condition occurs. This is useful for evaluating problems unique to an installation. The
user can then search for the error message to determine whether the associated condition
was responsible for stopping the job.

Example

raiseerror ("user defined error")

SENDNODESTATUS Function

Sends a node status.
Category:

Returned data
type:

Node

Boolean

Syntax
SENDNODESTATUS(status key, statusvalue)

Required Arguments

status key
a string representing the name of the status key available value is:

« “ PCT_COMPLETE” //percent complete

98 Chapter 11 + Logging Functions

* “ OVERALL” //overall status

status value
a string representing the value of the status key

returns
Boolean; true if the SENDNODESTATUS was successful; false otherwise

Details
Note: The SENDNODESTATUS function is applicable only in a process job.

The SENDNODESTATUS function tells the process job engine of the status of the node.
If an expression is going to run for a long time it is a good idea for it to send its status. It
takes two parameters, a status key, and a status value.

Available keys are:

" PCT_COMPLETE" // percent complete
" OVERALL" // overall status (suitable for displaying on the ui with a node)

Example
The following statements illustrate the SENDNODESTATUS function:

integer 1
for 1 = 1 to 100

begin
sleep (100)
sendnodestatus (" PCT COMPLETE", i)

end

99

Chapter 12
Macro and Variable Functions

OVeIVIEW 99
About Macros and Variables 99
Using Macros and Variables0 ... 100
Using GETVAR() and SETVAR()ot o v i 101

Dictionary e 101
GETVAR Function e i 101
SETVAR FUNCHONot e e e e 102
VAREVAL Function e e 103
VARSET Function e i 104

Overview

Macros (or variables) are used to substitute values in a job. This might be useful if you
want to run a job in different modes at different times. For example, you might want to
run the job every week, but read from a different file every time it runs. In this situation,
you would specify the filename with a macro rather than the actual name of the file.
Then, set that macro value either on the command line (if running in batch) or by using
another method.

About Macros and Variables

Multiple macro files are supported along with the concept of user- and system-level
macros, in a specific order.

System macros are defined in the dfexec_home location and displayed through the user
interface, but they cannot be added or edited. User settings are stored in the %apdata%
location. You can view, add, or edit through the user interface. Changes to the system-
level macro cause an override where the new value is written to the user location. To
promote this change, you must update the system location outside of Data Management
Studio. New system macros and macro files must be created outside the software.

Load order is important because technical support can use load order to force a macro to
be a specific value. In the following, the base directory is defined by dfexec_home. In a
typical installation, this is the root directory where DataFlux Data Management Studio is
installed.

Command line declarations override environment variables which in turn override macro
variable values declared in any of the system or user configuration files. Refer to the
DataFlux Data Management Studio Online Help for more information about using macro

100 Chapter 12 - Macro and Variable Functions

variables. The results from the Expression node are determined by the code in the
Expression Properties dialog box.

Using Macros and Variables

All of the settings in the DataFlux configuration file are represented by macros in the
Data Job Editor. For example, the path to the QKB is represented by the macro DQ/
QKB. To use a macro in a job, enter it with double percent signs before and after the
value. For example:

Example Code 12.1 Old Value:

C:\myfiles\inputfile0l.txt
Example Code 12.2 Using Macros, You Enter:

$SMYFILE%%
You can also use the macro to substitute some part of the parameter as in this example,
C:\myfiles\%%MYFILE%%. A macro can be used anywhere in a job where text can be
entered. If a data job step (such as a drop-down list) prevents you from entering a macro,
go to the Advanced tab and enter it there. After you enter a macro under the Advanced
tab, you get a warning if you try to return to the standard property dialog box.
Depending on your macro, you might need to avoid the standard property dialog box and

use the advanced dialog box thereafter. If the property value is plain text, you can return
to the standard dialog box.

You can choose to use variables for data input paths and filenames in the data job
Expression node. You can declare macro variables by any of these ways:

» entering them in the Macros folder of the Administration riser bar
» editing the macro.cfg file directly
» specifying a file location when you launch a job from the command line

When you add macros using the Administration riser, Data Management Studio directly
edits the macro.cfg file. If you edit the macro.cfg file directly, you can also add multiple
comments.

Command line declarations override the macro variable values declared in app.cfg. The
results from Expression are determined by the code in the Expression Properties dialog
box.

Specifically, the value of a macro is determined in one of the following ways:

» In the first case, if you are running in batch in Windows, the -VAR or -VARFILE
option lets you specify the values of the macros. For example:

-0 keyl=valuel -o key2=value2
-C "C:\mymacros.txt"

Note: The return code can be checked by creating a batch file, and checking the
error level in the batch file by using the following:

IF ERRORLEVEL [return code variable] GOTO

If the return code is not set, it returns a 0 on success and 1 on failure. The return code
can be set using the RETURN CODE macro.

* In the second case, the file contains each macro on its own line, followed by an equal
sign and the value.

* Ifrunning in batch on UNIX, all current environment variables are read in as
macros.

GETVAR Function 101

* Ifrunning data jobs in Windows, the values specified in Tools > Options >
Global are used.

* Ifrunning the Data Management Server, the values can be passed in the SOAP
request packet.

* Ifusing an embedded job, the containing job can specify the values as
parameters.

* The app.cfg file can be used to store additional values. These values are always
read regardless of which mode is used.

Using GETVAR() and SETVAR()

Macro variable values can be read within a single function using the %my macro%
syntax. If you are using more than one expression in your job, use GETVAR() to read
variables and SETVAR() to read and modify variables. With GETVAR() and SETVAR(),
changes to the value persist from one function to the next. Note that changes affect only
that session of the Data Job Editor and are not written back to the configuration file.

The following table contains information about predefined macros:

Predefined Macro Description

_JOBFILENAME The name of the current job.
_JOBPATH The path of the current job.
_JOBPATHFILENAME The path and filename to the current job.
TEMP The path to the temporary directory.

Note: For SETVAR(), if you set a macro in an expression step on a page, the new value
cannot be reflected in nodes on that page. This condition is because those nodes have
already read the old value of the macro and might have acted upon it (such as
opening a file before the macro value was changed). This issue arises only from
using SETVAR(). Thus, SETVAR() is useful only for setting values that are read on
following pages or from other expression nodes with GETVAR().

Dictionary

GETVAR Function

Returns run-time variables. These are variables that are passed into DataFlux Data Management Studio
on the command line using -c or -o.

Category: Macro Variable

Returned data String
type:

102 Chapter 12

Macro and Variable Functions

Syntax
GETVAR(stringl<, string2>)

Required Argument

stringl
specifies the name of the variable to return. string! is not case sensitive.

Optional Argument

string2
specifies the value that is returned if the variable does not exist.

Example

testInParam=getvar ("DF String Input")

File £
f.open("%%DataFlowTargets%%DF String Input.txt", "w")
f.writeline("DF_String Input = "&testInParam)
seteof ()

f.close()

SETVAR Function

Sets the Data Job macro variable value, indicated by the first parameter, to the values in the second

parameter.
Category:

Returned data
type:

Macro Variable

Boolean

Syntax
SETVAR(macroname, value)

Required Arguments

macroname
specifies the name of the Data Job macro variable to set; this can be specified as a
string.

value
specifies the value to set to macroname; this value can have a data type of real,
integer, string, date, or Boolean.

Details

This function return TRUE if it completed successfully. Otherwise, it returns FALSE.

Example

string macroName

VAREVAL Function 103

macroName = "myMacro"
newValue = 10

success=setvar (macroName, newValue)

VAREVAL Function

Returns the value of a variable.

Category:

Returned data
type:
Tip:

String
String

The VAREVAL() function must look up field names each time it is called. Use the
VAREVAL() function sparingly to avoid performance degradation.

Syntax
VAREVAL (string)

Required Argument

string
specifies a string that resolves to the name of a variable.

Details

You can use the VAREVAL function to help you dynamically select the value of
different fields. First, write the code that creates the names of the fields that you want to
access. Then, specify the field name in the VAREVAL function to access the value of
that field. See the following example.

Example

Assume you have the following fields in your data: field 1, field 2, field 3, field 4 and
field 5.

// Declare the string values for the function
string field number
string field value
// Declare a hidden integer as a counter
hidden integer n
// Loop trough all 5 variables in an input data source
for n=1 to 5
// Output the value in each of the fields field 1 through field 5
begin
field number='field ' & n
field value=vareval (field number)
pushrow ()
end
// Return false to prevent the last row from showing up twice
return false

104 Chapter 12

Macro and Variable Functions

VARSET Function

Sets a variable to a value. This allows the name of the variable to be immediately evaluated at run time.

Category:

Returned data
type:

Macro Variable

Boolean

Syntax
VARSET (variablename, value)

Required Arguments

variablename
specifies the name of a variable that is to receive the value. variablename can be
specified as a string.

Note: The string value of this parameter is used to figure out which variable to alter.

value
specifies the value to set to macroname; value can have a data type of real, integer,
string, date, or Boolean.

Details

The function return TRUE if it successfully completes. Otherwise, it is set to FALSE.

Example

string myvarl
string myvar2
string myvar3
integer x
for x =1 to 3
varset ("myvar" & x, "value is " & x)

// This should result in each string variable receiving
// a different value as assigned.

Chapter 13

Mathematical Functions

105

OVeIVIEW . . .

Dictionary e
ABS Function e
CEIL Function e e e e e
FLOOR Function e
MAX FUNCHON e e
MIN FUNCtion e e e e e
POW Function e e e
ROUND Function e e e

Overview

The following mathematical functions are available for the Expression Engine Language

(EEL).

Dictionary

ABS Function

Returns the absolute value of a number.

Category:
Returned data
type:

Note:

Mathematical

Real

The ABS function returns a nonnegative number that is equal in magnitude to the
magnitude of the argument.

Syntax
ABS(argument)

106 Chapter 13 - Mathematical Functions

Required Argument

argument
specifies a value that has a real data type; this can be specified as a numeric constant,
field name, or expression.

Examples

Example 1

Statements Results

x = abs(3.5) // outputs 3.5
x = abs(-7) // outputs 7
x = abs(-3*1.5) // outputs 4.5
Example 2

real seconds diff
seconds_diff = abs((datel - date2) * 86400)
// The number 86400 represents the total number of seconds in a day

CEIL Function

Returns the smallest integer that is greater than or equal to the argument.
Category: Mathematical

Returned data Real
type:

Syntax
CEIL(argument)

Required Argument

argument
specifies a value that has a real data type; this can be specified as a numeric constant,
field name, or expression.

Details

This is also called rounding up (ceiling).

Example

X = ceil(3.5)
// outputs 4

X = ceil(-3.5)

MAX Function 107

// outputs -3

X = ceil(-3)
// outputs -3

X = ceil(-3*1.5)
// outputs -4

FLOOR Function

Returns the largest integer that is less than or equal to the argument.
Category: Mathematical

Returned data Real
type:

Syntax
FLOOR(argument)

Required Argument

argument
specifies a value that has a data type of real; this can be specified as a numeric
constant, field name, or expression.

Details

This is also called rounding down.

Example

x = floor(3.5)
// outputs 3

x = floor(-3.5)
// outputs -4

x = floor(-3)
// outputs -3

x = floor(-3*1.5)
// outputs -5

MAX Function

Returns the maximum value of a series of values.
Category: Mathematical

Returned data Real
type:

108 Chapter 13 - Mathematical Functions

Syntax

MAX(argumentI<, argument2, ...>)

Required Argument

argumentl
specifies a value that has a real data type; this can be specified as a numeric constant,
field name, or expression.

Optional Argument

argument?, ...
specifies one or more values that have a real data type; these can be specified as a
numeric constant, field name, or expression.

Details
The function returns NULL if all values are NULL.

Example

x = max (1, 3, -2)
// outputs 3

x = max(l, null, 3)
// outputs 3

X = max(-3)
// outputs -3

X = max (4, -3*1.5)
// outputs 4

MIN Function
Returns the minimum value of a series of values.
Category: Mathematical

Returned data Real
type:

Syntax

MIN(argumentl<, argument2, ...>)

Required Argument

argumentl
specifies a value that has a data type of real; this can be specified as a numeric
constant, field name, or expression.

Optional Argument

argument?, ...

POW Function 109

specifies one or more values that have a real data type; these can be specified as a
numeric constant, field name, or expression.

Details

The function returns NULL if all values are NULL.

Example
x = min(1, 3, -2) // outputs -2
x = min(1, null, 3) // outputs 1
x = min(-3) // outputs -3
x = min(4, -3*%*1.5) // outputs -4.5

POW Function

Raises a number to the specified power.

Category:

Returned data
type:

Mathematical

Real

Syntax
POW(x, y)

Required Arguments

X

specifies a value that has a data type of real and indicates the base number to raise;
this can be specified as a numeric constant, field name, or expression.

y
specifies a value that has data type of real and indicates the power to raise to; this can
be specified as a numeric constant, field name, or expression.

Details

The POW function raises x to the power y, x7.

Example
Statements
x = pow(5,2)
x = pow(5,-2)

x =pow(16,0.5)

Results
// outputs 25
// outputs 0.04

// outputs 4

110 Chapter 13 + Mathematical Functions

ROUND Function

Rounds a number to the nearest number with the specified decimal places.
Category: Mathematical

Returned data Real
type:

Syntax
ROUND(argument< , decimals>)

Required Argument

argument
a value with a data type of real that can be specified as a numeric constant, field
name, or expression.

Optional Argument

decimals
specifies a numeric constant, field name, or expression that indicates the number of
decimal places to provide in the result of the rounding operation. A positive value for
decimals is used to round to the right of the decimal point. A negative value is used
to the left of the decimal point.

Default 0

Example

X = round(1.2345,1)
// outputs 1.2

X = round(1.449,2)
// outputs 1.45

X = round(9.8765,1)
// outputs 9.9

x = round(9.8765)
// outputs 10

Chapter 14

Node Functions

111

Overview

Dictionary
PCTCOMPLETE Function
RAISEEVENT Function i
SENDNODESTATUS Function
SETOUTPUTSLOT Function
UNIQUEID Function

Overview

The following node functions are available for the Expression Engine Language (EEL).

Dictionary

PCTCOMPLETE Function

Reports to the user interface the estimated percent complete.

Category:

Returned data
type:

Node

Integer

Syntax
PCTCOMPLETE()

Without Arguments

There are no arguments for this function.

Details

This function is used to view the estimated percent complete for process flow or data
flow. The function returns an integer that indicates the estimated percentage complete.

112 Chapter 14 -

Node Functions

RAISEEVENT Function

Raises the specified event; pass an arbitrary number of key-value pairs for event data. The event is raised
to the process flow level where it can be selected by an event node at that level.

Category:

Returned data
type:

Node

Boolean

Syntax
RAISEEVENT (event name <, keyl, valuel, key2, value2, ...>")

Required Argument

event_name
specifies a string that indicates the name of the event to be raised.

Optional Argument

keyl, valuel , key2, value?, ...
specifies one or more key-value pairs that indicates event data.

Details

The RAISEEVENT function raises an event. The first parameter is the name of the event
to raise. There is another process job node to catch the event. In that node, you can
specify the name of the event to catch. Subsequent parameters are event data in the form
of key-value. The keys and values are arbitrary, but they must come in pairs. For
example, you might have the function with three parameters (name, key, value) or five
parameters (name, key, value, key, value) and so on.

If the function completes successfully, it returns TRUE. Otherwise, it returns FALSE.

Example

//'event INFO MISSING
raiseevent ("INFO MISSING", "FILE", "OK", "FIELDS", "NO DATE")

SENDNODESTATUS Function

Sends a node status.
Valid in:
Category:

Returned data
type:

Only in a process job.
Node

Boolean

SETOUTPUTSLOT Function 113

Syntax
SENDNODESTATUS("status-key", status-value)

Required Arguments

"status-key"
specifies one of the following strings to indicates the name of the status that is being
reported:

_PCT _COMPLETE the percentage complete

OVERALL the overall status, which appears in the application
interface as node status

status-value
specifies a string that indicates the value of status-key.

Details

The SENDNODESTATUS function tells the process job engine of the status of the node.
If an expression is going to run for a long time it is a good idea for it to send its status.
The function returns TRUE if the function completes successfully. Otherwise, it returns
FALSE.

Example

integer i
for 1 = 1 to 100
begin
sleep (100)
sendnodestatus ("__PCT COMPLETE", i)
end

SETOUTPUTSLOT Function

Sets output slot to slot. This becomes the output slot when the expression exits.

Valid in:
Category:

Returned data
type:

Only in a process job.
Node

Boolean

Syntax
SETOUTPUTSLOT s/or)

Required Argument

slot
specifies an integer that indicates the active output slot when the expression node
exits.

