
Communications Access
Methods for SAS/CONNECT®

9.4 and SAS/SHARE® 9.4
Second Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. Communications Access Methods for SAS/CONNECT® 9.4
and SAS/SHARE® 9.4, Second Edition. Cary, NC: SAS Institute Inc.

Communications Access Methods for SAS/CONNECT® 9.4 and SAS/SHARE® 9.4, Second Edition

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What's New in Communications Access Methods for SAS/CONNECT 9.4 and SAS/
SHARE 9.4 . v

PART 1 Introduction 1

Chapter 1 • Communication Access Methods . 3
Communications Access Method: Definition . 3
Communications Access Methods Supported by SAS/CONNECT and SAS/SHARE . . 3
About TCP/IP Internet Protocol (IP) Addressing . 4
Operating Environments Supported in SAS 9.4 . 4
Finding Information in This Documentation . 4
Accessibility Features in SAS Products . 5

PART 2 Access Methods by Operating Environment 7

Chapter 2 • UNIX: TCP/IP Access Method . 9
Prerequisites for Using TCP/IP under UNIX . 10
SAS/CONNECT Client Tasks . 12
SAS/CONNECT Server Tasks . 17
SAS/SHARE Client Tasks . 18
SAS/SHARE Server Tasks . 21

Chapter 3 • Windows: TCP/IP Access Method . 25
SAS/SHARE Client Tasks . 25
SAS/SHARE Server Tasks . 28
Data Security for SAS/CONNECT or SAS/SHARE Servers . 30

Chapter 4 • z/OS: TCP/IP Access Method . 33
Prerequisites for Using TCP/IP under z/OS . 34
SAS/CONNECT Client Tasks . 37
SAS/CONNECT Server Tasks . 41
SAS/SHARE Client Tasks . 43
SAS/SHARE Server Tasks . 45
System Configuration for TCP/IP . 47

Chapter 5 • z/OS: XMS Access Method . 61
Prerequisites for Using XMS under z/OS . 61
SAS/CONNECT Client Tasks . 63
SAS/CONNECT Server Tasks . 65
SAS/SHARE Client Tasks . 65
SAS/SHARE Server Tasks . 67
System Configuration for the XMS Access Method . 69

PART 3 Spawners and Services File 71

Chapter 6 • Introduction to the SAS/CONNECT Spawner . 73
Spawner Definition . 73
Benefits of Using a Spawner to Sign On to a Server . 74
Using SAS Management Console to Administer the SAS/CONNECT Spawner 74
Using PROC IOMOPERATE to Configure the SAS/CONNECT Spawner 78
Operating Environment Support for Spawners . 78
Client Connection Using a Spawner . 78
Spawner Connection Examples . 79

Chapter 7 • Managing the SAS/CONNECT Spawner . 83
Managing the SAS/CONNECT Spawner . 83
SAS/CONNECT Spawner in UNIX . 84
SAS/CONNECT Spawner in Windows . 85
SAS/CONNECT Spawner in z/OS . 86
Options for Starting and Managing the SAS/CONNECT Spawner 88

Chapter 8 • TCP/IP SERVICES File . 99
Configuring the Services File . 99

PART 4 Firewalls, Scripts, and Error Messages 101

Chapter 9 • Configuring SAS/CONNECT for Use with a Firewall . 103
Firewall Concepts . 103
Requirements for Using a Firewall . 103
Firewall Configurations . 104

Chapter 10 • Sign-On Scripts . 109
Script Rules . 109
Sample Scripts . 110

Chapter 11 • Error Messages . 127
UNIX: TCP/IP Access Method . 127
Windows: TCP/IP Access Method . 128
z/OS: TCP/IP Access Method . 129

Recommended Reading . 131
Glossary . 133
Index . 141

iv Contents

What's New in Communications
Access Methods for
SAS/CONNECT 9.4 and
SAS/SHARE 9.4

Overview

SAS/CONNECT and SAS/SHARE Communications Access Methods have the
following changes and enhancements:

• new SAS/CONNECT spawner management interface that is supported on all
operating environments (UNIX, Windows, and z/OS) and is accessible through SAS
Management Console and PROC IOMOPERATE.

• enhanced spawner management tools, including the ability to manage and monitor
the SAS/CONNECT spawner remotely using SAS Management Console and PROC
IOMOPERATE.

• new SAS/CONNECT spawner start-up options.

• enhanced logging features, including new loggers and better debugging and
traceback features.

• ability to associate multiple SAS/CONNECT servers with one spawner. In versions
prior to SAS 9.4, only one SAS/CONNECT server could be associated with a
SAS/CONNECT spawner.

• increased allowable length for IBM password phrases.

Spawner Enhancements

New Spawner Management Interface
The new SAS/CONNECT spawner interface makes it easier for administrators to
monitor and manage spawner and server connections. The following is a list of new
features available with the new SAS/CONNECT spawner management interface:

• tools for better management, monitoring, and troubleshooting of the
SAS/CONNECT spawner and server connections.

• new spawner options and a new spawner start-up command that are consistent across
all operating environments.

v

• ability to use SAS facility logging to get debug and trace information about what
SAS/CONNECT is doing. You can now get the full logging and debugging support
of the SAS Logging Facility for the SAS/CONNECT spawner operations.

• new SAS/CONNECT spawner operator port for administering the spawner using
SAS Management Console or PROC IOMOPERATE.

• ability to associate multiple SAS/CONNECT servers with one spawner that listens
on multiple ports.

Here are some of the actions that are available with the new SAS/CONNECT spawner in
SAS Management Console and PROC IOMOPERATE:

• stop, pause, resume, quiesce, and refresh actions available for the new
SAS/CONNECT spawner operator port

• connect, disconnect, stop, pause, quiesce, and refresh actions available for the
SAS/CONNECT spawner

• request information about defined servers and spawned servers

• configure the SAS/CONNECT spawner to have multiple client connection ports
open

• request the logical server name from the SAS/CONNECT client

• list clients that are connected to the SAS/CONNECT spawner

• display graphs that show the spawned server activity

• display a list of spawned servers and the user name and host that are associated with
the spawned server

• display options and properties that are associated with the SAS/CONNECT spawner

• list the active, inactive, or terminated sessions

• display loggers, logging levels, and log events for the SAS/CONNECT spawner

• display performance counters

For more information about using PROC IOMOPERATE to manage the
SAS/CONNECT spawner, see “Using PROC IOMOPERATE to Configure the
SAS/CONNECT Spawner ” on page 78.

For more information about using SAS Management Console to manage the
SAS/CONNECT spawner, see “Using SAS Management Console to Administer the
SAS/CONNECT Spawner ” on page 74.

New Spawner Name and Start-Up Command
The new cross-platform executable program to start the SAS/CONNECT spawner is
now the same across all supported operating systems. The new spawner invocation
command is CNTSPAWN.

This new command replaces the Windows SPAWNER command, and the UNIX and z/OS
SASTCPD command.

New or Enhanced Spawner Options
The following spawner options are new or enhanced and are supported on UNIX,
Windows, and z/OS operating environments:

vi What's New in Communications Access Methods for SAS/CONNECT 9.4 and SAS/SHARE 9.4

• You can now specify the -HELP option on the spawner invocation command to print
a help message.

• The new -MGMTPORT option enables you to specify an operator port for
administering the SAS/CONNECT spawner using SAS Management Console or
PROC IOMOPERATE.

• The new -LOG | -LOGFILE option enables you to specify the filename to use for log
message output.

• The new -SERVICEDIRECTORY option replaces the -WORKDIR option as the
preferred way to specify the Windows service directory when the spawner is
installed as a Windows service.

• The -UNINSTALL option replaces the -DELETE option.

• The -LOGCONFIGLOC option replaces the -LOGEVENTS option.

• The -LOGCONFIGLOC option replaces the -TIMESTAMP option.

• -SSPI authentication is no longer enabled by default on the SAS/CONNECT
spawner.

Beginning in SAS 9.4, the following options are no longer supported:

• -TIMESTAMP

• -LOGEVENTS

• -SECURITY | -NOSECURITY

• -DELETE

For a complete list of SAS/CONNECT spawner options, see Chapter 7, “Managing the
SAS/CONNECT Spawner,” on page 83.

Spawner Logger Enhancements
In SAS 9.4, enhancements to the SAS/CONNECT logging facility enable you to perform
the following tasks:

• get more detailed spawner log output when the -LOGCONFIGLOC option is
specified. In previous releases, only the start and stop output was available.

• use the SAS Logging Facility to get debug and trace information about spawner
activity.

• get information about what ports are opened.

• get counters and information set up by the spawner.

• get information about how many servers are active and who owns them.

Other Communication Access Methods Changes

SAS Support for IBM Password Phrase Length on z/OS
SAS supports passwords that are mixed case, and it supports the IBM standard for
password phrases that have a length of up to 100 characters. For more information about

SAS Support for IBM Password Phrase Length on z/OS vii

mixed-case passwords and password phrases on z/OS, see “Allowing Mixed-Case
Passwords (PASSWORD Option)” and “Assigning password phrases” in z/OS V1R12.0
Security Server RACF Security Administrator's Guide (IBM).

viii What's New in Communications Access Methods for SAS/CONNECT 9.4 and SAS/SHARE 9.4

Part 1

Introduction

Chapter 1
Communication Access Methods . 3

1

2

Chapter 1

Communication Access Methods

Communications Access Method: Definition . 3

Communications Access Methods Supported by SAS/
CONNECT and SAS/SHARE . 3

About TCP/IP Internet Protocol (IP) Addressing . 4

Operating Environments Supported in SAS 9.4 . 4

Finding Information in This Documentation . 4

Accessibility Features in SAS Products . 5

Communications Access Method: Definition
A communications access method is the interface between SAS and the network
protocol that you use to connect two operating environments.

You must use a communications access method with both SAS/CONNECT and
SAS/SHARE.

The communications access method that you choose is determined by the network
protocols that you have available at your site and the operating environments that you
are connecting.

Communications Access Methods Supported by
SAS/CONNECT and SAS/SHARE

SAS/CONNECT and SAS/SHARE support the following communications access
methods:

TCP/IP (Transmission Control Protocol/Internet Protocol)
is a program-to-program interface that is supported on hardware from multiple
vendors. TCP/IP is supported under the UNIX, Windows, and z/OS operating
environments.

XMS (Cross-Memory Services)
is an interface that is part of the z/OS operating environment and is used by programs
that run within a single z/OS environment.

3

About TCP/IP Internet Protocol (IP) Addressing
TCP/IP applications refer to networked computers via their fully qualified domain names
(FQDN) and their IP addresses. Because IP addresses can change easily, SAS
applications that contain hardcoded IP addresses are prone to maintenance problems. To
avoid such problems, use of an FQDN is preferred over an IP address. The name-
resolution system that is part of the TCP/IP protocol is responsible for locating the IP
address that is associated with the FQDN.

SAS 9.2 introduced support for the Internet Protocol, IPv6, which is the successor to
Internet Protocol, IPv4. Rather than replacing IPv4 with IPv6, SAS now supports both
protocols. There will be a lengthy transition period during which the two protocols will
coexist. A primary reason for the new protocol is that the limited supply of 32-bit IPv4
address spaces was being depleted. IPv6 uses a 128-bit address scheme, which provides
more IP addresses than does IPv4.

Here are examples of an FQDN, an IPv6 address, and an IPv4 address:

d6292.us.company.com
db8::01
10.23.2.3

For details, see “Internet Protocol Version 6 (IPv6)” in SAS Language Reference:
Concepts.

Operating Environments Supported in SAS 9.4
Your SAS/CONNECT or SAS/SHARE sessions must run a supported SAS release under
a supported operating environment. For information about supported SAS releases and
operating environments, see http://support.sas.com/resources/sysreq/hosts.

Finding Information in This Documentation
To find the information that you need to perform tasks at the client:

1. Find the part in this document for the client operating environment that you will use.

2. In that part, find the chapter for the communications access method that you will use.

3. In that chapter, find the section for the SAS product (SAS/CONNECT or
SAS/SHARE) that you will use.

To find the information that you need to perform tasks at the server:

1. Find the chapter in this document for the server operating environment (For example,
UNIX).

2. In that chapter, find the section for the communications access method that you will
use (for example, UNIX: TCP/IP).

3. In that section, find the heading for the SAS product that you will use (for example,
UNIX: TCP/IP for SAS/CONNECT).

4 Chapter 1 • Communication Access Methods

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=p12cam99biift0n1fuo19g1nc4hc
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=p12cam99biift0n1fuo19g1nc4hc
http://support.sas.com/resources/sysreq/hosts

The tasks outlined in each chapter for configuring and starting the SAS/CONNECT
Spawner are for manual deployment of the SAS/CONNECT Spawner. In most cases, the
SAS/CONNECT Spawner is deployed using the SAS Deployment Wizard and the
information is stored in the metadata server. In this case, manual setup is not required.

Accessibility Features in SAS Products
For information about accessibility for any of the products mentioned in this book, see
the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send email to accessibility@sas.com.

Accessibility Features in SAS Products 5

6 Chapter 1 • Communication Access Methods

Part 2

Access Methods by Operating
Environment

Chapter 2
UNIX: TCP/IP Access Method . 9

Chapter 3
Windows: TCP/IP Access Method . 25

Chapter 4
z/OS: TCP/IP Access Method . 33

Chapter 5
z/OS: XMS Access Method . 61

7

8

Chapter 2

UNIX: TCP/IP Access Method

Prerequisites for Using TCP/IP under UNIX . 10
Task List . 10
Software Requirements . 10
SAS/CONNECT and SAS/SHARE Network Security . 10
TCPMSGLEN Environment Variable . 10
SAS/CONNECT Options Only . 11
SAS/SHARE Options Only . 11

SAS/CONNECT Client Tasks . 12
Task List . 12
Specifying TCP/IP as the Communications Access Method 12
Encrypting Data in Client/Server Transfers . 12
Choosing a Method to Use to Sign On . 12
Signing On to the Same Multiprocessor Computer . 13
Signing On Using a Spawner . 14
Signing On Using a Telnet Daemon . 16

SAS/CONNECT Server Tasks . 17
Overview . 17
Task List . 17
Configuring the UNIX Spawner Service . 18
Starting the SAS/CONNECT Spawner on UNIX . 18
SAS/CONNECT Server Example . 18

SAS/SHARE Client Tasks . 18
Task List . 18
Configuring the Server Service . 19
Specifying TCP/IP as the Communications Access Method 19
Accessing a Secured Server . 19
Encrypting Data in Client/Server Transfers . 19
Specifying the Server . 20
SAS/SHARE Client Example . 21

SAS/SHARE Server Tasks . 21
Task List . 21
Configuring the Server Service . 21
Setting the TCPSEC Option to Require Client Authentication 22
Configuring User Access Authority . 22
Configuring the Authentication Program . 22
Configuring the Permission Program . 22
Encrypting Data in Client/Server Transfers . 23
Specifying TCP/IP as the Communications Access Method 23

9

Specifying the Server . 23
SAS/SHARE Server Example . 24

Prerequisites for Using TCP/IP under UNIX

Task List
• Verify that software requirements are met.

• If using network security, set the appropriate SAS options.

• Set the appropriate options for SAS/CONNECT and SAS/SHARE.

Software Requirements
Ensure that the following requirements are met:

• Base SAS and either SAS/CONNECT or SAS/SHARE are installed on both the
client and the server.

• Any TCP/IP package that comes with the operating environment has been installed.

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called
ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

For details about setting up and using encryption, see Encryption in SAS. After an
encryption service is set up in your environment, set a SAS encryption option that is
appropriate to the encryption service and requirements of the client or the server session.

TCPMSGLEN Environment Variable
TCPMSGLEN n

defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option that you can specify in the
SIGNON statement or as a SAS option. For details, see “TBUFSIZE= System
Option” in SAS/CONNECT User's Guide.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks the
message into a buffer whose size is defined by TCPMSGLEN. The TCP/IP access
method then issues the number of send and receive messages that are necessary to
complete the message transaction.

The value for TCPMSGLEN must be set at both the client and server. If the values
that are set for TCPMSGLEN at the client and at the server are different, the smaller
value of the two is used during the SAS/CONNECT session. If the TCPMSGLEN
environment variable is not set, SAS uses the TCP stack’s default size and allows
autotuning if implemented by the stack.

10 Chapter 2 • UNIX: TCP/IP Access Method

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p1qwb2kw2clomyn0ztie1363p51h
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p1qwb2kw2clomyn0ztie1363p51h

Example:

-set tcpmsglen 65536

SAS/CONNECT Options Only
TCPPORTFIRST=port-number (set at the server)
TCPPORTLAST=port-number (set at the server)

restrict the range of TCP/IP ports through which clients can connect to a server.

Within the range of 0 through 32767, assign a beginning value to TCPPORTFIRST
and an ending value to TCPPORTLAST. To restrict the range of ports to only one
port, set the values for TCPPORTFIRST and TCPPORTLAST to the same number.
Consult with your network administrator for advice about setting these values.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in a SAS start-up
command or in the SAS configuration file.

In the following example, the server is restricted to the TCP/IP ports 4020 through
4050:

-tcpportfirst 4020;
-tcpportlast 4050;

TCPTN3270 (set at the client)
supports connections to z/OS servers that use the full-screen 3270 Telnet protocol.
The script file TCPTSO32.SCR is provided. See Table 2.1 on page 16 for a
complete list of sign-on scripts.

You can set the TCPTN3270 option only in the SAS configuration file. If you do not
set this option, the TCP/IP access method uses the Telnet line-mode protocol by
default.

Example:

-set TCPTN3270 1

SAS/SHARE Options Only
TCPSEC=_SECURE_ | _NONE_ (set at the server)

specifies whether the TCP/IP access method verifies user access authority before
allowing clients to access the server. The TCPSEC option must be set at the server
before the server session is started. The default is _NONE_.

SECURE
requires that the TCP/IP access method verify the authority of clients that attempt
to access the server. Each client must supply a user ID and a password that are
valid at the server.

NONE
specifies that the TCP/IP access method does not verify the authority of
SAS/SHARE clients that attempt to access the server.

Examples:

%let TCPSEC=_secure_;
%let TCPSEC=_none_;

Prerequisites for Using TCP/IP under UNIX 11

SAS/CONNECT Client Tasks

Task List
1. Specify TCP/IP as the communications access method.

2. Specify encryption of client/server data transfers (optional).

3. Sign on to the server.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method for all operating environments,
except z/OS. Therefore, you do not have to explicitly specify TCP/IP as the access
method.

If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification. access-
method-ID identifies the method used by the client to communicate with the server. TCP
(short for TCP/IP, which is an abbreviation for Transmission Control Protocol/Internet
Protocol) is an example of an access-method-ID. Alternatively, you can set this option in
a SAS start-up command or in a SAS configuration file.

Example:

options comamid=tcp;

Encrypting Data in Client/Server Transfers
If an encryption service is available and is configured at the client, you can specify SAS
options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the SSL
algorithm.

options netencryptalgorithm=ssl;

For details about encryption options, see Encryption in SAS located in the Base SAS
Help and Documentation.

Choosing a Method to Use to Sign On
Based on your operating environment, you can use one of the following methods to sign
on:

• the same multiprocessor computer

Note: This method is most useful if your client computer is equipped with
symmetric multiprocessor (SMP) hardware.

• a spawner

12 Chapter 2 • UNIX: TCP/IP Access Method

• a Telnet daemon

Signing On to the Same Multiprocessor Computer

Task List
If your client computer is equipped with SMP, and if you want to run one or more server
sessions on your computer, perform these tasks:

1. Specify the server session.

2. Specify the SASCMD command to start SAS.

3. Sign on to the server session.

Specifying the Server Session
You can specify the server session in an OPTIONS statement:

options process=session-ID;

You can also specify it in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the name
that you assign to the server session on the same multiprocessor computer.

Note: PROCESS=, REMOTE=, CREMOTE=, and CONNECTREMOTE= can be used
interchangeably. For details, see “CONNECTREMOTE= System Option” in
SAS/CONNECT User's Guide.

For details about the SIGNON statement, see “SIGNON Statement and Command” in
SAS/CONNECT User's Guide.

Starting SAS Using the SASCMD Option
Use the SASCMD option to specify the SAS command and any additional options that
you want to use to start SAS in a server session on the same multiprocessor computer.

The SASCMD option can be specified in an OPTIONS statement:

options sascmd="SAS-command" | "!SASCMD";

You can also specify it directly in the SIGNON statement or command:

signon name sascmd="SAS-command" | "!SASCMD";

The -DMR option is automatically appended to the command. If !SASCMD is specified,
SAS/CONNECT starts SAS on the server by using the same command that was used to
start SAS for the current (parent) session.

Note: To execute additional commands before starting SAS, you can write a script that
contains the SAS start-up commands that are appropriate for your operating
environment. You can then specify this script as the value in the SASCMD= option.

For details, see “SASCMD= System Option” in SAS/CONNECT User's Guide.

Signing On to the Server Session
Example 1:

In the following example, TCP is the access method, SAS1 is the name of the server
session, and sas_start is the command that starts SAS on the same multiprocessor
computer.

SAS/CONNECT Client Tasks 13

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n1t8g8sxigfj84n18tzcaamcij6j
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n1t8g8sxigfj84n18tzcaamcij6j
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0brzkmxqg483hn163ek01h4mf6e
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0brzkmxqg483hn163ek01h4mf6e
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0rfjby2hywt4cn1nt38unscvui8

options comamid=tcp;
signon sas1 sascmd='sas_start';

Example 2:

In the following example, the values for the COMAMID=, SASCMD=, and PROCESS=
options are set in the OPTIONS statements. The SASCMD= option identifies the
command that starts SAS. The PROCESS= option identifies the server session on the
same multiprocessor computer. Because the SASCMD= and the PROCESS= options are
defined, only a simple SIGNON statement is needed.

options comamid=tcp sascmd="sas_start";
options process=sas1;
signon;

Signing On Using a Spawner

Task List
1. Ensure that the spawner is running on the server.

2. Specify the server and spawner service.

3. Specify the sign-on script (if you are signing on using a script), or, specify a user ID
and password (if you are signing on without a script).

4. Sign on to the server using a spawner.

Ensuring That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the server.
For information about the spawner that you are connecting to, see Chapter 6,
“Introduction to the SAS/CONNECT Spawner,” on page 73.

Note: The system administrator for the computer that the spawner runs on must start the
spawner. The spawner program on the server cannot be started by the client.

Specifying the Server and Spawner Service
The name of the server can be specified in an OPTIONS statement:

options remote=node-name[.service-name | .port-number];

You can also specify it directly in the SIGNON statement or command:

signon node-name[.service-name | .port-number];

The node-name is based on the server that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is either of the following:

• the short computer name of the server that you are connecting to. This name must be
defined in the /etc/hosts file in the client operating environment or in your
Domain Name Server (DNS).

• a macro variable that contains either the IP address or the name of the server that you
are connecting to.

Here is the process for evaluating node-name:

1. If node-name is a macro variable, the value of the macro variable is passed to the
operating environment's getnameinfo() function.

2. If node-name is not a macro variable or the value of the macro variable does not
produce a valid value, node-name is passed to the getnameinfo() function.

14 Chapter 2 • UNIX: TCP/IP Access Method

3. If getnameinfo() fails to resolve node name, an error message is returned and the
sign-on fails.

Note: The order in which the getnameinfo() function calls the DNS or searches
the HOSTS file to resolve node-name varies based on the operating environment
implementation.

You specify service-name when connecting to a server that runs a spawner program that
is listening on a port other than the Telnet port. If the spawner was started by using the
-service spawner option, you must specify the service-name when signing on.
Therefore, the value of service-name that was specified during spawner start-up must be
identical to the value of the service-name that is specified in the sign-on. Alternatively,
you can specify the explicit port number that is associated with service-name directly in
the SIGNON statement.

Example 1:

In the following example, REMHOST is the name of the node on which the spawner
runs, and spawner1 is the name of the service that is defined at the client. The client
service spawner1 must be assigned to the same port that the spawner is listening on.

signon remhost.spawner1;

Example 2:

In the following example, the macro variable REMHOST is assigned to the fully
qualified name of the computer on which the server runs. This server has a spawner
running that is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node name REMHOST and the service name 5050, which
is the explicit port value.

%let remhost=pc.rem.us.com;signon remhost.5050;

You can also assign a specific port number by including the port number in the definition
of the macro variable. For example:

%let remhost=pc.rem.us.com 5050;signon remhost;

Specifying a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a spawner
without a script. If you do not use a sign-on script and if the spawner is running secured,
you must supply a user ID and password to sign on to the spawner.

Note: If you connect to a spawner, you can sign on by using a script unless the spawner
is started using the -NOSCRIPT option. If the -NOSCRIPT option is set, you cannot
use a script. If there is no script, you do not assign the fileref RLINK in a
FILENAME statement. For information about the spawner that you are connecting
to, see Chapter 6, “Introduction to the SAS/CONNECT Spawner,” on page 73.

Specifying a Sign-On Script
Sample script files are provided with SAS/CONNECT for signing on and signing off.
You must specify the script filename in the SIGNON statement or command when
signing on using a script file. The SIGNON statement executes the script file. By default,
the script prompts for user ID and password.

Use the FILENAME statement to assign the fileref RLINK to the appropriate script file.
For example:

filename rlink '!sasroot/misc/connect/script-name';

The sample scripts are installed at this location:

SAS/CONNECT Client Tasks 15

!sasroot/misc/connect

The script is based on the server that you are connecting to.script-name specifies the
appropriate script file for the server.

The following table lists the scripts that are provided in SAS software.

Table 2.1 SAS/CONNECT Sign-on Scripts for TCP/IP under UNIX

Server Script Name

TSO under z/OS tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specifying a User ID and Password
You must provide a user ID and password to sign on to a secured server if you are not
using a sign-on script. For example:

signon user=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Signing On
In the following example, a client connects to a UNIX server by using a spawner without
a script. In the SIGNON statement, RMTHOST.SPAWNER specifies the node
RMTHOST and the service SPAWNER. This server specification presumes that a
spawner is running on the node RMTHOST, and that the spawner was started using the
service SPAWNER. Specifying USER=_PROMPT_ causes a dialog box to appear so
that a user ID and a password can be provided.

Example:

options comamid=tcp;signon rmthost.spawner user=_prompt_;

Signing On Using a Telnet Daemon

Task List
1. Specify the server.

2. Specify a sign-on script.

3. Sign on to the server session.

Specifying the Server
The name of the server can be specified in an OPTIONS statement:

options remote=node-name;

16 Chapter 2 • UNIX: TCP/IP Access Method

You can also specify it directly in the SIGNON statement or command:

signon node-name;

Specifying a Sign-On Script File
If you are signing on by using a script, you must specify the script that you want to use.
The script file is executed by the SIGNON statement or command. By default, the script
prompts for user ID and password. For details, see “Specifying a Sign-On Script” on
page 15.

Signing On to the Server Session
In the following example, you specify the statements at a UNIX client to use the TCP/IP
access method to connect to a z/OS server. The FILENAME statement identifies the
script file that you use to sign on to a server. The script file contains a prompt for a user
ID and a password that are valid on the server. The COMAMID= option specifies the
TCP/IP communications access method for connecting to the server RMTNODE, which
is specified in the REMOTE= option.

filename rlink '!sasroot/misc/connect/tcptso.scr';
options comamid=tcp remote=rmtnode;
signon;

SAS/CONNECT Server Tasks

Overview
The tasks outlined in this chapter describe the manual setup of the SAS/CONNECT
spawner. In most cases, the SAS/CONNECT spawner is deployed using the SAS
Deployment Wizard and manual setup is not required. The SAS Deployment Wizard
stores information about the spawner in the metadata server. For more information about
the SAS 9.4 Deployment Wizard, see SAS Deployment Wizard and SAS Deployment
Manager: User's Guide.

Note: If the UNIX spawner is not being used, there are no server tasks.

Task List
Steps for manually deploying the SAS Connect spawner:

1. Configure the UNIX spawner service.

Note: This step is required only if you plan to start the SAS/CONNECT spawner
using the -SERVICE <service-name> option.

2. Start the UNIX spawner at the server.

Note: SAS/CONNECT enables TCP/IP connections from clients outside a firewall to
spawners that run on servers inside a firewall. For details, see Chapter 9,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 103.

SAS/CONNECT Server Tasks 17

Configuring the UNIX Spawner Service
If you plan to start the SAS/CONNECT spawner by specifying the service-name on the
spawner start-up command, then you need to configure the spawner service in the
TCP/IP services file. However, if you plan to start the SAS/CONNECT spawner by
specifying the explicit port-number or if you use the information defined in the
SAS/CONNECT server’s metadata, then you do not need to perform this step.

The services file is a configuration file that maps port numbers to named services.
This mapping allows programs to access ports by name as well as by port number.

In UNIX, the location of the services file is usually /etc/services.

To configure the spawner service, use a text editor to add the connection service name,
the port number, and the communications protocol to the services file. The file uses
the following format:

<official-service-name> <port-number/protocol-name> <alias-name>

as shown in the following example:

spawnport 4016/TCP spnprt

The <alias-name> specification is optional.

For a more detailed explanation of these parameters and a sample TCP/IP services file,
see “Configuring the Services File” on page 99.

Starting the SAS/CONNECT Spawner on UNIX
You must start the UNIX spawner on a UNIX server to enable clients to connect to it.
The spawner program resides on a server and listens for SAS/CONNECT client requests
for connections to the server. After the spawner program receives a request, it starts a
SAS server session.

If network security is desired, set the appropriate encryption options when starting the
spawner. For more details about encryption, see Encryption in SAS, located in the Base
SAS Help and Documentation.

SAS/CONNECT Server Example
The following command starts the SAS/CONNECT spawner on UNIX:

cntspawn -service spawner -mgmtport 7555 -sascmd "/u/username/mystartup"

The -SERVICE option specifies that the service named spawner listens for incoming
connections. The -MGMTPORT option specifies the port number for operator
(administrative) connections. The -SASCMD option specifies the path to the
mystartup command file, which starts SAS on the server.

SAS/SHARE Client Tasks

Task List
1. Configure the server service.

