
SAS/CONNECT® 9.3 User's
Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS/CONNECT® 9.3 User's Guide. Cary, NC: SAS
Institute Inc.

SAS/CONNECT® 9.3 User’s Guide

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

About This Book . vii
What's New in SAS/CONNECT 9.3 . xi

PART 1 What Is SAS/CONNECT? 1

Chapter 1 • SAS/CONNECT: Definitions and Services . 3
SAS/CONNECT Terminology . 3
Programming Services . 6
Administering Logging for SAS/CONNECT . 10
Accessibility Features in SAS Products . 12

PART 2 SAS/CONNECT Options 13

Chapter 2 • SAS/CONNECT General SAS System Options . 15
Dictionary . 15

PART 3 Starting and Stopping SAS/CONNECT Software
37

Chapter 3 • Starting and Stopping SAS/CONNECT . 39
Starting SAS and Using Syntax Checking . 39
Starting SAS/CONNECT . 40
Specifying a Communications Access Method . 40
Signing On to the Server . 41
Interfaces for Starting and Stopping SAS/CONNECT . 47

Chapter 4 • Using SAS/CONNECT Script Files . 53
Overview of SAS/CONNECT Script Files . 53
When to Use a SAS/CONNECT Script . 53
Purpose of a Sign-On Script . 54
Using Passwords in a Script File . 54
Using a Script to Start and Stop SAS/CONNECT . 55
Syntax Rules for SAS/CONNECT Script Statements . 56
Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off 57
Debugging a SAS/CONNECT Script . 61

Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands 63
Dictionary . 63

Chapter 6 • Syntax for the FILENAME Statement . 85
Dictionary . 85

Chapter 7 • SAS Component Language (SCL) Functions and Options 89
Using SCL to Locate and Store Sample Script Files . 89
Dictionary . 90

Chapter 8 • SAS/CONNECT Script Statements . 95
Summary of SAS/CONNECT Script Statements . 95
Dictionary . 96

Chapter 9 • Sign-On Troubleshooting . 105
Troubleshooting Sign-On Problems . 105

PART 4 Compute Services 109

Chapter 10 • Using Compute Services . 111
Overview of Compute Services . 112
MP CONNECT . 113
Independent Parallelism . 113
Pipeline Parallelism . 115
Benefits of MP CONNECT . 116
Scalability with MP CONNECT . 117
Monitoring MP CONNECT Tasks . 119
Using SAS Explorer to Monitor SAS/CONNECT Tasks . 120
Compute Services and the Output Delivery System . 121
Using the SAS Windowing Environment to Control Remote Processing 122
Interaction between Compute Services and Macro Processing 125
Compute Services and Break Windows . 136

Chapter 11 • Syntax for the RSUBMIT Statement and Command . 139
Dictionary . 139

Chapter 12 • Examples Using Compute Services . 173
The Examples: Compute Services . 174
Example 1: Using MP CONNECT for a Long-Running Remote Task 174
Example 2: Administering Server Data Sets from a Client . 175
Example 3: Using the CMACVAR= Option with MP CONNECT 175
Example 4: Using the Output Delivery System with SAS/CONNECT 176
Example 5: Using MP CONNECT and the WAITFOR Statement 178
Example 6: Using MP CONNECT with Piping . 179
Example 7: Preventing Pipes from Closing Prematurely . 180
Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT Executes . . 181
Example 9: Using Server Software from a Client Session . 182

Chapter 13 • Syntax for Remote SQL Pass-Through (RSPT) . 185
Dictionary . 185

Chapter 14 • Examples Using Remote SQL Pass-Through (RSPT) . 189
Example 1. RSPT Services: Querying a Table in DB2 . 189
Example 2. RSPT Services: Subsetting Remote SAS Data . 190

Chapter 15 • Examples of Combining Compute Services and Data Transfer Services 193
Advantages of Combining Compute Services and Data Transfer Services 193
The Examples . 194
Example 1. Compute Services and Data Transfer Services

Combined: Processing in the Client and Server Sessions 194

iv Contents

Example 2. Compute Services and Data Transfer Services
Combined: Sorting and Merging Data . 196

Example 3. Compute Services and Data Transfer Services
Combined: Macro Capabilities . 197

Chapter 16 • Compute Services Troubleshooting . 201
Problems and Solutions when Using the RSUBMIT Statement 201

PART 5 Remote Library Services 205

Chapter 17 • Remote Library Services (RLS) . 207
Introduction to Remote Library Services . 207
RLS: Advantages . 208
Considerations for Using RLS . 209
Using RLS to Access Types of Data . 210
Using SAS Views with Servers . 211
Using WHERE Processing to Reduce Network Traffic . 212

Chapter 18 • Syntax for the LIBNAME Statement . 215
Dictionary . 215

Chapter 19 • Syntax for the LIBNAME Statement, SASESOCK Engine 219
Dictionary . 219

Chapter 20 • Examples Using Remote Library Services (RLS) . 223
Example 1. RLS: Accessing Server Data to Print a List of Reports 223
Example 2. RLS: Accessing Server Data by Using the WHERE Statement 224
Example 3. RLS: Updating Server Data . 225
Example 4. RLS: An SCL Program That Uses the WHERE Statement 225
Example 5. RLS: Updating a Server Data Set by Applying a

Client Transaction Data Set . 226
Example 6. RLS: Subsetting Server Data for Client Processing and Display 227

Chapter 21 • Example of Combining RLS and Data Transfer Services (DTS) 231
Introduction . 231
Example — RLS and UPLOAD/DOWNLOAD Combined:

Distribution of Reports over a Network . 231

PART 6 Data Transfer Services 235

Chapter 22 • Using Data Transfer Services . 237
Introduction to Data Transfer Services . 237
Data Transfer Services: Advantages . 238
Considerations for Using Data Transfer Services . 239
Transfer Status Window . 241
Data Transfer Services Tips . 242
Non-English Keyboards . 244

Chapter 23 • UPLOAD Procedure . 245
Introduction . 245
Syntax: UPLOAD Procedure . 246

Contents v

Using the VALIDMEMNAME and VALIDVARNAME System Options 262
PROC UPLOAD Output . 262

Chapter 24 • DOWNLOAD Procedure . 265
Introduction . 265
Syntax: DOWNLOAD Procedure . 266
Using the VALIDMEMNAME and VALIDVARNAME System Options 279
PROC DOWNLOAD Output . 280

Chapter 25 • Examples of Data Transfer Services (DTS) . 281
Example 1. DTS: Transferring Data by Using WHERE Statements 282
Example 2. DTS: Transferring Specific Member Types . 283
Example 3. DTS: Transferring Specific Catalog Entry Types 284
Example 4. DTS: Transferring Generations of SAS Data Sets 286
Example 5. DTS: Transferring Long Member Names . 289
Example 6. DTS: Transferring Data by Using Data Set Options and Attributes 289
Example 7. DTS: Transferring Data Set Integrity Constraints 290
Example 8. DTS: Transferring Numerics by Using the

EXTENDSN= and V6TRANSPORT Options . 291
Example 9. DTS: Transferring SAS Utility Files . 292
Example 10. DTS: Distributing an .EXE File from the Server to Multiple Clients . . . 294
Example 11. DTS: Downloading a Partitioned Data Set from z/OS 295
Example 12. DTS: Combining Data from Multiple Server Sessions 296
Example 13. Re-creating an Index for a Data Transfer . 299

Chapter 26 • Data Transfer Services Troubleshooting . 301
Troubleshooting the UPLOAD and DOWNLOAD Procedures 301

PART 7 Appendixes 303

Appendix 1 • Cross-Architecture Issues . 305
Translation of SAS Data between Computers That Represent Data Differently 305
Translation of Floating-Point Numbers between Computers . 307
Encoding Compatibility between SAS/CONNECT Client and Server Sessions 308

Appendix 2 • SAS/CONNECT Cross-Version Issues . 311
Factors Affecting Access to SAS Files . 311
Features Exclusive to SAS Releases after SAS 6 . 312
RLS: Accessing SAS Files in a Mixed Cross-Version Library 314
Accessing SAS Data Sets . 316
Accessing SAS Views . 317
Accessing Catalogs . 319
File Format Translation Algorithms . 320

Glossary . 323
Index . 335

vi Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

• syntax components

• style conventions

• special characters

• references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=).

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In the following examples of SAS syntax, the keywords are the first words in the
syntax:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In the following example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;
... SAS code ...

vii

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

argument
specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed between angle brackets.

In the following example, string and position follow the keyword CHAR. These
arguments are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In the following example of SAS code, the argument
string has a value of 'summer', and the argument position has a value of
4:x=char('summer', 4);

In the following example, string and substring are required arguments, while
modifiers and startpos are optional.

FIND(string, substring <,modifiers> <,startpos>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In the
following example, the keyword ERROR is written in uppercase bold:

ERROR<message>;

UPPERCASE
identifies arguments that are literals.

In the following example of the CMPMODEL= system option, the literals include
BOTH, CATALOG, and XML:

CMPMODEL = BOTH | CATALOG | XML

italics
identifies arguments or values that you supply. Items in italics represent user-
supplied values that are either one of the following:

• nonliteral arguments In the following example of the LINK statement, the
argument label is a user-supplied value and is therefore written in italics:

LINK label;

• nonliteral values that are assigned to an argument

In the following example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT = variable-1 <, ..., variable-nformat><DEFAULT = default-format>;

viii About This Book

Items in italics can also be the generic name for a list of arguments from which you
can choose (for example, attribute-list). If more than one of an item in italics can be
used, the items are expressed as item-1, ..., item-n.

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In the following example of the MAPS system option, the equal sign sets the value
of MAPS:

MAPS = location-of-maps

< >
angle brackets identify optional arguments. Any argument that is not enclosed in
angle brackets is required.

In the following example of the CAT function, at least one item is required:

CAT (item-1 <, ..., item-n>)

|
a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In the following example of the CMPMODEL= system option, you can choose only
one of the arguments:

CMPMODEL = BOTH | CATALOG | XML

...
an ellipsis indicates that the argument or group of arguments following the ellipsis
can be repeated. If the ellipsis and the following argument are enclosed in angle
brackets, then the argument is optional.

In the following example of the CAT function, the ellipsis indicates that you can
have multiple optional items:

CAT (item-1 <, ..., item-n>)

'value' or “value”
indicates that an argument enclosed in single or double quotation marks must have a
value that is also enclosed in single or double quotation marks.

In the following example of the FOOTNOTE statement, the argument text is
enclosed in quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | “text”>;

;
a semicolon indicates the end of a statement or CALL routine.

In the following example each statement ends with a semicolon: data namegame;
length color name $8; color = 'black'; name = 'jack'; game =
trim(color) || name; run;

Syntax Conventions for the SAS Language ix

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you usually have a choice of using a SAS statement (LIBNAME or FILENAME)
or the operating environment's control language to make the association. Several
methods of referring to SAS libraries and external files are available, and some of these
methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library. Note that SAS-library is enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

x About This Book

What's New in SAS/CONNECT
9.3

Overview

SAS/CONNECT has the following changes or enhancements:

• system options to specify the amount of time a SAS/CONNECT server listens for a
client to connect before terminating and to specify whether a SAS/CONNECT server
is authorized to access a SAS Metadata Server at server sign-on

• ability of the UPLOAD and DOWNLOAD procedures to support the transfer of data
containing extended SAS names that are enabled by using new Base SAS system
options

• new options on the %SYSLPUT macro statement to create a single macro variable in
the server session or copy a specified group of macro variables to the server session

SAS/CONNECT System Options

• TCPLISTENTIME

The TCPLISTENTIME= option is a portable SAS system option that enables you to
control idle and unresponsive sign-on connections. The option enables you to specify
how long (in seconds) a server “listens” for a response from the client during sign on
before it exits automatically. For more information, see “TCPLISTENTIME=
System Option” on page 34.

• CONNECTMETACONNECTION

This option specifies whether a SAS/CONNECT server is authorized to access a
SAS Metadata Server at server sign-on. The metadata credential passing now always
looks for a metadata connection by default. When a SAS/CONNECT client session
has an active metadata server connection and signs on to a SAS/CONNECT server,
the server is automatically given access to the SAS Metadata Server for the duration

xi

of the SAS/CONNECT server session. For more information, see
“CONNECTMETACONNECTION System Option” on page 17.

Support for Extended SAS Names In the UPLOAD
and DOWNLOAD Procedures

New system options in Base SAS enable greater flexibility when transferring data that
contains enhanced SAS names.

By specifying the system options VALIDVARNAME=ANY and
VALIDMEMNAME=EXTEND, names that contain special characters or national
characters are now allowed for the following types of data with the UPLOAD and
DOWNLOAD procedures:

• a SAS data set

• a SAS library

• a SAS variable

• a DBMS table

• a table column heading in a DBMS table

For more information, see “VALIDMEMNAME= System Option” in SAS System
Options: Reference, “VALIDVARNAME= System Option” in SAS System Options:
Reference, Chapter 24, “DOWNLOAD Procedure,” on page 265, and Chapter 23,
“UPLOAD Procedure,” on page 245.

Enhancements to the %SYSLPUT Statement

The enhancements to the %SYSLPUT macro statement save you time and effort by
allowing you to copy multiple macro variables to a SAS server session in a single
statement rather than having to copy them one by one. The new arguments enable you to
define a group of variables to be copied based on variable type (automatic or user-
defined), variable scope (global or local), and variable name (/LIKE= wildcard). The
new wildcard option, /LIKE=, lets you specify the group of variables to be copied based
on pattern-matching in the variable name. The following is a summary of the new
%SYSLPUT macro statement options:

• _ALL_

copies all user-generated and automatic macro variables to the server session.

• _AUTOMATIC_

copies all automatic macro variables to the server session. The automatic variables
copied depend on the SAS products installed at your site and on your operating
system. The scope is identified as AUTOMATIC.

• _GLOBAL_

copies all user-generated global macro variables to the server session. The scope is
identified as GLOBAL.

xii SAS/CONNECT

• _LOCAL_

copies all user-generated local macro variables to the server session. The scope is the
name of the currently executing macro.

• _/LIKE_

Specifies a subset of macro variables whose names match a user-specified character
sequence, or pattern. Only this identified group of variables with names matching the
pattern will be copied to the server session.

• _USER_

copies all user-generated global and local macro variables to the server session. The
scope is identified either as GLOBAL or as the name of the macro in which the
macro variable is defined.

For more information, see “%SYSLPUT Statement” on page 160.

Enhancements to the %SYSLPUT Statement xiii

xiv SAS/CONNECT

Part 1

What Is SAS/CONNECT?

Chapter 1
SAS/CONNECT: Definitions and Services . 3

1

2

Chapter 1

SAS/CONNECT: Definitions and
Services

SAS/CONNECT Terminology . 3
SAS/CONNECT . 3
The Client/Server Relationship . 4
Single-User Server . 4
Multi-User Server . 4
Communications Access Method . 5
Encryption Providers . 5

Programming Services . 6
Compute Services and MP CONNECT . 6
Data Transfer Services . 8
Remote Library Services . 9

Administering Logging for SAS/CONNECT . 10
About the SAS Logging Facility . 10
Logging Configuration File . 10
Invocation of the Logging Facility . 11
Triggers for Log Events . 11
Example of a Log Event . 11

Accessibility Features in SAS Products . 12

SAS/CONNECT Terminology

SAS/CONNECT
SAS/CONNECT software is a SAS client/server toolset that provides scalability through
parallel SAS processing. By providing the ability to manage, access, and process data in
a distributed and parallel environment, SAS/CONNECT enables users and applications
developers to do the following:

• achieve SAS interoperability across architectures and SAS releases

• directly process a remote data source and get results back locally

• transfer disk copies of data

• develop local graphical user interfaces that process remote data sources

• develop scalable SAS solutions

• run multiple independent processes asynchronously and coordinate the results
from each task execution in a client SAS session

3

• scale up to fully use the capabilities of symmetric multiprocessing (SMP)
hardware, and scale out to fully use the features of distributed processors

• use pipeline processing (TCP/IP ports) to run multiple dependent processes
asynchronously

• collect the resources of multiple computers that work in parallel, which produces
a powerful, yet inexpensive processing solution

• manage distributed resources

• perform daily or nightly automated backups

• initiate transaction processing to a master database at a specified time each day

• centralize and automate data and report distribution to workstations in a network

• centralize and automate data collection from workstations in a network

The Client/Server Relationship
SAS/CONNECT links a SAS client session to a SAS server session. The terms
SAS/CONNECT client and server depict a relationship between two SAS sessions.

The client session is the initial SAS session that creates and manages one or more server
sessions. The server sessions can run either on the same computer as the client (for
example, an SMP computer) or on a remote computer across a network.

Single-User Server
SAS/CONNECT provides the following single-user server functionality for Remote
Library Services (RLS):

• provides transparent access to remote data

• gives single-user access to a dedicated server

• enables full, unrestricted access to DBMS data via a SAS/ACCESS engine

• enables you to connect to the server by using a SIGNON statement and a LIBNAME
statement that specifies the REMOTE engine

SIGNON server-ID;
LIBNAME libref REMOTE 'datalib' SERVER=server-ID;

The LIBNAME statement implicitly starts the single-user server.

Multi-User Server
SAS/SHARE provides the following multi-user server functionality for Remote Library
Services (RLS):

• gives concurrent, multi-user access to a server

Note: The ability to access DBMS data through a multi-user server is controlled by a
specific SAS/ACCESS engine.

• is explicitly started and controlled by a system administrator

PROC SERVER server=server-ID;

• enables you to connect to the server by using a LIBNAME statement that specifies
the REMOTE engine

4 Chapter 1 • SAS/CONNECT: Definitions and Services

LIBNAME libref REMOTE 'datalib' SERVER=server-ID;

The LIBNAME statement causes a connection to a pre-existing server.

Communications Access Method
A communications access method is the interface between SAS/CONNECT and the
network protocol that you use to connect two SAS sessions. You must specify a
communications access method for SAS/CONNECT.

TCP/IP is the supported access method on all SAS 9.3 operating environments. The
XMS access method is used to connect client and server sessions that both run under
z/OS.

Before any meaningful work can be accomplished between a client and a server, the
access method must be configured in the client and the server environments. For details,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE

Encryption Providers
Encryption providers include the SAS products and third-party strategies for protecting
data and credentials (user IDs and passwords) that are exchanged in a SAS/CONNECT
client/server environment. All these providers use proven, industry-standard encryption
algorithms for data protection.

Here are the encryption providers that SAS/CONNECT can use:

SAS Proprietary
is a fixed encoding algorithm that is included with Base SAS software. It requires no
additional SAS product licenses. The SAS proprietary algorithm is strong enough to
protect your data from casual viewing. SASProprietary provides a medium level of
security.

SAS/SECURE
is an add-on product that provides encryption and data integrity algorithms in
addition to the SASProprietary algorithm. SAS/SECURE requires a license, and it
must be installed on each computer that runs a client and a server that will use the
encryption algorithms. Although SAS/SECURE increases data security, it cannot
completely prevent unauthorized access to your data.

Secure Sockets Layer (SSL)
is a protocol that provides network security and privacy. Developed by Netscape
Communications, SSL uses encryption algorithms that include RC2, RC4, DES,
TripleDES, and MD5. In addition to providing encryption services, SSL performs
client and server authentication, and it uses message authentication codes to ensure
data integrity.

Secure Shell (SSH)
is a protocol that enables users to access a remote computer via a secure connection.
SSH is available through various commercial products and as freeware. OpenSSH is
a free version of the SSH protocol suite of network connectivity tools. Although SAS
software does not include a programming interface to SSH functionality, SAS does
support the tunneling feature of SSH that enables a SAS client to make an encrypted
connection to a SAS server. Port forwarding is another term for tunneling. The SSH
client and SSH server act as agents between the SAS client and the SAS server,
tunneling information via the SAS client's port to the SAS server's port.

For details about these encryption providers, see Encryption in SAS .

SAS/CONNECT Terminology 5

Programming Services

Compute Services and MP CONNECT

Compute Services That Use RSUBMIT
Compute Services provides access to all of the computing resources on your network by
enabling you to direct the execution of SAS programs to one or more server sessions.
The results and any output that is generated by the remote execution are returned to the
client session. For short-running tasks, remote submits can be processed synchronously.
This means that control is returned after the remote processing is complete. For longer-
running tasks, remote submits can be processed asynchronously. This means that control
is returned immediately, and you can continue local processing or remote processing to
another server session.

Figure 1.1 Model of Compute Services

1 The SAS/CONNECT client sends SAS statements to the server session.

2 The SAS statements execute in the SAS/CONNECT server session using remote
data.

3 Results are sent back to the client session.

Note: Asynchronous Compute Services is commonly referred to as MP (Multi-Process)
CONNECT.

The figure shows that these services enable you to move some or all portions of an
application's processing to a remote computer.

Compute Services enables you to do the following:

• achieve scalability for your SAS applications

• perform remote tasks in the background (asynchronously) while processing
locally

6 Chapter 1 • SAS/CONNECT: Definitions and Services

• run multiple SAS processes asynchronously and coordinate the results from each
task execution in your client SAS session

• use pipeline processing to overlap execution of multiple dependent SAS DATA
steps or procedures

• use processors on an SMP computer (which is referred to as “scaling up”) and
using idle processors across a network (which is referred to as “scaling out”)

• access remote resources

• take advantage of server hardware and software resources

• access mainframe and other legacy systems (for example, by building a single
SAS program that contains statements that run locally and statements that
execute on multiple remote legacy computers)

• execute against the remote copy of the data

• submit macro steps remotely to the server, and then pass return code information
about the server process to the client

• execute graphics programs on the server and display the graphics locally by
using the graphics capabilities of the local workstation, plotter, or printer

Compute Services That Use Remote SQL Pass-Through
Remote SQL pass-through (RSPT) gives you control of where SQL processing occurs.
RSPT enables you to pass SQL statements to a remote SAS SQL processor by passing
them through a remote SAS server. You can also use RSPT to pass SQL statements to a
remote DBMS by passing them through a remote SAS server and a REMOTE access
engine that supports pass-through.

Figure 1.2 Remote SQL Pass-Through Services

1 The SAS client uses a REMOTE engine to pass SQL statements to a server session.

2 The SQL statements are passed to the server session.

3 The SQL statements are passed to SAS SQL to select data or to execute statements in
order to modify, manipulate, and manage data. This includes creating SAS SQL
views.

4 The SQL statements are passed to a remote DBMS to select data or to execute
statements in order to modify, manipulate, and manage data. This includes creating
DBMS views.

You can invoke RSPT by using PROC SQL statements that are passed to the remote
server for execution in the server SAS session, or you can store SQL pass-through
statements in local SQL views.

Programming Services 7

Data Transfer Services
Data Transfer Services enables you to move a copy of the data from one computer to
another computer. The data is translated between computer architectures and SAS
version formats, as necessary.

Figure 1.3 Model of Data Transfer Services (UPLOAD and DOWNLOAD)

1 The SAS/CONNECT client requests an upload of data records to the
SAS/CONNECT server session for processing.

2 Data is copied from the client disk and is written to the server disk for processing.

3 The SAS/CONNECT client requests the download of data records from the server to
the client for processing.

4 Data is copied from the server disk and is written to the client disk for processing.

Data is transferred using the UPLOAD and DOWNLOAD procedures. You can transfer
SAS data sets, SAS catalogs, MDDB, SQL views, entire SAS libraries, and external
files.

Note: External files can be transferred in either text or binary format.

The data transfer capabilities enable you to do the following:

• customize data transfers

• transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=
options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC UPLOAD or PROC DOWNLOAD step.

• transfer collections of files (such as a partitioned data set, a MACLIB, or a
directory) between a client and a server.

• use WHERE processing for dynamic data subsetting and SAS data set options
when transferring individual SAS data sets.

• transfer catalog entries that contain graphics output by using a simple one-step
process.

• protect data

• increase the robustness of your decision support environment by keeping a local
copy of your data, which is insulated from network failure.

• back up local files to a server.

• manage data distribution

8 Chapter 1 • SAS/CONNECT: Definitions and Services

• automate both data or application distribution and centralized data collection.

• distribute files from one workstation by uploading to a server and downloading
to other workstations that need the files.

• move SAS files between releases of SAS as well as across operating
environments.

Remote Library Services
Remote Library Services (RLS) provides transparent access to SAS data that is located
on a remote computer. The data resides in server libraries, and RLS moves the data
through the network as client processing requests it. The data must again pass through
the network on any subsequent use by the client session. As the following figure shows,
a copy of the data is not written to the client file system.

Figure 1.4 Model of RLS Processing

1 The SAS/CONNECT client session requests records from the SAS/CONNECT
server session or the client requests that records be written to the server.

2 Data records are written to the SAS/CONNECT server session or are sent to the
SAS/CONNECT client session for processing.

The SAS procedures and DATA steps that run in the SAS/CONNECT client session
request access via the REMOTE engine to SAS files that are located on a
SAS/CONNECT server. The REMOTE engine communicates the requests for data to
the server. The server administers the requests to access SAS files on behalf of the client.

RLS provides the following:

• transparent access to SAS data that is located on a remote computer

• access to current SAS data because no client copy is made

• a reduction of disk space consumption because multiple copies of the data are not
created

• the ability to run a local graphical user interface and process SAS data that is located
on a remote computer

Programming Services 9

Administering Logging for SAS/CONNECT

About the SAS Logging Facility
The SAS/CONNECT server and the SAS/CONNECT spawner use the SAS logging
facility as the standard debugging tool in a SAS Foundation environment and in a SAS
Intelligence Platform deployment. To make the logging facility functional, you must
configure its properties in a logging configuration file. After you configure the file, you
can easily enable the logging facility by specifying the -LOGCONFIGLOC system
option in the SAS invocation.

Here are the primary components that are defined in the configuration file:

Loggers
specify the objects that are used to create log events for a specific aspect of an
application. A predefined set of loggers corresponds to the supported components
such as Root, Audit, Admin, App, IOM, and Perf.

Appenders
specify the output destinations for the log events. Examples include the
FileAppender, RollingFileAppender, DBAppender, and ARMAppender. A level of
severity is also associated with the log event. Examples are trace, debug, info, warn,
error, and fatal.

Pattern Layouts
specify the formats of the error messages that are associated with the log event.

For complete details about the component of the SAS logging facility, see SAS Logging:
Configuration and Programming Reference

Logging Configuration File
Here is a typical configuration file that defines the logging components:

<?xml version="1.0" ?>
<log4sas:configuration xmlns:log4sas="http://www.sas.com/rnd/Log4SAS/" debug="true"> 1

 <appender name="LOG" class="FileAppender" > 2

 <param name="File" value="c:\v9\spawner.log" />
 <layout>
 <param name="ConversionPattern" value="%d %-5p [%t] %c (%F:%L) - %m" /> 3

 </layout>
 <param name="threshold" value="all" />
 </appender>
 <root> 4
 <appender-ref ref="LOG" />
 <level value="all" />
 </root>
</log4sas:configuration>

1 DEBUG="TRUE" indicates that debugging is enabled.

2 CLASS="FileAppender" indicates that the log events are written to the file path c:
\v9\spawner.log.

10 Chapter 1 • SAS/CONNECT: Definitions and Services

3 The ConversionPattern parameter specifies a pattern layout that formats log
messages. It identifies the type of data, the order of the data, and the format of the
data that is generated in a log event and is delivered as output. In this example, the
date and time, the log level, the thread ID, and the logger constitute the log event.

4 The root logger controls the entire SAS log event and is at the highest level in the
logger hierarchy. If any other loggers are included in the logging configuration file,
they are located beneath the ROOT logger in the hierarchy. All other loggers inherit
the specified appender and threshold value of the root logger.

Invocation of the Logging Facility
The SAS logging facility is started in a SAS invocation. Here is a Windows example:

sas -logconfigloc winlog.xml

The -LOGCONFIGLOC option is used to specify the location of the logging
configuration file named winlog.xml, which is used to initialize the SAS logging facility.
The file specification that defines the location of the logging configuration file must be a
valid filename or a path and filename for your operating environment.

Triggers for Log Events
Log events are triggered for SAS/CONNECT under these circumstances:

• server sign-on via the SIGNON statement and the SAS/CONNECT spawner
invocation

• the beginning of the RSUBMIT statement and the occurrence of the ENDRSUBMIT
statement

• server sign-off via the SIGNOFF statement and the SAS/CONNECT spawner
termination

Note: SAS/CONNECT sign-on to and sign-off from a grid session is also supported. For
details, see Grid Computing in SAS .

Performance (such as response time, throughput, and availability) can also be measured
for SAS transactions such as a DATA step or a SAS procedure in a SAS/CONNECT
application by using the product SAS Application Response Measurement (ARM). To
enable ARM, you would insert ARM macros into the SAS/CONNECT application. For
details about implementing ARM in a SAS/CONNECT application, see SAS Interface to
Application Response Measurement (ARM): Reference and SAS Logging: Configuration
and Programming Reference.

Example of a Log Event
The data and the format of the log event are defined in the conversion pattern that is
specified in the configuration file. Here is an example of a log event:

 2008-06-25-10:24:22,234; WARN; 3; Appender.File; (yn14.sas.c:149);
Numeric maximum was larger than 8, am setting to 8.

Administering Logging for SAS/CONNECT 11

Accessibility Features in SAS Products
For information about accessibility for any of the products mentioned in this book, see
the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

12 Chapter 1 • SAS/CONNECT: Definitions and Services

Part 2

SAS/CONNECT Options

Chapter 2
SAS/CONNECT General SAS System Options . 15

13

14

Chapter 2

SAS/CONNECT General SAS
System Options

Dictionary . 15
AUTOSIGNON System Option . 15
COMAMID= System Option . 16
CONNECTMETACONNECTION System Option . 17
CONNECTPERSIST System Option . 20
CONNECTREMOTE= System Option . 21
CONNECTSTATUS System Option . 22
CONNECTWAIT System Option . 23
DMR System Option . 24
SASCMD= System Option . 25
SASFRSCR System Option . 27
SASSCRIPT= System Option . 27
SIGNONWAIT System Option . 29
SYSRPUTSYNC System Option . 30
TBUFSIZE= System Option . 32
TCPLISTENTIME= System Option . 34
TCPPORTFIRST= System Option . 35
TCPPORTLAST= System Option . 36

Dictionary

AUTOSIGNON System Option
Automatically signs on the client session to the server session, establishing a client/server connection
when a connection does not already exist.

Client: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Default: NOAUTOSIGNON

15

Syntax
AUTOSIGNON | NOAUTOSIGNON

Syntax Description
AUTOSIGNON

automatically signs on the client session to the server session for the subsequent
execution of an RSUBMIT command or statement.

Note: In order to terminate a client/server session after an RSUBMIT has
completed, you can do either of these:

• specify the NOCONNECTPERSIST system option

• issue an explicit SIGNOFF statement

NOAUTOSIGNON
does not automatically sign to the client session on the server session for the
subsequent execution of an RSUBMIT command or statement. In order to establish a
client/server connection, you must specify the SIGNON command or statement
explicitly.

Details
When the AUTOSIGNON system option is specified, the RSUBMIT command or
statement automatically executes a sign-on, and uses any SAS/CONNECT system
options in addition to options that are specified in the RSUBMIT statement. For
example, if you specify either the NOCONNECTWAIT system option or the
NOCONNECTWAIT option in the RSUBMIT command or statement, asynchronous
RSUBMITs will be the default for the entire connection.

For an example of using the AUTOSIGNON option with MP CONNECT, see “Example
5: Using MP CONNECT and the WAITFOR Statement” on page 178 .

See Also

Statements:

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

System Options:

• “CONNECTPERSIST System Option” on page 20

COMAMID= System Option
Identifies the communications access method for connecting a client and a server across a network.

Client: required

Server: required

Valid in: Client: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, Server: Configuration file, SAS invocation

Category: Communications: Networking and Encryption

16 Chapter 2 • SAS/CONNECT General SAS System Options

PROC OPTIONS
GROUP=

Communications

Default: TCP/IP for OpenVMS, UNIX, and Windows
XMS for z/OS

Syntax
COMAMID=access-method-ID

Syntax Description
access-method-ID

specifies the name of the communications access method that is used by a
SAS/CONNECT client to connect to a SAS/CONNECT server across a network.

Examples

Example 1
At the client, the following OPTIONS statement specifies the TCP/IP access method for
connecting to a server.

options comamid=tcp;

Example 2
At the server, the TYPE statement in a script file specifies options that are set when the
server session starts.

type "sas (dmr comamid=tcp noterminal no$syntaxcheck)" enter;

See Also

Book

• Communications Access Methods for SAS/CONNECT and SAS/SHARE

CONNECTMETACONNECTION System Option
Specifies whether a SAS/CONNECT server is authorized to access a SAS Metadata Server at server sign-
on.

Client: optional

Server: optional

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS system options
window

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: CMETACONNECTION

CONNECTMETACONNECTION System Option 17

Requirement: Grid sign-ons or sign-ons to a SAS/CONNECT server when there is a metadata
connection on the client

Syntax
CONNECTMETACONNECTION | NOCONNECTMETACONNECTION

Syntax Description
CONNECTMETACONNECTION

allows a SAS/CONNECT server to access a SAS Metadata Server at server sign-on
by providing a one-time supply of sign-on credentials. This option is on by default.

NOCONNECTMETACONNECTION
prevents the SAS/CONNECT server from automatically accessing the SAS Metadata
Server via a one-time supply of credentials during sign-on. Instead, the
SAS/CONNECT server must be a trusted peer of the SAS Metadata Server or the
credentials must be hardcoded directly in the SAS code to be executed in the server
session.

Details
When a SAS/CONNECT client session has an active metadata server connection and
signs on to a SAS/CONNECT server, the server is automatically given access to the SAS
Metadata Server for the duration of the SAS/CONNECT server session. The client
queries the SAS Metadata Server for the following credentials, which are passed to the
SAS/CONNECT server:

• SAS Metadata Server

• SAS Metadata Server port

• SAS Metadata Server user name

• SAS Metadata Server password (this is a special one-time use password and not the
user’s normal password)

Because these credentials are passed to the server, the server does not have to meet
either of the following requirements:

• to be a trusted peer of the SAS Metadata Server

• to have the credentials hardcoded in the SAS program to be executed in the server
session

The SAS/CONNECT server uses the temporary credentials to remain connected to the
SAS Metadata Server for the duration of the server session, rather than having to make
multiple connections to the SAS Metadata Server. This option offers convenience and
improves security. Since the option is on by default, it is not necessary to specify
CONNECTMETACONNECTION in your SAS program. However, if you want to
prevent the remote server from automatically connecting to the metadata server at sign-
on, you must specify the NOCONNECTMETACONNECTION in the options statement.
If you do this, you can still access the metadata server, but you must explicitly specify
the user ID and password in the SAS code (RSUBMIT statement).

Note: If you specify credentials using SAS system options for metadata (for example,
the METASERVER= or METAPORT= system options), these values take
precedence over any default values. For more information, see “Overview of System
Options for Metadata” in Chapter 5 of SAS Language Interfaces to Metadata.

18 Chapter 2 • SAS/CONNECT General SAS System Options

Examples

Example 1: Accessing Metadata Credentials for a Grid Execution
Here is an example of SAS code in which the CONNECTMETACONNECTION system
is enabled. The grdsvc_enable() function specifies that all server sessions be enabled for
a grid execution. Also, the SAS Application Server contains the definition for the logical
grid server that manages the grid environment.

Note: The CONNECTMETACONNECTION option could be omitted because it is the
default.

The AUTHDOMAIN= option in the LIBNAME statement specifies the name of the
authentication domain, which is a metadata object that manages the credentials (user ID
and password) that are associated with the specified domain. Specifying the
authentication domain is a convenient way to obtain the metadata-based user credentials
rather than having to explicitly supply them during server sign-on.

%put %sysfunc(grdsvc_enable(_ALL_, server=SASApp));
options CONNECTMETACONNECTION;
signon process=job1;
rsubmit;
libname mylib oracle authdomain=defaultAuth;
endrsubmit;

Example 2: Accessing Metadata Credentials for a Server Sign-on
In this example, the CONNECTMETACONNECTION option is used with the SIGNON
statement and the SERVER= option:

options CONNECTMETACONNECTION;
signon process=job1 server=SASApp;

Example 3: Supplying Explicit User Credentials for a Grid Execution
Here is an example in which NOCONNECTMETACONNECTION is used:

%put %sysfunc(grdsvc_enable(_ALL_, server=SASApp));
options NOCONNECTMETACONNECTION;
signon process=job1;
rsubmit;
libname mylib oracle user=tom password=apex;
endrsubmit;

The user ID and password are explicitly specified in SAS code in order to access the
SAS Metadata Repository.

See Also

Statement

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

CONNECTMETACONNECTION System Option 19

CONNECTPERSIST System Option
Specifies whether a connection between a client and a server persists (continues) after the RSUBMIT has
completed.

Client: optional

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: CPERSIST

Default: CONNECTPERSIST

Syntax
CONNECTPERSIST | NOCONNECTPERSIST<>

Syntax Description
CONNECTPERSIST

continues a client/server connection after the RSUBMIT (with or without automatic
sign-on) has completed. The server is not automatically signed off (disconnected
from) the client.

NOCONNECTPERSIST
discontinues a client/server connection after the RSUBMIT (with or without
automatic signon) has completed. The server is automatically signed off
(disconnected from) the client.

Details
The CONNECTPERSIST option is most useful when automatic sign-on (specified by
using the AUTOSIGNON option) is enabled.

A continued connection after the completion of a current RSUBMIT enables you to
perform subsequent processing tasks within the same client/server session without
having to sign on again. To terminate a persistent connection, you must perform an
explicit SIGNOFF.

In addition to being a system option, CONNECTPERSIST can be set as an option in the
RSUBMIT statement. The option in the RSUBMIT statement or command takes
precedence over the system option.

See Also

Statement

• “AUTOSIGNON System Option” on page 15

20 Chapter 2 • SAS/CONNECT General SAS System Options

System Option

• “RSUBMIT Statement and Command” on page 139

CONNECTREMOTE= System Option
Identifies the server session that a SAS/CONNECT client connects to.

Client: required

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: CREMOTE=, REMOTE=, PROCESS=

Syntax
CONNECTREMOTE=server-ID

Syntax Description
server-ID

identifies the specific server session that the client connects to. This ID might
correspond to the name of the machine that the client connects to. If connecting to a
server session on a multi-processor machine (that is, a machine that is equipped with
SMP hardware), the ID can be a descriptive name that you assign to the session.

Details
In addition to being a system option, CONNECTREMOTE= can be set as an option in
the RSUBMIT and SIGNON statements. The option in an RSUBMIT or SIGNON
statement or command takes precedence over the system option.

Examples

Example 1: CONNECTREMOTE= in SIGNON
At the client, the following OPTIONS statement specifies the TCP/IP access method for
connecting to a SAS session on a machine named APEX.

options comamid=tcp connectremote=apex;
signon;

Alternatively, you can specify the CONNECTREMOTE= option in the SIGNON
statement.

signon connectremote=apex;

After a successful signon, the CONNECTREMOTE= value is updated.

CONNECTREMOTE= System Option 21

Example 2: CONNECTREMOTE= in RSUBMIT
The following OPTIONS statement specifies the TCP/IP access method for connecting
to a SAS session on the machine named APEX, which connects to the session ID of the
OpenVMS server that statements are remotely submitted to.

options comamid=tcp connectremote=apex;
rsubmit;
 statements for OpenVMS server
endrsubmit;

The following OPTIONS statement specifies the TCP/IP access method and the macro
variable HOST1, which contains the IP address of a UNIX server that the statements are
remotely submitted to.

%let host1=IP-address;
options comamid=tcp connectremote=host1;
rsubmit;
 statements for UNIX server
endrsubmit;

Alternatively, you can specify the session ID directly in the RSUBMIT statement.

rsubmit apex;
 statements for OpenVMS server
endrsubmit;
%let host1=IP-address;
rsubmit host1;
 statements for UNIX server
endrsubmit;

After a successful RSUBMIT, the CONNECTREMOTE= value is updated.

See Also

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

CONNECTSTATUS System Option
Specifies the default setting for the display of the Transfer Status window.

Client: optional

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: CSTATUS, STATUS

Default: CONNECTSTATUS

22 Chapter 2 • SAS/CONNECT General SAS System Options

Syntax
CONNECTSTATUS | NOCONNECTSTATUS

Syntax Description
CONNECTSTATUS

specifies that the Transfer Status window is displayed during file transfers.

NOCONNECTSTATUS
specifies that the Transfer Status window is not displayed during file transfers.

Details
For synchronous processing, the CONNECTSTATUS system option specifies whether
the Transfer Status window is displayed during a PROC UPLOAD or a PROC
DOWNLOAD. This system option can be overridden by specifying the
CONNECTSTATUS= option in subsequent PROC UPLOAD, PROC DOWNLOAD,
RSUBMIT, and SIGNON statements.

For asynchronous processing (NOCONNECTWAIT), the CONNECTSTATUS system
option and the CONNECTSTATUS= option in a SIGNON statement are ignored. To
enable the Transfer Status window for asynchronous processing, you must specify
CONNECTSTATUS=YES in the PROC UPLOAD, PROC DOWNLOAD, or
RSUBMIT statement.

See Also

Conceptual Information:

• “Transfer Status Window” on page 241

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

Procedures

• Chapter 24, “DOWNLOAD Procedure,” on page 265

• Chapter 23, “UPLOAD Procedure,” on page 245

CONNECTWAIT System Option
Specifies whether remote submits are executed synchronously or asynchronously.

Client: optional

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

CONNECTWAIT System Option 23

Alias: CWAIT

Default: CONNECTWAIT

Syntax
CONNECTWAIT | NOCONNECTWAIT

Syntax Description
CONNECTWAIT

specifies that RSUBMIT statements are executed synchronously. Synchronous
processing means that server processing must be completed before control is
returned to the client session.

NOCONNECTWAIT
specifies that RSUBMIT statements are executed asynchronously. Asynchronous
processing permits the client or multiple server processes to execute in parallel.
Control is returned to the client session immediately after an RSUBMIT begins
execution to allow for continued processing in the client session or other server
sessions.

Details
The CONNECTWAIT system option specifies whether remote submits are executed
synchronously. The default setting can be overridden by setting the CONNECTWAIT=
option in the SIGNON statement or in subsequent RSUBMIT statements. The option in
the RSUBMIT or SIGNON statement or command takes precedence over the system
option.

If NOCONNECTWAIT is specified, you might also want to specify the CMACVAR=
option in the RSUBMIT statement. Setting CMACVAR= enables you to learn the status
of the current asynchronous RSUBMIT (whether it has completed or is still in progress).

See Also

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

DMR System Option
Invokes a server session.

Server: required

Valid in: configuration file, SAS invocation

Category: Environment Control: Initialization and operation

PROC OPTIONS
GROUP=

Environment Control

24 Chapter 2 • SAS/CONNECT General SAS System Options

Syntax
DMR

Details
The DMR system option must be specified either in the server CONFIG.SAS file or in
the TYPE statement in a SAS/CONNECT script file that starts a SAS session.
Alternatively, it executes by default when connecting to a spawner.

The server session receives input from the client session and sends log and output lines
to the client's Log and Output windows or files.

SASCMD= System Option
Specifies the command that starts a server session on a symmetric multiprocessing (SMP) computer.

Client: optional

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Syntax
OpenVMS, UNIX, Windows

SASCMD=<“SAS-command<SAS-system-options> ” | “!sascmd SAS-system options”>

z/OS
SASCMD=<“:SAS-system-options” | “!sascmd SAS-system-options” >

Syntax Description
SASCMD= <“SAS-command <SAS-system-options>” | “!sascmd SAS-system-
options”>

under the OpenVMS, UNIX, and Windows operating environments, this command
starts a server session on a multi-processor computer. The TCP/IP access method is
used to connect to the server session.

!sascmd specifies that the same SAS command that was used to invoke the client
session should be used to invoke the server session. The SAS command can be
specified with additional or overriding SAS system options.

SASCMD= <“:SAS–system–options” | “!sascmd SAS-system-options”>
under the z/OS operating environment, starts a server session on a multiprocessor
computer, and passes values for the following SAS system options to the server
session: DMR, COMAMID=, REMOTE=, SASHELP=, SASMSG=, SASAUTOS=,
and CONFIG=. You might also specify additional SAS system options to be passed
to the server session. The XMS access method is used to connect to the server
session.

SASCMD= System Option 25

The fork command under UNIX is used to spawn an MVS BPX address space,
which inherits the same STEPLIB and USERID as the client address space.

Details
SASCMD= is most useful for starting multiple sessions to run asynchronously on
multiprocessor computers. You can also use SASCMD= to develop an application on a
single-processor computer that will be executed later on a multi-processor computer.

In addition to being a system option, SASCMD= can be set as an option in the SIGNON
and the RSUBMIT statements or commands. The option in an RSUBMIT or SIGNON
statement or command takes precedence over the system option.

Examples

Example 1
The following OPTIONS statement invokes a SAS session.

options sascmd="sas";

Example 2
The following OPTIONS statement invokes a server session on a computer under the
z/OS operating environment and sets the MEMSIZE= and NONUMBER options.

options sascmd=":memsize=64M nonumber";

Example 3
The following OPTIONS statement invokes a server session on a computer under the
z/OS operating environment with no additional SAS options.

options sascmd="any-string";

Example 4
The following OPTIONS statement specifies a script file to invoke SAS.

options sascmd="mysas.bat";

For the preceding example, the following code is contained in the text file
MYSAS.BAT.

cd "C:\Program Files\SAS System\9.0"
mkdir mywork
sas -nosyntaxcheck -work "mywork" %*

Note: The %* positional parameter enables you to specify additional SAS options when
you invoke SAS.

When the SASCMD= option is executed, the MYSAS.BAT script is executed.

See Also

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

26 Chapter 2 • SAS/CONNECT General SAS System Options

SASFRSCR System Option
Is a read-only option that contains the fileref that is generated by the SASSCRIPT= option.

Client: optional

Server: optional

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Syntax
SASFRSCR

Details
The SASFRSCR option is not explicitly specified. A value for SASFRSCR is generated
only if SASSCRIPT is specified. You can read the value for this option in an application
that is written in the SAS Component Language (SCL), which prompts a user for the
correct SAS/CONNECT sign-on script.

SASSCRIPT= System Option
Specifies one or more locations for SAS/CONNECT server sign-on script files.

Client: optional

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Default: Varies by operating environment

Syntax
SASSCRIPT= “dir-name” |<“dir-name-1”, ... ,“dir-name-n”> |“fileref” |<“fileref-1”, ... ,“fileref-n”>

Syntax Description
“dir-name” | fileref

specifies the name of one or more directories that contain SAS/CONNECT script
files. Enclose the directory name in double or single quotation marks. The directory
name can also be specified as a fileref.
OpenVMS specifics: SAS$ROOT:[TOOLS]
UNIX specifics: !sasroot/misc/connect

SASSCRIPT= System Option 27

Windows specifics: !sasext0\connect\saslink
z/OS specifics: &prefix.CTMISC

Details
If the CSCRIPT= option is specified in the SIGNON statement and the specified script
file is not located in the current directory, the location that is specified in the
SASSCRIPT= option is used to find the specified script file.

If quotation marks are omitted from the value, SAS can misinterpret the value as a
physical filename and an error condition can result. Using quotation marks ensures that
the value is correctly interpreted as a directory path.

The SASSCRIPT= option also enables you to find the location of a script file that has
been configured as a property in the SAS Metadata Repository. The script path is among
the properties of the SAS/CONNECT server component in the SAS Application Server
that is stored in the SAS Metadata Repository.

Note: In order to obtain a script file path from the SAS Metadata Repository, you must
have access to the repository. These SAS options can be used to configure access to
the SAS Metadata Repository: METAAUTORESOURCES=, METACONNECT=,
METAPASS=, METAPORT=, METAPROFILE=, METAPROTOCOL=,
METAREPOSITORY=, METASERVER=, and METAUSER=.

Examples

Example 1: Assigning the File Path to SASSCRIPT=
In this example, the SASSCRIPT= option is used to specify an alternative file path to
scripts for server sign-ons under the Windows operating environment.

options sasscript= "c:\my\favorite\scripts";

After the SASSCRIPT= option has been specified, the script can be invoked as follows:

signon remhost cscript="myscr.scr";

When myscr.scr is not located in the default location, a search for the script will be
made at the location that is specified in the SASSCRIPT= option.

Here is an example in the SAS log of the representation of the SASSCRIPT= option and
the assigned value:

SASSCRIPT=("c:\my\favorite\scripts")

SAS surrounds the quoted file path with parentheses.

Note: The SASSCRIPT= option is an alternative to the RLINK fileref that is used in the
FILENAME statement for identifying the location of a script file.

Example 2: Assigning a Fileref to SASSCRIPT=
In this example, a FILENAME statement is used to assign the filename TESTFILE to
the fileref POINTER. The OPTIONS statement is used to assign the SASSCRIPT
system option to the value POINTER, which is a fileref to the filename TESTFILE. The
fileref is not enclosed in quotation marks.

filename pointer 'testfile';
options sasscript=pointer;

28 Chapter 2 • SAS/CONNECT General SAS System Options

Example 3: Obtaining the Script File Path from the SAS Metadata
Repository
In this example, the path to the server sign-on script has been configured as a property in
the SAS Metadata Repository. Here is the code to access the SAS Metadata Repository
and to find out the script path:

options metaserver="max.apex.na.com";
signon serverv="SASApp";

The METASERVER= option is used to specify the fully qualified domain name of the
computer on which the SAS Metadata Server runs. The SIGNON statement and the
SERVERV= option are used to produce a list of the properties of the SAS/CONNECT
server component in the SAS Application Server that is stored in a SAS Metadata
Repository. The name of the SAS Application Server is “SASApp.”

Here is an excerpt of the output that is sent to the SAS Log:

1 options metaserver="max.apex.na.com";
2 signon serverv="SASApp";
NOTE: Server= SASApp - Connect Server
 Remote Session ID= remhost
 ServerComponentID= A5SXFC1R.AU000002
 Remote Host= max.apex.na.com
 Communication Protocol=TCP
 Port= 7551
 Scriptpath= F:\admin\work\favescript.scr
 AuthDomain= DefaultAuth
 Wait= Yes
 SignonWait= Yes
 Status= Yes
 Notify= No

Knowing the script path and the script name, in a client session, you can sign on to a
server session. Here is an example:

options sasscript= "F:\admin\work";
signon remhost cscript="favescript.scr";

Here is an alternative way to sign on to a server session:

signon remhost cscript="F:\admin\work\favescript.scr";

See Also

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

SIGNONWAIT System Option
Specifies whether a SAS/CONNECT sign-on should be executed asynchronously or synchronously.

Client: optional

Server: optional

SIGNONWAIT System Option 29

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: CONNECTSWAIT, SWAIT

Default: SIGNONWAIT

Syntax
SIGNONWAIT | NOSIGNONWAIT

Syntax Description
SIGNONWAIT

specifies that a SAS/CONNECT SIGNON statement will execute synchronously.
Synchronous processing means that a sign-on to a server session must complete
before control is returned to the client session.

NOSIGNONWAIT
specifies that a SAS/CONNECT SIGNON statement will execute asynchronously.
Asynchronous processing permits sign-ons to multiple server sessions to execute in
parallel. Control is returned to the client session immediately after a sign-on when
NOSIGNONWAIT is specified.

Details
You can use NOSIGNONWAIT to start multiple server sessions in parallel. Parallelism
reduces the total amount of time that would be used to start individual connections to
server sessions. This time savings allows the client session to do other processing, such
as submitting units of work remotely to a server session, as soon as sign-on is complete.

If NOSIGNONWAIT is specified, you might also want to specify the CMACVAR=
option in the SIGNON statement. Setting CMACVAR= enables you to learn the status
of the current asynchronous SIGNON (whether it has completed or is still in progress).

In addition to being a system option, SIGNONWAIT can be set as an option in the
RSUBMIT and SIGNON statements. The option in the RSUBMIT or SIGNON
statement or command takes precedence over the system option.

See Also

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

SYSRPUTSYNC System Option
Sets %SYSRPUT macro variables in the client session when the %SYSRPUT statements are executed
rather than when a synchronization point is encountered.

Client: optional

30 Chapter 2 • SAS/CONNECT General SAS System Options

Server: optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: CSYSRPUTSYNC, NOCSYSRPUTSYNC

Default: NOSYSRPUTSYNC

Syntax
SYSRPUTSYNC | NOSYSRPUTSYNC

Syntax Description
SYSRPUTSYNC

specifies that the client session's macro variables will be updated when the client
session receives the results of the server session's execution of the %SYSRPUT
macro. The results are delivered in the form of a packet. Specifying YES does not
mean that the client's macro variables will be updated immediately after the server's
execution of the %SYSRPUT macro variable. YES means that the client's macro
variables will be updated when the client receives the packet from the server.
Therefore, the exact time that the client's macro variables are updated will depend on
the availability of the client to receive the packet. If the client is busy, the server
waits until the client is ready to receive the packet.

NOSYSRPUTSYNC
specifies that the client session's macro variables will be updated when a
synchronization point is encountered.

Details
This option is useful only when executing an asynchronous RSUBMIT, which is enabled
via these methods:

• NOCONNECTWAIT system option

• CONNECTWAIT=NO option in RSUBMIT

• CONNECTWAIT=NO option in SIGNON

In addition to being a system option, CSYSRPUTSYNC= can be specified as an option
in the RSUBMIT statement. The CSYSRPUTSYNC= option in the RSUBMIT
statement or command takes precedence over the system option.

By contrast, a synchronous RSUBMIT is enabled via these methods:

• CONNECTWAIT system option

• CONNECTWAIT=YES option in RSUBMIT

• CONNECTWAIT=YES option in SIGNON

A synchronous RSUBMIT causes macro variables to be updated when a synchronization
point is encountered.

SYSRPUTSYNC System Option 31

Note: You should not change the value of the SYSRPUTSYNC= option between
consecutive asynchronous RSUBMIT statements. Changing SYSRPUTSYNC=
between asynchronous RSUBMIT statements causes unpredictable results.

See Also

Conceptual information

• “Synchronization Points” on page 166

Statements

• “RSUBMIT Statement and Command” on page 139

• “SIGNON Statement and Command” on page 63

TBUFSIZE= System Option
Specifies the size of the buffer that is used by the SAS application layer for transferring data between a
client and a server across a network.

Client: optional

Server: optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Default: Varies by operating environment. Value is determined by the TCP stack on the host
operating system.

Syntax
TBUFSIZE=buffer-size-in-bytes

Syntax Description
buffer-size-in-bytes

specifies the size of the buffer that SAS/CONNECT uses for transferring data.
Note: buffer-size-in-bytes must be specified as a multiple of 1024 bytes. You can

also specify the value in kilobytes using the format nK.

Details
The TBUFSIZE= option defines the buffer for the SAS application layer. The
TCPMSGLEN= option defines another buffer for the SAS communications layer. For
more information about TCPMSGLEN=, which is used only by the TCP/IP
communications access method, see the topic that is appropriate to your operating
environment in Communications Access Methods for SAS/CONNECT and SAS/SHARE.

32 Chapter 2 • SAS/CONNECT General SAS System Options

Table 2.1 Summary of Attributes for the TBUFSIZE= and TCPMSGLEN= Options

System Option Controlling SAS Layer Purpose of Buffer

TBUFSIZE= SAS Application SAS/CONNECT uses the
buffer to transfer data to the
communications layer.

TCPMSGLEN= SAS Communications The TCP/IP access method
uses the buffer to transfer
data to a client or a server.

The SAS application layer does the following:

1. packs and compresses data records into a buffer until all the data has been processed
or the buffer is full.

2. sends a buffer to the communications layer. Unless it is explicitly set using the
TBUFSIZE= or TCPMSGLEN= options, the default buffer size is determined by the
TCP stack on the host operating system. SAS/CONNECT uses the default TCP stack
settings and auto tuning (if implemented on the stack) to ensure optimal network
performance.

Using the TBUFSIZE= option to maximize buffer size for the SAS application layer
reduces the number of calls that the application layer makes to the communications layer
for a data transfer. A reduction of calls to the communications layer saves resources and
improves operating environment and network performance. Other factors, such as the
amount of data and the network bandwidth, must be considered to optimize buffer
performance.

The SAS communications layer does the following:

1. receives a buffer from the SAS application layer.

2. sends a buffer to the client or to the server. Unless it is explicitly set using the
TBUFSIZE= or TCPMSGLEN= options, the default buffer size is determined by the
TCP stack on the host operating system. SAS/CONNECT uses the default TCP stack
settings and auto tuning (if implemented on the stack) to ensure optimal network
performance.

As with the TBUFSIZE= option, an optimal value assigned to TCPMSGLEN= can save
resources and improve network performance. TCPMSGLEN= can be set to transfer the
entire buffer it receives or to divide the data into multiple transfers.

To change the size of the TCP buffer, the TCPMSGLEN= option is specified at both the
client and the server. If the client and the server do not use identical values for
TCPMSGLEN=, the smaller buffer size is used.

In addition to being a system option, TBUFSIZE= can be set as an option in the
SIGNON statement. The option in the SIGNON statement or command takes precedence
over the system option.

CAUTION:
Do not specify the TBUFSIZE= option in the server session. Specify the
TBUFSIZE= Option in the Client Session Only

If you specify the TBUFSIZE= option in a remote SAS invocation that runs an
AUTOEXEC file, the allocated buffers might be insufficient to complete the processing
of the AUTOEXEC file. Although the client can successfully sign on to the server
session, the error message that would alert you to insufficient buffers might not be

TBUFSIZE= System Option 33

written to the server log immediately. Instead, the error message would be logged
following the client's next request for server processing.

Specify the TBUFSIZE= option in the SIGNON statement in the client session when
signing on the server session.

Example
In the following OPTIONS statement, the TBUFSIZE= option is used to set the buffer
size to 64K:

options tbufsize=65536;
signon;

Alternatively, you can specify tbufsize=64k.

See Also

System Option

• Communications Access Methods for SAS/CONNECT and SAS/SHARE

Statement

• “SIGNON Statement and Command” on page 63

TCPLISTENTIME= System Option
Specifies the amount of time a SAS/CONNECT server listens for a client to connect before terminating the
CONNECT server session.

Client: optional

Valid in: Configuration file, SAS invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Default: 0 (no time limit)

Syntax
TCPLISTENTIME= listen-time-in-seconds | MIN | MAX

Syntax Description
listen-time-in-seconds

Specifies the amount of time in seconds that a SAS/CONNECT server listens for a
client to connect before terminating the session. listen-time-in-seconds is any
nonnegative integer less than 601. A value of 0 means there is no time limit.

MIN
The minimum value is 0 (no time limit).

MAX
The maximum value is 600.

34 Chapter 2 • SAS/CONNECT General SAS System Options

Details
The TCPLISTENTIME= option is a portable SAS system option that allows you to
control idle and unresponsive signon connections. The option allows you to specify how
long (in seconds) a server “listens” for a response from the client during signon before it
exits automatically. The default value for the session time-out is 0 (meaning, no time
limit). The maximum value is 600 seconds.

The following are examples of valid TCPLISTENTIME= values:

• TCPLISTENTIME=MIN

• TCPLISTENTIME=1

• TCPLISTENTIME= 90

• TCPLISTENTIME=MAX

TCPPORTFIRST= System Option
Specifies the first value in a range of TCP/IP ports for a client to use to connect to a server.

Server: optional

Valid in: Configuration file, SAS invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Syntax
TCPPORTFIRST=n

Syntax Description
n

specifies the first TCP/IP port in a range of ports for a client to use to connect to a
server.

Details

To assign the range of ports, assign the first port by using the TCPPORTFIRST= system
option and the last port by using the TCPPORTLAST= system option. To restrict the
connection to one port, specify the same value for both options. The TCPPORTFIRST=
option is valid only in a SAS/CONNECT server session.

Operating Environment Information
Valid values for this option are specific to a given operating environment. For more
information, see the SAS documentation for your operating environment, or contact your
system administrator for information about valid values.

TCPPORTFIRST= System Option 35

TCPPORTLAST= System Option
Specifies the last value in a range of TCP/IP ports for a client to use to connect to a server.

Server: optional

Valid in: configuration file, SAS invocation

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Syntax
TCPPORTLAST=n

Syntax Description
n

specifies the last TCP/IP port in a range of ports for a client to use to connect to a
server.

Details

To assign the range of ports, assign the first port by using the TCPPORTFIRST= system
option and the last port by using the TCPPORTLAST= system option. To restrict the
connection to one port, specify the same value for both options. The TCPPORTLAST=
option is valid only in a SAS/CONNECT server session.

Operating Environment Information
Valid values for this option are specific to a given operating environment. For more
information, see the SAS documentation for your operating environment, or contact your
system administrator for information about valid values.

36 Chapter 2 • SAS/CONNECT General SAS System Options

Part 3

Starting and Stopping
SAS/CONNECT Software

Chapter 3
Starting and Stopping SAS/CONNECT . 39

Chapter 4
Using SAS/CONNECT Script Files . 53

Chapter 5
Syntax for the SIGNON and the SIGNOFF Statements and
Commands . 63

Chapter 6
Syntax for the FILENAME Statement . 85

Chapter 7
SAS Component Language (SCL) Functions and Options 89

Chapter 8
SAS/CONNECT Script Statements . 95

Chapter 9
Sign-On Troubleshooting . 105

37

38

Chapter 3

Starting and Stopping
SAS/CONNECT

Starting SAS and Using Syntax Checking . 39

Starting SAS/CONNECT . 40

Specifying a Communications Access Method . 40

Signing On to the Server . 41
Sign On to a Server That Is Defined in the SAS Metadata Repository 41
Sign On to the Same Multiprocessor Computer . 42
Sign On Using a Spawner . 44
Sign On Using a Telnet Daemon . 47

Interfaces for Starting and Stopping SAS/CONNECT . 47
Types of Interfaces for Starting and Stopping SAS/CONNECT 47
Using the SAS Windowing Environment to Start and Stop SAS/CONNECT 48
Using the Program Editor Window . 50
Using the Autoexec File . 51

Starting SAS and Using Syntax Checking
In the SAS invocation for the non-interactive server session, consider whether to specify
syntax checking using the SYNTAXCHECK or NOSYNTAXCHECK system options.

SYNTAXCHECK
uses additional resources to validate SAS statements while producing limited results.
For example, the first instance of a syntax error triggers syntax checking, which
automatically sets the value of the OBS= system option to 0. Consequently, no
observations can be created by subsequent SAS statements in the program. For
programs that are still under development and that might contain errors, consider
using the SYNTAXCHECK option.

NOSYNTAXCHECK
enables continuous processing of statements regardless of syntax error conditions.
When executing debugged production programs that are unlikely to encounter errors,
consider using the NOSYNTAXCHECK option.

You can specify the NOSYNTAXCHECK option when signing on to a server session on
the same symmetric multi-processing (SMP) computer that the client session is running
on. This option is most useful when client and server sessions run on SMP hardware.
SAS invocations can be specified using the SASCMD= system option and the
SASCMD= option in the RSUBMIT and in the SIGNON statements. For details, see

39

“SASCMD= System Option” on page 25 , RSUBMIT SASCMD= on page 150 , and
SIGNON SASCMD= on page 73.

Here is an example of a SAS invocation that runs on the same computer at which the
client session runs:

signon smp sascmd="sas -nosyntaxcheck -noterminal";

Here is an example of a Windows command file named mysas.bat:

cd "C:\Program Files\alpair\SAS\V9.2"
mkdir mywork
sas %* -nosyntaxcheck -work "mywork"

%* adds the appended TCP/IP access method options to the SAS invocation in
mysas.bat.

To execute the command file, specify its name as the value for SASCMD=.

options sascmd="mysas.bat";

For details about the NOSYNTAXCHECK and NOTERMINAL system options, see
SAS System Options: Reference.

Starting SAS/CONNECT
Regardless of the interface that is used to start or stop SAS/CONNECT, the basic tasks
are the same. For details about the interfaces, see “Interfaces for Starting and Stopping
SAS/CONNECT” on page 47.

For information on how to start SAS/CONNECT from a SAS/CONNECT client session
see the following sections:

• “Specifying a Communications Access Method ” on page 40 to access the server
computer

• “Signing On to the Server ” on page 41

Specifying a Communications Access Method
To make a SAS/CONNECT client/server connection, in the client session, you must
specify TCP/IP as the access method to communicate with the computer that the server
session runs on.

Note: TCP/IP is the default communications access method for most operating
environments. If the client/server sessions run under the z/OS operating
environment, you can specify the XMS access method.

Example:

options comamid=tcp;

For details about using communications access methods, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE

40 Chapter 3 • Starting and Stopping SAS/CONNECT

Signing On to the Server

Sign On to a Server That Is Defined in the SAS Metadata Repository

About the SAS Metadata Repository
The SAS Metadata Repository is a collection of files that store metadata about SAS
applications that execute in a SAS Intelligence Platform environment. In this context,
SAS/CONNECT sign-on properties might already be stored as metadata in a metadata
repository. Accessing a metadata server, you can continue to execute SAS/CONNECT
applications in the traditional interactive and batch execution modes, but with the
convenient access to configured sign-on properties. This access means that you do not
need to specify SAS options for sign-on in your code. For details about the SAS
Intelligence Platform, see SAS Intelligence Platform: Overview.

Access the SAS Metadata Server
Your client computer must be able to access the SAS Metadata Server in order to sign on
to a SAS/CONNECT server that has been defined in the SAS Metadata Repository. You
can access the SAS Metadata Server by specifying certain SAS system options. Here is
an example:

options metaserver="max.apex.na.com"
metaport=8561
metaprotocol="bridge"
metauser="domain\joe"
metapass="*******";

In this example, a user submits the appropriate credentials to access the SAS Metadata
Server, which runs on the computer max.apex.na.com.The bridge network protocol
is used to communicate with the SAS Metadata Server via port 8561. For details about
these system options, see SAS Language Interfaces to Metadata.

Sign On to the SAS Application Server
After you access the SAS Metadata Server, you can sign on to the SAS/CONNECT
server component of the SAS Application Server. In the SAS Open Metadata
Architecture, the metadata for a SAS Application Server specifies one or more server
components that provide SAS services to a client. You must know the name of the SAS
Application Server.

Before sign-on, you can see a list of the configured sign-on properties for the SAS
Application Server. In this example, the name of the SAS Application Server is
SASMain.

options metaserver="max.apex.na.com"
metaport=8561
metauser="domain\joe"
metapass="*******"
metaprotocol="bridge";
signon serverv="SASMain";

For details about SAS system options METASERVER, METAPORT, METAUSER,
METAPASS, METAPROTOCOL, see SAS Language Interfaces to Metadata and SAS
System Options: Reference.

Signing On to the Server 41

The SERVERV= option in the SIGNON statement displays the properties of the
SAS/CONNECT server component of the SAS Application Server, which is defined in
the SAS Metadata Repository.

Note: If the client session is not configured to access the SAS Metadata Server, SAS
displays a pop-up window in which you can configure access to the SAS Metadata
Server.

Here is an excerpt of the output that is sent to the SAS Log:

1 options metaserver="max.apex.na.com";
2 signon serverv="SASMain";
NOTE: Server= SASMain - Connect Server
 Remote Session ID= remhost
 ServerComponentID= A5SXFC1R.AU000002
 Remote Host= max.apex.na.com
 Communication Protocol=TCP
 Port= 7551
 AuthDomain= DefaultAuth
 Wait= Yes
 SignonWait= Yes
 Status= Yes
 Notify= No

The output includes properties that control server sign-on and server session execution.
These connection properties are saved and stored in the metadata repository via SAS
Management Console. For details, see the SAS Management Console: Guide to Users
and Permissions or the online Help that is accessible from SAS Management Console.

After you view the sign-on properties, you can sign on to the server session. Here is an
example:

signon server="SASMain";

A sign-on to the SAS Application Server that is named SASMain implies a
SAS/CONNECT server sign-on.

Sign On to the Same Multiprocessor Computer

Tasks
If your client computer is equipped with SMP, and if you want to run one or more server
sessions on your computer, perform these tasks:

1. “Specify the Server Session” on page 42.

