
SAS/CONNECT® 9.2
User’s Guide

TW10613_connref_colortitlepg.indd 1 2/11/09 3:35:02 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., 2009.
SAS/CONNECT ® 9.2 User’s Guide. Cary, NC: SAS Institute Inc.

SAS/CONNECT® 9.2 User’s Guide
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-798-3
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2008
1st printing, February 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

New Features and Enhancements for Server Sign-On and Compute Services vii

Enhancements for Remote Library Services viii

Documentation Enhancements viii

P A R T 1 What Is SAS/CONNECT? 1

Chapter 1 � SAS/CONNECT: Definitions and Services 3
SAS/CONNECT Terminology 3

Programming Services 6

Administering Logging for SAS/CONNECT 10

Accessibility Features in SAS Products 12

P A R T 2 SAS/CONNECT Options 13

Chapter 2 � SAS/CONNECT General SAS System Options 15

P A R T 3 Starting and Stopping SAS/CONNECT Software 33

Chapter 3 � Starting and Stopping SAS/CONNECT 35
Starting SAS and Using Syntax Checking 35

Starting SAS/CONNECT 36

Specifying a Communications Access Method 36

Signing On to the Server 37

Interfaces for Starting and Stopping SAS/CONNECT 44

Chapter 4 � Using SAS/CONNECT Script Files 49
Overview of SAS/CONNECT Script Files 49

When to Use a SAS/CONNECT Script 49

Purpose of a Sign-On Script 50

Using Passwords in a Script File 50

Using a Script to Start and Stop SAS/CONNECT 51

Syntax Rules for SAS/CONNECT Script Statements 51

Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off 52

Debugging a SAS/CONNECT Script 56

Chapter 5 � Syntax for the SIGNON and the SIGNOFF Statements and Commands 59

Chapter 6 � Syntax for the FILENAME Statement 81

Chapter 7 � SAS Component Language (SCL) Functions and Options 85
Using SCL to Locate and Store Sample Script Files 88

iv

Chapter 8 � SAS/CONNECT Script Statements 91
Summary of SAS/CONNECT Script Statements 91

Chapter 9 � Sign-On Troubleshooting 103
Troubleshooting Sign-On Problems 103

P A R T 4 Compute Services 107

Chapter 10 � Using Compute Services 109
Overview of Compute Services 110

MP CONNECT 111

Independent Parallelism 111

Pipeline Parallelism 113

Benefits of MP CONNECT 114

Scalability with MP CONNECT 115

Monitoring MP CONNECT Tasks 117

Using SAS Explorer to Monitor SAS/CONNECT Tasks 118

Compute Services and the Output Delivery System 119

Using the SAS Windowing Environment to Control Remote Processing 119

Interaction between Compute Services and Macro Processing 122

Compute Services and Break Windows 133

Chapter 11 � Syntax for the RSUBMIT Statement and Command 137

Chapter 12 � Examples Using Compute Services 167
Example 1: Using MP CONNECT for a Long-Running Remote Task 167

Example 2: Administering Server Data Sets from a Client 168

Example 3: Using the CMACVAR= Option with MP CONNECT 169

Example 4: Using the Output Delivery System with SAS/CONNECT 170

Example 5: Using MP CONNECT and the WAITFOR Statement 172

Example 6: Using MP CONNECT with Piping 173

Example 7: Preventing Pipes from Closing Prematurely 174

Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT Executes 174

Example 9: Graphics Processing on the Server 176

Example 10: Using Server Software from a Client Session 178

Chapter 13 � Syntax for Remote SQL Pass-Through (RSPT) 181

Chapter 14 � Examples Using Remote SQL Pass-Through (RSPT) 185
Example 1. RSPT Services: Querying a Table in DB2 185

Example 2. RSPT Services: Subsetting Remote SAS Data 186

Chapter 15 � Examples of Combining Compute Services and Data Transfer
Services 189
Advantages of Combining Compute Services and Data Transfer Services 189

Example 1. Compute Services and Data Transfer Services Combined: Processing in the
Client and Server Sessions 189

v

Example 2. Compute Services and Data Transfer Services Combined: Sorting and
Merging Data 191

Example 3. Compute Services and Data Transfer Services Combined: Macro
Capabilities 193

Chapter 16 � Compute Services Troubleshooting 195
Problems and Solutions when Using the RSUBMIT Statement 195

P A R T 5 Remote Library Services 199

Chapter 17 � Remote Library Services (RLS) 201
Introduction to Remote Library Services 201

RLS: Advantages 202

Considerations for Using RLS 202

Using RLS to Access Types of Data 204

Using SAS Views with Servers 205

Using WHERE Processing to Reduce Network Traffic 206

Chapter 18 � Syntax for the LIBNAME Statement 207

Chapter 19 � Syntax for the LIBNAME Statement, SASESOCK Engine 211

Chapter 20 � Examples Using Remote Library Services (RLS) 215
Example 1. RLS: Accessing Server Data to Print a List of Reports 215

Example 2. RLS: Accessing Server Data by Using the WHERE Statement 216

Example 3. RLS: Updating Server Data 217

Example 4. RLS: An SCL Program That Uses the WHERE Statement 217

Example 5. RLS: Updating a Server Data Set by Applying a Client Transaction Data
Set 218

Example 6. RLS: Subsetting Server Data for Client Processing and Display 219

Chapter 21 � Example of Combining RLS and Data Transfer Services (DTS) 223
Introduction 223

Example — RLS and UPLOAD/DOWNLOAD Combined: Distribution of Reports over a
Network 223

P A R T 6 Data Transfer Services 227

Chapter 22 � Using Data Transfer Services 229
Introduction to Data Transfer Services 229

Data Transfer Services: Advantages 230

Considerations for Using Data Transfer Services 231

Transfer Status Window 233

Data Transfer Services Tips 234

Non-English Keyboards 236

Chapter 23 � The UPLOAD Procedure 237
Introduction 237

vi

Syntax for the UPLOAD Procedure 238

PROC UPLOAD Output 253

Chapter 24 � The DOWNLOAD Procedure 255
Introduction 255

Syntax for the DOWNLOAD Procedure 256

PROC DOWNLOAD Output 269

Chapter 25 � Examples of Data Transfer Services (DTS) 271
Example 1. DTS: Transferring Data by Using WHERE Statements 272

Example 2. DTS: Transferring Specific Member Types 273

Example 3. DTS: Transferring Specific Catalog Entry Types 274

Example 4. DTS: Transferring Generations of SAS Data Sets 276

Example 5. DTS: Transferring Long Member Names 279

Example 6. DTS: Transferring Data by Using Data Set Options and Attributes 279

Example 7. DTS: Transferring Data Set Integrity Constraints 280

Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and
V6TRANSPORT Options 281

Example 9. DTS: Transferring SAS Utility Files 282

Example 10. DTS: Distributing an .EXE File from the Server to Multiple Clients 284

Example 11. DTS: Downloading a Partitioned Data Set from z/OS 285

Example 12. DTS: Combining Data from Multiple Server Sessions 286

Example 13. Re-creating an Index for a Data Transfer 289

Chapter 26 � Data Transfer Services Troubleshooting 291
Troubleshooting the UPLOAD and DOWNLOAD Procedures 291

P A R T 7 Appendices 293

Appendix 1 � Cross-Architecture Issues 295
Translation of SAS Data between Computers That Represent Data Differently 295

Translation of Floating-Point Numbers between Computers 297

Encoding Compatibility between SAS/CONNECT Client and Server Sessions 298

Appendix 2 � SAS/CONNECT Cross-Version Issues 301
Factors Affecting Access to SAS Files 301

Features Exclusive to SAS Releases after SAS 6 302

RLS: Accessing SAS Files in a Mixed Cross-Version Library 304

Accessing SAS Data Sets 306

Accessing SAS Views 307

Accessing Catalogs 309

File Format Translation Algorithms 311

Appendix 3 � Recommended Reading 313
Recommended Reading 313

Glossary 315

Index 327

vii

What’s New

Overview
SAS/CONNECT has the following changes or enhancements in this release:
� new features and enhancements for server sign-on and Compute Services
� enhancements for Remote Library Services
� documentation enhancements

New Features and Enhancements for Server Sign-On and Compute
Services

When the SIGNON INHERITLIB= option is used with the SASCMD= option and the
RSUBMIT INHERITLIB= option is used with the RSUBMIT SASCMD= option, and the
client session and the server session attempt to access the same SAS file concurrently,
only one of the sessions might be able to access the file.

The -LOGCONFIGLOC system option in a SAS invocation activates the SAS logging
facility for a SAS/CONNECT session.

The SIGNON AUTHDOMAIN= option and RSUBMIT AUTHDOMAIN= option
provide a convenient way to obtain the SAS metadata-based user credentials rather
than having to explicitly supply them during server sign-on.

E-mail is a new supported value for the SIGNON NOTIFY= option and the
RSUBMIT NOTIFY= option. New code examples are given for enabling and disabling
notification in an asynchronous RSUBMIT.

The SIGNON SUBJECT= option and RSUBMIT SUBJECT= option are available
when notification via e-mail is also specified.

An additional server sign-on method is provided for SAS/CONNECT: Sign-on to a
server that is defined in the SAS Metadata Repository .

The SIGNON SERVER= option and RSUBMIT SERVER= option offer a convenient
way to obtain the server sign-on properties that are associated with the SAS
Application Server without having to explicitly supply them during server sign-on. The
SAS Application Server contains a SAS/CONNECT server component in its grouping.

viii What’s New

Enhancements for Remote Library Services
When using the LIBNAME statement and the SASESOCK engine to specify an alias

for an implicit port, you must have access to a SAS metadata repository.

Documentation Enhancements
The descriptions of the syntax for the SAS/CONNECT statements are more readable

and accessible than in previous documentation releases. More extensive information is
provided for restrictions, examples, references, and interactions with other options in
SAS/CONNECT statements.

Improved illustrations show SAS/CONNECT programming services Compute
Services, Remote Library Services, and Data Transfer Services.

Although a brief summary of the SAS security technologies is provided, detailed
information about SAS Proprietary, SAS/SECURE, SSL, SSH, and the networking and
encryption SAS system options, is relocated to Encryption in SAS. Here are the
relocated system options:

� NETENCRYPT
� NETENCRYPTALGORITHM=
� NETENCRYPTKEYLEN=
� SSLCALISTLOC=
� SSLCERTISS=
� SSLCERTLOC=
� SSLCERTSERIAL=
� SSLCERTSUBJ=
� SSLCLIENTAUTH=
� SSLCRLCHECK
� SSLCRLLOC=
� SSLPVTKEYLOC=
� SSLPVTKEYPASS=

1

P A R T1

What Is SAS/CONNECT?

Chapter 1.SAS/CONNECT: Definitions and Services 3

2

3

C H A P T E R

1
SAS/CONNECT: Definitions and
Services

SAS/CONNECT Terminology 3
SAS/CONNECT 3

The Client/Server Relationship 4

Single-User Server 4

Multi-User Server 4

Communications Access Method 5
Encryption Providers 5

Programming Services 6

Compute Services and MP CONNECT 6

Compute Services That Use RSUBMIT 6

Compute Services That Use Remote SQL Pass-Through 7

Data Transfer Services 8
Remote Library Services 9

Administering Logging for SAS/CONNECT 10

About the SAS Logging Facility 10

Logging Configuration File 10

Invocation of the Logging Facility 11
Triggers for Log Events 11

Example of a Log Event 11

Accessibility Features in SAS Products 12

SAS/CONNECT Terminology

SAS/CONNECT
SAS/CONNECT software is a SAS client/server toolset that provides scalability

through parallel SAS processing. By providing the ability to manage, access, and
process data in a distributed and parallel environment, SAS/CONNECT enables users
and applications developers to do the following:

� achieve SAS interoperability across architectures and SAS releases
� directly process a remote data source and get results back locally
� transfer disk copies of data
� develop local graphical user interfaces that process remote data sources

� develop scalable SAS solutions
� run multiple independent processes asynchronously and coordinate the results

from each task execution in a client SAS session

4 The Client/Server Relationship � Chapter 1

� scale up to fully use the capabilities of symmetric multiprocessing (SMP)
hardware, and scale out to fully use the features of distributed processors

� use pipeline processing (TCP/IP ports) to run multiple dependent processes
asynchronously

� collect the resources of multiple computers that work in parallel, which
produces a powerful, yet inexpensive processing solution

� manage distributed resources
� perform daily or nightly automated backups
� initiate transaction processing to a master database at a specified time each day
� centralize and automate data and report distribution to workstations in a

network
� centralize and automate data collection from workstations in a network

The Client/Server Relationship
SAS/CONNECT links a SAS client session to a SAS server session. The terms SAS/

CONNECT client and server depict a relationship between two SAS sessions.
The client session is the initial SAS session that creates and manages one or more

server sessions. The server sessions can run either on the same computer as the client
(for example, an SMP computer) or on a remote computer across a network.

Single-User Server
SAS/CONNECT provides the following single-user server functionality for Remote

Library Services (RLS):
� provides transparent access to remote data
� gives single-user access to a dedicated server
� enables full, unrestricted access to DBMS data via a SAS/ACCESS engine
� enables you to connect to the server by using a SIGNON statement and a

LIBNAME statement that specifies the REMOTE engine

SIGNON server-ID;
LIBNAME libref REMOTE ’datalib’ SERVER=server-ID;

The LIBNAME statement implicitly starts the single-user server.

Multi-User Server
SAS/SHARE provides the following multi-user server functionality for Remote

Library Services (RLS):
� gives concurrent, multi-user access to a server

Note: The ability to access DMBS data through a multi-user server is controlled
by a specific SAS/ACCESS engine. �

� is explicitly started and controlled by a system administrator

PROC SERVER server=server-ID;

� enables you to connect to the server by using a LIBNAME statement that specifies
the REMOTE engine

LIBNAME libref REMOTE ’datalib’ SERVER=server-ID;

SAS/CONNECT: Definitions and Services � Encryption Providers 5

The LIBNAME statement causes a connection to a pre-existing server.

Communications Access Method
A communications access method is the interface between SAS/CONNECT and the

network protocol that you use to connect two SAS sessions. You must specify a
communications access method for SAS/CONNECT.

TCP/IP is the supported access method on all SAS 9.2 operating environments. The
XMS access method is used to connect client and server sessions that both run under
z/OS.

Before any meaningful work can be accomplished between a client and a server, the
access method must be configured in the client and the server environments. For
details, see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Encryption Providers

Encryption providers include the SAS products and third-party strategies for protecting
data and credentials (user IDs and passwords) that are exchanged in a SAS/CONNECT
client/server environment. All these providers use proven, industry-standard encryption
algorithms for data protection.

Here are the encryption providers that SAS/CONNECT can use:

SAS Proprietary is a fixed encoding algorithm that is included with Base SAS
software. It requires no additional SAS product licenses. The SAS
proprietary algorithm is strong enough to protect your data from
casual viewing. SASProprietary provides a medium level of security.

SAS/SECURE is an add-on product that provides encryption and data integrity
algorithms in addition to the SASProprietary algorithm.
SAS/SECURE requires a license, and it must be installed on each
computer that runs a client and a server that will use the encryption
algorithms. Although SAS/SECURE increases data security, it
cannot completely prevent unauthorized access to your data.

Secure Sockets
Layer (SSL)

is a protocol that provides network security and privacy. Developed
by Netscape Communications, SSL uses encryption algorithms that
include RC2, RC4, DES, TripleDES, and MD5. In addition to
providing encryption services, SSL performs client and server
authentication, and it uses message authentication codes to ensure
data integrity.

Secure Shell
(SSH)

is a protocol that enables users to access a remote computer via a
secure connection. SSH is available through various commercial
products and as freeware. OpenSSH is a free version of the SSH
protocol suite of network connectivity tools. Although SAS software
does not include a programming interface to SSH functionality, SAS
does support the tunneling feature of SSH that enables a SAS client
to make an encrypted connection to a SAS server. Port forwarding is
another term for tunneling. The SSH client and SSH server act as
agents between the SAS client and the SAS server, tunneling
information via the SAS client’s port to the SAS server’s port.

For details about these encryption providers, see Encryption in SAS.

6 Programming Services � Chapter 1

Programming Services

Compute Services and MP CONNECT

Compute Services That Use RSUBMIT
Compute Services provides access to all of the computing resources on your network

by enabling you to direct the execution of SAS programs to one or more server sessions.
The results and any output that is generated by the remote execution are returned to
the client session. For short-running tasks, remote submits can be processed
synchronously. This means that control is returned after the remote processing is
complete. For longer-running tasks, remote submits can be processed asynchronously.
This means that control is returned immediately, and you can continue local processing
or remote processing to another server session.

Figure 1.1 Model of Compute Services

u The SAS/CONNECT client sends SAS statements to the server session.
v The SAS statements execute in the SAS/CONNECT server session using remote

data.
w Results are sent back to the client session.

Note: Asynchronous Compute Services is commonly referred to as MP
(Multi-Process) CONNECT. �

The following figure shows that these services enable you to move some or all
portions of an application’s processing to a remote computer.

Compute Services enables you to do the following:
� achieve scalability for your SAS applications

SAS/CONNECT: Definitions and Services � Compute Services and MP CONNECT 7

� perform remote tasks in the background (asynchronously) while processing
locally

� run multiple SAS processes asynchronously and coordinate the results from
each task execution in your client SAS session

� use pipeline processing to overlap execution of multiple dependent SAS DATA
steps or procedures

� use processors on an SMP computer (which is referred to as “scaling up”) and
using idle processors across a network (which is referred to as “scaling out”)

� access remote resources

� take advantage of server hardware and software resources

� access mainframe and other legacy systems (for example, by building a single
SAS program that contains statements that run locally and statements that
execute on multiple remote legacy computers)

� execute against the remote copy of the data

� submit macro steps remotely to the server, and then pass return code
information about the server process to the client

� execute graphics programs on the server and display the graphics locally by
using the graphics capabilities of the local workstation, plotter, or printer

Compute Services That Use Remote SQL Pass-Through
Remote SQL Pass-Through (RSPT) gives you control of where SQL processing occurs.

RSPT enables you to pass SQL statements to a remote SAS SQL processor by passing
them through a remote SAS server. You can also use RSPT to pass SQL statements to a
remote DBMS by passing them through a remote SAS server and a REMOTE access
engine that supports pass-through.

Figure 1.2 Remote SQL Pass-Through Services

u The SAS client uses a REMOTE engine to pass SQL statements to a server session.
v The SQL statements are passed to the server session.
w The SQL statements are passed to SAS SQL to select data or to execute

statements in order to modify, manipulate, and manage data. This includes creating
SAS SQL views.

x The SQL statements are passed to a remote DBMS to select data or to execute
statements in order to modify, manipulate, and manage data. This includes creating
DBMS views.

You can invoke RSPT by using PROC SQL statements that are passed to the remote
server for execution in the server SAS session, or you can store SQL pass-through
statements in local SQL views.

8 Data Transfer Services � Chapter 1

Data Transfer Services
Data Transfer Services enables you to move a copy of the data from one computer to

another computer. The data is translated between computer architectures and SAS
version formats, as necessary.

Figure 1.3 Model of Data Transfer Services (UPLOAD and DOWNLOAD)

u The SAS/CONNECT client requests an upload of data records to the SAS/
CONNECT server session for processing.

v Data is copied from the client disk and is written to the server disk for processing.
w The SAS/CONNECT client requests the download of data records from the server

to the client for processing.
x Data is copied from the server disk and is written to the client disk for processing.
Data is transferred using the UPLOAD and DOWNLOAD procedures. You can

transfer SAS data sets, SAS catalogs, MDDB, SQL views, entire SAS data libraries, and
external files.

Note: External files can be transferred in either text or binary format. �

The data transfer capabilities enable you to do the following:
� customize data transfers

� transfer multiple SAS files in a single step by using the INLIB= and
OUTLIB= options. This capability enables you to transfer an entire library or
selected members of a library in a single PROC UPLOAD or PROC
DOWNLOAD step.

� transfer collections of files (such as a partitioned data set, a MACLIB, or a
directory) between a client and a server.

� use WHERE processing for dynamic data subsetting and SAS data set
options when transferring individual SAS data sets.

� transfer catalog entries that contain graphics output by using a simple
one-step process.

� protect data
� increase the robustness of your decision support environment by keeping a local

copy of your data, which is insulated from network failure.
� back up local files to a server.

� manage data distribution
� automate both data or application distribution and centralized data collection.

SAS/CONNECT: Definitions and Services � Remote Library Services 9

� distribute files from one workstation by uploading to a server and downloading
to other workstations that need the files.

� move SAS files between releases of SAS as well as across operating
environments.

Remote Library Services
Remote Library Services (RLS) provides transparent access to SAS data that is

located on a remote computer. The data resides in server libraries, and RLS moves the
data through the network as client processing requests it. The data must again pass
through the network on any subsequent use by the client session. As the following
figure shows, a copy of the data is not written to the client file system.

Figure 1.4 Model of RLS Processing

u The SAS/CONNECT client session requests records from the SAS/CONNECT
server session or the client requests that records be written to the server.

v Data records are written to the SAS/CONNECT server session or are sent to the
SAS/CONNECT client session for processing.

The SAS procedures and DATA steps that run in the SAS/CONNECT client session
request access via the REMOTE engine to SAS files that are located on a SAS/
CONNECT server. The REMOTE engine communicates the requests for data to the
server. The server administers the requests to access SAS files on behalf of the client.

RLS provides the following:
� transparent access to SAS data that is located on a remote computer
� access to current SAS data because no client copy is made
� a reduction of disk space consumption because multiple copies of the data are not

created
� the ability to run a local graphical user interface and process SAS data that is

located on a remote computer

10 Administering Logging for SAS/CONNECT � Chapter 1

Administering Logging for SAS/CONNECT

About the SAS Logging Facility
The SAS/CONNECT server and the SAS/CONNECT spawner use the SAS logging

facility as the standard debugging tool in a SAS Foundation environment and in a SAS
Intelligence Platform deployment. To make the logging facility functional, you must
configure its properties in a logging configuration file. After you configure the file, you
can easily enable the logging facility by specifying the -LOGCONFIGLOC system option
in the SAS invocation.

Here are the primary components that are defined in the configuration file:

Loggers
specify the objects that are used to create log events for a specific aspect of an
application. A predefined set of loggers corresponds to the supported components
such as Root, Audit, Admin, App, IOM, and Perf.

Appenders
specify the output destinations for the log events. Examples include the
FileAppender, RollingFileAppender, DBAppender, and ARMAppender. A level of
severity is also associated with the log event. Examples are trace, debug, info,
warn, error, and fatal.

Pattern Layouts
specify the formats of the error messages that are associated with the log event.

For complete details about the component of the SAS logging facility, see SAS
Logging: Configuration and Programming Reference.

Logging Configuration File
Here is a typical configuration file that defines the logging components:

Example Code 1.1 Typical Log Configuration File for SAS/CONNECT

<?xml version="1.0" ?>
<log4sas:configuration xmlns:log4sas="http://www.sas.com/rnd/Log4SAS/" debug="true"> u

<appender name="LOG" class="FileAppender" > v

<param name="File" value="c:\v9\spawner.log" />
<layout>

<param name="ConversionPattern" value="%d %-5p [%t] %c (%F:%L) - %m" /> w

</layout>
<param name="threshold" value="all" />
</appender>

<root> x

<appender-ref ref="LOG" />
<level value="all" />

</root>
</log4sas:configuration>

1 DEBUG="TRUE" indicates that debugging is enabled.
2 CLASS="FileAppender" indicates that the log events are written to the file path

c:\v9\spawner.log.

SAS/CONNECT: Definitions and Services � Example of a Log Event 11

3 The ConversionPattern parameter specifies a pattern layout that formats log
messages. It identifies the type of data, the order of the data, and the format of
the data that is generated in a log event and is delivered as output. In this
example, the date and time, the log level, the thread ID, and the logger constitute
the log event.

4 The root logger controls the entire SAS log event and is at the highest level in the
logger hierarchy. If any other loggers are included in the logging configuration file,
they are located beneath the ROOT logger in the hierarchy. All other loggers
inherit the specified appender and threshold value of the root logger.

Invocation of the Logging Facility
The SAS logging facility is started in a SAS invocation. Here is a Windows example:

sas -logconfigloc winlog.xml

The -LOGCONFIGLOC option is used to specify the location of the logging
configuration file named winlog.xml, which is used to initialize the SAS logging facility.
The file specification that defines the location of the logging configuration file must be a
valid filename or a path and filename for your operating environment.

Triggers for Log Events
Log events are triggered for SAS/CONNECT under these circumstances:
� server sign-on via the SIGNON statement and the SAS/CONNECT spawner

invocation
� the beginning of the RSUBMIT statement and the occurrence of the

ENDRSUBMIT statement
� server sign-off via the SIGNOFF statement and the SAS/CONNECT spawner

termination

Note: SAS/CONNECT sign-on to and sign-off from a grid session is also supported.
For details, see Grid Computing in SAS. �

Performance (such as response time, throughput, and availability) can also be measured
for SAS transactions such as a DATA step or a SAS procedure in a SAS/CONNECT
application by using the product SAS Application Response Measurement (ARM). To
enable ARM, you would insert ARM macros into the SAS/CONNECT application. For
details about implementing ARM in a SAS/CONNECT application, see SAS Interface to
Application Response Measurement (ARM): Reference and SAS Logging: Configuration
and Programming Reference.

Example of a Log Event
The data and the format of the log event are defined in the conversion pattern that is

specified in the configuration file. Here is an example of a log event:

2008-06-25-10:24:22,234; WARN; 3; Appender.File; (yn14.sas.c:149);
Numeric maximum was larger than 8, am setting to 8.

12 Accessibility Features in SAS Products � Chapter 1

Accessibility Features in SAS Products

For information about accessibility for any of the products mentioned in this book,
see the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

13

P A R T2

SAS/CONNECT Options

Chapter 2.SAS/CONNECT General SAS System Options 15

14

15

C H A P T E R

2
SAS/CONNECT General SAS
System Options

AUTOSIGNON System Option 15
COMAMID= System Option 16

CONNECTPERSIST System Option 17

CONNECTREMOTE= System Option 18

CONNECTSTATUS System Option 20

CONNECTWAIT System Option 21
DMR System Option 22

SASCMD= System Option 22

SASFRSCR System Option 24

SASSCRIPT= System Option 25

SIGNONWAIT System Option 27

SYSRPUTSYNC System Option 28
TBUFSIZE= System Option 29

TCPPORTFIRST= System Option 31

TCPPORTLAST= System Option 32

AUTOSIGNON System Option

Automatically signs on the client session to the server session, establishing a client/server
connection when a connection does not already exist.

Client: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Default: NOAUTOSIGNON
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
AUTOSIGNON | NOAUTOSIGNON

16 COMAMID= System Option � Chapter 2

Syntax Description

AUTOSIGNON
automatically signs on the client session to the server session for the subsequent
execution of an RSUBMIT command or statement.

Note: In order to terminate a client/server session after an RSUBMIT has
completed, you can do either of these:

� specify the NOCONNECTPERSIST system option
� issue an explicit SIGNOFF statement

�

NOAUTOSIGNON
does not automatically sign to the client session on the server session for the
subsequent execution of an RSUBMIT command or statement. In order to establish a
client/server connection, you must specify the SIGNON command or statement
explicitly.

Details
When the AUTOSIGNON system option is specified, the RSUBMIT command or
statement automatically executes a sign-on, and uses any SAS/CONNECT system
options in addition to options that are specified in the RSUBMIT statement. For
example, if you specify either the NOCONNECTWAIT system option or the
NOCONNECTWAIT option in the RSUBMIT command or statement, asynchronous
RSUBMITs will be the default for the entire connection.

Example
For an example of using the AUTOSIGNON option with MP CONNECT, see “Example
5: Using MP CONNECT and the WAITFOR Statement” on page 172.

See Also
Statements

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

System Options
“CONNECTPERSIST System Option” on page 17

COMAMID= System Option

Identifies the communications access method for connecting a client and a server across a
network.

Client: Required
Server: Required
Default: TCP/IP for OpenVMS, UNIX, and Windows
Default: XMS for z/OS

SAS/CONNECT General SAS System Options � CONNECTPERSIST System Option 17

Client: Valid in: configuration file, OPTIONS statement, SAS System Options window,
SAS invocation
Server: Valid in: configuration file, SAS invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
COMAMID=access-method-ID

Syntax Description

access-method-ID
specifies the name of the communications access method that is used by a SAS/
CONNECT client to connect to a SAS/CONNECT server across a network.

Examples
At the client, the following OPTIONS statement specifies the TCP/IP access method for
connecting to a server.

options comamid=tcp;

At the server, the TYPE statement in a script file specifies options that are set when
the server session starts.

type "sas (dmr comamid=tcp noterminal no$syntaxcheck)" enter;

See Also
Communications Access Methods for SAS/CONNECT and SAS/SHARE

CONNECTPERSIST System Option
Specifies whether a connection between a client and a server persists (continues) after the
RSUBMIT has completed.

Client: Optional
Alias: CPERSIST
Default: CONNECTPERSIST
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
CONNECTPERSIST | NOCONNECTPERSIST

18 CONNECTREMOTE= System Option � Chapter 2

Syntax Description

CONNECTPERSIST
continues a client/server connection after the RSUBMIT (with or without automatic
sign-on) has completed. The server is not automatically signed off (disconnected
from) the client.

NOCONNECTPERSIST
discontinues a client/server connection after the RSUBMIT (with or without
automatic signon) has completed. The server is automatically signed off
(disconnected from) the client.

Details

The CONNECTPERSIST option is most useful when automatic sign-on (specified by
using the AUTOSIGNON option) is enabled.

A continued connection after the completion of a current RSUBMIT enables you to
perform subsequent processing tasks within the same client/server session without
having to sign on again. To terminate a persistent connection, you must perform an
explicit SIGNOFF.

In addition to being a system option, CONNECTPERSIST can be set as an option in
the RSUBMIT statement. The option in the RSUBMIT statement or command takes
precedence over the system option.

See Also

System Option

“AUTOSIGNON System Option” on page 15

Statement

“RSUBMIT Statement and Command” on page 137

CONNECTREMOTE= System Option

Identifies the server session that a SAS/CONNECT client connects to.

Client: Required

Aliases: CREMOTE=, REMOTE=, PROCESS=

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax

CONNECTREMOTE=server-ID

SAS/CONNECT General SAS System Options � CONNECTREMOTE= System Option 19

Syntax Description

server-ID
identifies the specific server session that the client connects to. This ID might
correspond to the name of the machine that the client connects to. If connecting to a
server session on a multi-processor machine (that is, a machine that is equipped with
SMP hardware), the ID can be a descriptive name that you assign to the session.

Details
In addition to being a system option, CONNECTREMOTE= can be set as an option in
the RSUBMIT and SIGNON statements. The option in an RSUBMIT or SIGNON
statement or command takes precedence over the system option.

Examples

Example 1: CONNECTREMOTE= in SIGNON At the client, the following OPTIONS
statement specifies the TCP/IP access method for connecting to a SAS session on a
machine named APEX.

options comamid=tcp connectremote=apex;
signon;

Alternatively, you can specify the CONNECTREMOTE= option in the SIGNON
statement.

signon connectremote=apex;

After a successful signon, the CONNECTREMOTE= value is updated.

Example 2: CONNECTREMOTE= in RSUBMIT The following OPTIONS statement
specifies the TCP/IP access method for connecting to a SAS session on the machine
named APEX, which connects to the session ID of the OpenVMS server that statements
are remotely submitted to.

options comamid=tcp connectremote=apex;
rsubmit;

statements for OpenVMS server
endrsubmit;

The following OPTIONS statement specifies the TCP/IP access method and the
macro variable HOST1, which contains the IP address of a UNIX server that the
statements are remotely submitted to.

%let host1=IP-address;
options comamid=tcp connectremote=host1;
rsubmit;

statements for UNIX server
endrsubmit;

Alternatively, you can specify the session ID directly in the RSUBMIT statement.

rsubmit apex;
statements for OpenVMS server

endrsubmit;

%let host1=IP-address;

20 CONNECTSTATUS System Option � Chapter 2

rsubmit host1;
statements for UNIX server

endrsubmit;

After a successful RSUBMIT, the CONNECTREMOTE= value is updated.

See Also
Statement

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

CONNECTSTATUS System Option

Specifies the default setting for the display of the Transfer Status window.

Client: Optional
Aliases: CSTATUS, STATUS
Default: CONNECTSTATUS
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
CONNECTSTATUS | NOCONNECTSTATUS

Syntax Description

CONNECTSTATUS
specifies that the Transfer Status window is displayed during file transfers.

NOCONNECTSTATUS
specifies that the Transfer Status window is not displayed during file transfers.

Details
For synchronous processing, the CONNECTSTATUS system option specifies whether
the Transfer Status window is displayed during a PROC UPLOAD or a PROC
DOWNLOAD. This system option can be overridden by specifying the
CONNECTSTATUS= option in subsequent PROC UPLOAD, PROC DOWNLOAD,
RSUBMIT, and SIGNON statements.

For asynchronous processing (NOCONNECTWAIT), the CONNECTSTATUS system
option and the CONNECTSTATUS= option in a SIGNON statement are ignored. To
enable the Transfer Status window for asynchronous processing, you must specify
CONNECTSTATUS=YES in the PROC UPLOAD, PROC DOWNLOAD, or RSUBMIT
statement.

SAS/CONNECT General SAS System Options � CONNECTWAIT System Option 21

See Also
Conceptual information about “Transfer Status Window” on page 233
Statements

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

Procedures
“Syntax for the UPLOAD Procedure” on page 238
“Syntax for the DOWNLOAD Procedure” on page 256

CONNECTWAIT System Option

Specifies whether remote submits are executed synchronously or asynchronously.

Client: Optional
Alias: CWAIT
Default: CONNECTWAIT
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
CONNECTWAIT | NOCONNECTWAIT

Syntax Description

CONNECTWAIT
specifies that RSUBMIT statements are executed synchronously. Synchronous
processing means that server processing must be completed before control is returned
to the client session.

NOCONNECTWAIT
specifies that RSUBMIT statements are executed asynchronously. Asynchronous
processing permits the client or multiple server processes to execute in parallel.
Control is returned to the client session immediately after an RSUBMIT begins
execution to allow for continued processing in the client session or other server
sessions.

Details
The CONNECTWAIT system option specifies whether remote submits are executed
synchronously. The default setting can be overridden by setting the CONNECTWAIT=
option in the SIGNON statement or in subsequent RSUBMIT statements. The option in
the RSUBMIT or SIGNON statement or command takes precedence over the system
option.

22 DMR System Option � Chapter 2

If NOCONNECTWAIT is specified, you might also want to specify the CMACVAR=
option in the RSUBMIT statement. Setting CMACVAR= enables you to learn the status
of the current asynchronous RSUBMIT (whether it has completed or is still in progress).

See Also

Statements

“RSUBMIT Statement and Command” on page 137

“SIGNON Statement and Command” on page 59

DMR System Option

Invokes a server session.

Server: Required

Valid in: configuration file, SAS invocation

Category: Environment Control: Initialization and operation

PROC OPTIONS Group= Environment Control

Syntax

DMR

Details

The DMR system option must be specified either in the server CONFIG.SAS file or in
the TYPE statement in a SAS/CONNECT script file that starts a SAS session.
Alternatively, it executes by default when connecting to a spawner.

The server session receives input from the client session and sends log and output
lines to the client’s Log and Output windows or files.

SASCMD= System Option

Specifies the command that starts a server session on a symmetric multiprocessing (SMP)
computer.

Client: Optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

SAS/CONNECT General SAS System Options � SASCMD= System Option 23

Syntax
OpenVMS, UNIX, Windows

SASCMD=<“SAS-command <SAS-system-options>” | “!sascmd SAS-system options”>

z/OS
SASCMD=<“:SAS-system-options” | “!sascmd SAS-system-options” >

Syntax Description

SASCMD= <“SAS-command <SAS-system-options>” | “!sascmd SAS-system-options”>
under the OpenVMS, UNIX, and Windows operating environments, this command
starts a server session on a multi-processor computer. The TCP/IP access method is
used to connect to the server session.

!sascmd specifies that the same SAS command that was used to invoke the client
session should be used to invoke the server session. The SAS command can be
specified with additional or overriding SAS system options.

SASCMD= <“:SAS–system–options” | “!sascmd SAS-system-options”>
under the z/OS operating environment, starts a server session on a multiprocessor
computer, and passes values for the following SAS system options to the server
session: DMR, COMAMID=, REMOTE=, SASHELP=, SASMSG=, SASAUTOS=, and
CONFIG=. You might also specify additional SAS system options to be passed to the
server session. The XMS access method is used to connect to the server session.

The fork command under UNIX is used to spawn an MVS BPX address space,
which inherits the same STEPLIB and USERID as the client address space.

Details
SASCMD= is most useful for starting multiple sessions to run asynchronously on
multiprocessor computers. You can also use SASCMD= to develop an application on a
single-processor computer that will be executed later on a multi-processor computer.

In addition to being a system option, SASCMD= can be set as an option in the
SIGNON and the RSUBMIT statements or commands. The option in an RSUBMIT or
SIGNON statement or command takes precedence over the system option.

Examples
The following OPTIONS statement invokes a SAS session.

options sascmd="sas";

The following OPTIONS statement invokes a server session on a computer under the
z/OS operating environment and sets the MEMSIZE= and NONUMBER options.

options sascmd=":memsize=64M nonumber";

The following OPTIONS statement invokes a server session on a computer under the
z/OS operating environment with no additional SAS options.

options sascmd="any-string";

The following OPTIONS statement specifies a script file to invoke SAS.

options sascmd="mysas.bat";

24 SASFRSCR System Option � Chapter 2

For the preceding example, the following code is contained in the text file
MYSAS.BAT.

cd "C:\Program Files\SAS System\9.0"
mkdir mywork
sas -nosyntaxcheck -work "mywork" %*

Note: The %* positional parameter enables you to specify additional SAS options
when you invoke SAS. �

When the SASCMD= option is executed, the MYSAS.BAT script is executed.

See Also
Statements

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

SASFRSCR System Option

Is a read-only option that contains the fileref that is generated by the SASSCRIPT= option.

Client: Optional
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SASFRSCR

Details
The SASFRSCR option is not explicitly specified. A value for SASFRSCR is generated
only if SASSCRIPT is specified. You can read the value for this option in an application
that is written in the SAS Component Language (SCL), which prompts a user for the
correct SAS/CONNECT sign-on script.

For more information, see “SASSCRIPT= System Option” on page 25.

SAS/CONNECT General SAS System Options � SASSCRIPT= System Option 25

SASSCRIPT= System Option

Specifies one or more locations for SAS/CONNECT server sign-on script files.

Client: Optional

Default: Varies by operating environment.

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax

SASSCRIPT= “dir-name” |<“dir-name-1”, ... ,“dir-name-n”> |“fileref” |<“fileref-1”, ...
,“fileref-n”>

Syntax Description

“dir-name” | fileref
specifies the name of one or more directories that contain SAS/CONNECT script files.
Enclose the directory name in double or single quotation marks.

OpenVMS Default: SAS$ROOT:[TOOLS]

UNIX Default: !sasroot/misc/connect

Windows Default: !sasext0\connect\saslink

z/OS Default: &prefix.CTMISC

The directory name can also be specified as a fileref.

Details

If the CSCRIPT= option is specified in the SIGNON statement and the specified script
file is not located in the current directory, the location that is specified in the
SASSCRIPT= option is used to find the specified script file.

If quotation marks are omitted from the value, SAS can misinterpret the value as a
physical filename and an error condition can result. Using quotation marks ensures
that the value is correctly interpreted as a directory path.

The SASSCRIPT= option also enables you to find the location of a script file that has
been configured as a property in the SAS Metadata Repository. The script path is
among the properties of the SAS/CONNECT server component in the SAS Application
Server that is stored in the SAS Metadata Repository.

Note: In order to obtain a script file path from the SAS Metadata Repository, you
must have access to the repository. These SAS options can be used to configure access
to the SAS Metadata Repository: METAAUTORESOURCES=, METACONNECT=,
METAPASS=, METAPORT=, METAPROFILE=, METAPROTOCOL=,
METAREPOSITORY=, METASERVER=, and METAUSER=. �

26 SASSCRIPT= System Option � Chapter 2

Example 1: Assigning the File Path to SASSCRIPT=
In this example, the SASSCRIPT= option is used to specify an alternative file path to
scripts for server sign-ons under the Windows operating environment.

options sasscript= "c:\my\favorite\scripts";

After the SASSCRIPT= option has been specified, the script can be invoked as follows:

signon remhost cscript="myscr.scr";

When myscr.scr is not located in the default location, a search for the script will be
made at the location that is specified in the SASSCRIPT= option.

Here is an example in the SAS log of the representation of the SASSCRIPT= option
and the assigned value:

SASSCRIPT=("c:\my\favorite\scripts")

SAS surrounds the quoted file path with parentheses.

Note: The SASSCRIPT= option is an alternative to the RLINK fileref that is used in
the FILENAME statement for identifying the location of a script file. �

Example 2: Assigning a Fileref to SASSCRIPT=
In this example, a FILENAME statement is used to assign the filename TESTFILE to
the fileref POINTER. The OPTIONS statement is used to assign the SASSCRIPT
system option to the value POINTER, which is a fileref to the filename TESTFILE. The
fileref is not enclosed in quotation marks.

filename pointer ’testfile’;
options sasscript=pointer;

Example 3: Obtaining the Script File Path from the SAS Metadata
Repository
In this example, the path to the server sign-on script has been configured as a property
in the SAS Metadata Repository. Here is the code to access the SAS Metadata
Repository and to find out the script path:

options metaserver="max.apex.na.com";
signon serverv="SASApp";

The METASERVER= option is used to specify the fully qualified domain name of the
computer on which the SAS Metadata Server runs. The SIGNON statement and the
SERVERV= option are used to produce a list of the properties of the SAS/CONNECT
server component in the SAS Application Server that is stored in a SAS Metadata
Repository. The name of the SAS Application Server is “SASApp.”

Here is an excerpt of the output that is sent to the SAS Log:

1 options metaserver="max.apex.na.com";
2 signon serverv="SASApp";
NOTE: Server= SASApp - Connect Server

Remote Session ID= remhost
ServerComponentID= A5SXFC1R.AU000002
Remote Host= max.apex.na.com
Communication Protocol=TCP
Port= 7551
Scriptpath= F:\admin\work\favescript.scr
AuthDomain= DefaultAuth

SAS/CONNECT General SAS System Options � SIGNONWAIT System Option 27

Wait= Yes
SignonWait= Yes
Status= Yes
Notify= No

Knowing the script path and the script name, in a client session, you can sign on to a
server session. Here is an example:

options sasscript= "F:\admin\work";
signon remhost cscript="favescript.scr";

Here is an alternative way to sign on to a server session:

signon remhost cscript="F:\admin\work\favescript.scr";

See Also
Statements

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

System Options
Metadata Repository System Options in SAS Language Reference: Dictionary

SIGNONWAIT System Option

Specifies whether a SAS/CONNECT sign-on should be executed asynchronously or synchronously.

Client: Optional
Aliases: CONNECTSWAIT, SWAIT
Default: SIGNONWAIT
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SIGNONWAIT | NOSIGNONWAIT

Syntax Description

SIGNONWAIT
specifies that a SAS/CONNECT SIGNON statement will execute synchronously.
Synchronous processing means that a sign-on to a server session must complete
before control is returned to the client session.

NOSIGNONWAIT
specifies that a SAS/CONNECT SIGNON statement will execute asynchronously.
Asynchronous processing permits sign-ons to multiple server sessions to execute in

28 SYSRPUTSYNC System Option � Chapter 2

parallel. Control is returned to the client session immediately after a sign-on when
NOSIGNONWAIT is specified.

Details
You can use NOSIGNONWAIT to start multiple server sessions in parallel. Parallelism
reduces the total amount of time that would be used to start individual connections to
server sessions. This time savings allows the client session to do other processing, such
as submitting units of work remotely to a server session, as soon as sign-on is complete.

If NOSIGNONWAIT is specified, you might also want to specify the CMACVAR=
option in the SIGNON statement. Setting CMACVAR= enables you to learn the status
of the current asynchronous SIGNON (whether it has completed or is still in progress).

In addition to being a system option, SIGNONWAIT can be set as an option in the
RSUBMIT and SIGNON statements. The option in the RSUBMIT or SIGNON
statement or command takes precedence over the system option.

See Also
Statements

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

SYSRPUTSYNC System Option

Sets %SYSRPUT macro variables in the client session when the %SYSRPUT statements are
executed rather than when a synchronization point is encountered.

Client: Optional
Alias: CSYSRPUTSYNC, NOCSYSRPUTSYNC
Default: NOSYSRPUTSYNC
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SYSRPUTSYNC | NOSYSRPUTSYNC

Syntax Description

SYSRPUTSYNC
specifies that the client session’s macro variables will be updated when the client
session receives the results of the server session’s execution of the %SYSRPUT
macro. The results are delivered in the form of a packet. Specifying YES does not
mean that the client’s macro variables will be updated immediately after the server’s
execution of the %SYSRPUT macro variable. YES means that the client’s macro

SAS/CONNECT General SAS System Options � TBUFSIZE= System Option 29

variables will be updated when the client receives the packet from the server.
Therefore, the exact time that the client’s macro variables are updated will depend
on the availability of the client to receive the packet. If the client is busy, the server
waits until the client is ready to receive the packet.

NOSYSRPUTSYNC
specifies that the client session’s macro variables will be updated when a
synchronization point is encountered.

Details
This option is useful only when executing an asynchronous RSUBMIT, which is enabled
via these methods:

� NOCONNECTWAIT system option
� CONNECTWAIT=NO option in RSUBMIT
� CONNECTWAIT=NO option in SIGNON

In addition to being a system option, CSYSRPUTSYNC= can be specified as an
option in the RSUBMIT statement. The CSYSRPUTSYNC= option in the RSUBMIT
statement or command takes precedence over the system option.

By contrast, a synchronous RSUBMIT is enabled via these methods:
� CONNECTWAIT system option
� CONNECTWAIT=YES option in RSUBMIT
� CONNECTWAIT=YES option in SIGNON

A synchronous RSUBMIT causes macro variables to be updated when a
synchronization point is encountered.

Note: You should not change the value of the SYSRPUTSYNC= option between
consecutive asynchronous RSUBMIT statements. Changing SYSRPUTSYNC= between
asynchronous RSUBMIT statements causes unpredictable results. �

See Also
Conceptual information about “Synchronization Points” on page 158
Statements

“RSUBMIT Statement and Command” on page 137
“SIGNON Statement and Command” on page 59

TBUFSIZE= System Option

Specifies the size of the buffer that is used by the SAS application layer for transferring data
between a client and a server across a network.

Client: Optional
Default: 32768 (the value of 0 is converted to 32768)
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

30 TBUFSIZE= System Option � Chapter 2

Syntax
TBUFSIZE=buffer-size-in-bytes

Syntax Description

buffer-size-in-bytes
specifies the size of the buffer that SAS/CONNECT uses for transferring data.

Note: buffer-size-in-bytes must be specified as a multiple of 1024 bytes. You can
also specify the value in kilobytes using the format nK. �

Details
The TBUFSIZE= option defines the buffer for the SAS application layer. The
TCPMSGLEN= option defines another buffer for the SAS communications layer. For
more information about TCPMSGLEN=, which is used only by the TCP/IP
communications access method, see the topic that is appropriate to your operating
environment in Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Table 2.1 Summary of Attributes for the TBUFSIZE= and TCPMSGLEN= Options

System Option Default Buffer Size Controlling SAS Layer Purpose of Buffer

TBUFSIZE= 32K SAS Application SAS/CONNECT uses
the buffer to transfer
data to the
communications layer.

TCPMSGLEN= 32K for OpenVMS,
UNIX, and z/OS;
16K for Windows

SAS Communications The TCP/IP access
method uses the buffer
to transfer data to a
client or a server.

The SAS application layer does the following:
1 packs and compresses data records into a buffer until all the data has been

processed or the buffer is full
2 sends a buffer whose size is defined in the TBUFSIZE= option to the

communications layer

Using the TBUFSIZE= option to maximize buffer size for the SAS application layer
reduces the number of calls that the application layer makes to the communications
layer for a data transfer. A reduction of calls to the communications layer saves
resources and improves operating environment and network performance. Other
factors, such as the amount of data and the network bandwidth, must be considered to
optimize buffer performance.

The SAS communications layer does the following:
1 receives a buffer from the SAS application layer
2 sends a buffer whose size is defined in the TCPMSGLEN= option to the client or to

the server

As with the TBUFSIZE= option, an optimal value assigned to TCPMSGLEN= can
save resources and improve network performance. TCPMSGLEN= can be set to
transfer the entire buffer it receives or to divide the data into multiple transfers.

SAS/CONNECT General SAS System Options � TCPPORTFIRST= System Option 31

To change the size of the TCP buffer, the TCPMSGLEN= option is specified at both
the client and the server. If the client and the server do not use identical values for
TCPMSGLEN=, the smaller buffer size is used.

In addition to being a system option, TBUFSIZE= can be set as an option in the
SIGNON statement. The option in the SIGNON statement or command takes
precedence over the system option.

CAUTION:
Do not specify the TBUFSIZE= option in the server session. Specify the TBUFSIZE= Option
in the Client Session Only �

If you specify the TBUFSIZE= option in a remote SAS invocation that runs an
AUTOEXEC file, the allocated buffers might be insufficient to complete the processing
of the AUTOEXEC file. Although the client can successfully sign on to the server
session, the error message that would alert you to insufficient buffers might not be
written to the server log immediately. Instead, the error message would be logged
following the client’s next request for server processing.

Specify the TBUFSIZE= option in the SIGNON statement in the client session when
signing on the server session.

Example
In the following OPTIONS statement, the TBUFSIZE= option is used to increase the
buffer size from 32K (the default) to 64K:

options tbufsize=65536;
signon;

Alternatively, you can specify tbufsize=64k.

See Also
System Option

TCPMSGLEN system option that is used by the TCP/IP access method for
the appropriate operating environment in Communications Access Methods
for SAS/CONNECT and SAS/SHARE

Statement
“SIGNON Statement and Command” on page 59

TCPPORTFIRST= System Option

Specifies the first value in a range of TCP/IP ports for a client to use to connect to a server.

Server: Optional
Valid in: configuration file, SAS invocation

Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
TCPPORTFIRST=n

32 TCPPORTLAST= System Option � Chapter 2

Syntax Description

n
specifies the first TCP/IP port in a range of ports for a client to use to connect to a
server.

Details
To assign the range of ports, assign the first port by using the TCPPORTFIRST=
system option and the last port by using the TCPPORTLAST= system option. To
restrict the connection to one port, specify the same value for both options. The
TCPPORTFIRST= option is valid only in a SAS/CONNECT server session.

Operating Environment Information
Valid values for this option are specific to a given operating environment. For more

information, see the SAS documentation for your operating environment, or contact
your system administrator for information about valid values.

TCPPORTLAST= System Option

Specifies the last value in a range of TCP/IP ports for a client to use to connect to a server.

Server: Optional
Valid in: configuration file, SAS invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
TCPPORTLAST=n

Syntax Description

n
specifies the last TCP/IP port in a range of ports for a client to use to connect to a
server.

Details
To assign the range of ports, assign the first port by using the TCPPORTFIRST=
system option and the last port by using the TCPPORTLAST= system option. To
restrict the connection to one port, specify the same value for both options. The
TCPPORTLAST= option is valid only in a SAS/CONNECT server session.

Operating Environment Information
Valid values for this option are specific to a given operating environment. For more

information, see the SAS documentation for your operating environment, or contact
your system administrator for information about valid values.

33

P A R T3

Starting and Stopping SAS/CONNECT Software

Chapter 3.Starting and Stopping SAS/CONNECT 35

Chapter 4.Using SAS/CONNECT Script Files 49

Chapter 5.Syntax for the SIGNON and the SIGNOFF Statements and
Commands 59

Chapter 6.Syntax for the FILENAME Statement 81

Chapter 7.SAS Component Language (SCL) Functions and Options 85

Chapter 8.SAS/CONNECT Script Statements 91

Chapter 9.Sign-On Troubleshooting 103

34

35

C H A P T E R

3
Starting and Stopping SAS/
CONNECT

Starting SAS and Using Syntax Checking 35
Starting SAS/CONNECT 36

Specifying a Communications Access Method 36

Signing On to the Server 37

Sign On to a Server That Is Defined in the SAS Metadata Repository 37

About the SAS Metadata Repository 37
Access the SAS Metadata Server 37

Sign On to the SAS Application Server 37

Sign On to the Same Multiprocessor Computer 38

Specify the Server Session 39

Use the SASCMD Option to Specify SAS 39

Examples: Signing On to the Server Session 40
Sign On Using a Spawner 40

Ensure That the Spawner Is Running on the Server 40

Specify the Server and the Spawner Service 40

Specify a Sign-On Script or a User ID and Password 41

Specify a Sign-On Script 41
Specify a User ID and Password 42

Sign On by Using the Spawner 42

If Necessary, Change an Expired Password (z/OS Spawner Only) 43

Sign On Using a Telnet Daemon 43

Specify the Server 43
Specify a Sign-On Script File 43

Example: Signing On to the Server Session 43

Interfaces for Starting and Stopping SAS/CONNECT 44

Types of Interfaces for Starting and Stopping SAS/CONNECT 44

Using the SAS Windowing Environment to Start and Stop SAS/CONNECT 44

The Signon Window 44
The Signoff Window 45

Using the Program Editor Window 46

Using the Program Editor Window to Sign On SAS/CONNECT 46

Using the Program Editor Window to Sign Off SAS/CONNECT 46

Using the Autoexec File 47

Starting SAS and Using Syntax Checking

In the SAS invocation for the non-interactive server session, consider whether to specify
syntax checking using the SYNTAXCHECK or NOSYNTAXCHECK system options.

Starting and Stopping
SAS/CONNECT

36 Starting SAS/CONNECT � Chapter 3

SYNTAXCHECK
uses additional resources to validate SAS statements while producing limited
results. For example, the first instance of a syntax error triggers syntax checking,
which automatically sets the value of the OBS= system option to 0. Consequently,
no observations can be created by subsequent SAS statements in the program. For
programs that are still under development and that might contain errors, consider
using the SYNTAXCHECK option.

NOSYNTAXCHECK
enables continuous processing of statements regardless of syntax error conditions.
When executing debugged production programs that are unlikely to encounter
errors, consider using the NOSYNTAXCHECK option.

You can specify the NOSYNTAXCHECK option when signing on to a server session on
the same symmetric multi-processing (SMP) computer that the client session is running
on. This option is most useful when client and server sessions run on SMP hardware.
SAS invocations can be specified using the SASCMD= system option and the SASCMD=
option in the RSUBMIT and in the SIGNON statements. For details, see “SASCMD=
System Option” on page 22, RSUBMIT SASCMD=, and SIGNON SASCMD=.

Here is an example of a SAS invocation that runs on the same computer at which the
client session runs:

signon smp sascmd="sas -nosyntaxcheck -noterminal";

Here is an example of a Windows command file named mysas.bat:

cd "C:\Program Files\alpair\SAS\V9.2"
mkdir mywork
sas %* -nosyntaxcheck -work "mywork"

%* adds the appended TCP/IP access method options to the SAS invocation in
mysas.bat.

To execute the command file, specify its name as the value for SASCMD=.

options sascmd="mysas.bat";

For details about the NOSYNTAXCHECK and NOTERMINAL system options, see
SAS Language Reference: Dictionary.

Starting SAS/CONNECT
Regardless of the interface that is used to start or stop SAS/CONNECT, the basic

tasks are the same. For details about the interfaces, see “Interfaces for Starting and
Stopping SAS/CONNECT” on page 44.

For information on how to start SAS/CONNECT from a SAS/CONNECT client
session see the following sections:

� “Specifying a Communications Access Method” on page 36 to access the server
computer

� “Signing On to the Server” on page 37

Specifying a Communications Access Method

To make a SAS/CONNECT client/server connection, in the client session, you must
specify TCP/IP as the access method to communicate with the computer that the server
session runs on.

Starting and Stopping SAS/CONNECT � Sign On to a Server That Is Defined in the SAS Metadata Repository 37

Note: TCP/IP is the default communications access method for most operating
environments. If the client/server sessions run under the z/OS operating environment,
you can specify the XMS access method. �

Example:

options comamid=tcp;

For details about using communications access methods, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

Signing On to the Server

Sign On to a Server That Is Defined in the SAS Metadata Repository

About the SAS Metadata Repository
The SAS Metadata Repository is a collection of files that store metadata about SAS

applications that execute in a SAS Intelligence Platform environment. In this context,
SAS/CONNECT sign-on properties might already be stored as metadata in a metadata
repository. Accessing a metadata server, you can continue to execute SAS/CONNECT
applications in the traditional interactive and batch execution modes, but with the
convenient access to configured sign-on properties. This access means that you do not
need to specify SAS options for sign-on in your code. For details about the SAS
Intelligence Platform, see SAS Intelligence Platform: Overview.

Access the SAS Metadata Server
Your client computer must be able to access the SAS Metadata Server in order to

sign on to a SAS/CONNECT server that has been defined in the SAS Metadata
Repository. You can access the SAS Metadata Server by specifying certain SAS system
options. Here is an example:

options metaserver="max.apex.na.com"
metaport=8561
metaprotocol="bridge"
metauser="domain\joe"
metapass="*******";

In this example, a user submits the appropriate credentials to access the SAS
Metadata Server, which runs on the computer max.apex.na.com.The bridge network
protocol is used to communicate with the SAS Metadata Server via port 8561. For
details about these system options, see SAS Language Interfaces to Metadata.

Sign On to the SAS Application Server
After you access the SAS Metadata Server, you can sign on to the SAS/CONNECT

server component of the SAS Application Server. In the SAS Open Metadata
Architecture, the metadata for a SAS Application Server specifies one or more server
components that provide SAS services to a client. You must know the name of the SAS
Application Server.

38 Sign On to the Same Multiprocessor Computer � Chapter 3

Before sign-on, you can see a list of the configured sign-on properties for the SAS
Application Server. In this example, the name of the SAS Application Server is SASMain.

options metaserver="max.apex.na.com"
metaport=8561
metauser="domain\joe"
metapass="*******";
metaprotocol="bridge"
signon serverv="SASMain";

For details about SAS system options METASERVER, METAPORT, METAUSER,
METAPASS, METAPROTOCOL, see SAS Language Interfaces to Metadata and SAS
Language Reference: Dictionary.

The SERVERV= option in the SIGNON statement displays the properties of the SAS/
CONNECT server component of the SAS Application Server, which is defined in the
SAS Metadata Repository.

Note: If the client session is not configured to access the SAS Metadata Server, SAS
displays a pop-up window in which you can configure access to the SAS Metadata
Server. �

Here is an excerpt of the output that is sent to the SAS Log:

1 options metaserver="max.apex.na.com";
2 signon serverv="SASMain";
NOTE: Server= SASMain - Connect Server

Remote Session ID= remhost
ServerComponentID= A5SXFC1R.AU000002
Remote Host= max.apex.na.com
Communication Protocol=TCP
Port= 7551
AuthDomain= DefaultAuth
Wait= Yes
SignonWait= Yes
Status= Yes
Notify= No

The output includes properties that control server sign-on and server session
execution. These connection properties are saved and stored in the metadata repository
via SAS Management Console. For details, see the SAS Management Console User’s
Guide or the online Help that is accessible from SAS Management Console.

After you view the sign-on properties, you can sign on to the server session. Here is
an example:

signon server="SASMain";

A sign-on to the SAS Application Server that is named SASMain implies a SAS/
CONNECT server sign-on.

Sign On to the Same Multiprocessor Computer
If your client computer is equipped with SMP, and if you want to run one or more

server sessions on your computer, perform these tasks:

1 Specify the server session.

2 Specify the SASCMD command to start SAS.

3 Sign on to the server session.

Starting and Stopping SAS/CONNECT � Sign On to the Same Multiprocessor Computer 39

TCP/IP is used on SMP computers for OpenVMS, UNIX, and Windows. XMS is used
on SMP computers for z/OS only.

Specify the Server Session
You can specify the server session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

You can also specify the server session in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length. It is the name
that you assign to the server session on the same multiprocessor computer.

Note: PROCESS= and CONNECTREMOTE= can be used interchangeably. For
details, see “CONNECTREMOTE= System Option” on page 18. �

For details about the SIGNON= statement, see Chapter 5, “Syntax for the SIGNON and
the SIGNOFF Statements and Commands,” on page 59.

Use the SASCMD Option to Specify SAS
Use the SASCMD option to specify the SAS command and any additional options that

you want to use to start SAS in a server session on the same multi-processor computer.
The SASCMD option can be specified in an OPTIONS statement:

OPTIONS SASCMD="SAS-command" | "!SASCMD" | "!sascmdv" | "host-command-file";

This option can also be specified directly in the SIGNON statement or command:

UNIX Example:

SIGNON name SASCMD="!SASCMD -memsize 64M -nonumber";

z/OS Example:

options sascmd=":memsize=64M nonumber";

The -DMR option is automatically appended to the command. If !SASCMD or
!SASCMDV is specified, SAS/CONNECT starts SAS on the server by using the same
command that was used to start SAS for the current client session.

Note:

� Under the UNIX and Windows operating environments, !SASCMDV shows the
SAS invocation. Under OpenVMS, !SASCMDV shows a symbol.

� In order to execute additional commands before SAS is invoked, you can write a
script that contains the SAS start-up commands that are appropriate for the
operating environment. Specify this script as the value in the SASCMD= option.

�

For details, see “SASCMD= System Option” on page 22, and Chapter 5, “Syntax for
the SIGNON and the SIGNOFF Statements and Commands,” on page 59.

40 Sign On Using a Spawner � Chapter 3

Examples: Signing On to the Server Session
Example 1:
In the following example, TCP is the access method, SAS1 is the name of the server

session, and SAS_START is the command that starts SAS on the same multi-processor
computer.

options comamid=tcp;
signon sas1 sascmd=’sas_start’;

Example 2:
In the following example, OPTIONS statements set the values for the COMAMID= ,

SASCMD=, and PROCESS= options. The SASCMD= option identifies SAS_START as
the command that starts SAS. The PROCESS= option identifies the server session on
the same multi-processor computer. Because the SASCMD= and the PROCESS=
options are defined, only a simple SIGNON statement is needed.

options comamid=tcp sascmd="sas_start";
options process=sas1;
signon;

Sign On Using a Spawner

Ensure That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the

server. For details, see the topic about spawners in Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Note: The system administrator for the computer that the spawner runs on must
start the spawner. The spawner program on the server cannot be started in the client
session. �

Specify the Server and the Spawner Service
The name of the server can be specified by using an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

The name can also be specified by using the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

node-name is based on the server that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is one of the following:

� the short computer name of the server you are connecting to. This name must be
defined in your Domain Name Server (DNS) or in the HOSTS file in the operating
environment that the client session runs under.

� a macro variable that contains either the IP address or the name of the server that
you are connecting to.

For UNIX and OpenVMS only:
The process for evaluating node–name follows:
1 If node-name is a macro variable, the value of the macro variable is passed to the

operating environment’s GETHOSTBYNAME function.
2 If node-name is not a macro variable or the value of the macro variable does not

produce a valid value, node-name is passed to the GETHOSTBYNAME function.

Starting and Stopping SAS/CONNECT � Sign On Using a Spawner 41

3 If GETHOSTBYNAME fails to resolve node-name, an error message is returned
and the sign-on fails.

Note: The order in which the GETHOSTBYNAME function calls the DNS or
searches the HOSTS file to resolve node-name varies based on the operating
environment implementation. �

You specify service-name when connecting to a server that runs a spawner program
that is listening on a port other than the Telnet port. If the spawner was started by
using the -SERVICE spawner option, you must specify an explicit service-name. The
value of service-name and the value of the -SERVICE spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with
service-name.

Example 1:
REMHOST is the name of the node on which the spawner runs, and PORT1 is the

name of the service that is defined in the client session. The client service PORT1 must
be assigned to the same port that the spawner is listening on.

signon remhost.port1;

Example 2:
In the following example, the macro variable REMHOST is assigned to the fully

qualified name of the computer on which the server runs. This server has a spawner
running that is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node name REMHOST and the service name 5050, which
is the explicit port value.

%let remhost=pc.rem.us.com;
signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable:

%let remhost=pc.rem.us.com 5050;
signon remhost;

Specify a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a

spawner without a script. If you do not use a sign-on script and if the spawner is
running secured, you must supply a user ID and password to sign on to the spawner.

Note: (Windows only) If you use SSPI, supplying a user ID and a password is
unnecessary. For details, see the topic about SSPI in Communications Access Methods
for SAS/CONNECT and SAS/SHARE �

Note: If you connect to a spawner, you can sign on by using a script unless the
spawner is started by using the NOSCRIPT option. If the NOSCRIPT option is set, you
cannot use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. As an alternative, you can specify the NOSCRIPT option in the
SIGNON statement. For information about the spawner that you are connecting to, see
the topic about spawners in Communications Access Methods for SAS/CONNECT and
SAS/SHARE. �

Specify a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to

use. The script file is executed by the SIGNON statement or command. By default, the
script prompts for user ID and password.

42 Sign On Using a Spawner � Chapter 3

To use one of the sample script files that are provided with SAS/CONNECT for
signing on and signing off, assign the fileref RLINK to the appropriate script file. As an
alternative, you can specify the CSCRIPT= option in the SIGNON statement. The
script is based on the server that you are connecting to. The location of the sample
scripts varies according to operating environment. For default locations, see “Using a
Script to Start and Stop SAS/CONNECT” on page 51.

To specify a script, use the FILENAME statement.
UNIX Example:

FILENAME RLINK ’!sasroot/misc/connect/script-name’;

script-name specifies the appropriate script file for the server.
The following table lists the scripts that are supplied in SAS software:

Table 3.1 SAS/CONNECT Sign-on Scripts for TCP/IP

Server Script Name

TSO under OS/390 tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specify a User ID and Password
If you sign on to the spawner without using a script and the spawner is running

secured, you must specify a user ID and a password in the SIGNON statement.

Note: (Windows only) If SSPI is available, you can submit the SIGNON statement
without a user ID and password. If SSPI is not available and you are signing on to a
secured spawner without using a script, you must specify a user ID and password. For
details, see the topic about SSPI in Communications Access Methods for
SAS/CONNECT and SAS/SHARE. �

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Note: When you specify USER=_PROMPT_, the dialog box prompts for a user ID
and a password. �

For details, see “SIGNON Statement and Command” on page 59.