114 Chapter 14

Node Functions

Details

The SETOUTPUTSLOT function tells the node (the expression node in which it is
running) to exit on the specified slot. In a process job, if you follow a node by two other
nodes, you specify a slot for each, for example, 0 and 1. If you run
SETOUTPUTSLOT(1), it tells the process job to continue with the node that is linked at
slot 1. If SETOUTPUTSLOT is not called, it exits on 0 by default.

The function returns TRUE if it completed successfully. Otherwise, it returns FALSE.

Example

if tointeger(counter)<= 5 then setoutputslot (0)
else setoutputslot (1)

UNIQUEID Function

Returns a unique identifier.

Valid in:
Category:

Returned data
type:

Process flows and data flows
Node
String

Syntax
UNIQUEID()

Details

This UNIQUEID function string is used to uniquely identify a row of data on a single
machine or multiple machines.

Chapter 15
Regular Expression Functions

115

OVEIVIEW

Dictionary
COMPILE Function i
FINDFIRST Function
FINDNEXT Function
MATCHLENGTH Function,
MATCHSTART Function
REPLACE Function
SUBSTRINGCOUNT Function
SUBSTRINGLENGTH
SUBSTRINGSTART Function

Overview

The regular expression (regex) object enables you to perform regular expression

searches of strings in Expression Engine Language (EEL).

Dictionary

COMPILE Function

Compiles a valid regular expression using the specified encoding.
Category: Regular Expression

Returned data Integer
type:

Syntax
r.COMPILE(regex <,encoding>)

116 Chapter 15

Regular Expression Functions

Required Argument

regex
specifies a Perl-compatible regular expression.

Optional Argument

encoding
specifies a string that defines the encoding constant shown Encoding. Use a value
from the Encoding column.

Default The default encoding for the operating system.

Details

The compile function is used with a regular expression object. You must define a regular
expression object first as a variable before you can use COMPILE() to compile a PERL-
compatible regular expression. Regular expressions can be used to do advanced pattern
matching (and in some cases pattern replacement). Use the other functions listed below
to find patterns in a given string (which can be a variable), to determine the length of
matching patterns, and to replace patterns.

The function returns 1 if the regular expression compilation is successful. Otherwise, it
returns 0. Failure could be due to an incorrectly formatted regular expression or possibly
an invalid encoding constant.

For performance reasons, it is best to compile a regular expression in a preprocessing
step in the Expression node. This means that the regular expression is compiled just
once before data rows are processed by the Expression node.

Note: The sample code in this section generally places the COMPILE() function on the
Expression tab with the rest of the expression code for clarity.

In some cases, you might need to compile the regular expression before every row is
evaluated. For example, you can use a variable to define the regular expression that you
want to compile. The variable might come from the data row itself, and you would need
to recompile the regular expression for each row to have the pattern searching work
correctly.

Take care to design regular expressions that find patterns only for which you want to
search. Poorly written regular expression code can require a lot of additional processing
that can negatively impact performance.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node, turn this
setting off and remove the SETEOF() function. Unless stated otherwise, all code
shown should be entered in the Expression tab of the Expression node.

//You must define a regex object

regex r

//Then compile your regular expression

//This example will match any single digit in an input string
r.compile ("[0-9]","ISO-8859-1"

// Terminate the expression node processing

seteof ()

FINDFIRST Function 117

See Also

* “FINDFIRST Function” on page 117

* “FINDNEXT Function” on page 118

* “MATCHLENGTH Function” on page 119

« “MATCHSTART Function” on page 120

* “REPLACE Function” on page 122

* “SUBSTRINGCOUNT Function” on page 123
* “SUBSTRINGLENGTH” on page 125

* “SUBSTRINGSTART Function” on page 126

FINDFIRST Function

Searches the specified string for a pattern match using an already compiled regular expression.

Category:

Returned data
type:

Regular Expression

Boolean

Syntax
r.FINDFIRST (input)

Required Argument

input
specifies the string value in which you want to search for the pattern defined by your
compiled regular expression. This can be an explicit string ("MyValue"). This can
also be a variable already defined in your expression code or passed to the
expression node as a column from a previous node (MyValue or "My Value").

Requirement input must not be NULL or blank.

Details

The FINDFIRST function indicates whether one or more pattern matches were found in
the input. This function can be used to enter a logical loop that pulls out a series of
matched patterns from an input string. The function returns TRUE if a pattern match is
found. A FALSE return value indicates that no match is found and that processing can
continue.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node, turn this
setting off and remove the SETEOF() function. Unless stated otherwise, all code
shown should be entered in the Expression tab of the Expression node.

//You must define a regex object

regex r

118 Chapter 15

Regular Expression Functions

//Then compile your regular expression. This one will match any single
// uppercase letter

r.compile (" [A-Z]")

// If a pattern match is found this will evaluate to 1 (TRUE)

if r.findfirst ("Abc")

// Print the output to the statistics file. You must run

// this job for stats to be written. A preview will not generate

// a message in the log.

print ("Found match starting at " & r.matchstart() & " length " & r.matchlength())
// Terminate the expression node processing

seteof ()

FINDNEXT Function

Continues to search the string for the next match after using the FINDNEXT() function.

Category:

Returned data
type:

Regular Expression

Boolean

Syntax
r.FINDNEXT (input)

Required Argument

input
specifies the string value in which you want to search for the pattern defined by your
compiled regular expression. This can be an explicit string ("MyValue"). This can
also be a variable already defined in your expression code or passed to your
expression node as a column from a previous node (My Value or "My Value").

Requirement input must not be NULL or blank.

Details

The FINDNEXT function indicates that another pattern match has been found after
FINDFIRST() has been used. Using a "While" statement loop lets you iterate through all
potential pattern matches using this function as long as the return value is equal to true.

The function returns TRUE if a pattern match was found. Otherwise, it returns FALSE.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node, turn this
setting off and remove the SETEOF() function. The PUSHROW statements are also
unnecessary if passing data values in to the node as data rows. Unless stated
otherwise, all code shown should be entered in the Expression tab of the Expression
node.

// Define some string variables
string MyString
string MySubString

MATCHLENGTH Function 119

// Set one to some sample input
MyString = "DwAwTXAxXFyLyUzXz"

//You must define a regex object
regex r
// Then compile your regular expression
// This one will match any single uppercase letter
r.compile (" [A-Z]")
// Find the first pattern match
if r.findfirst (MyString)
begin
// Pull the pattern from MyString and place it into MySubString
MySubString = mid (MyString, r.matchstart(),r.matchlength())
// Use pushrow to create new rows - this is purely for the sake of
// clarity in the example
pushrow ()
// Create a while loop that continues to look for matches
while r.findnext (MyString)
begin
// Pull the pattern from MyString and place it into MySubString agin
MySubString = mid(MyString, r.matchstart(),r.matchlength())
// Just for display again
pushrow ()
end
end
// Terminate the expression node processing
seteof (true)
// Prevent the last pushrow() from showing up twice
return false

MATCHLENGTH Function
Returns the length of the last pattern match found.
Category: Regular Expression

Interaction: This function operates on the pattern match substring found using FINDFIRST() or

FINDNEXT().
Returned data Integer
type:
Syntax
r.MATCHLENGTH()
Without Arguments

There is argument for this function.

Details

Use the MATCHLENGTH function to determine the length in characters of the currently
matched pattern found with FINDFIRST() or FINDNEXT(). Used in conjunction with

120 Chapter 15

Regular Expression Functions

MATCHSTART(), this function can be used to find matching substrings and populate
variables in your expression code.

The function returns a positive integer value that represents the number of characters
found to be a pattern match of the regular expression. NULL is returned if there is no
substring currently under consideration and therefore no length to return.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node instead,
turn this setting off and remove the SETEOF() function. Unless stated otherwise, all
code shown should be entered in the Expression tab of the Expression node.

// Define some variables
integer i
string MyString

//Supply some values for the variables

i=0

MyString = "DataFlux"

// Uncomment the line below to see the value of variable i change
//MyString = "Data Management Studio"

//You must define a regex object

regex r

//Then compile your regular expression.

// This expression will match as many "word" characters as it can
// (alphanumerics and undescore)

r.compile ("\w*")

// If a pattern match is found then set i to show the length of
// the captured substring

if r.findfirst (MyString) then i = r.matchlength()

// Terminate the expression node processing

seteof ()

MATCHSTART Function

Returns the location of the last pattern match found.

Category:

Returned data
type:

Regular Expression

Integer

Syntax
r.MATCHSTART (input)

Required Argument

input
specifies a string value in which you want to search for the pattern defined by your
compiled regular expression.

MATCHSTART Function 121

Requirement input must not be NULL or blank.

Details

The MATCHSTART function returns the starting character position of a substring that
has been matched to the regular expression. NULL is returned if there is no substring
currently under consideration and therefore no length to return. A logical loop can be
used to iterate through all matching substrings. The MATCHLENGTH() function can be
used in conjunction with MATCHSTART() to pull out matching substrings so that
comparisons can be made to other values or to values stored in other variables.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node instead,
turn this setting off and remove the SETEOF() function. The PUSHROW statements
are also unnecessary if passing data values in to the node as data rows. Unless stated
otherwise, all code shown should be entered in the Expression tab of the Expression
node.

// Define some string variables
string MyString

string MySubString

integer StartLocation

// Set one to some sample input

MyString = "00AA111BBB2222CCCC"

// Will hold the starting location of matched patterns
StartLocation = 0

//You must define a regex object
regex r
// Then compile your regular expression
// This one will match any single uppercase letter
r.compile (" [A-Z]+")
// Find the first pattern match
if r.findfirst (MyString)
begin
// Pull the pattern from MyString and place it into MySubString
MySubString = mid(MyString, r.matchstart(),r.matchlength())
// Use pushrow to create new rows - this is purely for the sake of
// clarity in the example
pushrow ()
// Create a while loop that continues to look for matches
while r.findnext (MyString)
begin
// Pull the pattern from MyString and place it into MySubString
again
MySubString = mid(MyString, r.matchstart(),r.matchlength())
// Set StartLocation to the starting point of each pattern found
StartLocation = r.matchstart()
// Just for display again
pushrow ()
end
end

122 Chapter 15

Regular Expression Functions

// Terminate the expression node processing

seteof (true)

// Prevent the last pushrow() from showing up twice
return false

REPLACE Function

Searches for the first string, and replaces it with the second. This differs from the REPLACE() function
used outside of the regex object.

Category:

Returned data
type:

Regular Expression

String

Syntax
r.REPLACE((input-string, replacement—value)

Required Arguments

input-string
specifies a string value in which you want to search for and replaced in the pattern
defined by your compiled regular expression. This can be an explicit string
("MyValue"). This can also be a variable already defined in your expression code or
passed to your expression node as a column from a previous node (MyValue or "My
Value").

Requirement input-string must not be NULL or blank.

replacement—value
specifies a string to replace input-string that was matched by the compiled regular
expression.

Details

The REPLACE function extends the capabilities of the regex object from simply finding
patterns that match a regular expression to replacing the matching substring with a new
value. For example, if you wanted to match all substrings that match a pattern of two
hyphens with any letter in between (-A-, -B-) and replace with a single letter (Z), you
would compile your regular expression for finding the hyphen/letter/hyphen pattern.
Then you would use "Z" as the replacement value of the REPLACE() function passing in
a variable or string value for input.

The return value is a string value with the replacement made if a replacement could
indeed be made given the regular expression in play and the value supplied for input. If
no replacement could be made, then the original value for input is returned

There are limitations to this functionality. You cannot easily replace the matched
substring with a "captured" part of that substring. In the earlier example, you would have
to parse the matched substring after it was found using FINDFIRST() or FINDNEXT()
and create the replacement value based on that operation. But matched patterns can be of
variable length, so guessing the position of parts of substrings can be tricky.

Compare this to similar functionality provided with using regular expressions as part of
standardization definitions. In the case of QKB definitions that use regular expressions,

SUBSTRINGCOUNT Function 123

much smarter replacements can be made because the regular expression engine enables
you to use captured substrings in replacement values.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node, turn this
setting off and remove the SETEOF() function. Unless stated otherwise, all code
shown should be entered in the Expression tab of the Expression node.

//Define two string variables
string MyString
string MyNewString

// Provide a value for MyString
MyString = "12Flux"

// Defined a regular expression object variable

regex r

// Compile a regular expression that will look for a series of digits
// either 2 or 3 digits long

r. compile("\d{2,3}")

// Use the replace function to place "Data" in place of the found
// pattern and save that in a new string variable.

// If you change MyString to 1234 or 12345 you can see the

// difference in how the pattern is found

MyNewString = r.replace (MyString, "Data")

// Terminate the expression node processing

seteof ()

SUBSTRINGCOUNT Function

Returns the number of sub-patterns found to have matched the pattern specified by the compiled regular

expression.
Category:

Requirement:

Returned data
type:

Regular Expression

The regular expression must contain sub-patterns that can be used to match
patterns.

Integer

Syntax
r.SUBSTRINGCOUNT()

Without Arguments
There is no argument for this function.
Details

Use the SUBSTRINGCOUNT function to find the total number of sub-patterns found to
have matched the regular expression. Normally simple regular expressions evaluate to

124 Chapter 15

Regular Expression Functions

"1", but if you design regular expressions using sub-patterns then this function will
return the number found.

The function returns a positive integer that specifies the number of substrings found to
have matched the regular expression. A "0" is returned if no substrings are found.

The syntax for using subpatterns is open and closed parentheses. For example:
(Mr |Mrs) Smith

For this example, the sub-pattern is the "(Mr|Mrs)". Using this function returns the
number "2" for the count of substrings since the entire string is considered the first sub-
pattern. The part inside the parentheses is the second sub-pattern.

This function can provide the upper number for a logical loop using the FOR command
so that your code can iterate through the matched sub-patterns for comparison to other
values.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node, turn this
setting off and remove the SETEOF() function. The PUSHROW statements are also
unnecessary if passing data values in to the node as data rows. Unless stated
otherwise, all code shown should be entered in the Expression tab of the Expression
node.

//Define some variables
string MyString

string MyString2
integer i

integer SSC

integer SSS

integer SSL

// Set initial values for variables

i=0

SSS = 0
SSL = 0
SSC = 0

// Sample inpit string
MyString = "DataFlux Data Management Studio"

// Define a regular expression object
regex r
// Then compile it - notice the use of (and)
r. compile (" (DataFlux|DF) Data Management (Studio|Platform)")
// Find the first substring
if r.findfirst (MyString)
begin
// Use the "substring" functions to find the number of substrings
SSC = r.substringcount ()
// Loop through substrings
for i = 1 to SSC
begin
// Then pull out substrings
SSS = r.substringstart (i)

SUBSTRINGLENGTH 125

SSL = r.substringlength(i)
MyString2 = mid(MyString, SSS,SSL)
// Place the substrings in a data row
pushrow ()
end
end
// Terminate the expression node processing
seteof (true)
// Prevent the last pushrow() from showing up twice
return false

SUBSTRINGLENGTH

Returns the length of the n captured sub-pattern.

Category:

Requirement:

Returned data
type:

Regular Expression

The regular expression must contain sub-patterns that can be used to match
patterns.

Integer

Syntax
r.SUBSTRINGLENGTH(n)

Required Argument

n
specifies a positive integer that indicates the substring whose length you want to be
returned.

Requirement 7z must not be NULL or blank.

Details

The SUBSTRINGLENGTH function returns a positive integer value that represents the
number of characters found to be a sub-pattern match of the regular expression. NULL is
returned if there is no substring currently under consideration and therefore no length to
return. For more information about working with sub-patterns, see the Details section of
“SUBSTRINGCOUNT Function” on page 123.

Most simple regular expressions do not have sub-patterns, and this function behaves
similarly to MATCHLENGTH(). However, if your regular expression does use sub-
patterns, then this function can be used to find the length of individually captured sub-
patterns found within the overall matched pattern.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node instead,
turn this setting off and remove the SETEOF() function. The PUSHROW statements
are also unnecessary if passing data values in to the node as data rows. Unless stated

126 Chapter 15

Regular Expression Functions

otherwise, all code shown should be entered in the Expression tab of the Expression
node.

//Define some variables
string MyString

string MyString2
integer i

integer SSC

integer SSS

integer SSL

// Set initial values for variables

i=0

SSS = 0
SSL = 0
SSC = 0

// Sample inpit string
MyString = "DataFlux Data Management Studio"

// Define a regular expression object
regex r
// Then compile it - notice the use of (and)
r. compile (" (DataFlux|DF) Data Management (Studio|Platform)")
// Find the first substring
if r.findfirst (MyString)
begin
// Use the "substring" functions to find the number of substrings
SSC = r.substringcount ()
// Loop through substrings
for i = 1 to SSC
begin
// Then pull out substrings
SSS = r.substringstart (i)
SSL = r.substringlength(i)
MyString2 = mid(MyString, SSS, SSL)
// Place the substrings in a data row
pushrow ()
end
end
// Terminate the expression node processing
seteof (true)
// Prevent the last pushrow() from showing up twice
return false

SUBSTRINGSTART Function

Returns the start location of the n captured sub-pattern.