18 Chapter 2 • UNIX: TCP/IP Access Method

2. Specify TCP/IP as the communications access method.

3. Access a secured server.

4. Specify encryption of client/server data transfers (optional).

5. Specify the server.

Configuring the Server Service
Each server must be defined as a service in the /etc/services file on each computer
that a client accesses the server from. This file is usually located in the directory that the
TCP/IP software is installed in. For details about editing the /etc/services file, see
“Configuring the Services File” on page 99.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method in the UNIX operating
environment. You can omit specifying the access method in the COMAMID= option and
the TCP/IP access method is assumed, by default.

If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a configuration file or in a
SAS start-up command.

Accessing a Secured Server
Requiring clients to supply a valid user ID and password when attempting to access a
server enforces server security. The values for a user ID and a password are provided in
the USER= and PASSWORD= options in the LIBNAME statement and the PROC
OPERATE statement. For details about supplying a user ID and a password, see
“LIBNAME Statement” in SAS/SHARE User's Guide and “OPERATE Procedure” in
SAS/SHARE User's Guide in the SAS/SHARE User's Guide.

Example:

libname sasdata 'edc/prog2/sasdata' server=rmtnode.share user=_prompt_
;

The value _PROMPT_ requires the client to provide a user ID and password when a
client attempts to access the server.

Encrypting Data in Client/Server Transfers
If an encryption service is configured at the client, you can specify SAS options to
encrypt data that a client transfers to a server. For example:

options netencrypt netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";

The NETENCRYPT option specifies that all data transfers between a client and a server
will be encrypted. SSL is the encryption service that is specified in the

SAS/SHARE Client Tasks 19

NETENCRYPTALGORITHM= option. The SSLCALISTLOC= option specifies the
name of a file that contains a list of CA certificates that are to be trusted. For details
about encryption, see Encryption in SAS, located in the Base SAS Help and
Documentation.

Specifying the Server
If the client and server sessions are running on different network nodes, you must
include the TCP/IP node in the server ID in the LIBNAME or the PROC OPERATE
statement. To do this, you use a two-level server name as follows:

server=node.server

The access method evaluates the node name, in this order of priority:

1. a SAS macro variable

2. an environment variable

3. a valid node name

node can be either of the following:

• valid TCP/IP node name

• IP address

For more information, see “About TCP/IP Internet Protocol (IP) Addressing” on page 4.

If the server and the client sessions are running on the same node, you can omit the node
name.

server can be either of the following:

• server-ID

• port

The server-ID must be identical to the service name that is specified in the /etc/
services file. For details, see “Configuring the Services File” on page 99.

Example 1:

A port is the unique number that is associated with the service that is used for passing
data to and receiving data from the server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore.

libname mylib '.' server=srvnode._ _5000;

Example 2:

If the TCP/IP node name is not a valid eight-character SAS name, assign the name of the
server node to a SAS macro variable, and then use the name of that macro variable for
node in the two-level server name.

%let srvnode=mktserver.acme.com;
libname sales server=srvnode.server1;

Note: Do not use an ampersand (&) in a two-level name. An ampersand causes a macro
variable to be resolved by the SAS parser before syntactic evaluation of the
SERVER= option.

Example 3:

20 Chapter 2 • UNIX: TCP/IP Access Method

You might assign the node name and the server ID to a macro variable.

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

For more information about creating valid SAS names, see “Rules for Words and Names
in the SAS Language” in SAS Language Reference: Concepts. For details about
LIBNAME and PROC OPERATE, see “LIBNAME Statement” in SAS/SHARE User's
Guide and “OPERATE Procedure” in SAS/SHARE User's Guide.

SAS/SHARE Client Example
The following example shows the statements that are specified at a UNIX client to
access a server by using the TCP/IP access method. The LIBNAME statement specifies
the getnameinfo() that is accessed through the server. The value _PROMPT_ in the
USER= option specifies that the client must provide a valid user ID and password to
access the server. The SERVER= option specifies the two-level server name
RMTNODE.SHARE1.

options comamid=tcp;
libname sasdata 'edc/prog2/sasdata' user=_prompt_ server=rmtnode.share1;

SAS/SHARE Server Tasks

Task List
1. Configure the SAS/SHARE server service.

2. Specify SAS options and security programs and services (optional).

• If the server is to run secured, set the TCPSEC= option to require client
authentication.

• Configure the authorization of users on servers.

• Configure the Authentication program.

• Configure the Permission program.

• Specify options to encrypt client/server data transfers.

3. Specify TCP/IP as the communications access method.

4. Specify the server.

Configuring the Server Service
Each server must be defined as a service in the /etc/services file on each node that
a client will access. For details about editing the /etc/services file, see
“Configuring the Services File” on page 99.

Example:

sassrv2 5011/tcp #
SAS/SHARE server 2

SAS/SHARE Server Tasks 21

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0c56f1cfzbdm6n1rs8at0zts8xq
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0c56f1cfzbdm6n1rs8at0zts8xq

Setting the TCPSEC Option to Require Client Authentication
To authenticate connecting clients, you must specify the value _SECURE_ in the
TCPSEC= option to require that clients provide a user ID and a password that are valid
on the server. For details about the TCPSEC= option, see “SAS/SHARE Options Only ”
on page 11.

Example:

options TCPSEC=_secure_;

Configuring User Access Authority
If SAS was installed from the root account, you can assume that the following task has
already been performed. If SAS was not installed from the root account, you must
configure resources on the computer that the server runs on. in order to verify a client's
identity and the user's authority to access resources. You can provide security on the
server by using one of the following:

1. From the root account, to access the SAS Setup Primary menu, issue the following
command at a shell prompt (where !sasroot is the directory in which SAS was
installed).

!sasroot/sassetup

From the SAS Setup Primary menu, select the following Run Setup Utilities ð
Perform SAS System Configuration ð Configure User Authorization

2. Alternatively, issue the following commands at a UNIX shell prompt:

su root
cd !sasroot/utilities/bin
chown root sasauth sasperm cntspawn objspawn
chmod 4755 sasauth sasperm cntspawn objspawn
exit

Configuring the Authentication Program
To configure the Authentication program, !sasroot/utilities/bin/sasauth
must be owned by root, and the “Set-user-id” mode bit must be set for the file
(chmod 4755 !sasroot/utilities/bin/sasauth). The built-in Authentication
program sasauth is started automatically when a client accesses a server that is
secured. This program verifies the user ID and password that allows a client to access
the server.

Configuring the Permission Program
To configure the Permission program, !sasroot/utilities/bin/sasperm must
be owned by root, and the “Set-user-id” mode bit is set for the file (chmod 4755 !
sasroot/utilities/bin/sasperm).

When given a validated user ID, the server automatically runs the default program
sasperm. The sasperm program verifies that the requesting user has access authority
to the file or to the directory that is specified. sasperm validates:

• the user ID

22 Chapter 2 • UNIX: TCP/IP Access Method

• the file or the directory path for a SAS library or SAS file

• the file or the directory access permissions (read or write)

Encrypting Data in Client/Server Transfers
If an encryption service is configured at the server, you can specify SAS options to
encrypt data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";

The NETENCRYPT option specifies that all data transfers between a server and a client
will be encrypted. SSL is the encryption service that is specified in the
NETENCRYPTALGORITHM= option. The SSLCALISTLOC= option specifies the
name of a file that contains a list of CA certificates that are to be trusted. For details
about encryption, see Encryption in SAS, located in the Base SAS Help and
Documentation.

Specifying TCP/IP as the Communications Access Method
You must specify the TCP/IP communications access method at the server before a client
can access it. Use the COMAMID= option in an OPTIONS statement.

Example:

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a SAS start-up command or in
a SAS configuration file.

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC SERVER
statement. Here is the syntax:

server=server-ID

server-ID can be either a server-ID or a port number. The value for server-ID
corresponds to the service that was configured in the /etc/services file. For details,
see “Configuring the Services File” on page 99.

port is the unique number that is associated with the service that is used for transferring
data between a client and a server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore.

Note: Specifying a server by using a port number is not supported for ODBC clients.

Examples:

proc server server=apex;
proc server server=_ _5000;

For more information about creating valid SAS names, see “Rules for Words and Names
in the SAS Language” in SAS Language Reference: Concepts. For details about PROC
SERVER, see “SERVER Procedure” in SAS/SHARE User's Guide.

SAS/SHARE Server Tasks 23

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0c56f1cfzbdm6n1rs8at0zts8xq
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0c56f1cfzbdm6n1rs8at0zts8xq

SAS/SHARE Server Example
The following example shows commands that you specify in the server configuration
file on a UNIX computer. The value _SECURE_ that is specified in the TCPSEC option
requires clients to provide a user ID and a password that are valid on the server.

-set TCPSEC _secure_

options comamid=tcp;
proc server id=share1;
run;

The COMAMID= option specifies the TCP/IP access method. The PROC SERVER
statement specifies the server SHARE1.

24 Chapter 2 • UNIX: TCP/IP Access Method

Chapter 3

Windows: TCP/IP Access Method

SAS/SHARE Client Tasks . 25
Task List . 25
Configuring the Server Service . 26
Specifying TCP/IP as the Communications Access Method 26
Encrypting Data in Client/Server Transfers . 26
Specifying the Server . 26
SAS/SHARE Client Example . 27

SAS/SHARE Server Tasks . 28
Task List . 28
Configuring the Server Service . 28
Setting the TCPSEC Option to Require Client Authentication 28
Assigning User Rights for a Server That Is Running Secured 28
Encrypting Data in Server/Client Transfers . 29
Specifying TCP/IP as the Communications Access Method 29
Specifying the Server . 29
SAS/SHARE Server Example . 29

Data Security for SAS/CONNECT or SAS/SHARE Servers 30
Client Authentication . 30
Simulated Logon Method . 30
SSPI . 31

SAS/SHARE Client Tasks

Task List
Note: All SAS/CONNECT—related information in this document has been moved to

the SAS/CONNECT User’s Guide. For information related to using TCP/IP for
SAS/CONNECT in a Windows operating environment, see “Windows Operating
Environment” in SAS/CONNECT User's Guide.

1. Configure the server service.

2. Specify TCP/IP as the communications access method.

3. Access a secured server.

4. Specify encryption of client/server data transfers (optional).

5. Specify the server name.

25

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n07qmuqv0t2u00n1jwvzajcjzxnr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n07qmuqv0t2u00n1jwvzajcjzxnr

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each machine that a
client will access the server from. The SERVICES file is usually located in the directory
where the TCP/IP software is installed. For details about editing the SERVICES file, see
“Configuring the Services File” on page 99.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method that is used in the Windows
operating environment. You can omit specifying the access method in the COMAMID=
option and the TCP/IP access method is assumed, by default.

If you choose to specify TCP/IP to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a configuration file or in a
SAS start-up command.

Encrypting Data in Client/Server Transfers
If an encryption service is configured at the client, you can specify SAS options to
encrypt data that a client transfers to a server. Here is an example:

options netencrypt netencryptalgorithm=ssl;

The NETENCRYPT option specifies that all data transfers between a client and a server
will be encrypted. SSL is the encryption service that is specified in the
NETENCRYPTALGORITHM= option. For details about encryption, see Encryption in
SAS, located in the Base SAS Help and Documentation.

Specifying the Server
If the client and server sessions are running on different network nodes, you must
include the TCP/IP node in the server ID in the LIBNAME and PROC OPERATE
statements by using a two-level server name as follows:

SERVER=node.server

The access method evaluates the node name in this order of precedence:

1. SAS macro variable

2. environment variable

3. acceptable node name

node is specified as the fully qualified domain name (FQDN). Here is an example:

mktserver.acme.com

If the server and the client sessions are running on the same node, you can omit the node
name.

server can be either of the following:

26 Chapter 3 • Windows: TCP/IP Access Method

• server-ID

• port

The server-ID must be identical to the service name that is specified in the SERVICES
file. For details, see “Configuring the Services File” on page 99.

Example 1:

A port is the unique number that is associated with the service that is used for passing
data to and receiving data from the server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore.

Note: Specifying a server by using a port number is not supported for ODBC clients.

libname mylib '.' server=srvnode._ _5000;

Example 2:

If the TCP/IP node name is not a valid eight-character SAS name, assign the name of the
server node to a SAS macro variable, and then use the name of that macro variable for
node in the two-level server name.

%let srvnode=mktserver.acme.com;
libname sales server=srvnode.server1;

Note: Do not use an ampersand (&) in a two-level name. An ampersand would cause the
macro variable to be resolved by the SAS parser before syntactic evaluation of the
SERVER= option. The access method evaluates the node name in a two-level server
name.

Example 3:

You might assign the node name and the server ID to a macro variable.

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

For details about creating valid SAS names, see “Rules for Words and Names in the SAS
Language” in SAS Language Reference: Concepts. For details about LIBNAME and
PROC OPERATE, see “LIBNAME Statement” in SAS/SHARE User's Guide and
“OPERATE Procedure” in SAS/SHARE User's Guide.

SAS/SHARE Client Example
The following example shows the statements that are specified at a Windows client that
accesses a server by using a different user context. The LIBNAME statement specifies
the SAS library that is accessed through the server, which is specified by the two-level
server name RMTNODE.SHARE1.

options comamid=tcp;
libname sasdata 'c:edc\prog2\sasdata' server=rmtnode.share1;

SAS/SHARE Client Tasks 27

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0m7v8i6xka1r1n1lwb6efyewu10
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0m7v8i6xka1r1n1lwb6efyewu10

SAS/SHARE Server Tasks

Task List
Note: All SAS/CONNECT—related information in this document has been moved to

the SAS/CONNECT User’s Guide. For information related to using TCP/IP for
SAS/CONNECT in a Windows operating environment, see “Windows Operating
Environment” in SAS/CONNECT User's Guide.

1. Configure the SAS/SHARE server.

2. Configure SAS options and security programs and services (optional).

• If the server is to run secured, specify the TCPSEC= option to require client
authentication.

• Assign user rights for a server that is to run secured.

• Specify encryption service options to encrypt client/server data transfers.

3. Specify TCP/IP as the communications access method.

4. Specify the server.

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each node that a client
will access. The SERVICES file is located in the directory where the TCP/IP software is
installed. For details about editing the SERVICES file, see “Configuring the Services
File” on page 99.

Example:

sassrv2 5011/tcp # SAS/SHARE server 2

Setting the TCPSEC Option to Require Client Authentication
To authenticate connecting clients, you must specify the value _SECURE_ in the
TCPSEC= option to require that clients provide a user ID and a password that are valid
on the server. For details about the TCPSEC= option, see “SAS/SHARE Options Only ”
on page 11.

Example:

options tcpsec=_secure_;

Assigning User Rights for a Server That Is Running Secured
If you use only SSPI for authentication, setting user rights is not necessary.

If you use the simulated logon method of authentication, the following user rights must
be set at the server machine:

• “Act as part of the operating system” for the server administrator

• “Increase quotas” for the server administrator

28 Chapter 3 • Windows: TCP/IP Access Method

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n07qmuqv0t2u00n1jwvzajcjzxnr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n07qmuqv0t2u00n1jwvzajcjzxnr

• “Replace process level tokens” for the server administrator

• “Log on as batch job” for all clients who need to access to the server

Encrypting Data in Server/Client Transfers
If an encryption service is configured at the server, you can specify SAS options to
encrypt data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=ssl;

The NETENCRYPT option specifies that all data transfers between a server and a client
will be encrypted. SSL is the encryption service that is specified in the
NETENCRYPTALGORITHM= option. For details about encryption, see Encryption in
SAS, located in the Base SAS Help and Documentation.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method on Windows. You can omit
specifying the access method in the COMAMID= option, and the TCP/IP
communications access method is assumed, by default. If you choose to specify TCP/IP
to connect to a server, you can use the COMAMID= option in an OPTIONS statement.

options comamid=tcp;

Alternatively, you can specify the COMAMID option in a SAS configuration file or in a
SAS start-up command.

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC SERVER
statement.

SERVER=server

server can be either a server-ID or a port number. The value for server-ID corresponds
to the service that was configured in the SERVICES file. For details, see “Configuring
the Services File” on page 99. port is the unique number that is associated with the
service that is used for transferring data between a client and a server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore.

Examples:

proc server server=apex;
proc server server=_ _5000;

For details about SAS naming rules, see SAS Language Reference: Concepts. For details
about the PROC SERVER statement, see the SAS/SHARE User's Guide.

SAS/SHARE Server Example
The following example shows the statements that you specify in a SAS session at the
machine where the server runs. The TCP/IP access method is specified and the server
SHARE1 is started on the Windows machine.

options comamid=tcp;
proc server id=share1 authenticate=required;

SAS/SHARE Server Tasks 29

run;

Data Security for SAS/CONNECT or SAS/SHARE
Servers

Client Authentication
Authentication is the act of verifying the identity of the user who is attempting to access
a machine—that is, the machine that either the client session or the server session runs
on. Authentication is performed so that a machine can use the identity information to
make decisions about the user's authority to access protected resources. Under Windows,
the user ID, password, and access permissions make up a user context.

Resources on a SAS/CONNECT or a SAS/SHARE server are considered to be protected
when both of the following conditions are met:

• The server requires that the client provide its identity.

• The client presents an identity that is successfully authenticated.

After the client's identity is authenticated, the client is given the appropriate permissions
to access the server's resources.

Under Windows, two methods are available for authenticating a client's identity:

• Simulated logon

• SSPI

Simulated Logon Method

Overview of Simulated Logon Method
The simulated logon method is the most commonly used method of authentication and is
available in all SAS supported operating environments. In a simulated logon, the client
provides a user ID and password that are checked by the server.

You use a simulated logon in the following situations:

• The client or the server (or both) does not run on a Windows machine.

• The user who runs the client machine is not a trusted user at the server machine.

• The user who runs the client machine wants to log on by using a different user
context.

Requirements for Using Simulated Logon with SAS/CONNECT or
SAS/SHARE
To authenticate user credentials (user ID and password) of SAS/CONNECT or
SAS/SHARE clients, the administrator of the computers that the SAS/CONNECT client
and server sessions or the SAS/SHARE client and server sessions run on must assign the
appropriate rights to users.

Here are the requirements for SAS/CONNECT and SAS/SHARE:

• assignment of the “Log on as batch job” right to users in client sessions that access
SAS/CONNECT server sessions.

30 Chapter 3 • Windows: TCP/IP Access Method

• assignment of the “Act as part of the operating system” right to users who start
SAS/SHARE servers or SAS/CONNECT spawners.

Here are the requirements for SAS/CONNECT only:

• assignment of the “Increase quotas” right to users who start a SAS/CONNECT
spawner.

• assignment of the “Replace a process level token” right to users who start a
SAS/CONNECT spawner.

Note: Because the SAS/CONNECT spawner usually runs as a service under the
LocalSystem account, these permissions are already set by default and user rights
do not need to be changed.

Here are the requirements for SAS/SHARE only:

• specification of the system option TCPSEC=_SECURE_ in the server session.

• specification of the AUTHENTICATE=REQUIRED option in the PROC SERVER
statement that is used to start a SAS/SHARE server session. REQUIRED is the
default value.

SSPI

Overview of SSPI
Security Support Provider Interface (SSPI), also referred to as Integrated Windows
Authentication (IWA), enables transparent authentication for connections between
Windows computers. Users that are members of a trusted domain are authenticated
automatically, and user context information is transferred to the server.

Windows attempts to use SSPI for authentication whenever a user ID is not explicitly
supplied.

SSPI is available only when the client and the server sessions both run on Windows
computers, and the user who runs the client computer is a member of a domain that is
trusted at the server computer.

For more information, see “Integrated Windows Authentication” in SAS Intelligence
Platform: Security Administration Guide, available at: http://support.sas.com/
documentation/onlinedoc/intellplatform/index.html.

SSPI Requirement for SAS/CONNECT
In versions prior to SAS 9.4, SSPI is enabled by default. To disable it, specify -NOSSPI
on the spawner command. In SAS 9.4 and later, -SSPI is not enabled by default, and you
must specify -SSPI on the spawner start-up command to enable it.

If you use SAS Deployment Wizard to configure and deploy SAS, the -SSPI option is
automatically added to the ConnectSpawner.bat and ConnectSpawner.sh script
files. To disable it, edit the script files by adding -NOSSPI or removing -SSPI.

SSPI Requirement for SAS/SHARE
In order to use SSPI for authentication, the SAS/SHARE server administrator must do
the following:

• specify the option TCPSEC=_SECURE_

• specify the option AUTHENTICATE=REQUIRED in the PROC SERVER
statement. REQUIRED is the default value.

Data Security for SAS/CONNECT or SAS/SHARE Servers 31

http://support.sas.com/documentation/onlinedoc/intellplatform/index.html
http://support.sas.com/documentation/onlinedoc/intellplatform/index.html

32 Chapter 3 • Windows: TCP/IP Access Method

Chapter 4

z/OS: TCP/IP Access Method

Prerequisites for Using TCP/IP under z/OS . 34
Task List . 34
Software Requirements . 34
Installation of the SAS SVC Routine . 34
TCP/IP Access Method Terminology . 35
SAS/CONNECT and SAS/SHARE Network Security . 35
SAS/CONNECT Options Only . 35
SAS/SHARE Options Only . 36

SAS/CONNECT Client Tasks . 37
Task List . 37
Specifying TCP/IP as the Communications Access Method 37
Encrypting Data in Client/Server Transfers . 38
Choosing a Method to Use to Sign On . 38
Signing On Using a Spawner . 38
Signing On Using a Telnet Daemon . 41

SAS/CONNECT Server Tasks . 41
Overview . 41
Task List . 42
Installing the Logon Procedure on the Server . 42
SAS/CONNECT Server Example . 42

SAS/SHARE Client Tasks . 43
Task List . 43
Configuring the Server Service . 43
Specifying TCP/IP as the Communications Access Method 43
Accessing a Secured Server . 44
Encrypting Data in Client/Server Transfers . 44
Specifying the Server . 44
SAS/SHARE Client Example . 45

SAS/SHARE Server Tasks . 45
Task List . 45
Configuring the Server Service . 46
Setting the TCPSEC Option to Require Client Authentication 46
Encrypting Data in Client/Server Transfers . 46
Specifying TCP/IP as the Communications Access Method 46
Specifying the Server . 47
SAS/SHARE Server Example . 47

System Configuration for TCP/IP . 47
Planning for TCP/IP . 47

33

TCP/IP Overview . 48
TCP/IP: Software Requirements . 48
Configuring TCP/IP Stacks . 48
TCP/IP Host Name Configuration . 50
TCP/IP Stack Configuration Files . 52
TKMVSENV Data Set . 54
SAS Environment Variables . 54
Setting Stack Affinity With 64-Bit SAS . 56
TCP/IP Name Resolver Configuration . 56
The Services File . 58
Documentation . 59
References . 59

Prerequisites for Using TCP/IP under z/OS

Task List
• Verify that the software requirements are met.

• Verify that the SAS SVC routine has been installed.

• Become familiar with the TCP/IP access method terminology.

• If using network security, set the appropriate SAS system options.

• Set the appropriate SAS/CONNECT and SAS/SHARE options.

Software Requirements
Ensure that the following requirements are met:

• Base SAS software and either SAS/CONNECT or SAS/SHARE are installed on both
the client and the server.

• SAS/CONNECT and SAS/SHARE also require the IBM z/OS Communications
Server or any server that is functionally compatible with the IBM z/OS
Communications Server.

• SAS/CONNECT or SAS/SHARE require the definition of TCP/IP resources for the
z/OS system. For details, see “System Configuration for TCP/IP” on page 47.

Installation of the SAS SVC Routine
The SAS SVC control program routine is an interface between the z/OS operating
environment and a specific request, such as "third-party checking." This facility provides
verification in the form of calls for authentication of user IDs and passwords and of
library authority.

1. Install the SAS SVC routine, if necessary.

If you have already installed the SAS SVC routine, do not repeat the step here. If you
need to perform the installation, see the Configuration Guide for SAS Foundation for
z/OS (PDF) on the SAS Install Center web page.

Because SAS SVC in SAS 9.4 is backward compatible, it replaces the SAS SVC
routines from previous releases. You can continue using previous releases of Base

34 Chapter 4 • z/OS: TCP/IP Access Method

http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/64313/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/64313/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/index.html

SAS, SAS/CONNECT, and SAS/SHARE with the SAS 9.4 SAS SVC that is
installed on your system.

2. Verify the SVC routine SAS system options.

Verify that the SAS system options for the SVC routine accurately reflect how the
SAS SVC is installed. The SAS system option SVC0SVC should be set to the
number at which the SAS SVC is installed (for example, 251 or 109). If the SAS
SVC is installed at 109 as an ESR SVC, the SAS system option SVC0R15 should be
set to the ESR code (for example, 4).

3. Verify installation on all systems, as needed.

If you have more than one z/OS system, verify that the SAS SVC is installed on all
the systems that will be running SAS/CONNECT or SAS/SHARE at your site.

TCP/IP Access Method Terminology
Familiarity with the following terms will help you when you set SAS options:

name resolution
the process of mapping a server name to an address. The domain name system
provides a facility for naming servers in which programs use remote name servers to
resolve server names to IP addresses.

name server
the server program that supplies name-to-address translation (that is, mapping from
server names to IP addresses). The server program often runs on a dedicated
processor, and the operating environment itself is referred to as the name server.

name resolver
the client software that uses one or more name servers when translating a server
name.

SAS/CONNECT and SAS/SHARE Network Security
Encryption is the process of transforming plaintext into a less readable form (called
ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

For details about setting up and using encryption services, see Encryption in SAS,
located in the Base SAS Help and Documentation. After an encryption service is set up
in your environment, you set SAS encryption options that are appropriate to the
encryption service and to the requirements of the client or the server session.

SAS/CONNECT Options Only
TCPMSGLEN n

defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option that you can specify in the
SIGNON statement or as a SAS option. For details, see “TBUFSIZE= System
Option” in SAS/CONNECT User's Guide.

Prerequisites for Using TCP/IP under z/OS 35

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p1qwb2kw2clomyn0ztie1363p51h
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p1qwb2kw2clomyn0ztie1363p51h

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks the
message into a buffer whose size is defined by TCPMSGLEN, and issues the number
of send and receive messages that are necessary to complete the message transaction.

The value for TCPMSGLEN must be set at both the client and the server. If the
values that are set for TCPMSGLEN at the client and at the server are different, the
smaller value of the two is used during the SAS/CONNECT session. If the
TCPMSGLEN environment variable is not set, SAS uses the TCP stack’s default size
and allows autotuning if implemented by the stack.

TCPPORTFIRST=port-number (set at the server)
TCPPORTLAST=port-number (set at the server)

restrict the range of TCP/IP ports that clients can use to access servers.

Within the range of 0 through 32767, assign a beginning value to TCPPORTFIRST
and an ending value to TCPPORTLAST. To restrict the number of ports to only one
port, set the values for both the TCPPORTFIRST and TCPPORTLAST options to the
same number. Consult with your network administrator for advice about setting these
values.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in the
AUTOEXEC file or in the SAS configuration file.

In the following example, the client is restricted to TCP/IP ports 4020 through 4050
when connecting to a server:

options tcpportfirst=4020;
options tcpportlast=4050;

TCPTN3270 (set at the client)
supports connections to a z/OS server that uses the full-screen 3270 Telnet protocol.
The script file TCPTSO32 is provided. See Table 4.1 on page 40 for a complete list
of sign-on scripts.

You can set the TCPTN3270 variable only in the SAS CLIST.

To set the TCPTN3270 variable:

• Set the TCPTN3270 CLIST variable at the client.

• Add TCPTN3270(1) to the SAS CLIST.

If you do not set this variable, the TCP/IP access method uses the Telnet line mode
protocol by default.

SAS/SHARE Options Only
TCPSEC=_SECURE_ | _NONE_ (set at the server)

specifies whether the TCP/IP access method verifies user access authority before
allowing clients to access the server. The TCPSEC option must be set at the server
before the server session is started.

SECURE
requires the TCP/IP access method to verify the authority of clients that attempt
to access the server. Each client must supply a user ID and a password that are
valid at the server.

NONE
specifies that the TCP/IP access method does not authenticate SAS/SHARE
clients that attempt to access the server.

36 Chapter 4 • z/OS: TCP/IP Access Method

Default _NONE_

SECPROFILE=name (set at the client and the server)
specifies the name of a RACF (Resource Access Control Facility) secured sign-on
function profile. SAS uses the secured sign-on function to permit a SAS/SHARE
client to access a SAS/SHARE server without specifying a password. Successful
sign-on without a password requires that the following conditions are met:

• Both the client and the server run under z/OS operating environments that are
secured by RACF or by another security product that supports PassTickets.

• The RACF security administrator has activated the PTKTDATA class, and has
defined at least one PTKTDATA profile for use by SAS/SHARE.

If the client and server run under different z/OS operating environments, the
RACF security administrator must activate the PTKTDATA class and define
identical PTKTDATA profiles in both z/OS operating environments.

• TCP/IP is the communications access method.

• At the server, the SECPROFILE= option is assigned the name of a valid
PTKTDATA profile.

• At the client, the SECPROFILE= option is assigned the same name that was
assigned at the server.

• The client's user ID is specified in either of these ways:

• The USER= option in a LIBNAME or a PROC OPERATE statement
specifies the client's RACF user ID.

• If the USER= option in a LIBNAME or a PROC OPERATE statement is
omitted, the client's user ID is used by default.

SAS/CONNECT Client Tasks

Task List
1. Specify TCP/IP as the communications access method.

2. Specify encryption of client/server data transfers (optional).

3. Sign on to the server.

Specifying TCP/IP as the Communications Access Method
TCP/IP is the default communications access method for all the SAS supported
operating environments, except z/OS. Therefore, you do not have to explicitly specify
the default.

If you choose to explicitly specify TCP/IP, you can use the following syntax:

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification. access-
method-ID identifies the method used by the client to communicate with the server. TCP
(short for TCP/IP, which is an abbreviation for Transmission Control Protocol/Internet

SAS/CONNECT Client Tasks 37

Protocol) is an example of an access-method-ID. You can set this option in an OPTIONS
statement, in a SAS start-up command, or in a SAS configuration file.