Sign On by Using the Spawner
A client connects to a UNIX server by using a spawner and without a script. In the

SIGNON statement, RMTHOST.SPAWNER specifies the node RMTHOST and the
service SPAWNER. This server specification presumes that a spawner is running on the
node RMTHOST, and that the spawner was started by using the service SPAWNER.
Specifying USER=_PROMPT_ causes a dialog box to appear so that a user ID and a
password can be provided.

Starting and Stopping SAS/CONNECT � Sign On Using a Telnet Daemon 43

Example:

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

If Necessary, Change an Expired Password (z/OS Spawner Only)

A password expiration policy is usually established by the system administrator of
the z/OS operating environment. During sign-on, a message is displayed to alert you to
the need to change an expired password:

Password expired/invalid, enter new password:

You can enter a new password during sign-on only if you are using a script file for
sign-on.

Note: You could also change the password in a Telnet login to the operating
environment. �

For details about tasks for a client sign-on to a z/OS server session using a spawner,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Sign On Using a Telnet Daemon

Specify the Server

The name of the server can be specified in an OPTIONS statement:

OPTIONS REMOTE=node-name;

The name can also be specified directly in the SIGNON statement or command:

SIGNON node-name;

Specify a Sign-On Script File

When signing on by using the Telnet daemon, specify a sign-on script. The script file
is executed by the SIGNON statement or command. By default, the script prompts for
user ID and password. For details, see “SIGNON Statement and Command” on page 59.

Example: Signing On to the Server Session

You specify the statements in a client session that runs under UNIX to use the TCP/
IP access method to connect to a z/OS server. The FILENAME statement identifies the
script file that you use to sign on to a server. The script file contains a prompt for a
user ID and a password that are valid on the server. The COMAMID= option specifies
the TCP/IP communications access method for connecting to the server RMTNODE,
which is specified in the REMOTE= option.

UNIX example:

filename rlink ’!sasroot/misc/connect/tcptso.scr’;
options comamid=tcp remote=rmtnode;
signon;

44 Interfaces for Starting and Stopping SAS/CONNECT � Chapter 3

Interfaces for Starting and Stopping SAS/CONNECT

Types of Interfaces for Starting and Stopping SAS/CONNECT
You can use any of these interfaces to start or stop SAS/CONNECT:
� SAS Windowing environment
� SAS Program Editor window
� SAS autoexec file

Using the SAS Windowing Environment to Start and Stop SAS/CONNECT

The Signon Window
To start a SAS/CONNECT session:
1 Select Run � Signon from the menu bar in the SAS Program Editor window.
2 Complete the following fields in the Signon window.

Script file name:
If you use the TCP/IP access method and choose to use a script file, type the full
path and the name of the script file. For example, to connect to the z/OS
operating environment by using the TCP/IP access method, type the following:

pathname/tcptso.scr

The default location of the script file varies according to operating
environment. For details, see “Using a Script to Start and Stop SAS/
CONNECT” on page 51.

Starting and Stopping SAS/CONNECT � Using the SAS Windowing Environment to Start and Stop SAS/CONNECT 45

Remote session name:
Type the name of the session that you are connecting to. For details, see
“CONNECTREMOTE= System Option” on page 18.

Communications access method ID:
Type the value for the COMAMID= option. For example, for the TCP/IP access
method, type the following:

tcp

For complete details about access methods, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

Transmission buffer size:
Type the value of the buffer size that SAS/CONNECT uses for transferring
data. For details, see “TBUFSIZE= System Option” on page 29.

Remote session macro variable/macvar:
Type the name of the macro variable that you want to use to associate with the
server session. For details about the CMACVAR= option, see CMACVAR=
option in the SIGNON statement.

Display transfer status (yes/no):
Type yes or no to specify whether the status window is displayed during data
transfers. For details, see “CONNECTSTATUS System Option” on page 20.

Execute remote submit synchronously (yes/no):
Type yes or no to specify whether remote submits are to be executed
synchronously or asynchronously.

YES
specifies synchronous remote submits, which means that control is not
returned to the client session until the remote submit is finished
processing. This is the default.

NO
specifies asynchronous remote submits, which means that control is
immediately returned to the client session after processing begins on the
server session.

For details, see “CONNECTWAIT System Option” on page 21.

SAS command to be used for multi-process signon:
If you do not use SMP hardware, omit this field. If you use SMP hardware,
specify a command and options in this field to invoke a server session that
executes on the multiprocessor computer. For details about multiprocessing, see
“MP CONNECT” on page 111.

Note: If you have defined an RLINK fileref, you must clear the reference as
follows:

filename rlink clear;

�

3 Select OK to sign on, or select Cancel to return to the Program Editor window
without signing on.

The Signoff Window
1 To stop a SAS/CONNECT session by signing off, from the menu in the Program

Editor window, select Run � Signoff.

46 Using the Program Editor Window � Chapter 3

2 If you are signed on to only one server session, you can click OK to end that session.
If you are signed on to multiple server sessions, verify that the field entries are

valid for the session you want to end.

Using the Program Editor Window

Using the Program Editor Window to Sign On SAS/CONNECT
1 Type an OPTIONS statement in the Program Editor window of the client session.

Use the SUBMIT command, statement, or function key to execute the
OPTIONS statement. You use the OPTIONS statement to specify the COMAMID=
and REMOTE= system options. For example:

options comamid=communications-method
remote=server-ID;

For details about specifying values for these options, see “COMAMID= System
Option” on page 16 and “CONNECTREMOTE= System Option” on page 18.

2 Issue the SIGNON command or type the SIGNON statement in the client session.
Specify the appropriate sample script (if necessary) for the operating environment:

signon cscript=’external-file-name-of-script’;

Note: Sample automatic sign-on scripts should be modified with
installation-specific information before you can use them to start the connection. �

Here is an example of signing on to a server that is running a spawner program:

options comamid=communications-method
remote=nodename.servicename;

signon user=_prompt_;

After the SIGNON command executes successfully, a message in the Log window
indicates that the connection is established.

Using the Program Editor Window to Sign Off SAS/CONNECT
Issue the SIGNOFF command, or type the SIGNOFF statement in the client session:

signoff cscript=’external-file-name-of-script’

Starting and Stopping SAS/CONNECT � Using the Autoexec File 47

Note: If you used a script to sign on, the same script can be used to stop the
connection. �

After the SIGNOFF command executes successfully, a message in the Log window
indicates that the connection has ended.

The sample scripts that are used for automatic sign-on are used for signing off your
server session.

Using the Autoexec File
The autoexec file contains SAS statements that can be executed automatically when

you begin a client session. You can simplify the process of starting and stopping the
connection by following these recommendations:

� Include a FILENAME statement in the autoexec file that defines the fileref
RLINK. Make sure that it gives the correct file specification for the script that you
use to start SAS/CONNECT. For details, see Chapter 5, “Syntax for the SIGNON
and the SIGNOFF Statements and Commands,” on page 59.

By assigning the fileref RLINK to your script, you can start the connection
without specifying the script name in the SIGNON command.

Also, you can stop the connection without specifying the script name in the
SIGNOFF command because RLINK is the reserved fileref for script files.

When SAS executes a SIGNON or a SIGNOFF command without a fileref, SAS
automatically searches for a file that is defined with RLINK as the fileref. If
RLINK has been defined, SAS executes the corresponding script.

� Include an OPTIONS statement in your autoexec file to specify the COMAMID=
and CONNECTREMOTE= system options.

Windows Example:

options comamid=tcp
remote=remhost;

Using the autoexec file to specify system options is a convenience over having to
execute an OPTIONS statement in each SAS session when using SAS/CONNECT.

Modifying your autoexec file as recommended eliminates a step in the process of
starting the connection, and you can use the short form of the SIGNON and SIGNOFF
commands.

For example, to start a connection from a SAS session that was invoked by using a
modified autoexec file, issue the SIGNON command or submit the SIGNON statement:

signon

or

signon;

After you have completed your server processing, in order to end the connection,
issue the SIGNOFF command or submit the SIGNOFF statement :

signoff

or

signoff;

48

49

C H A P T E R

4
Using SAS/CONNECT Script Files

Overview of SAS/CONNECT Script Files 49
When to Use a SAS/CONNECT Script 49

Purpose of a Sign-On Script 50

Using Passwords in a Script File 50

Using a Script to Start and Stop SAS/CONNECT 51

Syntax Rules for SAS/CONNECT Script Statements 51
Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off 52

Writing Simple SAS/CONNECT Scripts: Overview 52

Example SAS/CONNECT Script for a TCP/IP Connection to UNIX 53

Debugging a SAS/CONNECT Script 56

Overview of SAS/CONNECT Script Files
A SAS/CONNECT script is a SAS program that is stored in a file on the client.

However, the programming statements in a script are not the usual SAS programming
statements. Scripts use a specialized set of SAS statements called script statements.
Scripts are executed to start or to stop SAS/CONNECT sessions. Scripts that start the
connection are executed by submitting the SIGNON statement, and scripts that stop
the connection are executed by submitting the SIGNOFF statement. In most cases, the
same script is used to sign on and sign off.

When to Use a SAS/CONNECT Script
How do you know whether you need to write or to modify a script? The need for a

script file when using the TCP/IP access method depends on whether you are
connecting to a spawner that runs on a server and how that spawner was invoked.

For details about the various access methods, script requirements, and sample script
files, see Communications Access Methods for SAS/CONNECT and SAS/SHARE. Your
site might also have sample scripts available from your system administrator.

If the available sample scripts do not meet your requirements, you can write your
own script. If you do need to write or to modify a script, review the examples in this
chapter, and see Chapter 8, “SAS/CONNECT Script Statements,” on page 91 for
descriptions of the script statements that are used in the examples.

50 Purpose of a Sign-On Script � Chapter 4

Purpose of a Sign-On Script
A script can be a simple, short program or a long, complex program, depending on

what you want the script to do. The basic functions of all scripts are the following:
1 invoke SAS on the server (by using the SAS command).
2 set the appropriate communications options for the server session in the SAS

command. For the server session, the script sets the COMAMID= and DMR
system options.

3 determine when the server session is ready for communications with the client
session. In most cases, the script waits for messages from the server session.

Sign-on scripts might also perform the following tasks:
� issue the server sign-on command and prompt the user for a user ID and a

password.
� issue informative messages to the user about whether script execution is

proceeding successfully.
� combine the SIGNON and SIGNOFF functions.
� conditionally execute labeled portions of the script so that one script can

accommodate multiple types of connections (for example, TCP/IP connections to
both a spawner and a Telnet daemon).

� issue server commands, such as commands that set session features or define
server files.

� define any response that is expected from the server.
� conditionally execute script subroutines to handle successful operations and error

conditions.

Note: Scripts that sign on to the server include information that is specific to the
computing installation. The scripts might need minor modifications to work with your
sign-on sequence. �

Using Passwords in a Script File
Passwords can be specified for a script file in any of these forms:
� a clear-text password that is hard-coded into the script
� a prompt for a user-supplied password as input to the script
� an encoded password that replaces a clear-text password in the script

The first and second forms offer the least security. The last form promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password in the PROC
PWENCODE statement. For complete details about PROC PWENCODE, see the Base
SAS Procedures Guide.

Here is an example of code that is used to obtain an encoded password:

proc PWENCODE in="My2008PW";run;
{sas001}TXkyMDAzUFc=

The clear-text password My2008PW is specified in the PROC PWENCODE statement.
The output is generated in the form {key}encoded-password, where sas001 is the key and
TXkyMDAzUFc= is the encoded password that is generated. SAS/CONNECT uses the
key to decode the encoded password to its clear-text form when the password is needed.

Using SAS/CONNECT Script Files � Syntax Rules for SAS/CONNECT Script Statements 51

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Substitute the encoded password for the clear-text password in a script. The encoded
password is the output that is generated from the PROC PWENCODE statement.

Note: Macro variables can also be used in script files to capture different user IDs
and passwords. This eliminates the need for prompting the user for this information.
Enclose the macro variable in double quotation marks in the script. �

Using a Script to Start and Stop SAS/CONNECT
You can start and stop SAS/CONNECT by using the supplied sample scripts, which

are located in the following default directories where your SAS software is installed:

Windows !sasext0\CONNECT\SASLINK

z/OS prefix.CTMISC

OpenVMS SAS$ROOT:[TOOLS]

UNIX !sasroot/misc/connect

Note: The term !sasroot is not part of the pathname. It represents the name of the
directory where SAS is installed at your site. �

All sample scripts start and stop SAS/CONNECT. A sign-on script prompts you for a
user ID and password to sign on to a server. You must sign on to the server before you
can run a manual sign-on script.

Script names are derived from the access method and the operating environment
that the server session runs under; for example, TCPTSO.SCR identifies the TCP/IP
access method and a TSO server.

Syntax Rules for SAS/CONNECT Script Statements
To write a SAS/CONNECT script, you need to read about the specific information for

each statement in the script. This section contains general rules that apply to some or
all script statements.

� Each script line is limited to 8192 characters.
� All script statements must end with a semicolon.

� Script statements have a free format, which means that there are no spacing or
indention requirements. A statement can be split across several lines, or one line
can contain one or more statements. Statement keywords can be specified in
uppercase, lowercase, or mixed-case characters.

� Text strings that are enclosed in quotation marks are case sensitive. For example,
if your script defines a text string in a WAITFOR statement, ensure that the
uppercase and lowercase characters in the text string exactly match the text string
from the server.

52 Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off � Chapter 4

� Any script statement can include a label specification. The label must be a valid
SAS name and not exceed a maximum of eight characters. The first character
must be an alphabetic character or underscore. A label must be followed
immediately by a colon (:) and must be defined only one time in the script.

� Some script statements specify a time in seconds. The form of the time
specification is as follows:

n SECONDS;

n can be any number; this number might include decimal fractions. For example,
all of the following time specifications are valid:

0 SECONDS;
0.25 SECONDS;
1 SECOND;
3.14 SECONDS;
Note: SECOND is an alias for SECONDS. �

� If a script statement specifies a quoted string, such as a server command, you can
use either single or double quotation marks. To embed quotation marks in script
statements, follow the same rules that you use for embedded quotation marks in
SAS statements.

Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off

Writing Simple SAS/CONNECT Scripts: Overview
When you write or modify existing SAS/CONNECT scripts, use the WAITFOR and

TYPE statements to specify the sequence of prompts and responses for the server.
The simplest method for determining the sequence is to manually reproduce on the

server the process that you want to capture in the WAITFOR and TYPE statements.
For each display on the server, choose a word from that display for the WAITFOR
statement. Whatever information you type to respond to a display should be specified in
a TYPE statement. Be sure to note all carriage returns or other special keys.

If the server runs under z/OS and you need to use a TYPE statement that has more
than 80 characters in a sign-on script, divide the TYPE statement into two or more
TYPE statements. To divide the TYPE statement, insert a hyphen (-) at the division
point. The z/OS server interprets the hyphen as the continuation of the TYPE
statement from the previous line. For example, here is how to divide the following
TYPE statement:

type
"sas options (’dmr comamid=tcp’)"
enter;

change it to:

type "sas options (’dmr comamid=-" enter;
type "tcp’)" enter;

Note: Do not insert spaces before or after the hyphen. �

Using SAS/CONNECT Script Files � Example SAS/CONNECT Script for a TCP/IP Connection to UNIX 53

Example SAS/CONNECT Script for a TCP/IP Connection to UNIX

/* trace on; */
/* echo on; */

/***/
/* Copyright (C) 1990 */
/* by SAS Institute Inc., Cary NC */
/* */
/* name: tcpunix.scr */
/* */
/* purpose: SAS/CONNECT SIGNON/SIGNOFF */
/* script for connecting to any */
/* UNIX operating environment */
/* via the TCP/IP access method */
/* */
/* notes: 1. This script might need */
/* modifications that account */
/* for the local flavor of */
/* your UNIX environment. The */
/* logon procedure should */
/* mimic the tasks that you */
/* execute when */
/* connecting to the same */
/* UNIX operating environment. */
/* */
/* 2. You must have specified */
/* OPTIONS COMAMID=TCP in the */
/* client session before */
/* using the SIGNON command. */
/* */
/* assumes: 1. The command to execute SAS */
/* in your remote (UNIX) */
/* environment is "sas". If */
/* this is incorrect for your */
/* site, change the contents */
/* of the line that contains */
/* type ’sas ... */
/* */
/* support: SAS Institute staff */
/***/

u log "NOTE: Script file
’tcpunix.scr’ entered.";

if not tcp then goto notcp;
v if signoff then goto signoff;

/***/
/* TCP/IP SIGNON */
/***/

w waitfor ’login:’, 120 seconds: noinit;

54 Example SAS/CONNECT Script for a TCP/IP Connection to UNIX � Chapter 4

/***/
/* UNIX LOGON */
/* LF is required to turn the line */
/* around after the login name has */
/* been typed. (CR will not do) */
/***/

x input ’Userid?’;
type LF;

y waitfor ’Password’, 30 seconds : nolog;
input nodisplay ’Password?’;
type LF;

unx_log:
/***/
/* Common prompt characters are $,>,%,} */
/***/

U waitfor ’$’, ’>’, ’%’, ’}’,
’Login incorrect’ : nouser,
’Enter terminal type’ : unx_term,
30 seconds : timeout;

log ’NOTE: Logged onto UNIX...
Starting remote SAS now.’;

/**/
/* Invoke SAS on the server. */
/**/

V type ’sas -dmr -comamid tcp -device
grlink -noterminal -nosyntaxcheck’ LF;

W waitfor ’SESSION ESTABLISHED’,
90 seconds : nosas;

X log ’NOTE: SAS/CONNECT
conversation established.’;

stop;

/***/
/* TCP/IP SIGNOFF */
/***/

at signoff:
waitfor ’$’, ’>’, ’%’, ’}’,

30 seconds;

type ’logout’ LF;
log ’NOTE: SAS/CONNECT conversation

terminated.’;
stop;

/***/
/* SUBROUTINES */
/***/

unx_term:

Using SAS/CONNECT Script Files � Example SAS/CONNECT Script for a TCP/IP Connection to UNIX 55

/**/
/* Some UNIX systems want the */
/* terminal-type. Indicate a basic */
/* tele-type. */
/**/

type ’tty’ LF;
goto unx_log;

/***/
/* ERROR ROUTINES */
/***/

ak timeout:
log ’ERROR: Timeout waiting for remote

session response.’;
abort;

nouser:
log ’ERROR: Unrecognized userid or

password.’;
abort;

notcp:
log ’ERROR: Incorrect communications

access method.’;
log ’NOTE: You must set "OPTIONS

COMAMID=TCP;" before using
this script file.’;

abort;

noinit:
log ’ERROR: Did not understand remote

session banner.’;

nolog:
log ’ERROR: Did not receive userid or

password prompt.’;
abort;

nosas:
log ’ERROR: Did not get SAS software

startup messages.’;
abort;

u The LOG statement sends the message that is enclosed in quotation marks to the
log file or the log window of the client session. Although it is not necessary to
include LOG statements in your script file, the LOG statements keep the user
informed about the progress of the connection.

v The IF/THEN statement detects whether the script was called by the SIGNON
command or statement or the SIGNOFF command or statement. When you are
signing off, the IF/THEN statement directs script processing to the statement
labeled SIGNOFF. See step 10.

56 Debugging a SAS/CONNECT Script � Chapter 4

w The WAITFOR statement waits for the server’s logon prompt and specifies that if
that prompt is not received within 120 seconds, the script processing should
branch to the statement labeled NOINIT.

x The INPUT statement displays a window with the text Userid? to allow the user
to enter a server log-on user ID. The TYPE statement sends a line feed to the
server to enter the user ID to the server.

y The WAITFOR statement waits for the server’s password prompt and branches to
the NOLOG label if it is not received within 30 seconds. The INPUT statement
that follows the WAITFOR statement displays a window for the user to enter a
password. The NODISPLAY option is used so the password is not displayed on the
screen as it is entered.

U The WAITFOR statement waits for one of several common UNIX prompts and
branches to various error handles if a prompt is not seen. Verify that the
WAITFOR statement in the script looks for the correct prompt for your site.

V This TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection. The
-NOTERMINAL system option suppresses prompts from the server session. The
-NOSYNTAXCHECK option prevents the remote session from going into syntax
checking mode when a syntax error is encountered.

W The phrase SESSION ESTABLISHED is displayed when a SAS session is started on
the server by using the options -DMR and -COMAMID TCP. The WAITFOR
statement looks for the words SESSION ESTABLISHED to be issued by the server
session to know that the connection has been established. If the SESSION
ESTABLISHED response is received within 90 seconds, processing continues with
the next LOG statement. If the SESSION ESTABLISHED response does not occur
within 90 seconds, the script assumes that the server session has not started and
processing branches to the statement labeled NOSAS.

X When the connection has been successfully established, you must stop the rest of
the script from processing. Without this STOP statement, processing of the
remaining statements in the script continues.

at This section of code is executed when the script is invoked to end the connection.
The second IF statement (see step 2) sends processing to this section of the script
when the script is invoked by a SIGNOFF command or statement. Note that this
section waits for a server prompt before typing LOGOUT in order to log off the
server. The script then issues a LOG statement to notify the user that the
connection is terminated and stops script processing.

ak These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the local SAS log
and abnormally ends (from the ABORT statement) the processing of the script as
well as the signon.

Debugging a SAS/CONNECT Script
When writing SAS/CONNECT scripts, you can take advantage of programming

techniques to simplify debugging a new or a modified script. Examples of debugging
statements follow:

� The ECHO statement causes server messages to be displayed while a WAITFOR
statement executes. This enables you to monitor activity on the server during the
WAITFOR pause.

Using SAS/CONNECT Script Files � Debugging a SAS/CONNECT Script 57

� The TRACE statement enables you to specify that some or all script statements be
displayed as the script executes. This capability can help you isolate the source of
a script problem.

58

59

C H A P T E R

5
Syntax for the SIGNON and the
SIGNOFF Statements and
Commands

SIGNON Statement and Command

Initiates a connection between a client session and a server session.

Valid in: client session

Syntax
SIGNON <options>

Options

AUTHDOMAIN=auth-domain | “auth-domain”
specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the
specified domain. Specifying the authentication domain is a convenient way to obtain
the metadata-based user credentials rather than having to explicitly supply them
during server sign-on.

An administrator can define an authentication domain by using the User Manager
in SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/CONNECT Auth Domain"

Requirement: The authentication domain and the associated credentials must be
stored in a metadata repository, and the metadata server must be running in order
to resolve the metadata object specification.

Requirement: Enclose domain names that are not valid SAS names in double or
single quotation marks.

Interaction: If you specify AUTHDOMAIN=, do not also specify USERNAME= and
PASSWORD=. Otherwise, sign-on is canceled.

See Also: For complete details about creating and using authentication domains,
see the SAS Intelligence Platform: Security Administration Guide.

See Also: SAS Management Console User’s Guide and SAS Management Console
online Help

60 SIGNON Statement and Command � Chapter 5

CMACVAR=value
specifies the macro variable to associate with the server session. The macro variable
is set at the completion of the execution of the SIGNON statement. The macro
variable becomes the default macro variable for the current server session.

Note: If the SIGNON command or statement fails because of incorrect syntax,
the macro variable is not set. �

Here are the values for the CMACVAR= option:

0 indicates that the sign-on is successful.

1 indicates that the sign-on failed.

2 indicates that you have already signed on to the current server
session.

3 indicates that the sign-on is still in progress.
Alias: MACVAR=
Interaction: This default can be overridden only by specifying the CMACVAR=

option in the RSUBMIT statement or command.
See Also: CMACVAR= option on page 138 in the RSUBMIT statement

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that you want to sign on to. If only one
session is active, server-ID can be omitted. If multiple server sessions are active,
omitting this option causes the program statements to be run in the most recently
accessed server session. The current server session is identified by the value that is
assigned to the CONNECTREMOTE system option.

You can specify server-ID using different formats:

u process-name
process-name is a descriptive name that you assign to the server session on a
multi-processor computer when the SASCMD= option is used.

v computer-name
computer-name is the name of a computer that is running a Telnet daemon or that
is running a spawner that is not specified as a service. If the computer name is
longer than eight characters, a SAS macro variable name should be used.

w computer-name.port-name
computer-name is the name of a server, and port-name is the name of the port that
the spawner service runs on. If the computer name is longer than eight
characters, assign the computer name to a SAS macro variable and use the macro
variable name as the server ID.

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 61

x computer-name.port-number
computer-name is the name of a server, and port-number is the port that the
spawner service runs on.

CAUTION:
Specifying computer-name.port-number for the server ID will fail under these
conditions:

� when used in a WAITFOR statement that is used to wait for the
completion of an asynchronous RSUBMIT.

Instead, use a one-level name, such as the computer-with-port.
� when used in a LIBNAME statement.

Instead, use a one-level name or a two-level name, such as
computer-name._ _port-number.

�

y computer-with-port
computer-with-port is a macro variable that contains the name of a server and the
port that the spawner service runs on, separated by one or more spaces. This
specification is appropriate in cases where the server-ID must be specified as a
one-level name.

U computer-name._ _port-number
computer-name is the name of a server and port-number is the port that the
spawner service runs on. This format can be used to specify the server-ID value for
the SERVER= option in a LIBNAME statement.

These examples of specifying server-ID correspond to the preceding formats.
usignon emp1 sascmd="!sascmd";

v%let sashost=hrcomputer1.dorg.com; signon sashost;

w%let sashost=hrcomputer1.dorg.com; signon sashost.sasport;

xsignon hrcomp1.2267;

y%let sashost=hrcomp1.dorg.com 2667; signon sashost;

Usignon hrcomp1._ _2267;

Alias: CREMOTE=, PROCESS=, REMOTE=
See Also: “CONNECTREMOTE= System Option” on page 18

CONNECTSTATUS=YES|NO
specifies whether the Transfer Status window is displayed for file transfers within
the current server session.

Here are the values for this option:

YES|Y indicates that the Transfer Status window is displayed for file
transfers within the current server session.

NO|N indicates that the Transfer Status window is not displayed for file
transfers within the current server session.

Alias: CSTATUS=, STATUS=
Default: YES for synchronous RSUBMITs. NO for asynchronous RSUBMITs.
Interaction: If the CONNECTSTATUS= option is omitted from the SIGNON

statement, its value is resolved as follows:

1 If the CONNECTSTATUS system option is specified, the value
for the CONNECTSTATUS system option is used.

62 SIGNON Statement and Command � Chapter 5

2 If the CONNECTSTATUS= option is specified in a subsequent
RSUBMIT, PROC UPLOAD, or PROC DOWNLOAD statement,
that value would override the default value of
CONNECTSTATUS= option for SIGNON.

3 Otherwise, the default behavior occurs. The default for a
synchronous RSUBMIT is YES, which displays the Transfer
Status window. The default for an asynchronous RSUBMIT is
NO, which does not display the Transfer Status window.

See Also: “Transfer Status Window” on page 233

See Also: “CONNECTSTATUS System Option” on page 20

CONNECTWAIT=YES|NO
specifies whether RSUBMIT blocks execute synchronously or asynchronously.
Synchronous RSUBMIT statements are executed sequentially. An RSUBMIT must
be completed in the server session before control is returned to the client session.

For asynchronous RSUBMIT statements, you can execute tasks in multiple server
sessions in parallel. Control is returned to the client session immediately after an
RSUBMIT begins execution to allow continued execution in the client session and in
other server sessions.

Here are the values for the CONNECTWAIT= option:

YES|Y specifies that the RSUBMIT blocks execute synchronously.

NO|N specifies that the RSUBMIT blocks execute asynchronously.

Alias: CWAIT=, WAIT=

Default: YES

Interaction: If the CONNECTWAIT= option in SIGNON is omitted, the value for
the CONNECTWAIT= option is resolved as follows:

1 If a value for the CONNECTWAIT= option has been specified
in the RSUBMIT statement, that value is used.

2 If the CONNECTWAIT system option is set, the value for the
system option is used.

3 Otherwise, the default behavior, to execute synchronously,
occurs.

Interaction: If CONNECTWAIT=NO is specified, you might also specify the
CMACVAR= option. CMACVAR= enables you to programmatically test the status
of the current asynchronous RSUBMIT to find out whether the task has completed
or is still in progress.

When %SYSRPUT executes within a synchronous RSUBMIT, the macro
variable is defined to the client session as soon as it executes.

When %SYSRPUT is executed within an asynchronous RSUBMIT, the macro
variable is defined in the client session when a synchronization point is
encountered. To override this behavior, use the SYSRPUTSYNC= system option.

Note: If CONNECTWAIT=NO is specified, an automatic sign-off will not occur
unless CONNECTPERSIST=NO is also specified. �

See Also: “SYSRPUTSYNC System Option” on page 28

See Also: “Synchronization Points” on page 158

See Also: “CONNECTWAIT System Option” on page 21

CREMOTE= on page 60

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 63

CSCRIPT=file-specification
specifies the SAS/CONNECT script file to be used during sign-on.

When the SIGNON command executes, SAS log messages for the server session
are displayed in the LOG window of the client session.

file-specification
specifies the location of the SAS/CONNECT script file.

Here are the values for file-specification:

“filename”
s the physical location of the SAS/CONNECT script file in the current working
directory. Enclose the filename in double or single quotation marks.

fileref
is the name of the reference file that is associated with the script file. A
previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you
can omit this specification from the SIGNON command.

“fully-qualified-filename”
is the full path to the SAS/CONNECT script file. Enclose the fully qualified
filename in double or single quotation marks.

“SASSCRIPT-specification”
is the physical location of the SAS/CONNECT script file in the directory that is
specified by the SASSCRIPT system option.

Alias: SCRIPT=

Interaction: If multiple CSCRIPT= options are specified, the last specification
takes precedence.

Interaction: When you use the CSCRIPT= option, do not also use the NOCSCRIPT
option. If you use NOCSCRIPT and CSCRIPT=, sign-on is canceled.

See Also: NOCSCRIPT option on page 66

See Also: “SASSCRIPT= System Option” on page 25

See Also: FILENAME statement in SAS Language Reference: Dictionary and the
companion that is appropriate for your operating environment.

CSTATUS= on page 61

CSYSRPUTSYNC=YES|NO
specifies whether to synchronize the client session’s macro variables when the client
session receives results from the server session or when a synchronization point is
encountered. Macro variables are updated in the client session using the %SYSRPUT
macro in a SIGNON statement.

Note: The %SYSRPUT macro is executed in the server session. �
Here are the values for this option:

YES|Y specifies that the client session’s macro variables will be updated
when the client receives the results of the server session’s
execution of the %SYSRPUT macro. The results are delivered in
the form of a packet. Specifying YES does not mean that the
client’s macro variables will be updated immediately after the
server’s execution of the %SYSRPUT macro variable. YES means
that the client’s macro variables will be updated when the client
receives the packet from the server. Therefore, the exact time at
which the client’s macro variables are updated will depend on the
availability of the client to receive the packet. If the client is busy,

64 SIGNON Statement and Command � Chapter 5

the server will wait until the client session is ready to receive the
packet.

NO|N specifies that the client session’s macro variables will be updated
when a synchronization point is encountered. This is the default.

Default: NO

Alias: SYSRPUTSYNC=

Interaction: If the CSYSRPUTSYNC system option is specified, the
SYSRPUTSYNC= option takes precedence over the system option.

Interaction: If the SYSRPUTSYNC system option is specified and the
CSYSRPUTSYNC= option in SIGNON is not specified, the system option will
apply to the SIGNON statement.

Interaction: Changing the value assigned to the CSYRPUTSYNC= option between
consecutive asynchronous RSUBMIT statements causes unpredictable results. You
are advised not to change the value between asynchronous RSUBMIT statements.

See Also: “Synchronization Points” on page 158

See Also: “SYSRPUTSYNC System Option” on page 28

Featured In: For an example of how to prevent CSYSRPUTSYNC= option
overrides, see “Example 8: Forcing Macro Variables to Be Defined When
%SYSRPUT Executes” on page 174.

CWAIT= on page 62

INHERITLIB=(client-libref1<=server-libref1> ... client-librefn<=server-librefn>)
enables libraries that are defined in the client session to be inherited by the server
session for read and write access. Also, each client libref can be associated with a
libref that is named differently in the server session. A space is used to separate
each libref pair in a series, which is enclosed in parentheses.

Note: Because the SAS WORK library cannot be reassigned in any SAS session,
you cannot reassign it in the server session either. �

This example shows that the libref named LOCAL in the client session is inherited
for use in the server session:

signon job1 inheritlib=(local work=remote);
rsubmit;

libname local list;
libname remote list;
data local.a;
x=1;
run;

endrsubmit;

Interaction: If you use the INHERITLIB= option and the SASCMD= option when
signing on to a server session, the server session attempts to access the client
library directly rather than to inherit access to the library via the client session. If
the client session and the server session attempt to access the same file
simultaneously, only one session is granted exclusive access to the file. The other
session’s access to the file is denied.

SAS/CONNECT does not support concurrent multi-user access to the same file.
This functionality is supported by SAS/SHARE.

See Also: SASCMD= on page 68

See Also: SAS/SHARE User’s Guide

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 65

LOG=KEEP | PURGE | file-specification
OUTPUT=KEEP | PURGE | file-specification

Used only when NOSIGNONWAIT is in effect, these options direct the SAS log or the
SAS output that is generated by the current server session to the backing store or to
a file specification. A backing store is a SAS utility file that is written to disk in the
client SAS WORK library.

Here are the values for these options:

KEEP
spools log or output lines, as applicable, to the backing store or to the computer on
which the client session is running. The log or output lines can be retrieved using
the RGET, RDISPLAY, RSUBMIT CONNECTWAIT=YES, or SIGNOFF statement.
This is the default.

PURGE
deletes all the log or output lines that are generated by the current server session.
PURGE is used to save disk resources. Use PURGE if you can anticipate a large
volume of log data or output data to the backing store that you do not want to
keep, and you want to preserve disk space.

file-specification
specifies a file that is the destination for the log or output lines. The file is opened
for output at the beginning of the asynchronous RSUBMIT and is closed at the
end of the RSUBMIT. After the current RSUBMIT has completed, subsequent
RSUBMIT log or output lines can be appended to the preceding RSUBMIT
destination file using the LOG= or OUTPUT= options to specify the appropriate
filename.

Note: Directing output to the same file for multiple concurrent asynchronous
RSUBMIT statements is not recommended. �

Here are the values for this option:

“filename”
is the physical location of the SAS log file or the SAS output file. Enclose the
filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the SAS log file or
the SAS output file.

Note: Use the MOD option in the FILENAME statement to open the
referenced file for an append. The MOD option is an external I/O statement
option. �

Default: KEEP
Interaction: Use the LOG= or OUTPUT= option only when the SIGNONWAIT=NO

option or the NOSIGNONWAIT system option has been specified. Otherwise the
option is ignored and this message is displayed:

WARNING: LOG=/OUTPUT= options invalid with synchronous rsubmit.
Options will be ignored.

Interaction: If you direct the log or output lines to a file and then use RGET or
RDISPLAY to retrieve the contents of an empty backing store, you will receive a
message such as the following:

WARNING: The LOG option was used to file log lines for the current SIGNON.
There are no log lines for RGET to process.

CAUTION:
Do not simultaneously use the asynchronous RSUBMIT and the PROC PRINTTO
statement and redirect output. Caution: Redirecting output by using a LOG= or

66 SIGNON Statement and Command � Chapter 5

an OUTPUT= option in the SIGNON statement and using a locally submitted
PROC PRINTTO statement can cause unpredictable results. �

If you use both the asynchronous RSUBMIT and the PROC PRINTTO
statements, you might expect that the PROC PRINTTO statement causes data
from the server session to be written to the file that is specified in the PROC
PRINTTO statement. If this PROC PRINTTO behavior occurs, the LOG= or the
OUTPUT= option in the SIGNON statement is ignored, and no data is written to
the backing store or to the specified file.

However, because the asynchronous RSUBMIT and the PROC PRINTTO
statements execute simultaneously, predicting which operation will complete first
is impossible. The timing of the completions of these operations determines
whether the results are written to the SIGNON log or to the PROC PRINTTO log.

See Also: SIGNONWAIT option on page 71
See Also: “SIGNONWAIT System Option” on page 27
See Also: MOD option in the FILENAME statement, which varies by operating

environment. See the SAS Companion that is appropriate for your operating
environment.

MACVAR= on page 60

NOCSCRIPT
specifies that no SAS/CONNECT script file should be used for sign-on. NOCSCRIPT
accelerates sign-on and conserves memory resources.
Alias: NOSCRIPT
Interaction: When you use NOCSCRIPT, do not also use SASCMD=, SERVER=, or

CSCRIPT=. If you use NOCSCRIPT with SASCMD=, NOCSCRIPT is ignored. If
you use NOCSCRIPT with SERVER= or CSCRIPT=, sign-on is canceled.

Tip: NOCSCRIPT is useful if SASCMD= has been specified in a spawner invocation.
See Also: CSCRIPT= option on page 63

NOSCRIPT= on page 66

NOTIFY=YES | NO | “e-mail-address”
specifies whether to notify the user that an asynchronous RSUBMIT has completed.
The notification can be in the form of a message window or an e-mail message. The
NOTIFY option is enabled only at sign-on and remains in effect for the duration of
the server session.

Here are the values for this option:

YES|Y enables notification via a message window. Here is the format of
the default message:

Asynchronous task TASK1 has completed.

TASK1 is the server ID.

The message window does not interfere with any other task
executions in progress. To acknowledge the message and to close
the window, click OK.

NO|N disables notification. This is the default.

“e-mail-address” enables notification via an e-mail message, and specifies the
e-mail address of the recipient for the notification. E-mail
addresses are limited to a maximum of 256 characters. Enclose
the e-mail address in double or single quotation marks.

The message includes information about the total time that
was used for the RSUBMIT. If the LOG= and OUTPUT= options

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 67

are also specified in a SIGNON statement, the e-mail message
identifies the locations of the log file and output file.

Here is an example of enabling notification in a SIGNON statement:

options sascmd="!sascmd";
signon process1 wait=no notify=yes;
rsubmit;

%put should get notification window;
endrsubmit;

To disable notification, you must sign off the server session and then sign on to the
server session again, and either omit the NOTIFY= option or specify NOTIFY=NO in
the SIGNON statement.

Here is an example of disabling notification in the next SIGNON statement:

signoff process1;
options sascmd="!sascmd";
signon process1 wait=no notify=no;
rsubmit;

code-to-be-executed-in-server-session
endrsubmit;

Default: NO

Restriction: Notification occurs only for asynchronous RSUBMIT statements.

Interaction: When you specify the NOTIFY=“e-mail-address” option, you can also
specify the SUBJECT=“subject-title” option.

Interaction: If NOTIFY=YES and the NOTERMINAL system option has been
specified, the request for notification is ignored. This message is displayed:

WARNING: The NOTIFY option is valid only if a TERMINAL is attached to this
SAS session. Option will be ignored.

However, notification can be directed to an e-mail address, regardless of
whether the TERMINAL or NOTERMINAL system option has been specified.

Interaction: If NOTIFY=“e-mail address” is specified, but the e-mail message
cannot be sent, notification will occur in the form of a message window, which is
the action that occurs when NOTIFY=YES.

Note: This behavior assumes that the NOTERMINAL system option has not
been specified. �

Interaction: Notification fails if NOTIFY=YES or NOTIFY=“e-mail address” and
you specify statements or commands (such as RGET or SIGNOFF) during the
asynchronous RSUBMIT that change execution from asynchronous to synchronous
mode.

Interaction: If NOTIFY=“e-mail address” is specified, the SAS system and the
operating environment that the SAS system runs under must be configured to
support e-mail. Without appropriate configuration, your attempt to specify
notification via e-mail might fail. Contact your system administrator for details.

See Also: CONNECTWAIT=NO option on page 62

See Also: LOG= and OUTPUT= options on page 65

See Also: SUBJECT= option on page 72

See Also: SAS system options that support e-mail configuration: EMAILHOST,
EMAILPORT, and EMAILSY in SAS Language Reference: Dictionary

PROCESS= on page 78

68 SIGNON Statement and Command � Chapter 5

REMOTE= on page 60

SASCMD=“SAS-command” | “!sascmd” | “!sascmdv” | “host-command-file”
signs on to the server session on the same symmetric multiprocessing (SMP)
computer that the client session is running on. This option is most useful when client
and server sessions run on SMP hardware.

“SAS command”
� For UNIX, OpenVMS, and Windows, specifies the command that is used to

sign on to a server session.
Here is a typical example:

sascmd="sas"

As another example, commands that contain spaces must be enclosed in
double quotation marks.

sascmd=’"c:\Program Files\SAS\SAS System\9.2\sas.exe"’;

� For z/OS, specifies a colon that is followed by any SAS invocation options.
Here is an example:

sascmd=":ls=256"

"!sascmd"
For UNIX, OpenVMS, and Windows, signs on to a server session by using the
same command that was used to invoke the client session

"!sascmdv"
For UNIX, OpenVMS, and Windows, signs on to a server session by using the
same command that was used to start the client session and writes the SAS
invocation to the SAS log.

“host-command-file”
In order to execute additional commands before SAS invocation, you can write a
command file that is specific to your operating environment. Filename extensions
vary according to operating environment. Windows filenames use the .bat and
.cmd extensions. UNIX extensions include .sh, .csh, and .ksh. OpenVMS uses
the .com extension.

Note: The SASCMD= option does not support z/OS command files. �
The TCP/IP access method automatically adds options, such as -DMR, to the

server session’s SAS command.
For Windows, the TCP/IP access method also appends these options:
� -COMAMID TCP
� -ICON
� -NOSPLASH
� -NOTERMINAL

For all operating environments, you can also specify the NOSYNTAXCHECK
option in the SAS invocation for the non-interactive server session. For details, see
“Starting SAS and Using Syntax Checking” on page 35.
Restriction: For z/OS, a command file cannot be used. Therefore, use a semicolon

followed by options for the server’s SAS invocation.
Interaction: If the SASCMD= system option is already specified, the SASCMD=

option that is specified in SIGNON takes precedence over the system option.

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 69

Interaction: When you use SASCMD=, do not also use NOCSCRIPT. Otherwise,
NOCSCRIPT is ignored.

Requirement: SAS commands that contain spaces must be enclosed in double
quotation marks.

See Also: “SASCMD= System Option” on page 22
See Also: SYNTAXCHECK= and NOSYNTAXCHECK= system options in SAS

Language Reference: Dictionary
See Also: ICON, NOSPLASH, and NOTERMINAL system options in SAS

Companion for Windows.
See Also: “COMAMID= System Option” on page 16
See Also: NOCSCRIPT option on page 145
Restriction: OpenVMS only If the NODETACH system option is specified, and if

multiple server sessions are running under OpenVMS and you observe degraded
performance, this error message is displayed:

ERROR: Process quota exceeded.
ERROR: Cannot spawn subprocess. Check process limit quotas and privileges.

NODETACH causes a sign–on to occur in a subprocess of the parent’s process,
which can use excessive resources. If NODETACH is specified, try setting the
DETACH system option, which causes sign-ons to occur as detached processes
rather than as subprocesses. For more information, see the NODETACH system
option in the SAS Companion for OpenVMS on HP Integrity Servers.

To improve performance when using the NODETACH system option, ask your
system administrator to set the following resources to the specified values for each
sign-on to a server session:

Table 5.1 OpenVMS Operating Environment Resource Values

User Account Resource Minimum Value

Paging file quota 40000

Buffered I/O byte count quota 13000

Open file quota 65

Subprocess limit 1

Timer queue entry limit 1 to 8

When SAS is invoked from a captive OpenVMS account, you cannot use
SASCMD= to sign on to a server session. Typically, SASCMD= performs a sign-on
to a server session either in a subprocess or in a detached process. Starting
subprocesses is not allowed under a captive account. A detached process that runs
under a captive account cannot invoke SAS because a captive OpenVMS account is
under the control of the login command procedure. The command language
interpreter will execute only the commands in your login command procedure and
then the process will exit.

The !sascmdv value in the SASCMD= option causes the display of a symbol
that specifies how the server session was started. You can print the symbol’s value
by using the getsym DATA step function.

rsubmit;
%put %bquote(

70 SIGNON Statement and Command � Chapter 5

%sysfunc (getsym(SASCMD_2042CF6B)));
endrsubmit;

SCRIPT= on page 63

SERVER=“SAS-application-server”
specifies the name of a SAS Application Server that contains a SAS/CONNECT
server component in its grouping. The SAS Application Server has been defined in
the SAS Metadata Repository using SAS Management Console. The SAS Application
Server is configured using a set of system resources, including a SAS/CONNECT
server component and properties that start a SAS/CONNECT server session. The
server properties are equivalent to the options that can be specified in the SIGNON
statement.

“SAS-application-server”
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

Requirement: Enclose the name of the SAS Application Server in double or single
quotation marks.

Requirement: When you use the SERVER= option, certain system resources must
be configured before you can access a SAS Metadata Server. For details, see “Sign
On to a Server That Is Defined in the SAS Metadata Repository” on page 37.

Requirement: If the specified SAS Application Server does not contain a SAS/
CONNECT server component, the server sign-on fails.

Interaction: When you use SERVER=, do not specify any other options in the
SIGNON statement. If other options are specified, sign-on is canceled and this
message is displayed:

ERROR: Additional options are not valid with the SERVER option on the
SIGNON command. These options should be specified in the server definition.

Tip: Before you use the SERVER= option, you can use SERVERV= to view the
properties that start a server session.

See Also: SERVERV= Option on page 70

See Also: SAS Management Console User’s Guide and SAS Management Console
online Help

SERVERV=“SAS-application-server” | _ALL_
displays a verbose list of the properties that specify a SAS/CONNECT server sign-on.
The server sign-on properties are equivalent to the options that can be specified in
the SIGNON statement. The sign-on properties are associated with a SAS/
CONNECT component, which is included in a set of system resources for the SAS
Application Server.

“SAS-application-server”
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

ALL
displays the sign-on properties for all SAS Application Servers that have been
defined in the SAS Metadata Repository.
Here is an example that displays the values for the SAS/CONNECT component

that is contained in the SAS Application Server sasmain.

signon serverv="sasmain";

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 71

Here is the output:

Server= hrmach1 --- SAS/CONNECT Server
Remote Session ID= sashost
ServerComponentID= A5Z3NRQF.AR00005L
Remote Host= hrmach1.dorg.com
Communication Protocol= TCP
Service/Port= sasconnect
Port= 2267
Scriptpath= tcpunix.scr
Tbufsize= 4096
Wait= No
SignonWait= No
Status= No
Notify= "joe@apex.com"
Subject= "hrmach1 task completed"

Requirement: Enclose the name of the SAS Application Server in double or single
quotation marks.

Requirement: When you use the SERVERV= option, certain system resources must
be configured before you can access a SAS Metadata Server. Also, one or more SAS
Application Servers should be configured and should contain one or more SAS/
CONNECT components. For details, see “Sign On to a Server That Is Defined in
the SAS Metadata Repository” on page 37.

Interaction: When you use SERVERV=, do not specify any other options in the
SIGNON statement. If other options are specified, sign-on is canceled and this
message is displayed:

ERROR: Additional options are not valid with the SERVERV option on the
SIGNON command. These options should be specified in the server definition.

See Also: SERVER= Option on page 70

See Also: SAS Management Console User’s Guide and SAS Management Console
online Help

SIGNONWAIT=YES|NO
specifies whether a sign-on to a server session is to be executed synchronously or
asynchronously.

YES|Y specifies synchronous sign-on. A synchronous sign-on causes the
client session to wait until the sign-on to a server session has
completed before control is returned to the client session for
continued execution. YES is the default.

NO|N specifies an asynchronous sign-on. An asynchronous sign-on to a
server session begins execution and control is returned to the
client session immediately for continued execution. Asynchronous
sign-on allows multiple tasks (including other sign-ons) to be
executed in parallel. Asynchronous sign-ons reduce the total
amount of time that would be used to execute individual sign-ons
to multiple server sessions. Using the saved time, the client
session can execute more statements.

Default YES

Interaction: If the SIGNONWAIT system option is also specified, the
SIGNONWAIT= option takes precedence over the system option.

72 SIGNON Statement and Command � Chapter 5

Interaction: If SIGNONWAIT is specified as a system option and the
SIGNONWAIT= option is not specified, the system option will apply to the
SIGNON statement.

Interaction: If SIGNONWAIT=NO is specified, the USERID= and PASSWORD=
options cannot be set to _PROMPT_.

Interaction: To find out if sign-on has completed, use the LISTTASK statement in
the RSUBMIT statement or the CMACVAR= option in the SIGNON statement.

See Also: CMACVAR= option on page 60
See Also: “LISTTASK Statement” on page 164

STATUS= on page 61

SUBJECT=“subject-title”
specifies the subject title for the e-mail notification message that is sent after an
asynchronous RSUBMIT completes. A subject title is limited to a maximum of 256
characters.

Here is an example of specifying a subject using e-mail notification:

options remote=myhost sascmd="!sascmd";
signon notify="joe.smith@apex.com" subject="First task completed on &SYSHOSTNAME";
rsubmit wait=no;

code-to-be-executed
endrsubmit;

Restriction: If NOTIFY=“e-mail-address” is not specified, SUBJECT= will be
ignored.

Interaction: If SUBJECT= is specified in the SIGNON statement, the subject title
will be used in e-mail notifications for asynchronous RSUBMIT statements unless
the SUBJECT= option is specified in the RSUBMIT statement.

If no SUBJECT= is specified, the default subject title is used:

SAS/CONNECT task TASK1 has completed.

TASK1 is the server ID.
See Also: NOTIFY= on page 66
See Also: “RSUBMIT Statement and Command” on page 137

SYSRPUTSYNC= on page 63

TBUFSIZE=buffer-size-in-bytes
specifies the size of the buffer that SAS/CONNECT uses for transferring data
between a client session and a server session.

buffer-size-in-
bytes

specifies the size of the buffer that SAS/CONNECT uses for
transferring data. The value must be a number whose value is
greater than 0 and is a multiple of 1024.

Default: 32768 bytes
Interaction: If TBUFSIZE= is specified as an option in the SIGNON statement, it

takes precedence over the TBUFSIZE= system option.
Interation: If TBUFSIZE= is specified as a system option in the client session and

in the server session, the value in the client session takes precedence.
Interaction: If TBUFSIZE= is specified as a system option in the client session but

is not specified in the SIGNON statement, the system option value will be used.
Interaction: Do not specify TBUFSIZE= system option in the server session. If the

TBUFSIZE= system option is included in the server’s SAS invocation, an update to
the server log might be delayed until the next client request for server processing
has completed.

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 73

Interaction: If TBUFSIZE= is not specified as a system option or as an option in
the SIGNON statement, the default is used.

See Also: “TBUFSIZE= System Option” on page 29

UID= on page 73

USER= on page 73

USERID= on page 73

USERNAME=user-ID|_PROMPT_
specifies the user ID to be used when connecting to a server session. Here are the
values that can be assigned to USERNAME=:

user-ID
For details about a valid user ID, see “User ID and Password Naming
Conventions” on page 74.

PROMPT
specifies that SAS prompt the user for a valid user ID. This value enforces security.

Alias: USER=, USERID=, UID=

PASS= on page 73

PASSWD= on page 73

PW= on page 73

PWD= on page 73

PASSWORD=password |“encoded-password” | _PROMPT_
specifies the password to be used when connecting to a server. The operating
environment that the server runs under can also affect password naming conventions.

Here are the valid values for PASSWORD:

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

74 SIGNON Statement and Command � Chapter 5

For details about password naming conventions that are imposed by the operating
environment, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

PROMPT
specifies that SAS prompt the user for a valid password. This value enforces
security.

Alias: PASSWD=, PASS=, PWD=, PW=

WAIT= on page 62

Details

Difference between the SIGNON Command and Statement
The primary difference between the command and the statement is that the SIGNON
command can be issued only from the command line in any client SAS windowing
environment window or in a DM statement. The SIGNON statement must be followed
by a semicolon (;) and can be used in any client session.

Difference between Synchronous and Asynchronous SIGNONs
A sign-on is executed either synchronously or asynchronously.

synchronous
Client session control is not regained until after the sign-on has completed.
Synchronous processing is the default processing mode.

asynchronous
Client session control is regained immediately after the client issues the SIGNON
statement. Subsequent programs can execute in the client session and in the
server sessions while a sign-on is in progress.

Synchronous sign-ons display results and output in the client session. If the
SIGNON is asynchronous, you can use the RGET and RDISPLAY commands and
statements and the LOG= and OUTPUT= options to retrieve and view the results.

Difference between SIGNON and AUTOSIGNON
You can explicitly execute the SIGNON statement to establish a connection between the
client session and the server session. A sign-on entails accessing the computer that the
server session will run on and then invoking a SAS/CONNECT server session.

An automatic sign-on is an implicit sign-on to the server when the client issues a
remote submit request for server processing. When the AUTOSIGNON system option is
set, the RSUBMIT command or statement automatically executes a sign-on and uses
any SAS/CONNECT system options in addition to any connection options that are
specified with RSUBMIT. For example, if you specify either the NOCONNECTWAIT
system option or the CONNECTWAIT=NO option in the RSUBMIT command or
statement, asynchronous RSUBMIT command or statements will be the default for the
entire connection.

User ID and Password Naming Conventions
Each user ID and password is limited to 256 characters that follow these conventions:

� Mixed case is allowed.

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNON Statement and Command 75

� A null value, which is no value, that is delimited with quotation marks is allowed.
� Quotation marks must enclose values that contain one or more spaces.
� Quotation marks must enclose values that contain one or more special characters.
� Quotation marks must enclose values that contain one or more quotation marks.
� Quotation marks must enclose values that begin with a numeric value.
� Quotation marks must enclose values that do not conform to rules for user-supplied

SAS names. For details about rules, see SAS Language Reference: Dictionary.

Examples:

user=joe password=Born2run;
user=joe password=’’ # null space specified by contiguous quotation marks;
user=’joe black’ password=’Born 2 run’;
user=’joe?black’ password=’Born 2 run’;
user=’apexdomain\joe’ password=’2bornot2b’ # Win NT user name;
user=’"happy joe"’ pw=_prompt_;
user=_prompt_;
userid="myuserid" password="{sas001}c2Vydm1hY2g";

Examples

Example 1: Sign-on Using a SAS/CONNECT Script The OPTIONS statement specifies
the server-ID, and the FILENAME statement identifies the SAS/CONNECT sign-on
script. The SIGNON statement initiates the connection. The TCP/IP access method is
assumed by default.

options remote=rhost;
filename rlink ’external-file-name’;
signon;

Example 2: Secured Sign-on Using an Encoded Password The USERNAME= and
PASSWORD=options in a SIGNON statement ensure a secured sign-on. At sign-on, the
user is prompted for a user name and password, which is automatically supplied in its
encoded form. For details, see the PASSWORD= option on page 73.

signon user=_prompt_ password="{sas001}MVNoYXJl";

Example 3: Creating a Sign-on Windows Command File If you use MP CONNECT, you
might want each server session to execute on a different disk. You can use the
SASCMD= option to specify a command file that contains a command to change to a
specific disk for the server session to run on.

An example follows of creating a Windows script named mysas.bat:

set userdrive=%1
%userdrive%
mkdir \sassdir
cd \sassdir
"C:\Program Files\SAS\SAS 9.1\sas" -nosyntaxcheck
-work "mywork" %2 %3 %4 %5 %6 %7 %8 %9

To execute the command file, specify its name as the value for SASCMD=.

signon sascmd="mysas.bat sysjobid";

76 SIGNON Statement and Command � Chapter 5

Example 4: Signing On to Two Server Sessions for Remote Processing You want to run
SAS programs on two server sessions and download data to your client session. The
configuration follows:

� The client session runs under UNIX.

� A server session named WNT runs an unsecured spawner under Windows NT.

� A server session named TSO runs under z/OS.

From the client session, you can submit the following program from the Program
Editor window in interactive or non-interactive line mode:

u options comamid=tcp;
signon wnt;

/**/
/* initiates connection to a z/OS server host */
/**/

v filename tsoscr ’!sasroot/misc/connect/tcptso9.scr’;
signon tso cscript=tsoscr;

w /**/
/* submit statements to a Windows NT server */
/**/

rsubmit wnt wait=no;
statements to be processed by Windows NT server

endrsubmit;

x /**/
/* submit statements to z/OS server */
/**/

rsubmit tso wait=no;
statements to be processed by z/OS server

endrsubmit;
y waitfor _ALL_ wnt tso;

/**/
/* ends both connections */
/**/

Usignoff tso cscript=tsoscr;
signoff wnt cscript=winscr;

u The client signs on to the server session WNT.
v The client uses a SAS/CONNECT script to sign on to the server session TSO.
w The WNT server session asynchronously processes the statements that are

enclosed by the RSUBMIT and ENDRSUBMIT statements.
x The TSO server session asynchronously processes the statements that are

enclosed by the RSUBMIT and ENDRSUBMIT statements.
y The client session waits for both RSUBMIT statements to complete.
U The client uses scripts to sign off both server sessions.

Example 5: Using MACVAR to Test for a Successful Sign-on The following example
illustrates that the macro variable from a successful sign-on will be used if an
unsuccessful attempt is made.

/**/
/* signon successful, rhost1 will be */

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNOFF Command and Statement 77

/* set to 0 to indicate success. */
/**/
signon rhost macvar=rhost1;

/**/
/* signon fails because we have already */
/* signed on to this server session, */
/* so rhost2 will be set to 2 to */
/* indicate this, but rhost1 will */
/* still be the MACVAR associated */
/* with rhost. */
/**/
signon rhost macvar=rhost2;

rsubmit rhost wait=no;
data a;
x=1;
run;

endrsubmit;

/**/
/* rhost1 is still the default and */
/* will indicate the progress of any */
/* subsequent RSUBMITs. */
/**/
%put &rhost1;

SIGNOFF Command and Statement

Ends the connection between a client session and a server session.

Valid in: Client session

Syntax
SIGNOFF <options> ;

Options

ALL
ends all client/server connections sequentially, starting with the first server session
that you signed on to.

If a script file was used for sign-on, and if a URL or FTP are not used to access the
sign-on script, the sign-on script file will be used to perform the sign-off. For
information about the URL and FTP options in the FILENAME statement, see
“FILENAME Statement and Command” on page 81.

If the CMACVAR= option was specified in the SIGNON statement, but not in the
SIGNOFF _ALL_ statement, the macro variable will be updated during the execution
of SIGNOFF _ALL_.

78 SIGNOFF Command and Statement � Chapter 5

Here are the values for the CMACVAR= option for individual task IDs during
sign-off:

0 indicates that the sign-off was successful.

1 indicates that the sign-off failed.
If the CMACVAR= option is specified in the SIGNOFF _ALL_ statement, only that

macro variable is updated. Any macro variables that were specified in the SIGNON
statement will be ignored. Here are the values for the CMACVAR= option that are
specified in SIGNOFF _ALL_:

0 indicates that all sign-offs were successful.

1 indicates that at least one sign-off failed.

CMACVAR=value
specifies the name of the macro variable to associate with the sign-off.

Note: If the SIGNOFF command fails because of incorrect syntax, the macro
variable is not set. �

Except for this condition, the macro variable is set after the SIGNOFF command is
completed.

Here are the values for the CMACVAR= option:

0 indicates that the sign-off was successful.

1 indicates that the sign-off failed.

2 indicates that the sign-off was unnecessary.
If the CMACVAR= option is specified in the SIGNOFF _ALL_ statement, only that

macro variable is updated.
Here are the values for the CMACVAR= option that are specified in SIGNOFF

ALL:

0 indicates that all sign-offs were successful.

1 indicates that at least one sign-off failed.

Alias: MACVAR=

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that you want to sign off from. If only one
session is active, server-ID can be omitted. If multiple server sessions are active,
omitting this option signs off the most recently accessed server session. You can find
out which server session is current by examining the value assigned to the
CONNECTREMOTE= system option.

Alias: CREMOTE=, REMOTE=, PROCESS=

CSCRIPT=fileref| ’filespec’
specifies the script file to be used during sign-off. CSCRIPT can be specified as a
fileref or a fully qualified pathname that is enclosed in parenthesis. If multiple
CSCRIPT= options are specified, the last specification takes precedence.

fileref
is the name of the reference file that is associated with the script that ends the
connection. A previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you can
omit this specification from the SIGNOFF command.

You might use the same script to start and end a connection. If you use one
script to start and end a connection, assign only one fileref.

Syntax for the SIGNON and the SIGNOFF Statements and Commands � SIGNOFF Command and Statement 79

’filespec’
is the name of the SAS/CONNECT script that you want to execute. If you have
not defined a fileref for the script that you want to execute, use the filespec in the
SIGNOFF command. The filespec can be either a fully qualified filename or the
name of a file in the current working directory.
Do not specify both a fileref and a filespec.

Alias: SCRIPT=

NOCSCRIPT
specifies that no SAS/CONNECT script should be used for sign-off. NOCSCRIPT is
useful if you have defined the RLINK fileref but do not want to use it during sign-off.
NOCSCRIPT accelerates sign-off and saves memory resources.

Alias: NOSCRIPT

Details
The SIGNOFF command and the SIGNOFF statement end a connection between a

client and a server session, and execute a script if you are using an access method that
requires a script file. You can issue the SIGNOFF command from the command line in
any client SAS windowing environment window or in a DM statement. You can also
issue a SIGNOFF statement from the client session, which is especially useful for
interactive line mode sessions or non-interactive jobs.

Examples

Example 1: Setting a Macro Variable at Sign-on Checks for Sign-off Failure In this
example, a macro variable is assigned at sign-on. Therefore, if the sign-off fails, the
macro variable will be set for this server session.

/* Sign-on successful, rhost1 will be */
/* set to 0 to indicate success, and */
/* macro variable rhost1 is now */
/* associated with this server */
/* session. */

signon rhost cmacvar=rhost1;

/* Sign-off will fail, and rhost2 */
/* will be set to 1 to indicate this, */
/* but because it was unsuccessful, */
/* rhost1 is still the default macro */
/* variable associated with this */
/* server session. */

signoff rhost cmacvar=rhost2
cscript=’noexist.scr’;

Example 2: Not Setting a Macro Variable at Sign-on Does Not Check for Sign-off
Failure In this example, a macro variable is not assigned at sign-on. Therefore, if the
sign-off fails, the macro variable will not be set for this server session.

/* No macro variable associated with */
/* server session */

signon rhost;

/* Sign-off will fail, and ABC will */
/* be set to 1 to indicate this, */

80 SIGNOFF Command and Statement � Chapter 5

/* but because it was unsuccessful, */
/* the default of no macro variable */
/* will go into effect for this */
/* server session. */

signoff rhost cmacvar=abc
cscript=’noexist.scr’;

When the SIGNOFF command executes, the usual SAS log messages for the server
session appear in the Log window of the client session. After the connection ends, the
following message is displayed:

NOTE: Remote signoff to server-ID complete.

Example 3: Simple Sign-off for a Single Session The following FILENAME statement
assigns the fileref RLINK to a SAS/CONNECT script that is named external-file-name:

filename rlink ’external-file-name’;

Because the client is connected to only one server session, a short form of the
SIGNOFF statement can be used to end the connection:

signoff;

Example 4: Sign-off from a Specific Session If multiple server sessions are executing,
you can specify the server-ID of the server from which to sign off.

signoff ahost;

Example 5: Sign-off from Session Using Specific Script Fileref The following
FILENAME statement assigns another fileref, which is not the default, to the SAS/
CONNECT script:

filename endit ’external-file-name’;

In this case, you must specify the fileref in the SIGNOFF statement because it is not
the default script fileref.

signoff cscript=endit;

Example 6: Sign-off by Using a File Specification When Multiple Sessions Are
Running If you do not assign a fileref to the SAS/CONNECT script, you must specify
the filespec in the SIGNOFF command.

signoff all cscript=’external-file-name’;

Example 7: Sign-off without a Script If you do not want to perform any special
processing when you sign off, you can omit the script that is used for signing off.

signoff noscript;

81

C H A P T E R

6
Syntax for the FILENAME
Statement

FILENAME Statement and Command

Associates a SAS fileref with an external file.

Valid in: client and server session

See: FILENAME Statement in the documentation for your operating environment

Syntax
FILENAME ’filespec’ <access-method><operating-environment-options>

Options

fileref
specifies the name of a file reference to an external file.

’filespec’
specifies the physical name of an external file so that the external file is recognized
by the operating environment.

access-method
specifies a remote file access via a specific access method. For details, see the access
methods that are supported in the FILENAME statement in SAS Language
Reference: Dictionary.

operating-environment-options
specifies details, such as file attributes and processing attributes, that are specific to
the operating environment.

Details
The FILENAME statement associates a SAS fileref (a file reference name) with a

filespec. The fileref must conform to SAS naming rules. The form of the filespec varies
according to operating environment. Some environments require a fully qualified
filename; other environments might permit partial pathnames.

Filerefs are a shorthand method for specifying a file in SAS statements and
commands. After you define a fileref, you can use the fileref in place of the longer file
specification to reference the file throughout a SAS session or program.

82 FILENAME Statement and Command � Chapter 6

A fileref remains associated with an external file only for the duration of the SAS
session. The association is not permanent. Also, a fileref must be defined and the
FILENAME statement must be executed before a SAS statement or command that uses
the fileref can execute.

Using a FILENAME Statement for Script Files

A common use of the FILENAME statement is to define filerefs for SAS/CONNECT
script files. A script’s fileref can then be specified in SIGNON and SIGNOFF commands
to identify the SAS/CONNECT script that starts or ends the connection.

You can define a default fileref for a script file in a FILENAME statement. The
default script fileref is RLINK. If you specify RLINK as the fileref for your script, you
do not need to specify a fileref or a filespec in SIGNON and SIGNOFF commands or
statements. When SAS executes a SIGNON or a SIGNOFF command without a
specified fileref or a filespec, SAS automatically searches for a file that is defined with
RLINK as the fileref. If RLINK has been defined, SAS executes the corresponding script.

Using a FILENAME Statement in the SAS Autoexec File

You can insert a FILENAME statement in the SAS autoexec file to automatically start
and end a SAS/CONNECT server session. An autoexec file contains SAS statements
and commands that you set up to execute automatically each time you invoke SAS. Its
purpose is to automate the execution of statements, commands, and entire programs
that you use routinely in SAS processing. If you use an autoexec file that contains a
FILENAME statement that defines your script’s fileref, you do not have to type and
execute the FILENAME statement each time you want to establish a connection.

For details about setting up an autoexec file, see the appropriate SAS Companion
documentation for your environment and SAS Language Reference: Concepts.

Using a FILENAME Statement with the UPLOAD and DOWNLOAD Procedures

You can combine the FILENAME statement with the UPLOAD and DOWNLOAD
procedures to copy external files between SAS sessions. For example, in the client
session, use the FILENAME statement to assign a fileref. The fileref defines the target
location for the external file copy. In the server session, use the FILENAME statement
to assign a fileref to the file to be downloaded to the client session.