Category:

Requirement:

Returned data
type:

Regular Expression

The regular expression must contain sub-patterns that can be used to match
patterns.

Integer

SUBSTRINGSTART Function 127

Syntax
r.SUBSTRINGSTART (1)

Required Argument

n
specifies a positive integer that indicates the sub-pattern whose starting location you
want to be returned.

Requirement »n must not be NULL or blank.

Details

The SUBSTRINGSTART function takes the input integer » that you supply and returns a
starting location for the sub-pattern represented by that input integer. NULL is returned
if there is no substring currently under consideration and therefore no location to return.

Use SUBSTRINGCOUNTY() to determine the number of sub-patterns under
consideration. Use SUBSTRINGLENGTHY() with this function to pull out the matched
sub-patterns and use them in evaluation logic of your expression code.

Most simple regular expressions will not have sub-patterns and this function will behave
similarly to MATCHSTART(). However, if your regular expression does use sub-
patterns, then this function can be used to find the starting point of individually captured
sub-patterns found within the overall matched pattern.

Example

Note: This example can be run in a stand-alone expression node if the Generate rows
when no parent is specified option is selected. If passing data to this node instead,
turn this setting off and remove the SETEOF() function. The PUSHROW statements
are also unnecessary if passing data values in to the node as data rows. Unless stated
otherwise, all code shown should be entered in the Expression tab of the Expression
node.

//Define some variables
string MyString

string MyString2
integer 1

integer SSC

integer SSS

integer SSL

// Set initial values for variables

i=0

SSS = 0
SSL = 0
SSC = 0

// Sample inpit string
MyString = "DataFlux Data Management Studio"

// Define a regular expression object
regex r

128 Chapter 15 + Regular Expression Functions

// Then compile it - notice the use of (and)
r. compile (" (DataFlux|DF) Data Management (Studio|Platform)")
// Find the first substring
if r.findfirst (MyString)
begin
// Use the "substring" functions to find the number of substrings
SSC = r.substringcount ()
// Loop through substrings
for i = 1 to SSC
begin
// Then pull out substrings
SSS = r.substringstart (i)
SSL = r.substringlength(i)
MyString2 = mid(MyString, SSS,SSL)
// Place the substrings in a data row
pushrow ()
end
end
// Terminate the expression node processing
seteof (true)
// Prevent the last pushrow() from showing up twice
return false

129

Chapter 16
Search Functions

OVeIVIEW . . . 129
Dictionary e 129
INLIST Functionot e e e e i 129

Overview

The following search function is available for the Expression Engine Language (EEL).

Dictionary

INLIST Function
Returns TRUE if the target parameter matches any of the value parameters.
Category: Search

Returned data Boolean
type:

Syntax

INLIST(target_parameter, value_parameterl <, value parameter?2, ...>)

Required Arguments

target _parameter
specifies a string, integer or date value to search.

value_parameterl
specifies a string, integer or date values to search for in target_parameter.

Optional Argument

value_parameter2, ...
specifies one or more string, integer or date values to search for in target parameter.

130 Chapter 16 - Search Functions

Details

target _parameter is compared against each value_parameter. TRUE is returned if a
match is found. Otherwise, FALSE is returned.

Example

string error message

integer a
a=5
integer b
b=5

if (inlist(a,3,5)<>true)
error message="integer 5 not found in argument list of 3,5 "

else
error message="integer 5 was found in argument list of 3,5 "

print (error message, false)

131

Chapter 17
String Functions

OVeIVIeW . . . e 131
Dictionary e 132
APARSE Function 132
ASC FUNCHIONo e 133
CHR Function e e 133
COMPARE Function e e 134
EDIT DISTANCE Functionttt 135
HAS CONTROL CHARS Function................oiiiiiuneenaena... 136
INSTR Function e e e 137
LEFT Function e e e e 137
LEN FUunction e 138
LOWER Function e e e 139
MATCH _STRING Functiont 139
MID Function e e e e 140
PARSE Function e 141
PATTERN Function e 142
REPLACE Function i 143
RIGHT Function e e e 144
SORT Function e e 144
SORT WORDS Functionouiuiuiini e 145
TODATE Function e e 146
TOINTEGER Function i 147
TOREAL Function e e 148
TOSTRING Function e e 149
TRIM Function e e 149
UPPER Function e 150
USERNAME Function ee e 150

Overview

There are several functions available in Expression Engine Language (EEL) that affect
the built-in string data type.

132 Chapter 17 - String Functions

Dictionary

APARSE Function

Parses a string into words and returns the number of words found and places the words in an array.
Category: String

Returned data Integer
type:

Syntax
APARSE(string, delimiter, word_list)

Required Arguments

string
specifies the string that needs to be separated into words; this can be specified as
fixed string, field name, or expression

Restriction string should not be NULL, it causes a run-time error.

Note If string is empty (""), a value of 1 is returned and word _list has one
element that contains an empty string.

delimiter
specifies a string that contains the character to be used as delimiter when separating
the string into words; this can be specified as fixed string, field name, or expression

Restriction If multiple characters are specified, only the last character is used.

word_list
specifies a string array that contains the words that were found during parsing; this is
specified as a field name

Comparisons

The parse function is similar. It returns individual string fields instead of a string array,
the string fields must be specified as part of the function invocation. The APARSE
function does not have this restriction and can therefore be used when the maximum
number of words is not known in advance.

Example

string = "one:two:three"

delimiter = ":"

nwords = aparse (string, delimiter, word list) // outputs 3
first word = word list.get(l) // outputs "one"

last _word = word list.get (nwords) // outputs "three"

CHR Function 133

ASC Function
Returns the position of a character in the ASCII collating sequence.
Category: String

Returned data Integer
type:

Syntax
ASC(string)

Required Argument

string
specifies the character that needs to be found in the ASCII collating sequence; this
can be specified as character constant, field name, or expression.

Restriction If multiple characters are specified, only the first character is used.

Details
See Appendix A: ASCII Values for a complete list of ASCII values.

Example

ascii_value = asc("a") // outputs 97
character content = chr(97) // outputs the letter "a"

CHR Function
Returns an ASCII character for an ASCII code.
Category: String

Returned data String
type:

Syntax
CHR(<n>)

Required Argument

n
specifies an integer that represents a specific ASCII character; this can be specified
as a numeric constant, a field name, or an expression

Details

The CHR function returns n' character in the ASCII collating sequence.

134 Chapter 17 - String Functions

Note: The CHR function can also be used to return any Unicode character when passed
a Unicode code point.

See Appendix A: ASCII Values for a complete list of ASCII values.

Examples

Example 1
character content = chr(97) // outputs the letter "a"
ascii_value = asc("a") // outputs 97

Example 2

The following examples support Unicode code points:

string input string // this is a string that could contain greek characters
string (1) character
boolean greek capital
for i=1 to len(input string)
begin

character=mid(input string,i, 1)

if chr(character)>=913 and chr(character)<=939 then

greek capital=true

end

COMPARE Function
Returns the result of comparing two strings.
Category: String

Returned data Integer
type:

Syntax
COMPARE(stringl, string2<,case-insensitive>)

Required Arguments

stringl
specifies a string to be used in the comparison; this can be specified as string
constant, field name, or expression.

string2
specifies a string to be used in the comparison; this can be specified as string
constant, field name, or expression.

Optional Argument

case-insensitive
specifies a Boolean string that indicates whether to compare case-insensitive strings;
this can be specified as string constant, field name, or expression.

TRUE specifies that the string comparison is not case sensitive.

EDIT_DISTANCE Function 135

FALSE specifies that the comparison is case sensitive.

Default FALSE

Details

The MATCH_STRING function compares two strings lexicographically and can be used
to do string comparisons using wildcards.

The return value is an integer representing the result of a lexicographical comparison of
the two strings:

[-1 = stringl < string 2,
0 = stringl equals string2,
1 = stringl > string2]

To check whether two strings are equal, it is more efficient to use the == operator, for
example:

if stringl == string2 then match=true

Example

// hallo comes before hello when alphabetically sorted
rc = compare("hello", "hallo") // outputs 1

// Hello comes before hello when alphabetically sorted
rc = compare ("Hello", "hello") // outputs -1

modifier = null
rc = compare ("Hello", "hello", modifier) // outputs -1
rc = compare ("Hello", "hello", true) // outputs 0

EDIT_DISTANCE Function

Returns the number of corrections that would need to be applied to transform one string into the other.
Category: String

Returned data Integer
type:

Syntax
EDIT_DISTANCE("stringl", "string2")

Required Arguments

"stringl"’
specifies a string to be used in the comparison; this can be specified as string
constant, field name, or expression.

""string2"’
specifies a string to be used in the comparison; this can be specified as string
constant, field name, or expression.

136 Chapter 17 -

String Functions

Details

The EDIT_DISTANCE function returns the number of corrections that need to be
applied to transform "stringl"” into "string2".

Example

distance = edit distance("hello", "hllo"
// outputs 1

distance = edit distance("hello", "hlelo"
// outputs 2

distance = edit distance("hello", "hey")
// outputs 3

HAS_CONTROL_CHARS Function

Determines whether a string contains ASCII control characters.

Category:

Returned data
type:

String

Boolean

Syntax
HAS CONTROL_CHAR(string)

Required Argument

string
specifies a string to be search for the existence of ASCII control characters.

Details

The HAS CONTROL CHARS function can be used to identify non-printable ASCII
control characters as found on the ASCII character table. A return value of TRUE
indicates that control characters were found. A return value of FALSE indicates that
control characters were not found.

Note: The only control character the HAS CONTROL CHARS function does not
detect is O (null character).

See Appendix B: ASCII Control Characters for a list of control characters.

Example

boolean result_1
string error messagel
string test

test="Contol character: "&chr(13)
result l=has control chars(test)

LEFT Function 137

if (result 1)

error messagel = "test string contains control character™
else
error messagel = "test string does not contain control character"

INSTR Function

Returns the position of one string within another string.

Category:

Returned data
type:

String

Integer

Syntax

INSTR(source, excerpt<, count>)

Required Arguments

source
specifies a string to search; this can be specified as string constant, field name, or
expression.

excerpt
specifies a string to search for within source; this can be specified as string constant,
field name, or expression.

Optional Argument

count
specifies an integer that indicates the occurrence of excerpt to search for; this can be
specified as numeric constant, field name, or expression. For example, a value of 2
indicates to search for the second occurrence of excerpt in source.

Details

The INSTR function searches source from left to right for the count-th occurrence of
excerpt. If excerpt is not found in source, the function returns a value of 0.

Example
source = "This is a simple sentence."
excerpt = "ig"

position = instr(source, excerpt, 1) // outputs 3
position = instr(source, excerpt, 2) // outputs 6

LEFT Function

Returns the left-most characters of a string.

Category:

String

138 Chapter 17 - String Functions

Returned data String
type:

Syntax
LEFT (source, count)

Required Arguments

source
specifies a string to search; this can be specified as string constant, field name, or
expression.

Note If source is NULL, the function returns a NULL value.

count
specifies an integer that indicates how many characters to return; this can be
specified as numeric constant, field name, or expression.

Note When a count of zero or less is specified, an empty string is returned.

Example

source = "abcdefg"
result = left(source, 4) // outputs the string "abcd"

LEN Function
Returns the length of a string.
Category: String

Returned data Integer
type:

Syntax
LEN(source)

Required Argument

source
specifies a string for which the length needs to be determined; this can be specified
as string constant, field name, or expression.

Note The length of an empty string ("") is zero. If source is NULL, the function
returns a NULL value.

Tip To remove leading and trailing blanks, use the trim function.

Example

string (30) source

MATCH_STRING Function 139

source = "abcdefg"
length string = len(source) // outputs 7

source = " abcdefg "
length string = len(source) // outputs 11

source = " " // source contains a blank
length string = len(source) // outputs 1

LOWER Function
Converts a string to lowercase.
Category: String

Returned data String
type:

Syntax
LOWER(source)

Required Argument

source
specifies a string; this can be specified as string constant, field name, or expression.

Note If source is NULL, the function returns a NULL value.

Example

source = "MUNCHEN in Germany"
lowcase_string = lower (source) // outputs "minchen in germany"

MATCH_STRING Function
Determines whether the first string matches the second string, which can contain wildcards.
Category: String

Returned data Boolean
type:

Syntax
MATCH_STRING(stringl, string2)

Required Arguments

stringl
specifies a string to search; this can be specified as string constant, field name, or
expression.

140 Chapter 17

String Functions

Note If source is NULL the function returns a NULL value.

string2
specifies a string that represents a search pattern; this can be specified as string
constant, field name, or expression.

Details

The MATCH_STRING function searches string! using the search pattern specified in
string2. If a match was found, true is returned. Otherwise, false is returned.

Search strings can include wildcards in the leading (* ABC) and trailing (ABC*)
position, or a combination of the two (* ABC*). Wildcards within a string are invalid
(A*BCQ).

A question mark can be used as a wildcard but is matched only to a character. For
example, AB? will match ABC, not AB.

To execute a search for a character that is used as a wildcard, precede the character with
a backslash. This denotes that the character should be used literally and not as a
wildcard. Valid search strings include: *BCD*, *B?D*, *BCDE, *BC?E, *BCD?,
ABCD*, AB?D*, 7BCD*, *B??*, *B\?* (will match the literal string AB?\E). An
invalid example is: AB*DE.

For more complex searches, use regular expressions instead of the MATCH_STRING()
function.

Example
stringl = "Monday is sunny, Tuesday is rainy & Wednesday is windy"
string2 = "Tuesday is"

match = match string(stringl, string2) // outputs false
string2 = "*Tuesday is*"
match = match string(stringl, string2) // outputs true

MID Function

Extracts a substring from an argument.

Category:

Returned data

type:

String
String

Syntax

MID(source, position<, length>)

Required Arguments

source
specifies a string to search; this can be specified as string constant, field name, or
expression.

PARSE Function 141

position
specifies an integer that is the beginning character position; this can be specified as a
numeric constant, field name, or expression.

Optional Argument

length
specifies an integer that is the length of the substring to extract; this can be specified
as a numeric constant, field name, or expression.

Default If length is omitted, the remainder of the string will be extracted.

Note If length is NULL, zero, or larger than the length of the expression that
remains in source after position, the remainder of the expression is
returned.

Example

source = "06MAY15"

result = mid(source, 3, 3) // outputs "MAY"
result = mid(source, 3) // outputs "MAY15"

PARSE Function

Parses a string into words and returns the number of words found and the words found.
Category: String

Returned data Integer
type:

Syntax
PARSEC(string, delimiter, word1<, word?2 , ...>)

Required Arguments

string
specifies a string with delimiters that is to be separated into words; this can be
specified as fixed string, field name, or expression.

Note If string is NULL, the function returns a NULL value. If string is empty ("") a
value of 1 is returned.

delimiter
specifies a character that delimits the words in a string; this can be specified as fixed
string, field name, or expression.

wordl
specifies a string that represents the first word found; this is specified as field names.

142 Chapter 17

String Functions

Optional Argument

word2, ...
specifies one or more strings that represents, in order, strings that are found after the
first string; these are specified as field names.

Details

The parse function assigns to the provided parameters the words found in string that are
separated by a delimiter. The return values indicates the number of words found.

Comparisons

The APARSE function is similar. The APARSE function is more flexible as you do not
have to know in advance the maximum number of words. It can also be used to easily
determine the last word in a string.

Example

string = "one:two:three"

delimiter = ":"

nwords = parse(string, delimiter, wordl, word2) // outputs 3
// wordl will contain the value "one"

// word2 will contain the value "two"

PATTERN Function

Indicates whether a string has numbers, uppercase characters, and lowercase characters.

Category:

Returned data

type:

String
String

Syntax
PATTERN(string)

Required Argument

string
specifies a string that is to be evaluated for numbers, uppercase characters, and
lowercase characters; this can be specified as fixed string, field name, or expression

Note If string is NULL, the function returns a NULL value. If string is empty (""),
an empty value is returned.

Details

The returned string contains a 9 in place of each number, an “A” for each uppercase
character, and an “a” for each lowercase character. Other characters are not replaced.

REPLACE Function 143

Example

source string = "12/b Abc-Str."
result = pattern(source string) // outputs "99/a Aaa-Raa."

REPLACE Function

Replaces the first occurrence of one string with another string, and returns the resulting string.

Category:

Returned data

type:

String
String

Syntax

REPLACE(source, search-string, replace-string<, count>)

Required Arguments

source
specifies a string to search; this can be specified as string constant, field name, or
expression.

Note If source is NULL, the function returns a NULL value.

search-string
specifies the text that is to be replaced; this can be specified as string constant, field
name, or expression.

replace-string
specifies a string that is to replace search-string; this can be specified as string
constant, field name, or expression.