Example:

options comamid=tcp;

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS
options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the RC4
encryption algorithm.

options netencryptalgorithm=rc4;

For details about encryption services, see the Encryption in SAS, located in the Base
SAS Help and Documentation.

Choosing a Method to Use to Sign On
Based on your operating environment, you can use one of the following methods to sign
on:

• a spawner

• a Telnet daemon

Signing On Using a Spawner

Task List
1. Ensure that the spawner is running on the server.

2. Specify the server and an optional service.

3. Specify the sign-on script (if you are signing on using a script), or specify a user ID
and password (if you are signing on without a script).

4. Sign on to the server through the spawner.

Ensuring That the Spawner Is Running on the Server
Before you can access the spawner, the spawner program must be running on the server.
For information about the spawner that you are connecting to, see Chapter 6,
“Introduction to the SAS/CONNECT Spawner,” on page 73.

Note: The system administrator for the computer that the spawner runs on must start the
spawner. The spawner program on the server cannot be started by the client.

Specifying the Server and the Spawner Service
The name of the server can be specified in an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

You can also specify it directly in the SIGNON statement or command:

SIGNON node-name[.service-name | .port-number];

38 Chapter 4 • z/OS: TCP/IP Access Method

node-name is based on the server that you are connecting to. node-name must be a valid
SAS name that is 1 to 8 characters in length and is either of the following:

• the short computer name of the server that you are connecting to. This name must be
defined in the HOSTS file in the client operating environment or in your Domain
Name Server (DNS).

• a macro variable that contains either the IP address or the name of the server that you
are connecting to. For more information, see “About TCP/IP Internet Protocol (IP)
Addressing” on page 4.

Here is the process for evaluating node-name:

1. If node-name is a macro variable, the value of the macro variable is passed to the
operating environment's getnameinfo() function.

2. If node-name is not a macro variable or the value of the macro variable does not
produce a valid value, node-name is passed to the getnameinfo() function.

3. If getnameinfo() fails to resolve node-name, an error message is returned and the
sign-on fails.

Note: The order in which the getnameinfo() function calls the DNS or searches
the HOSTS file to resolve node-name varies based on the operating environment
implementation.

You specify service-name when connecting to a server that runs a spawner program that
is listening on a port other than the Telnet port. If the spawner was started using the -
SERVICE spawner option, you must specify an explicit service-name. The value of
service-name and the value of the -SERVICE spawner option must be identical.
Alternatively, you can specify the explicit port number that is associated with service-
name.

Example 1:

In the following example, REMHOST is the name of the node that the spawner is
running on. cspawn is the name of the service that is defined at the client. The client
service cspawn must be assigned to the same port that the spawner is listening on.

signon remhost.cspawn;

Example 2:

In the following example, the macro variable REMHOST is assigned to the fully
qualified name of the computer that the server runs on. This server has a spawner
running that is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node-name REMHOST and the port number 5050.

%let remhost=pc.rem.us.com;signon remhost.5050;

You can also assign a specific port number by including the port number in the definition
of the macro variable. For example:

%let remhost=pc.rem.us.com 5050;signon remhost;

Specifying a Sign-On Script or a User ID and Password
You can use a sign-on script to sign on to the spawner, or you can sign on to a spawner
without a script. If you do not use a sign-on script and if the spawner is running secured,
you must supply a user ID and password to sign on to the spawner.

Note: If you connect to a spawner, you can sign on by using a script unless the spawner
is started using the -NOSCRIPT option. If the -NOSCRIPT option is set, you cannot
use a script. If there is no script, you do not assign the fileref RLINK in a

SAS/CONNECT Client Tasks 39

FILENAME statement. For information about the spawner that you are connecting
to, see Chapter 6, “Introduction to the SAS/CONNECT Spawner,” on page 73.

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to use.
The script file is executed by the SIGNON statement or command. By default, the script
prompts for user ID and password.

To use one of the sample script files that are supplied with SAS/CONNECT for signing
on and signing off, assign the default fileref RLINK to the appropriate script file. The
script is based on the server that you are connecting to. The sample scripts are installed
at this location:

prefix.CTMISC

To specify a script, use the FILENAME statement. For example:

FILENAME RLINK 'prefix.CTMISC/script-name';

script-name specifies the appropriate script file for the server.

The following table lists the scripts that are supplied in SAS software.

Table 4.1 SAS/CONNECT Sign-on Scripts for Using TCP/IP under z/OS

Server Script Name

TSO under z/OS tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specifying a User ID and Password
If you are signing on to the spawner without using a script and the spawner is running
secured, then you must submit the SIGNON statement and provide a user ID and a
password in order to log on to the server. For example:

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Signing On Using the Spawner
To start SAS, sign on to the server by using the spawner.

In the following example, a client connects to a UNIX server through a spawner without
using a script file. In the SIGNON statement, rmthost.spawner specifies the node
rmthost and the service spawner. This server specification presumes that a spawner
is running on the node rmthost, and that the spawner was started with the service

40 Chapter 4 • z/OS: TCP/IP Access Method

spawner. Specifying USER=_PROMPT_ causes a logon dialog box to appear so that a
user ID and a password can be provided.

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

Signing On Using a Telnet Daemon

Task List
1. Specify the server.

2. Specify a sign-on script.

3. Sign on to the server session.

Specifying the Server
The name of the server can be specified in an OPTIONS statement:

OPTIONS REMOTE=node-name;

You can also specify it directly in the SIGNON statement or command:

SIGNON node-name;

Specifying a Sign-On Script
If you are signing on by using a script, you must specify the script that you want to use.
The script file is executed by the SIGNON statement or command. By default, the script
prompts for user ID and password. For details, see “Specifying a Sign-On Script” on
page 40.

Signing On to the Server Session
In the following example, you specify the statements at a z/OS client to use the TCP/IP
access method to connect to a server. The FILENAME statement identifies the script file
that you use to sign on to the server. The script file contains a prompt for a user ID and a
password that are valid on the server. The COMAMID= option specifies the TCP/IP
communications access method for connecting to the server rmtnode, which is
specified in the REMOTE= option.

filename rlink 'prefix.CTMISC/tcptso.scr';
options comamid=tcp remote=rmtnode;
signon;

SAS/CONNECT Server Tasks

Overview
The tasks outlined in this chapter describe the manual setup and configuration of the
SAS/CONNECT Spawner. In most cases, the SAS Connect spawner is deployed using
the SAS Deployment Wizard, which stores information in the metadata server, and
manual setup is not required.

SAS/CONNECT Server Tasks 41

Note: SAS/CONNECT enables TCP/IP connections from clients outside a firewall to
spawners that run on servers inside a firewall. For details, see Chapter 9,
“Configuring SAS/CONNECT for Use with a Firewall,” on page 103.

Task List
If you are signing on to a z/OS server with TSO, there are no server tasks.

1. Verify that the SAS SVC routine has been installed. See “Installation of the SAS
SVC Routine” on page 34.

2. Start the spawner program at the z/OS server. For details, see “SAS/CONNECT
Spawner in z/OS ” on page 86.

To allow a client to connect to a z/OS server without running a TSO terminal monitor
program, install the logon procedure on the z/OS server.

Installing the Logon Procedure on the Server
For z/OS server connections, you can eliminate the need for TSO by replacing the
terminal monitor program (also called logon procedure) with a procedure that starts SAS
with the options that you want. The benefits of this method are that signing on and
signing off a z/OS server is much faster than running with TSO, and you eliminate the
overhead consumed by running TSO. However, a disadvantage of running without TSO
is that you cannot execute any X commands or TSO commands.

In the following example, the logon procedure starts SAS with the DMR and the
COMAMID=TCP options. When you log on to the z/OS server, this procedure is
immediately run so that the current z/OS account is limited to running SAS each time
that the current z/OS account user logs on.

//JOBDL PROC ENTRY=SASHOST,
// OPTIONS=,
// WORK='500,200'
//JOBDL EXEC PGM=&ENTRY,
// PARM='&OPTIONS DMR COMAMID=TCP',REGION=4096K
//STEPLIB DD DISP=SHR,DSN=&prefix.TS450.LIBRARY
//CONFIG DD DISP=SHR,DSN=&prefix.TS450.CNTL(TSOXA)
//SASAUTOS DD DISP=SHR,DSN=&prefix.TS450.AUTOLIB
//SASHELP DD DISP=SHR,DSN=&prefix.TS450.SASHELP
//SASMSG DD DISP=SHR,DSN=&prefix.TS450.SASMSG
//WORK DD UNIT=SYSDA,SPACE=(6144,(&WORK),,,ROUND),
// DCB=(RECFM=FS,DSORG=PS,LRECL=6144,BLKSIZE=6144)
//SASPARM DD UNIT=SYSDA,SPACE=(400,(100,300)),
 DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,BUFNO=1)

A script file is still required at the client for sign-on. However, a SAS start-up command
is not included in the script file because the logon procedure already executes the SAS
start-up command.

For the content of the script file, see “TCPMVS.SCR Script” on page 118.

SAS/CONNECT Server Example
The following command starts the spawner on a z/OS computer. The -SERVICE option
specifies the name of the port, o390spawn, that the spawner listens on for client
requests to start the server. The absence of the -SASCMD option in the spawner start-up

42 Chapter 4 • z/OS: TCP/IP Access Method

command implies that the client will use a script file to specify the SAS command that
starts SAS on the z/OS computer.

cntspawn -service o390spawn

SAS/SHARE Client Tasks

Task List
1. Configure the server service.

2. Specify TCP/IP as the communications access method.

3. Access a secured server.

4. Specify encryption of client/server data transfers (optional).

5. Specify the server.

Configuring the Server Service
Each server must be defined as a service in the SERVICES file on each computer that a
client will access the server from. For details about editing the SERVICES file, see
“Configuring the Services File” on page 99.

Specifying TCP/IP as the Communications Access Method
You must specify the TCP/IP communications access method at the server before you
can start a server. You can use the COMAMID= option in an OPTIONS statement. For
example:

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a SAS configuration file or in
a SAS start-up command.

The COMAUX1= specifies an auxiliary communications access method and can be
specified only in a SAS configuration file or in a SAS start-up command. Here is the
syntax for the COMAUX1= option:

COMAUX1=alternate-method

If the first method that you specify in the COMAMID= option fails to access a server,
the second method is used. You can specify one auxiliary access method.

Example:

comamid=tcp
comaux1=xms

SAS/SHARE Client Tasks 43

Accessing a Secured Server
Requiring clients to supply a valid user ID and password when attempting to access a
server enforces server security. The values for a user ID and a password are provided in
the USER= and PASSWORD= options in the LIBNAME statement and the PROC
OPERATE statement. For details, see “LIBNAME Statement” in SAS/SHARE User's
Guide and “OPERATE Procedure” in SAS/SHARE User's Guide.

Example:

libname sasdata 'edc/prog2/sasdata' server=rmtnode.share user=_prompt_
;

The value _PROMPT_ requires the client to provide a user ID and password when a
client attempts to access the server.

Encrypting Data in Client/Server Transfers
If network security is configured at the client, you can specify SAS options to encrypt
data that a client transfers to a server. For example:

options netencrypt netencryptalgorithm=rc4;

The NETENCRYPT option specifies that all data transfers between a client and a server
will be encrypted. The RC4 encryption algorithm is assigned in the
NETENCRYPTALGORITHM= option. For details about encryption services, see
Encryption in SAS, located in the Base SAS Help and Documentation.

Specifying the Server
If the client and server sessions are running on different network nodes, you must
include the TCP/IP node in the server ID in the LIBNAME or in the PROC OPERATE
statement by using a two-level server name as follows:

SERVER=node.server

node must be specified by using either a server-ID or a port number.

If the server and the client sessions are running on the same node, you can omit the node
name.

server can be either a server-ID or a port.

The server-ID must be identical to the service name that is specified in the SERVICES
file. For details, see “Configuring the Services File” on page 99.

The value for port is the unique number that is associated with the service that is used
for passing data to and receiving data from the server.

Precede the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore.

Example:

libname mylib '.' server=srvnode._ _5000;

If the TCP/IP node name is not a valid SAS name, assign the name of the server node to
a SAS macro variable, then use the name of that macro variable for node in the two-level
server name.

The access method evaluates the node name in this order of priority:

44 Chapter 4 • z/OS: TCP/IP Access Method

1. SAS macro variable

2. acceptable node name

Example:

You might assign the node name and the server ID to a macro variable:

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

or

%let srvnode=mktserve.acme.com;
libname sales server=srvnode.server1;

Note: Do not use an ampersand (&) in a two-level server name. An ampersand causes a
macro variable to be resolved by the SAS parser before syntactic evaluation of the
SERVER= option.

For details about SAS naming rules, see SAS Language Reference: Concepts. For details
about LIBNAME, see “LIBNAME Statement” in SAS/SHARE User's Guide, and for
details about PROC OPERATE, see “OPERATE Procedure” in SAS/SHARE User's
Guide.

SAS/SHARE Client Example
The following example shows the statements that are used at a z/OS client to access a
server by using the TCP/IP access method:

options comamid=tcp;
libname sasdata 'edc.prog2.sasdata' user=_prompt_ server=rmtnode.share1;

The COMAMID= option specifies the TCP/IP access method. The LIBNAME statement
specifies the SAS library that is accessed through the server. The value _PROMPT_ in
the USER= option specifies that the client must provide a valid user ID and password.
The SERVER= option specifies the two-level server name RMTNODE.SHARE1.

SAS/SHARE Server Tasks

Task List
1. To allow a client to connect to a server that runs under z/OS, verify that the SAS

SVC routine has been installed. See “Installation of the SAS SVC Routine” on page
34.

2. Configure SAS/SHARE servers in the SERVICES file.

3. Configure SAS options (optional).

• Set the TCPSEC= option to require client authentication.

• Set security service options to encrypt data that is transferred between a server
and a client.

4. Specify TCP/IP as the communications access method.

5. Specify the server name.

SAS/SHARE Server Tasks 45

Configuring the Server Service
Each server must be defined as a service in the TCP/IP SERVICES file on each node that
a client will connect to. This file usually is located in the directory that the TCP/IP
software is installed in. For details about editing the SERVICES file, see “Configuring
the Services File” on page 99.

Example:

sassrv2 5011/tcp #
SAS/SHARE server 2

Setting the TCPSEC Option to Require Client Authentication
To authenticate connecting clients, you must specify the value _SECURE_ in the
TCPSEC= option to require that clients provide a user ID and a password that are valid
on the server. For details about the TCPSEC= option, see “SAS/SHARE Options Only ”
on page 11.

Encrypting Data in Client/Server Transfers
If network security is configured at the server, you can specify SAS options to encrypt
data that a server transfers to a client. For example:

options netencrypt netencryptalgorithm=rc4;

The NETENCRYPT option specifies that all data transfers between a server and a client
will be encrypted. The RC4 security algorithm is assigned in the
NETENCRYPTALGORITHM= option. For details about encryption services, see
Encryption in SAS, located in the Base SAS Help and Documentation.

Specifying TCP/IP as the Communications Access Method
You must specify TCP/IP as the communications access method at the server before a
client can access it. You can use the COMAMID= option in an OPTIONS statement. For
example:

options comamid=tcp;

The COMAMID= option specifies the communications access method. TCP specifies
the TCP/IP access method.

Alternatively, you can specify the COMAMID= option in a SAS start-up command or in
a SAS configuration file.

The COMAUX1= option specifies an auxiliary communications access method and can
be specified only in a SAS start-up command or in a SAS configuration file.

Here is the syntax for the COMAUX1= option:

COMAUX1=alternate-method

If the first method fails to access a server, the second method is used. You can specify
one auxiliary access method.

Example:

comamid=tcp
comaux1=xms

46 Chapter 4 • z/OS: TCP/IP Access Method

Specifying the Server
You must specify the name of the server in the SERVER= option in the PROC SERVER
statement.

SERVER=server

server can be either a server-ID or a port number. The server-ID corresponds to the
service that was configured in the SERVICES file. For details, see “Configuring the
Server Service” on page 46. The value for port is the unique number that is associated
with the service that is used for transferring data between a client and a server. Precede
the port number with two consecutive underscores.

Note: Do not space after the first underscore or the second underscore.

Examples:

proc server server=apex;
proc server server=_ _5000;

For details about creating valid SAS names, see SAS Language Reference: Concepts. For
details about PROC SERVER, see “SERVER Procedure” in SAS/SHARE User's Guide.

SAS/SHARE Server Example
The following example shows the statements that you specify in the server configuration
file on a computer that runs the z/OS operating environment:

tcpsec=_secure_
options comamid=tcp;
proc server id=share1;
run;

The value _SECURE_ that is specified for the TCPSEC option requires clients to
provide a user ID and a password that are valid on the server.

The COMAMID= option specifies the TCP/IP access method. The PROC SERVER
statement specifies the server SHARE1.

System Configuration for TCP/IP

Planning for TCP/IP
Here are the primary configuration issues to consider when preparing your site for
TCP/IP to run under the z/OS operating environment.

1. For the IBM IP Communications Server, configure or verify the host name
configuration by adding a HOSTNAME statement in the appropriate IBM
TCPIP.DATA file.

For information about TCP/IP stacks and how to determine whether a system uses
single or multiple TCP/IP stacks, see “Configuring TCP/IP Stacks” on page 48.

2. Use the IBM z/OS Name Resolver for the resolution of domain names.

3. Verify that appropriate services are configured for SAS/CONNECT or SAS/SHARE
in the SERVICES file. For details, see “The Services File” on page 58.

System Configuration for TCP/IP 47

TCP/IP Overview
TCP/IP is a set of layered protocols that enable cooperating computers to perform tasks
and to share resources across a network. TCP/IP consists of TCP and IP.

TCP is a set of routines that applications use to communicate with another computer
over a network. All applications do not use TCP. However, all network applications
require the services that are provided in IP. IP is a set of routines that TCP calls, but the
IP routines are also available to applications that do not use TCP. SAS uses both TCP
and IP, and requires that certain types of information be made available to the operating
environment.

Although you might refer to a computer by using its host name, TCP/IP applications
refer to computers by using their IP addresses. To facilitate the use of host names in a
network, the Domain Name System translates host names to IP addresses. This Domain
Name System provides host-to-IP address mapping through network server hosts, which
are called domain name servers. The Domain Name System also provides other
information about server hosts and networks, such as the TCP/IP services that are
available to the server host and the location of the domain name servers in the network.

TCP/IP: Software Requirements
Verify that these software requirements have been met:

• The IBM z/OS IP Communications Server TCP/IP package has been installed.

Note: SAS supports any vendor's TCP/IP software that is functionally compatible
with the IBM z/OS IP Communications Server package.

• The UNIX System Services (USS) file system is available.

• A default OE segment (or an individual OE segment for each user ID) is required
and must be defined in the security software (such as RACF).

• The IBM z/OS Name Resolver must be active.

Configuring TCP/IP Stacks

TCP/IP Communication Stack: Definition
TCP/IP stack is a term for the set of protocols that comprise TCP/IP. A TCP/IP
communication stack that runs under the z/OS operating environment is implemented as
a UNIX System Services (USS) physical file system (PFS). An operating environment
can run using one or more TCP/IP stacks.

Note: A TCP/IP stack is also referred to as a transport driver.

The IBM INET physical file system type supports a single TCP/IP stack. The IBM
CINET physical file system type supports multiple stacks.

Note: If you will configure only one TCP/IP stack and you have access to both INET
and CINET, it is advisable to configure the stack under INET because of its
efficiency over CINET.

48 Chapter 4 • z/OS: TCP/IP Access Method

Sample Definitions of TCP/IP Stacks
USS physical file systems are configured in the IBM PARMLIB member BPXPRMnn.
These examples show typical entries in the BPXPRMnn PARMLIB member for INET
and CINET physical file systems.

• Defining a single IBM TCP/IP stack

This example shows the statements in the IBM PARMLIB member BPXPRMnn that
define an INET physical file system for a single IBM TCP/IP stack system.

FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
 NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETS(64000)
 TYPE(INET)

• Defining a single IBM TCP/IP stack that supports IPv4 and IPv6

This example shows the statements in the IBM PARMLIB member BPXPRMnn that
define an INET physical file system for a single IBM TCP/IP stack that enables IPv4
and IPv6. For details, see “About TCP/IP Internet Protocol (IP) Addressing” on page
4.

FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
 SUBFILESYSTYPE NAME(TCPIP)
 TYPE(INET)
 ENTRYPOINT(EZBPFINI)
 NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETS(64000)
 TYPE(INET)
 NETWORK DOMAINNAME(AF_INET6)
 DOMAINNUMBER(19)
 TYPE(INET)

• Defining multiple IBM TCP/IP stacks

This example shows the statements in the IBM PARMLIB BPXPRMnn member that
define a multiple TCP/IP stack system. This example includes two IBM stacks,
TCPIP and TCPIP2.

The values of the FILESYSTYPE substatements, TYPE and ENTRYPOINT, define
the PFS type and the entry point for the CINET PFS. CINET requires a
SUBFILESYSTYPE statement for each stack. The NAME substatement names the
TCP/IP stack that is being defined. This name is also used as the name of the started
task that invokes the TCP/IP stack.

Note: CINET requires the NAME substatement.

An optional SUBFILESYSTYPE substatement named DEFAULT defines the default
TCP/IP stack for a multiple stack system. If DEFAULT is not specified or if the
default stack is not active, the first stack that is activated is the default stack.

 FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
 NETWORK DOMAINNAME(AF_INET)
 DOMAINNUMBER(2)
 MAXSOCKETS(64000)
 TYPE(CINET)
 INADDRANYPORT(63000)
 INADDRANYCOUNT(1000)

 SUBFILESYSTYPE NAME(TCPIP)

System Configuration for TCP/IP 49

 TYPE(CINET)
 ENTRYPOINT(EZBPFINI)
 DEFAULT

 SUBFILESYSTYPE NAME(TCPIP2)
 TYPE(CINET)
 ENTRYPOINT(EZBPFINI)

For details, see “References” on page 59.

System and Process Limits
These IBM system values are set in the PARMLIB member BPXPRMnn and affect the
number of TCP/IP sockets that SAS can use:

MAXSOCKETS
is a system limit that specifies the maximum number of sockets that can be obtained
for a given file system type. IBM recommends that this value be set to 64000.

MAXFILEPROC
is a process limit that specifies the maximum number of file descriptors that a single
process can have open concurrently, such as all open files, directories, sockets, and
pipes. IBM recommends that this value be set to 64000.

Note: You can use the RACF ALTUSER or ADDUSER system commands to set
MAXFILEPROC on a per-user basis.

For details about MAXSOCKETS and MAXFILEPROC, see “References” on page
59.

TCP/IP Host Name Configuration

IP Addresses
In order for a process to connect to a computer via TCP/IP, the process must know the IP
address of the computer host name. To obtain the IP address, the process calls these
name resolver functions:

getnameinfo()
retrieves a string that contains its host name.

getaddrinfo()
resolves the host name string to its IP address.

Because each host name is associated with a TCP/IP stack, it is critical that the host
name be configured correctly for each TCP/IP stack.

TCP/IP Host Name Configuration for Communications Servers
When an IBM TCP/IP stack starts, the configuration process searches for the host name
in the TCPIP.DATA data set. For details, see “TCP/IP Stack Configuration Files” on
page 52.

• Search Order to Locate Stack Host Name

1. If the IBM stack reads a TCPIP.DATA HOSTNAME configuration statement, it
saves this value as the stack's host name.

2. If a TCPIP.DATA HOSTNAME configuration statement is not read, the TCP/IP
stack searches for the Virtual Machine Communication Facility (VMCF) node
name and uses its node name as the stack's host name.

50 Chapter 4 • z/OS: TCP/IP Access Method

Note: VMCF should be running before any TCP/IP stacks are started.

3. If VMCF is not running when the TCP/IP stack is started, the TCP/IP stack's host
name is determined by the release of the operating environment.

For releases prior to z/OS 1.2, the stack's host name is set to a NULL string.

For z/OS 1.2 and later releases, the stack's host name is set to the CVTSNAME,
which is the SYSNAME=value in IEASYSnn that was used when the system
was started.

• Multiple Host Names in a Single File

As an option, you can insert a prefix system_name in TCPIP.DATA configuration
statements. Using prefixes enables you to configure multiple hosts in a single
TCPIP.DATA data set. The system_name prefix is matched against the system name
that the TCP/IP stack is started under. The system_name is identical to the VMCF
node name. The TCP/IP stack reads and processes the TCPIP.DATA configuration
statements in the order in which they appear in the data set.

This example shows a HOSTNAME statement in a TPCIP.DATA data set:

SDCMVS: HOSTNAME PROD
SDCESA: HOSTNAME TEST
S390DEVA: HOSTNAME DEV

The system_name is specified in the first column; the associated host_name is
specified in the final column.

A TCP/IP stack that was started on the system named SDCMVS would set its host
name to PROD. A TCP/IP stack that started on the system named SDCESA would
set its host name to TEST. A TCP/IP stack that started on the system named
S390DEVA would set its host name to DEV.

The following rules are used to process HOSTNAME statements:

1. If the system_name prefix does not match a host name, the configuration
statement is ignored.

2. If the system_name prefix is not located, the configuration statement is applied to
all hosts.

3. If the system_name matches a host name, the associated configuration statement
is applied to that host.

4. The final configuration statement that matches a system_name remains in effect.

A HOSTNAME statement is ignored under these conditions:

• The system_name prefix did not match the VMCF node name.

• VMCF is unavailable.

• The system name does not match the MVS name of the system that the TCP/IP
stack started under.

Therefore, it is critical that VMCF is running before any TCP/IP stacks are started.

• IBM System Name Considerations

The VMCF node name is used as the system_name prefix when processing IBM
TCPIP.DATA configuration statements. The VMCF can be configured in two ways:

• as a restartable subsystem

If you have configured VMCF as a restartable subsystem, the node name is
obtained from the value of the P= parameter in the EZAZSSI started procedure.

System Configuration for TCP/IP 51

• as a non-restartable subsystem

If you configured VMCF as a non-restartable subsystem, the node name is
specified in the IEFSSNnn member of PARMLIB.

Note: IBM recommends that the MVS system name be used for the VMCF node
name specification.

For details about configuring VMCF, see “References” on page 59.

TCP/IP Stack Configuration Files

About TCP/IP Stack Configuration Files
When a TCP/IP stack is started, the TCP/IP stack reads one or more configuration files
that contain statements that define its default behavior. Here are the configuration files:

• “IBM PROFILE.TCPIP File” on page 52

• “IBM TCPIP.DATA File” on page 53

IBM PROFILE.TCPIP File
The following PROFILE.TCPIP statements can restrict the ports that SAS servers can
use:

PORT
reserves ports for server tasks. The PORT statement specifies only the job names and
PROC names that are allowed access to the port.

PORTRANGE
is the same as PORT parameter but for a range of ports.

RESTRICT
defines a list of user IDs that are prohibited from using TCP/IP.

RESTRICTLOWPORTS
restricts the use of ports 1 to 1023 to specific job names or PROC names that are
specified in the PORT or the PORTRANGE statement.

For details about the IBM PROFILE.TCPIP statements, see “References” on page 59.

The search order that is used by the IBM TCP/IP stack to locate PROFILE.TCPIP
involves both explicit and dynamic data-set allocation, as follows:

1. //PROFILE DD DSN=

2. jobname.nodename.TCPIP

3. hlq.nodename.TCPIP

4. jobname.PROFILE.TCPIP

5. TCPIP.PROFILE.TCPIP

Note: IBM recommends explicitly specifying the PROFILE DD statement in the
TCPIPROC JCL. When the PROFILE DD statement is specified, no dynamic
allocation is performed.

SAS does not access the PROFILE.TCPIP file directly. However, because this file is
used to configure the IBM TCP/IP stack, the statements in this file can have an indirect
effect on how SAS operates.

52 Chapter 4 • z/OS: TCP/IP Access Method

IBM TCPIP.DATA File
The TCPIP.DATA file contains the following statements that are used to configure the
IBM TCP/IP stack and Communication Server applications.

TCPIPJOBNAME (or TCPIPUSERID)
specifies the member name of the procedure that is used to start the TCPIP address
space, which is the TCP/IP stack name.

HOSTNAME
is used by the TCP/IP stack to determine its host name.

DOMAINORIGIN (or DOMAIN)
specifies the name of the domain origin, which is appended to the host name to form
the fully qualified domain name of the host.

DATASETPREFIX
is a high-level qualifier (hlq) for the dynamic allocation of data sets in IBM TCP/IP
servers and clients.

For details about the IBM TCPIP.DATA statements, see “References” on page 59.

The IBM TCP/IP stack and the IBM Communication Server applications, including the
IBM z/OS Resolver, use the following search order to locate the data set that contains
the TCPIP.DATA configuration statements:

1. GLOBALTCPIPDATA value (z/OS 1.2 and later releases)

2. RESOLVER_CONFIG environment variable

3. /etc/resolv.conf

4. SYSTCPD DD

5. userid.TCPIP.DATA

6. SYS1.TCPPARMS(TCPDATA)

7. DEFAULTTCPIPDATA value (z/OS 1.2 and later releases)

8. TCPIP.TCPIP.DATA

Host Name Resolution for Systems That Run Multiple TCP/IP Stacks
There is usually a one-to-correspondence between a TCP/IP stack and its host name. The
host name is obtained using the gethostname() function. However, for systems that
run using multiple TCP/IP stacks, the identity of the stack's host name is ambiguous.
Here is the process for resolving the host name for a multiple TCP/IP stack system:

• The process that calls gethostname() might be bound to a specific TCP/IP stack.
The binding is referred to as TCP/IP stack affinity. If affinity to a specific TCP/IP
stack has been established, the gethostname() function returns the host name for
the specific stack.

There are several methods of setting the TCP/IP stack affinity. SAS uses the UNIX
System Services call, pfsctl(BPX1PCT). For details, see “Determining SAS
TCP/IP Stack Affinity” on page 53.

• Otherwise, the process returns the host name of the default TCP/IP stack. For details
about the default stack, see “Configuring TCP/IP Stacks” on page 48.

Determining SAS TCP/IP Stack Affinity
The SAS TCP/IP library uses the UNIX System Services call pfsctl(BPX1PCT) to
determine whether the z/OS system is running a single TCP/IP stack environment
(INET) or a multiple TCP/IP stack environment (CINET). Here is the process:

System Configuration for TCP/IP 53

• If the pfsctl() call returns zero, the z/OS System is running an INET
environment.