Examples

Example 1: Using a FILENAME Statement for a Script File If a SAS/CONNECT script
is written and copied to a directory in your client environment, you could use the
FILENAME statement to define the default fileref RLINK for the script, as follows:

filename rlink ’external-file-name’;

Because you defined RLINK as the script’s fileref, you can use the shortest form of
the SIGNON and SIGNOFF commands or statements. For example, to start the
connection, enter the following:

signon;

To end the connection, enter the following:

signoff;

Syntax for the FILENAME Statement � FILENAME Statement and Command 83

If you use one script to start the connection and another script to end the connection,
you must define a unique fileref for each script. For example:

filename rlink ’start-link-script-file’;
filename endit ’end-link-script-file’;

Subsequently, to start the connection, enter the following command or statement,
which uses the default fileref RLINK for the sign-on script:

signon;

To end the connection, enter the following:

signoff endit;

Example 2: Using a FILENAME Statement with the UPLOAD and DOWNLOAD
Procedures Suppose you want to download an external file from a server session to a
client session that runs in a directory-based operating environment. Submit the
following FILENAME statement to assign the fileref in the client session:

filename lhost ’client-file-name’;

Then remotely submit the following statements to assign the fileref in the server
session and to perform the download:

rsubmit;
filename rhost ’server-file-name’;

proc download infile=rhost outfile=lhost;
run;

endrsubmit;

For more examples of using the FILENAME statement and the DOWNLOAD and
UPLOAD procedures, see Chapter 22, “Using Data Transfer Services,” on page 229.

84

85

C H A P T E R

7
SAS Component Language (SCL)
Functions and Options

Using SCL to Locate and Store Sample Script Files 88

COMAMID SCL Function

Returns a string that contains all of the communications access methods that are valid for the
operating environment that the SCL code executes under.

Client: Optional

Server: Optional

Syntax
cval=COMAMID();

Syntax Description

cval
a string that contains all of the communications access methods that are valid for the
specific operating system.

Details
The COMAMID function returns a string that contains all of the communications

access methods that are valid for the operating environment that the SCL code executes
under. Each value is separated by a blank. This function is useful for providing a list of
communications access methods for users. The list is displayed as determined by the
developer. The function merely returns a string of values.

Example

The following program fragment gets the string of communications access methods
that are valid for the operating environment that this SCL program executes under.
After the string is returned, one way to display the values would be in a list box.
Although this example does not include it, you would specify that the list box be filled
with the text string cval.

86 RLINK SCL Function � Chapter 7

comlist=makelist();
str=comamid();
do i=1 to 10;

com=scan(str,i,’ ’);
if com^=’ ’ then

comlist=insertc(comlist,com,i);
end;

RLINK SCL Function

Verifies whether a connection was established between a SAS/CONNECT client and a server
session.

Client: Optional
Server: Optional

Syntax
rc=RLINK(’server-ID’);

Syntax Description

rc
is the return code.

’server-ID’
is the name of the server session (specified by REMOTE=server-ID) that is being
tested.

Details
The RLINK function verifies whether a connection was established between the SAS/

CONNECT client and server sessions.

Example

The following statements use the RLINK function and the server ID REMSESS.

rc=rlink(’REMSESS’);
if (rc=0) then

msg=’No link exists.’;
else

msg=’A link exists.’;

SAS Component Language (SCL) Functions and Options � RSESSION SCL Function 87

RSESSION SCL Function

Returns the name, description, and SAS version of a SAS/CONNECT server session.

Client: Optional
Server: Optional

Syntax
cval=RSESSION(n);

Syntax Description

cval
is the character string that contains the following information:

characters 1 through 17
are the session identifier (REMOTE=server-ID).

characters 18 through 57
are the description.

characters 58 through 61
are the number of the server session to get session information for. If no connection
exists, the returned value is blank. If a connection exists but no description was
specified, characters 58 through 61 in the returned value are blanks.

Details
The RSESSION function returns the session identifier and the corresponding

description for a SAS/CONNECT server session. You must have previously defined the
description by using the RSTITLE function.

Example

This example loops through four sessions and obtains the server session and
description, which is returned by using the RSESSION function. The program puts the
descriptions in separate arrays for later use (for example, to display a choice of server
sessions to upload to).

do i=1 to 4;
word=rsession(i);
if word ^=’ ’ then do;

remote=substr(word,1,17);
desc=(substr(word,18,57));
if rlink(remote) then do;

if desc=’ ’ then desc = remote;
cnt=cnt + 1;
entrys{cnt}=remote;
comam{cnt}=desc;

end;
end;

88 RSTITLE SCL Function � Chapter 7

end;

RSTITLE SCL Function

Defines a description for an existing connection to a SAS/CONNECT server session.

Client: Optional
Server: Optional

Syntax
sysrc=RSTITLE(session-ID, description);

Syntax Description

sysrc
is 0 if the description was saved or non-zero if the operation failed.

session-ID
is the name of the server session (specified by CONNECTREMOTE=server-ID). The
string can contain a maximum of eight characters.

description
is a description to associate with the server session. The string can contain a
maximum of 40 characters.

Details
The RSTITLE function saves the session identifier and description for an existing

connection to a server session. This information can be retrieved by using the
RSESSION function to build a list of connections. The list can then be used to select a
connection when submitting statements to a server.

Example

The following statements define the description z/OS Payroll Data for the remote
session by using the identifier A:

session=’A’;
descrip=’z/OS Payroll Data’;
rc=rstitle(session,descrip);

Using SCL to Locate and Store Sample Script Files
The system option SASSCRIPT= defines the location of the SAS/CONNECT script

files. The value of the SASSCRIPT= system option is a logical name or one or more
aggregate storage locations (such as directories or partitioned data sets). Setting the

SAS Component Language (SCL) Functions and Options � Using SCL to Locate and Store Sample Script Files 89

SASSCRIPT= system option automatically generates the SAS system option,
SASFRSCR. SASFRSCR is set to the value of a fileref that is used to build a list of
scripts for SCL applications. When you establish a link while using SAS/ASSIST, this
product uses the information provided by the SASFRSCR option to provide a list of
available scripts. You can also build a similar menu of script files for user-written
applications by accessing the SASFRSCR system option from an SCL program.

The following SCL program obtains the value of the SASFRSCR system option and
uses it to create a list of scripts. For information about the SCL functions that are used
in this example, see SAS Component Language: Reference.

INIT;
return;

MAIN:
/* Get internally-assigned fileref. */

fileref=optgetc(’sasfrscr’);

/* Open the directory (aggregate storage */
/* location). */

dirid=dopen(fileref);

/* Get the number of files. */
numfiles=dnum(dirid);

/* Define a custom selection list the */
/* length of the number of files and */
/* allowing users to make one choice. */

call setrow(numfiles,1);
return;

TERM:
/* Close the directory. */

rc=dclose(dirid);
return;

GETROW:
/* Display the list of filenames. */

filename=dread(dirid,_currow_);
return;

PUTROW:
/* Get directory pathname. */

fullname=pathname(fileref);

/* Concatenate filename that user selects*/
/* with directory pathname. */

name=fullname ||’/’|| filename;
/* Other SCL statements to use complete */
/* filename stored in name. */

return;

90

91

C H A P T E R

8
SAS/CONNECT Script Statements

Summary of SAS/CONNECT Script Statements 91

Summary of SAS/CONNECT Script Statements

Table 8.1 Summary of SAS/CONNECT Script Statements

Statement Purpose

ABORT Stops execution of a script immediately and signals an error condition.

CALL Invokes a routine.

ECHO Controls the display of characters that are sent from the server session while a
WAITFOR statement executes.

GOTO Redirects execution to the specified script statement.

IF Checks conditions before the execution of labeled script statements.

INPUT Displays a prompt to the user that requests a response for the server session.

LOG Sends a message to the client session SAS LOG window.

NOTIFY Sends a message in a window to the client session.

RETURN Signals the end of a routine.

SCANFOR Specifies a pause until conditions are met (an alias for WAITFOR).

STOP Stops execution of a script under normal conditions.

TRACE Displays script statements as they execute.

TYPE Sends characters to the server session as if they were typed at a terminal.

WAITFOR Specifies a pause until conditions are met.

ABORT

Stops execution of a script immediately and signals an error condition.

92 CALL � Chapter 8

Syntax
ABORT;

Details
The ABORT statement immediately stops execution of a script and terminates the

SIGNON or the SIGNOFF function. ABORT prevents other script statements from
executing when the communication link has not been established successfully. When it
executes, the ABORT statement signals an error condition, and an error message is
issued and displayed in the SAS Log window. To terminate execution of a script under
normal conditions, use the STOP statement.

CALL

Invokes a routine.

Syntax
CALL label;

Syntax Description

label
identifies the starting point for executing a block of statements until a RETURN
statement is reached.

Details
The CALL statement causes the statements that are specified after label to be

executed until a RETURN statement is encountered. When a RETURN statement is
reached, script processing resumes at the statement that is specified after the CALL
statement.

ECHO

Controls the display of characters that are sent from the server while a WAITFOR statement
executes.

Syntax
ECHO ON | OFF;

SAS/CONNECT Script Statements � IF 93

Syntax Description

ON
specifies that the characters are displayed.

OFF
specifies that the characters are not displayed. This is the default.

Details
The ECHO statement is useful when you are debugging a script.

GOTO

Redirects execution of a script to the specified script statement.

Syntax
GOTO label;

Syntax Description

label
specifies a labeled statement that is located elsewhere in the script.

Details
The GOTO statement can also be written as GO TO.

IF

Checks conditions of labeled script statements before they execute.

Syntax
IF condition GOTO label;

IF NOT condition GOTO label;

94 INPUT � Chapter 8

Syntax Description

condition
is the test that is performed to determine whether a set of statements should be
executed.

label
specifies a labeled statement in the script.

Details
The IF statement conditionally jumps to another statement in the script. The IF

statement can check two conditions: connection type and whether the script has been
called by the SIGNON or the SIGNOFF command.

If the statement is testing for sign-on or sign-off, condition should be one of the
following:

SIGNON
specifies that the SIGNON command invoked this script.

SIGNOFF
specifies that the SIGNOFF command invoked this script.

If the statement is testing for connection type, condition should be either FULL
SCREEN or one of the values for the COMAMID= system option.

The value FULLSCREEN can be used to detect any full-screen 3270 connection. The
remaining values correspond to values for the COMAMID= system option. For more
information about COMAMID= values for emulation software, see “COMAMID= System
Option” on page 16.

label must specify a labeled statement in the script. For example, in the following IF
statement, ENDIT is a label that is followed by one or more statements that terminate
the link when the user has issued a SIGNOFF command:

if signoff then goto endit;

INPUT

Displays a prompt to the user that requests a response for the server.

Syntax
INPUT <NODISPLAY> ’prompt’;

Syntax Description

NODISPLAY
is an optional parameter that is used to indicate that the input will not be displayed
on the screen. This parameter is commonly used when a user is prompted to provide
a password so that the password is not displayed as it is entered.

SAS/CONNECT Script Statements � NOTIFY 95

’prompt’
is a character string and must be enclosed in quotation marks.

Details
The INPUT statement specifies a character string that is displayed to the user when

the script executes. The specified string should be a prompt that requests a response
from the user, who must respond by pressing ENTER or RETURN (as a minimum
response), before script execution can continue. For example, in automatic sign-on
scripts, the INPUT statement is used to prompt the user for the user ID and the
password that are needed for signing on to the server.

The INPUT statement does not automatically transmit a carriage return or an
ENTER key. Therefore, when writing a script, if you want to transmit a carriage return
or ENTER key to the server, you must use a TYPE statement after an INPUT
statement.

LOG

Sends a message to the client SAS log.

Syntax
LOG ’message’;

Syntax Description

’message’
is a text string that must be enclosed in quotation marks.

Details
The LOG statement specifies a message that is written to the SAS log. You can use

this statement to issue informative notes or error messages to the user as the script
executes. For example, the sample scripts in SAS use the following LOG statement to
inform users that the SIGNOFF completed successfully:

log ’NOTE: SAS/CONNECT conversation terminated.’;

NOTIFY

Sends a message in a window to the client session.

96 RETURN � Chapter 8

Syntax

NOTIFY ’message’;

Syntax Description

’message’
is a text string that must be enclosed in quotation marks.

Details

The NOTIFY statement sends a message to the user on the client by creating a
window that displays the message. The user must select CONTINUE to clear the
window. The NOTIFY statement is similar to the LOG statement, but it enables you to
highlight messages that might not be noticed in the log.

RETURN

Signals the end of a routine.

Syntax

RETURN;

Details

The RETURN statement indicates the end of a group of statements that form a
routine in a script. The routine begins with a statement label and is invoked by a CALL
statement.

SCANFOR

Specifies a pause until conditions are met (an alias for WAITFOR).

Syntax

SCANFOR pause-specification-1 <... pause-specification-n>;

SAS/CONNECT Script Statements � TRACE 97

Syntax Description

pause-specification
See the description of pause-specification in the WAITFOR statement.

Details
The SCANFOR statement is an alias for the WAITFOR statement. See the

description of the WAITFOR statement.

STOP

Stops execution of a script under normal conditions.

Syntax
STOP;

Details
The STOP statement is used to terminate script execution under normal conditions.

Usually, you use the STOP statement at the end of a group of statements that perform
sign-on tasks or sign-off tasks.

To halt the execution of scripts under abnormal conditions, use the ABORT
statement.

TRACE

Controls the display of script statements in the Log window as they execute.

Syntax
TRACE ON | OFF;

Syntax Description

ON
specifies that statements are displayed in the Log window.

OFF
specifies that statements are not displayed in the Log window. This is the default.

98 TYPE � Chapter 8

Details
The TRACE statement is most useful when debugging a script.
You can set the TRACE statement on or off several times in a script in order to trace

execution of selected statements.

TYPE

Sends characters to the server as if they were typed at a personal computer.

Syntax
TYPE text;

Syntax Description

text
is the user-specified string of characters sent to the server.

Details
The TYPE statement sends characters to the server as if they had been typed on a

personal computer that is attached to that operating environment. For example, in a
script that automatically signs on to the server, you use a TYPE statement to issue the
server sign-on command.

text can be any combination of the following:

� literal string(s) that are enclosed in quotation marks, such as ’any string’.

� hexadecimal character string(s) that are enclosed in quotation marks, such as
’01020304X’.

� 3270 key mnemonics if you have a 3270 connection.

If you use TYPE statements in the script and some characters that are specified by
the statement are not typed, try using the WAITFOR statement to establish a pause in
script execution between TYPE statements.

To use a TYPE statement that has more than 80 characters in a sign-on script, divide
the TYPE statement into two or more TYPE statements. To divide the TYPE
statement, insert a hyphen (-) at the division point. For example, consider the following
TYPE statement:

type "sas options (’dmr comamid=tcp’)"
enter;

To divide this statement, change it as follows:

type "sas options (’dmr comamid=-" enter;
type "tcp’)" enter;

Note: Do not insert spaces before or after the hyphen. �

SAS/CONNECT Script Statements � WAITFOR 99

ASCII Control Character Mnemonics
To specify an ASCII control character in the TYPE statement, use a mnemonic
representation of the character. The following table lists the ASCII control characters
and the corresponding mnemonics, decimal codes, and hexadecimal values.

� Do not enclose an ASCII mnemonic in quotation marks.

� In the TYPE statement, use only the values from decimal 0 to 127 (hexadecimal 0
to 7F). Do not use any of the extended ASCII characters whose values are greater
than 127 (decimal).

Table 8.2 ASCII Character Mnemonics

ASCII Control Character
Mnemonic
Representation Decimal Value Hexadecimal Value

Line feed LF or CTL_J 10 0A

Carriage return CR or CTL_M 13 0D

WAITFOR

Specifies a pause until specific conditions are met.

Syntax

WAITFOR pause-specification-1<. . . pause-specification-n >;

Syntax Description

pause-specification
is the criteria used to determine when the pause is terminated for the WAITFOR
statement and processing continues.

The value of pause-specification can be either of the following:

time-clause< :timeout-label>

time-clause
specifies a time period in the form n SECONDS.

n is the number of seconds that the client waits before processing continues. If
you specify 0 SECONDS, a timeout occurs almost immediately. In most cases, you
should specify a value greater than 0. You can specify only one time clause in a
WAITFOR statement.

:timeout-label
specifies the label of a statement that exists later in the script. The label must be
preceded by a colon (:). When you specify a label, script execution passes to the
labeled statement after a timeout occurs. If no label is specified, execution
proceeds with the statement that is specified after the WAITFOR statement.

100 WAITFOR � Chapter 8

text-clause<:text-label>
text-clause

specifies a string that the client waits to receive from the server. The string can be
the following

� a character string that is enclosed in quotation marks
� a hexadecimal string that is enclosed in quotation marks

When text-clause is specified, SAS on the client reads input from the server,
searching for the specified string. With 3270 connections, SAS on the client scans
the server screen (instead of reading characters sequentially).

:text-label
specifies the label of a statement that exists later in the script. The label must be
preceded by a colon (:). When you specify a label, script execution passes to the
labeled statement after a timeout (if the label follows a time clause) or after the
specified string has been read (if the label follows a text clause). If no label is
specified, execution proceeds with the statement that is specified after the
WAITFOR statement.

Details
The WAITFOR statement directs SAS on the client to do one of the following:
� pause for a specified time
� pause for a specified time or until specified characters from the server are received
� pause until specified characters from the server are received

Usually, a WAITFOR statement is used after a TYPE statement sends input to the
server that causes the client to wait for the server’s response to the input. For example,
in the sample scripts in Chapter 3, “Starting and Stopping SAS/CONNECT,” on page
35, a WAITFOR statement follows the TYPE statement that invokes SAS on the server.

You can include one or more pause specifications in a WAITFOR statement. When
you include more than one pause specification, use commas to separate the clauses.

Usage Notes
� You must specify either a time clause or a text clause in the WAITFOR statement.

Or you can specify multiple text clauses or combine a time clause and one or more
text clauses. Labels and screen location specifications are optional.

� If the only specification in the WAITFOR statement is a time clause, there is a
pause during the script’s execution. When the specified time has elapsed, control
passes to the next statement in the script. For example, the following WAITFOR
statement causes a 2-second pause in script execution:

waitfor 2 seconds;

� If the WAITFOR statement contains a time clause followed by a label, a pause
occurs and control passes to the labeled statement. The following WAITFOR
statement causes a 2-second pause and then passes control to the script statement
labeled STARTUP:

waitfor 2 seconds :startup;

� If the WAITFOR statement contains a time clause and a text clause, the client
waits the specified time for the specified characters from the server. If the client
does not receive the expected characters before the time expires, a timeout occurs
and control passes to the next statement or to the labeled statement (if a label is

SAS/CONNECT Script Statements � WAITFOR 101

specified by the time clause). For example, when the following WAITFOR
statement executes, the client pauses for 5 seconds and reads any input sent by
the server:

waitfor ’Enter your password’,
5 seconds :nohost;

If the following string is sent by the server within 5 seconds, no timeout occurs
and control passes to the next statement in the script:

Enter your password

If the string is not received within 5 seconds, a timeout occurs and control
passes to the statement labeled NOHOST.

� You can specify labels for both text clauses and time clauses. For example:

waitfor ’Enter your password’ :startlnk,
5 seconds :nohost;

This WAITFOR statement is the same as the preceding example except that a
label is specified after the text clause. Therefore, if the following string is sent by
the server within 5 seconds, no timeout occurs and control passes to the statement
labeled STARTLNK:

Enter your password

If the string is not received within 5 seconds, a timeout occurs and control
passes to the statement labeled NOHOST, as in the previous example.

� If you do not specify a time clause (that is, if you specify only a text clause), a
timeout cannot occur, and the client waits indefinitely for the specified text
response from the server. Usually, you should specify a time clause to avoid being
trapped in an infinite wait.

� If you specify multiple text clauses in a WAITFOR statement, the commas that
separate the clauses imply a logical OR operator, so only one of the text clauses
needs to be satisfied (true).

102

103

C H A P T E R

9
Sign-On Troubleshooting

Troubleshooting Sign-On Problems 103
Host-Not-Active Message 103

Absence of SAS Software Start-Up Messages 103

Requested-Link-Not-Found Message 104

SAS/CONNECT Server Session Initialization Errors 104

SAS Console Log Messages for Windows 104
SAS Console Log Messages for UNIX 105

SAS Console Log Messages for z/OS 105

Troubleshooting Sign-On Problems

Host-Not-Active Message
While signing on to a server session, you receive the following message:

ERROR: Did not get Host prompt.
Host not active.

If you are signing on to computer via a TCP/IP connection, one of the following
actions might overcome the problem:

� Look at the script that you used for signing on. Ensure that the character string
in the WAITFOR statement that tests for the server session system prompt exactly
matches the character string that normally appears in the server session. The
WAITFOR statement is case sensitive.

� Look at the value of the REMOTE= option in the client session to be sure it
specifies the correct IP address.

� If you do not find any errors after checking the two preceding items, modify the
script file by adding a TRACE ON statement and an ECHO ON statement at the
beginning of the script file. These statements send a copy of the remote screen to
the Log window or to a file in the client session. You can examine the SAS log in
the client session to see what is displayed by the server session at the time the
WAITFOR statement executes.

Absence of SAS Software Start-Up Messages
While signing on to a server session, you receive the following message:

ERROR: Did not get SAS software startup messages

104 Requested-Link-Not-Found Message � Chapter 9

This message occurs if the command to invoke the server session is not correct in the
script file that is being used for signing on. Look at your script file and make sure that
the TYPE statement that invokes SAS in the server session uses the correct SAS
command for your site. At some sites, the command to invoke SAS is not the default
command name SAS.

For more information about recovery from this error, see “SAS/CONNECT Server
Session Initialization Errors” on page 104.

Requested-Link-Not-Found Message
While signing on to a server session from a client session that runs under z/OS, you

receive the following message:

ERROR: XMS Communication Failure:
requested-link XVT not found.

This error occurs if XMS has not been configured correctly. For details about XMS
configuration, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

For more information about recovery from this error, see “SAS/CONNECT Server
Session Initialization Errors” on page 104.

SAS/CONNECT Server Session Initialization Errors
The method that you used to sign on to a server session correctly executed the SAS

command to start the server session. However, errors prevent SAS from initializing.
Possible explanations for initialization failure include the following:

� An invalid option name or value might have been specified in the SAS command.
� The user might not be authorized by the computer that the server session runs on

to execute the SAS program modules or to access the SASHELP, SASUSER, or
SASWORK libraries

� The sign-on command might try to execute an autoexec file that does not exist.

In order to recover from the initialization failure, you need to view the content of the
SAS console log. The location of the SAS console log varies according to the operating
environment that the server session runs under.

SAS Console Log Messages for Windows
The SAS console log is written to a file that is located in the user’s Application Data

Directory. The name of the file is written as a record to the Windows Application Event
Log.

You can use the Windows Event Viewer to see the application events on the computer
where the server session was being executed. A warning event is logged for each
initialization failure for a single server session. For multiple events, the user ID and
the time of the event are included in the warning event.

For more information about the failing event, you can select the warning event from
the viewer window. Another window is displayed that contains detailed event
information, including the name of the file that contains the SAS console log.

Sign-On Problems � SAS Console Log Messages for z/OS 105

SAS Console Log Messages for UNIX
The SAS console log is written to the standard output location for the SAS process.

The location for the standard output varies according to the sign-on method that was
used.

SASCMD= sign-on
Standard output is piped to the SAS session that issued the sign-on statement.
The standard output messages are written to the SAS log in the SAS session.
Each message contains a prefix that identifies the server session (the server ID)
that was being created.

Spawner sign-on
The standard output location for the SAS session that is started via the spawner is
piped to the standard output location of the spawner. The command that is used to
start the spawner should ensure that standard output is redirected to a specific
location. An example of redirecting standard output to a log follows:

sastcpd -nocleartext > spawner.log

SAS console log messages will be directed to the standard output location. For
details about the UNIX spawner, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Telnet daemon sign-on
The standard output location for the SAS session is the script processor in the SAS
session that issued the SIGNON command. If the script processor does not receive
a SESSION STARTED message from the server session, a sign-on failure is
assumed. However, error messages that are directed to the SAS console log in the
server session might not be displayed. To display error messages in the server
session, include the echo on statement in the sign-on script.

SAS Console Log Messages for z/OS
The SAS console log is written to the SASCLOG ddname of the SAS session that is

started. The location of the SASCLOG ddname varies according to the sign-on method
that was used.

SASCMD= sign-on
The SASCLOG is written to the SYSOUT device.

To locate messages in the SAS console log, you must find the appropriate user
ID in the spooled files. You can use a Job Entry System (JES) spool viewer (such
as SDSF or EJES) to browse the spooled files.

Spawner sign-on
The SASCLOG is written to the SYSOUT device.

To locate messages in the SAS console log, you must find the appropriate user
ID in the spooled files. You can use a Job Entry System (JES) spool viewer (such
as SDSF or EJES) to browse the spooled files.

Telnet daemon sign-on
The SASCLOG ddname is directed to the script processor in the SAS session that
issued the SIGNON command. If the script processor does not receive a SESSION
STARTED message from the server session, a sign-on failure is assumed.
However, error messages that are directed to the SAS console log in the server
session might not be displayed. To display error messages in the server session,
include the echo on statement in the sign-on script.

106

107

P A R T4

Compute Services

Chapter 10.Using Compute Services 109

Chapter 11.Syntax for the RSUBMIT Statement and Command 137

Chapter 12.Examples Using Compute Services 167

Chapter 13.Syntax for Remote SQL Pass-Through (RSPT) 181

Chapter 14.Examples Using Remote SQL Pass-Through (RSPT) 185

Chapter 15.Examples of Combining Compute Services and Data Transfer
Services 189

Chapter 16.Compute Services Troubleshooting 195

108

109

C H A P T E R

10
Using Compute Services

Overview of Compute Services 110
MP CONNECT 111

Independent Parallelism 111

Overview of Independent Parallelism 111

Considerations for Independent Parallelism 112

Single Input Data Source 112
I/O Activity in the WORK Library of Each SAS Session 112

Pipeline Parallelism 113

Overview of Pipeline Parallelism 113

Limitation of Pipeline Parallelism 113

Considerations for Piping 114

Benefits of MP CONNECT 114
Scalability with MP CONNECT 115

Overview of Scalability 115

Parallel Threads and Parallel Processes 116

Parallel Processes 116

Parallel Threads 116
Scaling Up 116

Scaling Out 116

Multiple Threads and Multiple Processors 116

Monitoring MP CONNECT Tasks 117

Overview of Monitoring MP CONNECT Tasks 117
Managing MP CONNECT Log and Output Results 117

MP CONNECT Task Completion 118

Using SAS Explorer to Monitor SAS/CONNECT Tasks 118

Compute Services and the Output Delivery System 119

Using the SAS Windowing Environment to Control Remote Processing 119

Overview of Remote Processing Control Using the SAS Windowing Environment 119
Remote Submit 120

Remote Get 121

Remote Display 122

Interaction between Compute Services and Macro Processing 122

Macro-Generated RSUBMIT Blocks 122
Macro Definitions 123

SAS Statements That Are Not Macros or Macro Definitions 123

Macro Statements 123

Ensuring That the RSUBMIT Statements Are Executed in the Correct Session 124

Programming Techniques 124
%SYSLPUT Statement 124

%NRSTR Macro Quoting Function 124

Comment Delimiters to Disable or Enable SAS/CONNECT Executions 124

110 Overview of Compute Services � Chapter 10

Examples 125
Client Session Execution: Macro Statement in RSUBMIT 126

Server Session Execution: %SYSLPUT to Mask Client Session Macro Processing 126

Server Session Execution: %NRSTR to Mask Client Session Macro Processing 126

Server Session Execution: Macro Definition in an RSUBMIT Block 126

Local Execution: %IF Allows Conditional Processing Based on Client Macro Variable 127
Client and Server Session Execution: %PUT Statement Defined in Nested Macros 127

Server Session Execution: No Macros or Macro Statements in Macro-Generated
RSUBMIT 128

Server Session Execution: %NRSTR to Mask Local Macro Processing 128

Frequently Asked Questions 128

Will %SYSFUNC Be Evaluated in the Client Session or the Server Session? 128
Does %SYSLPUT Affect the Current Session or All Sessions? 129

What Session Are Macro Variables Set in When Using the CALL SYMPUT Routine? 130

How Do I Know What Session a Macro Is Executed In? 130

Why Does the Error “Apparent symbolic reference USER1 not resolved” Occur? 131

How Do I Avoid Spacing Problems When Using Semicolons in Macro Values? 132
Compute Services and Break Windows 133

Overview of Break Windows 133

SAS/CONNECT Attention Handler Window 134

Communication Services Break Handler Window 135

Overview of Compute Services
SAS/CONNECT Compute Services provides a set of statements and commands that

enable the client to distribute SAS processing to one or more server sessions and to
maintain control of these server sessions and their results from the single client
session. This very powerful capability enables you to run SAS across many (possibly
heterogeneous) platforms as well as communicate between different releases of SAS
that might be installed on these operating environments.

The RSUBMIT statement or command is used to direct SAS processing to a specific
server session. For details, see Chapter 11, “Syntax for the RSUBMIT Statement and
Command,” on page 137.

Here are some of the benefits of Compute Services:
� gives you access to additional CPU resources.

You might have multiprocessor SMP computers or remote computers on your
network that are underutilized. These CPUs could be used to execute the CPU
intensive portions of your application faster and more efficiently than your local
computer. Compute Services enables you to move some or all segments of an
application to one or more server sessions for execution and return the results to
the client session.

� lets you execute the application on the computer where the data resides.
Data center rules or data characteristics might mandate a single, centralized

copy of the data that is needed by your application. Moving the processing to the
computer where the data resides eliminates the need to transfer or create
additional copies of the data. Using only one copy of data can satisfy security
requirements as well as enable access to data sources that are too large or too
dynamic for transfer.

For example, although data links between computers make file transfers
convenient and easy, large files do not move quickly between computers. It is also
inefficient to maintain multiple copies of large files when developing and testing
programs that are designed to process those files. Compute Services overcomes

Using Compute Services � Overview of Independent Parallelism 111

this limitation by developing applications on one computer while running them
and keeping the data that they use on a different computer.

To test your application, submit it remotely from the client session so that it
will run in the server session on a remote computer. All processing occurs on the
computer where the data resides, but the output appears in the client session.

MP CONNECT
Before SAS 8, when an RSUBMIT statement was executed, the client session was

suspended until processing by the server session had completed. In SAS 8, MP
CONNECT functionality was added, which allows you to execute RSUBMIT statements
asynchronously. When an RSUBMIT is executed asynchronously, the unit of work is
sent to the server session and control is immediately returned to the client session. The
client session can continue with its own processing or execute RSUBMIT statements to
one or more additional server sessions. Asynchronous RSUBMIT statements are most
useful for longer-running tasks.

MP CONNECT enables you to perform multiprocessing with SAS by establishing a
connection between multiple SAS sessions and enabling each of the sessions to
asynchronously execute tasks in parallel. You can also merge the results of the
asynchronous tasks into your local execution stream at the appropriate time. In
addition, establishing connections to processes on the same local computer has been
greatly simplified. This enables you to exploit SMP hardware as well as network
resources to perform parallel processing and easily coordinate all the results into the
client SAS session.

You can use MP CONNECT to start any number of SAS processes that you want to
perform in parallel. SAS processes that are started on a single multiprocessor computer
are independent, unique processes just as they are if they are initiated on a remote
host. For example, under Windows and UNIX, each SAS session is a separate process
that has its own unique SAS WORK library. Each process also assumes the user
context of the parent or of the user that invoked the original SAS session, and has all
the rights and privileges that are associated with that parent. Under z/OS, each SAS
session is an MVS BPX address space that inherits the same STEPLIB and USERID as
the client address space. The client’s SASHELP , SASMSG, SASAUTOS, and CONFIG
allocations are passed to the new session as SAS option values.

MP CONNECT is implemented by executing an RSUBMIT statement and the
CONNECTWAIT=NO option. This method causes SAS/CONNECT to submit a task to a
server session for processing and return control immediately to the client session so
that you can start other tasks in the client session or in other server sessions. For
details about the CONNECTWAIT= option, see Chapter 11, “Syntax for the RSUBMIT
Statement and Command,” on page 137.

Independent Parallelism

Overview of Independent Parallelism
Independent parallelism is possible when the execution of Task A and Task B do not

have any interdependencies. For example, an application might need to run PROC
SORT against two different SAS data sets and merge the sorted data sets into one final

112 Considerations for Independent Parallelism � Chapter 10

data set. Because there is no dependency between the two data sets that initially need
to be sorted, the two SORT procedures can be performed in parallel. When sorting is
complete, the merge can take place. MP CONNECT can be used to accomplish
independent parallelism.

MP CONNECT can also be used to start multiple SAS sessions to execute
independent units of work in parallel. The client session can synchronize the execution
of the parallel tasks for subsequent processing. For this example, two SAS sessions
would be started, and each session would perform one of the SORT procedures. The
merge would be executed in the client session after the two parallel SORT procedures
are completed.

Considerations for Independent Parallelism
When using MP CONNECT (especially on an SMP computer), ensure that the

implementation of parallel sessions does not create an I/O bottleneck in one or both of
the following areas:

� single input data source

� I/O activity in the WORK library of each SAS session

Single Input Data Source
If a single input data source is being read by each of the parallel SAS sessions,

overall execution time can actually be longer if all the parallel SAS sessions are trying
to read their input from a single disk and single I/O channel. One way to solve this
bottleneck would be to create multiple copies of your data on separate disks or mount
points. Another way would be to create subsets of your data on multiple mount points,
and have each parallel session process a different subset of the data. Additionally, you
could enable multi-user access to a single large data source by using the new Scalable
Performance Data Engine (SPD Engine), which is available in SAS 9. The SPD Engine
accelerates the processing of large data sets by accessing data that has been partitioned
into multiple physical files called partitions. The SPD Engine initiates multiple threads
with each thread having a direct path to a partition of the data set. Each partition can
then be accessed in parallel (by a separate processor), which allows the application to
analyze data in parallel as fast as the data is read from disk. This can effectively
reduce I/O bottlenecks and substantially decrease the amount of time that is used to
process data.

I/O Activity in the WORK Library of Each SAS Session
The I/O activity in the WORK library for a typical SAS process can be very high.

When you use MP CONNECT to start multiple SAS sessions on the same SMP
computer, each session has its own WORK library. Because each WORK library for each
SAS process is created in the same temporary file directory by default, you have
multiple SAS processes performing intensive I/O to their respective WORK libraries.
However, all these WORK libraries exist on the same physical disk. This is another
potential I/O bottleneck, which can be minimized in one of two ways.

� Use the WORK invocation option on each of the MP CONNECT processes to direct
each process to create its WORK library on a separate disk.

� Use the SPD Engine to create a temporary library to be used instead of the WORK
library, and point the USER= option to this temporary library. The SPD Engine
can partition data sets over multiple file systems. Utility data sets that are
created by SAS procedures continue to be stored in the WORK library. However,

Using Compute Services � Limitation of Pipeline Parallelism 113

any data sets that have one-level names and that are created by your SAS
programs are stored in the USER library.

Note: When using MP CONNECT on multiple remote computers, the WORK library
of the remote sessions exists on the individual computers, so this bottleneck does not
occur. �

Pipeline Parallelism

Overview of Pipeline Parallelism
Pipeline parallelism occurs when the execution of Task A and Task B have

interdependencies. For example, a SAS DATA step might be followed by a PROC SORT
of the data set that is created by the DATA step. PROC SORT is dependent on the
execution of the DATA step, because the output of the DATA step is the input needed by
PROC SORT. However, the execution of the two steps can be overlapped, and the DATA
step can pipe its output into PROC SORT. The piping feature of MP CONNECT
provides pipeline parallelism.

Piping enables you to overlap the execution of SAS DATA steps and some SAS
procedures. This is accomplished by starting one SAS session to run one DATA step or
SAS procedure and piping its output through a TCP/IP socket as input into another
SAS session that is running another DATA step or SAS procedure. This pipeline can be
extended to include multiple steps and can be extended between different physical
computers. Piping improves performance not only because it enables overlapped task
execution, but also because intermediate I/O is directed to a TCP/IP pipe instead of
written to disk by one task and then read from disk by the next task.

Piping is implemented by using a LIBNAME statement to identify a port to be used
for the pipe. For details about using the LIBNAME statement to implement piping, see
Chapter 19, “Syntax for the LIBNAME Statement, SASESOCK Engine,” on page 211.
For an example of piping, see “Example 6: Using MP CONNECT with Piping” on page
173.

Limitation of Pipeline Parallelism
A limitation of piping is that it supports single-pass, sequential data processing.

Because piping stores data for reading and writing in TCP/IP ports instead of disks, the
data is never permanently stored. Instead, after the data is read from a port, the data
is removed entirely from that port and the data cannot be read again. If your data
requires multiple passes for processing, piping cannot be used.

Here are some examples of SAS procedures and statements that process single-pass,
sequential data:

� DATA step
� SORT procedure
� SUMMARY procedure
� GANTT procedure
� PRINT procedure
� COPY procedure
� CONTENTS procedure

114 Considerations for Piping � Chapter 10

Considerations for Piping
� The benefit of piping should be weighed against the cost of potential CPU or I/O

bottlenecks. If execution time for a SAS procedure or statement is relatively short,
piping is probably counterproductive.

� Ensure that each SAS procedure or statement is reading from and writing to the
appropriate port.

For example, a single SAS procedure cannot have multiple writes to the same
pipe simultaneously or multiple reads from the same pipe simultaneously. You
might minimize port access collisions on the same computer by reserving a range
of ports in the SERVICES file. To completely eliminate the potential for port
collisions, request a dynamically allocated port instead of selecting an explicit port
for use. For details, see Chapter 18, “Syntax for the LIBNAME Statement,” on
page 207.

� Ensure that the port that the output is written to is on the same computer that
the asynchronous process is running on. However, a SAS procedure that is reading
from that port can be running on another computer.

� Ensure that the task that reads the data does not complete before the task that
writes the data. For example, if one process uses a DATA step that is writing
observations to a pipe and PROC PRINT is running in another task that is
reading observations from the pipe, PROC PRINT must not complete before the
DATA step is complete. This problem might occur if the DATA step is producing a
large number of observations, but PROC PRINT is printing only the first few
observations that are specified by the OBS= option. This would result in the
reading task closing the pipe after the first few observations had been printed,
which would cause an error for the DATA step, which would continue to try to
write to the pipe that had been closed.

Note: Although the task that is writing generates an error and will not complete,
the task that is reading will complete successfully. You could ignore the error in
the writing task if the completion of this task is not required (as is the case with
the DATA step and PROC PRINT example in this item). �

� Be aware of the timing of each task’s use of the pipe. If the task that is reading
from the pipe opens the pipe to read and there is a delay before the task that is
writing actually begins to write to the pipe, the reading task might timeout and
close the pipe prematurely. This could happen if the writing task has other steps to
execute before the DATA step or SAS procedure that is actually writing to the pipe.

Use the TIMEOUT= option in the LIBNAME statement to increase the timeout
value for the task that is reading. Increasing the value for the TIMEOUT= option
causes the reading task to wait longer for the writing task to begin writing to the
pipe. This will allow the initial steps in the writing task to complete and the
DATA step or SAS procedure to begin writing to the pipe before the reading task
timeout expires. For an example, see “Example 7: Preventing Pipes from Closing
Prematurely” on page 174.

Benefits of MP CONNECT

MP CONNECT can greatly reduce the total elapsed time that is required to execute
your SAS applications that contain tasks that can be executed in parallel. MP
CONNECT provides a syntactic interface to distribute multiple units of work across idle
CPUs either on the same SMP computer or across multiple computers on your network.

Using Compute Services � Overview of Scalability 115

MP CONNECT uses hardware resources that you might have thought were outdated
and useless. Using MP CONNECT, you can put multiple, slow, inexpensive computers
to work in parallel on a job, transforming them into a powerful and inexpensive
computing resource.

Large jobs that previously never finished executing can be implemented via MP
CONNECT to repeatedly distribute small pieces of a problem to multiple processors
until the entire problem is solved.

MP CONNECT enables you to use SAS in cluster and grid environments for high
performance computing.

Piping enables you to overlap the execution of one or more SAS DATA steps and
procedures in order to accelerate processing. Piping has the added benefit of
eliminating the need to write intermediate SAS data sets to disk, which not only saves
time but reduces the physical disk space requirements for your SAS processing.

Scalability with MP CONNECT

Overview of Scalability
Scalability reduces the time-to-solution for your critical tasks. Scalability can be

accomplished by performing two or more tasks in parallel (independent parallelism) or
overlapping two or more tasks (pipeline parallelism). Scalability requires two things: 1)
that some part(s) of your application can be overlapped or performed in parallel, and 2)
that you have hardware that is capable of multiprocessing. All applications are not
scalable, and not all hardware configurations are capable of providing scalability.

To decide whether an application can be scaled, consider the following questions:

� Does the time that is required to run a job exceed the batch window of time that
you have available?

� Does the time that is required to run a job allow enough time so you can make
appropriate decisions after you get the information from the application? The
applications that are the best candidates for scalability generally take hours, days,
or maybe even weeks to execute.

� Can the application (or some part of it) be segmented into sub-tasks that are
independent and can be run in parallel? It might be worthwhile to duplicate some
data in order to achieve this independence.

� Does the application contain dependent steps that could benefit from piping?

Hardware that is capable of multiprocessing would include an SMP computer or
multiple computers on a network with each computer containing one or more
processors. In addition to the number of processors, it is important to have multiple I/O
channels. This is inherent to multiple computers on a network. For an SMP computer,
this can be accomplished with RAID arrays that enable you to stripe or spread your
data across multiple physical disks. Even for a single threaded application, this can
improve I/O performance, because the operating system is able to read data from
multiple drives simultaneously and synchronize the result for the application.

116 Parallel Threads and Parallel Processes � Chapter 10

Parallel Threads and Parallel Processes
SAS 9 has the capability to leverage the available hardware resources to both scale

up and scale out your applications. SAS provides scalability in two ways:
� parallel SAS processes
� parallel threads within a SAS process

Parallel Processes
A SAS process consists of many pieces, including execution units, data structures,

and resources. A process corresponds to an operating environment process. A process
has a largely private address space. It is scheduled by the operating environment, and
its resources are managed by the operating environment at the lowest level. Multiple
SAS processes use multiple processors on an SMP computer, but they can also be run
on multiple remote single or multiprocessor computers on a network. When running
multiple SAS processes on an SMP computer, SAS does not schedule a specific process
to a specific processor; scheduling is controlled by the operating environment. MP
CONNECT provides the ability to run multiple SAS processes.

Parallel Threads
A process consists of one or more threads. A thread is also scheduled by the

operating environment, but the running process might influence the behavior of threads
by using synchronization techniques. All threads in a process share an address space
and must cooperatively share the resources of the process. Multiple threads use
multiple processors on an SMP computer but cannot be executed across computers.
When running multiple threads within a SAS process, SAS does not schedule a specific
thread to a specific processor; scheduling is controlled by the operating environment.

Scaling Up
Scaling up means to increase the number of processors, disk drives, and I/O channels

on a single server computer. Scaling up also means to leverage the multiple processors,
disk drives, and I/O channels on a single server computer.

Scaling Out
Scaling out means adding more hardware, not bigger hardware. Scaling out also

means to exploit network resources to run parts of an application. When you scale out,
the size and speed of an individual computer does not limit the total capacity of the
network.

Multiple Threads and Multiple Processors
Beginning in SAS 9, multiple threads are used to scale up and make use of multiple

processors in SMP hardware. Multithreading has been incorporated into SAS 9 (and
later), including many SAS servers, several performance-critical SAS procedures, and
many SAS engines. Multithreading is used for both computing-intensive parts as well as
I/O-intensive parts in order to process data quickly and reduce the total execution time.

Multiple SAS processes (MP CONNECT) are used to both scale up and scale out. By
running multiple processes on an SMP computer, the operating environment can
schedule the processes on different processors to use all the hardware resources on the
computer. In addition, by running multiple SAS processes across the computers that

Using Compute Services � Managing MP CONNECT Log and Output Results 117

are available on a network, you can use idle processors and put multiple, slow,
inexpensive computers to work in parallel on a job and turn them into a valuable,
powerful, inexpensive computing resource.

Multithreading and multiple SAS processes (MP CONNECT) are not mutually
exclusive. For some applications, the greatest gains in performance result from applying
a solution that incorporates multiple threads and multiple processes. Provided you
have the hardware resources to support it, you can use MP CONNECT to run multiple
SAS processes and each process can use multithreading. When running multiple
processes by using multiple threads on an SMP computer, it might be necessary to set
SAS system options in each of the SAS processes to tune the amount of threading that
is performed by each process. Tuning threading behavior avoids the sum of the
processes and threads from overloading your system. When using multiple remote
computers with each SAS process running on a physically separate computer, it might
be better to let the threading within the process fully use the individual computers.

Successfully scaled performance is not obtained by installing more and faster
processors or more and faster I/O devices. Scalability involves making choices about
investing in SMP hardware, upgrading I/O configurations, using networked computers,
reorganizing your data, and modifying your application. True scalability results from
choosing scalable hardware and the appropriate software that is specifically designed to
leverage it. The extent of the original problem that can be processed in parallel
determines the amount of scalability that is achievable from the software solution.

Monitoring MP CONNECT Tasks

Overview of Monitoring MP CONNECT Tasks
To monitor MP CONNECT tasks, the RDISPLAY command or statement creates two

windows that enable you to view the contents of the accumulated server log and output
without interrupting the asynchronous processing of the remote submitted task. The
two windows enable you to view the accumulated log and output before merging them
into your client session’s log and output windows. For details about the syntax for the
RDISPLAY command or statement, see “RDISPLAY Command and RDISPLAY
Statement” on page 156.

As an alternative to RDISPLAY, you can use the SAS Explorer Monitor. For details,
see “Using SAS Explorer to Monitor SAS/CONNECT Tasks” on page 118.

Managing MP CONNECT Log and Output Results
The log and output results that are generated by MP CONNECT server sessions are

sent back to the client session as they are created. Because MP CONNECT tasks and
client session tasks are processing in parallel, by default, the log and output are spooled
to a utility file for later retrieval. If the log and output lines were written to the client
Log and Output windows as they were produced, the output from MP CONNECT tasks
and client session tasks would be interleaved, and the interpretation of the results of
the executions would be impossible.

The MP CONNECT task log and output results can be viewed in separate windows
using the RDISPLAY command or statement. For details, see “RDISPLAY Command
and RDISPLAY Statement” on page 156.

Log and output results can also be written to, retrieved from, or merged in the client
session Log and Output windows by using the RGET statement or command or
redirecting to a file by using the LOG= option and the OUTPUT= option. For details

118 MP CONNECT Task Completion � Chapter 10

about RGET, see “RGET Command and RGET Statement ”on page 157. For details
about the LOG= option and the OUTPUT= option, see “RSUBMIT Statement and
Command” on page 137.

MP CONNECT Task Completion
You can use any of the following to test for the completion of MP CONNECT tasks:

� LISTTASK statement

� SAS/CONNECT Monitor window from the SAS Explorer

� CMACVAR macro variable

� NOTIFY=YES option

� WAITFOR statement

The LISTTASK statement lists information about a single active task by name or
about all tasks in the current session. For details, see “LISTTASK Statement” on page
164.

The SAS Explorer provides a menu selection that enables you to monitor SAS/
CONNECT tasks that are executing asynchronously (or synchronously) in one or more
server sessions. For details, see “Using SAS Explorer to Monitor SAS/CONNECT
Tasks” on page 118.

The CMACVAR macro variable can be programmatically queried to learn the
processing status (completed, failed, in progress) of an MP CONNECT task. For details,
see “RSUBMIT Statement and Command” on page 137.

The NOTIFY=YES option requests the display of a notification message window to
report the completion of an MP CONNECT task. For details, see “RSUBMIT Statement
and Command” on page 137.

The WAITFOR statement makes the current SAS session wait for the completion of
one or more asynchronously executing tasks that are already in progress. For details,
see “WAITFOR Statement” on page 162.

Using SAS Explorer to Monitor SAS/CONNECT Tasks

SAS Explorer provides a menu selection that enables you to monitor SAS/CONNECT
tasks that are executing in one or more server sessions. A server session can execute
across a network, or it can execute on a computer that is equipped with SMP hardware,
which facilitates multi-processing.

To start the SAS/CONNECT Monitor, from the menu, select: View � SAS/CONNECT
Monitor.

The SAS/CONNECT Monitor displays information about the tasks in two columns:
Name and Status.

Name Status

Task1 Complete
Task2 Running Asynchronously
Task3 Running Synchronously

The list of tasks is dynamically updated as new tasks start, and the Status field
changes from Running to Complete, as appropriate. When you use the SIGNOFF
statement to end a connection, the task is automatically removed from the window.

Note: If you do not see both columns, select View � Details. �

Using Compute Services � Overview of Remote Processing Control Using the SAS Windowing Environment 119

You can also end a task that is running asynchronously by clicking the task in the
Monitor and selecting the Kill option from the menu that displays when you right-click
the mouse button. Similarly, you can select the RDisplay option from the menu to
display a Log and Output window for a task that is running asynchronously.

Compute Services and the Output Delivery System

You can use the SAS Output Delivery System (ODS) to format the SAS output that is
generated in a SAS session that runs on a server either synchronously or
asynchronously. For details about ODS, see the SAS Output Delivery System: User’s
Guide.

Here are four typical programming scenarios for using Compute Services with ODS
to manage output that is produced in a server session.

� Remotely submit procedure statements without any ODS statements.

Any output that is produced by the remote submit produces a node in the
Results window that has the name Rsubmit: (server-ID). The Results window
uses ODS to generate pointers (nodes) to various positions in the Output window.
The resulting node is a record of the output that is generated during a SAS server
session.

� Precede and end the remote submit block (RSUBMIT through ENDRSUBMIT)
with the appropriate ODS opening statement (such as ODS HTML or ODS PDF)
and the corresponding ODS closing statement (such as HTML CLOSE or PDF
CLOSE). Appropriate results are produced in the SAS session at the client. For
example, ODS HTML produces output in the Results Viewer. ODS PDF produces
output in the Results window.

� Precede RSUBMIT with the ODS OUTPUT statement.

The output from the RSUBMIT appears in the Results window and is saved as
a SAS data set.

� Remotely submit ODS statements and procedures and DATA step statements to
produce the ODS output in the server session.

The output is processed and generated entirely in the server session. Therefore,
the results (for example, a SAS data set or HTML output) must be downloaded
from the server session to the client session.

For all scenarios that use asynchronous processing, use the “RGET Command and
RGET Statement ”on page 157. The output is not available until the results are
retrieved. The accumulated output is retrieved and transferred to the client session.

Using the SAS Windowing Environment to Control Remote Processing

Overview of Remote Processing Control Using the SAS Windowing
Environment

The SAS windowing environment includes menu selections that enable you to control
remote processing during a SAS session. The following Compute Services menu
selections are available from the Run menu:

120 Remote Submit � Chapter 10

Remote Submit
enables you to submit one or more statements to a SAS/CONNECT server session
for remote processing.

Remote Get
merges the spooled Log and Output lines from the asynchronous remote submit
operation with the client’s Log and Output windows for viewing.

Remote Display
enables you to view the spooled Log and Output lines that are created by the
asynchronous remote submit operation in the Log and Output windows that are
created for the specific remote server session.

Remote Submit
To submit one or more statements to a SAS/CONNECT server session for remote

processing, open the SAS Program Editor window and select Run � Remote Submit
from the menu bar.

The Remote Submit dialog box appears.

Display 10.1 Remote Submit Dialog Box

Here are explanations of the fields:

Remote session name
specifies the server session that the statements are executed in. If only one session
is active, this field can be empty. If multiple server sessions are active, omitting
the remote session name causes the program statements to be run in the session
that is specified in the CONNECTREMOTE= option. You can find out which
server session is current by examining the value that is specified in the
CONNECTREMOTE system option.

For information about the CONNECTREMOTE= option, see “RSUBMIT
Statement and Command” on page 137.

Remote session macro variable name
associates a macro variable with a specific RSUBMIT block. Macro variables are
especially useful for controlling the execution of multiple asynchronous RSUBMIT
operations.

Using Compute Services � Remote Get 121

For information about the CMACVAR= option, see “RSUBMIT Statement and
Command” on page 137.

Display transfer status (yes/no)
specifies whether the status window for file transfers is displayed for the current
remote submit operation.

If this field is empty, the default value is obtained from the
CONNECTSTATUS= system option or the CONNECTSTATUS= option in the
SIGNON= statement for this server.

For information about the CONNECTSTATUS= option, see “RSUBMIT
Statement and Command” on page 137.

Execute remote submit synchronously (yes/no):
specifies whether the remote submit operation executes synchronously or
asynchronously. Synchronous processing means that server processing must be
completed before control is returned to the client session. Asynchronous processing
permits the client and one or more server session processes to execute in parallel.
Control is returned to the client session immediately after a remote submit begins
execution to allow continued processing in the client session.

If the field is empty, the default value is obtained from the CONNECTWAIT=
system option or the CONNECTWAIT= option in the SIGNON= statement for this
server.

For information about the CONNECTWAIT= option, see “RSUBMIT Statement
and Command” on page 137.

CAUTION:
Remote Submit Limitation: The Remote Submit menu cannot be used if a CARDS
statement, a CARDS4 statement, a DATALINES statement, a DATALINES4
statement, or a PARMCARDS statement is included in the remote submit operation.

The Remote Submit menu is prohibited from processing data because of its
implementation as a macro. A macro definition cannot contain a CARDS statement,
a DATALINES statement, a PARMCARDS statement, or data lines.

However, you can use any of the following methods to execute a remote submit
that contains any of these statements.

� Enter the RSUBMIT command in the command window.

� Enter the RSUBMIT and ENDRSUBMIT statements in the editor window.

� Submit the statements for local execution, and then use PROC UPLOAD to
transfer the created output to the server session.

�

Remote Get
To merge the spooled log and output from the asynchronous remote submit operation

with the client’s Log and Output windows for viewing, open the SAS Program Editor
window and select Run � Remote Get from the menu bar.

Here are explanations of the fields:

Remote session name
specifies the server session whose spooled log and output lines are to be merged
into the client’s Log and Output windows. If only one session is active, this field
can be empty. If multiple server sessions are active, omitting the remote session
name causes RGET to execute for the session that is specified in the
CONNECTREMOTE= option.

For more information, see “RGET Command and RGET Statement ”on page 157.

122 Remote Display � Chapter 10

Note: Remote Get applies only to asynchronous remote submit operations. If you
execute Run � Remote Get while the asynchronous remote submit operation is in
progress, the operation is automatically converted to synchronous processing so that all
of the lines from the server session can be merged. �

Note: To view the spooled Log and Output lines that are created by the
asynchronous remote submit operation (does not merge with the client’s Log and
Output windows), select Remote Display. �

Remote Display

To view only the spooled Log and Output lines from the asynchronous remote submit
operation, open the SAS Program Editor window and select Run � Remote Display
from the menu bar.

Here are explanations of the fields:

Remote session name
specifies the session name of the server whose Log and Output lines are to be
viewed. If only one session is active, this field can be empty. If multiple server
sessions are active, omitting the remote session name causes RDISPLAY to
execute in the session that is specified in the CONNECTREMOTE= option.

For more information, see “RDISPLAY Command and RDISPLAY Statement”
on page 156.

Note: Remote Display applies only to asynchronous remote submit operations. �

Note: To merge the spooled Log and Output lines that are created by the
asynchronous remote submit operation with the client’s Log and Output windows, select
Remote Get. �

Interaction between Compute Services and Macro Processing

Macro-Generated RSUBMIT Blocks
Macros are compiled into macro program statements by the macro processor. A

macro-generated RSUBMIT refers to an RSUBMIT/ENDRSUBMIT statement block
that is contained within a macro definition. Here is the general structure of this block:

/* begin container macro */
%MACRO macro-name;
RSUBMIT;

statements
ENDRSUBMIT;
%mend macro-name;
/* end container macro */
%macro-name

Using Compute Services � Macro Statements 123

Macro processing within a macro-generated RSUBMIT might not always produce the
results that you expect. Here are the types of statements that can be included in a
macro-generated RSUBMIT/ENDRSUBMIT statement block:

� macro definition

� SAS statements that are not macro statements or macro definitions

� macro statements

Only the macro definition statement and the SAS statement are always executed in
the server session. Macro statements can be resolved and executed in the client session
rather than in the server session.

For a macro-generated RSUBMIT block, include both the RSUBMIT and
ENDRSUBMIT statements in the macro. A statement-style macro is inappropriate
when including only the RSUBMIT statement in the macro definition. For details about
statement-style macros, see SAS Macro Language: Reference.

Macro Definitions
When the macro processor encounters a macro definition in a macro-generated

RSUBMIT statement, all the statements that follow the %MACRO statement are
compiled into macro program statements until a %MEND statement is compiled. Then,
the embedded macro definition is submitted remotely to the server session, and the
macro is defined in the server session when the "container" macro is invoked.

SAS Statements That Are Not Macros or Macro Definitions
When the macro processor encounters statements that are not macro definitions or

macro statements, such as SAS procedure statements or DATA steps, in a
macro-generated RSUBMIT statement, these statements are compiled into macro
program statements. When the macro is executed, these statements are submitted
remotely to the server session for execution.

Macro Statements
Macro statements that you include in a macro-generated RSUBMIT statement might

get resolved and executed in the client session rather than in the server session,
regardless of your including the statements in an RSUBMIT/ENDRSUBMIT statement
block. The macro processor in the client session resolves variables that are specified in
the following statements:

%DO

%IF

%LET

%PUT

%SYSRPUT

The macro processor also compiles the variables into macro program statements,
which the container macro executes in the client session. If you do not want the
statements to execute in the client session, you can use various programming
techniques to control the location where the statements execute.

124 Ensuring That the RSUBMIT Statements Are Executed in the Correct Session � Chapter 10

Ensuring That the RSUBMIT Statements Are Executed in the Correct
Session

Programming Techniques
To avoid possible macro processing confusion, you can use specific programming

techniques to ensure that macro statements are processed in the server session or in
the client session, whichever you choose.

%SYSLPUT Statement
To assign a value to a macro variable in a server session, use the %SYSLPUT macro

statement. Using the %SYSLPUT statement to define a macro variable and then using
a macro variable in the server session is better than attempting to remotely submit a
%LET macro statement. Here is the syntax of the %SYSLPUT statement:

%SYSLPUT macvar = value</REMOTE=session-ID>;

Example:

%syslput remvar1=%sysfunc(date(),date9.);

The client session evaluates the value that is assigned to the server session macro
variable REMVAR1. If the macro variable REMVAR1 does not exist, it is created. Using
%SYSLPUT prevents the macro processor from interpreting a %LET statement that is
in the macro-generated RSUBMIT statement in the client session.

%NRSTR Macro Quoting Function
If a special character or a mnemonic affects the way the macro processor constructs

macro program statements, use the %NRSTR macro quoting function to mask the item
during macro compilation (or during the compilation of a macro program statement in
open code). %NRSTR can be used to mask the macro statements, which causes the
macro processor to ignore the macro program statements in the client session and
forces the macro statements to be executed in the server session.

Here is the syntax for the %NRSTR quoting function when used with a macro
statement:

%NRSTR (%%) macro-statement;

Example:

%nrstr(%%)put abc=&abc one=&one time=&time;

%NRSTR prevents the macro processor from interpreting a macro statement that is
in the RSUBMIT statement in the client session. %NRSTR causes the macro statement
to be interpreted and executed in the server session. For details about macros, see SAS
Macro Language: Reference.

Comment Delimiters to Disable or Enable SAS/CONNECT Executions
Instead of writing a macro that conditionally executes code using an RSUBMIT/

ENDRSUBMIT block or a SIGNON statement, you can use simple macro variables and
statements that insert or remove the comment delimiters - /* */ - from the RSUBMIT/
ENDRSUBMIT block or the SIGNON statement. Using a simple macro to manage
comment delimiters in code is an easy programming technique that is useful in testing
environments.

Using Compute Services � Examples 125

Here is an example that uses a macro to insert comment delimiters before the
RSUBMIT, ENDRSUBMIT, and SIGNON statements that disable SAS/CONNECT.

%global star slash;
%let star=*;
%let slash=/;

&star rsubmit;

data x; x=1; run;

&slash&star endrsubmit; /* */

&slash&star signoff; /* */

Here is an example that uses a macro to remove comment delimiters before the
SIGNON statement that enables SAS/CONNECT.

global star slash;
%let star=*;
%let slash=/;

signon runconn sascmd="!sascmd -noautoexec";
%syslput slash=;
%syslput star=;

You could include both versions of code in separate autoexec files in order to execute
code in a SAS session or in a SAS/CONNECT server session, as necessary.

Examples
These examples show how to use the RSUBMIT/ENDRSUBMIT block to force client

session or server session executions.

“Client Session Execution: Macro Statement in RSUBMIT” on page 126
“Server Session Execution: %SYSLPUT to Mask Client Session Macro Processing” on

page 126

“Server Session Execution: %NRSTR to Mask Client Session Macro Processing” on
page 126

“Server Session Execution: Macro Definition in an RSUBMIT Block” on page 126
“Local Execution: %IF Allows Conditional Processing Based on Client Macro

Variable” on page 127
“Client and Server Session Execution: %PUT Statement Defined in Nested Macros”

on page 127

“Server Session Execution: No Macros or Macro Statements in Macro-Generated
RSUBMIT” on page 128

“Server Session Execution: %NRSTR to Mask Local Macro Processing” on page 128

126 Examples � Chapter 10

Client Session Execution: Macro Statement in RSUBMIT
/* In this macro, %LET is a macro statement that will be interpreted */
/* by the client session and not submitted remotely. */
/* If REMVAR1 is not already defined in the server session, */
/* this example will produce an error. */
%macro example;
%global remvar1;

rsubmit;
data x; x=1; run;
%let remvar1=%sysfunc(date(),date9.);
data a; x="&remvar1"; run;

endrsubmit;

%mend;
%example;

Server Session Execution: %SYSLPUT to Mask Client Session Macro
Processing

/* In this macro, the %SYSLPUT statement is used to assign a value to a */
/* macro variable in the server session, to avoid having the client session */
/* macro processor interpret a %LET statement in the RSUBMIT block. */
/* %SYSLPUT can also be issued outside the macro definition. */

%macro example1;

%syslput remvar1=&sysfunc(date(),date9.);
rsubmit;

data a; x="&remvar1"; run;
endrsubmit;

%mend;
%example1;

Server Session Execution: %NRSTR to Mask Client Session Macro
Processing

/* In this macro, %NRSTR is used with the %LET macro statement */
/* to "hide" it from the client session macro processor and allow it */
/* to be submitted remotely. */

%macro example2;

rsubmit;
%nrstr(%%)let remvar1=%sysfunc(date(),date9.);
data a; x="&remvar1"; run;

endrsubmit;
%mend;
%example2;

Server Session Execution: Macro Definition in an RSUBMIT Block
/* This shows a macro definition embedded in an RSUBMIT block. */
/* The entire ONREMOTE macro definition is remotely submitted */

Using Compute Services � Examples 127

/* and none of the statements in the ONREMOTE macro are interpreted */
/* by the macro processor in the client session. */

%macro example3;

rsubmit;
%macro onremote;
%global abc;

%put this is on the server;
%let abc=value;

%mend;
%onremote;

endrsubmit;
%mend;
%example3;

Local Execution: %IF Allows Conditional Processing Based on Client Macro
Variable

/* In this macro example, %IF is interpreted by the */
/* macro processor in the client session in order to determine */
/* whether to execute PROC DOWNLOAD. */
%macro example4;
%global localvar2;
rsubmit;
data remds;

x=1;
run;
%if &localvar2 eq getit %then %do;

proc download;
run;

%end;
endrsubmit;
%mend;
%let localvar2=getit;
%example4; /* download occurs */
%let localvar2=;
%example4; /* download does not occur */

Client and Server Session Execution: %PUT Statement Defined in Nested
Macros

/* The following macro shows how embedded macros work. The */
/* %PUT statements indicate where the macros are defined and */
/* where they should be invoked. */
/* The macro ONREMOTE is defined to the server session because it */
/* is in an RSUBMIT/ENDRSUBMIT block. Therefore, its invocation */
/* must be remotely submitted. The macro ONLOCAL is defined to */
/* the client session and its invocation is locally submitted. */
%macro embeddedmacros;
rsubmit;
%macro onremote;

%put on the remote side;
%mend;

endrsubmit;

128 Frequently Asked Questions � Chapter 10

%macro onlocal;
%put on the local side;

%mend;
rsubmit;

%onremote;
endrsubmit;
%onlocal;
%mend;

%embeddedmacros;

Server Session Execution: No Macros or Macro Statements in
Macro-Generated RSUBMIT

/* This macro shows that everything in the RSUBMIT/ENDRSUBMIT block */
/* is executed by the server session because there are no macro */
/* statements in the macro-generated RSUBMIT to be interpreted by */
/* the macro processor in the client session. */

%macro do-x;
rsubmit;

data x;
date="04 July 03";
put date=;

run;
endrsubmit;
%mend;
%do-x;

Server Session Execution: %NRSTR to Mask Local Macro Processing
/* This macro uses SYMPUT in an RSUBMIT, and */
/* uses %NRSTR to "hide" the %PUT statement from the macro processor */
/* in the client session, so that it can be executed by the */
/* server session. */
%macro nullds;
rsubmit;

data _null_;
call symput(’abc’,’abc’);
call symput(’one’,’1’);
call symput(’date’,"%sysfunc(date(),date9.)");

run;
%nrstr(%%)put abc=&abc one=&one date=&date;
endrsubmit;
%mend;
%nullds;

Frequently Asked Questions

Will %SYSFUNC Be Evaluated in the Client Session or the Server Session?
Whether %SYSFUNC is evaluated in the client or the server session depends on how

%SYSFUNC is used. If it is used in a %LET or a %PUT macro statement, %SYSFUNC

Using Compute Services � Frequently Asked Questions 129

is executed in the client session. However, you can use %NRSTR in your macro
definition to mask the %LET and %PUT statements, which causes the %LET, %PUT,
and %SYSFUNC macros to be executed in the server session. In the following example,
%SYSFUNC executes in the remote session because %NRSTR is used.

%macro remotesysfunc;
rsubmit;

%nrstr(%%)let current="%sysfunc(time(),time.)";
%nrstr(%%)put current=¤t;

endrsubmit;
%mend;
%remotesysfunc;

In the next example, %SYSFUNC is not part of a macro statement; it is part of the
DATA step. Therefore, including it in an RSUBMIT block causes it to be executed in a
server session.