Optional Argument

count
specifies an integer that represents how many replacements should be made; this can
be specified as numeric constant, field name, or expression.

Note If count is omitted or set to zero, all occurrences will be replaced in the string.

Example

source string =
"It's a first! This is the first time I came in first place!"

search = "first"
replace = "second"
count = 2

result = replace(source string, search, replace, count)
// outputs "It's a second! This is the second time I came in first place!"

144 Chapter 17 - String Functions

RIGHT Function
Returns the right-most characters of a string.
Category: String

Returned data String
type:

Syntax
RIGHT (source, count)

Required Arguments

source
specifies a string to be searched; this can be specified as string constant, field name,
or expression.

Note If source is NULL, the function returns a NULL value.

count
specifies an integer that indicates how many characters to return; this can be
specified as numeric constant, field name, or expression.

Note When count is zero or less, an empty string is returned.

Example

source = "abcdefg"
result = right (source, 4) // outputs the string "defg"

source = "abcdefg "
result = right (source, 2) // outputs the string "fg "

SORT Function
Returns a string with its characters sorted alphabetically.
Category: String

Returned data String
type:

Syntax

SORT (source <, ascending, remove_duplicates>)

SORT_WORDS Function 145

Required Argument

source
specifies a string to sort; this can be specified as string constant, field name, or

expression.

Note If source is NULL, the function returns a NULL value.

Optional Arguments

ascending
specifies whether the text should be sorted in ascending order; this can be specified
as Boolean constant, field name, or expression. The value must evaluate to either
TRUE or FALSE:
TRUE the input string is sorted in ascending order.

FALSE the input string is sorted in descending order.

Default TRUE

remove_duplicates
specifies whether duplicate characters should be removed; this can be specified as
Boolean constant, field name, or expression. The value must evaluate to either TRUE

or FALSE:

TRUE duplicate characters are removed.

FALSE duplicate characters are not removed.

Default FALSE

Details

In determining the order, special characters precede initial capital letters, which precede
lowercase letters.

Example

source string = "A short Sentence."

ascending = true

remove duplicates = true

result = sort(source string, ascending, remove duplicates)
// outputs ".AScehnorst"

SORT_WORDS Function
Returns a string that consists of the words that are sorted alphabetically.
Category: String

Returned data String
type:
Note: Special characters such as ",.!" are not treated as separation characters.

146 Chapter 17 - String Functions

Syntax
SORT_WORDS(source<,ascending,remove_duplicates>)

Required Argument

source
specifies a string to sort; the string can be specified as string constant, field name, or

expression.

Note If source is NULL, the function returns a NULL value.

Optional Arguments

ascending
specifies whether the words in the input string should be sorted in ascending order;
this can be specified as a Boolean constant, field name, or expression. The value
must evaluate to either TRUE or FALSE:

TRUE the input string is sorted in ascending order.

FALSE the input string is sorted in descending order.

Default TRUE

remove_duplicates
specifies whether duplicate words should be removed; this can be specified as a
Boolean constant, field name, or expression. The value must evaluate to either TRUE

or FALSE:

TRUE duplicate words are removed.

FALSE duplicate words are not removed.

Default FALSE

Details

In determining the order, words with initial capital letters precede lowercase letters.
Also, words with a concatenated special character are treated as a different word. For
example, first and first! are two different words.

Example

source_string =

"It's a first! This is the first time I came in first place!"
ascending = true
remove duplicates = true
result = sort_words(source string, ascending, remove duplicates)
// outputs "I It's This a came first first! in is place! the time"

TODATE Function

Converts the argument to a date value based on the locale settings on your system.

Category:

Interaction:

Returned data
type:

TOINTEGER Function 147

String

The TODATE() function depends on the default Short date regional setting on your
Microsoft Windows environment. You can change the locale setting on Windows.

Date

Syntax
TODATE(any)

Required Argument
any

specifies a value to convert to a date.
Details

When the TODATE() function is evaluated, the value of the Windows Short date locale
field is examined to determine whether the format is MM/DD/YYYY or DD/MM/
YYYY. The order of the month and date is determined by the Short date value.

Example

// Declare the date variable to contain the date value
date dateval

// Use the TODATE function to populate the date variable
dateval=todate (3750)

// Returns the value:
4/7/10 12:00:00 AM

TOINTEGER Function

Converts the argument to an integer value.

Category:

Returned data

type:

String

Integer

Syntax
TOINTEGER(any)

Required Argument

any
specifies a value to convert to an integer.

148 Chapter 17 - String Functions

Examples

Example 1
if tointeger (counter)<= 5
setoutputslot (0)
else
setoutputslot (1)

Example 2
// Declare an integer variable to contain the integer value

integer intval

// Use the TOINTEGER function to populate the integer variable
intval=tointeger(3750.12345)

// Returns the value:
3750

See Also

For rules and special considerations when you coerce types, see “Coercion” on page 15.

TOREAL Function
Converts the argument to a real value.
Category: String

Returned data Real
type:

Syntax
TOREAL(any)

Required Argument

any
specifies the value that is to be converted to a real value.

Example

// Declare a real variable to contain the real value
real realval

// Use the TOREAL function to populate the real variable
realval=toreal (3750.12345)

// Returns the value:
3750.12345

TRIM Function 149

See Also

For rules and special considerations when you coerce types, see “Coercion” on page 15.

TOSTRING Function
Converts the argument to a string value.
Category: String

Returned data String
type:

Syntax
TOSTRING(any)

Required Argument

any
specifies any non-string value to conversion to a string.

Example

// Declare a string variable to contain the string
String stringval

// Use the TOINTEGER function to populate the integer variable
stringval=tostring(3750.12345)

// Returns the string
3750.12345

See Also

For rules and special considerations when you coerce types, see “Coercion” on page 15.

TRIM Function
Removes leading and trailing white space.
Category: String

Returned data String
type:

Syntax
TRIM(source)

150 Chapter 17 -

String Functions

Required Argument

source
a string from which the leading and trailing white space needs to be removed; this
can be specified as string constant, s field name, or an expression.

Note If source is NULL, the function returns a NULL value. If source is an empty
value (""), the function returns an empty value.

Example

source = " abcd " // 2 leading and 2 trailing spaces
result = trim(source) // outputs "abcd"

length = len(source) // outputs 8

length = len(result) // outputs 4

UPPER Function

Converts a string to uppercase.

Category:

Returned data
type:

String
String

Syntax
UPPER(source)

Required Argument

source
specifies a string constant, a field name, or an expression.

Note If source is NULL, the function returns a NULL value.

Example

source = "MUNCHEN in Germany"
upcase_string = upper (source) // outputs "MUNCHEN IN GERMANY"

USERNAME Function

In DataFlux Data Management Studio, the USERNAME function returns the user name of the user that is
logged in to the operating system. However, in DataFlux Data Management Server the USERNAME
function returns the account name for the Data Management Server process.

Category:

Returned data
type:

String
String

USERNAME Function

Syntax
USERNAME ()

Without Arguments

This function does not take arguments.

Example

// Declare the string value for the function
string user

// For Data Management Studio, use the USERNAME
// function to get the operating system user name
user = username ()

// For Data Management Server, use the USERNAME
// function to get the account name for the Data
// Management Server process.

user = username ()

151

152 Chapter 17 - String Functions

Part 3

153

Appendixes

Appendix 1

Frequently Asked Questions 155
Appendix 2

Reserved Words 197
Appendix 3

ASCll Values 199
Appendix 4

Encoding 203
Appendix 5

Legal Notices 207

154

155

Appendix 1
Frequently Asked Questions

This section introduces frequently asked questions along with exercises. These topics
include examples that illustrate specific concepts related to the Expression Engine
Language (EEL).

Testing and Evaluating

In order to test an expression before running a data job, you must create sample rows.

Exercise 1: How do I test an expression without using a table to
create rows?

In the Expression Properties dialog box, select Generate rows when no parent is
specified.

This creates sample empty rows in the Preview tab.

Note: If you do not select Generate rows when no parent is specified, and you do not
have output specified in the post-processing step, no data is output.

Exercise 2: Is it possible to create test rows with content rather than
empty rows?

This involves creating extra rows with the PUSHROW() function in the Pre-expression
section.

Note: To use the PUSHROWY() function, do not select Generate rows when no parent
is specified.

Consider the code example below:

// Pre-Expression

string name // the name of the person
string address // the address of the person
integer age // the age of the person

// Content for the first row
name="Bob"

address="106 NorthWoods Village Dr"
age=30

// Create an extra row for the
// fields defined above
pushrow ()

// The content for the extra row
name="Adam"

156 Appendix 1 + Frequently Asked Questions

address="100 RhineStone Circle"
age=32

// Create an extra row for the
// fields defined above
pushrow ()

// The content for extra row
name="Mary"

address="105 Liles Rd"
age=28

// Create an extra row for the
// fields defined above
pushrow ()

The PUSHROW() function creates the rows.

Selecting Output Fields

Some fields are used for calculation or to contain intermediate values, but are not
meaningful in the output. As you test or build scripts, you might need to exclude fields
from the output.

Exercise: How do I exclude some fields in the expression from

being listed in the output?
To accomplish this, use the keyword hidden before declaring a variable.

Consider the following example:

// Pre-Expression

// This declares a string
// type that will be hidden
hidden string noDisplay

// Expression
// Assigns any value to the string type
noDisplay='Hello World But Hidden'

The noDisplay string field is not output to the Preview tab.

To verify this, remove the parameter hidden from the string noDisplay declaration.
Observe that noDisplay is output.

Working with Subsets

When you work with large record sets in the Data Job Editor, it can be time-consuming
to test new jobs. You can shorten this time when you build your expression and test your
logic against a subset of large record sets.

Exercise 1: Apply Your Expression to a Subset of Your Data By

Controlling the Number of Records Processed.
Consider the following example:

// Pre-Expression

// We make this variable hidden so it is

Frequently Asked Questions 157

// not output to the screen
hidden integer count

count=0
hidden integer subset num

// the size of the subnet
subset num=100

// This function estimates and sets the # of
// records that this step will report
rowestimate (subset num)

// Expression

if (count==subset num)
seteof ()

else
count=count + 1

Keep track of the number of records output with the integer variable count. Once count
matches the size of the subset, use the SETEOF() function to prevent any more rows
from being created.

The exact syntax for SETEOF() function is:

boolean seteof (boolean)

When SETEOF() is called, the node does not read any more rows from the parent node.
If Generate rows when no parent is specified is checked, the node stops generating
rows. Furthermore, if any rows have been pushed using PUSHROW(), they are
discarded, and further calls to PUSHROW() have no effect. The exception to this is if
SETEOF(true) is called. In this case, any pushed rows (whether pushed before or after
the call to SETEOF()) are still returned to the node below. Notably, if further
PUSHROW() calls occur after SETEOF(true) is called, these rows are returned as well.
Also note that after SETEOF() is called, the post-group expression and the post
expression are still executed.

The ROWESTIMATE() function is used by data jobs to estimate the number of records
that will be output from this step.

If you remove the hidden parameter from the integer count declaration, integers 1-100
are output.

Another approach to solving this problem is shown in the following example:

Exercise 2: Apply Your Expression to a Subset of Your Code By
Filtering Out Rows of Data.

By setting the return value to true or false, you can use this approach as a filter to select
which rows go to the next step.

Note: If you always return false, you get no output and your expression enters an
infinite loop.

// Pre-Expression
integer counter
counter=0

integer subset num

subset _num=50

158

Appendix 1

Frequently Asked Questions

// Expression
if counter < subset num
begin
counter=counter + 1
end
else
return true

Initializing and Declaring Variables

As an expression is evaluated, each row updates with the values of the fields in the
expression. This can lead to re-initialization of certain variables in the expression. You
might want to initialize a variable only once and then use its value for the rest of the
expression script.

Exercise: How do | initialize a variable just one time and not with

each iteration of a loop?
Declare the variable in the pre-expression step, and it is initialized only once before the
expression process takes over.

Saving Expressions

The following exercise explains the steps required to save your expressions.

Exercise: How do | save my expressions?
You can save an expression without saving the entire data job. Click Save. Your
expression is saved in an .exp text file format that you can load using Load.

Counting Records

The following exercises explain expressions used for record count.

Exercise 1: How do | count the number of records in a table using
the EEL?

In this example, a connection is made to the Contacts table in the DataFlux sample
database, and output to an HTML report. For more information about connecting to a
data source and specifying data outputs, refer to the DataFlux Data Management Studio
online Help.

Define an integer type in the pre-expression step that contains the count.

// Pre-Expression

// Declare and initialize an integer
// variable for the record count
integer recordCount

recordCount=0

// Expression
// Increment recordCount by one
recordCount=recordCount+1

The value of RECORDCOUNT increases in increments of one until the final count is
reached. If you want to increase the count for only those values that do not have a null
value, enter the following in the expression:

Frequently Asked Questions 159

// Check if the value is null
if (NOT isnull(~address™)) then
recordCount=recordCount+1

In this example, the value RECORDCOUNT is updated after each row iteration.

Note: Field names must be enclosed in grave accents (ASCII °) rather than apostrophes
(ASCII").

Exercise 2: How do I see the final count of the records in a table

instead of seeing it incremented by one on every row?

Declare a count variable as hidden. In the post-expression step, assign the value of count
to another field that you want to display in the output (FINALCOUNT). Using
PUSHROW(), add an extra row to the output to display FINALCOUNT. Add the final
row in the post-processing step, so that FINALCOUNT is assigned only after all of the
rows are processed in the expression step.

Here is the EEL code:

// Preprocessing hidden integer count count=0

// Expression
if (NOT isnull(“address™)) then
count=count+1

// Post Processing

// Create a variable that will contain
// the final value and assign it a value
integer finalCount

finalCount=count

// Add an extra row to the output
pushrow ()

When you enter this code and then run the code, the last row should display the total
number of records in the table that are not null.

Exercise 3: How do I get just one row in the end with the final count
instead of browsing through a number of rows until | come to the
last one?

A simple way to do this is to return false from the main expression. The only row that is
output is the one that was created with PUSHROW().

Or you can devise a way to indicate that a row is being pushed. The final row displayed
is an extra pushed row on top of the stack of rows that is displayed. Therefore, you can
filter all the other rows from your view except the pushed row.

To indicate that a row is pushed on your expression step, select Pushed status field and
enter a new name for the field.

Once you indicate with a Boolean field whether a row is pushed or not, add another
expression step that filters rows that are not pushed:

// Preprocessing
hidden integer count
count=0

// Add a boolean field to indicate

160 Appendix 1 + Frequently Asked Questions

// if the row is pushed
boolean pushed

// Expression
if (NOT isnull(~address™)) then
count=count+1

// Name the pushed status field "pushed"
if (pushed) then

return true
else

return false

// Post Processing
integer finalCount
finalCount=count

pushrow ()

Debugging and Printing Error Messages

The following exercise explains how to print error messages and find debugging
information.

Exercise: Is there a way to print error messages or to get debugging
information?

You can use the PRINT() function that is available to print messages. When previewing
output, these messages print to the Log tab.

In a previous example of calculating the number of records in a table, in the end, you can
output the final count to the statistics file. In the post-processing section, you would use
the following.

// Post Processing

// Integer to have the final count
integer finalCount

finalCount=count

// Add one extra row for post processing
pushrow ()

// Print result to file
print ('The final value for count is: '& finalCount)

Creating Groups

Expressions provide the ability to organize content into groups. The EEL has built-in
grouping functionality that contains this logic. Once data is grouped, you can use other
functions to perform actions on the grouped data. The use of grouping in EEL is similar
to the use of the Group By clause in SQL.

Frequently Asked Questions 161

Exercise 1: Can EEL group my data and then count the number of
times each different entry occurs?

Yes. For example, you can count the number of different states that contacts are coming
from, using the contacts table from a DataFlux sample database.

Exercise 2: How can I count each state in the input so that "NC",
"North Carolina"”, and "N Carolina" are grouped together?

A convenient way to accomplish this is to add an expression node or a standardization
node in the Data Job Editor, where you can standardize all entries prior to grouping.

Building on the previous example, add a Standardization step:
1. In Data Job Editor, click Quality.

2. Double-click the Standardization node.

W

In the Standardization Properties dialog box, select State and specify the State/
Province (Abbreviation) definition. This creates a new field called STATE_Stnd.

Click Additional Outputs and select All.
Click OK.
In the Standardization Properties dialog box, click OK.

N »noe

In the Expression Properties dialog box, click Grouping. Make sure that grouping is
now by STATE Stnd and not STATE.

8. Click OK.

The STATECOUNT now increments by each standardized state name rather than by
each permutation of state and province names.

Exercise 3: How do | group my data and find averages for each
group?
To illustrate how this can be done, use sample data.