• If the pfsctl() call returns the number of CINET TCP/IP stacks and their names,
the z/OS System is running a CINET environment.

1. The SAS TCP/IP library searches for the SAS environment variable TCPIPMCH
in the data set that is specified by the ddname TKMVSENV.

For details about specifying the TCPIPMCH environment variable and the
TKMVSENV data set, see “SAS Environment Variables” on page 54.

• If the TCPIPMCH environment variable is set to a value of "*", the SAS
TCP/IP library does not attempt to set the TCP/IP stack affinity.

• If the TCPIPMCH environment variable is set to a valid stack name, the SAS
TCP/IP library sets the TCP/IP stack affinity to this value.

• Otherwise, the TCP/IP stack affinity is set to the first TCP/IP stack name that
was returned by the previous call to pfsctl().

2. The SAS TCP/IP library resets the stack affinity by making another call to
pfsctl() using the appropriate flags and specifying the TCP/IP stack name.

The value that is passed to pfsctl() must match the value of the NAME
substatement, which is included in the SUBFILESYSTYPE statement, which is
defined in the CINET PFS TCP/IP stack in the IBM BPXPRMxx PARMLIB
member.

TKMVSENV Data Set
A SAS data set, referred to as the TKMVSENV data set file, can be used to specify SAS
environment variables. If you use SAS environment variables, you must allocate the
TKMVSENV DD in the JCL or CLIST that executes SAS. For example, here are the
allocation statements for the data set SAS.DATA.TKMVSENV, which contains the
desired environment variable information:BATCH statement:

 //TKMVSENV DD DISP=SHR,DSN=SAS.DATA.TKMVSENV

Note: Line numbering in the TKMVSENV data set must be disabled.

TSO statement:

ALLOC F(TKMVSENV) DA('SAS.DATA.TKMVSENV') SHR

Each logical record contains an environment variable assignment in this format: SET
environment_variable_name=value.

SAS Environment Variables
Environment variables, which are specified in the TKMVSENV file using the SET
command, are used to customize TCP/IP for SAS.

_BPXK_SETIBMOPT_TRANSPORT
controls which TCP/IP stack the metadata server binds to when running in a 64–bit
multi-stack environment. When you are run a 64-bit SAS Metadata Server in a
multiple TCP/IP stack environment, the metadata server binds to every available
stack on the system. To control which stack the metadata server binds to, use the LE
environment variable, _BPXK_SETIBMOPT_TRANSPORT=, rather than the
TCIPMCH environment variable, to specify the stack name and set stack affinity.

54 Chapter 4 • z/OS: TCP/IP Access Method

See the “TCPIPMCH” on page 55 for the equivalent TKMVSENV option for 31-
bit SAS.

Example:

set _BPXK_SETIBMOPT_TRANSPORT=“stack-name"

TCPIPMCH
for 31-bit SAS, specifies the IBM TCP/IP stack name to set the stack affinity for
z/OS systems that are running more than one TCP/IP stack. The TCPIPMCH SAS
environment variable is useful for running multiple TCP/IP packages: either multiple
TCP/IP vendor packages or multiple instances of the same vendor's TCP/IP. The
TCPIPMCH environment variable is used to specify the TCP/IP stack name, such as
a started task. Setting this environment variable is the equivalent of the
TCPIPJOBNAME and TCPIPUSERID configuration keywords within the IBM
TCPIP.DATA file. If the default value for the TCP/IP stack name is not specified, the
value is the first TCP/IP stack that is defined to the system.

Example:

set _TCPIPMCH=“stack-name"

See the “_BPXK_SETIBMOPT_TRANSPORT” on page 54 environment variable
for the equivalent TKMVSENV option for 64–bit SAS.

TCPMSGLEN n
defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option that you can specify in the
SIGNON statement or as a SAS option. For details, see “TBUFSIZE= System
Option” in SAS/CONNECT User's Guide.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks the
message into a buffer whose size is defined by TCPMSGLEN, and issues the number
of send and receive messages that are necessary to complete the message transaction.

The value for TCPMSGLEN must be set at both the client and the server. If the
values that are set for TCPMSGLEN at the client and at the server are different, the
smaller value of the two is used during the SAS/CONNECT session. If the
TCPMSGLEN environment variable is not set, SAS uses the TCP stack’s default size
and allows autotuning if implemented by the stack.

Example:

set TCPMSGLEN=65536

TCP_POLL_INTERVAL
used to ensure responsiveness of SAS spawners and servers to various conditions
outside of normal request processing. When idle, servers and spawners periodically
awaken to check for requests. The interval in seconds for this check is governed by
the TCP_POLL_INTERVAL= environment variable. Generally the default setting of
60 seconds should be acceptable. However, if you wish to configure the interval, set
it in the TKMVSENV file by specifying the TCP_POLL_INTERVAL= variable.

Example:

set TCP_POLL_INTERVAL=50

A value of zero means the server will remain idle and only awaken for request
processing. An idle server might be subject to S522 (Job Wait Time-out) abend.
However, a spawner defined as an MVS started task or as a UNIX System Services
daemon process should not be subject to idle wait termination. NI

System Configuration for TCP/IP 55

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p1qwb2kw2clomyn0ztie1363p51h
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p1qwb2kw2clomyn0ztie1363p51h

CONNECTWDWAIT
used to limit the possibility that a client session disconnect might orphan a runaway
DMR mode session. SAS starts a 'watchdog' thread to monitor the connection. The
default interval is five seconds. If a disconnect occurs, CONNECTWDWAIT will
check 18 times and then terminate the DMR thread (for a default elapsed time of 90
seconds). Setting the CONNECTWDWAIT value to zero means the process will not
monitor the connection.

Example:

set CONNECTWDWAIT=10

Setting Stack Affinity With 64-Bit SAS
If you are running the 64-bit SAS Metadata Server in a multiple TCP/IP stack
environment, the server binds to every available stack on the system by default. To
specify the name of the TCPIP stack that the metadata server binds to, use the
_BPXK_SETIBMOPT_TRANSPORT environment variable.

Set the _BPXK_SETIBMOPT_TRANSPORT variable in the z64–
sasprefix.TKMVSENV file as follows:

set _BPXK_SETIBMOPT_TRANSPORT="stack-name"

For information about setting TCPIPMCH, see “Configuring SAS to Use the IBM z/OS
Name Resolver” on page 58.

For more information about environment variables in the TKMVSENV File, see
“TKMVSENV File” in SAS Companion for z/OS.

TCP/IP Name Resolver Configuration

Name Resolver: Definition
A name resolver is a set of routines that acts as a client on behalf of an application to
read a local host file or to access one or more domain name servers (DNS) for name-to-
address or address-to-name resolution. Name resolution occurs by calling the name
resolver functions getnameinfo() and getaddrinfo().

A name resolver must be configured for each host. Here are the locations for UNIX
configuration files:

/etc/hosts
contains the local host configuration data.

/etc/resolve/conf
contains the DNS domain name and the name servers' IP addresses.

/etc/service
contains the service configuration data.

IBM z/OS Name Resolver
Starting with z/OS V1R4, IBM introduced support for Internet Protocol Version 6
(IPv6), which is the successor to the Internet Protocol Version 4 (IPv4). In order to
support IPv6, new USS BPX calls for the IBM name resolver were introduced to
implement the protocol-independent resolver functions that are described in the RFC
3493 specification. Here is a list of the IBM name resolver functions that are supported
in IPv6 and IPv4:

56 Chapter 4 • z/OS: TCP/IP Access Method

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hosto390&pubcode=67915&id=p1q15c52hf7uprn1ins0ugzjgq5a

Table 4.2 IBM Name Resolver Functions

IPv6 IPv4

getnameinfo(BPX1GNI) gethostbyname()

getaddrinfo(BPX1GAI) gethostbyaddr()

When the IBM z/OS Name Resolver is started, it reads the IBM configuration file that is
pointed to by the DD statement SETUP, which can contain the following SETUP
directives:

• COMMONSEARCH | NOCOMMONSEARCH

• DEFAULTIPNODES

• DEFAULTTCPIPDATA

• GLOBALIPNODES

• GLOBALTCPIPDATA.

Note: The most important SETUP directives are GLOBALTCPIPDATA and
DEFAULTTCPIPDATA.

GLOBALTCPIPDATA
identifies a global TCPIP.DATA file. Any TCPIP.DATA directive that is specified in
this file are system-wide and cannot be overridden by a local TCPIP.DATA file.

DEFAULTTCPIPDATA
identifies a default TCPIP.DATA file, which overrides the TCPIP.DATA file that is
named TCPIP.TCPIP.DATA.

If a GLOBALTCPIPDATA statement is located in the resolver setup file, the IBM z/OS
Name Resolver reads any name resolver directives that are located in this global
TCPIP.DATA file. The IBM z/OS Name Resolver then searches for a local TCPIP.DATA
file in this order:

1. RESOLVER_CONFIG environment variable

2. /etc/resolv.conf

3. SYSTCPD DD

4. jobname.TCPIP.DATA

5. SYS1.TCPPARMS(TCPDATA)

6. DEFAULTTCPIPDATA value (if specified in the z/OS Name Resolver setup file)

7. TCPIP.TCPIP.DATA

Here are some useful IBM z/OS Name Resolver Server directives:

LOOKUP
changes the order in which name resolution is performed between a DNS name
server and a local hosts file. Using the LOOKUP directive, you can specify DNS
only, LOCAL only, DNS LOCAL, or LOCAL DNS. By default, a DNS name server
is queried first. If DNS fails, then DNS LOCAL is used.

System Configuration for TCP/IP 57

SEARCH
specifies a search of up to six domains, in the specified order. The first domain name
that is specified is used as the value for DOMAINORIGIN. If both the SEARCH and
DOMAINORIGIN statements are specified, the one that appears last is used.

SORTLIST
specifies up to four IP addresses to use for a specific host. If DNS returns more than
one IP address for a host, SORTLIST can use search masks to sort and identify
which IP address the resolver returns.

OPTIONS
specifies that for a domain name that contains n or more periods (.), the resolver
should look up the name as is before applying the DOMAINORIGIN or SEARCH
statement settings. The range of n is 1 to 15. The default is 2.

For complete information about these directives, see the IBM documentation z/OS IP
Configuration Guide and IP Configuration Reference.

Configuring SAS to Use the IBM z/OS Name Resolver
SAS uses the IBM z/OS Name Resolver by default. No configuration is necessary unless
SAS is running under a multiple TCP/IP stack system (CINET). If SAS is running under
a multiple TCP/IP stack system, the SAS TCP/IP library will need to set the TCP/IP
stack affinity. Specify this SAS environment variable:

set TCPIPMCH=stack-affinity

TCPIPMCH is a SAS environment variable that is used to specify the name for the
TCP/IP stack, which is also known as a started task. TCPIPMCH is equivalent to the
TCPIPJOBNAME and TCIPPUSERID configuration keywords that are used in the IBM
TCPIP.DATA file.

If a value is not specified for TCPIPMCH, the SAS TCP/IP library will use the first
TCP/IP stack name that is returned by a call to the UNIX System Service, pfsctl(),
which might not be the appropriate TCP/IP stack. For information, see “TCPIPMCH” on
page 55.

The Services File

Services File: Overview
The SERVICES file defines port resources that are used when TCP/IP is used to connect
client/server sessions. Examples of configured port services include the Telnet port,
spawner ports, MP CONNECT pipes, and SAS/SHARE servers. For more information,
see “Configuring the Services File” on page 99.

Configuring SAS Services
A service for each SAS server session (SAS/CONNECT or SAS/SHARE) must be
defined in the SERVICES file on each computer that a SAS client session runs on.

Note: Some TCP/IP stacks can restrict the range of ports that can be used. For details,
see “TCP/IP Stack Configuration Files” on page 52.

The Services File Search Order
The z/OS Name Resolver searches for the SERVICES file, using this order:

1. value of the ETC_SERVICES environment variable

2. /etc/services

58 Chapter 4 • z/OS: TCP/IP Access Method

3. tso-prefix.ETC.SERVICES under TSO or user-ID.ETC.SERVICES under batch
execution

4. ETC.SERVICES

5. TCPIP.ETC.SERVICES

6. tcpip-prefix.ETC.SERVICES

Documentation
The IBM documentation is also available from http: publib.boulder.ibm.com.

References
Albitz, Paul and Cricket Liu. 2001. DNS and BIND. 4th Ed. Cambridge, MA: O'Reilly

Media.

IBM 2010. z/OS V1R11.0 Communications Server IP Configuration Guide. 17th ed.
RTP, NC: IBM.

IBM 2007. z/OS V1R9.0 UNIX System Services Planning (GA22-7800-12). RTP, NC:
IBM.

System Configuration for TCP/IP 59

60 Chapter 4 • z/OS: TCP/IP Access Method

Chapter 5

z/OS: XMS Access Method

Prerequisites for Using XMS under z/OS . 61
Task List . 61
Software Requirements . 62
Installation of the SAS SVC Routine . 62
Defining Resources for the XMS Communications Access Method 62
SAS/CONNECT and SAS/SHARE Network Security . 63
SAS/SHARE SUBSYSID= Option . 63

SAS/CONNECT Client Tasks . 63
Task List . 63
Specifying XMS as the Communications Access Method . 63
Encrypting Data in Client/Server Transfers . 64
Signing On to the Same Multiprocessor Computer . 64

SAS/CONNECT Server Tasks . 65

SAS/SHARE Client Tasks . 65
Task List . 65
Specifying XMS as the Communications Access Method . 66
Specifying the Server . 66
SAS/SHARE Client Example . 67

SAS/SHARE Server Tasks . 67
Task List . 67
Installing the SAS SVC Routine . 68
Specifying XMS as the Communications Access Method . 68
Specifying a Server Name . 69
SAS/SHARE Server Example . 69

System Configuration for the XMS Access Method . 69
Installation Tasks . 69
Steps for Installing the Load Module . 69
Defining an Anchor Point . 70

Prerequisites for Using XMS under z/OS

Task List
• Verify that software requirements are met.

61

• Verify that the SAS SVC routine has been installed.

• Define resources for the XMS access method.

• If using network security, set the appropriate SAS system options

• Set the SAS/SHARE SUBSYSID= option, if applicable.

Software Requirements
Ensure that the following requirements are met:

• Base SAS and either SAS/CONNECT or SAS/SHARE are installed on both the
client and the server.

• XMS has been installed on both the client and the server.

Installation of the SAS SVC Routine
The SAS SVC control program routine is an interface between the z/OS operating
environment and a specific request, such as "third-party checking." This facility provides
verification in the form of calls for authentication of user IDs and passwords and of
library authority.

1. Install the SAS SVC routine, if necessary.

If you have already installed the SAS SVC routine for SAS 9.4 of SAS software, do
not repeat the step here. If you need to perform the installation, see the Configuration
Guide for SAS 9.4 Foundation for z/OS (PDF) on the SAS Install Center web page.

Because SAS SVC in SAS 9.4 is backward compatible, it replaces the SAS SVC
routines from previous releases. You can continue using previous releases of Base
SAS, SAS/CONNECT, and SAS/SHARE with the SAS 9.4 SAS SVC that is
installed on your system.

2. Verify the SVC routine SAS system options.

Verify that the SAS system options for the SVC routine accurately reflect how the
SAS SVC is installed. The SAS system option SVC0SVC should be set to the
number at which the SAS SVC is installed (for example, 251 or 109). If the SAS
SVC is installed at 109 as an ESR SVC, the SAS system option SVC0R15 should be
set to the ESR code (for example, 4).

3. Verify installation on all systems, as needed.

If you have more than one z/OS system, verify that the SAS SVC is installed on all
the systems that will be running SAS/CONNECT or SAS/SHARE at your site.

Defining Resources for the XMS Communications Access Method
Network Administrator

Before you can use SAS/CONNECT and SAS/SHARE with the XMS
communications access method, you must first define XMS resources for the z/OS
operating environment. For the tasks to define resources for SAS/CONNECT and
SAS/SHARE, see “System Configuration for the XMS Access Method” on page
69.

62 Chapter 5 • z/OS: XMS Access Method

http://support.sas.com/documentation/installcenter/index.html

SAS/CONNECT and SAS/SHARE Network Security
“Installing the SAS SVC Routine” on page 68. Encryption is the process of
transforming plaintext into a less readable form (called ciphertext) by using a
mathematical process. The ciphertext is translated back to plaintext for anyone who can
supply the appropriate key, which is necessary for decrypting (or unlocking) the
ciphertext.

For complete details about using network security, see the SAS/CONNECT User's Guide.
After network security is set up in your environment, you set a SAS encryption option
that is appropriate to the network security service and to the requirements of the client or
the server session.

SAS/SHARE SUBSYSID= Option
SUBSYSID=anchor-point

stands for subsystem identifier, which specifies the cross-memory anchor point that
identifies the inactive z/OS subsystem. The subsystem is defined by your network
administrator during the XMS access method configuration. For details, see “System
Configuration for the XMS Access Method” on page 69.

Defining an inactive subsystem causes a z/OS computer to create a subsystem
communications vector table (SSCVT) at IPL time. The SSCVT chain is in common
memory and is easily accessible to the XMS access method routines. The
SSCTSUSE field of the SSCVT is available to these routines and is used as the
anchor point for their control blocks.

The default value for SUBSYSID= is SAS0. You must set this option to enable
clients to access the server with the XMS communications access method. Set this
option at both the SAS/SHARE server and at each client that will access the server.

SAS/CONNECT Client Tasks

Task List
1. Specify XMS as the communications access method.

2. Specify encryption of client/server data transfers (optional).

3. Sign on to the same symmetric multiprocessor (SMP) computer.

Specifying XMS as the Communications Access Method
XMS is the default communications access method to sign on to one or more sessions on
the same multiprocessor computer that runs the z/OS operating environment. Therefore,
you do not have to explicitly specify the default.

Note: TCP/IP is the default communications access method for all other operating
environments.

If you choose to explicitly specify XMS, you can use the COMAMID= option in an
OPTIONS statement. For example:

SAS/CONNECT Client Tasks 63

OPTIONS COMAMID=access-method-ID;

COMAMID is an acronym for Communications Access Method Identification. access-
method-ID identifies the method used by the client to communicate with the server.
XMS, which is an abbreviation for Cross Memory Services, is an example of an access-
method-ID. Alternatively, you can set this option in a SAS configuration file or in a SAS
start-up command.

Example:

options comamid=xms;

Encrypting Data in Client/Server Transfers
If network security is available and is configured at the client, you can specify SAS
options to encrypt all data that is transferred between a client and a server. In the
following example, the NETENCRYPTALGORITHM= option specifies the DES
encryption algorithm.

options netencryptalgorithm=des;

For complete details about network security options, see the SAS/CONNECT User's
Guide.

Signing On to the Same Multiprocessor Computer

Tasks for Signing On to an SMP Computer
If your client computer is equipped with SMP, and if you want to run one or more server
sessions on your computer, perform these steps:

1. Specify the server session.

2. Specify the SASCMD command to start SAS.

3. Sign on to the server session.

Specifying the Server Session
You can specify the server session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

You can also specify it in the SIGNON statement or command:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the name
that you assign to the server session on the multiprocessor computer.

Note: PROCESS=, REMOTE=, CREMOTE=, and CONNECTREMOTE= can be used
interchangeably. For details, see “CONNECTREMOTE= System Option” in
SAS/CONNECT User's Guide.

For details about SIGNON, see SIGNON statement.

Starting SAS Using the SASCMD Option
Use the SASCMD option to specify the SAS command and any additional options that
you want to use to start SAS in the server session on the same multiprocessor computer.

The SASCMD option can be specified in an OPTIONS statement:

64 Chapter 5 • z/OS: XMS Access Method

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n1t8g8sxigfj84n18tzcaamcij6j
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=n1t8g8sxigfj84n18tzcaamcij6j
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0brzkmxqg483hn163ek01h4mf6e

OPTIONS SASCMD=":SAS-system-options" | "!SASCMD SAS-system-options" ;

You can also specify it directly in the SIGNON statement or command:

SIGNON name SASCMD=":SAS-system-options" | "!SASCMD SAS-system-options" ;

Example:

options sascmd=":memsize=64M nonumber";

The -DMR option is automatically appended to the command. If !SASCMD is specified,
SAS/CONNECT starts SAS on the server by using the same command that was used to
start SAS for the current (parent) session.

Note: In order to execute additional commands before starting SAS, you might write a
script that contains the SAS start-up commands that are appropriate for the operating
environment. Specify this script as the value in the SASCMD= option.

For details, see “SASCMD= System Option” in SAS/CONNECT User's Guide and the
SIGNON statement.

Signing On to the Server Session
Example 1:

In the following example, XMS is the access method, SAS1 is the name of the server
session, and the MEMSIZE= option is used when starting SAS on a multiprocessor
computer.

options comamid=xms;
signon sas1 sascmd=":memsize=64M";

Example 2:

In the following example, OPTIONS statements set the values for the COMAMID= , the
SASCMD=, and the PROCESS= options. The SASCMD= option is a non-blank value
that causes the same CLIST that was used to start the client session to be used to start the
server session. The PROCESS= option identifies the server session on the same
multiprocessor computer. Because the SASCMD= and the PROCESS= options are
defined, only a simple SIGNON statement is needed.

options comamid= xms sascmd="abc";options process=sas1;signon;

SAS/CONNECT Server Tasks
There are no SAS/CONNECT server tasks.

SAS/SHARE Client Tasks

Task List
1. Specify XMS as the communications access method.

2. Specify a server name.

SAS/SHARE Client Tasks 65

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0rfjby2hywt4cn1nt38unscvui8
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0brzkmxqg483hn163ek01h4mf6e

Specifying XMS as the Communications Access Method
XMS is the default communications access method in the z/OS operating environment.
You can omit specifying the access method in a COMAMID statement and the XMS
access method is assumed, by default.

If you choose to specify XMS to connect to a server, you can use the COMAMID=
option in an OPTIONS statement.

options comamid=xms;

The COMAMID= option specifies the communications access method. XMS is an
abbreviation for the Cross Memory Services access method.

Alternatively, you can specify the COMAMID= option in a SAS configuration file or in
a SAS start-up command.

The COMAUX1= option specifies an auxiliary communications access method and can
be used only in a SAS configuration file or in a SAS start-up command. If the first
method that you specify in the COMAMID= option fails to access the server, the
auxiliary access method is used. You can specify one auxiliary access method.

Here is the syntax for the COMAUX1= option:

COMAUX1=alternate-method

Example:

comamid=xms
comaux1=tcp

Specifying the Server
To use the XMS access method, a client and a server must run on the same computer (or
node) that runs the z/OS operating environment.

In most cases, when using the XMS access method, you can specify the server using
only a server ID, because the client and server sessions run on the same node. However,
if you specify XMS as the primary access method and TCP as the auxiliary access
method in the client session, you must use a two-level server name to accommodate the
server-naming requirements of TCP.

Here is the format for the two-level node name:

SERVER=node.server-ID

The server-ID can be a maximum of eight characters in length, and it must be identical
to the service name that is specified in the SERVICES file. For details, see “Configuring
the Services File” on page 99. For details about creating valid SAS names, see “Rules
for Words and Names in the SAS Language” in SAS Language Reference: Concepts.

Example 1:

options comamid=xms comaux1=tcp;
libname mylib '.' server=srvnode.share1;

In this example, if a client/server connection succeeds using the XMS access method, the
node part of the server ID is ignored and only the server ID is used. However, if the
client/server connection fails using XMS, but succeeds using TCP, the two-level server
name is required in order for the SERVER procedure statement to succeed. For details
about the COMAUX1= option, see SAS/SHARE User's Guide. For details about the

66 Chapter 5 • z/OS: XMS Access Method

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0m7v8i6xka1r1n1lwb6efyewu10
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0m7v8i6xka1r1n1lwb6efyewu10

LIBNAME statement and the OPERATE procedure, see “LIBNAME Statement” in
SAS/SHARE User's Guide and “OPERATE Procedure” in SAS/SHARE User's Guide.

Example 2:

options comamid=xms comaux1=tcp;
libname mylib '.' server=srvnode._ _5000;

In this example, a port number rather than a server ID is specified. Two consecutive
underscores (no spaces) precede the port number.

Note: A port number is valid for the TCP access method, but not for the XMS access
method. If XMS is used, a port specification results in a failure. If TCP is used, a
port specification is valid.

If the node name is not a valid SAS name, the node name can be assigned to a SAS
macro variable. The macro variable is substituted for the node name in the two-level
server name.

The access method evaluates the node name, in this order of priority:

1. SAS macro variable

2. acceptable node name

Example 3:

%let srvnode=mktserve.acme.com;
libname sales server=srvnode.server1;

This example shows the assignment of only the node name to a macro variable.

Note: Do not use an ampersand (&) in a two-level server name. An ampersand causes a
macro variable to be resolved by the SAS parser before syntactic evaluation of the
SERVER= option.

Example 4:

%let srvnode=mktserver.acme.com 5000;
libname sales server=srvnode;

This example shows the assignment of the node name and the server ID to a macro
variable.

SAS/SHARE Client Example
The following example shows the statements that you specify in a z/OS client
configuration file to access a server by using the XMS access method. The XMS access
method is assumed by default. The LIBNAME statement specifies the SAS library that
is accessed through the server SHARE1.

libname sasdata 'edc.prog2.sasdata' server=share1;

SAS/SHARE Server Tasks

Task List
1. Ensure that the SAS SVC routine has been installed.

SAS/SHARE Server Tasks 67

2. Specify XMS as the communications access method.

3. Specify a server name.

Installing the SAS SVC Routine
The SAS SVC control program routine is an interface between the z/OS operating
environment and a specific request, such as "third-party checking." This facility provides
verification by requiring authentication of both the user ID and password and of library
authority.

1. Install the SAS SVC routine, if necessary.

If you have already installed the SAS SVC routine for SAS 6.09, do not repeat the
step now.

If you need to perform the installation, see the Configuration Guide for SAS 9.3
Foundation for z/OS.

Because SAS SVC in SAS 6.09 is backward compatible, it replaces the SAS SVC
routines from previous releases. You can continue using previous releases of SAS
and SAS/SHARE with the SAS 6.09 SAS SVC that is installed on your computer.

2. Verify the SAS options for the SVC routine.

You must verify that SAS for the SVC routine accurately reflects how the SAS SVC
is installed. The SAS option SVC0SVC and SAS SVC should be set to the same
number. If the SAS SVC is installed at 109 as an ESR SVC, the SAS option
SVC0R15 should be set to the ESR code (for example, 4).

3. Verify installation on all CPUs, as needed.

If you have more than one CPU, verify that the SAS SVC routine is installed on the
computers that will run SAS/SHARE at your site.

Specifying XMS as the Communications Access Method
XMS is the default communications access method in the z/OS operating environment.
You can omit specifying the access method in a COMAMID= option and the XMS
access method is assumed, by default.

If you choose to specify XMS to connect to a server, you can use the COMAMID=
option in an OPTIONS statement. For example:

options comamid=xms;

Alternatively, you can specify the COMAMID= option in a SAS configuration file or in
a SAS start-up command.

The COMAUX1= option specifies an auxiliary communications access method and can
be specified only in a SAS configuration file or in a SAS start-up command. If the first
method that you specify in the COMAMID= option fails to access the server, the
auxiliary access method is used. You can specify one auxiliary access method.

The syntax for the COMAUX1= option is:

COMAUX1=alternate-method

Example:

comamid=xms

68 Chapter 5 • z/OS: XMS Access Method

comaux1=tcp

Specifying a Server Name
To use the XMS access method, a server and a client must run on the same computer
under the same z/OS operating environment.

Specify the server name in the PROC SERVER statement using this syntax:

SERVER=server-ID

server-ID is the name that you assign to the server. The name can be a maximum of eight
characters in length.

For details about creating valid SAS names, see SAS Language Reference: Concepts. For
details about PROC SERVER, see “SERVER Procedure” in SAS/SHARE User's Guide.

SAS/SHARE Server Example
The following example shows the statements that you specify to start the server. A two-
level server name, such as RMTNODE.SHARE1, is used in the z/OS operating
environment. The XMS access method is assumed by default.

proc server id=rmtnode.share1;
run;

System Configuration for the XMS Access
Method

Installation Tasks
1. Install the SASVXMS load module. See “Steps for Installing the Load Module” on

page 69.

Note: The version of SASVXMS that is distributed with each maintenance release
of SAS/SHARE can be used only with that maintenance release.

2. Define an anchor point. See “Defining an Anchor Point” on page 70.

Steps for Installing the Load Module
Note: This task is required.

To use the cross-memory access method for communication between a SAS/CONNECT
server and user, you must copy the module SASVXMS0 from the SAS load library data
set into an authorized library. You must then rename this module SASVXMS (removing
the 0). It is very important that you perform these two tasks in that order.

When SAS/CONNECT software loads the module SASVXMS, it must find that module
to be marked authorized, re-entrant, and reusable, and to have been loaded from an
authorized library. The version of SASVXMS that was distributed with Version 6 of
SAS/SHARE software can be used ONLY with Version 6.

To install the SASVXMS0 load module, perform these tasks:

System Configuration for the XMS Access Method 69

1. Copy SASVXMS0 into an authorized link list library.

In a production environment, SAS recommends that you copy the SASVXMS0
module into an authorized link list library. Alternatively, you can install this module
into the link pack area. You can use any standard utility program to copy the
SASVXMS0 module from your &prefix.LIBRARY data set to your authorized
library.

Note: A user abend 984 occurs if the SASVXMS module is not installed in an
authorized library or the library is in a STEPLIB concatenation where one of the
libraries is not authorized

2. Rename SASVXMS0.

After copying SASVXMS0 into the appropriate library, you must rename it. You can
use any standard utility to rename the module.

Rename SASVXMS0 to SASVXMS. Specify the SAS 9.4 Foundation option
COMAMID=XMS.