2. “Use the SASCMD Option to Specify SAS” on page 43.

3. Sign On to the Server Session (example) on page 43.

TCP/IP is used on SMP computers for OpenVMS, UNIX, and Windows. XMS is used
on SMP computers for z/OS only.

Specify the Server Session
You can specify the server session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

You can also specify the server session in the SIGNON statement or command:

SIGNON session-ID;

42 Chapter 3 • Starting and Stopping SAS/CONNECT

session-ID must be a valid SAS name that is 1 to 8 characters in length. It is the name
that you assign to the server session on the same multiprocessor computer.

Note: PROCESS= and CONNECTREMOTE= can be used interchangeably. For details,
see “CONNECTREMOTE= System Option” on page 21.

For details about the SIGNON= statement, see Chapter 5, “Syntax for the SIGNON and
the SIGNOFF Statements and Commands,” on page 63.

Use the SASCMD Option to Specify SAS
Use the SASCMD option to specify the SAS command and any additional options that
you want to use to start SAS in a server session on the same multi-processor computer.

The SASCMD option can be specified in an OPTIONS statement:

OPTIONS SASCMD="SAS-command" | "!SASCMD" | "!sascmdv" | "host-command-file";

This option can also be specified directly in the SIGNON statement or command:

UNIX Example:

SIGNON name SASCMD="!SASCMD -memsize 64M -nonumber";

z/OS Example:

options sascmd=":memsize=64M nonumber";

The -DMR option is automatically appended to the command. If !SASCMD or !
SASCMDV is specified, SAS/CONNECT starts SAS on the server by using the same
command that was used to start SAS for the current client session.

Note:

• Under the UNIX and Windows operating environments, !SASCMDV shows
the SAS invocation. Under OpenVMS, !SASCMDV shows a symbol.

• In order to execute additional commands before SAS is invoked, you can
write a script that contains the SAS start-up commands that are appropriate
for the operating environment. Specify this script as the value in the
SASCMD= option.

For details, see “SASCMD= System Option” on page 25 , and Chapter 5, “Syntax for the
SIGNON and the SIGNOFF Statements and Commands,” on page 63.

Examples: Signing On to the Server Session
Example 1:

In the following example, TCP is the access method, SAS1 is the name of the server
session, and SAS_START is the command that starts SAS on the same multi-processor
computer.

options comamid=tcp;
signon sas1 sascmd='sas_start';

Example 2:

In the following example, OPTIONS statements set the values for the COMAMID= ,
SASCMD=, and PROCESS= options. The SASCMD= option identifies SAS_START as
the command that starts SAS. The PROCESS= option identifies the server session on the
same multi-processor computer. Because the SASCMD= and the PROCESS= options
are defined, only a simple SIGNON statement is needed.

Signing On to the Server 43

options comamid=tcp sascmd="sas_start";options process=sas1;signon;

Sign On Using a Spawner

Ensure That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the server.
For details, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Note: The system administrator for the computer that the spawner runs on must start the
spawner. The spawner program on the server cannot be started in the client session.

Specify the Server and the Spawner Service
The name of the server can be specified by using an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

The name can also be specified by using the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

node-name is based on the server that you are connecting to. node-name must be a valid
SAS name that is 1 to 8 characters in length and is one of the following:

• the short computer name of the server you are connecting to. This name must be
defined in your Domain Name Server (DNS) or in the HOSTS file in the operating
environment that the client session runs under.

• a macro variable that contains either the IP address or the name of the server that you
are connecting to.

For UNIX and OpenVMS only:

The process for evaluating node–name follows:

1. If node-name is a macro variable, the value of the macro variable is passed to the
operating environment's GETHOSTBYNAME function.

2. If node-name is not a macro variable or the value of the macro variable does not
produce a valid value, node-name is passed to the GETHOSTBYNAME function.

3. If GETHOSTBYNAME fails to resolve node-name, an error message is returned and
the sign-on fails.

Note: The order in which the GETHOSTBYNAME function calls the DNS or
searches the HOSTS file to resolve node-name varies based on the operating
environment implementation.

You specify service-name when connecting to a server that runs a spawner program that
is listening on a port other than the Telnet port. If the spawner was started by using the -
SERVICE spawner option, you must specify an explicit service-name. The value of
service-name and the value of the -SERVICE spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with service-
name.

Example 1:

REMHOST is the name of the node on which the spawner runs, and PORT1 is the name
of the service that is defined in the client session. The client service PORT1 must be
assigned to the same port that the spawner is listening on.

signon remhost.port1;

44 Chapter 3 • Starting and Stopping SAS/CONNECT

Example 2:

In the following example, the macro variable REMHOST is assigned to the fully
qualified name of the computer on which the server runs. This server has a spawner
running that is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node name REMHOST and the service name 5050, which
is the explicit port value.

%let remhost=pc.rem.us.com;signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable:

%let remhost=pc.rem.us.com 5050;signon remhost;

Specify a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a spawner
without a script. If you do not use a sign-on script and if the spawner is running secured,
you must supply a user ID and password to sign on to the spawner.

Note: (Windows only) If you use SSPI, supplying a user ID and a password is
unnecessary. For details, see Communications Access Methods for SAS/CONNECT
and SAS/SHARE

Note: If you connect to a spawner, you can sign on by using a script unless the spawner
is started by using the NOSCRIPT option. If the NOSCRIPT option is set, you
cannot use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. As an alternative, you can specify the NOSCRIPT option in
the SIGNON statement. For information about the spawner that you are connecting
to, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Specify a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to use.
The script file is executed by the SIGNON statement or command. By default, the script
prompts for user ID and password.

To use one of the sample script files that are provided with SAS/CONNECT for signing
on and signing off, assign the fileref RLINK to the appropriate script file. As an
alternative, you can specify the CSCRIPT= option in the SIGNON statement. The script
is based on the server that you are connecting to. The location of the sample scripts
varies according to operating environment. For default locations, see “Using a Script to
Start and Stop SAS/CONNECT” on page 55.

To specify a script, use the FILENAME statement.

UNIX Example:

FILENAME RLINK '!sasroot/misc/connect/script-name';

script-name specifies the appropriate script file for the server.

The following table lists the scripts that are supplied in SAS software:

Table 3.1 SAS/CONNECT Sign-on Scripts for TCP/IP

Server Script Name

TSO under OS/390 tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

Signing On to the Server 45

Server Script Name

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specify a User ID and Password
If you sign on to the spawner without using a script and the spawner is running secured,
you must specify a user ID and a password in the SIGNON statement.

Note: (Windows only) If SSPI is available, you can submit the SIGNON statement
without a user ID and password. If SSPI is not available and you are signing on to a
secured spawner without using a script, you must specify a user ID and password.
For details, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Note: When you specify USER=_PROMPT_, the dialog box prompts for a user ID and
a password.

For details, see “SIGNON Statement and Command” on page 63.

Sign On by Using the Spawner
A client connects to a UNIX server by using a spawner and without a script. In the
SIGNON statement, RMTHOST.SPAWNER specifies the node RMTHOST and the
service SPAWNER. This server specification presumes that a spawner is running on the
node RMTHOST, and that the spawner was started by using the service SPAWNER.
Specifying USER=_PROMPT_ causes a dialog box to appear so that a user ID and a
password can be provided.

Example:

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

If Necessary, Change an Expired Password (z/OS Spawner Only)
A password expiration policy is usually established by the system administrator of the
z/OS operating environment. During sign-on, a message is displayed to alert you to the
need to change an expired password:

Password expired/invalid, enter new password:

You can enter a new password during sign-on only if you are using a script file for sign-
on.

Note: You could also change the password in a Telnet login to the operating
environment.

46 Chapter 3 • Starting and Stopping SAS/CONNECT

For details about tasks for a client sign-on to a z/OS server session using a spawner, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Sign On Using a Telnet Daemon

Specify the Server
The name of the server can be specified in an OPTIONS statement:

OPTIONS REMOTE=node-name;

The name can also be specified directly in the SIGNON statement or command:

SIGNON node-name;

Specify a Sign-On Script File
When signing on by using the Telnet daemon, specify a sign-on script. The script file is
executed by the SIGNON statement or command. By default, the script prompts for user
ID and password. For details, see “SIGNON Statement and Command” on page 63 .

Example: Signing On to the Server Session
You specify the statements in a client session that runs under UNIX to use the TCP/IP
access method to connect to a z/OS server. The FILENAME statement identifies the
script file that you use to sign on to a server. The script file contains a prompt for a user
ID and a password that are valid on the server. The COMAMID= option specifies the
TCP/IP communications access method for connecting to the server RMTNODE, which
is specified in the REMOTE= option.

UNIX example:

filename rlink '!sasroot/misc/connect/tcptso.scr';
options comamid=tcp remote=rmtnode;
signon;

Interfaces for Starting and Stopping
SAS/CONNECT

Types of Interfaces for Starting and Stopping SAS/CONNECT
You can use any of these interfaces to start or stop SAS/CONNECT:

• “Using the SAS Windowing Environment to Start and Stop SAS/CONNECT” on
page 48

• “Using the Program Editor Window” on page 50

• “Using the Autoexec File” on page 51

Interfaces for Starting and Stopping SAS/CONNECT 47

Using the SAS Windowing Environment to Start and Stop
SAS/CONNECT

The Signon Window
To start a SAS/CONNECT session:

1. Select Run ð Signon from the menu bar in the SAS Program Editor window.

2. Complete the following fields in the Signon window.

Script file name:
If you use the TCP/IP access method and choose to use a script file, type the full
path and the name of the script file. For example, to connect to the z/OS
operating environment by using the TCP/IP access method, type the following:
pathname/tcptso.scr

The default location of the script file varies according to operating environment.
For details, see “Using a Script to Start and Stop SAS/CONNECT” on page 55.

Remote session name:
Type the name of the session that you are connecting to. For details, see
“CONNECTREMOTE= System Option” on page 21.

Communications access method ID:
Type the value for the COMAMID= option. For example, for the TCP/IP access
method, type the following: tcp

For complete details about access methods, see Communications Access Methods
for SAS/CONNECT and SAS/SHARE.

48 Chapter 3 • Starting and Stopping SAS/CONNECT

Transmission buffer size:
Type the value of the buffer size that SAS/CONNECT uses for transferring data.
For details, see “TBUFSIZE= System Option” on page 32.

Remote session macro variable/macvar:
Type the name of the macro variable that you want to use to associate with the
server session. For details about the CMACVAR= option, see
CMACVAR=value on page 82.

Display transfer status (yes/no):
Type yes or no to specify whether the status window is displayed during data
transfers. For details, see “CONNECTSTATUS System Option” on page 22.

Execute remote submit synchronously (yes/no):
Type yes or no to specify whether remote submits are to be executed
synchronously or asynchronously.

YES
specifies synchronous remote submits, which means that control is not
returned to the client session until the remote submit is finished processing.
This is the default.

NO
specifies asynchronous remote submits, which means that control is
immediately returned to the client session after processing begins on the
server session.

For details, see “CONNECTWAIT System Option” on page 23.

SAS command to be used for multi-process signon:
If you do not use SMP hardware, omit this field. If you use SMP hardware,
specify a command and options in this field to invoke a server session that
executes on the multiprocessor computer. For details about multiprocessing, see
“MP CONNECT” on page 113.

Note: If you have defined an RLINK fileref, you must clear the reference as
follows: filename rlink clear;

3. Select OK to sign on, or select Cancel to return to the Program Editor window
without signing on.

The Signoff Window
1. To stop a SAS/CONNECT session by signing off, from the menu in the Program

Editor window, select Run ð Signoff.

Interfaces for Starting and Stopping SAS/CONNECT 49

2. If you are signed on to only one server session, you can click OK to end that session.

If you are signed on to multiple server sessions, verify that the field entries are valid
for the session you want to end.

Using the Program Editor Window

Using the Program Editor Window to Sign On SAS/CONNECT
1. Type an OPTIONS statement in the Program Editor window of the client session.

Use the SUBMIT command, statement, or function key to execute the OPTIONS
statement. You use the OPTIONS statement to specify the COMAMID= and
REMOTE= system options. For example:

options comamid=communications-method
 remote=server-ID;

For details about specifying values for these options, see “COMAMID= System
Option” on page 16 and “CONNECTREMOTE= System Option” on page 21 .

2. Issue the SIGNON command or type the SIGNON statement in the client session.
Specify the appropriate sample script (if necessary) for the operating environment:

signon cscript='external-file-name-of-script';

Note: Sample automatic sign-on scripts should be modified with installation-specific
information before you can use them to start the connection.

Here is an example of signing on to a server that is running a spawner program:

options comamid=communications-method
 remote=nodename.servicename;
signon user=_prompt_;

After the SIGNON command executes successfully, a message in the Log window
indicates that the connection is established.

Using the Program Editor Window to Sign Off SAS/CONNECT
Issue the SIGNOFF command, or type the SIGNOFF statement in the client session:

signoff cscript='external-file-name-of-script'

50 Chapter 3 • Starting and Stopping SAS/CONNECT

Note: If you used a script to sign on, the same script can be used to stop the connection.

After the SIGNOFF command executes successfully, a message in the Log window
indicates that the connection has ended.

The sample scripts that are used for automatic sign-on are used for signing off your
server session.

Using the Autoexec File
The autoexec file contains SAS statements that can be executed automatically when you
begin a client session. You can simplify the process of starting and stopping the
connection by following these recommendations:

• Include a FILENAME statement in the autoexec file that defines the fileref RLINK.
Make sure that it gives the correct file specification for the script that you use to start
SAS/CONNECT. For details, see Chapter 5, “Syntax for the SIGNON and the
SIGNOFF Statements and Commands,” on page 63.

By assigning the fileref RLINK to your script, you can start the connection without
specifying the script name in the SIGNON command.

Also, you can stop the connection without specifying the script name in the
SIGNOFF command because RLINK is the reserved fileref for script files.

When SAS executes a SIGNON or a SIGNOFF command without a fileref, SAS
automatically searches for a file that is defined with RLINK as the fileref. If RLINK
has been defined, SAS executes the corresponding script.

• Include an OPTIONS statement in your autoexec file to specify the COMAMID=
and CONNECTREMOTE= system options.

Windows Example:

options comamid=tcp
 remote=remhost;

Using the autoexec file to specify system options is a convenience over having to
execute an OPTIONS statement in each SAS session when using SAS/CONNECT.

Modifying your autoexec file as recommended eliminates a step in the process of
starting the connection, and you can use the short form of the SIGNON and SIGNOFF
commands.

For example, to start a connection from a SAS session that was invoked by using a
modified autoexec file, issue the SIGNON command or submit the SIGNON statement:

 signon

or

 signon;

After you have completed your server processing, in order to end the connection, issue
the SIGNOFF command or submit the SIGNOFF statement :

 signoff

or

 signoff;

Interfaces for Starting and Stopping SAS/CONNECT 51

52 Chapter 3 • Starting and Stopping SAS/CONNECT

Chapter 4

Using SAS/CONNECT Script
Files

Overview of SAS/CONNECT Script Files . 53

When to Use a SAS/CONNECT Script . 53

Purpose of a Sign-On Script . 54

Using Passwords in a Script File . 54

Using a Script to Start and Stop SAS/CONNECT . 55

Syntax Rules for SAS/CONNECT Script Statements . 56

Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off 57
Writing Simple SAS/CONNECT Scripts: Overview . 57
Example SAS/CONNECT Script for a TCP/IP Connection to UNIX 57

Debugging a SAS/CONNECT Script . 61

Overview of SAS/CONNECT Script Files
A SAS/CONNECT script is a SAS program that is stored in a file on the client.
However, the programming statements in a script are not the usual SAS programming
statements. Scripts use a specialized set of SAS statements called script statements.
Scripts are executed to start or to stop SAS/CONNECT sessions. Scripts that start the
connection are executed by submitting the SIGNON statement, and scripts that stop the
connection are executed by submitting the SIGNOFF statement. In most cases, the same
script is used to sign on and sign off.

When to Use a SAS/CONNECT Script
How do you know whether you need to write or to modify a script? The need for a script
file when using the TCP/IP access method depends on whether you are connecting to a
spawner that runs on a server and how that spawner was invoked.

For details about the various access methods, script requirements, and sample script
files, see Communications Access Methods for SAS/CONNECT and SAS/SHARE Your
site might also have sample scripts available from your system administrator.

If the available sample scripts do not meet your requirements, you can write your own
script. If you do need to write or to modify a script, review the examples in this chapter,

53

and see Chapter 8, “SAS/CONNECT Script Statements,” on page 95 for descriptions
of the script statements that are used in the examples.

Purpose of a Sign-On Script
A script can be a simple, short program or a long, complex program, depending on what
you want the script to do. The basic functions of all scripts are the following:

1. invoke SAS on the server (by using the SAS command).

2. set the appropriate communications options for the server session in the SAS
command. For the server session, the script sets the COMAMID= and DMR system
options.

3. determine when the server session is ready for communications with the client
session. In most cases, the script waits for messages from the server session.

Sign-on scripts might also perform the following tasks:

• issue the server sign-on command and prompt the user for a user ID and a password.

• issue informative messages to the user about whether script execution is proceeding
successfully.

• combine the SIGNON and SIGNOFF functions.

• conditionally execute labeled portions of the script so that one script can
accommodate multiple types of connections (for example, TCP/IP connections to
both a spawner and a Telnet daemon).

• issue server commands, such as commands that set session features or define server
files.

• define any response that is expected from the server.

• conditionally execute script subroutines to handle successful operations and error
conditions.

Note: Scripts that sign on to the server include information that is specific to the
computing installation. The scripts might need minor modifications to work with
your sign-on sequence.

Using Passwords in a Script File
Passwords can be specified for a script file in any of these forms:

• a clear-text password that is hardcoded into the script

• a prompt for a user-supplied password as input to the script

• an encoded password that replaces a clear-text password in the script

The first and second forms offer the least security. The last form promotes security and
enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password in the PROC
PWENCODE statement. For complete details about PROC PWENCODE, see the Base
SAS Procedures Guide.

54 Chapter 4 • Using SAS/CONNECT Script Files

Here is an example of code that is used to obtain an encoded password:

proc PWENCODE in="My2008PW";run;
{sas001}TXkyMDAzUFc=

The clear-text password My2008PW is specified in the PROC PWENCODE statement.
The output is generated in the form {key}encoded-password, where sas001 is the key
and TXkyMDAzUFc= is the encoded password that is generated. SAS/CONNECT uses
the key to decode the encoded password to its clear-text form when the password is
needed.

Note: The encoded password is case-sensitive. Use the entire generated output string,
including the key.

Substitute the encoded password for the clear-text password in a script. The encoded
password is the output that is generated from the PROC PWENCODE statement.

Note: Macro variables can also be used in script files to capture different user IDs and
passwords. This eliminates the need for prompting the user for this information.
Enclose the macro variable in double quotation marks in the script.

Using a Script to Start and Stop SAS/CONNECT
You can start and stop SAS/CONNECT by using the supplied sample scripts, which are
located in the following default directories where your SAS software is installed:

Table 4.1 Location of Script Files

Windows !sasext0\CONNECT\SASLINK

z/OS prefix.CTMISC

OpenVMS SAS$ROOT:[TOOLS]

UNIX !sasroot/misc/connect

Note: The term !sasroot is not part of the pathname. It represents the name of the
directory where SAS is installed at your site.

All sample scripts start and stop SAS/CONNECT. A sign-on script prompts you for a
user ID and password to sign on to a server. You must sign on to the server before you
can run a manual sign-on script.

Script names are derived from the access method and the operating environment that the
server session runs under; for example, TCPTSO.SCR identifies the TCP/IP access
method and a TSO server.

Using a Script to Start and Stop SAS/CONNECT 55

Syntax Rules for SAS/CONNECT Script
Statements

To write a SAS/CONNECT script, you need to read about the specific information for
each statement in the script. This section contains general rules that apply to some or all
script statements.

• Each script line is limited to 8192 characters.

• All script statements must end with a semicolon.

• Script statements have a free format, which means that there are no spacing or
indention requirements. A statement can be split across several lines, or one line can
contain one or more statements. Statement keywords can be specified in uppercase,
lowercase, or mixed-case characters.

• Text strings that are enclosed in quotation marks are case sensitive. For example, if
your script defines a text string in a WAITFOR statement, ensure that the uppercase
and lowercase characters in the text string exactly match the text string from the
server.

• Any script statement can include a label specification. The label must be a valid SAS
name and not exceed a maximum of eight characters. The first character must be an
alphabetic character or underscore. A label must be followed immediately by a colon
(:) and must be defined only one time in the script.

• Some script statements specify a time in seconds. The form of the time specification
is as follows:

n SECONDS;
n can be any number; this number might include decimal fractions. For example, all
of the following time specifications are valid:

• 0 SECONDS;

• 0.25 SECONDS;

• 1 SECOND;

• 3.14 SECONDS;

Note: SECOND is an alias for SECONDS.

• If a script statement specifies a quoted string, such as a server command, you can use
either single or double quotation marks. To embed quotation marks in script
statements, follow the same rules that you use for embedded quotation marks in SAS
statements.

56 Chapter 4 • Using SAS/CONNECT Script Files

Writing Simple SAS/CONNECT Scripts for Signing
On and Signing Off

Writing Simple SAS/CONNECT Scripts: Overview
When you write or modify existing SAS/CONNECT scripts, use the WAITFOR and
TYPE statements to specify the sequence of prompts and responses for the server.

The simplest method for determining the sequence is to manually reproduce on the
server the process that you want to capture in the WAITFOR and TYPE statements. For
each display on the server, choose a word from that display for the WAITFOR
statement. Whatever information you type to respond to a display should be specified in
a TYPE statement. Be sure to note all carriage returns or other special keys.

If the server runs under z/OS and you need to use a TYPE statement that has more than
80 characters in a sign-on script, divide the TYPE statement into two or more TYPE
statements. To divide the TYPE statement, insert a hyphen (-) at the division point. The
z/OS server interprets the hyphen as the continuation of the TYPE statement from the
previous line. For example, here is how to divide the following TYPE statement:

type
"sas options ('dmr comamid=tcp')"
enter;

change it to:

type "sas options ('dmr comamid=-" enter;
type "tcp')" enter;

Note: Do not insert spaces before or after the hyphen.

Example SAS/CONNECT Script for a TCP/IP Connection to UNIX
/* trace on; */
/* echo on; */
 /***/
 /* Copyright (C) 1990 */
 /* by SAS Institute Inc., Cary NC */
 /* */
 /* name: tcpunix.scr */
 /* */
 /* purpose: SAS/CONNECT SIGNON/SIGNOFF */
 /* script for connecting to any */
 /* UNIX operating environment */
 /* via the TCP/IP access method */
 /* */
 /* notes: 1. This script might need */
 /* modifications that account */
 /* for the local flavor of */
 /* your UNIX environment. The */
 /* logon procedure should */
 /* mimic the tasks that you */
 /* execute when */

Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off 57

 /* connecting to the same */
 /* UNIX operating environment. */
 /* */
 /* 2. You must have specified */
 /* OPTIONS COMAMID=TCP in the */
 /* client session before */
 /* using the SIGNON command. */
 /* */
 /* assumes: 1. The command to execute SAS */
 /* in your remote (UNIX) */
 /* environment is "sas". If */
 /* this is incorrect for your */
 /* site, change the contents */
 /* of the line that contains */
 /* type 'sas ... */
 /* */
 /* support: SAS Institute staff */
 /***/

 1 log "NOTE: Script file
 'tcpunix.scr' entered.";

 if not tcp then goto notcp;
 2 if signoff then goto signoff;

 /***/
 /* TCP/IP SIGNON */
 /***/

 3 waitfor 'login:', 120 seconds: noinit;

 /***/
 /* UNIX LOGON */
 /* LF is required to turn the line */
 /* around after the login name has */
 /* been typed. (CR will not do) */
 /***/
 4 input 'Userid?';
 type LF;
 5 waitfor 'Password', 30 seconds : nolog;
 input nodisplay 'Password?';
 type LF;

unx_log:
 /***/
 /* Common prompt characters are $,>,%,} */
 /***/
 6 waitfor '$', '>', '%', '}',
 'Login incorrect' : nouser,
 'Enter terminal type' : unx_term,
 30 seconds : timeout;

 log 'NOTE: Logged onto UNIX...
 Starting remote SAS now.';

58 Chapter 4 • Using SAS/CONNECT Script Files

 /**/
 /* Invoke SAS on the server. */
 /**/
 type 'sas -dmr -comamid tcp -device
 -noterminal -nosyntaxcheck' LF;
 waitfor 'SESSION ESTABLISHED',
 90 seconds : nosas;

 log 'NOTE: SAS/CONNECT
 conversation established.';
 stop;

 /***/
 /* TCP/IP SIGNOFF */
 /***/
10 signoff:
waitfor '$', '>', '%', '}',
 30 seconds;

 type 'logout' LF;
 log 'NOTE: SAS/CONNECT conversation
 terminated.';
 stop;

 /***/
 /* SUBROUTINES */
 /***/
unx_term:

 /**/
 /* Some UNIX systems want the */
 /* terminal-type. Indicate a basic */
 /* tele-type. */
 /**/
 type 'tty' LF;
 goto unx_log;

 /***/
 /* ERROR ROUTINES */
 /***/
 11 timeout:
 log 'ERROR: Timeout waiting for remote
 session response.';
 abort;

nouser:
 log 'ERROR: Unrecognized userid or
 password.';
 abort;

notcp:
 log 'ERROR: Incorrect communications
 access method.';
 log 'NOTE: You must set "OPTIONS
 COMAMID=TCP;" before using
 this script file.';

Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off 59

 abort;

noinit:
 log 'ERROR: Did not understand remote
 session banner.';

nolog:
 log 'ERROR: Did not receive userid or
 password prompt.';
 abort;

nosas:
 log 'ERROR: Did not get SAS software
 startup messages.';
 abort;

1 The LOG statement sends the message that is enclosed in quotation marks to the log
file or the log window of the client session. Although it is not necessary to include
LOG statements in your script file, the LOG statements keep the user informed about
the progress of the connection.

2 The IF/THEN statement detects whether the script was called by the SIGNON
command or statement or the SIGNOFF command or statement. When you are
signing off, the IF/THEN statement directs script processing to the statement labeled
SIGNOFF. See step 10.

3 The WAITFOR statement waits for the server's logon prompt and specifies that if
that prompt is not received within 120 seconds, the script processing should branch
to the statement labeled NOINIT.

4 The INPUT statement displays a window with the text Userid? to allow the user to
enter a server log-on user ID. The TYPE statement sends a line feed to the server to
enter the user ID to the server.

5 The WAITFOR statement waits for the server's password prompt and branches to the
NOLOG label if it is not received within 30 seconds. The INPUT statement that
follows the WAITFOR statement displays a window for the user to enter a password.
The NODISPLAY option is used so the password is not displayed on the screen as it
is entered.

6 The WAITFOR statement waits for one of several common UNIX prompts and
branches to various error handles if a prompt is not seen. Verify that the WAITFOR
statement in the script looks for the correct prompt for your site.

7 This TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection. The -
NOTERMINAL system option suppresses prompts from the server session. The -
NOSYNTAXCHECK option prevents the remote session from going into syntax
checking mode when a syntax error is encountered.

8 The phrase SESSION ESTABLISHED is displayed when a SAS session is started on
the server by using the options -DMR and -COMAMID TCP. The WAITFOR
statement looks for the words SESSION ESTABLISHED to be issued by the server
session to know that the connection has been established. If the SESSION
ESTABLISHED response is received within 90 seconds, processing continues with
the next LOG statement. If the SESSION ESTABLISHED response does not occur
within 90 seconds, the script assumes that the server session has not started and
processing branches to the statement labeled NOSAS.

60 Chapter 4 • Using SAS/CONNECT Script Files

9 When the connection has been successfully established, you must stop the rest of the
script from processing. Without this STOP statement, processing of the remaining
statements in the script continues.

10 This section of code is executed when the script is invoked to end the connection.
The second IF statement (see step 2) sends processing to this section of the script
when the script is invoked by a SIGNOFF command or statement. Note that this
section waits for a server prompt before typing LOGOUT in order to log off the server.
The script then issues a LOG statement to notify the user that the connection is
terminated and stops script processing.

11 These statements are processed only if the prompts expected in the previous steps are
not received. This section of the script issues messages to the local SAS log and
abnormally ends (from the ABORT statement) the processing of the script as well as
the signon.

Debugging a SAS/CONNECT Script
When writing SAS/CONNECT scripts, you can take advantage of programming
techniques to simplify debugging a new or a modified script. Examples of debugging
statements follow:

• The ECHO statement causes server messages to be displayed while a WAITFOR
statement executes. This enables you to monitor activity on the server during the
WAITFOR pause.

• The TRACE statement enables you to specify that some or all script statements be
displayed as the script executes. This capability can help you isolate the source of a
script problem.

Debugging a SAS/CONNECT Script 61

62 Chapter 4 • Using SAS/CONNECT Script Files

Chapter 5

Syntax for the SIGNON and the
SIGNOFF Statements and
Commands

Dictionary . 63
SIGNON Statement and Command . 63
SIGNOFF Command and Statement . 81

Dictionary

SIGNON Statement and Command
Initiates a connection between a client session and a server session.

Valid in: client

Syntax
SIGNON <options>

Optional Arguments
AUTHDOMAIN=auth-domain | “auth-domain”

specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the specified
domain. Specifying the authentication domain is a convenient way to obtain the
metadata-based user credentials rather than having to explicitly supply them during
server sign-on.

An administrator can define an authentication domain by using the User Manager in
SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/CONNECT Auth Domain"

Requirements:
The authentication domain and the associated credentials must be stored in a
metadata repository, and the metadata server must be running in order to resolve
the metadata object specification.

63

Enclose domain names that are not valid SAS names in double or single
quotation marks.

Interaction: If you specify AUTHDOMAIN=, do not also specify USERNAME=
and PASSWORD=. Otherwise, sign-on is canceled.

See:
For complete details about creating and using authentication domains, see the
SAS Intelligence Platform: Security Administration Guide.
SAS Management Console: Guide to Users and Permissions and SAS
Management Console online Help.

CMACVAR=value
specifies the macro variable to associate with the server session. The macro variable
is set at the completion of the execution of the SIGNON statement. The macro
variable becomes the default macro variable for the current server session.

Note: If the SIGNON command or statement fails because of incorrect syntax, the
macro variable is not set.

Here are the values for the CMACVAR= option:

0 indicates that the sign-on is successful.

1 indicates that the sign-on failed.

2 indicates that you have already signed on to the current server session.

3 indicates that the sign-on is still in progress.

Alias: MACVAR=
Interaction: This default can be overridden only by specifying the CMACVAR=

option in the RSUBMIT statement or command.
See: CMACVAR= option on page 141 in the RSUBMIT statement

CONNECTREMOTE=server-IDserver-ID
specifies the name of the server session that you want to sign on to. If only one
session is active, server-ID can be omitted. If multiple server sessions are active,
omitting this option causes the program statements to be run in the most recently
accessed server session. The current server session is identified by the value that is
assigned to the CONNECTREMOTE system option.

You can specify server-ID using different formats:

process-name
process-name is a descriptive name that you assign to the server session on a
multi-processor computer when the SASCMD= option is used.
Example:

signon emp1 sascmd="!sascmd";

computer-name
computer-name is the name of a computer that is running a Telnet daemon or that
is running a spawner that is not specified as a service. If the computer name is
longer than eight characters, a SAS macro variable name should be used.
Example:

%let sashost=hrcomputer1.dorg.com;
signon sashost;

computer-name.port-name
computer-name is the name of a server, and port-name is the name of the port
that the spawner service runs on. If the computer name is longer than eight

64 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

characters, assign the computer name to a SAS macro variable and use the macro
variable name as the server ID.
Example:

%let sashost=hrcomputer1.dorg.com;
signon sashost.sasport;

computer-name.port-number
computer-name is the name of a server, and port-number is the port that the
spawner service runs on.

CAUTION:
Specifying computer-name.port-number for the server ID will fail under
these conditions:

• when used in a WAITFOR statement that is used to wait for the completion
of an asynchronous RSUBMIT.

Instead, use a one-level name, such as the computer-with-port

• when used in a LIBNAME statement.

Instead, use a one-level name or a two-level name, such as
computer-name.__port-number.

Example:
signon hrcomp1.2267;

computer-with-port
computer-with-port is a macro variable that contains the name of a server and the
port that the spawner service runs on, separated by one or more spaces. This
specification is appropriate in cases where the server-ID must be specified as a
one-level name.
Example:

%let sashost=hrcomp1.dorg.com 2667;
signon sashost;

computer-name._ _port-number
computer-name is the name of a server and port-number is the port that the
spawner service runs on. This format can be used to specify the server-ID value
for the SERVER= option in a LIBNAME statement.
Example:

signon hrcomp1._ _2267;

Alias: CREMOTE=, PROCESS=, REMOTE=
See: “CONNECTREMOTE= System Option” on page 21

CONNECTSTATUS=YES|NO
specifies whether the Transfer Status window is displayed for file transfers within
the current server session.

Here are the values for this option:

YES|Y indicates that the Transfer Status window is displayed for file transfers
within the current server session.

NO|N indicates that the Transfer Status window is not displayed for file
transfers within the current server session.

SIGNON Statement and Command 65

If the CONNECTSTATUS= option is omitted from the SIGNON statement, its value
is resolved as follows:

1 If the CONNECTSTATUS system option is specified, the value for the
CONNECTSTATUS system option is used.

2 If the CONNECTSTATUS= option is specified in a subsequent RSUBMIT,
PROC UPLOAD, or PROC DOWNLOAD statement, that value would
override the default value of CONNECTSTATUS= option for SIGNON.

3 Otherwise, the default behavior occurs. The default for a synchronous
RSUBMIT is YES, which displays the Transfer Status window. The default
for an asynchronous RSUBMIT is NO, which does not display the Transfer
Status window.

Alias: CSTATUS=, STATUS=
Default: YES for synchronous RSUBMITs. NO for asynchronous RSUBMITs.
See:

“Transfer Status Window” on page 241
“CONNECTSTATUS System Option” on page 22

CONNECTWAIT=YES|NO
specifies whether RSUBMIT blocks execute synchronously or asynchronously.
Synchronous RSUBMIT statements are executed sequentially. An RSUBMIT must
be completed in the server session before control is returned to the client session.

For asynchronous RSUBMIT statements, you can execute tasks in multiple server
sessions in parallel. Control is returned to the client session immediately after an
RSUBMIT begins execution to allow continued execution in the client session and in
other server sessions.

Here are the values for the CONNECTWAIT= option:

YES|Y specifies that the RSUBMIT blocks execute synchronously.

NO|N specifies that the RSUBMIT blocks execute asynchronously.

If the CONNECTWAIT= option in SIGNON is omitted, the value for the
CONNECTWAIT= option is resolved as follows:

1 If a value for the CONNECTWAIT= option has been specified in the
RSUBMIT statement, that value is used.

2 If the CONNECTWAIT system option is set, the value for the system option
is used.

3 Otherwise, the default behavior, to execute synchronously, occurs.

Alias: CWAIT=, WAIT=
Default: YES
Interactions:

If CONNECTWAIT=NO is specified, you might also specify the CMACVAR=
option. CMACVAR= enables you to programmatically test the status of the
current asynchronous RSUBMIT to find out whether the task has completed or is
still in progress.
When %SYSRPUT executes within a synchronous RSUBMIT, the macro
variable is defined to the client session as soon as it executes.
When %SYSRPUT is executed within an asynchronous RSUBMIT, the macro
variable is defined in the client session when a synchronization point is

66 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

encountered. To override this behavior, use the SYSRPUTSYNC= system
option.

Note: If CONNECTWAIT=NO is specified, an automatic sign-off will not occur
unless CONNECTPERSIST=NO is also specified.

See:
“SYSRPUTSYNC System Option” on page 30
“Synchronization Points” on page 166
“CONNECTWAIT System Option” on page 23

CSCRIPT=file-specification
specifies the SAS/CONNECT script file to be used during sign-on.

When the SIGNON command executes, SAS log messages for the server session are
displayed in the LOG window of the client session.

file-specification
specifies the location of the SAS/CONNECT script file.

Here are the values for file-specification:

“filename”
s the physical location of the SAS/CONNECT script file in the current
working directory. Enclose the filename in double or single quotation marks.

fileref
is the name of the reference file that is associated with the script file. A
previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you
can omit this specification from the SIGNON command.

“fully-qualified-filename”
is the full path to the SAS/CONNECT script file. Enclose the fully qualified
filename in double or single quotation marks.

“SASSCRIPT-specification”
is the physical location of the SAS/CONNECT script file in the directory that
is specified by the SASSCRIPT system option.

Alias: SCRIPT=
Interactions:

If multiple CSCRIPT= options are specified, the last specification takes
precedence.
When you use the CSCRIPT= option, do not also use the NOCSCRIPT option. If
you use NOCSCRIPT and CSCRIPT=, sign-on is canceled.

See:
NOCSCRIPT option on page 70
“SASSCRIPT= System Option” on page 27
FILENAME statement in SAS Statements: Reference and the companion that is
appropriate for your operating environment.

CSYSRPUTSYNC=YES|NO
specifies whether to synchronize the client session's macro variables when the client
session receives results from the server session or when a synchronization point is
encountered. Macro variables are updated in the client session using the
%SYSRPUT macro in a SIGNON statement.

Note: The %SYSRPUT macro is executed in the server session.

Here are the values for this option:

SIGNON Statement and Command 67

YES|
Y

specifies that the client session's macro variables will be updated when
the client receives the results of the server session's execution of the
%SYSRPUT macro. The results are delivered in the form of a packet.
Specifying YES does not mean that the client's macro variables will be
updated immediately after the server's execution of the %SYSRPUT
macro variable. YES means that the client's macro variables will be
updated when the client receives the packet from the server. Therefore,
the exact time at which the client's macro variables are updated will
depend on the availability of the client to receive the packet. If the
client is busy, the server will wait until the client session is ready to
receive the packet.

NO|N specifies that the client session's macro variables will be updated when
a synchronization point is encountered. This is the default.

Alias: SYSRPUTSYNC=
Default: NO
Interactions:

If the CSYSRPUTSYNC system option is specified, the SYSRPUTSYNC=
option takes precedence over the system option.
If the SYSRPUTSYNC system option is specified and the CSYSRPUTSYNC=
option in SIGNON is not specified, the system option will apply to the SIGNON
statement.
Changing the value assigned to the CSYRPUTSYNC= option between
consecutive asynchronous RSUBMIT statements causes unpredictable results.
You are advised not to change the value between asynchronous RSUBMIT
statements.

See:
“%SYSRPUT Statement” on page 166
“Synchronization Points” on page 166

Example: “Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT
Executes” on page 181 for an example of how to prevent SYSRPUTSYNC=
option overrides.

INHERITLIB=(client-libref1<=server-libref1> ... client-librefn<=server-librefn>)
enables libraries that are defined in the client session to be inherited by the server
session for read and write access. Also, each client libref can be associated with a
libref that is named differently in the server session. A space is used to separate each
libref pair in a series, which is enclosed in parentheses.

Note: Because the SAS WORK library cannot be reassigned in any SAS session,
you cannot reassign it in the server session either.

Interactions:
If you use the INHERITLIB= option and the SASCMD= option when signing on
to a server session, the server session attempts to access the client library directly
rather than to inherit access to the library via the client session. If the client
session and the server session attempt to access the same file simultaneously,
only one session is granted exclusive access to the file. The other session's access
to the file is denied.
SAS/CONNECT does not support concurrent multi-user access to the same file.
This functionality is supported by SAS/SHARE.

See:
SASCMD= on page 73
SAS/SHARE User's Guide

68 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

Example: This example shows that the libref named LOCAL in the client session is
inherited for use in the server session:
signon job1 inheritlib=(local work=remote);

rsubmit;
 libname local list;
 libname remote list;
 data local.a;
 x=1;
 run;
endrsubmit;

LOG=KEEP | PURGE | file-specification
OUTPUT=KEEP | PURGE | file-specification

Used only when NOSIGNONWAIT is in effect, these options direct the SAS log or
the SAS output that is generated by the current server session to the backing store or
to a file specification. A backing store is a SAS utility file that is written to disk in
the client SAS WORK library.

Here are the values for these options:

KEEP
spools log or output lines, as applicable, to the backing store or to the computer
on which the client session is running. The log or output lines can be retrieved
using the RGET, RDISPLAY, RSUBMIT CONNECTWAIT=YES, or SIGNOFF
statement. This is the default.

PURGE
deletes all the log or output lines that are generated by the current server session.
PURGE is used to save disk resources. Use PURGE if you can anticipate a large
volume of log data or output data to the backing store that you do not want to
keep, and you want to preserve disk space.

file-specification
specifies a file that is the destination for the log or output lines. The file is opened
for output at the beginning of the asynchronous RSUBMIT and is closed at the
end of the RSUBMIT. After the current RSUBMIT has completed, subsequent
RSUBMIT log or output lines can be appended to the preceding RSUBMIT
destination file using the LOG= or OUTPUT= options to specify the appropriate
filename.

Note: Directing output to the same file for multiple concurrent asynchronous
RSUBMIT statements is not recommended.

Here are the values for this option:

“filename ”
is the physical location of the SAS log file or the SAS output file. Enclose the
filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the SAS log file
or the SAS output file.
Note: Use the MOD option in the FILENAME statement to open the

referenced file for an append. The MOD option is an external I/O
statement option.

Default: KEEP
Interactions:

SIGNON Statement and Command 69

Use the LOG= or OUTPUT= option only when the SIGNONWAIT=NO option
or the NOSIGNONWAIT system option has been specified. Otherwise the option
is ignored and this message is displayed:

WARNING: LOG=/OUTPUT= options invalid with synchronous rsubmit.
Options will be ignored.

If you direct the log or output lines to a file and then use RGET or RDISPLAY to
retrieve the contents of an empty backing store, you will receive a message such
as the following:

WARNING: The LOG option was used to file log lines for the current SIGNON.
There are no log lines for RGET to process.

If you use both the asynchronous RSUBMIT and the PROC PRINTTO
statements, you might expect that the PROC PRINTTO statement causes data
from the server session to be written to the file that is specified in the PROC
PRINTTO statement. If this PROC PRINTTO behavior occurs, the LOG= or the
OUTPUT= option in the SIGNON statement is ignored, and no data is written to
the backing store or to the specified file.
However, because the asynchronous RSUBMIT and the PROC PRINTTO
statements execute simultaneously, predicting which operation will complete first
is impossible. The timing of the completions of these operations determines
whether the results are written to the SIGNON log or to the PROC PRINTTO
log.

Note: Do not simultaneously use the asynchronous RSUBMIT and the PROC
PRINTTO statement and redirect output. Redirecting output by using a LOG= or
an OUTPUT= option in the SIGNON statement and using a locally submitted
PROC PRINTTO statement can cause unpredictable results.

See:
“SIGNONWAIT System Option” on page 29
MOD option in the FILENAME statement, which varies by operating
environment. See the SAS Companion that is appropriate for your operating
environment.

NOCSCRIPT
specifies that no SAS/CONNECT script file should be used for sign-on.
NOCSCRIPT accelerates sign-on and conserves memory resources.
Alias: NOSCRIPT
Interaction: When you use NOCSCRIPT, do not also use SASCMD=, SERVER=,

or CSCRIPT=. If you use NOCSCRIPT with SASCMD=, NOCSCRIPT is
ignored. If you use NOCSCRIPT with SERVER= or CSCRIPT=, sign-on is
canceled.

Tip: NOCSCRIPT is useful if SASCMD= has been specified in a spawner
invocation.

See: CSCRIPT=file-specification on page 67

NOTIFY=YES | NO | “e-mail-address”
specifies whether to notify the user that an asynchronous RSUBMIT has completed.
The notification can be in the form of a message window or an e-mail message. The
NOTIFY option is enabled only at sign-on and remains in effect for the duration of
the server session.

Here are the values for this option:

YES|Y enables notification via a message window. Here is the format of
the default message: Asynchronous task TASK1 has

70 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

completed. TASK1 is the server ID.The message window
does not interfere with any other task executions in progress. To
acknowledge the message and to close the window, click OK.

NO|N
(default)

disables notification. This is the default.

“e-mail-
address”

enables notification via an e-mail message, and specifies the e-
mail address of the recipient for the notification. E-mail addresses
are limited to a maximum of 256 characters. Enclose the e-mail
address in double or single quotation marks. The message
includes information about the total time that was used for the
RSUBMIT. If the LOG= and OUTPUT= options are also
specified in a SIGNON statement, the e-mail message identifies
the locations of the log file and output file.

Here is an example of enabling notification in a SIGNON statement:

options sascmd="!sascmd";
signon process1 wait=no notify=yes;
rsubmit;
 %put should get notification window;
endrsubmit;

To disable notification, you must sign off the server session and then sign on to the
server session again, and either omit the NOTIFY= option or specify NOTIFY=NO
in the SIGNON statement.

Here is an example of disabling notification in the next SIGNON statement:

signoff process1;
options sascmd="!sascmd";
signon process1 wait=no notify=no;
rsubmit;
 code-to-be-executed-in-server-session
endrsubmit;

Default: NO
Restriction: Notification occurs only for asynchronous RSUBMIT statements.
Interactions:

When you specify the NOTIFY=“e-mail-address” option, you can also specify
the SUBJECT=“subject-title” option.
If NOTIFY=YES and the NOTERMINAL system option has been specified, the
request for notification is ignored. This message is displayed:

WARNING: The NOTIFY option is valid only if a TERMINAL is attached to this
SAS session. Option will be ignored.

However, notification can be directed to an e-mail address, regardless of whether
the TERMINAL or NOTERMINAL system option has been specified.
If NOTIFY=“e-mail address” is specified, but the e-mail message cannot be sent,
notification will occur in the form of a message window, which is the action that
occurs when NOTIFY=YES. This behavior assumes that the NOTERMINAL
system option has not been specified.
Notification fails if NOTIFY=YES or NOTIFY=“e-mail address” and you
specify statements or commands (such as RGET or SIGNOFF) during the
asynchronous RSUBMIT that change execution from asynchronous to
synchronous mode.

SIGNON Statement and Command 71

If NOTIFY=“e-mail address” is specified, the SAS system and the operating
environment that the SAS system runs under must be configured to support e-
mail. Without appropriate configuration, your attempt to specify notification via
e-mail might fail. Contact your system administrator for details.

See:
CONNECTWAIT=NO option on page 66
AUTOSIGNON System Option on page 15
LOG= and OUTPUT= options on page 69
SUBJECT= option on page 77
SAS system options that support e-mail configuration: EMAILHOST,
EMAILPORT, and EMAILSY in SAS System Options: Reference.

PASSWORD=password |“encoded-password” | _PROMPT_
specifies the password to be used when connecting to a server. The operating
environment that the server runs under can also affect password naming conventions.

Here are the valid values for PASSWORD:

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement.

Here is an example of code for obtaining an encoded password:

 proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its clear-
text form when the password is needed. Use the output from the PROC
PWENCODE statement as the value for encoded-password in the appropriate
statement.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key.

For details about password naming conventions that are imposed by the operating
environment, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

PROMPT
specifies that SAS prompt the user for a valid password. This value enforces
security.

Alias: PASSWD=, PASS=, PWD=, PW=

72 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

SASCMD=“SAS-command” | “!sascmd” | “!sascmdv” | “host-command-file”
signs on to the server session on the same symmetric multiprocessing (SMP)
computer that the client session is running on. This option is most useful when client
and server sessions run on SMP hardware.

“SAS command”
• For UNIX, OpenVMS, and Windows, specifies the command that is used to

sign on to a server session.

Here is a typical example:

sascmd="sas"

As another example, commands that contain spaces must be enclosed in
double quotation marks.

sascmd='"c:\Program Files\SAS\SAS System\9.2\sas.exe"';

• For z/OS, specifies a colon that is followed by any SAS invocation options.

Here is an example:

sascmd=":ls=256"

"!sascmd"
For UNIX, OpenVMS, and Windows, signs on to a server session by using the
same command that was used to invoke the client session

"!sascmdv"
For UNIX, OpenVMS, and Windows, signs on to a server session by using the
same command that was used to start the client session and writes the SAS
invocation to the SAS log.

“host-command-file”
In order to execute additional commands before SAS invocation, you can write a
command file that is specific to your operating environment. Filename extensions
vary according to operating environment. Windows filenames use the .bat
and .cmd extensions. UNIX extensions include .sh, .csh, and .ksh.
OpenVMS uses the .com extension.

Note: The SASCMD= option does not support z/OS command files.

The TCP/IP access method automatically adds options, such as -DMR, to the server
session's SAS command.

For Windows, the TCP/IP access method also appends these options:

• -COMAMID TCP

• -ICON

• -NOSPLASH

• -NOTERMINAL

For all operating environments, you can also specify the NOSYNTAXCHECK
option in the SAS invocation for the non-interactive server session. For details, see
“Starting SAS and Using Syntax Checking” on page 39.

OpenVMS Specifics
If the NODETACH system option is specified, and if multiple server sessions are
running under OpenVMS and you observe degraded performance, this error
message is displayed:

ERROR: Process quota exceeded.

Check process limit quotas and privileges.

SIGNON Statement and Command 73

OpenVMS Specifics
NODETACH causes a sign-on to occur in a subprocess of the parent's process,
which can use excessive resources. If NODETACH is specified, try setting the
DETACH system option, which causes sign-ons to occur as detached processes
rather than as subprocesses. For more information, see the NODETACH system
option in the SAS Companion for OpenVMS on HP Integrity Servers. . To
improve performance when using the NODETACH system option, ask your
system administrator to set the following resources to the specified values for
each sign-on to a server session:

Table 5.1 OpenVMS Operating Environment Resource Values

User Account Resource Minimum Value

Paging file quota 40000

Buffered I/O byte count quota 13000

Open file quota 65

Subprocess limit 1

Timer queue entry limit 1 to 8

OpenVMS Specifics
When SAS is invoked from a captive OpenVMS account, you cannot use
SASCMD= to sign on to a server session. Typically, SASCMD= performs a
sign-on to a server session either in a subprocess or in a detached process.
Starting subprocesses is not allowed under a captive account. A detached process
that runs under a captive account cannot invoke SAS because a captive
OpenVMS account is under the control of the login command procedure. The
command language interpreter will execute only the commands in your login
command procedure and then the process will exit. The !sascmdv value in the
SASCMD= option causes the display of a symbol that specifies how the server
session was started.

You can print the symbol's value by using the getsym DATA step function.

rsubmit;
 %put %bquote(
 %sysfunc (getsym(SASCMD_2042CF6B)));
endrsubmit;

Restriction: For z/OS, a command file cannot be used. Therefore, use a semicolon
followed by options for the server's SAS invocation.

Requirement: SAS commands that contain spaces must be enclosed in double
quotation marks.

Interactions:
If the SASCMD= system option is already specified, the SASCMD= option that
is specified in SIGNON takes precedence over the system option.
When you use SASCMD=, do not also use NOCSCRIPT. Otherwise,
NOCSCRIPT is ignored.

See:
“SASCMD= System Option” on page 25

74 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

SYNTAXCHECK= and NOSYNTAXCHECK= system options in SAS System
Options: Reference
ICON, NOSPLASH, and NOTERMINAL system options in SAS Companion for
Windows.
“COMAMID= System Option” on page 16
“RSUBMIT Statement and Command” on page 139
NOCSCRIPT option on page 148

SERVER=“SAS-application-server”
specifies the name of a SAS Application Server that contains a SAS/CONNECT
server component in its grouping. The SAS Application Server has been defined in
the SAS Metadata Repository using SAS Management Console. The SAS
Application Server is configured using a set of system resources, including a
SAS/CONNECT server component and properties that start a SAS/CONNECT
server session. The server properties are equivalent to the options that can be
specified in the SIGNON statement.

“SAS-application-server”
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

When you use the SERVER= option, certain system resources must be configured
before you can access a SAS Metadata Server. For details, see “Sign On to a Server
That Is Defined in the SAS Metadata Repository” on page 41.
Requirements:

Enclose the name of the SAS Application Server in double or single quotation
marks.
If the specified SAS Application Server does not contain a SAS/CONNECT
server component, the server sign-on fails.

Interactions:
When you use SERVER=, do not specify any other options in the SIGNON
statement. If other options are specified, sign-on is canceled and this message is
displayed:

ERROR: Additional options are not valid with the SERVER option on the
SIGNON command. These options should be specified in the server definition.

See:
SERVERV=“SAS-application-server” | _ALL_ on page 75
SAS Management Console: Guide to Users and Permissions and SAS
Management Console online Help

SERVERV=“SAS-application-server” | _ALL_
displays a verbose list of the properties that specify a SAS/CONNECT server sign-
on. The server sign-on properties are equivalent to the options that can be specified
in the SIGNON statement. The sign-on properties are associated with a
SAS/CONNECT component, which is included in a set of system resources for the
SAS Application Server.

When you use the SERVERV= option, certain system resources must be configured
before you can access a SAS Metadata Server. Also, one or more SAS Application
Servers should be configured and should contain one or more SAS/CONNECT
components. For details, see “Sign On to a Server That Is Defined in the SAS
Metadata Repository” on page 41.

“SAS-application-server”
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

SIGNON Statement and Command 75

ALL
displays the sign-on properties for all SAS Application Servers that have been
defined in the SAS Metadata Repository.

Here is an example that displays the values for the SAS/CONNECT component that
is contained in the SAS Application Server sasmain.

signon serverv="sasmain";

Here is the output:

Server= hrmach1 — SAS/CONNECT Server
Remote Session ID= sashost
ServerComponentID= A5Z3NRQF.AR00005L
Remote Host= hrmach1.dorg.com
Communication Protocol= TCP
Service/Port= sasconnect
Port= 2267
Scriptpath= tcpunix.scr
Tbufsize= 4096
Wait= No
SignonWait= No
Status= No
Notify= "joe@apex.com"
Subject= "hrmach1 task completed"

Requirements:
Enclose the name of the SAS Application Server in double or single quotation
marks.

Interactions:
When you use SERVERV=, do not specify any other options in the SIGNON
statement. If other options are specified, sign-on is canceled and this message is
displayed:

ERROR: Additional options are not valid with the SERVERV option on the
SIGNON command. These options should be specified in the server definition.

See: SAS Management Console: Guide to Users and Permissions and SAS
Management Console online Help

SIGNONWAIT=YES|NO
specifies whether a sign-on to a server session is to be executed synchronously or
asynchronously.

YES|Y
(default)

specifies synchronous sign-on. A synchronous sign-on causes the
client session to wait until the sign-on to a server session has
completed before control is returned to the client session for
continued execution. YES is the default.

NO|N specifies an asynchronous sign-on. An asynchronous sign-on to a
server session begins execution and control is returned to the client
session immediately for continued execution. Asynchronous sign-
on allows multiple tasks (including other sign-ons) to be executed
in parallel. Asynchronous sign-ons reduce the total amount of time
that would be used to execute individual sign-ons to multiple
server sessions. Using the saved time, the client session can
execute more statements.

Default: YES
Interactions:

76 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

If the SIGNONWAIT system option is also specified, the SIGNONWAIT=
option takes precedence over the system option.
If SIGNONWAIT is specified as a system option and the SIGNONWAIT=
option is not specified, the system option will apply to the SIGNON statement.
If SIGNONWAIT=NO is specified, the USERID= and PASSWORD= options
cannot be set to _PROMPT_.
To find out if sign-on has completed, use the LISTTASK statement in the
RSUBMIT statement or the CMACVAR= option in the SIGNON statement.

See:
CMACVAR=value on page 64
“LISTTASK Statement” on page 170

SUBJECT=“subject-title”
specifies the subject title for the e-mail notification message that is sent after an
asynchronous RSUBMIT completes. A subject title is limited to a maximum of 256
characters.

Here is an example of specifying a subject using e-mail notification:

options remote=myhost sascmd="!sascmd";
signon notify="joe.smith@apex.com" subject="First task completed on &SYSHOSTNAME";
rsubmit wait=no;
 code-to-be-executed
endrsubmit;

Restriction: If NOTIFY=“e-mail-address” is not specified, SUBJECT= will be
ignored.

Interactions:
If SUBJECT= is specified in the SIGNON statement, the subject title will be
used in e-mail notifications for asynchronous RSUBMIT statements unless the
SUBJECT= option is specified in the RSUBMIT statement.
If no SUBJECT= is specified, the default subject title is used:

SAS/CONNECT task TASK1 has completed.

TASK1 is the server ID.
See:

NOTIFY=YES | NO | “e-mail-address” on page 70
“RSUBMIT Statement and Command” on page 139

TBUFSIZE=buffer-size-in-bytes
specifies the size of the buffer that SAS/CONNECT uses for transferring data
between a client session and a server session.

buffer-size-
in-bytes

specifies the size of the buffer that SAS/CONNECT uses for
transferring data. The value must be a number whose value is
greater than 0 and is a multiple of 1024.

Default: 32768 bytes
Interactions:

If TBUFSIZE= is specified as an option in the SIGNON statement, it takes
precedence over the TBUFSIZE= system option.
If TBUFSIZE= is specified as a system option in the client session and in the
server session, the value in the client session takes precedence.
If TBUFSIZE= is specified as a system option in the client session but is not
specified in the SIGNON statement, the system option value will be used.

SIGNON Statement and Command 77

Do not specify TBUFSIZE= system option in the server session. If the
TBUFSIZE= system option is included in the server's SAS invocation, an update
to the server log might be delayed until the next client request for server
processing has completed.
If TBUFSIZE= is not specified as a system option or as an option in the
SIGNON statement, the default is used.

See: “TBUFSIZE= System Option” on page 32

USERNAME=user-ID|_PROMPT_
specifies the user ID to be used when connecting to a server session. Here are the
values that can be assigned to USERNAME=:

user-ID
For details about a valid user ID, see “User ID and Password Naming
Conventions” on page 79 .

PROMPT
specifies that SAS prompt the user for a valid user ID. This value enforces
security.

Alias: USER=, USERID=, UID=

Details

Difference between the SIGNON Command and Statement
The primary difference between the command and the statement is that the SIGNON
command can be issued only from the command line in any client SAS windowing
environment window or in a DM statement. The SIGNON statement must be followed
by a semicolon (;) and can be used in any client session.

Difference between Synchronous and Asynchronous SIGNONs
A sign-on is executed either synchronously or asynchronously.

synchronous
Client session control is not regained until after the sign-on has completed.
Synchronous processing is the default processing mode.

asynchronous
Client session control is regained immediately after the client issues the SIGNON
statement. Subsequent programs can execute in the client session and in the server
sessions while a sign-on is in progress.

Synchronous sign-ons display results and output in the client session. If the SIGNON is
asynchronous, you can use the RGET and RDISPLAY commands and statements and
the LOG= and OUTPUT= options to retrieve and view the results.

Difference between SIGNON and AUTOSIGNON
You can explicitly execute the SIGNON statement to establish a connection between the
client session and the server session. A sign-on entails accessing the computer that the
server session will run on and then invoking a SAS/CONNECT server session.

An automatic sign-on is an implicit sign-on to the server when the client issues a remote
submit request for server processing. When the AUTOSIGNON system option is set, the
RSUBMIT command or statement automatically executes a sign-on and uses any
SAS/CONNECT system options in addition to any connection options that are specified
with RSUBMIT. For example, if you specify either the NOCONNECTWAIT system
option or the CONNECTWAIT=NO option in the RSUBMIT command or statement,

78 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

asynchronous RSUBMIT command or statements will be the default for the entire
connection.

User ID and Password Naming Conventions
Each user ID and password is limited to 256 characters that follow these conventions:

• Mixed case is allowed.

• A null value, which is no value, that is delimited with quotation marks is allowed.

• Quotation marks must enclose values that contain one or more spaces.

• Quotation marks must enclose values that contain one or more special characters.

• Quotation marks must enclose values that contain one or more quotation marks.

• Quotation marks must enclose values that begin with a numeric value.

• Quotation marks must enclose values that do not conform to rules for user-supplied
SAS names. For details about rules, see SAS Language Reference: Concepts.

ID and Password Examples:

user=joe password=Born2run;
user=joe password='' # null space specified by contiguous quotation marks;
user='joe black' password='Born 2 run';
user='joe?black' password='Born 2 run';
user='apexdomain\joe' password='2bornot2b' # Win NT user name;
user='"happy joe"' pw=_prompt_;
user=_prompt_;
userid="myuserid" password="{sas001}c2Vydm1hY2g";

Examples

Example 1: Sign-on Using a SAS/CONNECT Script
The OPTIONS statement specifies the server-ID, and the FILENAME statement
identifies the SAS/CONNECT sign-on script. The SIGNON statement initiates the
connection. The TCP/IP access method is assumed by default.

options remote=rhost;
filename rlink 'external-file-name';

Example 2: Secured Sign-on Using an Encoded Password
The USERNAME= and PASSWORD=options in a SIGNON statement ensure a secured
sign-on. At sign-on, the user is prompted for a user name and password, which is
automatically supplied in its encoded form. For details, see the PASSWORD= option on
page 72.

signon user=_prompt_ password="{sas001}MVNoYXJl";

Example 3: Creating a Sign-on Windows Command File
If you use MP CONNECT, you might want each server session to execute on a different
disk. You can use the SASCMD= option to specify a command file that contains a
command to change to a specific disk for the server session to run on. An example
follows of creating a Windows script named mysas.bat

set userdrive=%1
%userdrive%
mkdir \sassdir

SIGNON Statement and Command 79

cd \sassdir
"C:\Program Files\SAS\SAS 9.1\sas" -nosyntaxcheck
-work "mywork" %2 %3 %4 %5 %6 %7 %8 %9

To execute the command file, specify its name as the value for SASCMD=.

signon sascmd="mysas.bat sysjobid";

Example 4: Signing On to Two Server Sessions for Remote
Processing
You want to run SAS programs on two server sessions and download data to your client
session. The configuration follows:

• The client session runs under UNIX.

• A server session named WNT runs an unsecured spawner under Windows NT.

• A server session named TSO runs under z/OS.

From the client session, you can submit the following program from the Program Editor
window in interactive or non-interactive line mode:

1 options comamid=tcp;
 signon wnt;

 /**/
 /* initiates connection to a z/OS server host */
 /**/
2 filename tsoscr '!sasroot/misc/connect/tcptso9.scr';
signon tso cscript=tsoscr;

3 /**/
 /* submit statements to a Windows NT server */
 /**/
rsubmit wnt wait=no;
 statements to be processed by Windows NT server

endrsubmit;
4 /**/
 /* submit statements to z/OS server */
 /**/
rsubmit tso wait=no;
 statements to be processed by z/OS server
endrsubmit;
5 waitfor _ALL_ wnt tso;
 /**/
 /* ends both connections */
 /**/
6 signoff tso cscript=tsoscr;
signoff wnt cscript=winscr;

1 The client signs on to the server session WNT.

2 The client uses a SAS/CONNECT script to sign on to the server session TSO.

3 The WNT server session asynchronously processes the statements that are enclosed
by the RSUBMIT and ENDRSUBMIT statements.

4 The TSO server session asynchronously processes the statements that are enclosed
by the RSUBMIT and ENDRSUBMIT statements.

80 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

5 The client session waits for both RSUBMIT statements to complete.

6 The client uses scripts to sign off both server sessions.

Example 5: Using MACVAR to Test for a Successful Sign-on
The following example illustrates that the macro variable from a successful sign-on will
be used if an unsuccessful attempt is made.

/**/
/* signon successful, rhost1 will be */
/* set to 0 to indicate success. */
/**/
signon rhost macvar=rhost1;
/**/
/* signon fails because we have already */
/* signed on to this server session, */
/* so rhost2 will be set to 2 to */
/* indicate this, but rhost1 will */
/* still be the MACVAR associated */
/* with rhost. */
/**/
signon rhost macvar=rhost2;
rsubmit rhost wait=no;
 data a;
 x=1;
 run;
endrsubmit;
/**/
/* rhost1 is still the default and */
/* will indicate the progress of any */
/* subsequent RSUBMITs. */
/**/
%put &rhost1;

SIGNOFF Command and Statement
Ends the connection between a client session and a server session.

Valid in: Client session

Syntax
SIGNOFF <options> ;

Optional Arguments
ALL

ends all client/server connections sequentially, starting with the first server session
that you signed on to.

If a script file was used for sign-on, and if a URL or FTP are not used to access the
sign-on script, the sign-on script file will be used to perform the sign-off. For
information about the URL and FTP options in the FILENAME statement, see
“FILENAME Statement and Command” on page 85 .

SIGNOFF Command and Statement 81

If the CMACVAR= option was specified in the SIGNON statement, but not in the
SIGNOFF _ALL_ statement, the macro variable will be updated during the
execution of SIGNOFF _ALL_.

Here are the values for the CMACVAR= option for individual task IDs during sign-
off:

0 indicates that the sign-off was successful.

1 indicates that the sign-off failed.

If the CMACVAR= option is specified in the SIGNOFF _ALL_ statement, only that
macro variable is updated. Any macro variables that were specified in the SIGNON
statement will be ignored. Here are the values for the CMACVAR= option that are
specified in SIGNOFF _ALL_:

0 indicates that all sign-offs were successful.

1 indicates that at least one sign-off failed.

CMACVAR=value
specifies the name of the macro variable to associate with the sign-off. Except for
this condition, the macro variable is set after the SIGNOFF command is completed.

Note: If the SIGNOFF command fails because of incorrect syntax, the macro
variable is not set.

Here are the values for the CMACVAR= option:

0 indicates that the sign-off was successful.

1 indicates that the sign-off failed.

2 indicates that the sign-off was unnecessary.

If the CMACVAR= option is specified in the SIGNOFF _ALL_ statement, only that
macro variable is updated.

Here are the values for the CMACVAR= option that are specified in SIGNOFF
ALL:

0 indicates that all sign-offs were successful.

1 indicates that at least one sign-off failed.

Alias: MACVAR=

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that you want to sign off from. If only one
session is active, server-ID can be omitted. If multiple server sessions are active,
omitting this option signs off the most recently accessed server session. You can find
out which server session is current by examining the value assigned to the
CONNECTREMOTE= system option.
Alias: CREMOTE=, REMOTE=, PROCESS=

CSCRIPT=fileref| 'filespec'
specifies the script file to be used during sign-off. CSCRIPT can be specified as a
fileref or a fully qualified pathname that is enclosed in parenthesis. If multiple
CSCRIPT= options are specified, the last specification takes precedence.

fileref
is the name of the reference file that is associated with the script that ends the
connection. A previously executed FILENAME statement must define the fileref.

82 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

If the fileref that you define for the script is the default fileref RLINK, you can
omit this specification from the SIGNOFF command.

You might use the same script to start and end a connection. If you use one script
to start and end a connection, assign only one fileref.

'filespec'
is the name of the SAS/CONNECT script that you want to execute. If you have
not defined a fileref for the script that you want to execute, use the filespec in the
SIGNOFF command. The filespec can be either a fully qualified filename or the
name of a file in the current working directory.

Do not specify both a fileref and a filespec.
Alias: SCRIPT=

NOCSCRIPT
specifies that no SAS/CONNECT script should be used for sign-off. NOCSCRIPT is
useful if you have defined the RLINK fileref but do not want to use it during sign-
off. NOCSCRIPT accelerates sign-off and saves memory resources.
Alias: NOSCRIPT

Details
The SIGNOFF command and the SIGNOFF statement end a connection between a client
and a server session, and execute a script if you are using an access method that requires
a script file. You can issue the SIGNOFF command from the command line in any client
SAS windowing environment window or in a DM statement. You can also issue a
SIGNOFF statement from the client session, which is especially useful for interactive
line mode sessions or non-interactive jobs.

Examples

Example 1: Setting a Macro Variable at Sign-on Checks for Sign-off
Failure
In this example, a macro variable is assigned at sign-on. Therefore, if the sign-off fails,
the macro variable will be set for this server session.