1. Connect to a Data Source.
a. Connect to the Purchase table in the DataFlux sample database.
b. In the Data Source Properties dialog box, click Add All.

c. Find the Field Name for ITEM AMOUNT. Change the Output Name to
ITEM_AMOUNT.

2. Sort the Data. Now that you have connected to the Purchase table, sort on the data
field that you use for grouping. In this case, sort by DEPARTMENT.

a. Inthe Data Job Editor, click Utilities.
b. Double-click Data Sorting. This adds a Data Sorting node.

c. Inthe Data Sorting Properties dialog box, select DEPARTMENT and set the
Sort Order to Ascending.

d. Click OK.

3. Create Groups. To create groups out of the incoming data, add another Expression
node to the job after the sorting step.

a. In the Expression Properties dialog box, click Grouping. The following three
tabs are displayed: Group Fields, Group Pre-Expression, and Group Post-
Expression.

162 Appendix 1 + Frequently Asked Questions

b. On
c. On

the Group Fields tab, select DEPARTMENT.

the Group Pre-Expression tab, declare the following fields, and then click

OK:

// Group Pre-Expression

// This variable will contain the total
// sales per department

real total

total=0

// This variable will keep track of the
// number of records for each department
integer count

count=0

// This variable will contain the
// running average total

real average

average=0

d. On the Expression tab, update the variables with each upcoming new row, and
then click OK:

// Expression
// increase the total sales
total=total+ITEM AMOUNT

// increase the number of entries
count=count+1

// error checking that the count of entries is not 0
if count !=0 then
begin
average=total/count
average=round (average, 2)
end

When you preview the Expression node, you should see the following in the last four

columns:

Department

Total Count Average
3791.7 1 3791.7
6025.4 2 3012.7
7294.5 3 2431.5

11155.2 4 2788.8

Frequently Asked Questions 163

Retrieving and Converting Binary Data

EEL provides the ability to retrieve data in binary format. This section describes how to
retrieve and convert binary data in big-endian or little-endian formats, as well as
mainframe and packed data formats.

Exercise 1: How do I retrieve binary data in either big-endian or
little-endian format?

To retrieve binary data, use the IB() function. It also determines the byte order based on
your host or native system. The syntax is:

real = ib(string, format_str)
where:
+ string: The octet array containing binary data to convert.

» format str: The string containing the format of the data, expressed as w.d. The width
(w) must be between 1 and 8, inclusive, with the default as 4. The optional decimal
(d) must be between 0 and 10, inclusive.

The w.d formats and informats specify the width of the data in bytes. The optional
decimal portion specifies an integer which represents the power of ten by which to
divide (when reading) or multiply (when formatting) the data. For example:

//Expression

//File handler to open the binary file
file input file

//The binary value to be retrieved

real value

//The number of bytes that were read
integer bytes read

//4-byte string buffer

string(4) buffer

input file.open("C:\binary file", "r")
//This reads the 4 byte string buffer
bytes_read=input file.readbytes (4, buffer)
//The width (4) specifies 4 bytes read
//The decimal (0) specifies that the data is not divided by any power of ten
value = ib(buffer,"4.0")

Exercise 2: How do | force my system to read big-endian data
regardless of its endianness?
To force your system to read big-endian data, use the S370FIB() function. The syntax is:

real = s370fib(string, format str)
where:
+ string: The octet array containing IBM mainframe binary data to convert.
+ format str: The string containing the w.d format of the data.

Use this function just like the IB() function. This function always reads binary data in
big-endian format. The S370FIB() function is incorporated for reading IBM mainframe
binary data.

164 Appendix 1

Frequently Asked Questions

Exercise 3: How do | read little-endian data regardless of the
endianness of my system?
Currently, there are no functions available for this purpose.

Exercise 4: How do | read IBM mainframe binary data?

To read IBM mainframe binary data, use the S370FIB() function, described in Exercise
2.

Exercise 5: How do I read binary data on other non-IBM
mainframes?
Currently, there are no functions available for this purpose.

Exercise 6: Is there support for reading binary packed data on IBM
mainframes?

To read binary packed data on IBM mainframes, use the function S370FPD(). The
syntax is:

real = s370fpd(string, format str)
where:
» string: The octet array containing IBM mainframe packed decimal data to convert.
» format str: The string containing the w.d format of the data.

This function retrieves IBM mainframe-packed decimal values. The width (w) must be
between 1 and 16, inclusive, with the default as 1. The optional decimal (d) must be
between 0 and 10, inclusive. This function treats your data in big-endian format.

Exercise 7: How do | read non-IBM mainframe packed data?
To read non-IBM mainframe packed data, use the function PD(). The syntax is:

real = pd(string, format_ str)
where:
+ string: The octet array containing IBM mainframe binary data to convert.

» format_str: The string containing the w.d format of the data.

Converting Binary Data to a Certain Format
Just as it is possible to retrieve data in a special binary format, it is also possible to
format data to a special binary format.

Exercise 8: How do | format binary data to the native endianness of
my system?
To format binary data, use the FORMATIB() function. The syntax is:

integer = formatib(real, format str, string)
where:
* real: The numeric to convert to a native endian binary value.
+ format str: The string containing the w.d format of the data.

+ string: The octet array in which to place the formatted native endian binary data.
returns:

+ integer: The byte length of formatted binary data.

Frequently Asked Questions 165

This function produces native endian integer binary values. The width (w) must be
between 1 and 8, inclusive, with the default as 4. For example:

//Expression

//The byte size of the buffer that contains the content
real format_size

//The real type number

real number

//The real number that is retrieved

real fib format

number=10.125

//The buffer that contains the formatted data

string(4) buffer

format size= formatib (number, "4.3", buffer

//4.3 is to specify 4 bytes to read the entire

//data and 3 to multiply it by 1000

//The reason to multiply it by a 1000 is to divide it later by 1000
//To restore it back to a real number

fib format= ib(buffer, "4.3"

//Verify that the formatting worked

//Fib_format should be 10.125

Exercise 9: How do I change to other formats?
To change to other formats, use the following functions:

Non-IBM mainframe packed data
integer = formatpd(real, format str, string)
where:
» real: The numeric to convert to a native-packed decimal value.
» format str: The string containing the w.d format of the data.
» string: The octet array in which to place the formatted native-packed decimal data.
returns:
» integer: The byte length of formatted packed decimal data.
IBM mainframe binary data
integer = formats370fib(real, format str, string)
where:
» real: The numeric to convert to an IBM Mainframe binary value.
» format str: The string containing the w.d format of the data.
» string: The octet array in which to place the formatted IBM mainframe binary data.
returns:
» integer: The byte length of formatted binary data
IBM mainframe packed decimal data
integer = formats370fpd(real, format str, string)
where:
» real: The numeric to convert to an IBM mainframe-packed decimal value.

» format str: The string containing the w.d format of the data.

166 Appendix 1 + Frequently Asked Questions

» string: The octet array in which to place the formatted IBM mainframe-packed
decimal data.

returns:

» integer: The byte length of formatted packed decimal data.

Supporting COBOL

Using expressions, it is possible to read binary data in specified COBOL COMP,
COMP-3, and COMP-5 data formats. The following examples demonstrate how to do
this.

Exercise 1: How do | read native endian binary data for COBOL?
To read native endian binary data, use the PICCOMP() function. The syntax is:

real piccomp(string, format str)
where:
» string: The octet array containing COBOL formatted packed decimal data to convert.
» format str: The string containing the PIC 9 format of the data.

The PICCOMP() function determines the number of bytes (2, 4, or 8) to consume by
comparing the sum of the 9s in the integer and fraction portions to fixed ranges. If the
sum is less than 5, then 2 bytes are consumed. If the sum is greater than 4 and less than
10, then 4 bytes are consumed. If the sum is greater than 9 and less than 19, then 8 bytes
are consumed. For example:

//Expression

//file handler to open files
File pd

integer rc

string(4) buffer

real comp

if (pd.open("binary input.out", "r")) begin
rc = pd.readbytes (4, buffer)

if (4 == rc) then

comp = piccomp (buffer, "S9(8)")
pd.close ()

end

In the preceding example, because of the format of the string is S9(8), 4 bytes were
consumed. Notice that all of the COBOL data functions support a PIC designator of the
long form:

[ST9+][VI+] (ex: S99999, 99999V 99, S999999V99, SV99)
Or of the shortened count form:

[S1[9(count)][VI(count)] (ex: SI(5), 9(5)v99, S9(6)vI(2), svI(2))

Exercise 2: How do | read packed decimal numbers?
To read packed decimal numbers, use the PICCOMP3() function. The syntax is:

real piccomp3(string, format str)
where:

» string: The octet array containing COBOL-formatted packed decimal data to convert.

Frequently Asked Questions 167

» format str: The string containing the PIC 9 format of the data.

The PICCOMP3() function determines the number of bytes to consume by taking the
sum of the 9s in the integer and fraction portions and adding 1. If the new value is odd, 1
is added to make it even. The result is then divided by 2. As such, S9(7) would mean
there are 4 bytes to consume. The packed data is always in big-endian form.

The PICCOMP3() function is used the same as the PICCOMP() function. For an
example of the PICCOMP3() function, see Exercise 1.

Exercise 3: How do I read signed decimal numbers in COBOL
format?
To read signed decimal numbers, use the PICSIGNDEC() function. The syntax is:

real picsigndec(string buffer, string format str, boolean ebcdic, boolean trailing)
where:

+ string buffer: The octet array containing a COBOL-formatted signed decimal number
to convert.

+ string format_str: The string containing the PIC 9 format of the data. The default
format_str is S9(4).

* Boolean EBCDIC: The Boolean when set to nonzero indicates the string is EBCDIC.
The default EBCDIC setting is false.

* Boolean trailing: The Boolean when set to nonzero indicates the sign is trailing. The
default trailing setting is true.

The PICSIGNDEC() function determines the number of bytes to consume by taking the
sum of the 9s in the integer and fraction portions of format_str. For example:

//Expression

//file handler to open files

file pd

integer rc

string (6) buffer

real comp

if (pd.open("binary input.out", "r")) begin

rc = pd.readbytes (6, buffer)

f (4 == rc) then

comp = picsigndec(buffer, "S9(4)Vv99",1,1) pd.close()

-

end

Formatting
It is also possible to format data to a specific COBOL format, as demonstrated by the
following exercises:

Exercise 4: How do | format from a real to COBOL format?
To format from a real to a COBOL format, use the FORMATPICCOMP() function. The
syntax is:

integer = formatpiccomp(Real number,string format str, string result)
where:
* real number: The numeric to convert to a COBOL native endian binary value.

» string format_str: The string containing the PIC 9 format of the data.

168 Appendix 1

Frequently Asked Questions

» string result: The octet array in which to place the COBOL-formatted native endian
binary data.

returns:
» integer: The byte length of formatted binary data.

The FORMATPICCOMP() function does the reverse of PICCOMP(). As with the
PICSIGNDEC() function, the FORMATPICSIGNDEC() function determines the
number of bytes to consume by taking the sum of the 9s in the integer and fraction
portions. For example:

//Expression

real comp

comp = 10.125

integer rc

rc = formatpiccomp (comp, "s99V999", buffer)

//The string buffer will contain the real value comp formatted to
platform COBOL COMP native endian format. ??///

Exercise 5: What is the list of functions available for COBOL

formatting?
The syntax for a COBOL-packed decimal value is:

integer = formatpiccomp3 (Real number, string format str, string result)
where:
* real number: The numeric to convert to a COBOL packed decimal value.
» string format_str: The string containing the PIC 9 format of the data.

» string result: The octet array in which to place the COBOL formatted packed decimal
data.

returns:
» integer: The byte length of formatted packed decimal data.
The syntax for a COBOL-signed decimal value is:

integer = formatpicsigndec(real number, string format str, string buffer,
boolean ebcdic, boolean trailing)

where:
* real number: The numeric to convert to a COBOL-signed decimal value.
+ string format_str: The string containing the PIC 9 format of the data.

+ string buffer: The octet array in which to place the COBOL-formatted packed
decimal data.

* Boolean EBCDIC: The Boolean when nonzero indicates to format in EBCDIC.

* Boolean trailing: The Boolean when nonzero indicates to set the sign on the trailing
byte.

returns:
» integer: The byte length of the formatted signed decimal.

The COBOL-format functions are used the same as the FORMATPICCOMP() function.
For an example of the COBOL-format functions, see Exercise 4.

Frequently Asked Questions 169

Using Array Functions

This section contains additional information about arrays, including:

Creating an Array
The following exercise explains how to create an array.

Exercise: How do I create an array and provide values for the items

in the array?
To declare an array, use the reserved key word array.

string array variable name
integer array variable name
boolean array variable name
date array variable name
real array variable name

For example:

// declare an array of integer types
integer array integer list

// set the size of the array to 5 integer list.dim(5)

// the index that will go through the array
integer index
index=0

// Set the values of the items inside the
// array to their index number
for index=1 to 5
begin
integer list.set (index, index);
end

Retrieving Elements from an Array
This exercise demonstrates how to retrieve elements from an array.

Exercise: How do I retrieve elements from an array?
To retrieve elements from an array, use the following example; it builds on the previous
example:

integer first
integer last

// Getting the first item from integer array
first=integer list.get(1);

// Getting the last item from integer array
last=integer list.get (5)

Changing an Array Size

The following exercise explains how to change the size of an array.

170 Appendix 1 + Frequently Asked Questions

Exercise: How do | change the size of an array?

To change the size of an array, use the DIM() function. For example:
// array is originally initialized to 5
string array string container
string container.dim(5)

// the array is sized now to 10
string container.dim(10)

Determining an Array's Size
The following exercise shows how to determine the size of an array.

Exercise: How do | determine the size of an array?

To determine the size of an array, use the DIM() function. Remember that the DIM()
function is also used to set the size of an array. If no parameter is specified, the array size
does not change.

For example:

// Expression
integer array size string array array lister

// after performing some operations on the array
// array size will then contain

// the size of the array

array size=array lister.dim()

Finding Common Values between Columns Using Arrays
The next exercise shows how to find common values between columns.

Exercise: How do I find out if entries in one column occur in another
column regardless of row position and number of times they occur?
One way to address this problem is to create two arrays for storing two columns. Then,

check if the values in one array exist in the other array. Find those values that match and
store them in a third array for output.

Create a Data Input node as Text File Input, and set the text file to C:
\arrayTextDocument.txt in Data Jobs. Begin with the following text in the file:

Table A1.1 c:\arrayTextDocument.txt

AID BID
0 1
1 2
3 4

Frequently Asked Questions 171

Create an Expression node, and declare the following variables in the pre-expression

step:

// Pre-Expression

// This is where we declare and
// initialize our variables.
hidden string array column A
hidden string array column B
hidden string array column

hidden integer column A size
column_A size=1
column_A.dim(column_A size)

hidden integer column B size
column_B_size=1
column_B.dim(column_B_size)

hidden integer commun size
commun_size=1
commun.dim(commun_size)

All the variables are hidden and are not displayed on the output. All the arrays are
defined in the beginning to be of size 1. Later, these arrays will be expanded to

accommodate the number of rows that are added.

// Expression

// Name your First Column field as you need

column_A.set (column_A size, “A ID")

column_A size=column A size+l
column_A.dim(column_A size)

// Name the Second Column field as you need

column_B.set (column_B_size, “B_ID")

column_B_size=column B size+l
column_B.dim(column_B_size)

In this step, we retrieve input into the arrays and expand the size of the arrays as
necessary. The size of the array might become quite large depending on the size of the
column, so it is recommended you use this example with small tables.

// Post Expression
// This is the step where most of the
// logic will be implemented

// index to iterate through column A
hidden integer index column_ A

// index to iterate through column B
hidden integer index column_ B

// index to iterate through commun array

172 Appendix 1 + Frequently Asked Questions
hidden integer index commun

// index to display the commun values that were found
hidden integer commun display index

// string that will contain the items
// from column A when retrieving hidden string a

// string that will contain the items
// from column B when retrieving hidden string b

// String that will contain the contents of the
// commun array when retrieving
hidden string commun content

// This boolean variable

// 1s to check if a commun entry has already
// been found. If so, don't display it again
hidden boolean commun_ found

// This is the variable
// that will display the common entries in the end
string commun display

// Retrieves the entries in column A
for index column A=1 to column A size Step 1
begin
a=column_A.get (index column_A)
for index column B=1 to column B_size Step 1
begin

b=column_ B.get (index column_B)

// Compare the entries from column A with
// the entries from column B
if (compare (a,b)==0)
begin
// Check if this entry was already found once
commun_found=false
for index commun=1 to commun_size Step 1
begin
commun_content=commun.get (index commun)
if (compare (commun content,a)==0) then
commun_found=true
end

// It is a new entry. Add it to the
// commun array and increment its size
if (commun_found==false)
begin
commun. set (commun_size,a)
commun_size=commun_size+l
commun .dim (commun_size)
end
end
end

Frequently Asked Questions 173

end

// Display the contents of the commun array
// to the screen output
for commun display_ index=1 to commun_size Step 1
begin
pushrow ()
commun_display=commun.get (commun display index)
end

If you want to see the output limited to the common values, add another Expression node
and the following filtering code:

// Expression

if (isnull (“commun display™)) then
return false

else
return true

Using Blue Fusion Functions

Once a Blue Fusion object is defined and initialized, the function methods listed can be
used within the Expression node. The following exercises demonstrate how the Blue
Fusion object methods can be used in the Expression node.