Note: The XMS access method does not support communication between a Version
6 SAS session and a SAS/SHARE 9.4 server, nor does it support communication
between a SAS 9.4 Foundation session and a Version 6 SAS/SHARE server. If
you want to run SAS/SHARE 9.4 and Version 6 SAS/SHARE software
concurrently, you MUST rename the Version 6 SASVXMS0 module to
SASVXMSn and set COMAMID=XMSn in Version 6.

Defining an Anchor Point

Anchor Point: Definition
1. Define an inactive z/OS subsystem. The anchor point is specified by defining an

inactive z/OS subsystem. Defining an inactive subsystem causes z/OS to create a
subsystem communications vector table (SSCVT) at IPL time. The SSCVT chain is
in common memory and easily accessible to the cross-memory access method
routines. The SSCTSUSE field of the SSCVT is available to these routines and is
used as the anchor point for their control blocks.

Note that, although you define a subsystem to z/OS, it will never be considered
active and will provide no system services because the SSCTSSVT field of the
SSCVT will never be nonzero. You can define the inactive subsystem by adding an
entry to any of the following:

• the IEFJSSNT member of SYS1.LINKLIB

• an IEFSSNxx member of SYS1.PARMLIB

Consult the z/OS system initialization and tuning documentation for the details of
each alternative. Regardless of which method you choose, you must include the
subsystem name and you must not specify an initialization routine name. Use the
name SAS0 unless it conflicts with standards or conventions at your site.

2. Set the SAS 9.4 Foundation option SUBSYSID= to specify the inactive subsystem
that you defined. The name you specify for the inactive subsystem defined as the
anchor point for the cross-memory access method must also be specified as the value
of the SAS 9.4 Foundation option SUBSYSID=. This option is specified, typically in
a SAS 9.4 Foundation configuration file, by the SAS/SHARE software consultant.

70 Chapter 5 • z/OS: XMS Access Method

Part 3

Spawners and Services File

Chapter 6
Introduction to the SAS/CONNECT Spawner . 73

Chapter 7
Managing the SAS/CONNECT Spawner . 83

Chapter 8
TCP/IP SERVICES File . 99

71

72

Chapter 6

Introduction to the
SAS/CONNECT Spawner

Spawner Definition . 73

Benefits of Using a Spawner to Sign On to a Server . 74
Protects Client's User ID and Password . 74
Controls Client Access to the Server in a Firewall Configuration 74
Eliminates the Need for a Sign-On Script . 74

Using SAS Management Console to Administer the SAS/CONNECT Spawner . . 74
Overview . 74
Using the Server Manager Plug-in to Access the SAS/CONNECT Spawner 75

Using PROC IOMOPERATE to Configure the SAS/CONNECT Spawner 78

Operating Environment Support for Spawners . 78

Client Connection Using a Spawner . 78

Spawner Connection Examples . 79
List of Examples . 79
Scripted Sign-on to a UNIX Spawner . 79
Scriptless Sign-on to a Windows Spawner That Runs as a Service 80
Encrypted Sign-on to a z/OS Spawner . 81

Spawner Definition
A SAS spawner is a program that starts a SAS session on the server on behalf of a
connecting client. The SAS/CONNECT spawner runs on the SAS/CONNECT server,
listens for requests, and opens a connection to the server on behalf of the client. Signing
on to the SAS/CONNECT spawner is an alternative to signing on to a server by using a
Telnet daemon. The SAS/CONNECT spawner can listen for requests on multiple ports
that are defined in metadata and on a single port that is defined on the spawner
invocation command.

Spawner invocation options enable you to start and manage the SAS/CONNECT
spawner. These invocation options consist of options specific to the SAS/CONNECT
spawner as well as Base SAS system options. For more information about these options,
see “General Spawner Options” on page 88.

73

Benefits of Using a Spawner to Sign On to a
Server

Protects Client's User ID and Password
By default, the spawner encrypts the client's user ID and password during sign-on.
Without encryption, the user ID and password would pass through the network as clear,
readable text, which presents a security risk.

To encrypt all data that flows through the network after sign-on (such as data being
processed by remote submits and data transfers), you must use a security service. For
details about security services that are supported in SAS 9.4, see Encryption in SAS.

Controls Client Access to the Server in a Firewall Configuration
A spawner can be used to control the number of ports that clients outside a firewall can
use to access a server that is inside the firewall. Controlled client access facilitates a
computer's security and economizes resources. For details, see Chapter 9, “Configuring
SAS/CONNECT for Use with a Firewall,” on page 103.

Eliminates the Need for a Sign-On Script
The primary purpose of a sign-on script is to do the following:

• send the user ID and password to the server

• supply the SAS command for starting the SAS session on the server

Because the user ID and password can be directly specified as options in the SIGNON
statement (or command), and the spawner controls the start-up of a SAS session on the
server, the need for a sign-on script is eliminated.

Using SAS Management Console to Administer
the SAS/CONNECT Spawner

Overview
SAS Management Console is the primary administrative user interface for administering
SAS servers in the SAS Intelligence Platform. SAS Management Console includes a
variety of plug-ins that are used to create and maintain various resources available in the
SAS Intelligence Platform. The Server Manager plug-in is used to manage the
SAS/CONNECT spawner and SAS/CONNECT server.

The next few sections offer a brief introduction to the spawner management interface in
SAS Management Console. Complete documentation for SAS Management Console and
the Server Manager plug-in can be found in the following SAS Intelligence Platform
documents:

• SAS Intelligence Platform: Overview

74 Chapter 6 • Introduction to the SAS/CONNECT Spawner

• SAS Intelligence Platform: System Administration Guide

• SAS Management Console: Guide to Users and Permissions

• SAS Intelligence Platform: Application Server Administration Guide

These documents can be found on the SAS Intelligence Platform Product Documentation
page at http://support.sas.com/documentation/onlinedoc/intellplatform/.

Using the Server Manager Plug-in to Access the SAS/CONNECT
Spawner

The SAS/CONNECT spawner is located in the SAS Management Console - Server
Manager plug-in. You can access the SAS/CONNECT spawner by expanding the Server
Manager node and selecting the SAS/CONNECT Spawner, as shown in Figure 6.1.

Figure 6.1 SAS/CONNECT Spawner in the Server Manager Plug-in of the SAS Management Console

You can use SAS Management Console to perform the following spawner operations, as
shown in Figure 6.2 on page 76.

• add a connection to the spawner

• connect to or disconnect from the spawner

• stop, pause, resume, or quiesce the spawner

• reset the counters

• refresh the spawner

• clear the spawner credentials cache

• delete the spawner

• view the properties of the spawner

Until you connect to the spawner, most of the tasks listed in the pop-up menu (for
example, stop, pause, and quiesce the spawner) are disabled. After you have connected,

Using SAS Management Console to Administer the SAS/CONNECT Spawner 75

http://support.sas.com/documentation/onlinedoc/intellplatform/index.html

these tasks are enabled. Figure 6.2 on page 76 shows these tasks enabled in the pop-up
menu after connecting to the spawner.

Figure 6.2 Tasks Available for Operating the SAS/CONNECT Spawner, Once Connected

Once you are connected to the spawner, tabs that contain information about the spawner
become active in the right pane of the Server Manager window. Many of the fields in
these tabs not only display information about the spawner, but they also enable you to
update and configure spawner and server settings.

• Connections Tab — displays a list of the active, inactive, or terminated sessions

• Clients Tab — displays a list of clients that are or have been connected to the
currently selected spawner

• Spawned Server Activity Tab — displays graphs showing the spawned server
activity

• Spawned Servers Tab — displays a list of spawned servers and the user name and
host associated with the spawned server

• Options Tab — displays the options and properties associated with the spawner

• Loggers and Log Tabs — enables you to view and update information about the
loggers, log events, and associated logging levels

76 Chapter 6 • Introduction to the SAS/CONNECT Spawner

Figure 6.3 Tabs for Monitoring the SAS/CONNECT Spawner

In addition, when you right-click on the spawner in the Connections Tab in the right
pane of the Server Manager Console, Spawned Servers Tab, the Connection Properties
window is displayed, as shown in Figure 6.4. This window contains a series of tabs that
enable you to view and update authentication properties, the spawner name, the spawner
description, extended attributes, and authorization properties. The Options Tab enables
you to change the operator port and specify advanced encryption options, such as
authentication type and authentication domain.

Figure 6.4 SAS/CONNECT Spawner: Server Manager Connection Properties Tabs

For information about using SAS/CONNECT spawner invocation options, see “Options
for Starting and Managing the SAS/CONNECT Spawner” on page 88.

Using SAS Management Console to Administer the SAS/CONNECT Spawner 77

Using PROC IOMOPERATE to Configure the
SAS/CONNECT Spawner

PROC IOMOPERATE, which administers SAS servers that support the SAS IOM
infrastructure, supports the management of the SAS/CONNECT Spawner. Here are a
few of the PROC IOMOPERATE statements that are available for managing the
SAS/CONNECT spawner:

• LIST DEFINED SERVERS

• LIST SPAWNED SERVERS

• REFRESH CONFIG

• STOP SPAWNED

The syntax for connecting to the SAS/CONNECT spawner using PROC IOMOPERATE
is as follows:

PROC IOMOPERATE;
CONNECT <connect-options>;
<optional-argument(s)>;

QUIT;

For documentation and syntax for the IOMOPERATE procedure, see SAS Intelligence
Platform: Application Server Administration Guide on the SAS Intelligence Platform
Product Documentation page.

Operating Environment Support for Spawners
SAS 9.4 supports TCP/IP spawners under these operating environments:

• “SAS/CONNECT Spawner in UNIX” on page 84

• “SAS/CONNECT Spawner in Windows” on page 85

• “SAS/CONNECT Spawner in z/OS ” on page 86

For a list of all available spawner invocation options, see “Options for Starting and
Managing the SAS/CONNECT Spawner” on page 88.

Client Connection Using a Spawner
• The spawner service can be configured in the client's SERVICES file, but this is not

a requirement. The spawner can use a port number or have the port information
(service or port) defined in metadata. You can explicitly specify the port on the
command line and in the SIGNON statement. For information about configuring the
SERVICES file, see “Configuring the Services File” on page 99.

• If you use a script when connecting to a spawner, script file processing passes the
user ID and password to the server. However, if you do not use a script file, you can
deliver the user ID and password to the server by specifying values for the USERID=

78 Chapter 6 • Introduction to the SAS/CONNECT Spawner

http://support.sas.com/documentation/onlinedoc/intellplatform/index.html

and PASSWORD= options in the SIGNON statement. Windows users can use SSPI
if it is enabled. See “SSPI” on page 31 for information about SSPI.

• If you do not use a script file, use the following syntax to connect to the spawner:

options remote=spawner-ID;
signon user=user-ID password=password;

In the UNIX and Windows environments, the TCP/IP access method is used by
default. The spawner connects the client to the spawner named SPAWN that runs on
the UNIX node RMTHOST. If there is no script file, the user ID and password are
specified as options in the SIGNON statement. The value _PROMPT_ for
PASSWORD causes SAS to prompt for a password at sign-on. The SIGNON
statement makes the connection and starts a SAS session on the server.

Spawner Connection Examples

List of Examples
The following examples show how to manually configure the spawner. Most spawners
now are deployed using the SAS Deployment Wizard and manual configuration is not
required. Information used by the spawner is contained in metadata.

• “Scripted Sign-on to a UNIX Spawner” on page 79

• “Scriptless Sign-on to a Windows Spawner That Runs as a Service” on page 80

• “Encrypted Sign-on to a z/OS Spawner” on page 81

Scripted Sign-on to a UNIX Spawner

Server
From the UNIX node that the server runs on, specify the following command to start the
spawner.

cntspawn -service spawn1 -mgmtport 5030

The -MGMTPORT option specifies the operator port to be used for administrative
purposes. The -SERVICE option specifies the name of the service, spawn1, that listens
for incoming server requests. The -service option can specify a defined TCP/IP service
or a numeric port value. What is used when the spawner is started determines what will
be used by the client. In the following example the-SERVICE option is used to specify
the numeric port value of the service during spawner start-up:

cntspawn -service 5020 -mgmtport 5030

A user can then sign on using the same port-number in the SIGNON statement:

filename rlink '!sasroot\connect\saslink\tcpunx.scr';
signon rmthost.5020;

The -SERVICE option values used to start the spawner determine what will be used by
the client to sign on.

As in the first example, the -MGMTPORT option specifies the operator port to be used
for administrative purposes.

Spawner Connection Examples 79

Client
At a Windows client, the statements shown in Example Code 6.1 on page 80 are
entered to sign on to the UNIX node RMTHOST by using the TCP/IP access method. A
script file that is assigned to the RLINK fileref prompts the user at the client for the user
ID and the password that are needed to log on to the UNIX server.

The server name (in this example, RMTHOST) must be either the name of the UNIX
node or a macro variable that contains the IP address or the name of the UNIX node that
runs the spawner.

For more information, see “About TCP/IP Internet Protocol (IP) Addressing” on page 4.
The SIGNON statement contains the ID of the server session, which is specified as a
two-level name: the node name and the service name. A two-level name is needed when
signing on to a UNIX node that runs a spawner.

Example Code 6.1 Scripted Sign-on to a UNIX Spawner: Client

options comamid=tcp;
filename rlink '!sasroot\connect\saslink\tcpunx.scr';
signon rmthost.spawner;

Scriptless Sign-on to a Windows Spawner That Runs as a Service

Server
The following command installs the spawner service on a Windows computer:

cntspawn -install

For this example, note the following:

• The spawner is being installed as a Windows service, but since the -SERVICE option
is not used to specify the port number or name, the spawner will listen on the default
Telnet port (23) and be named SAS Connect Spawner by default.

• Because a sign-on script is not being used and the -SASCMD= option is not
specified, the spawner will look for the SAS executable in the SAS installation
directory.

• Since the -MGMTPORT is not specified, the operator port will default to 7541.

After the service is installed, it must be started before it can be used. You can start the
service using either of the following:

• the ConnectSpawner.bat script file command

• the NET START command

• the services applet

• a reboot of the computer

Client
From any client, the following statements connect to the spawner program by using the
TCP/IP access method. The SIGNON statement specifies the ID of the server session
REMNODE. This ID must be the name of the Windows computer or a macro variable
that contains the IP address of the Windows computer that the spawner runs on. The user
ID and password to the server are specified as options in the SIGNON statement. The
value _PROMPT_ in the SIGNON statement causes SAS to prompt for the password.

options comamid=tcp;
signon remnode user=joeblack password=_prompt_;

80 Chapter 6 • Introduction to the SAS/CONNECT Spawner

For Windows users, if SSPI has been enabled, then you do not need to specify the user
ID and password in the SIGNON statement. See “SSPI” on page 31 for more
information about SSPI.

Note: The password is displayed as Xs in the SAS log.

Encrypted Sign-on to a z/OS Spawner

Server
The following z/OS command starts the z/OS server.

START SPAWNER

This command activates the started task procedure. SPAWNER is the name of the
service that is defined in the started task procedure.

Here is an example:

//SPAWNER PROC PROG=CNTSPAWN,
// SERVICE='spawner',
// MGMTPORT=7541,
// PARMFILE='SAS.SPAWNER.PARMS'
//*
//SPAWNER EXEC PGM&PROG,REGION=40M,
// PARM='-service &SERVICE -MGMTPORT &MGMTPORT=<//DDN:PARMS'
//*
//STEPLIB DD DISP=SHR
// DSN=<customer.high.level.pfx>.LIBRARY
// DD DISP=SHR,
// DSN=<customer.high.level.pfx>.LIBE
// PARMS DD DISP=SHR,DSN=&PARMFILE,FREE=CLOSE
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

PARMFILE contains the options that start a spawner. For example:

-netencryptalgorithm rc2
-sascmd "/usr/local/bin/spawnsas.sh" -nosasuser

The -NETENCRYPTALGORITHM option specifies that the spawner is started using the
RC2 encryption algorithm. The -SASCMD option specifies a UNIX System Services
shell script that starts SAS. This command assumes that a shell script named
spawnsas.sh is installed in /usr/local/bin. The command specifies the SAS
CLIST option -NOSASUSER, which specifies that a user's SASUSER file should not be
allocated. -NOSASUSER enables a client to sign on to a server multiple times using the
same user ID and password.

The -MGMTPORT option specifies port 7451 as the port for operator connections.

Client
In the following example, the client specifies a user ID and password encryption by
setting the RC2 encryption algorithm. In this example, the two-level name, which
represents the node name and the service name, specifies the ID of the server session in
the SIGNON statement. A two-level name is needed when signing on to a z/OS
operating environment that runs a spawner. You must supply a valid user ID and
password as values for the USER= and PASSWORD= options in the SIGNON
statement.

Spawner Connection Examples 81

options netencryptalgorithm=rc2;
signon rmthost.spawner user=joeblack password=born2run;

82 Chapter 6 • Introduction to the SAS/CONNECT Spawner

Chapter 7

Managing the SAS/CONNECT
Spawner

Managing the SAS/CONNECT Spawner . 83
Overview . 83

SAS/CONNECT Spawner in UNIX . 84
Location of the Spawner Executable in UNIX . 84
Managing SAS/CONNECT Spawner in UNIX . 84

SAS/CONNECT Spawner in Windows . 85
Location of the Spawner Executable in Windows . 85
Managing the SAS/CONNECT Spawner in Windows . 85

SAS/CONNECT Spawner in z/OS . 86
Setting Up the SAS/CONNECT Spawner in z/OS . 86
Location of the Spawner in z/OS . 87
Spawner User ID on z/OS . 87
Starting the Spawner in z/OS . 87
Starting SAS Using a Shell Script . 87
Ending the Spawner on z/OS . 88

Options for Starting and Managing the SAS/CONNECT Spawner 88
Introduction . 88
General Spawner Options . 88
Windows Options . 93
UNIX and z/OS Options . 95
Sample SAS/CONNECT Spawner logconfig.xml File . 95

Managing the SAS/CONNECT Spawner

Overview
Spawner invocation options consist of options that are specific to the spawner and
several SAS system options that you can use to run and configure the spawner from the
command line.

The SAS/CONNECT spawner and the command to start it have been unified into a
single executable program with one set of options for all platforms (UNIX, Windows,
and z/OS). These options can be logically grouped into the following categories:

• General spawner options

• Windows service options

83

• Open systems-specific options

The syntax for starting the SAS/CONNECT spawner is as follows:

CNTSPAWN <options>

The following sections provide platform-specific information for starting and managing
the SAS/CONNECT spawner on a UNIX, Windows, and z/OS server.

SAS/CONNECT Spawner in UNIX

Location of the Spawner Executable in UNIX
The SAS/CONNECT spawner executable file, cntspawn.exe, is located in the
directory in which SAS is installed at your site or on your computer. Throughout this
document, this folder is referred to as the SAS-installation-directory.

In UNIX the spawner executable is installed by default in the following location:

 SAS-installation-directory/utilities/bin/cntspawn.exe

Managing SAS/CONNECT Spawner in UNIX

Spawner Security
If connecting to a UNIX server using a spawner, SAS/CONNECT uses the default
authentication mechanism to verify the user ID and to verify that the password is correct
for the specified user ID.

Starting the Spawner in UNIX
To start the SAS/CONNECT spawner in UNIX, specify the spawner invocation
command as shown here:

 cntspawn <options>

Example:

 cntspawn -mgmtport 7555 -sascmd "/u/username/mystartup"

For a list of other available spawner invocation options, see “Options for Starting and
Managing the SAS/CONNECT Spawner” on page 88.

If you are running the SAS/CONNECT spawner as a TCP/IP service and have
configured the spawner service in the TCP/IP services file, then you can start the
spawner using the -SERVICE option as shown in the following example:

 cntspawn -service service-name -<options>

Example:

 cntspawn -service mySpawner -mgmtport 7555 -sascmd "/u/username/mystartup"

For information about configuring the spawner service, see “Configuring the UNIX
Spawner Service” on page 18.

Stopping the Spawner in UNIX
To end the spawner, type CTRL-C to kill the process.

84 Chapter 7 • Managing the SAS/CONNECT Spawner

SAS/CONNECT Spawner in Windows

Location of the Spawner Executable in Windows
The SAS/CONNECT spawner executable file, cntspawn.exe, is located in the
directory in which SAS is installed at your site or on your computer. Throughout this
document, this folder is referred to as the SAS-installation-directory.

In Windows the spawner executable is installed by default in the following location:

 SAS-installation-directory\SASFoundation\9.4\cntspawn.exe

Here is an example of the spawner location in a typical SAS Foundation installation on
Windows:

 C:\Program Files\SASHome\SASFoundation\9.4\cntspawn.exe

Managing the SAS/CONNECT Spawner in Windows

User Rights in Windows
By default, when the SAS/CONNECT spawner is installed as a Windows service, it runs
under the LocalSystem User ID, which has all the required User Rights for running the
SAS/CONNECT spawner.

If you do not install the SAS/CONNECT spawner as a Windows service (that is, if you
run it from your system prompt), the Windows User ID that is used to start the
SAS/CONNECT spawner must be the local Administrator of the machine and must have
the following User Rights:

• act as part of the operating system

• bypass traverse checking (the default is everyone)

• increase quotas

• replace a process level token

• log on locally (the default is everyone)

The Windows user ID specified at sign-on needs only the User Right “log on as a batch
job.”

Basic Tasks
1. Install the spawner as a Windows service.

2. Start the spawner in Windows.

3. Stop the spawner in Windows.

4. Uninstall the spawner as a Windows service.

Installing the SAS/CONNECT Spawner as a Service in Windows
To install the SAS/CONNECT spawner on a Windows server, specify cntspawn
-install from the Windows command line, using the full pathname to the executable
in quotes, as shown here:

SAS/CONNECT Spawner in Windows 85

 “SAS-installation-directory\SASFoundation\9.4\cntspawn.exe” –install

After running this command, Windows assigns the default name, SAS Connect
Spawner, to the spawner service. You can assign a different name to the spawner
service by using the -SERVICENAME option with the -INSTALL option on the
CNTSPAWN command.

For more information about using the -SERVICENAME option, see -SERVICENAME
in “Options for Starting and Managing the SAS/CONNECT Spawner” on page 88.

Starting and Stopping the SAS/CONNECT Spawner in Windows
Once the spawner is installed, it can be started or stopped using any one of the following
methods:

• specify the NET START or NET STOP command with the spawner service name:

NET START "SAS Connect Spawner"
NET STOP "SAS Connect Spawner"

• use the Windows Services Manager plug-in to start or stop the spawner service.

• type CTRL-C or double-click in the upper left corner of the window in which the
spawner is running.

Uninstalling the SAS/CONNECT Spawner in Windows
You can uninstall the SAS/CONNECT spawner by specifying the -UNINSTALL option
with the CNTSPAWN command. Specify the full pathname to the CNTSPAWN
executable in quotes, as shown here:

 “SAS-installation-directory\SASFoundation\9.4\cntspawn.exe” –uninstall

If you used the -SERVICENAME option with the -INSTALL option when you installed
the spawner to explicitly name the spawner service, then you must use the
-SERVICENAME option with the -UNINSTALL option to uninstall it. Use quotes
around the full pathname and around the spawner service name.

 "SAS-installation-directory\SASFoundation\9.4\cntspawn.exe" -uninstall
 -servicename "mySpawner"

For more information about using the -UNINSTALL option, see -UNINSTALL in
“Options for Starting and Managing the SAS/CONNECT Spawner” on page 88.

SAS/CONNECT Spawner in z/OS

Setting Up the SAS/CONNECT Spawner in z/OS
The SAS/CONNECT spawner runs as a z/OS started task and uses z/OS UNIX System
Services (USS) to start each user’s SAS/CONNECT session. The spawner listens for
requests from clients and passes them to the start-up command that is associated with the
service and port in which there is activity. The start-up command starts a
SAS/CONNECT server session.

The basic steps for starting the spawner and SAS server session in z/OS are as follows:

• Configure SAS TCP/IP. See “Prerequisites for Using TCP/IP under z/OS” on page
34.

86 Chapter 7 • Managing the SAS/CONNECT Spawner

• Create the spawner started task. See “Starting the Spawner in z/OS” on page 87
and z/OS Security Server (RACF) Command Language Reference from IBM.

• Create a Shell script that defines a SAS start-up command. For details, see “Starting
SAS Using a Shell Script” on page 87.

Location of the Spawner in z/OS
The SAS/CONNECT spawner module is CNTSPAWN and it is located in the SAS load
module library. This library might be installed in LPA, LINKLIST, or allocated to the
STEPLIB DD in the Spawner Started Task JCL. On z/OS systems, SAS recommends
operating servers as started tasks. Therefore, to start the SAS/CONNECT spawner, you
should create a started task procedure in the system PROCLIB library. A sample
spawner started task procedure can be found in ‘&prefix.BAMISC(SPNCCNTL)’.

Spawner User ID on z/OS
The z/OS system considers the SAS/CONNECT spawner a daemon process. Therefore,
if the BPX.DAEMON profile in the RACF FACILITY class and RACF Program Control
are active, then the user ID for the spawner started task does not require superuser
(uid=0) authority. The SAS load module library must be program-controlled, but the
spawner user ID does not require READ access to the BPX.DAEMON profile. The
spawner no longer requires APF authorization.

To assign a user ID to the started task, do either of the following:

• add the started task to the RACF Started Procedures Table ICHRIN03

• define a profile for the started task in the RACF class STARTED

Starting the Spawner in z/OS
To start the z/OS spawner, use the following command:

START <started-task-name>

This command initiates the started task. The spawner started task requires a PARMS file.
The PARMS file contains any spawner invocation options that you need to specify when
starting the spawner on z/OS. A sample PARMS file can be found in
‘&prefix.BAMISC(SPNCPARM)’. Implementing SAS TSO Support

See Configuration Guide for SAS® 9.4 Foundation for z/OS for more information about
the ‘&prefix.BAMISC’. library.

For a list of spawner invocation options, see “Options for Starting and Managing the
SAS/CONNECT Spawner” on page 88.

Starting SAS Using a Shell Script
The spawner uses UNIX System Services (USS) to invoke a USS file system shell script
that starts SAS.

Example:

 -sascmd "/usr/local/bin/spawnsas.sh -nosasuser -noterminal"

This command assumes that a shell script named spawnsas.sh is installed in /usr/
local/bin. The command specifies the -NOSASUSER SAS system option . The

SAS/CONNECT Spawner in z/OS 87

http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp?topic=/com.ibm.zos.r11.icha400/ichza4a1.htm
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf

-NOTERMINAL option prevents the display of a dialog box in the server session. In
addition, the two double quotation marks around the SAS options are required.

The shell script interprets the parameters that are received from the spawner and builds a
TSO command that starts a SAS session. The sample UNIX shell script parses the
command and interprets environment variables to build a TSO command to start SAS.
This command is executed using either the USS /bin/tso command or the
USS /bin/tsocmd command.

You must change the values of &prefix to the high-level qualifier of your CList library
that contains the TSO command to start SAS. The BPX environment variables are
specified to improve the start-up performance of a spawned SAS session.

A sample USS script file can be found in ‘&prefix.BAMISC(SPNCSHEL)’.

Note: The /bin/tso command mentioned above is used by default in the UNIX shell
script. If you need to run authorized commands in SAS 9.3 and later releases, use
the /bin/tsocmd command instead. See Usage Note 54530 for information about
setting the /bin/tsocmd command in the UNIX shell script.

Ending the Spawner on z/OS
To stop the spawner, do one of the following:

• use CTRL-C to kill the process

• if the spawner was started as a started task, specify STOP <started-task-name>

 STOP <started-task-name>

Options for Starting and Managing the
SAS/CONNECT Spawner

Introduction
Spawner invocation options consist of SAS/CONNECT spawner options and SAS
system options that you can use to run and configure the spawner from the command
line. You can use these commands when you invoke the spawner using the CNTSPAWN
command in Windows or UNIX, or in a z/OS PARMS file.

Spawner invocation options can be logically grouped into these categories:

• “General Spawner Options”

• “Windows Options”

• “UNIX and z/OS Options”

General Spawner Options
Use the following general options with the CNTSPAWN spawner start-up command:

-DEBUG
turns on debug level output.

88 Chapter 7 • Managing the SAS/CONNECT Spawner

http://support.sas.com/kb/54/530.html

-ENCRYPTFIPS
specifies that the spawner uses FIPS compliant encryption to protect
communications. When -ENCRYPTFIPS is specified, only SSL and AES encryption
algorithms are valid.

See “ENCRYPTFIPS System Option” in Encryption in SAS

Example The following example enables SSL and AES encryption.
“SAS-installation-directory\SASFoundation\
 9.4\cntspawn.exe” –encryptfips

-HELP
specifies to print the Help message.

-LOG | -LOGFILE <filename>
specifies the filename to use for spawner log output if you are not using the -
LOGCONFIGLOC option. The -LOG option should not be used with the -
LOGCONFIGLOC option. If both options are specified, the -LOGCONFIGLOC
option takes precedence.

You can specify the -DEBUG or -TRACE options with the -LOG <filename> option
to have detailed spawner log messages sent to a log file.

Example The following example uses the ConnectSpawner.sh script on UNIX to
start the SAS/CONNECT spawner and specifies that debug-level log
messages are sent to the unxspawner.log file.
ConnectSpawner.sh -start -debug -log unxspawner.log

-LOGCONFIGLOC <filename>
enables the SAS logging facility for SAS servers and names the location of the
configuration file that is used by the SAS logging facility to create spawner log
output. The configuration file is an XML file that specifies and configures loggers
and appenders for the SAS/CONNECT spawner. The SAS Deployment Wizard
automatically creates an initial logging configuration file for the spawner named
logconfig.xml that you can modify as needed to adjust your logging
configuration. The file is located in the sas-installation-directory/Lev-n/
ConnectSpawner/ directory on UNIX and the sas-installation-directory\Lev-n
\ConnectSpawner\ directory on Windows. The file contains the pattern layout for
the messages that are generated and automatically directed to an output device, such
as a console or a log file. Relevant log data for the Windows spawner might include
the date and time, the log level, the thread ID, and the logger.

See “Sample SAS/CONNECT Spawner logconfig.xml File” on page 95 for an
example of a spawner log configuration file in the UNIX environment.

The file-specification that defines the location of the XML configuration file must be
a valid filename or a path and filename for your operating environment. If the path
contains spaces, enclose the file-specification in quotation marks.