 /* Sign-on successful, rhost1 will be */
 /* set to 0 to indicate success, and */
 /* macro variable rhost1 is now */
 /* associated with this server */
 /* session. */
signon rhost cmacvar=rhost1;
 /* Sign-off will fail, and rhost2 */
 /* will be set to 1 to indicate this, */
 /* but because it was unsuccessful, */
 /* rhost1 is still the default macro */
 /* variable associated with this */
 /* server session. */
signoff rhost cmacvar=rhost2
 cscript='noexist.scr';

Example 2: Not Setting a Macro Variable at Sign-on Does Not Check
for Sign-off Failure
In this example, a macro variable is not assigned at sign-on. Therefore, if the sign-off
fails, the macro variable will not be set for this server session.

SIGNOFF Command and Statement 83

 /* No macro variable associated with */
 /* server session */
signon rhost;
 /* Sign-off will fail, and ABC will */
 /* be set to 1 to indicate this, */
 /* but because it was unsuccessful, */
 /* the default of no macro variable */
 /* will go into effect for this */
 /* server session. */
signoff rhost cmacvar=abc
 cscript='noexist.scr';

When the SIGNOFF command executes, the usual SAS log messages for the server
session appear in the Log window of the client session. After the connection ends, the
following message is displayed:

NOTE: Remote signoff to server-ID complete.

Example 3: Simple Sign-off for a Single Session
The following FILENAME statement assigns the fileref RLINK to a SAS/CONNECT
script that is named external-file-name:

filename rlink 'external-file-name';

Because the client is connected to only one server session, a short form of the SIGNOFF
statement can be used to end the connection:

signoff;

Example 4: Sign-off from a Specific Session
If multiple server sessions are executing, you can specify the server-ID of the server
from which to sign off.

signoff ahost;

Example 5: Sign-off from Session Using Specific Script Fileref
The following FILENAME statement assigns another fileref, which is not the default, to
the SAS/CONNECT script:

filename endit 'external-file-name';

In this case, you must specify the fileref in the SIGNOFF statement because it is not the
default script fileref.

signoff cscript=endit;

Example 6: Sign-off by Using a File Specification When Multiple
Sessions Are Running
If you do not assign a fileref to the SAS/CONNECT script, you must specify the filespec
in the SIGNOFF command.

signoff all cscript='external-file-name';

Example 7: Sign-off without a Script
If you do not want to perform any special processing when you sign off, you can omit
the script that is used for signing off.

signoff noscript;

84 Chapter 5 • Syntax for the SIGNON and the SIGNOFF Statements and Commands

Chapter 6

Syntax for the FILENAME
Statement

Dictionary . 85
FILENAME Statement and Command . 85

Dictionary

FILENAME Statement and Command
Associates a SAS fileref with an external file.

Valid in: client and server session

See: “FILENAME Statement: Windows” in SAS Companion for Windows, “FILE
Statement: UNIX” in SAS Companion for UNIX Environments, and “FILENAME
Statement: z/OS” in SAS Companion for z/OS.

Syntax
FILENAME 'filespec' <access-method> <operating-environment-options>

Optional Arguments
fileref

specifies the name of a file reference to an external file.

'filespec'
specifies the physical name of an external file so that the external file is recognized
by the operating environment.

access-method
specifies a remote file access via a specific access method. For details, see the access
methods that are supported in the FILENAME statement in SAS Statements:
Reference.

operating-environment-options
specifies details, such as file attributes and processing attributes, that are specific to
the operating environment.

85

Details

The FILENAME statement associates a SAS fileref (a file reference name) with a
filespec. The fileref must conform to SAS naming rules. The form of the filespec varies
according to operating environment. Some environments require a fully qualified
filename; other environments might permit partial pathnames.

Filerefs are a shorthand method for specifying a file in SAS statements and commands.
After you define a fileref, you can use the fileref in place of the longer file specification
to reference the file throughout a SAS session or program.

A fileref remains associated with an external file only for the duration of the SAS
session. The association is not permanent. Also, a fileref must be defined and the
FILENAME statement must be executed before a SAS statement or command that uses
the fileref can execute.

Using a FILENAME Statement for Script Files
A common use of the FILENAME statement is to define filerefs for SAS/CONNECT
script files. A script's fileref can then be specified in SIGNON and SIGNOFF commands
to identify the SAS/CONNECT script that starts or ends the connection.

You can define a default fileref for a script file in a FILENAME statement. The default
script fileref is RLINK. If you specify RLINK as the fileref for your script, you do not
need to specify a fileref or a filespec in SIGNON and SIGNOFF commands or
statements. When SAS executes a SIGNON or a SIGNOFF command without a
specified fileref or a filespec, SAS automatically searches for a file that is defined with
RLINK as the fileref. If RLINK has been defined, SAS executes the corresponding
script.

Using a FILENAME Statement in the SAS Autoexec File
You can insert a FILENAME statement in the SAS autoexec file to automatically start
and end a SAS/CONNECT server session. An autoexec file contains SAS statements and
commands that you set up to execute automatically each time you invoke SAS. Its
purpose is to automate the execution of statements, commands, and entire programs that
you use routinely in SAS processing. If you use an autoexec file that contains a
FILENAME statement that defines your script's fileref, you do not have to type and
execute the FILENAME statement each time you want to establish a connection.

For details about setting up an autoexec file, see the appropriate SAS Companion
documentation for your environment and SAS Language Reference: Concepts.

Using a FILENAME Statement with the UPLOAD and DOWNLOAD
Procedures
You can combine the FILENAME statement with the UPLOAD and DOWNLOAD
procedures to copy external files between SAS sessions. For example, in the client
session, use the FILENAME statement to assign a fileref. The fileref defines the target
location for the external file copy. In the server session, use the FILENAME statement
to assign a fileref to the file to be downloaded to the client session.

86 Chapter 6 • Syntax for the FILENAME Statement

Examples

Example 1: Using a FILENAME Statement for a Script File
If a SAS/CONNECT script is written and copied to a directory in your client
environment, you could use the FILENAME statement to define the default fileref
RLINK for the script, as follows:

filename rlink 'external-file-name';

Because you defined RLINK as the script's fileref, you can use the shortest form of the
SIGNON and SIGNOFF commands or statements. For example, to start the connection,
enter the following:

signon;

If you use one script to start the connection and another script to end the connection, you
must define a unique fileref for each script. For example:

filename rlink 'start-link-script-file';
filename endit 'end-link-script-file';

Subsequently, to start the connection, enter the following command or statement, which
uses the default fileref RLINK for the sign-on script:

signon;

To end the connection, enter the following:

signoff endit;

Example 2: Using a FILENAME Statement with the UPLOAD and
DOWNLOAD Procedures
Suppose you want to download an external file from a server session to a client session
that runs in a directory-based operating environment. Submit the following FILENAME
statement to assign the fileref in the client session:

filename lhost 'client-file-name';

Then remotely submit the following statements to assign the fileref in the server session
and to perform the download:

rsubmit;
filename rhost 'server-file-name';
 proc download infile=rhost outfile=lhost;
 run;
endrsubmit;

FILENAME Statement and Command 87

88 Chapter 6 • Syntax for the FILENAME Statement

Chapter 7

SAS Component Language (SCL)
Functions and Options

Using SCL to Locate and Store Sample Script Files . 89

Dictionary . 90
COMAMID SCL Function . 90
RLINK SCL Function . 91
RSESSION SCL Function . 92
RSTITLE SCL Function . 93

Using SCL to Locate and Store Sample Script
Files

The system option SASSCRIPT= defines the location of the SAS/CONNECT script
files. The value of the SASSCRIPT= system option is a logical name or one or more
aggregate storage locations (such as directories or partitioned data sets). Setting the
SASSCRIPT= system option automatically generates the SAS system option,
SASFRSCR. SASFRSCR is set to the value of a fileref that is used to build a list of
scripts for SCL applications. When you establish a link while using SAS/ASSIST, this
product uses the information provided by the SASFRSCR option to provide a list of
available scripts. You can also build a similar menu of script files for user-written
applications by accessing the SASFRSCR system option from an SCL program.

The following SCL program obtains the value of the SASFRSCR system option and uses
it to create a list of scripts. For information about the SCL functions that are used in this
example, see SAS Component Language: Reference .

INIT;
return;

MAIN:
 /* Get internally-assigned fileref. */
 fileref=optgetc('sasfrscr');

 /* Open the directory (aggregate storage */
 /* location). */
 dirid=dopen(fileref);

 /* Get the number of files. */
 numfiles=dnum(dirid);

 /* Define a custom selection list the */

89

 /* length of the number of files and */
 /* allowing users to make one choice. */
 call setrow(numfiles,1);
return;

TERM:
 /* Close the directory. */
 rc=dclose(dirid);
return;

GETROW:
 /* Display the list of filenames. */
 filename=dread(dirid,_currow_);
return;

PUTROW:
 /* Get directory pathname. */
 fullname=pathname(fileref);

 /* Concatenate filename that user selects*/
 /* with directory pathname. */
 name=fullname ||'/'|| filename;
 /* Other SCL statements to use complete */
 /* filename stored in name. */
return;

Dictionary

COMAMID SCL Function
Returns a string that contains all of the communications access methods that are valid for the operating
environment that the SCL code executes under.

Client: optional

Server: optional

Syntax
cval=COMAMID();

Syntax Description
cval

a string that contains all of the communications access methods that are valid for the
specific operating system.

Details
The COMAMID function returns a string that contains all of the communications access
methods that are valid for the operating environment that the SCL code executes under.
Each value is separated by a blank. This function is useful for providing a list of

90 Chapter 7 • SAS Component Language (SCL) Functions and Options

communications access methods for users. The list is displayed as determined by the
developer. The function merely returns a string of values.

Example
The following program fragment gets the string of communications access methods that
are valid for the operating environment that this SCL program executes under. After the
string is returned, one way to display the values would be in a list box. Although this
example does not include it, you would specify that the list box be filled with the text
string cval.

comlist=makelist();
 str=comamid();
 do i=1 to 10;
 com=scan(str,i,' ');
 if com^=' ' then
 comlist=insertc(comlist,com,i);
 end;

RLINK SCL Function
Verifies whether a connection was established between a SAS/CONNECT client and a server session.

Client: optional

Server: optional

Syntax
rc=RLINK('server-ID');

Syntax Description
rc

is the return code.

'server-ID'
is the name of the server session (specified by REMOTE= server-ID) that is being
tested.

Details
The RLINK function verifies whether a connection was established between the
SAS/CONNECT client and server sessions.

Example
The following statements use the RLINK function and the server ID REMSESS.

rc=rlink('REMSESS');
if (rc=0) then
 msg='No link exists.';
else
 msg='A link exists.';

RLINK SCL Function 91

RSESSION SCL Function
Returns the name, description, and SAS version of a SAS/CONNECT server session.

Client: optional

Server: optional

Syntax
cval=RSESSION(n);

Syntax Description
cval

is the character string that contains the following information:

characters 1 through 17
are the session identifier (REMOTE= server-ID).

characters 18 through 57
are the description.

characters 58 through 61
are the number of the server session to get session information for. If no
connection exists, the returned value is blank. If a connection exists but no
description was specified, characters 58 through 61 in the returned value are
blanks.

Details
The RSESSION function returns the session identifier and the corresponding description
for a SAS/CONNECT server session. You must have previously defined the description
by using the RSTITLE function.

Example
This example loops through four sessions and obtains the server session and description,
which is returned by using the RSESSION function. The program puts the descriptions
in separate arrays for later use (for example, to display a choice of server sessions to
upload to).

do i=1 to 4;
 word=rsession(i);
 if word ^=' ' then do;
 remote=substr(word,1,17);
 desc=(substr(word,18,57));
 if rlink(remote) then do;
 if desc=' ' then desc = remote;
 cnt=cnt + 1;
 entrys{cnt}=remote;
 comam{cnt}=desc;
 end;
 end;
end;

92 Chapter 7 • SAS Component Language (SCL) Functions and Options

RSTITLE SCL Function
Defines a description for an existing connection to a SAS/CONNECT server session.

Client: optional

Server: optional

Syntax
sysrc=RSTITLE(session-ID, description);

Syntax Description
sysrc

is 0 if the description was saved or nonzero if the operation failed.

session-ID
is the name of the server session (specified by CONNECTREMOTE= server-ID).
The string can contain a maximum of eight characters.

description
is a description to associate with the server session. The string can contain a
maximum of 40 characters.

Details
The RSTITLE function saves the session identifier and description for an existing
connection to a server session. This information can be retrieved by using the
RSESSION function to build a list of connections. The list can then be used to select a
connection when submitting statements to a server.

Example
The following statements define the description z/OS Payroll Data for the remote
session by using the identifier A:

session='A';
descrip='z/OS Payroll Data';
rc=rstitle(session,descrip);

RSTITLE SCL Function 93

94 Chapter 7 • SAS Component Language (SCL) Functions and Options

Chapter 8

SAS/CONNECT Script
Statements

Summary of SAS/CONNECT Script Statements . 95

Dictionary . 96
ABORT . 96
CALL . 96
ECHO . 97
GOTO . 97
IF . 98
INPUT . 98
LOG . 99
NOTIFY . 99
RETURN . 100
SCANFOR . 100
STOP . 100
TRACE . 101
TYPE . 101
WAITFOR . 102

Summary of SAS/CONNECT Script Statements

Table 8.1 Summary of SAS/CONNECT Script Statements

Statement Purpose

ABORT Stops execution of a script immediately and signals an error condition.

CALL Invokes a routine.

ECHO Controls the display of characters that are sent from the server session while a
WAITFOR statement executes.

GOTO Redirects execution to the specified script statement.

IF Checks conditions before the execution of labeled script statements.

INPUT Displays a prompt to the user that requests a response for the server session.

95

Statement Purpose

LOG Sends a message to the client session SAS LOG window.

NOTIFY Sends a message in a window to the client session.

RETURN Signals the end of a routine.

SCANFOR Specifies a pause until conditions are met (an alias for WAITFOR).

STOP Stops execution of a script under normal conditions.

TRACE Displays script statements as they execute.

TYPE Sends characters to the server session as if they were typed at a terminal.

WAITFOR Specifies a pause until conditions are met.

For more information see:

Dictionary

ABORT
Stops execution of a script immediately and signals an error condition.

Syntax
ABORT;

Details
The ABORT statement immediately stops execution of a script and terminates the
SIGNON or the SIGNOFF function. ABORT prevents other script statements from
executing when the communication link has not been established successfully. When it
executes, the ABORT statement signals an error condition, and an error message is
issued and displayed in the SAS Log window. To terminate execution of a script under
normal conditions, use the STOP statement.

CALL
Invokes a routine.

96 Chapter 8 • SAS/CONNECT Script Statements

Syntax
CALL label;

Syntax Description
label

identifies the starting point for executing a block of statements until a RETURN
statement is reached.

Details
The CALL statement causes the statements that are specified after label to be executed
until a RETURN statement is encountered. When a RETURN statement is reached,
script processing resumes at the statement that is specified after the CALL statement.

ECHO
Controls the display of characters that are sent from the server while a WAITFOR statement executes.

Syntax
ECHO ON | OFF;

Syntax Description
ON

specifies that the characters are displayed.

OFF
specifies that the characters are not displayed. This is the default.

Details
The ECHO statement is useful when you are debugging a script.

GOTO
Redirects execution of a script to the specified script statement.

Syntax
GOTO label;

Syntax Description
label

specifies a labeled statement that is located elsewhere in the script.

Details
The GOTO statement can also be written as GO TO.

GOTO 97

IF
Checks conditions of labeled script statements before they execute.

Syntax
IF condition GOTO label;

IF NOT condition GOTO label;

Syntax Description
condition

is the test that is performed to determine whether a set of statements should be
executed.

label
specifies a labeled statement in the script.

Details
The IF statement conditionally jumps to another statement in the script. The IF statement
can check two conditions: connection type and whether the script has been called by the
SIGNON or the SIGNOFF command.

If the statement is testing for sign-on or sign-off, condition should be one of the
following:

SIGNON
specifies that the SIGNON command invoked this script.

SIGNOFF
specifies that the SIGNOFF command invoked this script.

If the statement is testing for connection type, condition should be either FULL
SCREEN or one of the values for the COMAMID= system option.

The value FULLSCREEN can be used to detect any full-screen 3270 connection. The
remaining values correspond to values for the COMAMID= system option.

label must specify a labeled statement in the script. For example, in the following IF
statement, ENDIT is a label that is followed by one or more statements that terminate the
link when the user has issued a SIGNOFF command:

if signoff then goto endit;

INPUT
Displays a prompt to the user that requests a response for the server.

Syntax
INPUT <NODISPLAY> 'prompt';

98 Chapter 8 • SAS/CONNECT Script Statements

Syntax Description
NODISPLAY

is an optional parameter that is used to indicate that the input will not be displayed
on the screen. This parameter is commonly used when a user is prompted to provide
a password so that the password is not displayed as it is entered.

'prompt'
is a character string and must be enclosed in quotation marks.

Details
The INPUT statement specifies a character string that is displayed to the user when the
script executes. The specified string should be a prompt that requests a response from the
user, who must respond by pressing ENTER or RETURN (as a minimum response),
before script execution can continue. For example, in automatic sign-on scripts, the
INPUT statement is used to prompt the user for the user ID and the password that are
needed for signing on to the server.

The INPUT statement does not automatically transmit a carriage return or an ENTER
key. Therefore, when writing a script, if you want to transmit a carriage return or
ENTER key to the server, you must use a TYPE statement after an INPUT statement.

LOG
Sends a message to the client SAS log.

Syntax
LOG 'message';

Syntax Description
'message'

is a text string that must be enclosed in quotation marks.

Details
The LOG statement specifies a message that is written to the SAS log. You can use this
statement to issue informative notes or error messages to the user as the script executes.
For example, the sample scripts in SAS use the following LOG statement to inform users
that the SIGNOFF completed successfully:

log 'NOTE: SAS/CONNECT conversation terminated.';

NOTIFY
Sends a message in a window to the client session.

Syntax
NOTIFY 'message';

NOTIFY 99

Syntax Description
'message'

is a text string that must be enclosed in quotation marks.

Details
The NOTIFY statement sends a message to the user on the client by creating a window
that displays the message. The user must select CONTINUE to clear the window. The
NOTIFY statement is similar to the LOG statement, but it enables you to highlight
messages that might not be noticed in the log.

RETURN
Signals the end of a routine.

Syntax
RETURN;

Details
The RETURN statement indicates the end of a group of statements that form a routine in
a script. The routine begins with a statement label and is invoked by a CALL statement.

SCANFOR
Specifies a pause until conditions are met (an alias for WAITFOR).

Syntax
SCANFOR pause-specification-1 <... pause-specification-n> ;

Syntax Description
pause-specification

See the description of pause-specification in the WAITFOR statement.

Details
The SCANFOR statement is an alias for the WAITFOR statement. See the description of
the WAITFOR statement.

STOP
Stops execution of a script under normal conditions.

Syntax
STOP;

100 Chapter 8 • SAS/CONNECT Script Statements

Details
The STOP statement is used to terminate script execution under normal conditions.
Usually, you use the STOP statement at the end of a group of statements that perform
sign-on tasks or sign-off tasks.

To halt the execution of scripts under abnormal conditions, use the ABORT statement.

TRACE
Controls the display of script statements in the Log window as they execute.

Syntax
TRACE ON | OFF;

Syntax Description
ON

specifies that statements are displayed in the Log window.

OFF
specifies that statements are not displayed in the Log window. This is the default.

Details
The TRACE statement is most useful when debugging a script.

You can set the TRACE statement on or off several times in a script in order to trace
execution of selected statements.

TYPE
Sends characters to the server as if they were typed at a personal computer.

Syntax
TYPE text;

Syntax Description
text

is the user-specified string of characters sent to the server.

Details

The TYPE statement sends characters to the server as if they had been typed on a
personal computer that is attached to that operating environment. For example, in a
script that automatically signs on to the server, you use a TYPE statement to issue the
server sign-on command.

text can be any combination of the following:

TYPE 101

• literal string(s) that are enclosed in quotation marks, such as 'any string'.

• hexadecimal character string(s) that are enclosed in quotation marks, such as
'01020304X'.

• 3270 key mnemonics if you have a 3270 connection.

If you use TYPE statements in the script and some characters that are specified by the
statement are not typed, try using the WAITFOR statement to establish a pause in script
execution between TYPE statements.

To use a TYPE statement that has more than 80 characters in a sign-on script, divide the
TYPE statement into two or more TYPE statements. To divide the TYPE statement,
insert a hyphen (-) at the division point. For example, consider the following TYPE
statement:

type "sas options ('dmr comamid=tcp')"
enter;

To divide this statement, change it as follows:

type "sas options ('dmr comamid=-" enter;
type "tcp')" enter;

Note: Do not insert spaces before or after the hyphen.

ASCII Control Character Mnemonics
To specify an ASCII control character in the TYPE statement, use a mnemonic
representation of the character. The following table lists the ASCII control characters
and the corresponding mnemonics, decimal codes, and hexadecimal values.

• Do not enclose an ASCII mnemonic in quotation marks.

• In the TYPE statement, use only the values from decimal 0 to 127 (hexadecimal 0 to
7F). Do not use any of the extended ASCII characters whose values are greater than
127 (decimal).

Table 8.2 ASCII Character Mnemonics

ASCII Control Character

Mnemonic
Representati
on

Decimal
Value Hexadecimal Value

Line feed LF or CTL_J 10 0A

Carriage return CR or
CTL_M

13 0D

WAITFOR
Specifies a pause until specific conditions are met.

Syntax
WAITFOR pause-specification-1<. . . pause-specification-n> ;

102 Chapter 8 • SAS/CONNECT Script Statements

Syntax Description
pause-specification

is the criteria used to determine when the pause is terminated for the WAITFOR
statement and processing continues.

The value of pause-specification can be either of the following:

time-clause<:timeout-label>

time-clause
specifies a time period in the form n SECONDS.

n is the number of seconds that the client waits before processing continues. If
you specify 0 SECONDS, a time-out occurs almost immediately. In most cases,
you should specify a value greater than 0. You can specify only one time clause
in a WAITFOR statement.

:timeout-label
specifies the label of a statement that exists later in the script. The label must be
preceded by a colon (:). When you specify a label, script execution passes to the
labeled statement after a time-out occurs. If no label is specified, execution
proceeds with the statement that is specified after the WAITFOR statement.

text-clause<:text-label>
text-clause

specifies a string that the client waits to receive from the server. The string can
be the following

• a character string that is enclosed in quotation marks

• a hexadecimal string that is enclosed in quotation marks

When text-clause is specified, SAS on the client reads input from the server,
searching for the specified string. With 3270 connections, SAS on the client
scans the server screen (instead of reading characters sequentially).

:text-label
specifies the label of a statement that exists later in the script. The label must be
preceded by a colon (:). When you specify a label, script execution passes to the
labeled statement after a time-out (if the label follows a time clause) or after the
specified string has been read (if the label follows a text clause). If no label is
specified, execution proceeds with the statement that is specified after the
WAITFOR statement.

Details
The WAITFOR statement directs SAS on the client to do one of the following:

• pause for a specified time

• pause for a specified time or until specified characters from the server are received

• pause until specified characters from the server are received

Usually, a WAITFOR statement is used after a TYPE statement sends input to the server
that causes the client to wait for the server's response to the input. For example, in the
sample scripts, a WAITFOR statement follows the TYPE statement that invokes SAS on
the server.

You can include one or more pause specifications in a WAITFOR statement. When you
include more than one pause specification, use commas to separate the clauses.

WAITFOR 103

Comparisons
• You must specify either a time clause or a text clause in the WAITFOR statement.

Or you can specify multiple text clauses or combine a time clause and one or more
text clauses. Labels and screen location specifications are optional.

• If the only specification in the WAITFOR statement is a time clause, there is a pause
during the script's execution. When the specified time has elapsed, control passes to
the next statement in the script. For example, the following WAITFOR statement
causes a 2-second pause in script execution:

waitfor 2 seconds;

• If the WAITFOR statement contains a time clause followed by a label, a pause
occurs and control passes to the labeled statement. The following WAITFOR
statement causes a 2-second pause and then passes control to the script statement
labeled STARTUP:

waitfor 2 seconds :startup;

• If the WAITFOR statement contains a time clause and a text clause, the client waits
the specified time for the specified characters from the server. If the client does not
receive the expected characters before the time expires, a time-out occurs and control
passes to the next statement or to the labeled statement (if a label is specified by the
time clause). For example, when the following WAITFOR statement executes, the
client pauses for 5 seconds and reads any input sent by the server:

waitfor 'Enter your password',
 5 seconds :nohost;

If the following string is sent by the server within 5 seconds, no time-out occurs and
control passes to the next statement in the script:

Enter your password

If the string is not received within 5 seconds, a time-out occurs and control passes to
the statement labeled NOHOST.

• You can specify labels for both text clauses and time clauses. For example:

waitfor 'Enter your password' :startlnk,
 5 seconds :nohost;

This WAITFOR statement is the same as the preceding example except that a label is
specified after the text clause. Therefore, if the following string is sent by the server
within 5 seconds, no time-out occurs and control passes to the statement labeled
STARTLNK:

Enter your password

If the string is not received within 5 seconds, a time-out occurs and control passes to
the statement labeled NOHOST, as in the previous example.

• If you do not specify a time clause (that is, if you specify only a text clause), a time-
out cannot occur, and the client waits indefinitely for the specified text response
from the server. Usually, you should specify a time clause to avoid being trapped in
an infinite wait.

• If you specify multiple text clauses in a WAITFOR statement, the commas that
separate the clauses imply a logical OR operator, so only one of the text clauses
needs to be satisfied (true).

104 Chapter 8 • SAS/CONNECT Script Statements

Chapter 9

Sign-On Troubleshooting

Troubleshooting Sign-On Problems . 105
Host-Not-Active Message . 105
Absence of SAS Software Start-Up Messages . 105
Requested-Link-Not-Found Message . 106
SAS/CONNECT Server Session Initialization Errors . 106
SAS Console Log Messages for Windows . 106
SAS Console Log Messages for UNIX . 107
SAS Console Log Messages for z/OS . 107

Troubleshooting Sign-On Problems

Host-Not-Active Message
While signing on to a server session, you receive the following message:

 ERROR: Did not get Host prompt.
 Host not active.

If you are signing on to computer via a TCP/IP connection, one of the following actions
might overcome the problem:

• Look at the script that you used for signing on. Ensure that the character string in the
WAITFOR statement that tests for the server session system prompt exactly matches
the character string that normally appears in the server session. The WAITFOR
statement is case sensitive.

• Look at the value of the REMOTE= option in the client session to be sure it specifies
the correct IP address.

• If you do not find any errors after checking the two preceding items, modify the
script file by adding a TRACE ON statement and an ECHO ON statement at the
beginning of the script file. These statements send a copy of the remote screen to the
Log window or to a file in the client session. You can examine the SAS log in the
client session to see what is displayed by the server session at the time the
WAITFOR statement executes.

Absence of SAS Software Start-Up Messages
While signing on to a server session, you receive the following message:

105

 ERROR: Did not get SAS software startup messages

This message occurs if the command to invoke the server session is not correct in the
script file that is being used for signing on. Look at your script file and make sure that
the TYPE statement that invokes SAS in the server session uses the correct SAS
command for your site. At some sites, the command to invoke SAS is not the default
command name SAS.

For more information about recovery from this error, see “SAS/CONNECT Server
Session Initialization Errors” on page 106 .

Requested-Link-Not-Found Message
While signing on to a server session from a client session that runs under z/OS, you
receive the following message:

 ERROR: XMS Communication Failure:
 requested-link XVT not found.

This error occurs if XMS has not been configured correctly. For details about XMS
configuration, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

For more information about recovery from this error, see “SAS/CONNECT Server
Session Initialization Errors” on page 106 .

SAS/CONNECT Server Session Initialization Errors
The method that you used to sign on to a server session correctly executed the SAS
command to start the server session. However, errors prevent SAS from initializing.
Possible explanations for initialization failure include the following:

• An invalid option name or value might have been specified in the SAS command.

• The user might not be authorized by the computer that the server session runs on to
execute the SAS program modules or to access the SASHELP, SASUSER, or
SASWORK libraries

• The sign-on command might try to execute an autoexec file that does not exist.

In order to recover from the initialization failure, you need to view the content of the
SAS console log. The location of the SAS console log varies according to the operating
environment that the server session runs under.

SAS Console Log Messages for Windows
The SAS console log is written to a file that is located in the user's Application Data
Directory. The name of the file is written as a record to the Windows Application Event
Log.

You can use the Windows Event Viewer to see the application events on the computer
where the server session was being executed. A warning event is logged for each
initialization failure for a single server session. For multiple events, the user ID and the
time of the event are included in the warning event.

For more information about the failing event, you can select the warning event from the
viewer window. Another window is displayed that contains detailed event information,
including the name of the file that contains the SAS console log.

106 Chapter 9 • Sign-On Troubleshooting

SAS Console Log Messages for UNIX
The SAS console log is written to the standard output location for the SAS process. The
location for the standard output varies according to the sign-on method that was used.

SASCMD= sign-on
Standard output is piped to the SAS session that issued the sign-on statement. The
standard output messages are written to the SAS log in the SAS session. Each
message contains a prefix that identifies the server session (the server ID) that was
being created.

Spawner sign-on
The standard output location for the SAS session that is started via the spawner is
piped to the standard output location of the spawner. The command that is used to
start the spawner should ensure that standard output is redirected to a specific
location. An example of redirecting standard output to a log follows:

sastcpd -nocleartext > spawner.log

SAS console log messages will be directed to the standard output location. For
details about the UNIX spawner, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Telnet daemon sign-on
The standard output location for the SAS session is the script processor in the SAS
session that issued the SIGNON command. If the script processor does not receive a
SESSION STARTED message from the server session, a sign-on failure is assumed.
However, error messages that are directed to the SAS console log in the server
session might not be displayed. To display error messages in the server session,
include the echo on statement in the sign-on script.

SAS Console Log Messages for z/OS
The SAS console log is written to the SASCLOG ddname of the SAS session that is
started. The location of the SASCLOG ddname varies according to the sign-on method
that was used.

SASCMD= sign-on
The SASCLOG is written to the SYSOUT device.

To locate messages in the SAS console log, you must find the appropriate user ID in
the spooled files. You can use a Job Entry System (JES) spool viewer (such as SDSF
or EJES) to browse the spooled files.

Spawner sign-on
The SASCLOG is written to the SYSOUT device.

To locate messages in the SAS console log, you must find the appropriate user ID in
the spooled files. You can use a Job Entry System (JES) spool viewer (such as SDSF
or EJES) to browse the spooled files.

Telnet daemon sign-on
The SASCLOG ddname is directed to the script processor in the SAS session that
issued the SIGNON command. If the script processor does not receive a SESSION
STARTED message from the server session, a sign-on failure is assumed. However,
error messages that are directed to the SAS console log in the server session might
not be displayed. To display error messages in the server session, include the echo
on statement in the sign-on script.

Troubleshooting Sign-On Problems 107

108 Chapter 9 • Sign-On Troubleshooting

Part 4

Compute Services

Chapter 10
Using Compute Services . 111

Chapter 11
Syntax for the RSUBMIT Statement and Command 139

Chapter 12
Examples Using Compute Services . 173

Chapter 13
Syntax for Remote SQL Pass-Through (RSPT) 185

Chapter 14
Examples Using Remote SQL Pass-Through (RSPT) 189

Chapter 15
Examples of Combining Compute Services and Data Transfer
Services . 193

Chapter 16
Compute Services Troubleshooting . 201

109

110

Chapter 10

Using Compute Services

Overview of Compute Services . 112

MP CONNECT . 113

Independent Parallelism . 113
Overview . 113
Considerations for Independent Parallelism . 114
Single Input Data Source . 114
I/O Activity in the WORK Library of Each SAS Session 114

Pipeline Parallelism . 115
Overview of Pipeline Parallelism . 115
Limitation of Pipeline Parallelism . 115
Considerations for Piping . 116

Benefits of MP CONNECT . 116

Scalability with MP CONNECT . 117
Overview of Scalability . 117
Parallel Threads and Parallel Processes . 117
Parallel Processes . 118
Parallel Threads . 118
Scaling Up . 118
Scaling Out . 118
Multiple Threads and Multiple Processors . 118

Monitoring MP CONNECT Tasks . 119
Overview of Monitoring MP CONNECT Tasks . 119
Managing MP CONNECT Log and Output Results . 119
MP CONNECT Task Completion . 120

Using SAS Explorer to Monitor SAS/CONNECT Tasks . 120

Compute Services and the Output Delivery System . 121

Using the SAS Windowing Environment to Control Remote Processing 122
Overview of Remote Processing Control Using the SAS

Windowing Environment . 122
Remote Submit . 122
Remote Get . 124
Remote Display . 125

Interaction between Compute Services and Macro Processing 125
Macro-Generated RSUBMIT Blocks . 125
Macro Definitions . 126
SAS Statements That Are Not Macros or Macro Definitions 126

111

Macro Statements . 126
Ensuring That the RSUBMIT Statements Are Executed in the Correct Session . . 126
Examples . 128
Frequently Asked Questions . 131

Compute Services and Break Windows . 136
Overview . 136
SAS/CONNECT Attention Handler Window . 136
Communication Services Break Handler Window . 137

Overview of Compute Services
SAS/CONNECT Compute Services provides a set of statements and commands that
enable the client to distribute SAS processing to one or more server sessions and to
maintain control of these server sessions and their results from the single client session.
This very powerful capability enables you to run SAS across many (possibly
heterogeneous) platforms as well as communicate between different releases of SAS that
might be installed on these operating environments.

The RSUBMIT statement or command is used to direct SAS processing to a specific
server session. For details, see “RSUBMIT Statement and Command” on page 139 .

Here are some of the benefits of Compute Services:

• gives you access to additional CPU resources.

You might have multiprocessor SMP computers or remote computers on your
network that are underutilized. These CPUs could be used to execute the CPU
intensive portions of your application faster and more efficiently than your local
computer. Compute Services enables you to move some or all segments of an
application to one or more server sessions for execution and return the results to the
client session.

• lets you execute the application on the computer where the data resides.

Data center rules or data characteristics might mandate a single, centralized copy of
the data that is needed by your application. Moving the processing to the computer
where the data resides eliminates the need to transfer or create additional copies of
the data. Using only one copy of data can satisfy security requirements as well as
enable access to data sources that are too large or too dynamic for transfer.

For example, although data links between computers make file transfers convenient
and easy, large files do not move quickly between computers. It is also inefficient to
maintain multiple copies of large files when developing and testing programs that are
designed to process those files. Compute Services overcomes this limitation by
developing applications on one computer while running them and keeping the data
that they use on a different computer.

To test your application, submit it remotely from the client session so that it will run
in the server session on a remote computer. All processing occurs on the computer
where the data resides, but the output appears in the client session.

112 Chapter 10 • Using Compute Services

MP CONNECT
Before SAS 8, when an RSUBMIT statement was executed, the client session was
suspended until processing by the server session had completed. In SAS 8, MP
CONNECT functionality was added, which allows you to execute RSUBMIT statements
asynchronously. When an RSUBMIT is executed asynchronously, the unit of work is
sent to the server session and control is immediately returned to the client session. The
client session can continue with its own processing or execute RSUBMIT statements to
one or more additional server sessions. Asynchronous RSUBMIT statements are most
useful for longer-running tasks.

MP CONNECT enables you to perform multiprocessing with SAS by establishing a
connection between multiple SAS sessions and enabling each of the sessions to
asynchronously execute tasks in parallel. You can also merge the results of the
asynchronous tasks into your local execution stream at the appropriate time. In addition,
establishing connections to processes on the same local computer has been greatly
simplified. This enables you to exploit SMP hardware as well as network resources to
perform parallel processing and easily coordinate all the results into the client SAS
session.

You can use MP CONNECT to start any number of SAS processes that you want to
perform in parallel. SAS processes that are started on a single multiprocessor computer
are independent, unique processes just as they are if they are initiated on a remote host.
For example, under Windows and UNIX, each SAS session is a separate process that has
its own unique SAS WORK library. Each process also assumes the user context of the
parent or of the user that invoked the original SAS session, and has all the rights and
privileges that are associated with that parent. Under z/OS, each SAS session is an MVS
BPX address space that inherits the same STEPLIB and USERID as the client address
space. The client's SASHELP , SASMSG, SASAUTOS, and CONFIG allocations are
passed to the new session as SAS option values.

MP CONNECT is implemented by executing an RSUBMIT statement and the
CONNECTWAIT=NO option. This method causes SAS/CONNECT to submit a task to
a server session for processing and return control immediately to the client session so
that you can start other tasks in the client session or in other server sessions. For details
about the CONNECTWAIT= option, see “RSUBMIT Statement and Command” on
page 139 .

Independent Parallelism

Overview
Independent parallelism is possible when the execution of Task A and Task B do not
have any interdependencies. For example, an application might need to run PROC
SORT against two different SAS data sets and merge the sorted data sets into one final
data set. Because there is no dependency between the two data sets that initially need to
be sorted, the two SORT procedures can be performed in parallel. When sorting is
complete, the merge can take place. MP CONNECT can be used to accomplish
independent parallelism.

Independent Parallelism 113

MP CONNECT can also be used to start multiple SAS sessions to execute independent
units of work in parallel. The client session can synchronize the execution of the parallel
tasks for subsequent processing. For this example, two SAS sessions would be started,
and each session would perform one of the SORT procedures. The merge would be
executed in the client session after the two parallel SORT procedures are completed.

Considerations for Independent Parallelism
When using MP CONNECT (especially on an SMP computer), ensure that the
implementation of parallel sessions does not create an I/O bottleneck in one or both of
the following areas:

• single input data source

• I/O activity in the WORK library of each SAS session

Single Input Data Source
If a single input data source is being read by each of the parallel SAS sessions, overall
execution time can actually be longer if all the parallel SAS sessions are trying to read
their input from a single disk and single I/O channel. One way to solve this bottleneck
would be to create multiple copies of your data on separate disks or mount points.
Another way would be to create subsets of your data on multiple mount points, and have
each parallel session process a different subset of the data. Additionally, you could
enable multi-user access to a single large data source by using the new Scalable
Performance Data Engine (SPD Engine), which is available in SAS 9. The SPD Engine
accelerates the processing of large data sets by accessing data that has been partitioned
into multiple physical files called partitions. The SPD Engine initiates multiple threads
with each thread having a direct path to a partition of the data set. Each partition can
then be accessed in parallel (by a separate processor), which allows the application to
analyze data in parallel as fast as the data is read from disk. This can effectively reduce
I/O bottlenecks and substantially decrease the amount of time that is used to process
data.

I/O Activity in the WORK Library of Each SAS Session
The I/O activity in the WORK library for a typical SAS process can be very high. When
you use MP CONNECT to start multiple SAS sessions on the same SMP computer, each
session has its own WORK library. Because each WORK library for each SAS process
is created in the same temporary file directory by default, you have multiple SAS
processes performing intensive I/O to their respective WORK libraries. However, all
these WORK libraries exist on the same physical disk. This is another potential I/O
bottleneck, which can be minimized in one of two ways.

• Use the WORK invocation option on each of the MP CONNECT processes to direct
each process to create its WORK library on a separate disk.

• Use the SPD Engine to create a temporary library to be used instead of the WORK
library, and point the USER= option to this temporary library. The SPD Engine can
partition data sets over multiple file systems. Utility data sets that are created by SAS
procedures continue to be stored in the WORK library. However, any data sets that
have one-level names and that are created by your SAS programs are stored in the
USER library.

114 Chapter 10 • Using Compute Services

Note: When using MP CONNECT on multiple remote computers, the WORK library of
the remote sessions exists on the individual computers, so this bottleneck does not
occur.

Pipeline Parallelism

Overview of Pipeline Parallelism
Pipeline parallelism occurs when the execution of Task A and Task B have
interdependencies. For example, a SAS DATA step might be followed by a PROC
SORT of the data set that is created by the DATA step. PROC SORT is dependent on
the execution of the DATA step, because the output of the DATA step is the input
needed by PROC SORT. However, the execution of the two steps can be overlapped,
and the DATA step can pipe its output into PROC SORT. The piping feature of MP
CONNECT provides pipeline parallelism.

Piping enables you to overlap the execution of SAS DATA steps and some SAS
procedures. This is accomplished by starting one SAS session to run one DATA step or
SAS procedure and piping its output through a TCP/IP socket as input into another SAS
session that is running another DATA step or SAS procedure. This pipeline can be
extended to include multiple steps and can be extended between different physical
computers. Piping improves performance not only because it enables overlapped task
execution, but also because intermediate I/O is directed to a TCP/IP pipe instead of
written to disk by one task and then read from disk by the next task.

Piping is implemented by using a LIBNAME statement to identify a port to be used for
the pipe. For details about using the LIBNAME statement to implement piping, see
“LIBNAME Statement, SASESOCK Engine” on page 219 . For an example of piping,
see “Example 6: Using MP CONNECT with Piping” on page 179 .

Limitation of Pipeline Parallelism
A limitation of piping is that it supports single-pass, sequential data processing. Because
piping stores data for reading and writing in TCP/IP ports instead of disks, the data is
never permanently stored. Instead, after the data is read from a port, the data is removed
entirely from that port and the data cannot be read again. If your data requires multiple
passes for processing, piping cannot be used.

Here are some examples of SAS procedures and statements that process single-pass,
sequential data:

• DATA step

• SORT procedure

• SUMMARY procedure

• GANTT procedure

• PRINT procedure

• COPY procedure

• CONTENTS procedure

Pipeline Parallelism 115

Considerations for Piping
• The benefit of piping should be weighed against the cost of potential CPU or I/O

bottlenecks. If execution time for a SAS procedure or statement is relatively short,
piping is probably counterproductive.

• Ensure that each SAS procedure or statement is reading from and writing to the
appropriate port.

For example, a single SAS procedure cannot have multiple writes to the same pipe
simultaneously or multiple reads from the same pipe simultaneously. You might
minimize port access collisions on the same computer by reserving a range of ports
in the SERVICES file. To completely eliminate the potential for port collisions,
request a dynamically allocated port instead of selecting an explicit port for use. For
details, see “LIBNAME Statement” on page 215 .

• Ensure that the port that the output is written to is on the same computer that the
asynchronous process is running on. However, a SAS procedure that is reading from
that port can be running on another computer.

• Ensure that the task that reads the data does not complete before the task that writes
the data. For example, if one process uses a DATA step that is writing observations
to a pipe and PROC PRINT is running in another task that is reading observations
from the pipe, PROC PRINT must not complete before the DATA step is complete.
This problem might occur if the DATA step is producing a large number of
observations, but PROC PRINT is printing only the first few observations that are
specified by the OBS= option. This would result in the reading task closing the pipe
after the first few observations had been printed, which would cause an error for the
DATA step, which would continue to try to write to the pipe that had been closed.

Note: Although the task that is writing generates an error and will not complete, the
task that is reading will complete successfully. You could ignore the error in the
writing task if the completion of this task is not required (as is the case with the
DATA step and PROC PRINT example in this item).

• Be aware of the timing of each task's use of the pipe. If the task that is reading from
the pipe opens the pipe to read and there is a delay before the task that is writing
actually begins to write to the pipe, the reading task might timeout and close the pipe
prematurely. This could happen if the writing task has other steps to execute before
the DATA step or SAS procedure that is actually writing to the pipe.

Use the TIMEOUT= option in the LIBNAME statement to increase the timeout
value for the task that is reading. Increasing the value for the TIMEOUT= option
causes the reading task to wait longer for the writing task to begin writing to the
pipe. This will allow the initial steps in the writing task to complete and the DATA
step or SAS procedure to begin writing to the pipe before the reading task timeout
expires. For an example, see “Example 7: Preventing Pipes from Closing
Prematurely” on page 180 .

Benefits of MP CONNECT
MP CONNECT can greatly reduce the total elapsed time that is required to execute your
SAS applications that contain tasks that can be executed in parallel. MP CONNECT
provides a syntactic interface to distribute multiple units of work across idle CPUs either
on the same SMP computer or across multiple computers on your network.

116 Chapter 10 • Using Compute Services

MP CONNECT uses hardware resources that you might have thought were outdated and
useless. Using MP CONNECT, you can put multiple, slow, inexpensive computers to
work in parallel on a job, transforming them into a powerful and inexpensive computing
resource.

Large jobs that previously never finished executing can be implemented via MP
CONNECT to repeatedly distribute small pieces of a problem to multiple processors
until the entire problem is solved.

MP CONNECT enables you to use SAS in cluster and grid environments for high
performance computing.

Piping enables you to overlap the execution of one or more SAS DATA steps and
procedures in order to accelerate processing. Piping has the added benefit of eliminating
the need to write intermediate SAS data sets to disk, which not only saves time but
reduces the physical disk space requirements for your SAS processing.

Scalability with MP CONNECT

Overview of Scalability
Scalability reduces the time-to-solution for your critical tasks. Scalability can be
accomplished by performing two or more tasks in parallel (independent parallelism) or
overlapping two or more tasks (pipeline parallelism). Scalability requires two things: 1)
that some part(s) of your application can be overlapped or performed in parallel, and 2)
that you have hardware that is capable of multiprocessing. All applications are not
scalable, and not all hardware configurations are capable of providing scalability.

To decide whether an application can be scaled, consider the following questions:

• Does the time that is required to run a job exceed the batch window of time that you
have available?

• Does the time that is required to run a job allow enough time so you can make
appropriate decisions after you get the information from the application? The
applications that are the best candidates for scalability generally take hours, days, or
maybe even weeks to execute.

• Can the application (or some part of it) be segmented into sub-tasks that are
independent and can be run in parallel? It might be worthwhile to duplicate some
data in order to achieve this independence.

• Does the application contain dependent steps that could benefit from piping?

Hardware that is capable of multiprocessing would include an SMP computer or
multiple computers on a network with each computer containing one or more processors.
In addition to the number of processors, it is important to have multiple I/O channels.
This is inherent to multiple computers on a network. For an SMP computer, this can be
accomplished with RAID arrays that enable you to stripe or spread your data across
multiple physical disks. Even for a single threaded application, this can improve I/O
performance, because the operating system is able to read data from multiple drives
simultaneously and synchronize the result for the application.

Parallel Threads and Parallel Processes
SAS 9 has the capability to leverage the available hardware resources to both scale up
and scale out your applications. SAS provides scalability in two ways:

Scalability with MP CONNECT 117

• parallel SAS processes

• parallel threads within a SAS process

Parallel Processes
A SAS process consists of many pieces, including execution units, data structures, and
resources. A process corresponds to an operating environment process. A process has a
largely private address space. It is scheduled by the operating environment, and its
resources are managed by the operating environment at the lowest level. Multiple SAS
processes use multiple processors on an SMP computer, but they can also be run on
multiple remote single or multiprocessor computers on a network. When running
multiple SAS processes on an SMP computer, SAS does not schedule a specific process
to a specific processor; scheduling is controlled by the operating environment. MP
CONNECT provides the ability to run multiple SAS processes.

Parallel Threads
A process consists of one or more threads. A thread is also scheduled by the operating
environment, but the running process might influence the behavior of threads by using
synchronization techniques. All threads in a process share an address space and must
cooperatively share the resources of the process. Multiple threads use multiple
processors on an SMP computer but cannot be executed across computers. When
running multiple threads within a SAS process, SAS does not schedule a specific thread
to a specific processor; scheduling is controlled by the operating environment.

Scaling Up
Scaling up means to increase the number of processors, disk drives, and I/O channels on
a single server computer. Scaling up also means to leverage the multiple processors, disk
drives, and I/O channels on a single server computer.

Scaling Out
Scaling out means adding more hardware, not bigger hardware. Scaling out also means
to exploit network resources to run parts of an application. When you scale out, the size
and speed of an individual computer does not limit the total capacity of the network.

Multiple Threads and Multiple Processors
Beginning in SAS 9, multiple threads are used to scale up and make use of multiple
processors in SMP hardware. Multithreading has been incorporated into SAS 9 (and
later), including many SAS servers, several performance-critical SAS procedures, and
many SAS engines. Multithreading is used for both computing-intensive parts as well as
I/O-intensive parts in order to process data quickly and reduce the total execution time.

Multiple SAS processes (MP CONNECT) are used to both scale up and scale out. By
running multiple processes on an SMP computer, the operating environment can
schedule the processes on different processors to use all the hardware resources on the
computer. In addition, by running multiple SAS processes across the computers that are
available on a network, you can use idle processors and put multiple, slow, inexpensive
computers to work in parallel on a job and turn them into a valuable, powerful,
inexpensive computing resource.

118 Chapter 10 • Using Compute Services

Multithreading and multiple SAS processes (MP CONNECT) are not mutually
exclusive. For some applications, the greatest gains in performance result from applying
a solution that incorporates multiple threads and multiple processes. Provided you have
the hardware resources to support it, you can use MP CONNECT to run multiple SAS
processes and each process can use multithreading. When running multiple processes by
using multiple threads on an SMP computer, it might be necessary to set SAS system
options in each of the SAS processes to tune the amount of threading that is performed
by each process. Tuning threading behavior avoids the sum of the processes and threads
from overloading your system. When using multiple remote computers with each SAS
process running on a physically separate computer, it might be better to let the threading
within the process fully use the individual computers.

Successfully scaled performance is not obtained by installing more and faster processors
or more and faster I/O devices. Scalability involves making choices about investing in
SMP hardware, upgrading I/O configurations, using networked computers, reorganizing
your data, and modifying your application. True scalability results from choosing
scalable hardware and the appropriate software that is specifically designed to leverage
it. The extent of the original problem that can be processed in parallel determines the
amount of scalability that is achievable from the software solution.

Monitoring MP CONNECT Tasks

Overview of Monitoring MP CONNECT Tasks
To monitor MP CONNECT tasks, the RDISPLAY command or statement creates two
windows that enable you to view the contents of the accumulated server log and output
without interrupting the asynchronous processing of the remote submitted task. The two
windows enable you to view the accumulated log and output before merging them into
your client session's log and output windows. For details about the syntax for the
RDISPLAY command or statement, see “RDISPLAY Command and RDISPLAY
Statement” on page 158 .

As an alternative to RDISPLAY, you can use the SAS Explorer Monitor. For details, see
“Using SAS Explorer to Monitor SAS/CONNECT Tasks” on page 120 .

Managing MP CONNECT Log and Output Results
The log and output results that are generated by MP CONNECT server sessions are sent
back to the client session as they are created. Because MP CONNECT tasks and client
session tasks are processing in parallel, by default, the log and output are spooled to a
utility file for later retrieval. If the log and output lines were written to the client Log and
Output windows as they were produced, the output from MP CONNECT tasks and client
session tasks would be interleaved, and the interpretation of the results of the executions
would be impossible.

The MP CONNECT task log and output results can be viewed in separate windows
using the RDISPLAY command or statement. For details, see “RDISPLAY Command
and RDISPLAY Statement” on page 158 .

Log and output results can also be written to, retrieved from, or merged in the client
session Log and Output windows by using the RGET statement or command or
redirecting to a file by using the LOG= option and the OUTPUT= option. For details
about RGET, see “RGET Command and RGET Statement ” on page 159 . For details

Monitoring MP CONNECT Tasks 119

about the LOG= option and the OUTPUT= option, see “RSUBMIT Statement and
Command” on page 139 .

MP CONNECT Task Completion
You can use any of the following to test for the completion of MP CONNECT tasks:

• LISTTASK statement

• SAS/CONNECT Monitor window from the SAS Explorer

• CMACVAR macro variable

• NOTIFY=YES option

• WAITFOR statement

The LISTTASK statement lists information about a single active task by name or about
all tasks in the current session. For details, see “LISTTASK Statement” on page 170 .

The SAS Explorer provides a menu selection that enables you to monitor
SAS/CONNECT tasks that are executing asynchronously (or synchronously) in one or
more server sessions. For details, see “Using SAS Explorer to Monitor SAS/CONNECT
Tasks” on page 120 .

The CMACVAR macro variable can be programmatically queried to learn the
processing status (completed, failed, in progress) of an MP CONNECT task. For details,
see “RSUBMIT Statement and Command” on page 139 .

The NOTIFY=YES option requests the display of a notification message window to
report the completion of an MP CONNECT task. For details, see “RSUBMIT Statement
and Command” on page 139 .

The WAITFOR statement makes the current SAS session wait for the completion of one
or more asynchronously executing tasks that are already in progress. For details, see
“WAITFOR Statement” on page 168 .

Using SAS Explorer to Monitor SAS/CONNECT
Tasks

SAS Explorer provides a menu selection that enables you to monitor SAS/CONNECT
tasks that are executing in one or more server sessions. A server session can execute
across a network, or it can execute on a computer that is equipped with SMP hardware,
which facilitates multi-processing.

To start the SAS/CONNECT Monitor, from the menu, select: View ð SAS/CONNECT
Monitor.

The SAS/CONNECT Monitor displays information about the tasks in two columns:
Name and Status.

Name Status

Task1 Complete
Task2 Running Asynchronously
Task3 Running Synchronously

120 Chapter 10 • Using Compute Services

The list of tasks is dynamically updated as new tasks start, and the Status field changes
from Running to Complete, as appropriate. When you use the SIGNOFF statement to
end a connection, the task is automatically removed from the window.

Note: If you do not see both columns, select View ð Details.

You can also end a task that is running asynchronously by clicking the task in the
Monitor and selecting the Kill option from the menu that displays when you right-click
the mouse button. Similarly, you can select the RDisplay option from the menu to
display a Log and Output window for a task that is running asynchronously.

Compute Services and the Output Delivery
System

You can use the SAS Output Delivery System (ODS) to format the SAS output that is
generated in a SAS session that runs on a server either synchronously or asynchronously.
For details about ODS, see the SAS Output Delivery System: User's Guide.

Here are four typical programming scenarios for using Compute Services with ODS to
manage output that is produced in a server session.

• Remotely submit procedure statements without any ODS statements.

Any output that is produced by the remote submit produces a node in the Results
window that has the name Rsubmit: (server-ID). The Results window uses
ODS to generate pointers (nodes) to various positions in the Output window. The
resulting node is a record of the output that is generated during a SAS server session.

• Precede and end the remote submit block (RSUBMIT through ENDRSUBMIT) with
the appropriate ODS opening statement (such as ODS HTML or ODS PDF) and the
corresponding ODS closing statement (such as HTML CLOSE or PDF CLOSE).
Appropriate results are produced in the SAS session at the client. For example, ODS
HTML produces output in the Results Viewer. ODS PDF produces output in the
Results window.

• Precede RSUBMIT with the ODS OUTPUT statement.

The output from the RSUBMIT appears in the Results window and is saved as a SAS
data set.

• Remotely submit ODS statements and procedures and DATA step statements to
produce the ODS output in the server session.

The output is processed and generated entirely in the server session. Therefore, the
results (for example, a SAS data set or HTML output) must be downloaded from the
server session to the client session.

For all scenarios that use asynchronous processing, use the “RGET Command and
RGET Statement ” on page 159 . The output is not available until the results are
retrieved. The accumulated output is retrieved and transferred to the client session.

Compute Services and the Output Delivery System 121

Using the SAS Windowing Environment to
Control Remote Processing

Overview of Remote Processing Control Using the SAS Windowing
Environment

The SAS windowing environment includes menu selections that enable you to control
remote processing during a SAS session. The following Compute Services menu
selections are available from the Run menu:

Remote Submit
enables you to submit one or more statements to a SAS/CONNECT server session
for remote processing.

Remote Get
merges the spooled Log and Output lines from the asynchronous remote submit
operation with the client's Log and Output windows for viewing.

Remote Display
enables you to view the spooled Log and Output lines that are created by the
asynchronous remote submit operation in the Log and Output windows that are
created for the specific remote server session.

Remote Submit
To submit one or more statements to a SAS/CONNECT server session for remote
processing, open the SAS Program Editor window and select Run ð Remote Submit
from the menu bar.

The Remote Submit dialog box appears.

122 Chapter 10 • Using Compute Services

Display 10.1 Remote Submit Dialog Box

Here are explanations of the fields:

Remote session name
specifies the server session that the statements are executed in. If only one session is
active, this field can be empty. If multiple server sessions are active, omitting the
remote session name causes the program statements to be run in the session that is
specified in the CONNECTREMOTE= option. You can find out which server
session is current by examining the value that is specified in the
CONNECTREMOTE system option.

For information about the CONNECTREMOTE= option, see “RSUBMIT Statement
and Command” on page 139 .

Remote session macro variable name
associates a macro variable with a specific RSUBMIT block. Macro variables are
especially useful for controlling the execution of multiple asynchronous RSUBMIT
operations.

For information about the CMACVAR= option, see “RSUBMIT Statement and
Command” on page 139 .

Display transfer status (yes/no)
specifies whether the status window for file transfers is displayed for the current
remote submit operation.

If this field is empty, the default value is obtained from the CONNECTSTATUS=
system option or the CONNECTSTATUS= option in the SIGNON= statement for
this server.

For information about the CONNECTSTATUS= option, see “RSUBMIT Statement
and Command” on page 139 .

Execute remote submit synchronously (yes/no):
specifies whether the remote submit operation executes synchronously or
asynchronously. Synchronous processing means that server processing must be

Using the SAS Windowing Environment to Control Remote Processing 123

completed before control is returned to the client session. Asynchronous processing
permits the client and one or more server session processes to execute in parallel.
Control is returned to the client session immediately after a remote submit begins
execution to allow continued processing in the client session.

If the field is empty, the default value is obtained from the CONNECTWAIT=
system option or the CONNECTWAIT= option in the SIGNON= statement for this
server.

For information about the CONNECTWAIT= option, see “RSUBMIT Statement and
Command” on page 139 .

Remote Submit Limitation:
CAUTION:

The Remote Submit menu cannot be used if a CARDS statement, a CARDS4
statement, a DATALINES statement, a DATALINES4 statement, or a
PARMCARDS statement is included in the remote submit operation.

The Remote Submit menu is prohibited from processing data because of its
implementation as a macro. A macro definition cannot contain a CARDS statement,
a DATALINES statement, a PARMCARDS statement, or data lines.

However, you can use any of the following methods to execute a remote submit that
contains any of these statements. •Enter the RSUBMIT command in the command
window:

• Enter the RSUBMIT command in the command window.

• Enter the RSUBMIT and ENDRSUBMIT statements in the editor window.

• Submit the statements for local execution, and then use PROC UPLOAD to
transfer the created output to the server session.

Remote Get
To merge the spooled log and output from the asynchronous remote submit operation
with the client's Log and Output windows for viewing, open the SAS Program Editor
window and select Run ð Remote Get from the menu bar.

Here are explanations of the fields:

Remote session name
specifies the server session whose spooled log and output lines are to be merged into
the client's Log and Output windows. If only one session is active, this field can be
empty. If multiple server sessions are active, omitting the remote session name
causes RGET to execute for the session that is specified in the
CONNECTREMOTE= option.

For more information, see “RGET Command and RGET Statement ” on page 159 .

Note: Remote Get applies only to asynchronous remote submit operations. If you
execute Run ð Remote Get while the asynchronous remote submit operation is in
progress, the operation is automatically converted to synchronous processing so that
all of the lines from the server session can be merged.

Note: To view the spooled Log and Output lines that are created by the asynchronous
remote submit operation (does not merge with the client's Log and Output windows),
select Remote Display.

124 Chapter 10 • Using Compute Services

Remote Display
To view only the spooled Log and Output lines from the asynchronous remote submit
operation, open the SAS Program Editor window and select Run ð Remote Display
from the menu bar.

Here are explanations of the fields:

Remote session name
specifies the session name of the server whose Log and Output lines are to be
viewed. If only one session is active, this field can be empty. If multiple server
sessions are active, omitting the remote session name causes RDISPLAY to execute
in the session that is specified in the CONNECTREMOTE= option.

For more information, see “RDISPLAY Command and RDISPLAY Statement” on
page 158 .

Note: Remote Display applies only to asynchronous remote submit operations.

Note: To merge the spooled Log and Output lines that are created by the asynchronous
remote submit operation with the client's Log and Output windows, select Remote
Get.

Interaction between Compute Services and Macro
Processing

Macro-Generated RSUBMIT Blocks
Macros are compiled into macro program statements by the macro processor. A macro-
generated RSUBMIT refers to an RSUBMIT/ENDRSUBMIT statement block that is
contained within a macro definition. Here is the general structure of this block:

/* begin container macro */
%MACRO macro-name;
RSUBMIT;
 statements
ENDRSUBMIT;
%mend macro-name;
/* end container macro */
%macro-name

Macro processing within a macro-generated RSUBMIT might not always produce the
results that you expect. Here are the types of statements that can be included in a macro-
generated RSUBMIT/ENDRSUBMIT statement block:

• macro definition

• SAS statements that are not macro statements or macro definitions

• macro statements

Only the macro definition statement and the SAS statement are always executed in the
server session. Macro statements can be resolved and executed in the client session
rather than in the server session.

Interaction between Compute Services and Macro Processing 125

For a macro-generated RSUBMIT block, include both the RSUBMIT and
ENDRSUBMIT statements in the macro. A statement-style macro is inappropriate when
including only the RSUBMIT statement in the macro definition. For details about
statement-style macros, see SAS Macro Language: Reference.

Macro Definitions
When the macro processor encounters a macro definition in a macro-generated
RSUBMIT statement, all the statements that follow the %MACRO statement are
compiled into macro program statements until a %MEND statement is compiled. Then,
the embedded macro definition is submitted remotely to the server session, and the
macro is defined in the server session when the "container" macro is invoked.

SAS Statements That Are Not Macros or Macro Definitions
When the macro processor encounters statements that are not macro definitions or macro
statements, such as SAS procedure statements or DATA steps, in a macro-generated
RSUBMIT statement, these statements are compiled into macro program statements.
When the macro is executed, these statements are submitted remotely to the server
session for execution.

Macro Statements
Macro statements that you include in a macro-generated RSUBMIT statement might get
resolved and executed in the client session rather than in the server session, regardless of
your including the statements in an RSUBMIT/ENDRSUBMIT statement block. The
macro processor in the client session resolves variables that are specified in the
following statements:

• %DO

• %IF

• %LET

• %PUT

• %SYSRPUT

The macro processor also compiles the variables into macro program statements, which
the container macro executes in the client session. If you do not want the statements to
execute in the client session, you can use various programming techniques to control the
location where the statements execute.

Ensuring That the RSUBMIT Statements Are Executed in the Correct
Session

Programming Techniques
To avoid possible macro processing confusion, you can use specific programming
techniques to ensure that macro statements are processed in the server session or in the
client session, whichever you choose.

%SYSLPUT Statement
To assign a value to a macro variable in a server session, use the %SYSLPUT macro
statement. Using the %SYSLPUT statement to define a macro variable and then using a

126 Chapter 10 • Using Compute Services

macro variable in the server session is better than attempting to remotely submit a %LET
macro statement. Here is the syntax of the %SYSLPUT statement:

%SYSLPUT macvar = value</REMOTE=session-ID>;

Example:

%syslput remvar1=%sysfunc(date(),date9.);

The client session evaluates the value that is assigned to the server session macro
variable REMVAR1. If the macro variable REMVAR1 does not exist, it is created.
Using %SYSLPUT prevents the macro processor from interpreting a %LET statement
that is in the macro-generated RSUBMIT statement in the client session.

%NRSTR Macro Quoting Function
If a special character or a mnemonic affects the way the macro processor constructs
macro program statements, use the %NRSTR macro quoting function to mask the item
during macro compilation (or during the compilation of a macro program statement in
open code). %NRSTR can be used to mask the macro statements, which causes the
macro processor to ignore the macro program statements in the client session and forces
the macro statements to be executed in the server session.

Here is the syntax for the %NRSTR quoting function when used with a macro statement:

%NRSTR (%%) macro-statement;

Example:

%nrstr(%%)put abc=&abc one=&one time=&time;

%NRSTR prevents the macro processor from interpreting a macro statement that is in
the RSUBMIT statement in the client session. %NRSTR causes the macro statement to
be interpreted and executed in the server session. For details about macros, see SAS
Macro Language: Reference.

Comment Delimiters to Disable or Enable SAS/CONNECT
Executions
Instead of writing a macro that conditionally executes code using an RSUBMIT/
ENDRSUBMIT block or a SIGNON statement, you can use simple macro variables and
statements that insert or remove the comment delimiters - /* */ - from the RSUBMIT/
ENDRSUBMIT block or the SIGNON statement. Using a simple macro to manage
comment delimiters in code is an easy programming technique that is useful in testing
environments.

Here is an example that uses a macro to insert comment delimiters before the
RSUBMIT, ENDRSUBMIT, and SIGNON statements that disable SAS/CONNECT.

%global star slash;
 %let star=*;
 %let slash=/;

&star rsubmit;

 data x; x=1; run;

 &slash&star endrsubmit; /* */

 &slash&star signoff; /* */

Interaction between Compute Services and Macro Processing 127

Here is an example that uses a macro to remove comment delimiters before the SIGNON
statement that enables SAS/CONNECT.

global star slash;
 %let star=*;
 %let slash=/;

 signon runconn sascmd="!sascmd -noautoexec";
 %syslput slash=;
 %syslput star=;

You could include both versions of code in separate autoexec files in order to execute
code in a SAS session or in a SAS/CONNECT server session, as necessary.

Examples

Overview
These examples show how to use the RSUBMIT/ENDRSUBMIT block to force client
session or server session executions.

• “Client Session Execution: Macro Statement in RSUBMIT” on page 128

• “Server Session Execution: %SYSLPUT to Mask Client Session Macro Processing”
on page 129

• “Server Session Execution: %NRSTR to Mask Client Session Macro Processing” on
page 129

• “Server Session Execution: Macro Definition in an RSUBMIT Block” on page 129

• “Local Execution: %IF Allows Conditional Processing Based on Client Macro
Variable” on page 130

• “Client and Server Session Execution: %PUT Statement Defined in Nested Macros”
on page 130

• “Server Session Execution: No Macros or Macro Statements in Macro-Generated
RSUBMIT” on page 130

• “Server Session Execution: %NRSTR to Mask Local Macro Processing” on page
131

Client Session Execution: Macro Statement in RSUBMIT
/* In this macro, %LET is a macro statement that will be interpreted */
/* by the client session and not submitted remotely. */
/* If REMVAR1 is not already defined in the server session, */
/* this example will produce an error. */
%macro example;
%global remvar1;

rsubmit;
 data x; x=1; run;
 %let remvar1=%sysfunc(date(),date9.);
 data a; x="&remvar1"; run;
endrsubmit;

%mend;
%example;

128 Chapter 10 • Using Compute Services

Server Session Execution: %SYSLPUT to Mask Client Session
Macro Processing

/* In this macro, the %SYSLPUT statement is used to assign a value to a
 */
/* macro variable in the server session, to avoid having the client session */
/* macro processor interpret a %LET statement in the RSUBMIT block. */
/* %SYSLPUT can also be issued outside the macro definition. */

%macro example1;

%syslput remvar1=&sysfunc(date(),date9.);
rsubmit;
 data a; x="&remvar1"; run;
endrsubmit;

%mend;
%example1;

Server Session Execution: %NRSTR to Mask Client Session Macro
Processing

/* In this macro, %NRSTR is used with the %LET macro statement
*/
/* to "hide" it from the client session macro processor and allow it */
/* to be submitted remotely. */

%macro example2;

rsubmit;
 %nrstr(%%)let remvar1=%sysfunc(date(),date9.);
 data a; x="&remvar1"; run;
endrsubmit;
%mend;
%example2;

Server Session Execution: Macro Definition in an RSUBMIT Block
/* This shows a macro definition embedded in an RSUBMIT block.
*/
/* The entire ONREMOTE macro definition is remotely submitted */
/* and none of the statements in the ONREMOTE macro are interpreted */
/* by the macro processor in the client session. */

%macro example3;

rsubmit;
 %macro onremote;
 %global abc;
 %put this is on the server;
 %let abc=value;
 %mend;
 %onremote;
endrsubmit;
%mend;
%example3;

Interaction between Compute Services and Macro Processing 129

Local Execution: %IF Allows Conditional Processing Based on
Client Macro Variable

/* In this macro example, %IF is interpreted by the */
/* macro processor in the client session in order to determine */
/* whether to execute PROC DOWNLOAD. */
%macro example4;
%global localvar2;
rsubmit;
 data remds;
 x=1;
 run;
 %if &localvar2 eq getit %then %do;
 proc download;
 run;
 %end;
endrsubmit;
%mend;
%let localvar2=getit;
%example4; /* download occurs */
%let localvar2=;
%example4; /* download does not occur */

Client and Server Session Execution: %PUT Statement Defined in
Nested Macros

/* The following macro shows how embedded macros work. The */
/* %PUT statements indicate where the macros are defined and */
/* where they should be invoked. */
/* The macro ONREMOTE is defined to the server session because it */
/* is in an RSUBMIT/ENDRSUBMIT block. Therefore, its invocation */
/* must be remotely submitted. The macro ONLOCAL is defined to */
/* the client session and its invocation is locally submitted. */
%macro embeddedmacros;
rsubmit;
 %macro onremote;
 %put on the remote side;
 %mend;
endrsubmit;
%macro onlocal;
 %put on the local side;
%mend;
rsubmit;
 %onremote;
endrsubmit;
%onlocal;
%mend;

%embeddedmacros;

Server Session Execution: No Macros or Macro Statements in
Macro-Generated RSUBMIT

/* This macro shows that everything in the RSUBMIT/ENDRSUBMIT block */
/* is executed by the server session because there are no macro */
/* statements in the macro-generated RSUBMIT to be interpreted by */
/* the macro processor in the client session. */

130 Chapter 10 • Using Compute Services

%macro do-x;
rsubmit;

data x;
 date="04 July 03";
 put date=;
run;
endrsubmit;
%mend;
%do-x;

Server Session Execution: %NRSTR to Mask Local Macro
Processing

/* This macro uses SYMPUT in an RSUBMIT, and */
/* uses %NRSTR to "hide" the %PUT statement from the macro processor */
/* in the client session, so that it can be executed by the */
/* server session. */
%macro nullds;
rsubmit;
 data _null_;
 call symput('abc','abc');
 call symput('one','1');
 call symput('date',"%sysfunc(date(),date9.)");
 run;
%nrstr(%%)put abc=&abc one=&one date=&date;
endrsubmit;
%mend;
%nullds;

Frequently Asked Questions

Will %SYSFUNC Be Evaluated in the Client Session or the Server
Session?
Whether %SYSFUNC is evaluated in the client or the server session depends on how
%SYSFUNC is used. If it is used in a %LET or a %PUT macro statement, %SYSFUNC
is executed in the client session. However, you can use %NRSTR in your macro
definition to mask the %LET and %PUT statements, which causes the %LET, %PUT,
and %SYSFUNC macros to be executed in the server session. In the following example,
%SYSFUNC executes in the remote session because %NRSTR is used.