Exercise 1: How do | start a Blue Fusion instance and load a QKB?
To start a Blue Fusion instance and load a QKB, add the following in the Pre-
Processing tab:

// Pre-processing

// defines a bluefusion object called bf
bluefusion bf;

// initializes the bluefusion object bf
bf = bluefusion initialize()

// loads the English USA Locale
bf.loadgkb ("ENUSA") ;

To load other QKBs, refer to their abbreviation. Go to the DataFlux Data Management
Studio Administration riser bar and click Quality Knowledge Base to see which QKBs
are available for your system.

Exercise 2: How do | create match codes?
To create match codes, after you initialize the Blue Fusion object with a QKB in the Pre-
Processing tab, enter the following expressions:

// Expression

// define mc as the return string that contains the match code

string mc

// define the return code ret as an integer
integer ret

// define a string to hold any error message that is returned,

174 Appendix 1 + Frequently Asked Questions

string error message

// generate a match code for the string Washington D.C.,
// using the City definition at a sensitivity of 85, and
// put the result in mc

ret = bf.match code("city", 85, "Washington DC", mc);

// 1if an error occurs, display it; otherwise return a success message
if ret == 0 then

error_message = bf.getlasterror()
else

error_message = 'Successful'

Exercise 3: How do | use Blue Fusion standardize?
To use Blue Fusion standardize, enter the following expressions after you initialize the
Blue Fusion object in the Pre-Processing tab:

// Expression

// define stdn as the return string that contains the standardization string stdn
// define the return code ret as an integer integer ret

// define a string to hold any error message that is returned string error message
// standardize the phone number 9195550673,

// and put the result in stnd
ret = bf.standardize ("phone", "9195550673", stdn);

//if an error occurs display it; otherwise return a success message, if ret == 0 then
error_message = bf.getlasterror()

else
error_message = 'Successful'

Exercise 4: How do | use Blue Fusion identify?
To use Blue Fusion identity, after you initialize the Blue Fusion object in the Pre-
Processing tab, enter the following expressions:

// Expression

// define iden as the return string that contains the identification
string iden

// define the return code ret as an integer
integer ret

// define a string to hold any error message that is returned
string error message

// generate an Ind/Org identification for IBM and put

// the result in iden

ret = bf.identify("Individual/Organization", "IBM", iden);

//if an error occurs display it; otherwise return a success message,
if ret == 0 then

error_message = bf.getlasterror()
else

error_message = 'Successful'

Frequently Asked Questions

Exercise 5: How can | perform gender analysis?
To perform gender analysis, after you initialize the Blue Fusion object in the Pre-
Processing tab, enter the following expressions:

// Expression

// define gend as the return string that contains the gender
string gend

// define the return code ret as an integer
integer ret

// define a string to hold any error message that is returned
string error message

// generate a gender identification for Michael Smith,

// and put the result in gend

ret = bf.gender ("name", "Michael Smith", gend) ;

// if an error occurs display it; otherwise return a success message,
if ret == 0 then

error message = bf.getlasterror()
else

error_message = 'Successful'

Exercise 6: How can | do string casing?
To perform string casing after you initialize the Blue Fusion object in the Pre-
Processing tab, enter the following expressions:

// Expression

// define case as the return string that contains the case
string case

// define the return code ret as an integer integer ret

// define a string to hold any error message that is returned
string error message

// convert the upper case NEW YORK to propercase
ret = bf.case("Proper", 3, "NEW YORK",case);

// if an error occurs display it; otherwise return a success message,
if ret == 0 then

error message = bf.getlasterror()
else

error_message = 'Successful'

Exercise 7: How can I do pattern analysis?
To perform pattern analysis after you initialize the Blue Fusion object in the Pre-
Processing tab, enter the following expressions:

//Expression

//define pattern as the return string
string pattern

175

176 Appendix 1 + Frequently Asked Questions

//define the return code ret as an integer
integer ret

// define a string to hold any error message that is returned
string error message

// analyze the pattern 919-447-3000 and output the result
// as pattern
ret = bf.pattern("character", "919-447-3000", pattern);

// if an error occurs display it; otherwise return a success message,
if ret == 0 then

error_message = bf.getlasterror()
else

error_message = 'Successful'

Using Date and Time Functions

In this section, you will find additional information about date and time functions,
including:

Finding Today's Date

The following exercise describes out to find the values for today’s date.

Exercise: How do I find the year, month, and day values for today's
date?
To determine the parts of the current date, use the TODAY () function.

date today ()
The following function returns the current date and time:

// Expression
date localtime
localtime=today ()

Formatting a Date
The following exercises show now to format dates.

Exercise 1: What formats can a date have?

Dates should be in the format specified by ISO 8601 (YYYY-MM-DD hh:mm:ss) to
avoid ambiguity. Remember that date types must start with and end with the # sign. For
example:

Date only:

// Expression date dt
dt=#2007-01-10#
//Jan 10 2007

Date with time:

// Expression date dt
dt=#2007-01-10 12:27:00#
//Jan 10 2007 at 12:27:00

Frequently Asked Questions 177

Exercise 2: How do | format the date?
To specify a format for the date in EEL, use the FORMATDATE() function:

string formatdate(date, string)
The FORMATDATE() function returns a date formatted as a string. For example:

// Expression

// all have the same output until formatted explicitly
date dt

dt=#2007-01-13#

string formata

string formatb

string formatc

formata=formatdate (dt, "MM/DD/YY") // outputs 01/13/07
formatb=formatdate (dt, "DD MMMM YYYY") // outputs 13 January 2007
formatc=formatdate (dt, "MMM DD YYYY") // outputs Jan 13 2007

Extracting Parts from a Date

To extract parts of a date, use the following exercise.

Exercise: How do I get individual components out of a date?
To extract parts of a date, use the FORMATDATE() function. For example:

// Expression
date dt
dt=#10 January 2003#

string year
string month
string day

// year should be 03
year=formatdate (dt, "YY")

// month should be January
month=formatdate (dt, "MMMM")
// day should be 10
day=formatdate(dt, "DD")

Note that if the date format is ambiguous, EEL will parse the date as MDY.

Adding or Subtracting from a Date

The following exercise explains how to add or subtract days from an existing date.

Exercise: Can I do arithmetic with dates?
EEL offers the ability to add or subtract days from an existing date. For example:

// Expression

date dt // variable that will contain the date
dt=#10 January 2003#

date later

date earlier

// add three days to the original date

178 Appendix 1 + Frequently Asked Questions

later=dt+3
// subtract three days from the original date
earlier=dt-3

Comparing Dates
To compare dates, use the FORMATDATE() function.

Exercise: How do I check if two dates match and are the same?
Convert the date to a string type using FORMATDATE() function and then check for the
value of the string. For example:

date dt

// the variable that will contain the date
// that we want to compare against
dt=#1/1/2007#

// The string variable that will contain the
// dt date in a string format
string dt string

// The variable that will convert the
// incoming date fields to string
dt_string=formatdate(dt, "MM/DD/YY")
string Date_string

// Notice that "DATE"~ is the incoming field

// from the data source It is written between ~~ so
// it does not conflict with the date data type
Date string=formatdate (*DATE~, "MM/DD/YY")

// boolean variable to check if the dates matched
boolean date_match

// Initialize the variable to false
date _match=false

if (compare (dt string, Date string)==0)then
date match=true

Using Database Functions

This section explains using database functions with EEL.

Connecting to a Database
The following exercise explains how to connect to a database.

Exercise: How do | connect to a database?
To connect to a database, use the DBCONNECT() function. This function returns a
dbconnection object. The syntax is:

dbconnection test database

For example:

Frequently Asked Questions 179

// Set connection object to desired data source
// Saved DataFlux connections can also be used
test database=dbconnect ("DSN=DataFlux Sample")

Listing Data Sources

Exercise 1: How do I return a list of data sources?
To return a list of data sources as a dbcursor, use the DBDATASOURCES() function.

The following example works with the Contacts table in the DataFlux sample database.
Make sure you have some match codes in that table in a field called

CONTACT MATCHCODE. In the step before your expression step, use a match code
generation node and have match codes created for some sample names in a text file. This
text file is your job input step. Call this new field "Name MatchCode." This example
queries the Contacts table in the DataFlux sample database to see whether there are any
names that match the names that you provided in your text file input.

Pre-processing window

// Declare Database Connection Object
dbconnection db obj

// Declare Database Statement Object
dbstatement db_stmt

// Set connection object to desired data source
// Saved DataFlux connections can also be used
db_obj=dbconnect ("DSN=DataFlux Sample")

// Prepare the SQL statement and define parameters

// to be used for the database lookup

db_stmt=db obj.prepare("Select * from Contacts where Contact = ?")
db_stmt.setparaminfo (0, "string",30)

Expression window

// Declare Database Cursor and define fields returned from table
dbcursor db_curs

string Database ID

string COMPANY

string CONTACT

string ADDRESS

// Set parameter values and execute the statement
db_stmt.setparameter (0, Name)
db _curs=db_stmt.select ()

// Move through the result set adding rows to output
while db curs.next ()
begin
Database ID=db curs.valuestring(0)
COMPANY=db curs.valuestring(1)
CONTACT=db_curs.valuestring(2)
ADDRESS=db curs.valuestring(3)
pushrow ()
end
db _curs.release()

180 Appendix 1 + Frequently Asked Questions

// Prevent the last row from occurring twice
return false

Using Encode and Decode Functions

Exercise 1: How do I transcode a given expression string from its

native encoding into the specified encoding?
To transcode an expression, use the encode function and decode function. For example:

//Expression

string expression string

expression_string="Hello World"

string decode_string

string encode_string

integer decode_return

integer encode return

decode_return = decode ("IBM1047", expression string, decode string)
//Decode to IBM1047 EBCDIC

encode_return = encode ("IBM1047",decode_string,encode_string)
//Encode string should be "Hello World"

Exercise 2: What are the available encodings?
Refer to Appendix B: Encoding for a list of available encodings.

Using File Functions

File Operations
This section explains file operations in the EEL.

Exercise 1: How do | open a file?
To open a file in the EEL, use this expression:

// Expression
File £
open ("C:\filename.txt", "r")

The second parameter to the file object indicates the mode for opening the file (read,
write, or read/write).

Exercise 2: How do | read lines from a file, treating each line as a
single row from a data source?
After opening a file, use the following code to read a string line of input:

// Pre-Expression

File £

string input

f open("C:\filename.txt", "rw")

// Expression
input=f.readline() // Post Expression

f close()

Make sure that you select Generate rows when no parent is specified. The file cursor
advances one line in the text file for each row of input from the data source.

Frequently Asked Questions

Exercise 3: How do I read lines from a text file, and create one
output line for each line in the text file?

Write a WHILE loop that iterates through each line in the file with every row. For
example, consider the following text files:

c:\filename.txt

Name

Jim

Joan
Pat

c:\filepet.txt

Pet
Fluffy
Fido
Spot

Use the following expression:

// Expression

File £

File g

string input
input='hello'

f open("C:\filename.txt")
g open("C:\filepet.txt")

while (NOT isnull (input))

begin
input=f.readline ()
print ('The value of input is ' & input)
input=g.readline ()
print ('The value of input is ' & input)
end

seteof ()

// Post Expression
f close()

181

This prints the contents of the two files to the log. If you preview the job, you see null
for the input string since, the input string has a null value at the completion of the loop.

A good way to see how this example works in your job is to add an expression step that

sets the end of file:

// Expression
seteof ()

The preview pane shows the value of input as null, but the log pane shows each of the

possible values listed in the filename.txt and filepet.txt files.

182 Appendix 1

Frequently Asked Questions

Exercise 4: How do | write to a file?
To write to a file, use the WRITELINE() function in the file object. For example:

// Expression File f
f open("C:\filename.txt", "w")
f writeline("Hello World "

// Post Expression
f close()

Note: This function overwrites the current contents of your text file.

Exercise 5: How do | move from one position to another in a file?
To move from one position in a file to another, there are three available functions:
SEEKBEGIN(), SEEKCURRENTY(), and SEEKEND().

The SEEKBEGIN() function sets the file pointer to a position starting at the beginning
of the file. It returns true on success. Otherwise, it returns false. The parameter specifies
the position:

seekbegin ([position])

The SEEKCURRENT() function sets the file pointer to a position starting at the current
position. It returns true on success. Otherwise, it returns false. The parameter specifies
the number of bytes from the current position:

seekcurrent ([position])

The SEEKEND() function sets the file pointer to a position starting at the end of the file.
It returns true on success. Otherwise, it returns false. The parameter specifies the
position from the end of the file:

seekend ([position])

All of these functions receive as a parameter the number of bytes to move from the
current position in the file. Specify 0 in the SEEKBEGIN() or the SEEKEND() functions
to go directly to the beginning or the end of the file. For example: In order to append to
the end of a file that you would select Generate rows when no parent is specified, and
enter:

// Expression File f

f open("C:\Text File\file content.txt", "rw")
f seekend(0)

f writeline("This is the end ")

seteof ()

This example adds the text "This is the end" to the end of the file. If you move to the
beginning of the file, use the WRITELINE() function to overwrite existing content.

Close the file with F.CLOSE() in the post-processing step:

// Post Processing
f close()

Exercise 6: How do | copy the contents of a file to another file?

To copy the contents of one file to another, use the Boolean function, COPYFILE(). This
function takes the originating filename as the first parameter and the destination
filename as the second parameter. The destination file can be created or amended by this
function. For example:

// Expression
string names

Frequently Asked Questions 183

string pets
names="C:\filename.txt" pets="C:\filecopy.txt"

copyfile (names, pets)

seteof ()

Exercise 7: How do I read or write a certain number of bytes from a

text file?
To read a specified number of bytes from a text file, use the READBYTES() function:

string input File a
a.open("C:\filename.txt", "r")
a.readbytes (10, input)
To write a specified number of bytes to a text file, use the WRITEBYTES() function:

string input

input="This string is longer than it needs to be." File b
b.open("C:\filename.txt", "rw")

b.writebytes (10, input)

By overwriting existing data, this expression produces the following:

c:\filename.txt

This string
Joan
Pat

Manipulating Files

Exercise 1: How do I retrieve information about the file?
To determine whether a file exists, use the FILEEXISTS() function:

boolean fileexists (string)

The FILEEXISTS() function returns true if the specified file exists. The string parameter
is the path to the file.

To find the dates a file was created and modified, use the FILEDATE() function:
date filedate (string, boolean)

The FILEDATE() function returns the date on which a file was created. If the second
parameter is true, it returns the modified date.

For example:

// Expression
boolean file test
date created
date modified

file test=fileexists("C:\filename.txt")
created=filedate ("C:\filename.txt", false)

184 Appendix 1 + Frequently Asked Questions
modified=filedate ("C:\filename.txt", true)

seteof ()

Note: If the FILEDATE() function returns a null value but the FILEEXISTS() function
returns true, you most likely entered the file path incorrectly.

To get the size of a file, you can use the OPEN(), SEEKEND(), and POSITION()
functions. The size of the file is returned in bytes. For example:

// Expression
File f
integer byte size

f.open("C:\filename.txt", "rw")
f.seekend(0)

// The integer variable byte size will have
// the size of the file in bytes
byte size=f.position()

Exercise 2: Is it possible to perform operations such as renaming,
copying, or deleting a file?
Yes. To delete a file, use the DELETEFILE() function:

boolean deletefile(string)
This action deletes a file from the disk. The string parameter is the path to the file.
Note: Use care when using this function. Once you delete a file, it is gone.
To move or rename a file, use the MOVEFILE() function:
boolean movefile (string, string)
For example, the following code moves filename.txt from the root to the Names folder.

boolean newLocation
newLocation=movefile ("C:\filename.txt","C:\Names\filename.txt")
seteof ()

Note: The directory structure must already be in place for the function to move the file
to its new location.

Using Integer and Real Functions

Integers and real types are basic data types in EEL. An integer can be converted to a real
type, and a real type value can be converted to an integer. This section focuses on
available functions in EEL that work on integers and real types.

Determining Type

Determine the type of a variable before doing calculations.

Exercise: How do | determine whether the variable has a numeric
value?