Note If -LOGCONFIGLOC is specified, spawner messages are routed by
default to the App.Connect.Spawner logger.

See For information about using the -LOGCONFIGLOC option in the SAS
Logging Facility, see “LOGCONFIGLOC= System Option” in SAS
Logging: Configuration and Programming Reference.

Example The following spawner start-up command invokes the SAS Logging
Facility and specifies the name and location of the logging configuration
file, winspawnerlog.xml.

Options for Starting and Managing the SAS/CONNECT Spawner 89

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=secref&pubcode=68007&id=n0u9r9lj96m3txn1gxsbuqwt41im
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1jpa3bwfyjlv9n1tmqo4wbnwhra
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1jpa3bwfyjlv9n1tmqo4wbnwhra

“SAS-installation-directory\SASFoundation\
 9.4\cntspawn.exe” -logconfigloc winspawnerlog.xml

Example “Sample SAS/CONNECT Spawner logconfig.xml File” on page 95

-MGMTPORT
enables you to specify the service name or port number that will listen for operator
connections. Operator connections are connections made through the operator port.
The operator port is a unique port number that is used for administrative purposes.

Range 1- 65535

-METAENCRYPTALG algorithm | NONE
specifies the type of encryption algorithm to use when communicating with the
metadata server. The following algorithms can be used: RC2, RC4, TripleDES, SAS
Proprietary, and AES.

-METAENCRYPTLEVEL <level>
specifies the level of encryption when communicating with the metadata server.

-METAPASS
specifies the password of user who is to connect to metadata server.

-METAPORT <port>
specifies the port to connect to on metadata server.

-METASERVER <host>
specifies the name or IP address of the metadata server.

-METAUSER <user-id>
specifies the user ID of the user who is to connect to metadata server.

-NETENCRKEY <keysize>
specifies the number of bits in data encryption keys.

-NETENCRYPT <algorithm>
specifies that network encryption is required.

-NETENCRYPTALGORITHM <algorithm>
specifies the name of encryption algorithm.

-NOCLEARTEXT
prevents sign-ons from clients that do not support user ID and password encryption.
This option prevents clients that are running older releases (prior to SAS 6.09E and
SAS 6.11 TS040, which do not support user ID and password encryption) from
signing on to the spawner program. However, the default permits both encrypted and
plaintext user IDs and passwords.

-NOINHERITANCE
disables socket inheritance. Socket inheritance allows SAS/CONNECT servers to
use the socket connection that is established between the SAS/CONNECT client and
the spawner. Socket inheritance saves resources and is easier to configure when
clients connect to a server that is within a firewall. Socket inheritance is enabled by
default.

-NOSCRIPT
prevents sign-on from clients that use scripts, and allows sign-on only from clients
that do not use scripts.

-NOSCRIPT can be useful if you want to limit SAS start-up commands to the use of
the -SASCMD option or to commands defined in metadata. Specifying -NOSCRIPT
restricts clients from specifying additional options in SAS start-up commands or

90 Chapter 7 • Managing the SAS/CONNECT Spawner

script files. When -NOSCRIPT is specified, either -SASCMD must also be specified
or logical Connect Servers must be defined in metadata.

Note: If a scriptless server defined in metadata does not have a valid spawner
SASCMD value, the logical server will be ignored.

-SASCMD | -CMD <command>

Windows
specifies the SAS command or a command file that invokes SAS when a client
attempts to connect to a server using the port defined by the -SERVICE
command. The -SERVICE option specifies an alternate port that the spawner
uses to listen for incoming requests for connection.

In Windows, you can use either a batch file, which is signified by the .bat
extension, or a command file, which is signified by the .cmd extension. Here is
an example of a batch file:

cd !sasroot
sas.exe %*

The first line changes to the directory where the SAS executable is stored. The
second line starts SAS. Add options as needed at this SAS start-up command.

UNIX
specifies the SAS command or a command file that starts a SAS session when
you sign on without a script. If the client does not specify a script file at sign-on,
the -SASCMD option must be specified when starting the spawner.

Here is a sample UNIX command file:

#!/bin/ksh
#----------------------------------
mystartup
#----------------------------------
. ~/.profile
sas -noterminal -nosyntaxcheck $*
#------------------------------

Note: The $* positional parameter enables you to specify additional SAS options
when you invoke SAS.

z/OS
specifies a UNIX System Services (USS) shell script for starting a SAS session.
You must use -SASCMD and a shell script if you do not specify a sign-on script
in the client session using an RLINK fileref. The script interprets the command
arguments and environment variables and builds a TSO command that invokes a
SAS session. For an example of a SAS start-up shell script, see Defining the
Shell Script for Starting SAS.

For an example of starting the spawner in z/OS, see “Encrypted Sign-on to a
z/OS Spawner” on page 81.

Use the -SASCMD option to do the following

• invoke SAS from a directory that is not the default location

• specify different SAS start-up command options

• execute other statements before invoking SAS

Options for Starting and Managing the SAS/CONNECT Spawner 91

The following options are supplied by default when you sign on using the
SAS/CONNECT spawner:

-DMR -COMAMID<access-method> -NOSPLASH -ICON -NOTERMINAL

-SASDAEMONSERVICE service-name
specifies the service name or port number that the SAS/CONNECT server uses to
listen for SAS child process connections. When socket inheritance is enabled, the
SAS client and the SAS/CONNECT server communicate via this port. If you use a
service, its name must be configured in the SERVICES file on the computer that the
SAS/CONNECT server session runs on.

-SASSPAWNERCN <name>
specifies the name of the spawner definition to retrieve from the SAS Metadata
Server.

If the -SASSPAWNERCN option is specified, you must either specify the -
XMLCONFIGFILE option or you must specify the -METASERVER, -METAPORT,
-METAUSER, and -METAPASS options. The -XMLCONFIGFILE option specifies
the filename to use to get SAS Metadata Server access information. This file
configures how the SAS/CONNECT Spawner will connect to the SAS Metadata
Server to retrieve its configuration information.

For details about generating a SAS/CONNECT spawner definition for the SAS
Metadata Server, see the Help for the SAS/CONNECT spawner server type in the
Server Manager of SAS Management Console.

-SERVICE <port-number | service-name>
specifies the service name or port number to use to listen for client connections.

The -SERVICE option values that are used to start the spawner determine what will
be used by the client to sign on.

In the following example, the spawner is started by specifying the port-number as
the value of the -SERVICE option during spawner start-up:

“SAS-installation-directory\SASFoundation\9.4\cntspawn.exe” -service 5020

The client can then sign on by specifying the explicit port-number in the SIGNON
statement:

signon node-name.5020 -mgmtport 5030

Note If the -SERVICE option is not specified, the spawner will listen on the Telnet
port (23).

-SHELL
specifies that the started SAS/CONNECT servers will allow X commands.

Without specifying the -SHELL option to the spawner, X command processing is
disabled, by default.

-SSLCLIENTAUTH
specifies that the server requires client authentication for SSL connections.

-SSLCRLCHECK
specifies that the server check CRL for revoked digital certificates for SSL.

-SSPI | -NOSSPI
identifies support for the Security Support Provider Interface for single sign-on
connections to the spawner. If the client and the server run under Windows and if the
client does not supply a user ID and password to the server, SSPI (Security Support
Provider Interface) is used to perform client authentication. SSPI authentication is

92 Chapter 7 • Managing the SAS/CONNECT Spawner

disabled by default. To enable SSPI authentication, you must specify -SSPI in the
spawner start-up command. In versions prior to 9.4, SSPI was enabled by default.

Default -NOSSPI

-TRACE | VERBOSE
turns on trace level output.

-XMLCONFIGFILE "fully-qualified-path"
specifies the filename to use to get SAS Metadata Server access information. A path
that includes one or more spaces must be enclosed in quotation marks.

If -XMLCONFIGFILE is used, -SASSPAWNERCN must also be used.

Alias -OMRCONFIGFILE

Windows Options
Use the following service options to create, modify, and remove SAS/CONNECT
spawner service definitions in the Windows operating environment:

-INSTALL <-INSTALLDEPENDENCIES service-name>
<-SERVICEDESCRIPTION description> <-SERVICEDIRECTORY directory-
name> -SERVICENAME service-name> <-SERVICEPASS password>
<-SERVICEUSER user-ID>

causes an instance of a spawner to be installed as a Windows service. Each spawner
instance is assigned a name, by default, in the following form:

SAS Connect Spawner

You can install each instance of the spawner by using the following command:

C:\SAS>cntspawn -install

When you install a spawner without specifying -NAME, it is installed as "SAS
Connect Spawner." Instead of accepting a default name for a spawner service, you
can assign a specific name to a spawner service by using the -NAME option.

If you try to install a second spawner without specifying -NAME, the attempt will
fail and you will get an error.

This option can be abbreviated as -I.

-INSTALLDEPENDENCIES service-name–1<, service-name–2><, ...>
specifies the Windows service that must be started before the spawner service
starts. The service-name value is the name of the dependent service that is
displayed in the Microsoft Windows Services snap-in (services.msc).

Alias -IDEP

-SERVICEDESCRIPTION "service-description"
specifies the description that you assign to the spawner that is installed and
started as a Windows service, when you also specify the -INSTALL option.. The
-SERVDESC option is valid only when installing the spawner using the
-INSTALL option on the CNTSPAWN command. The description can be viewed
with the services applet in Windows. A specified spawner description cannot
exceed 256 characters and must be enclosed in quotation marks if it contains one
or more spaces.

The following example shows how to use the -INSTALL, -NAME, and
-SERVDESC options on the CNTSPAWN command to install a spawner named

Options for Starting and Managing the SAS/CONNECT Spawner 93

“SAS spawner 5” and specify a description, which will be displayed in the
Services Control Manager Window:

cntspawn -install -servicename "SAS spawner 5" -servdesc
 "A SAS process that listens for requests to spawn SAS/Connect
servers"

Alias -SERVDESC

-SERVICEDIRECTORY directory
specifies the directory in which to run the Windows service, when you also
specify the -INSTALL option.

Alias -SERVDIR

-SERVICENAME "service-name"
specifies the name that you assign to the spawner that is installed, or uninstalled,
and started as a service in the Windows operating environment. A specified name
overrides the default name that is automatically assigned when the -INSTALL
option is used.

When you install a spawner without specifying -SERVICENAME, it is installed
as "SAS Connect Spawner". If you try to install a second spawner without
specifying -name, the attempt will fail and you will get an error.

A specified spawner name cannot exceed 80 alphanumeric characters. A name
string that includes one or more spaces must be enclosed in quotation marks.

The following example shows how to install an explicitly named spawner as a
service:

cntspawn -install -servicename "Doug's spawner"

The following example shows how to uninstall an explicitly named Windows
spawner by using the -UNINSTALL command:

cntspawn -uninstall -servicename "Doug's spawner"

Alias -NAME

-SERVICEPASS password
specifies the password for the user account that spawner will run under as a
service. For details about SSL, see Encryption in SAS, located in the Base SAS
Help and Documentation.

Alias -SERVPASS

-SERVICEUSER=user-ID
specifies a user name that the Windows service will run under, when you also
specify the -INSTALL option. This option can be abbreviated as -SU.

Alias -SU, -SERVUSER

-SSLCERTISS <issuer>
specifies the name of the issuer of the digital certificate that SSL should use.

-SSLCERTSERIAL <serial>
specifies the serial number of the digital certificate that SSL should use.

94 Chapter 7 • Managing the SAS/CONNECT Spawner

-SSLCERTSUBJ <subject>
specifies the subject name of the digital certificate that SSL should use.

-UNINSTALL
instructs the spawner to uninstall as a Windows service, which was previously
installed and started by using the -INSTALL option.

If you used the -SERVICENAME option with the -INSTALL option to install a
spawner, you can use the -SERVICENAME option with the -UNINSTALL option to
identify the spawner to be removed.

cntspawn -uninstall -servicename "Doug's spawner"

Alias -DEINSTALL or -DI

UNIX and z/OS Options
-SSLCALISTLOC <filename>

specifies the name of the file that contains the list of trusted certificate authorities.

-SSLCERTLOC <filname>
specifies the name of the file that contains the public certificate to use for SSL.

-SSLCRLLOC <filename>
specifies the location of CRL file.

-SSLPKCS12LOC <filename>
specifies the name of the file that contains PKCS12 information to use for SSL.

-SSLPKCS12PASS <password>
specifies the password to use to decrypt the PKCS12 information.

-SSLPVTKEYLO <filename>
specifies the name of the file that contains the public certificate's private key to use
for SSL.

-SSLPVTKEYPASS <password>
specifies the password to use to decrypt the private key, if the private key is
encrypted.

For more information about using encryption options in SAS see “SAS System Options
for Encryption” in Encryption in SAS.

For example programs, see “Encryption Technologies: Examples” in Encryption in SAS.

Sample SAS/CONNECT Spawner logconfig.xml File
Here is an example of a spawner log configuration file (logconfig.xml) in the UNIX
environment:

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http://www.sas.com/xml/logging/1.0/">

 <!-- Rolling log file with default rollover of midnight -->

 <appender class="RollingFileAppender" name="TimeBasedRollingFile">
 <param name="Append" value="false"/>
 <param name="Unique" value="true"/>
 <param name="ImmediateFlush" value="true"/>
 <rollingPolicy class="TimeBasedRollingPolicy">

Options for Starting and Managing the SAS/CONNECT Spawner 95

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=secref&pubcode=68007&id=n0bmaslhpevq8gn1l614jmbd63wi
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=secref&pubcode=68007&id=n0bmaslhpevq8gn1l614jmbd63wi
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=secref&pubcode=68007&id=p0s398yxtqumuvn1x98vy3wnp3os

 <param name="FileNamePattern" value="/<SAS-configuration-directory>
 /Lev<n/ConnectSpawner/Logs/
 ConnectSpawner_%d_%S{hostname}_%S{pid}.log"/>
 </rollingPolicy>
 <layout>
 <param name="HeaderPattern" value="Host: '%S{hostname}',
 OS: '%S{os_family}', Release: '%S{os_release}',
 Command:'%S{startup_cmd}'"/>
 <param name="ConversionPattern" value="%d %-5p [%t] :%u - %m"/>
 </layout>
 </appender>

 <!-- Unix System Facility Appender, writes to unix system log -->
 <appender class="UNXFacilityAppender" name="UnixSysLog">
 <filter class="RepeatMatchFilter">
 <param name="AcceptOnMatch" value="false"/>
 </filter>
 <layout>
 <param name="ConversionPattern" value="%-5p [%t] :%u - %m"/>
 </layout>
 </appender>

 <!-- Administration message logger -->
 <logger name="Admin">
 <level value="Info"/>
 <appender-ref ref="UnixSysLog"/>
 </logger>

 <!-- Application message logger -->
 <logger name="App">
 <level value="Trace"/>
 </logger>

 <!-- Audit message logger -->
 <logger name="Audit">
 <level value="Info"/>
 </logger>

 <!-- IOM protocol message logger -->
 <logger name="IOM">
 <level value="Info"/>
 </logger>

 <!-- Logging Facility logger -->
 <logger name="Logging">
 <level value="Error"/>
 <appender-ref ref="UnixSysLog"/>
 </logger>

 <!-- Root logger -->
 <root>
 <level value="Error"/>
 <appender-ref ref="TimeBasedRollingFile"/>
 <!-- Caution: Do NOT edit, modify or remove the following statement. -->
 <appender-ref ref="IOMServer"/>
 </root>

96 Chapter 7 • Managing the SAS/CONNECT Spawner

 <!-- Caution: Do NOT edit or modify the configuration information below. -->
 <!-- Settings are enabled for the internal server execution environment. -->

 <!-- IOM Server Appender -->
 <appender class="IOMServerAppender" name="IOMServer">
 <param name="MaxEntries" value="10000"/>
 <layout>
 <param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>
 </layout>
 </appender>

 <!-- Event Appender -->
 <appender class="IOMEventAppender" name="Events">
 <param name="Scope" value="server"/>
 <param name="Threshold" value="Debug"/>
 <layout>
 <param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>
 </layout>
 </appender>

 <!-- Server Administration Message Logger -->
 <logger name="Perf.ARM.IOM.ConnectSpawner.ServerAdministration">
 <level value="Debug"/>
 <appender-ref ref="Events"/>
 </logger>

</logging:configuration>

Options for Starting and Managing the SAS/CONNECT Spawner 97

98 Chapter 7 • Managing the SAS/CONNECT Spawner

Chapter 8

TCP/IP SERVICES File

Configuring the Services File . 99
Services That Require an Entry in the Services File . 99
Example Services File . 99
Explanation of Fields . 100

Configuring the Services File

Services That Require an Entry in the Services File
Here are typical examples of port services that require configuration in the services
file:

• Telnet service

• spawner port

• SAS/SHARE server ID or port

• firewall computer port

• dedicated TCP/IP port service that is used for MP CONNECT piping

Note: If you have access to a UNIX operating environment, see the services (4)
manual page for more information about this file.

The location of the services file depends on the operating environment. For example,
the UNIX services file is located at /etc/services. The services file on
Windows is typically located in the C:\Windows\System32\drivers\etc
directory.

Example Services File
Here is an example excerpt from a services file.

<official-service-name> <port-number/protocol-name> <alias-name>

The form for each entry is:

<comments>
#
Port Services

99

telnet 23/tcp # Telnet service
spawnport 4016/tcp # UNIX spawner port
mktserve 4017/tcp # Server for Marketing & Sales
server1 5011/tcp # SAS/SHARE server 1
sassrv2 5012/tcp # SAS/SHARE server 2
firewall 5010/tcp # Firewall machine port
pipe1 5020/tcp # MP Connect pipe
sea 5021/tcp biscuit # SAS/SHARE server 3
A blank line goes here.

Note: You must enter a blank line (press the ENTER key) at the end of the services
file. If a blank line is not at the end of the file, the final line in the file is not detected.
For example, if you run a SAS script that contains the name of the configured
SAS/SHAREsea, this error message is displayed:

Cannot find TCP service 'sea'

Explanation of Fields
Here is an explanation of each field:

official service name
specifies the name of the service. Service names must meet the criteria for a valid
SAS name. (For details about SAS naming rules, see “Rules for Words and Names in
the SAS Language” in SAS Language Reference: Concepts.) For example, you can
create a service named SPAWNER for the UNIX spawner program. You will need
the Telnet service when signing on to any server that does not use a PC or a UNIX
spawner program.

You will also use the service name as the value for the REMOTE= option or in the
SIGNON statement to perform a server sign-on.

port number
is a unique number that is associated with the service name. Each reference to that
service in other node services files must match the service's port number exactly.
Port numbers 0 through 1023 are reserved for system use. Port numbers that are
greater than 1023 are available for user-created services.

protocol name
identifies the protocol. udp and tcp are examples of protocol names.

alias name
is an optional synonym for the service. Alias names can be application- or user-
dependent. For example, one application can refer to the server as sea and another
application can refer to the same server as biscuit.

Note: Each client and server must configure the alias in its services file before
the alias can be successfully used. For example, sea and biscuit must be
configured in the services file of each client and server that will use the alias.

comments
describe the service.

100 Chapter 8 • TCP/IP SERVICES File

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0m7v8i6xka1r1n1lwb6efyewu10
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n0m7v8i6xka1r1n1lwb6efyewu10

Part 4

Firewalls, Scripts, and Error
Messages

Chapter 9
Configuring SAS/CONNECT for Use with a Firewall 103

Chapter 10
Sign-On Scripts . 109

Chapter 11
Error Messages . 127

101

102

Chapter 9

Configuring SAS/CONNECT for
Use with a Firewall

Firewall Concepts . 103

Requirements for Using a Firewall . 103

Firewall Configurations . 104
Overview of Firewall Configurations . 104
Setting Up a Firewall Configuration That Uses Restricted Ports 104
Setting Up a Firewall Configuration That Uses a Single Port 106

Firewall Concepts
firewall

is a controlled gateway between two networks. A firewall limits external client
connections to a set of restricted ports on one or more computers that are inside the
firewall.

Web servers and other network applications can also use firewalls to limit access to
servers. SAS/CONNECT permits TCP/IP connections between clients outside a
firewall to a spawner that runs on a SAS/CONNECT server inside a firewall.

socket inheritance
enables the server session to inherit the socket that the spawner uses to communicate
with the client session. The socket is then used for subsequent communications
between the client and the server session. Socket inheritance is significant because a
single port can be used for starting an unlimited number of server sessions.

Before this innovation, a separate port was opened for each client that connected to a
server by using a spawner. Socket inheritance limits the number of ports that are used
for connections through a firewall, which improves the security of a firewall
configuration and simplifies administration of a firewall configuration.

Requirements for Using a Firewall
• The external clients and the servers within the firewall must be running SAS 6.12

TS065 or later.

103

• The TCP/IP communications access method must be used for establishing a network
connection between clients and servers.

• Firewall software must be installed on the server that maintains the separation
between the internal network and the Internet.

• A port must be defined on the firewall server to be used as a gateway between
external clients and the internal network. The firewall software must route the
firewall server port to the predefined server port.

• A spawner must be running on a server inside the firewall. For complete details
about the spawner program, see Chapter 6, “Introduction to the SAS/CONNECT
Spawner,” on page 73.

Firewall Configurations

Overview of Firewall Configurations
The supported firewall configurations are distinguished by these characteristics:

• A range of restricted ports is available for client/server connections across a firewall.

• A single port is available for all client/server connections across a firewall.

Setting Up a Firewall Configuration That Uses Restricted Ports
The example configuration includes an external SAS client, a firewall, and a
SAS/CONNECT server session and a spawner program that run on the local area
network. Each external client connects to the server using a range of restricted ports.

Figure 9.1 Firewall Configuration That Uses Restricted Ports

Here are the steps for setting up a firewall configuration:

1. At each external SAS client, the user must configure the firewall port, 5010, in its
services file.

fireport 5010/tcp # Firewall computer port

104 Chapter 9 • Configuring SAS/CONNECT for Use with a Firewall

FIREPORT is a defined service in the client's services file that is associated with port
5010. FIREPORT is the single port through which all external SAS clients will
access SAS servers in the internal network.

2. The administrator of the firewall server must configure these ports:

• the restricted ports that are used by the external SAS clients and a mapping to the
equivalent port numbers on the SAS/CONNECT server

• the firewall port, 5010, and a mapping to 5010 on the SAS/CONNECT server or
another port number on the SAS/CONNECT server

Note: Restricted ports are implemented using the TCPPORTFIRST= and
TCPPORTLAST= system options that are specified in the SAS start-up file. (See
step 4.)

For example, if the external SAS clients use restricted ports 2040 through 2044, the
administrator of the firewall server must configure those ports on the firewall server.
Also, the administrator must map those ports to the same port numbers on the
SAS/CONNECT server.

Specific details about configuring and mapping ports on the firewall server vary
according to the specific firewall software that is used.

3. The administrator of the SAS/CONNECT server must configure these ports in its
services file:

• the port that is used by the external SAS client to communicate with the spawner

• the ports that are used by the spawner to communicate with the SAS/CONNECT
server

Here is an example of these entries in the services file:

spawnport 5060/tcp # Port for external SAS client to spawner
servport 5080/tcp # Port for spawner and SAS/CONNECT server

SPAWNPORT is a defined service in the services file that is associated with port
5060. SERVPORT is associated with port 5080.

4. The administrator of the SAS/CONNECT server must configure one or more
restricted ports in the SAS start-up file that executes when the spawner starts the
SAS/CONNECT session.

sas.exe -tcpportfirst 2040 -tcpportlast 2040 %*

SAS is started and the restricted port is 2040. In this example, all communications
between external SAS clients and the SAS/CONNECT server are restricted to port
2040.

A range of ports could be specified by increasing the values assigned to the
TCPPORTFIRST= and TCPPORTLAST= system options.

5. The administrator of the SAS/CONNECT server must start the spawner using a
command that disables socket inheritance:

cntspawn -noinheritance -service spawnport -sasdaemonservice servport
-sascmd mysas.cmd

Note: The command to start the SAS/CONNECT spawner is CNTSPAWN.

The restricted port that is used by the SAS client and the SAS/CONNECT server is
specified in the mysas.cmd script via the TCPPORTFIRST= and TCPPORTLAST=
system options.

Here is an explanation of the spawner command:

Firewall Configurations 105

Table 9.1 Explanation of Spawner Command

Command Description

cntspawn Starts the spawner.

-noinheritance Specifies that sockets cannot be inherited.

-service spawnport Specifies the service or its port, 5060, at
which the spawner listens for requests from
SAS clients to connect to a SAS/CONNECT
server.

-sasdaemonservice servport Specifies the service or port, 5080, through
which the spawner relays the SAS client's
request to connect to the SAS/CONNECT
server.

-sascmd mysas.cmd Specifies the script that starts the
SAS/CONNECT session. The script might
contain SAS options that restrict ports.

For details about spawner options, see “Overview” on page 83.

6. To test the configuration, start a SAS session on a computer that is outside the
firewall and sign on to the server that is inside the firewall. Here is an example:

options comamid=tcp;
signon firewall.fireport username="myuser" password="mypass";

Setting Up a Firewall Configuration That Uses a Single Port
The example configuration includes an external SAS client, a firewall, and a
SAS/CONNECT server session and a spawner program that run on the local area
network. Each external client connects to the server using a single port, which is enabled
by socket inheritance.

106 Chapter 9 • Configuring SAS/CONNECT for Use with a Firewall

Figure 9.2 Firewall Configuration That Uses a Single Port

Here are the steps for setting up a firewall configuration:

1. At each external SAS client, the user must configure the firewall port, 5010, in its
services file.

fireport 5010/tcp # Firewall computer port

FIREPORT is a defined service in the TCP/IP services file that is associated with
port 5010. FIREPORT is the single port through which all external SAS clients will
access SAS servers in the internal network.

Note: The firewall server does not necessarily have to run SAS software.

2. The administrator of the firewall server must configure the firewall port, 5010, and
map it to another port number on the SAS/CONNECT server.

Specific details about configuring and mapping ports on the firewall server vary
according to the specific firewall software that is used.

3. The administrator of the SAS/CONNECT server must configure these ports in its
services file:

• the port that is used by the external SAS client to communicate with the spawner

• the ports that are used by the spawner to communicate with the SAS/CONNECT
server

Here is an example of these entries in the services file:

spawnport 5060/tcp # Port for external SAS client to spawner
servport 5080/tcp # Port for spawner and SAS/CONNECT server

SPAWNPORT is a defined service in the services file that is associated with port
5060. SERVPORT is associated with port 5080.

4. The administrator of the SAS/CONNECT server starts the spawner:

cntspawn -service spawnport -sasdaemonservice servport
-sascmd mysas.cmd

Note: The command to start the SAS/CONNECT spawner is CNTSPAWN.

Here is an explanation of the spawner command:

Firewall Configurations 107

Table 9.2 Explanation of Spawner Command

Command Description

cntspawn Starts the spawner.

-service spawnport Specifies the service or its port, 5060, at
which the spawner listens for requests from
SAS clients to connect to a SAS/CONNECT
server.

-sasdaemonservice servport Specifies the service or port, 5080, through
which the spawner relays the SAS client's
request to connect to the SAS/CONNECT
server.

-sascmd mysas.cmd Specifies the script that starts the
SAS/CONNECT session.

For details about spawner options, see Chapter 6, “Introduction to the
SAS/CONNECT Spawner,” on page 73.

5. To test the configuration, start a SAS session on a computer that is outside the
firewall and sign on to the server that is inside the firewall. Here is an example:

options comamid=tcp;
signon firewall.fireport username="myuser" password="mypass";

108 Chapter 9 • Configuring SAS/CONNECT for Use with a Firewall

Chapter 10

Sign-On Scripts

Script Rules . 109
Syntax . 109
Specifying Time . 110
Using the WAITFOR and TYPE Statements . 110

Sample Scripts . 110
The Scripts . 110
TCPUNIX.SCR Script . 111
TCPWIN.SCR Script . 115
TCPMVS.SCR Script . 118
TCPTSO9.SCR Script . 121

Script Rules

Syntax
For details about writing scripts, see the topic about “SAS/CONNECT Sign-on Script
Files” in SAS/CONNECT User's Guide.

• Like other SAS statements, all script statements must end with a semicolon (;).

• Script statements have a free format, which means that there are no spacing or
indention requirements. A statement can be contained within a single line or it can
span several lines. Statement keywords are not case sensitive.

• Enclose case-sensitive text strings in quotation marks. For example, if your script
defines a text string in a WAITFOR statement, ensure that the uppercase and
lowercase characters in the text string exactly match the text string from the server.

• You can use either single or double quotation marks to quote a string, such as a
server command, in a script statement. The rules that you use to embed quotation
marks in a SAS statement and to embed quotation marks in a script statement are the
same.

• Any script statement can include a label specification. The label must be a valid SAS
name, with a maximum of eight characters. The first character must be an alphabetic
character or an underscore. A label must be followed immediately by a colon (:) and
it can be defined only once in the script.

109

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0ze0vzqoyxy34n1sa0rpk8qd5n5
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=67933&id=p0ze0vzqoyxy34n1sa0rpk8qd5n5

Specifying Time
Some script statements specify time in seconds, as follows:

n SECONDS

n can be any number, including decimal fractions. SECOND is an alias for SECONDS.
Here are some examples of valid time specifications:

• 0 SECONDS

• 0.25 SECONDS

• 1 SECOND

• 3.14 SECONDS

Using the WAITFOR and TYPE Statements
When writing a script or modifying an existing script, pay special attention to the
WAITFOR and the TYPE statements. To ensure that the script recognizes the expected
prompt during each stage of sign-on, specify the exact sequence of prompts and
responses for the server.

You might test the sequence by experimenting at the server by going through the process
that you want to capture in the WAITFOR and the TYPE statements. For each display at
the server, choose a word from that display for the WAITFOR statement. Capture in a
TYPE statement the information that you enter in response to a display. Be sure to note
all carriage returns or other special keys.

For example, if TSO is the server and you need to use a TYPE statement in a sign-on
script whose length is greater than 80 characters, divide the TYPE statement into two or
more TYPE statements.