%macro remotesysfunc;
 rsubmit;
 %nrstr(%%)let current="%sysfunc(time(),time.)";
 %nrstr(%%)put current=¤t;
 endrsubmit;
%mend;
%remotesysfunc;

In the next example, %SYSFUNC is not part of a macro statement; it is part of the
DATA step. Therefore, including it in an RSUBMIT block causes it to be executed in a
server session.

%macro dssysfunc;
rsubmit;

Interaction between Compute Services and Macro Processing 131

 data x;
 time="%sysfunc(time(),time.)";
 put time=;
 run;
endrsubmit;
%mend;
%dssysfunc;

Does %SYSLPUT Affect the Current Session or All Sessions?
I don't want %SYSLPUT to affect all my sessions because I am passing an ID to my
server session.

%SYSLPUT affects either the server session that is specified by using the /REMOTE=
option or the current server session. The current session is the one that you have most
recently accessed. You can find out which server session is current by examining the
value that is specified in the CONNECTREMOTE system option, as follows:

%put %sysfunc(getoption(connectremote));

or

proc options option=connectremote;
run;

For example, suppose the output from the %PUT statement shows unixhost, but you
want to define the macro for your Windows computer winhost:

%syslput currentds=ds2008/remote=winhost;

As another example, two server sessions are created and the macro variable FLAG must
be set in both sessions. The /REMOTE= option is used in the %SYSLPUT statements to
direct the correct value to the correct server session.

signon task1 sascmd="sas";
signon task2 sascmd="sas";

%syslput flag=1/remote=task1;
/* NOTE: Without the /REMOTE= option in the previous statement,
the FLAG variable would be defined in the TASK2 session,
because it was the session most recently accessed with the
previous SIGNON statement. */
rsubmit task1;
 %put flag on task1 is &flag;
endrsubmit;
%syslput flag=2/remote=task2;
/* NOTE: Without the /REMOTE= option in the previous statement,
the FLAG variable would be defined in the TASK1 session,
because it was the session most recently accessed with
the previous RSUBMIT statement. */
rsubmit task2;
 %put flag on task2 is &flag
endrsubmit;

What Session Are Macro Variables Set in When Using the CALL
SYMPUT Routine?
Macro variables are set in the server session when you use the CALL SYMPUT routine
in a DATA _NULL_ DATA step because the DATA step CALL SYMPUT statements
are not macro statements. Here is a sample macro that creates the macro variables in the
server session:

132 Chapter 10 • Using Compute Services

%macro nullds;
rsubmit;
 data _null_;
 call symput('abc','abc');
 call symput('one','1');
 call symput('time',"%sysfunc(putn(%sysfunc(time()),time.))");
 run;
 %nrstr(%%)put abc=&abc one=&one time=&time;
 endrsubmit;
 %mend;
 %nullds;

How Do I Know What Session a Macro Is Executed In?
Why does a macro always execute in a client session but sometimes not in a server
session?

Even if all the following conditions are met, a macro might not execute in the server
session, as expected.

• SAS is run in line mode.

• The macro is the last line of an RSUBMIT block.

• The macro invocation does not end with a semicolon (;).

For example, you can invoke the MYDATE macro (without a semicolon) in a client
session, as follows:

%mydate

If you execute SAS in full-screen or DMS mode, invoking MYDATE (with or without
the semicolon) in a remote submit will execute correctly.

However, if you execute SAS in line mode, and if MYDATE is defined in the server
session and you are remotely submitting the invocation of MYDATE as the final line in
an RSUBMIT block, you must use the semicolon to delimit the macro invocation, as
follows:

RSUBMIT;
 %MACRO MYDATE;
 %PUT &SYSDATE;
 %MEND MYDATE;
 %MYDATE; /* must use semicolon here */
ENDRSUBMIT;

When you execute SAS in line mode, the RSUBMIT statement indicates that all
subsequent statements are to be processed in the server session. SAS/CONNECT
searches the beginning of each statement for the occurrence of the ENDRSUBMIT
statement, which indicates that statement processing in the server session should end.
The semicolon delimits the end of each statement, except a comment. If the semicolon is
omitted, the beginning of the next statement cannot be detected, which causes the
ENDRSUBMIT statement to be ignored. The ENDRSUBMIT statement will be sent to
the server session along with the macro invocation. The client session will continue to
search for an ENDRSUBMIT statement.

In order to execute the remote submit block, including the macro invocation, enter
another ENDRSUBMIT statement. Issuing the second ENDRSUBMIT causes the
remote submit block to execute. Although the second ENDRSUBMIT is successful, the
first ENDRSUBMIT produces the following error message:

Statement is not valid or it is used out of proper order.

Interaction between Compute Services and Macro Processing 133

Why Does the Error “Apparent symbolic reference USER1 not
resolved” Occur?
This error occurs when a macro variable has not been defined in the SAS session where
it is used. This error can occur in a server session when a %LET statement executes in
the client session. You can use %NRSTR and %SYSLPUT to ensure that the macro is
defined in the server session. You can also put the %LET statement in a macro definition
so that the macro variable will be defined in the server session when the macro is
invoked.

In the following code example, all the %LET statements are specified in an RSUBMIT
block. The &USER1 macro variable is assigned in the client session rather than in the
server session, as intended. This problem can be fixed by using the %SYSLPUT or
%NRSTR statements. The &USER2 macro variable is assigned in the server session
because it is contained in a macro definition in the RSUBMIT block.

%macro client;
 RSUBMIT;
 %let user1 = %sysget(LOGNAME);

 %macro remote;
 %global user2;
 %let user2 = %sysget(LOGNAME);
 %mend remote;
 %remote

 data _null_;
 put "user 1 = &user1";
 put " 2 = &user2";
 run;
 ENDRSUBMIT;
%mend client;
%client

The %LET statement for USER1 is executed in the client session, but the DATA step is
executed in the server session. If the USER1 macro variable has not been previously
defined, the following error message will be displayed:

Apparent symbolic reference USER1 not resolved.

You can set the MLOGIC system option to trace macro processing and to write trace
output to the SAS log. Statements that generate a log message are processed in the client
session. Statements that do not generate a log message are processed in the server
session. For details about MLOGIC, see SAS Macro Language: Reference.

How Do I Avoid Spacing Problems When Using Semicolons in
Macro Values?
My macro-generated RSUBMIT contains several %LET statements whose semicolons
are followed with spaces. How can I include semicolons in my macro values and have
the value concatenated correctly?

Here is the code:

%MACRO SETPATH;
 rsubmit;
 %nrstr(%%let PATH1 = c:\winnt\system32%%str(;);)
 %nrstr(%%let PATH2 = c:\winnt%%str(;);)
 %nrstr(%%let PATH3 = c:\bin;)
 %nrstr(%%let PATH = &PATH1.&PATH2&.&PATH3)

134 Chapter 10 • Using Compute Services

 %nrstr(%%put PATH = &PATH)
 endrsubmit;
 %MEND;
 %SETPATH

Here is the content of the SAS log:

NOTE: Remote submit to MAINPC commencing.
 1 %let PATH1 = c:\winnt\system32%str(;
 2);
 3 %let PATH2 = c:\winnt%str(;
 4);
 5 %let PATH3 = c:\bin;
 6 %let PATH = &PATH1.&PATH2&.&PATH3;
 7 %put PATH = &PATH;
 PATH = c:\winnt\system32; c:\winnt; c:\bin
 NOTE: Remote submit to MAINPC complete.

Notice that the semicolons in the PATH macro variables are followed by extraneous
spaces.

Because a semicolon is used to terminate a SAS statement, an %STR(;) statement within
an %NRSTR statement causes problems when SAS/CONNECT parses the lines and
buffers them before sending them to the server session.

To recover from the problem, modify the macro by using %SYSLPUT to submit the
SEMICOLON macro variable to the server session. Execution of &SEMICOLON in the
server session causes a semicolon to be appended to each %LET statement. Here is the
modified code:

 %MACRO SETPATH;
 %syslput semicolon=%nrstr(;);
 rsubmit;
 %nrstr(%%let PATH1 = c:\winnt\system32&SEMICOLON;)
 %nrstr(%%let PATH2 = c:\winnt&SEMICOLON;)
 %nrstr(%%let PATH3 = c:\bin;)
 %nrstr(%%let PATH = &PATH1.&PATH2&.&&PATH3;)
 %nrstr(%%put PATH = &PATH;)
 endrsubmit;
 %MEND;
 %SETPATH

Using the SEMICOLON macro variable, the %SETPATH macro prints the &PATH
macro value without spaces.

Here is the log:

NOTE: Remote submit to MAINPC commencing.
 8 %let PATH1 = c:\winnt\system32&SEMICOLON
 9 %let PATH2 = c:\winnt&SEMICOLON
 10 %let PATH3 = c:\bin;
 11 %let PATH = &PATH1.&PATH2&.&PATH3;
 12 %put PATH = &PATH;
 PATH = c:\winnt\system32;c:\winnt;c:\bin
 NOTE: Remote submit to MAINPC complete.

Interaction between Compute Services and Macro Processing 135

Compute Services and Break Windows

Overview
Break windows are a special class of windows for SAS/CONNECT client/server
connections. Break windows enable you to handle error conditions that cause
interruptions in processing by issuing a control-break signal. SAS provides two break
windows to enable you to handle system interruptions and error conditions:

• Communication Services Break Handler window

• SAS/CONNECT attention handler window

These break windows also enable you to interrupt processing. Depending on which
program statements are executing, you might see either of these break windows.

The Communication Services Break Handler window contains selections for actions you
can take in response to a problem or an interruption. Invoking the SAS/CONNECT
attention handler window is one of the actions you can select. Usually, you select the
attention handler window to cancel statements that you have submitted to the server.

SAS/CONNECT Attention Handler Window
If you need to interrupt processing of statements that were submitted to the server, issue
a break signal:

Table 10.1 Break Signals

Windows CTRL-BREAK

UNIX CTRL-C (This key combination can be reset with the UNIX STTY
command. During a SAS session in DMS mode under the X
Window System, you can select an interrupt button in the SAS
Session Manager window to issue a break signal.) When you issue
CTRL-C, position the cursor in the window in which the SAS
session was invoked.

z/OS ATTN key

After you issue a break signal, the SAS/CONNECT attention handler window appears as
follows.

Display 10.2 The SAS/CONNECT Attention Handler Window

SAS/CONNECT attention handler

a=abort current remote processing,

c=continue

OK Cancel Help

136 Chapter 10 • Using Compute Services

The following selections are available in the attention handler window:

a
terminates the statements that are currently being processed in the server session but
continues the connection to the server session. This option is useful if you want to
terminate a very large file transfer, or if you want to interrupt a remote SAS job that
is generating many error messages.

Note: Control might not be passed back to the client session immediately.

c
continues the remote job. Select this option if you decide that you do not want to
interrupt the remote job.

Communication Services Break Handler Window
If the application detects an error condition, the Communication Services Break Handler
window is displayed.

The following selections are available in the Communication Services Break Handler
Window:

• Ctrl-Break displays the Tasking Manager window.

• Selecting 1. TCP send/recv task displays the TCP/IP Break window.

• Selecting 2. CONNECT displays the SAS/CONNECT attention handler window.

Compute Services and Break Windows 137

138 Chapter 10 • Using Compute Services

Chapter 11

Syntax for the RSUBMIT
Statement and Command

Dictionary . 139
RSUBMIT Statement and Command . 139
ENDRSUBMIT Statement . 157
RDISPLAY Command and RDISPLAY Statement . 158
RGET Command and RGET Statement . 159
%SYSLPUT Statement . 160
%SYSRPUT Statement . 166
WAITFOR Statement . 168
LISTTASK Statement . 170
KILLTASK Statement . 171

Dictionary

RSUBMIT Statement and Command
Marks the beginning of a block of statements that a client session submits to a server session for
execution.

Valid in: client session

Syntax
RSUBMIT <options> ;

ENDRSUBMIT <CANCEL> ;
RDISPLAY <CONNECTREMOTE=> <server-ID;>
RGET <CONNECTREMOTE=> <server-ID> ;
%SYSRPUT macro-variable=value;
%SYSLPUT macro-variable=value </REMOTE=server-ID> ;
WAITFOR <_ANY_ | _ALL_> task1...taskn <TIMEOUT=seconds> ;
LISTTASK <_ALL_ | task> ;
KILLTASK <_ALL_ | task1...taskn> ;

139

Required Argument

Task Statement

Mark the end of a block of statements that a
client session submits to a server session for
execution

“ENDRSUBMIT Statement” on page 157

Create a Log window to display the lines
from the Log and Output window to list the
output generated from the execution of the
statement within an asynchronous
RSUBMIT block

“RDISPLAY Command and RDISPLAY
Statement” on page 158

Retrieve the log and output that are created
by an asynchronous RSUBMIT and merge
them into the Log and Output windows of
the client session

“RGET Command and RGET Statement ”
on page 159

Assign a value from the server session to a
macro variable in the client session

“%SYSRPUT Statement” on page 166

Create a macro variable in the server session “%SYSLPUT Statement” on page 160

Cause the client session to wait for the
completion of one or more tasks
(asynchronous RSUBMITs) that are in
process

“WAITFOR Statement” on page 168

List all active connections or tasks and
identify the execution status of each
connection or task

“LISTTASK Statement” on page 170

For an asynchronous task, force one or more
active tasks or server sessions to terminate
immediately

“KILLTASK Statement” on page 171

Optional Arguments
AUTHDOMAIN=auth-domain | “auth-domain”

specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the specified
domain. Specifying the authentication domain is a convenient way to obtain the
metadata-based user credentials rather than having to explicitly supply them during
server sign-on.

An administrator can define an authentication domain by using the User Manager in
SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/CONNECT Auth Domain"

Restriction: Use the AUTHDOMAIN= option only when the AUTOSIGNON
system option has been specified and a sign-on has not yet occurred.

140 Chapter 11 • Syntax for the RSUBMIT Statement and Command

Requirements:
The authentication domain and the associated credentials must be stored in a
metadata repository, and the metadata server must be running in order to resolve
the metadata object specification.
Enclose domain names that are not valid SAS names in double or single
quotation marks.

Interaction: If you specify AUTHDOMAIN=, do not also specify USERNAME=
and PASSWORD=. Otherwise, sign-on is canceled.

See:
For complete details about creating and using authentication domains, see the
SAS Intelligence Platform: Security Administration Guide.
SAS Management Console: Guide to Users and Permissions and SAS
Management Console online Help

CMACVAR=value
specifies the macro variable to associate with the current RSUBMIT block.
Specifying CMACVAR= in an individual RSUBMIT restricts the macro variable to
that RSUBMIT block. If multiple asynchronous RSUBMIT statements execute in the
same server session, and each RSUBMIT contains a CMACVAR= specification,
each macro variable will be restricted to the respective RSUBMIT block. The macro
variable is set at the completion of the RSUBMIT block.

Note: If RSUBMIT fails because of incorrect syntax, the macro variable is not set.

Here are the values for the CMACVAR= option:

0 indicates that the RSUBMIT is complete.

1 indicates that the RSUBMIT failed to execute.

2 indicates that the RSUBMIT is still in progress.

Alias: MACVAR=
Interactions:

If a synchronous RSUBMIT is specified while an asynchronous RSUBMIT is
still in progress, all spooled log and output statements are merged into the client
Log and Output windows. The asynchronous RSUBMIT will resume execution
as if it were synchronous. Control returns to the client session after the
synchronous RSUBMIT has completed.
To prevent a conversion from asynchronous to synchronous behavior, ensure that
the CMACVAR= option is associated with a specific RSUBMIT block.
The CMACVAR= option in the current RSUBMIT block can override the
CMACVAR= that is specified at sign-on.

See:
Example 3: Using the CMACVAR= Option with MP CONNECT on page 175.
CMACVAR statement in the SIGNON statement on page 64

CONNECTPERSIST=YES|NO
specifies whether a connection persists (continues) or is automatically terminated
after an RSUBMIT has completed. A connection results from a sign–on to the server
session.

Here are the values for this option:

YES|Y specifies that a connection to the server session continues. A sign-off
is not automatically performed after the RSUBMIT has completed.
CONNECTPERSIST maintains the connection for subsequent
RSUBMIT statements.

RSUBMIT Statement and Command 141

NO|N specifies that a connection to the server session terminates. A sign-off
is automatically performed after the RSUBMIT has completed. Setting
NO requires that you sign on to the server session again before you
perform the next RSUBMIT.

Alias: CPERSIST=, PERSIST=
Default: YES
Interaction: If the CONNECTPERSIST system option is also specified, the

CONNECTPERSIST= option that is specified in the RSUBMIT statement takes
precedence over the system option.

See: “CONNECTPERSIST System Option” on page 20

CONNECTREMOTE=server-IDserver-ID
specifies the name of the server session that the RSUBMIT statements are executed
in. If only one session is active, server-ID can be omitted. If multiple server sessions
are active, omitting this option causes the program statements to be run in the most
recently accessed server session. The current server session is identified by the value
that is assigned to the CONNECTREMOTE system option. You can specify server-
ID using different formats:

process-name
process-nameis a descriptive name that you assign to the server session on a
multi-processor computer when the SASCMD= option is used.
Example:

rsubmit emp1 sascmd="!sascmd";

computer-name
computer-name is the name of a computer that is running a Telnet daemon or that
is running a spawner that is not specified as a service. If the computer name is
longer than eight characters, a SAS macro variable name should be used.
Example:

%let sashost=hrmach1.dorg.com;
 rsubmit sashost;

computer-name.port-name
computer-name is the name of a server, and port-name is the name of the port
that the spawner service runs on. If the computer name is longer than eight
characters, assign the computer name to a SAS macro variable and use the macro
variable name as the server ID.
Example:

%let sashost=hrmach1.dorg.com;
 rsubmit sashost.sasport;

computer-name.port-number
computer-name is the name of a server, and port-number is the port that the
spawner service runs on.

CAUTION:
Specifying computer-name.port-number for the server ID will fail under
these conditions:

• when used in a WAITFOR statement that is used to wait for the completion
of an asynchronous RSUBMIT.

Instead, use a one-level name, such as the computer-with-port

• when used in a LIBNAME statement.

142 Chapter 11 • Syntax for the RSUBMIT Statement and Command

Instead, use a one-level name or a two-level name, such as
computer-name.__port-number.

Example:
rsubmit hrmach1.2267;

computer-with-port
computer-with-port is a macro variable that contains the name of a server and the
port that the spawner service runs on, separated by one or more spaces. This
specification is appropriate in cases where the server-ID must be specified as a
one-level name.
Example:

%let sashost=hrmach1.dorg.com 2667;
 rsubmit sashost;

computer-name._ _port-number
computer-name is the name of a server and port-number is the port that the
spawner service runs on. This format can be used to specify the server-ID value
for the SERVER= option in a LIBNAME statement.
Example:

rsubmit hrmach1._ _2267;

Alias: CREMOTE=, PROCESS=, REMOTE=
See: “CONNECTREMOTE= System Option” on page 21

CONNECTSTATUS=YES|NO
specifies whether the Transfer Status window is displayed for file transfers within
the current RSUBMIT.

Here are the values for this option:

YES|Y specifies that the Transfer Status window is displayed for file transfers
within the current RSUBMIT.

NO|N specifies that the Transfer Status window is not displayed for file
transfers within the current RSUBMIT.

If the CONNECTSTATUS= option is omitted from the RSUBMIT statement, its
value is resolved as follows:

1 If the CONNECTSTATUS= option is specified in the SIGNON statement,
the value for the CONNECTSTATUS= option in the SIGNON statement is
used.

2 If the CONNECTSTATUS system option is specified, the value for the
CONNECTSTATUS system option is used.

3 Otherwise, the default behavior occurs. The default for a synchronous
RSUBMIT is YES, which displays the Transfer Status window. The default
for an asynchronous RSUBMIT is NO, which does not display the Transfer
Status window.

Alias: CSTATUS=, STATUS=
Default: YES for synchronous RSUBMITs. NO for asynchronous RSUBMITs.
Interaction: If the CONNECTSTATUS= option is omitted from the RSUBMIT

statement, its value is resolved as follows:
See:

“Transfer Status Window” on page 241
“CONNECTSTATUS System Option” on page 22

RSUBMIT Statement and Command 143

CONNECTWAIT=YES|NO
specifies whether RSUBMIT blocks execute synchronously or asynchronously.
Synchronous RSUBMIT statements are executed sequentially. An RSUBMIT must
be completed in the server session before control is returned to the client session.

For asynchronous RSUBMIT statements, you can execute tasks in multiple server
sessions in parallel. Control is returned to the client session immediately after an
RSUBMIT begins execution to allow continued execution in the client session and in
other server sessions.

Here are the values for this option:

YES|Y specifies that the RSUBMIT blocks execute synchronously.

NO|N specifies that the RSUBMIT blocks execute asynchronously.

If the CONNECTWAIT= option in RSUBMIT is omitted, the value for the
CONNECTWAIT= option is resolved as follows:

1 If the CONNECTWAIT= option is specified in the SIGNON statement (or
if the AUTOSIGNON system option has been specified because a sign-on
has not yet occurred), the value for the CONNECTSTATUS= option in the
SIGNON statement is used.

2 If the CONNECTWAIT system option is specified, the value for the
CONNECTWAIT system option is used.

3 If the CONNECTWAIT= option is not specified in the SIGNON statement
or if the CONNECTWAIT system option is not specified, the default for the
CONNECTWAIT= option is used. The default is YES, which is to execute
synchronously.

Alias: CWAIT=, WAIT=
Default: YES
Interactions:

If the AUTOSIGNON system option has been specified and a sign-on has not yet
occurred, any options that are specified in RSUBMIT are in effect for the entire
connection. For example, if you specify CONNECTWAIT=NO in RSUBMIT
and the AUTOSIGNON system has been specified, asynchronous RSUBMIT
statements will be the default for the entire connection. However, the
CONNECTWAIT= value can be overridden in individual RSUBMIT blocks. A
connection is terminated using the SIGNOFF statement.
If CONNECTWAIT=NO is specified, you might also specify the CMACVAR=
option. CMACVAR= enables you to programmatically test the status of the
current asynchronous RSUBMIT to find out whether the task has completed or is
still in progress.
When %SYSRPUT is executed within a synchronous RSUBMIT, the macro
variable is defined in the client session as soon as it executes.
When %SYSRPUT is executed within an asynchronous RSUBMIT, the macro
variable is defined in the client session when a synchronization point is
encountered. To override this behavior, use the SYSRPUTSYNC system option.
If CONNECTWAIT=NO is specified and the AUTOSIGNON system option also
has been specified (because a sign-on has not yet occurred), an automatic sign-
off will occur only if CONNECTPERSIST=NO is also specified.

See:
“SYSRPUTSYNC System Option” on page 30
“Synchronization Points” on page 166

144 Chapter 11 • Syntax for the RSUBMIT Statement and Command

“CONNECTWAIT System Option” on page 23
“Example 5: Using MP CONNECT and the WAITFOR Statement” on page 178

CSCRIPT=file-specification
specifies the script file to use in an RSUBMIT when the AUTOSIGNON system
option has been specified and a sign-on has not yet occurred.

file-specification
specifies the location of the script file.

Here are the values for file-specification:

“filename”
is the physical location of the script file in the current working directory.
Enclose the filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the script file.
A previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you
can omit this specification from RSUBMIT.

“fully-qualified-filename”
is the full path to the script file. Enclose the fully-qualified filename in
double or single quotation marks.

“SASSCRIPT-specification”
is the physical location of the script file in the directory that is specified by
the SASSCRIPT system option.

Alias: SCRIPT=
Restriction: Use the CSCRIPT= option only when the AUTOSIGNON system

option has been specified and a sign-on has not yet occurred.
Interactions:

If multiple CSCRIPT= options are specified, the last specification takes
precedence.
When you use the CSCRIPT= option, do not also use the NOCSCRIPT option. If
you use NOCSCRIPT and CSCRIPT=, sign-on is canceled.

See:
NOCSCRIPT on page 148
“AUTOSIGNON System Option” on page 15
“SASSCRIPT= System Option” on page 27
FILENAME statement in SAS Statements: Reference and the companion that is
appropriate for your operating environment.

CSYSRPUTSYNC=YES|NO
specifies whether to synchronize the client session's macro variables when the client
session receives results from the server session or when a synchronization point is
encountered. Macro variables are updated in the client session using the
%SYSRPUT macro in an asynchronous RSUBMIT.

Note: The %SYSRPUT macro is executed in the server session.

Here are the values for this option:

YES|
Y

specifies that the client session's macro variables will be updated when
the client session receives the results of the server session's execution
of the %SYSRPUT macro. The results are delivered in the form of a
packet. Specifying YES does not mean that the client's macro variables

RSUBMIT Statement and Command 145

will be updated immediately after the server session's execution of the
%SYSRPUT macro variable. YES means that the client's macro
variables will be updated when the client receives the packet from the
server session. Therefore, the exact time at which the client session's
macro variables are updated will depend on the availability of the
client session to receive the packet from the server session. If the client
session is busy, the server session must wait until the client session is
ready to receive the packet.

NO|N specifies that the client session's macro variables will be updated when
a synchronization point is encountered. This is the default.

Alias: SYSRPUTSYNC=
Default: NO
Interactions:

If the SYSRPUTSYNC system option is specified, the CSYSRPUTSYNC=
option in RSUBMIT takes precedence over the system option.
If the SYSRPUTSYNC system option is specified and the CSYSRPUTSYNC=
option in RSUBMIT is not specified, the system option will apply to the
RSUBMIT statement.
Changing the value assigned to the SYRPUTSYNC= option between consecutive
asynchronous RSUBMIT statements causes unpredictable results. You are
advised not to change the value between asynchronous RSUBMIT statements.

See:
“Synchronization Points” on page 166
“SYSRPUTSYNC System Option” on page 30
“Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT
Executes” on page 181 for an example of how to prevent SYSRPUTSYNC=
option overrides.

INHERITLIB=(client-libref1 <=server-libref1> ... client-librefn <=server-librefn>)
enables libraries that are defined in the client session to be inherited by the server
session for read and write access. As an option, each client libref can be associated
with a libref that is named differently in the server session. If the server libref is
omitted, the client libref name is used in the server session. A space is used to
separate each libref pair in a series, which is enclosed in parenthesis.

Note: Because the SAS WORK library cannot be reassigned in any SAS session,
you cannot reassign the SAS WORK library in the server session either.

This example shows that the libref named LOCAL in the client session is inherited
for use in the server session.

rsubmit job1 inheritlib=(local work=remote);
 libname local list;
 libname remote list;
 data local.a;
 x=1;
 run;
endrsubmit;

Interactions:
If you use the INHERITLIB= option and the SASCMD= option when signing on
to a server session, the server session attempts to access the client library directly
rather than to inherit access to the library via the client session. If the client
session and the server session attempt to access the same file simultaneously,

146 Chapter 11 • Syntax for the RSUBMIT Statement and Command

only one session is granted exclusive access to the file. The other session's access
to the file is denied.
SAS/CONNECT does not support concurrent multi-user access to the same file.
This functionality is supported by SAS/SHARE.

See:
SASCMD=“SAS-command” | “!sascmd” | “!sascmdv” | “host-command-file” on
page 150
SAS/SHARE User's Guide

LOG=KEEP | PURGE |file-specification OUTPUT=KEEP | PURGE |file-
specification

directs the SAS log or the SAS output that is generated by the current server session
to the backing store or to the specified file. A backing store is a SAS utility file that
is written to the client SAS WORK directory.

Here are the values for these options:

KEEP
spools log or output lines, as applicable, to the backing store or to the computer
on which the client session is running. The log or output lines can be retrieved
using the RGET, RDISPLAY, RSUBMIT CONNECTWAIT=YES, or SIGNOFF
statements. This is the default.

PURGE
deletes all the log or output lines that are generated by the current server session.
PURGE is used to save disk resources. Use PURGE if you anticipate a large
volume of log data or output data to the backing store that you do not want to
keep, and you want to preserve disk space.

file-specification
specifies a file as the destination for the log or output lines. The file is opened for
output at the beginning of the asynchronous RSUBMIT and is closed at the end
of the asynchronous RSUBMIT. After the current RSUBMIT has completed,
subsequent RSUBMIT log or output lines can be appended to the preceding
RSUBMIT destination file using the LOG= or OUTPUT= options to specify the
appropriate filename.

Note: Directing output to the same file for multiple concurrent asynchronous
RSUBMIT statements is not recommended

Here are the values for this option:

“filename ”
is the physical location of the SAS log file or the SAS output file. Enclose the
filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the SAS log file
or the SAS output file.
Note: Use the MOD option in the FILENAME statement to open the

referenced file for an append. The MOD option is an external I/O
statement option.

Default: KEEP
Restriction: Use the LOG= and the OUTPUT= options only when executing an

asynchronous RSUBMIT. Otherwise, this message is displayed: WARNING:
LOG=/OUTPUT= options invalid with synchronous rsubmit.
Options will be ignored.

Interactions:

RSUBMIT Statement and Command 147

If you use both the asynchronous RSUBMIT and the PROC PRINTTO
statements, you might expect that the PROC PRINTTO statement causes data
from the server session to be written to the file that is specified in the PROC
PRINTTO statement. If this PROC PRINTTO behavior occurs, the LOG= or the
OUTPUT= option in the SIGNON statement is ignored, and no data is written to
the backing store or to the specified file.
However, because the asynchronous RSUBMIT and the PROC PRINTTO
statements execute simultaneously, predicting which operation will complete first
is impossible. The timing of the completions of these operations determines
whether the results are written to the SIGNON log or to the PROC PRINTTO
log.
If you direct the log or output lines to a file and then use RGET or RDISPLAY to
retrieve the contents of an empty backing store, this message is displayed:

WARNING: The LOG option was used to file log lines for the current RSUBMIT.
There are no log lines for RGET to process.

Note: Do not simultaneously use an asynchronous RSUBMIT and the PROC
PRINTTO statement in order to redirect output. Results are unpredictable when
you use a LOG= or an OUTPUT= option to redirect output in an asynchronous
RSUBMIT and then use the PROC PRINTTO statement in the client session.

See:
CONNECTWAIT= option on page 143
“CONNECTWAIT System Option” on page 23
MOD option in the FILENAME statement, which varies by operating
environment. See the SAS Companion that is appropriate for your operating
environment.

NOCSCRIPT
specifies that no script file should be used for sign-on. NOCSCRIPT accelerates
sign-on and conserves memory resources.
Alias: NOSCRIPT
Restriction: Use the NOCSCRIPT option only when the AUTOSIGNON system

option has been specified and a sign-on has not yet occurred.
Interaction: When you use NOCSCRIPT, do not also use SASCMD=, SERVER=,

or CSCRIPT=. If you use NOCSCRIPT with SASCMD=, NOCSCRIPT is
ignored. If you use NOCSCRIPT with SERVER= or CSCRIPT=, sign-on is
canceled.

See:
“AUTOSIGNON System Option” on page 15
CSCRIPT=file-specification on page 145

NOTIFY=YES | NO | “e-mail-address”
specifies whether to notify the user that an asynchronous RSUBMIT has completed.
The notification can be in the form of a message window or an e-mail message. The
NOTIFY option is enabled only at sign-on and remains in effect for the duration of
the server session.

Here are the values for this option:

YES|Y enables notification via a message window. Here is the format of
the default message: Asynchronous task TASK1 has
completed.TASK1 is the server ID. The message window does
not interfere with any other task executions in progress. To
acknowledge the message and to close the window, click OK.

148 Chapter 11 • Syntax for the RSUBMIT Statement and Command

NO|N disables notification. This is the default.

“e-mail-
address”

enables notification via an e-mail message, and specifies the e-
mail address of the recipient for the notification. E-mail addresses
are limited to a maximum of 256 characters. Enclose the e-mail
address in double or single quotation marks. The message includes
information about the total time that was used for the
asynchronous RSUBMIT. If the LOG= and OUTPUT= options
are also specified in an asynchronous RSUBMIT statement, the e-
mail message identifies the locations of the log file and output file.

Here is an example of enabling notification for an asynchronous RSUBMIT:

options autosignon sascmd="!sascmd";
rsubmit process1 wait=no notify=yes;
 %put should get notification window;
endrsubmit;

To disable notification, you must sign off the server session and then sign on to the
server session again, and either omit the NOTIFY= option or specify NOTIFY=NO
in the RSUBMIT statement.

Here is an example of disabling notification for the next asynchronous RSUBMIT:

signoff process1;
options autosignon sascmd="!sascmd";
rsubmit process1 wait=no notify=no;
 code-to-be-executed-in-server-session
endrsubmit;

Default: NO
Restrictions:

Notification occurs only for asynchronous RSUBMIT statements.
If NOTIFY=YES or NOTIFY=“e-mail-address” is specified in a synchronous
RSUBMIT, notification fails. Notification is valid only for an asynchronous
RSUBMIT.
Use the NOTIFY= option in RSUBMIT only when the AUTOSIGNON system
option has been specified (because a sign-on has not yet occurred).
If NOTIFY= is specified in RSUBMIT when the AUTOSIGNON system option
has been specified, but a sign-on has previously occurred, NOTIFY= has no
effect.

Interactions:
When you specify the NOTIFY=“e-mail-address” option, you can also specify
the SUBJECT=“subject-title” option.
If NOTIFY=YES and the NOTERMINAL system option has been specified, the
request for notification is ignored. This message is displayed:

WARNING: The NOTIFY option is valid only if a TERMINAL is attached
to this SAS session. Option will be ignored.

However, notification can be directed to an e-mail address, regardless of whether
the TERMINAL or NOTERMINAL system option has been specified.
If NOTIFY=“e-mail address” is specified, but the e-mail message cannot be sent,
notification will occur in the form of a message window, which is the action that
occurs when NOTIFY=YES. This behavior assumes that the NOTERMINAL
system option has not been specified.

RSUBMIT Statement and Command 149

If NOTIFY=“e-mail address” is specified, the SAS system and the operating
environment that the SAS system runs under must be configured to support e-
mail. Without appropriate configuration, your attempt to specify notification via
e-mail might fail. Contact your system administrator for details.
Notification fails if NOTIFY=YES or NOTIFY=“e-mail address” and you
specify statements or commands (such as RGET or SIGNOFF) during the
asynchronous RSUBMIT that change execution from asynchronous to
synchronous mode.
This message is displayed when the NOTIFY= option is specified in the
RSUBMIT statement:

WARNING: The NOTIFY option is applied only during SIGNON, but remains
in effect for the entire connection until SIGNOFF.

This message is also displayed for an RSUBMIT for which an automatic sign-on
has occurred.

See:
CONNECTWAIT=NO option on page 144
AUTOSIGNON System Option on page 15
LOG= and OUTPUT= options on page 69
SUBJECT=“subject-title” on page 154
EMAILHOST, EMAILPORT, and EMAILSY system options in SAS System
Options: Reference

SASCMD=“SAS-command” | “!sascmd” | “!sascmdv” | “host-command-file”
signs on to the server session on the same symmetric multiprocessing (SMP)
computer that the client session is running on. This option is most useful when client
and server sessions run on SMP hardware.

“SAS command”

• For OpenVMS, UNIX, and Windows: specifies the SAS command that is
used to sign on to a server session.

Here is a typical example:

sascmd="sas"

As another example, commands that contain spaces must be enclosed in
double quotation marks.

sascmd='"c:\Program Files\SAS\SAS System\9.2\sas.exe"';

• For z/OS: specifies a colon that is followed by any SAS invocation options.

Here is an example:

sascmd=":ls=256"

!sascmd
For OpenVMS, UNIX, and Windows, signs on to a server session by using the
same command that was used to start the client session.

!sascmdv
For OpenVMS, UNIX, and Windows, signs on to a server session by using the
same command that was used to start the client session and writes the SAS
invocation to the SAS log.

“host-command-file”
In order to execute additional commathis file was "created" during the
conversion because there was at that time no way to tag call outs, so the content

150 Chapter 11 • Syntax for the RSUBMIT Statement and Command

was stripped from the file and put into a separate "snippet" file. the contents need
to be reintegrated back into the Statement-RSUBMIT_Statement.xml filends
before SAS is invoked, you can write a command file that is specific to your
operating environment. Here are the filename extensions according to operating
environment: Windows filenames use the .bat and .cmd extensions. UNIX
extensions include .sh, .csh, and .ksh. OpenVMS uses the .com extension.
The SASCMD= option does not support z/OS command files.

The TCP/IP access method adds options, such as -DMR, to the server session's SAS
command.

For Windows, the TCP/IP access method also appends these options:

• -COMAMID TCP

• -ICON

• -NOSPLASH

• -NOTERMINAL

For all operating environments, you can also specify the NOSYNTAXCHECK
option in the SAS invocation for the non-interactive server session. For details, see
“Starting SAS and Using Syntax Checking” on page 39 .

Note: For OpenVMS only, if the NODETACH system option is specified, and if
multiple server sessions are running under OpenVMS and you observe degraded
performance, this error message is displayed:

ERROR: Process quota exceeded.
ERROR: Cannot spawn subprocess. Check process limit quotas and privileges.

NODETACH causes a sign-on to occur in a subprocess of the parent's process,
which can use excessive resources. If NODETACH is specified, try setting the
DETACH system option, which causes sign-ons to occur as detached processes
rather than as subprocesses.

For more information, see the NODETACH system option in the SAS Companion
for OpenVMS on HP Integrity Servers. To improve performance when using the
NODETACH system option, ask your system administrator to set the following
resources to the specified values for each sign-on to a server session:

Table 11.1 OpenVMS Operating Environment Resource Values

User Account Resource Minimum Value

Paging file quota 40000

Buffered I/O byte count quota 13000

Open file quota 65

Subprocess limit 1

Timer queue entry limit 1 to 8

When SAS is invoked from a captive OpenVMS account, you cannot use
SASCMD= to sign on to a server session. Typically, SASCMD= performs a sign-on
to a server session either in a subprocess or in a detached process. Starting
subprocesses is not allowed under a captive account. A detached process that runs

RSUBMIT Statement and Command 151

under a captive account cannot invoke SAS because a captive OpenVMS account is
under the control of the login command procedure. The command language
interpreter will execute only the commands in your login command procedure and
then the process will exit.

The !sascmdv value in the SASCMD= option causes the display of a symbol that
specifies how the server session was started. You can print the symbol's value by
using the getsym DATA step function.

rsubmit;
 %put %bquote(
 %sysfunc (getsym(SASCMD_2042CF6B)));
endrsubmit;

Restriction: For z/OS, a command file cannot be used. Therefore, use a semicolon
followed by options for the server's SAS invocation.

Requirement: SAS commands that contain spaces must be enclosed in double or
single quotation marks.

Interactions:
If the SASCMD= system option is already specified, the SASCMD= option that
is specified in RSUBMIT takes precedence over the system option.
When you use SASCMD=, do not also use NOCSCRIPT. Otherwise,
NOCSCRIPT is ignored.

See:
“SASCMD= System Option” on page 25
SYNTAXCHECK= and NOSYNTAXCHECK= system options in SAS System
Options: Reference
ICON, NOSPLASH, and NOTERMINAL system options in SAS Companion for
Windows
“COMAMID= System Option” on page 16
NOCSCRIPT on page 148

SERVER=“SAS-application-server”
specifies the name of a SAS Application Server that contains a SAS/CONNECT
server component in its grouping. The SAS Application Server has been defined in
the SAS Metadata Repository using SAS Management Console. The SAS
Application Server is configured using a set of system resources, including a
SAS/CONNECT server component and properties that start a SAS/CONNECT
server session. The server properties are equivalent to the options that can be
specified in the SIGNON statement.

When you use the SERVER= option, certain system resources must be configured
before you can access a SAS Metadata Server. For details, see “Sign On to a Server
That Is Defined in the SAS Metadata Repository” on page 41 .

“SAS-application-server”
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

Requirements:
Enclose the name of the SAS Application Server in double or single quotation
marks.

If the specified SAS Application Server does not contain a SAS/CONNECT
server component, the server sign-on fails.

Interactions:

152 Chapter 11 • Syntax for the RSUBMIT Statement and Command

SERVER= is used in an RSUBMIT when an automatic sign-on is in effect via
the AUTOSIGNON system option rather than when an explicit sign-on is
specified via the SIGNON statement.
When you use SERVER=, do not also use these RSUBMIT options:
NOCSCRIPT, NOTIFY=, PASSWORD=, REMOTE=, SASCMD=, SCRIPT=,
SIGNONWAIT=, or USERNAME=. Here is an example of a warning:

WARNING: NOTIFY= and SERVER= are mutually exclusive.
Please choose only one of them.

If any of these options is also specified, the entire RSUBMIT code block will be
ignored. Although the AUTOSIGNON system option might be in effect, a server
sign-on will fail.
When you use SERVER=, you can also specify any of these options in
RSUBMIT: CMACVAR=, CONNECTPERSIST=, CSTATUS=. CWAIT=,
INHERITLIB=, LOG=, OUTPUT=, OUTPUT=, or SYSRPUTSYNC=. If you
specify any of these options, the option that is specified in RSUBMIT takes
precedence over the equivalent property for the SAS/CONNECT component that
is contained in the SAS Application Server.
If you use NOCSCRIPT and SERVER=, sign-on is canceled.
The CONNECTPERSIST= and SYSRPUTSYNC= options are available only in
the RSUBMIT statement. They cannot be specified as sign-on properties for the
SAS/CONNECT component that is contained in the SAS Application Server.

See:
SERVERV=“SAS-application-server” | _ALL_ on page 75 in SIGNON
“AUTOSIGNON System Option” on page 15
SAS Management Console: Guide to Users and Permissions and SAS
Management Console online Help

SIGNONWAIT=YES|NO
specifies whether a sign-on to a server session is to be executed synchronously or
asynchronously. You can sign on using the SIGNON statement or the
AUTOSIGNON system option.

Here are the values for this option:

YES|Y specifies a synchronous sign-on. A synchronous sign-on causes the
client session to wait until the sign-on to a server session has
completed before control is returned to the client session for continued
execution. YES is the default.

NO|N specifies an asynchronous sign-on. An asynchronous sign-on to a
server session begins execution and control is returned to the client
session immediately for continued execution. Asynchronous sign-on
allows multiple tasks (including other sign-ons) to be executed in
parallel. Asynchronous sign-ons reduce the total amount of time that
would be used to execute individual sign-ons to multiple server
sessions. Using the saved time, the client session can execute more
RSUBMIT statements.

Default: YES
Interactions:

If the SIGNONWAIT system option is also specified, the SIGNONWAIT=
option takes precedence over the system option.
If SIGNONWAIT is specified as a system option and the SIGNONWAIT=
option is not specified, the system option will apply to the RSUBMIT statement.

RSUBMIT Statement and Command 153

If SIGNONWAIT=NO is specified, the USERID= and PASSWORD= options
cannot be set to _PROMPT_.

See:
“SIGNONWAIT System Option” on page 29
“AUTOSIGNON System Option” on page 15
“SIGNON Statement and Command” on page 63

SUBJECT=“subject-title”
specifies the subject title for the e-mail notification message that is sent after an
asynchronous RSUBMIT completes. A subject title is limited to a maximum of 256
characters.

Here is an example of specifying a subject using e-mail notification:

options remote=myhost sascmd="!sascmd";
signon notify="joe.smith@apex.com";
rsubmit wait=no subject="First task completed on &SYSHOSTNAME";
 code-to-be-executed
endrsubmit;

Restriction: Use the SUBJECT= option only when the NOTIFY=“e-mail-address”
option is in effect.

Interaction: If the SUBJECT= option is not specified in the RSUBMIT statement,
but SUBJECT= is specified at sign-on, the subject title that is specified at sign-on
is used in the e-mail message for RSUBMIT. If no SUBJECT= is specified, the
default subject title is used:

SAS/CONNECT task TASK1 has completed.

TASK1 is the server ID.
See:

NOTIFY=YES | NO | “e-mail-address” on page 148
Chapter 5, “Syntax for the SIGNON and the SIGNOFF Statements and
Commands,” on page 63
SAS system options that support e-mail configuration: EMAILHOST,
EMAILPORT, and EMAILSY in SAS System Options: Reference

USERNAME=user-ID|_PROMPT_
specifies the user ID to be used when connecting to a server session. Here are the
values that can be assigned to USERNAME=:

user-ID
For details about a valid user ID, see “User ID and Password Naming
Conventions” on page 157 .

PROMPT
specifies that SAS prompt the user for a valid user ID. This value enforces
security.

Alias: USERID=, USER=, UID=
Restriction: Use the USERNAME= option only when the AUTOSIGNON system

option has been specified (because a sign-on has not yet occurred).
See: “AUTOSIGNON System Option” on page 15

PASSWORD=password | “encoded-password” |_PROMPT_
specifies the password to use in order to sign on to a server session. The operating
environment that the server session runs under can affect password naming
conventions. For details about password-naming conventions according to operating

154 Chapter 11 • Syntax for the RSUBMIT Statement and Command

environment, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Here are the values for this option:

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement on page 63

Here is an example of code for obtaining an encoded password:

 proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its clear-
text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key.

Use the output from the PROC PWENCODE statement as the value for encoded-
password in the appropriate statement.

PROMPT specifies that SAS prompt the user for a valid password. This
value enforces security.

Alias: PASSWD=, PASS=, PWD=, PW=
Restriction: Use the PASSWORD= option only when the AUTOSIGNON system

option has been specified (because a sign-on has not yet occurred).
See: “AUTOSIGNON System Option” on page 15

Details

Difference between SUBMIT and RSUBMIT
The RSUBMIT command and statement cause SAS programming statements that are
entered in a client session to run in a server session. The difference between the
RSUBMIT and the SUBMIT commands is the location of program execution (client
session or server session). Although RSUBMIT executes tasks in a server session,
results and output are delivered to the client session as if they were executed in the client
session.

Difference between the RSUBMIT Statement and Command
The primary difference between the RSUBMIT command and the statement is that the
command can be used only from a windowing environment session or in the DM
statement. The RSUBMIT statement is used in a client session.

You can use the RSUBMIT command in these environments:

RSUBMIT Statement and Command 155

• the command line of the Program Editor window in a client session

• a DM statement, which uses commands as if they were issued from a command line
in a windowing environment.

• Windows only: the KEYS window in which you assign the RSUBMIT command to a
key. For details, see the SAS Companion for Windows.

Difference between Synchronous and Asynchronous RSUBMITs
An RSUBMIT is executed either synchronously or asynchronously.

synchronous
Client session control is not returned until the RSUBMIT has completed.
Synchronous execution is the default execution mode.

asynchronous
Client session control is returned immediately after an RSUBMIT is sent to a server
session. Program execution can occur in a client session and in one or more server
sessions in parallel.

A synchronous RSUBMIT displays results and output in the client session. If the
RSUBMIT is asynchronous, you can use the RGET and RDISPLAY commands and
statements and the LOG= and OUTPUT= options to retrieve and view the results.

Executing Statements in the RSUBMIT Block
The RSUBMIT command can be used to execute most types of SAS programs in the
server session, except windowing procedures (such as SAS/FSP or SAS/AF procedures).

The RSUBMIT statement can be used to run SAS/CONNECT from the SAS windowing
environment, an interactive line mode session, or a batch job. The RSUBMIT and the
ENDRSUBMIT statements enable you to include the statements that should be executed
in the server session in the same file as the statements that will be executed in the client
session. The statements that are enclosed between the RSUBMIT and the
ENDRSUBMIT statements, which constitute the RSUBMIT block, execute in the server
session. All the other statements in the program are executed in the client session when
you run the program.

The following template can be used to build a file that includes statements for both the
client and the server sessions in the same program:

statements for client session
rsubmit;
 statements for server session
endrsubmit;
 statements for client session

Note: The DOWNLOAD and the UPLOAD procedures must be executed by using the
RSUBMIT command or the RSUBMIT statement. You cannot execute UPLOAD
and DOWNLOAD by using the SUBMIT command.

RSUBMIT and ENDRSUBMIT Parsing
When SAS encounters an RSUBMIT statement, it sends the SAS statements in the
RSUBMIT block to SAS/CONNECT. SAS/CONNECT continues parsing the statements
until it encounters the semicolon that follows the ENDRSUBMIT statement.

The SAS statements within an RSUBMIT block can contain the start of a quoted string.
A second RSUBMIT block can contain the end of the quoted string. Here is an example
of two RSUBMIT blocks in which a quoted string starts in the first RSUBMIT block and
ends in the second RSUBMIT block:

156 Chapter 11 • Syntax for the RSUBMIT Statement and Command

rsubmit;
data _null_;
newmacro='mend;
endrsubmit;
rsubmit;
endrsubmi' || 't; ' ;
put newmacro;
run;
endrsubmit;

If the preceding statements were changed to have "newmacro='mend;
endrsubmit;';" (instead of it being broken between the two RSUBMIT blocks),
parsing of the RSUBMIT block would end with "endrsubmit;" . RSUBMIT block
processing ends after the ENDRSUBMIT statement, the second quotation mark is
processed in the client SAS session, and another quotation mark will need to be entered
before SAS reports an error. Here is an excerpt of the error message:

newmacro = 'mend; endrsubmit;'
 -
ERROR : Statement is not valid or it is used out of proper order.

Avoid including the ENDRSUBMIT statement in a quoted string.

User ID and Password Naming Conventions
Each user ID and password is limited to 256 characters that follow these conventions:

• Mixed case is allowed.

• A null value, which is no value, that is delimited with quotation marks is allowed.

• Quotation marks must enclose values that contain one or more spaces.

• Quotation marks must enclose values that contain one or more special characters.

• Quotation marks must enclose values that contain one or more quotation marks.

• Quotation marks must enclose values that begin with a numeric value.

• Quotation marks must enclose values that do not conform to rules for user-supplied
SAS names. For details about rules for SAS names, see SAS Language Reference:
Concepts.

Examples:

user=joe password='Born2run';
user=joe password='' /* null space specified by contiguous quotation marks */;
user='joe black' password='Born 2 run';
user='joe?black' password='Born 2 run';
user='apexdomain\joe' pass='2bornot2b' /* Windows user name */;
user='"happy joe"' pw=_prompt_;
user=_prompt_;
userid="myuserid" password="{sas001}MVNoYXJl";

ENDRSUBMIT Statement
Marks the end of a block of statements that a client session submits to a server session for execution.

Valid in: client session

ENDRSUBMIT Statement 157

Syntax
ENDRSUBMIT <CANCEL> ;

Syntax Description
CANCEL

This option is useful in an interactive line mode session if you see an error in a
previously entered statement, and you want to cancel the step.

Details
The ENDRSUBMIT statement signals the end of a block of statements that begins with
either of the following lines of code:

dm 'rsubmit';

or

rsubmit;

The server session executes the statements between either of these statements and the
ENDRSUBMIT statement.

Note: Do not use the ENDRSUBMIT statement when using the RSUBMIT command.
Use it only when you use the RSUBMIT statement or the DM RSUBMIT statement.

The ENDRSUBMIT statement can be used in any type of client session: a SAS
windowing environment, an interactive line mode session, or a batch job. The
RSUBMIT and ENDRSUBMIT statements enable you to include in the same file
statements that are executed in the client session and statements that are executed in the
server session. The statements to be executed in the server session are enclosed between
the RSUBMIT and ENDRSUBMIT statements.

All of the other statements in the program are executed in the client session when you
run the program. Here is a template for the arrangement of statements for the server and
client sessions in the same program:

statements for client session
rsubmit;
 statements for server session
endrsubmit;
more statements for client session

Note: Do not put a comment between the ENDRSUBMIT statement and the semicolon.
Doing so will cause an error message to be displayed in the SAS Log and can cause
unexpected results in your output.

RDISPLAY Command and RDISPLAY Statement
Creates a Log window to display the lines from the log and an Output window to list the output generated
from the execution of the statements within an asynchronous RSUBMIT block.

Valid in: client session

Syntax
RDISPLAY <<CONNECTREMOTE=>server-ID > ;

158 Chapter 11 • Syntax for the RSUBMIT Statement and Command

Syntax Description
CONNECTREMOTE=server-IDserver-ID

specifies the name of the server session that the asynchronous RSUBMIT is
executing in or has executed in. If only one session is active, you can omit server-ID.
If multiple server sessions are active and you omit this option, the spooled log and
output statements from the most recently accessed server session are displayed.
Alias: CREMOTE=, PROCESS=, REMOTE=

Details
The RDISPLAY command and the RDISPLAY statement create a Log window to
display the spooled log and an Output window to display the output that is generated by
an asynchronous RSUBMIT.

When an asynchronous RSUBMIT executes, the log and the output are not merged into
the client Log and Output windows. Instead, they are spooled until they are retrieved at a
later time. RDISPLAY enables you to view the spooled log and output statements that
are created by the asynchronous RSUBMIT. The RGET command and the RGET
statement must be used to merge the spooled statements into the client Log and Output
windows.

The primary difference between the RDISPLAY command and the RDISPLAY
statement is that the command can be used only from a windowing environment session
or within a DM statement. The RDISPLAY statement is used in a client session.

RGET Command and RGET Statement
Retrieves the log and output that are created by an asynchronous RSUBMIT and merges them into the Log
and Output windows of the client session.

Valid in: client session

Syntax
RGET <<CONNECTREMOTE=>server-ID> ;

Syntax Description
CONNECTREMOTE=server-IDserver-ID

specifies the name of the server session that generated the spooled log and output to
be retrieved. If only one session is active, server-ID can be omitted. If multiple
server sessions are active and the option is omitted, the spooled log and output
statements from the most recently accessed server session are retrieved and merged
into the client Log and Output windows. You can find out which server session is the
current session by examining the value that is assigned to the CONNECTREMOTE
system option.
Alias: CREMOTE=, PROCESS=, REMOTE=
See: “CONNECTREMOTE= System Option” on page 21

Details
The RGET command and the RGET statement cause all the spooled log and output from
the execution of an asynchronous RSUBMIT to be merged into the client Log and
Output windows. When an asynchronous RSUBMIT executes, the log and output are not

RGET Command and RGET Statement 159

merged into the client Log and Output windows immediately. Instead, the log and output
are spooled and retrieved later.

If the RGET command or RGET statement is executed while the asynchronous
RSUBMIT is still in progress, all currently spooled log and output statements are
retrieved and merged into client Log and Output windows. The RSUBMIT continues
execution as if it were submitted synchronously. Control is returned to the client session
after the RSUBMIT has completed.

If you do not want RSUBMIT to become synchronous, but you want to check its
progress, use the CMACVAR= option in the RSUBMIT or the SIGNON statement.
CMACVAR= enables you to monitor the progress of an asynchronous RSUBMIT
without causing it to execute synchronously.

Note: For an overview about monitoring SAS tasks, see “Monitoring MP CONNECT
Tasks” on page 119 .

Note: For asynchronous RSUBMIT statements, the SAS system option _LAST_, which
is used to find out the name of the most recently created data set, does not get
updated. Also, if RGET is used to change RSUBMIT execution from asynchronous
to synchronous, the system option _LAST_ is not updated. For more information
about _LAST_, see SAS System Options: Reference.

%SYSLPUT Statement
Creates a single macro variable in the server session or copies a specified group of macro variables to the
server session.

Valid in: client session

Syntax
Form 1: %SYSLPUT macro-variable=value </REMOTE=server-ID> ;

Form 2: %SYSLPUT _ALL_ | _AUTOMATIC_ | _GLOBAL_ | _LOCAL_ | _USER_
</LIKE=‘character-string’><REMOTE=server-ID>;

Syntax Description
ALL

copies all user-generated and automatic macro variables to the server session.

AUTOMATIC
copies all automatic macro variables to the server session. The automatic variables
copied depend on the SAS products installed at your site and on your operating
system. The scope is identified as AUTOMATIC.

GLOBAL
copies all user-generated global macro variables to the server session. The scope is
identified as GLOBAL.

/LIKE=<‘character-string’ >
Specifies a subset of macro variables whose names match a user-specified character
sequence, or pattern. Only this identified group of variables with names matching the
pattern will be copied to the server session.

Note: The LIKE= option is not case sensitive.

160 Chapter 11 • Syntax for the RSUBMIT Statement and Command

‘character-string’
Specifies the sequence of characters, or pattern, to be used as the criteria for
determining which macro variables are to be copied to the server session.
Character patterns can consist of the following:

• any sequence of characters, A-Z

• any sequence of digits, 0-9

• a single wildcard character in the form of an asterisk (*)

The wildcard character (*) cannot be embedded or used more than once in the
character string. The examples below illustrate how the LIKE= option works
with the wildcard character. For these examples, assume that the following macro
variables are defined in the client session: rc1, rc2, unixHost, and winHost:

like='rc*'; Wildcard at the end:

returns rc1 and rc2.

like='*Host'; Wildcard at the beginning:

returns unixHost and winHost.

like='*host'; Wildcard at the beginning and lower cased
“h” in name:

returns unixHost and winHost.

like='r*c'; Wildcard in the middle:

is not valid and returns a syntax error.

like='*rc*'; More than one wildcard (at beginning and
end):

is not valid and returns a syntax error.

like='rc'; Wildcard not specified:

returns nothing (no match)

like=' '; Wildcard not specified and ‘character-
string’ is empty:

returns nothing (no macro variables are
copied)

Restrictions:
The wildcard (*) cannot be embedded in the character-string.
The wildcard (*) can only be specified once in the character-string.

Requirement: The wildcard (*) must be used at either the beginning or the end
of the character-string.

Interaction: The /REMOTE= and /LIKE= options are independent of each other
and can be specified on the same %SYSLPUT statement, regardless of order.

Notes:
Macro variables in the same server session are over-written each time they are
submitted.
Read-only system options in the remote server are not over written.

%SYSLPUT Statement 161

Tip: To copy all macro variables to the server session without specifying LIKE= ,
use the _ALL_ special word in the %SYSLPUT statement.

LOCAL
copies all user-generated local macro variables to the server session. The scope is the
name of the currently executing macro.

macro-variable
specifies the name of a macro variable to be created in the server session.

value
specifies the macro variable reference, a macro invocation, or the character value
to be assigned to the server macro-variable. The character value should not
contain nested quotation marks.
Requirement: Values containing special characters, such as the front slash (/) or

single quotation mark (‘), must be masked using the %BQUOTE function so
that the macro processor correctly interprets the special character as part of
the text and not as an element of the macro language. See “Example 3:
Masking Character Values with %BQUOTE (Form 1)” on page 164 for an
example of how to use the %BQUOTE function. For more information on
Macro Quoting in general, see Chapter 7, “Macro Quoting,” in SAS Macro
Language: Reference.

/REMOTE=server-ID
specifies the name of the server session that the macro variable will be created in. If
only one server session is active, the server-ID can be omitted. If multiple server
sessions are active, omitting this option causes the macro to be created in the most
recently accessed server session. You can find out which server session is currently
active by examining the value that is assigned to the CONNECTREMOTE system
option.
Interactions:

The /REMOTE= option that is specified in the %SYSLPUT macro statement
overrides the CONNECTREMOTE= system option.
The /REMOTE= and /LIKE= options are independent of each other and can be
specified on the same %SYSLPUT statement, regardless of order.

See: “CONNECTREMOTE= System Option” on page 21

USER
copies all user-generated global and local macro variables to the server session. The
scope is identified either as GLOBAL, or as the name of the macro in which the
macro variable is defined.

Details

%SYSLPUT Macro Statement
The %SYSLPUT statement is a macro statement used in SAS/CONNECT that allows
you to do the following:

• create a new macro variable in the server session and assign it a value from the client
session (form 1).

• copy a specified group of existing macro variables and their values from the client to
the server session (form 2).

Note: Unlike the %SYSRPUT statement that is submitted within the RSUBMIT block
of code and processed in the server session, the %SYSLPUT statement is submitted
outside the RSUBMIT code block and processed in the client session.

162 Chapter 11 • Syntax for the RSUBMIT Statement and Command

Creating a Single Macro Variable to Be Used in the Server Session
(Form 1)
The %SYSLPUT statement is a macro statement that is submitted in the client session to
create and assign a value to a macro variable in the server session.

If you are signed on to multiple server sessions, %SYSLPUT submits the macro
assignment statement to the most recently used server session. If you are signed on to
only one server session, %SYSLPUT submits the macro assignment statement to that
server session. If you are not signed on to any session, an error condition results.

For examples of how to use this form of the %SYSLPUT statement, see “Example 1:
Creating a Macro Variable with %SYSLPUT (Form 1)” on page 163, “Example 2:
Using the Macro Statement with %SYSLPUT (Form 1)” on page 163, and “Example 3:
Masking Character Values with %BQUOTE (Form 1)” on page 164.

Copying a Group of Macro Variables (Form 2)
The %SYSLPUT statement also allows you to copy a specified group of existing macro
variables from the client to the server session. The arguments used with this form allow
you to define the group of macro variables to be copied based on variable type
(automatic or user-defined), variable scope (global or local), and variable name. To copy
all macro variables, regardless of type, scope, or name, use the _ALL_ argument in the
%SYSLPUT statement.

You can also use the AUTOSIGNON system option with the %SYSLPUT statement to
automatically sign on to a server session and copy specified macro variables to that
server session. When the %SYSLPUT statement is specified with the AUTOSIGNON
system option, the RSUBMIT command or statement automatically executes a sign-on
and honors all macro variables defined in the %SYSLPUT statement for that session.
For an example of using the AUTOSIGNON system option with the %SYSLPUT macro
statement, see “Example 7: Using %SYSLPUT with the AUTOSIGNON Option” on
page 165. For more information about the AUTOSIGNON system option, see
“AUTOSIGNON System Option” on page 15.

For examples of how to use this form of the %SYSLPUT statement to copy groups of
macro variables, see “Example 4: Copying a Group of Variables to the Server Session
(Form 2)” on page 164, “Example 5: Specifying a Group of Variables Using LIKE=
(Form 2)” on page 165, “Example 6: Overwriting Variables in the Same Server Session
(Form 2)” on page 165, and “Example 7: Using %SYSLPUT with the AUTOSIGNON
Option” on page 165.

Examples

Example 1: Creating a Macro Variable with %SYSLPUT (Form 1)
This example creates the macro variable FLAG in the current server session and assigns
to it a value of 1.

%syslput flag=1;

Example 2: Using the Macro Statement with %SYSLPUT (Form 1)
%SYSLPUT enables you to dynamically assign values to variables that are used by
macros that are executed in a server session. The macro statement %SYSLPUT is used
to create the macro variable REMID in the server session and to use the value of the
client macro variable RUNID. The REMID variable is used by the %DOLIB macro,
which is executed in a server session, to find out which operating system-specific library
assignment should be used in the server session.

%SYSLPUT Statement 163

Example Code 11.1 Using %SYSLPUT To Find Out Which Libraries Can be Used in the
Server Session

%macro assignlib (runid);
 signon rem&runid;
 %syslput remid=&runid;
 rsubmit rem&runid;
 %macro dolib;
 %if (&remid eq 1) %then %do;
 libname mylib 'h:';
 %end;
 %else %if (&remid eq 2) %then %do;
 libname mylib '/afs/some/unix/path';
 %end;
 %mend;
 %dolib;
 endrsubmit;
%mend;

Example 3: Masking Character Values with %BQUOTE (Form 1)
Since the forward slash is a macro language special character that has a special meaning
to the macro processor, using it in the %SYSLPUT statement, either directly or
indirectly (as a macro variable reference), will cause an error to be generated. This
example uses the %BQUOTE function around the macro variable reference &pathineed,
to mask the front slashes in a UNIX pathname.

Example Code 11.2 Using %BQUOTE To Mask Character Values That Are Used in a
%SYSLPUT Statement

 %let pathineed=/abc/xyz;
 %syslput pathineed=%bquote(&pathineed);
 rsubmit;
NOTE: Remote submit to computer commencing.
 %put &pathineed
 endrsubmit;
 %put &pathineed /abc/xyz
NOTE: Remote submit to computer complete.

Example 4: Copying a Group of Variables to the Server Session
(Form 2)
This example uses _ALL_ in the %SYSLPUT statement to copy two macro variables,
rc1 and rc2, to the server session. The %PUT statement in the RSUBMIT block uses
variable references, &rc1 and &rc2, to display these variables and their values in the
SAS log. When the %PUT statements execute, the macro processor resolves the
expressions rc1=&rc1 and rc2=&rc2 to rc1=rem1 and rc2=rem2, respectively, and
displays them in the SAS log.