%macro dssysfunc;
rsubmit;
data x;

time="%sysfunc(time(),time.)";
put time=;

run;
endrsubmit;
%mend;
%dssysfunc;

Does %SYSLPUT Affect the Current Session or All Sessions?
I don’t want %SYSLPUT to affect all my sessions because I am passing an ID to my

server session.
%SYSLPUT affects either the server session that is specified by using the /REMOTE=

option or the current server session. The current session is the one that you have most
recently accessed. You can find out which server session is current by examining the
value that is specified in the CONNECTREMOTE system option, as follows:

%put %sysfunc(getoption(connectremote));

or

proc options option=connectremote;
run;

For example, suppose the output from the %PUT statement shows unixhost, but you
want to define the macro for your Windows computer winhost:

%syslput currentds=ds2008/remote=winhost;

As another example, two server sessions are created and the macro variable FLAG
must be set in both sessions. The /REMOTE= option is used in the %SYSLPUT
statements to direct the correct value to the correct server session.

signon task1 sascmd="sas";
signon task2 sascmd="sas";

%syslput flag=1/remote=task1;
/* NOTE: Without the /REMOTE= option in the previous statement,
the FLAG variable would be defined in the TASK2 session,

130 Frequently Asked Questions � Chapter 10

because it was the session most recently accessed with the
previous SIGNON statement. */
rsubmit task1;

%put flag on task1 is &flag;
endrsubmit;
%syslput flag=2/remote=task2;
/* NOTE: Without the /REMOTE= option in the previous statement,
the FLAG variable would be defined in the TASK1 session,
because it was the session most recently accessed with
the previous RSUBMIT statement. */
rsubmit task2;

%put flag on task2 is &flag
endrsubmit;

What Session Are Macro Variables Set in When Using the CALL SYMPUT
Routine?

Macro variables are set in the server session when you use the CALL SYMPUT
routine in a DATA _NULL_ DATA step because the DATA step CALL SYMPUT
statements are not macro statements. Here is a sample macro that creates the macro
variables in the server session:

%macro nullds;
rsubmit;

data _null_;
call symput(’abc’,’abc’);
call symput(’one’,’1’);
call symput(’time’,"%sysfunc(putn(%sysfunc(time()),time.))");

run;
%nrstr(%%)put abc=&abc one=&one time=&time;

endrsubmit;
%mend;
%nullds;

How Do I Know What Session a Macro Is Executed In?
Why does a macro always execute in a client session but sometimes not in a server

session?
Even if all the following conditions are met, a macro might not execute in the server

session, as expected.

� SAS is run in line mode.

� The macro is the last line of an RSUBMIT block.

� The macro invocation does not end with a semicolon (;).

For example, you can invoke the MYDATE macro (without a semicolon) in a client
session, as follows:

%mydate

If you execute SAS in full-screen or DMS mode, invoking MYDATE (with or without
the semicolon) in a remote submit will execute correctly.

However, if you execute SAS in line mode, and if MYDATE is defined in the server
session and you are remotely submitting the invocation of MYDATE as the final line in
an RSUBMIT block, you must use the semicolon to delimit the macro invocation, as
follows:

Using Compute Services � Frequently Asked Questions 131

RSUBMIT;
%MACRO MYDATE;

%PUT &SYSDATE;
%MEND MYDATE;
%MYDATE; /* must use semicolon here */

ENDRSUBMIT;

When you execute SAS in line mode, the RSUBMIT statement indicates that all
subsequent statements are to be processed in the server session. SAS/CONNECT
searches the beginning of each statement for the occurrence of the ENDRSUBMIT
statement, which indicates that statement processing in the server session should end.
The semicolon delimits the end of each statement, except a comment. If the semicolon
is omitted, the beginning of the next statement cannot be detected, which causes the
ENDRSUBMIT statement to be ignored. The ENDRSUBMIT statement will be sent to
the server session along with the macro invocation. The client session will continue to
search for an ENDRSUBMIT statement.

In order to execute the remote submit block, including the macro invocation, enter
another ENDRSUBMIT statement. Issuing the second ENDRSUBMIT causes the
remote submit block to execute. Although the second ENDRSUBMIT is successful, the
first ENDRSUBMIT produces the following error message:

Statement is not valid or it is used out of proper order.

Why Does the Error “Apparent symbolic reference USER1 not resolved”
Occur?

This error occurs when a macro variable has not been defined in the SAS session
where it is used. This error can occur in a server session when a %LET statement
executes in the client session. You can use %NRSTR and %SYSLPUT to ensure that the
macro is defined in the server session. You can also put the %LET statement in a macro
definition so that the macro variable will be defined in the server session when the
macro is invoked.

In the following code example, all the %LET statements are specified in an
RSUBMIT block. The &USER1 macro variable is assigned in the client session rather
than in the server session, as intended. This problem can be fixed by using the
%SYSLPUT or %NRSTR statements. The &USER2 macro variable is assigned in the
server session because it is contained in a macro definition in the RSUBMIT block.

%macro client;
RSUBMIT;

%let user1 = %sysget(LOGNAME);

%macro remote;
%global user2;
%let user2 = %sysget(LOGNAME);

%mend remote;
%remote

data _null_;
put "user 1 = &user1";
put " 2 = &user2";
run;

ENDRSUBMIT;
%mend client;
%client

132 Frequently Asked Questions � Chapter 10

The %LET statement for USER1 is executed in the client session, but the DATA step
is executed in the server session. If the USER1 macro variable has not been previously
defined, the following error message will be displayed:

Apparent symbolic reference USER1 not resolved.

You can set the MLOGIC system option to trace macro processing and to write trace
output to the SAS log. Statements that generate a log message are processed in the
client session. Statements that do not generate a log message are processed in the
server session. For details about MLOGIC, see SAS Language Reference: Dictionary.

How Do I Avoid Spacing Problems When Using Semicolons in Macro Values?

My macro-generated RSUBMIT contains several %LET statements whose semicolons
are followed with spaces. How can I include semicolons in my macro values and have
the value concatenated correctly?

Here is the code:

%MACRO SETPATH;
rsubmit;

%nrstr(%%let PATH1 = c:\winnt\system32%%str(;);)
%nrstr(%%let PATH2 = c:\winnt%%str(;);)
%nrstr(%%let PATH3 = c:\bin;)
%nrstr(%%let PATH = &PATH1.&PATH2&.&PATH3)
%nrstr(%%put PATH = &PATH)

endrsubmit;
%MEND;
%SETPATH

Here is the content of the SAS log:

NOTE: Remote submit to MAINPC commencing.
1 %let PATH1 = c:\winnt\system32%str(;
2);
3 %let PATH2 = c:\winnt%str(;
4);
5 %let PATH3 = c:\bin;
6 %let PATH = &PATH1.&PATH2&.&PATH3;
7 %put PATH = &PATH;
PATH = c:\winnt\system32; c:\winnt; c:\bin
NOTE: Remote submit to MAINPC complete.

Notice that the semicolons in the PATH macro variables are followed by extraneous
spaces.

Because a semicolon is used to terminate a SAS statement, an %STR(;) statement
within an %NRSTR statement causes problems when SAS/CONNECT parses the lines
and buffers them before sending them to the server session.

To recover from the problem, modify the macro by using %SYSLPUT to submit the
SEMICOLON macro variable to the server session. Execution of &SEMICOLON in the
server session causes a semicolon to be appended to each %LET statement. Here is the
modified code:

%MACRO SETPATH;
%syslput semicolon=%nrstr(;);
rsubmit;

%nrstr(%%let PATH1 = c:\winnt\system32&SEMICOLON;)
%nrstr(%%let PATH2 = c:\winnt&SEMICOLON;)

Using Compute Services � Overview of Break Windows 133

%nrstr(%%let PATH3 = c:\bin;)
%nrstr(%%let PATH = &PATH1.&PATH2&.&&PATH3;)
%nrstr(%%put PATH = &PATH;)

endrsubmit;
%MEND;
%SETPATH

Using the SEMICOLON macro variable, the %SETPATH macro prints the &PATH
macro value without spaces.

Here is the log:

NOTE: Remote submit to MAINPC commencing.
8 %let PATH1 = c:\winnt\system32&SEMICOLON
9 %let PATH2 = c:\winnt&SEMICOLON
10 %let PATH3 = c:\bin;
11 %let PATH = &PATH1.&PATH2&.&PATH3;
12 %put PATH = &PATH;
PATH = c:\winnt\system32;c:\winnt;c:\bin
NOTE: Remote submit to MAINPC complete.

Compute Services and Break Windows

Overview of Break Windows
Break windows are a special class of windows for SAS/CONNECT client/server

connections. Break windows enable you to handle error conditions that cause
interruptions in processing by issuing a control-break signal. SAS provides two break
windows to enable you to handle system interruptions and error conditions:

� Communication Services Break Handler window
� SAS/CONNECT attention handler window

These break windows also enable you to interrupt processing. Depending on which
program statements are executing, you might see either of these break windows.

The Communication Services Break Handler window contains selections for actions
you can take in response to a problem or an interruption. Invoking the SAS/CONNECT
attention handler window is one of the actions you can select. Usually, you select the
attention handler window to cancel statements that you have submitted to the server.

134 SAS/CONNECT Attention Handler Window � Chapter 10

SAS/CONNECT Attention Handler Window
If you need to interrupt processing of statements that were submitted to the server,

issue a break signal:

Windows CTRL-BREAK

UNIX CTRL-C (This key combination can be reset with the UNIX STTY
command. During a SAS session in DMS mode under the X Window
System, you can select an interrupt button in the SAS Session Manager
window to issue a break signal.) When you issue CTRL-C, position the
cursor in the window in which the SAS session was invoked.

z/OS ATTN key

After you issue a break signal, the SAS/CONNECT attention handler window
appears as follows.

Display 10.2 The SAS/CONNECT Attention Handler Window

SAS/CONNECT attention handler

a=abort current remote processing,

c=continue

OK Cancel Help

The following selections are available in the attention handler window:

a terminates the statements that are currently being processed in the
server session but continues the connection to the server session.
This option is useful if you want to terminate a very large file
transfer, or if you want to interrupt a remote SAS job that is
generating many error messages.

Note: Control might not be passed back to the client session
immediately. �

c continues the remote job. Select this option if you decide that you do
not want to interrupt the remote job.

Using Compute Services � Communication Services Break Handler Window 135

Communication Services Break Handler Window

If the application detects an error condition, the Communication Services Break
Handler window is displayed.

The following selections are available in the Communication Services Break Handler
Window:

Ctrl-Break displays the Tasking Manager window.

Selecting1. TCP send/recv task displays the TCP/IP Break window.

Selecting 2. CONNECT displays the SAS/CONNECT attention handler window.

136

137

C H A P T E R

11
Syntax for the RSUBMIT
Statement and Command

RSUBMIT Statement and Command 137

RSUBMIT Statement and Command

Marks the beginning of a block of statements that a client session submits to a server session for
execution.

Valid In: client session

Syntax
RSUBMIT <options>;

ENDRSUBMIT <CANCEL>;

RDISPLAY <CONNECTREMOTE=><server-ID;>

RGET <CONNECTREMOTE=><server-ID>;

%SYSRPUT macro-variable=value;

%SYSLPUT macro-variable=value </REMOTE=server-ID>;

WAITFOR <_ANY_ | _ALL_> task1...taskn <TIMEOUT=seconds>;

LISTTASK <_ALL_ | task>;

KILLTASK <_ALL_ | task1...taskn>;

Task Statement

Mark the end of a block of statements that a client session submits to a
server session for execution

“ENDRSUBMIT
Statement” on page 155

Create a Log window to display the lines from the Log and Output
window to list the output generated from the execution of the statement
within an asynchronous RSUBMIT block

“RDISPLAY Command
and RDISPLAY
Statement” on page 156

Retrieve the log and output that are created by an asynchronous
RSUBMIT and merge them into the Log and Output windows of the
client session

“RGET Command and
RGET Statement ”on
page 157

Assign a value from the server session to a macro varible in the client
session

“%SYSRPUT Statement”
on page 158

138 RSUBMIT Statement and Command � Chapter 11

Task Statement

Create a macro variable in the server session “%SYSLPUT Statement”
on page 160

Cause the client session to wait for the completion of one or more tasks
(asynchronous RSUBMITs) that are in process

WAITFOR“WAITFOR
Statement” on page 162

List all active connections or tasks and identify the execution status of
each connection or task

LISTTASK“LISTTASK
Statement” on page 164

For an asynchronous tasks, force one or more active tasks or server
sessions to terminate immediately

KILLTASK“KILLTASK
Statement” on page 165

Options

AUTHDOMAIN=auth-domain | “auth-domain”
specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the
specified domain. Specifying the authentication domain is a convenient way to obtain
the metadata-based user credentials rather than having to explicitly supply them
during server sign-on.

An administrator can define an authentication domain by using the User Manager
in SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/CONNECT Auth Domain"

Restriction: Use the AUTHDOMAIN= option only when the AUTOSIGNON system
option has been specified and a sign-on has not yet occurred.

Requirement: The authentication domain and the associated credentials must be
stored in a metadata repository, and the metadata server must be running in order
to resolve the metadata object specification.

Requirement: Enclose domain names that are not valid SAS names in double or
single quotation marks.

Interaction: If you specify AUTHDOMAIN=, do not also specify USERNAME= and
PASSWORD=. Otherwise, sign-on is canceled.

See Also: For complete details about creating and using authentication domains,
see the SAS Intelligence Platform: Security Administration Guide.

See Also: SAS Management Console User’s Guide and SAS Management Console
online Help

CMACVAR=value
specifies the macro variable to associate with the current RSUBMIT block.
Specifying CMACVAR= in an individual RSUBMIT restricts the macro variable to
that RSUBMIT block. If multiple asynchronous RSUBMIT statements execute in the
same server session, and each RSUBMIT contains a CMACVAR= specification, each
macro variable will be restricted to the respective RSUBMIT block. The macro
variable is set at the completion of the RSUBMIT block.

Note: If RSUBMIT fails because of incorrect syntax, the macro variable is not set.
�

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 139

Here are the values for the CMACVAR= option:

0 indicates that the RSUBMIT is complete.

1 indicates that the RSUBMIT failed to execute.

2 indicates that the RSUBMIT is still in progress.
Alias: MACVAR=
Interaction: If a synchronous RSUBMIT is specified while an asynchronous

RSUBMIT is still in progress, all spooled log and output statements are merged
into the client Log and Output windows. The asynchronous RSUBMIT will resume
execution as if it were synchronous. Control returns to the client session after the
synchronous RSUBMIT has completed.

To prevent a conversion from asynchronous to synchronous behavior, ensure
that the CMACVAR= option is associated with a specific RSUBMIT block.

Interaction: The CMACVAR= option in the current RSUBMIT block can override
the CMACVAR= that is specified at sign-on.

Featured in: “Example 3: Using the CMACVAR= Option with MP CONNECT” on
page 169

See Also: CMACVAR= option on page 60 in the SIGNON statement

CPERSIST= on page 139

CONNECTPERSIST=YES|NO
specifies whether a connection persists (continues) or is automatically terminated
after an RSUBMIT has completed. A connection results from a sign–on to the server
session.

Here are the values for this option:

YES|Y specifies that a connection to the server session continues. A
sign-off is not automatically performed after the RSUBMIT has
completed. CONNECTPERSIST maintains the connection for
subsequent RSUBMIT statements.

NO|N specifies that a connection to the server session terminates. A
sign-off is automatically performed after the RSUBMIT has
completed. Setting NO requires that you sign on to the server
session again before you perform the next RSUBMIT.

Alias: CPERSIST=, PERSIST=
Default: YES
Interaction: If the CONNECTPERSIST system option is also specified, the

CONNECTPERSIST= option that is specified in the RSUBMIT statement takes
precedence over the system option.

See Also: “CONNECTPERSIST System Option” on page 17

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that the RSUBMIT statements are executed
in. If only one session is active, server-ID can be omitted. If multiple server sessions
are active, omitting this option causes the program statements to be run in the most
recently accessed server session. The current server session is identified by the value
that is assigned to the CONNECTREMOTE system option.

You can specify server-ID using different formats:

u process-name
process-name is a descriptive name that you assign to the server session on a
multi-processor computer when the SASCMD= option is used.

140 RSUBMIT Statement and Command � Chapter 11

v computer-name
computer-name is the name of a computer that is running a Telnet daemon or that
is running a spawner that is not specified as a service. If the computer name is
longer than eight characters, a SAS macro variable name should be used.

w computer-name.port-name
computer-name is the name of a server, and port-name is the name of the port that
the spawner service runs on. If the computer name is longer than eight
characters, assign the computer name to a SAS macro variable and use the macro
variable name as the server ID.

x computer-name.port-number
computer-name is the name of a server, and port-number is the port that the
spawner service runs on.

CAUTION:
Specifying computer-name.port-number for the server ID will fail under these
conditions:

� when used in a WAITFOR statement that is used to wait for the
completion of an asynchronous RSUBMIT.

Instead, use a one-level name, such as the computer-with-port.
� when used in a LIBNAME statement.

Instead, use a one-level name or a two-level name, such as
computer-name._ _port-number.

�

y computer-with-port
computer-with-port is a macro variable that contains the name of a server and the
port that the spawner service runs on, separated by one or more spaces. This
specification is appropriate in cases where the server-ID must be specified as a
one-level name.

U computer-name._ _port-number
computer-name is the name of a server and port-number is the port that the
spawner service runs on. This format can be used to specify the server-ID value for
the SERVER= option in a LIBNAME statement.
These examples of specifying server-ID correspond to the preceding formats.

u rsubmit emp1 sascmd="!sascmd";

v %let sashost=hrmach1.dorg.com;
rsubmit sashost;

w %let sashost=hrmach1.dorg.com;
rsubmit sashost.sasport;

x rsubmit hrmach1.2267;

y %let sashost=hrmach1.dorg.com 2667;
rsubmit sashost;

U rsubmit hrmach1._ _2267;

Alias: CREMOTE=, PROCESS=, REMOTE=

See Also: “CONNECTREMOTE= System Option” on page 18

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 141

CONNECTSTATUS=YES|NO
specifies whether the Transfer Status window is displayed for file transfers within
the current RSUBMIT.

Here are the values for this option:

YES|Y specifies that the Transfer Status window is displayed for file
transfers within the current RSUBMIT.

NO|N specifies that the Transfer Status window is not displayed for file
transfers within the current RSUBMIT.

Alias: CSTATUS=, STATUS=

Default: YES for synchronous RSUBMITs. NO for asynchronous RSUBMITs.

Interaction: If the CONNECTSTATUS= option is omitted from the RSUBMIT
statement, its value is resolved as follows:

1 If the CONNECTSTATUS= option is specified in the SIGNON
statement, the value for the CONNECTSTATUS= option in the
SIGNON statement is used.

2 If the CONNECTSTATUS system option is specified, the value
for the CONNECTSTATUS system option is used.

3 Otherwise, the default behavior occurs. The default for a
synchronous RSUBMIT is YES, which displays the Transfer
Status window. The default for an asynchronous RSUBMIT is
NO, which does not display the Transfer Status window.

See Also: “Transfer Status Window” on page 233

See Also: “CONNECTSTATUS System Option” on page 20

CONNECTWAIT=YES|NO
specifies whether RSUBMIT blocks execute synchronously or asynchronously.
Synchronous RSUBMIT statements are executed sequentially. An RSUBMIT must
be completed in the server session before control is returned to the client session.

For asynchronous RSUBMIT statements, you can execute tasks in multiple server
sessions in parallel. Control is returned to the client session immediately after an
RSUBMIT begins execution to allow continued execution in the client session and in
other server sessions.

Here are the values for this option:

YES|Y specifies that the RSUBMIT blocks execute synchronously.

NO|N specifies that the RSUBMIT blocks execute asynchronously.

Alias: CWAIT=, WAIT=

Default: YES

Interaction: If the CONNECTWAIT= option in RSUBMIT is omitted, the value for
the CONNECTWAIT= option is resolved as follows:

1 If the CONNECTWAIT= option is specified in the SIGNON
statement (or if the AUTOSIGNON system option has been
specified because a sign-on has not yet occurred), the value for
the CONNECTSTATUS= option in the SIGNON statement is
used.

2 If the CONNECTWAIT system option is specified, the value for
the CONNECTWAIT system option is used.

142 RSUBMIT Statement and Command � Chapter 11

3 If the CONNECTWAIT= option is not specified in the SIGNON
statement or if the CONNECTWAIT system option is not
specified, the default for the CONNECTWAIT= option is used.
The default is YES, which is to execute synchronously.

Interaction: If the AUTOSIGNON system option has been specified and a sign-on
has not yet occurred, any options that are specified in RSUBMIT are in effect for
the entire connection. For example, if you specify CONNECTWAIT=NO in
RSUBMIT and the AUTOSIGNON system has been specified, asynchronous
RSUBMIT statements will be the default for the entire connection. However, the
CONNECTWAIT= value can be overridden in individual RSUBMIT blocks. A
connection is terminated using the SIGNOFF statement.

Interaction: If CONNECTWAIT=NO is specified, you might also specify the
CMACVAR= option. CMACVAR= enables you to programmatically test the status
of the current asynchronous RSUBMIT to find out whether the task has completed
or is still in progress.

When %SYSRPUT is executed within a synchronous RSUBMIT, the macro
variable is defined in the client session as soon as it executes.

When %SYSRPUT is executed within an asynchronous RSUBMIT, the macro
variable is defined in the client session when a synchronization point is
encountered. To override this behavior, use the SYSRPUTSYNC system option.

Note: If CONNECTWAIT=NO is specified and the AUTOSIGNON system
option also has been specified (because a sign-on has not yet occurred), an
automatic sign-off will occur only if CONNECTPERSIST=NO is also specified. �

See Also: “SYSRPUTSYNC System Option” on page 28

See Also: “Synchronization Points” on page 158

See Also: “CONNECTWAIT System Option” on page 21

Featured In: “Example 5: Using MP CONNECT and the WAITFOR Statement” on
page 172

CREMOTE= on page 139

CSCRIPT=file-specification
specifies the script file to use in an RSUBMIT when the AUTOSIGNON system
option has been specified and a sign-on has not yet occurred.

file-specification
specifies the location of the script file.

Here are the values for file-specification:

“filename”
is the physical location of the script file in the current working directory.
Enclose the filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the script file. A
previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you
can omit this specification from RSUBMIT.

“fully-qualified-filename”
is the full path to the script file. Enclose the fully-qualified filename in double
or single quotation marks.

“SASSCRIPT-specification”
is the physical location of the script file in the directory that is specified by the
SASSCRIPT system option.

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 143

Alias: SCRIPT=
Restriction: Use the CSCRIPT= option only when the AUTOSIGNON system

option has been specified and a sign-on has not yet occurred.
Interaction: If multiple CSCRIPT= options are specified, the last specification

takes precedence.
Interaction: When you use the CSCRIPT= option, do not also use the NOCSCRIPT

option. If you use NOCSCRIPT and CSCRIPT=, sign-on is canceled.
See Also: NOCSCRIPT= option on page 145
See Also: “AUTOSIGNON System Option” on page 15
See Also: “SASSCRIPT= System Option” on page 25
See Also: FILENAME statement in SAS Language Reference: Dictionary and the

companion that is appropriate for your operating environment.

CSTATUS= on page 141

CSYSRPUTSYNC=YES|NO
specifies whether to synchronize the client session’s macro variables when the client
session receives results from the server session or when a synchronization point is
encountered. Macro variables are updated in the client session using the %SYSRPUT
macro in an asynchronous RSUBMIT.

Note: The %SYSRPUT macro is executed in the server session. �
Here are the values for this option:

YES|Y specifies that the client session’s macro variables will be updated
when the client session receives the results of the server session’s
execution of the %SYSRPUT macro. The results are delivered in
the form of a packet. Specifying YES does not mean that the
client’s macro variables will be updated immediately after the
server session’s execution of the %SYSRPUT macro variable. YES
means that the client’s macro variables will be updated when the
client receives the packet from the server session. Therefore, the
exact time at which the client session’s macro variables are
updated will depend on the availability of the client session to
receive the packet from the server session. If the client session is
busy, the server session must wait until the client session is ready
to receive the packet.

NO|N specifies that the client session’s macro variables will be updated
when a synchronization point is encountered. This is the default.

Default: NO
Alias: SYSRPUTSYNC=
Interaction: If the SYSRPUTSYNC system option is specified, the

CSYSRPUTSYNC= option in RSUBMIT takes precedence over the system option.
Interaction: If the SYSRPUTSYNC system option is specified and the

CSYSRPUTSYNC= option in RSUBMIT is not specified, the system option will
apply to the RSUBMIT statement.

Interaction: Changing the value assigned to the SYRPUTSYNC= option between
consecutive asynchronous RSUBMIT statements causes unpredictable results. You
are advised not to change the value between asynchronous RSUBMIT statements.

See Also: “Synchronization Points” on page 158
See Also: “SYSRPUTSYNC System Option” on page 28
Featured In: For an example of how to prevent SYSRPUTSYNC= option overrides,

see “Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT
Executes” on page 174.

144 RSUBMIT Statement and Command � Chapter 11

CWAIT= on page 141

INHERITLIB=(client-libref1 <=server-libref1> ... client-librefn <=server-librefn>)
enables libraries that are defined in the client session to be inherited by the server
session for read and write access. As an option, each client libref can be associated
with a libref that is named differently in the server session. If the server libref is
omitted, the client libref name is used in the server session. A space is used to
separate each libref pair in a series, which is enclosed in parenthesis.

Note: Because the SAS WORK library cannot be reassigned in any SAS session,
you cannot reassign the SAS WORK library in the server session either. �

This example shows that the libref named LOCAL in the client session is inherited
for use in the server session.

rsubmit job1 inheritlib=(local work=remote);
libname local list;
libname remote list;
data local.a;
x=1;
run;

endrsubmit;

Interaction: If you use the INHERITLIB= option and the SASCMD= option when
signing on to a server session, the server session attempts to access the client
library directly rather than to inherit access to the library via the client session. If
the client session and the server session attempt to access the same file
simultaneously, only one session is granted exclusive access to the file. The other
session’s access to the file is denied.

SAS/CONNECT does not support concurrent multi-user access to the same file.
This functionality is supported by SAS/SHARE.

See Also: SASCMD= on page 147

See Also: SAS/SHARE User’s Guide

LOG=KEEP | PURGE |file-specification
OUTPUT=KEEP | PURGE |file-specification

directs the SAS log or the SAS output that is generated by the current server session
to the backing store or to the specified file. A backing store is a SAS utility file that is
written to the client SAS WORK directory.

Here are the values for these options:

KEEP
spools log or output lines, as applicable, to the backing store or to the computer on
which the client session is running. The log or output lines can be retrieved using
the RGET, RDISPLAY, RSUBMIT CONNECTWAIT=YES, or SIGNOFF
statements. This is the default.

PURGE
deletes all the log or output lines that are generated by the current server session.
PURGE is used to save disk resources. Use PURGE if you anticipate a large
volume of log data or output data to the backing store that you do not want to
keep, and you want to preserve disk space.

file-specification
specifies a file as the destination for the log or output lines. The file is opened for
output at the beginning of the asynchronous RSUBMIT and is closed at the end of
the asynchronous RSUBMIT. After the current RSUBMIT has completed,
subsequent RSUBMIT log or output lines can be appended to the preceding

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 145

RSUBMIT destination file using the LOG= or OUTPUT= options to specify the
appropriate filename.

Note: Directing output to the same file for multiple concurrent asynchronous
RSUBMIT statements is not recommended. �

Here are the values for this option:

“filename”
is the physical location of the SAS log file or the SAS output file. Enclose the
filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the SAS log file or
the SAS output file.

Note: Use the MOD option in the FILENAME statement to open the
referenced file for an append. The MOD option is an external I/O statement
option. �

Default: KEEP
Restriction: Use the LOG= and the OUTPUT= options only when executing an

asynchronous RSUBMIT. Otherwise, this message is displayed:

WARNING: LOG=/OUTPUT= options invalid with synchronous rsubmit.
Options will be ignored.

Interaction: If you direct the log or output lines to a file and then use RGET or
RDISPLAY to retrieve the contents of an empty backing store, this message is
displayed:

WARNING: The LOG option was used to file log lines for the current RSUBMIT.
There are no log lines for RGET to process.

CAUTION:
Do not simultaneously use an asynchronous RSUBMIT and the PROC PRINTTO
statement in order to redirect output. Results are unpredictable when you use a
LOG= or an OUTPUT= option to redirect output in an asynchronous RSUBMIT
and then use the PROC PRINTTO statement in the client session. �

If you use the RSUBMIT CONNECTWAIT=NO and the PROC PRINTTO
statements, you might expect the PROC PRINTTO statement to cause data from
the server session to be written to the file that is specified in the PROC PRINTTO
statement. If this PROC PRINTO behavior occurs, the LOG= or the OUTPUT=
option in the RSUBMIT statement is ignored, and no data is written to the
backing store or to the specified file.

However, because the RSUBMIT CONNECTWAIT=NO and the PROC PRINTTO
statements execute simultaneously, predicting which operation will complete first
is impossible. The timing of the completions of these tasks determines whether the
results are written to the RSUBMIT log or to the PROC PRINTTO log.

See Also: CONNECTWAIT= option on page 141
See Also: “CONNECTWAIT System Option” on page 21
See Also: MOD option in the FILENAME statement, which varies by operating

environment. See the SAS Companion that is appropriate for your operating
environment.

MACVAR= on page 138

NOCSCRIPT
specifies that no script file should be used for sign-on. NOCSCRIPT accelerates
sign-on and conserves memory resources.

146 RSUBMIT Statement and Command � Chapter 11

Alias: NOSCRIPT
Restriction: Use the NOCSCRIPT option only when the AUTOSIGNON system

option has been specified and a sign-on has not yet occurred.
Interaction: When you use NOCSCRIPT, do not also use SASCMD=, SERVER=, or

CSCRIPT=. If you use NOCSCRIPT with SASCMD=, NOCSCRIPT is ignored. If
you use NOCSCRIPT with SERVER= or CSCRIPT=, sign-on is canceled.

See Also: “AUTOSIGNON System Option” on page 15
See Also: CSCRIPT= option on page 142

NOSCRIPT on page 145

NOTIFY=YES | NO | “e-mail-address”
specifies whether to notify the user that an asynchronous RSUBMIT has completed.
The notification can be in the form of a message window or an e-mail message. The
NOTIFY option is enabled only at sign-on and remains in effect for the duration of
the server session.

Here are the values for this option:

YES|Y enables notification via a message window. Here is the format of
the default message:

Asynchronous task TASK1 has completed.

TASK1 is the server ID.

The message window does not interfere with any other task
executions in progress. To acknowledge the message and to close
the window, click OK.

NO|N disables notification. This is the default.

“e-mail-address” enables notification via an e-mail message, and specifies the
e-mail address of the recipient for the notification. E-mail
addresses are limited to a maximum of 256 characters. Enclose
the e-mail address in double or single quotation marks.

The message includes information about the total time that
was used for the asynchronous RSUBMIT. If the LOG= and
OUTPUT= options are also specified in an asynchronous
RSUBMIT statement, the e-mail message identifies the locations
of the log file and output file.

Here is an example of enabling notification for an asynchronous RSUBMIT:

options autosignon sascmd="!sascmd";
rsubmit process1 wait=no notify=yes;

%put should get notification window;
endrsubmit;

To disable notification, you must sign off the server session and then sign on to the
server session again, and either omit the NOTIFY= option or specify NOTIFY=NO in
the RSUBMIT statement.

Here is an example of disabling notification for the next asynchronous RSUBMIT:

signoff process1;
options autosignon sascmd="!sascmd";
rsubmit process1 wait=no notify=no;

code-to-be-executed-in-server-session
endrsubmit;

Default: NO

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 147

Restriction: Notification occurs only for asynchronous RSUBMIT statements.
If NOTIFY=YES or NOTIFY=“e-mail-address” is specified in a synchronous

RSUBMIT, notification fails. Notification is valid only for an asynchronous
RSUBMIT.

Restriction: Use the NOTIFY= option in RSUBMIT only when the AUTOSIGNON
system option has been specified (because a sign-on has not yet occurred).

If NOTIFY= is specified in RSUBMIT when the AUTOSIGNON system option
has been specified, but a sign-on has previously occurred, NOTIFY= has no effect.

Interaction: When you specify the NOTIFY=“e-mail-address” option, you can also
specify the SUBJECT=“subject-title” option.

Interaction: If NOTIFY=YES and the NOTERMINAL system option has been
specified, the request for notification is ignored. This message is displayed:

WARNING: The NOTIFY option is valid only if a TERMINAL is attached
to this SAS session. Option will be ignored.

However, notification can be directed to an e-mail address, regardless of
whether the TERMINAL or NOTERMINAL system option has been specified.

Interaction: If NOTIFY=“e-mail address” is specified, but the e-mail message
cannot be sent, notification will occur in the form of a message window, which is
the action that occurs when NOTIFY=YES.

Note: This behavior assumes that the NOTERMINAL system option has not
been specified. �

Interaction: If NOTIFY=“e-mail address” is specified, the SAS system and the
operating environment that the SAS system runs under must be configured to
support e-mail. Without appropriate configuration, your attempt to specify
notification via e-mail might fail. Contact your system administrator for details.

Interaction: Notification fails if NOTIFY=YES or NOTIFY=“e-mail address” and
you specify statements or commands (such as RGET or SIGNOFF) during the
asynchronous RSUBMIT that change execution from asynchronous to synchronous
mode.

Interaction: This message is displayed when the NOTIFY= option is specified in
the RSUBMIT statement:

WARNING: The NOTIFY option is applied only during SIGNON, but remains
in effect for the entire connection until SIGNOFF.

This message is also displayed for an RSUBMIT for which an automatic sign-on
has occurred.

See Also: CONNECTWAIT=NO option on page 141
See Also: “AUTOSIGNON System Option” on page 15
See Also: LOG= and OUTPUT= options on page 144
See Also: SUBJECT= option on page 151
See Also: EMAILHOST, EMAILPORT, and EMAILSY system options in SAS

Language Reference: Dictionary

PERSIST= on page 139

PROCESS= on page 139

REMOTE= on page 139

SASCMD=“SAS-command” | “!sascmd” | “!sascmdv” | “host-command-file”
signs on to the server session on the same symmetric multiprocessing (SMP)
computer that the client session is running on. This option is most useful when client
and server sessions run on SMP hardware.

148 RSUBMIT Statement and Command � Chapter 11

“SAS command”

� For OpenVMS, UNIX, and Windows: specifies the SAS command that is used
to sign on to a server session.

Here is a typical example:

sascmd="sas"

As another example, commands that contain spaces must be enclosed in
double quotation marks.

sascmd=’"c:\Program Files\SAS\SAS System\9.2\sas.exe"’;

� For z/OS: specifies a colon that is followed by any SAS invocation options.

Here is an example:

sascmd=":ls=256"

!sascmd
For OpenVMS, UNIX, and Windows, signs on to a server session by using the
same command that was used to start the client session.

!sascmdv
For OpenVMS, UNIX, and Windows, signs on to a server session by using the
same command that was used to start the client session and writes the SAS
invocation to the SAS log.

“host-command-file”
In order to execute additional commands before SAS is invoked, you can write a

command file that is specific to your operating environment. Here are the filename
extensions according to operating environment: Windows filenames use the .bat and
.cmd extensions. UNIX extensions include .sh, .csh, and .ksh. OpenVMS uses the
.com extension.

Note: The SASCMD= option does not support z/OS command files. �
The TCP/IP access method adds options, such as -DMR, to the server session’s

SAS command.
For Windows, the TCP/IP access method also appends these options:

� -COMAMID TCP

� -ICON

� -NOSPLASH

� -NOTERMINAL

For all operating environments, you can also specify the NOSYNTAXCHECK
option in the SAS invocation for the non-interactive server session. For details, see
“Starting SAS and Using Syntax Checking” on page 35.

Restriction: For z/OS, a command file cannot be used. Therefore, use a semicolon
followed by options for the server’s SAS invocation.

Interaction: If the SASCMD= system option is already specified, the SASCMD=
option that is specified in RSUBMIT takes precedence over the system option.

Interaction: When you use SASCMD=, do not also use NOCSCRIPT. Otherwise,
NOCSCRIPT is ignored.

Requirement: SAS commands that contain spaces must be enclosed in double or
single quotation marks.

See Also: “SASCMD= System Option” on page 22

See Also: SYNTAXCHECK= and NOSYNTAXCHECK= system options in SAS
Language Reference: Dictionary

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 149

See Also: ICON, NOSPLASH, and NOTERMINAL system options in SAS
Companion for Windows

See Also: “COMAMID= System Option” on page 16

See Also: NOCSCRIPT option on page 145

Restriction: OpenVMS only If the NODETACH system option is specified, and if
multiple server sessions are running under OpenVMS and you observe degraded
performance, this error message is displayed:

ERROR: Process quota exceeded.
ERROR: Cannot spawn subprocess. Check process limit quotas and privileges.

NODETACH causes a sign–on to occur in a subprocess of the parent’s process,
which can use excessive resources. If NODETACH is specified, try setting the
DETACH system option, which causes sign-ons to occur as detached processes
rather than as subprocesses. For more information, see the NODETACH system
option in the SAS Companion for OpenVMS on HP Integrity Servers.

To improve performance when using the NODETACH system option, ask your
system administrator to set the following resources to the specified values for each
sign-on to a server session:

Table 11.1 OpenVMS Operating Environment Resource Values

User Account Resource Minimum Value

Paging file quota 40000

Buffered I/O byte count quota 13000

Open file quota 65

Subprocess limit 1

Timer queue entry limit 1 to 8

When SAS is invoked from a captive OpenVMS account, you cannot use
SASCMD= to sign on to a server session. Typically, SASCMD= performs a sign-on
to a server session either in a subprocess or in a detached process. Starting
subprocesses is not allowed under a captive account. A detached process that runs
under a captive account cannot invoke SAS because a captive OpenVMS account is
under the control of the login command procedure. The command language
interpreter will execute only the commands in your login command procedure and
then the process will exit.

The !sascmdv value in the SASCMD= option causes the display of a symbol
that specifies how the server session was started. You can print the symbol’s value
by using the getsym DATA step function.

rsubmit;
%put %bquote(
%sysfunc (getsym(SASCMD_2042CF6B)));

endrsubmit;

SERVER=“SAS-application-server”
specifies the name of a SAS Application Server that contains a SAS/CONNECT
server component in its grouping. The SAS Application Server has been defined in
the SAS Metadata Repository using SAS Management Console. The SAS Application
Server is configured using a set of system resources, including a SAS/CONNECT
server component and properties that start a SAS/CONNECT server session. The

150 RSUBMIT Statement and Command � Chapter 11

server properties are equivalent to the options that can be specified in the SIGNON
statement.

“SAS-application-server”
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

Requirement: Enclose the name of the SAS Application Server in double or single
quotation marks.

Requirement: When you use the SERVER= option, certain system resources must
be configured before you can access a SAS Metadata Server. For details, see “Sign
On to a Server That Is Defined in the SAS Metadata Repository” on page 37.

Requirement: If the specified SAS Application Server does not contain a SAS/
CONNECT server component, the server sign-on fails.

Interaction: SERVER= is used in an RSUBMIT when an automatic sign-on is in
effect via the AUTOSIGNON system option rather than when an explicit sign-on
is specified via the SIGNON statement.

Interaction: When you use SERVER=, do not also use these RSUBMIT options:
NOCSCRIPT, NOTIFY=, PASSWORD=, REMOTE=, SASCMD=, SCRIPT=,
SIGNONWAIT=, or USERNAME=. Here is an example of a warning:

WARNING: NOTIFY= and SERVER= are mutually exclusive.
Please choose only one of them.

If any of these options is also specified, the entire RSUBMIT code block will be
ignored. Although the AUTOSIGNON system option might be in effect, a server
sign-on will fail.

Interaction: When you use SERVER=, you can also specify any of these options in
RSUBMIT: CMACVAR=, CONNECTPERSIST=, CSTATUS=. CWAIT=,
INHERITLIB=, LOG=, OUTPUT=, OUTPUT=, or SYSRPUTSYNC=. If you specify
any of these options, the option that is specified in RSUBMIT takes precedence
over the equivalent property for the SAS/CONNECT component that is contained
in the SAS Application Server.

Interaction: If you use NOCSCRIPT and SERVER=, sign-on is canceled.
Interaction: The CONNECTPERSIST= and SYSRPUTSYNC= options are available

only in the RSUBMIT statement. They cannot be specified as sign-on properties for
the SAS/CONNECT component that is contained in the SAS Application Server.

Tip: Before you use the SERVER= option to sign-on, you can use SIGNON
SERVERV= to view the properties that start a server session.

See Also: SERVERV= Option in SIGNON
See Also: “AUTOSIGNON System Option” on page 15
See Also: SAS Management Console User’s Guide and SAS Management Console

online Help

SIGNONWAIT=YES|NO
specifies whether a sign-on to a server session is to be executed synchronously or
asynchronously. You can sign on using the SIGNON statement or the AUTOSIGNON
system option.

Here are the values for this option:

YES|Y specifies a synchronous sign-on. A synchronous sign-on causes the
client session to wait until the sign-on to a server session has
completed before control is returned to the client session for
continued execution. YES is the default.

NO|N specifies an asynchronous sign-on. An asynchronous sign-on to a
server session begins execution and control is returned to the

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 151

client session immediately for continued execution. Asynchronous
sign-on allows multiple tasks (including other sign-ons) to be
executed in parallel. Asynchronous sign-ons reduce the total
amount of time that would be used to execute individual sign-ons
to multiple server sessions. Using the saved time, the client
session can execute more RSUBMIT statements.

Default: YES
Interaction: If the SIGNONWAIT system option is also specified, the

SIGNONWAIT= option takes precedence over the system option.
Interaction: If SIGNONWAIT is specified as a system option and the

SIGNONWAIT= option is not specified, the system option will apply to the
RSUBMIT statement.

Interaction: If SIGNONWAIT=NO is specified, the USERID= and PASSWORD=
options cannot be set to _PROMPT_.

See Also: “SIGNONWAIT System Option” on page 27
See Also: “AUTOSIGNON System Option” on page 15
See Also: “SIGNON Statement and Command” on page 59

STATUS= on page 141

SUBJECT=“subject-title”
specifies the subject title for the e-mail notification message that is sent after an
asynchronous RSUBMIT completes. A subject title is limited to a maximum of 256
characters.

Here is an example of specifying a subject using e-mail notification:

options remote=myhost sascmd="!sascmd";
signon notify="joe.smith@apex.com";
rsubmit wait=no subject="First task completed on &SYSHOSTNAME";

code-to-be-executed
endrsubmit;

Restriction: Use the SUBJECT= option only when the NOTIFY=“e-mail-address”
option is in effect.

Interaction: If the SUBJECT= option is not specified in the RSUBMIT statement,
but SUBJECT= is specified at sign-on, the subject title that is specified at sign-on
is used in the e-mail message for RSUBMIT. If no SUBJECT= is specified, the
default subject title is used:

SAS/CONNECT task TASK1 has completed.

TASK1 is the server ID.
See Also: NOTIFY= Option on page 146
See Also: Chapter 5, “Syntax for the SIGNON and the SIGNOFF Statements and

Commands,” on page 59
See Also: SAS system options that support e-mail configuration: EMAILHOST,

EMAILPORT, and EMAILSY in SAS Language Reference: Dictionary

UID= on page 151

USER= on page 151

USERID= on page 151

USERNAME=user-ID|_PROMPT_
specifies the user ID to use in order to sign on to a server session.

Here are the values for this option:

152 RSUBMIT Statement and Command � Chapter 11

user-ID For details about a valid user ID, see “User ID and Password
Naming Conventions” on page 154.

PROMPT specifies that SAS prompt the user for a valid user ID. This value
enforces security.

Alias: USERID=, USER=, UID=
Restriction: Use the USERNAME= option only when the AUTOSIGNON system

option has been specified (because a sign-on has not yet occurred).
See Also: “AUTOSIGNON System Option” on page 15

PASS= on page 152

PASSWD= on page 152

PW= on page 152

PWD= on page 152

PASSWORD=password | “encoded-password” |_PROMPT_
specifies the password to use in order to sign on to a server session. The operating
environment that the server session runs under can affect password naming
conventions. For details about password-naming conventions according to operating
environment, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Here are the values for this option:

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

PROMPT specifies that SAS prompt the user for a valid password. This
value enforces security.

Alias: PASSWD=, PASS=, PWD=, PW=
Restriction: Use the PASSWORD= option only when the AUTOSIGNON system

option has been specified (because a sign-on has not yet occurred).
See Also: “AUTOSIGNON System Option” on page 15

Syntax for the RSUBMIT Statement and Command � RSUBMIT Statement and Command 153

SYSRPUTSYNC= on page 143

WAIT= on page 141

Details

Difference between SUBMIT and RSUBMIT
The RSUBMIT command and statement cause SAS programming statements that are
entered in a client session to run in a server session. The difference between the
RSUBMIT and the SUBMIT commands is the location of program execution (client
session or server session). Although RSUBMIT executes tasks in a server session,
results and output are delivered to the client session as if they were executed in the
client session.

Difference between the RSUBMIT Statement and Command
The primary difference between the RSUBMIT command and the statement is that the
command can be used only from a windowing environment session or in the DM
statement. The RSUBMIT statement is used in a client session.

You can use the RSUBMIT command in these environments:

� the command line of the Program Editor window in a client session

� a DM statement, which uses commands as if they were issued from a command
line in a windowing environment.

� Windows only: the KEYS window in which you assign the RSUBMIT command to
a key. For details, see the SAS Companion for Windows.

Difference between Synchronous and Asynchronous RSUBMITs
An RSUBMIT is executed either synchronously or asynchronously.

synchronous
Client session control is not returned until the RSUBMIT has completed.
Synchronous execution is the default execution mode.

asynchronous
Client session control is returned immediately after an RSUBMIT is sent to a
server session. Program execution can occur in a client session and in one or more
server sessions in parallel.

A synchronous RSUBMIT displays results and output in the client session. If the
RSUBMIT is asynchronous, you can use the RGET and RDISPLAY commands and
statements and the LOG= and OUTPUT= options to retrieve and view the results.

Executing Statements in the RSUBMIT Block
The RSUBMIT command can be used to execute most types of SAS programs in the
server session, except windowing procedures (such as SAS/FSP or SAS/AF procedures).

The RSUBMIT statement can be used to run SAS/CONNECT from the SAS
windowing environment, an interactive line mode session, or a batch job. The
RSUBMIT and the ENDRSUBMIT statements enable you to include the statements
that should be executed in the server session in the same file as the statements that
will be executed in the client session. The statements that are enclosed between the
RSUBMIT and the ENDRSUBMIT statements, which constitute the RSUBMIT block,
execute in the server session. All the other statements in the program are executed in
the client session when you run the program.

154 RSUBMIT Statement and Command � Chapter 11

The following template can be used to build a file that includes statements for both
the client and the server sessions in the same program:

statements for client session
rsubmit;

statements for server session
endrsubmit;

statements for client session

Note: The DOWNLOAD and the UPLOAD procedures must be executed by using
the RSUBMIT command or the RSUBMIT statement. You cannot execute UPLOAD
and DOWNLOAD by using the SUBMIT command. �

RSUBMIT and ENDRSUBMIT Parsing
When SAS encounters an RSUBMIT statement, it sends the SAS statements in the
RSUBMIT block to SAS/CONNECT. SAS/CONNECT continues parsing the statements
until it encounters the semicolon that follows the ENDRSUBMIT statement.

The SAS statements within an RSUBMIT block can contain the start of a quoted
string. A second RSUBMIT block can contain the end of the quoted string. Here is an
example of two RSUBMIT blocks in which a quoted string starts in the first RSUBMIT
block and ends in the second RSUBMIT block:

rsubmit;
data _null_;
newmacro=’mend;
endrsubmit;
rsubmit;
endrsubmi’ || ’t; ’ ;
put newmacro;
run;
endrsubmit;

If the preceding statements were changed to have "newmacro=’mend;
endrsubmit;’;" (instead of it being broken between the two RSUBMIT blocks),
parsing of the RSUBMIT block would end with "endrsubmit;" . RSUBMIT block
processing ends after the ENDRSUBMIT statement, the second quotation mark is
processed in the client SAS session, and another quotation mark will need to be entered
before SAS reports an error. Here is an excerpt of the error message:

newmacro = ’mend; endrsubmit;’
-

ERROR : Statement is not valid or it is used out of proper order.

Avoid including the ENDRSUBMIT statement in a quoted string.

User ID and Password Naming Conventions
Each user ID and password is limited to 256 characters that follow these conventions:

� Mixed case is allowed.
� A null value, which is no value, that is delimited with quotation marks is allowed.
� Quotation marks must enclose values that contain one or more spaces.
� Quotation marks must enclose values that contain one or more special characters.
� Quotation marks must enclose values that contain one or more quotation marks.
� Quotation marks must enclose values that begin with a numeric value.

Syntax for the RSUBMIT Statement and Command � ENDRSUBMIT Statement 155

� Quotation marks must enclose values that do not conform to rules for
user-supplied SAS names. For details about rules for SAS names, see SAS
Language Reference: Dictionary.

Examples:

user=joe password=’Born2run’;
user=joe password=’’ /* null space specified by contiguous quotation marks */;
user=’joe black’ password=’Born 2 run’;
user=’joe?black’ password=’Born 2 run’;
user=’apexdomain\joe’ pass=’2bornot2b’ /* Windows user name */;
user=’"happy joe"’ pw=_prompt_;
user=_prompt_;
userid="myuserid" password="{sas001}MVNoYXJl";

ENDRSUBMIT Statement

Marks the end of a block of statements that a client session submits to a server session for
execution.

Valid In: client session

Syntax
ENDRSUBMIT <CANCEL>;

Syntax Description

CANCEL
terminates the block of statements without executing the statements. This option is
useful in an interactive line mode session if you see an error in a previously entered
statement, and you want to cancel the step.

Details
The ENDRSUBMIT statement signals the end of a block of statements that begins

with either of the following lines of code:

dm ’rsubmit’;

or

rsubmit;

The server session executes the statements between either of these statements and
the ENDRSUBMIT statement.

Note: Do not use the ENDRSUBMIT statement when using the RSUBMIT
command. Use it only when you use the RSUBMIT statement or the DM RSUBMIT
statement. �

The ENDRSUBMIT statement can be used in any type of client session: a SAS
windowing environment, an interactive line mode session, or a batch job. The

156 RDISPLAY Command and RDISPLAY Statement � Chapter 11

RSUBMIT and ENDRSUBMIT statements enable you to include in the same file
statements that are executed in the client session and statements that are executed in
the server session. The statements to be executed in the server session are enclosed
between the RSUBMIT and ENDRSUBMIT statements.

All of the other statements in the program are executed in the client session when
you run the program. Here is a template for the arrangement of statements for the
server and client sessions in the same program:

statements for client session
rsubmit;

statements for server session
endrsubmit;
more statements for client session

RDISPLAY Command and RDISPLAY Statement

Creates a Log window to display the lines from the log and an Output window to list the output
generated from the execution of the statements within an asynchronous RSUBMIT block.

Valid In: client session

Syntax
RDISPLAY <<CONNECTREMOTE=>server-ID >;

Syntax Description

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that the asynchronous RSUBMIT is
executing in or has executed in. If only one session is active, you can omit server-ID.
If multiple server sessions are active and you omit this option, the spooled log and
output statements from the most recently accessed server session are displayed.

Alias: CREMOTE=, PROCESS=, REMOTE=

Details
The RDISPLAY command and the RDISPLAY statement create a Log window to

display the spooled log and an Output window to display the output that is generated
by an asynchronous RSUBMIT.

When an asynchronous RSUBMIT executes, the log and the output are not merged
into the client Log and Output windows. Instead, they are spooled until they are
retrieved at a later time. RDISPLAY enables you to view the spooled log and output
statements that are created by the asynchronous RSUBMIT. The RGET command and
the RGET statement must be used to merge the spooled statements into the client Log
and Output windows.

The primary difference between the RDISPLAY command and the RDISPLAY
statement is that the command can be used only from a windowing environment session
or within a DM statement. The RDISPLAY statement is used in a client session.

Syntax for the RSUBMIT Statement and Command � RGET Command and RGET Statement 157

RGET Command and RGET Statement

Retrieves the log and output that are created by an asynchronous RSUBMIT and merges them into
the Log and Output windows of the client session.

Valid In: client session

Syntax
RGET <<CONNECTREMOTE=>server-ID>;

Syntax Description

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that generated the spooled log and output to
be retrieved. If only one session is active, server-ID can be omitted. If multiple server
sessions are active and the option is omitted, the spooled log and output statements
from the most recently accessed server session are retrieved and merged into the
client Log and Output windows. You can find out which server session is the current
session by examining the value that is assigned to the CONNECTREMOTE system
option.

Alias: CREMOTE=, PROCESS=, REMOTE=

See Also: “CONNECTREMOTE= System Option” on page 18

Details
The RGET command and the RGET statement cause all the spooled log and output

from the execution of an asynchronous RSUBMIT to be merged into the client Log and
Output windows. When an asynchronous RSUBMIT executes, the log and output are
not merged into the client Log and Output windows immediately. Instead, the log and
output are spooled and retrieved later.

If the RGET command or RGET statement is executed while the asynchronous
RSUBMIT is still in progress, all currently spooled log and output statements are
retrieved and merged into client Log and Output windows. The RSUBMIT continues
execution as if it were submitted synchronously. Control is returned to the client
session after the RSUBMIT has completed.

If you do not want RSUBMIT to become synchronous, but you want to check its
progress, use the CMACVAR= option in the RSUBMIT or the SIGNON statement.
CMACVAR= enables you to monitor the progress of an asynchronous RSUBMIT without
causing it to execute synchronously.

Note: For an overview about monitoring SAS tasks, see “Monitoring MP CONNECT
Tasks” on page 117. �

Note: For asynchronous RSUBMIT statements, the SAS system option _LAST_,
which is used to find out the name of the most recently created data set, does not get
updated. Also, if RGET is used to change RSUBMIT execution from asynchronous to
synchronous, the system option _LAST_ is not updated. For more information about
LAST, see SAS Language Reference: Dictionary. �

158 %SYSRPUT Statement � Chapter 11

%SYSRPUT Statement

Assigns a value from the server session to a macro variable in the client session.

Valid In: server session

Syntax
%SYSRPUT macro-variable=value;

Syntax Description

macro-variable
specifies the name of a macro variable in the client session.

value
is a macro variable reference, a macro invocation, or a character string in the server
session that will be assigned to the macro-variable in the client session.

Details
The %SYSRPUT macro statement is remotely submitted to the server session in

order to assign a value that is available in the server session to a macro variable that
can be accessed from the client session.

Like the %LET statement, the %SYSRPUT statement assigns a value to a macro
variable. Unlike %LET, the %SYSRPUT statement assigns a value to a variable in the
client session, not in the server session where the statement is executed. The
%SYSRPUT statement stores the macro variable in the Global Symbol Table in the
client session.

A synchronization point identifies the time (during an asynchronous RSUBMIT) at
which the macro variable that is specified in the %SYSRPUT statement is defined to
the client session and is available for execution in the client session.

Synchronization Points
Here are the three possible synchronization points:

1 when the RGET command is executed.
At this time, all macro variables that were specified by using %SYSRPUT are

defined in the client session and are available for execution.
2 when a synchronous RSUBMIT is started in the same server session that an

asynchronous RSUBMIT is already running in.
3 when the SIGNOFF command or the SIGNOFF statement is executed.

All macro variables that were specified using %SYSRPUT are defined in the
client session and are available for execution.

All currently spooled log and output statements are retrieved and merged into the
client Log and Output windows. RSUBMIT continues from then on as if it were
synchronous. Control is returned to the client session after the RSUBMIT has
completed. In addition, %SYSRPUT macro variables that have been generated during
the asynchronous RSUBMIT up to that point are defined in the client session.

Syntax for the RSUBMIT Statement and Command � %SYSRPUT Statement 159

Thereafter, RSUBMIT becomes synchronous, and macro variables are synchronized
immediately when they are executed.

To override the default for an asynchronous RSUBMIT, you can specify the
SYSRPUTSYNC= option in the RSUBMIT statement. Macro variables are set at the
time of execution rather than at a synchronization point in the client session.

Example 1: %SYSRPUT

The %SYSRPUT statement is useful for capturing the value that is returned in the
SYSINFO macro variable and for passing that value to the client session. The SYSINFO
macro variable contains return-code information that is provided by SAS procedures.

This example shows how to download a file and to return information about the
success of the step from a batch job.

Example Code 11.1 Using %SYSRPUT To Find Out Whether a Download Is Successful

signon rhost;
rsubmit;

proc download data=remote.mydata
out=local.mydata;

run;
%sysrput retcode=&sysinfo;

endrsubmit;

%macro checkit;
%if &retcode=0 %then %do;

code-to-be-executed-in-client--session
%end;

%mend checkit;
%checkit;

The %SYSRPUT statement occurs after a PROC DOWNLOAD statement. The value
that is returned by &SYSINFO indicates the success of the PROC DOWNLOAD
statement. After execution in the server session has completed, the value of the return
code that is stored in RETCODE is checked. If server execution is successful, execution
continues in the client session.

If SIGNON, RSUBMIT, or SIGNOFF fails, a SAS/CONNECT batch job returns a
non-zero system condition code. To find out the status of an RSUBMIT execution, use
the %SYSRPUT statement. This macro checks the value of the automatic macro
variable SYSERR. For details, see SAS Macro Language: Reference.

Example 2: %SYSRPUT

This example shows the execution of an asynchronous RSUBMIT. The
SYSRPUTSYNC= option is specified in order to set the client session’s macro variable
when %SYSRPUT executes rather than when a synchronization point is encountered.
The value of the macro variable STATUS can be checked to monitor the progress of the
asynchronous RSUBMIT.

Example Code 11.2 Using %SYSRPUT To Monitor the Progress of an Asynchronous RSUBMIT

rsubmit wait=no csysrputsync=yes;
%sysrput status=start;

160 %SYSLPUT Statement � Chapter 11

proc download inlib=sales outlib=tmp
status=n;

run;
%sysrput status=salescomplete;

proc download inlib=inventory outlib=tmp
status=n;

run;
%sysrput status=inventorycomplete;

proc upload data=sales.store10 status=n;
run;
%sysrput status=storecomplete;

endrsubmit;

Example 3: %SYSRPUT

This example shows how to identify the server session that the client session is
signed on to:

rsubmit;
%sysrput rhost=&sysscp;
endrsubmit;

%SYSLPUT Statement

Creates a macro variable in the server session.

Valid In: client session

Syntax
%SYSLPUT macro-variable=value </REMOTE=server-ID>;

Syntax Description

macro-variable
specifies the name of a macro variable to be created in the server session.

value
specifies the macro variable reference, a macro invocation, or the character value to
be assigned to the server macro-variable. The character value should not contain
nested quotation marks.

/REMOTE=server-ID
specifies the name of the server session that the macro variable will be created in. If
only one server session is active, the server-ID can be omitted. If multiple server
sessions are active, omitting this option causes the macro to be created in the most
recently accessed server session. You can find out which server session is currently
active by examining the value that is assigned to the CONNECTREMOTE system
option.

Syntax for the RSUBMIT Statement and Command � %SYSLPUT Statement 161

The /REMOTE= option that is specified with the %SYSLPUT macro statement
overrides the CONNECTREMOTE= system option.

See Also: “CONNECTREMOTE= System Option” on page 18

Details

The %SYSLPUT statement is a macro statement that is submitted in the client
session to assign a value that is available in the client session to a macro variable that
can be accessed from the server session. If you are signed on to multiple server
sessions, %SYSLPUT submits the macro assignment statement to the most recently
used server session. If you are signed on to only one server session, %SYSLPUT
submits the macro assignment statement to that server session. If you are not signed
on to any session, an error condition results.

Like the %LET statement, the %SYSLPUT statement assigns a value to a macro
variable. Unlike %LET, the %SYSRPUT statement assigns a value to a variable in the
server session rather than in the client session where the statement is executed. The
%SYSRPUT statement stores the macro variable in the Global Symbol Table in the
server session.

Example 1: %SYSLPUT

This example sets the macro variable FLAG to 1 in the current server session.

%syslput flag=1;

Example 2: %SYSLPUT

%SYSLPUT enables you to dynamically assign values to variables that are used by
macros that are executed in a server session. The macro statement %SYSLPUT is used
to create the macro variable REMID in the server session and to use the value of the
client macro variable RUNID. The REMID variable is used by the %DOLIB macro,
which is executed in a server session, to find out which operating system-specific library
assignment should be used in the server session.

Example Code 11.3 Using %SYSLPUT To Find Out Which Libraries Can be Used in the Server Session

%macro assignlib (runid);

signon rem&runid;
%syslput remid=&runid;
rsubmit rem&runid;

%macro dolib;
%if (&remid eq 1) %then %do;

libname mylib ’h:’;
%end;

%else %if (&remid eq 2) %then %do;
libname mylib ’/afs/some/unix/path’;
%end;

%mend;
%dolib;

endrsubmit;

%mend;

162 WAITFOR Statement � Chapter 11

Example 3: %SYSLPUT

The optional /REMOTE option in the %SYSLPUT statement requires that any value
that contains forward slashes should be quoted using the %BQUOTE macro function.
The %BQUOTE function masks a character value or a resolved value of a text
expression during execution of a macro or macro language statement.

This example uses the %BQUOTE function to mask forward slashes that are used in
a UNIX pathname that is assigned using the %SYSLPUT statement.

Example Code 11.4 Using %BQUOTE To Mask Character Values That Are Used in a %SYSLPUT Statement

2? %let pathineed=/abc/xyz;
3? %syslput pathineed=%bquote(&pathineed);
4? rsubmit;

NOTE: Remote submit to computer commencing.

5? %put &pathineed
5? endrsubmit;

1 %put &pathineed
/abc/xyz
NOTE: Remote submit to computer complete.

WAITFOR Statement

Causes the client session to wait for the completion of one or more tasks (asynchronous RSUBMIT
statements) that are in progress.

Valid In: client session

Syntax
WAITFOR <_ANY_|_ALL_> task ... taskn <TIMEOUT=seconds>;

Syntax Description

ANY
causes the client session to wait for the completion of any of the specified tasks (a
logical OR of the completion task states).

ALL
causes the client session to wait for the completion of all of the specified tasks (a
logical AND of the completion task states).

task...taskn
identifies one or more asynchronous tasks to be completed. The task corresponds
with the server–ID that is associated with the CONNECTREMOTE= option when the
RSUBMIT is submitted.

Syntax for the RSUBMIT Statement and Command � WAITFOR Statement 163

TIMEOUT=seconds
allots the interval, in seconds, to wait for one or more asynchronous tasks to
complete. If the specified tasks have not completed by timeout, the WAITFOR
statement is terminated, control is returned to the client session, and the
asynchronous tasks continue to execute until they are completed. The SYSRC system
macro variable will have a non-zero status.

If the specified tasks are completed before timeout, the WAITFOR statement
returns control to the client session as soon as the specified tasks are completed.

Note: Specifying TIMEOUT=0 is equivalent to providing no TIMEOUT value.
Specifying a value of 0 causes the client session to wait indefinitely for the
asynchronous tasks to complete before control is returned to the client session. �
Default: 0
See Also: CONNECTREMOTE= option

Details
The WAITFOR statement causes the client session to wait for the completion of one

or more tasks that are in progress in the server session as specified by the options
ANY or _ALL_. WAITFOR synchronizes dependent tasks. You can use WAITFOR
only for asynchronously executing tasks. If you use WAITFOR and there are no
asynchronous tasks executing, the WAITFOR statement does not enforce a wait
condition. Instead, execution continues in the client session.

The name of the task corresponds with the server-ID.
The WAITFOR statement can wait for the completion of one or more tasks. If more

than one task is specified and neither _ANY_ nor _ALL_ is specified, _ANY_ is implied.
The client session will wait for any of the listed tasks to complete before resuming
control. This is not an error condition.

If more than one task is specified, and the _ANY_ option is specified, the client session
waits for the completion of any of the specified tasks (a logical OR of the completion
task states). If the _ALL_ option is specified, the client session waits for the completion
of all the specified tasks (a logical AND of the completion task states). The WAITFOR
statement does not support complex logical statements, such as A OR (B AND C).

Invalid tasks that are specified in the WAITFOR statement are ignored but are
identified in notes in the SAS log.

Example 1: WAITFOR

The following example shows the suspension of the client session until both tasks
have completed or 300 seconds (5 minutes) pass, whichever occurs first.

waitfor _all_ remhost printjb timeout=300;

This statement causes the client session to wait for the REMHOST and the
PRINTJB tasks to finish. Both tasks must complete within the allotted time or the time
must expire before the WAITFOR statement returns control to the client session. If
time expires before the completion of both tasks, control is returned to the current
session and the asynchronous tasks continue to execute. The SYSRC global macro
variable can be queried to detect this condition. For details, see SAS Macro Language:
Reference. Alternatively, if you specified macro variables for the REMHOST and
PRINTJB tasks using the CMACVAR option in the RSUBMIT statement, you could
query those macro variables for status information.

164 LISTTASK Statement � Chapter 11

Example 2: WAITFOR

The following WAITFOR statement causes the client session to wait for either the
REMHOST or FORMATJB task to complete.

waitfor _any_ remhost formatjb;

Because the execution of these tasks is not restricted to a time limit, the client
session will be suspended until one of the specified tasks completes. Upon completion of
either task, the WAITFOR statement returns control to the client session.

LISTTASK Statement

Lists all active connections or tasks and identifies the execution status of each connection or task.

Valid In: client session

Syntax
LISTTASK <_ALL_|task> ;

Syntax Description

ALL
provides status information about all current tasks.

task
provides status information for the specified task. Identifies the specific task by a
name that corresponds to the server-ID that is associated with the
CONNECTREMOTE= option in the RSUBMIT or SIGNON statement or command.
See Also: CONNECTREMOTE= option

Details
The LISTTASK statement lists information about all tasks in the current server

session or about a single active task by name. If neither _ALL_ nor task is specified,
information about all current tasks is listed.