The ISNUMBER() built-in function can be used to determine whether a variable has a
numeric value. It takes a variable as a parameter and returns true if the expression is a
number. For example:

Assigning Values

Casting

Frequently Asked Questions 185

// Expression

string str

string input

input=8 // although a string, input is coerced into an integer

if (isnumber (“Input”))

str="this is a number" // input is a number
else

str="this is a string"

The following exercise provides information about assigning values.

Exercise: Can integers and real types have negative values?
Yes, integers and real types are not limited to positive values. Add a negative sign in
front of the value to make it negative. For example:

// Expression

integer positive

integer negative

positive=1

negative=-1 // negative is equal to -1

The need to coerce from one type to another can happen frequently with integers, real
data types, and string types. The user does not have to perform any task; EEL handles
the casting automatically.

Exercise 1: Can | assign the value of a real data type to an integer?

What about assigning an integer to a real data type?
Yes, integers and real types can be changed from one type to the other. To change the
type, assign one type to the other.

Exercise 2: Is it possible to combine integers and real data types
with strings?
Yes, a string type can be changed to an integer or a real type. For example:

integer x

// string is converted to value 10
// x will have the value 15
x=5 + "10"

Exercise 3: Is it possible to assign the integer value zero to a

Boolean to represent false?
In EEL, Boolean values can have an integer value of zero, which is interpreted as false.
Any nonzero integer value is interpreted as true.

Range and Precision
When working with scientific data with either very small or very large values, the range
and precision of the integer and real types might be important.

186 Appendix 1 + Frequently Asked Questions

Exercise: What is the range or precision for real and integer values?
Integer types are stored as 64-bit signed quantities with a range of —2 * 10763 to 2

Real types are stored as high precision values with an approximate precision of 44 digits
and a range of 5.0 * 10"-324 to 1.7 * 10"308. Real types are based on the IEEE 754
definition.

List of Operations
In EEL, the following operations can be performed on real and integer types.

Exercise: What operations can | do on real and integer types?
The list of operations for real and integer types includes:

* Multiplication (*)
+ Division (/)

* Modulo (%)

+ Addition (+)

* Subtraction (-)

Currently, it is not possible to perform trigonometric or logarithmic calculations. You
can perform exponential calculations using the POW() function:

real pow(real,real)
The POW() function returns a number raised to the power of another number.

// Expression
real exponential

// exponential is 8
exponential=pow(2,3)

Rounding

Integers and real values in EEL can be rounded using the round() function. The second
parameter is an integer value that determines how many significant digits to use for the
output. A positive value is used to round to the right of the decimal point. A negative
value is used to the left of the decimal point.

Exercise: Can integer and real types be rounded?
Yes, by using the ROUND() function. Consider the following code example:

// Expressions
integer integer value
integer value=1274
real real value

real value=10.126

integer ten
integer hundred

integer thousand

// the value for ten will be 1270
ten=round (integer value, -1)

// the value for hundred will be 1300

Frequently Asked Questions 187
hundred=round (integer value,-2)

// the value for thousand will be 1000
thousand=round (integer value, -3)

real real ten real
real hundred

// the value for real ten will be 10.1
real ten= round(real value, 1)

// the value for real hundred will be 10.13
real_hundred=round(real value, 2)

Using Regular Expression Functions

Using Regular Expressions
For a regular expression (regex) to work, you must first compile. In the Data Job Editor,
this is best done in the pre-processing step. Here are some examples.

Exercise 1: How do I find matches within a string?
To find the first match in the string, use the FINDFIRST() function. To find subsequent
matches in the string, use FINDNEXT(). For example:

regex r
r.compile("a.c")
if r.findfirst ("abcdef")
print ("Found match starting at " & r.matchstart() & " length " &
r.matchlength())

Exercise 2: How do | know whether my regex pattern matches part
of my input?
To see whether your regex pattern finds a match in the input string, follow this example:

regex a
boolean myresult

a.compile("a","ISO-8859-7"
myresult=a.findfirst ("abc")

Exercise 3: How do I find the regex pattern | want to match?
To find the first instance of the regex pattern that you want to match, follow this
example:

integer startingPosition regex r

r.compile("a.c")

if r.findfirst ("abcdef")
startingPosition=r.matchstart ()

Exercise 4: How do | replace a string within my regex?
To replace a string, compile the regex and use the replace function as follows:

regex r
r.compile ("xyz")

188 Appendix 1 + Frequently Asked Questions

r.replace ("abc", "def"

This exercise replaces "abc" with "def" within the compiled "xyz."

Using String Functions

Determining Type

The following exercises demonstrate how to determine the data type of a string.

Exercise 1: How do | determine whether an entry is a string?
To determine whether the string is a string type, use the TYPEOF() function:

string typeof (any)

The TYPEOF() function returns the type of data that the expression converts to. For
example:

// Expression
string hello
hello="hello"

boolean error
error=false

// variable that will contain the type
string type
type=typeof (hello)

// type should be string
if (type<>"string") then
error=true

Exercise 2: How do | determine whether a string consists of

alphabetic characters?
To determine whether a string is made up entirely of alphabetic character, use the
ISALPHA() function:

boolean isalpha (any)

The ISALPHA() function returns a value of true if the string is made up entirely of
alphabetic characters. For example:

// Expression
string letters
letters="1lmnop"
string mixed
mixed="1la2b3c"

string alphatype
alphatype=isalpha (letters) // true
string mixedtype
mixedtype=isalpha (mixed) // false

Exercise 3: How can I retrieve all values that are either not equal to
X or null values?
To retrieve the above stated values, use the ISNULL() function:

Frequently Asked Questions 189

boolean isnull (any)
For example:

// Expression

if State <> "NC" OR isnull (State)
return true

else
return false

Extracting Substrings

Exercise: How do | get substrings from an existing string?
To get substrings, there are three available functions: LEFT(), RIGHT(), and MID().

To return the leftmost characters of a string, use the LEFT() function:
string left (string, integer)

To return the rightmost characters of a string, use the RIGHT() function:
string right (string, integer)

For example:

// Expression
string greeting
greeting="Hello Josh and John"

string hello
string John
string inbetween

hello=left (greeting,5) // "Hello"

John=right (greeting,4) // "John"
inbetween=left (greeting, 10) // "Hello Josh"
inbetween=right (inbetween, 4) // "Josh"

Another approach is to use the MID() function:
string mid(string, integer p, integer n)

The MID() function returns a substring starting at position p for n characters. For
example:

string substring
// substring will be the string "Josh"
substring=mid(greeting, 7, 4);

Parsing

Exercise: How do | parse an existing string into smaller strings?
To parse a sting, use the APARSE() function:

integer aparse(string, string, array)

The APARSE() function parses a string into a string array. The number of elements in
the array is returned. For example:

// Expression

190 Appendix 1 + Frequently Asked Questions

string dataflux
dataflux="Dataflux:dfPower:Architect"

// An array type to contain the parsed words
string array words

// integer to count the number of words
integer count

// count will have a value of 3
count=aparse (dataflux, ":", words)

string first_ word
first word=words.get (1) // First word will be "DataFlux"

string second word
second word=words.get (2) // Second word will be "Data Management"

string third word
third word=words.get (3) // Third Word will be "Studio"

string last _entry // This will have the last entry.
last_entry=words.get (count)

The APARSE() function is useful if you want to retrieve the last entry after a given
separator.

Similar to the APARSE() function is the PARSE() function. The syntax for the PARSE()
function is:

integer parse(string, string, ...)

The PARSE() function parses a string using another string as a delimiter. The results are
stored starting from the third parameter. It returns the total number of parameters.

You would use the PARSE() function in the following situation:

// Expression
integer count

string first
string second
string third

// first contains "DataFlux"

// second contains "Data Management"

// third contains "Studio"

count=parse ("DataFlux:Data Management:Studio", ":", first, second,
third) ;

The main difference between the two functions is that APARSE() is suitable for arrays
while PARSE() is useful for returning individual strings.

Converting ASCII Characters

EEL has the ability to convert characters to their ASCII values, and to convert ASCII
values to characters.

Frequently Asked Questions 191

Exercise: Is it possible to convert between ASCII characters and

values?
Yes. To convert between ASCII characters and values, use the CHR() and ASC()
functions. For example:

// Expression
integer ascii value
string character content

ascii value=asc("a"); // ascii value is 97
character content=chr(97) // returns the letter "a"

For a complete list of ASCII values, see Appendix A: ASCII Printable Characters.

Manipulating Strings

Frequently, when working with strings, you might want to perform manipulations such
as adjusting the case, removing spaces, concatenating strings, and getting the length of a
string. EEL has built-in functions to perform these actions.

Exercise 1: How do | concatenate strings?
To concatenate a string, use the "&" symbol. For example:

// Expression
string Hello
Hello="Hello "

string World
World=" World"

string Hello World
Hello World=Hello & World // outputs "Hello World"

Exercise 2: How do I get the length of a string and remove spaces?
To get the length of a string, use the LEN() function, and then to remove the spaces, use
the TRIM() function.

The LEN() function returns the length of a string:
integer len(string)

The TRIM() function returns the string with the leading and trailing whitespace
removed:

string trim(string)
For example:
// Expression
string content
content=" spaces "
integer content length

content=trim(content) // Remove spaces

// returns 6
content length=len(content)

192 Appendix 1

Frequently Asked Questions

Exercise 3: How do | convert a string type to lowercase or

uppercase?
To convert a string to lowercase or uppercase, use the LOWER() and UPPER()
functions.

The LOWER() function returns the string in lowercase:
string lower (string)

The UPPER() function returns the string in uppercase:
string upper (string)

This function returns the edit distance between two strings. Specifically, this function
returns the number of corrections that would need to be applied to turn one string into
the other.

The following examples use these functions:

// Expression
integer difference
integer comparison

string hello
hello="hello"

string hey
hey="hey"

// comparison is -1 because hello comes before

hey comparison = compare (hello, hey, true);

// difference is 3 because there are three different letters

difference = edit distance (hello, hey);

Exercise 2: How do I check if a string matches, or if it is a substring

inside another string?
The following built-in EEL functions handle this situation.

The INSTR() function returns the location of one string within another string, stating the
occurrence of the string.

boolean instr(string, string, integer)

The MATCH_STRING() function determines whether the first string matches the second
string, which might contain wildcards.

boolean match string(string, string)

Search strings can include wildcards in the leading (* ABC) and trailing (ABC*)
position, or a combination of the two (*ABC*). Wildcards within a string are invalid
(A*BC). Question marks can be used as a wildcard, but can be matched only to a
character. For example, AB? matches ABC, not AB. To execute a search for a character
that is used as a wildcard, precede the character with a backslash. This denotes that the
character should be used literally and not as a wildcard. Valid search strings include:
BCD, *B?D*, *BCDE, *BC?E, *BCD?, ABCD*, AB?D*, 7BCD*, *B??*, *B\?*
(will match the literal string AB?\E). An invalid example is: AB*DE. For more complex
searches, use regular expressions instead of the MATCH_STRING() function.

Consider the following code example with these functions:

// Expression

Frequently Asked Questions 193

string content
content="Monday is sunny, Tuesday is rainy & Wednesday is windy"

string search
search="*Wednesday is windy" // note the * wildcard

integer found first
integer found next

boolean match
// Check if the search string is in the content match=match string(content, search)

if (match) then
begin
// Will find the first occurrence of day
found first=instr(content, "day", 1)

// Will find the second occurrence of day
found next=instr(content, "day", 2)
end

Exercise 3: How do | know when the correct Surviving Record is

selected as a survivor?

When comparing integers in the EEL, it is important to use the correct variable type.
When using the variable type "string", a string value of "5" is actually greater than the
string value of "10". If the values need to be compared as integers, the values must be
converted into variables of integer type first. To accomplish this conversion use the
TOINTEGER() function.

Replacing Strings
The REPLACE() function replaces the first occurrence of one string with another string
and returns the string with the replacement made.

string replace(string, string, string, integer)

If the fourth parameter is omitted or set to 0, all occurrences are replaced in the string. If
the fourth parameter is set to another number, that many replacements are made.

Consider the following example:

// Expression
string starter
string replace
string replaceWith
string final

starter="It's a first! This is the first time I came in first place!"
replace="first"
replaceWith="second"

final =replace(starter, replace, replaceWith, 2)

seteof ()

This example produces the following results:

194 Appendix 1 + Frequently Asked Questions

starter replace replaceWith final

It’s a first! This is the first second It's a second! This is
first time I came in the second time I
first place! came in first place!

Finding Patterns

It is possible to extract patterns out of strings using EEL. EEL identifies the following as
part of a string's pattern: 9 = numbers a = lowercase letters A = uppercase letters

Exercise: How do | get a string pattern?
To determine the string pattern, use the PATTERN() function:

string pattern(string)

The PATTERNY() function indicates whether a string has numbers or uppercase and
lowercase characters. It generates a pattern from the input string. For example:

// Expression

string result;

string pattern string;

pattern string="abcdeABCDE98765";

// The result will be aaaaaAAAAAS99999
result=pattern(pattern string);

Identifying Control Characters

EEL can identify control characters such as a horizontal tab and line feed.

Exercise: How can I detect control characters in a string?
To detect control characters, use the HAS CONTROL CHARS() function.

boolean has control chars(string)

The HAS CONTROL_ CHARS() function determines whether the string contains
control characters. For a list of control characters, see Appendix A: ASCII Control
Characters.

Evaluating Strings

EEL enables you to dynamically select the value of a field.

Exercise: How can | convert field names into values?
To convert field names into values, use the VAREVAL() function.

string vareval (string)
The VAREVAL() function evaluates a string as if it were a variable.

Note: Since it has to look up the field name each time it is called, VAREVAL() is a slow
function and should be used sparingly.

Frequently Asked Questions 195

In the following example, you have incoming data from three fields: fieldl, field2, and
field3, as shown in the following table.

Table A1.2 C:\varevalExample.txt

field_1 field_2

1 Bob Brauer

2 Don Williams

3 Mr. Jim Smith

4 Ms. Amber
Jones

5 I Alden

field_3
123 Main St.
4 Clover Ave.

44 E. Market
Street

300 Chatham
Dr.

99 A Dogwood
Ave.

field_4
Cary
Raleigh

Wilmington

Durham

Apex

field_5
NC
NC

NC

NC

NC

You can write a for loop that builds the string ("field" and n), and uses the VAREVAL()
function to get the value of the field. For example:

// Pre-expression
string field number
string field value

// Expression
hidden integer n
for n=1 to 5

field value=vareval (field number)

begin
field number='field ' & n
n=n+1
pushrow ()

end

// this next statement prevents the last row from showing up twice

return false

196 Appendix 1 + Frequently Asked Questions

Appendix 2

Reserved Words

197

The following list of reserved words cannot be used for label names:

and
array
begin
Boolean
bytes
call

date
else
end
for
global
goto

hidden
if
integer
not
null

or

pointer
private
public
real
return

static

step
string
then
to
visible
while

198 Appendix 2 + Reserved Words

199

Appendix 3
ASCII Values

ASCILValues 199
ASCII Control Characters i 200

ASCII Values

The following table contains the ASCII printable characters that can be represented by
decimal values:

Table A3.1 ASCII Printable Characters

Value Character Value Character Value Character
32 (space) 64 @ 96 ¢
33 ! 65 A 97 a
34 «“ 66 B 98 b
35 # 67 C 99 c
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 ‘ 71 G 103 g
40 (72 H 104 h
41) 73 I 105 i
42 * 74 J 106]
43 + 75 K 107 k
44 , 76 L 108 1

45 - 77 M 109 m

200 Appendix3 - ASCIl Values

Value

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

62

Character

Value

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Character

Value

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Character

ASCII Control Characters

The following table contains the ASCII control characters that can be represented by

decimal values:

Value

Character

Null
character

Start of
header

Value

11

12

Character

Vertical tab

Form feed

Value

22

23

Character

Synchronous
idle

End of
transmission
block

ASCII Control Characters 201

Value Character Value Character Value Character
2 Start of text 13 Carriage 24 Cancel
return
3 End of text 14 Shift out 25 End of
medium
4 End of 15 Shift in 26 Substitute
transmission
5 Enquiry 16 Data link 27 Escape
escape
6 Acknowledg = 17 Device 28 File
ment control 1 separator
7 Bell 18 Device 29 Group
control 2 separator
8 Backspace 19 Device 30 Record
control 3 separator
9 Horizontal 20 Device 31 Unit
tab control 4 separator
10 Line feed 21 Negative 127 Delete
acknowledg

ment

202 Appendix3 - ASCIl Values

Appendix 4
Encoding

203

The table below explains the options available with the Encoding drop-down list. In
most cases, you will select Default from the Encoding drop-down list.