To divide the TYPE statement, insert a hyphen (-) at the division point. The remote TSO
machine interprets the hyphen as the continuation of the TYPE statement from the
previous line.

For example, consider the following TYPE statement:

type "sas options ('dmr comamid=tcp')" enter;

To divide the statements, change it to the following:

type "sas options ('dmr comamid=-" enter;
type "tcp')" enter;

Note: Do not insert spaces around the hyphen.

Sample Scripts

The Scripts
• “TCPUNIX.SCR Script” on page 111

• “TCPWIN.SCR Script” on page 115

• “TCPMVS.SCR Script” on page 118

110 Chapter 10 • Sign-On Scripts

• “TCPTSO9.SCR Script” on page 121

TCPUNIX.SCR Script
The following script connects a client to a UNIX server by using the TCP/IP access
method.

/* trace on; */
/* echo on; */
/*---*/
/*-- Copyright (C) 2007 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcpunix.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to any UNIX host by means of the TCP/IP access --*/
/*-- method --*/
/*-- --*/
/*-- notes: 1. This script might need modifications that account --*/
/*-- for the local flavor of your UNIX environment. --*/
/*-- The logon process should mimic the tasks that --*/
/*-- you perform when "telnet"-ing to the same --*/
/*-- UNIX host. If you are connecting to a spawner --*/
/*-- that is running in your UNIX environment, this --*/
/*-- script should need few or no modifications. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the SIGNON --*/
/*-- statement. --*/
/*-- --*/
/*-- assumes: 1. The command to execute SAS in your remote (UNIX) --*/
/*-- environment is "sas". If this is incorrect --*/
/*-- for your site, change the contents of the line --*/
/*-- that contains: --*/
/*-- type 'sas ... --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/

 /*--*/
 /*-- if you are connecting to DEC ULTRIX, and the remote --*/
 /*-- machine does not run the DECnet connection/gateway --*/
 /*-- software, logins by means of SAS/CONNECT will appear to --*/
 /*-- hang. This is due to the ULTRIX "/etc/telnetd" server --*/
 /*-- treating a DONT ECHO request for both input and output --*/
 /*-- streams. --*/
 /*-- --*/
 /*-- The DEBUG statement causes the SAS TCP/IP access method --*/
 /*-- not to reply to the ECHO request, keeping the DEC telnetd --*/
 /*-- server happy. --*/
 /*-- --*/
 /*-- Uncomment the DEBUG statement, if the logon appears to hang--*/
 /*--*/

Sample Scripts 111

 /* debug '00001000'; */

 /*--*/
 /*-- If you are connecting to INTEL ABI, you need to uncomment --*/
 /*-- the following DEBUG statement. This DEBUG statement --*/
 /*-- allows SAS/CONNECT to set the terminal type to TTY during --*/
 /*-- the Telnet negotiations that take place during SIGNON. --*/
 /*--*/
 /* debug '00004000'; */

1 log "NOTE: Script file 'tcpunix.scr' entered.";

 if not tcp then goto notcp;
2 if signoff then goto signoff;

 /* --------------- TCP/IP SIGNON ---------------------------------*/

3 waitfor 'login:'
 , 'Username:'
 , 'Scripted signon not allowed' : noscript
 , 120 seconds: noinit;

/*----------------UNIX LOGON---------------------------------------*/
/*-- for some reason, it needs an LF to turn the line around --*/
/*-- after the login name has been typed. (CR will not do) --*/
/*---*/

4 input 'Userid?';
 type LF;
5 waitfor 'Password', 30 seconds : nolog;
 input nodisplay 'Password?';
 type LF;

unx_log:
6 waitfor 'Hello>' : unxspawn /*- UNIX spawner prompt-*/
 , '$' /*-- a common prompt character --*/
 , '>' /*-- another common prompt character --*/
 , '%' /*-- another common prompt character --*/
 , '}' /*-- another common prompt character --*/
 , 'Login incorrect' : nouser
 , 'Enter terminal type' : unx_term
 , 'TERM' : unx_term
 , 30 seconds : timeout
 ;

 log 'NOTE: Logged onto UNIX... Starting remote SAS now.';
 /* NOTERMINAL suppresses prompts from remote SAS session. */
 /* NOSYNTAXCHECK prevents remote side from going into */
 /* syntax checking mode when a syntax error is encountered. */
7 type 'sas -dmr -comamid tcp -noterminal -nosyntaxcheck' LF;
8 waitfor 'SESSION ESTABLISHED', 90 seconds : nosas;
9 log 'NOTE: SAS/CONNECT conversation established.';
 stop;
10 unxspawn:

112 Chapter 10 • Sign-On Scripts

 /* The UNIX spawner executes only a single UNIX command */
 /* after the client logs on. In the TYPE statement below, */
 /* you can specify a SAS command line. You can also specify */
 /* a UNIX shell script that issues the SAS command line in */
 /* addition to any other commands to be executed prior to */
 /* SAS invocation. The following is a sample start-up */
 /* file: */
 /*#---*/
 /*# sas_startup */
 /*#---*/
 /*#!/bin/ksh */
 /*. ~/.profile */
 /*sas -dmr -noterminal -nosyntaxcheck */
 /*#---*/
 /* */
 /* If you choose to use a "startup" file, change the TYPE */
 /* statement below to something similar to the following: */
 /* type '/usr/local/whatever/sas_startup' LF; */
11 type 'sas -dmr -comamid tcp -noterminal ';
 type '-nosyntaxcheck' LF;

 waitfor 'SESSION ESTABLISHED', 90 seconds : nosas;
 stop;

/*---------------- TCP/IP SIGNOFF --------------------------------------*/
signoff:
 /* If you have established your connection to UNIX by using */
 /* a UNIX spawner, you should delete or comment the */
 /* following WAITFOR and TYPE statements. They are not */
 /* necessary for signing off a UNIX spawner and will */
 /* result in slower performance of SIGNOFF. */
12 waitfor '$'
 , '>' /*-- another common prompt character --*/
 , '%' /*-- another common prompt character --*/
 , '}' /*-- another common prompt character --*/
 , 30 seconds
 ;

 type 'logout' LF;
 log 'NOTE: SAS/CONNECT conversation terminated.';
 stop;

/*--------------- SUBROUTINES -----------------------------------*/

unx_term:
/*---*/
/*-- Some UNIX platforms want the terminal type, --*/
/*-- so tell them this is the most basic of terminals. --*/
/*---*/
 type 'tty' LF;
 goto unx_log;

/*--------------- ERROR ROUTINES --------------------------------*/

13 timeout:

Sample Scripts 113

 log 'ERROR: Timeout waiting for remote session response.';
 abort;

 nouser:
 log 'ERROR: Unrecognized userid or password.';
 abort;

 notcp:
 log 'ERROR: Incorrect communications access method.';
 log 'NOTE: You must set "OPTIONS COMAMID=TCP;" before using this';
 log ' script file.';
 abort;

 noinit:
 log 'ERROR: Did not understand remote session banner.';

 nolog:
 log 'ERROR: Did not receive userid or password prompt.';
 abort;

 nosas:
 log 'ERROR: Did not get SAS software start-up messages.';
 abort;

 noscript:
 /* This is the result of trying to sign on with a script file */
 /* to a UNIX spawner that has been invoked with the -NOSCRIPT */
 /* option. You need to clear any script file reference and */
 /* then re-execute SIGNON. */
 log 'ERROR: Scripted signons are not allowed.';
 log 'NOTE: Clear any script file reference and retry SIGNON.';
 abort;

1. The LOG statement sends the quoted message to the log file or to the Log window of
the SAS session at the client. Although it is unnecessary to include LOG statements
in your script file, the LOG statements keep the user informed about the progress of
the connection.

2. The IF/THEN statement can detect whether the script was called by the SIGNON
statement or the SIGNOFF statement. When you are signing off, the IF/THEN
statement directs script processing to the statement labeled SIGNOFF. See step 12.

3. The WAITFOR statement awaits the login prompt from the server. If the statement
does not receive the prompt within 120 seconds, it directs script processing to branch
to the statement labeled NOINIT.

4. The INPUT statement displays a window with the text Userid? to allow the user to
enter a server logon user ID. The TYPE statement sends a line feed to the server to
enter the user ID to the server.

5. The WAITFOR statement waits for the password prompt from the server and
branches to the NOLOG label if it is not received within 30 seconds. The INPUT
statement that follows the WAITFOR statement displays a window in which the user
enters a password.

6. The WAITFOR statement waits for one of several common UNIX prompts and
branches to various error handles if a prompt is not displayed. For a connection to
the UNIX spawner, the string "Hello >" is received and the control branches to the

114 Chapter 10 • Sign-On Scripts

unxspawn label in step 10. Verify that the WAITFOR statement in the script looks
for the correct prompt for your site.

7. The TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection.

8. The message SESSION ESTABLISHED is displayed when a SAS session is started
on the server by using the options -DMR and -COMAMID TCP. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the server. If the SESSION ESTABLISHED response is received within 90
seconds, processing continues with the next LOG statement. If the SESSION
ESTABLISHED response does not occur within 90 seconds, the script assumes that
the remote SAS session has not started, and processing branches to the statement
labeled NOSAS.

9. After the connection has been successfully established, the user must stop the rest of
the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10. This section of code is executed when you connect to a remote UNIX spawner.

11. The TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection.

12. This section of code is executed when the script is invoked to terminate the link. The
IF statement (see step 2) sends processing to this section of the script when the script
is invoked by a SIGNOFF statement. This section logs the user off the server after
the user executes LOGOFF. Before it stops the link, the script issues a LOG statement
to notify the user that the link is terminated.

13. These statements are processed only if the prompts expected in the previous steps are
not received. This section of the script issues messages to the SAS log at the client
and then abnormally ends the script processing as well as the SIGNON.

TCPWIN.SCR Script
The following script signs a client on and off a Windows server by using the TCP/IP
access method.

/* trace on; */
/* echo on; */
/*---*/
/*-- Copyright (C) 2007 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcpwin.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to a Windows host by --*/
/*-- using the TCP/IP access method. --*/
/*-- --*/
/*-- notes: 1. You must have the spawner program executing on --*/
/*-- the remote Windows workstation --*/
/*-- in order for the local session to be able to --*/
/*-- establish the connection. If the spawner is --*/
/*-- running on the remote node, you will receive a --*/
/*-- message that tells you that the connection has --*/

Sample Scripts 115

/*-- been refused. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the SIGNON --*/
/*-- command. --*/
/*-- --*/
/*-- assumes: 1. The command to execute SAS in your remote --*/
/*-- environment is "sas". --*/
/*-- If this is incorrect for your site, change the --*/
/*-- contents of the line that contains: --*/
/*-- type 'sas ... --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/
1 log "NOTE: Script file 'tcpwin.scr' entered.";

 if not tcp then goto notcp;
2 if signoff then goto signoff;

 /* --------------- TCP/IP SIGNON ---------------------------------*/

3 waitfor 'Username:'
 , 'Hello>' : ready
 , 'access denied' : nouser
 , 120 seconds : noprompt
 ;
4 input 'Userid?';
 type LF;
5 waitfor 'Password:' , 120 seconds: nolog;
 input nodisplay 'Password?';
 type LF;
6 waitfor 'Hello>'
 , 'access denied' : nouser
 , 120 seconds : timeout
 ;

 ready:
 log 'NOTE: Logged onto Windows... Starting remote SAS now.';
 /* NOTERMINAL suppresses prompts from remote SAS session. */
 /* NOSYNTAXCHECK prevents remote side from going into syntax */
 /* checking mode when a syntax error is encountered. */
7 type 'sas -dmr -comamid tcp -noterminal -nosyntaxcheck' LF;
8 waitfor 'SESSION ESTABLISHED', 120 seconds : nosas;
9 log 'NOTE: SAS/CONNECT conversation established.';
 stop;

/*---------------- TCP/IP SIGNOFF -----------------------------------*/
10 signoff:
 log 'NOTE: SAS/CONNECT conversation terminated.';
 stop;

/*--------------- SUBROUTINES -----------------------------------*/

116 Chapter 10 • Sign-On Scripts

/*--------------- ERROR ROUTINES
--------------------------------*/
11

 notcp:
 log 'ERROR: Incorrect communications access method.';
 log 'NOTE: You must set "OPTIONS COMAMID=TCP;" before using this';
 log ' script file.';
 abort;

 noprompt:
 log 'ERROR: Did not receive userid prompt.';
 log 'NOTE: Ensure spawner process is running on remote node.';
 abort;

 nolog:
 log 'ERROR: Did not receive password prompt.';
 abort;

 nouser:
 log 'ERROR: Unrecognized userid or password.';
 abort;

 nosas:
 log 'ERROR: Did not get SAS software startup messages.';
 abort;

 timeout:
 log 'ERROR: Timeout waiting for remote session response.';
 abort;

1. The LOG statement sends the quoted message to the log file or to the Log window of
the SAS session at the client. Although it is not necessary to include LOG statements
in your script file, the LOG statements keep the user informed about the progress of
the connection.

2. The IF/THEN statement detects whether the script was called by the SIGNON
statement or by the SIGNOFF statement. When you sign off, the IF/THEN statement
directs script processing to the statement that is labeled SIGNOFF. See step 10.

3. The WAITFOR statement awaits the login prompt from the server and branches to
various error handles if the prompt is not displayed.

4. The INPUT statement displays a window with the text Userid? to allow the user to
enter a server logon user ID. The TYPE statement sends a line feed to the server to
enter the user ID to the server.

5. The WAITFOR statement awaits the password prompt from the server and branches
to the NOLOG label if it is not received within 120 seconds. The INPUT statement
that follows the WAITFOR statement displays a window in which the user enters a
password.

6. The WAITFOR statement awaits the "Hello > " prompt that it expects to see from the
Windows spawner. If the statement does not receive the prompt within 120 seconds,
it directs script processing to branch to the statement that is labeled TIMEOUT.

7. The TYPE statement invokes SAS on the server. The -DMR option is necessary to
invoke a special processing mode for SAS/CONNECT. The -COMAMID option
specifies the access method that is used to make the connection.

Sample Scripts 117

8. The message SESSION ESTABLISHED is displayed when a SAS session is started
on the server by using the -DMR and -COMAMID TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the server. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the SESSION
ESTABLISHED response does not occur within 120 seconds, the script assumes that
the remote SAS session has not started and processing branches to the statement
labeled NOSAS.

9. After the connection has been successfully established, the user must stop the rest of
the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10. This section of code is executed when the script is invoked to terminate the link. The
IF statement (see step 2) sends processing to this section of the script when the script
is invoked by a SIGNOFF statement. Before it stops the link, the script issues a LOG
statement to notify the user that the link is terminated.

11. These statements are processed only if the prompts expected in the previous steps are
not received. This section of the script issues messages to the SAS log at the client
and then abnormally ends the script processing as well as the SIGNON.

TCPMVS.SCR Script
The following script enables a client to sign on and to sign off from a z/OS server with
TSO. The TCP/IP access method is used.

/*---*/
/*-- Copyright (C) 2007 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcpmvs.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to a z/OS host via the TCP/IP access method --*/
/*-- --*/
/*-- notes: 1. This script might need modifications that account --*/
/*-- for the local flavor of your z/OS environment. --*/
/*-- The logon procedure should mimic the tasks that --*/
/*-- you perform when "telnet"-ing to the same --*/
/*-- z/OS host through TSO. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the SIGNON --*/
/*-- command. --*/
/*-- --*/
/*-- 3. This script supports one flavor of connection: --*/
/*-- through a TSO session whose logon procedure --*/
/*-- invokes SAS directly rather than the TSO TMP. --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/

1 log "NOTE: Script file 'tcpmvs.scr' entered.";

 if not tcp then goto notcp;

118 Chapter 10 • Sign-On Scripts

2 if signoff then goto signoff;

/* ------------------------ TCP SIGNON ------------------------------*/

 /* make sure you are running the IBM TCP/IP */
3 waitfor 'ENTER USERID' : tsologon,
 120 seconds : noinit;

/*-------------------------- TSO LOGON ------------------------------*/

tsologon:
4 input 'Userid?';
 type LF;
5 waitfor 'ENTER PASSWORD', 60 seconds : nolog;

tsopass:
 input nodisplay 'Password?';
 type LF;

tsodone:
6 waitfor 'SESSION ESTABLISHED',
 'PASSWORD INVALID' : tsopass,
 'ENTER NEW PASSWORD' : tsonewp,
 'CURRENTLY LOGGED ON' : dup_log,
 'NOT VALID' : nouser,
 120 seconds : notso;
 waitfor 1 second;

7 log 'NOTE: SAS/CONNECT conversation established.';
 stop;

tsonewp:
8 input nodisplay 'New Password?';
 type LF;

9 waitfor 'VERIFY NEW PASSWORD',
 120 seconds : notso;

 input nodisplay 'Verify New Password';
 type LF;

 goto tsodone;

/*---------------------------- SIGNOFF ------------------------------*/
10 signoff:
 type 'logoff' LF;
 waitfor 'LOGGED OFF' : logoff,
 20 seconds;

 log 'WARNING: Did not get messages confirming logoff.';
 abort;

logoff:
 log 'NOTE:
SAS/CONNECT conversation terminated.';
 stop;

Sample Scripts 119

/*----------------------- TSO ERROR ROUTINES ------------------------*/

11 nouser:
 log 'ERROR: Unrecognized userid.';
 abort;

notcp:
 log 'ERROR: Incorrect communications access method.';
 log 'NOTE: You must set "OPTIONS COMAMID=TCP;" before using this';
 log ' script file.';
 abort;

noinit:
 log 'ERROR: Did not understand remote session banner.';
 abort;

nolog:
 log 'ERROR: Did not get userid or password prompt.';
 abort;

notso:
 log 'ERROR: Did not get TSO startup messages after logon.';
 abort;

dup_log:
 log 'ERROR: User is already logged onto TSO.';
 abort;

1. The LOG statement sends the quoted message to the log file or to the Log window of
the SAS session at the client. Although it is not necessary to include LOG statements
in your script file, the LOG statements keep the user informed about the progress of
the connection.

2. The IF/THEN statement detects whether the script was called by the SIGNON
statement. When you are signing off, the IF/THEN statement directs script
processing to the statement labeled SIGNOFF. See step 10.

3. The WAITFOR statement awaits the login prompt from the server. If the statement
does not receive the prompt within 120 seconds, it directs script processing to branch
to the statement labeled NOINIT.

4. The INPUT statement displays a window with the text Userid? to allow the user to
enter a server logon user ID. The TYPE statement sends a line feed to the server to
enter the user ID to the server.

5. The WAITFOR statement waits for the password prompt from the server and
branches to the NOLOG label if it is not received within 60 seconds. The INPUT
statement that follows the WAITFOR statement displays a window for the user to
enter a password.

6. The message SESSION ESTABLISHED is displayed when a SAS session is started
on the server. The WAITFOR statement awaits the display of the message SESSION
ESTABLISHED to be issued by the server. If the SESSION ESTABLISHED response
is received within 120 seconds, processing continues with the next LOG statement. If
the SESSION ESTABLISHED response does not occur within 120 seconds, the
script assumes that the remote SAS session has not started and processing branches
to the statement labeled NOTSO.

120 Chapter 10 • Sign-On Scripts

7. After the connection has been successfully established, the user must stop the rest of
the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

8. This section prompts for a new password if the password has expired. The INPUT
statement displays a window with the text New Password? to allow the user to
enter a password. The TYPE statement sends a line feed to the server to enter the
password to the server.

9. The WAITFOR statement waits for the prompt to verify the new password from the
server and branches to the NOTSO label if it is not received within 120 seconds. The
INPUT statement that follows the WAITFOR statement displays a window in which
the user re-enters the new password for verification.

10. This section of code is executed when the script is invoked to terminate the link. The
IF statement (see step 2) sends processing to this section of the script when the script
is invoked by a SIGNOFF statement. This section awaits a server prompt before
displaying LOGOFF, which logs the user off the server. Before it stops the link, the
script issues a LOG statement to notify the user that the link is terminated.

11. These statements are processed only if the prompts expected in the previous steps are
not received. This section of the script issues messages to the SAS log at the client
and then abnormally ends the script processing as well as the SIGNON.

TCPTSO9.SCR Script
The following script enables a client to sign on and to sign off from a z/OS server with
TSO or to a z/OS spawner. The TCP/IP access method is used.

/* trace on; */
/* echo on; */
/*---*/
/*-- Copyright (C) 2007 by SAS Institute Inc., Cary NC --*/
/*-- --*/
/*-- name: tcptso9.scr --*/
/*-- --*/
/*-- purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting --*/
/*-- to a z/OS host running SAS 9 or later via the --*/
/*-- TCP/IP access method. --*/
/*-- --*/
/*-- notes: 1. This script might need modifications that account --*/
/*-- for the local flavor of your z/OS environment. --*/
/*-- The logon procedure should mimic the tasks that --*/
/*-- you perform when "telnet"-ing to the same --*/
/*-- z/OS host, either to TSO or to the z/OS --*/
/*-- spawner. --*/
/*-- --*/
/*-- 2. You must have specified OPTIONS COMAMID=TCP --*/
/*-- in the local SAS session before using the SIGNON --*/
/*-- command. --*/
/*-- --*/
/*-- 3. This script supports two flavors of connection: --*/
/*-- through a TSO session whose logon procedure --*/
/*-- invokes the TSO TMP or through the z/OS --*/
/*-- spawner. --*/
/*-- --*/
/*-- 4. If you use the spawner to start the SAS session, --*/

Sample Scripts 121

/*-- in the signoff portion of the script, comment the --*/
/*-- LOGOFF command, which is only needed to complete --*/
/*-- TSO session termination and is not necessary for --*/
/*-- a spawned session. --*/
/*-- --*/
/*-- assumes: 1. The shell script to execute SAS in your remote --*/
/*-- z/OS environment is: --*/
/*-- "/usr/local/bin/spawnsas.sh" --*/
/*-- If you are using a different shell script or have --*/
/*-- your shell script stored in a different location, --*/
/*-- change the contents of the type statement that --*/
/*-- specifies this shell script: --*/
/*-- type "/usr/local/bin/spawnsas.sh ..." LF; --*/
/*-- --*/
/*-- 2. The command to execute SAS in your remote --*/
/*-- (MVS/TSO) environment is "sas". If this is --*/
/*-- incorrect for your site, change the contents of --*/
/*-- the line for connection through TSO that --*/
/*-- contains: --*/
/*-- type "sas ..." lf; --*/
/*-- --*/
/*-- support: SAS Institute staff --*/
/*-- --*/
/*---*/

1 log "NOTE: Script file 'tcptso9.scr' entered.";

 if not tcp then goto notcp;
2 if signoff then goto signoff;

/* ------------------------ TCP SIGNON ------------------------------*/

 /* make sure you are running the IBM TCP/IP or the z/OS spawner */

3 waitfor 'Username:' : spnlogon,
 'ENTER USERID' : tsologon,
 120 seconds : noinit;

/*------------------------- SPAWNER LOGON ---------------------------*/

spnlogon:
4 input 'Userid?';
 type LF;

5 waitfor 'Password', 120 seconds : spnfail;
 input nodisplay 'Password?';
 type LF;

spndone:
6 waitfor 'Hello>',
 'Userid' : spnlogon,
 'Password expired' : spnnewp,
 120 seconds : spnfail;

7 type "/usr/local/bin/spawnsas.sh nosasuser opt(''dmr comamid=tcp'')" LF;

122 Chapter 10 • Sign-On Scripts

8 waitfor 'SESSION ESTABLISHED', 120 seconds : spnfail;

9 log 'NOTE: SAS/CONNECT conversation established.';
 stop;

spnnewp:
10 input nodisplay 'New Password?';
 type LF;

 waitfor 'Verify new password', 120 seconds : spnfail;

 input nodisplay 'Verify New Password';
 type LF;

 goto spndone;

spnfail:
 log 'ERROR: Invalid SPAWNER prompt message received.';
 abort;

/*-------------------------- TSO LOGON ------------------------------*/

tsologon:
11 input 'Userid?';
 type LF;
12 waitfor 'ENTER PASSWORD', 60 seconds : nolog;
 input nodisplay 'Password?';
 type LF;

tsodone:
13 waitfor 'READY',
 'CURRENTLY LOGGED ON' : dup_log,
 'NOT VALID' : nouser,
 'PASSWORD INVALID' : nopass,
 'ENTER NEW PASSWORD' : tsonewp,
 'RECONNECT SUCCESS' : recon,
 120 seconds : notso;
 waitfor 1 second;

strt_sas:
 log 'NOTE: Logged on to TSO.... Starting remote SAS now.';
 /* NOTERMINAL suppresses prompts from */
 /* remote SAS session. NOSYNTAXCHECK prevents remote side from */
 /* going into syntax checking mode when a syntax error is encountered. */
14 type "sas o('dmr,comamid=TCP,noterminal,nosyntaxcheck')" LF;
15 waitfor 'SESSION ESTABLISHED', 120 seconds : nosas;

16 log 'NOTE: SAS/CONNECT conversation established.';
 stop;

tsonewp:
17 input nodisplay 'New Password?';
 type LF;

 waitfor 'VERIFY NEW PASSWORD',
 120 seconds : notso;

Sample Scripts 123

 input nodisplay 'Verify New Password';
 type LF;

 goto tsodone;

/*---------------------------- SIGNOFF------------------------------*/
18 signoff:
/* --------- for the spawner, comment the following section ---------*/
 waitfor 'READY', 20 seconds: noterm;
 type 'logoff' LF;
 waitfor 'LOGGED OFF' : logoff,
 20 seconds;

 log 'WARNING: Did not get messages confirming logoff.';
 abort;

logoff:
/*---------- for the spawner, comment the previous section ----------*/

 log 'NOTE: SAS/CONNECT conversation terminated.';
 stop;

/*----- SUBROUTINES---*/

19 recon:
 log 'NOTE: Reconnected to previous session. Old SAS session lost.';
 type LF;
 waitfor 'READY' : strt_sas,
 120 seconds;
 log 'NOTE: Reconnected to a Running Session, but no READY prompt';
 abort;

/*--------------- ERROR ROUTINES--------------------------------*/
20 nouser:
 log 'ERROR: Unrecognized userid.';
 abort;

nopass:
 log 'ERROR: Invalid password.';
 abort;

notcp:
 log 'ERROR: Incorrect communications access method.';
 log 'NOTE: You must set "OPTIONS COMAMID=TCP;" before using this';
 log ' script file.';
 abort;

noinit:
 log 'ERROR: Did not understand remote session banner.';
 abort;

nolog:
 log 'ERROR: Did not get userid or password prompt.';
 abort;

124 Chapter 10 • Sign-On Scripts

notso:
 log 'ERROR: Did not get TSO startup messages after logon.';
 abort;

nosas:
 log 'ERROR: Did not get SAS software startup messages.';
 abort;

dup_log:
 log 'ERROR: User is already logged onto TSO.';
 abort;
noterm:
 log 'ERROR: Did not get READY prompt; remote session still logged on.';
 abort;

1. The LOG statement sends the quoted message to the log file or to the Log window of
the SAS session at the client. Although it is not necessary to include LOG statements
in your script file, the LOG statements keep the user informed about the progress of
the connection.

2. The IF/THEN statement detects whether the script was called by the SIGNON
statement or by the SIGNOFF statement. When you sign off, the IF/THEN statement
directs script processing to the statement that is labeled SIGNOFF. See step 18.

3. The WAITFOR statement awaits the login prompt from the server. If the statement
does not receive the prompt within 120 seconds, it directs script processing to branch
to the statement labeled NOINT.

4. The INPUT statement displays a window containing a prompt for a user ID so that
the user can enter a server logon user ID. The TYPE statement sends a line feed to
the server to enter the user ID to the server. This section is entered when the
SAS/CONNECT spawner is encountered.

5. The WAITFOR statement waits for the password prompt from the server and
branches to the SPNFAIL label if it is not received within 120 seconds. The INPUT
statement that follows the WAITFOR statement displays a window for the user to
enter a password in.

6. The WAITFOR statement awaits the “Hello>” prompt that it expects to receive from
the spawner. If WAITFOR does not receive the prompt, it branches to various
condition handlers.

7. The TYPE statement calls a shell script to start SAS, and it passes the options that
are needed for the SAS/CONNECT session. For a sample shell script, see “Starting
SAS Using a Shell Script” on page 87.

8. The message SESSION ESTABLISHED is displayed when a SAS session is started
on the server by using the DMR and COMAMID=TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED that is issued
by the server. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the response is not
received in the specified time period, the script assumes that the remote SAS session
has not started and processing branches to the statement labeled SPNFAIL.

9. After the connection has been successfully established, the user must stop the rest of
the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script. Prior to the STOP, a message is output
to the log, which informs the user that the connection has been established.

10. This section prompts for a new password if the password has expired.

Sample Scripts 125

11. The INPUT statement displays a window that contains a prompt for a user ID so that
the user can enter a server logon user ID. The TYPE statement sends a line feed to
the server to enter the user ID to the server. This section is entered when a TSO login
is encountered.

12. The WAITFOR statement awaits the password prompt from the server and branches
to the NOLOG label if it is not received within 60 seconds. The INPUT statement
that follows the WAITFOR statement displays a window for the user to enter a
password.

13. The WAITFOR statement awaits the READY prompt after successful TSO logon. It
branches to various condition handlers if the prompt is not received.

14. The TYPE statement issues the command to start SAS through the TSO session, and
passes options that are needed for the SAS/CONNECT session.

15. The message SESSION ESTABLISHED is displayed when a SAS session is started
on the server using the DMR and COMAMID=TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the server. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the response is not
received within the time limit, the script assumes that the remote SAS session has not
started and processing branches to the statement labeled NOSAS.

16. After the connection has been successfully established, the user must stop the rest of
the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script. Prior to the STOP, a message is output
to the log, which informs the user that the connection has been established.

17. This section prompts for a new password if the password has expired.

18. This section of code is executed when the script to terminate the link is invoked. The
IF statement (see step 2) sends processing to this section of the script when the script
is invoked by a SIGNOFF statement. This section awaits a server prompt before
displaying LOGOFF, which logs the user off the server. Before it terminates the link,
the script issues a LOG statement to notify the user that the link is terminated.