Syntax for the RSUBMIT Statement and Command � KILLTASK Statement 165

Example 1: LISTTASK

The following LISTTASK statement lists information for all tasks. The appearance of
the output varies by operating environment.

listtask _all_;

"REMHOST" - - - - - - - - -
Type: SAS/CONNECT Process
State: RUNNING ASYNCHRONOUSLY

"TASK1" - - - - - - - - - -
Type: SAS/CONNECT Process
State: COMPLETE

Example 2: LISTTASK

The following LISTTASK statement lists information for the REMHOST task only.
The appearance of the output varies by operating environment.

listtask remhost;

"REMHOST" - - - - - - - - - -
Type: SAS/CONNECT Process
State: COMPLETE

KILLTASK Statement

For asynchronous tasks, forces one or more active tasks or server sessions to terminate
immediately.

Valid In: client session

Syntax

KILLTASK _ALL_ |task1...taskn ;

Syntax Description

ALL
terminates all active asynchronous tasks.

task
terminates a specific task by a name that corresponds to the server-ID that is
associated with the CONNECTREMOTE= option in the RSUBMIT statement.

Restriction: Use the KILLTASK statement only when executing an asynchronous
RSUBMIT.

See Also: CONNECTREMOTE= option

166 KILLTASK Statement � Chapter 11

Details
The KILLTASK statement enables users to terminate one or more tasks or server

sessions that are executing asynchronously. The KILLTASK statement is useful only
for an asynchronous RSUBMIT.

Note: KILLTASK should be used for asynchronous tasks that seem to be hung or to
be having a problem. KILLTASK ends the server session. However, do not substitute
KILLTASK for SIGNOFF. Use SIGNOFF to terminate server sessions that are
functioning normally. �

KILLTASK causes any log or output lines, as applicable, that have accumulated in
the backing store to be sent to the parent Log and Output windows. Before the data is
sent to the parent Log and Output windows, this message is displayed:

NOTE: Process TASK1 was terminated by KILLTASK statement.

KILLTASK removes the specified task from the list of active tasks and from the
LISTTASK output. If KILLTASK is executed for a completed task, this message is
displayed and the task will not be terminated:

NOTE: Transaction TASK2 was not killed because it is not running asynchronously.

Task termination also deletes the content of the WORK library of the server session.

KILLTASK Behavior for z/OS
After you use the KILLTASK statement to kill a server session that runs under z/OS,
you must also sign off the server session. If you do not also sign off the server session,
your user ID will still be connected to the server session. Here are the methods for
signing off a server session:

� From the same SAS session from which you issued the KILLTASK statement, sign
on to the server session, using your user ID. Then, sign off. The most recently
accessed server session is assumed, by default.

signon user-ID;
signoff user-ID;

� Log on to your user ID, and then cancel the user ID using the CANCEL option.

� Request that an operator cancel your TSO session.

Consult your z/OS documentation for details about logging on and logging off the z/OS
operating environment.

167

C H A P T E R

12
Examples Using Compute
Services

Example 1: Using MP CONNECT for a Long-Running Remote Task 167
Purpose 167

Program 168

Example 2: Administering Server Data Sets from a Client 168

Purpose 168

Program 168
Example 3: Using the CMACVAR= Option with MP CONNECT 169

Purpose 169

Program 169

Example 4: Using the Output Delivery System with SAS/CONNECT 170

Purpose 170

Program 170
Example 5: Using MP CONNECT and the WAITFOR Statement 172

Purpose 172

Program 172

Example 6: Using MP CONNECT with Piping 173

Purpose 173
Program 173

Example 7: Preventing Pipes from Closing Prematurely 174

Purpose 174

Program 174

Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT Executes 174
Purpose 174

Program 175

Example 9: Graphics Processing on the Server 176

Purpose 176

Program 176

Example 10: Using Server Software from a Client Session 178
Purpose 178

Program: SAS/STAT Software 178

Purpose 179

Program: Sorting 179

Example 1: Using MP CONNECT for a Long-Running Remote Task

Purpose
This long-running program calculates summary statistics from the variables in a

large SAS data set and downloads the summary statistics to your client session. The

168 Program � Chapter 12

program also defines the macro variable REMSTATUS to store the status of the server
task and uses the fileref REMLOG to store the log lines.

Program
rsubmit wait=no macvar=remstatus log=remlog;
libname remtdata ’external-file-name’;

proc summary data=remtdata.clinic;
class diagnose;
var age income visits;
output out=sumstat

n= mean= mage mincome mvisits;
run;

proc download data=sumstat out=summary;
run;

endrsubmit;

Example 2: Administering Server Data Sets from a Client

Purpose
From a client session, you can use Compute Services to perform administration tasks

on data sets that are located on the server.
This program administers password protection to the TASKLIST data set and backs

up a data set that is named CURRENT.

Program
rsubmit;

proc datasets lib=tsolib;
/**************************************/
/* Add password SESAME to server */
/* data set TASKLIST. */
/**************************************/

modify tasklist (alter=sesame);
run;

/**************************************/
/* Maintain a week’s worth of backup */
/* copies of data set CURRENT. */
/**************************************/

age current backup1 - backup7;
run;
quit;

endrsubmit;

Examples Using Compute Services � Program 169

Example 3: Using the CMACVAR= Option with MP CONNECT

Purpose
The following example enables you to remotely submit processing in a server session

and allows the client session to immediately continue processing, and then retrieve and
merge the results upon completion of that process.

The following program submits a PROC SORT and a PROC PRINT statement to be
executed asynchronously in a server session. This server process is tested for
completion by using the macro variable DONE.

Program
rsubmit cwait=no cmacvar=done;

proc sort data=permdata.standard(keep=fname
lname major tgpa gender)
out=honor_graduates(where=(tgpa>3.5));
by gender;

run;

title ’Male and Female Honor Graduates’;
proc print;

by gender;
run;

endrsubmit;

%macro get_results_when_complete;
%if &done=0 %then %do;
%put Remote submit complete,

issuing "rget" to get the results.;
rget;

%end;
%else %do;
%put Remote submit not complete.;
%put Issue:

"%nrstr(%%)get_results_when_complete"
later.;

%end;
%mend;
%get_results_when_complete;

/* continue with client session processing */
/* issue again if RSUBMIT not complete */

%get_results_when_complete;

170 Example 4: Using the Output Delivery System with SAS/CONNECT � Chapter 12

Example 4: Using the Output Delivery System with SAS/CONNECT

Purpose
ODS enables you to format and change the appearance of a procedure’s output. The

output is converted into objects that can be stored in HTML or in a SAS data set and
can be manipulated and viewed in different ways.

This program creates, in a server session, a SAS data set and a SAS view that
contain information about U.S. Presidents. The program then generates ODS output.
The first half of this example creates HTML from the SAS data set and SAS view. The
second half uses ODS to create a SAS data set from the SAS view.

Program
rsubmit;

data presidnt;
length fname lname $8 party $1 lady1 $10;
input fname lname party year_in lady1;

datalines;
John Kennedy D 1961 Jackie
Lyndon Johnson D 1963 LadyBird
Richard Nixon R 1969 Pat
Gerald Ford R 1974 Betty
Jimmy Carter D 1977 Rosalynn
Ronald Reagan R 1981 Nancy
George Bush R 1989 Barbara
Bill Clinton D 1993 Hillary
George W Bush R 2002 Laura

;
run;

proc sql nocheck;
create view democrat as
select fname,lname,party,lady1

from presidnt
where party=’D’;

quit;

endrsubmit;

/* Use ODS to create HTML from the output */

filename rsub "rsub.html" mod;
filename rsubc "rsubc.html" mod;
filename rsubf "rsubf.html" mod;
ods html

file=rsub;
contents=rsubc;
frame=rsubf;

/* Remote SQL PassThru to SQL view */

Examples Using Compute Services � Program 171

proc sql nocheck;
connect to remote (server=rmthost);

title ’RSPT: Democrats’;
select fname,lname,lady1

from connection to remote
(select * from democrat);

quit;

/* mix remote-submitted SQL with client SQL */
title ’RSPT: Republicans’;
rsubmit;

proc sql nocheck;
select fname,lname,lady1

from presidnt
where party=’R’;

quit;
endrsubmit;

ods html close;

/* Use ODS to create a SAS data set */
ods output output="rdata";

rsubmit;
proc print data=democrat;
run;

endrsubmit;

Display 12.1 SAS Output Window

172 Example 5: Using MP CONNECT and the WAITFOR Statement � Chapter 12

Example 5: Using MP CONNECT and the WAITFOR Statement

Purpose
This example enables you to perform two encapsulated tasks in parallel, but both

tasks must be completed before the client session can continue.
The following program sorts two data sets asynchronously. After both sort operations

are complete, the results are merged.

Program
/* SAS system option SASCMD starts an MP CONNECT server session. */
option autosignon=yes;
option sascmd="!sascmd";

/* Remote submit first task. */
/* Sort the first data set as one task. */
/* SIGNON performed automatically by RSUBMIT. */
rsubmit process=task1 wait=no;
libname mydata ’/project/test1’;

proc sort data=mydata.part1;
by x;

run;
endrsubmit;

/* Remote submit second task. */
/* SIGNON performed automatically by RSUBMIT. */
rsubmit process=task2 wait=no;
libname mydata ’/project/test2’;

/* Sort the second data set as one task. */
proc sort data=mydata.part2;
by x;

run;
endrsubmit;

/* Wait for both tasks to complete. */
waitfor _all_ task1 task2;

/* Merge the results and continue processing. */
libname mydata (’/project/test1’ ’/project/test2’);
data work.sorted;

merge mydata.part1 mydata.part2;
run;

Examples Using Compute Services � Program 173

Example 6: Using MP CONNECT with Piping

Purpose
In this program, the MP CONNECT piping facility uses ports rather than disk

devices for data I/O. The first process writes a data set to PIPE1. The second process
reads the data set from PIPE1, performs a calculation, and directs final output to a disk
device. The P1 and P2 processes execute asynchronously.

Program
/* ----------- DATA Step - Process P1 ----- */
signon p1 sascmd=’!sascmd’;
rsubmit p1 wait=no;

libname outLib sasesock ":pipe1";

/* create data set - and write to pipe */
data outLib.Intermediate;

do i=1 to 5;
put ’Writing row ’ i;
output;

end;
run;
endrsubmit;
rdisplay p1;

/* ----------- DATA Step - Process P2 ----- */

signon p2 sascmd=’!sascmd’;
rsubmit p2 wait=no;

libname inLib sasesock ":pipe1";
libname outLib "d:\temp";

data outLib.Final;
set inLib.Intermediate;

do j=1 to 5;
put ’Adding data ’ j;
n2 = j*2;
output;

end;
run;
endrsubmit;
rdisplay p2;
/* -- */

174 Example 7: Preventing Pipes from Closing Prematurely � Chapter 12

Example 7: Preventing Pipes from Closing Prematurely

Purpose
The TIMEOUT= option in the LIBNAME statement can be useful if a considerable

delay is anticipated between the time that one task tries to read from a pipe and the
time when another task starts to write to that pipe.

In this program, task P1 performs several DATA steps, a PROC SORT, and a PROC
RANK, which is the step that writes to the pipe OUTLIB. However, task P2 is idle
before the execution of the DATA step, which reads from the pipe INLIB. Therefore, a
longer timeout is specified in the INLIB LIBNAME statement in order to allow sufficient
time for task P1 to complete its processing before writing its output to the pipe.

Program
rsubmit p1 wait=no;

libname outLib sasesock "pipe" timeout=10000;
data a b;

do i=1 to 10;
output;

end;
run;
data c;

set a b;
run;
proc sort data=c out=sorted;

by i;
run;
proc rank data=sorted out=outLib.ranked;

var i;
ranks Check;

run;
endrsubmit;
rsubmit p2 wait=no;

libname inLib sasesock "pipe" timeout=60000;
data fromPipe;

set inLib.ranked;
run;
proc print; run;

endrsubmit;

Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT
Executes

Purpose
In MP CONNECT processing, by default, macro variables in an RSUBMIT block are

defined only when a synchronization point is encountered. In order to force macro

Examples Using Compute Services � Program 175

variables to be defined when the %SYSRPUT macro variable executes, specify
CSYSRPUTSYNC=YES in each RSUBMIT statement.

CAUTION:
If the values that are specified in the CSYSRPUTSYNC= option differ between consecutive
RSUBMIT blocks, the latter value supersedes the former value. If the SYSRPUTSYNC
system option is specified, the CSYSRPUTSYNC= option in the RSUBMIT statement
takes precedence. If the CSYSRPUTSYNC= option in an RSUBMIT block is omitted,
the value for the system option is applied. �

In the following program, the CSYSRPUTSYNC=YES option is specified in each
RSUBMIT block in order to force macro variables to be defined for each %SYSRPUT
macro variable execution. Without an explicit setting of CSYSRPUTSYNC=YES in each
RSUBMIT block, a default value is provided by the SYSRPUTSYNC system option. The
default is CSYSRPUTSYNC=NO, which causes macro variables to be defined when
synchronization points are encountered.

Program
signon smp sascmd="!sascmd -logparm ’write=immediate’ -nosyntaxcheck";

options cwait=no;

/* ----------- first RSUBMIT block ----- */
rsubmit csysrputsync=yes;

data a;
do i=1 to 100;
x=ranuni(0);
output;
end;
run;

%sysrput done=a;
endrsubmit;

/* ----------- second RSUBMIT block ----- */
rsubmit csysrputsync=yes;

data b;
do i=1 to 100;
x=ranuni(0);
output;
end;
run;

%sysrput done=b;
endrsubmit;

/* ----------- third RSUBMIT block ----- */
rsubmit csysrputsync=yes;

data c;
do i=1 to 100;
x=ranuni(0);
output;
end;
run;

176 Example 9: Graphics Processing on the Server � Chapter 12

%sysrput done=c;
endrsubmit;

waitfor smp;
%put done=&done

Example 9: Graphics Processing on the Server

Purpose
If the SAS/GRAPH software is installed on the client and server computers, you can

submit graphics programs from your client session to a server session, execute the
procedure in the server session, and display the graphics output in the client session (or
on a device that is attached to your client computer). This link is especially useful when
you want to generate graphics in your client session by using a large database that is
accessible from the server session.

The GRLINK driver is a special driver that is available with SAS/CONNECT. You
must always use the GRLINK driver in the server session when using the link to
display server machine graphics in your client session.

If you frequently use the link for server graphics processing, consider specifying the
GRLINK device driver in a script file (if you use a script file with the SIGNON
command). To do this, include the driver specification for the server computer in the
TYPE statement that invokes the server session.

In this program, if you use TSO via TCP/IP, change the TYPE statement in the script
file to the following code:

type
"sas options(’comamid=tcp device=grlink dmr’)";

By changing the TYPE statement in the script file each time that you use the
SIGNON command, you automatically specify the GRLINK driver in the server session.
The GRLINK driver is specified in the sample scripts that are provided with your SAS
software.

This program uses the RSUBMIT statement to submit SAS statements, which
include any LIBNAME statements that are needed in the server session. When the
SAS/GRAPH procedure runs in the server session, the output is displayed at the client
session or on an attached device (based on the driver that you specified in your client
session). Be sure to specify the GOPTIONS DEVICE=GRLINK driver as shown in step
3.

Program
u goptions device=’’;

v rsubmit;

proc sort data=master.bg_reserve out=tmp;
by origin rental_type;

run;

proc summary data=tmp vardef=n noprint;
by origin rental_type;

Examples Using Compute Services � Program 177

output out=temp_rental;
run;

w goptions device=grlink ftitle=centx
ftext=simplex htitle=2;

title ’Rental Types by Franchise’;
pattern value=solid color=blue;

axis1 label=(’Franchise’)
order=
(’ATLANTA’ ’CHICAGO’ ’LOS ANGELES’

’NEW YORK’ ’TORONTO’)
width=3;
axis2 label=none width=3;
axis3 label=none
order=0 to 1000 by 100 width=3;
proc gchart data=temp_rental;

label rental_type=’00’x;
label origin=’00’x;
hbar rental_type / frame
sumvar= _freq_
maxis=axis2
raxis=axis3
minor=0
nostats
group=origin
gaxis=axis1
discrete;

run;
quit;

endrsubmit;

u Specifies an EGA graphics adapter to display the server session graph in your
client session. You can specify the name of the graphics driver for your client
computer or its attached hard-copy device. For a complete list of values for the
DEVICE= option, run the GDEVICE procedure in your client session. This
example sets the device option to a null value so that the default device will be
used.

Note: A null value is specified by using two single quotation marks. �
v Remotely submits procedures to preprocess data and graphics procedures in the

server session.
w Specifies the GRLINK device driver so that commands to draw the graph will be

sent to the client session.

When using the link to display server session graphs, you can use any graphics
procedure on the server (including the GREPLAY procedure) and any graphics device
driver on the client.

The GRLINK server computer driver uses the attributes of the driver that is
specified in the client session when selecting default colors, character sizes, and other
attributes. For example, if you specify DEVICE=PSCOLOR in your client session, the
GRLINK driver uses the default colors of the PSCOLOR driver, but if you specify the

178 Example 10: Using Server Software from a Client Session � Chapter 12

printer driver DEVICE=PCL5 in your client session, the GRLINK driver uses only
black as a foreground color.

Note these reminders when using the link for graphics:
� Do not specify GOPTIONS NODISPLAY in the program that you submit to the

server session. If the GRLINK driver is on the server computer, the option is not
supported.

� Do not specify DEVICE=GRLINK in your client session. The GRLINK driver can
be specified only on the server. In your client session, you can specify a device
driver that is available with SAS/GRAPH only on that machine.

� You can use hardware options, such as NOCHARACTERS, only on the client. You
cannot use hardware options that are not available with your client computer
hardware configuration, even though the options are supported on the server
computer.

� To use the CBACK= or the ROTATE= option, you must specify it in your client
session program, not in the program that you are submitting to the server session.
If you use the CBACK= or the ROTATE= option in the program that is submitted
to the server session, the option is accepted but has no effect.

� To use the GREPLAY procedure through the link, you must use the NOFS option
in the PROC GREPLAY statement.

� Each time you generate graphics output in the client session, it is stored
temporarily, while running the same SAS session, in a catalog called GSEG in the
WORK library of the client session. Later, displays of the same graphics output
can be generated from this catalog. To retain a copy of this catalog after your
current session ends, copy it to a permanent location.

You can also transfer catalog entries that contain graphics output by using the
UPLOAD and DOWNLOAD procedures, as described in “Example 3.4: Using the
ENTRYTYPE= Option in Two SELECT Statements in PROC DOWNLOAD” on page
275.

Example 10: Using Server Software from a Client Session

Purpose
Some software might not be available on each computer at your site. In addition, the

software that is available on a server might perform some tasks better than the
software that is available on your client. From a client session, you can use Compute
Services to use software that is available on a server.

This program assumes that SAS/STAT is licensed only on the server. The program
uses SAS/STAT to execute statistical procedures on the server.

Program: SAS/STAT Software
rsubmit;

/**************************************/
/* The output from GLM is returned */
/* to the client SAS listing. */
/**************************************/

proc glm data=main.employee
outstat=results;

Examples Using Compute Services � Program: Sorting 179

model sex=income;
run;

/**************************************/
/* Use GLM’s output data set RESULTS */
/* to create macro variables F_STAT */
/* and PROB, which contain the */
/* F-statistic PROB>F respectively. */
/**************************************/

data _null_; set results
(where=(_type_= ’SS1’));
call symput(’f_stat’,f);
call symput(’prob’,prob);

run;

/**************************************/
/* Create macro variables that */
/* contain the two statistics of */
/* interest in the client session. */
/**************************************/

%sysrput f_statistic=&f_stat;
%sysrput probability=&prob;

endrsubmit;

Purpose
In the following example, because the server session has access to a fast sorting

utility, it sorts the data and then transfers the sorted data to the client session.

Program: Sorting

rsubmit;
/**************************************/
/* Indicate to the server machine that*/
/* the HOST sort utility should be */
/* used with PROC SORT. Ask SORT to */
/* subset out only those observations */
/* of interest. */
/**************************************/

options sortpgm=host;
proc sort data=tsolib.inventory

out=out_of_stock;
where status=’Out-of-Stock’;
by orderdt stockid ;

run;
/**************************************/
/* Output results; client will */
/* receive the listing from PRINT. */
/**************************************/

title ’Inventory That Is Currently Out-
of-Stock’;

title2 ’by Reorder Date’;
proc print data=out_of_stock;

180 Program: Sorting � Chapter 12

by orderdt;
run;

endrsubmit;

181

C H A P T E R

13
Syntax for Remote SQL
Pass-Through (RSPT)

RSPT Statements

Statements used for Remote SQL Pass-Through.

Valid In: client session

Syntax
u

CONNECT TO dbms-name <AS alias> <(dbms-argument-1=value ...
<dbms-argument-n=value>)>;

SELECT . . . FROM CONNECTION TO dbms-name | alias (dbms-query);

EXECUTE (SQL-statement) BY dbms-name | alias;

DISCONNECT FROM dbms-name | alias;

v
CONNECT TO REMOTE <AS alias>

(SERVER=serverid <SAPW=server-access-password>
<DBMS=dbms-name>

<PT2DBPW=passthrough-to-DBMS-password>

<DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)>);

SELECT . . . FROM CONNECTION TO REMOTE | alias (dbms-query);

EXECUTE (SQL-statement) BY REMOTE | alias;

DISCONNECT FROM REMOTE | alias;

Syntax Description
The REMOTE engine supports the SQL procedure’s Pass-Through Facility. Remote

SQL Pass-Through (RSPT) enables you to pass SQL statements to a remote SAS SQL
processor or to a DBMS through a SAS/SHARE server or to a SAS/CONNECT
single-user server.

u The SQL syntax for the SQL procedure Pass-Through (SPT) facility consists of
three statements and a FROM-clause component.

182 RSPT Statements � Chapter 13

v The SQL syntax for the Remote SQL Pass-Through (RSPT) facility is similar to that
for the SPT, but must also include the server ID.

CONNECT TO REMOTE <AS alias>
connects to a remote DBMS or to remote SAS data through a SAS server. This
statement is required (RSPT does not support implicit connection). You can establish
multiple connections to the same server by specifying different DBMS= values. You
can also connect to more than one server at a time.

Note: The term server refers to the SAS/CONNECT single-user server and the
SAS/SHARE multi-user server. �

SERVER=server-ID
identifies the name of the SAS server. If the SAS/SHARE multi-user server is used,
server-ID is the name specified for the ID= option in the PROC SERVER statement.
If the SAS/CONNECT single-user server is used, server-ID specifies the server
session. In either case, server-ID should be the same name that is specified in the
SERVER= option in a LIBNAME statement.

SAPW=server-access-password
specifies the password for controlling user access to a multi-user server as specified
in the UAPW= option in the PROC SERVER statement. If UAPW= is specified when
the server is started, you must specify SAPW= in a CONNECT TO REMOTE
statement that specifies that server.

DBMS=dbms-name
identifies the remote DBMS to connect to. This is the same name that you would
specify in a CONNECT TO statement if you were connecting directly to the DBMS.
This option is used if you want to connect to a remote DBMS instead of the remote
SAS SQL processor.

PT2DBPW=passthrough-to-DBMS-password
specifies the password for controlling pass-through access to remote DBMS databases
that are specified by using the PT2DBPW= option in the PROC SERVER statement.
If PT2DBPW= is specified when the server is started, you must specify PT2DBPW=
in a CONNECT TO REMOTE statement that specifies the same server and specifies
DBMS=.

DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)
specifies the arguments that are required by the remote DBMS to establish the
connection. These are the same arguments that you would specify in a CONNECT
TO statement if you were connecting directly to the DBMS.

FROM CONNECTION TO REMOTE | alias (dbms-query);
specifies the connection to the remote SAS SQL processor or the remote DBMS as the
source of data for the SELECT statement and the recipient of the dbms-query. For
remote SAS data that is accessed through the PROC SQL view engine, dbms-query is
any valid SELECT statement in PROC SQL. For a remote DBMS, dbms-query is the
same SQL query that you would specify if you were connected directly to the DBMS.

EXECUTE (SQL-statement) BY REMOTE | alias;
specifies an SQL statement to be executed by the SAS SQL processor or by the
remote DBMS in the server session. For remote SAS data that is accessed through
the PROC SQL view engine, SQL-statement is any valid PROC SQL statement except
SELECT. For a remote DBMS that is accessed through a single-user server in a SAS/
CONNECT session, SQL-statement is the same SQL statement that you would specify
if you were connected directly to the DBMS. For a remote DBMS, this statement
might not be used if the DBMS is accessed through a remote multi-user server.

Syntax for Remote SQL Pass-Through (RSPT) � RSPT Statements 183

DISCONNECT FROM REMOTE | alias;
ends the connection to the remote DBMS or to the SAS SQL processor in the server
session.

Details

Compute Services and RSPT
You can use RSPT to reduce network traffic and to shift CPU load by sending queries
for remote data to a server session. (If the server is a SAS/CONNECT single-user
server you can also RSUBMIT queries to achieve the same goals.)

For example, this code contains the libref SQL that points to a server library that is
accessed through a SAS/CONNECT or a SAS/SHARE server. Each row in the table
EMPLOYEE must be returned to the client session in order for the summary functions
AVG() and FREQ() to be applied to them.

select employee_title as title, avg(employee_years),
freq(employee_id)

from sql.employee
group by title
order by title;

However, this code contains a query that is passed through the SAS server to the
SAS SQL processor, which processes each row of the table and returns only the
summary rows to the client session.

select * from connection to remote
(select employee_title as title,
avg(employee_years),
freq(employee_id)

from sql.employee
group by title
order by title);

You can also use RSPT to join server data with client data. For example, you can
specify a subquery against the DB2 data that is sent through the SAS server to the
DB2 server. The rows for the divisions in the southeast region are returned to your
client session, where they are joined with the corresponding rows from the local data
set MYLIB.SALES08.

libname mylib ’c:\sales’;

proc sql;
connect to remote

(server=tso.shr1 dbms=db2
dbmsarg=(ssid=db2p));

select * from mylib.sales08,
connection to remote

(select qtr, division,
sales, pct

from revenue.all08
where region=’Southeast’)

184 RSPT Statements � Chapter 13

where sales08.div=division;

If your server is a SAS/CONNECT single-user server, you can also use RSPT to send
non-query SQL statements to a remote DBMS. For example, this code sends the SQL
DELETE statement through the SAS server to the remote Oracle server.

proc sql;
connect to remote

(server=sunserv dbms=oracle dbmsarg=(user=scott password=tiger);

execute (delete from parts.inventory
where part_bin_number=’093A6’)
by remote;

185

C H A P T E R

14
Examples Using Remote SQL
Pass-Through (RSPT)

Example 1. RSPT Services: Querying a Table in DB2 185
Purpose 185

Program 185

Example 2. RSPT Services: Subsetting Remote SAS Data 186

Purpose 186

RSPT: Server Processing and Client Viewing 186
RSPT: Client Processing and Viewing 186

RSPT: Server Processing and Viewing 187

RLS: Client Processing and Viewing 187

Example 1. RSPT Services: Querying a Table in DB2

Purpose
This example shows how to query a DB2 table that is located on a server by using

SQL statements issued from a client session.

Program
This code is used in a z/OS client session to connect to DB2 and query the table

SYSIBM.SYSTABLES:

connect to db2 (ssid=db2p);

select * from connection to db2
(select name, creator, colcount

from sysibm.systables
where creator=’THOMPSON’ or

creator=’JONES’);

The same connection and query could be performed in a Windows client session by
using RSPT by means of a z/OS server session:

connect to remote
(server=rmt dbms=db2 dbmsarg=(ssid=db2p));

select * from connection to remote
(select name, creator, colcount

186 Example 2. RSPT Services: Subsetting Remote SAS Data � Chapter 14

from sysibm.systables
where creator=’THOMPSON’ or

creator=’JONES’);

Using the AS alias clause in the CONNECT TO statement gives the connection name
to the remote DBMS as if connected directly to it. Using this alias enables you to use
queries without changing the FROM CONNECTION TO clause:

connect to remote as db2
(server=rmt dbms=db2 dbmsarg=(ssid=db2p));

select * from connection to db2
(select name, creator, colcount

from sysibm.systables
where creator=’THOMPSON’ or

creator=’JONES’);

Example 2. RSPT Services: Subsetting Remote SAS Data

Purpose
Four variations of the code are used to generate a PROC SQL view named SALES08,

which presents sales data for fiscal year 2008. Here are the variations:
� “RSPT: Server Processing and Client Viewing” on page 186
� “RSPT: Client Processing and Viewing” on page 186
� “RSPT: Server Processing and Viewing” on page 187
� “RLS: Client Processing and Viewing” on page 187

RSPT: Server Processing and Client Viewing
The data set is subsetted in the server session where summary function (SUM) is

applied. Only the summary row is returned to the client session.
Processing this view is relatively fast because the data is summarized in the server

session and only the resulting view is returned to the client session.

create view servlib.sales08 as
select customer, sum(amount) as amount
from sales
where year=2008 and

salesrep=’L. Peterson’
group by customer
order by customer;

RSPT: Client Processing and Viewing
The client uses RSPT to process server data in the client session and to create the

final view in the client session.
This code creates a PROC SQL view in a SAS library in the client session, which

uses RSPT to access the remote SAS data from the server session:

Examples Using Remote SQL Pass-Through (RSPT) � RLS: Client Processing and Viewing 187

Note: The libref SERVLIB can be defined for the server SAS library either in the
client or the server session. In this example, a LIBNAME statement is executed in the
client session to access the library that is located on the server. Alternatively, you could
remotely submit a LIBNAME statement to define the library in the server session. �

libname mylib ’C:\sales’;

libname servlib ’/dept/sales/revenue’ server=servername;

proc sql;
connect to remote

(server=servername);

create view mylib.sales08 as
select * from connection to remote

(select customer, sum(amount) as amount
from servlib.sales
where year=2008 and

salesrep=’L. PETERSON’
group by customer
order by customer);

RSPT: Server Processing and Viewing
The client uses RSPT to process server data in the server session and to present the

final view in the server session.
In the server session, you might want to create a view that can be used by many

people. By modifying the previous example to include all sales representatives, the view
satisfies the needs of users who are interested in the sales that are made by more than
one sales representative.

This example creates a view in the server session that summarizes the data by
customer for all sales representatives:

libname servlib ’/dept/sales/revenue’
server=servername;

proc sql;
connect to remote

(server=servername);

execute
(create view servlib.cust08 as

select customer,
sum(amount) as amount from sales
where year=2008
group by customer) by remote;

RLS: Client Processing and Viewing
The client uses RLS to process server data in the client session and to create the

final view in the client session.

188 RLS: Client Processing and Viewing � Chapter 14

Using RLS, you can access the server data, and then subset and summarize the data
and create the final view in the client session. The disadvantage of this method is the
inefficient use of network resources to access the remote data and then to process the
data in the client session.

libname mylib ’C:\sales’;

libname servlib ’/dept/sales/revenue’
server=servername;

create view mylib.sales08 as
select customer, sum(amount) as amount

from servlib.sales
where year=2008 and

salesrep=’L. PETERSON’
group by customer
order by customer;

189

C H A P T E R

15
Examples of Combining Compute
Services and Data Transfer
Services

Advantages of Combining Compute Services and Data Transfer Services 189
Example 1. Compute Services and Data Transfer Services Combined: Processing in the Client and

Server Sessions 189

Purpose 189

Program 190

Running the Program 191
Example 2. Compute Services and Data Transfer Services Combined: Sorting and Merging Data 191

Purpose 191

Program 192

Example 3. Compute Services and Data Transfer Services Combined: Macro Capabilities 193

Purpose 193

Program 193

Advantages of Combining Compute Services and Data Transfer Services
If you need information from data that is stored on a remote computer, and you do

not want to move a copy of the data to the client, you can benefit from combining
Compute Services and Data Transfer Services.

Reasons for not moving a copy of the data might include the following:
� The amount of data is too large.
� The data is frequently updated.
� Data duplication is to be avoided.

Regardless of the motivation for reducing the amount of data that is transferred,
incorporating Compute Services will achieve your goal. Compute Services enables you
to format and pre-process data into a subset or a summarized form in the server session
before transferring the subsequent smaller amount of data to the client session. This
balances the use of CPU cycles between the client and server sessions and minimizes
the amount of data contributing to network traffic.

Example 1. Compute Services and Data Transfer Services Combined:
Processing in the Client and Server Sessions

Purpose
The SAS/CONNECT statements SIGNON, SIGNOFF, RSUBMIT, and

ENDRSUBMIT enable you to submit statements from a client session to a server

190 Program � Chapter 15

session. You can include these statements in a SAS program and do both client and
server processing within a single SAS program. This program can be run in an
interactive line mode SAS session, in a non-interactive SAS session, or by including the
program in a client session. In each case, the program executes statements in both the
client and server sessions.

Program
This program processes data on a server, downloads the resulting SAS data set,

creates a permanent data set in the client session, and prints a report in the client
session.

/*************************************/
/* prepare to sign on */
/*************************************/

u options
comamid=tcp
remote=netpc;

v libname lhost ’c:\sales\reg1’;

/*************************************/
/* sign on and download data set */
/*************************************/

w signon;
x rsubmit;
y libname rhost ’d:\dept12’;
U proc sort data=rhost.master

out=rhost.sales;
where gross > 5000;
by lastname dept;

run;

V proc download data=rhost.sales
out=lhost.sales;

run;
W endrsubmit;

X /*************************************/
/* print data set in client session */
/*************************************/

proc print data=lhost.sales;
run;

u Specifies the COMAMID= and the REMOTE= system options in an OPTIONS
statement. These two system options define the connection between the client and
server sessions.

v Defines a libref for the SAS library in the client session to identify the location of
the data set to be downloaded.

w Signs on to the server session. The server-ID was specified in the preceding
OPTIONS statement.

Note: A script file is not used. �

Examples of Combining Compute Services and Data Transfer Services � Purpose 191

x Uses the RSUBMIT and ENDRSUBMIT statements to define statements to send
to the server for processing. If the client session is connected to multiple active
server sessions, specifying the server ID in the RSUBMIT statement clarifies which
server session should process the block of statements. If server-ID is omitted,
RSUBMIT directs the statements to the most recently identified server session.

y Defines the libref for the SAS library in the server session.
U Creates the RHOST.SALES data set as a sorted subset of the RHOST.MASTER

data set.
V Transfers the SALES data from the library in the server session (RHOST) to the

library in the client session (LHOST).
W Marks the end of the block of statements to be submitted to the server session.

Statements that follow the ENDRSUBMIT statement are processed in the client
session.

X Reads and prints the SAS data set that was downloaded in the PROC
DOWNLOAD step.

Running the Program
You have several choices for running this program:
� Type and submit each line in an interactive line mode SAS session. All of the

statements between the RSUBMIT and ENDRSUBMIT statements are submitted
to the server session for processing. All other statements are processed in the
client session.

Note: When statements are submitted to the server session, several statements
can be grouped into a single packet of data that is sent to the server session.
Therefore, a line that is remote submitted is not necessarily processed
immediately after you enter it in the client session. �

� Build a file that contains all these statements, and use a %INCLUDE statement to
include the file in an interactive line mode session. The file is processed
immediately.

� Build a file that contains all these statements and run a non-interactive SAS job to
process the statements as follows:

sas file-containing-program

� Build a file that contains all these statements, and use an INCLUDE command to
include the file. You must submit the included statements from the windowing
environment.

� Build a file and issue the SUBMIT command from the Explorer window. For
details, see “Using SAS Explorer to Monitor SAS/CONNECT Tasks” on page 118.

Example 2. Compute Services and Data Transfer Services Combined:
Sorting and Merging Data

Purpose
When multiple client sessions need to access a single data set on the server, Data

Transfers Services can be used to distribute the subset of data that is needed by each

192 Program � Chapter 15

session. Each client session receives only the data that it needs, and uses Compute
Services to process its data in its session. When you use this method, client sessions do
not continually access the data set on the server.

Program
This SCL program fragment distributes a data set that contains reservations data

from a server that is located at a central office to clients at several franchise offices.
The program enables distribution of selected reservations to a franchise office by using
a WHERE statement.

INIT:
submit continue;
signon atlanta;

rsubmit;
libname mres "d:\counter";
libname backup "d:\counter\backup";

u proc upload data=mres.reserv
out=combine status=no;
where origin="Atlanta";

run;

v proc sort data=combine;
by resnum;

run;

w proc copy in=mres out=backup;
select reserv;

run;

x data mres.reserv;
update mres.reserv combine;
by resnum;

run;
endrsubmit;

signoff;

u Uploads all reservations for a particular location.
v Sorts uploaded data sets for merging.
w Backs up existing data set.
x Merges new and existing data sets.

Examples of Combining Compute Services and Data Transfer Services � Program 193

Example 3. Compute Services and Data Transfer Services Combined:
Macro Capabilities

Purpose
SAS/CONNECT is fully functional from within the macro facility. Both the UPLOAD

and the DOWNLOAD procedures can update the macro variable SYSINFO and set it to
a non-zero value if the procedure terminates because of errors.

You can also use the %SYSRPUT macro statement in the server session to send the
value of the SYSINFO macro variable back to the client session. Thus, you can submit
a job to the server and test whether a PROC UPLOAD or a PROC DOWNLOAD step
successfully completed before beginning another step in either the client or server
session.

Program
This program includes a transaction file that is located on the client, which will be

uploaded to a server in order to update a master file. You can test the results of the
PROC UPLOAD step in the server session by checking the value of the SYSINFO
macro variable.

The SYSINFO macro variable can be used to determine whether the transaction file
was successfully uploaded. If successful, the master file is updated with the new
information. If the upload was not successful, you receive a message that explains the
problem.

You can use the %SYSRPUT macro statement to send the return code from the server
session back to the client session. The client session can test the results of the upload
and, if it is successful, use the DATASETS procedure to archive the transaction data set.

u libname trans ’client-SAS-library’;
libname backup ’client-SAS-library’;

v rsubmit;
w proc upload data=trans.current out=current;

run;

x %sysrput upload_rc=&sysinfo;
%macro update_employee;

y %if &sysinfo=0 %then %do;
libname perm ’server-SAS-library’;
data perm.employee;

update perm.employee current;
by employee_id;

run;
%end;

U %else %put ERROR: UPLOAD of CURRENT
failed. Master file was
not updated.;

%mend update_employee;
V %update_employee;

endrsubmit;

194 Program � Chapter 15

W %macro check_upload;
X %if &upload_rc=0 %then %do;
at proc datasets lib=trans;

copy out=backup;
run;

%end;
%mend check_upload;

ak %check_upload;

u Associates a libref with the SAS library that contains the transaction data set and
backup data in the client session.

v Sends the PROC UPLOAD statement and the UPDATE_EMPLOYEE macro to the
server session for execution.

w Because a single-level name for the OUT= argument is specified, the PROC
UPLOAD step stores CURRENT in the default library (usually WORK) in the
server session.

x If the PROC UPLOAD step successfully completes, the SYSINFO macro variable
is set to 0. The %SYSRPUT macro statement creates the UPLOAD_RC macro
variable in the client session, and puts the value that is stored in the SYSINFO
macro variable into UPLOAD_RC. The UPLOAD_RC macro variable is passed to
the client session and can be tested to determine whether the PROC UPLOAD
step was successful.

y Tests the SYSINFO macro variable in the server session. If the PROC UPLOAD
step is successful, the transaction data set is used to update the master data set.

U If the SYSINFO macro variable is not set to 0, the PROC UPLOAD step has
failed, and the server session sends messages to the SAS log (which appear in the
client session) notifying you that the step has failed.

V Executes the UPDATE_EMPLOYEE macro in the server session.
W The CHECK_UPLOAD macro is defined in the client session because it follows the

ENDRSUBMIT statement.
X Tests the value of the UPLOAD_RC macro variable that was created by the

%SYSRPUT macro statement in the server session to determine whether the
PROC UPLOAD step was successful.

atWhen the transaction data set has been successfully uploaded and added to the
master data set, the transaction file can be archived in the client session by using
the COPY statement in the DATASETS procedure.

akExecutes the CHECK_UPLOAD macro in the client session.

195

C H A P T E R

16
Compute Services
Troubleshooting

Problems and Solutions when Using the RSUBMIT Statement 195
Invalid Option 195

Dialog Box Appears Despite NOTERMINAL Option Setting 195

Remotely Submitted Statements Following a Syntax Error Are Not Processed 195

Square Bracket Keys Not Supported 196

No Terminal Connected to SAS Session 196
Piping Problems 196

Request for Setup of Link for Communication Subsystem Partner Fails 197

Problems and Solutions when Using the RSUBMIT Statement

Invalid Option
The first time that you remote submit a PROC statement, you receive the following

message:

ERROR 2-12: Invalid option.

The remote AUTOEXEC.SAS file contains an OPTIONS statement that has not been
closed by a semicolon (;). To recover from the problem, add the semicolon (;) to the
OPTIONS statement in the remote AUTOEXEC.SAS file.

Dialog Box Appears Despite NOTERMINAL Option Setting
Despite your setting the NOTERMINAL option to suppress the display of a dialog

box in the server session, a dialog box appears when you use the RSUBMIT statement
and the WAIT= option.

To prevent the appearance of a dialog box, specify the SAS system option
NOFILEPROMPT in the server session.

Remotely Submitted Statements Following a Syntax Error Are Not
Processed

When a SAS/CONNECT session is started and the NOTERMINAL option is set, the
internal option SYNTAXCHECK is automatically set. If you remote-submit a statement
that follows a syntax error, the statement is parsed but is not processed.

196 Square Bracket Keys Not Supported � Chapter 16

An example of the problem and recovery follows:

data a;
do i=1 to 10;

outpt;
end;

run;
data b;

x=1;
run;

Data set A is not created because of the syntax error that is caused by the misspelling
of the word “OUTPUT”. Data set B is not created because SAS is in syntax check mode
from the previous syntax error. Only the DATA step will be parsed.

To prevent this problem, add the NOSYNTAXCHECK option to the server session
SAS invocation options in the script file.

Square Bracket Keys Not Supported
You cannot remotely submit code that uses square brackets because the local

computer’s keyboard does not support these characters.
The less than (<) and greater than (>) symbols can be used in place of square

brackets. Use < for the left square bracket ([), and use > for the right square bracket (]).
For OpenVMS, square brackets are usually used to delineate the directory name in a

pathname. However, you can use < and > as equivalent delimiters. For example:

libname sales ’disk:<sales.years.1991>’;

No Terminal Connected to SAS Session
After remotely submitting code that generates a full screen, you receive the following

message:

ERROR: No terminal connected to the SAS session.

SAS/CONNECT does not support remote submission of a window. You might be able
to issue a LIBNAME statement, and use the windowing product in the client session
while accessing the remote data.

Piping Problems
MP CONNECT pipeline processing can fail if the procedure that reads from the pipe

(output pipe) finishes processing before the procedure that writes to the pipe (input
pipe). The premature termination of the pipe causes the procedure that writes to the
pipe to fail.

The error message varies according to the specific procedure that is being performed.
To prevent a pipe from terminating prematurely, assign sufficient processing time for

each procedure by specifying the TIMEOUT= option in the LIBNAME statement.
Furthermore, if the OBS= option in the appropriate procedure is used to limit the
amount of data that is read from a large data set that is being written, processing will
finish for the read procedure before the write procedure. To prevent the pipe from
terminating, assign a longer timeout for the read procedure than the write procedure.
For a program example, see “Example 7: Preventing Pipes from Closing Prematurely”
on page 174.

Compute Services Troubleshooting � Request for Setup of Link for Communication Subsystem Partner Fails 197

Request for Setup of Link for Communication Subsystem Partner Fails
When you attempt to connect to a server session, you receive the following error

message:

ERROR: A communication subsystem partner link setup request failure has occurred.

A possible explanation for the failure is that the spawner has not been started on the
remote computer that you are trying to sign on to. For details about starting a spawner,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Another possibility is that you have used the same task name for multiple jobs that
you have submitted for asynchronous processing on the same host or on a different host
across the network. Task names must be unique.

198

199

P A R T5

Remote Library Services

Chapter 17.Remote Library Services (RLS) 201

Chapter 18.Syntax for the LIBNAME Statement 207

Chapter 19.Syntax for the LIBNAME Statement, SASESOCK Engine 211

Chapter 20.Examples Using Remote Library Services (RLS) 215

Chapter 21.Example of Combining RLS and Data Transfer Services
(DTS) 223

200

201

C H A P T E R

17
Remote Library Services (RLS)

Introduction to Remote Library Services 201
RLS: Definition 201

Client Access to a Single- or Multi-User Server 201

RLS: Advantages 202

Considerations for Using RLS 202

Determine the Appropriate Data Access Solution 202
Use Compute Services to Access Large Volumes of Data 203

Use Data Transfer Services for Multi-Pass Data Processing 203

Use Data Transfer Services When Network Response Time Is Delayed 203

Use RLS When Data Flow through a Network Is Minimal 203

Compare DTS, RLS, and CS 203

Using RLS to Access Types of Data 204
RLS Support for Data Types 204

Accessing a Catalog 204

Accessing an External Database 204

Accessing a SAS View 204

Accessing a SAS Utility File of Type PROGRAM or ACCESS 205
Using SAS Views with Servers 205

SAS/ACCESS Views, DATA Step Views, and PROC SQL Views 205

Recommendations for PROC SQL Views 206

Using WHERE Processing to Reduce Network Traffic 206

Introduction to Remote Library Services

RLS: Definition
Remote Library Services (RLS) enables you to read, write, and update remote data as

if it were stored on the client’s disk. RLS can be used to access SAS data sets across
computers that have different architectures. RLS also provides read-only access to some
SAS catalog entry types across computers that have different architectures.

With RLS, you use a LIBNAME statement to associate a SAS library reference
(libref) with a SAS library on the server.

Client Access to a Single- or Multi-User Server
To access a SAS library on a server that you are already signed on to (using the

SIGNON statement), a single-user server environment is assumed. To identify the

202 RLS: Advantages � Chapter 17

server, specify the remote session ID that was used at sign on. For details about the
SIGNON statement, see “SIGNON Statement and Command” on page 59.

To access a server that you are not signed on to, a multi-user environment is
assumed. When you connect to a multi-user server, the server must already be running.
Use the SERVER= option in the LIBNAME statement to specify the server ID.

Therefore, to connect to both a single-user server and a multi-user server from your
client session, and to avoid confusion, assign unique values to the SERVER= option.
The use of the single-user server takes precedence over the multi-user server.

After you define a libref to a server, avoid clearing and re-assigning the libref
multiple times. Repeating this sequence is inefficient because the client session
disconnects from the server after the last libref that is associated with a server is
cleared. When the same libref is re-issued, the client session must connect to the server
again. To avoid this overhead, clear the defined librefs only after you have completed
any processing that accesses data that is defined by these librefs.

A server does not automatically terminate after the last LIBNAME statement is
cleared. A multi-user server remains active, awaiting connections from clients until the
server administrator explicitly stops the server by using the PROC OPERATE
statement. For details, see the OPERATE procedure in the SAS/SHARE User’s Guide.

A single-user server remains active, awaiting connections from a client session until
the client uses the SIGNOFF command to terminate the server session. For details, see
“SIGNON Statement and Command” on page 59.

RLS: Advantages
If you need to maintain a single copy of the data on a server and keep the processing

on the client, then RLS is the correct choice. In general, RLS is the best solution in the
following situations:

� The amount of data that is needed by the client is small.
� The server data is frequently updated.
� Your data center rules prohibit multiple copies of data.

RLS enables you to access your server data as if it were local. This feature
eliminates the explicit step of coding an upload or download of the data before
processing it. It also permits the GUI of an application to reside at the client while the
data remains at the server (for example, a client FSEDIT session of a server data set).
Applications can be built that provide seemingly identical access to client and server
data, without requiring the end user to know where the data resides.

Using RLS, you can access and update data that is stored in an external database.
RLS enables a client (single user) to access data that is stored in an external database
and to update the data through the server (single user).

Considerations for Using RLS

Determine the Appropriate Data Access Solution
To make the best use of RLS, consider these questions:
� How much data will the application access?
� Is multi-user or single-user data access needed?
� Will the application make a single pass or multiple passes through the data?

Remote Library Services (RLS) � Compare DTS, RLS, and CS 203

� What is the effect of the application’s data access on the network load?

Answers to these questions will help you determine whether to use RLS, Data
Transfer Services, Compute Services, or a combination of these services.

Use Compute Services to Access Large Volumes of Data
Accessing data through RLS is inefficient when you have large volumes of data.

Compute Services (or a combination of Compute Services and Data Transfer Services) is
preferable for processing large volumes of data on the server.

Use Data Transfer Services for Multi-Pass Data Processing
RLS is not efficient for multiple passes through the data. Although the client

accesses data that is on the server, the data is not written to the client’s local disk. If
you are running procedures that make multiple passes through the data, or an entire
procedure must be run more than one time against the data, transferring a copy of the
data to the client’s local disk is advised. You incur the network traffic cost only one time
rather than paying the cost for each pass through the data.

Use Data Transfer Services When Network Response Time Is Delayed
Data Transfer Services is the preferred choice when response time is delayed. This

situation can occur if you are accessing server data that is being updated simultaneously
by other users. If delayed response time is not acceptable, consider transferring a copy
of the data to the client’s local disk and keep the data separate from other applications.

Use RLS When Data Flow through a Network Is Minimal
Because RLS requires data to flow from the server to the client through a network,

you should design your application to minimize the amount of data that is requested for
client processing.

Both Data Transfer Services and RLS transfer data from the server to the client for
processing. However, the difference between the two services is that Data Transfer
Services writes the data to the client’s local disk for subsequent processing. By
contrast, RLS processes the data in client memory, which gets overwritten when the
next data transaction occurs. Subsequent analyses of the same data would require the
data to be moved through the network each time the client session requests the data.

Compare DTS, RLS, and CS
Design your application to balance the benefits and costs of the SAS/CONNECT

services.
� Use Data Transfer Services to transfer a copy of the data from the server to the

client and write the data to disk for local data access and processing.
� Use Remote Library Services to transfer records that the client requests for

processing from the server. The entire data remains at the server and selected
records are transferred to the client for local processing.

� Use Compute Services to transfer processing to the server where the data is
stored. Results from server processing are returned to the client.

204 Using RLS to Access Types of Data � Chapter 17

Using RLS to Access Types of Data

RLS Support for Data Types
RLS supports access to the following types of data:
� SAS catalog*
� SAS data set and SAS utility file)
� SAS view (DATA step, PROC SQL, and SAS/ACCESS views)
� SAS database (MDDB)
� External database (such as Oracle)

*Catalog update is not supported if the computers that the client and the server run
on do not have compatible architectures.

Accessing a Catalog
In order for a client to use RLS to update a catalog on a server, the architectures of

the computers on which the client and the server run must be compatible. If computer
architectures are incompatible, the following error message is displayed:

ERROR: You cannot open catalog name through
server ID because write access to
catalogs is not supported when the user
machine and server machine have different
data representations.

Accessing an External Database
RLS and a SAS/CONNECT single-user server support update access to data that is

stored in an external database. The SAS/ACCESS engines and the SQL engine
recognize the single-user server as one user and, therefore, enable update access for
external database sources.

However, SAS/ACCESS engines and the SQL engines prohibit update access to
external database sources when using RLS and a multi-user server. Updating is
prohibited because of the inability of a multi-user server or a database to detect and
manage conflicting requests from multiple users. A detection facility is necessary in
order to generate audit trails and to guarantee data integrity and security.

Accessing a SAS View
RLS supports access to SAS views, which include DATA step views, SAS/ACCESS

views, and PROC SQL views.
When the server accesses the library that contains the SAS view, the view is

interpreted at the server by default. The server loads and calls the engine that is
appropriate to the SAS view to read and transform the underlying data. The processing
that is required to generate the SAS view is performed at the server, and the resulting
SAS view is transferred to the client with a minimum cost to the network. Client
resources are not used to interpret the SAS view.

For all PROC SQL views or for any other type of SAS view that is processed between
a client and a server whose computer architectures are compatible, the SAS view can be

Remote Library Services (RLS) � SAS/ACCESS Views, DATA Step Views, and PROC SQL Views 205

interpreted at the client. To interpret a SAS view at the client instead of at the server,
set the RMTVIEW= option to NO in a LIBNAME statement. Here is an example:

libname payroll rmtview=no server=wntnode;

For DATA step views and SAS/ACCESS views, if the architectures of the computers
that the client and the server run on are different, the views can be interpreted only at
the server.

Accessing a SAS Utility File of Type PROGRAM or ACCESS
In order for a client to use RLS to access a SAS utility file of the type PROGRAM or

ACCESS on a server, the architectures of the computers that the client and the server
run on must be compatible. If computer architectures are incompatible, the following
error message is displayed:

ERROR: You cannot open utility file name through
server ID, because access to utility
files is not supported when the user machine
and server machine have different data
representations.

A SAS utility file of the type PROGRAM contains compiled DATA step code, which
cannot be processed at the client. The DATA step can be executed at the server if the
DATA step is referenced by a DATA step view that is interpreted at the server.

Using SAS Views with Servers

SAS/ACCESS Views, DATA Step Views, and PROC SQL Views
RLS can be used with three types of SAS views:

� SAS/ACCESS views

� DATA step views

� PROC SQL views

A SAS view contains no data, but describes other data. A SAS view is processed by
an engine that reads the underlying data and uses the description to return the data in
the requested form. This process is called view interpretation.

When the library that contains the SAS view is accessed through a server, the SAS
view is interpreted in the server’s session by default. This means that the engine is
loaded and called by the server to read and transform the underlying data. Only a
small amount of data is moved through the network, and the client processing is
unaware that a SAS view is involved.

If the SAS view is a PROC SQL view or if the client and server computer
architectures are the same, you can cause the SAS view to be interpreted in the client
session. This is done by specifying RMTVIEW=NO in the LIBNAME statement that is
used to define the server library. If the architectures are not the same, SAS/ACCESS
views and DATA step views can be interpreted only in the server session.

Interpreting a SAS view as data can produce significant processing demands. When
a SAS view is interpreted in the client session, that frequently means that a lot of data
has to flow to the client session. This removes processing demands from the server
session but increases network load.

206 Recommendations for PROC SQL Views � Chapter 17

Recommendations for PROC SQL Views
PROC SQL views are especially good candidates for interpretation in a server session

under these conditions:
� The number of observations that are produced by the PROC SQL view is much

smaller than the number of observations that are read by the PROC SQL view.
� The data sets that are read by the PROC SQL view are available to the server.
� The amount of processing that is necessary to build each observation is not large.

Conversely, PROC SQL views should be interpreted in the client session under these
conditions:

� The number of observations that are produced by the PROC SQL view is not
appreciably smaller than the number of observations that are read by the PROC
SQL view.

� Some of the data sets that are read by the PROC SQL view can be directly
accessed by the client session.

� A large amount of processing must be performed by the PROC SQL view.

Using WHERE Processing to Reduce Network Traffic
When using RLS, one of the best ways to reduce the amount of data that needs to

move through the network to the client session is to use WHERE statement processing
whenever possible. When WHERE statements are used, the WHERE clause is passed
to the server environment and interpreted. Only the data that meets the selection
criteria is transferred to the client environment for processing.

If the data you are accessing is stored in an external database, the WHERE
statement is passed to the database and evaluated, if possible. If the database cannot
complete the evaluation, the server completes it before returning any of the data to the
client session. For examples of using the WHERE statement, see Examples 2, 4, and 6
in Chapter 20, “Examples Using Remote Library Services (RLS),” on page 215.

207

C H A P T E R

18
Syntax for the LIBNAME
Statement

LIBNAME Statement 207

LIBNAME Statement

Associates a libref (a shortcut name) with a SAS library that is located on the server for client
access.

Valid: client session
Category: Data Access
See: LIBNAME Statement in the documentation for your operating environment.
See Also: Base LIBNAME statement

Syntax
LIBNAME libref <engine> < ’SAS-library’> SERVER=server-ID <options> <engine/

operating environment-options>;

Arguments

libref
specifies the name of a library reference to a SAS library that is located on the
server. The libref that you specify is presumed to be the server libref for an existing
server library. As alternatives, you could use the SLIBREF= option or the physical
name of the data library.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

engine
specifies the name of a valid SAS engine for a client to access the server library.
Usually, you should not use this option because the client automatically determines
which engine to use for accessing a server. Specify this option only to override the
SAS default for a specific server, or to reduce the time that is needed to determine
which engine to use to access a specific server.

For example, if the server library is located on a server that is running SAS 9 or
later, you could specify the REMOTE engine. Specifying an explicit engine might
improve performance slightly.

208 LIBNAME Statement � Chapter 18

For a list of valid engines, see the SAS documentation for your operating
environment. For background information about engines, see SAS Language
Reference: Concepts.

The engine argument is positional. If you use it, it must follow the libref.

CAUTION:
Do not confuse the engine argument with the RENGINE= option. An engine is used by a
client to access a server. An RENGINE is used by the server to access its SAS
library. �

’SAS-library’
specifies the physical name for the SAS library on the server to access. If you specify
a server library either as the libref or as the value for the SLIBREF= option, you
must omit the physical name.

If you specify ’SAS-library’, the name must be a valid physical name, and it must
be enclosed in single or double quotation marks. For details about specifying a SAS
library, see the documentation that is appropriate to your operating environment.

SERVER=server-ID
specifies the ID of the server (where the SAS library is located) that you previously
signed on to. The server-ID is the value of the remote-session-ID that is specified in
the SIGNON statement. For details, see “SIGNON Statement and Command” on
page 59. To specify a server name that contains more than eight characters, you
must store the name in a macro variable.

Options

ACCESS=READONLY
controls a client’s read access to a SAS library on the server. If you specify this
option, you can read but not update data in the library.

SLIBREF=server-libref
specifies an existing server libref that you want to reference from the client. Use this
option when you want to reference an existing server libref, but you want to use a
different name for that libref on the client. If you specify the SLIBREF= option, you
do not need to specify the physical name for the SAS library on the server.
SLIBREF=server-libref and ’SAS-library’ are mutually exclusive.

Engine and Operating Environment Options

RENGINE=engine-name
specifies the engine for the server session to use to access the SAS library on the
server. Using this option is usually unnecessary because the server automatically
determines the engine to use for processing the data library. Specify this option only
to override the SAS default for a specific library, or to reduce the time that is used by
the server to determine the engine to use.

CAUTION:
Do not confuse the RENGINE= option with the engine argument. An RENGINE is used
by the server to access its SAS library. An engine is used by a client to access a
server. �

ROPTIONS=“option=value<option=value> ...”
specifies remote options and options that are specific to an operating environment
and that the client passes to the engine on the server that processes the SAS library.

Syntax for the LIBNAME Statement � LIBNAME Statement 209

ROPTIONS can be specified for either the default engine or an alternative engine
that is specified by using the RENGINE= option. You can specify one or more options
in the form option=value. Use a blank to separate the options. You can use the
ROPTIONS= option to pass any valid option for the targeted engine. For information
about the options that are supported by a specific engine, see the documentation for
the engine that you use. For details about options that are specific to an operating
environment, see the documentation that is appropriate for the operating
environment used.

RMTVIEW=YES|NO
determines whether SAS views are interpreted in the server session or the client
session. SAS views include DATA step views, in addition to views that are created by
using the SQL procedure and the ACCESS procedure (in SAS/ACCESS software).

SAS views, like SAS data sets, are accessed through an engine. Where a SAS view
is interpreted determines where the view engine is loaded and used. DATA step
views use the SASDSV engine, and PROC SQL views use the SQLVIEW engine. SAS
creates a product-specific engine for each SAS/ACCESS interface product that the
SAS/ACCESS views use for that interface.

When SAS views are interpreted in the server session, the server session might
require large amounts of processor time and storage. However, the amount of data
that is transferred to the client session might be reduced. Conversely, preventing
view processing in the server session might increase the amount of data that is
transferred between the server and the client, but minimizes server processing time.

Setting RMTVIEW to NO causes SAS views to be interpreted at the client.
Default: YES, which causes views to be interpreted in the server session.

Examples

Example 1: Assigning and Defining a Libref to Access a Library on a Server The
following statement associates the libref SQLDSLIB with the SAS library
SASXYZ.VIEWLIB.SASDATA. This library is accessed through the server MVSHOST,
which is running in a server session.

libname sqldslib ’sasxyz.viewlib.sasdata’ server=mvshost;

Example 2: Associating a Client Libref with a Server Libref The following statement
associates the client libref APPLIB with the server libref SERVLIB. This library is
accessed through the server MYHOST.

libname applib slibref=servlib server=myhost;

Example 3: Specifying a Server in the LIBNAME Statement The following example
shows a spawner invocation on a computer named MYHOST.MY.NET.WORK. The
-SERVICE option specifies that the spawner listens for client connections on port 2323.

spawner -c tcp -service 2323

In the following example, a client uses the TCP/IP access method to connect to a
server session by using a spawner. The name of the computer that the spawner runs on
and the number of the port that the spawner listens on are assigned to the macro
variable REMNAME.

Note: Use a space to separate the computer name from the port number. �

A client signs on to the server at the specified port that is defined by REMNAME.
The LIBNAME statement establishes the libref SCORCARD to point to a library via
the server and port that are defined by REMNAME.

210 LIBNAME Statement � Chapter 18

options comamid=tcp;
%let remname=myhost.my.net.work 2323; /* space between computer name and port number */
signon remname;
libname scorcard ’.’ server=remname;

211

C H A P T E R

19
Syntax for the LIBNAME
Statement, SASESOCK Engine

LIBNAME Statement, SASESOCK Engine 211

LIBNAME Statement, SASESOCK Engine

Associates a libref with a TCP/IP pipe (instead of a physical disk device) for processing input and
output. The SASESOCK engine is required for SAS/CONNECT applications that implement MP
CONNECT with piping.

Valid: client session and server session
Category: Data Access
See: LIBNAME statement in the documentation for your operating environment.
See Also: LIBNAME statement in Base SAS documentation.

Syntax
LIBNAME libref SASESOCK “port-specifier ” <TIMEOUT=time-in-seconds>;

Arguments

libref
specifies a reference to a TCP/IP pipe instead of to a physical disk device.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

SASESOCK “port-specifier”
identifies the SASESOCK engine to process input to and output from a TCP/IP port
instead of a physical disk device.

“port-specifier” can be represented in these ways:

“:explicit-port”
is a hardcoded port number that specifies an explicit port on the computer where
the asynchronous RSUBMIT is executing.

Example:

LIBNAME payroll SASESOCK ":256";

Requirement: If the port number that you specify is in use, access will be denied
until it is available again.

212 LIBNAME Statement, SASESOCK Engine � Chapter 19

“:port service”
specifies the name of the port service on the computer where the asynchronous
RSUBMIT is executing.

Example:

LIBNAME payroll SASESOCK ":pipe1";

Requirement: If you specify a port service, it must be configured in the SERVICES
file of the computers at which the client and server sessions are running.

Requirement: If the port service that you specify is in use, access will be denied
until it is available again.

See Also: For details about configuring port services in the SERVICES file, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

“computer-name:port-number”
specifies an explicit port number on the computer that is specified by
computer-name.

Example:

LIBNAME payroll SASESOCK "apex.finance.com:256";

Requirement: If the port number that you specify is in use, access will be denied
until it is available again.

“computer-name:port service”
specifies the name of the port service on the computer that is specified by
computer-name.

Example:

LIBNAME payroll SASESOCK "apex.finance.com:pipe1";

Requirement: If you specify a port service, it must be configured in the SERVICES
file of the computers at which the client and server sessions are running.

Requirement: If the port service that you specify is in use, access will be denied
until it is available again.

See Also: For details about configuring port services in the SERVICES file, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

“implicit-port”
is an alias that refers to an implicit port number that SAS dynamically selects
from a pool of available ports when the asynchronous RSUBMIT begins execution.
The actual port that SAS selects is stored automatically in the SAS Metadata
Server without your knowledge of the port’s identity. Because the alias is mapped
to the port and is stored in the metadata server, you can always use the alias
without concern about the actual port number.

Example:

LIBNAME payroll SASESOCK "mypipe";

Requirement: If you use an alias that specifies an implicit port, the client and
server sessions must have access to the SAS Metadata Server. The port number
that is assigned to the alias that you specify is stored in the SAS Metadata
Server. To have access to a SAS Metadata Server, several metadata properties
must be configured via selected SAS options in the SAS session. Here is an
example:

options metaserver="a123.us.company.com"
metaport=9999
metauser="metaid"

Syntax for the LIBNAME Statement, SASESOCK Engine � LIBNAME Statement, SASESOCK Engine 213

metapass="metapwd"
metaprotocol=bridge
metarepository="myrepos";

Requirement: If you use an implicit port, do not configure the alias in the
SERVICES file.

See Also: If you specify an implicit port, see SAS system options METASERVER,
METAPORT, METAUSER, METAPASS, METAPROTOCOL, and
METAREPOSITORY in SAS Language Interfaces to Metadata and SAS
Language Reference: Dictionary.

Option

TIMEOUT=time-in-seconds
specifies the time in seconds that a SAS process will wait to successfully connect to
another process.

Example:

libname in1 sasesock ":pipe1" timeout=50;

Default: 10

See Also: For an explanation of MP CONNECT using piping, see “Pipeline
Parallelism” on page 113.

See Also: For an example of a SAS/CONNECT application that implements MP
CONNECT using piping, see “Example 6: Using MP CONNECT with Piping” on
page 173.

214

215

C H A P T E R

20
Examples Using Remote Library
Services (RLS)

Example 1. RLS: Accessing Server Data to Print a List of Reports 215
Purpose 215

Program 215

Example 2. RLS: Accessing Server Data by Using the WHERE Statement 216

Purpose 216

Program 216
Example 3. RLS: Updating Server Data 217

Purpose 217

Program 217

Example 4. RLS: An SCL Program That Uses the WHERE Statement 217

Purpose 217

Program 218
Example 5. RLS: Updating a Server Data Set by Applying a Client Transaction Data Set 218

Purpose 218

Program 218

Example 6. RLS: Subsetting Server Data for Client Processing and Display 219

Purpose 219
Program 220

Example 1. RLS: Accessing Server Data to Print a List of Reports

Purpose
This code shows a client that uses RLS to access a modest amount of data on a

server in order to print a list of reports. RLS is a good solution for processing a small
number of observations.

Program

options sascmd="!sascmd -nosyntaxcheck";
options noxwait;
u %let dir=c:\Public;
x mkdir &dir
libname vcl "&dir";
data vcl.request;
report_name="January";

216 Example 2. RLS: Accessing Server Data by Using the WHERE Statement � Chapter 20

copy=’Y’;
output;
report_name="February";
copy=’N’;
output;
report_name="March";
copy=’Y’;
output;

run;
signon rempc;

v libname public REMOTE ’c:\Public’ server=rempc;
data _null_;
set public.request;
if (copy = "Y") then do;

put "Report " report_name
" has been requested";

end;
run;

u Creates a data set in the user’s home directory.

v Defines a server library to a client session. The value for SERVER= is the same as
the server session ID that is used in the SIGNON statement.