Option

hp-roman§

IBM437

IBM850

IBM1047

ISO-8859-1

ISO-8859-2

ISO-8859-3

Character Set

Latin

Latin

Western Europe

EBCDIC Latin 1

Latin 1

Latin 2

Latin 3

Encoding Constant

19

32

33

10

13

Description

An 8-bit Latin
character set.

Original character set
of the IBM PC. Also
known as CP437.

A code page used in
Western Europe. Also
referred to as MS-
DOS Code Page 850.

A code page used for
Latin 1.

A standard Latin
alphabet character
set.

An 8-bit character
sets for Western
alphabetic languages
such as Latin,
Cyrillic, Arabic,
Hebrew, and Greek.
Commonly referred
to as Latin 2.

An 8-bit character
encoding. Formerly
used to cover
Turkish, Maltese, and
Esperanto. Also
known as "South
European".

204 Appendix 4

Encoding

Option

ISO-8859-4

ISO-8859-5

ISO-8859-6

ISO-8859-7

ISO-8859-8

ISO-8859-9

ISO-8859-10

ISO-8859-11

ISO-8859-13

ISO-8859-14

Character Set

Latin 4

Latin/Cyrillic

Latin/Arabic

Latin/Greek

Latin/Hebrew

Turkish

Nordic

Latin/Thai

Baltic

Celtic

Encoding Constant

14

11

15

16

17

Description

An 8-bit character
encoding originally
used for Estonian,
Latvian, Lithuanian,
Greenlandic, and
Sami. Also known as
"North European".

Cyrillic is an 8-bit
character set that can
be used for
Bulgarian,
Belarusian, and
Russian.

This is an 8-bit
Arabic (limited)
character set.

This is an 8-bit
Arabic (limited)
character set.

Contains all of the
Hebrew letter without
Hebrew vowel signs.
Commonly known as
MIME.

This 8-bit character
set covers Turkic and
Icelandic. Also
known as Latin-5.

An 8-bit character set
designed for Nordic
languages. Also
known as Latin-6.

An 8-bit character set
covering Thai. Might
also use TIS-620.

An 8-bit character set
covering Baltic
languages. Also
known as Latin-7 or
"Baltic Rim".

An 8-bit character set
covering Celtic
languages like
Gaelic, Welsh, and
Breton. Known as
Latin-8 or Celtic.

Option

ISO-8859-15

KOI8-R

Shift-JIS

TIS-620

UCS-2BE

UCS-2LE

US-ASCII

UTF-8

Windows-874

Character Set

Latin 9

Russian

Japanese

Thai

Big Endian

Little Endian

ASCII

Unicode

Windows Thai

Encoding Constant

18

12

20

31

21

Encoding 205

Description

An 8-bit character set
for English, French,
German, Spanish,
and Portuguese, as
well as other Western
European languages.

An 8-bit character set
covering Russian.

Based on character
sets for single-byte
and double-byte
characters. Also
known as JIS X 0208.

A character set used
for the Thai
language.

Means that the
highest order byte is
stored at the highest
address. This is
similar to UTF-16.

Means the lowest
order byte of a
number is stored in
memory at the lowest
address. This is
similar to UTF-16.

ASCII (American
Standard Code for
Information
Interchange) is a
character set based on
the English alphabet.

An 8-bit variable
length character set
for Unicode.

Microsoft Windows
Thai code page
character set.

206 Appendix4 - Encoding

Option

Windows-1250

Windows-1251

Windows-1252

Windows-1253

Windows-1254

Windows-1255

Windows-1256

Windows-1257

Windows-1258

Character Set

Windows Latin 2

Windows Latin 1

Windows Greek

Windows Turkish

Windows Hebrew

Windows Arabic

Windows Baltic

Windows Vietnamese

Encoding Constant

22

23

24

25

26

27

28

29

30

Description

Windows code page
representing Central
European languages
like Polish, Czech,
Slovak, Hungarian,
Slovene, Croatian,
Romanian, and
Albanian. This option
can also be used for
German.

Nearly identical with
Windows-1250.

A Windows code
page used for modern
Greek.

Represents the
Turkish Windows
code page.

This code page is
used to write Hebrew.

This Windows code
page is used to write
Arabic in Microsoft
Windows.

Used to write
Estonian, Latvian,
and Lithuanian
languages in
Microsoft Windows.

This code page is
used to write
Vietnamese text.

207

Appendix 5
Legal Notices

Apache Portable Runtime License Disclosure
Copyright © 2008 DataFlux Corporation LLC, Cary, NC USA.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Apache/Xerces Copyright Disclosure
The Apache Software License, Version 3.1
Copyright © 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the
Apache Software Foundation (http://www.apache.org)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party
acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse
or promote products derived from this software without prior written permission. For
written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software
Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE

208 Appendix 5

Legal Notices

FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of
the Apache Software Foundation and was originally based on software copyright (c)
1999, International Business Machines, Inc., http://www.ibm.com. For more information
on the Apache Software Foundation, please see http://www.apache.org.

Boost Software License Disclosure

Boost Software License - Version 1.0 - August 17, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a
copy of the software and accompanying documentation covered by this license (the
"Software") to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom the
Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all copies
of the Software, in whole or in part, and all derivative works of the Software, unless such
copies or derivative works are solely in the form of machine-executable object code
generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES
OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Canada Post Copyright Disclosure

The Data for areas of Canada includes information taken with permission from Canadian
authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer
for Ontario, © Canada Post Corporation, GeoBase®, © Department of Natural
Resources Canada. All rights reserved.

DataDirect Copyright Disclosure

Portions of this software are copyrighted by DataDirect Technologies Corp., 1991 -
2008.

Expat Copyright Disclosure

Part of the software embedded in this product is Expat software.

Legal Notices 209

Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

gSOAP Copyright Disclosure
Part of the software embedded in this product is gSOAP software.

Portions created by gSOAP are Copyright © 2001-2004 Robert A. van Engelen, Genivia
inc. All Rights Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIA
INC AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

IBM Copyright Disclosure

ICU License - ICU 1.8.1 and later [as used in DataFlux clients and servers.]
COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2005 International Business Machines Corporation and others. All
Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

210 Appendix 5

Legal Notices

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

Informatica Address Doctor Copyright Disclosure

AddressDoctor® Software, © 1994-2015 Platon Data Technology GmbH

Loqgate Copyright Disclosure

The Customer hereby acknowledges the following Copyright notices may apply to
reference data.

Australia: Copyright. Based on data provided under license from PSMA Australia
Limited (www.psma.corn.au)

Austria: © Bundesamt fiir Eich- und Vermessungswesen

Brazil: Conteudo firnecido por MapLink. Brazil POIs may not be used in publically
accessible, internet-based web sites whereby consumers obtain POI data for their
personal use.

Canada:

Copyright Notice: This data includes information taken with permission from Canadian
authorities, including © Her Majesty, © Queen’s Printer for Ontario, © Canada Post,
GeoBase ®.

End User Terms: The Data may include or reflect data of licensors including Her
Majesty and Canada Post. Such data is licensed on an “as is” basis. The licensors,
including Her Majesty and Canada Post, make no guarantees, representation, or
warranties respecting such data, either express or implied, arising by law or otherwise,
including but not limited to, effectiveness, completeness, accuracy, or fitness for a
purpose. The licensors, including Her Majesty and Canada Post, shall not be liable in
respect of any claim, demand or action, irrespective of the nature of the cause of the
claim, demand or action alleging any loss, injury or damages, direct or indirect, which
may result from the use or possession of the data or the Data.

The licensors, including Her Majesty and Canada Post, shall not be liable in any way for
loss of revenues or contracts, or any other consequential loss of any kind resulting from
any defect in the data or in the Data.

End User shall indemnify and save harmless the licensors, including Her Majesty the
Queen, the Minister of Natural Resources of Canada and Canada Post, and their officers,
employees and agents from and against any claim, demand or action, irrespective of the
nature of the cause of the claim, demand or action, alleging loss, costs, expenses,
damages, or injuries (including injuries resulting in death) arising out of the use of
possession of the data or the Data.

Croatia, Cyprus, Estonia, Latvia, Lithuania, Moldova, Poland, Slovenia, and/or Ukraine:
© EuroGeographics

Legal Notices 211

France: source: Géoroute® IGN France & BD Carto® IGN France

Germany: Die Grundlagendaten wurden mit Genehmigung der zustdndigen Behorden
entnommen

Great Britain: Based upon Crown Copyright material.
Greece: Copyright Geomatics Ltd. Hungary: Copyright © 2003; Top-Map Ltd.

Italy: La Banca Dati Italiana ¢ stata prodotta usando quale riferimento anche cartografia
numerica ed al tratto prodotta e fornita dalla Regione Toscana.

Norway: Copyright © 2000; Norwegian Mapping Authority

Portugal: Source: IgeoE — Portugal

Spain: Informacion geografica propiedad del CNIG

Sweden: Based upon electronic data © National Land Survey Sweden.

Switzerland: Topografische Grundlage © Bundesamt fiir Landestopographie.

Microsoft Copyright Disclosure

Microsoft®, Windows, NT, SQL Server, and Access, are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Oracle Copyright Disclosure

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates.

PCRE Copyright Disclosure

A modified version of the open source software PCRE library package, written by Philip
Hazel and copyrighted by the University of Cambridge, England, has been used by
DataFlux for regular expression support. More information on this library can be found
at: ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/.

Copyright © 1997-2005 University of Cambridge. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

» Neither the name of the University of Cambridge nor the name of Google Inc. nor
the names of their contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

212 Appendix 5 - Legal Notices

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Red Hat Copyright Disclosure

Red Hat® Enterprise Linux®, and Red Hat Fedora™ are registered trademarks of Red
Hat, Inc. in the United States and other countries.

SAS Copyright Disclosure

Portions of this software and documentation are copyrighted by SAS® Institute Inc.,
Cary, NC, USA, 2009. All Rights Reserved.

SQLite Copyright Disclosure

The original author of SQLite has dedicated the code to the public domain. Anyone is
free to copy, modify, publish, use, compile, sell, or distribute the original SQLite code,
either in source code form or as a compiled binary, for any purpose, commercial or non-
commercial, and by any means.

Sun Microsystems Copyright Disclosure

Java™ is a trademark of Sun Microsystems, Inc. in the U.S. or other countries.

TomTom Copyright Disclosure

© 2006-2015 TomTom. All rights reserved. This material is proprietary and the subject
of copyright protection, database right protection, and other intellectual property rights
owned by TomTom or its suppliers. The use of this material is subject to the terms of a
license agreement. Any unauthorized copying or disclosure of this material will lead to
criminal and civil liabilities.

USPS Copyright Disclosure

National ZIP®, ZIP+4®, Delivery Point Barcode Information, DPV, RDI, and
NCOALIink®. © United States Postal Service 2005. ZIP Code® and ZIP+4® are
registered trademarks of the U.S. Postal Service.

DataFlux is a non-exclusive interface distributor of the United States Postal Service and
holds a non-exclusive license from the United States Postal Service to publish and sell
USPS CASS, DPV, and RDI information. This information is confidential and
proprietary to the United States Postal Service. The price of these products is neither
established, controlled, or approved by the United States Postal Service.

VMware Copyright Disclosure

VMware® virtual environment provided those products faithfully replicate the native
hardware and provided the native hardware is one supported in the applicable DataFlux

Legal Notices 213

product documentation. All DataFlux technical support is provided under the terms of a
written license agreement signed by the DataFlux customer.

The VMware virtual environment may affect certain functions in DataFlux products (for
example, sizing and recommendations), and it may not be possible to fix all problems.

If DataFlux believes the virtualization layer is the root cause of an incident; the customer
will be directed to contact the appropriate VMware support provider to resolve the
VMware issue and DataFlux shall have no further obligation for the issue.

214 Appendix 5 - Legal Notices

	Contents
	What’s New in Expression Language 2.7: Reference Guide
	Overview
	New Information and Conversion Functions
	GEODISTANCE_COSINE
	GEODISTANCE_HAVERSINE

	Expression Engine Language
	Introduction
	Overview of the Expression Engine Language
	About the Expression Engine Language
	Introduction to the EEL Operations
	Declaration of Symbols
	Statements
	GOTO and LABEL
	Assignment
	Arrays
	Return
	IF/ELSE
	FOR
	WHILE
	BEGIN/END
	CALL
	Expressions
	Operators
	Modulo Operator
	Comparison Operator
	String Expressions
	Integer and Real Expressions
	Date Expressions
	Boolean Expressions
	Null Propagations
	Coercion
	Functions
	Global Functions
	Objects

	Data Job Expressions Node
	Data Job Expressions Node

	Expression Engine Language Functions
	Array Functions
	Array Functions
	Dictionary
	DIM Function
	GET Function
	SET Function

	Data Quality Functions
	Data Quality Functions
	Dictionary
	DQ.CASE Function
	DQ.EXTRACT Function
	DQ.GENDER Function
	DQ.GETLASTERROR Function
	DQ.IDENTIFY Function
	DQ_INITIALIZE Function
	DQ.LOADQKB Function
	DQ.MATCHCODE Function
	DQ.MATCHSCORE Function
	DQ.PARSE Function
	DQ.PATTERN Function
	DQ.STANDARDIZE Function
	DQ.TOKEN Function
	DQ.TOKENVALUE Function
	DQ.VALUE Function

	Database Functions
	Overview
	Overview of the Database Objects
	Releasing Database Objects
	Dictionary
	DBCONNECT Function
	DBDATASOURCES Function

	Date and Time Functions
	Overview
	Dictionary
	FORMATDATE Function
	TODAY Function
	TODAYGMT Function

	Execution Functions
	Overview
	Dictionary
	PUSHROW Function
	SETOUTPUTSLOT Function
	SLEEP Function

	File Functions
	Overview
	Overview of the File Object
	Executing Programs and File Commands
	Running a Batch File By Using Execute Function

	Dictionary
	CLOSE Function
	COPYFILE Function
	DELETEFILE Function
	EXECUTE Function
	FILEDATE Function
	FILEEXISTS Function
	MKDIR Function
	MOVEFILE Function
	OPEN Function
	POSITION Function
	READBYTES Function
	READLINE Function
	RMDIR Function
	SEEKBEGIN Function
	SEEKCURRENT Function
	SEEKEND Function
	WRITEBYTES Function
	WRITELINE Function

	Incoming Data Functions
	Overview
	Dictionary
	FIELDCOUNT Function
	FIELDNAME Function
	FIELDTYPE Function
	FIELDVALUE Function
	READROW Function
	ROWESTIMATE Function
	SETEOF Function
	SETFIELDVALUE Function

	Information/Conversion Functions
	Overview
	Dictionary
	DETERMINE_TYPE Function
	GEODISTANCE_COSINE Function
	GEODISTANCE_HAVERSINE Function
	ISALPHA Function
	ISBLANK Function
	ISNULL Function
	ISNUMBER Function
	IS_PREVIEW_MODE Function
	LOCALE Function
	TOBOOLEAN
	TYPEOF Function

	Logging Functions
	Overview
	Dictionary
	LOGMESSAGE Function
	PRINT Function
	RAISEERROR Function
	SENDNODESTATUS Function

	Macro and Variable Functions
	Overview
	About Macros and Variables
	Using Macros and Variables
	Using GETVAR() and SETVAR()

	Dictionary
	GETVAR Function
	SETVAR Function
	VAREVAL Function
	VARSET Function

	Mathematical Functions
	Overview
	Dictionary
	ABS Function
	CEIL Function
	FLOOR Function
	MAX Function
	MIN Function
	POW Function
	ROUND Function

	Node Functions
	Overview
	Dictionary
	PCTCOMPLETE Function
	RAISEEVENT Function
	SENDNODESTATUS Function
	SETOUTPUTSLOT Function
	UNIQUEID Function

	Regular Expression Functions
	Overview
	Dictionary
	COMPILE Function
	FINDFIRST Function
	FINDNEXT Function
	MATCHLENGTH Function
	MATCHSTART Function
	REPLACE Function
	SUBSTRINGCOUNT Function
	SUBSTRINGLENGTH
	SUBSTRINGSTART Function

	Search Functions
	Overview
	Dictionary
	INLIST Function

	String Functions
	Overview
	Dictionary
	APARSE Function
	ASC Function
	CHR Function
	COMPARE Function
	EDIT_DISTANCE Function
	HAS_CONTROL_CHARS Function
	INSTR Function
	LEFT Function
	LEN Function
	LOWER Function
	MATCH_STRING Function
	MID Function
	PARSE Function
	PATTERN Function
	REPLACE Function
	RIGHT Function
	SORT Function
	SORT_WORDS Function
	TODATE Function
	TOINTEGER Function
	TOREAL Function
	TOSTRING Function
	TRIM Function
	UPPER Function
	USERNAME Function

	Appendixes
	Frequently Asked Questions
	Reserved Words
	ASCII Values
	ASCII Values
	ASCII Control Characters

	Encoding
	Legal Notices