%let rc1=rem1;
%let rc2=rem2;

%syslput _all_;
rsubmit host;
 %put rc1=&rc1

164 Chapter 11 • Syntax for the RSUBMIT Statement and Command

 %put rc2=&rc2
endrsubmit;

Example 5: Specifying a Group of Variables Using LIKE= (Form 2)
By specifying _USER_ followed by LIKE=’rc*’ in the %SYSLPUT statement below,
only the user-defined macro variables whose names begin with the letters “rc” are copied
to the server session. Since the macro variable unixHost does not meet the pattern-
matching criteria, it is not recognized by the %PUT statement in the server session and a
warning is displayed in the log. The %PUT statements cause the expressions rc1=&rc1
and rc2=&rc2 to be displayed as rc1=rem1 and rc2=rem2 in the SAS log.

signon foo sascmd="sas";
 %let rc1=rem1;
 %let rc2=rem2;
 %let unixHost=rem3;

 %syslput _user_/like='rc*' remote=host;
 rsubmit host;
 %put rc1=&rc1 /* writes rc1=rem1 to the log */
 %put rc2=&rc2 /* writes rc2=rem2 to the log */
 %put unixHost=&unixHost; /* generates WARNING: Apparent symbolic */
 /* reference UNIXHOST not resolved. */
 endrsubmit;

Example 6: Overwriting Variables in the Same Server Session (Form
2)

signon foo sascmd="sas";
%let rc1=rem1;
%syslput _global_/like='rc*' remote=host;
rsubmit host;
 %put rc1=&rc1
endrsubmit;

 %let rc1=changeValue;

 rsubmit host;
 %put rc1=&rc2
 endrsubmit;

Example 7: Using %SYSLPUT with the AUTOSIGNON Option
options autosignon=yes sascmd="sas";
%let rc1=rem1;
%let rc2=rem2;
%syslput _global_/like='rc*' remote=host;

Example 8: Using %SYSLPUT with the AUTOSIGNON Option in
Multi-task Processes

options autosignon;
options sascmd="sas";
%let rc1=rem1;
%let rc2=rem2;
%let trc1=test1;
%let trc2=test2;
%syslput _global_/like='rc*' remote=host1;

%SYSLPUT Statement 165

%syslput _global_/like='trc*' remote=host2;
Rsubmit host1;
 %put rc1=&rc1;
 %put rc2=&rc2;
Endrsubmit;
Rsubmit host2;
 %put trc1=&trc1;
 %put trc2=&trc2;
Endrsubmit;

%SYSRPUT Statement
Assigns a value from the server session to a macro variable in the client session.

Valid in: server session

Syntax
%SYSRPUT macro-variable=value;

Syntax Description
macro-variable

specifies the name of a macro variable in the client session.

value
is a macro variable reference, a macro invocation, or a character string in the server
session that will be assigned to the macro-variable in the client session.

Details

Overview
The %SYSRPUT macro statement is remotely submitted to the server session in order to
assign a value that is available in the server session to a macro variable that can be
accessed from the client session.

Like the %LET statement, the %SYSRPUT statement assigns a value to a macro
variable. Unlike %LET, the %SYSRPUT statement assigns a value to a variable in the
client session, not in the server session where the statement is executed. The
%SYSRPUT statement stores the macro variable in the Global Symbol Table in the
client session.

A synchronization point identifies the time (during an asynchronous RSUBMIT) at
which the macro variable that is specified in the %SYSRPUT statement is defined to the
client session and is available for execution in the client session.

Synchronization Points
Here are the three possible synchronization points:

1. when the RGET command is executed.

At this time, all macro variables that were specified by using %SYSRPUT are
defined in the client session and are available for execution.

2. when a synchronous RSUBMIT is started in the same server session that an
asynchronous RSUBMIT is already running in.

166 Chapter 11 • Syntax for the RSUBMIT Statement and Command

3. when the SIGNOFF command or the SIGNOFF statement is executed.

All macro variables that were specified using %SYSRPUT are defined in the client
session and are available for execution.

All currently spooled log and output statements are retrieved and merged into the client
Log and Output windows. RSUBMIT continues from then on as if it were synchronous.
Control is returned to the client session after the RSUBMIT has completed. In addition,
%SYSRPUT macro variables that have been generated during the asynchronous
RSUBMIT up to that point are defined in the client session. Thereafter, RSUBMIT
becomes synchronous, and macro variables are synchronized immediately when they are
executed.

To override the default for an asynchronous RSUBMIT, you can specify the
SYSRPUTSYNC= option in the RSUBMIT statement. Macro variables are set at the
time of execution rather than at a synchronization point in the client session.

Examples

Example 1: %SYSRPUT
The %SYSRPUT statement is useful for capturing the value that is returned in the
SYSINFO macro variable and for passing that value to the client session. The SYSINFO
macro variable contains return-code information that is provided by SAS procedures.

This example shows how to download a file and to return information about the success
of the step from a batch job.

Example Code 11.3 Using %SYSRPUT To Find Out Whether a Download Is Successful

signon rhost;
rsubmit;
 proc download data=remote.mydata
 out=local.mydata;
 run;
 %sysrput retcode=&sysinfo;
endrsubmit;
%macro checkit;
 %if &retcode=0 %then %do;
 code-to-be-executed-in-client–session
 %end;
%mend checkit;
%checkit;

The %SYSRPUT statement occurs after a PROC DOWNLOAD statement. The value
that is returned by &SYSINFO indicates the success of the PROC DOWNLOAD
statement. After execution in the server session has completed, the value of the return
code that is stored in RETCODE is checked. If server execution is successful, execution
continues in the client session.

If SIGNON, RSUBMIT, or SIGNOFF fails, a SAS/CONNECT batch job returns a non-
zero system condition code. To find out the status of an RSUBMIT execution, use the
%SYSRPUT statement. This macro checks the value of the automatic macro variable
SYSERR. For details, see SAS Macro Language: Reference.

%SYSRPUT Statement 167

Example 2: %SYSRPUT
This example shows the execution of an asynchronous RSUBMIT. The
SYSRPUTSYNC= option is specified in order to set the client session's macro variable
when %SYSRPUT executes rather than when a synchronization point is encountered.
The value of the macro variable STATUS can be checked to monitor the progress of the
asynchronous RSUBMIT.

Example Code 11.4 Using %SYSRPUT To Monitor the Progress of an Asynchronous
RSUBMIT

rsubmit wait=no csysrputsync=yes;
 %sysrput status=start;
 proc download inlib=sales outlib=tmp
 status=n;
 run;
 %sysrput status=salescomplete;
 proc download inlib=inventory outlib=tmp
 status=n;
 run;
 %sysrput status=inventorycomplete;
 proc upload data=sales.store10 status=n;
 run;
 %sysrput status=storecomplete;
endrsubmit;

Example 3: %SYSRPUT
This example shows how to identify the server session that the client session is signed on
to:

rsubmit;
%sysrput rhost=&sysscp;
endrsubmit;

WAITFOR Statement
Causes the client session to wait for the completion of one or more tasks (asynchronous RSUBMIT
statements) that are in progress.

Valid in: client session

Syntax
WAITFOR <_ANY_|_ALL_> task ... taskn <TIMEOUT=seconds> ;

Syntax Description
ANY

causes the client session to wait for the completion of any of the specified tasks (a
logical OR of the completion task states).

ALL
causes the client session to wait for the completion of all of the specified tasks (a
logical AND of the completion task states).

168 Chapter 11 • Syntax for the RSUBMIT Statement and Command

task...taskn
identifies one or more asynchronous tasks to be completed. The task corresponds
with the server–ID that is associated with the CONNECTREMOTE= option when
the RSUBMIT is submitted.

TIMEOUT=seconds
allots the interval, in seconds, to wait for one or more asynchronous tasks to
complete. If the specified tasks have not completed by time-out, the WAITFOR
statement is terminated, control is returned to the client session, and the
asynchronous tasks continue to execute until they are completed. The SYSRC
system macro variable will have a nonzero status.

If the specified tasks are completed before time-out, the WAITFOR statement
returns control to the client session as soon as the specified tasks are completed.

Note: Specifying TIMEOUT=0 is equivalent to providing no TIMEOUT value.
Specifying a value of 0 causes the client session to wait indefinitely for the
asynchronous tasks to complete before control is returned to the client session.

Default: 0
See: “CONNECTREMOTE= System Option” on page 21

Details
The WAITFOR statement causes the client session to wait for the completion of one or
more tasks that are in progress in the server session as specified by the options _ANY_
or _ALL_. WAITFOR synchronizes dependent tasks. You can use WAITFOR only for
asynchronously executing tasks. If you use WAITFOR and there are no asynchronous
tasks executing, the WAITFOR statement does not enforce a wait condition. Instead,
execution continues in the client session.

The name of the task corresponds with the server-ID.

The WAITFOR statement can wait for the completion of one or more tasks. If more than
one task is specified and neither _ANY_ nor _ALL_ is specified, _ANY_ is implied.
The client session will wait for any of the listed tasks to complete before resuming
control. This is not an error condition.

If more than one task is specified, and the _ANY_ option is specified, the client session
waits for the completion of any of the specified tasks (a logical OR of the completion
task states). If the _ALL_ option is specified, the client session waits for the completion
of all the specified tasks (a logical AND of the completion task states). The WAITFOR
statement does not support complex logical statements, such as A OR (B AND C).

Invalid tasks that are specified in the WAITFOR statement are ignored but are identified
in notes in the SAS log.

Examples

Example 1: Example 1: WAITFOR
The following example shows the suspension of the client session until both tasks have
completed or 300 seconds (5 minutes) pass, whichever occurs first.

waitfor _all_ remhost printjb timeout=300;

Example 2: Example 2: WAITFOR
The following WAITFOR statement causes the client session to wait for either the
REMHOST or FORMATJB task to complete.

Example 2: Example 2: WAITFOR 169

waitfor _any_ remhost formatjb;

LISTTASK Statement
Lists all active connections or tasks and identifies the execution status of each connection or task.

Valid in: client session

Syntax
LISTTASK <_ALL_|task> ;

Syntax Description
ALL

provides status information about all current tasks.

task
provides status information for the specified task. Identifies the specific task by a
name that corresponds to the server-ID that is associated with the
CONNECTREMOTE= option in the RSUBMIT or SIGNON statement or command.
See:

Details
The LISTTASK statement lists information about all tasks in the current server session
or about a single active task by name. If neither _ALL_ nor task is specified, information
about all current tasks is listed.

Examples

Example 1: Example 1: LISTTASK
The following LISTTASK statement lists information for all tasks. The appearance of
the output varies by operating environment.

listtask _all_;
"REMHOST" - - - - - - - - -
 Type: SAS/CONNECT Process
 State: RUNNING ASYNCHRONOUSLY
"TASK1" - - - - - - - - - -
 Type: SAS/CONNECT Process
 State: COMPLETE

Example 2: Example 2: LISTTASK
The following LISTTASK statement lists information for the REMHOST task only. The
appearance of the output varies by operating environment.

listtask remhost;
"REMHOST" - - - - - - - - - -
 Type: SAS/CONNECT Process
 State: COMPLETE

170 Chapter 11 • Syntax for the RSUBMIT Statement and Command

KILLTASK Statement
For asynchronous tasks, forces one or more active tasks or server sessions to terminate immediately.

Valid in: client session

Syntax
KILLTASK _ALL_ |task1...taskn ;

Syntax Description
ALL

terminates all active asynchronous tasks.

task
terminates a specific task by a name that corresponds to the server-ID that is
associated with the CONNECTREMOTE= option in the RSUBMIT statement.
Restriction: Use the KILLTASK statement only when executing an asynchronous

RSUBMIT.
See: “CONNECTREMOTE= System Option” on page 21

Details
The KILLTASK statement enables users to terminate one or more tasks or server
sessions that are executing asynchronously. The KILLTASK statement is useful only
for an asynchronous RSUBMIT.

Note: KILLTASK should be used for asynchronous tasks that seem to be hung or to be
having a problem. KILLTASK ends the server session. However, do not substitute
KILLTASK for SIGNOFF. Use SIGNOFF to terminate server sessions that are
functioning normally.

KILLTASK causes any log or output lines, as applicable, that have accumulated in the
backing store to be sent to the parent Log and Output windows. Before the data is sent to
the parent Log and Output windows, this message is displayed:

NOTE: Process TASK1 was terminated by KILLTASK statement.

KILLTASK removes the specified task from the list of active tasks and from the
LISTTASK output. If KILLTASK is executed for a completed task, this message is
displayed and the task will not be terminated:

NOTE: Transaction TASK2 was not killed because it is not running asynchronously.

Task termination also deletes the content of the WORK library of the server session.

Comparisons
After you use the KILLTASK statement to kill a server session that runs under z/OS,
you must also sign off the server session. If you do not also sign off the server session,
your user ID will still be connected to the server session. Here are the methods for
signing off a server session:

KILLTASK Statement 171

• From the same SAS session from which you issued the KILLTASK statement, sign
on to the server session, using your user ID. Then, sign off. The most recently
accessed server session is assumed, by default.

signon user-ID;
signoff user-ID;

• Log on to your user ID, and then cancel the user ID using the CANCEL option.

• Request that an operator cancel your TSO session.

Consult your z/OS documentation for details about logging on and logging off the z/OS
operating environment.

172 Chapter 11 • Syntax for the RSUBMIT Statement and Command

Chapter 12

Examples Using Compute
Services

The Examples: Compute Services . 174

Example 1: Using MP CONNECT for a Long-Running Remote Task 174
Purpose . 174
Program . 174

Example 2: Administering Server Data Sets from a Client 175
Purpose . 175
Program . 175

Example 3: Using the CMACVAR= Option with MP CONNECT 175
Purpose . 175
Program . 175

Example 4: Using the Output Delivery System with SAS/CONNECT 176
Purpose . 176
Program . 176

Example 5: Using MP CONNECT and the WAITFOR Statement 178
Purpose . 178
Program . 178

Example 6: Using MP CONNECT with Piping . 179
Purpose . 179
Program . 179

Example 7: Preventing Pipes from Closing Prematurely . 180
Purpose . 180
Program . 180

Example 8: Forcing Macro Variables to Be Defined When
%SYSRPUT Executes . 181

Purpose . 181
Program . 181

Example 9: Using Server Software from a Client Session 182
Purpose . 182
Program: SAS/STAT Software . 182
Purpose . 183
Program: Sorting . 183

173

The Examples: Compute Services
• “Example 1: Using MP CONNECT for a Long-Running Remote Task” on page 174

• “Example 2: Administering Server Data Sets from a Client” on page 175

• “Example 3: Using the CMACVAR= Option with MP CONNECT” on page 175

• “Example 4: Using the Output Delivery System with SAS/CONNECT” on page 176

• “Example 5: Using MP CONNECT and the WAITFOR Statement” on page 178

• “Example 6: Using MP CONNECT with Piping” on page 179

• “Example 7: Preventing Pipes from Closing Prematurely” on page 180

• “Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT Executes”
on page 181

• “Example 9: Using Server Software from a Client Session” on page 182

Example 1: Using MP CONNECT for a Long-
Running Remote Task

Purpose
This long-running program calculates summary statistics from the variables in a large
SAS data set and downloads the summary statistics to your client session. The program
also defines the macro variable REMSTATUS to store the status of the server task and
uses the fileref REMLOG to store the log lines.

Program
rsubmit wait=no macvar=remstatus log=remlog;
libname remtdata 'external-file-name';
 proc summary data=remtdata.clinic;
 class diagnose;
 var age income visits;
 output out=sumstat
 n= mean= mage mincome mvisits;
 run;

 proc download data=sumstat out=summary;
 run;
endrsubmit;

174 Chapter 12 • Examples Using Compute Services

Example 2: Administering Server Data Sets from
a Client

Purpose
From a client session, you can use Compute Services to perform administration tasks on
data sets that are located on the server.

This program administers password protection to the TASKLIST data set and backs up a
data set that is named CURRENT.

Program
rsubmit;
 proc datasets lib=tsolib;
 /**************************************/
 /* Add password SESAME to server */
 /* data set TASKLIST. */
 /**************************************/
 modify tasklist (alter=sesame);
 run;

 /**************************************/
 /* Maintain a week's worth of backup */
 /* copies of data set CURRENT. */
 /**************************************/
 age current backup1 - backup7;
 run;
 quit;
endrsubmit;

Example 3: Using the CMACVAR= Option with MP
CONNECT

Purpose
The following example enables you to remotely submit processing in a server session
and allows the client session to immediately continue processing, and then retrieve and
merge the results upon completion of that process.

The following program submits a PROC SORT and a PROC PRINT statement to be
executed asynchronously in a server session. This server process is tested for completion
by using the macro variable DONE.

Program
rsubmit cwait=no cmacvar=done;
 proc sort data=permdata.standard(keep=fname

Example 3: Using the CMACVAR= Option with MP CONNECT 175

 lname major tgpa gender)
 out=honor_graduates(where=(tgpa>3.5));
 by gender;
 run;

 title 'Male and Female Honor Graduates';
 proc print;
 by gender;
 run;
endrsubmit;

%macro get_results_when_complete;
 %if &done=0 %then %do;
 %put Remote submit complete,
 issuing "rget" to get the results.;
 rget;
 %end;
 %else %do;
 %put Remote submit not complete.;
 %put Issue:
 "%nrstr(%%)get_results_when_complete"
 later.;
 %end;
%mend;
%get_results_when_complete;

/* continue with client session processing */
/* issue again if RSUBMIT not complete */

%get_results_when_complete;

Example 4: Using the Output Delivery System
with SAS/CONNECT

Purpose
ODS enables you to format and change the appearance of a procedure's output. The
output is converted into objects that can be stored in HTML or in a SAS data set and can
be manipulated and viewed in different ways.

This program creates, in a server session, a SAS data set and a SAS view that contain
information about U.S. Presidents. The program then generates ODS output. The first
half of this example creates HTML from the SAS data set and SAS view. The second
half uses ODS to create a SAS data set from the SAS view.

Program
rsubmit;

 data presidnt;
 length fname lname $8 party $1 lady1 $10;
 input fname lname party year_in lady1;

176 Chapter 12 • Examples Using Compute Services

 datalines;
John Kennedy D 1961 Jackie
Lyndon Johnson D 1963 LadyBird
Richard Nixon R 1969 Pat
Gerald Ford R 1974 Betty
Jimmy Carter D 1977 Rosalynn
Ronald Reagan R 1981 Nancy
George Bush R 1989 Barbara
Bill Clinton D 1993 Hillary
George W Bush R 2002 Laura
 ;
 run;

 proc sql nocheck;
 create view democrat as
 select fname,lname,party,lady1
 from presidnt
 where party='D';
 quit;

endrsubmit;

 /* Use ODS to create HTML from the output */

filename rsub "rsub.html" mod;
filename rsubc "rsubc.html" mod;
filename rsubf "rsubf.html" mod;
ods html
 file=rsub;
 contents=rsubc;
 frame=rsubf;

 /* Remote SQL PassThru to SQL view */
proc sql nocheck;
 connect to remote (server=rmthost);
title 'RSPT: Democrats';
 select fname,lname,lady1
 from connection to remote
 (select * from democrat);
quit;

 /* mix remote-submitted SQL with client SQL */
title 'RSPT: Republicans';
rsubmit;
 proc sql nocheck;
 select fname,lname,lady1
 from presidnt
 where party='R';
quit;
endrsubmit;

ods html close;

 /* Use ODS to create a SAS data set */
ods output output="rdata";

Example 4: Using the Output Delivery System with SAS/CONNECT 177

rsubmit;
 proc print data=democrat;
 run;
endrsubmit;

Display 12.1 SAS Output Window

Example 5: Using MP CONNECT and the
WAITFOR Statement

Purpose
This example enables you to perform two encapsulated tasks in parallel, but both tasks
must be completed before the client session can continue.

The following program sorts two data sets asynchronously. After both sort operations are
complete, the results are merged.

Program
/* SAS system option SASCMD starts an MP CONNECT server session. */
option autosignon=yes;
option sascmd="!sascmd";

/* Remote submit first task. */

178 Chapter 12 • Examples Using Compute Services

/* Sort the first data set as one task. */
/* SIGNON performed automatically by RSUBMIT. */
rsubmit process=task1 wait=no;
libname mydata '/project/test1';

 proc sort data=mydata.part1;
 by x;
run;
endrsubmit;

/* Remote submit second task. */
/* SIGNON performed automatically by RSUBMIT. */
rsubmit process=task2 wait=no;
libname mydata '/project/test2';

 /* Sort the second data set as one task. */
 proc sort data=mydata.part2;
 by x;
run;
endrsubmit;

/* Wait for both tasks to complete. */
waitfor _all_ task1 task2;

/* Merge the results and continue processing. */
libname mydata ('/project/test1' '/project/test2');
data work.sorted;
 merge mydata.part1 mydata.part2;
run;

Example 6: Using MP CONNECT with Piping

Purpose
In this program, the MP CONNECT piping facility uses ports rather than disk devices
for data I/O. The first process writes a data set to PIPE1. The second process reads the
data set from PIPE1, performs a calculation, and directs final output to a disk device.
The P1 and P2 processes execute asynchronously.

Program
/* ----------- DATA Step - Process P1 ----- */
signon p1 sascmd='!sascmd';
rsubmit p1 wait=no;

libname outLib sasesock ":pipe1";

/* create data set - and write to pipe */
data outLib.Intermediate;
 do i=1 to 5;
 put 'Writing row ' i;
 output;

Example 6: Using MP CONNECT with Piping 179

 end;
run;
endrsubmit;
rdisplay p1;

/* ----------- DATA Step - Process P2 ----- */

signon p2 sascmd='!sascmd';
rsubmit p2 wait=no;

libname inLib sasesock ":pipe1";
libname outLib "d:\temp";

data outLib.Final;
set inLib.Intermediate;
 do j=1 to 5;
 put 'Adding data ' j;
 n2 = j*2;
 output;
 end;
run;
endrsubmit;
rdisplay p2;
/* -- */

Example 7: Preventing Pipes from Closing
Prematurely

Purpose
The TIMEOUT= option in the LIBNAME statement can be useful if a considerable
delay is anticipated between the time that one task tries to read from a pipe and the time
when another task starts to write to that pipe.

In this program, task P1 performs several DATA steps, a PROC SORT, and a PROC
RANK, which is the step that writes to the pipe OUTLIB. However, task P2 is idle
before the execution of the DATA step, which reads from the pipe INLIB. Therefore, a
longer time-out is specified in the INLIB LIBNAME statement in order to allow
sufficient time for task P1 to complete its processing before writing its output to the
pipe.

Program
rsubmit p1 wait=no;
 libname outLib sasesock "pipe" timeout=10000;
 data a b;
 do i=1 to 10;
 output;
 end;
 run;
 data c;
 set a b;

180 Chapter 12 • Examples Using Compute Services

 run;
 proc sort data=c out=sorted;
 by i;
 run;
 proc rank data=sorted out=outLib.ranked;
 var i;
 ranks Check;
 run;
 endrsubmit;
 rsubmit p2 wait=no;
 libname inLib sasesock "pipe" timeout=60000;
 data fromPipe;
 set inLib.ranked;
 run;
 proc print; run;
 endrsubmit;

Example 8: Forcing Macro Variables to Be
Defined When %SYSRPUT Executes

Purpose
In MP CONNECT processing, by default, macro variables in an RSUBMIT block are
defined only when a synchronization point is encountered. In order to force macro
variables to be defined when the %SYSRPUT macro variable executes, specify
CSYSRPUTSYNC=YES in each RSUBMIT statement.

CAUTION:
If the values that are specified in the CSYSRPUTSYNC= option differ between
consecutive RSUBMIT blocks, the latter value supersedes the former value. If
the SYSRPUTSYNC system option is specified, the CSYSRPUTSYNC= option in
the RSUBMIT statement takes precedence. If the CSYSRPUTSYNC= option in an
RSUBMIT block is omitted, the value for the system option is applied.

In the following program, the CSYSRPUTSYNC=YES option is specified in each
RSUBMIT block in order to force macro variables to be defined for each %SYSRPUT
macro variable execution. Without an explicit setting of CSYSRPUTSYNC=YES in
each RSUBMIT block, a default value is provided by the SYSRPUTSYNC system
option. The default is CSYSRPUTSYNC=NO, which causes macro variables to be
defined when synchronization points are encountered.

Program
signon smp sascmd="!sascmd -logparm 'write=immediate' -nosyntaxcheck";
 options cwait=no;

/* ----------- first RSUBMIT block ----- */
 rsubmit csysrputsync=yes;
 data a;
 do i=1 to 100;
 x=ranuni(0);
 output;

Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT Executes 181

 end;
 run;

 %sysrput done=a;
 endrsubmit;

/* ----------- second RSUBMIT block ----- */
 rsubmit csysrputsync=yes;
 data b;
 do i=1 to 100;
 x=ranuni(0);
 output;
 end;
 run;

 %sysrput done=b;
 endrsubmit;

/* ----------- third RSUBMIT block ----- */
 rsubmit csysrputsync=yes;
 data c;
 do i=1 to 100;
 x=ranuni(0);
 output;
 end;
 run;

 %sysrput done=c;
 endrsubmit;

 waitfor smp;
 %put done=&done

Example 9: Using Server Software from a Client
Session

Purpose
Some software might not be available on each computer at your site. In addition, the
software that is available on a server might perform some tasks better than the software
that is available on your client. From a client session, you can use Compute Services to
use software that is available on a server.

This program assumes that SAS/STAT is licensed only on the server. The program uses
SAS/STAT to execute statistical procedures on the server.

Program: SAS/STAT Software
rsubmit;
 /**************************************/
 /* The output from GLM is returned */
 /* to the client SAS listing. */

182 Chapter 12 • Examples Using Compute Services

 /**************************************/
 proc glm data=main.employee
 outstat=results;
 model sex=income;
 run;
 /**************************************/
 /* Use GLM's output data set RESULTS */
 /* to create macro variables F_STAT */
 /* and PROB, which contain the */
 /* F-statistic PROB>F respectively. */
 /**************************************/
 data _null_; set results
 (where=(_type_= 'SS1'));
 call symput('f_stat',f);
 call symput('prob',prob);
 run;

 /**************************************/
 /* Create macro variables that */
 /* contain the two statistics of */
 /* interest in the client session. */
 /**************************************/
 %sysrput f_statistic=&f_stat;
 %sysrput probability=&prob;
endrsubmit;

Purpose
In the following example, because the server session has access to a fast sorting utility, it
sorts the data and then transfers the sorted data to the client session.

Program: Sorting
rsubmit;
 /**************************************/
 /* Indicate to the server machine that*/
 /* the HOST sort utility should be */
 /* used with PROC SORT. Ask SORT to */
 /* subset out only those observations */
 /* of interest. */
 /**************************************/
 options sortpgm=host;
 proc sort data=tsolib.inventory
 out=out_of_stock;
 where status='Out-of-Stock';
 by orderdt stockid ;
 run;
 /**************************************/
 /* Output results; client will */
 /* receive the listing from PRINT. */
 /**************************************/
 title 'Inventory That Is Currently Out-
 of-Stock';
 title2 'by Reorder Date';
 proc print data=out_of_stock;

Example 9: Using Server Software from a Client Session 183

 by orderdt;
 run;
endrsubmit;

184 Chapter 12 • Examples Using Compute Services

Chapter 13

Syntax for Remote SQL Pass-
Through (RSPT)

Dictionary . 185
RSPT Statements . 185

Dictionary

RSPT Statements
Statements used for remote SQL pass-through.

Valid in: client session

Syntax
CONNECT TO dbms-name <AS alias> <(dbms-argument-1=value ... <dbms-argument-n=value>)> ;

SELECT . . . FROM CONNECTION TO dbms-name | alias (dbms-query);

EXECUTE (SQL-statement) BY dbms-name | alias;

DISCONNECT FROM dbms-name | alias;

CONNECT TO REMOTE <AS alias>
(SERVER=serverid <SAPW=server-access-password>
<DBMS=dbms-name>

<PT2DBPW=passthrough-to-DBMS-password>
<DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)>);

SELECT . . . FROM CONNECTION TO REMOTE | alias (dbms-query);

EXECUTE (SQL-statement) BY REMOTE | alias;

DISCONNECT FROM REMOTE | alias;

Syntax Description
SERVER=server-ID

identifies the name of the SAS server. If the SAS/SHARE multi-user server is used,
server-ID is the name specified for the ID= option in the PROC SERVER statement.
If the SAS/CONNECT single-user server is used, server-ID specifies the server

185

session. In either case, server-ID should be the same name that is specified in the
SERVER= option in a LIBNAME statement.

SAPW=server-access-password
specifies the password for controlling user access to a multi-user server as specified
in the UAPW= option in the PROC SERVER statement. If UAPW= is specified
when the server is started, you must specify SAPW= in a CONNECT TO REMOTE
statement that specifies that server.

DBMS=dbms-name
identifies the remote DBMS to connect to. This is the same name that you would
specify in a CONNECT TO statement if you were connecting directly to the DBMS.
This option is used if you want to connect to a remote DBMS instead of the remote
SAS SQL processor.

PT2DBPW=passthrough-to-DBMS-password
specifies the password for controlling pass-through access to remote DBMS
databases that are specified by using the PT2DBPW= option in the PROC SERVER
statement. If PT2DBPW= is specified when the server is started, you must specify
PT2DBPW= in a CONNECT TO REMOTE statement that specifies the same server
and specifies DBMS=.

DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)
specifies the arguments that are required by the remote DBMS to establish the
connection. These are the same arguments that you would specify in a CONNECT
TO statement if you were connecting directly to the DBMS.

FROM CONNECTION TO REMOTE | alias (dbms-query);
specifies the connection to the remote SAS SQL processor or the remote DBMS as
the source of data for the SELECT statement and the recipient of the dbms-query.
For remote SAS data that is accessed through the PROC SQL view engine, dbms-
query is any valid SELECT statement in PROC SQL. For a remote DBMS, dbms-
query is the same SQL query that you would specify if you were connected directly
to the DBMS.

EXECUTE (SQL-statement) BY REMOTE | alias;
specifies an SQL statement to be executed by the SAS SQL processor or by the
remote DBMS in the server session. For remote SAS data that is accessed through
the PROC SQL view engine, SQL-statement is any valid PROC SQL statement
except SELECT. For a remote DBMS that is accessed through a single-user server in
a SAS/CONNECT session, SQL-statement is the same SQL statement that you
would specify if you were connected directly to the DBMS. For a remote DBMS,
this statement might not be used if the DBMS is accessed through a remote multi-
user server.

DISCONNECT FROM REMOTE | alias;
ends the connection to the remote DBMS or to the SAS SQL processor in the server
session.

Details

Compute Services and RSPT
You can use RSPT to reduce network traffic and to shift CPU load by sending queries
for remote data to a server session. (If the server is a SAS/CONNECT single-user server
you can also RSUBMIT queries to achieve the same goals.)

For example, this code contains the libref SQL that points to a server library that is
accessed through a SAS/CONNECT or a SAS/SHARE server. Each row in the table

186 Chapter 13 • Syntax for Remote SQL Pass-Through (RSPT)

EMPLOYEE must be returned to the client session in order for the summary functions
AVG() and FREQ() to be applied to them.

select employee_title as title, avg(employee_years),
 freq(employee_id)
 from sql.employee
 group by title
 order by title;

However, this code contains a query that is passed through the SAS server to the SAS
SQL processor, which processes each row of the table and returns only the summary
rows to the client session.

select * from connection to remote
 (select employee_title as title,
 avg(employee_years),
 freq(employee_id)
 from sql.employee
 group by title
 order by title);

You can also use RSPT to join server data with client data. For example, you can specify
a subquery against the DB2 data that is sent through the SAS server to the DB2 server.
The rows for the divisions in the southeast region are returned to your client session,
where they are joined with the corresponding rows from the local data set
MYLIB.SALES08.

libname mylib 'c:\sales';
proc sql;
 connect to remote
 (server=tso.shr1 dbms=db2
 dbmsarg=(ssid=db2p));
 select * from mylib.sales08,
 connection to remote
 (select qtr, division,
 sales, pct
 from revenue.all08
 where region='Southeast')
 where sales08.div=division;

If your server is a SAS/CONNECT single-user server, you can also use RSPT to send
non-query SQL statements to a remote DBMS. For example, this code sends the SQL
DELETE statement through the SAS server to the remote Oracle server.

proc sql;
 connect to remote
 (server=sunserv dbms=oracle dbmsarg=(user=scott password=tiger);
 execute (delete from parts.inventory
 where part_bin_number='093A6')
 by remote;

RSPT Statements 187

188 Chapter 13 • Syntax for Remote SQL Pass-Through (RSPT)

Chapter 14

Examples Using Remote SQL
Pass-Through (RSPT)

Example 1. RSPT Services: Querying a Table in DB2 . 189
Purpose . 189
Program . 189

Example 2. RSPT Services: Subsetting Remote SAS Data 190
Purpose . 190
RSPT: Server Processing and Client Viewing . 190
RSPT: Client Processing and Viewing . 190
RSPT: Server Processing and Viewing . 191
RLS: Client Processing and Viewing . 192

Example 1. RSPT Services: Querying a Table in
DB2

Purpose
This example shows how to query a DB2 table that is located on a server by using SQL
statements issued from a client session.

Program
This code is used in a z/OS client session to connect to DB2 and query the table
SYSIBM.SYSTABLES:

connect to db2 (ssid=db2p);

select * from connection to db2
 (select name, creator, colcount
 from sysibm.systables
 where creator='THOMPSON' or
 creator='JONES');

The same connection and query could be performed in a Windows client session by
using RSPT by means of a z/OS server session:

connect to remote
 (server=rmt dbms=db2 dbmsarg=(ssid=db2p));
select * from connection to remote
 (select name, creator, colcount

189

 from sysibm.systables
 where creator='THOMPSON' or
 creator='JONES');

Using the AS alias clause in the CONNECT TO statement gives the connection name to
the remote DBMS as if connected directly to it. Using this alias enables you to use
queries without changing the FROM CONNECTION TO clause:

connect to remote as db2
 (server=rmt dbms=db2 dbmsarg=(ssid=db2p));

select * from connection to db2
 (select name, creator, colcount
 from sysibm.systables
 where creator='THOMPSON' or
 creator='JONES');

Example 2. RSPT Services: Subsetting Remote
SAS Data

Purpose
Four variations of the code are used to generate a PROC SQL view named SALES08,
which presents sales data for fiscal year 2008. Here are the variations:

• “RSPT: Server Processing and Client Viewing” on page 190

• “RSPT: Client Processing and Viewing” on page 190

• “RSPT: Server Processing and Viewing” on page 191

• “RLS: Client Processing and Viewing” on page 192

RSPT: Server Processing and Client Viewing
The data set is subsetted in the server session where summary function (SUM) is
applied. Only the summary row is returned to the client session.

Processing this view is relatively fast because the data is summarized in the server
session and only the resulting view is returned to the client session.

create view servlib.sales08 as
 select customer, sum(amount) as amount
 from sales
 where year=2008 and
 salesrep='L. Peterson'
 group by customer
 order by customer;

RSPT: Client Processing and Viewing
The client uses RSPT to process server data in the client session and to create the final
view in the client session.

190 Chapter 14 • Examples Using Remote SQL Pass-Through (RSPT)

This code creates a PROC SQL view in a SAS library in the client session, which uses
RSPT to access the remote SAS data from the server session:

Note: The libref SERVLIB can be defined for the server SAS library either in the client
or the server session. In this example, a LIBNAME statement is executed in the
client session to access the library that is located on the server. Alternatively, you
could remotely submit a LIBNAME statement to define the library in the server
session.

libname mylib 'C:\sales';

libname servlib '/dept/sales/revenue' server=servername;

proc sql;
connect to remote
 (server=servername);

create view mylib.sales08 as
 select * from connection to remote
 (select customer, sum(amount) as amount
 from servlib.sales
 where year=2008 and
 salesrep='L. PETERSON'
 group by customer
 order by customer);

RSPT: Server Processing and Viewing
The client uses RSPT to process server data in the server session and to present the final
view in the server session.

In the server session, you might want to create a view that can be used by many people.
By modifying the previous example to include all sales representatives, the view satisfies
the needs of users who are interested in the sales that are made by more than one sales
representative.

This example creates a view in the server session that summarizes the data by customer
for all sales representatives:

libname servlib '/dept/sales/revenue'
 server=servername;

proc sql;
connect to remote
 (server=servername);

execute
 (create view servlib.cust08 as
 select customer,
 sum(amount) as amount from sales
 where year=2008
 group by customer) by remote;

Example 2. RSPT Services: Subsetting Remote SAS Data 191

RLS: Client Processing and Viewing
The client uses RLS to process server data in the client session and to create the final
view in the client session.

Using RLS, you can access the server data, and then subset and summarize the data and
create the final view in the client session. The disadvantage of this method is the
inefficient use of network resources to access the remote data and then to process the
data in the client session.

libname mylib 'C:\sales';

libname servlib '/dept/sales/revenue'
 server=servername;

create view mylib.sales08 as
 select customer, sum(amount) as amount
 from servlib.sales
 where year=2008 and
 salesrep='L. PETERSON'
 group by customer
 order by customer;

192 Chapter 14 • Examples Using Remote SQL Pass-Through (RSPT)

Chapter 15

Examples of Combining Compute
Services and Data Transfer
Services

Advantages of Combining Compute Services and Data Transfer Services 193

The Examples . 194

Example 1. Compute Services and Data Transfer Services
Combined: Processing in the Client and Server Sessions . 194

Purpose . 194
Program . 194
Running the Program . 195

Example 2. Compute Services and Data Transfer Services
Combined: Sorting and Merging Data . 196

Purpose . 196
Program . 196

Example 3. Compute Services and Data Transfer Services
Combined: Macro Capabilities . 197

Purpose . 197
Program . 197

Advantages of Combining Compute Services and
Data Transfer Services

If you need information from data that is stored on a remote computer, and you do not
want to move a copy of the data to the client, you can benefit from combining Compute
Services and Data Transfer Services.

Reasons for not moving a copy of the data might include the following:

• The amount of data is too large.

• The data is frequently updated.

• Data duplication is to be avoided.

Regardless of the motivation for reducing the amount of data that is transferred,
incorporating Compute Services will achieve your goal. Compute Services enables you
to format and pre-process data into a subset or a summarized form in the server session
before transferring the subsequent smaller amount of data to the client session. This
balances the use of CPU cycles between the client and server sessions and minimizes the
amount of data contributing to network traffic.

193

The Examples
• “Example 1. Compute Services and Data Transfer Services Combined: Processing in

the Client and Server Sessions” on page 194

• “Example 2. Compute Services and Data Transfer Services Combined: Sorting and
Merging Data” on page 196

• “Example 3. Compute Services and Data Transfer Services Combined: Macro
Capabilities” on page 197

Example 1. Compute Services and Data Transfer
Services Combined: Processing in the Client and
Server Sessions

Purpose
The SAS/CONNECT statements SIGNON, SIGNOFF, RSUBMIT, and ENDRSUBMIT
enable you to submit statements from a client session to a server session. You can
include these statements in a SAS program and do both client and server processing
within a single SAS program. This program can be run in an interactive line mode SAS
session, in a non-interactive SAS session, or by including the program in a client session.
In each case, the program executes statements in both the client and server sessions.

Program
This program processes data on a server, downloads the resulting SAS data set, creates a
permanent data set in the client session, and prints a report in the client session.

 /*************************************/
 /* prepare to sign on */
 /*************************************/ 1

 options
 comamid=tcp
 remote=netpc; 2

 libname lhost 'c:\sales\reg1';

 /*************************************/
 /* sign on and download data set */
 /*************************************/ 3

 signon; 4

 rsubmit; 5

 libname rhost 'd:\dept12'; 6

 proc sort data=rhost.master
 out=rhost.sales;
 where gross > 5000;
 by lastname dept;
 run;

194 Chapter 15 • Examples of Combining Compute Services and Data Transfer Services

7

 proc download data=rhost.sales
 out=lhost.sales;
 run; 8

 endrsubmit;

9

 /*************************************/
 /* print data set in client session */
 /*************************************/
 proc print data=lhost.sales;
 run;

1 Specifies the COMAMID= and the REMOTE= system options in an OPTIONS
statement. These two system options define the connection between the client and
server sessions.

2 Defines a libref for the SAS library in the client session to identify the location of the
data set to be downloaded.

3 Signs on to the server session. The server-ID was specified in the preceding
OPTIONS statement.

Note: A script file is not used.

4 Uses the RSUBMIT and ENDRSUBMIT statements to define statements to send to
the server for processing. If the client session is connected to multiple active server
sessions, specifying the server ID in the RSUBMIT statement clarifies which server
session should process the block of statements. If server-ID is omitted, RSUBMIT
directs the statements to the most recently identified server session.

5 Defines the libref for the SAS library in the server session.

6 Creates the RHOST.SALES data set as a sorted subset of the RHOST.MASTER data
set.

7 Transfers the SALES data from the library in the server session (RHOST) to the
library in the client session (LHOST).

8 Marks the end of the block of statements to be submitted to the server session.
Statements that follow the ENDRSUBMIT statement are processed in the client
session.

9 Reads and prints the SAS data set that was downloaded in the PROC DOWNLOAD
step.

Running the Program
You have several choices for running this program:

• Type and submit each line in an interactive line mode SAS session. All of the
statements between the RSUBMIT and ENDRSUBMIT statements are submitted to
the server session for processing. All other statements are processed in the client
session.

Note: When statements are submitted to the server session, several statements can
be grouped into a single packet of data that is sent to the server session.
Therefore, a line that is remote submitted is not necessarily processed
immediately after you enter it in the client session.

Example 1. Compute Services and Data Transfer Services Combined: Processing in the
Client and Server Sessions 195

• Build a file that contains all these statements, and use a %INCLUDE statement to
include the file in an interactive line mode session. The file is processed
immediately.

• Build a file that contains all these statements and run a non-interactive SAS job to
process the statements as follows:

 sas file-containing-program

• Build a file that contains all these statements, and use an INCLUDE command to
include the file. You must submit the included statements from the windowing
environment.

• Build a file and issue the SUBMIT command from the Explorer window. For details,
see “Using SAS Explorer to Monitor SAS/CONNECT Tasks” on page 120 .

Example 2. Compute Services and Data Transfer
Services Combined: Sorting and Merging Data

Purpose
When multiple client sessions need to access a single data set on the server, Data
Transfers Services can be used to distribute the subset of data that is needed by each
session. Each client session receives only the data that it needs, and uses Compute
Services to process its data in its session. When you use this method, client sessions do
not continually access the data set on the server.

Program
This SCL program fragment distributes a data set that contains reservations data from a
server that is located at a central office to clients at several franchise offices. The
program enables distribution of selected reservations to a franchise office by using a
WHERE statement.

 INIT:
 submit continue;
 signon atlanta;

 rsubmit;
 libname mres "d:\counter";
 libname backup "d:\counter\backup";
1

 proc upload data=mres.reserv
 out=combine status=no;
 where origin="Atlanta";
 run;
2

 proc sort data=combine;
 by resnum;
 run;
3

 proc copy in=mres out=backup;
 select reserv;
 run;

196 Chapter 15 • Examples of Combining Compute Services and Data Transfer Services

4

 data mres.reserv;
 update mres.reserv combine;
 by resnum;
 run;
 endrsubmit;

 signoff;

1 Uploads all reservations for a particular location.

2 Sorts uploaded data sets for merging.

3 Backs up existing data set.

4 Merges new and existing data sets.

Example 3. Compute Services and Data Transfer
Services Combined: Macro Capabilities

Purpose
SAS/CONNECT is fully functional from within the macro facility. Both the UPLOAD
and the DOWNLOAD procedures can update the macro variable SYSINFO and set it to
a nonzero value if the procedure terminates because of errors.

You can also use the %SYSRPUT macro statement in the server session to send the
value of the SYSINFO macro variable back to the client session. Thus, you can submit a
job to the server and test whether a PROC UPLOAD or a PROC DOWNLOAD step
successfully completed before beginning another step in either the client or server
session.

Program
This program includes a transaction file that is located on the client, which will be
uploaded to a server in order to update a master file. You can test the results of the
PROC UPLOAD step in the server session by checking the value of the SYSINFO
macro variable.

The SYSINFO macro variable can be used to determine whether the transaction file was
successfully uploaded. If successful, the master file is updated with the new information.
If the upload was not successful, you receive a message that explains the problem.

You can use the %SYSRPUT macro statement to send the return code from the server
session back to the client session. The client session can test the results of the upload
and, if it is successful, use the DATASETS procedure to archive the transaction data set.

1 libname trans
'client-SAS-library';
 libname backup
'client-SAS-library'; 2

 rsubmit; 3

 proc upload data=trans.current out=current;
 run;
4

Example 3. Compute Services and Data Transfer Services Combined: Macro Capabilities
197

 %sysrput upload_rc=&sysinfo;
 %macro update_employee;
5

 %if &sysinfo=0 %then %do;
 libname perm
'server-SAS-library';
 data perm.employee;
 update perm.employee current;
 by employee_id;
 run;
 %end;
6

 %else %put ERROR: UPLOAD of CURRENT
 failed. Master file was
 not updated.;
 %mend update_employee; 7

 %update_employee;
 endrsubmit;
8

 %macro check_upload; 9

 %if &upload_rc=0 %then %do; 10

 proc datasets lib=trans;
 copy out=backup;
 run;
 %end;
 %mend check_upload; 11

 %check_upload;

1 Associates a libref with the SAS library that contains the transaction data set and
backup data in the client session.

2 Sends the PROC UPLOAD statement and the UPDATE_EMPLOYEE macro to the
server session for execution.

3 Because a single-level name for the OUT= argument is specified, the PROC
UPLOAD step stores CURRENT in the default library (usually WORK) in the server
session.

4 If the PROC UPLOAD step successfully completes, the SYSINFO macro variable is
set to 0. The %SYSRPUT macro statement creates the UPLOAD_RC macro variable
in the client session, and puts the value that is stored in the SYSINFO macro variable
into UPLOAD_RC. The UPLOAD_RC macro variable is passed to the client session
and can be tested to determine whether the PROC UPLOAD step was successful.

5 Tests the SYSINFO macro variable in the server session. If the PROC UPLOAD
step is successful, the transaction data set is used to update the master data set.

6 If the SYSINFO macro variable is not set to 0, the PROC UPLOAD step has failed,
and the server session sends messages to the SAS log (which appear in the client
session) notifying you that the step has failed.

7 Executes the UPDATE_EMPLOYEE macro in the server session.

8 The CHECK_UPLOAD macro is defined in the client session because it follows the
ENDRSUBMIT statement.

9 Tests the value of the UPLOAD_RC macro variable that was created by the
%SYSRPUT macro statement in the server session to determine whether the PROC
UPLOAD step was successful.

198 Chapter 15 • Examples of Combining Compute Services and Data Transfer Services

10 When the transaction data set has been successfully uploaded and added to the
master data set, the transaction file can be archived in the client session by using the
COPY statement in the DATASETS procedure.

11 Executes the CHECK_UPLOAD macro in the client session.

Example 3. Compute Services and Data Transfer Services Combined: Macro Capabilities
199

200 Chapter 15 • Examples of Combining Compute Services and Data Transfer Services

Chapter 16

Compute Services
Troubleshooting

Problems and Solutions when Using the RSUBMIT Statement 201
Invalid Option . 201
Dialog Box Appears Despite NOTERMINAL Option Setting 201
Remotely Submitted Statements Following a Syntax Error Are Not Processed . . 201
Square Bracket Keys Not Supported . 202
No Terminal Connected to SAS Session . 202
Piping Problems . 202
Request for Setup of Link for Communication Subsystem Partner Fails 203

Problems and Solutions when Using the
RSUBMIT Statement

Invalid Option
The first time that you remote submit a PROC statement, you receive the following
message:

 ERROR 2-12: Invalid option.

The remote AUTOEXEC.SAS file contains an OPTIONS statement that has not been
closed by a semicolon (;). To recover from the problem, add the semicolon (;) to the
OPTIONS statement in the remote AUTOEXEC.SAS file.

Dialog Box Appears Despite NOTERMINAL Option Setting
Despite your setting the NOTERMINAL option to suppress the display of a dialog box
in the server session, a dialog box appears when you use the RSUBMIT statement and
the WAIT= option.

To prevent the appearance of a dialog box, specify the SAS system option
NOFILEPROMPT in the server session.

Remotely Submitted Statements Following a Syntax Error Are Not
Processed

When a SAS/CONNECT session is started and the NOTERMINAL option is set, the
internal option SYNTAXCHECK is automatically set. If you remote-submit a statement
that follows a syntax error, the statement is parsed but is not processed.

201

An example of the problem and recovery follows:

 data a;
 do i=1 to 10;
 outpt;
 end;
 run;
 data b;
 x=1;
 run;

Data set A is not created because of the syntax error that is caused by the misspelling of
the word “OUTPUT”. Data set B is not created because SAS is in syntax check mode
from the previous syntax error. Only the DATA step will be parsed.

To prevent this problem, add the NOSYNTAXCHECK option to the server session SAS
invocation options in the script file.

Square Bracket Keys Not Supported
You cannot remotely submit code that uses square brackets because the local computer's
keyboard does not support these characters.

The less than (<) and greater than (>) symbols can be used in place of square brackets.
Use < for the left square bracket ([), and use > for the right square bracket (]).

For OpenVMS, square brackets are usually used to delineate the directory name in a
pathname. However, you can use < and > as equivalent delimiters. For example:

 libname sales 'disk:<sales.years.1991>';

No Terminal Connected to SAS Session
After remotely submitting code that generates a full screen, you receive the following
message:

 ERROR: No terminal connected to the SAS session.

SAS/CONNECT does not support remote submission of a window. You might be able to
issue a LIBNAME statement, and use the windowing product in the client session while
accessing the remote data.

Piping Problems
MP CONNECT pipeline processing can fail if the procedure that reads from the pipe
(output pipe) finishes processing before the procedure that writes to the pipe (input
pipe). The premature termination of the pipe causes the procedure that writes to the pipe
to fail.

The error message varies according to the specific procedure that is being performed.

To prevent a pipe from terminating prematurely, assign sufficient processing time for
each procedure by specifying the TIMEOUT= option in the LIBNAME statement.
Furthermore, if the OBS= option in the appropriate procedure is used to limit the amount
of data that is read from a large data set that is being written, processing will finish for
the read procedure before the write procedure. To prevent the pipe from terminating,
assign a longer time-out for the read procedure than the write procedure. For a program
example, see “Example 7: Preventing Pipes from Closing Prematurely” on page 180.

202 Chapter 16 • Compute Services Troubleshooting

Request for Setup of Link for Communication Subsystem Partner
Fails

When you attempt to connect to a server session, you receive the following error
message:

ERROR: A communication subsystem partner link setup request failure has occurred.

A possible explanation for the failure is that the spawner has not been started on the
remote computer that you are trying to sign on to. For details about starting a spawner,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Another possibility is that you have used the same task name for multiple jobs that you
have submitted for asynchronous processing on the same host or on a different host
across the network. Task names must be unique.

Problems and Solutions when Using the RSUBMIT Statement 203

204 Chapter 16 • Compute Services Troubleshooting

Part 5

Remote Library Services

Chapter 17
Remote Library Services (RLS) . 207

Chapter 18
Syntax for the LIBNAME Statement . 215

Chapter 19
Syntax for the LIBNAME Statement, SASESOCK Engine 219

Chapter 20
Examples Using Remote Library Services (RLS) 223

Chapter 21
Example of Combining RLS and Data Transfer Services (DTS) . . . 231

205

206

Chapter 17

Remote Library Services (RLS)

Introduction to Remote Library Services . 207
RLS: Definition . 207
Client Access to a Single- or Multi-User Server . 208

RLS: Advantages . 208

Considerations for Using RLS . 209
Determine the Appropriate Data Access Solution . 209
Use Compute Services to Access Large Volumes of Data 209
Use Data Transfer Services for Multi-Pass Data Processing 209
Use Data Transfer Services When Network Response Time Is Delayed 209
Use RLS When Data Flow through a Network Is Minimal 209
Compare DTS, RLS, and CS . 210

Using RLS to Access Types of Data . 210
RLS Support for Data Types . 210
Accessing a Catalog . 210
Accessing an External Database . 210
Accessing a SAS View . 211
Accessing a SAS Utility File of Type PROGRAM or ACCESS 211

Using SAS Views with Servers . 211
SAS/ACCESS Views, DATA Step Views, and PROC SQL Views 211
Recommendations for PROC SQL Views . 212

Using WHERE Processing to Reduce Network Traffic . 212

Introduction to Remote Library Services

RLS: Definition
Remote Library Services (RLS) enables you to read, write, and update remote data as if
it were stored on the client's disk. RLS can be used to access SAS data sets across
computers that have different architectures. RLS also provides read-only access to some
SAS catalog entry types across computers that have different architectures.

With RLS, you use a LIBNAME statement to associate a SAS library reference (libref)
with a SAS library on the server.

207

Client Access to a Single- or Multi-User Server
To access a SAS library on a server that you are already signed on to (using the
SIGNON statement), a single-user server environment is assumed. To identify the
server, specify the remote session ID that was used at sign on. For details about the
SIGNON statement, see “SIGNON Statement and Command” on page 63 .

To access a server that you are not signed on to, a multi-user environment is assumed.
When you connect to a multi-user server, the server must already be running. Use the
SERVER= option in the LIBNAME statement to specify the server ID.

Therefore, to connect to both a single-user server and a multi-user server from your
client session, and to avoid confusion, assign unique values to the SERVER= option.
The use of the single-user server takes precedence over the multi-user server.

After you define a libref to a server, avoid clearing and re-assigning the libref multiple
times. Repeating this sequence is inefficient because the client session disconnects from
the server after the last libref that is associated with a server is cleared. When the same
libref is re-issued, the client session must connect to the server again. To avoid this
overhead, clear the defined librefs only after you have completed any processing that
accesses data that is defined by these librefs.

A server does not automatically terminate after the last LIBNAME statement is cleared.
A multi-user server remains active, awaiting connections from clients until the server
administrator explicitly stops the server by using the PROC OPERATE statement. For
details, see in the SAS/SHARE User's Guide.

A single-user server remains active, awaiting connections from a client session until the
client uses the SIGNOFF command to terminate the server session. For details, see
“SIGNON Statement and Command” on page 63 .

RLS: Advantages
If you need to maintain a single copy of the data on a server and keep the processing on
the client, then RLS is the correct choice. In general, RLS is the best solution in the
following situations:

• The amount of data that is needed by the client is small.

• The server data is frequently updated.

• Your data center rules prohibit multiple copies of data.

RLS enables you to access your server data as if it were local. This feature eliminates the
explicit step of coding an upload or download of the data before processing it. It also
permits the GUI of an application to reside at the client while the data remains at the
server (for example, a client FSEDIT session of a server data set). Applications can be
built that provide seemingly identical access to client and server data, without requiring
the end user to know where the data resides.

Using RLS, you can access and update data that is stored in an external database. RLS
enables a client (single user) to access data that is stored in an external database and to
update the data through the server (single user).

208 Chapter 17 • Remote Library Services (RLS)

Considerations for Using RLS

Determine the Appropriate Data Access Solution
To make the best use of RLS, consider these questions:

• How much data will the application access?

• Is multi-user or single-user data access needed?

• Will the application make a single pass or multiple passes through the data?

• What is the effect of the application's data access on the network load?

Answers to these questions will help you determine whether to use RLS, Data Transfer
Services, Compute Services, or a combination of these services.

Use Compute Services to Access Large Volumes of Data
Accessing data through RLS is inefficient when you have large volumes of data.
Compute Services (or a combination of Compute Services and Data Transfer Services) is
preferable for processing large volumes of data on the server.

Use Data Transfer Services for Multi-Pass Data Processing
RLS is not efficient for multiple passes through the data. Although the client accesses
data that is on the server, the data is not written to the client's local disk. If you are
running procedures that make multiple passes through the data, or an entire procedure
must be run more than one time against the data, transferring a copy of the data to the
client's local disk is advised. You incur the network traffic cost only one time rather than
paying the cost for each pass through the data.

Use Data Transfer Services When Network Response Time Is
Delayed

Data Transfer Services is the preferred choice when response time is delayed. This
situation can occur if you are accessing server data that is being updated simultaneously
by other users. If delayed response time is not acceptable, consider transferring a copy of
the data to the client's local disk and keep the data separate from other applications.

Use RLS When Data Flow through a Network Is Minimal
Because RLS requires data to flow from the server to the client through a network, you
should design your application to minimize the amount of data that is requested for
client processing.

Both Data Transfer Services and RLS transfer data from the server to the client for
processing. However, the difference between the two services is that Data Transfer
Services writes the data to the client's local disk for subsequent processing. By contrast,
RLS processes the data in client memory, which gets overwritten when the next data
transaction occurs. Subsequent analyses of the same data would require the data to be
moved through the network each time the client session requests the data.

Considerations for Using RLS 209

Compare DTS, RLS, and CS
Design your application to balance the benefits and costs of the SAS/CONNECT
services.

• Use Data Transfer Services to transfer a copy of the data from the server to the client
and write the data to disk for local data access and processing.

• Use Remote Library Services to transfer records that the client requests for
processing from the server. The entire data remains at the server and selected records
are transferred to the client for local processing.

• Use Compute Services to transfer processing to the server where the data is stored.
Results from server processing are returned to the client.

Using RLS to Access Types of Data

RLS Support for Data Types
RLS supports access to the following types of data:

• SAS catalog*

• SAS data set and SAS utility file)

• SAS view (DATA step, PROC SQL, and SAS/ACCESS views)

• SAS database (MDDB)

• External database (such as Oracle)

*Catalog update is not supported if the computers that the client and the server run on do
not have compatible architectures.

Accessing a Catalog
In order for a client to use RLS to update a catalog on a server, the architectures of the
computers on which the client and the server run must be compatible. If computer
architectures are incompatible, the following error message is displayed:

ERROR: You cannot open catalog name through
 server ID because write access to
 catalogs is not supported when the user
 machine and server machine have different
 data representations.

Accessing an External Database
RLS and a SAS/CONNECT single-user server support update access to data that is
stored in an external database. The SAS/ACCESS engines and the SQL engine recognize
the single-user server as one user and, therefore, enable update access for external
database sources.

However, SAS/ACCESS engines and the SQL engines prohibit update access to external
database sources when using RLS and a multi-user server. Updating is prohibited

210 Chapter 17 • Remote Library Services (RLS)

because of the inability of a multi-user server or a database to detect and manage
conflicting requests from multiple users. A detection facility is necessary in order to
generate audit trails and to guarantee data integrity and security.

Accessing a SAS View
RLS supports access to SAS views, which include DATA step views, SAS/ACCESS
views, and PROC SQL views.

When the server accesses the library that contains the SAS view, the view is interpreted
at the server by default. The server loads and calls the engine that is appropriate to the
SAS view to read and transform the underlying data. The processing that is required to
generate the SAS view is performed at the server, and the resulting SAS view is
transferred to the client with a minimum cost to the network. Client resources are not
used to interpret the SAS view.

For all PROC SQL views or for any other type of SAS view that is processed between a
client and a server whose computer architectures are compatible, the SAS view can be
interpreted at the client. To interpret a SAS view at the client instead of at the server, set
the RMTVIEW= option to NO in a LIBNAME statement. Here is an example:

libname payroll rmtview=no server=wntnode;

For DATA step views and SAS/ACCESS views, if the architectures of the computers
that the client and the server run on are different, the views can be interpreted only at the
server.

Accessing a SAS Utility File of Type PROGRAM or ACCESS
In order for a client to use RLS to access a SAS utility file of the type PROGRAM or
ACCESS on a server, the architectures of the computers that the client and the server run
on must be compatible. If computer architectures are incompatible, the following error
message is displayed:

ERROR: You cannot open utility file name through
 server ID, because access to utility
 files is not supported when the user machine
 and server machine have different data
 representations.

A SAS utility file of the type PROGRAM contains compiled DATA step code, which
cannot be processed at the client. The DATA step can be executed at the server if the
DATA step is referenced by a DATA step view that is interpreted at the server.

Using SAS Views with Servers

SAS/ACCESS Views, DATA Step Views, and PROC SQL Views
RLS can be used with three types of SAS views:

• SAS/ACCESS views

• DATA step views

• PROC SQL views

Using SAS Views with Servers 211

A SAS view contains no data, but describes other data. A SAS view is processed by an
engine that reads the underlying data and uses the description to return the data in the
requested form. This process is called view interpretation.

When the library that contains the SAS view is accessed through a server, the SAS view
is interpreted in the server's session by default. This means that the engine is loaded and
called by the server to read and transform the underlying data. Only a small amount of
data is moved through the network, and the client processing is unaware that a SAS view
is involved.

If the SAS view is a PROC SQL view or if the client and server computer architectures
are the same, you can cause the SAS view to be interpreted in the client session. This is
done by specifying RMTVIEW=NO in the LIBNAME statement that is used to define
the server library. If the architectures are not the same, SAS/ACCESS views and DATA
step views can be interpreted only in the server session.

Interpreting a SAS view as data can produce significant processing demands. When a
SAS view is interpreted in the client session, that frequently means that a lot of data has
to flow to the client session. This removes processing demands from the server session
but increases network load.

Recommendations for PROC SQL Views
PROC SQL views are especially good candidates for interpretation in a server session
under these conditions:

• The number of observations that are produced by the PROC SQL view is much
smaller than the number of observations that are read by the PROC SQL view.

• The data sets that are read by the PROC SQL view are available to the server.

• The amount of processing that is necessary to build each observation is not large.

Conversely, PROC SQL views should be interpreted in the client session under these
conditions:

• The number of observations that are produced by the PROC SQL view is not
appreciably smaller than the number of observations that are read by the PROC SQL
view.

• Some of the data sets that are read by the PROC SQL view can be directly accessed
by the client session.

• A large amount of processing must be performed by the PROC SQL view.

Using WHERE Processing to Reduce Network
Traffic

When using RLS, one of the best ways to reduce the amount of data that needs to move
through the network to the client session is to use WHERE statement processing
whenever possible. When WHERE statements are used, the WHERE clause is passed to
the server environment and interpreted. Only the data that meets the selection criteria is
transferred to the client environment for processing.

If the data you are accessing is stored in an external database, the WHERE statement is
passed to the database and evaluated, if possible. If the database cannot complete the
evaluation, the server completes it before returning any of the data to the client session.

212 Chapter 17 • Remote Library Services (RLS)

For examples of using the WHERE statement, see “Example 2. RLS: Accessing Server
Data by Using the WHERE Statement” on page 224 , “Example 4. RLS: An SCL
Program That Uses the WHERE Statement” on page 225 , and “Example 6. RLS:
Subsetting Server Data for Client Processing and Display” on page 227 .

Using WHERE Processing to Reduce Network Traffic 213

214 Chapter 17 • Remote Library Services (RLS)

Chapter 18

Syntax for the LIBNAME
Statement

Dictionary . 215
LIBNAME Statement . 215

Dictionary

LIBNAME Statement
Associates a libref (a shortcut name) with a SAS library that is located on the server for client access.

Valid in: client session

Category: Data Access

Operating
environment:

“LIBNAME Statement: UNIX” in SAS Companion for UNIX Environments, “LIBNAME
Statement: Windows” in SAS Companion for Windows, and “LIBNAME Statement:
z/OS” in SAS Companion for z/OS.

See: Base SAS “LIBNAME Statement” in SAS Statements: Reference.

Syntax
LIBNAME libref <engine>
< 'SAS-library'> SERVER=server-ID <options>
<engine/operating environment-options> ;

Required Arguments
libref

specifies the name of a library reference to a SAS library that is located on the
server. The libref that you specify is presumed to be the server libref for an existing
server library. As alternatives, you could use the SLIBREF= option or the physical
name of the data library.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

engine
specifies the name of a valid SAS engine for a client to access the server library.
Usually, you should not use this option because the client automatically determines

215

which engine to use for accessing a server. Specify this option only to override the
SAS default for a specific server, or to reduce the time that is needed to determine
which engine to use to access a specific server.

For example, if the server library is located on a server that is running SAS 9 or later,
you could specify the REMOTE engine. Specifying an explicit engine might
improve performance slightly.

For a list of valid engines, see the SAS documentation for your operating
environment. For background information about engines, see SAS Language
Reference: Concepts.

The engine argument is positional. If you use it, it must follow the libref.

CAUTION:
Do not confuse the engine argument with the RENGINE= option. An engine
is used by a client to access a server. An RENGINE is used by the server to
access its SAS library.

'SAS-library'
specifies the physical name for the SAS library on the server to access. If you specify
a server library either as the libref or as the value for the SLIBREF= option, you
must omit the physical name.

If you specify 'SAS-library', the name must be a valid physical name, and it must be
enclosed in single or double quotation marks. For details about specifying a SAS
library, see the documentation that is appropriate to your operating environment.

SERVER=server-ID
specifies the ID of the server (where the SAS library is located) that you previously
signed on to. The server-ID is the value of the remote-session-ID that is specified in
the SIGNON statement on page 63 . To specify a server name that contains more
than eight characters, you must store the name in a macro variable.

Optional Arguments
ACCESS=READONLY

controls a client's read access to a SAS library on the server. If you specify this
option, you can read but not update data in the library.

SLIBREF=server-libref
specifies an existing server libref that you want to reference from the client. Use this
option when you want to reference an existing server libref, but you want to use a
different name for that libref on the client. If you specify the SLIBREF= option, you
do not need to specify the physical name for the SAS library on the server.
SLIBREF= server-libref and 'SAS-library' are mutually exclusive.

Engine and Operating Environment Options
RENGINE=engine-name

specifies the engine for the server session to use to access the SAS library on the
server. Using this option is usually unnecessary because the server automatically
determines the engine to use for processing the data library. Specify this option only
to override the SAS default for a specific library, or to reduce the time that is used by
the server to determine the engine to use.

CAUTION:
Do not confuse the RENGINE= option with the engine argument. An
RENGINE is used by the server to access its SAS library. An engine is used by a
client to access a server.

216 Chapter 18 • Syntax for the LIBNAME Statement

ROPTIONS=“option=value<option=value> ...”
specifies remote options and options that are specific to an operating environment
and that the client passes to the engine on the server that processes the SAS library.
ROPTIONS can be specified for either the default engine or an alternative engine
that is specified by using the RENGINE= option. You can specify one or more
options in the form option=value. Use a blank to separate the options. You can use
the ROPTIONS= option to pass any valid option for the targeted engine. For
information about the options that are supported by a specific engine, see the
documentation for the engine that you use. For details about options that are specific
to an operating environment, see the documentation that is appropriate for the
operating environment used.

RMTVIEW=YES|NO
determines whether SAS views are interpreted in the server session or the client
session. SAS views include DATA step views, in addition to views that are created
by using the SQL procedure and the ACCESS procedure (in SAS/ACCESS
software).

SAS views, like SAS data sets, are accessed through an engine. Where a SAS view is
interpreted determines where the view engine is loaded and used. DATA step views
use the SASDSV engine, and PROC SQL views use the SQLVIEW engine. SAS
creates a product-specific engine for each SAS/ACCESS interface product that the
SAS/ACCESS views use for that interface.

When SAS views are interpreted in the server session, the server session might
require large amounts of processor time and storage. However, the amount of data
that is transferred to the client session might be reduced. Conversely, preventing
view processing in the server session might increase the amount of data that is
transferred between the server and the client, but minimizes server processing time.

Setting RMTVIEW to NO causes SAS views to be interpreted at the client.
Default: YES, which causes views to be interpreted in the server session.

Examples

Example 1: Assigning and Defining a Libref to Access a Library on a
Server
The following statement associates the libref SQLDSLIB with the SAS library
SASXYZ.VIEWLIB.SASDATA. This library is accessed through the server
MVSHOST, which is running in a server session.

libname sqldslib 'sasxyz.viewlib.sasdata' server=mvshost;

Example 2: Associating a Client Libref with a Server Libref
The following statement associates the client libref APPLIB with the server libref
SERVLIB. This library is accessed through the server MYHOST.

libname applib slibref=servlib server=myhost;

Example 3: Specifying a Server in the LIBNAME Statement
The following example shows a spawner invocation on a computer named
MYHOST.MY.NET.WORK. The -SERVICE option specifies that the spawner listens
for client connections on port 2323.

spawner -c tcp -service 2323

LIBNAME Statement 217

In the following example, a client uses the TCP/IP access method to connect to a server
session by using a spawner. The name of the computer that the spawner runs on and the
number of the port that the spawner listens on are assigned to the macro variable
REMNAME.

Note: Use a space to separate the computer name from the port number.

A client signs on to the server at the specified port that is defined by REMNAME. The
LIBNAME statement establishes the libref SCORCARD to point to a library via the
server and port that are defined by REMNAME.

options comamid=tcp;
%let remname=myhost.my.net.work 2323; /* space between computer name and port number */
signon remname; and port number */
libname scorcard '.' server=remname;

218 Chapter 18 • Syntax for the LIBNAME Statement

Chapter 19

Syntax for the LIBNAME
Statement, SASESOCK Engine

Dictionary . 219
LIBNAME Statement, SASESOCK Engine . 219

Dictionary

LIBNAME Statement, SASESOCK Engine
Associates a libref with a TCP/IP pipe (instead of a physical disk device) for processing input and output.
The SASESOCK engine is required for SAS/CONNECT applications that implement MP CONNECT with
piping.