Example 2. RLS: Accessing Server Data by Using the WHERE Statement

Purpose
In this example, WHERE statement processing modifies the previous example in

order to reduce the amount of data that is being requested and to reduce the network
traffic. The WHERE statement filters only the relevant data for the client to process. A
selective transfer is more efficient than moving every observation to the client to
process and to check the COPY variable for a Y value.

Program

signon rempc;

u libname public ’c:\Public’ server=rempc;

v data _null_;
set public.request;
where copy = "Y";
put "Report " report_name

" has been requested";
run;

Examples Using Remote Library Services (RLS) � Purpose 217

u Defines a server library to a client session.
v Uses the WHERE statement to filter unneeded observations.

Example 3. RLS: Updating Server Data

Purpose
This example enables you to take advantage of a mainframe’s superior data handling

and security features, while you work in a user-friendly GUI environment. RLS is used
to update server data. This application of RLS eliminates the need to transfer a disk
copy of the data to the client session before processing the data. It also involves low
volume transaction processing.

Program

u x mkdir hr.emp.data;
libname hr ’hr.emp.data’;
data hr.employee;
x=1;
run;

signon remos390;

v libname rlib REMOTE ’hr.emp.data’ server=remos390;

w proc fsedit data=rlib.employee;
run;

u Creates the data set HR.EMP.DATA.
v Defines the server session human resource library to the client session.
w Executes a client FSEDIT to update the employee data set that is located on the

z/OS computer.

Example 4. RLS: An SCL Program That Uses the WHERE Statement

Purpose
This example is an excerpt from an SCL program that uses RLS to query a remote

reservation database. Reservations are selected based on the value that is stored in the
variable RESNUM. The use of the WHERE clause in this example is important because
the WHERE clause is applied in the server session before any data is transferred. As a
result, only the observations that meet the criteria are moved to the client session.

218 Program � Chapter 20

This example is a good use of RLS because (as in the previous example) it involves
transaction-type processing and enables the client GUI to be used for data entry on the
selected observations in the database.

However, if you were to use the SCL LOCATEC function, every observation would be
transferred to the client session and compared against the specified criteria. The
response time might be poor. These alternative programming choices emphasize the
importance of being aware of the amount of data that the client session requests and
minimizing this amount when using RLS.

Program

signon apex;
libname master REMOTE "hq.prod.data" server=apex;

u rdsid = open("master.reserv", ’u’);

v wherecls="resnum=" || "’" || resnum || "’";
rc = where(rdsid, wherecls);
call set(rdsid);
rc = fetchobs(rdsid, 1);

u Opens the remote database.
v Builds and applies the WHERE clause to accelerate retrieval.

Example 5. RLS: Updating a Server Data Set by Applying a Client
Transaction Data Set

Purpose
In client/server jobs where data must be kept current and the number of updates

that you need to perform is small, RLS can be an effective solution. RLS enables you to
perform a client update to a server data set.

This example creates a data set by remotely submitting a DATA step. Next, it
creates a client transaction data set. Using RLS, it assigns a client libref to the server
library. Finally, the program uses the client transactions to modify the server data set.

Program

%let rsession=unxhost;
signon remote=rsession;

rsubmit;
u data sasuser.my_budget;

length category $ 9;
input category $ balance;
format balance dollar10.2;
datalines;

utilities 500

Examples Using Remote Library Services (RLS) � Purpose 219

mortgage 8000
telephone 1000
food 3000
run;

endrsubmit;

v data bills;
length category $ 9;
input category $ bill_amount;
datalines;

utilities 45.83
mortgage 649.95
food 68.21
run;

w libname rlslib slibref=sasuser server=rsession;

x data rlslib.my_budget;
modify rlslib.my_budget bills;
by category;
balance=balance-bill_amount;

run;

y data _null_;
set rlslib.my_budget;
put ’Balance for ’ category @25

’is: ’ balance;
run;

U signoff;

u Creates the master data set MY_BUDGET in the library SASUSER in the server
session.

v Creates a client transaction data set BILLS for updating the server data set
MY_BUDGET.

w Assigns the client libref RLSLIB to the library SASUSER in the server session.

x Applies the transaction data set BILLS to the server data set MY_BUDGET.

y Reviews the results. Three observations are updated.
U Signs off the server. The libref RLSLIB is deassigned as part of the sign-off

processing.

Example 6. RLS: Subsetting Server Data for Client Processing and
Display

Purpose
If the amount of data that is needed for a processing job is small, RLS is an efficient

way to gather current data that is on a server for client processing and display. This

220 Program � Chapter 20

program subsets the data on the server so that only the data you need is transferred.
This method saves computing resources on the server and reduces network traffic while
it gives you access to the most current data.

In this example, a large reservations database is located on a server that runs under
the UNIX operating environment. Several client procedures need to be run against a
small subset of the data that is contained in the master reservations database. This
situation is ideal for RLS.

The LIBNAME statement is issued in the client session to define the server library
that contains the data set RESERVC. The PROC SORT statement sorts the server data
set and writes the subset data to the client disk.

The WHERE= and KEEP= options are specified in the PROC SORT statement to
reduce the amount of data that moves through the network to the client session for
processing. Only the data that meets the WHERE= and KEEP= criteria is moved
across the network to the client session.

PROC SORT creates the subset data set in the client session and allows all
subsequent processing to run in the client session without additional server CPU
consumption. PROC SUMMARY and PROC REPORT summarize and format the client
data. ODS is used to create an HTML file.

Program

u signon srv1;
libname remlib ’/u/user1/reservations’ server=srv1;

v proc sort data=
remlib.reservc(keep=company origin
where=(origin=’ATLANTA’))
out=tmp;
by company;

run;

w proc summary data=tmp
vardef=n noprint;
by company;
output out=tmp2;

run;

x ods html body="body.htm";

y proc report ls=74 ps=85 split=
"/" HEADLINE HEADSKIP CENTER NOWD;
column

("Totals" "" "" "" company _freq_);
define company / group format=$40.

width=40 spacing=2 left "Company";
define _freq_ / sum width=14

spacing=2 right "# Reservations";
rbreak after /ol dul skip summarize

color=cyan;
run;

ods html close;

Examples Using Remote Library Services (RLS) � Program 221

u Executes the LIBNAME statement in the client session to define the server library.

v PROC SORT runs in the client session but accesses the server data set RESERVC.
A subset of RESERVC is written to the client data set TMP. The WHERE= and
KEEP= options are passed to the server session and evaluated there to minimize
the amount of data that must move across the network.

w Summarizes the client data set.

x Creates an HTML file.

y Creates a report using the client summary data set.

222

223

C H A P T E R

21
Example of Combining RLS and
Data Transfer Services (DTS)

Introduction 223
Example — RLS and UPLOAD/DOWNLOAD Combined: Distribution of Reports over a Network 223

Purpose 223

Program 223

Introduction
When the amount of information that is needed from a server is small (for example,

the value of one variable for 12 records or less), Remote Library Services (RLS) can be
used to move the data to the client session. When the data is located at the client, the
data can be used in a larger processing task, and the results (for example, reports) can
be transferred by using PROC UPLOAD across the network as required.

Example — RLS and UPLOAD/DOWNLOAD Combined: Distribution of
Reports over a Network

Purpose
This SCL program fragment enables the distribution of production reports from a

company’s headquarters location to each of its franchise offices, based on the
information that is contained in the control data set that is maintained by each of the
franchise offices. This application was implemented by using the macro facility to
enable the mainframe to connect with each of the franchise workstations, and to
transfer a set of reports to the franchise offices based on selection criteria.

Program

/************************************/
/* Name: DISTREPORT.SCL */
/* */
/* This program distributes reports */
/* to the franchise offices. */
/************************************/

length rc 8;

224 Program � Chapter 21

INIT:

submit continue;
/************************************/
/* set up distribution macro */
/************************************/

u %macro distribution;

v %let franchise_city=
Atlanta NYC LA Dallas Chicago;

%let franchise_host=
tsoatl unixnyc unixla wntdal cmshq;

w %let j=1;
%do %while(%scan(&franchise_city,&j) ne);

%let nextfran=%scan(&franchise_city,&j);
%let nextrem=%scan(&franchise_host,&j);
%let j=%eval(&j+1);

x options remote=&nextrem
comamid=communication-access-method;

filename rlink ’script-file-name’;
signon;

y x "alloc fi(xferrpt)
da(’sasinfo.sugi18.xferrpt’) shr";

U rsubmit;
filename frptlib

"d:\counter\reports\prod";
endrsubmit;

/************************************/
/* use SAS/CONNECT server */
/************************************/

V libname rpt "d:\counter\reports" server=&nextrem;
W data _null_;

set rpt.preport end=finish;
file xferrpt;
if _n_ =1 then put "rsubmit;";

/*********************************/
/* transfer reports */
/* named by variable name in */
/* reports data set */
/*********************************/

X if (copy="Y") then do;
put "proc upload infile=

’sasinfo.sugi18."name"’";
put "outfile=frptlib("name")
status=no;run;";

end;
if finish then put "endrsubmit;";

Example of Combining RLS and Data Transfer Services (DTS) � Program 225

run;

/************************************/
/* upload reports that you want */
/************************************/

at %include xferrpt;

signoff;
%end;

%mend;

/************************************/
/* invoke macro to distribute */
/* reports */
/************************************/

ak %distribution;
endsubmit;

status=’H’;

return;

MAIN:
return;

TERM:
return;

u Declares the distribution macro definition.

v Initializes the list of remote franchise offices (franchise_city) and their node
names (franchise_host) to be used as the REMOTE= value.

w Scans to the next office and node name to be processed.
x Specifies the remote office NODENAME as the REMOTE= value and sign on to

the remote franchise.
y Allocates a z/OS file that will contain generated UPLOAD statements.
U Remotely submits a fileref to define the PC library to which reports will be

uploaded.
V Connects to a server to access the library that contains the report-selection data

set.
W Executes the DATA step to evaluate report-selection data (RPT.PREPORT) and

creates UPLOAD statements to transfer reports (XFERRPT).
X If the selection criterion is YES, creates the appropriate PROC UPLOAD

statement for the specified report.
at Includes the generated SAS job in the client session for execution.
ak Invokes the macro.

226

227

P A R T6

Data Transfer Services

Chapter 22.Using Data Transfer Services 229

Chapter 23.The UPLOAD Procedure 237

Chapter 24.The DOWNLOAD Procedure 255

Chapter 25.Examples of Data Transfer Services (DTS) 271

Chapter 26.Data Transfer Services Troubleshooting 291

228

229

C H A P T E R

22
Using Data Transfer Services

Introduction to Data Transfer Services 229
Data Transfer Services: Advantages 230

Offloads Server Work 230

Increases the Robustness of a Decision Support Environment 230

Transfers Only Relevant Data 230

Supports the Model of a Centralized Control Point 230
Backs Up Client Data 230

Balances Resources in an Application Development Environment 230

Considerations for Using Data Transfer Services 231

Use Compute Services to Access Large Data Resources 231

Use Remote Library Services to Access Small to Medium Data Resources 231

Use a Combination of Services 231
File Transfer Performance 232

Network File Compression 232

Data File Compression to Disk 232

Transfer Status Window 233

Data Transfer Services Tips 234
Tips for Using PROC DOWNLOAD and PROC UPLOAD 234

Tips for Using PROC DOWNLOAD Only 235

Tips for UPLOAD Only 235

Non-English Keyboards 236

Introduction to Data Transfer Services

Data Transfer Services offers the best solution for the transfer of SAS data and
external files between a SAS/CONNECT client and a server.

Data Transfer Services is most useful for data exchanges between a client and a
server that run different operating environments on incompatible computer
architectures (for example, z/OS and Windows) or different SAS software releases (for
example, SAS 8 and SAS 9). Data Transfer Services automatically translates the
internal representations of character and numeric data between the client and the
server computers.

Note: The translation algorithm was changed between SAS 6 and SAS 8 and later
releases of SAS. See “File Format Translation Algorithms” on page 311. �

You implement Data Transfer Services by using the UPLOAD and DOWNLOAD
procedures. Before Data Transfer Services can be deployed, a client session must be
connected to a server session (for example, by using the SIGNON statement).

230 Data Transfer Services: Advantages � Chapter 22

Data Transfer Services: Advantages

Offloads Server Work
A major benefit of Data Transfer Services is the ability to offload work from a server

to a client. A redistribution of work load boosts response time for production systems
that run on servers. After the data is downloaded to the client, the client’s processor
performs all subsequent data access and processing.

Increases the Robustness of a Decision Support Environment
Moving a copy of the data to the client adds robustness to your decision support

environment. In the case of a network failure that would temporarily eliminate access
to the server’s data, you can continue working with your client copy of the data.

Transfers Only Relevant Data
You can transfer only the data that you need by using WHERE processing or data set

options (such as the OBS= option) or both to dynamically subset the data as it is being
transferred to the client or the server. WHERE processing reduces network traffic and
gives you only the data that is needed at the client or the server.

Supports the Model of a Centralized Control Point
Data Transfer Services supports the model of a centralized control point, such as a

mainframe, which initiates communication to a network of workstations.
This model enables centralized distribution of data and applications. Automated jobs

that can run during non-peak hours can distribute data and applications to multiple
computers that need the data and the applications for the next day’s work. Similarly,
jobs can be set up to query a network of workstations for the purpose of gathering data
and storing it in a centralized repository.

Backs Up Client Data
Data Transfer Services facilitates data backup. Data and applications can be copied

from a client that has limited memory resources to a server that has more memory
resources. This provides a backup in case of loss on the client.

Balances Resources in an Application Development Environment
In a program development environment, programmers can use Data Transfer

Services to make efficient use of network resources. In the early phase of program
development, the programmer can use client resources for basic programming activities
(such as editing, testing, and debugging) that do not demand high-performance
computing resources. However, when program development demands a
high-performance environment for testing or data access, the programmer might use
Data Transfer Services to relocate the application to the environment that provides the
needed resources.

Using Data Transfer Services � Use a Combination of Services 231

The development environments at many computing installations often have a higher
number of users who work on one system than on other systems. On the system with
the heaviest load, response time, execution queues, and other performance factors are
less efficient because so many people are running applications concurrently.

Using Data Transfer Services, you avoid contention for heavily used computer
resources by creating and testing SAS programs on a less busy system (the client), and
then transferring the fully developed and tested program to the heavily loaded system
(the server).

Each time you execute a program at the client for testing purposes, you avoid adding
to the load on the server. This convenient method can result in significant savings of
server resources.

For example, suppose you are developing a SAS program that will run as a
production program on the server. Your program analyzes data from a SAS data set
that is located on the server and creates several reports from the analysis information.
To run many tests of the program before it is final and to avoid the delays that result
from server connections, create and store the SAS program on the client. Test the
program by downloading the SAS data set that is being analyzed by the program, or
test the program by using data that is stored on the client. After the program is
complete and correct, upload the program file to the server.

Considerations for Using Data Transfer Services

Use Compute Services to Access Large Data Resources

Transferring a copy of the data to another file system creates multiple copies of the
data. If the data that is stored on the server is updated frequently, keeping a local copy
of the data that is reasonably current might be impossible. In addition, security
restrictions at your site might prohibit multiple copies of the data. In this case, if the
amount of data that is involved is large, consider using Compute Services instead.

Use Remote Library Services to Access Small to Medium Data
Resources

If the client accesses a small to medium amount of data, Remote Library Services
allows the processing to occur at the client, with the data coming from the server as the
execution requests it. If you use a GUI application to access data that requires
transparent access to remote data, you might want to use Remote Library Services.

Use a Combination of Services

There might be situations in which a combination of services is the best choice. For
examples of combined services, see Chapter 15, “Examples of Combining Compute
Services and Data Transfer Services,” on page 189 and Chapter 21, “Example of
Combining RLS and Data Transfer Services (DTS),” on page 223. To understand these
examples, you must be familiar with the syntax for the UPLOAD and DOWNLOAD
procedures (described in Chapter 23, “The UPLOAD Procedure,” on page 237 and
Chapter 24, “The DOWNLOAD Procedure,” on page 255).

232 File Transfer Performance � Chapter 22

File Transfer Performance

Network File Compression
By default, SAS/CONNECT uses network file compression whenever a file is

transferred between a client and a server by using the UPLOAD and DOWNLOAD
procedures.

SAS/CONNECT 8.2 introduced a network file compression algorithm that
significantly improved performance for large data transfers. A large transfer is defined
as a file whose size is 32K bytes or larger. In general, the larger the file, the greater the
potential for a performance gain.

The goal of network file compression is to reduce the number of buffers that must be
sent when uploading and downloading files across a network. In order to reduce the
number of buffers that are used, buffers are packed to capacity for each network
transfer.

The algorithm uses run-length encoding and sliding window compression.
Consecutive occurrences of a single byte are compressed by using run-length encoding,
and patterns of characters are compressed by using a sliding window that stores an
offset to the previously occurring pattern in the compressed data.

However, performance benefits that result from data compression depend on the data
itself. For example, significant compression that yields a performance benefit is
expected for data that contains a regularly repeating pattern. However, for data that
does not contain a regularly repeating pattern, compression would not produce a
significant performance benefit.

To take advantage of the compression algorithm, both the SAS/CONNECT client and
the server must run SAS/CONNECT 8.2 or a later release of SAS software.

Data File Compression to Disk
By contrast, you can specify that a file be compressed when it is written to disk by

using the COMPRESS= data set option. For details, see the COMPRESS= data set
option in SAS Language Reference: Dictionary.

The following statements show how to specify that a data set should be compressed
when it is uploaded to disk:

data tax01 (compress=yes);
proc upload data=state out=fed;

Note: If the COMPRESS=YES data set option is not specified, the data set is not
compressed before it is uploaded. �

At the client, the following tasks are implicitly performed:
� The engine decompresses the data set as it is read from disk.
� PROC UPLOAD compresses the observations in the data set as they are put into a

buffer for transfer to the server.

Using Data Transfer Services � Transfer Status Window 233

At the server, the following tasks are implicitly performed:
� PROC UPLOAD receives the buffer and decompresses the data set so that the

observations can be written.
� The engine writes the decompressed data set to disk.

Note: In order to write the compressed data set to disk, you have to specify the
COMPRESS=YES data set option as an argument in the OUT= option. Here is an
example:

proc upload data=state out=fed (compress=yes);

�

Transfer Status Window
The Transfer Status window displays information that describes the status of the

download or upload operation. The display of the Transfer Status window is determined
by the setting of the CONNECTSTATUS= option, which can be specified in the
following contexts:

� CONNECTSTATUS= system option. See “CONNECTSTATUS System Option” on
page 20.

� CONNECTSTATUS= option in the RSUBMIT statement. See “RSUBMIT
Statement and Command” on page 137.

� CONNECTSTATUS= option in the SIGNON statement. See “SIGNON Statement
and Command” on page 59.

� CONNECTSTATUS= option in the PROC UPLOAD statement. See Chapter 23,
“The UPLOAD Procedure,” on page 237.

� CONNECTSTATUS= option in the PROC DOWNLOAD statement. See “PROC
DOWNLOAD Statement Options” on page 257.

The display on the window changes as the transfer proceeds. The information on the
display includes the following:

� the type of file that is being transferred (SAS data set, SAS catalog, catalog entry
that contains graphics output, external file, or SAS utility file).

� the name of the target SAS data set, SAS catalog, external file, or SAS utility file.
SAS data set names have the form libref.SAS-data-set. SAS catalog names have
the form libref.SAS-catalog. External filenames are displayed with the complete
filename. Utility filenames have the form libref.SAS-utilityfilename.

� the number of the byte that is being transferred (updated as each new buffer is
sent).

� the number of the observation that is being transferred (for SAS data sets only).
� the time that elapsed since the beginning of the transfer, in hh:mm:ss form.
� the percentage of the file that is already transferred.
� an estimate of the amount of time that is required to complete the transfer, in

hh:mm:ss form.
� a horizontal bar chart that depicts the percentage of the file that is already

transferred.

Note: For some types of files, the percentage completed, the estimated time to
completion, and the bar chart are not always available. Some operating environments

234 Data Transfer Services Tips � Chapter 22

cannot efficiently provide the size of the file, which is necessary to calculate these
estimates.

Sometimes, the information that is provided by the operating environment results in
estimates that are greater than the actual time that is needed for the transfer.
Therefore, the percentage completed, the estimated time to completion, and the bar
chart might show exaggerated estimates, but they will show 100% when the transfer is
completed. �

The following display is an example of the Transfer Status window during a SAS
data set download. The SAS data set being downloaded is PS2DIR.MOVER.

Display 22.1 Transfer Status Window for Downloading a SAS Data Set

The SAS data set PS2DIR.MOVER is being created

Currently transferring byte # 16776 observation # 699
Elapsed time 0:00:09
 69.9 % of transfer completed
Estimated time to completion 0:00:04
0%

DOWNLOAD

100%★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

The following display is an example of the Transfer Status window when an external
text file is downloading. The target file is C:\PMCAP\TEXTDOWN. In this example,
because the server is unable to provide the size of the input file, the Transfer Status
window omits the percentage of transfer completed, the estimated time to completion,
and the bar chart.

Display 22.2 Transfer Status Window for Downloading an External File

The file c:\pmcap\textdown is being created

Currently transferring byte # 104108
Elapsed time 0:00:57

TEXT DOWNLOAD

Data Transfer Services Tips

Tips for Using PROC DOWNLOAD and PROC UPLOAD

� To execute the DOWNLOAD and UPLOAD procedures in the server session, you
must use the RSUBMIT command.

� The rate at which files are transferred varies according to these factors:

� the size and number of files that are being transferred

� the processing load on the server

� the communication access method that is being used

� the network configuration

Using Data Transfer Services � Tips for UPLOAD Only 235

The Transfer Status window keeps you informed of the progress of the transfer.
For details, see “Transfer Status Window” on page 233.

� You cannot transfer a SAS data set to an external file by using the DATA= or the
INLIB= option.

� You cannot transfer an external file to a SAS data set by using the OUT= option.

� To transfer a text file whose record length is greater than 132 bytes, you must
specify the LRECL= option in the FILENAME statement at both the client and
the server. If you omit the LRECL= option, a data truncation error is reported.
For details about the LRECL= option in the FILENAME statement, see the
FILENAME statement in the SAS Companion for z/OS.

� If PROC DOWNLOAD or PROC UPLOAD successfully completes the file transfer,
the macro variable SYSINFO is set to 0. If the file transfer is not successfully
completed, the macro variable SYSINFO is set to a value greater than 0. You can
pass the value of the SYSINFO macro variable back to the client by using the
%SYSRPUT statement. For details, see “%SYSRPUT Statement” on page 158.

� Statements that define librefs and filerefs in the client session must be executed in
the client session by using the SUBMIT command.

� Statements that define librefs or filerefs in the server session must be executed in
the server session by using the RSUBMIT command or the RSUBMIT statement.
Therefore, if librefs or filerefs are defined before the PROC statement, these
statements can be executed along with PROC DOWNLOAD or PROC UPLOAD.

Tips for Using PROC DOWNLOAD Only
� When downloading variable block records to a client from a server that is running

under the z/OS environment, you must specify RECFM=U in the server
FILENAME statement that points to the variable block record. For details about
options in the FILENAME statement, see the FILENAME statement in the SAS
Companion for z/OS.

For example, if the file you are downloading is called MYFILE, you would use:

rsubmit;
filename

myfile ’vb.block.record’ recfm=u;
proc download infile=myfile

outfile=’c:\vb.rec’ binary;
run;

endrsubmit;

After the client’s Log window shows the number of bytes that are transferred,
you would issue the following client FILENAME statement by using the RECFM=
and LRECL= options, where the value of LRECL= is the number of bytes that
were transferred:

filename myfile ’c:\vb.rec’ recfm=s370vb
lrecl=xxxx;

The MYFILE fileref would then be used for subsequent access to the file.

Tips for UPLOAD Only
� If you upload an external file to a server file that is defined with a fixed (F) record

format, all records in the file are padded with blanks to the logical record length.

236 Non-English Keyboards � Chapter 22

Non-English Keyboards
If you use a client that has a non-English keyboard, you probably have some external

files that contain non-English characters. If your server runs under the z/OS operating
environment, some specially accented characters might be translated incorrectly when
you use the DOWNLOAD and UPLOAD procedures. This occurs because of the default
translations from ASCII to EBCDIC and from EBCDIC to ASCII. To solve the problem,
you can do one of the following:

� If SAS/CONNECT is used frequently, you should use an alternate EBCDIC to
ASCII translation table (TRANTAB=) on the server. The SAS Support Consultant
for the server should create the alternate table.

� If SAS/CONNECT is not used frequently, you can manage problematic characters
by assigning the correct hexadecimal values in DATA step programming
statements after the file is copied.

For example, suppose you have a German keyboard and a z/OS operating
environment. You want a file to contain A-umlaut characters after an upload. By
default, the ASCII representation of A-umlaut, which is X’84’, is translated to
EBCDIC X’24’. However, the EBCDIC representation of A-umlaut is X’C0’, so you
need to translate EBCDIC X’24’ to EBCDIC X’C0’. The following DATA step, in
which NAME is a variable that contains A-umlaut characters, performs this
translation:

data new;
set old;
retain to ’C0’x from ’24’x;
drop to from;
name=translate(name,to,from);

run;

237

C H A P T E R

23
The UPLOAD Procedure

Introduction 237
Syntax for the UPLOAD Procedure 238

PROC UPLOAD Statement 238

WHERE Statement 249

EXCLUDE Statement 251

SELECT Statement 252
TRANTAB Statement 253

PROC UPLOAD Output 253

Introduction
After a SAS/CONNECT client connects to a SAS/CONNECT server, you can transfer

files between a client session and a server session by using the UPLOAD procedure.
Using PROC UPLOAD in SAS/CONNECT, you can do the following:
� transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=

options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC UPLOAD step.

� upload specific entries in a catalog or specific members in a library by using the
SELECT and EXCLUDE statements.

� use WHERE processing and SAS data set options when uploading individual SAS
data sets.

� replicate selected data set attributes when uploading a data set.
� transfer data sets and catalog entries that have been modified on or after the

specified date.
� specify which translation table should be used when uploading a SAS catalog.

The syntax and specifications for the UPLOAD procedure are provided here. For
examples that use this syntax, see the following:

Chapter 22, “Using Data Transfer Services,” on page 229
Chapter 15, “Examples of Combining Compute Services and Data Transfer Services,”

on page 189
Chapter 21, “Example of Combining RLS and Data Transfer Services (DTS),” on page

223.

238 Syntax for the UPLOAD Procedure � Chapter 23

Syntax for the UPLOAD Procedure
PROC UPLOAD

<data-set-option(s)>
<catalog-option(s)>
<library-option(s)>
<external-file-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

WHERE where-expression-1 < logical-operator where-expression-n>;

EXCLUDE list </MEMTYPE=mtype | ENTRYTYPE=etype>;

SELECT </MEMTYPE=mtype | ENTRYTYPE=etype>;

TRANTAB NAME=translation-table-name <TYPE=(etype-list)> <OPT=DISP | SRC |
(DISP SRC)>;

PROC UPLOAD Statement

Transfers files from the client to the server.

Valid in: client session
Category: Data Access

Syntax

PROC UPLOAD
<data-set-option(s)>

<catalog-option(s)>
<library-option(s)>
<external-file-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

Syntax Description

� data-set-options can be one or more of the following:

CAUTION:
Do not confuse the PROC UPLOAD data set options with the SAS data set options.
The PROC UPLOAD data set options are valid only in the context of PROC
UPLOAD. However, two of the PROC UPLOAD data set options—DATA= and
OUT=—can be further characterized by SAS data set options. For details, see
the sections on the DATA= option on page 240 and the OUT= option on page
243. �

CONSTRAINT=YES | NO
DATA=client-SAS-data-set

The UPLOAD Procedure � PROC UPLOAD Statement 239

DATECOPY

EXTENDSN=YES | NO

INDEX=YES | NO

OUT=server-SAS-data-set

V6TRANSPORT

� catalog-options can be one or more of the following:

ENTRYTYPE=etype

EXTENDSN=YES | NO

INCAT=client-SAS-catalog

OUTCAT=server-SAS-catalog

� library-options can be one or more of the following:

CONSTRAINT=YES | NO

EXTENDSN=YES | NO

GEN=YES | NO

INDEX=YES | NO

INLIB=client-SAS-library

MEMTYPE=(mtype-list)

OUTLIB=server-SAS-library

VIEWTODATA

V6TRANSPORT

� external-file-options are the following:

BINARY

INFILE=client-file-identifier

OUTFILE=server-file-identifier

PROC UPLOAD Statement Options

AFTER=date
specifies a modification date in the form of a numeric date value or a SAS date
constant.

This option is valid for transferring data sets, catalogs, and libraries. Its use
results in data sets or catalog entries being transferred only if they have been
modified on or after the specified date.

The AFTER= option is also valid for external file transfers between most
computers. If a computer is unable to perform the transfer, this message is displayed:

ERROR: AFTER= not supported on this platform.
NOTE: The SAS System stopped processing this step

because of errors.

Note: The AFTER= option is available in SAS 6.09E, SAS 6.11 TS040, and later. �
For example, the following statement causes the transfer of any data sets or

catalog entries in the library ACCTS only if they have been modified on or after
December 30, 2001.

proc upload inlib=accts outlib=accts
after=’30dec01’d status=no;

240 PROC UPLOAD Statement � Chapter 23

If your client session is using an earlier release of SAS that does not support this
option, PROC UPLOAD produces the following message:

Warning: AFTER= option not supported by earlier
release; option will be ignored.

Note: If the client is running SAS 6.11 TS020 or SAS 6.08 TS415 through SAS
6.08 TS430, the option is ignored, but no warning is displayed. �

BINARY
specifies an upload of a binary image (an exact copy) of an external client file. Use
this option only for uploading external files.

Note: External files are files that are not SAS files. �
By default, if the client and server run in different operating environments (for

example, UNIX and Windows), PROC UPLOAD transfers a file from the client to the
server, translating the file from UNIX representation to Windows representation.
Furthermore, PROC UPLOAD inserts record delimiters that are appropriate for the
target environment.

You do not always want to translate a file. For example, you might need to upload
executable files from the client to the server and later download them to the same or
a different client. Binary file format also conserves resources for users who store
their own files and for system backups. The BINARY option prevents delimiters from
being inserted for each file record that is created at the server. In addition, if the
client and server use a different method of data representation, the BINARY option
prevents any data translation between ASCII and EBCDIC.

For an example of using the BINARY option, see “Example 10. DTS: Distributing
an .EXE File from the Server to Multiple Clients” on page 284.

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window should be displayed during a transfer.
By default, the UPLOAD procedure displays the Transfer Status window. For details,
see “Transfer Status Window” on page 233.

Alias: CSTATUS=, STATUS=

Default: YES

CONSTRAINT=YES | NO
specifies if integrity constraints should be re-created on the server when a SAS data
set that has integrity constraints defined is uploaded. You can specify this option
with the DATA= option (if you omit the OUT= option) or with the INLIB= and
OUTLIB= options.

By default, integrity constraints are re-created only when you upload a SAS library
or when you upload a single SAS data set and omit the OUT= option. If you specify
the OUT= option with the DATA= option, the integrity constraints are not re-created.

DATA=client-SAS-data-set <(SAS-data-set-option(s))>
specifies a SAS data set to upload from the client to the server. If the data set is a
permanent SAS data set, you must define a libref before the PROC UPLOAD
statement and specify the two-level name of the data set.

If you specify the name of a data view in the DATA= option, the materialized data
is uploaded to the server, not to the view definition.

If you do not specify the DATA=, INCAT=, INLIB=, or INFILE= option, the last
SAS data set that was created on the client during your SAS session is uploaded.

Requirements: When you specify the DATA= option, you must either specify the
OUT= option or omit all other output file options.

Interaction: The data set is characterized by SAS data set options that were
specified when the data set was created. For example, specifying the

The UPLOAD Procedure � PROC UPLOAD Statement 241

COMPRESS=YES data set option would cause all observations in the data set to
be compressed. You use SAS data set options to change the data set’s
characteristics or to apply new characteristics.

Featured In: “Specifying Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 247

See: SAS data set options in SAS Language Reference: Dictionary
See Also: OUT= option

DATECOPY
retains the date on which a SAS data set was created and the date on which a SAS
data set was last modified for each data set that is transferred.

ENTRYTYPE=etype
specifies a catalog entry type to be uploaded. Examples of catalog entry types include
DATA and FORMAT.
Alias: ETYPE=, ET=
Requirements: To use this option, you must also specify the INCAT= and

OUTCAT= options.

EXTENDSN=YES | NO
specifies whether to promote the length of short numerics (length less than 8 bytes)
when transferring.

NO
indicates that the length of numeric variables is not promoted.

YES
indicates that 1 will be added to the length of any numeric variable that has a
length of less than 8 bytes before it is transferred to the server.
The behavior of the EXTENDSN= option varies according to the SAS release that

is used.
� If both the client and the server run SAS 8 or a later release, and the

V6TRANSPORT option is specified, the default is to promote the length of a
numeric variable whose length is less than 8 bytes. This is consistent with SAS
6 behavior. To override this behavior, specify EXTENDSN=NO along with the
V6TRANSPORT option in the UPLOAD statement.

� If either the client or the server runs SAS 6, neither the V6TRANSPORT nor
the EXTENDSN= option is supported or recognized.

� If the client runs SAS 6 and the server runs SAS 8 or a later release, a numeric
variable whose length is less than 8 bytes is promoted , by default. In this case,
specify EXTENDSN=NO in order to override the SAS 6 default and to prevent
the promotion.

See “File Format Translation Algorithms” on page 311 for information about
translating file formats between a client and server that run on computers whose
internal representations are incompatible.
Default: NO

GEN=YES | NO
specifies that data set generations are to be sent during library transfers.

YES
specifies that data set generations are sent during library transfers.

NO
specifies that data set generations are not sent during library transfers.

Default: YES

242 PROC UPLOAD Statement � Chapter 23

INCAT=client-SAS-catalog
names a SAS catalog that you want to upload from the client to the server. If the
catalog is stored in a permanent SAS library, you must define a libref before
specifying the PROC UPLOAD statement, and you must specify the catalog’s
two-level name.

To upload all of the catalogs in a SAS library, specify INCAT=libref._ALL_.
If you specify this form for the INCAT= option, you must specify the same form for

the OUTCAT= option.
You can transfer catalogs with entries that contain graphics output as well as

other catalog entries.

CAUTION:
Some catalog entry types are not compatible between SAS releases. If you attempt to
upload a catalog entry from a client to a server and they run different SAS
releases, the client catalog entry that is being uploaded might not be supported at
the server. In this case, the catalog entry will not be transferred and the following
error message is displayed:

WARNING: FILEFMT entries

�

INDEX=YES | NO
specifies whether to re-create an index when you upload a SAS data set to the server
session. Otherwise, an existing index that is associated with the data set being
uploaded can be copied to the server session. The INDEX= option in the DATA step is
used to create an index file that can be copied to the server session. For details about
the INDEX= option in the DATA step, see SAS Language Reference: Dictionary.

The INDEX= option in PROC UPLOAD is relevant under any of these conditions:
� if you use the DATA= option in the PROC UPLOAD statement
� if you use the INLIB= and OUTLIB= options in PROC UPLOAD
� if you omit the OUT= option in PROC UPLOAD

By default, an index will be re-created in the server session under these conditions:
� if you do not specify the INDEX= option, you upload a single data set, and you

omit the OUT= option in PROC UPLOAD
� if you do not specify the INDEX= option, and you upload an entire SAS library

By default, an index will not be re-created in the server session when all of these
conditions are met:

� if you do not specify the INDEX= option
� if you omit the DATA= option in the PROC UPLOAD statement
� if you omit the OUT= option in PROC UPLOAD

For conceptual information about indexing, see SAS Language Reference: Concepts.
If you choose to re-create an index for the data set being uploaded, you must

specify one or more variables to be indexed. For an example, see “Example 13.
Re-creating an Index for a Data Transfer” on page 289.

INFILE=client-file-identifier
specifies the external file that you want to upload to the server from the client.

If you use the INFILE= option, you must also use the OUTFILE= option.
client-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the client that is associated with a single
file. You must define the fileref before specifying the PROC UPLOAD statement.

The UPLOAD Procedure � PROC UPLOAD Statement 243

fileref(member)
is used if you have defined a fileref on the client that is associated with an
aggregate storage location, such as a directory. member specifies one or more files
in that aggregate storage location that should be transferred. An asterisk (*) can
be used as a wildcard character in the member specification of the files to transfer.
Here are the only valid uses of the asterisk wildcard character:

� to specify all files in the specified location (*)
� to specify all files that have the same extension (*.extension)
� to specify all files that have the same name but different extensions (name.*)

You must define the fileref before specifying the PROC UPLOAD statement. For
details about filerefs, see the documentation that is appropriate for your operating
environment.

This example shows how to use a wildcard to transfer all files whose filenames
have the extension .sas and are located in a directory on a server that runs UNIX
to a folder on a client that runs Windows.

filename locref ’c:\’;
rsubmit;

filename fref ’/local/programs’;
proc upload infile=locref(’*.sas’)

outfile=fref;
run;

endrsubmit;

’external-file-name’
is used to explicitly define the file that is to be uploaded.

INLIB=client-SAS-library
specifies a SAS library to upload from the client to the server. This option must be
used with the OUTLIB= option. Before using this option, you must define the libref
that is used for client-SAS-library.
Alias: IN=, INDD=

MEMTYPE=(mtype-list)
specifies one or more member types to be uploaded.

Here are the valid member types:
� ALL
� CATALOG
� DATA
� MDDB
� VIEW

Alias: MTYPE=, MT=
Requirements: To use this option, you must also specify the INLIB= and OUTLIB=

options.

OUTLIB=server-SAS-data-set <(SAS-data-set-option(s))>
OUT=

specifies the SAS data set in the server session that you want the uploaded data set
written to. If you want to create a permanent SAS data set, you must define the
libref before specifying the PROC UPLOAD statement, and you must specify a
two-level SAS data set name.

The transfer of a long name that might be assigned to a data set is restricted by
the SAS release that you are using. SAS releases after SAS 6 support long names
assigned to a data set. If a data set that has a long name is transferred to a server

244 PROC UPLOAD Statement � Chapter 23

that runs SAS 6 or earlier, the long name is truncated. For details about long names,
see SAS Language Reference: Concepts.

The OUT= option is a valid form of the OUTLIB= option. The UPLOAD procedure
determines the meaning of the OUT= option as follows:

� If you specify the DATA= option and the OUT= option, the OUT= option names
the output SAS data set.

For example, if the USER= option is set to MYLIB, the following statement
uploads the data set A from the library MYLIB on the client to the library
MYLIB on the server:

proc upload data=a out=a;
run;

� If you specify only the OUTLIB= option, the UPLOAD procedure uploads the
last SAS data set that was created on the client.

For example, the following statement uploads the last data set that was
created on the client to the data set MYDATA in the library MYLIB on the
server (assuming USER=MYLIB).

proc upload out=mydata;
run;

� If you specify the INLIB= option and the OUTLIB= option, the OUTLIB= option
specifies the name of a SAS library.

For example, the following statement uploads all of the data sets and catalogs
that are in the library A on the client to the library RMTLIB on the server.

proc upload inlib=a outlib=rmtlib;
run;

For details about the effect of omitting the OUTLIB= option, see “Default Naming
Conventions for Uploaded Data Sets” on page 246.
Interaction: Most SAS data set options that were used to characterize the data set

when it was created will not be inherited when the OUT= option is used. Only the
LABEL= and TYPE= data set options are inherited. However, you can explicitly
specify SAS data set options as arguments to the OUT= option when uploading a
data set. For example, specifying the COMPRESS=YES data set option would
cause all observations in the data set to be compressed. You use SAS data set
options to change the data set’s characteristics or to apply new characteristics.

Featured In: “Specifying Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 247

See: SAS data set options in SAS Language Reference: Dictionary
See Also: DATA= option

OUTCAT=server-SAS-catalog
names the SAS catalog that you want to upload to. If you want to create a
permanent SAS catalog, you must define the libref before specifying the PROC
UPLOAD statement, and you must specify a two-level SAS catalog name. To upload
all of the catalogs in a SAS library, specify OUTCAT=libref._ALL_.
Requirements: If you use the OUTCAT= option, you must also use the INCAT=

option. If you specify the _ALL_ option in OUTCAT=, you must also specify _ALL_
in the INCAT= option.

Tip: If you transfer a catalog that contains entries of type PROGRAM, you must
compile the entries on the target operating environment before execution. To
compile all the PROGRAM entries in a catalog, submit (or remotely submit) the
following statements:

The UPLOAD Procedure � PROC UPLOAD Statement 245

proc build cat=libref.member-name batch;
compile;

run;

libref identifies the SAS library that contains the catalog, and member-name
identifies the catalog.

OUTFILE=server-file-identifier
specifies an external file in the server session to which the file in the client session
will be transferred.

Here are the values for server-file-identifier:

“external-filename”
is the physical location of the file in the server session to which the file in the
client session is transferred.

Note: Enclose the filename in double or single quotation marks. �

fileref
is the SAS file name that is associated with the physical location of a single file in
the server session.

Note: You must define the fileref before you can specify it in the PROC
UPLOAD statement. �

fileref(member)
is the fileref that is associated with an aggregate storage location, such as a
directory or a partitioned data set, in the server session. member specifies the file
in the aggregate storage location that will be transferred.

Note: You must define the fileref before you can specify it in the PROC
UPLOAD statement. For details about filerefs for your operating environment, see
the appropriate operating environment companion documentation. �

Note: If a wildcard (*) is used in the INFILE= option, then OUTFILE=fileref
should point to an aggregate storage location such as a directory. �

Requirements: If you use the OUTFILE= option, you must also use the INFILE=
option.

OUTLIB=server-SAS-library
names the destination SAS library on your server where the uploaded data sets and
catalogs from the client are stored. Before using this option, you must define the
libref that is used for server-SAS-library.

Note: The OUTLIB= form of this option is the same as the OUT= option that is
used to specify a SAS data set. When you use the OUTLIB= option, the UPLOAD
procedure determines whether the input option was DATA= or INLIB= and processes
the uploaded objects appropriately. �
Alias: OUTDD=, OUT=

VIEWTODATA
for a library transfer only, causes view descriptor files to be transferred as data sets
instead of as view files, which is the default. If you want some views to be
transferred as view files and other views to be transferred as data sets, you would
have to perform two separate transfers. If you attempt to use this option for a single
data set transfer (by using the DATA= option), an error results.

V6TRANSPORT
specifies that data should be translated by using the SAS 6 data translation
algorithm. Specify this option only when you want to use the SAS 6 translation style

246 PROC UPLOAD Statement � Chapter 23

explicitly and both the client and the server run SAS 8 or a later release. For details
about the data transfer algorithms, see “File Format Translation Algorithms” on page
311.

When V6TRANSPORT is specified, the default behavior is to promote a numeric
variable whose length is less than 8 bytes. To prevent a promotion of this length, you
can use the EXTENDSN=NO option along with the V6TRANSPORT option.

Default Naming Conventions for Uploaded Data Sets
If you omit the OUT= option, which specifies the name of the output data set, from

the UPLOAD statement, SAS follows these rules to determine the name for the data set:
� If the input data set (the data set that is specified in the DATA= option) has a

two-level name and the same libref that is defined for the input data set is also
defined in the server session, the data set is uploaded to the library on the server
that is associated with that libref. The data set has the same member name on the
server.

For example, suppose you submit the following statement:

libname orders
client-SAS-library;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
uploaded to ORDERS.QTR1 on the server.

/***/
/* The libref ORDERS is defined in both */
/* operating environments. */
/***/

libname orders
server-SAS-library;

proc upload data=orders.qtr1;
run;

� If the input data set has a two-level name but the libref for the input data set is
not also defined in the server session, the data set is uploaded to the default
library on the server. This is usually the WORK library, but the library might also
be defined by using the USER libref.

The data set retains the same data set name that it had on the client. For
example, if you remotely submit the following statement, the data set is uploaded
to WORK.QTR2 on the server.

/***/
/* The libref ORDERS is defined only on */
/* the client. */
/***/

proc upload data=orders.qtr2;
run;

� If the input data set has a one-level name and the default libref on the client also
exists on the server, the data set is uploaded to that library.

For example, suppose you submit the following statements:

libname orders
client-SAS-library;

options user=orders;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
uploaded to ORDERS.QTR1 on the server.

The UPLOAD Procedure � PROC UPLOAD Statement 247

/***/
/* The libref ORDERS is defined in both */
/* operating environments. */
/***/

libname orders
server-SAS-library;

libname remote
server-SAS-library;
/************************************/
/* This option has no effect in */
/* this case. */
/************************************/

options user=remote;
proc upload data=qtr1;
run;

� If the input data set has a one-level name and the default libref on the client does
not exist on the server, the data set is uploaded to the default library on the
server. That is, the USER libref on the server is used only if the USER libref on
the client does not exist on the server.

For example, suppose you submit these statements:

libname orders
client-SAS-library;

options user=orders;

When you remotely submit the following statements, the data set
ORDERS.QTR1 is uploaded to REMOTE.QTR1 on the server.

/***/
/* The libref ORDERS is defined only on */
/* the server. */
/***/

libname remote
server-SAS-library;

options user=remote;
proc upload data=qtr1;
run;

� If you omit the DATA= option, the last data set that was created on the client
during the SAS session is uploaded to the server, as follows:

proc upload;
run;

The naming conventions on the server follow one of the previously described rules,
based on how the last data set was created.

Specifying Data Set Options for the DATA= and OUT= Options in PROC
UPLOAD and PROC DOWNLOAD

Restrictions on Using Data Set Options
You can specify SAS data set options only in the DATA= and OUT= options of the
PROC UPLOAD statement.

You cannot specify SAS data set options in the INLIB= and OUTLIB= options, even
when uploading a single data set. A data set option must be associated with a specific
SAS data set.

248 PROC UPLOAD Statement � Chapter 23

An uploaded SAS data set inherits characteristics from the selected SAS data set
options that are listed in this table under any of these conditions:

� DATA= option is used
� INLIB= and OUTLIB= options are used
� DATA=, INLIB= and OUTLIB= are not used

Table 23.1 Default SAS Data Set Options for Data Set Uploads

SAS Data Set Option Definition Inherited When
PROC UPLOAD
DATA= Is Used

Inherited When
PROC UPLOAD
OUT= Is Used

ALTER= Specifies a password
for ALTER protection.

Yes No

COMPRESS Specifies whether to
compress observations,
or specifies the
compression method.

Yes No

GENMAX= Specifies the
maximum number of
generations.

Yes No

INDEX= Specifies whether to
index a data set.

The index for an
uploaded SAS data set
is re-created on the
server, not copied from
the client. To prevent
the re-creation of the
index, you can specify
the INDEX=NO option
in the PROC UPLOAD
statement, as
described in “PROC
UPLOAD Statement
Options” on page 239.

Yes No

LABEL= Specifies whether to
label a data set.

Yes Yes

READ= Specifies a password
for read protection.

Yes No

REUSE= Specifies whether to
reuse free space in
compressed data sets.

Yes No

SORTEDBY= Specifies the variables
by which the data set
is sorted.

Yes No

The UPLOAD Procedure � WHERE Statement 249

SAS Data Set Option Definition Inherited When
PROC UPLOAD
DATA= Is Used

Inherited When
PROC UPLOAD
OUT= Is Used

TYPE= Specifies the data set
type.

Yes Yes

WRITE= Specifies the password
for WRITE protection.

Yes No

Example 1: KEEP= Option
In this example, the KEEP= SAS data set option is used as an argument to the DATA=
option in PROC UPLOAD. Because the OUT= option is omitted, the uploaded data set
inherits the characteristics of the input data set, including a default action to re-create
the index. For details about the KEEP= data set option and a complete list of SAS data
set options, see SAS Language Reference: Dictionary.

proc upload data=study(keep=age score1 score2);
run;

Example 2: OUT= Option
In this example, because the OUT= option is specified, the uploaded data set does not
inherit the characteristics of the input data set study. Instead, the data set is renamed
as results in the server session. The uploaded data set also inherits only the LABEL=
and TYPE= data set options. For details about the LABEL= and TYPE= SAS data set
options, see SAS Language Reference: Dictionary.

proc upload data=study out=results;
run;

Example 3: KEEP= and OUT= Options
In this example, the KEEP= SAS data set option is used as an argument to the OUT=
option in PROC UPLOAD. Because the OUT= option is specified, the uploaded data set
does not inherit the characteristics of the input data set study. Instead, the data set is
renamed as results in the server session. The uploaded data set also inherits only the
LABEL= and TYPE= data set options. The INDEX=NO data set option specifies that
the index will not be re-created in the server session.

For details about the LABEL=, TYPE=, and KEEP= SAS system options, see SAS
Language Reference: Dictionary.

proc upload data=study out=results(keep=age score1 score2) index=no;
run;

WHERE Statement

Selects observations from SAS data sets.

Restrictions: The UPLOAD procedure processes WHERE statements when you transfer a
single SAS data set.
See also: WHERE Statement Syntax in SAS Language Reference: Dictionary

250 WHERE Statement � Chapter 23

Syntax

WHERE where-expression-1 < logical-operator where-expression-n>;

Syntax Description

where-expression-1
is a WHERE expression.

logical-operator
is one of the following logical operators:

AND
AND NOT
OR
OR NOT

where-expression-n
is a WHERE expression.
WHERE statements allow multiple WHERE expressions that are joined by logical

operators.
You can use SAS functions in a WHERE expression. Also, note that a DATA step or a

PROC step attempts to use an available index to optimize the selection of data when an
indexed variable is used in combination with one of the following:

� CONTAINS operator
� LIKE operator
� colon modifier with a comparison operator
� TRIM function
� SUBSTR function (in some cases)

To understand when using the SUBSTR function causes an index to be used, look at
the format of the SUBSTR function in a WHERE statement:

where substr(variable, position, length)
=’character-string’;

An index is used in processing when all of the following conditions are met:
� position is equal to 1
� length is less than or equal to the length of variable
� length is equal to the length of character-string

The following example illustrates using a WHERE statement with the UPLOAD
procedure. The uploaded data set contains only the observations that meet the WHERE
condition.

proc upload data=revenue out=new;
where origin=’Atlanta’ and revenue < 10000;

run;

For details, see WHERE statement in the SAS Language Reference: Dictionary.

The UPLOAD Procedure � EXCLUDE Statement 251

EXCLUDE Statement

Excludes library members or catalog entries from uploading.

Restrictions: You cannot use the EXCLUDE and SELECT statements in the same PROC
UPLOAD step.

Syntax

EXCLUDE lib-member-list </ MEMTYPE=mtype >;

EXCLUDE cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=

and OUTLIB= options in the PROC UPLOAD statement.
Use the format cat-entry-list </ ENTRYTYPE=etype> when you specify the INCAT=

and OUTCAT= options in the PROC UPLOAD statement.

lib-member-list
specifies which library members to exclude from uploading. You can name each
member explicitly or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the letters
TEST are excluded.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2, or
TEST3 are excluded.
Restrictions: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to exclude from uploading. Each element of
cat-entry-list has the form entry.type.

entry is the name of an entry in the catalog to exclude from uploading.

.type is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from uploading.

Here are the valid member types:
� ALL
� CATALOG
� DATA
� MDDB
� VIEW

Alias: MTYPE=, MT=

252 SELECT Statement � Chapter 23

Requirements: To use this option, you must also specify the INLIB= and OUTLIB=
options in the PROC UPLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from uploading. Examples of catalog entry
types include FORMAT and DATA.
Alias: ETYPE=, ET=
Requirements: To use this option, you must specify the INCAT= and OUTCAT=

options in the PROC UPLOAD statement.

SELECT Statement

Selects specific library members or catalog entries to upload.

Restrictions: You cannot use the EXCLUDE and SELECT statements in the same PROC
UPLOAD step.

Syntax

SELECT lib-member-list </ MEMTYPE=mtype>;

SELECT cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=

and OUTLIB= options in the PROC UPLOAD statement.
Use the format cat-entry-list </ ENTRYTYPE=etype> when you specify the INCAT=

and OUTCAT= options in the PROC UPLOAD statement.

lib-member-list
specifies which library members to upload. You can name each member explicitly or
use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the letters
TEST are selected for uploading.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2, or
TEST3 are selected for uploading.
Restrictions: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to upload. Each element of cat-entry-list has the form
entry.type.

entry is the name of an entry in the catalog to upload.

.type is the type of the catalog entry. This part of the name is optional.

The UPLOAD Procedure � PROC UPLOAD Output 253

MEMTYPE=mtype
specifies a member type to upload.

Here are the valid member types:

� ALL

� CATALOG

� DATA

� MDDB

� VIEW

Alias: MTYPE=, MT=

Requirements: To use this option, you must also specify the INLIB= and OUTLIB=
options in the PROC UPLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to upload. Examples of catalog entry types include
FORMAT and DATA.

Alias: ETYPE=, ET=

Requirements: To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC UPLOAD statement.

Note: The SELECT statement also enables you to maintain an ordering and
grouping of catalog entries that contain graphics output, because entries are uploaded
into the server SAS catalog in the order that you specify them in the SELECT
statement. �

TRANTAB Statement

Specifies the translation table to use when translating character data for an upload from a SAS/
CONNECT client to a SAS/CONNECT server.

Requirements: To use the TRANTAB statement, you must specify the INCAT= and
OUTCAT= options in the PROC UPLOAD statement.

Restrictions: You can specify only one translation table per TRANTAB statement. To
specify additional translation tables, use additional TRANTAB statements.

See: The TRANTAB Statement for the SAS/CONNECT UPLOAD and DOWNLOAD
procedure in the SAS National Language Support (NLS): Reference Guide

TRANTAB NAME=translation-table-name
<option(s)>;

PROC UPLOAD Output

The UPLOAD procedure writes a series of informative messages to the SAS log when it
executes. Examples of these messages are shown in this output:

254 PROC UPLOAD Output � Chapter 23

Output 23.1 SAS Log Messages from the UPLOAD Procedure

NOTE: Remote submit to B commencing.
1 proc upload infile=’client-external-file’
2 outfile=’server-external-file’;run;

NOTE: TEXT upload in progress from infile=client-external-file
to outfile=server-external-file

NOTE: Uploaded 4 records and 136 bytes.
NOTE: 4 records were read from the file client-external-file

The maximum record length was 65.
The minimum record length was 0.

NOTE: 136 bytes were transferred at 68 bytes/second.
NOTE: The PROCEDURE UPLOAD used 0.04 CPU seconds and 1431K.

NOTE: Remote submit to B complete.
$

255

C H A P T E R

24
The DOWNLOAD Procedure

Introduction 255
Syntax for the DOWNLOAD Procedure 256

PROC DOWNLOAD Statement 256

WHERE Statement 265

EXCLUDE Statement 266

SELECT Statement 267
TRANTAB Statement 269

PROC DOWNLOAD Output 269

Introduction
After you have started SAS/CONNECT, you can transfer SAS files between your

client session and the server. The DOWNLOAD procedure copies SAS files that are
stored on the server to the client.

Using PROC DOWNLOAD, you can do the following:
� transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=

options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC DOWNLOAD step.

� download specific entries in a catalog or specific members in a library by using the
SELECT and EXCLUDE statements.

� use WHERE processing and SAS data set options when downloading individual
SAS data sets.

� replicate selected data set attributes when downloading a data set.
� transfer data sets and catalog entries that have been modified on or after the

specified date.
� specify the translation table to be used when you download a SAS catalog.

The syntax and specifications for the DOWNLOAD procedure are described here. For
examples that use this syntax, see the following

Chapter 22, “Using Data Transfer Services,” on page 229
Chapter 15, “Examples of Combining Compute Services and Data Transfer Services,”

on page 189
Chapter 21, “Example of Combining RLS and Data Transfer Services (DTS),” on page

223.

256 Syntax for the DOWNLOAD Procedure � Chapter 24

Syntax for the DOWNLOAD Procedure

PROC DOWNLOAD

<data-set-option(s)>
<catalog-option(s)>
<external-file-option(s)>
<library-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

WHERE where-expression-1 < logical-operator where-expression-n>;

EXCLUDE list </MEMTYPE=mtype | ENTRYTYPE=etype>;

SELECT </MEMTYPE=mtype | ENTRYTYPE=etype>;

TRANTAB NAME=translation-table-name <TYPE=(etype-list)> <OPT=DISP | SRC |
(DISP SRC)>;

PROC DOWNLOAD Statement

Transfers files from the server to the client.

Valid in: client session

Category: Data Access

Syntax

PROC DOWNLOAD

<data-set-option(s)>
<catalog-option(s)>
<library-option(s)>
<external-file-option(s)>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

Syntax Description

� data-set-options can be one or more of the following:

CAUTION:
Do not confuse the PROC DOWNLOAD data set options with the SAS data set options.
The PROC DOWNLOAD data set options are valid only in the context of PROC
DOWNLOAD. However, two of the PROC DOWNLOAD data set options —
DATA= and OUT= — can be further characterized by SAS data set options. For
details, see the sections on the DATA= option on page 259 and the OUT= option
on page 261. �

The DOWNLOAD Procedure � PROC DOWNLOAD Statement 257

CONSTRAINT= YES | NO
DATA=server-SAS-data-set

DATECOPY

EXTENDSN=YES | NO
INDEX=YES | NO

OUT=client-SAS-data-set

V6TRANSPORT
� catalog-options can be one or more of the following:

ENTRYTYPE=etype

EXTENDSN=YES | NO

INCAT=server-SAS-catalog

OUTCAT=client-SAS-catalog

� library-options can be one or more of the following:
CONSTRAINT=YES | NO
EXTENDSN=YES | NO

GEN=YES | NO
INDEX=YES | NO

INLIB=server-SAS-library

MEMTYPE=(mtype-list)
OUTLIB=client-SAS-library

VIEWTODATA
V6TRANSPORT

� external-file-options are the following:
BINARY
INFILE=server-file-identifier

OUTFILE=client-file-identifier

PROC DOWNLOAD Statement Options

AFTER=date
specifies a modification date in the form of a numeric date value or a SAS date
constant.

This option is valid for transferring data sets, catalogs, and libraries. Its use
results in data sets or catalog entries being transferred only if they have been
modified on or after the specified date.

The AFTER= option is also valid for external file transfers between most
computers. If a computer is unable to perform the transfer, this message is displayed:

ERROR: AFTER= not supported on this platform.
NOTE: The SAS System stopped processing this step

because of errors.

Note: The AFTER= option is available in SAS 6.09E, SAS 6.11, TS040, and
later. �

For example, the following statements cause the transfer of data sets only if they
were modified within the last week.

258 PROC DOWNLOAD Statement � Chapter 24

/************************************/
/* Download all data sets that have */
/* been modified in the last week. */
/************************************/

rsubmit;
data _null_;
today=date();
lastweek=today-7;
call symput(’lastweek’,lastweek);
run;
proc download in=perm out=work

after=&lastweek memtype=data;
run;

endrsubmit;

If your client session is using an earlier release of SAS that does not support the
AFTER= option, PROC DOWNLOAD still executes this option because the server has
the input data set.

BINARY
specifies a download of a binary image (an exact copy) of an external server file. Use
this option only for downloading external files.

Note: External files are files that are not SAS files. �
By default, if the client and server run in different operating environments (for

example, UNIX and Windows), PROC DOWNLOAD transfers a file from the client to
the server, translating the file from UNIX representation to Windows representation.
PROC DOWNLOAD also inserts record delimiters that are appropriate for the target
environment.

You do not always want to translate a file. For example, you might need to
download executable files from the server to the client and later upload them back to
the server. Binary file format also saves resources for users who store their own files
and for system backups. The BINARY option prevents delimiters from being inserted
for each file record that is created at the client. In addition, if the client and server
use a different method of data representation, the BINARY option prevents any data
translation between ASCII and EBCDIC.

For an example of using the BINARY option, see “Example 10. DTS: Distributing
an .EXE File from the Server to Multiple Clients” on page 284.

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window should be displayed during a transfer.
By default, the DOWNLOAD procedure displays the Transfer Status window
(CONNECTSTATUS=YES). For details, see “Transfer Status Window” on page 233.

Alias: CSTATUS=, STATUS=

Default: YES

CONSTRAINT=YES | NO
specifies if integrity constraints should be re-created on the client when a SAS data
set that has integrity constraints defined is downloaded. You can specify this option
with the DATA= option (if you omit the OUT= option) or with the INLIB= and
OUTLIB= options.

By default, integrity constraints are re-created only when you download a SAS
library or when you download a single SAS data set and omit the OUT= option. If
you specify the OUT= option with the DATA= option, the integrity constraints are
not re-created.

The DOWNLOAD Procedure � PROC DOWNLOAD Statement 259

DATA=server-SAS-data-set <(SAS-data-set-option(s))>
specifies a SAS data set that you want to download from the server to the client. If
the data set is a permanent SAS data set, you must define a libref before the PROC
DOWNLOAD statement and specify the two-level name of the data set.

If you specify the name of a data view in the DATA= option, the materialized data
is downloaded to the client, not to the view definition.

If you do not specify the DATA=, INCAT=, INFILE=, or INLIB= option, the last
SAS data set that was created on the server during your SAS session is downloaded.

Requirements: If you specify the DATA= option, you must either use the OUT=
option or omit all other options.

Featured In: “Specifying Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 247

See: SAS data set options in SAS Language Reference: Dictionary.

See Also: OUT= option

DATECOPY
retains the date on which a SAS data set was created and the date on which a SAS
data set was last modified for each data set that is transferred.

ENTRYTYPE=etype
specifies a catalog entry type to be downloaded. Examples of catalog entry types
include DATA and FORMAT.

Alias: ETYPE=, ET=

Requirements: To use this option, you must also specify the INCAT= and
OUTCAT= options.

EXTENDSN=YES | NO
specifies whether to promote the length of short numerics (length less than 8 bytes)
when transferring.

NO
indicates that the length of numeric variables is not promoted.

YES
indicates that 1 will be added to the length of any numeric variable that has a
length of less than 8 bytes before it is transferred to the client computer.
The behavior of the EXTENDSN= option varies according to the SAS release that

is used.

� If both the client and the server run SAS 8 or a later release, and the
V6TRANSPORT option is specified, the default is to promote the length of the
numeric variable whose length is less than 8 bytes. This is consistent with SAS
6 behavior. To override this behavior, specify EXTENDSN=NO along with the
V6TRANSPORT option in the DOWNLOAD statement.

� If either the client or the server runs SAS 6, neither the V6TRANSPORT nor
the EXTENDSN= option is supported or recognized.

� If the client runs SAS 6 and the server runs SAS 8 or a later release, a numeric
variable whose length is less than 8 bytes is promoted by default. In this case,
specify EXTENDSN=NO in order to override the SAS 6 default and to prevent
the promotion.

See “File Format Translation Algorithms” on page 311 for information about
translating file formats between a client and server that run on computers whose
internal representations are incompatible.

Default: NO

260 PROC DOWNLOAD Statement � Chapter 24

GEN=YES | NO
specifies that data set generations are to be sent during library transfers.

YES
specifies that data set generations are sent during library transfers.

NO
specifies that data set generations are not sent during library transfers.

Default: YES

INCAT=server-SAS-catalog
names a SAS catalog that you want to download from the server to your client. If the
catalog is stored in a permanent SAS library, you must define a libref before
specifying the PROC DOWNLOAD statement, and you must specify the catalog’s
two-level name.

To download all of the catalogs in a SAS library, specify INCAT=libref._ALL_.
If you specify this form for the INCAT= option, you must specify the same form for

the OUTCAT= option.
You can transfer catalogs with entries that contain graphics output as well as

other catalog entries.

CAUTION:
Some catalog entry types are not compatible between SAS releases. If you attempt to
download a catalog entry from a server to a client and they run different SAS
releases, the client catalog entry that is being downloaded might not be supported
at the client. In this case, the catalog entry will not be transferred and the
following error message is displayed:

WARNING: FILEFMT entries

�

INDEX=YES | NO
specifies whether to re-create an index at the client when you download a SAS data
set. You can specify this option when using the DATA= option (if you omit the OUT=
option) or when using the INLIB= and OUTLIB= options.

If you download a single data set and omit the OUT= option, or if you download a
SAS library, the index is re-created by default.

If you specify the OUT= option and the DATA= option, the index is not re-created.

INFILE=server-file-identifier
specifies the external file that you want to download from the server to the client.

If you use the INFILE= option, you must also use the OUTFILE= option.
server-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the server that is associated with a single
file. You must define the fileref before specifying the PROC DOWNLOAD
statement.

fileref(member)
is used if you have defined a fileref on the server that is associated with an
aggregate storage location, such as a directory or a partitioned data set. member
specifies one or more files in that aggregate storage location that should be
transferred. An asterisk (*) can be used as a wildcard character in the member
specification of the files to transfer. Here are the only valid uses of the asterisk
wildcard character:

� to specify all files in the specified location (*)

The DOWNLOAD Procedure � PROC DOWNLOAD Statement 261

� to specify all files that have the same extension (*.extension)
� to specify all files that have the same name but different extensions (name.*)

You must define the fileref before specifying the PROC DOWNLOAD statement.
For details about filerefs, see the appropriate documentation for your operating
environment.

This example shows how to use a wildcard to transfer all files whose filenames
have the extension .sas and are located in a directory on a server that runs UNIX
to a folder on a client that runs Windows.

filename locref ’c:\’;
rsubmit;

filename fref ’/local/programs’;
proc download infile=fref(’*.sas’)

outfile=locref;
run;

endrsubmit;

’external-file-name’
is used to explicitly define the file that is to be downloaded.

INLIB=server-SAS-library
specifies a SAS library to download from the server to the client. All three forms of
this option are equivalent. This option must be used with the OUTLIB= option (in
any of its forms). Before using this option, you must define the libref that is used for
server-SAS-library.

Alias: INDD=, IN=

MEMTYPE=(mtype-list)
specifies one or more member types to be downloaded.

Here are the valid member types:

� ALL

� CATALOG
� DATA

� MDDB

� VIEW

Alias: MTYPE=, MT=
Requirements: To use this option, you must also specify the INLIB= and OUTLIB=

options.

OUT=client-SAS-data-set <(SAS-data-set-option(s))>
names the SAS data set on the client that you want the downloaded data set written
to. If you want to create a permanent SAS data set, you must define the libref before
specifying the PROC DOWNLOAD statement, and you must specify a two-level SAS
data set name.

The OUT= option is a valid form of the OUTLIB= option. The DOWNLOAD
procedure determines the meaning of the OUT= option as follows:

� If you specify the DATA= option and the OUT= option, the OUT= option names
the output SAS data set.