Note: If the session has been established through the z/OS spawner, the WAITFOR
and TYPE statements should be deleted or commented out. They are necessary
only for signing off a TSO connection.

19. This section handles the case where SIGNON reconnects the user to a SAS session
that is still running on the server. It sends the script back to the section that starts
SAS through a TSO sign-on.

20. These statements are processed only if the prompts expected in the previous steps are
not received. This section of the script issues messages to the SAS log at the client
and then abnormally ends the script processing as well as the SIGNON.

126 Chapter 10 • Sign-On Scripts

Chapter 11

Error Messages

UNIX: TCP/IP Access Method . 127
SAS/CONNECT Error Messages under UNIX . 127
SAS/SHARE Error Messages under UNIX . 127

Windows: TCP/IP Access Method . 128
SAS/CONNECT Error Messages under Windows . 128
SAS/SHARE Error Messages under Windows . 128

z/OS: TCP/IP Access Method . 129
SAS/CONNECT Error Messages under z/OS . 129
SAS/SHARE Error Messages under z/OS . 129

UNIX: TCP/IP Access Method

SAS/CONNECT Error Messages under UNIX
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following
system message appears:

connection refused

The connection might fail at sign-on for the following reasons:

• The remote side is not listening.

• The maximum number of connections has been reached.

SAS/SHARE Error Messages under UNIX
The TCP/IP access method that is used by SAS/SHARE sometimes issues generalized
messages to identify problems. This section describes some of the most frequently
encountered messages.

No TCP service <server-id> on this host

The service that is specified in the SERVERID= option is not defined in the
TCPservices file.

Cannot bind TCP socket. System message is 'address already in use'

127

Another server that has the same name is already running on this node, or another
TCP/IP application is using the predefined port numbers that the TCP/IP access method
is trying to use. If another server of the same name is running, choose one of the other
predefined server names. If there is no other server running that has the same name,
there might be a conflict with another software application. Contact on-site SAS support
personnel for assistance.

Cannot connect to TCP socket. System message is 'connection refused'

The server that is specified by the SERVER= option cannot be located on the specified
node.

Cannot locate TCP host 'node'

The node that is specified in a two-level node name is not known to the TCP/IP
software.

Windows: TCP/IP Access Method

SAS/CONNECT Error Messages under Windows
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following
system message appears:

connection refused

The connection might fail at sign-on for the following reasons:

• The remote side is not listening.

• The maximum number of connections has been reached.

SAS/SHARE Error Messages under Windows
The TCP/IP access method used by SAS/SHARE sometimes issues generalized
messages to identify problems. This section describes some of the most frequently
encountered messages.

ERROR: Communication request rejected by partner: security
verification failure

An unauthorized client tried to connect to a secure server.

No TCP service server-id on this host.

The service that is specified in the SERVERID= option is not one of the SAS/SHARE
TCP/IP service names that are defined in the TCP/IP services file.

Cannot locate TCP host 'node'.

The TCP/IP software is probably not running on the server's node. The node that was
specified in a two-level name is not known to the TCP/IP software, or the TCP/IP
software is not running on the user's node.

128 Chapter 11 • Error Messages

Cannot bind TCP socket.

System message is 'address already in use'.

Another server that has the same name is already running on this node, or another
TCP/IP application is using the predefined port numbers that the TCP/IP access method
is trying to use. If another server that has the same name is running, choose one of the
other predefined server names. If there is no other server running that has the same
name, there might be a conflict with another software application. Contact on-site SAS
support personnel for assistance.

Cannot connect to TCP socket.

System message is 'connection refused'.

The server that was specified by the SERVER= option cannot be located on the specified
node.

z/OS: TCP/IP Access Method

SAS/CONNECT Error Messages under z/OS
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following
system message appears:

connection refused

The connection might fail at sign-on for the following reasons:

• The remote side is not listening.

• The packet sequence is out of order, which can indicate that the routers are not
working properly.

• The maximum number of connections has been reached.

• There is a flow problem, which indicates that too many packets are being sent to the
remote side at the same time.

Under z/OS, use the NETSTAT utility to show active sockets and to show who is waiting
for a socket.

SAS/SHARE Error Messages under z/OS

No TCP service server-id on this host

The service that is specified in the SERVERID= option is not one of the SAS/SHARE
TCP/IP services that are defined in the TCP services file.

Cannot locate TCP host host name

The TCP/IP software is probably not running on the server's node.

z/OS: TCP/IP Access Method 129

Cannot bind TCP socket. System message is 'address already in use
'

Another server with the same name is already running on this node, or another TCP/IP
application is using the predefined port numbers that the TCP/IP access method is trying
to use. If another server of the same name is running, choose one of the other defined
server names. If there is no other server running that has the same name, there might be a
conflict with another software application. Please contact your system administrator.

Cannot connect to TCP socket. System message is 'connection
refused'

The server that is specified by the SERVER= option cannot be located on the specified
node.

Cannot locate TCP host node

The node that is specified in a two-level name is not known to the TCP/IP software, or
the TCP/IP software is not running on the user's node. See “Specifying the Server” on
page 44 for information about two-level server names.

130 Chapter 11 • Error Messages

Recommended Reading

Here is the recommended reading list for this title:

• SAS/CONNECT User's Guide

• SAS/SHARE User's Guide

• Moving and Accessing SAS Files

• SAS Companion for UNIX Environments

• SAS Companion for Windows

• SAS Companion for z/OS

• Encryption in SAS

• Configuration Guide for SAS Foundation for Microsoft Windows for x64

• Configuration Guide for SAS Foundation for Microsoft Windows

• Configuration Guide for SAS Foundation for z/OS

• Configuration Guide for SAS Foundation for UNIX Environments

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

131

http://sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

132 Recommended Reading

Glossary

access method
See communications access method.

authentication
See client authentication.

autoexec file
a file that contains SAS statements that are executed automatically when SAS is
invoked. The autoexec file can be used to specify some of the SAS system options,
as well as to assign librefs and filerefs to data sources that are used frequently. See
also fileref.

client authentication (authentication)
the process of verifying the identity of a person or process for security purposes.

client session
a SAS session that is running on a client computer. A client session accepts SAS
statements and passes those that are submitted to the server for processing. The client
session manages the output and messages from both the client session and the server
session.

command file
a file that contains operating system commands to be executed in sequence.

communications access method (access method)
an interface between SAS and the network protocol or interface that is used to
connect two operating environments. Depending on the operating environments,
SAS/SHARE and SAS/CONNECT use either the TCP/IP or XMS communications
access method. See also TCP/IP.

control program
a low-level software interface, such as SAS/CONNECT software, between
communications hardware and applications programs. A control program works in
conjunction with an adapter.

Cross-Memory Services (XMS)
a cross-task communication interface that is part of z/OS. XMS is used by programs
that run within a single z/OS operating environment. XMS is also the name of the
SAS communications access method that uses XMS for client/server
communication.

133

data set
See SAS data set.

descriptor information
information about the contents and attributes of a SAS data set. For example, the
descriptor information includes the data types and lengths of the variables, as well as
which engine was used to create the data. SAS creates and maintains descriptor
information within every SAS data set.

DNS
See Domain Name System.

domain name resolution (name resolution)
in a TCP/IP network, the process of converting a server name to an IP address. See
also Domain Name System.

domain name resolver (name resolver)
in a TCP/IP network, client software that uses one or more domain name servers to
convert a server name to an IP address or vice versa. See also domain name server,
domain name resolution.

domain name server (name server)
an Internet server program that converts domain names to IP addresses. See also
Domain Name System.

Domain Name System (DNS)
a distributed database system on the Internet that maps domain names to IP
addresses. The Domain Name System also provides information about which TCP/IP
services are available to the server host, the location of the domain name servers in
the network, and other information about server hosts and networks. See also domain
name server, TCP/IP.

encryption
the conversion of data by the use of algorithms or other means into an unintelligible
form in order to secure data (for example, passwords) in transmission and in storage.

external file
a file that is created and maintained by a host operating system or by another
vendor's software application. An external file can read both data and stored SAS
statements.

file reference
See fileref.

fileref (file reference)
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS. See also libref.

firewall
a set of related programs that protect the resources of a private network from users
from other networks. A firewall can also control which outside resources the internal
users are able to access. See also socket inheritance, port, SAS/CONNECT spawner.

134 Glossary

Integrated Object Model server (IOM server)
a SAS object server that is launched in order to fulfill client requests for IOM
services.

Internet Protocol Version 4 (IPv4)
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the predecessor of Internet Protocol
Version 6, uses dot-decimal notation to represent 32-bit address spaces. An example
of an Internet Protocol Version 4 address is 10.23.2.3. See also IP address.

Internet Protocol Version 6 (IPv6)
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the successor of Internet Protocol
Version 4, uses hexadecimal notation to represent 128-bit address spaces. The format
can consist of up to eight groups of four hexadecimal characters, delimited by
colons, as in FE80:0000:0000:0000:0202:B3FF:FE1E:8329. As an alternative, a
group of consecutive zeros could be replaced with two colons, as in
FE80::0202:B3FF:FE1E:8329. See also IP address.

IOM server
See Integrated Object Model server.

IP address
a unique network address that is assigned to each computer that is connected to the
Internet. The IP address can be specified in either of two formats: Internet Protocol
Version 4 (IPv4) or Internet Protocol Version 6 (IPv6). See also Internet Protocol
Version 4.

IPv4
See Internet Protocol Version 4.

IPv6
See Internet Protocol Version 6.

library reference
See libref.

libref (library reference)
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library. See also SAS library.

name resolution
See domain name resolution.

name resolver
See domain name resolver.

name server
See domain name server.

operating environment
a computer, or a logical partition of a computer, and the resources (such as an
operating system and other software and hardware) that are available to the computer
or partition.

Glossary 135

port
in a network that uses the TCP/IP protocol, an endpoint of a logical connection
between a client and a server. Each port is represented by a unique number.

Remote Library Services (RLS)
a feature of SAS/SHARE and SAS/CONNECT software that enables you to read,
write, and update remote data as if it were stored on the client. RLS can be used to
access SAS data sets on computers that have different architectures. RLS also
provides read-only access to some types of SAS catalog entries on computers that
have different architectures.

return code
a numeric value that indicates whether a request was successful. A return code can
also indicate a specific error or warning.

RLS
See Remote Library Services.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as the name of the engine that was
used to create the data. See also SAS data set.

SAS data set (data set)
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views. See also descriptor
information.

SAS library
one or more files that are defined, recognized, and accessible by SAS, and that are
referenced and stored as a unit. Each file is a member of the library.

SAS system option (system option)
a type of SAS language element that is applied to any of a number of operations
during a SAS session. System options can control SAS session initialization, SAS
interactions with hardware and software, and input and output processing of SAS
files.

SAS/CONNECT client
a SAS session that receives services, data, or other resources from a specified server.
The server can run on the same computer as the client or on a different computer
(across a network).

SAS/CONNECT server
a SAS session that delivers services, data, or other resources to a requesting client.
The server can run on the same computer as the client, or on a networked computer.

SAS/CONNECT spawner (spawner)
a program that runs on a remote computer and that listens for SAS/CONNECT client
requests for connection to the remote computer. When the spawner program receives
a request, it invokes a SAS session on the remote computer.

136 Glossary

SAS/SHARE client
a SAS/SHARE session that acts as a client. The user who runs a SAS/SHARE client
accesses data on a SAS/SHARE server through Remote Library Services (RLS). See
also server, SAS/SHARE server, Remote Library Services.

SAS/SHARE server
the result of an execution of the SERVER procedure, which is part of SAS/SHARE
software. A server runs in a separate SAS session that services users' SAS sessions
by controlling and executing input and output requests to one or more SAS libraries.
See also server, SAS/SHARE client.

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

script
an external file that contains SAS script statements. The script file is stored on a
client and provides instructions for establishing and terminating a SAS/CONNECT
session. Script files are executed by the SIGNON and SIGNOFF commands. See
also external file.

script statement
a special kind of SAS statement that was developed for use in scripts for
SAS/CONNECT software. Script statements are used only in scripts.

Secure Sockets Layer (SSL)
an encryption protocol for securely communicating across the Internet. SSL uses
encryption algorithms RC2, RC4, DES, TripleDES, and AES.

Security Support Provider Interface (SSPI)
a built-in security provider for Microsoft Windows computers. In a network, SSPI
transfers user context information from a user's client computer to the server. This
enables users who are members of a trusted domain to be authenticated
automatically.

server
software that provides either resources or services to requesting clients, possibly over
a network.

services file
a file that contains a list of service names and the TCP/IP ports that are mapped to
those services. The services file is stored on both the SAS client and the SAS server.
The UNIX services file is located in /etc/services. A service can be specified for any
of the following: a SAS/CONNECT spawner, a SAS/SHARE server, an MP
CONNECT pipe, and a firewall server. See also port, firewall, SAS/SHARE server.

simulated logon
a commonly used method of client authentication that is available in all operating
environments. In a simulated logon, the client provides a user ID and password that
are checked by the server.

SMP
See symmetric multiprocessing.

Glossary 137

socket
the endpoint of a connection in a TCP/IP network. A socket is the combination of a
TCP port and an IP address. By analogy, a socket is like a telephone to which a
telephone number has been assigned. The TCP port is like a telephone number, and
the IP address is like the location of the telephone. See also port, services file, socket
inheritance, IP address.

socket inheritance
the mechanism by which a SAS/CONNECT server that is running a spawner uses a
single firewall socket (or port) for SAS/CONNECT server-to-client communications.
Socket inheritance increases the security of private networks by limiting the number
of ports that are used for connections through a firewall. See also SAS/CONNECT
spawner, port, firewall.

spawner
See SAS/CONNECT spawner.

SSL
See Secure Sockets Layer.

SSPI
See Security Support Provider Interface.

symmetric multiprocessing (SMP)
a type of hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller.

system option
See SAS system option.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

TLS
See Transport Layer Security.

Transport Layer Security (TLS)
the successor to Secure Sockets Layer (SSL), a cryptographic protocol that is
designed to provide communication security over the Internet. TLS uses asymmetric
cryptography for authentication and confidentiality of the key exchange, symmetric
encryption for data/message confidentiality, and message authentication codes for
message integrity. Several versions of the protocols are in widespread use in
applications such as web browsing, electronic mail, Internet faxing, instant
messaging and voice-over-IP (VoIP). See also Secure Sockets Layer.

138 Glossary

user context
a set of information about the user who is associated with an active session. The user
context contains information such as the user's identity and profile. See also Security
Support Provider Interface.

user right
any of a set of privileges that are assigned to each user of a client computer and to a
server computer in a Windows domain. Setting the appropriate user rights on the
server computer enables users to connect to a secure server.

XMS
See Cross-Memory Services.

Glossary 139

140 Glossary

Index

Special Characters
-DEBUG option 88
-ENCRYPTFIPS 89
-HELP 89
-INSTALLDEPENDENCIES option

-INSTALL option 93
-LOG | -LOGFILE 89
-LOGCONFIGLOC 89
_BPXK_SETIBMOPT_TRANSPORT

environment variable
TCP/IP under z/OS 54

A
accessibility features 5
anchor points

XML under z/OS 70
Authentication program

TCP/IP under UNIX 22

C
client authentication

TCP/IP under UNIX 22
TCP/IP under Windows 28, 30
TCP/IP under z/OS 46

communications access method
XMS access method 3

communications access methods
definition 3
operating environments supported 4
supported by SAS/CONNECT and

SAS/SHARE 3
TCP/IP access method 3

CONNECTWDWAIT environment
variable

TCP/IP under z/OS 56

D
data security

TCP/IP under Windows 31

E
encryption

TCP/IP under UNIX 12, 23
TCP/IP under Windows 26, 29
TCP/IP under z/OS 38, 44, 46
XMS under z/OS 64

environment variables 54
error messages

TCP/IP under UNIX 127
TCP/IP under Windows 128
TCP/IP under z/OS 129

F
firewalls

concepts 103
configuration examples, restricted ports

104
configuration examples, single port 106
configurations 104
requirements for 103

I
IBM z/OS Name Resolver 56

L
load module

XMS under z/OS 69
logon procedure

TCP/IP under z/OS 42

M
METAENCRYPTALG 90
METAENCRYPTLEVEL 90
METAPASS 90
MGMTPORT 18, 79, 90
multi-processor machines

TCP/IP under UNIX 13
XMS under z/OS 64

141

N
name resolution 35
name resolver 35
name resolvers 56
name server 35
network security

TCP/IP under UNIX 10
TCP/IP under z/OS 35
XMS under z/OS 63

P
Permission program

TCP/IP under UNIX 22
PROFILE.TCPIP file 52

R
resources

XMS under z/OS 62

S
SAS environment variables 54
SAS SVC routine

installing 68
TCP/IP under z/OS 34
XMS under z/OS 62

SAS, starting
TCP/IP under UNIX 13
XMS under z/OS 64

SAS/CONNECT
communications access methods

supported 3
SAS/CONNECT spawner

in UNIX 84
in Windows 85
in z/OS 86
managing 83
options 86

SAS/SHARE
communications access methods

supported 3
SASCMD 91
SASCMD option

TCP/IP under UNIX 13
XMS under z/OS 64

SECPROFILE= option
TCP/IP under z/OS 37

secured servers
TCP/IP under UNIX 19
TCP/IP under Windows 28
TCP/IP under z/OS 44

server name
XMS under z/OS 66, 69

server service

TCP/IP under UNIX 19, 21
TCP/IP under Windows 26, 28
TCP/IP under z/OS 43, 46

server sessions
TCP/IP under UNIX 13
XMS under z/OS 64, 65

servers
TCP/IP under UNIX 20, 23
TCP/IP under Windows 26, 29
TCP/IP under z/OS 44, 47

SERVICES file
configuring 100
TCP/IP under z/OS 58

sign-on scripts
sample scripts 110
spawners and 74
specifying time 110
syntax 109
TCP/IP under UNIX 15, 111
TCP/IP under Windows 115
TCP/IP under z/OS 40, 118, 121
TCPMVS.SCR script 118
TCPTS09.SCR script 121
TCPUNIX.SCR script 111
TCPWIN.SCR script 115
TYPE statement and 110
WAITFOR statement and 110

signing on
TCP/IP under UNIX 12
TCP/IP under z/OS 38
XMS under z/OS 64

simulated logon method
TCP/IP under Windows 30

SMP machines
TCP/IP under UNIX 13
XMS under z/OS 64

socket inheritance
socket inheritance 103

software requirements
TCP/IP under UNIX 10
TCP/IP under z/OS 34
XMS under z/OS 62

spawner
connection examples 79
definition 73
installing in Windows 85
passwords and 74
scriptless signon to Windows 80
starting in Windows 86
steps for managing in Windows 85
UNIX scripted signon to 79
user IDs and 74
z/OS encrypted signon to 81

spawner management
PROC IOMOPERATE and 78

spawners

142 Index

client connection to 78
firewalls and 74
sign-on scripts and 74
support by operating environment 78
TCP/IP under UNIX 14, 18
TCP/IP under z/OS 38

SUBSYSID= option
XMS under z/OS 63

subsystem identifier
XMS under z/OS 63

system configuration
XMS under z/OS 70

T
TCIPMCH environment variable

TCP/IP under z/OS 55
TCP_POLL_INTERVAL environment

variable
TCP/IP under z/OS 55

TCP/IP access method 3
TCP/IP access method, UNIX 11

accessing secured servers 19
client authentication 22
client example 21
client tasks (SAS/CONNECT) 17
client tasks (SAS/SHARE) 21
configuring authentication program 22
configuring permission program 22
configuring server service 19, 21
configuring spawner service 18
configuring user access authority 22
encryption 12, 19, 23
error messages 127
network security 10
options (SAS/CONNECT) 10, 11
server example 18, 24
server tasks (SAS/CONNECT) 18
server tasks (SAS/SHARE) 24
sign-on scripts 111
signing on to same SMP machine 13
signing on with spawner 14
signing on with Telnet daemon 16
signon method 12
software requirements 10
specifying 12, 19, 23
specifying server 20, 23
starting spawner 18

TCP/IP access method, Windows
client authentication 28, 30
client example 27
client tasks (SAS/SHARE) 27
configuring server service 26, 28
data security 31
encryption 26, 29
error messages 128

server example 29
server tasks (SAS/SHARE) 29
sign-on scripts 115
simulated logon method 30
specifying 26, 29
specifying server 26, 29
user rights for secured server 28

TCP/IP access method, z/OS 36
accessing secured servers 44
client authentication 46
client example 45
client tasks (SAS/CONNECT) 41
client tasks (SAS/SHARE) 45
configuring server service 43, 46
determining stack affinity 53
encryption 38, 44, 46
error messages 129
installing logon procedure 42
installing SAS SVC routine 34
network security 35
options (SAS/CONNECT) 35
options (SAS/SHARE) 36
planning 47
server example 42, 47
server tasks (SAS/CONNECT) 42
server tasks (SAS/SHARE) 47
setting stack affinity 56
sign-on scripts 118, 121
signing on with spawner 38
signing on with Telnet daemon 41
signon method 38
software requirements 34
specifying 37, 43, 46
specifying server 44, 47
terminology 35

TCP/IP communication stack 48
configuration files 52

TCPIP.DATA file 53
TCPMSGLEN environment variable

TCP/IP under UNIX 10, 11
TCP/IP under z/OS 35, 55

TCPMVS.SCR script 118
TCPPORTFIRST= option

TCP/IP under UNIX 11
TCP/IP under z/OS 36

TCPPORTLAST= option
TCP/IP under z/OS 36

TCPSEC= option
TCP/IP under UNIX 11, 22
TCP/IP under Windows 28
TCP/IP under z/OS 36, 46

TCPTN3270 option
TCP/IP under UNIX 11
TCP/IP under z/OS 36

TCPTS09.SCR script 121
TCPUNIX.SCR script 111

Index 143

TCPWIN.SCR script 115
Telnet daemon for signing on

TCP/IP under UNIX 16
TCP/IP under z/OS 41

time
specifying for sign-on scripts 110

TKMVSENV data set 54
TYPE statement

sign-on scripts and 110

U
UNIX

See TCP/IP access method, UNIX
UNIX spawner service

starting 18
user access authority

TCP/IP under UNIX 22
user rights

TCP/IP under Windows 28

W
WAITFOR statement

sign-on scripts and 110

X
XMS access method 3
XMS access method, z/OS 61

client example 67
client tasks (SAS/CONNECT) 63
client tasks (SAS/SHARE) 67
defining resources 62
encryption 64
installation tasks 69
installing load module 69
installing SAS SVC routine 62, 68
network security 63
server example 69
server name 66, 69
server tasks (SAS/SHARE) 69
signing on to multi-processor machine

64
software requirements 62
specifying 63, 66, 68
SUBSYSID= option 63
system configuration 70

Z
z/OS

See TCP/IP access method, z/OS
See XMS access method, z/OS

144 Index

	Contents
	What's New in Communications Access Methods for SAS/CONNECT
9.4 and SAS/SHARE 9.4
	Overview
	Spawner Enhancements
	New Spawner Management Interface
	New Spawner Name and Start-Up Command
	New or Enhanced Spawner Options
	Spawner Logger Enhancements

	Other Communication Access Methods Changes
	SAS Support for IBM Password Phrase Length on z/OS

	Introduction
	Communication Access Methods
	Communications Access Method: Definition
	Communications Access Methods Supported by SAS/CONNECT and
 SAS/SHARE
	About TCP/IP Internet Protocol (IP) Addressing
	Operating Environments Supported in SAS 9.4
	Finding Information in This Documentation
	Accessibility Features in SAS Products

	Access Methods by Operating Environment
	UNIX: TCP/IP Access Method
	Prerequisites for Using TCP/IP under UNIX
	Task List
	Software Requirements
	SAS/CONNECT and SAS/SHARE Network Security
	TCPMSGLEN Environment Variable
	SAS/CONNECT Options Only
	SAS/SHARE Options Only

	SAS/CONNECT Client Tasks
	Task List
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Choosing a Method to Use to Sign On
	Signing On to the Same Multiprocessor Computer
	Signing On Using a Spawner
	Signing On Using a Telnet Daemon

	SAS/CONNECT Server Tasks
	Overview
	Task List
	Configuring the UNIX Spawner Service
	Starting the SAS/CONNECT Spawner on UNIX
	SAS/CONNECT Server Example

	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Accessing a Secured Server
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Configuring User Access Authority
	Configuring the Authentication Program
	Configuring the Permission Program
	Encrypting Data in Client/Server Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	Windows: TCP/IP Access Method
	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Assigning User Rights for a Server That Is Running Secured
	Encrypting Data in Server/Client Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	Data Security for SAS/CONNECT or SAS/SHARE Servers
	Client Authentication
	Simulated Logon Method
	SSPI

	z/OS: TCP/IP Access Method
	Prerequisites for Using TCP/IP under z/OS
	Task List
	Software Requirements
	Installation of the SAS SVC Routine
	TCP/IP Access Method Terminology
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/CONNECT Options Only
	SAS/SHARE Options Only

	SAS/CONNECT Client Tasks
	Task List
	Specifying TCP/IP as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Choosing a Method to Use to Sign On
	Signing On Using a Spawner
	Signing On Using a Telnet Daemon

	SAS/CONNECT Server Tasks
	Overview
	Task List
	Installing the Logon Procedure on the Server
	SAS/CONNECT Server Example

	SAS/SHARE Client Tasks
	Task List
	Configuring the Server Service
	Specifying TCP/IP as the Communications Access Method
	Accessing a Secured Server
	Encrypting Data in Client/Server Transfers
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Configuring the Server Service
	Setting the TCPSEC Option to Require Client Authentication
	Encrypting Data in Client/Server Transfers
	Specifying TCP/IP as the Communications Access Method
	Specifying the Server
	SAS/SHARE Server Example

	System Configuration for TCP/IP
	Planning for TCP/IP
	TCP/IP Overview
	TCP/IP: Software Requirements
	Configuring TCP/IP Stacks
	TCP/IP Host Name Configuration
	TCP/IP Stack Configuration Files
	TKMVSENV Data Set
	SAS Environment Variables
	Setting Stack Affinity With 64-Bit SAS
	TCP/IP Name Resolver Configuration
	The Services File
	Documentation
	References

	z/OS: XMS Access Method
	 Prerequisites for Using XMS under z/OS
	Task List
	Software Requirements
	Installation of the SAS SVC Routine
	Defining Resources for the XMS Communications Access Method
	SAS/CONNECT and SAS/SHARE Network Security
	SAS/SHARE SUBSYSID= Option

	SAS/CONNECT Client Tasks
	Task List
	Specifying XMS as the Communications Access Method
	Encrypting Data in Client/Server Transfers
	Signing On to the Same Multiprocessor Computer

	SAS/CONNECT Server Tasks
	SAS/SHARE Client Tasks
	Task List
	Specifying XMS as the Communications Access Method
	Specifying the Server
	SAS/SHARE Client Example

	SAS/SHARE Server Tasks
	Task List
	Installing the SAS SVC Routine
	Specifying XMS as the Communications Access Method
	Specifying a Server Name
	SAS/SHARE Server Example

	System Configuration for the XMS Access Method
	Installation Tasks
	Steps for Installing the Load Module
	Defining an Anchor Point

	Spawners and Services File
	Introduction to the SAS/CONNECT Spawner
	Spawner Definition
	Benefits of Using a Spawner to Sign On to a Server
	Protects Client's User ID and Password
	Controls Client Access to the Server in a Firewall Configuration
	Eliminates the Need for a Sign-On Script

	Using SAS Management Console to Administer the SAS/CONNECT Spawner
	Overview
	Using the Server Manager Plug-in to Access the SAS/CONNECT
Spawner

	Using PROC IOMOPERATE to Configure the SAS/CONNECT Spawner
	Operating Environment Support for Spawners
	Client Connection Using a Spawner
	Spawner Connection Examples
	List of Examples
	Scripted Sign-on to a UNIX Spawner
	Scriptless Sign-on to a Windows Spawner That Runs as a Service
	Encrypted Sign-on to a z/OS Spawner

	Managing the SAS/CONNECT Spawner
	Managing the SAS/CONNECT
Spawner
	Overview

	SAS/CONNECT Spawner
in UNIX
	Location of the Spawner Executable in UNIX
	Managing SAS/CONNECT
Spawner in UNIX

	SAS/CONNECT Spawner
in Windows
	Location of the Spawner Executable in Windows
	Managing the SAS/CONNECT
Spawner in Windows

	SAS/CONNECT Spawner
in z/OS
	Setting Up the SAS/CONNECT
Spawner in z/OS
	Location of the Spawner in z/OS
	Spawner User ID on z/OS
	Starting the Spawner in z/OS
	Starting SAS Using a Shell Script
	Ending the Spawner on z/OS

	Options for Starting and Managing the SAS/CONNECT Spawner
	Introduction
	General Spawner Options
	Windows Options
	UNIX and z/OS Options
	Sample SAS/CONNECT Spawner logconfig.xml File

	TCP/IP SERVICES File
	Configuring the Services File
	Services That Require an Entry in the Services File
	Example Services File
	Explanation of Fields

	Firewalls, Scripts, and Error Messages
	Configuring SAS/CONNECT for Use with a Firewall
	Firewall Concepts
	Requirements for Using a Firewall
	Firewall Configurations
	Overview of Firewall Configurations
	Setting Up a Firewall Configuration That Uses Restricted Ports
	Setting Up a Firewall Configuration That Uses a Single Port

	Sign-On Scripts
	Script Rules
	Syntax
	Specifying Time
	Using the WAITFOR and TYPE Statements

	Sample Scripts
	The Scripts
	TCPUNIX.SCR Script
	TCPWIN.SCR Script
	TCPMVS.SCR Script
	TCPTSO9.SCR Script

	Error Messages
	UNIX:
TCP/IP Access Method
	SAS/CONNECT Error Messages under UNIX
	SAS/SHARE Error Messages under UNIX

	Windows: TCP/IP Access Method
	SAS/CONNECT Error Messages under Windows
	SAS/SHARE Error Messages under Windows

	z/OS: TCP/IP Access Method
	SAS/CONNECT Error Messages under z/OS
	SAS/SHARE Error Messages under z/OS

	Recommended Reading
	Glossary
	Index