Valid in: client session and server session

Category: Data Access

Operating
environment:

“LIBNAME Statement: UNIX” in SAS Companion for UNIX Environments, “LIBNAME
Statement: Windows” in SAS Companion for Windows, and “LIBNAME Statement:
z/OS” in SAS Companion for z/OS.

See: Base SAS “LIBNAME Statement” in SAS Statements: Reference

Syntax
LIBNAME libref SASESOCK “port-specifier ” <TIMEOUT=time-in-seconds> ;

Required Arguments
libref

specifies a reference to a TCP/IP pipe instead of to a physical disk device.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

SASESOCK “port-specifier”
identifies the SASESOCK engine to process input to and output from a TCP/IP port
instead of a physical disk device.

“ port-specifier” can be represented in these ways:

219

“:explicit-port”
is a hardcoded port number that specifies an explicit port on the computer where
the asynchronous RSUBMIT is executing.

Example:

LIBNAME payroll SASESOCK ":256";

Requirement: If the port number that you specify is in use, access will be
denied until it is available again.

“:port service”
specifies the name of the port service on the computer where the asynchronous
RSUBMIT is executing.

Example:

LIBNAME payroll SASESOCK ":pipe1";

Requirements:
If you specify a port service, it must be configured in the SERVICES file of
the computers at which the client and server sessions are running.
If the port service that you specify is in use, access will be denied until it is
available again.

See: For details about configuring port services in the SERVICES file, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

“computer-name:port-number”
specifies an explicit port number on the computer that is specified by computer-
name.

Example:

LIBNAME payroll SASESOCK "apex.finance.com:256";

Requirement: If the port number that you specify is in use, access will be
denied until it is available again.

“computer-name:port service”
specifies the name of the port service on the computer that is specified by
computer-name.

Example:

LIBNAME payroll SASESOCK "apex.finance.com:pipe1";

Requirements:
If you specify a port service, it must be configured in the SERVICES file of
the computers at which the client and server sessions are running.
If the port service that you specify is in use, access will be denied until it is
available again.

See: For details about configuring port services in the SERVICES file, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

“implicit-port”
is an alias that refers to an implicit port number that SAS dynamically selects
from a pool of available ports when the asynchronous RSUBMIT begins
execution. The actual port that SAS selects is stored automatically in the SAS
Metadata Server without your knowledge of the port's identity. Because the alias
is mapped to the port and is stored in the metadata server, you can always use the
alias without concern about the actual port number.

Example:

220 Chapter 19 • Syntax for the LIBNAME Statement, SASESOCK Engine

LIBNAME payroll SASESOCK "mypipe";

If you use an alias that specifies an implicit port, the client and server sessions
must have access to the SAS Metadata Server. The port number that is assigned
to the alias that you specify is stored in the SAS Metadata Server. To have access
to a SAS Metadata Server, several metadata properties must be configured via
selected SAS options in the SAS session. Here is an example:

options metaserver="a123.us.company.com"
 metaport=9999
 metauser="metaid"
 metapass="metapwd"
 metaprotocol=bridge
 metarepository="myrepos";

Requirements:
If you use an implicit port, do not configure the alias in the SERVICES file.

See: If you specify an implicit port, see SAS system options METASERVER,
METAPORT, METAUSER, METAPASS, METAPROTOCOL, and
METAREPOSITORY in SAS Language Interfaces to Metadata.

Optional Argument
TIMEOUT=time-in-seconds

specifies the time in seconds that a SAS process will wait to successfully connect to
another process.

Example:

libname in1 sasesock ":pipe1" timeout=50;

Default: 10
See:

For an explanation of MP CONNECT using piping, see “Pipeline Parallelism” on
page 115 .
For an example of a SAS/CONNECT application that implements MP
CONNECT using piping, see “Example 6: Using MP CONNECT with Piping”
on page 179 .

LIBNAME Statement, SASESOCK Engine 221

222 Chapter 19 • Syntax for the LIBNAME Statement, SASESOCK Engine

Chapter 20

Examples Using Remote Library
Services (RLS)

Example 1. RLS: Accessing Server Data to Print a List of Reports 223
Purpose . 223
Program . 223

Example 2. RLS: Accessing Server Data by Using the WHERE Statement 224
Purpose . 224
Program . 224

Example 3. RLS: Updating Server Data . 225
Purpose . 225
Program . 225

Example 4. RLS: An SCL Program That Uses the WHERE Statement 225
Purpose . 225
Program . 226

Example 5. RLS: Updating a Server Data Set by Applying a
Client Transaction Data Set . 226

Purpose . 226
Program . 226

Example 6. RLS: Subsetting Server Data for Client Processing and Display . . . 227
Purpose . 227
Program . 228

Example 1. RLS: Accessing Server Data to Print a
List of Reports

Purpose
This code shows a client that uses RLS to access a modest amount of data on a server in
order to print a list of reports. RLS is a good solution for processing a small number of
observations.

Program

options sascmd="!sascmd -nosyntaxcheck";
options noxwait; 1

 %let dir=c:\Public;

223

x mkdir &dir
libname vcl "&dir";
data vcl.request;
 report_name="January";
 copy='Y';
 output;
 report_name="February";
 copy='N';
 output;
 report_name="March";
 copy='Y';
 output;
run;
signon rempc;
 2 libname public REMOTE 'c:\Public' server=rempc;
 data _null_;
 set public.request;
 if (copy = "Y") then do;
 put "Report " report_name
 " has been requested";
 end;
 run;

1 Creates a data set in the user's home directory.

2 Defines a server library to a client session. The value for SERVER= is the same as
the server session ID that is used in the SIGNON statement.

Example 2. RLS: Accessing Server Data by Using
the WHERE Statement

Purpose
In this example, WHERE statement processing modifies the previous example in order
to reduce the amount of data that is being requested and to reduce the network traffic.
The WHERE statement filters only the relevant data for the client to process. A selective
transfer is more efficient than moving every observation to the client to process and to
check the COPY variable for a Y value.

Program

 signon rempc;
1

 libname public 'c:\Public' server=rempc;
2

 data _null_;
 set public.request;
 where copy = "Y";
 put "Report " report_name
 " has been requested";
 run;

224 Chapter 20 • Examples Using Remote Library Services (RLS)

1 Defines a server library to a client session.

2 Uses the WHERE statement to filter unneeded observations.

Example 3. RLS: Updating Server Data

Purpose
This example enables you to take advantage of a mainframe's superior data handling and
security features, while you work in a user-friendly GUI environment. RLS is used to
update server data. This application of RLS eliminates the need to transfer a disk copy of
the data to the client session before processing the data. It also involves low volume
transaction processing.

Program

1 x mkdir hr.emp.data;
libname hr 'hr.emp.data';
data hr.employee;
 x=1;
 run;
signon remos390;
2

 libname rlib REMOTE 'hr.emp.data' server=remos390;
3

 proc fsedit data=rlib.employee;
run;

1 Creates the data set HR.EMP.DATA.

2 Defines the server session human resource library to the client session.

3 Executes a client FSEDIT to update the employee data set that is located on the z/OS
computer.

Example 4. RLS: An SCL Program That Uses the
WHERE Statement

Purpose
This example is an excerpt from an SCL program that uses RLS to query a remote
reservation database. Reservations are selected based on the value that is stored in the
variable RESNUM. The use of the WHERE clause in this example is important because
the WHERE clause is applied in the server session before any data is transferred. As a
result, only the observations that meet the criteria are moved to the client session.

This example is a good use of RLS because (as in the previous example) it involves
transaction-type processing and enables the client GUI to be used for data entry on the
selected observations in the database.

Example 4. RLS: An SCL Program That Uses the WHERE Statement 225

However, if you were to use the SCL LOCATEC function, every observation would be
transferred to the client session and compared against the specified criteria. The response
time might be poor. These alternative programming choices emphasize the importance
of being aware of the amount of data that the client session requests and minimizing this
amount when using RLS.

Program

signon apex;
libname master REMOTE "hq.prod.data" server=apex;
1

 rdsid = open("master.reserv", 'u');
2

 wherecls="resnum=" || "'" || resnum || "'";
 rc = where(rdsid, wherecls);
 call set(rdsid);
 rc = fetchobs(rdsid, 1);

1 Opens the remote database.

2 Builds and applies the WHERE clause to accelerate retrieval.

Example 5. RLS: Updating a Server Data Set by
Applying a Client Transaction Data Set

Purpose
In client/server jobs where data must be kept current and the number of updates that you
need to perform is small, RLS can be an effective solution. RLS enables you to perform
a client update to a server data set.

This example creates a data set by remotely submitting a DATA step. Next, it creates a
client transaction data set. Using RLS, it assigns a client libref to the server library.
Finally, the program uses the client transactions to modify the server data set.

Program

%let rsession=unxhost;
signon remote=rsession;
 rsubmit; 1

 data sasuser.my_budget;
 length category $ 9;
 input category $ balance;
 format balance dollar10.2;
 datalines;
 utilities 500
 mortgage 8000
 telephone 1000
 food 3000
 run;

226 Chapter 20 • Examples Using Remote Library Services (RLS)

 endrsubmit;
2

 data bills;
 length category $ 9;
 input category $ bill_amount;
 datalines;
 utilities 45.83
 mortgage 649.95
 food 68.21
 run;
3

 libname rlslib slibref=sasuser server=rsession;
4

 data rlslib.my_budget;
 modify rlslib.my_budget bills;
 by category;
 balance=balance-bill_amount;
 run;
5

 data _null_;
 set rlslib.my_budget;
 put 'Balance for ' category @25
 'is: ' balance;
 run;
6

 signoff;

1 Creates the master data set MY_BUDGET in the library SASUSER in the server
session.

2 Creates a client transaction data set BILLS for updating the server data set
MY_BUDGET.

3 Assigns the client libref RLSLIB to the library SASUSER in the server session.

4 Applies the transaction data set BILLS to the server data set MY_BUDGET.

5 Reviews the results. Three observations are updated.

6 Signs off the server. The libref RLSLIB is deassigned as part of the sign-off
processing.

Example 6. RLS: Subsetting Server Data for Client
Processing and Display

Purpose
If the amount of data that is needed for a processing job is small, RLS is an efficient way
to gather current data that is on a server for client processing and display. This program
subsets the data on the server so that only the data you need is transferred. This method
saves computing resources on the server and reduces network traffic while it gives you
access to the most current data.

In this example, a large reservations database is located on a server that runs under the
UNIX operating environment. Several client procedures need to be run against a small

Example 6. RLS: Subsetting Server Data for Client Processing and Display 227

subset of the data that is contained in the master reservations database. This situation is
ideal for RLS.

The LIBNAME statement is issued in the client session to define the server library that
contains the data set RESERVC. The PROC SORT statement sorts the server data set
and writes the subset data to the client disk.

The WHERE= and KEEP= options are specified in the PROC SORT statement to reduce
the amount of data that moves through the network to the client session for processing.
Only the data that meets the WHERE= and KEEP= criteria is moved across the network
to the client session.

PROC SORT creates the subset data set in the client session and allows all subsequent
processing to run in the client session without additional server CPU consumption.
PROC SUMMARY and PROC REPORT summarize and format the client data. ODS is
used to create an HTML file.

Program

1 signon srv1;
 libname remlib '/u/user1/reservations' server=srv1;
2

 proc sort data=
 remlib.reservc(keep=company origin
 where=(origin='ATLANTA'))
 out=tmp;
 by company;
 run;
3

 proc summary data=tmp
 vardef=n noprint;
 by company;
 output out=tmp2;
 run;
4

 ods html body="body.htm";
 5

 proc report ls=74 ps=85 split=
 "/" HEADLINE HEADSKIP CENTER NOWD;
 column
 ("Totals" "" "" "" company _freq_);
 define company / group format=$40.
 width=40 spacing=2 left "Company";
 define _freq_ / sum width=14
 spacing=2 right "# Reservations";
 rbreak after /ol dul skip summarize
 color=cyan;
 run;

 ods html close;

1 Executes the LIBNAME statement in the client session to define the server library.

2 PROC SORT runs in the client session but accesses the server data set RESERVC. A
subset of RESERVC is written to the client data set TMP. The WHERE= and

228 Chapter 20 • Examples Using Remote Library Services (RLS)

KEEP= options are passed to the server session and evaluated there to minimize the
amount of data that must move across the network.

3 Summarizes the client data set.

4 Creates an HTML file.

5 Creates a report using the client summary data set.

Example 6. RLS: Subsetting Server Data for Client Processing and Display 229

230 Chapter 20 • Examples Using Remote Library Services (RLS)

Chapter 21

Example of Combining RLS and
Data Transfer Services (DTS)

Introduction . 231

Example — RLS and UPLOAD/DOWNLOAD Combined:
Distribution of Reports over a Network . 231

Purpose . 231
Program . 231

Introduction
When the amount of information that is needed from a server is small (for example, the
value of one variable for 12 records or less), Remote Library Services (RLS) can be used
to move the data to the client session. When the data is located at the client, the data can
be used in a larger processing task, and the results (for example, reports) can be
transferred by using PROC UPLOAD across the network as required.

Example — RLS and UPLOAD/DOWNLOAD
Combined: Distribution of Reports over a
Network

Purpose
This SCL program fragment enables the distribution of production reports from a
company's headquarters location to each of its franchise offices, based on the
information that is contained in the control data set that is maintained by each of the
franchise offices. This application was implemented by using the macro facility to
enable the mainframe to connect with each of the franchise workstations, and to transfer
a set of reports to the franchise offices based on selection criteria.

Program

 /************************************/
 /* Name: DISTREPORT.SCL */
 /* */
 /* This program distributes reports */

231

 /* to the franchise offices. */
 /************************************/
 length rc 8;

 INIT:

 submit continue;
 /************************************/
 /* set up distribution macro */
 /************************************/
 %macro distribution; 1

2

 %let franchise_city=Atlanta NYC LA Dallas Chicago;
 %let franchise_host=
 tsoatl unixnyc unixla wntdal cmshq;
3

 %let j=1;
 %do %while(%scan(&franchise_city,&j) ne);
 %let nextfran=%scan(&franchise_city,&j);
 %let nextrem=%scan(&franchise_host,&j);
 %let j=%eval(&j+1);
options remote=&nextrem 4

comamid=communication-access-method;
 filename rlink 'script-file-name';
 signon;
5

 x "alloc fi(xferrpt)
 da('sasinfo.sugi18.xferrpt') shr";
6

 rsubmit;
 filename frptlib
 "d:\counter\reports\prod";
 endrsubmit;

 /************************************/
 /* use SAS/CONNECT server */
 /************************************/
 libname rpt "d:\counter\reports" 7

server=&nextrem; 8

 data _null_;
 set rpt.preport end=finish;
 file xferrpt;
 if _n_ =1 then put "rsubmit;";

 /*********************************/
 /* transfer reports */
 /* named by variable name in */
 /* reports data set */
 /*********************************/

 if (copy="Y") then do; 9

 put "proc upload infile=
 'sasinfo.sugi18."name"'";
 put "outfile=frptlib("name")
 status=no;run;";

232 Chapter 21 • Example of Combining RLS and Data Transfer Services (DTS)

 end;
 if finish then put "endrsubmit;";
 run;

 /************************************/
 /* upload reports that you want */
 /************************************/
 %include xferrpt; 10

 signoff;
 %end;

 %mend;

 /************************************/
 /* invoke macro to distribute */
 /* reports */
 /************************************/
 %distribution; 11

 endsubmit;

 status='H';

 return;

 MAIN:
 return;

 TERM:
 return;

1 Declares the distribution macro definition.

2 Initializes the list of remote franchise offices (franchise_city) and their node
names (franchise_host) to be used as the REMOTE= value.

3 Scans to the next office and node name to be processed.

4 Specifies the remote office NODENAME as the REMOTE= value and sign on to the
remote franchise.

5 Allocates a z/OS file that will contain generated UPLOAD statements.

6 Remotely submits a fileref to define the PC library to which reports will be uploaded.

7 Connects to a server to access the library that contains the report-selection data set.

8 Executes the DATA step to evaluate report-selection data (RPT.PREPORT) and
creates UPLOAD statements to transfer reports (XFERRPT).

9 If the selection criterion is YES, creates the appropriate PROC UPLOAD statement
for the specified report.

10 Includes the generated SAS job in the client session for execution.

11 Invokes the macro.

Example — RLS and UPLOAD/DOWNLOAD Combined: Distribution of Reports over a
Network 233

234 Chapter 21 • Example of Combining RLS and Data Transfer Services (DTS)

Part 6

Data Transfer Services

Chapter 22
Using Data Transfer Services . 237

Chapter 23
UPLOAD Procedure . 245

Chapter 24
DOWNLOAD Procedure . 265

Chapter 25
Examples of Data Transfer Services (DTS) . 281

Chapter 26
Data Transfer Services Troubleshooting . 301

235

236

Chapter 22

Using Data Transfer Services

Introduction to Data Transfer Services . 237

Data Transfer Services: Advantages . 238
Offloads Server Work . 238
Increases the Robustness of a Decision Support Environment 238
Transfers Only Relevant Data . 238
Supports the Model of a Centralized Control Point . 238
Backs Up Client Data . 238
Balances Resources in an Application Development Environment 238

Considerations for Using Data Transfer Services . 239
Use Compute Services to Access Large Data Resources . 239
Use Remote Library Services to Access Small to Medium Data Resources 239
Use a Combination of Services . 239
File Transfer Performance . 240

Transfer Status Window . 241

Data Transfer Services Tips . 242
Tips for Using PROC DOWNLOAD and PROC UPLOAD 242
Tips for Using PROC DOWNLOAD Only . 243
Tips for UPLOAD Only . 243

Non-English Keyboards . 244

Introduction to Data Transfer Services
Data Transfer Services offers the best solution for the transfer of SAS data and external
files between a SAS/CONNECT client and a server.

Data Transfer Services is most useful for data exchanges between a client and a server
that run different operating environments on incompatible computer architectures (for
example, z/OS and Windows) or different SAS software releases (for example, SAS 8
and SAS 9). Data Transfer Services automatically translates the internal representations
of character and numeric data between the client and the server computers.

Note: The translation algorithm was changed between SAS 6 and SAS 8 and later
releases of SAS. See “File Format Translation Algorithms” on page 320.

You implement Data Transfer Services by using the UPLOAD and DOWNLOAD
procedures. Before Data Transfer Services can be deployed, a client session must be
connected to a server session (for example, by using the SIGNON statement).

237

Data Transfer Services: Advantages

Offloads Server Work
A major benefit of Data Transfer Services is the ability to offload work from a server to
a client. A redistribution of work load boosts response time for production systems that
run on servers. After the data is downloaded to the client, the client's processor performs
all subsequent data access and processing.

Increases the Robustness of a Decision Support Environment
Moving a copy of the data to the client adds robustness to your decision support
environment. In the case of a network failure that would temporarily eliminate access to
the server's data, you can continue working with your client copy of the data.

Transfers Only Relevant Data
You can transfer only the data that you need by using WHERE processing or data set
options (such as the OBS= option) or both to dynamically subset the data as it is being
transferred to the client or the server. WHERE processing reduces network traffic and
gives you only the data that is needed at the client or the server.

Supports the Model of a Centralized Control Point
Data Transfer Services supports the model of a centralized control point, such as a
mainframe, which initiates communication to a network of workstations.

This model enables centralized distribution of data and applications. Automated jobs that
can run during non-peak hours can distribute data and applications to multiple computers
that need the data and the applications for the next day's work. Similarly, jobs can be set
up to query a network of workstations for the purpose of gathering data and storing it in
a centralized repository.

Backs Up Client Data
Data Transfer Services facilitates data backup. Data and applications can be copied from
a client that has limited memory resources to a server that has more memory resources.
This provides a backup in case of loss on the client.

Balances Resources in an Application Development Environment
In a program development environment, programmers can use Data Transfer Services to
make efficient use of network resources. In the early phase of program development, the
programmer can use client resources for basic programming activities (such as editing,
testing, and debugging) that do not demand high-performance computing resources.
However, when program development demands a high-performance environment for
testing or data access, the programmer might use Data Transfer Services to relocate the
application to the environment that provides the needed resources.

238 Chapter 22 • Using Data Transfer Services

The development environments at many computing installations often have a higher
number of users who work on one system than on other systems. On the system with the
heaviest load, response time, execution queues, and other performance factors are less
efficient because so many people are running applications concurrently.

Using Data Transfer Services, you avoid contention for heavily used computer resources
by creating and testing SAS programs on a less busy system (the client), and then
transferring the fully developed and tested program to the heavily loaded system (the
server).

Each time you execute a program at the client for testing purposes, you avoid adding to
the load on the server. This convenient method can result in significant savings of server
resources.

For example, suppose you are developing a SAS program that will run as a production
program on the server. Your program analyzes data from a SAS data set that is located
on the server and creates several reports from the analysis information. To run many
tests of the program before it is final and to avoid the delays that result from server
connections, create and store the SAS program on the client. Test the program by
downloading the SAS data set that is being analyzed by the program, or test the program
by using data that is stored on the client. After the program is complete and correct,
upload the program file to the server.

Considerations for Using Data Transfer Services

Use Compute Services to Access Large Data Resources
Transferring a copy of the data to another file system creates multiple copies of the data.
If the data that is stored on the server is updated frequently, keeping a local copy of the
data that is reasonably current might be impossible. In addition, security restrictions at
your site might prohibit multiple copies of the data. In this case, if the amount of data
that is involved is large, consider using Compute Services instead.

Use Remote Library Services to Access Small to Medium Data
Resources

If the client accesses a small to medium amount of data, Remote Library Services allows
the processing to occur at the client, with the data coming from the server as the
execution requests it. If you use a GUI application to access data that requires
transparent access to remote data, you might want to use Remote Library Services.

Use a Combination of Services
There might be situations in which a combination of services is the best choice. For
examples of combined services, see “Examples of Combining Compute Services and
Data Transfer Services” on page 193 and “Example of Combining RLS and Data
Transfer Services (DTS)” on page 231. To understand these examples, you must be
familiar with the syntax for the Chapter 23, “UPLOAD Procedure,” on page 245 and the
Chapter 24, “DOWNLOAD Procedure,” on page 265.

Considerations for Using Data Transfer Services 239

File Transfer Performance

Network File Compression
By default, SAS/CONNECT uses network file compression whenever a file is
transferred between a client and a server by using the UPLOAD and DOWNLOAD
procedures.

SAS/CONNECT 8.2 introduced a network file compression algorithm that significantly
improved performance for large data transfers. A large transfer is defined as a file whose
size is 32K bytes or larger. In general, the larger the file, the greater the potential for a
performance gain.

The goal of network file compression is to reduce the number of buffers that must be
sent when uploading and downloading files across a network. In order to reduce the
number of buffers that are used, buffers are packed to capacity for each network transfer.

The algorithm uses run-length encoding and sliding window compression. Consecutive
occurrences of a single byte are compressed by using run-length encoding, and patterns
of characters are compressed by using a sliding window that stores an offset to the
previously occurring pattern in the compressed data.

However, performance benefits that result from data compression depend on the data
itself. For example, significant compression that yields a performance benefit is expected
for data that contains a regularly repeating pattern. However, for data that does not
contain a regularly repeating pattern, compression would not produce a significant
performance benefit.

To take advantage of the compression algorithm, both the SAS/CONNECT client and
the server must run SAS/CONNECT 8.2 or a later release of SAS software.

Data File Compression to Disk
By contrast, you can specify that a file be compressed when it is written to disk by using
the COMPRESS= data set option. For more information, see SAS Data Set Options:
Reference .

The following statements show how to specify that a data set should be compressed
when it is uploaded to disk:

data tax01 (compress=yes);
proc upload data=state out=fed;

Note: If the COMPRESS=YES data set option is not specified, the data set is not
compressed before it is uploaded.

At the client, the following tasks are implicitly performed:

• The engine decompresses the data set as it is read from disk.

• PROC UPLOAD compresses the observations in the data set as they are put into a
buffer for transfer to the server.

At the server, the following tasks are implicitly performed:

• PROC UPLOAD receives the buffer and decompresses the data set so that the
observations can be written.

• The engine writes the decompressed data set to disk.

240 Chapter 22 • Using Data Transfer Services

Note: In order to write the compressed data set to disk, you have to specify the
COMPRESS=YES data set option as an argument in the OUT= option. Here is
an example:

proc upload data=state out=fed (compress=yes);

Transfer Status Window
The Transfer Status window displays information about the status of the download or
upload operation. You can specify whether the Transfer Status window is displayed by
specifying CONNECTSTATUS=YES | NO in any of the following contexts:

• “CONNECTSTATUS System Option” on page 22

• CONNECTSTATUS= system option in the RSUBMIT statement on page 143

• CONNECTSTATUS= sytem option in the SIGNON statement on page 65

• CONNECTSTATUS= system option in the PROC DOWNLOAD statement on page
268

• CONNECTSTATUS= system option in the PROC UPLOAD statement on page 248

Since the Transfer Status Window displays the progress of the file transfer dynamically,
the information in the window changes as the transfer progresses. The information on
the display includes the following:

• the type of file that is being transferred (SAS data set, SAS catalog, catalog entry that
contains graphics output, external file, or SAS utility file).

• the name of the target SAS data set, SAS catalog, external file, or SAS utility file.
SAS data set names have the form libref.SAS-data-set. SAS catalog names have the
form libref.SAS-catalog. External filenames are displayed with the complete
filename. Utility filenames have the form libref.SAS-utilityfilename.

• the number of bytes being transferred (updated as each new buffer is sent).

• the number of observations being transferred (for SAS data sets only).

• the time that elapsed since the beginning of the transfer, in hh:mm:ss form.

• an estimate of the amount of time that the transfer will take to complete, displayed as
hh:mm:ss .

• the percentage of the file that has been transferred and a horizontal bar chart that
depicts this percentage.

Note: For some types of files, the percentage completed, the estimated time to
completion, and the bar chart are not always available. Some operating environments
cannot efficiently provide the size of the file, which is necessary to calculate these
estimates. Sometimes, the information that is provided by the operating environment
results in estimates that are greater than the actual time that is needed for the transfer.
Therefore, the percentage completed, the estimated time to completion, and the bar
chart might show exaggerated estimates, but they will show 100% when the transfer
is completed.

The following display is an example of the Transfer Status window during a SAS data
set download. The SAS data set being downloaded is WORK.STT2.

Transfer Status Window 241

Display 22.1 Transfer Status Window for Downloading a SAS Data Set

The following display is an example of the Transfer Status window during a SAS data
set upload. The SAS data set being uploaded is WORK.STT2.

Display 22.2 Transfer Status Window for Uploading a SAS Data Set

The following example shows the Transfer Status window when an external (flat) text
file is being downloaded. The file being downloaded is downfile.txt.

Display 22.3 Transfer Status Window for Downloading an External File

Data Transfer Services Tips

Tips for Using PROC DOWNLOAD and PROC UPLOAD
• To execute the DOWNLOAD and UPLOAD procedures in the server session, you

must use the RSUBMIT command.

• The rate at which files are transferred varies according to these factors:

• the size and number of files that are being transferred

• the processing load on the server

• the communication access method that is being used

• the network configuration

The Transfer Status window keeps you informed of the progress of the transfer. For
details, see “Transfer Status Window” on page 241.

• You cannot transfer a SAS data set to an external file by using the DATA= or the
INLIB= option.

• You cannot transfer an external file to a SAS data set by using the OUT= option.

242 Chapter 22 • Using Data Transfer Services

• To transfer a text file whose record length is greater than 132 bytes, you must specify
the LRECL= option in the FILENAME statement at both the client and the server. If
you omit the LRECL= option, a data truncation error is reported. For details about
the LRECL= option, see the FILENAME statement Chapter 20, “Statements under
z/OS,” in SAS Companion for z/OS .

• If PROC DOWNLOAD or PROC UPLOAD successfully completes the file transfer,
the macro variable SYSINFO is set to 0. If the file transfer is not successfully
completed, the macro variable SYSINFO is set to a value greater than 0. You can
pass the value of the SYSINFO macro variable back to the client by using the
%SYSRPUT statement. For details, see “%SYSRPUT Statement” on page 166.

• Statements that define librefs and filerefs in the client session must be executed in
the client session by using the SUBMIT command.

• Statements that define librefs or filerefs in the server session must be executed in the
server session by using the RSUBMIT command or the RSUBMIT statement.
Therefore, if librefs or filerefs are defined before the PROC statement, these
statements can be executed along with PROC DOWNLOAD or PROC UPLOAD.

Tips for Using PROC DOWNLOAD Only
• When downloading variable block records to a client from a server that is running

under the z/OS environment, you must specify RECFM=U in the server FILENAME
statement that points to the variable block record. For details about options in the
FILENAME statement, see “FILENAME Statement: z/OS” in SAS Companion for
z/OS.

For example, if the file you are downloading is called MYFILE, you would use:

rsubmit;
 filename
 myfile 'vb.block.record' recfm=u;
 proc download infile=myfile
 outfile='c:\vb.rec' binary;
 run;
endrsubmit;

After the client's Log window shows the number of bytes that are transferred, you
would issue the following client FILENAME statement by using the RECFM= and
LRECL= options, where the value of LRECL= is the number of bytes that were
transferred:

filename myfile 'c:\vb.rec' recfm=s370vb
 lrecl=xxxx;

The MYFILE fileref would then be used for subsequent access to the file.

Tips for UPLOAD Only
• If you upload an external file to a server file that is defined with a fixed (F) record

format, all records in the file are padded with blanks to the logical record length.

Data Transfer Services Tips 243

Non-English Keyboards
If you use a client that has a non-English keyboard, you probably have some external
files that contain non-English characters. If your server runs under the z/OS operating
environment, some specially accented characters might be translated incorrectly when
you use the DOWNLOAD and UPLOAD procedures. This occurs because of the default
translations from ASCII to EBCDIC and from EBCDIC to ASCII. To solve the problem,
you can do one of the following:

• If SAS/CONNECT is used frequently, you should use an alternate EBCDIC to
ASCII translation table (TRANTAB=) on the server. The SAS Support Consultant
for the server should create the alternate table.

• If SAS/CONNECT is not used frequently, you can manage problematic characters
by assigning the correct hexadecimal values in DATA step programming statements
after the file is copied.

For example, suppose you have a German keyboard and a z/OS operating
environment. You want a file to contain A-umlaut characters after an upload. By
default, the ASCII representation of A-umlaut, which is X'84', is translated to
EBCDIC X'24'. However, the EBCDIC representation of A-umlaut is X'C0', so you
need to translate EBCDIC X'24' to EBCDIC X'C0'. The following DATA step, in
which NAME is a variable that contains A-umlaut characters, performs this
translation:

data new;
 set old;
 retain to 'C0'x from '24'x;
 drop to from;
 name=translate(name,to,from);
run;

244 Chapter 22 • Using Data Transfer Services

Chapter 23

UPLOAD Procedure

Introduction . 245

Syntax: UPLOAD Procedure . 246
PROC UPLOAD Statement . 246
WHERE Statement . 258
EXCLUDE Statement . 259
SELECT Statement . 260
TRANTAB Statement . 262

Using the VALIDMEMNAME and VALIDVARNAME System Options 262

PROC UPLOAD Output . 262

Introduction
After a SAS/CONNECT client connects to a SAS/CONNECT server, you can transfer
files between a client session and a server session by using the UPLOAD procedure.

Using PROC UPLOAD in SAS/CONNECT, you can do the following:

• transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=
options. This capability enables you to transfer an entire library or selected members
of a library in a single PROC UPLOAD step.

• upload specific entries in a catalog or specific members in a library by using the
SELECT and EXCLUDE statements.

• use WHERE processing and SAS data set options when uploading individual SAS
data sets.

• replicate selected data set attributes when uploading a data set.

• transfer data sets and catalog entries that have been modified on or after the specified
date.

• specify which translation table should be used when uploading a SAS catalog.

The syntax and specifications for the UPLOAD procedure are provided here. For
examples that use this syntax, see the following:

• “Using Data Transfer Services” on page 237

• “Examples of Combining Compute Services and Data Transfer Services” on page
193

• “Example of Combining RLS and Data Transfer Services (DTS)” on page 231

245

Syntax: UPLOAD Procedure
PROC UPLOAD

<data-set-option(s)>
<catalog-option(s)>
<library-option(s)>
<external-file-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

WHERE where-expression-1 <logical-operator where-expression-n>;
EXCLUDE list </MEMTYPE=mtype | ENTRYTYPE=etype>;
SELECT </MEMTYPE=mtype | ENTRYTYPE=etype>;
TRANTAB NAME=translation-table-name <TYPE=(etype-list)> <OPT=DISP | SRC | (DISP SRC)>;

PROC UPLOAD Statement
Transfers files from the client to the server.

Alias: none

Syntax
PROC UPLOAD

<data-set-option(s)>
<catalog-option(s)>
<library-option(s)>
<external-file-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

Data Set Options
CAUTION:

Do not confuse the PROC UPLOAD data set options with the SAS data set
options. The PROC UPLOAD data set options are valid only in the context of
PROC UPLOAD. However, two of the PROC UPLOAD data set options—DATA=
and OUT=—can be further characterized by SAS data set options. For details, see
the descriptions for the DATA= on page 248 option and the OUT= on page
253option.

data-set-options can be one or more of the following:

• CONSTRAINT=YES | NO on page 248

• DATA=client-SAS-data-set <(SAS-data-set-option(s))> on page 248

• DATECOPY on page 249

• EXTENDSN=YES | NO on page 249

• INDEX=YES | NO on page 250

• OUTLIB=server-SAS-data-set <(SAS-data-set-option(s))> OUT= on page 253

246 Chapter 23 • UPLOAD Procedure

• V6TRANSPORT on page 254

Catalog Options
catalog-options can be one or more of the following:

• ENTRYTYPE=etype on page 249

• EXTENDSN=YES | NO on page 249

• INCAT=client-SAS-catalog on page 250

• OUTCAT=server-SAS-catalog on page 252

Library Options
library-options can be one or more of the following:

• CONSTRAINT=YES | NO on page 248

• EXTENDSN=YES | NO on page 249

• GEN=YES | NO on page 250

• INDEX=YES | NO on page 250

• INLIB=client-SAS-library on page 251

• MEMTYPE=(mtype-list) on page 251

• OUTLIB=server-SAS-library on page 254

• VIEWTODATA on page 254

• V6TRANSPORT on page 254

External File Options
external-file-options are the following:

• BINARY on page 248

• INFILE=client-file-identifier on page 251

• OUTFILE=server-file-identifier on page 252

Optional Arguments
AFTER=date

specifies a modification date in the form of a numeric date value or a SAS date
constant.

This option is valid for transferring data sets, catalogs, and libraries. Its use results in
data sets or catalog entries being transferred only if they have been modified on or
after the specified date.

The AFTER= option is also valid for external file transfers between most computers.
If a computer is unable to perform the transfer, this message is displayed:

ERROR: AFTER= not supported on this platform.
NOTE: The SAS System stopped processing this step
 because of errors.

Note: The AFTER= option is available in SAS 6.09E, SAS 6.11 TS040, and later.

For example, the following statement causes the transfer of any data sets or catalog
entries in the library ACCTS only if they have been modified on or after December
30, 2001.

PROC UPLOAD Statement 247

proc upload inlib=accts outlib=accts
 after='30dec01'd status=no;

If your client session is using an earlier release of SAS that does not support this
option, PROC UPLOAD produces the following message:

Warning: AFTER= option not supported by earlier
 release; option will be ignored.

Note: If the client is running SAS 6.11 TS020 or SAS 6.08 TS415 through SAS 6.08
TS430, the option is ignored, but no warning is displayed.

BINARY
specifies an upload of a binary image (an exact copy) of an external client file. Use
this option only for uploading external files.

Note: External files are files that are not SAS files.

By default, if the client and server run in different operating environments (for
example, UNIX and Windows), PROC UPLOAD transfers a file from the client to
the server, translating the file from UNIX representation to Windows representation.
Furthermore, PROC UPLOAD inserts record delimiters that are appropriate for the
target environment.

You do not always want to translate a file. For example, you might need to upload
executable files from the client to the server and later download them to the same or
a different client. Binary file format also conserves resources for users who store
their own files and for system backups. The BINARY option prevents delimiters
from being inserted for each file record that is created at the server. In addition, if the
client and server use a different method of data representation, the BINARY option
prevents any data translation between ASCII and EBCDIC.

For an example of using the BINARY option, see “Example 10. DTS: Distributing
an .EXE File from the Server to Multiple Clients” on page 294 .

CONSTRAINT=YES | NO
specifies if integrity constraints should be re-created on the server when a SAS data
set that has integrity constraints defined is uploaded. You can specify this option
with the DATA= option (if you omit the OUT= option) or with the INLIB= and
OUTLIB= options.

By default, integrity constraints are re-created only when you upload a SAS library
or when you upload a single SAS data set and omit the OUT= option. If you specify
the OUT= option with the DATA= option, the integrity constraints are not re-
created.

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window should be displayed during a transfer.
By default, the UPLOAD procedure displays the “Transfer Status Window” on page
241 (CONNECTSTATUS=YES)
Alias: CSTATUS=, STATUS=
Default: YES

DATA=client-SAS-data-set <(SAS-data-set-option(s))>
specifies a SAS data set to upload from the client to the server. If the data set is a
permanent SAS data set, you must define a libref before the PROC UPLOAD
statement and specify the two-level name of the data set.

If you specify the name of a data view in the DATA= option, the materialized data is
uploaded to the server, not to the view definition.

248 Chapter 23 • UPLOAD Procedure

If you do not specify the DATA=, INCAT=, INLIB=, or INFILE= option, the last
SAS data set that was created on the client during your SAS session is uploaded.
Requirement: When you specify the DATA= option, you must either specify the

OUT= option or omit all other output file options.
Interaction: The data set is characterized by SAS data set options that were

specified when the data set was created. For example, specifying the
COMPRESS=YES data set option would cause all observations in the data set to
be compressed. You use SAS data set options to change the data set's
characteristics or to apply new characteristics.

See:
OUTLIB=server-SAS-data-set <(SAS-data-set-option(s))> OUT= on page 253
SAS Data Set Options: Reference

Example: “Specifying Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 256

DATECOPY
retains the date on which a SAS data set was created and the date on which a SAS
data set was last modified for each data set that is transferred.

ENTRYTYPE=etype
specifies a catalog entry type to be uploaded. Examples of catalog entry types
include DATA and FORMAT.
Alias: ETYPE=, ET=
Requirement: To use this option, you must also specify the INCAT= and

OUTCAT= options.

EXTENDSN=YES | NO
specifies whether to promote the length of short numerics (length less than 8 bytes)
when transferring.

NO
indicates that the length of numeric variables is not promoted.

YES
indicates that 1 will be added to the length of any numeric variable that has a
length of less than 8 bytes before it is transferred to the server.

The behavior of the EXTENDSN= option varies according to the SAS release that is
used.

• If both the client and the server run SAS 8 or a later release, and the
V6TRANSPORT option is specified, the default is to promote the length of a
numeric variable whose length is less than 8 bytes. This is consistent with SAS 6
behavior. To override this behavior, specify EXTENDSN=NO along with the
V6TRANSPORT option in the UPLOAD statement.

• If either the client or the server runs SAS 6, neither the V6TRANSPORT nor the
EXTENDSN= option is supported or recognized.

• If the client runs SAS 6 and the server runs SAS 8 or a later release, a numeric
variable whose length is less than 8 bytes is promoted , by default. In this case,
specify EXTENDSN=NO in order to override the SAS 6 default and to prevent
the promotion.

See “File Format Translation Algorithms” on page 320 for information about
translating file formats between a client and server that run on computers whose
internal representations are incompatible.
Default: NO

PROC UPLOAD Statement 249

GEN=YES | NO
specifies that data set generations are to be sent during library transfers.

YES
specifies that data set generations are sent during library transfers.

NO
specifies that data set generations are not sent during library transfers.

Default: YES

INCAT=client-SAS-catalog
names a SAS catalog that you want to upload from the client to the server. If the
catalog is stored in a permanent SAS library, you must define a libref before
specifying the PROC UPLOAD statement, and you must specify the catalog's two-
level name.

To upload all of the catalogs in a SAS library, specify INCAT=libref._ALL_.

If you specify this form for the INCAT= option, you must specify the same form for
the OUTCAT= option.

You can transfer catalogs with entries that contain graphics output as well as other
catalog entries.

CAUTION:
Some catalog entry types are not compatible between SAS releases. If you
attempt to upload a catalog entry from a client to a server and they run different
SAS releases, the client catalog entry that is being uploaded might not be
supported at the server. In this case, the catalog entry will not be transferred and
the following error message is displayed:

WARNING: FILEFMT entries

INDEX=YES | NO
specifies whether to re-create an index when you upload a SAS data set to the server
session. Otherwise, an existing index that is associated with the data set being
uploaded can be copied to the server session. The INDEX= option in the DATA step
is used to create an index file that can be copied to the server session. For details
about the INDEX= option in the DATA step, see SAS Data Set Options: Reference.

The INDEX= option in PROC UPLOAD is relevant under any of these conditions:

• if you use the DATA= option in the PROC UPLOAD statement

• if you use the INLIB= and OUTLIB= options in PROC UPLOAD

• if you omit the OUT= option in PROC UPLOAD

By default, an index will be re-created in the server session under these conditions:

• if you do not specify the INDEX= option, you upload a single data set, and you
omit the OUT= option in PROC UPLOAD

• if you do not specify the INDEX= option, and you upload an entire SAS library

By default, an index will not be re-created in the server session when all of these
conditions are met:

• if you do not specify the INDEX= option

• if you omit the DATA= option in the PROC UPLOAD statement

• if you omit the OUT= option in PROC UPLOAD

250 Chapter 23 • UPLOAD Procedure

For conceptual information about indexing, see SAS Language Reference: Concepts.

If you choose to re-create an index for the data set being uploaded, you must specify
one or more variables to be indexed. For an example, see “Example 13. Re-creating
an Index for a Data Transfer” on page 299 .

INFILE=client-file-identifier
specifies the external file that you want to upload to the server from the client.

If you use the INFILE= option, you must also use the OUTFILE= option.

client-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the client that is associated with a single
file. You must define the fileref before specifying the PROC UPLOAD
statement.

fileref(member)
is used if you have defined a fileref on the client that is associated with an
aggregate storage location, such as a directory. member specifies one or more
files in that aggregate storage location that should be transferred. An asterisk (*)
can be used as a wildcard character in the member specification of the files to
transfer. Here are the only valid uses of the asterisk wildcard character:

• to specify all files in the specified location (*)

• to specify all files that have the same extension (*.extension)

• to specify all files that have the same name but different extensions (name.*)

You must define the fileref before specifying the PROC UPLOAD statement. For
details about filerefs, see the documentation that is appropriate for your operating
environment.

This example shows how to use a wildcard to transfer all files whose filenames
have the extension .sas and are located in a directory on a server that runs
UNIX to a folder on a client that runs Windows.

filename locref 'c:\';
rsubmit;
 filename fref '/local/programs';
 proc upload infile=locref('*.sas')
 outfile=fref;
 run;
endrsubmit;

'external-file-name'
is used to explicitly define the file that is to be uploaded.

INLIB=client-SAS-library
specifies a SAS library to upload from the client to the server. This option must be
used with the OUTLIB= option. Before using this option, you must define the libref
that is used for client-SAS-library.
Alias: IN=, INDD=

MEMTYPE=(mtype-list)
specifies one or more member types to be uploaded.

Here are the valid member types:

• ALL

• CATALOG

PROC UPLOAD Statement 251

• DATA

• MDDB

• VIEW

Alias: MTYPE=, MT=
Requirement: To use this option, you must also specify the INLIB= and OUTLIB=

options.

OUTCAT=server-SAS-catalog
names the SAS catalog that you want to upload to. If you want to create a permanent
SAS catalog, you must define the libref before specifying the PROC UPLOAD
statement, and you must specify a two-level SAS catalog name. To upload all of the
catalogs in a SAS library, specify OUTCAT=libref._ALL_.

T I P If you transfer a catalog that contains entries of type PROGRAM, you must
compile the entries on the target operating environment before execution. To
compile all the PROGRAM entries in a catalog, submit (or remotely submit) the
following statements:

proc build cat=libref.member-name batch;
 compile;
run;

libref identifies the SAS library that contains the catalog, and member-name
identifies the catalog.

Requirement: If you use the OUTCAT= option, you must also use the INCAT=
option. If you specify the _ALL_ option in OUTCAT=, you must also specify
ALL in the INCAT= option.

OUTFILE=server-file-identifier
specifies an external file in the server session to which the file in the client session
will be transferred.

Here are the values for server-file-identifier:

“external-filename”
is the physical location of the file in the server session to which the file in the
client session is transferred.

Note: Enclose the filename in double or single quotation marks.

fileref
is the SAS filename that is associated with the physical location of a single file in
the server session.

Note: You must define the fileref before you can specify it in the PROC
UPLOAD statement.

fileref(member)
is the fileref that is associated with an aggregate storage location, such as a
directory or a partitioned data set, in the server session. member specifies the file
in the aggregate storage location that will be transferred.

Note: You must define the fileref before you can specify it in the PROC
UPLOAD statement. For details about filerefs for your operating
environment, see the appropriate operating environment companion
documentation.

Note: If a wildcard (*) is used in the INFILE= option, then OUTFILE=fileref
should point to an aggregate storage location such as a directory.

252 Chapter 23 • UPLOAD Procedure

Requirement: If you use the OUTFILE= option, you must also use the INFILE=
option.

OUTLIB=server-SAS-data-set <(SAS-data-set-option(s))>
OUT=

specifies the SAS data set in the server session that you want the uploaded data set
written to. If you want to create a permanent SAS data set, you must define the libref
before specifying the PROC UPLOAD statement, and you must specify a two-level
SAS data set name.

The transfer of a long name that might be assigned to a data set is restricted by the
SAS release that you are using. SAS releases after SAS 6 support long names
assigned to a data set. If a data set that has a long name is transferred to a server that
runs SAS 6 or earlier, the long name is truncated. For details about long names, see
SAS Language Reference: Concepts.

The OUT= option is a valid form of the OUTLIB= option. The UPLOAD procedure
determines the meaning of the OUT= option as follows:

• If you specify the DATA= option and the OUT= option, the OUT= option names
the output SAS data set.

For example, if the USER= option is set to MYLIB, the following statement
uploads the data set A from the library MYLIB on the client to the library
MYLIB on the server:

proc upload data=a out=a;
run;

• If you specify only the OUTLIB= option, the UPLOAD procedure uploads the
last SAS data set that was created on the client.

For example, the following statement uploads the last data set that was created on
the client to the data set MYDATA in the library MYLIB on the server
(assuming USER=MYLIB).

proc upload out=mydata;
run;

• If you specify the INLIB= option and the OUTLIB= option, the OUTLIB=
option specifies the name of a SAS library.

For example, the following statement uploads all of the data sets and catalogs
that are in the library A on the client to the library RMTLIB on the server.

proc upload inlib=a outlib=rmtlib;
run;

For details about the effect of omitting the OUTLIB= option, see “Default Naming
Conventions for Uploaded Data Sets” on page 254 .
Interaction: Most SAS data set options that were used to characterize the data set

when it was created will not be inherited when the OUT= option is used. Only
the LABEL= and TYPE= data set options are inherited. However, you can
explicitly specify SAS data set options as arguments to the OUT= option when
uploading a data set. For example, specifying the COMPRESS=YES data set
option would cause all observations in the data set to be compressed. You use
SAS data set options to change the data set's characteristics or to apply new
characteristics.

See:
DATA=client-SAS-data-set <(SAS-data-set-option(s))> on page 248
SAS Data Set Options: Reference

PROC UPLOAD Statement 253

Example: “Specifying Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 256

OUTLIB=server-SAS-library
names the destination SAS library on your server where the uploaded data sets and
catalogs from the client are stored. Before using this option, you must define the
libref that is used for server-SAS-library.

Note: The OUTLIB= form of this option is the same as the OUT= option that is
used to specify a SAS data set. When you use the OUTLIB= option, the
UPLOAD procedure determines whether the input option was DATA= or
INLIB= and processes the uploaded objects appropriately.

Alias: OUTDD=, OUT=

VIEWTODATA
for a library transfer only, causes view descriptor files to be transferred as data sets
instead of as view files, which is the default. If you want some views to be
transferred as view files and other views to be transferred as data sets, you would
have to perform two separate transfers. If you attempt to use this option for a single
data set transfer (by using the DATA= option), an error results.

V6TRANSPORT
specifies that data should be translated by using the SAS 6 “File Format Translation
Algorithms” on page 320 . Specify this option only when you want to use the SAS 6
translation style explicitly and both the client and the server run SAS 8 or a later
release.

When V6TRANSPORT is specified, the default behavior is to promote a numeric
variable whose length is less than 8 bytes. To prevent a promotion of this length, you
can use the EXTENDSN=NO option along with the V6TRANSPORT option.

Details

Default Naming Conventions for Uploaded Data Sets
If you omit the OUT= option, which specifies the name of the output data set, from the
UPLOAD statement, SAS follows these rules to determine the name for the data set:

• If the input data set (the data set that is specified in the DATA= option) has a two-
level name and the same libref that is defined for the input data set is also defined in
the server session, the data set is uploaded to the library on the server that is
associated with that libref. The data set has the same member name on the server.

For example, suppose you submit the following statement:

libname orders
 client-SAS-library;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
uploaded to ORDERS.QTR1 on the server.

 /***/
 /* The libref ORDERS is defined in both */
 /* operating environments. */
 /***/
libname orders
 server-SAS-library;
proc upload data=orders.qtr1;
run;

254 Chapter 23 • UPLOAD Procedure

• If the input data set has a two-level name but the libref for the input data set is not
also defined in the server session, the data set is uploaded to the default library on the
server. This is usually the WORK library, but the library might also be defined by
using the USER libref.

The data set retains the same data set name that it had on the client. For example, if
you remotely submit the following statement, the data set is uploaded to
WORK.QTR2 on the server.

 /***/
 /* The libref ORDERS is defined only on */
 /* the client. */
 /***/
proc upload data=orders.qtr2;
run;

• If the input data set has a one-level name and the default libref on the client also
exists on the server, the data set is uploaded to that library.

For example, suppose you submit the following statements:

libname orders
 client-SAS-library;
options user=orders;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
uploaded to ORDERS.QTR1 on the server.

 /***/
 /* The libref ORDERS is defined in both */
 /* operating environments. */
 /***/
libname orders
 server-SAS-library;
libname remote
 server-SAS-library;
 /************************************/
 /* This option has no effect in */
 /* this case. */
 /************************************/
options user=remote;
proc upload data=qtr1;
run;

• If the input data set has a one-level name and the default libref on the client does not
exist on the server, the data set is uploaded to the default library on the server. That
is, the USER libref on the server is used only if the USER libref on the client does
not exist on the server.

For example, suppose you submit these statements:

libname orders
 client-SAS-library;
options user=orders;

When you remotely submit the following statements, the data set ORDERS.QTR1 is
uploaded to REMOTE.QTR1 on the server.

 /***/
 /* The libref ORDERS is defined only on */
 /* the server. */
 /***/

PROC UPLOAD Statement 255

libname remote
 server-SAS-library;
options user=remote;
proc upload data=qtr1;
run;

• If you omit the DATA= option, the last data set that was created on the client during
the SAS session is uploaded to the server, as follows:

proc upload;
run;

The naming conventions on the server follow one of the previously described rules,
based on how the last data set was created.

Specifying Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD

Restrictions on Using Data Set Options
You can specify SAS data set options only in the DATA= and OUT= options of the
PROC UPLOAD statement.

You cannot specify SAS data set options in the INLIB= and OUTLIB= options, even
when uploading a single data set. A data set option must be associated with a specific
SAS data set.

An uploaded SAS data set inherits characteristics from the selected SAS data set options
that are listed in this table under any of these conditions:

• DATA= option is used

• INLIB= and OUTLIB= options are used

• DATA=, INLIB=, and OUTLIB= are not used

Table 23.1 Default SAS Data Set Options for Data Set Uploads

SAS Data Set
Option Definition

Inherited When
PROC UPLOAD
DATA= Is Used

Inherited When
PROC UPLOAD
OUT= Is Used

ALTER= Specifies a password
for ALTER
protection.

Yes No

COMPRESS Specifies whether to
compress
observations, or
specifies the
compression method.

Yes No

GENMAX= Specifies the
maximum number of
generations.

Yes No

256 Chapter 23 • UPLOAD Procedure

SAS Data Set
Option Definition

Inherited When
PROC UPLOAD
DATA= Is Used

Inherited When
PROC UPLOAD
OUT= Is Used

INDEX= Specifies whether to
index a data set.

The index for an
uploaded SAS data
set is re-created on
the server, not copied
from the client. To
prevent the re-
creation of the index,
you can specify the
INDEX=NO option
in the PROC
UPLOAD statement,
as described in .

Yes No

LABEL= Specifies whether to
label a data set.

Yes Yes

READ= Specifies a password
for read protection.

Yes No

REUSE= Specifies whether to
reuse free space in
compressed data sets.

Yes No

SORTEDBY= Specifies the
variables by which
the data set is sorted.

Yes No

TYPE= Specifies the data set
type.

Yes Yes

WRITE= Specifies the
password for WRITE
protection.

Yes No

Examples

Example 1: KEEP= Option
In this example, the KEEP= SAS data set option is used as an argument to the DATA=
option in PROC UPLOAD. Because the OUT= option is omitted, the uploaded data set
inherits the characteristics of the input data set, including a default action to re-create the
index. For details about the KEEP= data set option and a complete list of SAS data set
options, see SAS Data Set Options: Reference.

proc upload data=study(keep=age score1 score2);
run;

PROC UPLOAD Statement 257

Example 2: OUT= Option
In this example, because the OUT= option is specified, the uploaded data set does not
inherit the characteristics of the input data set study. Instead, the data set is renamed as
results in the server session. The uploaded data set also inherits only the LABEL=
and TYPE= data set options. For details about the LABEL= and TYPE= SAS data set
options, see SAS Data Set Options: Reference.

proc upload data=study out=results;
run;

Example 3: KEEP= and OUT= Options
In this example, the KEEP= SAS data set option is used as an argument to the OUT=
option in PROC UPLOAD. Because the OUT= option is specified, the uploaded data set
does not inherit the characteristics of the input data set study. Instead, the data set is
renamed as results in the server session. The uploaded data set also inherits only the
LABEL= and TYPE= data set options. The INDEX=NO data set option specifies that
the index will not be re-created in the server session.

For details about the LABEL=, TYPE=, and KEEP= SAS system options, see SAS Data
Set Options: Reference.

proc upload data=study out=results(keep=age score1 score2) index=no;
run;

WHERE Statement
Selects observations from SAS data sets.

Restriction: The UPLOAD procedure processes WHERE statements when you transfer a single
SAS data set.

See: SAS Data Set Options: Reference.

Syntax
WHERE where-expression-1 <logical-operator where-expression-n>;

Syntax Description
where-expression-1

is a WHERE expression.

logical-operator
is one of the following logical operators:

• AND

• AND NOT

• OR

• OR NOT

where-expression-n
is a WHERE expression.

WHERE statements allow multiple WHERE expressions that are joined by logical
operators.

258 Chapter 23 • UPLOAD Procedure

You can use SAS functions in a WHERE expression. Also, note that a DATA step or
a PROC step attempts to use an available index to optimize the selection of data
when an indexed variable is used in combination with one of the following:

• CONTAINS operator

• LIKE operator

• colon modifier with a comparison operator

• •TRIM function

• •SUBSTR function (in some cases)

To understand when using the SUBSTR function causes an index to be used, look at
the format of the SUBSTR function in a WHERE statement:

where substr(variable, position, length)
 ='character-string';

An index is used in processing when all of the following conditions are met:

• position is equal to 1

• length is less than or equal to the length of variable

• length is equal to the length of character-string

The following example illustrates using a WHERE statement with the UPLOAD
procedure. The uploaded data set contains only the observations that meet the
WHERE condition.

proc upload data=revenue out=new;
 where origin='Atlanta' and revenue < 10000;
run;

For details, see the SAS Data Set Options: Reference.

EXCLUDE Statement
Excludes library members or catalog entries from uploading.

Restriction: You cannot use the EXCLUDE and SELECT statements in the same PROC
UPLOAD step.

Syntax
EXCLUDE lib-member-list </ MEMTYPE=mtype >;
EXCLUDE cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=
and OUTLIB= options in the PROC UPLOAD statement. Use the format cat-entry-list
</ ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in the
PROC UPLOAD statement.

lib-member-list
specifies which library members to exclude from uploading. You can name each
member explicitly or use one of the following forms:

EXCLUDE Statement 259

prefix
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the
letters TEST are excluded.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are excluded.
Restriction: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to exclude from uploading. Each element of cat-
entry-list has the form entry.type.

entry
is the name of an entry in the catalog to exclude from uploading.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from uploading.

Here are the valid member types:

• ALL

• CATALOG

• DATA

• MDDB

• VIEW

Alias: MTYPE=, MT=
Requirement: To use this option, you must also specify the INLIB= and OUTLIB=

options in the PROC UPLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from uploading. Examples of catalog entry
types include FORMAT and DATA.
Alias: ETYPE=, ET=
Requirement: To use this option, you must specify the INCAT= and OUTCAT=

options in the PROC UPLOAD statement.

SELECT Statement
Selects specific library members or catalog entries to upload.

Restriction: You cannot use the EXCLUDE and SELECT statements in the same PROC
UPLOAD step.

Syntax
SELECT lib-member-list </ MEMTYPE=mtype>;

260 Chapter 23 • UPLOAD Procedure

SELECT cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=
and OUTLIB= options in the PROC UPLOAD statement. Use the format cat-entry-list
</ ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in the
PROC UPLOAD statement.

lib-member-list
specifies which library members to exclude from uploading. You can name each
member explicitly or use one of the following forms:

prefix
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the
letters TEST are excluded.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are excluded.
Restriction: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to exclude from uploading. Each element of cat-
entry-list has the form entry.type.

entry
is the name of an entry in the catalog to exclude from uploading.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from uploading.

Here are the valid member types:

• ALL

• CATALOG

• DATA

• MDDB

• VIEW

Alias: MTYPE=, MT=
Requirement: To use this option, you must also specify the INLIB= and OUTLIB=

options in the PROC UPLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from uploading. Examples of catalog entry
types include FORMAT and DATA.

Note: The SELECT statement also enables you to maintain an ordering and
grouping of catalog entries that contain graphics output because entries are
uploaded into the server SAS catalog in the order that you specify them in the
SELECT statement.

Alias: ETYPE=, ET=

SELECT Statement 261

Requirement: To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC UPLOAD statement.

TRANTAB Statement
Specifies the translation table to use when translating character data for an upload from a SAS/CONNECT
client to a SAS/CONNECT server.

Restriction: You can specify only one translation table per TRANTAB statement. To specify
additional translation tables, use additional TRANTAB statements.

Requirement: To use the TRANTAB statement, you must specify the INCAT= and OUTCAT=
options in the PROC UPLOAD statement.

See: SAS Data Set Options: Reference.

Syntax
TRANTAB NAME=translation-table-name
<option(s)>;

Using the VALIDMEMNAME and VALIDVARNAME
System Options

If the data you are transferring contains an invalid SAS name, such as a name containing
special characters, national characters, or embedded blanks, you can specify
VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND before the signon
statement to successfully transfer the files. The following types of data can contain
nonstandard SAS names when you use the VALIDVARNAME and
VALIDMEMNAME system options with PROCS UPLOAD and DOWNLOAD:

• a SAS data set

• a SAS library

• a SAS variable

• a DBMS table

• a DBMS table column heading

Note: You must specify the VALIDMEMNAME and VALIDVARNAME system
options before the SIGNON statement.

For more information about these Base SAS system options, see SAS System Options:
Reference

PROC UPLOAD Output
The UPLOAD procedure writes a series of informative messages to the SAS log when it
executes. Examples of these messages are shown in this output:

262 Chapter 23 • UPLOAD Procedure

Output 23.1 SAS Log Messages from the UPLOAD Procedure

NOTE: Remote submit to B commencing.
 1 proc upload infile='client-external-file'
 2 outfile='server-external-file';run;

 NOTE: TEXT upload in progress from infile=client-external-file
 to outfile=server-external-file
 NOTE: Uploaded 4 records and 136 bytes.
 NOTE: 4 records were read from the file client-external-file
 The maximum record length was 65.
 The minimum record length was 0.
 NOTE: 136 bytes were transferred at 68 bytes/second.
 NOTE: The PROCEDURE UPLOAD used 0.04 CPU seconds and 1431K.

 NOTE: Remote submit to B complete.
$

PROC UPLOAD Output 263

264 Chapter 23 • UPLOAD Procedure

Chapter 24

DOWNLOAD Procedure

Introduction . 265

Syntax: DOWNLOAD Procedure . 266
PROC DOWNLOAD Statement . 266
WHERE Statement . 275
EXCLUDE Statement . 276
SELECT Statement . 277
TRANTAB Statement . 279

Using the VALIDMEMNAME and VALIDVARNAME System Options 279

PROC DOWNLOAD Output . 280

Introduction
After you have started SAS/CONNECT, you can transfer SAS files between your client
session and the server. The DOWNLOAD procedure copies SAS files that are stored on
the server to the client.

Using PROC DOWNLOAD, you can do the following:

• transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=
options. This capability enables you to transfer an entire library or selected members
of a library in a single PROC DOWNLOAD step.

• download specific entries in a catalog or specific members in a library by using the
SELECT and EXCLUDE statements.

• use WHERE processing and SAS data set options when downloading individual SAS
data sets.

• replicate selected data set attributes when downloading a data set.

• transfer data sets and catalog entries that have been modified on or after the specified
date.

• specify the translation table to be used when you download a SAS catalog.

The syntax and specifications for the DOWNLOAD procedure are described here. For
examples that use this syntax, see the following

• “Using Data Transfer Services” on page 237

• “Examples of Combining Compute Services and Data Transfer Services” on page
193

265

• “Example of Combining RLS and Data Transfer Services (DTS)” on page 231

Syntax: DOWNLOAD Procedure
PROC DOWNLOAD

<data-set-option(s)>
<catalog-option(s)>
<external-file-option(s)>
<library-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

WHERE where-expression-1 <logical-operator where-expression-n>;
EXCLUDE list </MEMTYPE=mtype | ENTRYTYPE=etype>;
SELECT </MEMTYPE=mtype | ENTRYTYPE=etype>;
TRANTAB NAME=translation-table-name <TYPE=(etype-list)>
<OPT=DISP | SRC | (DISP SRC)>;

PROC DOWNLOAD Statement
Transfers files from the server to the client.

Alias: none

Syntax
PROC DOWNLOAD

<data-set-option(s)>
<catalog-option(s)>
<library-option(s)>
<external-file-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

Data Set Options
CAUTION:

Do not confuse the PROC DOWNLOAD data set options with the SAS data set
options. The PROC DOWNLOAD data set options are valid only in the context of
PROC DOWNLOAD. However, two of the PROC DOWNLOAD data set options —
DATA= and OUT= — can be further characterized by SAS data set options. For
details, see the sections on the .

data-set-options can be one or more of the following:

• CONSTRAINT=YES | NO on page 268

• DATA=server-SAS-data-set <(SAS-data-set-option(s))> on page 269

• DATECOPY on page 269

• EXTENDSN=YES | NO on page 269

• INDEX=YES | NO on page 270

266 Chapter 24 • DOWNLOAD Procedure

• OUT=client-SAS-data-set <(SAS-data-set-option(s))> on page 271

• V6TRANSPORT on page 273

Catalog Options
catalog-options can be one or more of the following:

• ENTRYTYPE=etype on page 269

• EXTENDSN=YES | NO on page 269

• INCAT=server-SAS-catalog on page 270

• OUTCAT=client-SAS-catalog on page 272

Library Options
library-options can be one or more of the following:

• CONSTRAINT=YES | NO on page 268

• EXTENDSN=YES | NO on page 269

• GEN=YES | NO on page 270

• INDEX=YES | NO on page 270

• INLIB=server-SAS-library on page 271

• MEMTYPE=(mtype-list) on page 271

• OUTLIB=client-SAS-library on page 273

• VIEWTODATA on page 273

• V6TRANSPORT on page 273

External File Options
external-file-options are the following:

• BINARY on page 268

• INFILE=server-file-identifier on page 270

• OUTFILE=client-file-identifier on page 273

Optional Arguments
AFTER=date

specifies a modification date in the form of a numeric date value or a SAS date
constant.

This option is valid for transferring data sets, catalogs, and libraries. Its use results in
data sets or catalog entries being transferred only if they have been modified on or
after the specified date.

The AFTER= option is also valid for external file transfers between most computers.
If a computer is unable to perform the transfer, this message is displayed:

ERROR: AFTER= not supported on this platform.
NOTE: The SAS System stopped processing this step
 because of errors.

Note: The AFTER= option is available in SAS 6.09E, SAS 6.11, TS040, and later.

PROC DOWNLOAD Statement 267

For example, the following statements cause the transfer of data sets only if they
were modified within the last week.

 /************************************/
 /* Download all data sets that have */
 /* been modified in the last week. */
 /************************************/
rsubmit;
 data _null_;
 today=date();
 lastweek=today-7;
 call symput('lastweek',lastweek);
 run;
 proc download in=perm out=work
 after=&lastweek memtype=data;
 run;
endrsubmit;

If your client session is using an earlier release of SAS that does not support the
AFTER= option, PROC DOWNLOAD still executes this option because the server
has the input data set.

BINARY
specifies a download of a binary image (an exact copy) of an external server file. Use
this option only for downloading external files.

Note: External files are files that are not SAS files.

By default, if the client and server run in different operating environments (for
example, UNIX and Windows), PROC DOWNLOAD transfers a file from the client
to the server, translating the file from UNIX representation to Windows
representation. PROC DOWNLOAD also inserts record delimiters that are
appropriate for the target environment.

You do not always want to translate a file. For example, you might need to download
executable files from the server to the client and later upload them back to the server.
Binary file format also saves resources for users who store their own files and for
system backups. The BINARY option prevents delimiters from being inserted for
each file record that is created at the client. In addition, if the client and server use a
different method of data representation, the BINARY option prevents any data
translation between ASCII and EBCDIC.

For an example of using the BINARY option, see “Example 10. DTS: Distributing
an .EXE File from the Server to Multiple Clients” on page 294 .

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window should be displayed during a transfer.
By default, the DOWNLOAD procedure displays the “Transfer Status Window” on
page 241 .
Alias: CSTATUS=, STATUS=
Default: YES

CONSTRAINT=YES | NO
specifies if integrity constraints should be re-created on the client when a SAS data
set that has integrity constraints defined is downloaded. You can specify this option
with the DATA= option (if you omit the OUT= option) or with the INLIB= and
OUTLIB= options.

268 Chapter 24 • DOWNLOAD Procedure

By default, integrity constraints are re-created only when you download a SAS
library or when you download a single SAS data set and omit the OUT= option. If
you specify the OUT= option with the DATA= option, the integrity constraints are
not re-created.

DATA=server-SAS-data-set <(SAS-data-set-option(s))>
specifies a SAS data set that you want to download from the server to the client. If
the data set is a permanent SAS data set, you must define a libref before the PROC
DOWNLOAD statement and specify the two-level name of the data set.

If you specify the name of a data view in the DATA= option, the materialized data is
downloaded to the client, not to the view definition.

If you do not specify the DATA=, INCAT=, INFILE=, or INLIB= option, the last
SAS data set that was created on the server during your SAS session is downloaded.
Requirement: If you specify the DATA= option, you must either use the OUT=

option or omit all other options.
See:

“Specifying Data Set Options for the DATA= and OUT= Options in PROC
UPLOAD and PROC DOWNLOAD” on page 256
SAS Data Set Options: Reference
OUT=client-SAS-data-set <(SAS-data-set-option(s))> on page 271

DATECOPY
retains the date on which a SAS data set was created and the date on which a SAS
data set was last modified for each data set that is transferred.