For example, if the USER= option is set to MYLIB, the following statement
downloads the data set A from the library MYLIB on the server to the library
MYLIB on the client:

proc download data=a out=a;
run;

262 PROC DOWNLOAD Statement � Chapter 24

� If you specify only the OUT= option, the DOWNLOAD procedure downloads the
last SAS data set that was created on the server.

For example, the following statement downloads the last data set that was
created on the server to the data set MYDATA in the library MYLIB on the
client (assuming USER=MYLIB).

proc download out=mydata;
run;

� If you specify the INLIB= option and the OUT= option, the OUT= option
specifies the name of a SAS library.

For example, the following statement downloads all of the data sets and
catalogs that are in the library A on the server to the library RMTLIB on the
client:

proc download inlib=a out=rmtlib;
run;

For details about the effect of omitting the OUT= option, see “Default Naming
Conventions for Downloaded Data Sets” on page 263.
Featured In: “Specifying Data Set Options for the DATA= and OUT= Options in

PROC UPLOAD and PROC DOWNLOAD” on page 247
See: SAS data set options in SAS Language Reference: Dictionary

See Also: DATA= option

OUTCAT=client-SAS-catalog
names the SAS catalog on the client that you want the downloaded catalog written
to. If you want to create a permanent SAS catalog, you must define the libref before
specifying the PROC DOWNLOAD statement, and you must specify a two-level SAS
catalog name. To download all of the catalogs in a SAS library, specify
OUTCAT=libref._ALL_.
Requirements: If you specify the OUTCAT= option, you must also specify the

INCAT= option. If you specify _ALL_ in the OUTCAT= option, you must also
specify _ALL_ in the INCAT= option.

Tip: If you transfer a catalog that contains entries of type PROGRAM, you must
compile the entries on the target operating environment before execution. To
compile all the PROGRAM entries in a catalog, submit (or remotely submit) the
following statements:

proc build cat=libref.member-name batch;
compile;

run;

libref identifies the SAS library that contains the catalog and member-name
identifies the catalog.

OUTFILE=client-file-identifier
identifies an external file on the client that you want a downloaded external file
written to.

client-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the client that is associated with a single file.
You must define the fileref before specifying the PROC DOWNLOAD statement.

fileref(member)
is used if you have defined a fileref on the client that is associated with an
aggregate storage location such as a directory. member specifies which file in that

The DOWNLOAD Procedure � PROC DOWNLOAD Statement 263

aggregate storage location should be transferred. You must define the fileref before
specifying the PROC DOWNLOAD statement. For details about filerefs for your
operating environment, see the appropriate operating environment companion
documentation.

Note: If a wildcard (*) is used in the INFILE= option, then OUTFILE=fileref
should point to an aggregate storage location such as a directory. �

’external-file-name’
is used to explicitly define the file that is to be downloaded.

Requirements: If you use the OUTFILE= option, you must also use the INFILE=
option.

OUTLIB=client-SAS-library
names the destination SAS library on your client where the downloaded data sets
and catalogs from the server are stored. All three forms of this option are equivalent.
Before using this option, you must define the libref that is used for client-SAS-library.

Note: The OUT= form of this option is the same as the OUT= option that is used
to specify a SAS data set. When you use the OUTLIB= option, the DOWNLOAD
procedure determines whether the input option was DATA= or INLIB= and processes
the downloaded objects appropriately. �

The OUTLIB= option must be used with the INLIB= option, but you can use any
form of the OUTLIB= option with any form of the INLIB= option. See the description
of the INLIB= option for examples that illustrate some valid pairs of these options.
Alias: OUTDD=, OUT=

VIEWTODATA
for a library transfer only, causes view descriptor files to be transferred as data sets
instead of as view files, which is the default. If you want some views to be
transferred as view files and other views to be transferred as data sets, you would
have to perform two separate transfers. If you attempt to use this option for a single
data set transfer (by using the DATA= option), an error results.

V6TRANSPORT
specifies that data should be translated by using the SAS 6 data translation
algorithms. Specify this option only when you want to use the SAS 6 translation
style explicitly and both the client and the server run SAS 8 or a later release of
SAS. For details about the data transfer algorithms, see “File Format Translation
Algorithms” on page 311.

When V6TRANSPORT is specified, the default behavior is to promote a numeric
variable whose length is less than 8 bytes. To prevent a promotion of this length, you
can use the EXTENDSN=NO option along with the V6TRANSPORT option.

Default Naming Conventions for Downloaded Data Sets
If you omit the OUT= option, which specifies the name of the output data set, from

the DOWNLOAD statement, SAS follows these rules to determine the name for the
data set:

� If the input data set (the data set that is specified in the DATA= option) has a
two-level name and the same libref that is defined for the input data set is also
defined in the client environment, the data set is downloaded to the library on the
client that is associated with that libref. The data set has the same member name
on the client.

For example, suppose you submit the following statement:

libname orders
client-SAS-library;

264 PROC DOWNLOAD Statement � Chapter 24

If you remotely submit the following statements, the data set ORDERS.QTR1 is
downloaded to ORDERS.QTR1 on the client.

/***/
/* The libref ORDERS is defined on both */
/* the client and server. */
/***/

libname orders
server-SAS-library;

proc download data=orders.qtr1;
run;

� If the input data set has a two-level name but the libref for the input data set is
not also defined in the client environment, the data set is downloaded to the
default library on the client. This is usually the WORK library, but the library
might also be defined by using the USER libref.

The data set retains the same data set name that it had on the server. For
example, if you remotely submit the following statements, the data set is
downloaded to WORK.QTR2 on the client.

/***/
/* The libref ORDERS is defined only on */
/* the server. */
/***/

libname orders
server-SAS-library;

proc download data=orders.qtr2;
run;

� If the input data set has a one-level name and the default libref on the server also
exists on the client, the data set is downloaded to that library.

For example, suppose you submit the following statement:

libname orders
client-SAS-library;

libname local
client-SAS-library;
/************************************/
/* This option has no effect in */
/* this case. */
/************************************/

options user=local;

If you remotely submit the following statements, the data set ORDERS.QTR1 is
downloaded to ORDERS.QTR1 on the client.

/***/
/* The libref ORDERS is defined on both */
/* hosts. */
/***/

libname orders
server-SAS-library;

options user=orders;
proc download data=qtr1;
run;

� If the input data set has a one-level name and the default libref on the server does
not exist on the client, the data set is downloaded to the default library on the

The DOWNLOAD Procedure � WHERE Statement 265

client. That is, the USER libref on the client is used only if the USER libref on the
server does not exist on the client.

For example, suppose you submit these statements:

libname local
client-SAS-library;

options user=local;

When you remotely submit the following statements, the data set
ORDERS.QTR1 is downloaded to LOCAL.QTR1 on the client.

/***/
/* The libref ORDERS is defined only on */
/* the servers. */
/***/

libname orders
server-SAS-library;

options user=orders;
proc download data=qtr1;
run;

� If you omit the DATA= option, the last data set that was created on the server
during the SAS session is downloaded to the client, as follows:

proc download;
run;

The naming conventions on the client follow one of the previously described rules,
based on how the last data set was created.

WHERE Statement

Selects observations from SAS data sets.

Restrictions: The DOWNLOAD procedure processes WHERE statements when you
transfer a single SAS data set.

See also: WHERE Statement Syntax in SAS Language Reference: Dictionary

Syntax

WHERE where-expression-1 <logical-operator where-expression-n>;

where-expression-1
is a WHERE expression.

logical-operator
is one of the following logical operators:

AND

AND NOT

OR

OR NOT

266 EXCLUDE Statement � Chapter 24

where-expression-n
is a WHERE expression.
WHERE statements allow multiple WHERE expressions that are joined by logical

operators.
You can use SAS functions in a WHERE expression. Also, note that a DATA step or a

PROC step attempts to use an available index to optimize the selection of data when an
indexed variable is used in combination with one of the following:

� CONTAINS operator

� LIKE operator

� colon modifier with a comparison operator

� TRIM function

� SUBSTR function (in some cases)

To understand when using the SUBSTR function causes an index to be used, look at
the format of the SUBSTR function in a WHERE statement:

where substr(variable, position, length)
= ’character-string’;

An index is used in processing when all of the following conditions are met:

� position is equal to 1

� length is less than or equal to the length of variable

� length is equal to the length of character-string

The following example illustrates using a WHERE statement with the DOWNLOAD
procedure. The downloaded data set contains only the observations that meet the
WHERE condition.

proc download data=revenue out=new;
where origin=’Atlanta’ and revenue < 10000;

run;

For details, see the WHERE statement in SAS Language Reference: Dictionary.

EXCLUDE Statement

Excludes library members or catalog entries from downloading.

Syntax

EXCLUDE lib-member-list </ MEMTYPE=mtype >;

EXCLUDE cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description

Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=
and OUTLIB= options in the PROC DOWNLOAD statement.

Use the format cat-entry-list </ ENTRYTYPE=etype> when you specify the INCAT=
and OUTCAT= options in the PROC DOWNLOAD statement.

The DOWNLOAD Procedure � SELECT Statement 267

lib-member-list
specifies which library members to exclude from downloading. You can name each
member explicitly or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the letters
TEST are excluded.

first -last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2, or
TEST3 are excluded.
Restrictions: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to exclude from downloading. Each element of
cat-entry-list has the form entry.type.

entry is the name of an entry in the catalog to exclude from
downloading.

.type is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from downloading.

Here are the valid member types:
� ALL
� CATALOG
� DATA
� MDDB
� VIEW

Alias: MTYPE=, MT=
Requirements: To use this option, you must also specify the INLIB= and OUTLIB=

options in the PROC DOWNLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from downloading. Examples of catalog entry
types include FORMAT and DATA.
Alias: ETYPE=, ET=
Requirements: To use this option, you must specify the INCAT= and OUTCAT=

options in the PROC DOWNLOAD statement.

SELECT Statement

Selects specific library members or catalog entries to download.

Restrictions: You cannot use both the EXCLUDE and SELECT statements in the same
PROC DOWNLOAD step.

268 SELECT Statement � Chapter 24

Syntax

SELECT lib-member-list </ MEMTYPE=mtype>;

SELECT cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB=

and OUTLIB= options in the PROC DOWNLOAD statement.
Use the format cat-entry-list </ ENTRYTYPE=etype> when you specify the INCAT=

and OUTCAT= options in the PROC DOWNLOAD statement.

lib-member-list
specifies which library members to download. You can name each member explicitly
or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix. For
example, if you specify TEST:, all members with names that begin with the letters
TEST are selected for downloading.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2, or
TEST3 are selected for downloading.
Restrictions: first and last must begin with identical character strings and must

end in a number.

cat-entry-list
specifies which catalog entries to download. Each element of cat-entry-list has the
form entry.type.

entry is the name of an entry in the catalog to download.

.type is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to download.

Here are the valid member types:

� ALL

� CATALOG

� DATA

� MDDB
� VIEW

Alias: MTYPE=, MT=
Requirements: To use this option, you must also specify the INLIB= and OUTLIB=

options in the PROC DOWNLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to download. Examples of catalog entry types include
FORMAT and DATA.

Alias: ETYPE=, ET=

Requirements: To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC DOWNLOAD statement.

The DOWNLOAD Procedure � PROC DOWNLOAD Output 269

Note: The SELECT statement also enables you to maintain an ordering and
grouping of catalog entries that contain graphics output, because entries are downloaded
into the client SAS catalog in the order that you specify them in the SELECT statement.

For an example of using the SELECT statement to maintain the order and grouping
of catalog entries that contain graphics output, see “Example 3.4: Using the
ENTRYTYPE= Option in Two SELECT Statements in PROC DOWNLOAD” on page
275. �

TRANTAB Statement

Specifies the translation table to use when translating character data for a download from the
server to the client.

Requirements: To use the TRANTAB statement, you must specify the INCAT= and
OUTCAT= options in the PROC DOWNLOAD statement.
Restrictions: You can specify only one translation table per TRANTAB statement. To
specify additional translation tables, use additional TRANTAB statements.
See: The TRANTAB Statement for the SAS/CONNECT UPLOAD and DOWNLOAD
procedures in the SAS National Language Support (NLS): Reference Guide.

TRANTAB NAME=translation-table-name
<option(s)>;

PROC DOWNLOAD Output
The DOWNLOAD procedure writes a series of informative messages to the SAS log

when it executes. Examples of these messages are shown in the following output.

Output 24.1 SAS Log Messages from the DOWNLOAD Procedure

NOTE: Remote submit to B commencing.
1 proc download outfile=’client-external-file’
2 infile=’server-external-file’;run;
NOTE: TEXT download in progress from

infile=server-external-file to
outfile=client-external-file

NOTE: Downloaded 4 records and 136 bytes.
NOTE: 4 records were written to the file client-external-file.

The maximum record length was 65.
The minimum record length was 0.

NOTE: 136 bytes were transferred at 136 bytes/second.
NOTE: The PROCEDURE DOWNLOAD used 0.05 CPU seconds and 1455K.

NOTE: Remote submit to B complete.
$

270

271

C H A P T E R

25
Examples of Data Transfer
Services (DTS)

Example 1. DTS: Transferring Data by Using WHERE Statements 272
Purpose 272

Program 272

Example 2. DTS: Transferring Specific Member Types 273

Purpose 273

Programs 273
Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD Statement 273

Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement 273

Example 2.3: Using the MEMTYPE= Option in the SELECT Statement 274

Example 3. DTS: Transferring Specific Catalog Entry Types 274

Purpose 274

Programs 274
Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD Statement 274

Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE Statement in PROC
DOWNLOAD 274

Example 3.3: Using the ENTRYTYPE= Option in the SELECT Statement in PROC UPLOAD 275

Example 3.4: Using the ENTRYTYPE= Option in Two SELECT Statements in PROC
DOWNLOAD 275

Example 3.5: Using Long Member Names in Catalog Transfers 276

Example 4. DTS: Transferring Generations of SAS Data Sets 276

Purpose 276

Programs 277
Example 4.1: Using LIBRARY Transfers to Transfer Data Set Generations 277

Example 4.2: Using a SELECT Statement to Transfer Generations 278

Example 4.3: Inheriting Generation Specific Attributes 278

Example 4.4: Transferring Single Data Sets 278

Example 5. DTS: Transferring Long Member Names 279

Purpose 279
Program 279

Example 6. DTS: Transferring Data by Using Data Set Options and Attributes 279

Purpose 279

Program 280

Example 7. DTS: Transferring Data Set Integrity Constraints 280
Purpose 280

Programs 280

Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD Statement 280

Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement 281

Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement 281
Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD Statement 281

Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and V6TRANSPORT Options 281

Purpose 281

272 Example 1. DTS: Transferring Data by Using WHERE Statements � Chapter 25

Programs 282
Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in the PROC UPLOAD

Statement 282

Example 8.2: Using the EXTENDSN= Option in the PROC DOWNLOAD Statement 282

Example 9. DTS: Transferring SAS Utility Files 282

Purpose 282
Programs 283

Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD Statement 283

Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD Statement 283

Example 9.3: Using the MEMTYPE= Option in the SELECT Statement 283

Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement 283

Example 10. DTS: Distributing an .EXE File from the Server to Multiple Clients 284
Purpose 284

Programs 284

Example 10.1: UPLOAD 284

Example 10.2: DOWNLOAD 284

Example 11. DTS: Downloading a Partitioned Data Set from z/OS 285
Purpose 285

Program 285

Example 12. DTS: Combining Data from Multiple Server Sessions 286

Purpose 286

Program 286
Example 13. Re-creating an Index for a Data Transfer 289

Example 1. DTS: Transferring Data by Using WHERE Statements

Purpose

The UPLOAD and DOWNLOAD procedures process WHERE statements and the
WHERE= data set option when you transfer a single SAS data set. Because the
transferred data set contains only the observations that meet the WHERE condition,
transfer time is minimized.

Program

signon foo sascmd="!sascmd -nosyntaxcheck";

data school;
length name $ 20 class $1;
input name class amount;
cards;
Tom K 30
Sue 1 10
Ab K 3
;

rsubmit status=no;

Examples of Data Transfer Services (DTS) � Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement 273

proc upload data=school out=kindergarten;
where class=’K’;

run;

Example 2. DTS: Transferring Specific Member Types

Purpose
If you specify the INLIB= and OUTLIB= options in the PROC UPLOAD or PROC

DOWNLOAD statements, you can specify which member types to transfer by using the
MEMTYPE= option in one of the following statements:

� PROC UPLOAD
� PROC DOWNLOAD
� SELECT
� EXCLUDE

Valid values for the MEMTYPE= option are DATA, CATALOG, MDDB view, FDB,
and ALL. If you use this option in the SELECT or EXCLUDE statement, you can specify
only one value. If you use this option in the PROC UPLOAD or the PROC DOWNLOAD
statement, you can specify a list of MEMTYPE values enclosed in parentheses.

Programs

Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD
Statement

This example uploads all data sets and catalogs that are in the library THIS on the
client and stores them in the library THAT on the server.

proc upload inlib=this outlib=that
memtype=(data catalog);

Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement
This example uploads all catalogs and data sets that are in the library LOCLIB on

the client, except the data sets that are named Z4, Z5, Z6, and Z7. It then stores them
in the library REMLIB on the server:

proc upload inlib=loclib outlib=remlib mt=all;
exclude z4-z7 / memtype=data;

run;

274 Example 2.3: Using the MEMTYPE= Option in the SELECT Statement � Chapter 25

Example 2.3: Using the MEMTYPE= Option in the SELECT Statement
This example downloads the catalogs NAMES and SALARY and the data set MEDIA

in the data library REMLIB on the server and stores them in the library LOCLIB on
the client:

proc download inlib=remlib outlib=loclib;
select names salary media(mt=data) / memtype=cat;

run;

Example 3. DTS: Transferring Specific Catalog Entry Types

Purpose
When you include the INCAT= and OUTCAT= options in the PROC UPLOAD or

PROC DOWNLOAD statement, you can specify which entry types to transfer by using
the ENTRYTYPE= option in one of the following statements:

� PROC UPLOAD
� PROC DOWNLOAD
� SELECT
� EXCLUDE

If you omit the ENTRYTYPE= option and also omit the SELECT and EXCLUDE
statements, all catalog entries are transferred.

Programs

Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD
Statement

This example uploads all SLIST catalog entries from the CAT catalog in the library
LOCLIB on the client and stores them in the catalog UPCAT in the library REMLIB on
the server:

proc upload incat=loclib.cat
outcat=remlib.upcat entrytype=slist;

run;

Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE
Statement in PROC DOWNLOAD

This example downloads all catalog entries that are in the catalog
REMOTE.MAIN_FORMATS on the server, except the format entries XYZ and GRADES.
It then stores them in the catalog LOCAL.SECONDARY_FORMATS on the client:

libname local ’work’ $loglib=yes;
rsubmit;
libname remote ’work’ $loglib=yes;

Examples of Data Transfer Services (DTS) � Example 3.4: Using the ENTRYTYPE= Option in PROC DOWNLOAD 275

proc format lib=remote.main_formats;
value grades 1=’one’;
value aformat 1=’one’;
value xyz 1=’one’;

run;
endrsubmit;

options nocstatus;
proc download incat=remote.main_formats

outcat=local.secondary_formats;
exclude xyz grades / entrytype=format;

run;
endrsubmit;

Example 3.3: Using the ENTRYTYPE= Option in the SELECT Statement
in PROC UPLOAD

If the default library is WORK, this example uploads the FORMAT catalog entries
XYZ and ABC, the INFMT catalog entry GRADES, and the SCL entries A and B that
are in the WORK.LOCFMT catalog on the client. It then stores them in the
WORK.REMFMT catalog on the server:

proc format lib=work.locfmt;
invalue grades ’one’=1;
value abc 1=’one’;
value xyz 1=’one’;

run;
rsubmit;
proc upload incat=locfmt outcat=remfmt;

select xyz.format grades
abc (et=format) / et=infmt;

select a b / et=scl;
run;

Example 3.4: Using the ENTRYTYPE= Option in Two SELECT
Statements in PROC DOWNLOAD

This example maintains the original ordering and grouping when transferring catalog
entries that contain graphics output. Assume that you have a catalog named FINANCE
that has two entries that contain graphics output, INCOME and EXPENSE. You want
to download the two catalog entries that contain graphics output in the order in which
they are stored on the server; that is, you want INCOME to appear before EXPENSE,
not alphabetically as the DOWNLOAD procedure would normally transfer them.

In addition, you have some catalog entries that are grouped by the name GROUP1,
and you want to preserve the grouping when the entries are downloaded.
Remotely submit the following program to transfer these entries in the order that you
specify in the first SELECT statement and in the group that you specify in the second
SELECT statement:

options nocstatus;
rsubmit;
%setup(supio);
proc catalog cat=permdata.testcat;

276 Example 3.5: Using Long Member Names in Catalog Transfers � Chapter 25

copy out=work.finance et=grseg;
run;
quit;
proc catalog cat=work.finance;

change G3D= income /et=grseg;
change GPLOT=expense/et=grseg;
change TEMPLATE=GROUP1/et=grseg;

run;
quit;
libname rhost ’work’ $loglib=yes;
endrsubmit;

libname rhost ’work’ $loglib=yes;
rsubmit;proc download incat=rhost.finance

outcat=lhost.finance;
select income expense et=grseg;
select group1.grseg;

run;

Example 3.5: Using Long Member Names in Catalog Transfers
This example uses PROC UPLOAD to transfer entire catalogs by using both the

INCAT= and OUTCAT= options:

rsubmit;
proc upload

incat=loclib.monthlysalary
outcat=monthlyupdate;

run;
proc upload

incat=loclib.employeedata
outcat=remlib.cat;

run;

proc upload incat=sasuser.base
outcat = remlib.basecatalog;

run;

endrsubmit;

Example 4. DTS: Transferring Generations of SAS Data Sets

Purpose
Generation data sets are historical versions of SAS data sets, SAS views, and SAS/

ACCESS files. They enable you to keep a historical record of the changes that you
make to these files. There are two data set options that are useful when manipulating
generations of SAS data sets: GENMAX (maximum number of generations) and
GENNUM (generation number). GENMAX specifies how many generations to keep,
and GENNUM is used to access a specific version of a generation group.

SAS/CONNECT transfers generations of SAS data sets by default during library
transfers. The base data set, as well as all of its historical versions, are transferred.

Examples of Data Transfer Services (DTS) � Example 4.1: Using LIBRARY Transfers to Transfer Data Set Generations 277

If you do not want all generations to be transferred, you should do one of the
following:

� transfer a library using the GEN=NO option.

� transfer single data sets. Only the specified data set is transferred.

Programs

Example 4.1: Using LIBRARY Transfers to Transfer Data Set
Generations

This example transfers the client data set LOCAL.SALES as well as its generations
to the server library REMOTE. If the data set SALES already exists in the output
library, the base and all existing generations are deleted and replaced by those that are
uploaded.

data local.sales(genmax=3);
input store sales95 sales96 sales97;
datalines;

1 221325.85 214664.02 212644.60
2 134511.96 159369.47 317808.48
3 321662.42 244789.33 236782.59
;
run;

data local.sales;
input store sales95 sales96 sales97;
datalines;

1 251325.25 217662.16 222614.60
2 144512.11 179369.47 327808.48
3 329682.43 249989.93 256782.59
;
run;

data local.sales;
input store sales95 sales96 sales97;
datalines;

1 261325.33 218862.16 222614.60
2 145012.11 189339.47 328708.71
3 330682.46 259919.92 258722.52
;
run;

/* PROC DATASETS will show that the */
/* base data set as well as two */
/* generations exist in the library. */

proc datasets lib=local;
quit;

rsubmit;
proc upload in=local out=remote cstatus=no;
run;

endrsubmit;

278 Example 4.2: Using a SELECT Statement to Transfer Generations � Chapter 25

Example 4.2: Using a SELECT Statement to Transfer Generations
Specific generations of data sets cannot be specified in the SELECT or the

EXCLUDE statements for library transfers. When the SELECT statement is specified
for the library transfer, the selected base data set as well as all of its historical versions
are transferred. Similarly, when the EXCLUDE statement is specified for the library
transfer and the GEN=NO option is not specified, the selected base data set as well as
all of its historical versions are excluded from the transfer.

In the following example, the data set LOCAL.SALES as well as all of its generations
are uploaded.

libname local ’work’ $loglib=yes;
data sales(genmax=3); x=1; run;
data sales; x=2; run;
data sales ; x=3; run;
data x; x=1; run;
rsubmit status=no;

proc upload in=local out=remote cstatus=no;
select sales (mt=data);

run;
endrsubmit;

Example 4.3: Inheriting Generation Specific Attributes
During library transfers and single data set transfers when OUT= is not specified,

data set attributes are inherited in the output data set. In SAS releases after SAS 6,
the maximum number of generations is a new inherited attribute. In addition, the next
generation number attribute is inherited ONLY when a library transfer occurs. This
attribute is inherited only when the generations are actually transferred, and therefore
it is NOT inherited for any single data set transfers. In the following example, both the
maximum number of generations and the next generation number attributes are
inherited in the output data set, because this is a library transfer.

rsubmit;
proc download in=remote out=local;

select sales(mt=data);
run;

endrsubmit;

In the following example, only the maximum number of generations attribute is
inherited. The next generation number attribute is not inherited, because this is a
single data set transfer, and therefore no generations are transferred.

rsubmit;
proc download data=remote.sales;
run;

endrsubmit;

Example 4.4: Transferring Single Data Sets
A specific generation of data set can be transferred by specifying the GENNUM=

data set option for a single data set transfer. In the following example, a specific
historical version is uploaded by specifying GENNUM=1.

Examples of Data Transfer Services (DTS) � Purpose 279

rsubmit;
proc upload data=local.sales(gennum=1);
run;

endrsubmit;

Example 5. DTS: Transferring Long Member Names

Purpose
SAS/CONNECT supports the transfer of long member names, as long as the

operating environment supports long member names. This example uses PROC
UPLOAD to transfer a data set and a catalog that have long member names, and uses
PROC DOWNLOAD to transfer a data set that has a long member name.

Program
rsubmit;

proc upload in=work out=sasuser;
select longdatasetname(mt=data)
cat longcatalogname/mt=cat;

run;

data x.sas_institute_employee_data;
set empdata;

run;

proc download inlib=x outlib=work;
run;

endrsubmit;

Example 6. DTS: Transferring Data by Using Data Set Options and
Attributes

Purpose
PROC UPLOAD and PROC DOWNLOAD permit you to specify SAS data set options

in the DATA= and OUT= options. Note that SAS data set options are not supported
when using the INLIB= and OUTLIB= options, even when you upload only data sets.

The data set options must be associated with a specific SAS data set, so they must be
used in the DATA= or OUT= options. For details about additional restrictions, see
Chapter 23, “The UPLOAD Procedure,” on page 237 and Chapter 24, “The
DOWNLOAD Procedure,” on page 255.

This example illustrates using the DATA= option and the INDEX=NO option. It also
shows the use of the RENAME= and DROP= SAS data set options.

Note: Because the OUT= option is not specified, the transferred data set inherits all
the characteristics of the input data set except for the index (because the INDEX=NO
option is specified). �

280 Program � Chapter 25

Program

rsubmit;
data survey(compress=yes index=(comments));
r=’response’;
comments=’comments’;
x=1;
run;

proc download data=survey
(rename=(r=response) drop=comments)
index=no;

run;

Example 7. DTS: Transferring Data Set Integrity Constraints
Integrity constraints are a set of data validation rules that preserve the consistency

and correctness of the stored data. These rules are defined by the applications
programmer and are enforced by SAS for each request to modify the data.

PROC UPLOAD and PROC DOWNLOAD permit a transferred SAS data set to
inherit the characteristics of the input data set. If the OUT= option is omitted when
transferring a specific SAS data set, the transferred data set inherits the characteristics
of the input data set. A transferred data set also inherits the characteristics of the input
data set if it is part of a library transfer. For details about the INLIB= and OUTLIB=
options for PROC UPLOAD, see “PROC UPLOAD Statement” on page 238; for details
about PROC DOWNLOAD, see Chapter 24, “The DOWNLOAD Procedure,” on page 255.

Purpose
PROC UPLOAD and PROC DOWNLOAD apply integrity constraints to the transfer

of data sets. As with other data set characteristics, integrity constraints are inherited
by a transferred data set under specific conditions. The only exception is that, if the
input file has an index defined and the user specifies the INDEX=NO option, any
integrity constraints that are defined for the input file are not inherited. Also,
referential integrity constraint types are not transferred when the referential
constraints reside in a different library.

Programs

Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD
Statement

This example downloads the SAS data set REM in the library WORK on the server
to the library WORK on the client. Any non-referential integrity constraints that are
defined for the input data set are inherited by the output data set.

proc download data=rem;
run;

Examples of Data Transfer Services (DTS) � Purpose 281

Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement
This example uploads the SAS data set LOC in the library WORK on the client to

the library WORK on the server. The variable ONE is dropped from the output data
set. Any non-referential integrity constraints that are defined for the input data set
that do not include the variable ONE are inherited by the output data set.

proc upload data=loc(drop=one);
run;

Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement
This example uploads all SAS data sets in the library SASUSER on the client and

stores them in the library WORK on the server. Any non-referential integrity
constraints that are defined for each of the input data sets are inherited by the
corresponding output data set.

proc upload inlib=sasuser outlib=work;
run;

Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD
Statement

This example downloads the SAS data set STUDENTS in the library WORK on the
server to the library WORK on the client. Any non-referential integrity constraints that
are defined for the input data set are inherited by the output data set unless there are
indexes defined on the input data set. In that case, no integrity constraints are defined
for the output data set.

proc download data=students index=no;
run;

Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and
V6TRANSPORT Options

Purpose
For SAS releases before SAS 8, when you transfer short numerics (length less than

8), the length of these numerics is automatically increased to preserve precision. In
SAS 8, the length of these numerics is not increased by default unless the
V6TRANSPORT option is specified. Using the V6TRANSPORT and EXTENDSN=
options in PROC UPLOAD and PROC DOWNLOAD statements, you can choose
whether to promote the length of numerics.

282 Programs � Chapter 25

Programs

Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in the
PROC UPLOAD Statement

This example uploads the data set A in the directory WORK on the client to the
directory REMOTE on the server. The V6TRANSPORT option causes the short
numerics to be promoted. Therefore, EXTENDSN=NO must be specified to override this
default, so that numerics will not be promoted.

proc upload data=a out=remote
v6transport extendsn=no;

run;

Example 8.2: Using the EXTENDSN= Option in the PROC DOWNLOAD
Statement

This example downloads the catalog SCAT in the directory REMOTE on the server to
the directory WORK on the client. By default, catalog transfers promote the length of
short numerics within SCREEN entry types. This behavior can be overridden by
specifying EXTENDSN=NO on the catalog transfer download. The EXTENDSN= option
is supported by catalog transfer of SCREEN entry types only.

Note: The V6TRANSPORT option is unnecessary when transferring a catalog. �

proc download incat=remote.scat outcat=work.scat
extendsn=no;

run;

Example 9. DTS: Transferring SAS Utility Files

Purpose
You can use the INLIB= and OUTLIB= options with PROC UPLOAD or PROC

DOWNLOAD to transfer multiple SAS files in a single step. This capability enables you
to transfer an entire library or selected members of a library.

Note: The INLIB= option must be used with the OUTLIB= option. �

You can specify which member types to transfer by using the MEMTYPE= option in
one of the following statements:

� PROC UPLOAD
� PROC DOWNLOAD
� SELECT
� EXCLUDE

If you use the MEMTYPE= option in the SELECT or the EXCLUDE statement, you
can specify only one value. If you use the MEMTYPE= option in the PROC UPLOAD or

Examples of Data Transfer Services (DTS) � Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement 283

the PROC DOWNLOAD statement, you can specify a list of MEMTYPE values enclosed
in parenthesis.

Here are the valid values for the MEMTYPE= option:

� DATA (SAS data sets)

� CATALOG (SAS catalogs)

� VIEW (SQL views)

� MDDB (MDDB files)

� ALL (all of the preceding values)

Programs

Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD
Statement

This example downloads all SAS data sets, catalog files, SQL views, and MDDB files
in the library WORK on the server and stores them in the library WORK on the client:

proc download inlib=work outlib=work;
run;

Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD
Statement

This example uploads all MDDB and FDB files that are in the library THIS on the
client and stores them in the library THAT on the server:

proc upload inlib=this outlib=that
memtype=(mddb view);

run;

Example 9.3: Using the MEMTYPE= Option in the SELECT Statement
This example downloads the MDDB files TEST1 and TEST2 and the SAS data set

TEST3 that are in the library WORK on the server and stores them in the library
LOCAL on the client:

proc download inlib=work outlib=local;
select test1 test2 test3(mt=data)/memtype=mddb;

run;

Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement
This example uploads all SAS data sets, catalog files, MDDB files, FDB files, and

SQL views that are in the library LOCAL on the client, except the SQL views A1, A2,
A3. If then stores them in the library REMOTE on the server:

proc upload inlib=local outlib=remote memtype=all;
exclude a1-a3/memtype=view;

run;

284 Example 10. DTS: Distributing an .EXE File from the Server to Multiple Clients � Chapter 25

Example 10. DTS: Distributing an .EXE File from the Server to Multiple
Clients

Purpose
SAS/CONNECT facilitates the distribution of information to multiple clients. Rather

than distributing files on diskettes, you can make one central file available on the
server that each client can access and copy.

For example, suppose that you want to distribute an updated executable to other
Windows computers in your organization. You decide that the most efficient way to
update all computers is to upload PROGRAM.EXE to the server, and notify each person
who uses this software on their workstations that the file is available and should be
downloaded. This method enables all clients to quickly access the updated software,
and eliminates the need to share a physical diskette among client users.

Note: Such a SAS/CONNECT application, in which an external nontext file is
uploaded and then downloaded, requires the BINARY option in the DOWNLOAD and
UPLOAD procedures. The BINARY option transfers files without any character
translation (for example EBCDIC to ASCII) or insertion of record delimiters. �

Programs

Example 10.1: UPLOAD
The PROGRAM.DLL module must first be uploaded to an external file on the server.

rsubmit;
filename rfile ’server-file’;
proc upload infile=’a:\program.dll’

outfile=rfile binary;
run;

endrsubmit;

This example uses a SAS FILENAME statement to identify the target file on the
server.

Note: The INFILE= and OUTFILE= options are specified in the PROC UPLOAD
statement in order to upload an external file. To upload a SAS data set, the DATA= and
OUT= options should be used. �

Example 10.2: DOWNLOAD
With the PROGRAM.DLL module available on the server, each client at the

installation can acquire the updated module by downloading it from the server.
The process for downloading the PROGRAM.DLL module is like the process for

uploading, except that the DOWNLOAD procedure is invoked, and the target file is on
the server, not on the client. The following example copies the PROGRAM.DLL module
to directory \SAS\SASEXE.

Examples of Data Transfer Services (DTS) � Program 285

rsubmit;
filename rfile ’server-file’;
proc download infile=rfile

outfile=’\sas\sasexe\program.dll’ binary;
run;

endrsubmit;

This example uses a SAS FILENAME statement to identify the target file on the
server. The INFILE= and OUTFILE= options are used in the PROC DOWNLOAD
statement.

Example 11. DTS: Downloading a Partitioned Data Set from z/OS

Purpose
This example shows how to download all members of a partitioned data set. Suppose

you need to download a collection of SAS programs from a z/OS server to your client.
The SAS programs are members of one partitioned data set named
MFHOST.SAS.PROGRAMS. You can copy all the programs from the partitioned data
set to the client by using a single DOWNLOAD procedure. An asterisk (*) wildcard
character is specified in the DOWNLOAD procedure to transfer all members of the data
set.

Program

%let hostn=2;
signon s390deva script=’!sasroot\tst\m900\rlink\testsrc\scrmvs.sas’;
rsubmit;

data _null_;
file ’sastnd.rlink.testpdsr(a)’;
put ’data a; x=1; run;’;

run;
data _null_;
file ’sastnd.rlink.testpdsr(b)’;
put ’data a; x=1; run;’;

run;
endrsubmit;

filename locdir
’/unixhost/sas/programs’;

rsubmit;
filename inpds

’mfhost.sas.programs’ shr;
proc download infile=inpds(’*’)

outfile=locdir;
endrsubmit;

The first FILENAME statement defines the fileref LOCDIR, which identifies the
physical location for the files that are downloaded to the UNIX client. The RSUBMIT

286 Example 12. DTS: Combining Data from Multiple Server Sessions � Chapter 25

statement indicates that the statement that follows will be processed on the z/OS
server. By not specifying a server-ID, this example assumes that the z/OS computer is
your current server. The second FILENAME statement defines the fileref INPDS for
the partitioned data set MFHOST.SAS.PROGRAMS, which contains the SAS programs
that will be downloaded to the client. The PROC DOWNLOAD step transfers all the
files in the partitioned data set on the z/OS server to the library LOCDIR on the UNIX
client. The ENDRSUBMIT statement indicates the end of the block of statements that
are submitted to the server for processing.

Example 12. DTS: Combining Data from Multiple Server Sessions

Purpose
Using SAS/CONNECT to connect to multiple servers, you can access data on several

servers, combine that data on the client, and analyze the combined data. For example,
if you have data that is stored under z/OS in a DB2 database and related data that is
stored in an Oracle database under UNIX, you can use SAS/CONNECT in combination
with SAS/ACCESS to combine that data on your client. This example uses salary and
employee data gathered from two servers to illustrate the process.

Program
This example signs on to two servers, downloads data from both servers, and

performs analyses of the data on the client. The program uses the SIGNON and
RSUBMIT statements.

Note: Bullets v through y apply to downloading both DB2 and Oracle data. �

/*************************************/
/* connect to z/OS */
/*************************************/

u options comamid=tcp;
filename rlink

’!sasext0\connect\saslink\tcptso.scr’;
signon zoshost;

/*************************************/
/* download DB2 data views using */
/* SAS/ACCESS engine */
/*************************************/

v rsubmit zoshost;
w libname db db2;
x proc download data=db.employee

out=db2dat;
run;

y endrsubmit;

/*************************************/
/* connect to UNIX */
/*************************************/

U options

Examples of Data Transfer Services (DTS) � Program 287

remote=hrunix comamid=tcp;
filename rlink

’!sasext0\connect\saslink\tcpunix.scr’;
signon;

/*************************************/
/* download Oracle data using */
/* SAS/ACCESS engine */
/*************************************/

v rsubmit hrunix;
w libname oracle user=scott password=tiger;
x proc download

data=oracle.employee out=oracdat;
run;

y endrsubmit;

/*************************************/
/* sign off both links */
/*************************************/

V signoff hrunix;
signoff zoshost cscript=

’!sasext0\connect\saslink\tcptso.scr’;

/*************************************/
/* join data into SAS view */
/*************************************/

W proc sql;
create view joindat as

select * from db2dat, oracdat
where oracdat.emp=db2dat.emp;

/*************************************/
/* create summary table */
/*************************************/

X proc tabulate data=joindat
format=dollar14.2;
class workdept sex;
var salary;
table workdept*(mean sum) all,
salary*sex;
title1 ’Worldwide Inc. Salary Analysis

by Departments’;
title2 ’Data Extracted from Corporate

DB2 Database’;
run;

/* display graphics */
at proc gchart data=joindat;

vbar workdept/type=sum
sumvar=salary
subgroup=sex
ascending
autoref
width=6

288 Program � Chapter 25

ctext=cyan;
pattern1 v=s c=cyan;
pattern2 v=s c=magenta;
format salary dollar14.;
title1 h=5.5pct f=duplex

c=white
’Worldwide Inc. Salary Analysis’;

title2 h=4.75pct f=duplex
c=white
’Data Extracted from Corporate DB2
Database’;

run;
quit;

u To sign on to a server, you need to provide several items of information:

� the server-ID, which is specified in a REMOTE= system option or as an
option in the SIGNON statement.

� the communications access method, which is specified by using the
COMAMID= system option in an OPTIONS statement.

� the script file to use when signing on to the server. This script file is usually
associated with the fileref RLINK. Using this fileref is the easiest method for
accessing the script file.

After you provide all the necessary information, you can submit the SIGNON
statement. You can specify the server-ID in the SIGNON statement. If you omit
the server-ID from the RSUBMIT statement, the statements are submitted to the
server session that was identified most recently in a SIGNON statement, in an
RSUBMIT statement or command, or in a REMOTE= system option.

v After you connect to two or more sessions, you can remotely submit statements to
any of the servers by simply identifying in the RSUBMIT statement which server
should process the statements. After the server-ID has been specified by a previous
statement or option, you are not required to specify it again in the REMOTE
statement. However, this example includes the server-ID in the RSUBMIT
statements, even though the server-ID is not required, to clarify which server is
processing each group of statements.

w Associate a libref with the library that contains the DB2 database on the server.

x The data from the DB2 database can then be downloaded to the client. Note that
when you download a view of a database, a temporary SAS data set is
materialized from the view and downloaded to the client. In this example, the
output data set on the client is a temporary SAS data set.

y The ENDRSUBMIT statement ends the block of statements that are submitted to
the server.

U To establish a second server session, set the REMOTE= and COMAMID= options
to values that are appropriate for the second server. You also need to set the fileref
RLINK again to associate it with the script file for the second server.

V Terminate the links to both the UNIX server and the z/OS server. Use the
CSCRIPT= option to identify the script file for signing off the z/OS server.

W On the client, you can now use the SQL procedure to join into a single view the two
SAS data sets that were created when you downloaded the views from the server.

X To analyze the joined data, use the name of the view on the client in a PROC
TABULATE step.

Examples of Data Transfer Services (DTS) � Example 13. Re-creating an Index for a Data Transfer 289

at If you have SAS/GRAPH on your client, you can also use graphics procedures to
analyze the view that is created from the two server databases.

Example 13. Re-creating an Index for a Data Transfer

This example shows the re-creation of an index for a SAS data set to be transferred to a
server session.

proc upload index=yes in=sales out=sales(index=(region));
run;

The INDEX=YES option specifies that an index will be re-created in the server
session. The INDEX= REGION option causes an index file to be re-created and
associated with the data set SALES in the server session. The index file identifies all
the observations that contain the variable REGION and its associated values.

If the INDEX= option in the OUT= statement had not been specified, an existing
index associated with the SALES data set in the client session could have been copied
to the server session.

290

291

C H A P T E R

26
Data Transfer Services
Troubleshooting

Troubleshooting the UPLOAD and DOWNLOAD Procedures 291
Symbol Is Not Recognized 291

Variable-Block Binary File LRECL Value Exceeds 256 Bytes 291

Fixed-Block Binary File LRECL Value Exceeds 256 Bytes 292

EBCDIC CC-Control Is Not Downloaded 292

Troubleshooting the UPLOAD and DOWNLOAD Procedures

Symbol Is Not Recognized
During a PROC DOWNLOAD or a PROC UPLOAD step, you receive the following

error message:

ERROR 200-322: The symbol is not recognized.

This problem occurs if the file on the server that is being referenced by the INFILE=
or the OUTFILE= option begins with a special character and is specified as
FILEREF(filename). For example:

PROC UPLOAD INFILE=pcflref
OUTFILE=hstflref($filname);

run;

To avoid the problem, enclose the filename with single quotation marks, as shown in
the following example:

PROC UPLOAD INFILE=pcflref
OUTFILE=hstflref(’$filname’);

run;

Variable-Block Binary File LRECL Value Exceeds 256 Bytes
You transfer a variable-block binary file that has a record length (LRECL) that is

greater than 256 bytes, and SAS/CONNECT segments the file into multiple 256-byte
records. For example, downloading a binary file that has an LRECL of 1024 results in
four 256-byte records.

292 Fixed-Block Binary File LRECL Value Exceeds 256 Bytes � Chapter 26

The data is not lost when the file is segmented by SAS/CONNECT. Using the LRECL
option in the FILENAME statement that is processed at the client or the server does
not prevent the problem. To solve the problem, follow these steps:

1 Define the z/OS FILENAME statement by using the RECFM=U parameter.

FILENAME VFILE ’VARIABLE.BLOCK.FILE’ RECFM=U;

2 Use the DOWNLOAD procedure with the BINARY option to transfer the file.
Information about the transfer that is displayed in the local Log windows shows
how many bytes were transferred. For example:

NOTE: 1231 bytes were transferred at
1231 bytes/second.

3 At the client, use the RECFM= and the LRECL= options in the INFILE statement
that is used to read in the transferred file, where RECFM= is set to S370VB and
LRECL= is set to the number of bytes that are transferred.

Fixed-Block Binary File LRECL Value Exceeds 256 Bytes
You transfer a fixed-block binary file that has a record length (LRECL) that is

greater than 256 bytes, and SAS/CONNECT segments the file into multiple 256-byte
records. For example, downloading a binary file that has an LRECL of 1024 results in
four 256-byte records.

The data is not lost when the file is segmented by SAS/CONNECT. Using the
LRECL= option in the FILENAME statement at the client or the server does not
prevent the problem. To solve the problem, follow these steps:

1 Use the DOWNLOAD procedure with the BINARY= option to transfer the file.
2 The INFILE statement that is used to read the transferred file must contain the

options RECFM=F and LRECL=xxxx, where xxxx is equal to the LRECL
parameter at the server.

Note: The RECFM= and LRECL= options in the FILENAME statement are
supported only under z/OS operating environments. For details, see the FILENAME
statement in the SAS Companion for z/OS. �

EBCDIC CC-Control Is Not Downloaded
When you use PROC DOWNLOAD on a print file, the EBCDIC carriage-control

character ’F1’x is not downloaded.
To avoid the problem, change the SAS system option FILECC to NOFILECC.

Note: The FILECC system option is supported only under z/OS operating
environments. For details, see the FILECC= system option in the SAS Companion for
z/OS. �

The NOFILECC option indicates that the data in column 1 of a printer file should be
treated as data and not carriage control. Releases of SAS later than SAS 6 use FILECC
as the default setting, which you must change to NOFILECC in order to successfully
download ’F1’x. In addition, the DCB characteristics of the print file must include a
value for RECFM= of FBA or VBA.

293

P A R T7

Appendices

Appendix 1.Cross-Architecture Issues 295

Appendix 2.SAS/CONNECT Cross-Version Issues 301

Appendix 3.Recommended Reading 313

294

295

A P P E N D I X

1
Cross-Architecture Issues

Translation of SAS Data between Computers That Represent Data Differently 295
Overview of Data Translation between Computers 295

Remote Library Services 295

Data Transfer Services 296

Translation of SAS 8 and Later Releases 296

SAS 6 Translation 297
Translation of Floating-Point Numbers between Computers 297

Loss of Numeric Precision and Magnitude 297

Avoiding Loss of Precision 297

Significance of Loss of Magnitude 297

Example 298

Encoding Compatibility between SAS/CONNECT Client and Server Sessions 298

Translation of SAS Data between Computers That Represent Data
Differently

Overview of Data Translation between Computers
SAS/CONNECT clients and servers can access SAS data and programs from each

other, despite differences in how data is represented on computers that the client and
server SAS sessions run on. For example, a SAS/CONNECT client that runs on a PC
can download a SAS data set from a mainframe for processing in the client session.

Numeric data (floating-point representation) and character data are dynamically
translated in each client/server transfer, bypassing the explicit creation of an
intermediate transport file, without the user’s knowledge of the underlying translation
activities.

Remote Library Services
Remote Library Services (RLS) performs dynamic data translation. SAS/CONNECT

use RLS to access SAS files in remote SAS libraries. SAS/CONNECT clients access
remote files by using the LIBNAME statement.

Note: You can also use the CONNECT TO statement in PROC SQL to access remote
files. �

If the server data is accessed and processed to produce a single result at the client,
only one translation occurs: from the representation of the server computer to the
representation of the client computer.

296 Data Transfer Services � Appendix 1

If the server data is processed on the client and the results are updated on the
server, two translations occur.

� When the data is accessed from the server, it is translated from the representation
of the server computer to the representation of the client computer.

� When the data is updated (and stored) on the server, it is translated from the
representation of the client computer back to the representation of the server
computer.

Depending on the characteristics of the data, translation can cause a loss of some
degree of numeric precision and magnitude.

The LIBNAME statement can be used to identify the server library to be accessed.
Various SAS statements can be used to process the data, specifying the location of the
server data and methods of data processing. These examples show that data is read (and
translated) from the server and processed, with results being copied to a client location.

libname serv-libref ’server-library’ server=server-ID;
libname client-libref ’client-library’;
proc copy in=serv-libref out=client-libref;

Note: Using RLS in a SAS/CONNECT session is not the most efficient method to
move large quantities of server data. RLS is used here to illustrate the possibility for
the loss of precision across computers that represent numeric data differently. �

For details about how to access a remote file system, see Chapter 17, “Remote
Library Services (RLS),” on page 201.

Data Transfer Services
Data Transfer Services (DTS) performs dynamic data translation. SAS/CONNECT

uses DTS to upload and download complete or partial SAS files in a client/server
environment.

For an upload, the client sends data to the server for processing. For a download, the
client requests the transfer of data from the server to the client for processing.

For more information, see Chapter 22, “Using Data Transfer Services,” on page 229.
The translation process for transferring data varies according to the SAS release.

Translation of SAS 8 and Later Releases
In SAS 8 and later releases, translation occurs only once for each data transfer

between a client and a server that run on computers whose architectures are different
from each other. SAS/CONNECT dynamically translates incompatible file formats for
each file upload or file download transaction, bypassing the explicit creation of a
transport file.

LIBNAME statements are used to identify the server library to be accessed and the
client library that the server data is written to. PROC DOWNLOAD reads the data
from the server and translates and copies it to a specified client location.

libname client-libref ’client-library’;
rsubmit;

libname serv-libref ’server-library’;
proc download data=server-libref.data-set

out=client-libref.data-set;
endrsubmit;

Cross-Architecture Issues � Significance of Loss of Magnitude 297

SAS 6 Translation
In SAS 6, translation occurs twice for each data transfer between a client and a

server that run on computers whose architectures are different from each other.

1 The data is translated from the source computer’s native format to transport
format.

2 The data that is represented in transport format is translated to the target
computer’s native format.

LIBNAME statements are used to identify the server library to be accessed and the
client library that the server data is written to. PROC DOWNLOAD translates the data
from the server into transport format, which is next translated to the client computer
format when copied to a specified client location.

libname client-libref ’client-library’;
rsubmit;

libname serv-libref ’server-library’;
proc download data=server-libref.data-set

out=client-libref.data-set;
endrsubmit;

Translation of Floating-Point Numbers between Computers

Loss of Numeric Precision and Magnitude
If you move SAS data between a client and a server session that run on computers

that have different architectures, numeric precision or magnitude can be lost. Precision
can be lost when the data value in the source representation contains more significant
digits than the target representation can store. A loss of magnitude results when data
values exceed the range of values that an operating environment can store.

For complete details about how SAS stores numeric values, see SAS Language
Reference: Concepts.

Avoiding Loss of Precision
To avoid loss of precision, do not store numeric values in short variables. Instead,

store numeric values using longer numeric variables (up to 8 bytes) according to the
number of significant digits that the target representation can store.

Significance of Loss of Magnitude
When you lose magnitude, SAS produces the following warning:

WARNING: The magnitude of at least one numeric value
was decreased to the maximum the target representation allows,
due to representation conversion.

A loss of magnitude is unlikely in many applications, but if you have data with
extremely large values or extremely small fractions, you might experience a loss of
magnitude during cross-architecture access. When you lose magnitude, SAS changes

298 Example � Appendix 1

the values that are out of range to the maximum or minimum value that the operating
environment can represent.

Table A1.1 Approximate Value Ranges by Operating Environment

Operating Environment Minimum Value Maximum Value

OpenVMS 2.3E-308 1.8E+308

UNIX 2.3E-308 1.8E+308

Windows 2.3E-308 1.8E+308

z/OS 5.4E-79 7.2E+75

Example
You create a data set under UNIX that contains the value 8.93323E+105. If you copy

the file to a z/OS operating environment, magnitude is lost and the value changes to
7.23701E+75, which is the maximum value that z/OS can represent.

Encoding Compatibility between SAS/CONNECT Client and Server
Sessions

In order to successfully use SAS/CONNECT programming services, the encodings of
the client and server sessions must be compatible. Compatible encodings share a
common character set. For example, client and server sessions that each use the UTF-8
encoding are compatible with each other.

Client and server sessions that use the same locale, but do not specify an encoding of
UTF-8, can also be compatible. However, if the client and server sessions use the same
locale, but the UTF-8 encoding is specified for only one of the two sessions, the sessions
are incompatible, and the connection fails. Here is an example of an error message:

ERROR: The client session encoding UTF8 is not compatible with the
server session encoding Wlatin2.
ERROR: Remote submit to server1 cancelled.

In some cases, a client session can connect to a server session even though each
session runs in a different locale and neither uses the UTF-8 encoding. If each session’s
encoding contains all the characters of each locale’s native language, the sessions are
compatible and a connection occurs. For example, a Windows client session that uses
the Wlatin1 encoding that is associated with the Spanish Mexico locale is compatible
with a UNIX server session that uses Latin1 encoding that is associated with the
Italian Italy locale. All the characters used in the Italian and Spanish languages are
present in both the Wlatin1 and the Latin1 encoding.

Cross-Architecture Issues � Encoding Compatibility between SAS/CONNECT Client and Server Sessions 299

However, SAS/CONNECT programming services might not successfully run in
incompatible client and server sessions. For example, a client session that uses the
Wlatin2 encoding that is associated with the Czech Czechoslovakia locale is
incompatible with the server session that uses the open_ed-1141 z/OS encoding that is
associated with the German Germany locale. The Wlatin2 encoding and the
open_ed-1141 encodings are not compatible, because many German characters are not
present in the Wlatin2 encoding and many Czech characters are not present in the
open-ed-1141 encoding. The operation might not be successful. Here is an example of a
warning message:

Warning: The client session encoding Wlatin2 is not compatible with the
server session encoding open-ed-1141.
Data may not be transmitted correctly.

For information about locales and encodings, see the SAS National Language
Support (NLS): Reference Guide.

300

301

A P P E N D I X

2
SAS/CONNECT Cross-Version
Issues

Factors Affecting Access to SAS Files 301
Features Exclusive to SAS Releases after SAS 6 302

New Features Incompatible with SAS 6 302

SAS File Format Features 302

File Transfer Services: Truncating Long Names and Labels 302

RLS: Accessing SAS Files in a Mixed Cross-Version Library 304
Separating Older SAS Files from Newer SAS Files 304

Specifying an Engine to Locate Release-Specific Files in a Mixed Library 304

Determining the Version of SAS Used to Create a SAS File 305

Concatenating Libraries 305

Accessing SAS Data Sets 306

Limitations 306
SAS 6 Client Accessing a SAS 8 (or later) Server 306

SAS 8 (or Later) Client Accessing a SAS 6 Server 306

Accessing SAS Views 307

Limitations 307

SAS 6 Client Accessing a SAS 8 (or Later) Server 307
SAS 8 (or Later) Client Accessing a SAS 6 Server 308

Accessing Catalogs 309

Limitations 309

SAS 6 Client Accessing a SAS 8 (or Later) Server 309

SAS 8 (or Later) Client Accessing a SAS 6 Server 310
File Format Translation Algorithms 311

SAS 6 Translation 311

SAS 8 (and Later) Translation 311

Factors Affecting Access to SAS Files
SAS files (data and applications) that were created by using SAS releases later than

SAS 6 are interchangeable in a SAS/CONNECT client/server environment because their
file formats are identical.

However, because the SAS file formats of the newer SAS releases (after SAS 6) are
dramatically different from older SAS releases (SAS 6 and earlier), the ability to access
older SAS files from newer SAS releases (or newer SAS files from older SAS releases) in
a SAS/CONNECT client/server environment is limited. Access is determined by the
following factors:

� SAS version

� SAS member type

� Data set

302 Features Exclusive to SAS Releases after SAS 6 � Appendix 2

� Catalog
� View

� SAS/CONNECT service
� Remote Library Services (RLS)

CAUTION:
RLS in SAS/CONNECT 9 and later is not backward compatible with SAS 6 files.
SAS/CONNECT 9 clients cannot use RLS with SAS 6 SAS/CONNECT
servers. SAS 6 SAS/CONNECT clients cannot use RLS with SAS/
CONNECT 9 servers. �

� Compute Services
� File Transfer Services

For SAS release information that relates to single-user SAS mode, see the SAS
Language Reference: Concepts. For information that relates to SAS/SHARE software,
see the SAS/SHARE User’s Guide.

Features Exclusive to SAS Releases after SAS 6

New Features Incompatible with SAS 6
These new features in SAS cannot be modified to make SAS files compatible with

SAS 6:
� generation data sets
� integrity constraints

Any attempt to access SAS files that contain these features will fail. For complete
details about new features, see SAS Language Reference: Concepts.

SAS File Format Features
The file format features of newer SAS releases and SAS 6 are incompatible. Here are

the file format features of the newer releases:
� long data set labels

� long variable labels
� long variable names

However, in order to maintain the ability to transfer data sets between the newer
and older SAS releases, SAS/CONNECT applies truncation rules to data set attributes.
Truncation enables you to take advantage of the features of the newer SAS releases
while continuing to access SAS 6 files in a mixed-version environment.

File Transfer Services: Truncating Long Names and Labels
The newer SAS releases support longer names and labels than the maximum length

supported in SAS 6. The longer names and labels are stored in SAS 8 (or later) data
sets, which make those data sets incompatible with SAS 6 data sets. SAS/CONNECT

SAS/CONNECT Cross-Version Issues � File Transfer Services: Truncating Long Names and Labels 303

implements a set of truncation rules to convert data sets that contain long names and
labels into SAS 6 data sets.

The UPLOAD or DOWNLOAD procedures apply the truncation rules when
performing these types of transfers of SAS files

� from a SAS 8 (or later) SAS session to a SAS 6 SAS session
� between two sessions (each running SAS 8 or later) to produce a SAS 6 data set.

Note: To produce a SAS 6 data set explicitly, specify VALIDVARNAME=V6 in
the SAS session that the data set is created in. A setting of VALIDVARNAME=V6
overrides any other engine specification in the SAS session, causing truncation to
be applied to long names. �

SAS/CONNECT applies the following truncation rules to data sets that have long
data set labels, long variable labels, or long variable names. In each case, the length is
truncated to the maximum length that is supported in SAS 6.

Table A2.1 SAS 6 Truncation Lengths

Label or Name Truncation Length (in characters)

Data set label 40

Variable label 40

Variable name 8

Note: If the variable label field is empty, the long variable name is copied to the
label field. �

304 RLS: Accessing SAS Files in a Mixed Cross-Version Library � Appendix 2

The truncation algorithm that is used to produce the 8-character variable name also
resolves conflicting variable names. Here are some additional truncation rules:

Table A2.2 Truncation Rules to Resolve Conflicting Variable Names

Truncation Rule Example

The first name that has more than eight
characters is truncated to eight characters.

STOCKNUMBER53 is truncated to
STOCKNUM.

The next name that has more than eight
characters is truncated to eight characters. If it
conflicts with an existing variable name, it is
truncated to seven characters, and a suffix of 2
is added.

STOCKNUMBER54 is truncated to STOCKNU2.

The suffix is increased by one for each truncated
name that results in a conflict. If the suffix
reaches 9, the next conflicting variable name is
truncated to 6 characters, and a suffix of 10 is
added.

STOCKNUMBER63 is truncated to STOCKN10.

RLS: Accessing SAS Files in a Mixed Cross-Version Library

Separating Older SAS Files from Newer SAS Files
Whenever possible, keep older SAS files (SAS 6) and newer SAS files (created using

SAS releases after SAS 6) in separate physical locations. Segregation of release-specific
files avoids confusion about what files can be accessed when using RLS.

Specifying an Engine to Locate Release-Specific Files in a Mixed
Library

Your ability to access a specific SAS file in a library depends on the engine that is
associated with that library. You can explicitly specify the engine in the LIBNAME
statement, or you can allow SAS to select the appropriate engine according to the
version of SAS being used and the format of the SAS files in the directory. If the library
is homogenous (for example, all data files are SAS 9 files), the V9 engine is used, by
default.

Note: The V9 and V8 engines provide identical functionality. �

However, if a physical library contains a mixture of SAS 6 files and SAS 8 files, a
SAS session that runs a newer release of SAS can use the V6 engine to access only the
SAS 6 files in that library.

CAUTION:
A SAS 9 session cannot access SAS 6 files in a mixed library. �

If a library contains newer and older SAS files and the V9 or V8 engine is specified,
only the SAS 9 or SAS 8 files can be accessed. The SAS 6 files are not recognized in the
SAS 9 or SAS 8 session.

SAS/CONNECT Cross-Version Issues � Concatenating Libraries 305

However, if the V6 engine is specified, the SAS 6 files can be accessed. The SAS 9 or
SAS 8 files are not recognized.

In the following example, the libref V8LIB accesses only SAS 9 or SAS 8 files.

libname v8lib v8 ’SAS-library’;

In the following example, the libref V9LIB accesses only SAS 9 or SAS 8 files.

libname v9lib v9 ’SAS-library’;

In the following example, the libref V6LIB accesses only SAS 6 files.

libname v6lib v6 ’SAS-library’;

Determining the Version of SAS Used to Create a SAS File
To determine the version of the SAS engine that was used to create a SAS file,

examine the filename extension.
Here are the filename extensions for files that are created under the Windows

operating environment:

Table A2.3 Filename Extensions Supported Under the Windows Operating Environment

File Type SAS 6 Filename
Extension

SAS 9 or SAS 8 Filename
Extension

Data Set sd2 sas7bdat

Catalog sc2 sas7bcat

View sv2 sas7bvew

Concatenating Libraries
In order to expand the scope of SAS file access from a single library to multiple

libraries, use library concatenation. With an expanded scope, you can perform
operations on either SAS 6 data files or SAS 9 data files that span multiple libraries.

Here is an example of library concatenation:

libname v6lib v6 ’SAS-library’;
libname v9lib v9 ’SAS-library’;
libname catlib (v9lib v6lib);

Note: SAS-library must be the physical name that is recognized by the operating
environment. �

The first LIBNAME statement assigns the libref V6LIB to a SAS library that is
accessed using the V6 engine. The V6 engine recognizes only files that are appended
with a SAS 6 filename extension.

The second LIBNAME statement assigns the libref V9LIB to a SAS library that is
accessed using the V9 engine. The V9 engine recognizes only files that are appended
with a SAS 9 filename extension.

The third LIBNAME statement assigns the libref CATLIB to concatenated SAS
libraries that are referenced by the librefs V9LIB and V6LIB. The order of the librefs
identifies the sequence in which the libraries are searched. The SAS operation uses the
first occurrence of a specified file.

For example, if the same SAS file exists in both SAS libraries and you delete that
SAS file, the SAS file in the first library (for example, STOCK.SAS7BDAT in V9LIB) is

306 Accessing SAS Data Sets � Appendix 2

deleted. If V6LIB precedes V9LIB in the library concatenation statement (for example,
STOCK.SD2 in V6LIB), that SAS file is deleted. If the specified SAS file exists in only
one SAS library, that SAS file is deleted.

Accessing SAS Data Sets

Limitations
Accessing data that is stored in a SAS data set is a fundamental operation in SAS.

Be aware of any limitations or restrictions when accessing data sets in a cross-version
environment. Access to the data files is based on the SAS/CONNECT service that is
used, and whether the data files use any new features that are in SAS releases after
SAS 6.

SAS 6 Client Accessing a SAS 8 (or later) Server
This table summarizes the limitations of a SAS 6 client that accesses SAS data sets

on a SAS 8 (or later) server in a cross-version environment.

Table A2.4 Limitations for Accessing SAS Data Sets on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service SAS 6 Client Connecting to
SAS 9 Server

SAS 6 Client Connecting to
SAS 8 Server

Remote Library Services No access is permitted between
a SAS 6 client and a SAS 9
server.

If SAS 8 data sets on a SAS 8
server do not implement new
features, a SAS 6 client can
read, write, or update SAS 8
data sets on a SAS 8 server.

Data Transfer Services All file formats are automatically converted when uploading or
downloading a SAS 6 data set to a SAS 9 or SAS 8 target.

If SAS 9 or SAS 8 data sets do not contain new features, they can
be downloaded to a SAS 6 target. Truncation rules are applied.

Compute Services A SAS 6 client can remotely submit a SAS program to a SAS 9 or
SAS 8 server. The data sets that are referenced in the remote
submit blocks can be SAS 9, SAS 8, or SAS 6 data sets.

SAS/CONNECT Cross-Version Issues � Limitations 307

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses data

sets on a SAS 6 server in a cross-version environment.

Table A2.5 Limitations for Accessing Data Sets on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service SAS 9 Client Connecting to
a SAS 6 Server

SAS 8 Client Connecting to
a SAS 6 Server

Remote Library Services No access is permitted between
a SAS 9 client and a SAS 6
server.

If SAS 6 data files do not
implement new features, a SAS
8 client can read, write, or
update SAS 6 data files on a
SAS 6 server.

Data Transfer Services All data formats are automatically converted when uploading or
downloading a SAS 6 file to a SAS 9 or SAS 8 target.

If SAS 9 or SAS 8 data files do not contain new features, they can
be uploaded to a SAS 6 target. Truncation rules are applied.

Compute Services A SAS 9 or SAS 8 client can remote submit a SAS program to a
SAS 6 server. The data files that are referenced in the remote
submit blocks can be formatted only as SAS 6 files.

Accessing SAS Views

Limitations
There are limitations and restrictions when accessing SAS views in a cross-version

environment. Here are the types of SAS views:
� DATA step
� PROC SQL
� SAS/ACCESS

Note: SAS/CONNECT uses the data that the SAS view references, but not the SAS
view itself. �

308 SAS 6 Client Accessing a SAS 8 (or Later) Server � Appendix 2

SAS 6 Client Accessing a SAS 8 (or Later) Server
This table summarizes the limitations of a SAS 6 client that accesses SAS views on a

SAS 8 (or later) server in a cross-version environment.

Table A2.6 Limitations for Accessing SAS Views on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service SAS 6 Client Connecting to
SAS 9 Server

SAS 6 Client Connecting to
SAS 8 Server

Remote Library Services No access is permitted between
a SAS 6 client and a SAS 9
server.

For SAS 8 DATA step views,
the SAS 6 client has only read
access.

For SAS 8 SAS/ACCESS views,
the SAS 6 client has read,
write, and update access.

Data Transfer Services For PROC SQL views, a SAS 6 client can upload a PROC SQL
view between a SAS 9 or SAS 8 server by using the INLIB= option
to specify the library that is associated with the view to transfer.
The DATA= option can be used, but a data set will be created.

Compute Services For SAS views, a Version 6 client can remote submit a SAS
program that references SAS views to a SAS 9 or SAS 8 server.
The SAS views that are referenced in remote submit blocks can
be SAS 9, SAS 8, or SAS 6 data files.