ENTRYTYPE=etype
specifies a catalog entry type to be downloaded. Examples of catalog entry types
include DATA and FORMAT.
Alias: ETYPE=, ET=
Requirement: To use this option, you must also specify the INCAT= and

OUTCAT= options.

EXTENDSN=YES | NO
specifies whether to promote the length of short numerics (length less than 8 bytes)
when transferring.

NO
indicates that the length of numeric variables is not promoted.

YES
indicates that 1 will be added to the length of any numeric variable that has a
length of less than 8 bytes before it is transferred to the client computer.

The behavior of the EXTENDSN= option varies according to the SAS release that is
used.

• If both the client and the server run SAS 8 or a later release, and the
V6TRANSPORT option is specified, the default is to promote the length of the
numeric variable whose length is less than 8 bytes. This is consistent with SAS 6
behavior. To override this behavior, specify EXTENDSN=NO along with the
V6TRANSPORT option in the DOWNLOAD statement.

• If either the client or the server runs SAS 6, neither the V6TRANSPORT nor the
EXTENDSN= option is supported or recognized.

• If the client runs SAS 6 and the server runs SAS 8 or a later release, a numeric
variable whose length is less than 8 bytes is promoted by default. In this case,

PROC DOWNLOAD Statement 269

specify EXTENDSN=NO in order to override the SAS 6 default and to prevent
the promotion.

See “File Format Translation Algorithms” on page 320 for information about
translating file formats between a client and server that run on computers whose
internal representations are incompatible.
Default: NO

GEN=YES | NO
specifies that data set generations are to be sent during library transfers.

YES
specifies that data set generations are sent during library transfers.

NO
specifies that data set generations are not sent during library transfers.

Default: YES

INCAT=server-SAS-catalog
names a SAS catalog that you want to download from the server to your client. If the
catalog is stored in a permanent SAS library, you must define a libref before
specifying the PROC DOWNLOAD statement, and you must specify the catalog's
two-level name.

To download all of the catalogs in a SAS library, specify INCAT=libref._ALL_.

If you specify this form for the INCAT= option, you must specify the same form for
the OUTCAT= option.

You can transfer catalogs with entries that contain graphics output as well as other
catalog entries.

CAUTION:
Some catalog entry types are not compatible between SAS releases. If you
attempt to download a catalog entry from a server to a client and they run
different SAS releases, the client catalog entry that is being downloaded might
not be supported at the client. In this case, the catalog entry will not be
transferred and the following error message is displayed:

WARNING: FILEFMT entries

INDEX=YES | NO
specifies whether to re-create an index at the client when you download a SAS data
set. You can specify this option when using the DATA= option (if you omit the
OUT= option) or when using the INLIB= and OUTLIB= options.

If you download a single data set and omit the OUT= option, or if you download a
SAS library, the index is re-created by default.

If you specify the OUT= option and the DATA= option, the index is not re-created.

INFILE=server-file-identifier
specifies the external file that you want to download from the server to the client.

If you use the INFILE= option, you must also use the OUTFILE= option.

server-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the server that is associated with a single
file. You must define the fileref before specifying the PROC DOWNLOAD
statement.

270 Chapter 24 • DOWNLOAD Procedure

fileref(member)
is used if you have defined a fileref on the server that is associated with an
aggregate storage location, such as a directory or a partitioned data set. member
specifies one or more files in that aggregate storage location that should be
transferred. An asterisk (*) can be used as a wildcard character in the member
specification of the files to transfer. Here are the only valid uses of the asterisk
wildcard character:

• to specify all files in the specified location (*)

• to specify all files that have the same extension (*.extension)

• to specify all files that have the same name but different extensions (name.*)

You must define the fileref before specifying the PROC DOWNLOAD
statement. For details about filerefs, see the appropriate documentation for your
operating environment.

This example shows how to use a wildcard to transfer all files whose filenames
have the extension .sas and are located in a directory on a server that runs UNIX
to a folder on a client that runs Windows.

filename locref 'c:\';
rsubmit;
 filename fref '/local/programs';
 proc download infile=fref('*.sas')
 outfile=locref;
 run;
endrsubmit;

'external-file-name'
is used to explicitly define the file that is to be downloaded.

INLIB=server-SAS-library
specifies a SAS library to download from the server to the client. All three forms of
this option are equivalent. This option must be used with the OUTLIB= option (in
any of its forms). Before using this option, you must define the libref that is used for
server-SAS-library.
Alias: INDD=, IN=

MEMTYPE=(mtype-list)
specifies one or more member types to be downloaded.

Here are the valid member types:

• ALL

• CATALOG

• DATA

• MDDB

• VIEW

Alias: MTYPE=, MT=
Requirement: To use this option, you must also specify the INLIB= and OUTLIB=

options.

OUT=client-SAS-data-set <(SAS-data-set-option(s))>
names the SAS data set on the client that you want the downloaded data set written
to. If you want to create a permanent SAS data set, you must define the libref before

PROC DOWNLOAD Statement 271

specifying the PROC DOWNLOAD statement, and you must specify a two-level
SAS data set name.

The OUT= option is a valid form of the OUTLIB= option. The DOWNLOAD
procedure determines the meaning of the OUT= option as follows:

• If you specify the DATA= option and the OUT= option, the OUT= option names
the output SAS data set.

For example, if the USER= option is set to MYLIB, the following statement
downloads the data set A from the library MYLIB on the server to the library
MYLIB on the client:

proc download data=a out=a;
run;

• If you specify only the OUT= option, the DOWNLOAD procedure downloads
the last SAS data set that was created on the server.

For example, the following statement downloads the last data set that was created
on the server to the data set MYDATA in the library MYLIB on the client
(assuming USER=MYLIB).

proc download out=mydata;
run;

• If you specify the INLIB= option and the OUT= option, the OUT= option
specifies the name of a SAS library.

For example, the following statement downloads all of the data sets and catalogs
that are in the library A on the server to the library RMTLIB on the client:

proc download inlib=a out=rmtlib;
 run;

For details about the effect of omitting the OUT= option, see Details on page 274 .
See:

“Specifying Data Set Options for the DATA= and OUT= Options in PROC
UPLOAD and PROC DOWNLOAD” on page 256
SAS Data Set Options: Reference
DATA=server-SAS-data-set <(SAS-data-set-option(s))> on page 269

OUTCAT=client-SAS-catalog
names the SAS catalog on the client that you want the downloaded catalog written
to. If you want to create a permanent SAS catalog, you must define the libref before
specifying the PROC DOWNLOAD statement, and you must specify a two-level
SAS catalog name. To download all of the catalogs in a SAS library, specify
OUTCAT=libref._ALL_.

T I P If you transfer a catalog that contains entries of type PROGRAM, you must
compile the entries on the target operating environment before execution. To
compile all the PROGRAM entries in a catalog, submit (or remotely submit) the
following statements:

proc build cat=libref.member-name batch;
 compile;
run;

libref identifies the SAS library that contains the catalog and member-name
identifies the catalog.

272 Chapter 24 • DOWNLOAD Procedure

Requirement: If you specify the OUTCAT= option, you must also specify the
INCAT= option. If you specify _ALL_ in the OUTCAT= option, you must also
specify _ALL_ in the INCAT= option.

OUTFILE=client-file-identifier
identifies an external file on the client that you want a downloaded external file
written to.

client-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the client that is associated with a single
file. You must define the fileref before specifying the PROC DOWNLOAD
statement.

fileref(member)
is used if you have defined a fileref on the client that is associated with an
aggregate storage location such as a directory. member specifies which file in
that aggregate storage location should be transferred. You must define the fileref
before specifying the PROC DOWNLOAD statement. For details about filerefs
for your operating environment, see the appropriate operating environment
companion documentation.

Note: If a wildcard (*) is used in the INFILE= option, then OUTFILE=fileref
should point to an aggregate storage location such as a directory.

'external-file-name'
is used to explicitly define the file that is to be downloaded.

Requirement: If you use the OUTFILE= option, you must also use the INFILE=
option.

OUTLIB=client-SAS-library
names the destination SAS library on your client where the downloaded data sets and
catalogs from the server are stored. All three forms of this option are equivalent.
Before using this option, you must define the libref that is used for client-SAS-
library.

Note: The OUT= form of this option is the same as the OUT= option that is used to
specify a SAS data set. When you use the OUTLIB= option, the DOWNLOAD
procedure determines whether the input option was DATA= or INLIB= and
processes the downloaded objects appropriately.

The OUTLIB= option must be used with the INLIB= option, but you can use any
form of the OUTLIB= option with any form of the INLIB= option. See the
description of the INLIB= option for examples that illustrate some valid pairs of
these options.
Alias: OUTDD=, OUT=

VIEWTODATA
for a library transfer only, causes view descriptor files to be transferred as data sets
instead of as view files, which is the default. If you want some views to be
transferred as view files and other views to be transferred as data sets, you would
have to perform two separate transfers. If you attempt to use this option for a single
data set transfer (by using the DATA= option), an error results.

V6TRANSPORT
specifies that data should be translated by using the SAS 6 “File Format Translation
Algorithms” on page 320 . Specify this option only when you want to use the SAS 6
translation style explicitly and both the client and the server run SAS 8 or a later
release of SAS.

PROC DOWNLOAD Statement 273

When V6TRANSPORT is specified, the default behavior is to promote a numeric
variable whose length is less than 8 bytes. To prevent a promotion of this length, you
can use the EXTENDSN=NO option along with the V6TRANSPORT option.

Details

Default Naming Conventions for Downloaded Data Sets
If you omit the OUT= option, which specifies the name of the output data set, from the
DOWNLOAD statement, SAS follows these rules to determine the name for the data set:

• If the input data set (the data set that is specified in the DATA= option) has a two-
level name and the same libref that is defined for the input data set is also defined in
the client environment, the data set is downloaded to the library on the client that is
associated with that libref. The data set has the same member name on the client.

For example, suppose you submit the following statement:

libname orders
 client-SAS-library;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
downloaded to ORDERS.QTR1 on the client.

 /***/
 /* The libref ORDERS is defined on both */
 /* the client and server. */
 /***/
libname orders
 server-SAS-library;
proc download data=orders.qtr1;
run;

• If the input data set has a two-level name but the libref for the input data set is not
also defined in the client environment, the data set is downloaded to the default
library on the client. This is usually the WORK library, but the library might also be
defined by using the USER libref.

The data set retains the same data set name that it had on the server. For example, if
you remotely submit the following statements, the data set is downloaded to
WORK.QTR2 on the client.

 /***/
 /* The libref ORDERS is defined only on */
 /* the server. */
 /***/
libname orders
 server-SAS-library;
proc download data=orders.qtr2;
run;

• If the input data set has a one-level name and the default libref on the server also
exists on the client, the data set is downloaded to that library.

For example, suppose you submit the following statement:

libname orders
 client-SAS-library;
libname local
 client-SAS-library;
 /************************************/
 /* This option has no effect in */

274 Chapter 24 • DOWNLOAD Procedure

 /* this case. */
 /************************************/
options user=local;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
downloaded to ORDERS.QTR1 on the client.

 /***/
 /* The libref ORDERS is defined on both */
 /* hosts. */
 /***/
libname orders
 server-SAS-library;
options user=orders;
proc download data=qtr1;
run;

• If the input data set has a one-level name and the default libref on the server does not
exist on the client, the data set is downloaded to the default library on the client. That
is, the USER libref on the client is used only if the USER libref on the server does
not exist on the client.

For example, suppose you submit these statements:

libname local
 client-SAS-library;
options user=local;

When you remotely submit the following statements, the data set ORDERS.QTR1 is
downloaded to LOCAL.QTR1 on the client.

 /***/
 /* The libref ORDERS is defined only on */
 /* the servers. */
 /***/
libname orders
 server-SAS-library;
options user=orders;
proc download data=qtr1;
run;

• If you omit the DATA= option, the last data set that was created on the server during
the SAS session is downloaded to the client, as follows:

proc download;
run;

The naming conventions on the client follow one of the previously described rules,
based on how the last data set was created.

WHERE Statement
Selects observations from SAS data sets.

Restriction: The DOWNLOAD procedure processes WHERE statements when you transfer a
single SAS data set.

See: SAS Statements: Reference .

WHERE Statement 275

Syntax
WHERE where-expression-1 <logical-operator where-expression-n>;

Required Arguments
where-expression-1

is a WHERE expression.

logical-operator
is one of the following logical operators:

• AND

• AND NOT

• OR

• OR NOT

where-expression-n
is a WHERE expression.

To understand when using the SUBSTR function causes an index to be used, look at
the format of the SUBSTR function in a WHERE statement:

where substr(variable, position, length)
 = 'character-string';

An index is used in processing when all of the following conditions are met:

• position is equal to 1

• length is less than or equal to the length of variable

• length is equal to the length of character-string

The following example illustrates using a WHERE statement with the DOWNLOAD
procedure. The downloaded data set contains only the observations that meet the
WHERE condition.

proc download data=revenue out=new;
 where origin='Atlanta' and revenue < 10000;
run;

For details, see SAS Statements: Reference .

EXCLUDE Statement
Excludes library members or catalog entries from downloading.

Syntax
EXCLUDE lib-member-list </ MEMTYPE=mtype >;
EXCLUDE cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=
and OUTLIB= options in the PROC DOWNLOAD statement. Use the format cat-entry-

276 Chapter 24 • DOWNLOAD Procedure

list </ ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in
the PROC DOWNLOAD statement.

lib-member-list
specifies which library members to exclude from downloading. You can name each
member explicitly or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the
letters TEST are excluded.

first -last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are excluded.
Restriction: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to exclude from downloading. Each element of cat-
entry-list has the form entry.type.

entry
is the name of an entry in the catalog to exclude from downloading.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from downloading.

Here are the valid member types:

• ALL

• CATALOG

• DATA

• MDDB

• VIEW

Alias: MTYPE=, MT=
Requirement: To use this option, you must also specify the INLIB= and OUTLIB=

options in the PROC DOWNLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from downloading. Examples of catalog
entry types include FORMAT and DATA.
Alias: ETYPE=, ET=
Requirement: To use this option, you must specify the INCAT= and OUTCAT=

options in the PROC DOWNLOAD statement.

SELECT Statement
Selects specific library members or catalog entries to download.

Restriction: You cannot use both the EXCLUDE and SELECT statements in the same PROC
DOWNLOAD step.

SELECT Statement 277

Note: The SELECT statement also enables you to maintain an ordering and grouping of
catalog entries that contain graphics output, because entries are downloaded into
the client SAS catalog in the order that you specify them in the SELECT statement.

Syntax
SELECT lib-member-list </ MEMTYPE=mtype>;
SELECT cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=
and OUTLIB= options in the PROC DOWNLOAD statement. Use the format cat-entry-
list </ ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in
the PROC DOWNLOAD statement.

lib-member-list
specifies which library members to download. You can name each member explicitly
or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the
letters TEST are selected for downloading.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are selected for downloading.
Restriction: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to download. Each element of cat-entry-list has the
form entry.type.

entry
is the name of an entry in the catalog to download.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to download.

Here are the valid member types:

• ALL

• CATALOG

• DATA

• MDDB

• VIEW

Alias: MTYPE=, MT=
Requirement: To use this option, you must also specify the INLIB= and OUTLIB=

options in the PROC DOWNLOAD statement.

278 Chapter 24 • DOWNLOAD Procedure

ENTRYTYPE=etype
specifies a catalog entry type to download. Examples of catalog entry types include
FORMAT and DATA.

Note: The SELECT statement also enables you to maintain an ordering and
grouping of catalog entries that contain graphics output, because entries are
downloaded into the client SAS catalog in the order that you specify them in the
SELECT statement.

Alias: ETYPE=, ET=
Requirement: To use this option, you must specify the INCAT= and OUTCAT=

options in the PROC DOWNLOAD statement.

TRANTAB Statement
Specifies the translation table to use when translating character data for a download from the server to the
client.

Restriction: You can specify only one translation table per TRANTAB statement. To specify
additional translation tables, use additional TRANTAB statements.

Requirement: To use the TRANTAB statement, you must specify the INCAT= and OUTCAT=
options in the PROC DOWNLOAD statement.

See: SAS National Language Support (NLS): Reference Guide

Syntax
TRANTAB NAME=translation-table-name
<option(s)>;

Using the VALIDMEMNAME and VALIDVARNAME
System Options

If the data you are transferring contains an invalid SAS name, such as a name containing
special characters, national characters, or embedded blanks, you can specify
VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND before the signon
statement to successfully transfer the files. The following types of data can contain
nonstandard SAS names when you use the VALIDVARNAME and
VALIDMEMNAME system options with PROCS UPLOAD and DOWNLOAD:

• a SAS data set

• a SAS library

• a SAS variable

• a DBMS table

• a DBMS table column heading

Note: You must specify the VALIDMEMNAME and VALIDVARNAME system
options before the SIGNON statement.

Using the VALIDMEMNAME and VALIDVARNAME System Options 279

For more information about these Base SAS system options, see “VALIDMEMNAME=
System Option” in SAS System Options: Reference and “VALIDVARNAME= System
Option” in SAS System Options: Reference.

PROC DOWNLOAD Output
The DOWNLOAD procedure writes a series of informative messages to the SAS log
when it executes. Examples of these messages are shown in the following output.

Output 24.1 SAS Log Messages from the DOWNLOAD Procedure

NOTE: Remote submit to B commencing.
 1 proc download outfile='client-external-file'
 2 infile='server-external-file';run;
 NOTE: TEXT download in progress from
 infile=server-external-file to
 outfile=client-external-file
 NOTE: Downloaded 4 records and 136 bytes.
 NOTE: 4 records were written to the file client-external-file.
 The maximum record length was 65.
 The minimum record length was 0.
 NOTE: 136 bytes were transferred at 136 bytes/second.
 NOTE: The PROCEDURE DOWNLOAD used 0.05 CPU seconds and 1455K.

 NOTE: Remote submit to B complete.
$

280 Chapter 24 • DOWNLOAD Procedure

Chapter 25

Examples of Data Transfer
Services (DTS)

Example 1. DTS: Transferring Data by Using WHERE Statements 282
Purpose . 282
Program . 282

Example 2. DTS: Transferring Specific Member Types . 283
Purpose . 283
Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD Statement 283
Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement 283
Example 2.3: Using the MEMTYPE= Option in the SELECT Statement 284

Example 3. DTS: Transferring Specific Catalog Entry Types 284
Purpose . 284
Example 3.1: Using the ENTRYTYPE= Option in the PROC

UPLOAD Statement . 284
Example 3.2: Using the ENTRYTYPE= Option in the

EXCLUDE Statement in PROC DOWNLOAD . 284
Example 3.3: Using the ENTRYTYPE= Option in the

SELECT Statement in PROC UPLOAD . 285
Example 3.4: Using the ENTRYTYPE= Option in Two

SELECT Statements in PROC DOWNLOAD . 285
Example 3.5: Using Long Member Names in Catalog Transfers 286

Example 4. DTS: Transferring Generations of SAS Data Sets 286
Purpose . 286
Example 4.1: Using LIBRARY Transfers to Transfer Data Set Generations 287
Example 4.2: Using a SELECT Statement to Transfer Generations 288
Example 4.3: Inheriting Generation Specific Attributes . 288
Example 4.4: Transferring Single Data Sets . 288

Example 5. DTS: Transferring Long Member Names . 289
Purpose . 289
Program . 289

Example 6. DTS: Transferring Data by Using Data Set Options and Attributes . 289
Purpose . 289
Program . 290

Example 7. DTS: Transferring Data Set Integrity Constraints 290
Purpose . 290
Example 7.1: Omitting the OUT= Option from the PROC

DOWNLOAD Statement . 290
Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement 291
Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement 291

281

Example 7.4: Using the INDEX=NO Option in the PROC
DOWNLOAD Statement . 291

Example 8. DTS: Transferring Numerics by Using the
EXTENDSN= and V6TRANSPORT Options . 291

Purpose . 291
Example 8.1: Using the EXTENDSN= and V6TRANSPORT

Options in the PROC UPLOAD Statement . 292
Example 8.2: Using the EXTENDSN= Option in the PROC

DOWNLOAD Statement . 292

Example 9. DTS: Transferring SAS Utility Files . 292
Purpose . 292
Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD Statement . 293
Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD Statement 293
Example 9.3: Using the MEMTYPE= Option in the SELECT Statement 293
Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement 293

Example 10. DTS: Distributing an .EXE File from the Server
to Multiple Clients . 294

Purpose . 294
Example 10.1: UPLOAD . 294
Example 10.2: DOWNLOAD . 294

Example 11. DTS: Downloading a Partitioned Data Set from z/OS 295
Purpose . 295
Program . 295

Example 12. DTS: Combining Data from Multiple Server Sessions 296
Purpose . 296
Program . 296

Example 13. Re-creating an Index for a Data Transfer . 299

Example 1. DTS: Transferring Data by Using
WHERE Statements

Purpose
The UPLOAD and DOWNLOAD procedures process WHERE statements and the
WHERE= data set option when you transfer a single SAS data set. Because the
transferred data set contains only the observations that meet the WHERE condition,
transfer time is minimized.

Program
signon foo sascmd="!sascmd -nosyntaxcheck";

data school;
length name $ 20 class $1;
input name class amount;
cards;
Tom K 30
Sue 1 10
Ab K 3

282 Chapter 25 • Examples of Data Transfer Services (DTS)

;

rsubmit status=no;
proc upload data=school out=kindergarten;
 where class='K';
run;

Example 2. DTS: Transferring Specific Member
Types

Purpose
If you specify the INLIB= and OUTLIB= options in the PROC UPLOAD or PROC
DOWNLOAD statements, you can specify which member types to transfer by using the
MEMTYPE= option in one of the following statements:

• PROC UPLOAD

• PROC DOWNLOAD

• SELECT

• EXCLUDE

Valid values for the MEMTYPE= option are DATA, CATALOG, MDDB view, FDB,
and ALL. If you use this option in the SELECT or EXCLUDE statement, you can
specify only one value. If you use this option in the PROC UPLOAD or the PROC
DOWNLOAD statement, you can specify a list of MEMTYPE values enclosed in
parentheses.

Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD
Statement

This example uploads all data sets and catalogs that are in the library THIS on the client
and stores them in the library THAT on the server.

proc upload inlib=this outlib=that
 memtype=(data catalog);

Example 2.2: Using the MEMTYPE= Option in the EXCLUDE
Statement

This example uploads all catalogs and data sets that are in the library LOCLIB on the
client, except the data sets that are named Z4, Z5, Z6, and Z7. It then stores them in the
library REMLIB on the server:

proc upload inlib=loclib outlib=remlib mt=all;
 exclude z4-z7 / memtype=data;
run;

Example 2. DTS: Transferring Specific Member Types 283

Example 2.3: Using the MEMTYPE= Option in the SELECT
Statement

This example downloads the catalogs NAMES and SALARY and the data set MEDIA in
the data library REMLIB on the server and stores them in the library LOCLIB on the
client:

proc download inlib=remlib outlib=loclib;
 select names salary media(mt=data) / memtype=cat;
run;

Example 3. DTS: Transferring Specific Catalog
Entry Types

Purpose
When you include the INCAT= and OUTCAT= options in the PROC UPLOAD or
PROC DOWNLOAD statement, you can specify which entry types to transfer by using
the ENTRYTYPE= option in one of the following statements:

• PROC UPLOAD

• PROC DOWNLOAD

• SELECT

• EXCLUDE

If you omit the ENTRYTYPE= option and also omit the SELECT and EXCLUDE
statements, all catalog entries are transferred.

Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD
Statement

This example uploads all SLIST catalog entries from the CAT catalog in the library
LOCLIB on the client and stores them in the catalog UPCAT in the library REMLIB on
the server:

proc upload incat=loclib.cat
 outcat=remlib.upcat entrytype=slist;
run;

Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE
Statement in PROC DOWNLOAD

This example downloads all catalog entries that are in the catalog
REMOTE.MAIN_FORMATS on the server, except the format entries XYZ and
GRADES. It then stores them in the catalog LOCAL.SECONDARY_FORMATS on the
client:

284 Chapter 25 • Examples of Data Transfer Services (DTS)

libname local 'work' $loglib=yes;
rsubmit;
libname remote 'work' $loglib=yes;
proc format lib=remote.main_formats;
 value grades 1='one';
 value aformat 1='one';
 value xyz 1='one';
run;
endrsubmit;

options nocstatus;
proc download incat=remote.main_formats
 outcat=local.secondary_formats;
 exclude xyz grades / entrytype=format;
run;
endrsubmit;

Example 3.3: Using the ENTRYTYPE= Option in the SELECT
Statement in PROC UPLOAD

If the default library is WORK, this example uploads the FORMAT catalog entries XYZ
and ABC, the INFMT catalog entry GRADES, and the SCL entries A and B that are in
the WORK.LOCFMT catalog on the client. It then stores them in the WORK.REMFMT
catalog on the server:

proc format lib=work.locfmt;
 invalue grades 'one'=1;
 value abc 1='one';
 value xyz 1='one';
run;
rsubmit;
proc upload incat=locfmt outcat=remfmt;
 select xyz.format grades
 abc (et=format) / et=infmt;
 select a b / et=scl;
run;

Example 3.4: Using the ENTRYTYPE= Option in Two SELECT
Statements in PROC DOWNLOAD

This example maintains the original ordering and grouping when transferring catalog
entries that contain graphics output. Assume that you have a catalog named FINANCE
that has two entries that contain graphics output, INCOME and EXPENSE. You want to
download the two catalog entries that contain graphics output in the order in which they
are stored on the server; that is, you want INCOME to appear before EXPENSE, not
alphabetically as the DOWNLOAD procedure would normally transfer them.

In addition, you have some catalog entries that are grouped by the name GROUP1, and
you want to preserve the grouping when the entries are downloaded.

Remotely submit the following program to transfer these entries in the order that you
specify in the first SELECT statement and in the group that you specify in the second
SELECT statement:

options nocstatus;
rsubmit;

Example 3. DTS: Transferring Specific Catalog Entry Types 285

%setup(supio);
proc catalog cat=permdata.testcat;
 copy out=work.finance et=grseg;
run;
quit;
proc catalog cat=work.finance;
 change G3D= income /et=grseg;
 change GPLOT=expense/et=grseg;
 change TEMPLATE=GROUP1/et=grseg;
run;
quit;
libname rhost 'work' $loglib=yes;
endrsubmit;

libname rhost 'work' $loglib=yes;
rsubmit;proc download incat=rhost.finance
 outcat=lhost.finance;
 select income expense et=grseg;
 select group1.grseg;
run;

Example 3.5: Using Long Member Names in Catalog Transfers
This example uses PROC UPLOAD to transfer entire catalogs by using both the
INCAT= and OUTCAT= options:

rsubmit;
 proc upload
 incat=loclib.monthlysalary
 outcat=monthlyupdate;
 run;
 proc upload
 incat=loclib.employeedata
 outcat=remlib.cat;
 run;

 proc upload incat=sasuser.base
 outcat = remlib.basecatalog;
 run;

endrsubmit;

Example 4. DTS: Transferring Generations of SAS
Data Sets

Purpose
Generation data sets are historical versions of SAS data sets, SAS views, and
SAS/ACCESS files. They enable you to keep a historical record of the changes that you
make to these files. There are two data set options that are useful when manipulating
generations of SAS data sets: GENMAX (maximum number of generations) and

286 Chapter 25 • Examples of Data Transfer Services (DTS)

GENNUM (generation number). GENMAX specifies how many generations to keep,
and GENNUM is used to access a specific version of a generation group.

SAS/CONNECT transfers generations of SAS data sets by default during library
transfers. The base data set, as well as all of its historical versions, are transferred.

If you do not want all generations to be transferred, you should do one of the following:

• transfer a library using the GEN=NO option.

• transfer single data sets. Only the specified data set is transferred.

Example 4.1: Using LIBRARY Transfers to Transfer Data Set
Generations

This example transfers the client data set LOCAL.SALES as well as its generations to
the server library REMOTE. If the data set SALES already exists in the output library,
the base and all existing generations are deleted and replaced by those that are uploaded.

data local.sales(genmax=3);
 input store sales95 sales96 sales97;
 datalines;
 1 221325.85 214664.02 212644.60
 2 134511.96 159369.47 317808.48
 3 321662.42 244789.33 236782.59
 ;
run;

data local.sales;
 input store sales95 sales96 sales97;
 datalines;
 1 251325.25 217662.16 222614.60
 2 144512.11 179369.47 327808.48
 3 329682.43 249989.93 256782.59
 ;
run;

data local.sales;
 input store sales95 sales96 sales97;
 datalines;
 1 261325.33 218862.16 222614.60
 2 145012.11 189339.47 328708.71
 3 330682.46 259919.92 258722.52
 ;
run;

 /* PROC DATASETS will show that the */
 /* base data set as well as two */
 /* generations exist in the library. */
proc datasets lib=local;
quit;

rsubmit;
 proc upload in=local out=remote cstatus=no;
 run;
endrsubmit;

Example 4. DTS: Transferring Generations of SAS Data Sets 287

Example 4.2: Using a SELECT Statement to Transfer Generations
Specific generations of data sets cannot be specified in the SELECT or the EXCLUDE
statements for library transfers. When the SELECT statement is specified for the library
transfer, the selected base data set as well as all of its historical versions are transferred.
Similarly, when the EXCLUDE statement is specified for the library transfer and the
GEN=NO option is not specified, the selected base data set as well as all of its historical
versions are excluded from the transfer.

In the following example, the data set LOCAL.SALES as well as all of its generations
are uploaded.

libname local 'work' $loglib=yes;
data sales(genmax=3); x=1; run;
data sales; x=2; run;
data sales ; x=3; run;
data x; x=1; run;
rsubmit status=no;
 proc upload in=local out=remote cstatus=no;
 select sales (mt=data);
 run;
endrsubmit;

Example 4.3: Inheriting Generation Specific Attributes
During library transfers and single data set transfers when OUT= is not specified, data
set attributes are inherited in the output data set. In SAS releases after SAS 6, the
maximum number of generations is a new inherited attribute. In addition, the next
generation number attribute is inherited ONLY when a library transfer occurs. This
attribute is inherited only when the generations are actually transferred, and therefore it
is NOT inherited for any single data set transfers. In the following example, both the
maximum number of generations and the next generation number attributes are inherited
in the output data set, because this is a library transfer.

rsubmit;
 proc download in=remote out=local;
 select sales(mt=data);
 run;
endrsubmit;

In the following example, only the maximum number of generations attribute is
inherited. The next generation number attribute is not inherited, because this is a single
data set transfer, and therefore no generations are transferred.

rsubmit;
 proc download data=remote.sales;
 run;
endrsubmit;

Example 4.4: Transferring Single Data Sets
A specific generation of data set can be transferred by specifying the GENNUM= data
set option for a single data set transfer. In the following example, a specific historical
version is uploaded by specifying GENNUM=1.

288 Chapter 25 • Examples of Data Transfer Services (DTS)

rsubmit;
 proc upload data=local.sales(gennum=1);
 run;
endrsubmit;

Example 5. DTS: Transferring Long Member
Names

Purpose
SAS/CONNECT supports the transfer of long member names, as long as the operating
environment supports long member names. This example uses PROC UPLOAD to
transfer a data set and a catalog that have long member names, and uses PROC
DOWNLOAD to transfer a data set that has a long member name.

Program
rsubmit;
 proc upload in=work out=sasuser;
 select longdatasetname(mt=data)
 cat longcatalogname/mt=cat;
 run;

 data x.sas_institute_employee_data;
 set empdata;
 run;

 proc download inlib=x outlib=work;
 run;
endrsubmit;

Example 6. DTS: Transferring Data by Using Data
Set Options and Attributes

Purpose
PROC UPLOAD and PROC DOWNLOAD permit you to specify SAS data set options
in the DATA= and OUT= options. Note that SAS data set options are not supported
when using the INLIB= and OUTLIB= options, even when you upload only data sets.

The data set options must be associated with a specific SAS data set, so they must be
used in the DATA= or OUT= options. For details about additional restrictions, see
Chapter 23, “UPLOAD Procedure,” on page 245 and Chapter 24, “DOWNLOAD
Procedure,” on page 265 .

This example illustrates using the DATA= option and the INDEX=NO option. It also
shows the use of the RENAME= and DROP= SAS data set options.

Example 6. DTS: Transferring Data by Using Data Set Options and Attributes 289

Note: Because the OUT= option is not specified, the transferred data set inherits all the
characteristics of the input data set except for the index (because the INDEX=NO
option is specified).

Program
rsubmit;
data survey(compress=yes index=(comments));
 r='response';
 comments='comments';
 x=1;
run;

proc download data=survey
 (rename=(r=response) drop=comments)
 index=no;
run;

Example 7. DTS: Transferring Data Set Integrity
Constraints

Purpose
Integrity constraints are a set of data validation rules that preserve the consistency and
correctness of the stored data. These rules are defined by the applications programmer
and are enforced by SAS for each request to modify the data.

PROC UPLOAD and PROC DOWNLOAD permit a transferred SAS data set to inherit
the characteristics of the input data set. If the OUT= option is omitted when transferring
a specific SAS data set, the transferred data set inherits the characteristics of the input
data set. A transferred data set also inherits the characteristics of the input data set if it is
part of a library transfer. For details about the INLIB= and OUTLIB= options for PROC
UPLOAD, see PROC UPLOAD Statement on page 246 ; for details about PROC
DOWNLOAD, see Chapter 24, “DOWNLOAD Procedure,” on page 265 .

PROC UPLOAD and PROC DOWNLOAD apply integrity constraints to the transfer of
data sets. As with other data set characteristics, integrity constraints are inherited by a
transferred data set under specific conditions. The only exception is that, if the input file
has an index defined and the user specifies the INDEX=NO option, any integrity
constraints that are defined for the input file are not inherited. Also, referential integrity
constraint types are not transferred when the referential constraints reside in a different
library.

Example 7.1: Omitting the OUT= Option from the PROC
DOWNLOAD Statement

This example downloads the SAS data set REM in the library WORK on the server to
the library WORK on the client. Any non-referential integrity constraints that are
defined for the input data set are inherited by the output data set.

proc download data=rem;
run;

290 Chapter 25 • Examples of Data Transfer Services (DTS)

Example 7.2: Using the DROP= Option in the PROC UPLOAD
Statement

This example uploads the SAS data set LOC in the library WORK on the client to the
library WORK on the server. The variable ONE is dropped from the output data set. Any
non-referential integrity constraints that are defined for the input data set that do not
include the variable ONE are inherited by the output data set.

proc upload data=loc(drop=one);
run;

Example 7.3: Using the INLIB= Option in the PROC UPLOAD
Statement

This example uploads all SAS data sets in the library SASUSER on the client and stores
them in the library WORK on the server. Any non-referential integrity constraints that
are defined for each of the input data sets are inherited by the corresponding output data
set.

proc upload inlib=sasuser outlib=work;
run;

Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD
Statement

This example downloads the SAS data set STUDENTS in the library WORK on the
server to the library WORK on the client. Any non-referential integrity constraints that
are defined for the input data set are inherited by the output data set unless there are
indexes defined on the input data set. In that case, no integrity constraints are defined for
the output data set.

proc download data=students index=no;
run;

Example 8. DTS: Transferring Numerics by Using
the EXTENDSN= and V6TRANSPORT Options

Purpose
For SAS releases before SAS 8, when you transfer short numerics (length less than 8),
the length of these numerics is automatically increased to preserve precision. In SAS 8,
the length of these numerics is not increased by default unless the V6TRANSPORT
option is specified. Using the V6TRANSPORT and EXTENDSN= options in PROC
UPLOAD and PROC DOWNLOAD statements, you can choose whether to promote the
length of numerics.

Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and V6TRANSPORT
Options 291

Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in
the PROC UPLOAD Statement

This example uploads the data set A in the directory WORK on the client to the
directory REMOTE on the server. The V6TRANSPORT option causes the short
numerics to be promoted. Therefore, EXTENDSN=NO must be specified to override
this default, so that numerics will not be promoted.

proc upload data=a out=remote
 v6transport extendsn=no;
run;

Example 8.2: Using the EXTENDSN= Option in the PROC
DOWNLOAD Statement

This example downloads the catalog SCAT in the directory REMOTE on the server to
the directory WORK on the client. By default, catalog transfers promote the length of
short numerics within SCREEN entry types. This behavior can be overridden by
specifying EXTENDSN=NO on the catalog transfer download. The EXTENDSN=
option is supported by catalog transfer of SCREEN entry types only.

Note: The V6TRANSPORT option is unnecessary when transferring a catalog.

proc download incat=remote.scat outcat=work.scat
 extendsn=no;
run;

Example 9. DTS: Transferring SAS Utility Files

Purpose
You can use the INLIB= and OUTLIB= options with PROC UPLOAD or PROC
DOWNLOAD to transfer multiple SAS files in a single step. This capability enables you
to transfer an entire library or selected members of a library.

Note: The INLIB= option must be used with the OUTLIB= option.

You can specify which member types to transfer by using the MEMTYPE= option in
one of the following statements:

• PROC UPLOAD

• PROC DOWNLOAD

• SELECT

• EXCLUDE

If you use the MEMTYPE= option in the SELECT or the EXCLUDE statement, you can
specify only one value. If you use the MEMTYPE= option in the PROC UPLOAD or
the PROC DOWNLOAD statement, you can specify a list of MEMTYPE values
enclosed in parenthesis.

Here are the valid values for the MEMTYPE= option:

292 Chapter 25 • Examples of Data Transfer Services (DTS)

• DATA (SAS data sets)

• CATALOG (SAS catalogs)

• VIEW (SQL views)

• MDDB (MDDB files)

• ALL (all of the preceding values)

Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD
Statement

This example downloads all SAS data sets, catalog files, SQL views, and MDDB files in
the library WORK on the server and stores them in the library WORK on the client:

proc download inlib=work outlib=work;
run;

Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD
Statement

This example uploads all MDDB and FDB files that are in the library THIS on the client
and stores them in the library THAT on the server:

proc upload inlib=this outlib=that
 memtype=(mddb view);
run;

Example 9.3: Using the MEMTYPE= Option in the SELECT
Statement

This example downloads the MDDB files TEST1 and TEST2 and the SAS data set
TEST3 that are in the library WORK on the server and stores them in the library
LOCAL on the client:

proc download inlib=work outlib=local;
 select test1 test2 test3(mt=data)/memtype=mddb;
run;

Example 9.4: Using the MEMTYPE= Option in the EXCLUDE
Statement

This example uploads all SAS data sets, catalog files, MDDB files, FDB files, and SQL
views that are in the library LOCAL on the client, except the SQL views A1, A2, A3. If
then stores them in the library REMOTE on the server:

proc upload inlib=local outlib=remote memtype=all;
 exclude a1-a3/memtype=view;
run;

Example 9. DTS: Transferring SAS Utility Files 293

Example 10. DTS: Distributing an .EXE File from
the Server to Multiple Clients

Purpose
SAS/CONNECT facilitates the distribution of information to multiple clients. Rather
than distributing files on diskettes, you can make one central file available on the server
that each client can access and copy.

For example, suppose that you want to distribute an updated executable to other
Windows computers in your organization. You decide that the most efficient way to
update all computers is to upload PROGRAM.EXE to the server, and notify each person
who uses this software on their workstations that the file is available and should be
downloaded. This method enables all clients to quickly access the updated software, and
eliminates the need to share a physical diskette among client users.

Note: Such a SAS/CONNECT application, in which an external nontext file is uploaded
and then downloaded, requires the BINARY option in the DOWNLOAD and
UPLOAD procedures. The BINARY option transfers files without any character
translation (for example EBCDIC to ASCII) or insertion of record delimiters.

Example 10.1: UPLOAD
The PROGRAM.DLL module must first be uploaded to an external file on the server.

rsubmit;
 filename rfile 'server-file';
 proc upload infile='a:\program.dll'
 outfile=rfile binary;
 run;
endrsubmit;

This example uses a SAS FILENAME statement to identify the target file on the server.

Note: The INFILE= and OUTFILE= options are specified in the PROC UPLOAD
statement in order to upload an external file. To upload a SAS data set, the DATA=
and OUT= options should be used.

Example 10.2: DOWNLOAD
With the PROGRAM.DLL module available on the server, each client at the installation
can acquire the updated module by downloading it from the server.

The process for downloading the PROGRAM.DLL module is like the process for
uploading, except that the DOWNLOAD procedure is invoked, and the target file is on
the server, not on the client. The following example copies the PROGRAM.DLL module
to directory \SAS\SASEXE.

rsubmit;
 filename rfile 'server-file';
 proc download infile=rfile
 outfile='\sas\sasexe\program.dll' binary;

294 Chapter 25 • Examples of Data Transfer Services (DTS)

 run;
endrsubmit;

This example uses a SAS FILENAME statement to identify the target file on the server.
The INFILE= and OUTFILE= options are used in the PROC DOWNLOAD statement.

Example 11. DTS: Downloading a Partitioned Data
Set from z/OS

Purpose
This example shows how to download all members of a partitioned data set. Suppose
you need to download a collection of SAS programs from a z/OS server to your client.
The SAS programs are members of one partitioned data set named
MFHOST.SAS.PROGRAMS. You can copy all the programs from the partitioned data
set to the client by using a single DOWNLOAD procedure. An asterisk (*) wildcard
character is specified in the DOWNLOAD procedure to transfer all members of the data
set.

Program

%let hostn=2;
signon s390deva script='!sasroot\tst\m900\rlink\testsrc\scrmvs.sas';
rsubmit;
 data _null_;
 file 'sastnd.rlink.testpdsr(a)';
 put 'data a; x=1; run;';
 run;
 data _null_;
 file 'sastnd.rlink.testpdsr(b)';
 put 'data a; x=1; run;';
 run;
endrsubmit;

filename locdir
 '/unixhost/sas/programs';
 rsubmit;
 filename inpds
 'mfhost.sas.programs' shr;
 proc download infile=inpds('*')
 outfile=locdir;
 endrsubmit;

The first FILENAME statement defines the fileref LOCDIR, which identifies the
physical location for the files that are downloaded to the UNIX client. The RSUBMIT
statement indicates that the statement that follows will be processed on the z/OS server.
By not specifying a server-ID, this example assumes that the z/OS computer is your
current server. The second FILENAME statement defines the fileref INPDS for the
partitioned data set MFHOST.SAS.PROGRAMS, which contains the SAS programs that
will be downloaded to the client. The PROC DOWNLOAD step transfers all the files in
the partitioned data set on the z/OS server to the library LOCDIR on the UNIX client.

Example 11. DTS: Downloading a Partitioned Data Set from z/OS 295

The ENDRSUBMIT statement indicates the end of the block of statements that are
submitted to the server for processing.

Example 12. DTS: Combining Data from Multiple
Server Sessions

Purpose
Using SAS/CONNECT to connect to multiple servers, you can access data on several
servers, combine that data on the client, and analyze the combined data. For example, if
you have data that is stored under z/OS in a DB2 database and related data that is stored
in an Oracle database under UNIX, you can use SAS/CONNECT in combination with
SAS/ACCESS to combine that data on your client. This example uses salary and
employee data gathered from two servers to illustrate the process.

Program
This example signs on to two servers, downloads data from both servers, and performs
analyses of the data on the client. The program uses the SIGNON and RSUBMIT
statements.

Note: Bullets through apply to downloading both DB2 and Oracle data.

 /*************************************/
 /* connect to z/OS */
 /*************************************/
1 options comamid=tcp;
 filename rlink
 '!sasext0\connect\saslink\tcptso.scr';
 signon zoshost;
 /*************************************/
 /* download DB2 data views using */
 /* SAS/ACCESS engine */
 /*************************************/
2 rsubmit zoshost;
3 libname db db2;
4 proc download data=db.employee
 out=db2dat;
 run;
5 endrsubmit;

 /*************************************/
 /* connect to UNIX */
 /*************************************/
6 options
 remote=hrunix comamid=tcp;
 filename rlink
 '!sasext0\connect\saslink\tcpunix.scr';
 signon;

 /*************************************/

296 Chapter 25 • Examples of Data Transfer Services (DTS)

 /* download Oracle data using */
 /* SAS/ACCESS engine */
 /*************************************/
2 rsubmit hrunix;
3 libname oracle user=scott password=tiger;
4 proc download
 data=oracle.employee out=oracdat;
 run;
5 endrsubmit;

 /*************************************/
 /* sign off both links */
 /*************************************/
7 signoff hrunix;
 signoff zoshost cscript=
 '!sasext0\connect\saslink\tcptso.scr';

 /*************************************/
 /* join data into SAS view */
 /*************************************/
8 proc sql;
 create view joindat as
 select * from db2dat, oracdat
 where oracdat.emp=db2dat.emp;

 /*************************************/
 /* create summary table */
 /*************************************/
9 proc tabulate data=joindat
 format=dollar14.2;
 class workdept sex;
 var salary;
 table workdept*(mean sum) all,
 salary*sex;
 title1 'Worldwide Inc. Salary Analysis
 by Departments';
 title2 'Data Extracted from Corporate
 DB2 Database';
 run;

/* display graphics */
10 proc gchart data=joindat;
 vbar workdept/type=sum
 sumvar=salary
 subgroup=sex
 ascending
 autoref
 width=6
 ctext=cyan;
 pattern1 v=s c=cyan;
 pattern2 v=s c=magenta;
 format salary dollar14.;
 title1 h=5.5pct f=duplex
 c=white
 'Worldwide Inc. Salary Analysis';
 title2 h=4.75pct f=duplex

Example 12. DTS: Combining Data from Multiple Server Sessions 297

 c=white
 'Data Extracted from Corporate DB2
 Database';
 run;
 quit;

1 To sign on to a server, you need to provide several items of information:

• the server-ID, which is specified in a REMOTE= system option or as an option
in the SIGNON statement.

• the communications access method, which is specified by using the
COMAMID= system option in an OPTIONS statement.

• the script file to use when signing on to the server. This script file is usually
associated with the fileref RLINK. Using this fileref is the easiest method for
accessing the script file.

After you provide all the necessary information, you can submit the SIGNON
statement. You can specify the server-ID in the SIGNON statement. If you omit the
server-ID from the RSUBMIT statement, the statements are submitted to the server
session that was identified most recently in a SIGNON statement, in an RSUBMIT
statement or command, or in a REMOTE= system option.

2 After you connect to two or more sessions, you can remotely submit statements to
any of the servers by simply identifying in the RSUBMIT statement which server
should process the statements. After the server-ID has been specified by a previous
statement or option, you are not required to specify it again in the REMOTE
statement. However, this example includes the server-ID in the RSUBMIT
statements, even though the server-ID is not required, to clarify which server is
processing each group of statements.

3 Associate a libref with the library that contains the DB2 database on the server.

4 The data from the DB2 database can then be downloaded to the client. Note that
when you download a view of a database, a temporary SAS data set is materialized
from the view and downloaded to the client. In this example, the output data set on
the client is a temporary SAS data set.

5 The ENDRSUBMIT statement ends the block of statements that are submitted to the
server.

6 To establish a second server session, set the REMOTE= and COMAMID= options to
values that are appropriate for the second server. You also need to set the fileref
RLINK again to associate it with the script file for the second server.

7 Terminate the links to both the UNIX server and the z/OS server. Use the
CSCRIPT= option to identify the script file for signing off the z/OS server.

8 On the client, you can now use the SQL procedure to join into a single view the two
SAS data sets that were created when you downloaded the views from the server.

9 To analyze the joined data, use the name of the view on the client in a PROC
TABULATE step.

10 If you have SAS/GRAPH on your client, you can also use graphics procedures to
analyze the view that is created from the two server databases.

298 Chapter 25 • Examples of Data Transfer Services (DTS)

Example 13. Re-creating an Index for a Data
Transfer

This example shows the re-creation of an index for a SAS data set to be transferred to a
server session.

proc upload index=yes in=sales out=sales(index=(region));
run;

The INDEX=YES option specifies that an index will be re-created in the server session.
The INDEX= REGION option causes an index file to be re-created and associated with
the data set SALES in the server session. The index file identifies all the observations
that contain the variable REGION and its associated values.

If the INDEX= option in the OUT= statement had not been specified, an existing index
associated with the SALES data set in the client session could have been copied to the
server session.

Example 13. Re-creating an Index for a Data Transfer 299

300 Chapter 25 • Examples of Data Transfer Services (DTS)

Chapter 26

Data Transfer Services
Troubleshooting

Troubleshooting the UPLOAD and DOWNLOAD Procedures 301
Symbol Is Not Recognized . 301
Variable-Block Binary File LRECL Value Exceeds 256 Bytes 301
Fixed-Block Binary File LRECL Value Exceeds 256 Bytes 302
EBCDIC CC-Control Is Not Downloaded . 302

Troubleshooting the UPLOAD and DOWNLOAD
Procedures

Symbol Is Not Recognized
During a PROC DOWNLOAD or a PROC UPLOAD step, you receive the following
error message:

 ERROR 200-322: The symbol is not recognized.

This problem occurs if the file on the server that is being referenced by the INFILE= or
the OUTFILE= option begins with a special character and is specified as
FILEREF(filename). For example:

 PROC UPLOAD INFILE=pcflref
 OUTFILE=hstflref($filname);
 run;

To avoid the problem, enclose the filename with single quotation marks, as shown in the
following example:

 PROC UPLOAD INFILE=pcflref
 OUTFILE=hstflref('$filname');
 run;

Variable-Block Binary File LRECL Value Exceeds 256 Bytes
You transfer a variable-block binary file that has a record length (LRECL) that is greater
than 256 bytes, and SAS/CONNECT segments the file into multiple 256-byte records.
For example, downloading a binary file that has an LRECL of 1024 results in four 256-
byte records.

301

The data is not lost when the file is segmented by SAS/CONNECT. Using the LRECL
option in the FILENAME statement that is processed at the client or the server does not
prevent the problem. To solve the problem, follow these steps:

1. Define the z/OS FILENAME statement by using the RECFM=U parameter.

FILENAME VFILE 'VARIABLE.BLOCK.FILE' RECFM=U;

2. Use the DOWNLOAD procedure with the BINARY option to transfer the file.
Information about the transfer that is displayed in the local Log windows shows how
many bytes were transferred. For example:

NOTE: 1231 bytes were transferred at
 1231 bytes/second.

3. At the client, use the RECFM= and the LRECL= options in the INFILE statement
that is used to read in the transferred file, where RECFM= is set to S370VB and
LRECL= is set to the number of bytes that are transferred.

Fixed-Block Binary File LRECL Value Exceeds 256 Bytes
You transfer a fixed-block binary file that has a record length (LRECL) that is greater
than 256 bytes, and SAS/CONNECT segments the file into multiple 256-byte records.
For example, downloading a binary file that has an LRECL of 1024 results in four 256-
byte records.

The data is not lost when the file is segmented by SAS/CONNECT. Using the LRECL=
option in the FILENAME statement at the client or the server does not prevent the
problem. To solve the problem, follow these steps:

1. Use the DOWNLOAD procedure with the BINARY= option to transfer the file.

2. The INFILE statement that is used to read the transferred file must contain the
options RECFM=F and LRECL=xxxx, where xxxx is equal to the LRECL parameter
at the server.

Note: The RECFM= and LRECL= options in the FILENAME statement are supported
only under z/OS operating environments. For details, see the “FILENAME
Statement: z/OS” in SAS Companion for z/OS.

EBCDIC CC-Control Is Not Downloaded
When you use PROC DOWNLOAD on a print file, the EBCDIC carriage-control
character 'F1'x is not downloaded.

To avoid the problem, change the SAS system option FILECC to NOFILECC.

Note: The FILECC system option is supported only under z/OS operating
environments. For details, see “FILECC System Option: z/OS” in SAS Companion
for z/OS.

The NOFILECC option indicates that the data in column 1 of a printer file should be
treated as data and not carriage control. Releases of SAS later than SAS 6 use FILECC
as the default setting, which you must change to NOFILECC in order to successfully
download 'F1'x. In addition, the DCB characteristics of the print file must include a
value for RECFM= of FBA or VBA.

302 Chapter 26 • Data Transfer Services Troubleshooting

Part 7

Appendixes

Appendix 1
Cross-Architecture Issues . 305

Appendix 2
SAS/CONNECT Cross-Version Issues . 311

303

304

Appendix 1

Cross-Architecture Issues

Translation of SAS Data between Computers That Represent Data Differently . 305
Overview of Data Translation between Computers . 305
Remote Library Services . 305
Data Transfer Services . 306

Translation of Floating-Point Numbers between Computers 307
Loss of Numeric Precision and Magnitude . 307
Avoiding Loss of Precision . 307
Significance of Loss of Magnitude . 307
Example . 308

Encoding Compatibility between SAS/CONNECT Client and Server Sessions . . 308

Translation of SAS Data between Computers That
Represent Data Differently

Overview of Data Translation between Computers
SAS/CONNECT clients and servers can access SAS data and programs from each other,
despite differences in how data is represented on computers that the client and server
SAS sessions run on. For example, a SAS/CONNECT client that runs on a PC can
download a SAS data set from a mainframe for processing in the client session.

Numeric data (floating-point representation) and character data are dynamically
translated in each client/server transfer, bypassing the explicit creation of an
intermediate transport file, without the user's knowledge of the underlying translation
activities.

Remote Library Services
Remote Library Services (RLS) performs dynamic data translation. SAS/CONNECT use
RLS to access SAS files in remote SAS libraries. SAS/CONNECT clients access remote
files by using the LIBNAME statement.

Note: You can also use the CONNECT TO statement in PROC SQL to access remote
files.

If the server data is accessed and processed to produce a single result at the client, only
one translation occurs: from the representation of the server computer to the
representation of the client computer.

305

If the server data is processed on the client and the results are updated on the server, two
translations occur.

• When the data is accessed from the server, it is translated from the representation of
the server computer to the representation of the client computer.

• When the data is updated (and stored) on the server, it is translated from the
representation of the client computer back to the representation of the server
computer.

Depending on the characteristics of the data, translation can cause a loss of some degree
of numeric precision and magnitude.

The LIBNAME statement can be used to identify the server library to be accessed.
Various SAS statements can be used to process the data, specifying the location of the
server data and methods of data processing. These examples show that data is read (and
translated) from the server and processed, with results being copied to a client location.

libname serv-libref 'server-library'
server=server-ID;
libname client-libref 'client-library';
proc copy in=serv-libref
out=client-libref;

Note: Using RLS in a SAS/CONNECT session is not the most efficient method to move
large quantities of server data. RLS is used here to illustrate the possibility for the
loss of precision across computers that represent numeric data differently.

For details about how to access a remote file system, see “Remote Library Services
(RLS)” on page 207 .

Data Transfer Services

Overview
Data Transfer Services (DTS) performs dynamic data translation. SAS/CONNECT uses
DTS to upload and download complete or partial SAS files in a client/server
environment.

For an upload, the client sends data to the server for processing. For a download, the
client requests the transfer of data from the server to the client for processing.

For more information, see “Using Data Transfer Services” on page 237 .

The translation process for transferring data varies according to the SAS release.

Translation of SAS 8 and Later Releases
In SAS 8 and later releases, translation occurs only once for each data transfer between a
client and a server that run on computers whose architectures are different from each
other. SAS/CONNECT dynamically translates incompatible file formats for each file
upload or file download transaction, bypassing the explicit creation of a transport file.

LIBNAME statements are used to identify the server library to be accessed and the client
library that the server data is written to. PROC DOWNLOAD reads the data from the
server and translates and copies it to a specified client location.

libname client-libref ' client-library';
rsubmit;
 libname serv-libref ' server-library';
 proc download
data=server-libref.data-set

306 Appendix 1 • Cross-Architecture Issues

 out=client-libref.data-set;
endrsubmit;

SAS 6 Translation
In SAS 6, translation occurs twice for each data transfer between a client and a server
that run on computers whose architectures are different from each other.

1. The data is translated from the source computer's native format to transport format.

2. The data that is represented in transport format is translated to the target computer's
native format.

LIBNAME statements are used to identify the server library to be accessed and the client
library that the server data is written to. PROC DOWNLOAD translates the data from
the server into transport format, which is next translated to the client computer format
when copied to a specified client location.

libname client-libref ' client-library';
rsubmit;
 libname serv-libref ' server-library';
 proc download
data=server-libref.data-set
 out=client-libref.data-set;
endrsubmit;

Translation of Floating-Point Numbers between
Computers

Loss of Numeric Precision and Magnitude
If you move SAS data between a client and a server session that run on computers that
have different architectures, numeric precision or magnitude can be lost. Precision can
be lost when the data value in the source representation contains more significant digits
than the target representation can store. A loss of magnitude results when data values
exceed the range of values that an operating environment can store.

For complete details about how SAS stores numeric values, see SAS Language
Reference: Concepts.

Avoiding Loss of Precision
To avoid loss of precision, do not store numeric values in short variables. Instead, store
numeric values using longer numeric variables (up to 8 bytes) according to the number
of significant digits that the target representation can store.

Significance of Loss of Magnitude
When you lose magnitude, SAS produces the following warning:

WARNING: The magnitude of at least one numeric value
was decreased to the maximum the target representation allows,
due to representation conversion.

Translation of Floating-Point Numbers between Computers 307

A loss of magnitude is unlikely in many applications, but if you have data with
extremely large values or extremely small fractions, you might experience a loss of
magnitude during cross-architecture access. When you lose magnitude, SAS changes the
values that are out of range to the maximum or minimum value that the operating
environment can represent.

Table A1.1 Approximate Value Ranges by Operating Environment

Operating Environment Minimum Value Maximum Value

OpenVMS 2.3E-308 1.8E+308

UNIX 2.3E-308 1.8E+308

Windows 2.3E-308 1.8E+308

z/OS 5.4E-79 7.2E+75

Example
You create a data set under UNIX that contains the value 8.93323E+105. If you copy
the file to a z/OS operating environment, magnitude is lost and the value changes to
7.23701E+75, which is the maximum value that z/OS can represent.

Encoding Compatibility between SAS/CONNECT
Client and Server Sessions

In order to successfully use SAS/CONNECT programming services, the encodings of
the client and server sessions must be compatible. Compatible encodings share a
common character set. For example, client and server sessions that each use the UTF-8
encoding are compatible with each other.

Client and server sessions that use the same locale, but do not specify an encoding of
UTF-8, can also be compatible. However, if the client and server sessions use the same
locale, but the UTF-8 encoding is specified for only one of the two sessions, the sessions
are incompatible, and the connection fails. Here is an example of an error message:

ERROR: The client session encoding UTF8 is not compatible with the
server session encoding Wlatin2.
ERROR: Remote submit to server1 cancelled.

In some cases, a client session can connect to a server session even though each session
runs in a different locale and neither uses the UTF-8 encoding. If each session's encoding
contains all the characters of each locale's native language, the sessions are compatible
and a connection occurs. For example, a Windows client session that uses the Wlatin1
encoding that is associated with the Spanish Mexico locale is compatible with a UNIX
server session that uses Latin1 encoding that is associated with the Italian Italy locale.
All the characters used in the Italian and Spanish languages are present in both the
Wlatin1 and the Latin1 encoding.

However, SAS/CONNECT programming services might not successfully run in
incompatible client and server sessions. For example, a client session that uses the

308 Appendix 1 • Cross-Architecture Issues

Wlatin2 encoding that is associated with the Czech Czechoslovakia locale is
incompatible with the server session that uses the open_ed-1141 z/OS encoding that is
associated with the German Germany locale. The Wlatin2 encoding and the
open_ed-1141 encodings are not compatible, because many German characters are not
present in the Wlatin2 encoding and many Czech characters are not present in the open-
ed-1141 encoding. The operation might not be successful. Here is an example of a
warning message:

Warning: The client session encoding Wlatin2 is not compatible with the
server session encoding open-ed-1141.
Data may not be transmitted correctly.

For information about locales and encodings, see the SAS National Language Support
(NLS): Reference Guide.

Encoding Compatibility between SAS/CONNECT Client and Server Sessions 309

310 Appendix 1 • Cross-Architecture Issues

Appendix 2

SAS/CONNECT Cross-Version
Issues

Factors Affecting Access to SAS Files . 311

Features Exclusive to SAS Releases after SAS 6 . 312
New Features Incompatible with SAS 6 . 312
SAS File Format Features . 312
File Transfer Services: Truncating Long Names and Labels 313

RLS: Accessing SAS Files in a Mixed Cross-Version Library 314
Separating Older SAS Files from Newer SAS Files . 314
Specifying an Engine to Locate Release-Specific Files in a Mixed Library 314
Determining the Version of SAS Used to Create a SAS File 315
Concatenating Libraries . 315

Accessing SAS Data Sets . 316
Limitations . 316
SAS 6 Client Accessing a SAS 8 (or later) Server . 316
SAS 8 (or Later) Client Accessing a SAS 6 Server . 316

Accessing SAS Views . 317
Limitations . 317
SAS 6 Client Accessing a SAS 8 (or Later) Server . 317
SAS 8 (or Later) Client Accessing a SAS 6 Server . 318

Accessing Catalogs . 319
Limitations . 319
SAS 6 Client Accessing a SAS 8 (or Later) Server . 319
SAS 8 (or Later) Client Accessing a SAS 6 Server . 320

File Format Translation Algorithms . 320
SAS 6 Translation . 320
SAS 8 (and Later) Translation . 320

Factors Affecting Access to SAS Files
SAS files (data and applications) that were created by using SAS releases later than SAS
6 are interchangeable in a SAS/CONNECT client/server environment because their file
formats are identical.

However, because the SAS file formats of the newer SAS releases (after SAS 6) are
dramatically different from older SAS releases (SAS 6 and earlier), the ability to access
older SAS files from newer SAS releases (or newer SAS files from older SAS releases)

311

in a SAS/CONNECT client/server environment is limited. Access is determined by the
following factors:

• SAS version

• SAS member type

• Data set

• Catalog

• View

• SAS/CONNECT service

• Remote Library Services (RLS)

CAUTION:
RLS in SAS/CONNECT 9 and later is not backward compatible with SAS
6 files. SAS/CONNECT 9 clients cannot use RLS with SAS 6
SAS/CONNECT servers. SAS 6 SAS/CONNECT clients cannot use RLS
with SAS/CONNECT 9 servers.

• Compute Services

• File Transfer Services

For SAS release information that relates to single-user SAS mode, see the SAS Language
Reference: Concepts. For information that relates to SAS/SHARE software, see the
SAS/SHARE User's Guide.

Features Exclusive to SAS Releases after SAS 6

New Features Incompatible with SAS 6
These new features in SAS cannot be modified to make SAS files compatible with SAS
6:

• generation data sets

• integrity constraints

Any attempt to access SAS files that contain these features will fail. For complete details
about new features, see SAS Language Reference: Concepts.

SAS File Format Features
The file format features of newer SAS releases and SAS 6 are incompatible. Here are the
file format features of the newer releases:

• long data set labels

• long variable labels

• long variable names

However, in order to maintain the ability to transfer data sets between the newer and
older SAS releases, SAS/CONNECT applies truncation rules to data set attributes.
Truncation enables you to take advantage of the features of the newer SAS releases
while continuing to access SAS 6 files in a mixed-version environment.

312 Appendix 2 • SAS/CONNECT Cross-Version Issues

File Transfer Services: Truncating Long Names and Labels
The newer SAS releases support longer names and labels than the maximum length
supported in SAS 6. The longer names and labels are stored in SAS 8 (or later) data sets,
which make those data sets incompatible with SAS 6 data sets. SAS/CONNECT
implements a set of truncation rules to convert data sets that contain long names and
labels into SAS 6 data sets.

The UPLOAD or DOWNLOAD procedures apply the truncation rules when performing
these types of transfers of SAS files

• from a SAS 8 (or later) SAS session to a SAS 6 SAS session

• between two sessions (each running SAS 8 or later) to produce a SAS 6 data set.

Note: To produce a SAS 6 data set explicitly, specify VALIDVARNAME=V6 in
the SAS session that the data set is created in. A setting of
VALIDVARNAME=V6 overrides any other engine specification in the SAS
session, causing truncation to be applied to long names.

SAS/CONNECT applies the following truncation rules to data sets that have long data
set labels, long variable labels, or long variable names. In each case, the length is
truncated to the maximum length that is supported in SAS 6.

Table A2.1 SAS 6 Truncation Lengths

Label or Name Truncation Length (in characters)

Data set label 40

Variable label 40

Variable name 8

Note: If the variable label field is empty, the long variable name is copied to the label
field.

The truncation algorithm that is used to produce the 8-character variable name also
resolves conflicting variable names. Here are some additional truncation rules:

Table A2.2 Truncation Rules to Resolve Conflicting Variable Names

Truncation Rule Example

The first name that has more than eight
characters is truncated to eight characters.

STOCKNUMBER53 is truncated to
STOCKNUM.

The next name that has more than eight
characters is truncated to eight characters. If it
conflicts with an existing variable name, it is
truncated to seven characters, and a suffix of 2
is added.

STOCKNUMBER54 is truncated to
STOCKNU2.

Features Exclusive to SAS Releases after SAS 6 313

Truncation Rule Example

The suffix is increased by one for each
truncated name that results in a conflict. If the
suffix reaches 9, the next conflicting variable
name is truncated to 6 characters, and a suffix
of 10 is added.

STOCKNUMBER63 is truncated to
STOCKN10.

RLS: Accessing SAS Files in a Mixed Cross-
Version Library

Separating Older SAS Files from Newer SAS Files
Whenever possible, keep older SAS files (SAS 6) and newer SAS files (created using
SAS releases after SAS 6) in separate physical locations. Segregation of release-specific
files avoids confusion about what files can be accessed when using RLS.

Specifying an Engine to Locate Release-Specific Files in a Mixed
Library

Your ability to access a specific SAS file in a library depends on the engine that is
associated with that library. You can explicitly specify the engine in the LIBNAME
statement, or you can allow SAS to select the appropriate engine according to the
version of SAS being used and the format of the SAS files in the directory. If the library
is homogenous (for example, all data files are SAS 9 files), the V9 engine is used, by
default.

Note: The V9 and V8 engines provide identical functionality.

However, if a physical library contains a mixture of SAS 6 files and SAS 8 files, a SAS
session that runs a newer release of SAS can use the V6 engine to access only the SAS 6
files in that library.

CAUTION:
A SAS 9 session cannot access SAS 6 files in a mixed library.

If a library contains newer and older SAS files and the V9 or V8 engine is specified,
only the SAS 9 or SAS 8 files can be accessed. The SAS 6 files are not recognized in the
SAS 9 or SAS 8 session.

However, if the V6 engine is specified, the SAS 6 files can be accessed. The SAS 9 or
SAS 8 files are not recognized.

In the following example, the libref V8LIB accesses only SAS 9 or SAS 8 files.

libname v8lib v8 'SAS-library';

In the following example, the libref V9LIB accesses only SAS 9 or SAS 8 files.

libname v9lib v9 'SAS-library';

In the following example, the libref V6LIB accesses only SAS 6 files.

libname v6lib v6 'SAS-library';

314 Appendix 2 • SAS/CONNECT Cross-Version Issues

Determining the Version of SAS Used to Create a SAS File
To determine the version of the SAS engine that was used to create a SAS file, examine
the filename extension.

Here are the filename extensions for files that are created under the Windows operating
environment:

Table A2.3 Filename Extensions Supported Under the Windows Operating Environment

File Type SAS 6 Filename Extension
SAS 9 or SAS 8
Filename Extension

Data Set sd2 sas7bdat

Catalog sc2 sas7bcat

View sv2 sas7bvew

Concatenating Libraries
In order to expand the scope of SAS file access from a single library to multiple
libraries, use library concatenation. With an expanded scope, you can perform operations
on either SAS 6 data files or SAS 9 data files that span multiple libraries.

Here is an example of library concatenation:

libname v6lib v6 'SAS-library';
libname v9lib v9 'SAS-library';
libname catlib (v9lib v6lib);

Note: SAS-library must be the physical name that is recognized by the operating
environment.

The first LIBNAME statement assigns the libref V6LIB to a SAS library that is accessed
using the V6 engine. The V6 engine recognizes only files that are appended with a SAS
6 filename extension.

The second LIBNAME statement assigns the libref V9LIB to a SAS library that is
accessed using the V9 engine. The V9 engine recognizes only files that are appended
with a SAS 9 filename extension.

The third LIBNAME statement assigns the libref CATLIB to concatenated SAS libraries
that are referenced by the librefs V9LIB and V6LIB. The order of the librefs identifies
the sequence in which the libraries are searched. The SAS operation uses the first
occurrence of a specified file.

For example, if the same SAS file exists in both SAS libraries and you delete that SAS
file, the SAS file in the first library (for example, STOCK.SAS7BDAT in V9LIB) is
deleted. If V6LIB precedes V9LIB in the library concatenation statement (for example,
STOCK.SD2 in V6LIB), that SAS file is deleted. If the specified SAS file exists in only
one SAS library, that SAS file is deleted.

RLS: Accessing SAS Files in a Mixed Cross-Version Library 315

Accessing SAS Data Sets

Limitations
Accessing data that is stored in a SAS data set is a fundamental operation in SAS. Be
aware of any limitations or restrictions when accessing data sets in a cross-version
environment. Access to the data files is based on the SAS/CONNECT service that is
used, and whether the data files use any new features that are in SAS releases after SAS
6.

SAS 6 Client Accessing a SAS 8 (or later) Server
This table summarizes the limitations of a SAS 6 client that accesses SAS data sets on a
SAS 8 (or later) server in a cross-version environment.

Table A2.4 Limitations for Accessing SAS Data Sets on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 8 Server

Remote Library Services No access is permitted
between a SAS 6 client and a
SAS 9 server.

If SAS 8 data sets on a SAS 8
server do not implement new
features, a SAS 6 client can
read, write, or update SAS 8
data sets on a SAS 8 server.

Data Transfer Services All file formats are automatically converted when uploading or
downloading a SAS 6 data set to a SAS 9 or SAS 8 target.

If SAS 9 or SAS 8 data sets do not contain new features, they
can be downloaded to a SAS 6 target. Truncation rules are
applied.

Compute Services A SAS 6 client can remotely submit a SAS program to a SAS
9 or SAS 8 server. The data sets that are referenced in the
remote submit blocks can be SAS 9, SAS 8, or SAS 6 data
sets.

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses data sets
on a SAS 6 server in a cross-version environment.

316 Appendix 2 • SAS/CONNECT Cross-Version Issues

Table A2.5 Limitations for Accessing Data Sets on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service
SAS 9 Client Connecting
to a SAS 6 Server

SAS 8 Client Connecting
to a SAS 6 Server

Remote Library Services No access is permitted
between a SAS 9 client and a
SAS 6 server.

If SAS 6 data files do not
implement new features, a
SAS 8 client can read, write,
or update SAS 6 data files on
a SAS 6 server.

Data Transfer Services All data formats are automatically converted when uploading
or downloading a SAS 6 file to a SAS 9 or SAS 8 target.

If SAS 9 or SAS 8 data files do not contain new features, they
can be uploaded to a SAS 6 target. Truncation rules are
applied.

Compute Services A SAS 9 or SAS 8 client can remote submit a SAS program to
a SAS 6 server. The data files that are referenced in the remote
submit blocks can be formatted only as SAS 6 files.

Accessing SAS Views

Limitations
There are limitations and restrictions when accessing SAS views in a cross-version
environment. Here are the types of SAS views:

• DATA step

• PROC SQL

• SAS/ACCESS

Note: SAS/CONNECT uses the data that the SAS view references, but not the SAS
view itself.

SAS 6 Client Accessing a SAS 8 (or Later) Server
This table summarizes the limitations of a SAS 6 client that accesses SAS views on a
SAS 8 (or later) server in a cross-version environment.

Accessing SAS Views 317

Table A2.6 Limitations for Accessing SAS Views on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 8 Server

Remote Library Services No access is permitted
between a SAS 6 client and a
SAS 9 server.

For SAS 8 DATA step views,
the SAS 6 client has only read
access.

For SAS 8 SAS/ACCESS
views, the SAS 6 client has
read, write, and update
access.

Data Transfer Services For PROC SQL views, a SAS 6 client can upload a PROC
SQL view between a SAS 9 or SAS 8 server by using the
INLIB= option to specify the library that is associated with the
view to transfer. The DATA= option can be used, but a data
set will be created.

Compute Services For SAS views, a Version 6 client can remote submit a SAS
program that references SAS views to a SAS 9 or SAS 8
server. The SAS views that are referenced in remote submit
blocks can be SAS 9, SAS 8, or SAS 6 data files.

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses SAS
views on a SAS 6 server in a cross-version environment.

Table A2.7 Limitations for Accessing SAS Views on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service
SAS 9 Client Connecting
to a SAS 6 Server

SAS 8 Client Connecting
to a SAS 6 Server

Remote Library Services No access is permitted
between a SAS 9 client and a
SAS 6 server.

For SAS 6 DATA step views
and SAS 6 PROC SQL
views, if the view is
processed at the server
(RMTVIEW=YES in the
LIBNAME statement), the
SAS 8 client has read access
only for DATA step views.

Data Transfer Services A SAS 9 or SAS 8 client can upload data that is associated
with a SAS view to a SAS 6 server.

Names of files that are transferred to a SAS 6 server are
truncated, following truncation rules.

Compute Services A SAS 9 or SAS 8 client can remotely submit a SAS program
that references SAS 6 views to a SAS 6 server.

318 Appendix 2 • SAS/CONNECT Cross-Version Issues

Accessing Catalogs

Limitations
There are limitations and restrictions when accessing catalogs in a cross-version
environment.

CAUTION:
A SAS 9 or SAS 8 SAS session cannot read SAS 6 catalogs on AIX RS/6000.
Use the CPORT and CIMPORT procedures to migrate SAS 6 catalogs into a SAS 9
or SAS 8 environment on AIX.

SAS 8 (or later) catalog entry types (alphabetized horizontally) that are compatible with
SAS 6 include:

AFCBT AFGO DEVMAP

FONT FONTLIST KEYMAP

KEYS LOG OUTPUT

SOURCE TEMPLATE TRANTAB

SAS 6 Client Accessing a SAS 8 (or Later) Server
This table summarizes the limitations of a SAS 6 client that accesses catalogs on a SAS
8 (or later) server in a cross-version environment.

Table A2.8 Limitations for Accessing Catalogs on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 9 Server

Remote Library Services No access is permitted
between a SAS 9 client and a
SAS 6 server.

A SAS 6 client can read a
SAS 6 catalog on a SAS 8
server.

A SAS 6 client can read,
write, and update a SAS 8
catalog that does not contain
new features.

Data Transfer Services A SAS 6 client can upload a SAS 6 catalog to a SAS 9 or SAS
8 server. The uploaded catalog is converted to SAS 9 or SAS 8
format.

A SAS 6 client can download a SAS 9 or SAS 8 catalog if the
entry type does not contain new features.

Compute Services A SAS 6 client can remotely submit a SAS program that
references a SAS catalog to a SAS 9 or SAS 8 server.

Accessing Catalogs 319

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses catalogs
on a SAS 6 server in a cross-version environment.

Table A2.9 Limitations for Accessing Catalogs on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service
SAS 9 Client Connecting
to a SAS 6 Server

SAS 8 Client Connecting
to a SAS 6 Server

Remote Library Services No access is permitted
between a SAS 9 client and a
SAS 6 server.

A SAS 8 client can read from
and write to a SAS 6 catalog
on a SAS 6 server.

A SAS 8 client can write a
SAS 6 catalog from one SAS
6 library to another SAS 6
library by using PROC
COPY.

Data Transfer Services A SAS 9 or SAS 8 client can download a Version 6 catalog
from a SAS 6 server.

A SAS 9 or SAS 8 server can upload a SAS 6 catalog from a
SAS 9 or Version 8 server if the entry type does not contain
new features.

A SAS 9 or SAS 8 client cannot create a SAS 6 catalog entry
by using PROC UPLOAD.

Compute Services A SAS 9 or SAS 8 client can remotely submit a SAS program
that references a SAS catalog to a SAS 6 server.

File Format Translation Algorithms

SAS 6 Translation
In SAS 6, translation occurs twice for each data transfer between a client and a server
that run on computers whose architectures are incompatible.

1. The data is translated from the source computer's native file format to transport
format.

2. The data that is represented in transport format is translated to the target computer's
native file format.

SAS 8 (and Later) Translation
In SAS 8 and later releases of SAS, translation occurs only once for each data transfer
between a client and a server that run on computers whose architectures are
incompatible. SAS/CONNECT dynamically translates incompatible file formats for each

320 Appendix 2 • SAS/CONNECT Cross-Version Issues

file upload or file download transaction, bypassing the explicit creation of a transport
file.

File Format Translation Algorithms 321

322 Appendix 2 • SAS/CONNECT Cross-Version Issues

Glossary

access method
See communications access method.

aggregate storage location
a location in an operating system that can contain a group of distinct files. The exact
name for this location varies by operating system; for example, directory, folder, or
partitioned data set.

architecture
the manner in which numeric data and character data are represented internally in a
particular operating environment. Architecture encompasses standards or
conventions for storing floating-point numbers (IEEE or IBM 390); for character
encoding (ASCII or EBCDIC); for the ordering of bytes in memory (big Endian or
little Endian); for word alignment (4-byte boundaries or 8-byte boundaries); and for
data-type length (16-bit, 32-bit, or 64-bit).

ASCII mnemonic
the name of an ASCII control character that you can specify in a program in order to
invoke the associated function. For example, NUL represents the null character, CR
represents carriage return, and so on.

asynchronous processing
a type of server processing that enables you to submit multiple tasks to one or more
server sessions that execute in parallel, thus making efficient use of time and
resources. Client processing resumes immediately. That is, you do not wait for the
server processing to complete before control is returned to the client session.

authentication
See client authentication.

autoexec file
a file that contains SAS statements that are executed automatically when SAS is
invoked. The autoexec file can be used to specify some of the SAS system options,
as well as to assign librefs and filerefs to data sources that are used frequently.

backing store
a SAS utility file that is written to the client SASWORK directory.

323

batch mode
a noninteractive method of running SAS programs by which a file (containing SAS
statements along with any necessary operating system commands) is submitted to the
batch queue of the operating environment for execution.

binary
the name of the base 2 number system. A binary digit can have one of two values: 0
or 1. A binary digit is called a bit and is considered to be off when its value is 0 and
on when its value is 1.

binary file
a file that is stored in binary format, which cannot be edited using a text editor.
Binary files are usually executable, but they can contain only data.

block
See statement block.

break signal
an asynchronous protocol signal indicating that the normal flow of data should be
interrupted.

Break window
a special class of windows for SAS/CONNECT software. Break windows enable you
to handle error conditions and interruptions that are caused by break signals that you
issue.

carriage-control character
a symbol that tells a printer how many lines to advance the paper, when to begin a
new page, when to skip a line, and when to hold the current line for overprinting.

catalog
See SAS catalog.

catalog entry
See SAS catalog entry.

CEDA
a feature of SAS software that enables a SAS data file that was created in any
directory-based operating environment (for example, Solaris, Windows, HP-UX,
OpenVMS, and z/OS) to be read by a SAS session that is running in another
directory-based environment. You can access the SAS data files without using any
intermediate conversion steps. Short form: CEDA.

character set
a collection of characters that are used by a language or group of languages. A
character set includes national characters, special characters, the digits 0-9, and
control characters.

checksum
one or more characters appended to the end of a data block for error-checking
purposes.

client authentication
the process of verifying the identity of a person or process for security purposes.

324 Glossary

command file
a file that contains operating system commands to be executed in sequence.

Communication Services Break Handler window
one of two possible windows that are displayed when a server session is interrupted
by a break signal or when there is an error in a statement that is submitted to the
server.

communications access method
an interface between SAS and the network protocol or interface that is used to
connect two operating environments. Depending on the operating environments,
SAS/SHARE and SAS/CONNECT use either the TCP/IP or XMS communications
access method.

Compute Services
a feature of SAS/CONNECT that enables a SAS/CONNECT client to distribute SAS
processing to one or more SAS/CONNECT server sessions and to maintain control
of these server sessions and their results from the single client session. Compute
Services are implemented via the RSUBMIT and ENDRSUBMIT statements. Short
form: CS.

configuration file
an external file containing the SAS system options that define the environment in
which to run SAS. These system options take effect each time you invoke SAS.

control character
a type of character that is used for control purposes rather than for information
exchange. Control characters are usually nonprintable.

Cross-Environment Data Access
See CEDA.

Cross-Memory Services
See XMS.

CS
See Compute Services.

data set
See SAS data set.

Data Transfer Services
a feature of SAS/CONNECT software that enables data to be transferred between a
SAS/CONNECT client and a SAS/CONNECT server, regardless of the operating
environment, the computer architectures, and the SAS release that is being used.
Short form: DTS.

data translation
the automatic conversion of the internal representation of character and numeric data
that occurs when the data is transferred between SAS/CONNECT client and server
computers that run under different operating environments. For example, data that
was created under UNIX is automatically converted to the Windows data
representation when it is transferred to a Windows operating environment.

data view
See SAS data view.

Glossary 325

descriptor information
information about the contents and attributes of a SAS data set. For example, the
descriptor information includes the data types and lengths of the variables, as well as
which engine was used to create the data. SAS creates and maintains descriptor
information within every SAS data set.

DTS
See Data Transfer Services.

EBCDIC
a family of single-byte and multi-byte encodings for the representation of data on
IBM mainframe and mid-range computers. EBCDIC encodes the uppercase and
lowercase letters of the English alphabet, punctuation marks, the digits 0-9, and an
extended set of control characters. Short form: EBCDIC

encryption
the act or process of converting data to a form that is unintelligible except to the
intended recipients.

engine
a component of SAS software that reads from or writes to a file. Various engines
enable SAS to access different types of file formats.

entry type
a characteristic of a SAS catalog entry that identifies the catalog entry's structure and
attributes to SAS. When you create a SAS catalog entry, SAS automatically assigns
the entry type as part of the name.

Extended Binary Coded Decimal Interchange Code
See EBCDIC.

external database
a database that stores data that is not part of the SAS System. For example, DB2,
Oracle, and Sybase are types of external databases.

external file
a file that is created and maintained by a host operating system or by another
vendor's software application. An external file can read both data and stored SAS
statements.

file reference
See fileref.

file specification
the name of an external file. This name is the name by which the host operating
environment recognizes the file. On directory-based systems, the file specification
can be either the complete pathname or the relative pathname from the current
working directory.

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS.

326 Glossary

global option
an option that affects the processing of an entire SAS program or interactive SAS
session from the time the option is specified until it is changed. Examples of items
that are controlled by SAS system options include the appearance of SAS output, the
handling of some files that are used by SAS, the use of system variables, the
processing of observations in SAS data sets, features of SAS initialization, and the
way SAS interacts with your host operating environment.

GRLINK driver
a device driver that enables you to execute graphics statements on a server but to
display the resulting graphs on a client. In order to provide this functionality, the
GRLINK driver must be installed on the server.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

Internet Protocol Version 4
See IPv4.

Internet Protocol Version 6
See IPv6.

IP address
a unique network address that is assigned to each computer that is connected to the
Internet. The IP address can be specified in either of two formats: Internet Protocol
Version 4 (IPv4) or Internet Protocol Version 6 (IPv6). The IPv4 format consists of
four parts in dot-decimal notation, as in 123.456.789.0. The IPv6 format can consist
of up to eight groups of four hexadecimal characters, delimited by colons, as in
FE80:0000:0000:0000:0202:B3FF:FE1E:8329.

IPv4
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the predecessor of Internet Protocol
Version 6, uses dot-decimal notation to represent 32-bit address spaces. An example
of an Internet Protocol Version 4 address is 10.23.2.3. Short form: IPv4.

IPv6
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the successor of Internet Protocol
Version 4, uses hexadecimal notation to represent 128-bit address spaces. The format
can consist of up to eight groups of four hexadecimal characters, delimited by
colons, as in FE80:0000:0000:0000:0202:B3FF:FE1E:8329. As an alternative, a
group of consecutive zeros could be replaced with two colons, as in
FE80::0202:B3FF:FE1E:8329. Short form: IPv6

library reference
See libref.

libref
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library.

Glossary 327

libref inheritance
a feature that enables libraries that are defined in a client session to be inherited by a
server session for read and write access. Libref inheritance occurs during sign-on and
during remotely submitted executions.

line mode
See interactive line mode.

local data
data that is accessed through a SAS server on your computer. The data can be stored
either on your hard drive or on a network file system, such as a Novell file server,
that makes the physical location of the data transparent to applications.

local session
a SAS session running on the local host. The local session accepts SAS statements
and passes those that are remote-submitted to the remote host for processing. The
local session manages the output and messages from both the local session and the
remote session.

log
See SAS log.

macro facility
a component of Base SAS software that you can use for extending and customizing
SAS programs and for reducing the amount of text that must be entered in order to
perform common tasks. The macro facility consists of the macro processor and the
macro programming language.

macro variable
a variable that is part of the SAS macro programming language. The value of a
macro variable is a string that remains constant until you change it. Macro variables
are sometimes referred to as symbolic variables.

member name
a name that is assigned to a SAS file in a SAS library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB,
INDEX, ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

MP CONNECT
a feature of SAS/CONNECT software that uses multiple CPUs to process tasks in
parallel. Multiprocessing can be used within an operating environment that has SMP
hardware, across operating environments, or both. Short form: MP CONNECT.

Multi-Processing CONNECT
See MP CONNECT.

observation
a row in a SAS data set. All of the data values in an observation are associated with a
single entity such as a customer or a state. Each observation contains either one data
value or a missing-value indicator for each variable.

328 Glossary

operating environment
a computer, or a logical partition of a computer, and the resources (such as an
operating system and other software and hardware) that are available to the computer
or partition.

packet
a grouping of printable characters, a sequence number, and a checksum, which are
transmitted over the link as a unit. SAS/CONNECT clients and servers use these
specially formatted packets to communicate with each other.

permanent SAS library
a SAS library that is not deleted when a SAS session ends, and which is therefore
available to subsequent SAS sessions.

pipeline parallelism
a SAS/CONNECT feature that accelerates throughput by enabling data to be piped
from one process to another in an SMP environment. Pipeline parallelism enables the
execution of SAS DATA steps and SAS procedures to overlap, with only a single
pass through the data. Rather than waiting for one process to completely finish
writing output, piping starts to execute the waiting process as soon as the first
process starts to generate data. In addition, piping the data saves both time and disk
space because it eliminates the intermediate step of writing data to disk.

piping
an extension to MP CONNECT functionality that enables you to run multiple
dependent processes asynchronously. Piping improves performance for some tasks
by writing output to TCP/IP ports instead of to disk.

port
in a network that uses the TCP/IP protocol, an endpoint of a logical connection
between a client and a server. Each port is represented by a unique number.

REMOTE engine
a SAS library engine that enables a client to access data on a server.

Remote Library Services
a feature of SAS/SHARE and SAS/CONNECT software that enables you to read,
write, and update remote data as if it were stored on the client. RLS can be used to
access SAS data sets on computers that have different architectures. RLS also
provides read-only access to some types of SAS catalog entries on computers that
have different architectures. Short form: RLS.

remote processing
the use of communications software to process local programs with a server's CPU
resources. In SAS/CONNECT software, the output and messages from a program
that runs on the server are displayed on the client.

remote session
a SAS session that is running in a special mode on the remote host. No output or log
messages are displayed on the remote host. Instead, the results of a remote SAS
session are transmitted back to the log file and output files on the local host.

remotely submit
to use the RSUBMIT command or statement to submit statements from a
SAS/CONNECT client session to be executed in a SAS/CONNECT server session.

Glossary 329

RLS
See Remote Library Services.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain different types of catalog entries.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS.

SAS command
a command that invokes SAS. This command can vary depending on the operating
environment and site.

SAS console log
a file that contains information, warning, and error messages if the SAS log is not
active. The SAS console log is normally used only for fatal system initialization
errors or for late-termination messages.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as the name of the engine that was
used to create the data.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS data
views contain only the descriptor information plus other information that is required
for retrieving data values from other SAS data sets or from files whose contents are
in other software vendors' file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats. Short form: data view.

SAS file
a specially structured file that is created, organized, and maintained by SAS. A SAS
file can be a SAS data set, a catalog, a stored program, an access descriptor, a utility
file, a multidimensional database file, a financial database file, a data mining
database file, or an item store file.

SAS library
one or more files that are defined, recognized, and accessible by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS log
a file that contains a record of the SAS statements that you enter, as well as messages
about the execution of your program.

330 Glossary

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Repository
a container for metadata that is managed by the SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one
or more SAS Metadata Repositories.

SAS view
a type of SAS data set that retrieves data values from other files. A SAS view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats. SAS views can be created by the SAS DATA step, as well as by the SAS
SQL procedure.

SAS/CONNECT attention handler window
one of two possible windows that are displayed when a server session is interrupted
by a break signal. This window offers the following selections: abort current remote
processing or continue processing the current remote submit.

SAS/CONNECT client
a SAS session that receives services, data, or other resources from a specified server.
The server can run on the same computer as the client or on a different computer
(across a network).

SAS/CONNECT server
a SAS session that delivers services, data, or other resources to a requesting client.
The server can run on the same computer as the client, or on a networked computer.

SAS/CONNECT spawner
a program that runs on a remote computer and that listens for SAS/CONNECT client
requests for connection to the remote computer. When the spawner program receives
a request, it invokes a SAS session on the remote computer.

SAS/SECURE
an add-on product that uses the RC2, RC4, DES, and TripleDES encryption
algorithms. SAS/SECURE requires a license, and it must be installed on each
computer that runs a client and a server that will use the encryption algorithms.
SAS/SECURE provides a high level of security.

SAS/SHARE client
a SAS/SHARE session that acts as a client. The user who runs a SAS/SHARE client
accesses data on a SAS/SHARE server through Remote Library Services (RLS).

SAS/SHARE server
the result of an execution of the SERVER procedure, which is part of SAS/SHARE
software. A server runs in a separate SAS session that services users' SAS sessions
by controlling and executing input and output requests to one or more SAS libraries.

SASESOCK engine
a socket engine for SAS/CONNECT software. Using the SASESOCK engine
enables a SAS/CONNECT client or a SAS/CONNECT server to associate a libref

Glossary 331

with a TCP/IP pipe (instead of with a physical disk device) for I/O processing. The
SASESOCK engine is required for SAS/CONNECT applications that implement MP
CONNECT with piping.

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

sasroot
a representation of the name for the directory or folder in which SAS is installed at a
site or a computer.

script
an external file that contains SAS script statements. The script file is stored on a
client and provides instructions for establishing and terminating a SAS/CONNECT
session. Script files are executed by the SIGNON and SIGNOFF commands.

script statement
a special kind of SAS statement that was developed for use in scripts for
SAS/CONNECT software. Script statements are used only in scripts.

server session
a SAS session that runs in a special mode on a server. No log messages or output are
displayed on the server. Instead, the results of a server session are transmitted back
to the log file and output files on the client.

services file
a file that contains a list of service names and the TCP/IP ports that are mapped to
those services. The services file is stored on both the SAS client and the SAS server.
The UNIX services file is located in /etc/services. A service can be specified for any
of the following: a SAS/CONNECT spawner, a SAS/SHARE server, an MP
CONNECT pipe, and a firewall server.

SMP
See symmetric multiprocessing.

socket
the endpoint of a connection in a TCP/IP network. A socket is the combination of a
TCP port and an IP address. By analogy, a socket is like a telephone to which a
telephone number has been assigned. The TCP port is like a telephone number, and
the IP address is like the location of the telephone.

spawner
See SAS/CONNECT spawner.

SQL
See Structured Query Language.

SSL (Secure Sockets Layer)
a protocol that provides network security and privacy. SSL uses encryption
algorithms RC2, RC4, DES, TripleDES, and AES. SSL provides a high level of
security. It was developed by Netscape Communications.

332 Glossary

statement block
a group of statements that has both a logical beginning and ending statement. For
example, a LAYOUT statement along with its ENDLAYOUT statement and all
contained statements are a block. Some blocks can be nested within other blocks.

statement label
a SAS name followed by a colon that prefixes a statement in a DATA step so that
other statements can direct execution to that statement as necessary, bypassing other
statements in the step.

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate objects in a database management
system. SAS implements SQL through the SQL procedure. Short form: SQL.

symmetric multiprocessing
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller. Short form: SMP.

synchronous processing
a type of processing in which a SAS/CONNECT server session must finish
executing a process before control is returned to a SAS/CONNECT client session.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

Teletypewriter Network Protocol
See Telnet.

Telnet
a program that provides virtual terminal services that enable you to log on to a server
from a terminal that is connected to a client. The client performs as if it were
physically connected to the server. Short form: Telnet.

time-out
an error condition that is produced when a required response from a device or
program is not received after a specified length of time.

TLS
the successor to Secure Sockets Layer (SSL) V3.0. The Internet Engineering Task
Force (IETF) adopted SSL V3.0 as the de facto standard, made some modifications,
and renamed it TLS. TLS is virtually SSLV3.1. Short form: TLS.

translation table
an operating environment-specific SAS catalog entry that is used to translate the
value of one character to another. Translation tables often are needed to support the
use of multiple national languages in an application. An example of a translation
table is one that converts characters from EBCDIC to ASCII-ISO.

Glossary 333

Transport Layer Security
See TLS.

upload
to copy a file from the local host to the remote host, or from a client to a server.

XMS
a cross-task communication interface that is part of z/OS. XMS is used by programs
that run within a single z/OS operating environment. XMS is also the name of the
SAS communications access method that uses XMS for client/server
communication. Short form: XMS.

334 Glossary

Index

Special Characters
ALL option

KILLTASK statement 171
LISTTASK statement 170
WAITFOR statement 168

ANY option
WAITFOR statement 168

/REMOTE= option
SYSLPUT macro statement 160

%DO statement 126
%IF statement 126
%LET statement 126, 127
%PUT statement 126
%SYSLPUT statement 126, 160

session impact 132
%SYSRPUT macro variable

setting in client session 30
%SYSRPUT statement 166

forcing macro variable definition 181
macro processor and 126
setting %SYSRPUT macro variable 30
synchronization point 166
SYSINFO macro variable and 197

A
ABORT statement 95, 96
ACCESS= option

LIBNAME statement 215
accessibility features 12
AFTER= option

PROC DOWNLOAD statement 267
PROC UPLOAD statement 247

application server
See SAS Application Server

ASCII representation 244
Asynchronous Compute Services 6
asynchronous processing

Compute Services and 121
RSUBMIT statement/command 156
signons 78

synchronous vs. 78
waiting for tasks 168

attention handler window 136
attributes

DATA= option, PROC UPLOAD
statement 256

OUT= option, PROC UPLOAD
statement 256

transferring data with 289
AUTHDOMAIN= option

RSUBMIT statement/command 139
SIGNON statement/command 63

autoexec file 51, 86
automatic signon 15
AUTOSIGNON system option 15

RSUBMIT statement/command 78

B
BINARY option

PROC DOWNLOAD statement 268,
294

PROC UPLOAD statement 248, 294
break windows

Compute Services and 136
buffer size

transferring data across network 32

C
CALL statement 95, 96
CALL SYMPUT routine 132
CANCEL option

ENDRSUBMIT statement 157
catalog entries 284
catalogs

accessing 210, 319
RLS support 210

character sets
EBCDIC CC-Control not downloaded

302

335

non-English 244
translations to/from ASCII 244
translations to/from EBCDIC 244

client/client sessions
%SYSRPUT statement 166
determining macro execution 133
ending connections 81
initiating connections 63
LIBNAME statement and 215
marking end of statement block 157
remote submits 194
RSUBMIT statement execution 126
sending messages to 99
server software and 182
setting %SYSRPUT macro variable 30
SIGNOFF statement/command 83
SIGNON statement 78
simple signoffs 84
sorting/merging data 196
starting SAS/CONNECT 40
statement blocks and 139
updating server data sets 226
verifying connections established 91
view interpretation 212
waiting for asynchronous tasks 168

client/server relationship 4
associating librefs 217
ending connections 81
initializing connections 63
verifying connections established 91

CMACVAR macro variable 120
CMACVAR= option

RSUBMIT statement/command 139
SIGNOFF statement/command 81
SIGNON statement/command 63

COMAMID SCL function 90
COMAMID= system option

identifying 16
OPTIONS statement 195

command files 79
comment delimiters for conditional code

execution 127
Communication Services Break Handler

window 136, 137
communications access methods 5

specifying 40
TCP/IP access method 40
XMS access method 40

COMPRESS= data set option 240, 241
Compute Services (CS) 6, 112

accessing large data resources 239
asynchronous processing 121
break windows and 136
cost/benefit comparison 210
Data Transfer Services combined with

193, 196, 197

data volume and 209
macro processing and 125
macro variables and %SYSRPUT

statement 181
ODS and 121
ODS with SAS/CONNECT 176
premature pipe closure 180
remote data set administration 175
Remote SQL 7
remote submit and 121
RSPT and 186
RSUBMIT 6
server software and client sessions 182
troubleshooting 201

conditional code execution 127
CONNECT TO REMOTE statement

(RSPT) 185
CONNECTPERSIST system option 20
CONNECTPERSIST= option

RSUBMIT statement/command 139
CONNECTREMOTE= option

RDISPLAY statement/command 158
RGET statement/command 159
RSUBMIT statement/command 139
SIGNOFF statement/command 81
SIGNON statement/command 63

CONNECTREMOTE= system option 21
in RSUBMIT 21
in SIGNON 21
SIGNON statement/command 63

CONNECTREMOTE= systemoption 21
CONNECTSTATUS system option 22

Transfer Status window 241
CONNECTSTATUS= option

PROC DOWNLOAD statement 268
PROC UPLOAD statement 248
RSUBMIT statement/command 139
SIGNON statement/command 63

CONNECTWAIT system option 23
RSUBMIT statement/command 113

CONNECTWAIT= option
RSUBMIT statement/command 139
SIGNON statement/command 63

CONSTRAINT= option
PROC DOWNLOAD statement 268
PROC UPLOAD statement 248

cross-architecture access
loss of magnitude 307
loss of precision 307
numeric translation 307

CSCRIPT= option
RSUBMIT statement/command 139
SIGNOFF statement/command 81
SIGNON statement/command 63

CSYSRPUTSYNC= option

336 Index

RSUBMIT statement/command 139,
181

SIGNON statement/command 63

D
data

combining from multiple sessions 296
distributing 238, 294
encoding 308
merging 196
RLS considerations 208
sorting 196
translating 305, 306

data set options
data transfer and 289
DATA= option, PROC UPLOAD

statement 256
OUT= option, PROC UPLOAD

statement 256
data sets

accessing 316
integrity constraints 290
naming conventions 254, 274
partitioned 295
remote administration 175
RLS and 226
transferring generations of 286
updating on servers 226

DATA step
accessing views 211
view interpretation 212

data transfer
buffer size for 32
data set options and 289
WHERE processing and 238

Data Transfer Services (DTS) 8
accessing large data resources 239
backups and 238
benefits 238
combining data from multiple sessions

296
Compute Services and 193, 194, 196,

197
cost/benefit comparison 210
data set options/attributes 289
distributing files to multiple clients 294
functionality 237
multi-pass data processing and 209
network data flow and 209
network response time and 209
partitioned data sets 295
resources and 238
RLS and 231
tips 242, 243
Transfer Status window 241

transferring data set integrity constraints
290

transferring generations of data sets 286
transferring long member names 289
transferring numerics 291
transferring SAS utility files 292
transferring specific catalog entry types

284
transferring specific member types 283
troubleshooting procedures 301
WHERE statement 282

data views
accessing 211, 317
definition 212
RLS support 210
servers and 211, 212

DATA= option
PROC DOWNLOAD statement 269,

289
PROC UPLOAD statement 248, 256,

289
databases

external 210
RLS support 210

DATECOPY option
PROC DOWNLOAD statement 269
PROC UPLOAD statement 249

DB2
querying tables in 189

DBMS= option
CONNECT TO REMOTE statement

(RSPT) 185
DBMSARG= option

CONNECT TO REMOTE statement
(RSPT) 185

debugging
ECHO statement and 97
scripts 61

DISCONNECT FROM statement (RSPT)
185

DM statement
SIGNOFF command 83
SIGNON command 78

DMR system option 25
DMR System Option 24
Domain Name Server (DNS) 44
DOWNLOAD procedure

DTS and 237, 242, 243
EBCDIC CC-Control not downloaded

302
functionality 265
log output 280
output 280
partitioned data sets and 295
RLS/DTS example 231
RSUBMIT command and 242

Index 337

symbol not recognized 301
SYSINFO macro variable and 197
troubleshooting 301

DOWNLOAD Procedure 265

E
EBCDIC representation 244, 302
ECHO statement 95, 97

debugging with 97
encryption providers 5
ENDRSUBMIT statement 157

parsing 156
remote submit 194, 195

ENTRYTYPE= option
EXCLUDE statement (DOWNLOAD)

277
EXCLUDE statement (UPLOAD) 260,

261
PROC DOWNLOAD statement 269,

284
PROC UPLOAD statement 249, 284

EXCLUDE statement
DOWNLOAD procedure 276, 277
UPLOAD procedure 259, 260, 261

EXECUTE BY statement (RSPT) 185
EXTENDSN= option

PROC DOWNLOAD statement 269,
291

PROC UPLOAD statement 249, 291
external databases 210
external files

associating with filerefs 85
UPLOAD procedure and 243

F
file transfer

data file compression 240
fixed block binary file message 302
network file compression 240
variable block binary file message 301

FILECC system option 302
FILENAME statement 85

autoexec file and 86
DOWNLOAD procedure with 86, 87
script files and 86, 87
UPLOAD procedure with 86, 87

filerefs
associating with external files 85
generated by SASSCRIPT= system

option 27
specifying for signoff 84

files
accessing 211
compression and 240

data views and 212
external 85, 243
factors affecting access 311
RLS support 210
SAS utility files 211, 292

FROM CONNECTION TO statement
(RSPT) 185

G
GEN= option

PROC DOWNLOAD statement 270
PROC UPLOAD statement 250

GETHOSTBYNAME function 44
GOTO statement 95, 97

H
Host-not-active message 105
HOSTS file 44

I
IF statement 95, 98
INCAT= option

PROC DOWNLOAD statement 270
PROC UPLOAD statement 250

independent parallelism 113, 114
single input data source 114
WORK library 114

INDEX= option
PROC DOWNLOAD statement 270
PROC UPLOAD statement 247

INFILE= option
PROC DOWNLOAD statement 270
PROC UPLOAD statement 251

INHERITLIB= option
RSUBMIT statement/command 139
SIGNON statement/command 63

INLIB= option
PROC DOWNLOAD statement 271,

292
PROC UPLOAD statement 251, 292

INPUT statement 95, 98
interactive line mode 194
interfaces (SAS/CONNECT) 47, 48, 50,

51

K
keyboards

non-English 244
KILLTASK statement 171

338 Index

L
LIBNAME statement 215

clients/client sessions 215
specifying servers 217

LIBNAME statement, SASESOCK
engine 219

libraries
LIBNAME statement and 215
libref access via servers 217
WORK library 114

librefs
accessing libraries on servers 217
associating client/server 217
associating with TCP/IP pipe 219
LIBNAME statement and 215
suggestions 208

LISTTASK statement 170
MP CONNECT task completion 120

LOCATEC SCL function 226
log

DOWNLOAD procedure output 280
messages to 99
UPLOAD procedure output 262

log events
triggers for 11

LOG statement 95, 99
Log window

ABORT statement 96
creating 158
MP CONNECT results and 119
RDISPLAY statement/command 158
Remote Get 124
remote processing control 122
SIGNOFF command message 84
SIGNON command message 50

LOG= option
RSUBMIT statement/command 139
SIGNON statement/command 63

logging
See SAS logging facility

logging configuration file 10
LRECL= option

FILENAME statement 243, 302

M
macro definitions 125, 126
macro statements 126, 166

macro definitions and 126
statement blocks and 125

macro variables
apparent symbolic reference not

resolved 134
assigning values from server session

166
CALL SYMPUT routine and 132

checking for signoff failures 83
Compute Services and 181
creating in server session 160
forcing definition 181
SYSINFO macro variable 197

macros
Compute Services and 125
NRSTR macro quoting function 127
programming techniques 126
SAS/CONNECT and 197
semicolons in values 134
server sessions 133
statement blocks and 125

MACVAR= option
MP CONNECT and 175
testing signon success 81

magnitude
loss of 307

MEMTYPE= option
EXCLUDE statement (DOWNLOAD)

277
PROC DOWNLOAD statement 271,

283, 292
PROC UPLOAD statement 251, 283,

292
messages

absence of software start-up 105
fixed block binary file message 302
Host-not-active message 105
Requested-link-not-found message 106
SAS console log for UNIX 107
SAS console log for Windows 106
SAS console log for z/OS 107
sending to client session 99
SIGNOFF command message 84
SIGNON command message 50
to log 99
variable block binary file message 301

metadata repository 41
metadata server

See SAS Metadata Server
Monitor window 120
MP (Multi-Processing) CONNECT 6,

113, 116
LISTTASK statement 120
log/output results 119
long-running remote tasks and 174
MACVAR= option and 175
monitoring tasks 119, 120
multiple processors 118
multiple threads 118
NOTIFY= option 120
parallel processes 118
parallel threads 118, 119
piping and 179, 202
SAS Explorer 120

Index 339

SASESOCK engine and 219
scalability 117, 119
task completion 120
WAITFOR statement 120, 178

multi-processor (SMP) machines
command for starting server sessions

25
multi-user server 4

N
naming conventions

data sets 254, 274
username/passwords 79, 157

networks
data flow and DTS 209
data flow and RLS 209
file compression/transfer 240
reducing traffic 212
report distribution example 231
response time and RLS 209

NOCSCRIPT option
SIGNOFF statement/command 81

NOSCRIPT option
SIGNON statement/command 63

NOSYNTAXCHECK system option 39
NOTIFY statement 95, 99
NOTIFY= option

MP CONNECT task completion 120
RSUBMIT statement/command 63,

120, 139
NRSTR macro quoting function 127
numeric magnitude

loss of 307
numeric precision

loss of 307
numeric translation

cross-architecture access 307

O
operating environment

GETHOSTBYNAME function 44
HOSTS file 44
identifying COMAMIDs valid for 90

OPTIONS statement
COMAMID= system option 195
REMOTE= system option 195
SASCMD= system option 43

OUT= option
PROC DOWNLOAD statement 271,

274, 289
PROC UPLOAD statement 253, 254,

256, 289
OUTCAT= option

PROC DOWNLOAD statement 272

PROC UPLOAD statement 252
OUTFILE= option

PROC DOWNLOAD statement 273
PROC UPLOAD statement 252

OUTLIB= option
PROC DOWNLOAD statement 273,

292
PROC UPLOAD statement 254, 292

Output window
creating 158
MP CONNECT results and 119
RDISPLAY statement/command 158
Remote Get 124
remote processing control 122

OUTPUT= option
RSUBMIT statement/command 139
SIGNON statement/command 63

P
parallel processes 118, 178
parallel threads 118, 119
parallelism 30
PASSWORD= option

RSUBMIT statement/command 139
SIGNON statement/command 63, 79

passwords
in script files 54
naming conventions 79, 157
specifying for spawners 45, 46

pipeline parallelism 115
pipes

considerations for 116
MP CONNECT and 179, 202
preventing premature closure 180
problems with 202
SASESOCK engine and 219

precision
loss of 307

PROC DOWNLOAD statement 266
PROC SQL views 211, 212
PROC UPLOAD statement 246
Program Editor window 50
programming services 6

Compute Services 6
Data Transfer Services 8
MP CONNECT 6
Remote Library Services 9

prompts 98
PT2DBPW= option

CONNECT TO REMOTE statement
(RSPT) 185

Q
queries

340 Index

tables in DB2 189

R
RDISPLAY statement/command 158

CONNECTREMOTE= option 158
monitoring tasks 119
MP CONNECT log/results 119

RECFM= option
FILENAME statement 243

remote data
printing list of reports 223
subsetting 190, 227
updating 225
WHERE statement accessing 224

Remote Display 122, 125
REMOTE engine

RSPT and 185
Remote Get 122, 124
Remote Library Services (RLS) 9

accessing server data with WHERE
statement 224

applying client transaction data sets 226
benefits 208
catalogs and 210
client access with 208
cost/benefit comparison 210
cross-version libraries 314
data access considerations 209
data processing efficiency 209
Data Transfer Services and 231
data translation 305
data volume and 209
definition 207
DOWNLOAD procedure 231
multi-user server 4
networks and 209
printing list of reports from server data

223
report distribution 231
SAS database 210
SAS files and 210
server access with 208
single-user server 4
subsetting server data 227
updating server data 225
UPLOAD procedure 231
WHERE statement and SCL 225

remote processing
MP CONNECT and long-running tasks

174
Output window and 122
SAS windowing environment 122
signing on to multiple server sessions

80
Remote SQL Pass-Through (RSPT) 7

remote submit
automatic signon 15
Compute Services and 121
ENDRSUBMIT statement 194, 195
MACVAR= option with MP

CONNECT 175
no terminal connected to SAS session

202
RSUBMIT statement/command 194,

195
SAS/CONNECT statements 194
SIGNOFF statement/command 194
SIGNON statement 194
square brackets and 202
syntax checking 201

Remote Submit (SAS windowing
environment) 122

remote submits
asynchronous execution 23
synchronous execution 23

REMOTE= option
OPTIONS statement 195

RENGINE= option
LIBNAME statement 215

reports
printing remotely 223
RLS/DTS distribution example 231

Requested-link-not-found message 106
RETURN statement 95, 100
RGET statement/command 119, 159
RLINK SCL function 91
RLS

See Remote Library Services (RLS)
RMTVIEW= option

LIBNAME statement 211, 212, 215
ROPTIONS= option

LIBNAME statement 215
RSESSION SCL function 92
RSPT (Remote SQL Pass-Through)

Compute Services and 186
CONNECT TO REMOTE statement

185
DISCONNECT FROM statement 185
EXECUTE BY statement 185
FROM CONNECTION TO statement

185
querying tables in DB2 189
REMOTE engine 185
subsetting remote data 190
syntax 185

RSTITLE SCL function 93
RSUBMIT statement and command

CONNECTREMOTE= system option in
22

RSUBMIT statement/command
asynchronous processing 156

Index 341

AUTHDOMAIN= option 139
AUTOSIGNON system option 78
clients/client sessions 126
CMACVAR= option 139
CONNECTPERSIST= option 139
CONNECTREMOTE= option 139
CONNECTSTATUS= option 139
CONNECTWAIT system option 113
CONNECTWAIT= option 139
CSCRIPT= option 139
CSYSRPUTSYNC= option 139, 181
differences between 155
displaying output from 158
DOWNLOAD procedure 242
ensuring correct execution 126
INHERITLIB= option 139
invalid option 201
LOG= option 139
macros and 125
no terminal connected to SAS session

202
NOTIFY= option 63, 120, 139
OUTPUT= option 139
parsing 156
piping problems 202
remote statements not processing 201
remote submit 194, 195
SASCMD= option 139
SERVER= option 139
SIGNONWAIT= option 139
square brackets and 202
statement blocks 139
SUBMIT comparison 155
synchronous processing 156
syntax 139
SYNTAXCHECK internal option 201
troubleshooting 201
UPLOAD procedure 242
USERNAME= option 139
WAIT= option 201

S
SAPW= option

CONNECT TO REMOTE statement
(RSPT) 185

SAS application layer
buffer size for data transfer 32

SAS Application Server
signing on to 41

SAS console log
messages for UNIX 107
messages for Windows 106
messages for z/OS 107
SASCMD= option 107

SAS Explorer 120

SAS logging facility 10
invocation of 11
logging configuration file 10
triggers for log events 11

SAS Metadata Repository 41
obtaining script file path from 29

SAS Metadata Server
accessing 41

SAS windowing environment
Remote Display 122, 125
Remote Get 122, 124
remote processing 122
Remote Submit 122
SIGNOFF command 83
Signoff window 49
SIGNON command 78
Signon window 48
starting/stopping SAS/CONNECT 48

SAS/ACCESS
accessing views 211
external databases 210
view interpretation 212

SAS/CONNECT
attention handler window 136
autoexec file 51
interfaces 47, 48, 50, 51
macro facility and 197
Monitor window 120
new features 312
ODS with 176
Program Editor window 50
remote submit 194
SAS windowing environment 48
scripts for starting/stopping 55
starting 40

SAS/SECURE 5
SAS/SHARE servers

loss of magnitude and 307
SASCMD= option

RSUBMIT statement/command 139
SAS console log messages for UNIX

107
SAS console log messages for z/OS

107
signing on with 107
SIGNON statement/command 63

SASCMD= system option 25
OPTIONS statement 43
SIGNON statement/command 43

SASESOCK engine 219
SASFRSCR system option 27
SASFRSCR System Option 27
SASProprietary 5
SASSCRIPT= system option 27

filerefs generated by 27
scaling out 118

342 Index

scaling up 118
SCANFOR statement 95, 100
SCL (SAS Component Language)

COMAMID SCL function 90
functions and options 90
LOCATEC SCL function 226
locating/storing script files 89
RLINK SCL function 91
RSESSION SCL function 92
RSTITLE SCL function 93
WHERE statement and 225

script files 53
absence of software start-up messages

105
FILENAME statement 86, 87
locating/storing with SCL 89
passwords in 54
specifying signon 44, 47
storage locations for 27

script statements
checking condition of 98
displaying during execution 101
redirecting execution 97
summary of 95
syntax rules 56

scripts
debugging 61
for signing on/off 57
invoking routines 96
sign-on scripts 45, 46, 54
signing off with 57, 84
signing off without 84
signing on with 57, 79
starting/stopping SAS/CONNECT 55
when to use 53

SELECT statement
DOWNLOAD procedure 278
UPLOAD procedure 260

semicolon (;)
in macro values 134
invalid option and 201
spacing problems and 134

SERVER= option
CONNECT TO REMOTE statement

(RSPT) 185
LIBNAME statement 208, 215
RSUBMIT statement/command 139
SIGNON statement/command 63

servers/server sessions
accessing with RLS 208
assigning macro variable values 166
automatic signon 15
CALL SYMPUT routine and 132
combining data from multiple 296
command for starting 25
creating macro variables 160

data views and 211
defining connect descriptions 93
definition 44
ending connections 81
ensuring RSUBMIT statement

execution 126
identifying 21
initialization errors 106
initiating connections 63
invoking 25
LIBNAME statement and 217
librefs accessing data libraries 217
macros and 133
monitoring MP CONNECT tasks 120
MP CONNECT log/output results 119
multiple for remote processing 80
multiple sessions in parallel 30
obtaining session information 92
offloading work 238
on multi-processor (SMP) machine 25
sending characters to 101
signing on 41
signoff from specific 84
signon examples 43
signon with SMP machines 42
specifying 42
specifying for Telnet daemons 47
specifying spawner service and 44
statement blocks and 139
Telnet daemon example 47
terminating with SIGNOFF command

208
updating data sets 226
verifying connections established 91
view interpretation 212

SERVERV= option
SIGNON statement/command 63

signing off
checking for failures 83
from specific server sessions 84
single sessions 84
with Program Editor window 50
with scripts 57, 84
without scripts 84

signing on
asynchronous 29
asynchronous processing 78
asynchronous vs synchronous 78
automatic 15
creating command file 79
servers and 41, 80
synchronous 29
testing success with MACVAR 81
troubleshooting 105
with SASCMD= signon 107
with scripts 57, 79

Index 343

with spawners 44, 107
with Telnet daemon 47, 107

SIGNOFF statement/command 81, 83
client sessions 83
CMACVAR= option 81
CONNECTREMOTE= option 81
CSCRIPT= option 81
DM statement 83
Log windows 84
NOCSCRIPT option 81
remote submit 194
SAS windowing environment 83
terminating server session 208

Signoff window 49
SIGNON statement/command 63

AUTHDOMAIN= option 63
AUTOSIGNON system option 78
client/client sessions 78
CMACVAR= option 63
CONNECTREMOTE= option 63
CONNECTREMOTE= system option

63
CONNECTSTATUS= option 63
CONNECTWAIT= option 63
CSCRIPT= option 63
CSYSRPUTSYNC= option 63
DM statement 78
INHERITLIB= option 63
Log window 50
LOG= option 63
messages 50
NOSCRIPT option 63
OUTPUT= option 63
PASSWORD= option 63, 79
remote submit 194
SAS windowing environment 78
SASCMD= option 63
SASCMD= system option 43
semicolon 78
SERVER= option 63
SERVERV= option 63
SIGNONWAIT= option 63
TBUFSIZE= option 63
USERNAME= option 63, 79

Signon window 48
SIGNONWAIT system option 29
SIGNONWAIT= option

RSUBMIT statement/command 139
SIGNON statement/command 63

single-user server 4
SLIBREF= option

LIBNAME statement 215
SMP machines 42

command for starting server sessions
25

sorting

CS and DTS combined 196
spacing

semicolons and 134
spawners

ensuring activation 44
signing on 44, 107
signon method 107
specifying servers 44
specifying sign-on script 45
specifying spawner service 44
user ID/passwords for 45, 46

square brackets 202
SSH (Secure Shell) 5
SSL (Secure Sockets Layer) 5
statement blocks

macros and 125
marking end of 157
processing within 156
RSUBMIT statement/command 139

STOP statement 95
SUBMIT command

vs. RSUBMIT command 155
synchronization point

%SYSRPUT statement 166
defining macro variables and 181

synchronous processing
asynchronous vs. 78
RSUBMIT statement/command 156
signons 78

SYNTAXCHECK internal option
RSUBMIT statement/command 201

SYNTAXCHECK system option 39
SYSINFO macro variable

DOWNLOAD procedure 197
SYSRPUT macro statement 197
UPLOAD procedure 197

SYSRPUTSYNC system option 30

T
tables

querying in DB2 189
tasks

monitoring with MP CONNECT 119,
120

waiting for asynchronous 168
TBUFSIZE= option

SIGNON statement/command 63
TBUFSIZE= system option 32

attributes 32
TCP/IP access method

specifying 40
TCP/IP pipes

librefs and 219
TCP/IP ports

first value in range of 35

344 Index

last value in range of 36
TCPLISTENTIMEOUT system option

34
TCPMSGLEN= system option

attributes 32
TCPPORTFIRST= system option 35
TCPPORTLAST= system option 36
Telnet daemon

server sessions 47
sign-on script files 44
signing on with 47
signon method 107

TIMEOUT= option
LIBNAME statement 180, 202
LIBNAME statement, SASESOCK

engine 219
WAITFOR statement 168

TRACE statement 95, 101
Transfer Status window

CONNECTSTATUS system option
241

Data Transfer Services (DTS) 241
default display setting 22
example 241

translation tables 244
TRANTAB statement

DOWNLOAD procedure 266
UPLOAD procedure 246

triggers for log events 11
troubleshooting

absence of startup messages 105
apparent symbolic reference not

resolved 134
Compute Services 201
DOWNLOAD procedure 301
DTS and 301
EBCDIC CC-Control not downloaded

302
fixed block binary file message 302
Host-not-active message 105
invalid option with RSUBMIT

statement 201
no terminal connected to SAS session

202
piping problems 202
remote statements not processing 201
Requested-link-not-found message 106
RSUBMIT statement/command 201
SAS console log messages for UNIX

107
SAS console log messages for Windows

106
SAS console log messages for z/OS

107
server session initialization errors 106
signing on 105

square bracket support 202
symbol not recognized 301
UPLOAD procedure 301
variable block binary file message 301

TYPE statement 95, 101

U
UNIX

SAS console log messages 107
UPLOAD procedure 245

DTS and 237, 242, 243
external files and 243
FILENAME statement with 86, 87
log output 262
output 262
RLS/DTS example 231
RSUBMIT command 242
symbol not recognized 301
SYSINFO macro variable 197
troubleshooting 301

user IDs 45, 46
USERNAME= option

RSUBMIT statement/command 139
SIGNON statement/command 63, 79

usernames 79, 157

V
V6TRANSPORT option

PROC DOWNLOAD statement 273,
291

PROC UPLOAD statement 254, 291
view interpretation 212
VIEWTODATA option

PROC DOWNLOAD statement 273
PROC UPLOAD statement 254

W
WAIT= option

RSUBMIT statement 201
WAITFOR statement 95, 102, 168

ECHO statement and 97
MP CONNECT 120, 178
usage notes 104

WHERE statement
accessing server data with 224
data transfers and 238
DOWNLOAD procedure 276
DTS and 282
reducing network traffic 212
SCL programs and 225
UPLOAD procedure 258

wildcard characters 295
Windows

Index 345

SAS console log messages 106
WORK library 114

X
XMS access method 40

Z
z/OS

downloading partitioned data sets 295
SAS console log messages 107
XMS access method 40

346 Index

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What's New in SAS/CONNECT 9.3
	Overview
	SAS/CONNECT System Options
	Support for Extended SAS Names In the UPLOAD and DOWNLOAD Procedures
	Enhancements to the %SYSLPUT Statement

	What Is SAS/CONNECT?
	SAS/CONNECT: Definitions and Services
	SAS/CONNECT Terminology
	SAS/CONNECT
	The Client/Server Relationship
	Single-User Server
	Multi-User Server
	Communications Access Method
	Encryption Providers

	Programming Services
	Compute Services and MP CONNECT
	Data Transfer Services
	Remote Library Services

	Administering Logging for SAS/CONNECT
	About the SAS Logging Facility
	Logging Configuration File
	Invocation of the Logging Facility
	Triggers for Log Events
	Example of a Log Event

	Accessibility Features in SAS Products

	SAS/CONNECT Options
	SAS/CONNECT General SAS System Options
	Dictionary
	AUTOSIGNON System Option
	COMAMID= System Option
	CONNECTMETACONNECTION
System Option
	CONNECTPERSIST System Option
	CONNECTREMOTE= System Option
	CONNECTSTATUS System Option
	CONNECTWAIT System Option
	DMR System Option
	SASCMD= System Option
	SASFRSCR System Option
	SASSCRIPT= System Option
	SIGNONWAIT System Option
	SYSRPUTSYNC System Option
	TBUFSIZE= System Option
	TCPLISTENTIME= System Option
	TCPPORTFIRST= System Option
	TCPPORTLAST= System Option

	Starting and Stopping SAS/CONNECT Software
	Starting and Stopping SAS/CONNECT
	Starting SAS and
Using Syntax Checking
	Starting SAS/CONNECT
	Specifying a Communications Access Method
	Signing On to the Server
	Sign On to a Server That Is Defined in the SAS Metadata Repository
	Sign On to the Same Multiprocessor Computer
	Sign On Using a Spawner
	Sign On Using a Telnet Daemon

	Interfaces for Starting and Stopping SAS/CONNECT
	Types of Interfaces for Starting and Stopping SAS/CONNECT
	Using the SAS Windowing Environment to Start and Stop SAS/CONNECT
	Using the Program Editor Window
	Using the Autoexec File

	Using SAS/CONNECT Script Files
	Overview of SAS/CONNECT Script Files
	When to Use a SAS/CONNECT Script
	Purpose of a Sign-On Script
	Using Passwords in a Script File
	Using a Script to Start and Stop SAS/CONNECT
	Syntax Rules for SAS/CONNECT Script Statements
	Writing Simple SAS/CONNECT Scripts for Signing On and Signing
Off
	Writing Simple SAS/CONNECT Scripts: Overview
	Example SAS/CONNECT Script for a TCP/IP Connection to UNIX

	Debugging a SAS/CONNECT Script

	Syntax for the SIGNON and the SIGNOFF Statements and Commands
	Dictionary
	SIGNON Statement
and Command
	SIGNOFF Command and Statement

	Syntax for the FILENAME Statement
	Dictionary
	FILENAME Statement and Command

	SAS Component Language (SCL) Functions and Options
	Using SCL to Locate and Store Sample Script Files
	Dictionary
	COMAMID SCL Function
	RLINK SCL Function
	RSESSION SCL Function
	RSTITLE SCL Function

	SAS/CONNECT Script Statements
	Summary of SAS/CONNECT Script Statements
	Dictionary
	ABORT
	CALL
	ECHO
	GOTO
	IF
	INPUT
	LOG
	NOTIFY
	RETURN
	SCANFOR
	STOP
	TRACE
	TYPE
	WAITFOR

	Sign-On Troubleshooting
	Troubleshooting Sign-On Problems
	Host-Not-Active Message
	Absence of SAS Software Start-Up Messages
	Requested-Link-Not-Found Message
	SAS/CONNECT Server Session Initialization Errors
	SAS Console Log Messages for Windows
	SAS Console Log Messages for UNIX
	SAS Console Log Messages for z/OS

	Compute Services
	Using Compute Services
	Overview of Compute Services
	MP CONNECT
	Independent Parallelism
	Overview
	Considerations for Independent Parallelism
	Single Input Data Source
	I/O Activity in the WORK Library of Each SAS Session

	Pipeline Parallelism
	Overview of Pipeline Parallelism
	Limitation of Pipeline Parallelism
	Considerations for Piping

	Benefits of MP CONNECT
	Scalability with MP CONNECT
	Overview of Scalability
	Parallel Threads and Parallel Processes
	Parallel Processes
	Parallel Threads
	Scaling Up
	Scaling Out
	Multiple Threads and Multiple Processors

	Monitoring MP CONNECT Tasks
	Overview of Monitoring MP CONNECT Tasks
	Managing MP CONNECT Log and Output Results
	MP CONNECT Task Completion

	Using SAS Explorer to Monitor SAS/CONNECT Tasks
	Compute Services and the Output Delivery System
	Using the SAS Windowing Environment to Control Remote Processing
	Overview of Remote Processing Control Using the SAS Windowing
Environment
	Remote Submit
	Remote Get
	Remote Display

	Interaction between Compute Services and Macro Processing
	Macro-Generated RSUBMIT Blocks
	Macro Definitions
	SAS Statements That Are Not Macros or Macro Definitions
	Macro Statements
	Ensuring That the RSUBMIT Statements Are Executed in the Correct
Session
	Examples
	Frequently Asked Questions

	Compute Services and Break Windows
	Overview
	SAS/CONNECT Attention Handler Window
	Communication Services Break Handler Window

	Syntax for the RSUBMIT Statement and Command
	Dictionary
	RSUBMIT Statement
and Command
	ENDRSUBMIT Statement
	RDISPLAY Command and RDISPLAY Statement
	RGET Command and RGET Statement
	%SYSLPUT Statement
	%SYSRPUT Statement
	WAITFOR
Statement
	LISTTASK Statement
	KILLTASK Statement

	Examples Using Compute Services
	The
Examples: Compute Services
	Example 1: Using MP CONNECT for a Long-Running Remote Task
	Purpose
	Program

	Example 2: Administering Server Data Sets from a Client
	Purpose
	Program

	Example 3: Using the CMACVAR= Option with MP CONNECT
	Purpose
	Program

	Example 4: Using the Output Delivery System with SAS/CONNECT
	Purpose
	Program

	Example 5: Using MP CONNECT and the WAITFOR Statement
	Purpose
	Program

	Example 6: Using MP CONNECT with Piping
	Purpose
	Program

	Example 7: Preventing Pipes from Closing Prematurely
	Purpose
	Program

	Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT
Executes
	Purpose
	Program

	Example 9: Using Server Software from a Client Session
	Purpose
	Program: SAS/STAT Software
	Purpose
	Program: Sorting

	Syntax for Remote SQL Pass-Through (RSPT)
	Dictionary
	RSPT Statements

	Examples Using Remote SQL Pass-Through (RSPT)
	Example 1. RSPT Services: Querying a Table in DB2
	Purpose
	Program

	Example 2. RSPT Services: Subsetting Remote SAS Data
	Purpose
	RSPT: Server Processing and Client Viewing
	RSPT: Client Processing and Viewing
	RSPT: Server Processing and Viewing
	RLS: Client Processing and Viewing

	Examples of Combining Compute Services and Data Transfer Services
	Advantages of Combining Compute Services and Data Transfer
Services
	The Examples
	Example 1. Compute Services and Data Transfer Services Combined:
Processing in the Client and Server Sessions
	Purpose
	Program
	Running the Program

	Example 2. Compute Services and Data Transfer Services Combined:
Sorting and Merging Data
	Purpose
	Program

	Example 3. Compute Services and Data Transfer Services Combined:
Macro Capabilities
	Purpose
	Program

	Compute Services Troubleshooting
	Problems
and Solutions when Using the RSUBMIT Statement
	Invalid Option
	Dialog Box Appears Despite NOTERMINAL Option Setting
	Remotely Submitted Statements Following a Syntax Error Are
Not Processed
	Square Bracket Keys Not Supported
	No Terminal Connected to SAS Session
	Piping Problems
	Request for Setup of Link for Communication Subsystem Partner
Fails

	Remote Library Services
	Remote Library Services (RLS)
	Introduction to Remote Library Services
	RLS: Definition
	Client Access to a Single- or Multi-User Server

	RLS: Advantages
	Considerations for Using RLS
	Determine the Appropriate Data Access Solution
	Use Compute Services to Access Large Volumes of Data
	Use Data Transfer Services for Multi-Pass Data Processing
	Use Data Transfer Services When Network Response Time Is Delayed
	Use RLS When Data Flow through a Network Is Minimal
	Compare DTS, RLS, and CS

	Using RLS to Access Types of Data
	RLS Support for Data Types
	Accessing a Catalog
	Accessing an External Database
	Accessing a SAS View
	Accessing a SAS Utility File of Type PROGRAM or ACCESS

	Using SAS Views with Servers
	SAS/ACCESS Views, DATA Step Views, and PROC SQL Views
	Recommendations for PROC SQL Views

	Using WHERE Processing to Reduce Network Traffic

	Syntax for the LIBNAME Statement
	Dictionary
	LIBNAME
Statement

	Syntax for the LIBNAME Statement, SASESOCK Engine
	Dictionary
	LIBNAME Statement, SASESOCK Engine

	Examples Using Remote Library Services (RLS)
	Example 1. RLS: Accessing Server Data to Print a List of Reports
	Purpose
	Program

	Example 2. RLS: Accessing Server Data by Using the WHERE Statement
	Purpose
	Program

	Example 3. RLS: Updating Server Data
	Purpose
	Program

	Example 4. RLS: An SCL Program That Uses the WHERE Statement
	Purpose
	Program

	Example 5. RLS: Updating a Server Data Set by Applying a Client
Transaction Data Set
	Purpose
	Program

	Example 6. RLS: Subsetting Server Data for Client Processing
and Display
	Purpose
	Program

	Example of Combining RLS and Data Transfer Services (DTS)
	Introduction
	Example — RLS and UPLOAD/DOWNLOAD Combined: Distribution
of Reports over a Network
	Purpose
	Program

	Data Transfer Services
	Using Data Transfer Services
	Introduction to
Data Transfer Services
	Data Transfer Services: Advantages
	Offloads Server Work
	Increases the Robustness of a Decision Support Environment
	Transfers Only Relevant Data
	Supports the Model of a Centralized Control Point
	Backs Up Client Data
	Balances Resources in an Application Development Environment

	Considerations for Using Data Transfer Services
	Use Compute Services to Access Large Data Resources
	Use Remote Library Services to Access Small to Medium Data
Resources
	Use a Combination of Services
	File Transfer Performance

	Transfer Status Window
	Data Transfer Services Tips
	Tips for Using PROC DOWNLOAD and PROC UPLOAD
	Tips for Using PROC DOWNLOAD Only
	Tips for UPLOAD Only

	Non-English Keyboards

	UPLOAD Procedure
	Introduction
	Syntax: UPLOAD Procedure
	PROC UPLOAD Statement
	WHERE Statement
	EXCLUDE Statement
	SELECT Statement
	TRANTAB Statement

	Using the VALIDMEMNAME and VALIDVARNAME System Options
	PROC UPLOAD Output

	DOWNLOAD Procedure
	Introduction
	Syntax: DOWNLOAD Procedure
	PROC DOWNLOAD Statement
	WHERE Statement
	EXCLUDE Statement
	SELECT Statement
	TRANTAB Statement

	Using the VALIDMEMNAME and VALIDVARNAME System Options
	PROC DOWNLOAD Output

	Examples of Data Transfer Services (DTS)
	Example 1. DTS: Transferring Data by Using WHERE Statements
	Purpose
	Program

	Example 2. DTS: Transferring Specific Member Types
	Purpose
	Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD Statement
	Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement
	Example 2.3: Using the MEMTYPE= Option in the SELECT Statement

	Example 3. DTS: Transferring Specific Catalog Entry Types
	Purpose
	Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD
Statement
	Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE Statement
in PROC DOWNLOAD
	Example 3.3: Using the ENTRYTYPE= Option in the SELECT Statement
in PROC UPLOAD
	Example 3.4: Using the ENTRYTYPE= Option in Two SELECT Statements
in PROC DOWNLOAD
	Example 3.5: Using Long Member Names in Catalog Transfers

	Example 4. DTS: Transferring Generations of SAS Data Sets
	Purpose
	Example 4.1: Using LIBRARY Transfers to Transfer Data Set Generations
	Example 4.2: Using a SELECT Statement to Transfer Generations
	Example 4.3: Inheriting Generation Specific Attributes
	Example 4.4: Transferring Single Data Sets

	Example 5. DTS: Transferring Long Member Names
	Purpose
	Program

	Example 6. DTS: Transferring Data by Using Data Set Options
and Attributes
	Purpose
	Program

	Example 7. DTS: Transferring Data Set Integrity Constraints
	Purpose
	Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD
Statement
	Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement
	Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement
	Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD
Statement

	Example 8. DTS: Transferring Numerics by Using the EXTENDSN=
and V6TRANSPORT Options
	Purpose
	Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in
the PROC UPLOAD Statement
	Example 8.2: Using the EXTENDSN= Option in the PROC DOWNLOAD
Statement

	Example 9. DTS: Transferring SAS Utility Files
	Purpose
	Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD Statement
	Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD Statement
	Example 9.3: Using the MEMTYPE= Option in the SELECT Statement
	Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement

	Example 10. DTS: Distributing an .EXE File from the Server
to Multiple Clients
	Purpose
	Example 10.1: UPLOAD
	Example 10.2: DOWNLOAD

	Example 11. DTS: Downloading a Partitioned Data Set from z/OS
	Purpose
	Program

	Example 12. DTS: Combining Data from Multiple Server Sessions
	Purpose
	Program

	Example 13. Re-creating an Index for a Data Transfer

	Data Transfer Services Troubleshooting
	Troubleshooting the UPLOAD and DOWNLOAD Procedures
	Symbol Is Not Recognized
	Variable-Block Binary File LRECL Value Exceeds 256 Bytes
	Fixed-Block Binary File LRECL Value Exceeds 256 Bytes
	EBCDIC CC-Control Is Not Downloaded

	Appendixes
	Cross-Architecture Issues
	Translation of SAS Data between Computers That Represent Data
Differently
	Overview of Data Translation between Computers
	Remote Library Services
	Data Transfer Services

	Translation of Floating-Point Numbers between Computers
	Loss of Numeric Precision and Magnitude
	Avoiding Loss of Precision
	Significance of Loss of Magnitude
	Example

	Encoding Compatibility between SAS/CONNECT Client and Server
Sessions

	SAS/CONNECT Cross-Version Issues
	Factors Affecting Access to SAS Files
	Features Exclusive to SAS Releases after SAS 6
	New Features Incompatible with SAS 6
	SAS File Format Features
	File Transfer Services: Truncating Long Names and Labels

	RLS: Accessing SAS Files in a Mixed Cross-Version Library
	Separating Older SAS Files from Newer SAS Files
	Specifying an Engine to Locate Release-Specific Files in a
Mixed Library
	Determining the Version of SAS Used to Create a SAS File
	Concatenating Libraries

	Accessing SAS Data Sets
	Limitations
	SAS 6 Client Accessing a SAS 8 (or later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	Accessing SAS Views
	Limitations
	SAS 6 Client Accessing a SAS 8 (or Later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	Accessing Catalogs
	Limitations
	SAS 6 Client Accessing a SAS 8 (or Later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	File Format Translation Algorithms
	SAS 6 Translation
	SAS 8 (and Later) Translation

	Glossary
	Index