SAS/CONNECT Cross-Version Issues � Limitations 309

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses SAS

views on a SAS 6 server in a cross-version environment.

Table A2.7 Limitations for Accessing SAS Views on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service SAS 9 Client Connecting to
a SAS 6 Server

SAS 8 Client Connecting to
a SAS 6 Server

Remote Library Services No access is permitted between
a SAS 9 client and a SAS 6
server.

For SAS 6 DATA step views
and SAS 6 PROC SQL views, if
the view is processed at the
server (RMTVIEW=YES in the
LIBNAME statement), the SAS
8 client has read access only
for DATA step views.

Data Transfer Services A SAS 9 or SAS 8 client can upload data that is associated with a
SAS view to a SAS 6 server.

Names of files that are transferred to a SAS 6 server are
truncated, following truncation rules.

Compute Services A SAS 9 or SAS 8 client can remotely submit a SAS program that
references SAS 6 views to a SAS 6 server.

Accessing Catalogs

Limitations
There are limitations and restrictions when accessing catalogs in a cross-version

environment.

CAUTION:
A SAS 9 or SAS 8 SAS session cannot read SAS 6 catalogs on AIX/RS6000. Use the
CPORT and CIMPORT procedures to migrate SAS 6 catalogs into a SAS 9 or SAS 8
environment on AIX. �

SAS 8 (or later) catalog entry types (alphabetized horizontally) that are compatible
with SAS 6 include:

AFCBT AFGO DEVMAP

FONT FONTLIST KEYMAP

KEYS LOG OUTPUT

SOURCE TEMPLATE TRANTAB

310 SAS 6 Client Accessing a SAS 8 (or Later) Server � Appendix 2

SAS 6 Client Accessing a SAS 8 (or Later) Server
This table summarizes the limitations of a SAS 6 client that accesses catalogs on a

SAS 8 (or later) server in a cross-version environment.

Table A2.8 Limitations for Accessing Catalogs on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service SAS 6 Client Connecting to
SAS 9 Server

SAS 6 Client Connecting to
SAS 9 Server

Remote Library Services No access is permitted between
a SAS 9 client and a SAS 6
server.

A SAS 6 client can read a SAS
6 catalog on a SAS 8 server.

A SAS 6 client can read, write,
and update a SAS 8 catalog
that does not contain new
features.

Data Transfer Services A SAS 6 client can upload a SAS 6 catalog to a SAS 9 or SAS 8
server. The uploaded catalog is converted to SAS 9 or SAS 8
format.

A SAS 6 client can download a SAS 9 or SAS 8 catalog if the
entry type does not contain new features.

Compute Services A SAS 6 client can remotely submit a SAS program that
references a SAS catalog to a SAS 9 or SAS 8 server.

SAS/CONNECT Cross-Version Issues � SAS 8 (and Later) Translation 311

SAS 8 (or Later) Client Accessing a SAS 6 Server

This table summarizes the limitations of a SAS 8 (or later) client that accesses
catalogs on a SAS 6 server in a cross-version environment.

Table A2.9 Limitations for Accessing Catalogs on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service SAS 9 Client Connecting to
a SAS 6 Server

SAS 8 Client Connecting to
a SAS 6 Server

Remote Library Services No access is permitted between
a SAS 9 client and a SAS 6
server.

A SAS 8 client can read from
and write to a SAS 6 catalog on
a SAS 6 server.

A SAS 8 client can write a SAS
6 catalog from one SAS 6
library to another SAS 6
library by using PROC COPY.

Data Transfer Services A SAS 9 or SAS 8 client can download a Version 6 catalog from a
SAS 6 server.

A SAS 9 or SAS 8 server can upload a SAS 6 catalog from a SAS 9
or Version 8 server if the entry type does not contain new features.

A SAS 9 or SAS 8 client cannot create a SAS 6 catalog entry by
using PROC UPLOAD.

Compute Services A SAS 9 or SAS 8 client can remotely submit a SAS program that
references a SAS catalog to a SAS 6 server.

File Format Translation Algorithms

SAS 6 Translation

In SAS 6, translation occurs twice for each data transfer between a client and a
server that run on computers whose architectures are incompatible.

1 The data is translated from the source computer’s native file format to transport
format.

2 The data that is represented in transport format is translated to the target
computer’s native file format.

SAS 8 (and Later) Translation

In SAS 8 and later releases of SAS, translation occurs only once for each data
transfer between a client and a server that run on computers whose architectures are
incompatible. SAS/CONNECT dynamically translates incompatible file formats for each
file upload or file download transaction, bypassing the explicit creation of a transport
file.

312

313

A P P E N D I X

3
Recommended Reading

Recommended Reading 313

Recommended Reading

Here is the recommended reading list for this title:
� SAS/SHARE User’s Guide
� Communications Access Methods for SAS/CONNECT and SAS/SHARE

� SAS Language Reference: Dictionary
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

314

315

Glossary

access method
See communications access method.

aggregate storage location
a location on an operating system that can contain a group of distinct files. On
different operating systems, different terms (such as directory, folder, or partitioned
data set) are used to refer to an aggregate storage location.

American Standard Code for Information Interchange
a 7-bit character encoding that is the U.S. national variant of the ISO 646 standard.
The ASCII encoding includes the upper- and lowercase letters A-Z, digits, symbols
(such as &, #, and mathematical symbols), punctuation marks, and control characters.
This set of 128 characters is also included in most other encodings. Short form:
ASCII. See also Extended Binary Coded Decimal Interchange Code and encoding.

architecture
the manner in which numeric data and character data are represented internally in
a particular operating environment. Architecture encompasses standards or
conventions for storing floating-point numbers (IEEE or IBM 390); for character
encoding (ASCII or EBCDIC); for the ordering of bytes in memory (big Endian or
little Endian); for word alignment (4-byte boundaries or 8-byte boundaries); and for
data-type length (16-bit, 32-bit, or 64-bit).

ASCII
See American Standard Code for Information Interchange.

ASCII mnemonic
the name of an ASCII control character that you can specify in a program in order to
invoke the associated function. For example, NUL represents the null character, CR
represents carriage return, and so on.

asynchronous processing
a type of server processing that enables you to submit multiple tasks to one or more
server sessions that execute in parallel, thus making efficient use of time and
resources. Client processing resumes immediately. That is, you do not wait for the
server processing to complete before control is returned to the client session. See also
synchronous processing.

316 Glossary

authentication
the process of verifying the identity of a person or process within the guidelines of a
specific security policy.

autoexec file
a file that contains SAS statements that are executed automatically when SAS is
invoked. The autoexec file can be used to specify some of the SAS system options, as
well as to assign librefs and filerefs to data sources that are used frequently. See also
fileref and libref.

backing store
a SAS utility file that is written to the client SASWORK directory.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to your computer, and
you can perform other tasks. Batch mode is sometimes referred to as running in the
background. The program output can be written to files or printed on an output
device.

binary
the name of the base 2 number system. A binary digit can have one of two values: 0
or 1. A binary digit is called a bit and is considered to be off when its value is 0 and
on when its value is 1. See also binary file.

binary file
a file that is stored in binary format, which cannot be edited with a text editor. Binary
files are usually executable, but they can contain only data. In SAS/CONNECT
software, a binary file is in the format used to move SAS files in transport format.

block
a group of statements between a logical beginning and ending statement. For
example, the statements between an RSUBMIT statement and an ENDRSUBMIT
statement are a block. See also remotely submit.

break signal
an asynchronous protocol signal indicating that the normal flow of data should be
interrupted.

Break window
a special class of windows for SAS/CONNECT software. Break windows enable you
to handle error conditions and interruptions that are caused by break signals that
you issue. See also break signal.

buffer
See transfer buffer.

carriage-control character
a symbol that tells a printer how many lines to advance the paper, when to begin a
new page, when to skip a line, and when to hold the current line for overprinting.

catalog
See SAS catalog.

catalog entry
See SAS catalog entry, entry type.

character set
the set of characters and symbols that are used by a language or group of languages.
A character set includes national-language characters (characters that are specific to

Glossary 317

a language as it is written in a particular nation or group of nations), special
characters (such as punctuation marks), the unaccented Latin characters A-Z, the
digits 0- 9, and control characters that are needed by the computer.

checksum
one or more characters appended to the end of a data block for error-checking
purposes.

client
a SAS session that receives services, data, or other resources from a specified server.
The server can run on the same computer as the client or on a different computer
(across a network). See also server, SAS/CONNECT server, SAS/CONNECT client,
SAS/SHARE client, and SAS/SHARE server.

command file
a file that contains operating system commands to be executed in sequence.

communications access method
an interface between SAS and the network protocol or interface that is used to
connect two operating environments. Depending on the operating environments,
SAS/SHARE and SAS/CONNECT use either the TCP/IP or XMS communications
access method. See also TCP/IP and Cross-Memory Services.

Compute Services
a feature of SAS/CONNECT that enables a SAS/CONNECT client to distribute SAS
processing to one or more SAS/CONNECT server sessions and to maintain control of
these server sessions and their results from the single client session. Compute
Services are implemented via the RSUBMIT and ENDRSUBMIT statements. Short
form: CS.

configuration file
an external file that contains SAS system options. These system options take effect
each time you invoke SAS. See also external file.

control character
a character that is used for control purposes rather than for information exchange.
Control characters are usually nonprintable. See also carriage-control character.

Cross-Memory Services
a cross-task communication interface that is part of z/OS. XMS is used by programs
that run within a single z/OS operating environment. XMS is also the name of the
SAS communications access method that uses XMS for client/server communication.
Short form: XMS.

CS
See Compute Services.

data translation
the automatic conversion of the internal representation of character and numeric
data that occurs when the data is transferred between SAS/CONNECT client and
server computers that run under different operating environments. For example,
data that was created under UNIX is automatically converted to the Windows data
representation when it is transferred to a Windows operating environment. See also
upload, download, and Data Transfer Services (DTS).

descriptor information
information about the contents and attributes of a SAS data set. For example, the
descriptor information includes the data types and lengths of the variables, as well
as which engine was used to create the data. SAS creates and maintains descriptor
information within every SAS data set.

318 Glossary

download
to copy a file from a server to a client. See also Data Transfer Services.

Data Transfer Services
a feature of SAS/CONNECT software that enables data to be transferred between a
SAS/CONNECT client and a SAS/CONNECT server, regardless of the operating
environment, the computer architectures, and the SAS release that is being used.
Short form: DTS. See also upload, download, and data translation.

EBCDIC
See Extended Binary Coded Decimal Interchange Code.

encoding
a set of characters (letters, logograms, digits, punctuation, symbols, control
characters, and so on) that have been mapped to numeric values (called code points)
that can be used by computers. The code points are assigned to the characters in the
character set by applying an encoding method. Some examples of encodings are
wlatin1, wcyrillic, and shift-jis.

encryption
the act of transforming intelligible data (plaintext) into an unintelligible form
(ciphertext) by means of a mathematical process.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format. There are several types of
engines. See also REMOTE engine and SASESOCK engine.

entry
See SAS catalog entry.

entry type
a characteristic of a SAS catalog entry that identifies the catalog entry’s structure
and attributes to SAS. When you create a SAS catalog entry, SAS automatically
assigns the entry type as part of the name. See also SAS catalog entry.

Extended Binary Coded Decimal Interchange Code
a group of 8-bit character encodings that each include up to 256 characters. EBCDIC
is used on IBM mainframes and on most IBM mid-range computers, and it includes
both graphic (printable) codes and control (nonprintable) codes. Short form: EBCDIC.
See also American Standard Code for Information Interchange and encoding.

external database
a database that stores data that is not part of the SAS System. For example, DB2,
Oracle, and Sybase are types of external databases.

external file
a file that is created and maintained by a host operating system or by another
vendor’s software application. SAS can read data from and route output to external
files. External files can contain raw data, SAS programming statements, procedure
output, or output that was created by the PUT statement. A SAS data set is not an
external file. See also fileref.

file specification
the name of an external file. This name is the name by which the host operating
environment recognizes the file. On directory-based systems, the file specification can
be either the complete pathname or the relative pathname from the current working
directory.

Glossary 319

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS. See also libref.

GRLINK
a device driver that enables you to execute graphics statements on a server but to
display the resulting graphs on a client. In order to provide this functionality, the
GRLINK driver must be installed on the server.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

Internet Protocol Version 4
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the predecessor of Internet Protocol
Version 6, uses dot-decimal notation to represent 32-bit address spaces. An example
of an Internet Protocol Version 4 address is 10.23.2.3. Short form: IPv4. See also IP
address and Internet Protocol Version 6.

Internet Protocol Version 6
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the successor of Internet Protocol
Version 4, uses hexadecimal notation to represent 128-bit address spaces. The format
can consist of up to eight groups of four hexadecimal characters, delimited by colons,
as in FE80:0000:0000:0000:0202:B3FF:FE1E:8329. As an alternative, a group of
consecutive zeros could be replaced with two colons, as in
FE80::0202:B3FF:FE1E:8329. Short form: IPv6. See also IP address and Internet
Protocol Version 4.

IPv4
See Internet Protocol Version 4.

IPv6
See Internet Protocol Version 6.

libref
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

libref inheritance
a feature that enables libraries that are defined in a client session to be inherited by
a server session for read and write access. Libref inheritance occurs during sign-on
and during remotely submitted executions. See also libref.

line mode
See interactive line mode.

local data
data that is accessed through a SAS server on your computer. The data can be stored
either on your hard drive or on a network file system, such as a Novell file server,
that makes the physical location of the data transparent to applications.

320 Glossary

local session
a SAS session running on the local host. The local session accepts SAS statements
and passes those that are remote-submitted to the remote host for processing. The
local session manages the output and messages from both the local session and the
remote session.

macro facility
a component of Base SAS software that you can use for extending and customizing
SAS programs and for reducing the amount of text that must be entered in order to
perform common tasks. The macro facility consists of the macro processor and the
macro programming language.

macro variable
a variable that is part of the SAS macro programming language. The value of a
macro variable is a string that remains constant until you change it. Macro variables
are sometimes referred to as symbolic variables.

member
a SAS file in a SAS library.

member name
a name that is assigned to a SAS file in a SAS library. See also member type.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB, INDEX,
ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

MP CONNECT
See Multi-Processing CONNECT.

Multi-Processing CONNECT
a feature of SAS/CONNECT software that uses multiple CPUs to process tasks in
parallel. Multiprocessing can be used within an operating environment that has
SMP hardware, across operating environments, or both. Short form: MP CONNECT.
See also asynchronous processing and symmetric multiprocessing.

non-U.S. keyboard
a keyboard that is not a standard U.S. keyboard. Non-English language keyboards
often have characters that are not found on U.S. keyboards and might not have some
characters that are found on U.S. keyboards.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains either one
data value or a missing-value indicator for each variable.

operating environment
a computer, or a logical partition of a computer, and the resources (such as an
operating system and other software and hardware) that are available to the
computer or partition.

packet
a grouping of printable characters, a sequence number, and a checksum, which are
transmitted over the link as a unit. SAS/CONNECT clients and servers use these
specially formatted packets to communicate with each other.

permanent SAS library
a SAS library that is not deleted when a SAS session ends, and which is therefore
available to subsequent SAS sessions. Unless the USER libref is defined, you use a
two-level name to access a file in a permanent library. The first-level name is the

Glossary 321

libref, and the second-level name is the member name. See also SAS library, libref
(library reference), and member name.

pipeline parallelism
a SAS/CONNECT feature that accelerates throughput by enabling data to be piped
from one process to another in an SMP environment. Pipeline parallelism enables
the execution of SAS DATA steps and SAS procedures to overlap, with only a single
pass through the data. Rather than waiting for one process to completely finish
writing output, piping starts to execute the waiting process as soon as the first
process starts to generate data. In addition, piping the data saves both time and disk
space because it eliminates the intermediate step of writing data to disk. See also
asynchronous processing, Multi-Processing CONNECT, symmetric multiprocessing,
and SASESOCK engine.

piping
an extension to MP CONNECT functionality that enables you to run multiple
dependent processes asynchronously. Piping improves performance for some tasks by
writing output to TCP/IP ports instead of to disk. See also Multi-Processing
CONNECT and asynchronous processing.

port
in a network, a communications endpoint that is specified by a unique number and a
service name. The port number and the associated service name are configured in a
services file (/etc/services on UNIX). A port enables a SAS client to access a SAS/
CONNECT spawner, an MP CONNECT pipe, a SAS/SHARE server, or a firewall
server. See also SASESOCK engine, pipeline parallelism, firewall, SAS/SHARE
server, and services file.

REMOTE engine
a SAS library engine that enables a client to access data on a server. See also engine.

remote host
in SAS/CONNECT software, the computer on which processing occurs when you
execute a PROC DOWNLOAD, PROC UPLOAD, or other SAS statement that is
executed with the RSUBMIT command or statement. The term remote describes how
you interact with the SAS session running on the computer; it is not related to the
physical location of the computer. See also remote session.

Remote Library Services
a feature of SAS/SHARE and SAS/CONNECT software that enables you to read,
write, and update remote data as if it were stored on the client. RLS can be used to
access SAS data sets on computers that have different architectures. RLS also
provides read-only access to some types of SAS catalog entries on computers that
have different architectures. Short form: RLS. See also architecture.

remote processing
the use of communications software to process local programs with a server’s CPU
resources. In SAS/CONNECT software, the output and messages from a program
that runs on the server are displayed on the client.

remote session
a SAS session that is running in a special mode on the remote host. No output or log
messages are displayed on the remote host. Instead, the results of a remote SAS
session are transmitted back to the log file and output files on the local host.

remotely submit
to use the RSUBMIT command or statement to submit statements from a SAS/
CONNECT client session to be executed in a SAS/CONNECT server session.

322 Glossary

return code
a code that is passed to the operating system and that indicates whether a command
or a job step has executed successfully.

RLS
See Remote Library Services.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain different types of catalog entries.
See also SAS catalog entry.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS. Some catalog entries contain system information such
as key definitions. Other catalog entries contain application information such as
window definitions, Help windows, SAS formats and informats, macros, or graphics
output. See also entry type.

SAS command
a command that invokes SAS. This command can vary depending on the operating
environment and site. See also SAS invocation.

SAS Component Language
a programming language that is provided with SAS/AF and SAS/FSP software. You
can use SCL for developing interactive applications that manipulate SAS data sets
and external files; for displaying tables, menus, and selection lists; for generating
SAS source code and submitting it to SAS for execution; and for generating code for
execution by the host command processor. Short form: SCL.

SAS console log
a file that contains information, warning, and error messages if the SAS log is not
active. The SAS console log is normally used only for fatal system initialization
errors or for late-termination messages. See also SAS log.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set and SAS view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS views. SAS data files contain data values in
addition to descriptor information that is associated with the data. SAS views
contain only the descriptor information plus other information that is required for
retrieving data values from other SAS data sets or from files whose contents are in
other software vendors’ file formats. See also descriptor information.

SAS file
a specially structured file that is created, organized, and, optionally, maintained by
SAS. A SAS file can be a SAS data set, a catalog, a stored program, an access
descriptor, a utility file, a multidimensional database file, a financial database file, a
data mining database file, or an item store file.

SAS invocation
the process of starting SAS software by executing the SAS command.

SAS library
a collection of one or more files that are recognized by SAS and that are referenced
and stored as a unit. Each file is a member of the library.

Glossary 323

SAS log
a file that contains a record of the SAS statements that you enter, as well as
messages about the execution of your program. See also SAS console log.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Repository
a repository that is used by the SAS Metadata Server to store and retrieve metadata.
See also SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories.

SAS system option
an option that affects the processing of an entire SAS program or interactive SAS
session from the time the option is specified until it is changed. Examples of items
that are controlled by SAS system options include the appearance of SAS output, the
handling of some files that are used by SAS, the use of system variables, the
processing of observations in SAS data sets, features of SAS initialization, and the
way SAS interacts with your host operating environment.

SAS view
a type of SAS data set that retrieves data values from other files. A SAS view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS views can be created by the SAS DATA step, as well as by the SAS
SQL procedure.

SAS/CONNECT attention handler window
one of two possible windows that are displayed when a server session is interrupted
by a break signal. This window offers the following selections: abort current remote
processing or continue processing the current remote submit. See also
Communication Services Break Handler window.

SAS/CONNECT client
a SAS/CONNECT session that acts as a client. The user that runs a SAS/CONNECT
client requests services from a SAS/CONNECT server that can run on a remote
single-processor machine or on a local or remote multi-processor machine. The
following services are supported: Remote Library Services, which enables access to
SAS files; Compute Services, which uses fast processing resources; and Data Transfer
Services, which enables the upload or download of selected data for processing. See
also client, server, and SAS/CONNECT server.

SAS/CONNECT server
a SAS/CONNECT session that acts as a server. The SAS/CONNECT server runs a
SAS session on a computer that receives requests for services from a SAS/CONNECT
client. The server can run on a remote, single-processor computer or on a local or
remote SMP computer. SAS/CONNECT servers provide Remote Library Services (for
accessing SAS files), Compute Services (for rapid computational processing), and
Data Transfer Services (for uploading and downloading selected data). See also
client, server, SAS/CONNECT client, and symmetric multiprocessing.

SAS/CONNECT spawner
a program that runs on a remote computer and that listens for SAS/CONNECT client
requests for connection to the remote computer. When the spawner program receives
a request, it invokes a SAS session on the remote computer.

324 Glossary

SAS/SECURE
an add-on product that uses the RC2, RC4, DES, and TripleDES encryption
algorithms. SAS/SECURE requires a license, and it must be installed on each
computer that runs a client and a server that will use the encryption algorithms.
SAS/SECURE provides a high level of security.

SAS/SHARE client
a SAS/SHARE session that acts as a client. The user who runs a SAS/SHARE client
accesses data on a SAS/SHARE server through Remote Library Services (RLS). See
also client, server, SAS/SHARE server, and Remote Library Services.

SAS/SHARE server
the result of an execution of the SERVER procedure. The SERVER procedure is part
of SAS/SHARE software. A server runs in a separate SAS session that services users’
SAS sessions by controlling and executing input and output requests to one or more
SAS libraries. See also client, server, and SAS/SHARE client.

SASESOCK engine
a socket engine for SAS/CONNECT software. Using the SASESOCK engine enables
a SAS/CONNECT client or a SAS/CONNECT server to associate a libref with a TCP/
IP pipe (instead of with a physical disk device) for I/O processing. The SASESOCK
engine is required for SAS/CONNECT applications that implement MP CONNECT
with piping. See also symmetric multiprocessing, pipeline parallelism, asynchronous
processing, Multi-Processing CONNECT, and engine.

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

sasroot
a term that represents the name of the directory or folder in which SAS is installed
at your site or on your computer.

SCL
See SAS Component Language.

script
an external file that contains SAS script statements. The script file is stored on a
client and provides instructions for establishing and terminating a SAS/CONNECT
session. Script files are executed by the SIGNON and SIGNOFF commands. See also
external file.

script statement
a special kind of SAS statement that was developed for use in scripts for SAS/
CONNECT software. Script statements are used only in scripts.

server
a SAS session that delivers services, data, or other resources to a requesting client.
The server can run on the same computer as the client or on a different computer
(across a network). See also SAS/CONNECT server, SAS/SHARE server, SAS/
CONNECT client, SAS/SHARE client, and server.

server session
See server, SAS/CONNECT server, SAS/SHARE server.

services file
a file that contains a list of service names and the TCP/IP ports that are mapped to
those services. The services file is stored on both the SAS client and the SAS server.
The UNIX services file is located in /etc/services. A service can be specified for any of

Glossary 325

the following: a SAS/CONNECT spawner, a SAS/SHARE server, an MP CONNECT
pipe, and a firewall server. See also port, SASESOCK engine, pipeline parallelism,
firewall, and SAS/SHARE server.

SMP
See symmetric multiprocessing.

socket
the endpoint of a connection in a TCP/IP network. A socket is the combination of a
TCP port and an IP address. By analogy, a socket is like a telephone to which a
telephone number has been assigned. The TCP port is like a telephone number, and
the IP address is like the location of the telephone. See also port, services file, socket
inheritance, and IP address.

spawner
See SAS/CONNECT spawner.

SQL
See Structured Query Language.

SSL (Secure Sockets Layer)
a protocol that provides network security and privacy. SSL uses encryption
algorithms RC2, RC4, DES, TripleDES, and AES. SSL provides a high level of
security. It was developed by Netscape Communications.

statement label
a SAS name followed by a colon that prefixes a statement in a DATA step so that
other statements can direct execution to that statement as necessary, bypassing
other statements in the step.

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate objects in a database management
system. SAS implements SQL through the SQL procedure. Short form: SQL.

symmetric multiprocessing
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller. Short form: SMP.

synchronous processing
a type of processing in which a SAS/CONNECT server session must finish executing
a process before control is returned to a SAS/CONNECT client session. See also
asynchronous processing.

system option
See SAS system option.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

Teletypewriter Network Protocol
a program that provides virtual terminal services that enable you to log on to a
server from a terminal that is connected to a client. The client performs as if it were

326 Glossary

physically connected to the server. In SAS/CONNECT software, Telnet is always
executed via an automatic log-on script, not directly by a user. Short form: Telnet.

Telnet
See Teletypewriter Network Protocol.

timeout
an error condition that is produced when a required response from a device is not
received. Some SAS script statements control what happens when a timeout occurs.

TLS
See Transport Layer Security.

transfer buffer
a temporary holding area in computer memory that is used when data is transferred
between clients and servers across a network.

translation table
an operating environment-specific SAS catalog entry that is used to translate the
value of one character to another. Translation tables often are needed to support the
use of multiple national languages in an application. An example of a translation
table is one that converts characters from EBCDIC to ASCII-ISO.

Transport Layer Security
the successor to Secure Sockets Layer (SSL) V3.0. The Internet Engineering Task
Force (IETF) adopted SSL V3.0 as the de facto standard, made some modifications,
and renamed it TLS. TLS is virtually SSLV3.1. Short form: TLS. See also Secure
Sockets Layer.

upload
to copy a file from a client to a server. See also Data Transfer Services.

XMS
See Cross-Memory Services.

327

Index

A
ABORT statement 91, 92
ACCESS= option

LIBNAME statement 208
accessibility features 12
AFTER= option

PROC DOWNLOAD statement 257
PROC UPLOAD statement 239

ALL option
KILLTASK statement 165
LISTTASK statement 164
WAITFOR statement 162

ANY option
WAITFOR statement 162

application server
See SAS Application Server

ASCII representation 236
Asynchronous Compute Services 6
asynchronous processing

Compute Services and 119
RSUBMIT statement/command 153
signons 74
synchronous vs. 74
waiting for tasks 162

attention handler window 133, 134
attributes

DATA= option, PROC UPLOAD statement 247
OUT= option, PROC UPLOAD statement 247
transferring data with 279

AUTHDOMAIN= option
RSUBMIT statement/command 138
SIGNON statement/command 59

autoexec file 47, 82
automatic signon 16
AUTOSIGNON system option 16

RSUBMIT statement/command 74

B
BINARY option

PROC DOWNLOAD statement 258, 284
PROC UPLOAD statement 240, 284

break windows
Compute Services and 133

buffer size
transferring data across network 30

C
CALL statement 91, 92
CALL SYMPUT routine 130
CANCEL option

ENDRSUBMIT statement 155
catalog entries 274
catalogs

accessing 204, 309
RLS support 204

character sets
EBCDIC CC-Control not downloaded 292
non-English 236
translations to/from ASCII 236
translations to/from EBCDIC 236

client/client sessions
determining macro execution 130
ending connections 77
initiating connections 59
LIBNAME statement and 207
marking end of statement block 155
remote submits 189
RSUBMIT statement execution 124
sending messages to 96
server software and 178
setting %SYSRPUT macro variable 28
SIGNOFF statement/command 79
SIGNON statement 74
simple signoffs 80
sorting/merging data 191
starting SAS/CONNECT 36
statement blocks and 138
%SYSRPUT statement 158
updating server data sets 218
verifying connections established 86
view interpretation 205
waiting for asynchronous tasks 162

client/server relationship 4
associating librefs 209
ending connections 77
initializing connections 59
verifying connections established 86

CMACVAR macro variable 118
CMACVAR= option

RSUBMIT statement/command 138
SIGNOFF statement/command 78
SIGNON statement/command 60

COMAMID SCL function 85
COMAMID= system option 17

OPTIONS statement 190

328 Index

command files 75
comment delimiters for conditional code execution 124
Communication Services Break Handler window 133, 135
communications access methods 5

identifying 17
specifying 36
TCP/IP access method 36
XMS access method 37

COMPRESS= data set option 232, 233
Compute Services (CS) 6, 110

accessing large data resources 231
asynchronous processing 119
break windows and 133
cost/benefit comparison 203
Data Transfer Services combined with 189, 191, 193
data volume and 203
graphics processing on servers 176
macro processing and 122
macro variables and %SYSRPUT statement 174
ODS and 119
ODS with SAS/CONNECT 170
premature pipe closure 174
remote data set administration 168
Remote SQL 7
remote submit and 119
RSPT and 183
RSUBMIT 6
server software and client sessions 178
troubleshooting 195

conditional code execution 124
CONNECT TO REMOTE statement (RSPT) 182
CONNECTPERSIST= option

RSUBMIT statement/command 139
CONNECTPERSIST system option 18
CONNECTREMOTE= option

RDISPLAY statement/command 156
RGET statement/command 157
RSUBMIT statement/command 139
SIGNOFF statement/command 78
SIGNON statement/command 60

CONNECTREMOTE= system option 19
in RSUBMIT 19
in SIGNON 19
SIGNON statement/command 60

CONNECTSTATUS= option
PROC DOWNLOAD statement 258
PROC UPLOAD statement 240
RSUBMIT statement/command 141
SIGNON statement/command 61

CONNECTSTATUS system option 20
Transfer Status window 233

CONNECTWAIT= option
RSUBMIT statement/command 141
SIGNON statement/command 62

CONNECTWAIT system option 21
RSUBMIT statement/command 111

CONSTRAINT= option
PROC DOWNLOAD statement 258
PROC UPLOAD statement 240

cross-architecture access
loss of magnitude 297
loss of precision 297
numeric translation 297

CSCRIPT= option
RSUBMIT statement/command 142
SIGNOFF statement/command 78

SIGNON statement/command 63
CSYSRPUTSYNC= option

RSUBMIT statement/command 143, 174
SIGNON statement/command 63

D
data

combining from multiple sessions 286
distributing 230, 284
encoding 298
merging 191
RLS considerations 202
sorting 191
translating 295, 296

DATA= option
PROC DOWNLOAD statement 259, 279
PROC UPLOAD statement 240, 247, 279

data set options
DATA= option, PROC UPLOAD statement 247
data transfer and 279
OUT= option, PROC UPLOAD statement 247

data sets
accessing 306
integrity constraints 280
naming conventions 246, 263
partitioned 285
remote administration 168
RLS and 218
transferring generations of 276
updating on servers 218

DATA step
accessing views 205
view interpretation 205

data transfer
buffer size for 30
data set options and 279
WHERE processing and 230

Data Transfer Services (DTS) 8
accessing large data resources 231
backups and 230
benefits 230
combining data from multiple sessions 286
Compute Services and 189, 192, 193
cost/benefit comparison 203
data set options/attributes 279
distributing files to multiple clients 284
functionality 229
multi-pass data processing and 203
network data flow and 203
network response time and 203
partitioned data sets 285
resources and 230
RLS and 223
tips 234, 235
Transfer Status window 233, 234
transferring data set integrity constraints 280
transferring generations of data sets 276
transferring long member names 279
transferring numerics 281
transferring SAS utility files 282
transferring specific catalog entry types 274
transferring specific member types 273
troubleshooting procedures 291
WHERE statement 272

Index 329

data views
accessing 204, 307
definition 205
RLS support 204
servers and 205

databases
external 204
RLS support 204

DATECOPY option
PROC DOWNLOAD statement 259
PROC UPLOAD statement 241

DB2
querying tables in 185

DBMS= option
CONNECT TO REMOTE statement (RSPT) 182

DBMSARG= option
CONNECT TO REMOTE statement (RSPT) 182

debugging
ECHO statement and 93
scripts 56

DISCONNECT FROM statement (RSPT) 183
DM statement

SIGNOFF command 79
SIGNON command 74

DMR system option 22
%DO statement 123
Domain Name Server (DNS) 40
DOWNLOAD procedure

DTS and 229, 234, 235
EBCDIC CC-Control not downloaded 292
functionality 255
log output 269
output 269
partitioned data sets and 285
RLS/DTS example 223
RSUBMIT command and 234
symbol not recognized 291
SYSINFO macro variable and 193
troubleshooting 291

E
EBCDIC representation 236, 292
ECHO statement 91, 93

debugging with 93
encryption providers 5
ENDRSUBMIT statement 155

parsing 154
remote submit 189, 191

ENTRYTYPE= option
EXCLUDE statement (DOWNLOAD) 267
EXCLUDE statement (UPLOAD) 252
PROC DOWNLOAD statement 259, 274
PROC UPLOAD statement 241, 274
SELECT statement (DOWNLOAD) 268
SELECT statement (UPLOAD) 253

EXCLUDE statement
DOWNLOAD procedure 266, 267
UPLOAD procedure 251, 252

EXECUTE BY statement (RSPT) 182
EXTENDSN= option

PROC DOWNLOAD statement 259, 281
PROC UPLOAD statement 241, 281

external databases 204
external files

associating with filerefs 81

UPLOAD procedure and 235

F
file transfer

data file compression 232
fixed block binary file message 292
network file compression 232
variable block binary file message 291

FILECC system option 292
FILENAME statement 81

autoexec file and 82
DOWNLOAD procedure with 82, 83
script files and 82
UPLOAD procedure with 82, 83

filerefs
associating with external files 81
generated by SASSCRIPT= system option 24
specifying for signoff 80

files
accessing 205
compression and 232
data views and 205
external 81, 235
factors affecting access 301
RLS support 204
SAS utility files 205, 282

FROM CONNECTION TO statement (RSPT) 182

G
GEN= option

PROC DOWNLOAD statement 260
PROC UPLOAD statement 241

GETHOSTBYNAME function 40
GOTO statement 91, 93
graphics processing 176
GRLINK driver 176

H
Host-not-active message 103
HOSTS file 40

I
IF statement 91, 94
%IF statement 123
INCAT= option

PROC DOWNLOAD statement 260
PROC UPLOAD statement 242

independent parallelism 111, 112
single input data source 112
WORK library 112

INDEX= option
PROC DOWNLOAD statement 260
PROC UPLOAD statement 242

INFILE= option
PROC DOWNLOAD statement 260
PROC UPLOAD statement 242

INHERITLIB= option
RSUBMIT statement/command 144
SIGNON statement/command 64

INLIB= option
PROC DOWNLOAD statement 261, 282
PROC UPLOAD statement 243, 282

330 Index

INPUT statement 91, 94
interactive line mode 189
interfaces (SAS/CONNECT) 44, 46, 47

K
keyboards

non-English 236
KILLTASK statement 165

L
%LET statement 123, 124
LIBNAME statement 207

clients/client sessions 207
specifying servers 209

LIBNAME statement, SASESOCK engine 211
libraries

LIBNAME statement and 207
libref access via servers 209
WORK library 112

librefs
accessing libraries on servers 209
associating client/server 209
associating with TCP/IP pipe 211
LIBNAME statement and 207
suggestions 202

LISTTASK statement 164
MP CONNECT task completion 118

LOCATEC SCL function 218
log

DOWNLOAD procedure output 269
messages to 95
UPLOAD procedure output 253

log events
example
triggers for 11

LOG= option
RSUBMIT statement/command 144
SIGNON statement/command 65

LOG statement 91, 95
Log window

ABORT statement 92
creating 156
MP CONNECT results and 117
RDISPLAY statement/command 156
Remote Get 121
remote processing control 120
SIGNOFF command message 80
SIGNON command message 46

logging
See SAS logging facility

logging configuration file 10
LRECL= option

FILENAME statement 235, 292

M
macro definitions 123
macro statements 123, 158

macro definitions and 123
statement blocks and 123

macro variables
apparent symbolic reference not resolved 131
assigning values from server session 158
CALL SYMPUT routine and 130

checking for signoff failures 79
Compute Services and 174
creating in server session 160
forcing definition 174
SYSINFO macro variable 193

macros
Compute Services and 122
NRSTR macro quoting function 124
programming techniques 124
SAS/CONNECT and 193
semicolons in values 132
server sessions 130
statement blocks and 123

MACVAR= option
MP CONNECT and 169
testing signon success 76

magnitude
loss of 297

MEMTYPE= option
EXCLUDE statement (DOWNLOAD) 267
EXCLUDE statement (UPLOAD) 251
PROC DOWNLOAD statement 261, 273, 282
PROC UPLOAD statement 243, 273, 282
SELECT statement (DOWNLOAD) 268
SELECT statement (UPLOAD) 253

messages
absence of software start-up 103
fixed block binary file message 292
Host-not-active message 103
Requested-link-not-found message 104
SAS console log for UNIX 105
SAS console log for Windows 104
SAS console log for z/OS 105
sending to client session 96
SIGNOFF command message 80
SIGNON command message 46
to log 95
variable block binary file message 291

metadata repository 37
metadata server

See SAS Metadata Server
Monitor window 118
MP (Multi-Processing) CONNECT 6, 111, 114

LISTTASK statement 118
log/output results 117
long-running remote tasks and 167
MACVAR= option and 169
monitoring tasks 117, 118
multiple processors 116
multiple threads 116
NOTIFY= option 118
parallel processes 116
parallel threads 116, 117
piping and 173, 196
SAS Explorer 118
SASESOCK engine and 211
scalability 115, 117
task completion 118
WAITFOR statement 118, 172

multi-processor (SMP) machines
command for starting server sessions 23

multi-user server 4

Index 331

N
naming conventions

data sets 246, 263
username/passwords 74, 154

networks
data flow and DTS 203
data flow and RLS 203
file compression/transfer 232
reducing traffic 206
report distribution example 223
response time and RLS 203

NOCSCRIPT option
SIGNOFF statement/command 79

NOSCRIPT option
SIGNON statement/command 66

NOSYNTAXCHECK system option 35
NOTIFY= option

MP CONNECT task completion 118
RSUBMIT statement/command 66, 118, 146

NOTIFY statement 91, 96
NRSTR macro quoting function 124
numeric magnitude

loss of 297
numeric precision

loss of 297
numeric translation

cross-architecture access 297

O
operating environment

GETHOSTBYNAME function 40
HOSTS file 40
identifying COMAMIDs valid for 85

OPTIONS statement
COMAMID= system option 190
REMOTE= system option 190
SASCMD= system option 39

OUT= option
PROC DOWNLOAD statement 261, 263, 279
PROC UPLOAD statement 243, 246, 247, 279

OUTCAT= option
PROC DOWNLOAD statement 262
PROC UPLOAD statement 244

OUTFILE= option
PROC DOWNLOAD statement 262
PROC UPLOAD statement 245

OUTLIB= option
PROC DOWNLOAD statement 263, 282
PROC UPLOAD statement 245, 282

OUTPUT= option
RSUBMIT statement/command 144
SIGNON statement/command 65

Output window
creating 156
MP CONNECT results and 117
RDISPLAY statement/command 156
Remote Get 121
remote processing control 120

P
parallel processes 116, 172
parallel threads 116, 117
parallelism 28

PASSWORD= option
RSUBMIT statement/command 152
SIGNON statement/command 73, 75

passwords
in script files 50
naming conventions 74, 154
specifying for spawners 41, 42

persistent connection 18
pipeline parallelism 113
pipes

considerations for 114
MP CONNECT and 173, 196
preventing premature closure 174
problems with 196
SASESOCK engine and 211

precision
loss of 297

PROC DOWNLOAD statement 256
PROC SQL views 205, 206
PROC UPLOAD statement 238
Program Editor window 46
programming services 6

Compute Services 6
Data Transfer Services 8
MP CONNECT 6
Remote Library Services 9

prompts 94
PT2DBPW= option

CONNECT TO REMOTE statement (RSPT) 182
%PUT statement 123

Q
queries

tables in DB2 185

R
RDISPLAY statement/command 156

CONNECTREMOTE= option 156
monitoring tasks 117
MP CONNECT log/results 117

RECFM= option
FILENAME statement 235

remote data
printing list of reports 215
subsetting 186, 219
updating 217
WHERE statement accessing 216

Remote Display 120, 122
REMOTE engine

RSPT and 181
Remote Get 120, 121
Remote Library Services (RLS) 9

accessing server data with WHERE statement 216
applying client transaction data sets 218
benefits 202
catalogs and 204
client access with 201
cost/benefit comparison 203
cross-version libraries 304
data access considerations 202
data processing efficiency 203
Data Transfer Services and 223
data translation 295
data volume and 203

332 Index

definition 201
DOWNLOAD procedure 223
multi-user server 4
networks and 203
printing list of reports from server data 215
report distribution 223
SAS database 204
SAS files and 204
server access with 201
single-user server 4
subsetting server data 219
updating server data 217
UPLOAD procedure 223
WHERE statement and SCL 217

REMOTE= option
OPTIONS statement 190

/REMOTE= option
SYSLPUT macro statement 160

remote processing
MP CONNECT and long-running tasks 167
Output window and 120
SAS windowing environment 119
signing on to multiple server sessions 76

Remote SQL Pass-Through (RSPT) 7
remote submit

automatic signon 16
Compute Services and 119
ENDRSUBMIT statement 189, 191
MACVAR= option with MP CONNECT 169
no terminal connected to SAS session 196
RSUBMIT statement/command 189, 191
SAS/CONNECT statements 189
SIGNOFF statement/command 189
SIGNON statement 189
square brackets and 196
syntax checking 195

Remote Submit (SAS windowing environment) 120, 121
remote submits

asynchronous execution 21
synchronous execution 21

RENGINE= option
LIBNAME statement 208

reports
printing remotely 215
RLS/DTS distribution example 223

Requested-link-not-found message 104
RETURN statement 91, 96
RGET statement/command 117, 157
RLINK SCL function 86
RLS

See Remote Library Services (RLS)
RMTVIEW= option

LIBNAME statement 204, 205, 209
ROPTIONS= option

LIBNAME statement 208
RSESSION SCL function 87
RSPT (Remote SQL Pass-Through)

Compute Services and 183
CONNECT TO REMOTE statement 182
DISCONNECT FROM statement 183
EXECUTE BY statement 182
FROM CONNECTION TO statement 182
querying tables in DB2 185
REMOTE engine 181
subsetting remote data 186
syntax 181

RSTITLE SCL function 88
RSUBMIT statement/command

asynchronous processing 153
AUTHDOMAIN= option 138
AUTOSIGNON system option 74
clients/client sessions 124
CMACVAR= option 138
CONNECTPERSIST= option 139
CONNECTREMOTE= option 139
CONNECTREMOTE= system option in 19
CONNECTSTATUS= option 141
CONNECTWAIT= option 141
CONNECTWAIT system option 111
CSCRIPT= option 142
CSYSRPUTSYNC= option 143, 174
differences between 153
displaying output from 156
DOWNLOAD procedure 234
ensuring correct execution 124
INHERITLIB= option 144
invalid option 195
LOG= option 144
macros and 122
no terminal connected to SAS session 196
NOTIFY= option 66, 118, 146
OUTPUT= option 144
parsing 154
piping problems 196
remote statements not processing 195
remote submit 189, 191
SASCMD= option 147
SERVER= option 149
SIGNONWAIT= option 150
square brackets and 196
statement blocks 138
SUBMIT comparison 153
synchronous processing 153
syntax 138
SYNTAXCHECK internal option 195
troubleshooting 195
UPLOAD procedure 234
USERNAME= option 151
WAIT= option 195

S
SAPW= option

CONNECT TO REMOTE statement (RSPT) 182
SAS/ACCESS

accessing views 205
external databases 204
view interpretation 205

SAS application layer
buffer size for data transfer 30

SAS Application Server
signing on to 37

SAS/CONNECT 3
attention handler window 133, 134
autoexec file 47
GRLINK driver 176
interfaces 44, 46, 47
macro facility and 193
Monitor window 118
new features 302
ODS with 170
Program Editor window 46

Index 333

remote submit 189
SAS windowing environment 44
scripts for starting/stopping 51
starting 36

SAS console log
messages for UNIX 105
messages for Windows 104
messages for z/OS 105
SASCMD= option 105

SAS Explorer 118
SAS logging facility 10

example log event
invocation of 11
logging configuration file 10
triggers for log events 11

SAS Metadata Repository 37
obtaining script file path from 26

SAS Metadata Server
accessing 37

SAS/SECURE 5
SAS/SHARE servers

loss of magnitude and 297
SAS windowing environment

Remote Display 120, 122
Remote Get 120, 121
remote processing 119
Remote Submit 120, 121
SIGNOFF command 79
Signoff window 45
SIGNON command 74
Signon window 44
starting/stopping SAS/CONNECT 44

SASCMD= option
RSUBMIT statement/command 147
SAS console log messages for UNIX 105
SAS console log messages for z/OS 105
signing on with 105
SIGNON statement/command 68

SASCMD= system option 23
OPTIONS statement 39
SIGNON statement/command 39

SASESOCK engine 211
SASFRSCR system option 24
SASProprietary 5
SASSCRIPT= system option 25

filerefs generated by 24
scaling out 116
scaling up 116
SCANFOR statement 91, 97
SCL (SAS Component Language)

COMAMID SCL function 85
functions and options 85
LOCATEC SCL function 218
locating/storing script files 88
RLINK SCL function 86
RSESSION SCL function 87
RSTITLE SCL function 88
WHERE statement and 217

script files 49
absence of software start-up messages 103
FILENAME statement 82
locating/storing with SCL 88
passwords in 50
specifying signon 40, 43
storage locations for 25

script statements
checking condition of 94
displaying during execution 97
redirecting execution 93
summary of 91
syntax rules 51

scripts
debugging 56
for signing on/off 52
invoking routines 92
sign-on scripts 41, 42, 50
signing off with 52, 80
signing off without 80
signing on with 52, 75
starting/stopping SAS/CONNECT 51
TCP/IP connection example 53
when to use 49

SELECT statement
DOWNLOAD procedure 268
UPLOAD procedure 252

semicolon (;)
in macro values 132
invalid option and 195
spacing problems and 132

SERVER= option
CONNECT TO REMOTE statement (RSPT) 182
LIBNAME statement 202, 208
RSUBMIT statement/command 149
SIGNON statement/command 70

servers/server sessions
accessing with RLS 201
assigning macro variable values 158
automatic signon 16
CALL SYMPUT routine and 130
combining data from multiple 286
command for starting 23
creating macro variables 160
data views and 205
defining connect descriptions 88
definition 40
ending connections 77
ensuring RSUBMIT statement execution 124
graphics processing 176
identifying 19
initialization errors 104
initiating connections 59
invoking 22
LIBNAME statement and 209
librefs accessing data libraries 209
macros and 130
monitoring MP CONNECT tasks 118
MP CONNECT log/output results 117
multiple for remote processing 76
multiple sessions in parallel 28
obtaining session information 87
offloading work 230
on multi-processor (SMP) machine 23
sending characters to 98
signing on 37
signoff from specific 80
signon examples 40
signon with SMP machines 38
specifying 39
specifying for Telnet daemons 43
specifying spawner service and 40
statement blocks and 138

334 Index

Telnet daemon example 43
terminating with SIGNOFF command 202
updating data sets 218
verifying connections established 86
view interpretation 205

SERVERV= option
SIGNON statement/command 70

signing off
checking for failures 79
from specific server sessions 80
single sessions 80
with Program Editor window 46
with scripts 52, 80
without scripts 80

signing on
asynchronous 27
asynchronous processing 74
asynchronous vs synchronous 74
automatic 16
creating command file 75
servers and 37, 76
synchronous 27
testing success with MACVAR 76
troubleshooting 103
with SASCMD= signon 105
with scripts 52, 75
with spawners 40, 105
with Telnet daemon 43, 105

SIGNOFF statement/command 77, 79
client sessions 79
CMACVAR= option 78
CONNECTREMOTE= option 78
CSCRIPT= option 78
DM statement 79
Log windows 80
NOCSCRIPT option 79
remote submit 189
SAS windowing environment 79
terminating server session 202

Signoff window 45
SIGNON statement/command 59

AUTHDOMAIN= option 59
AUTOSIGNON system option 74
client/client sessions 74
CMACVAR= option 60
CONNECTREMOTE= option 60
CONNECTREMOTE= system option 60
CONNECTREMOTE= system option in 19
CONNECTSTATUS= option 61
CONNECTWAIT= option 62
CSCRIPT= option 63
CSYSRPUTSYNC= option 63
DM statement 74
INHERITLIB= option 64
LOG= option 65
Log window 46
messages 46
NOSCRIPT option 66
OUTPUT= option 65
PASSWORD= option 73, 75
remote submit 189
SAS windowing environment 74
SASCMD= option 68
SASCMD= system option 39
semicolon 74
SERVER= option 70

SERVERV= option 70
SIGNONWAIT= option 71
TBUFSIZE= option 72
USERNAME= option 73, 75

Signon window 44
SIGNONWAIT= option

RSUBMIT statement/command 150
SIGNON statement/command 71

SIGNONWAIT system option 27
single-user server 4
SLIBREF= option

LIBNAME statement 208
SMP machines 38

command for starting server sessions 23
sorting

CS and DTS combined 191
spacing

semicolons and 132
spawners

ensuring activation 40
signing on 40, 105
signon method 105
specifying servers 40
specifying sign-on script 41
specifying spawner service 40
user ID/passwords for 41, 42

square brackets 196
SSH (Secure Shell) 5
SSL (Secure Sockets Layer) 5
statement blocks

macros and 123
marking end of 155
processing within 153
RSUBMIT statement/command 138

STOP statement 91
SUBMIT command

vs. RSUBMIT command 153
synchronization point

defining macro variables and 174
%SYSRPUT statement 158

synchronous processing
asynchronous vs. 74
RSUBMIT statement/command 153
signons 74

SYNTAXCHECK internal option
RSUBMIT statement/command 195

SYNTAXCHECK system option 35
SYSINFO macro variable

DOWNLOAD procedure 193
SYSRPUT macro statement 193
UPLOAD procedure 193

%SYSLPUT statement 124, 160
session impact 129

%SYSRPUT macro variable
setting in client session 28

%SYSRPUT statement 158
forcing macro variable definition 174
macro processor and 123
setting %SYSRPUT macro variable 28
synchronization point 158
SYSINFO macro variable and 193

SYSRPUTSYNC system option 28

Index 335

T
tables

querying in DB2 185
tasks

monitoring with MP CONNECT 117, 118
waiting for asynchronous 162

TBUFSIZE= option
SIGNON statement/command 72

TBUFSIZE= system option 30
attributes 30

TCP/IP access method
script for connection to UNIX 53
specifying 36

TCP/IP pipes
librefs and 211

TCP/IP ports
first value in range of 32
last value in range of 32

TCPMSGLEN= system option
attributes 30

TCPPORTFIRST= system option 32
TCPPORTLAST= system option 32
Telnet daemon

server sessions 43
sign-on script files 40
signing on with 43
signon method 105

TIMEOUT= option
LIBNAME statement 174, 196
LIBNAME statement, SASESOCK engine 213
WAITFOR statement 163

TRACE statement 91, 97
Transfer Status window

CONNECTSTATUS system option 233
Data Transfer Services (DTS) 233
default display setting 20
example 234

translation tables 236
TRANTAB statement

DOWNLOAD procedure 269
UPLOAD procedure 253

triggers for log events 11
troubleshooting

absence of startup messages 103
apparent symbolic reference not resolved 131
Compute Services 195
DOWNLOAD procedure 291
DTS and 291
EBCDIC CC-Control not downloaded 292
fixed block binary file message 292
Host-not-active message 103
invalid option with RSUBMIT statement 195
no terminal connected to SAS session 196
piping problems 196
remote statements not processing 195
Requested-link-not-found message 104
RSUBMIT statement/command 195
SAS console log messages for UNIX 105
SAS console log messages for Windows 104
SAS console log messages for z/OS 105
server session initialization errors 104
signing on 103
square bracket support 196
symbol not recognized 291
UPLOAD procedure 291
variable block binary file message 291

TYPE statement 91, 98
driver specifications 176

U
UNIX

SAS console log messages 105
TCP/IP access method 53

UPLOAD procedure 237
DTS and 229, 234, 235
external files and 235
FILENAME statement with 82, 83
log output 253
output 253
RLS/DTS example 223
RSUBMIT command 234
symbol not recognized 291
SYSINFO macro variable 193
troubleshooting 291

user IDs 41, 42
USERNAME= option

RSUBMIT statement/command 151
SIGNON statement/command 73, 75

usernames 74, 154

V
V6TRANSPORT option

PROC DOWNLOAD statement 263, 281
PROC UPLOAD statement 245, 281

view interpretation 205
VIEWTODATA option

PROC DOWNLOAD statement 263
PROC UPLOAD statement 245

W
WAIT= option

RSUBMIT statement 195
WAITFOR statement 91, 99, 162

ECHO statement and 93
MP CONNECT 118, 172
usage notes 100

WHERE statement
accessing server data with 216
data transfers and 230
DOWNLOAD procedure 265
DTS and 272
reducing network traffic 206
SCL programs and 217
UPLOAD procedure 250

wildcard characters 285
Windows

SAS console log messages 104
WORK library 112

X
XMS access method 37

Z
z/OS

downloading partitioned data sets 285
SAS console log messages 105

336 Index

XMS access method 37

Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	Contents
	What’s New
	Overview
	New Features and Enhancements for Server Sign-On and Compute Services
	Enhancements for Remote Library Services
	Documentation Enhancements

	What Is SAS/CONNECT?
	SAS/CONNECT: Definitions and Services
	SAS/CONNECT Terminology
	SAS/CONNECT
	The Client/Server Relationship
	Single-User Server
	Multi-User Server
	Communications Access Method
	Encryption Providers

	Programming Services
	Compute Services and MP CONNECT
	Data Transfer Services
	Remote Library Services

	Administering Logging for SAS/CONNECT
	About the SAS Logging Facility
	Logging Configuration File
	Invocation of the Logging Facility
	Triggers for Log Events
	Example of a Log Event

	Accessibility Features in SAS Products

	SAS/CONNECT Options
	SAS/CONNECT General SAS System Options

	Starting and Stopping SAS/CONNECT Software
	Starting and Stopping SAS/ CONNECT
	Starting SAS and Using Syntax Checking
	Starting SAS/CONNECT
	Specifying a Communications Access Method
	Signing On to the Server
	Sign On to a Server That Is Defined in the SAS Metadata Repository
	Sign On to the Same Multiprocessor Computer
	Sign On Using a Spawner
	Sign On Using a Telnet Daemon

	Interfaces for Starting and Stopping SAS/CONNECT
	Types of Interfaces for Starting and Stopping SAS/CONNECT
	Using the SAS Windowing Environment to Start and Stop SAS/CONNECT
	Using the Program Editor Window
	Using the Autoexec File

	Using SAS/CONNECT Script Files
	Overview of SAS/CONNECT Script Files
	When to Use a SAS/CONNECT Script
	Purpose of a Sign-On Script
	Using Passwords in a Script File
	Using a Script to Start and Stop SAS/CONNECT
	Syntax Rules for SAS/CONNECT Script Statements
	Writing Simple SAS/CONNECT Scripts for Signing On and Signing Off
	Writing Simple SAS/CONNECT Scripts: Overview
	Example SAS/CONNECT Script for a TCP/IP Connection to UNIX

	Debugging a SAS/CONNECT Script

	Syntax for the SIGNON and the SIGNOFF Statements and Commands
	Syntax for the FILENAME Statement
	SAS Component Language (SCL) Functions and Options
	Using SCL to Locate and Store Sample Script Files

	SAS/CONNECT Script Statements
	Summary of SAS/CONNECT Script Statements

	Sign-On Troubleshooting
	Troubleshooting Sign-On Problems
	Host-Not-Active Message
	Absence of SAS Software Start-Up Messages
	Requested-Link-Not-Found Message
	SAS/CONNECT Server Session Initialization Errors
	SAS Console Log Messages for Windows
	SAS Console Log Messages for UNIX
	SAS Console Log Messages for z/OS

	Compute Services
	Using Compute Services
	Overview of Compute Services
	MP CONNECT
	Independent Parallelism
	Overview of Independent Parallelism
	Considerations for Independent Parallelism

	Pipeline Parallelism
	Overview of Pipeline Parallelism
	Limitation of Pipeline Parallelism
	Considerations for Piping

	Benefits of MP CONNECT
	Scalability with MP CONNECT
	Overview of Scalability
	Parallel Threads and Parallel Processes

	Monitoring MP CONNECT Tasks
	Overview of Monitoring MP CONNECT Tasks
	Managing MP CONNECT Log and Output Results
	MP CONNECT Task Completion

	Using SAS Explorer to Monitor SAS/CONNECT Tasks
	Compute Services and the Output Delivery System
	Using the SAS Windowing Environment to Control Remote Processing
	Overview of Remote Processing Control Using the SAS Windowing Environment
	Remote Submit
	Remote Get
	Remote Display

	Interaction between Compute Services and Macro Processing
	Macro-Generated RSUBMIT Blocks
	Macro Definitions
	SAS Statements That Are Not Macros or Macro Definitions
	Macro Statements
	Ensuring That the RSUBMIT Statements Are Executed in the Correct Session
	Examples
	Frequently Asked Questions

	Compute Services and Break Windows
	Overview of Break Windows
	SAS/CONNECT Attention Handler Window
	Communication Services Break Handler Window

	Syntax for the RSUBMIT Statement and Command
	Examples Using Compute Services
	Example 1: Using MP CONNECT for a Long-Running Remote Task
	Purpose
	Program

	Example 2: Administering Server Data Sets from a Client
	Purpose
	Program

	Example 3: Using the CMACVAR= Option with MP CONNECT
	Purpose
	Program

	Example 4: Using the Output Delivery System with SAS/CONNECT
	Purpose
	Program

	Example 5: Using MP CONNECT and the WAITFOR Statement
	Purpose
	Program

	Example 6: Using MP CONNECT with Piping
	Purpose
	Program

	Example 7: Preventing Pipes from Closing Prematurely
	Purpose
	Program

	Example 8: Forcing Macro Variables to Be Defined When %SYSRPUT Executes
	Purpose
	Program

	Example 9: Graphics Processing on the Server
	Purpose
	Program

	Example 10: Using Server Software from a Client Session
	Purpose
	Program: SAS/STAT Software
	Purpose
	Program: Sorting

	Syntax for Remote SQL Pass-Through (RSPT)
	Examples Using Remote SQL Pass-Through (RSPT)
	Example 1. RSPT Services: Querying a Table in DB2
	Purpose
	Program

	Example 2. RSPT Services: Subsetting Remote SAS Data
	Purpose
	RSPT: Server Processing and Client Viewing
	RSPT: Client Processing and Viewing
	RSPT: Server Processing and Viewing
	RLS: Client Processing and Viewing

	Examples of Combining Compute Services and Data Transfer Services
	Advantages of Combining Compute Services and Data Transfer Services
	Example 1. Compute Services and Data Transfer Services Combined: Processing in the Client and Server Sessions
	Purpose
	Program
	Running the Program

	Example 2. Compute Services and Data Transfer Services Combined: Sorting and Merging Data
	Purpose
	Program

	Example 3. Compute Services and Data Transfer Services Combined: Macro Capabilities
	Purpose
	Program

	Compute Services Troubleshooting
	Problems and Solutions when Using the RSUBMIT Statement
	Invalid Option
	Dialog Box Appears Despite NOTERMINAL Option Setting
	Remotely Submitted Statements Following a Syntax Error Are Not Processed
	Square Bracket Keys Not Supported
	No Terminal Connected to SAS Session
	Piping Problems
	Request for Setup of Link for Communication Subsystem Partner Fails

	Remote Library Services
	Remote Library Services (RLS)
	Introduction to Remote Library Services
	RLS: Definition
	Client Access to a Single- or Multi-User Server

	RLS: Advantages
	Considerations for Using RLS
	Determine the Appropriate Data Access Solution
	Use Compute Services to Access Large Volumes of Data
	Use Data Transfer Services for Multi-Pass Data Processing
	Use Data Transfer Services When Network Response Time Is Delayed
	Use RLS When Data Flow through a Network Is Minimal
	Compare DTS, RLS, and CS

	Using RLS to Access Types of Data
	RLS Support for Data Types
	Accessing a Catalog
	Accessing an External Database
	Accessing a SAS View
	Accessing a SAS Utility File of Type PROGRAM or ACCESS

	Using SAS Views with Servers
	SAS/ACCESS Views, DATA Step Views, and PROC SQL Views
	Recommendations for PROC SQL Views

	Using WHERE Processing to Reduce Network Traffic

	Syntax for the LIBNAME Statement
	Syntax for the LIBNAME Statement, SASESOCK Engine
	Examples Using Remote Library Services (RLS)
	Example 1. RLS: Accessing Server Data to Print a List of Reports
	Purpose
	Program

	Example 2. RLS: Accessing Server Data by Using the WHERE Statement
	Purpose
	Program

	Example 3. RLS: Updating Server Data
	Purpose
	Program

	Example 4. RLS: An SCL Program That Uses the WHERE Statement
	Purpose
	Program

	Example 5. RLS: Updating a Server Data Set by Applying a Client Transaction Data Set
	Purpose
	Program

	Example 6. RLS: Subsetting Server Data for Client Processing and Display
	Purpose
	Program

	Example of Combining RLS and Data Transfer Services (DTS)
	Introduction
	Example — RLS and UPLOAD/DOWNLOAD Combined: Distribution of Reports over a Network
	Purpose
	Program

	Data Transfer Services
	Using Data Transfer Services
	Introduction to Data Transfer Services
	Data Transfer Services: Advantages
	Offloads Server Work
	Increases the Robustness of a Decision Support Environment
	Transfers Only Relevant Data
	Supports the Model of a Centralized Control Point
	Backs Up Client Data
	Balances Resources in an Application Development Environment

	Considerations for Using Data Transfer Services
	Use Compute Services to Access Large Data Resources
	Use Remote Library Services to Access Small to Medium Data Resources
	Use a Combination of Services
	File Transfer Performance

	Transfer Status Window
	Data Transfer Services Tips
	Tips for Using PROC DOWNLOAD and PROC UPLOAD
	Tips for Using PROC DOWNLOAD Only
	Tips for UPLOAD Only

	Non-English Keyboards

	The UPLOAD Procedure
	Introduction
	Syntax for the UPLOAD Procedure
	PROC UPLOAD Output

	The DOWNLOAD Procedure
	Introduction
	Syntax for the DOWNLOAD Procedure
	PROC DOWNLOAD Output

	Examples of Data Transfer Services (DTS)
	Example 1. DTS: Transferring Data by Using WHERE Statements
	Purpose
	Program

	Example 2. DTS: Transferring Specific Member Types
	Purpose
	Programs
	Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD Statement
	Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement
	Example 2.3: Using the MEMTYPE= Option in the SELECT Statement

	Example 3. DTS: Transferring Specific Catalog Entry Types
	Purpose
	Programs
	Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD Statement
	Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE Statement in PROC DOWNLOAD
	Example 3.3: Using the ENTRYTYPE= Option in the SELECT Statement in PROC UPLOAD
	Example 3.4: Using the ENTRYTYPE= Option in Two SELECT Statements in PROC DOWNLOAD
	Example 3.5: Using Long Member Names in Catalog Transfers

	Example 4. DTS: Transferring Generations of SAS Data Sets
	Purpose
	Programs
	Example 4.1: Using LIBRARY Transfers to Transfer Data Set Generations
	Example 4.2: Using a SELECT Statement to Transfer Generations
	Example 4.3: Inheriting Generation Specific Attributes
	Example 4.4: Transferring Single Data Sets

	Example 5. DTS: Transferring Long Member Names
	Purpose
	Program

	Example 6. DTS: Transferring Data by Using Data Set Options and Attributes
	Purpose
	Program

	Example 7. DTS: Transferring Data Set Integrity Constraints
	Purpose
	Programs
	Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD Statement
	Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement
	Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement
	Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD Statement

	Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and V6TRANSPORT Options
	Purpose
	Programs
	Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in the PROC UPLOAD Statement
	Example 8.2: Using the EXTENDSN= Option in the PROC DOWNLOAD Statement

	Example 9. DTS: Transferring SAS Utility Files
	Purpose
	Programs
	Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD Statement
	Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD Statement
	Example 9.3: Using the MEMTYPE= Option in the SELECT Statement
	Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement

	Example 10. DTS: Distributing an .EXE File from the Server to Multiple Clients
	Purpose
	Programs
	Example 10.1: UPLOAD
	Example 10.2: DOWNLOAD

	Example 11. DTS: Downloading a Partitioned Data Set from z/OS
	Purpose
	Program

	Example 12. DTS: Combining Data from Multiple Server Sessions
	Purpose
	Program

	Example 13. Re-creating an Index for a Data Transfer

	Data Transfer Services Troubleshooting
	Troubleshooting the UPLOAD and DOWNLOAD Procedures
	Symbol Is Not Recognized
	Variable-Block Binary File LRECL Value Exceeds 256 Bytes
	Fixed-Block Binary File LRECL Value Exceeds 256 Bytes
	EBCDIC CC-Control Is Not Downloaded

	Appendices
	Cross-Architecture Issues
	Translation of SAS Data between Computers That Represent Data Differently
	Overview of Data Translation between Computers
	Remote Library Services
	Data Transfer Services

	Translation of Floating-Point Numbers between Computers
	Loss of Numeric Precision and Magnitude
	Avoiding Loss of Precision
	Significance of Loss of Magnitude
	Example

	Encoding Compatibility between SAS/CONNECT Client and Server Sessions

	SAS/CONNECT Cross-Version Issues
	Factors Affecting Access to SAS Files
	Features Exclusive to SAS Releases after SAS 6
	New Features Incompatible with SAS 6
	SAS File Format Features
	File Transfer Services: Truncating Long Names and Labels

	RLS: Accessing SAS Files in a Mixed Cross-Version Library
	Separating Older SAS Files from Newer SAS Files
	Specifying an Engine to Locate Release-Specific Files in a Mixed Library
	Determining the Version of SAS Used to Create a SAS File
	Concatenating Libraries

	Accessing SAS Data Sets
	Limitations
	SAS 6 Client Accessing a SAS 8 (or later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	Accessing SAS Views
	Limitations
	SAS 6 Client Accessing a SAS 8 (or Later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	Accessing Catalogs
	Limitations
	SAS 6 Client Accessing a SAS 8 (or Later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	File Format Translation Algorithms
	SAS 6 Translation
	SAS 8 (and Later) Translation

	Recommended Reading
	Recommended Reading

	Glossary
	Index

